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Abstract

This thesis investigates methods of assessing students' mathematical ability by using

the computer.

It starts by reviewing the general types of assessment within mathematics educa-

tional software and then describes some different ways of presenting the assessment

on the computer by the use of varying types of questions.

In Chapter 2 there is a review of the literature and research conducted in the area

of computer assessment of mathematics. In particular, the most prevalent dilemmas

of computer aided learning and computer aided assessment are highlighted whilst

looking forward at how the contents of further chapters in the thesis can help in

addressing some of these difficulties.

The following chapter gives an historical account of how the CALM 1 software

has addressed some of the inherent difficulties of assessment and highlights the

ways in which some of these hurdles have been overcome. The shortfalls of CALM

are described and, where relevant, pointers to the parts of thesis which tackle these

shortfalls are given. In particular, the work in Chapter 4 undertakes an improvement

in the way simple mathematical expressions 2 can be handled as it shows how binary

tree constructions can be utilised within an educational environment.

Chapter 5 tests out two applications of the binary tree structures with the cre-

ation of a tool to aid student-computer communication of mathematics and by pro-

viding a method of comparing student-set questions against a true answer.

The following chapter describes an educational experiment which set out to show

how a computer can be used to assess students' mathematical ability during a formal

'CALM is the acronym for the Computer Aided Learning in Mathematics project at the De-
partment of Mathematics, Heriot- Watt University

'in this thesis, the word expression is taken to be a mathematical entity which does not contain
any comparison operators

viii



university examination. It deals with very important educational issues which arise

when performing such examinations and gives conclusions as to their educational

validity. In particular, issues of student input, partial credit, objectivity, consistency,

flexibility and efficiency are considered along with the impact that this research could

have for future testing of mathematics.

The final chapter describes how the thesis has been instrumental in further re-

search and development within the field of computer assessment of mathematics.

ix



Chapter 1

Introduction

This chapter gives an introduction to the field of computer assessment in mathemat-

ics. It starts by giving a description and a critique of the different types of assessment

styles that are in common practice within computer aided learning software.

1.1 Assessment

Assessment is a process in which those being assessed are appraised or criticised on

their actions. One definition of the assessment of a student [15] is

Assessing a student involves taking a sample of what he or she

can do, and drawing inferences about a student's capability

from this sample.

Computer assessment can therefore be thought of as being a method of drawing

conclusions on a student's capability where part or all of the assessment is being

carried out by the computer.

From this generalisation of assessment stems the different types of assessment

which exist within different computer coursewares. These types of assessment will

now be defined.

The power of the computer can be utilised to provide many different styles of

computer assessment. These different styles are described below:
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1.1.1 Monitoring Assessment

Monitoring assessment, as the name suggests is a form of assessment used to mon-

itor student progress throughout a period of study. Monitoring is often used in

continuous assessment where taking marks and building progress profiles is in com-

mon practice. CALM 1 software (see Chapter 3) employs the monitoring process.

This enables the facility to identify weaker students as a course progresses while

encouraging the better students by acknowledging higher performance.

A great deal of work on monitoring assessment has been done at Glasgow Cale-

donian University under the CALMAT programme and at Brunel and the Open

Universities.

1.1.2 Diagnostic Assessment

The word diagnostic within assessment refers to a process which undertakes to test,

or diagnose, what students' strengths or weakness are within a particular subject

area. Typically, computer packages are geared towards providing diagnostic infor-

mation at the start of a student's studies. Some teachers and educationalists believe

that computer diagnostic testing is the key to acquiring the initial knowledge of

students' ability so that weaker students can be targeted more quickly. This and

other reasons why diagnostic testing is useful is described in [14]. This article points

out the aid to syllabus design and a possible method of streaming students that

diagnostic testing gives. It also highlights that computer diagnostic testing is often

easier to implement for large classes - particularly service mathematics classes.

Computer diagnostic testing methods cannot just help identify individual stu-

dents. If properly implemented, these tests can provide important information on

the general mathematical ability of a particular year's intake. This information can

then be used in an assessment of a University advertising policy or can point out a

weak admissions procedure.

Diagnostic testing is not only important to teachers. The more enthusiastic and

conscientious student can use a diagnostic test result to identify his or her own

weaknesses and hence iron out problems early on.

It may be argued, naturally, that it is not only a computer that can provide a
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means of diagnosing students. There are, however, good reasons why a computer

can provide a better means of delivering diagnostic assessment to students. Some

of these reasons are perhaps obvious but it is nevertheless important to point them

out.

Tests at Nottingham University (see [14]) showed that computer diagnostic test-

ing:

• encourages students to be self-critical;

• allows students to gain immediate feedback on their current ability;

• gives students their own learning profile;

• allows students to direct their own additional studies

However, many of these can be achieved by a traditional pen and paper diagnos-

tic test and it is therefore only the second item in this list which gives the computer

a distinct advantage. Another advantages, as with many other forms of computer

assessment, are that the computer is objective. That is, the computer does not

look at who is sitting the test. Student's handwriting can often cause a problem in

traditional testing methods but with computer tests this is not the case (although

with Multiple Choice Questions (MCQs) this is not a concern). Computer diagnos-

tic testing mechanisms can contain questions with built in randomness. Possible

answers to MCQs can appear in a random placement on the screen and any pa-

rameters in a question can vary. This gives computer testing another advantage in

that, because of this randomness, the test can be taken again - perhaps to gauge

any improvement in any student..

Not all diagnostic systems are of a multiple choice format. DIAGNOSIS from

the University of Newcastle Upon Tyne asks for structured response answers (in

the form of mathematical expressions). Here, Diagnosis places a skill tag with each

question in the diagnostic test. From these tags, the system is able to gain knowledge

of whether a student is able to perform a particular task. This enables the system

to home in on students' weaknesses more quickly since time is not wasted testing

skills which the student has already been deemed to understand. Quickly, a list of
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skills which a student does and does not have can be drawn and then the student

can be directed to particular resources on the system.

Heriot-Watt, Nottingham and Napier Universities are among many others who

adopt some sort of diagnostic computer assessment.

1.1.3 Self Assessment

Self assessment techniques involve students judging for themselves where their weak-

nesses lie. It has been shown that self assessment is an important educational skill

for students to acquire [18].

As will be seen in Chapter 3, the CALM II project at Heriot-Watt University has

employed self-assessment sections in their CAL materials. Here, students are given

the maximum amount of feedback on the status of their answers and some possible

incorrect answers have been pre-programmed into the software, thus enabling higher

quality feedback to incorrect answers.

The United Kingdom Mathematics Courseware Consortium (UKMCC) have,

with Mathwise (the product name for the UKMCC), included self assessment through-

out the varying modules of the courseware. As students work they are invited to

answer self-assessment questions based on the arguments seen in the theory sections.

1.1.4 Grading Assessment

Grading assessment is where a student is given a mark which is used in part (or

completely) to grade a student's performance.

Grading assessment on the computer has not yet been fully exploited (see Lit-

erature Review - Chapter 2). The computer grading assessment exercises in math-

ematics have concentrated on either multiple choice questioning or other simple

techniques such as text matching. However, as Chapter 6 will show, there are many

other inherent problems of using grading assessment on the computer in mathemat-

ics. Although formal grading examinations have yet to be employed universally,

many continuous grading assessment projects have been put into place. Brunel

University and the University of Wales, Bangor, for example, used the CALM 1

software as a continuous grading assessment package. Here the marks carried 5
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percent towards the first year undergraduate mathematics mark.

1.2 Styles of Question

Although there are many types of assessment, as described above, there are also

differing styles of questions. MCQs have already been considered and other types

of questions are now described.

• 'Multiple Choice' Questions

Multiple Choice Questions (MCQs) have been used as a method of assessing

students for many years. Here, students are asked a question and are presented

with a number (usually between 3 and 5) of possible answers. Students must

decide which answer is correct. A simple marking scheme adopted by many

assessors consists of awarding one mark per correct answer. The problem with

this type of multiple choice testing is that students could quite easily guess

answers and therefore gain marks which they perhaps did not deserve. One

strategy for combating this problem was to introduce "negative marking".

Here, the expected mark on an examination for which all the answers had

been guessed would be fixed to 0%. Naturally, this depends on the number of

possible answers given to the student. Perhaps a better method of marking

is to include, as one possible answer, an abstention. That is, a student could

choose to abstain from answering a question - thus gaining or losing a mark.

This, however, introduces a "gambling" element into the assessment - "am I

totally sure that this is the answer or is it safer just to abstain?".

Joanna Bull [15] suggests that

guessing is a useful skill and should be encouraged and mea-

sured.

although in mathematics this is less true than in other disciplines.

Although there are some serious educational apprehensions concerning the use

of multiple choice testing, MCQs do have advantages over other, perhaps more

technologically complex, types of assessment. One advantage is simply that
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MCQs are easy (or easier) to implement than other forms of assessment and

are particularly easy to computerise. Once computerised, the possible answers

to questions can be placed randomly on the screen - thus making the test

appear different to, perhaps, a neighbouring student. In mathematics, random

parameters can be easily included in the questions. This has the advantage

of enabling students to sit a test more than once or enables students to sit

closer together for a test (usually, computer terminals in laboratories are closer

together than desks in an examination hall).

Another advantage that MCQs has over other methods of computer assessment

of mathematics is that they require no complicated answer checking. As will

be demonstrated in forthcoming chapters, marking answers in mathematics on

a computer can prove to be no easy task.

The disadvantage of MCQs is that they do not give any flexibility for the

mathematical answers. For example, the expressions -,1r- and I are equivalent

so which one should be written as being the correct answer?

There are now many different forms of MCQ testing. Hidden multiple choice

questions (HMCQs) provide students with possible answers. Here, the possible

answers appear one at a time whilst students have to dismiss or accept them,

without the opportunity to reconsider an answer later. Although this method

of testing has shown to reduce some of the afore mentioned problems with

multiple choice testing, it has not been popular with students.

• 'Click' Questions

Here, students are invited to click (using a mouse or other pointing device) on

an object on the screen. For example, given a plot of a curve, a student could

be asked to 'click on a local maximum' or 'click on a vertical asymptote'.

• 'Click and Drag' Questions

A student could be required to click on an object and drag it to a correct

point. For example 'drag the cross to the y-intercept'.

• 'List Choosing' Questions

These answers require students to choose one or more items from a list. These
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type of questions are particularly useful when there is more than one correct

answer to a question.

• 'Ordering' Questions

Here, a student could be asked to put into order a list of objects.

• 'Structured Response' Questions

These type of responses require students to type mathematics into the com-

puter. Although there are other types of questions, structured response ques-

tioning usually brings a greater degree of freedom to what can be asked.

Amongst some of the advantages are that the "guessing" element in answering

is diluted and students can give answers more as they would in a conventional

examination.
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Chapter 2

Literature Review

This chapter is intended to review and illuminate the historical progress of computer

assessment. The work reviewed and the problems raised will be paralleled with those

in the field of computer assessment of mathematics.

2.1 The Lack of Dedicated Literature

Whilst writing this review, it became more evident that assessment is not generally

treated as being separate from the learning process. It could be argued that more

traditional methods of learning mathematics (such as school examinations) do sep-

arate the assessment from the learning but for Computer-Assisted techniques, the

assessment and learning seems to be more integrated. Because of this, there is a void

of literature which is dedicated to the discussion of computer assessment; rather the

literature plays down the importance of "end of topic" assessment and concentrates

on "within topic" self-assessment.

This view is shared by Pritchett and Zakrzewski [33] saying that

Where computer assisted assessment (CAA) has been used it

has usually been small scale using in house developed software.

They add that

they (computers) have not hitherto been much used in this way

for formal assessment purposes in higher education.
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2.2 Some Early Work and the Importance of Feed-

back

One of the earliest practices of computer based assessment was that of Skinner [37]

in the 1960's. Skinner's program took student input and ...

immediately informed whether he (the student) is right or

wrong

Skinner emphasised the importance of including feedback within computer as-

sisted learning packages, reinforcing Crowder's [17] view that

the essential problem is that of controlling a communication

process by the use of feedback.

Kulhavy [21] considered that

supplying feedback after an error is probably far more impor-

tant than providing confirmation.

2.3 How can Answers be Marked?

This work of Kulhavy unveiled one of the great problems of computer based assess-

ment in that

there is a restriction as to the type of answer that can be re-

quired or demanded.

In this sense, the literature shows that, in some way, assessment is driving the

learning process in that these restrictions reduce the ways in which questions can

be put to students.

O'Shea [31] states that
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The evaluation of student responses by computer presents no

problem (as long as they are expected to match the given an-

swer exactly).

This quote encapsulates, but fails to appreciate, some of the inherent problems

of assessing mathematics students on the computer. Chapter 3 presents the work

of the CALM project in 1985 to address this and the work in Chapter 5 provides

an additional solution to in the form of a more sophisticated numerical comparison

routine.

Crowder [14] advocated that all questions and answers had to be of a multiple-

choice format but authoring languages [36] (1976), although still primitive at the

time, allowed basic string comparisons (for example, spelling mistakes, such as a

missed out letter, were allowed).

Palmer and Oldehoeft [32] developed some interesting work on computer as-

sessment in mathematics. Their program enabled students to type in equations as

answers. The program marked the answers right or wrong and gave appropriate

feedback. The idea of "random parameters" emerged where parts of the questions

would contain randomly generated numbers, therefore creating, in effect, an infinite

number of questions.

2.4 Artificial Intelligence

Kimball's integration tutor [20] hightlighted work on student assessment. Here,

Kimball set up a dialog between his computer tutor and the student where the

computer would be prompted to answer questions on simple integration. O'Shea

[31] illustrates some interesting examples of how Kimball's system works - see below:

Our integral is f x x log(x)dx

What shall we do to solve it? : sub

Can you think of a substitution? (yes, help or exit)

yes

10



Let u = log(x)

Ok, Ruth, we will let u = log(x)

Thus x = eu and dx = eudu

which we substituted into the integrand.

Our new integral is now fu x e(2du.

Please type good, bad or giveup.

bad

Can you think of a substitution? (yes, help or exit)

help

I can't find a suitable substitution! Will exit...

This example has given the impression that his program is intelligent but in fact

O'Shea [31] emphasises that

The program does have access to a solution, but this is not

used directly; neither does the program make use of a general

symbolic integration procedure, since this would be computa-

tionally expensive.

During the artificial intelligence boom in the 60's and 70's, researchers and pro-

grammers began to acknowledge that building automated intelligent tutors was near

impossible. Instead, expert systems [16] (systems which were deemed expert at a spe-

cific, usually small, task) were introduced. In this sense, the work done by Kimball

could be thought of as an expert system, rather than an intelligent tutor.

2.5 Assessment Drives the Learning Process

Historically, more effort has been made in creating programs to teach rather than

to assess what has been taught. However, it has often been the case that students
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prefer the assessment strand of computer assisted learning programs. A good ex-

ample of this was within the TICCIT' project which set out to show that computer

aided teaching in mathematics' could be more cost effective than more traditional

methods. The studies showed that

the practice (test/assessment section) appeared to be the cor-

nerstone of the TICCIT system.

Another project, called PLATO (Programmed Logic for Automatic Teaching

Operation) started early in the 1970's. Kane and Sherwood describe a use of the

PLATO system in [19] teaching a course on classical mechanics in the Department

of Physics, University of Illinois. Here, PLATO was used for homework exercises to

provide on-line checking of student answers to problems which

are similar to the more difficult problems found in typical physics

textbooks.

As part of the students' activity on the PLATO system, during a proof of a

theorem,

students type algebraic expressions whose correctness is checked

by simple techniques available in the TUTOR language [36].

These lessons on classical mechanics also contained "check-up" questions inter-

spersed throughout the lesson. These problems also contained random parameters.

Sherwood and Kane allowed simple checking of syntax of expressions - such as un-

balanced parentheses. The system also enabled student to input appropriate units.

If there units were wrong then a feedback message was given advising the student

that "these are not the units of acceleration (for example).

2.6 Difficulties of Computer Assessment

Kenneth Mann points to some of the problems of computer testing in mathematics

in [23]. Mann says that

'TICCIT = Time-shared Interactive Computer Controlled Information Television - see [31]
2 TICCIT also targeted the teaching of English grammar
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there is value pedagogically and economically in the develop-

ment of a ... computerised system of assessment.

He continues by highlighting some benefits of using the computer in assessment

saying that computer assessment

would enable a user to draw a random test, of reasonable dis-

tinctness

and

utilise the time of the mathematics educator more effectively.

Mann advocates that computer assessment systems

would enable the educator to test as often as deemed appro-

priate.

However, Mann highlights some of the problems using computer assessment say-

ing that

there is a limitation on the type of question that may be asked

and

multiple-choice is the type of question that has been used in

mathematics tests for many years.

Mann highlights the limited work done on structured response questioning saying

More emphasis is now being given to calculation questions, in

which the student enters his answer as a number.

13



2.7 Formal Assessment on the Computer

Neill, in [30] points out some important issues which arise in formally assessing

students on the computer in mathematics. Firstly, the importance of having good

reliable hardware with suitable access is highlighted which is still a problem in many

educational establishments. The paper shows that, if a course has been taught using

Computer Aided Learning techniques then it is a natural progression to examine on

the computer too. The examination questions, described in this paper, are not

marked by the computer. Students simply fill in intermediate steps (on a piece of

paper) in answering a question which are then marked by a human marker. In fact,

Neill reports that

laboratory based examinations need more preparation, organ-

isation and marking time than traditional examinations.

This view will be argued in chapter 6 where it is suggested that if computers are

to be used instead of traditional paper examinations then the effort to create and

mark by computer should, in fact, be more efficient than that for written papers.

Neil points out some interesting issues concerning the learning process which

arose during the computer examination. Firstly, students reported that they were

less stressed

by

working in an environment with which they are familiar

rather than

sitting papers in a large hall with several hundred others (stu-

dents).

This view is backed up by the work described in chapter 6 (see [11]).

Lomax describes how the computer can help in generating questions which differ

slightly for each student. His article [22] shows how MC Questioning with random

parameters can enhance the testing (particularly in self-testing) process.
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2.8 Communication with the Computer

O'Shea [31] states that a student

should not be distracted from the subject at hand by having

to search ways to express himself.

Here, O'Shea hits upon one of the most prevalent problems in the assessment of

mathematics students by computer. That is, how can a computer program assess

students effectively if the communication of answers between student and computer

is inadequate?

It is clear from the literature available that educators have generally avoided the

problems of communication by using Multiple-Choice Questions [33]. Communica-

tion, in itself, need not cause a problem but for the more complex styles of questions,

such as structured response, good communication is vital.

McCabe and Greenhow [25], identify 5 different question types which they em-

ploy in their software. These are Multiple Choice, Multiple Response, Text Match,

Numeric and Hot-spot. That is, at that time, they avoid structured response ques-

tions and the problems which they bring.
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Chapter 3

CALM Project Review

This chapter is intended to give a general background to the CALM Project within

which the work for this thesis was based. In particular it will concentrate on the

assessment strand of the project.

The CALM Project (Computer Aided Learning in Mathematics) was established

at Heriot-Watt University in 1985. It was funded as part of the Computers in

Teaching Initiative where the money was spent on creating a computerised tutorial

system. The first CALM materials were written on Nimbus Research Machines for

first year science and engineering students. Later, the software was ported to the

IBM compatible personal computers by J. H Renshaw at Southampton University.

The CALM software divided the learning process into three main sections; theory,

worked examples and a test. After extensive evaluation, the students reported that

the test section was the most popular - showing again that students of mathematics

generally like "learning by doing". In fact, the test section of the CALM software

turned out to be it is cornerstone and the work done on the test has proved to be

the driving force for the future development of CALM.

3.1 The CALM Test Section

The significance of the CALM Test Section is shown in [7] by saying

In all CAL software one of the most important elements is some

form of test which allows the students the chance to assess their
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understanding of the subject and to reinforce the theory being

presented.

The test section set questions which appeared in a more "traditional style."

Here, the main text of the questions were presented to students much as traditional

tutorial questions. There is a difference in the overall question presentation due

to the lack of computer intelligence. The original statement of the question is the

same on the computer as it is on paper but the computer is unable to judge what

is important when answering a question and therefore a human must break the

question up into smaller parts and get the computer to ask it in particular stages.

Moreover, mathematics questions can usually be solved in varying ways and

therefore the questions are broken down into steps which are deemed important in

answering the complete question. The following diagram (figure 3.1) shows a typical

breakdown of such a question.
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QUEST /OH

An open box is to be constructed from a square flat metal plate of side

L = 451 cm by cutting away four squares one from each of the four

corners and bending up the sides. Find the side x of each of these

squares to (a) maximise and (b) minimise the volume of the open box.

You will now be asked to input your answer(s). 	 5 part(s)

Volume of box = V(x) = x(451-2x)A2

dV/dx = (451-2x)(451-6x)

d2 V/dx2 = 24x-3600

Value of x for maximum V is ? 451/6

Value of x for minimum V is ? 451/2

x(451-2x)2 , (451-2x)(451-6x), 8(3x-451)1

451/6, 451/2

COBBECI BMS)

VOW SCORE f r this question: 	 5 out of a possible 5

Press ANY HEY to continue.. V

Figure 3.1: The CALM Test Section - Question Breakdown
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3.1.1 Answering Questions in a CALM Test

Students answer questions and are marked according to the rules set out in 3.2.

The feedback from the software was dependent on whether students decided to sit a

"very easy", "easy" or "hard" test. These first two categories give ticks and crosses

to answers and the "very easy" test gives answers to incorrectly answered parts

after three incorrect attempts. The hard test is marked at the end of the question.

Diagram 3.1 shows a question within an "easy" test.

The student performance can be reviewed via a program which reads output files

from the CALM tests. From these, teachers can easily identify students with low

marks or those students who are absent.

3.1.2 Mathematical Input

Since student answers are generally in the form of mathematical expressions, a

method of expression input must exist within the software. CALM employed a sim-

ple one-line input where mathematical expressions must be typed in a FORTRAN-

like manner.

Within this one-line, a few mathematical symbols could be input such as

the squared symbol 0 2 and 9. A power mode was also available which allowed the

input of integer powers. The squares of trigonometric functions could be input in

the usual manner (cos 2 (x), for example). Fractions were input with the slash symbol

- such as 1/ (x-1) for x 1 1.

[9] points out the difficulties students sometimes had using this notation and [7]

writes

we need to create a better interface between students and com-

puter to enable them to enter mathematical expressions more

easily.

It continues by saying that

... the student still does not have the freedom available with

pen and paper to express mathematical ideas. The solution is
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not trivial but it will lead to a much more successful use of

CAL in Mathematics

Further details can be seen in [6].

Chapter 4 deals with this very issue and puts forward a solution to this problem.

3.2 Marking Student Answers

In order to mark student answers, the CALM software employs "expression eval-

uation." Here, student answers are compared against true answers by numerically

comparing the student and true expressions at a number of suitable points over a

particular range.

The expression, which is in one-line format can contain variables from a set a to z

(but missing out e which is used as the mathematical constant exp(1)). Each variable

in the expression can be either locked or unlocked. A locked variable indicates that

it has already appeared in the expression and therefore it is value remains fixed

(locked) during a particular evaluation. For example, during the evaluation of the

expression a cos(a0), the value of a must not change from being one value outside

the cos function to another inside.

The mathematical expressions contain various operators and identifiers, all of

which have an associated precedence (priority). These precedences help to give the

order in which parts of the expressions are evaluated. CALM eval makes use of

recursive programming - whose process will now be described:

A mathematical expression is deemed to contain the following constructs: An

expression, a simple expression, a term, a signed factor or a factor. Here, an ex-

pression is said to be the most complex whereas a factor is a smaller part of an

expression. For example, the expression x(y + z) has two factors, x and (y + z).

The second factor (y + z) is too an expression which can be broken down into

two terms y and z separated by the operator +. This evaluation procedure checks

for implied multiplication. That is, expressions need not necessarily contain the *

operator to signify multiplication. The juxtaposition of two variables, a variable

and an expression or two factors means that multiplication is implied. The ability
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to determine implied multiplication was built into the evaluation procedure.

Once the routine finds factors within the expression, it is necessary to evaluate

the factor at the valid points of the variables which appear. This process is best

illustrated by the diagram (figure 3.2) below. Note that the labels for the nodes on

this diagram are described in table 3.1. 

(TART)

3.3 CALM Compare

Since it was required that students' answers be marked against true answers, CALM

Compare was set up to check if students' answers were mathematically equivalent to

a predefined true answer. The question of how two answers can be mathematically

compared must therefore be asked.
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0, 0 or CD Number Associated Text
CD 1 START the algorithm
0 1 Is the expression a constant?
0 2 Convert the input string into its numeric equiv.
0 3 Is the expression surrounded by brackets?
0 4 Recurse with bracketed expression and return value
0 5 Is the expression 7r?
0 6 Return the value 7
0 7 Is the expression surrounded by a v?
0 8 Recurse, taking the ,v of argument
0 9 Is the expression a function?
0 10 Recurse and return the value operated on by the function
0 11 It must be a variable - get value for it
0 12 Is the variable being squared?
0 13 Square the value of the variable
0 14 Is multiplication implied?
0 15 Insert a multiplication * in expression
0 16 Return the result

Table 3.1: Text for Nodes on figure 3.2

3.3.1 String Comparison

The naive reader may ask the question "why can't the symbols in each expression

be checked against each other to see if they are the same - thus proving that the

true and student answers were either equivalent or different". The following very

simple examples (see table 3.2) will illustrate why this method of comparison is, in

general, insufficient and inadequate.

TRUE Answer Equivalent STUDENT Answer Comment
3

i

3

1 ±
3±

1.5

Any number of fractions are equivalent
Include a unary plus or spaces for readability
The decimal representation of

cos(2x)
cos(2x)
cos(2x)
cos(2x)

cos(2 * x)
cos(x) cos(x) — sin(x) sin(x)

cos2(x) — sin 2 (x)
1 — 2 sin2 (x)

Not using implied multiplication
Double angle formulae
Another version using double angle formulae
A trigonometric identity

Table 3.2: Examples of the Inadequacy of String Comparison

These simple examples show that there can sometimes be an uncountably infinite

number of ways of writing some very simple expressions.
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3.3.2 CALM Compare's String Evaluation

The CALM software uses the recursive evaluation routine described above along

with a comparison routine which is now explained.

Another name of String Evaluation is Numerical Comparison. This, as well as

the student and true answers, an interval [a, I)] (over which to compare) and the

number of comparisons inside [a, b.] are needed. The algorithm also uses a specified

tolerance t and a failure rate f.

The different types of expressions which need to be compared are now described,

along with stated suitable values for the range, number of points, tolerance and

failure rate.

3.3.2.1 Expressions Representing Constants

True and Student answers which do not contain either variables or identifiers (letters

which are constants in the context of a question) can be compared relatively easily

by computing the value of each expression.

Two constant expressions are said to be equal if they are either identical in

value or agree within a certain tolerance t. For example, if the true answer is the

mathematical constant 7F then, using a certain value of t, 3.14 is equivalent. This

is to say that within CALM Compare, two answers are equal if they almost agree.

In fact, for constant expressions, they are equal if the relative error is less than or

equal to a given value of t.

The relative error Erei between a true answer At and a student answer A, is

calculated as follows:

lAt — Asi 
Erel —

lAtl

The only difficulty with comparing constant functions in this way is when the

true answer At is close to 0. Here, Erei would get very large and give an inaccurate

determination as to the correctness of the student answer. To remedy this, the

absolute error, Eat's, is used when At is close to O. Eabs is defined as follows:

Eabs-7-- lAt — A51
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3.3.2.2 Expressions Representing Functions of One Variable

Mathematically, two expressions can be considered as being equal if their domains

are equal and their values agree at all points of the domain. Obviously, it is impossi-

ble to compare true and student answers at all (possibly an infinite number) points

on their domains. Therefore, CALM uses a subset of their domains, the interval

[a, b], in which to compare answers. Comparison is made c times from randomly

chosen points in [a, N. The way in which [a, b] and t are chosen is crucial in the

comparison of expressions and the choice depends on the expression for the true

answer. For example, suppose a true answer is i*. Suppose that c = 11 random

points are chosen in [a, b] = [-0.1, 0.1] with a tolerance of t = 0.01 (1% relative

error), consider the following student answers:

• 0

Here, from its definition, the relative error between student and true answers

is Era = 1. Since this value is greater than t, the student answer is marked

wrong.

• 1+y2

This answer does not represent a function of x (the variable in the true answer).

The student answer will therefore be marked as incorrect.

• 1

Here Vx, Era = x2 . Now, since Ix 1 < 0.1, this gives a value for Era <tVxE

[ —0.1, 0.1] and will therefore be marked as being correct.

As can be seen from this example, it is not always trivial to choose values of a and

b for the compare interval [a, b]. In fact, it is always possible to choose values for

a and b so that an incorrect student answer is marked as being right! However,

it should be pointed out that the student must know the correct answer for these

values of a and b to be calculated.

One must also be wary that an interval is not chosen in which, for some values,

the true answer is not defined. For example, if a true answer is I then the range

should not include the point x = 0. One problem, however, is that teachers can

1
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never be sure what a student will type as an answer. Even if the range is carefully

chosen so that the true answer does not become undefined, a student answer may

be written in such a form as to contravene this range.

For example, say a true answer is and the range was set to [a, b] = [1, 2]. A

student could, quite conceivably, forget to factorise their final answer and input :2-11.

As a teacher, it could be argued that this answer is not strictly incorrect. However,

if x = 1 is chosen as one of the comparison points then it would be marked as being

wrong.

To try and avoid this, the concept of a failure rate f was introduced. This enabled

answer equivalence to fail f times during the comparison. As long as c was chosen

significantly high and the student's expression agreed with the true expression c— f

times then the answers can still be marked as being equal. In practice, f is chosen

to be a percentage of c.

3.3.2.3 Expressions Representing Functions of Two or More Variables

The choice of the range becomes yet more complicated when comparing answers of

two or more variables. Here, say for a function of two variables, CALM Compare

checks to see if the true and student answers are equal on a set of four regions of the

plane. The regions of the plane are defined by [a, b] or [—b, —a]. Therefore, answers

are compared over the four regions [a, b] x [a, b.], [a, b] x [—b, —a], [—b, —a] x [a, b]

and [—b, —a] x [—b, —a]. The book [7] gives an interesting example as to why these

regions are chosen. This example follows:

Take a true answer as ln (1(1 — x)(1 — y)l) which is defined Vx and y � 1. If the

range [a, b] is set to [2, 10], consider the following student answers:

• ln((1 — x)(1 — y)) This answer will be marked as correct, since the true and

student expressions will agree in the region [2, 10] x [2, 10] over which (1 —

x)(1 — y) is positive.

• ln(1 — x) + ln(1 — y) This answer will be marked as incorrect in the first three

regions but as correct in the region [-10, 2] x [-10, 2].

The second answer here illustrates the need for using the negative as well as
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positive ranges for if the negative range was not included, the second answer would

have been marked as being incorrect.

3.3.2.4 Restrictions of CALM Compare

There are types of answers which CALM Compare has difficulty in answering. For

example, if the true answer is either very small or very large (in the order of 10')

then the tolerance must be set accordingly.

Another problem of the CALM Compare algorithm is that the meaning of ex-

pressions is lost as the recursive procedures progress. All that is left of the evaluation

is the numerical values of the expression at particular values of the identifiers. The

work in chapters 4 and 5 introduce expression trees and show how valuable they

can be in understanding more about true and student answers. Chapter 5 shows a

method of comparing answers without actually knowing the true answer in advance

- therefore enabling students, in certain situations, to ask themselves questions!

This thesis, in the proceeding chapters, will expand on the work done by CALM

by providing a method of marking students' answers when the range [a, I)] is un-

known. It will also show, in Chapter 6, how additional but simple features can be

built into a testing routine in order to make the assessment more reliable and robust.

In particular there will be discussion on how restrictions on student answers can be

imposed in order to alleviate some of the problems of marking answers.

3.4 Second Generation CALM - CALM II

From the experiences of writing the original CALM materials came the CALM II

software. In order to bring CALM more up to date, the new software was written for

the two major hardware platforms used in the computing community - both IBM PC

(Microsoft Windows) and the Apple Macintosh. The materials were authored using

Authorware Professional which supports easier and more advanced methods of inter-

action, such as clicking and dragging, textual input, hot-spots and hot-words. The

mathematical content of the new CALM was geared towards the Scottish Highers'

syllabus.
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After noticing the importance of the assessment element in CALM, CALM II

included a new element in the software - Self Assessment Questions (SAQs). Here,

students were tested in a way which is less confrontational than in the test section.

The Self Assessment tests tended to be more informative in that a greater degree of

feedback was delivered throughout the assessment exercise. Predicted incorrect an-

swers were programmed into the marking process (which still used CALM Compare)

so that the teachers could prevent mistakes which were common amongst students.

The most interesting research about the way in which CALM II can be used to

aid students was that of Moi [28] (see Chapter 2). Moi's thesis also provides an

excellent educational review of Computer Aided Learning (CAL).

An end-of-module test section completes the CALM II software. A new version

of this test is in production as this thesis is being completed and will be used in

future educational research. This test is an improvement on the Mathwise UKMCC

test mechanism which is described in Chapter 6.
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Chapter 4

An Application of Data Structures

and Algorithms Within a

Computer-Based Teaching,

Learning and Testing Environment

4.1 Introduction

With the ever increasing use of technology in the teaching and testing of math-

ematics, it is vital that better methods of student / keyboard communication of

mathematics are found. This chapter concentrates on the description of a mech-

anism (now referred to as the Input Tool or IT) which has been built to reduce

student concern about mathematical one-line (Fortran-like) input. The first part

of the chapter will describe the features and aesthetics of the tool and the second

part will describe the use of data structures and algorithms for its creation. The

evaluation of its educational benefits will be described in this chapter and Chapter

6.
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4.2 Features of the Input Tool

Since 1985, CALM software has relied heavily on students typing mathematical

expressions into the computer. [7] highlighted the problems in computer-student

interaction within a CAL in mathematics framework and specified the need for a

way of representing mathematical input in a less computer science oriented way.

This and the previous chapter highlighted the need for improving the way in

which students type mathematics into the computer. With this in mind, an Input

Tool (IT) has been created which alleviates some of the concerns that students

have with mathematical input. In questionnaires given to users of CALM, students

reported that the key features of such an input tool are to:

• Reduce student concern about communicating mathematical expressions to

the computer;

• Display student inputs in a more conventional two-dimensional math-like man-

ner; and

• Give useful feedback on wrongly formed expressions (syntax etc.)

From a teacher's point of view, the IT should also:

• Be easily integrated (both functionally and aesthetically) into a teaching and

learning and/or testing environment

The implementation of these criteria can be seen pictorially in diagram 4.2 below

(and in chapter 6). The input tool employs a continual type-analyse-translate-

redisplay sequence. That is, whilst students are typing an expression character-by-

character, the IT continuously analyses the expression, translates it into something

more meaningful and redisplays it, along with any relevant feedback, in mathematics

notation.

Keyboard input appears in the box at the bottom of the Input Tool and the

math-display and feedback appear at the top and centre respectively.

Although there are many commercial packages which contain an expression dis-

play tool, they are generally inaccessible to other software. Also, they are generally
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Input Tool

G+ >c9

C
2

x + y sin(x)

Lxpressiwk is valid

(1.x-2)/(x-4-4ysin(x))

About I Cancel [ UK	 I

Figure 4.2: Diagram Showing the Input Tool
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written without the educational need of students in mind and therefore are, as yet,

not suitable for educational purposes.

4.3 Data Structures and Algorithms

This section will describe in detail the data structures and algorithms required to cre-

ate the Input Tool. The ideas presented are illustrated using a language-independent

pseudo-code and the data structures appear in Turbo Pascal syntax.

The goal of the coding is to produce a binary tree representation of the input

expression. The advantages of using binary trees within the context of mathemati-

cal CAL are numerous. Firstly, an expression in a binary tree requires no brackets

and therefore removes superfluous parentheses from students' expressions. Traversal

of an expression is made easier using recursive programming techniques and there-

fore trees can be used to compare true answers to student answers and evaluate

expressions, identify numerators, denominators, powers and bases. Trees allow for

easier algebraic differentiation (see next chapter), simplification of expressions and,

perhaps most importantly, lead towards higher quality feedback for students. The

use of trees, for which the Input Tool appeals to, is that of typesetting a one-line

expression - that is, redisplaying an expression in mathematical, many-line format.

A binary tree is defined as follows[13]:

A binary tree is a tree which every node has at most two suc-

cessors (children) where a tree is a connected graph which has

no loops or paths leading from any vertex back to itself.

The concept of the root of a tree is also used. The root of a tree is a vertex

(or node) which has no parents. Strangely, perhaps, trees are usually represented

pictorially with the root at the top. For example, the following diagram shows the

expression 1/ (2x) represented in a binary tree:
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1
	 *

2
	 x

The algorithms used for the creation of the binary trees, and hence the engine

of the tool, can be broken down into the following topics:

4.3.1 Lexical Analysis

In order to give students feedback about the syntactical structure of expressions, it is

important that the Input Tool understands the syntax of what the student has typed.

Therefore, a one-line input must be broken down into tokens such as functions,

constants, parentheses, real numbers, identifiers and operators. The elements of

each set are shown in the following Turbo Pascal TYPE declaration statement:
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TYPE

FunctionType = (FTanh, FTan, FSqrt, FSqr, FSin, FSech,

FSec, FLn, FLog, FFact, FExp, FCoth,

FCot, FCosh, FCosech, FCosec, FCos, FArctanh,

FArctan, FArcSinh, FArcSin, FArcCosh, FArcCos, FAbs);

OperatorType = (Plus, Minus, Mult, Divide, Power, UnaryMinus);

IdentifierType = (aa,bb,cc,dd,ff,gg,hh,ii,jj,kk,11,mm,nn,00,

pp,qq,rr,ss, tt,uu,vv,ww,xx,yy,zz);

DelimiterType = (OpenBracket, ClosedBracket);

ConstantType = (FPi, ee);

The above declaration enables the Input Tool to understand the basic trigono-

metric and hyperbolic functions and simple constants and operators. This could

naturally be extended to include, for example, operators such as the differential op-

erator, or the partial differential operator. Just as easily, one could define aa, bb,

cc, etc. to be constants rather than identifiers — however, for the purpose of display,

this is not important.

All of these TYPEs can now be grouped together under one TYPE. Call this

type ItemInfo and declare it as a VARIANT RECORD as follows:

TYPE

ItemInfo = Record

CASE NodeStatus:NodeType of

FunctionNode : (WhichFunction

OperatorNode : (WhichOperator

:FunctionType);

:OperatorType);

IdentifierNode: (WhichIdentifier: IdentifierType);

RealNode	 :(WhichReal	 :Real);

DelimiterNode :(WhichDelimiter :DelimiterType);

ConstantNode :(WhichConstant :ConstantType);

NothingNode:();

End; {ItemInfo}
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That is, a particular token of type ItemInfo can be either a Function, an Oper-

ator, a Identifier, a Real, a Delimiter or a Constant. If the token is a function then

it is called WhichFunction which is of type FunctionType. Similarly, if the token is

an operator then it is called WhichOperator and is of type OperatorType • • and

similarly for the Identifiers, Reals, Delimiters and Constants.

Now assume that a typical one-line expression string can be broken down into

an array of tokens whose elements can be one of the above types. For example, the

expression x-2 can be broken down into the array A where

A[l] . NodeSt atus =Ident if ierNode , A [1] . WhichIdent if ier=xx ,

A [2]. NodeStatus =OperatorNode , A [2] . WhichOperator =Power ,

A [3]. NodeStatus =RealNode and A [3] . WhichReal=2 . 0 .

Note that, for example, if the NodeStatus of a token is FunctionNode then all of

WhichOperator, WhichIdentifier, WhichReal, WhichDelimiter and WhichConstant

are all automatically undefined.

After establishing the need for such an array, it is important to know how to

differentiate between the end of one token and the start of another. For example,

it is vital that the software understands that pis in(x) means pi*sin(x) rather

than pi*s*i*n*(x).

The following pseudo-code illustrates the algorithm to do this.

Comment: We want to take a string called S and separate it

Comment: into an array of tokens called A.

Comment: Firstly, denoting S[i] to be the ith character

Comment: in a string S,

Comment: check for unary minuses in the string S using

Comment: the following procedure and function;

Function Unary_Minus(WhichString:String; WhichChar:Char;

Position:Integer):Boolean;
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f

Comment: This boolean function returns true if a particular

Comment: character,

Comment: WhichChar, at position i in the string

Comment: (WhichString) is a unary minus (denoted by % rather than -)

Set Unary_Minus result to default FALSE;

Comment: Initialise the result of the function to FALSE

If (WhichChar= '-') and (Position=1) then set Unary_Minus to TRUE;

Comment: The first character in string is a minus and therefore must

Comment: be unary

If (WhichChar= '-') AND (WhichString[Position-1] = '(') then

Set Unary_Minus to be TRUE;

Comment: any - sign after an open bracket must be unary

1

Procedure CheckForUnaries(VAR WhichString:String);

Comment: That is, this function takes a string called WhichString

Comment: and returns

Comment: it with unary minuses included (% instead of -)

Declare i as an integer;

f

For i:=1 to length(WhichString) do

If the character at position i in WhichString is a UnaryMinus then

set the character at position i of WhichString to be

a '%' character;

1
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Declare TempNumberCounter and TempStringCounter as INTEGER;

Comment: These are counters used to count sequences of numbers

Comment: and characters respectively

Initialise TempNumberCounter and TempStringCounter to 1;

Initialise the Boolean variable ErrorInNumbers to FALSE;

Initialise ArrayCounter to 1;

Comment: Counts through the elements of A

Comment: TempString and TempNumberString are used to build a temporary

Comment: string for sequences of characters and numbers

Comment: (including decimal points)

Comment: respecitively.

Comment: Denote SEA to be the ith character of the string S

Comment: Denote A[i] to be the ith element of the array A

REPEAT

If ( S[TempStringCounter] in	 ) AND

( TempStringCounter<=Length(S) )

then

Append to TempString the character S[TempStringCounter];

Increase TempStringCounter by 1;

else

TempString becomes S[TempStringCounter];

UNTIL ( NOT ( S[TempStringCounter] in 	 ) OR
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( TempStringCounter> =Length(S) ) )

Comment: That is, keep reading letters until a

Comment: non-letter character appears or the end of the input

Comment: string S is reached

REPEAT

If ( S[TempNumberCounter] in ['0'..'9','.'] ) AND

( TempNumberCounter<=Length(S) )

then

Switch off internal type checking

If NOT (MoreThanOneDecimalPlaceinString(TempNumberString))

then

Turn TempNumberString into a number called TempNumber

Switch back on the internal type checking

If TempNumber>MaxAllowableNumber or

TempNumberString contains >1

decimal places then set the Boolean variable

ErrorInNumbers to TRUE

If TempNumber<=MaxAllowableNumber AND

(NOT ErrorInNumbers) then

Append TempNumberString with the

character S[TempNumberCounter];

Increase TempNumberCounter by 1

1 else
Set TempNumberString to be '-' (or some indicator

that it is not a number)

UNTIL ( NOT (S[TempNumberCounter] in 	 ) OR
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(TempNumberCounter>Length(S) ) )

If TempNumberString='-' then

Comment: did not come across a number and hence need

Comment: to check if it is

Comment: predefined constant, function or just an identifier

If TempString is a predefined function string then

A[ArrayCounter] NodeStatus:=FunctionNode;

A[ArrayCounter].WhichFunction:=

FunctionString2Type(TempString);

else

If TempString is a predefined constant string then

A[ArrayCounter].NodeStatus:=ConstantNode;

A[ArrayCounter].WhichConstant:=

ConstantString2Type(TempString);

1 else
If TempString is an identifier string then

A[ArrayCounter].NodeStatus:=IdentifierNode;

A[ArrayCounter].WhichIdentifier:=

IdentifierString2Type(TempString);

else

If TempString is an Operator String then

A[ArrayCounter].NodeStatus:=OperatorNode;

A[ArrayCounter].WhichOperator:=
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OperatorString2Type(TempString);

1 else
If TempString is a delimiter String then

A[ArrayCounter].NodeStatus:=DelimiterNode;

A[ArrayCounter].WhichDelimiter:=

DelimiterString2Type(TempString);

else

Comment: The string TempString is in none of the

Comment: above categories and therefore it must be

Comment: a mixture of two (e.g. xsin)

Comment: Denote a stack as S. Use the stack S to

Comment: store (push) and

Comment: retrieve (pop) tokens (in string form) which are part

Comment: of the string TempString

Comment: Now copy the string TempString to a string called

Comment: MainString, say. Also, call TString another

Comment: temporary string which will

Comment: be used to store tokens (in the form of strings)

Comment: being read from the rear of MainString.

Comment: A Boolean variable, ContinueSearch, will be used

Comment: to signify whether or not the search for tokens should

Comment: continue or not.

Initialise the Stack S to contain no strings

MainString:=TempString;

REPEAT
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Initialise TString to the null string ";

Initialise a BOOLEAN variable called

ContinueSearch to TRUE;

REPEAT

TString:=MainString[Length(MainString)-

Length(TString)]+TString;

Comment: That is, read from the rear of MainString and

Comment: put the result in TString.

If TString is a pre-defined constant or function then

If FunctionString2Type(TString) in [FCos,FSin,FCos,

FTan,FSinh,FCosh,FTanh] then

Comment: I.e. NOT an inverse function

Comment:Check to see the previous characters are

Comment: NOT 'ARC'

If (NOT(PreviousCharacters(MainString,

Length(MainString)-

Length(TString),Length(MainString)-

Length(TString)-2))='ARC')

then ContinueSearch:=FALSE;

1 else ContinueSearch:=FALSE;
1

UNTIL ( TString is a PreDefined Constant or Function) AND

ContinueSearch=FALSE OR

(Length(TString)>=Length(MainString));

If TString IS a PreDefinedFunction or Constant then

Push onto the stack S the string TString;

Delete Length(TString) characters from the rear
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of MainString;

1 ELSE

{

Comment: Must be just a single character variable

Push last character of TString onto the stack;

Delete the last character of MainString;

1

UNTIL (Length(MainString)=0)

Comment: The stack S has been filling up with

tokens from the rear

Comment: of the string called MainString. Now take off all the tokens

Comment (i.e. pop the stack), filling up the array A as we go

While The Stack S still has content DO

f

Pop the stack into a string called SString;

if SString is a predefined function then

f

A[ArrayCounter].NodeStatus:=FunctionNode;

A[ArrayCounter].WhichFunction:=

FunctionString2Type(SString);

If S still has content then Increase ArrayCounter by 1;

1 else

If SString is a predefined Constant then

f

A[ArrayCounter].NodeStatus:=ConstantNode;

A[ArrayCounter].WhichConstant:=

ConstantString2Type(SString);

If S Still has content then Increase ArrayCounter by 1;

1 else
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{ Comment: Must be an identifier in the stack S

A[ArrayCounterl.NodeStatus:=IdentifierNode;

A[ArrayCounterl.WhichIdentifier:=

IdentifierString2Type(SString);

If S Still has content then Increase ArrayCounter by 1;

3.

3.

1 else

Comment: Encountered a number rather than an alpha-string -fill

Comment: in the Array element corresponding to the real

Comment: number that has been found.

ACArrayCounterl.NodeStatus:=RealNode;

ACArrayCounterl.WhichReal:=Number representation of

TempNumberString;

3.

If TempNuMberString= '-' then Comment: not a number

Delete from the string S the length of TempString else

Delete from the string S the length of TempNumberString

Increase ArrayCounter by 1;

UNTIL (Length(S) =0) or ErrorInNumbers;

The above process is perhaps best illustrated by example. Table 4.3 shows the

values of the important variables in the algorithm and show the breakdown of the

expression as the lexical analysis progresses.
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Cl C2 C3 C4 (75 (76 C7
1 1 0.123 6 0.123 0.123/sin(pi*x)'
2 / 1 - 1 / /sin(pi*x)

3 sin 4 - 1 SIN sin(pi*x)
4 ( 1 - 1 ( (pi*x)
5 pi 3 - 1 PI pi*x)

6 * 1 - 1 * *x)
7 x 2 - 1 x x)
8) 1 - 1 ) )

Table 4.3: Table Showing the Breakdown of an Expression During Lexical Analysis

The meaning of the columns C 1 • - • C7 are given in table 4.4 below:

Column Meaning
C1
C2
C3

C4
C6

C6
C7

ArrayCounter
TempString
TempStringcounter
TempNumberString
TempNumberCounter
A[ArrayCounter]
S

Table 4.4: Table Showing Column Names for Table 4.3

Now that this array has been created, there is a need to check for implied multi-

plication. For example, xsin(x) will have been separated into its tokens and stored

in the array A as:

A[l] . NodeStatus=Ident if ierNode , A [1] .WhichIdentif ier=xx ,

A [2].NodeStatus=FunctionNode , A [2] . Whi chFunct ion =FS in ,

A [3]. NodeStatus=DelimiterNode , A [3] .WhichDelimiter=OpenBracket ,

A [4]. NodeStatus =Ident if ierNode , A [4] . WhichIdent if ier =xx ,

A [5].NodeStatus=DelimiterNode , A [5] .WhichDelimiter=ClosedBracket

However, there has been no provision made for implied multiplication. For exam-

ple, xsin(x) really means x*sin(x) and it is important that the software understands

this. The pseudo-code below takes the array A and inserts multiplication's where

necessary.

This code uses two procedures. Procedure ImpliedMult tests for the need of

Implied multiplication between two array elements of A and InsertMult inserts a
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multiplication node between two specified elements of A.

Note: In the following code, it is sometimes written, for example,

" If This .NodeStatus=OpenBracket " . This should strictly be

"(This.NodeStatus =DelimiterNode) AND (This.WhichDelimiter=OpenBracket)"

but for simplicity, for former notation is sometimes used.

Procedure InsertMult(N1,N2:Integer; VAR A);

Declare i as an integer;

Declare MultNode as being of type ItemInfo;

{

Comment: Procedure takes 3 parameters. Multiplication

Comment: element will be inserted

Comment: between elements Ni and N2 of the array A

MultNode.NodeStatus:=OperatorNode;

MultNode.WhichOperator:=Mult;

Comment: create a multiplication node

Comment: now shift up all nodes to the right of Ni

Comment: (N2 and higher) by one

Comment: to make room for the multiplication node

For i: =MaxElem-1 DownTo N2 do

f

A[i+1]:=A[i];

Comment: where MaxElem is a constant equal to the maximum

Comment: allowable elements in the array A; Note that this

Comment: assumes that there are less than

Comment: <Maximum Elements in the Array> number of tokens in

Comment: the array. If this is not true then an

Comment: array overflow message will appear. However, this is

Comment: unlikely and tests can be made
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Comment so that this doesn't happen.

Comment: Now insert the multiplication node

WhichArray[N2]:=MultNode

Procedure ImpliedMult(VAR A);

Declare i as an integer;

Declare P1 and P2 to be of type ItemInfo;

For i: =1 to MaxElem -1 do

Comment: for each element in the array A do the following

Pl:A[i]; Comment: assign P1 to the ith element of A

P2:=A[i+1]; Comment: assign P2 to the (i+1)th element of A

If ( ( P1 is either a constant, Real or Identifier type ) AND

(P2 is a Constant, Real, Identifier or Function) ) OR

( P2 is an OpenBracket) then

InsertMult(i,i+1,A);

Comment: insert a Mult. node between i and i+1 in A

else

If ( P1 is a Constant type) AND

( P2 is a Real, Identifier or Function type

or an OpenBracket ) then

InsertMult(i,i+1,A);

Comment: insert a Mult. node between i and 1+1 in A

1 else
If ( P1 is a ClosedBracket ) AND

( P2 is a Real, Identifier, Constant or Function type or
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OpenBracket ) then

InsertMult(i,i+1,A);

Comment: insert a Mult. node between i and i+1 in A

The above algorithms and pseudo-code caters only for correctly formed expres-

sions. Specifications for the Input Tool included the ability to update the expression

display and the feedback boxes perpetually. That is, the tool should accept indi-

vidual key presses and respond to them accordingly. The consequence of this is

that students will frequently type syntactically incorrect expressions. Moreover,

since the software appeals to the constructions of binary trees — an impossible task

with incorrectly formed expressions — the expression must be syntactically correct.

Therefore, provision must be made for these occurrences. The solution employed

here is to transform incorrectly formed expressions into legal expressions by amend-

ing the input-String. Adding combinations of a special ' ?' item (declared as being

a constant) and parentheses to the array of tokens A will not only create a legally

constructed expression but will add to the quality of the feedback given to the stu-

dent. For example, if the illegal expression x- is appended with the ' ?' constant

then it will read x-?. This expression can now be displayed (along with a relevant

feedback message) as follows:

Expecting something after the operator A

To make the token array A legal, we iterate through all the elements of A, looking

at the combinations and interactions of the adjacent elements. If the index of the

iteration is called i, let THIS be the ith element, PREV be the (i-1)th element

and NEXT be the (i+l)th element of A. Also, denote an element of A which has

no content to be of type NothingNode. We can enforce rules on how to amend A
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according to the combinations of PREV, THIS and NEXT. These amendments are

described in the following pseudo-code:

Procedure MakeLegalArray(VAR A:NodeArray);

Declare i as an integer;

Declare Prey , Next, This and TempItem to be of type ItemInfo (elements of

array);

Comment: Now iterate through all the elements of A

For i: =1 to MaxElem do

Comment: Work out This, Prev and Next

This:=A[i];

If i=1 then Prev.NodeStatus:=NothingNode else Prev:=A[i-1];

Comment: allow for the fact that if i =1 then there is no Au-1]

If i references the last non-empty element of A then

Next.NodeStatus: =NothingNode else Next:=A[i+1];

Case This.NodeStatus of Comment: What type of element is A[i] (This)?

FunctionNode:

If Prey is a function then

Comment: function must have argument in brackets - put a ? argument

After Prev, insert three elements between Prev and this as (?);

Comment: eg SINSIN -> SIN(?)SIN

Case Next.NodeStatus of Comment look at function - Next combinations

NothingNode, ConstantNode, IdentifierNode, RealNode,

FunctionNode, OperatorNode or ClosedBracket:

Insert (?) after This Comment: e.g. SINPI -> SIN(?)PI
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case end

IdentifierNode, ConstantNode, RealNode:

{

If Prev.NodeStatus=FunctionNode then

Before This (and after function Pre y) put (?);

Comment: eg SINx -> SIN(?)x

Comment: can have any Next after an identifier, constant or real

}

OperatorNode:

{

Case This.WhichOperator of Comment: which operator is This?

Plus, Minus, Mult, Divide, Power:

I Comment: binary operators
Case Prev.NodeStatus of Comment: Prev-BinOperator combinations

OperatorNode: After Prev insert a ? Comment: eg ++ -> +?+

FunctionNode: After Pre y insert (?) Comment: SIN+ ->SIN(?)+

OpenBracket: After Prev insert (?) Comment: eg (+ -> ((?)+

NothingNode:

{

If This.WhichOperator=Minus then Comment: should be a unary

Make This a UnaryMinus rather than Minus;

}

end case Comment: end of Prev.NodeStatus case

Case Next.NodeStatus of Comment: This-Next combinations

OperatorNode: Add after This ?; Comment: eg ++ -> +?+

NothingNode: Add a ? after This; Comment: eg ...+ -> ...+?

end case; Comment: end Next.NodeStatus case

1
UnaryMinus:

{

If Prev.NodeStatus<>NothingNode then Make This a BinaryMinus;
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Case Prev.NodeStatus of Comment: Prev-% combinations

FunctionNode: Add (?) after Prev Comment: eg SIN% -> SIN(?)-

OperatorNode: If Prev.WhichOperator<>UnaryMinus then

make This into a Binary Minus;

Insert ? before This Comment: eg +% -> +?-

1

end case Comment: end Prev.NodeStatus case

Case Next.NodeStatus of Comment: %-Next combinations

OperatorNode: Add ? after This; Comment eg %+ -> 7,?+

ClosedBracket: Add (?) after This; Comment: eg %) ->

NothingNode:

Make This into a BinaryMinus;

Insert ? after This; Comment e.g. ...%	 ...-?

1

end case; Comment: end Next.NodeStatus case

I Comment: end of UnaryMinus:

end case; Comment: end This.WhichOperator case

I Comment: end OperatorNode case

NothingNode:

Case Prev.NodeStatus of

OperatorNode: Insert ? after Pre y ; Comment: eg + -> +?

FunctionNode: Insert (?) after Prev; Comment: eg SIN -> SIN(?)

OpenBracket: Insert ?) after Prev; Comment: (	 (?)

end case; Comment: end of Prev.NodeStatus case

I Comment: end of NothingNode case

DelimiterNode:

Case This.WhichDelimiter of
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OpenBracket:

{

Comment: can have any Prey

Case Next.NodeStatus of

OperatorNode: Insert ? before Next; Comment: eg (+ -> (?+

NothingNode: Add ?) after This; Comment: eg ( -> (?)

ClosedBracket: Add ? before Next: Comment: eg 0 -> (7)

end case; Comment: end of Next.NodeStatus case

I Comment: end of OpenBracket case

ClosedBracket:

f

Case Prev.NodeStatus of

OperatorNode: Add ? Before This; Comment: eg +) -> +?)

FunctionNode: Add (?) after Prev; Comment: eg SIN) -> SIN(?))

NothingNode: Add (? before This; Comment: eg )... -> (?)...

OpenBracket: Add ? After Prev; Comment: eg 0 -> (?)

end case; Comment end Prev.NodeStatus case

I Comment: end ClosedBracket case

end case; Comment: end of This.WhichDelimiter case

I Comment: end DelimiterNode case

end case; Comment: end This.NodeStatus case

I Comment: end of FOR loop

If Number of Closed brackets in Array A <> Number of Open then

{

If number of closed > Number of Open then

Insert in start of array the requisite number of Open brackets

else

If Number of open > number of Closed then

Insert at end of array the requisite number of closed brackets

Comment: since the number of closed<>number of open
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Comment: then put a ? at end

Comment: of array to signify an error occurred.

Comment: Otherwise it will look like

Comment: no error occurred in the redisplay of the expression in 2-d

Add ? to end of array;

Comment : after putting in requisite brackets, make sure there are no 0
Comment : situations in the array

FOR i:=1 to MaxElem do

If A [i] is an OpenBracket and A [i+l] is a ClosedBracket then

Insert a ? between A [i] and A [i+1] ;

End of procedure

The above code not only enables the construction of the binary trees but also

gives rise to the ability of building in good feedback to students as to the current

status of their expression. Throughout, the pseudo-comments have been used to

clarify the meaning of the code. More importantly, it is now possible to provide

students with quality feedback about the construction of their expression. The

feedback messages for two wrongly adjoining tokens are shown in Table 4.5. Notice

that Prey-This combinations encompass the same messages as for identical This-

Next combinations. The Next column is included as the Next token may be blank

(indicated by a dash) which needs to be accounted for. For example, a blank after

a function is an illegal expression.

Since the above procedure introduced new constants ("?") and parenthesis, it

is necessary to re-call the ImpliedMult procedure. For example, if the token array

contained tokens from the expression Sinx then it will have been transformed into

one containing tokens from Sin(?) x. This expression is a product of Sin(?) and x

and will therefore need a multiplication node between them.
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Prey This Next Ex. Input Ex. Output Message
Fn

BinOp
Var

Const
%

Delim. (
Delim. )

Fn
BinOp

Var
Const

%
Delim. (
Delim. )

Fn
Delim. (
Delim. )

Fn
Delim. (
Delim. )

Fn
BinOp

Var
Const

%
Delim. (
Delim. )

Fn
BinOp

Var
Const

%
Delim. (
Delim. )

Fn
BinOp

Var
Const

%
Delim. (
Delim. )

Fn
Fn
Fn
Fn
Fn
Fn
Fn

BinOp
BinOp
BinOp
BinOp
BinOp
BinOp
BinOp

Var
Var
Var

Const
Const
Const

%
%
%
%
%
%
%

Delim. (
Delim. (
Delim. (
Delim. (
Delim. (
Delim. (
Delim. (
Delim. )
Delim. )
Delim. )
Delim. )
Delim. )
Delim. )
Delim. )

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

SINSIN

-SIN

xSIN

PISIN

-SIN

(SIN

)SIN

SIN-

--

x-
PI-

--

(-

)-

SINx

(x
)x

SINPI

(PI

)PI
SIN-

--

x-
PI-

--

(-

)-

SIN(

-(

x(
PI(

-(
( (

) (

SIN)
-)
x)
PI)

-)

0
))

SIN(?)SIN(?)

-SIN(?)

xSIN(?)

PISIN(?)

-SIN(?)
SIN(?)?
??SIN(?)
SIN(?)-?
??-?-?
x-?

PI-?
??-7-?
(-?)?
??-7

SIN(?)x
x?

??x

SIN(?)pi
PI?
??PI

SIN(?)-?
??-?-7
x-?

PI-?
??-?-?
(-?)?
??-?

SIN(?)?
(-?) ?
x??
PI??

(-?)?
???

????

?SIN(?)

?(??-?)

?x

?PI
?(??-?)

?
???

SIN must have argument in brackets
SIN must have argument in brackets
SIN must have argument in brackets
SIN must have argument in brackets
SIN must have argument in brackets

Missing ) to complete expression
Need legal expression inside ( )
Expecting something around -
Expecting something around -
Expecting something around -
Expecting something around -
Expecting something around -

Missing ) to complete expression
Need legal expression inside ( )

SIN must have argument in brackets
Missing ) to complete expression
Need legal expression inside ( )

SIN must have argument in brackets
Missing ) to complete expression
Need legal expression inside ( )
Expecting something around -
Expecting something around -
Expecting something around -
Expecting something around -
Expecting something around -

Missing ) to complete expression
Need legal expression inside ( )
Need legal expression inside ( )
Need legal expression inside ( )
Need legal expression inside ( )
Need legal expression inside ( )
Need legal expression inside ( )
Need legal expression inside ( )
Need legal expression inside ( )

Missing ( in expression
Missing ( in expression
Missing ( in expression
Missing ( in expression
Missing ( in expression

Need legal expression inside ( )
Need legal expression inside ( )

Table 4.5: Table showing error messages for incorrect inputs within the Input Tool
Note that BinOp stands for +, —, *, / or A
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4.3.2 Postfix Notation — Dijkstra's Algorithm

In order to create a binary tree of the input expression (using the token array), it is

easier to transform the token array from its current infix form to its corresponding

postfix form. The infix form of an expression has operands on either sides of its

operators whereas operators in postfix expressions appear after their operands. For

example, the infix from of the expression x-2 has corresponding postfix form x2-.

This process also eliminates the need for parenthesis — for example x* (2*x) in postfix

notation is x2x*-.

Dijkstra's Algorithm' uses a stack to store tokens at particular stages. It also

uses the notion of the precedence of a token.

The precedence of the tokens used in the Input Tool are shown in Table 4.6 below.

The table shows that Functions have the highest precedence whereas Delimiters have

the lowest.

Delimiters
Identifiers, Reals and Constants 1
Operators Plus and Minus 2
Operators Mult and Divide 3
Operator Power 4
Operator Unary Minus 5
Functions 6

Table 4.6: Table showing the precedence of tokens

The following pseudo-coded procedure receives a token array A (tokens in infix

form) and creates another token array B in postfix form:

Declare S as a Stack whose elements are Integers

the indices of the array;

Declare IC and DC as Integers;

Comment: used to count through the elements of

Comment: A and B respectively

Declare X to be an Integer;

1 Dijkstra's Algorithm for converting an expression to postfix notation was obtained from un-
published Data Structures and Algorithms Lecture notes by Ian E. Aitchison, Department of
Computing and Electrical Engineering, Heriot-Watt University, Edinburgh.
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Initialise B;

Initialise IC and OC to 1;

While A[IC] has content do

If A[IC] is a Real, Identifier or Constant then

BEOC] is assigned to be equal to A[IC];

Increase OC by 1;

1 else
If A[IC] is a Delimiter then

If A[IC] is an OpenBracket then Push IC onto the stack S else

If A[IC] is a ClosedBracket then

Pop the stack into the integer X;

While A[X] is not a delimiter do

B[OC] is assigned to be equal to A[X];

Pop the stack S into the integer X;

Increase DC by 1

1
else

While the Stack S is non-empty AND the Precedence of

A[IC] < =A[integer currently in the top of the stack S] do

Pop the stack S into the integer X;

B[OC] is assigned to equal A[X];
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Increase OC by 1;

1
Push the value of IC onto the stack S;

Increase IC by 1;

While the stack is non-empty do

Pop the stack S into the integer X;

B BIC] is assigned to equal A [X] ;

Increase OC by 1;

An example of this process is given in Appendix A.

4.3.3 Binary Tree Creation

An array of tokens has now been created in which the tokens appear in postfix

order. From this array it is fairly easy to create a binary tree of the expression. The

following pseudo-coded procedure shows how to construct a tree given an array of

tokens in postfix order:

Within this code a stack is used. This time, however, the elements of the stack

are themselves binary trees. Call the array sent to the procedure A and the binary

tree that it produces T.

Declare IC as an Integer; Comment: used as an index counter for A

Declare T1,T2 and CTree to be Binary Trees;

Declare S to be a stack whose elements are binary trees;

Initialise the stack S;

Initialise the tree T;
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Initialise IC to 1;

While A[IC] is non-empty do

If A[IC] is a non-unary-minus operator then

Let Ti equal the tree contained in the top of the stack S;

Pop the Stack S -- no need to return the result;

Let T2 equal the tree contained in the top of the stack s;

Pop the Stack S -- no need to return the result;

Let CTree be the tree with 11[IC] at the root,

T2 as the Left SubTree and Ti as the Right SubTree;

Push CTree onto the stack S;

1 else
If A[IC] is a unary minus or a function then

Let T2 equal the tree contained in the top of the stack S;

Pop the Stack S -- no need to return the result;

Let Ti be the nil tree (nothing on it)

Let CTree be the tree with A[IC] at the root,

T2 as the left SubTree and Ti as the Right SubTree;

Push CTree onto the stack S;

1 else

Let CTree be the tree with A[IC] at the root and the nil tree as its

left and right SubTrees;

Push CTree onto the Stack S;

Increase IC by 1;

Let T be the tree contained in the top of the stack S
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The method in which Binary Trees are created is illustrated in the following

example.

Given the postfix expression ab-2- (representing (a — b) 2 ) then the following

table gives the construction of the Binary Tree.
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Ref 1 2 3 4 5
A Symbol Stack(S) Tree (Ti) Tree(T2) Tree (T)

B a

/\ i\

C b

ZN
A l

i\ ZN
A l

E 2

72N
zN
A A

2N

F A

z\
6 A

/2N zN
AA

z\
A A

Table 4.7: Table Showing Binary Tree Construction

The binary tree for the postfix expression (a-b) A2 is created, using the pseudo

code above as follows:

• Initialise the Stack (S)

• Initialise the Tree(T)

• Get the first character in the postfix expression (a)

• This is not an operator and hence construct whichtree with a as the root and

WhichtreeA.LeftPtr = WhichtreeA.RightPtr = nil
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• Push WhichTree onto the Stack S (Ref B2)

• Get the next character (b)

• This isn't an operator and hence add b to the top of the stack like we did with

the character a (Ref C2)

• Get the next character (-)

• - is an operator and so assign Ti to be the top of S (Ref D3).

• Pop the stack (delete top element of stack and make next element the top)

• assign T2 to be the top of the new stack (Ref D4)

• Pop the stack again

• Assign WhichTree to be a Binary Tree with - as its root, T2 as its left SubTree

and Ti as its right SubTree (ref D2)

• Get the next character (2)

• 2 is not an operator so push 2 onto the top of the stack S (giving the stack as

shown in Ref E2)

• Get the next character (A)

• A is an operator and so carry out a similar procedure as with - to get Ref F2.

Notice that at each stage, T is defined to be the top of the stack (Refs: B5, C5,

D5 and E5

4.4 Displaying the Expression

Now that the binary tree of the expression has been created, it can be used to display

the expression in mathematical notation.

A first attempt to display an expression held in a tree was to create its corre-

sponding aTEX code [41]. aTEX is a universal mathematics typesetting language

which can be converted into a .DVI file which can then be viewed using a .DVI
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viewer. This process involved a recursive procedure which traversed the binary tree

of an expression, creating 151'EX code.

Although RTEX creates a very high quality typeset expression, the process of

obtaining the picture of it is slow - in the order of 6 seconds on a PC 486 33MHz

machine. This is particularly the case if the 15rEX. process is to accommodate

the continuous (as-you-type) re-display of expressions. This solution also requires

the disk-space-consuming aTEX software and fonts being on the computer. As

the next chapter explains, students did find this re-display useful to check syntax

of expressions but the following "in-house" solution has since proved to be more

popular.

For this task, we will assume that each character takes up an equal amount

of space on the screen and each token will calculated to be positioned at the point

(x, y) from a fixed origin (x0rigin, yOrigin). Now assume that associated with each

node on a binary tree are the integer data fields Horiz, Above, Below, TopLeftX,

TopLeftY and Bracket. Here, Horiz stores the horizontal displacement needed

to display the token on a particular node and Above and Below store the vertical

displacements. Bracket acts as a boolean decision as to whether or not a node needs

to be bracketed and TopLeftX and TopLeftY store the position to place the token

on the screen.

The following pseudo-code calculates the values of Horiz, Above, Below and

Bracket for the Tree T and each SubTree of T. To aid in describing the recur-

sive nature of this code, call the procedure which calculates the items described

CALC(VAR T:BTree).

Comment: This pseudo-code describes a recursive procedure which

Comment: takes in a binary tree T

Comment: and returns it with information pertaining to the position of

Comment: the tokens stored within its nodes.

Comment: call the pointer which points to nothing Nil

Procedure CALC(VAR T:BTree); Comment: Return T which is a binary tree
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Declare i, NumBrackets and w to be integers;

Declare Leafl and Leaf2 to be Binary trees;

If T does not point to nil (empty tree) then

Iterate i from 1 to (the number of SubTrees of the tree T)

If i = 1 (left SubTree) then

Assign Leafl to be the Left SubTree of T;

Make a recursive call to CALC with argument as Left SubTree of T;

If Left SubTree of T needs to be bracketed then

Assign the Bracket data

field on Leafl to be 1 otherwise assign it to 0;

On Leaf1 and all its SubTrees, shift to the right the tokens

by <bracket> spaces (increase TopLeftX by 1 if bracket=1

or 0 if bracket=0);

Assign the Horiz data field of T to be: Itself + (2*Bracket);

else

If i = 2 (right SubTree) then

Assign Leaf2 to be the Right SubTree of T;

Make a recursive call to CALC with argument as

Right SubTree of T;

If Right SubTree of T needs to be bracketed then

Assign the bracket data

field of Leaf2 to be 1 otherwise assign it to 0;

On Leaf2 and all its SubTrees, shift to the right the tokens

by <bracket> spaces;
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Assign the Horiz data field of T to be: Itself + (2*Bracket);

1
1 Comment: end iterate

Assign w to be the number of characters that the token on T needs to be

displayed (i.e the width of T);

Assign the TopLeftX, TopLeftY data fields on T to be X0rigin and YOrigin

respectively;

If T is a Constant, Identifier or Real then

Assign T.Above data field to be 0; Comment: On one line

Assign T.Below data field to be 1; Comment: takes up one line

Assign T.Horiz data field to be w;

else

If T is an Operator then

If T is a Plus, Minus or a Multiplication then

Assign T.Above to be the Max of

Leaf1.Above and Leaf2.Above;

Assign T.Below to be the Max of

Leaf1.Below and leaf2.Below;

Assign T.Horiz to be the sum of

Leaf1.Horiz and Leaf2.Horiz;

On Leaf2 and SubTrees of Leaf 2, shift to the right the

positions of tokens by Horiz+w places;

On Leafl and SubTrees of Leaf 1, shift downwards the

positions of tokens by T.Above-Leaf1.Above places;

On Leaf2 and SubTrees of leaf 2, shift downwards the

positions of tokens by T.Above-Leaf2.Above places;

else
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If T is a UnaryMinus then

Assign T.Above to be Leafl.Above;

Assign T.Below to be Leafl.Below;

Assign T.Horiz to be w+Leafl.Horiz;

On Leafl and SubTrees of Leaf 1, shift to the right the

positions of tokens by w places;

else

If T is a Divide then

Assign T.Above to be Leafl.Above+Leafl.Below;

Assign T.Below to be Leaf2.Below+1;

Comment: +1 to allow for divide sign

Assign T.Horiz to be the Max of Leafl.Horiz and

Leaf2.Horiz;

Comment: divide sign must be long enough to encapsulate

Comment: either the numerator or denominator

Comment: whichever is the bigger.

On Leaf2 (denominator),and SubTrees of Leaf 2, shift down

the positions of tokens by Leafl.Above +

Leafl.Below +1;

On Leafl and SubTrees of Leaf 1, shift right the

positions of tokens by

Round(Int((1+T.Horiz-Leaf1.Horiz)/2);

Comment: centre the numerator

above the horizontal divide sign

On leaf2 and SubTrees of Leaf 2, shift right the

positions of tokens by

Roundant((1+T.Horiz-Leaf2.Horiz)/2);

Comment: centre the denominator

below the horizontal divide sign

63



1 else
If T is a Power then

1
Assign T.Above to be Leaf2.Above+

Leaf2.Below+Leafl.Above;

Comment: i.e. to be How much space the power needs

Comment: for above

Comment:, how much power needs for below

and how much base needs

Comment: for above

Assign T.Below to be Leaf2.Below;

Assign T.Horiz to be Leafl.Horiz+Leaf2.Horiz;

Comment: horizontal spacing is spacing for base

Comment: + for power

1 else
If T is a function then

{

Assign T.Above to be Leafl.Above;

Comment: Above space needed for function is the above space

Comment: needed for argument of function (left SubTree)

Assign T.Below to be Leafl.Below;

Comment: Below space needed for function is the below space

Comment: needed for argument of function (left SubTree)

Assign T.Horiz to be Leafl.Horiz+w;

Comment: Horizontal space is the horizontal space needed for

Comment: the argument of the function + the space needed to

Comment: display the function name itself

}

From the information contained in the tree, the co-ordinates (xPos,yPos) and
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(x1Pos, ylPos) can be calculated. Here, (xPos,yPos) is the co-ordinate position

of any token on the screen. For bracket tokens, (xPos,yPos) defines the starting

position of the bracket and (x1Pos,y1Pos) defines the finishing position. Similarly,

if the token is a divide then (xPos,yPos) defines the starting position of the di-

vide and (x1Pos,y1Pos) define the finishing position The following pseudo-code

produces an array A where each element of A contains the value of (xPos,yPos),

(x1Pos,y1Pos) and a string S for the contents of the elements.

Again, because of the recursive nature of the following code, it will be described

as a procedure. This procedure, called CalcArray, has three parameters; the array

A which needs to be created, the tree T holding the expression and corresponding

information and C, a counter used to iterate through the elements of A.

Declare ItemString as a String;

Declare x,dx,y,dy and i as integer;

Comment: denote the pointer which points to nothing as Nil;

If T<>Nil then

1
Shift:=0;

If T is a Plus, Minus or Mult operator then

Assign Shift to be the horiz field of the left SubTree of T;

Assign A[C].XPos to be T.TopLeftX+Shift;

Assign A[C].YPos to be T.TopLeftY+T.Above;

Assign A[C].S to be the String representation of T.Item;

If T was a divide then

Comment : work out start and finishing point of the divide

Assign A [C] . X1Po s to T . TopLeftX+Shift+<length of A [C] S>-1 ;

Assign A [C] . Y1Pos to T TopLeftY+T . Above ;

Assign AEC] .S to be ' / ' sign;
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If T.Bracket=1 then

Increase C by 1;

Assign X to be T.TopLeftX-1;

Assign dx to be T.Horiz;

Assign y to T.TopLeftY;

Assign dy to T.Above+T.Below;

If (y-(y+dy-1))=0 then Assign A[C].S to the '(' character else

Assign A[C].S to the '[' character;

Assign A[C].XPos to x;	 Assign A[C].YPos to y;

Assign A[C].X1Pos to x; Assign A[C].Y1Pos to y+dy-1;

Increase C by 1;

If (y-(y+dy-1))=0 then Assign A[C].S to the ')' character else

Assign A[C].S to the '1' character;
Assign A[C].XPos to x+dx-1;	 Assign A[C].Ypos to y;

Assign A[C].X1Pos to x+dx-1; Assign A[C].Y1Pos to y+dy-1;

If the left SubTree of T is not Nil then Increase Count by 1;

Call CalcArray recursively with the same array A, the left SubTree of T

and the value of C;

If the right SubTree of T is not Nil then Increase Count by 1;

Call CalcArray recursively with the same array A, the right SubTree of T

and the value of C;

For example, the tree of the expression (x/ (3a)) -2 can be processed to produce

the displayed expression shown in figure 4.3.
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Expression is valid

(x/(3a))2

Cancel OK

Figure 4.3: A Typical Expression displayed in the Input Tool
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Table 4.8 gives the values of (xPos,yPos) and (x1Pos,y1Pos) co-ordinates of

the tokens. Note square brackets has been used for the outer braces to distinguish

them from those surrounding 3a.

Token xPos yPos x1Pos y1Pos

[ 1 2 1 4
x 4 2 4 2
divide 2 3 6 3

( 2 4 2 4
3 3 4 3 4
a 5 4 5 4

) 6 4 6 4

1 7 2 7 4
2 8 1 8 1

Table 4.8: table showing positions of tokens for [fa-

4.4.1 Platform Specific Considerations

Now that the algorithms for the engine of an Input Tool have been established,

a decision was needed to be made on how to deliver it to the students / users.

Chapters 5 and 6 will show that such an Input Tool would be useful in many pieces

of CAL software and with this in mind it was important to seek a method of delivery

which could port into these software's. The standard way of creating code and/or

applications which many differing applications can use is that of DLLs (see [12]).

A DLL (Dynamic Link Library) is code which can be loaded dynamically (during

run-time) by a number of programs. This loading is often via a simple function

call. It was decided, therefore, to create an Input Tool DLL which interfaced with

Microsoft Windows.
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Chapter 5

DRIFT

5.1 Introduction

This chapter describes an educational experiment designed to gain formative evalua-

tion on a student-computer communication within a mathematics environment. The

experiment used, as its base, a simple differential calculus package which enabled

students' to test themselves in applying the rules of differentiation.

It is important to note at the outset that this chapter, because of small the

number of students involved (8 students in all), makes no attempt to verify statis-

tically any findings. It is included as a stepping stone to the following chapter in

that observations made during the DRIFT experiment have proved invaluable in the

development of the Input Tool.

A Pre-Post Test evaluation was considered but the small number of students and

the affect on their education prevented this.

In addition, the work in this chapter describes the problems of marking answers

when students set their own questions.

5.2 The Experiment Procedure

Eight students were, for six fifty-minute sessions, given expressions to differentiate.

The problems were similar to those found in the Scottish Higher mathematics paper.

'the students referred to in this chapter were from St. Kentigern's Academy in Blackburn, West
Lothian
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A student typed the expressions (i.e. the questions) into the computer. The student

could do their working on paper but the answers were input into the DRIFT package.

During the sessions there were 550 mathematical expressions input into the computer

which were subsequently analysed. The way in which this was done will be explained

as this chapter progresses.

5.3 An Overview of the DRIFT package

5.3.1 The Front-End

DRIFT (Differentiation Rules Intelligent Feedback Tool) is a package designed to

help students use the "Drill and Practice" technique of learning and applying the

rules of differentiation.

The version of DRIFT used for the experiment employed a very simple DOS

based menuing system. This menu is shown below:

**********************************************************************

Differentiation Rules - Intelligent Feedback Tool (DRIFT)

Last Updated: 17-03-94	 (c) David G Wild

**********************************************************************

0 :	 Input Your Personal Details

1 :	 Create / Change Expression

2 :	 View Expression

3 :	 Differentiate the Expression

4 :	 HELP	 (about the program)

B :	 Background Theory of differentiation + examples

C :	 Change the Help Level

5 :	 Quit DRIFT

No expression installed - use option 1

Enter a number and press RETURN
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This menu encapsulated all the features which were available in the software.

Using Option 0, students typed in their names and an assigned computer number

which was used to identify them for the ensuing formative analysis.

Options 1 and 2 allowed students to install an expression into the software and

see their input expression in a more meaningful way. The precise way in which this

was done will be described in more detail later in this chapter.

Option 3 prompted the student to input the derivative of the their inputs. This

option also gave the student feedback as to whether they differentiated the expression

correctly and displayed a method of tackling the differentiation. This will also be

explained in more detail later in the chapter.

Option 4 gave help on how to use the package. Option B displayed some back-

ground theory on the different rules of differentiation together with some illustrative

examples.

Option C enabled the student to change the degree of help given in option 3 and

option 5 quit the package.

5.3.2 Recording Student Activity

DRIFT was programmed to gather details of student activity. Every key that a

student pressed was noted and written to a file. This enabled the information to

be gathered on what the students were doing and when whilst using the computer.

This information, together with what the student wrote on paper, was used to give

some evaluation of the Input Tool.

5.3.3 Differentiating Student Inputs

The expressions input by students are differentiated by DRIFT. The algorithms to

do this appear in pseudo code below. These algorithms are used to provide students

with a method of differentiating their expression.

Comment: Due to the recursive nature of the following code, we use

Comment: the following recursive procedure, called

Comment: Differentiate(VAR Tl:BTree; T2:BTree);
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Comment: Declare many trees such as u, v, du, dv, udv, vdu etc...

Comment: The left subtree of T2, say, will be denoted T2-.LeftPtr

Comment: and similarly the right subtree of T2, say,

Comment: will be denoted T2-.RightPtr

Comment: MakeTree(NewTree,LeftTree,Root,RightTree) is a procedure

Comment: which creates the tree NewTree with root called Root,

Comment: Left Subtree called LeftTree and Right

Comment: Subtree called RightTree

Procedure Differentiate(VAR Tl:BTree; T2:BTree);

If T2<>Nil then

If root of T2 is an operator then

CASE T2.WhichOperator of

Plus:

Assign tree u to T2-.LeftPtr;

Assign tree v to T2-.RightPtr;

Differentiate(du,u);

Differentiate(dv,v);

MakeTree(T1,du,+,dv);

Comment: put together to make

Comment: summation rule D(u+v)=D(u)+D(v)

Minus:



{

Assign tree u to T2-.LeftPtr;

Assign tree v to T2-.RightPtr;

Differentiate(du,u);

Differentiate(dv,v);

MakeTree(T1,du,-,dv);

Comment: put together to make

Comment: difference rule D(u-v)=D(u)-D(v)

1

Mult:

)-

Assign tree u to T2-.LeftPtr;

Assign tree v to T2-.RightPtr;

Differentiate(du,u);

Differentiate(dv,v);

MakeTree(udv,u,*,dv);

Comment: create the tree called udv with

Comment: u as left subtree,

Comment: dv as right subtree and * as root

Differentiate(du,u);

Comment: differentiate u and get du

MakeTree(vdu,v,*,du);

Comment: create the tree called vdu with v as left,

Comment: du as right and * as root

MakeTree(T1,udv,+,vdu);

Comment: put together to make the product rule

Divide:

Assign tree u to T2-.LeftPtr;
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Assign tree v to T2-.RightPtr;

Differentiate(du,u);

Differentiate(dv,v);

MakeTree(vdu,v,*,du);

MakeTree(udv,u,*,dv);

MakeTree(Numerator,vdu,-,udv);

MakeTree(Denominator,v,-,2);

MakeTree(T1,Numerator,/,Denominator);

Comment: put together into quotient rule

Comment: D(u/v)=(vdu-udv)/v-2;

Power:

{

Assign tree u to T2-.LeftPtr;

Assign tree v to T2-.RightPtr;

Differentiate(du,u);

MakeTree(PowerMinusl,v,-,1);

MakeTree(vTimesPowerMinusl,v,*,PowerMinus1);

MakeTree(T1,vTimesPowerMinus1,*,du);

Comment: put together using chain rule as

Comment: D(u-v)=vu-(v-1)du

II Comment: end case and operator
else if root of T2 is a Constant then MakeTree(T1,ni1,0,nil)

Comment: D(c)=0;

else if root of T2 is a Real then then MakeTree(T1,ni1,0,nil)

Comment: D(Real)=0;

else if root of T2 is a Variable then MakeTree(T1,ni1,1,nil)

Comment: D(Variable)=1;

else if root of T2 is a function then

{
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Case T2 - .WhichFunction of

FSIN:

{

Assign tree u to T2-.LeftPtr;

Comment: argument of sin function is

Comment: left subtree

Differentiate(du,u);

MakeTree(Cosu,u,cos,nil);

MakeTree(T1,Cosu,*,du);

Comment: put together using chain rule

Comment: D(sin(u))=cos(u)du

1

I Comment: end case

I Comment: end of T2 is a function

}

1

The above pseudo-code is a sample of the code for the differentiation procedure.

Here, only differentiation of one function (SIN) is shown and the code which caters

for situations like 4x (a product of a constant and a variable) or x/4 have been left

out. However, from this simple abstraction, the reader can see how the symbolic

differentiation is performed.

Some examples of DRIFT output for particular student inputs are given below:
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4 . x3

Your input was

Differentiate x4

Use 1(un) = nun-1

I.e —ddx (x4 ) -= 4 . (x)4-1-

So the derivative of x 4 is

Help Level was 3

Press Q to QUIT the viewer

x4
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Your input was

cos (4 • x3)

Differentiate cos (4 • x3)

Use the CHAIN RULE E(cos(u i )) = — sin(ul)t(ui)

where u 1 = 4 • x3

Differentiate 4 • x3

Since 4 is a constant, use E(cf) = c(f)
I.e 1 (4 • x 3 ) = 4E, (x3)

Now, L (x3 ) = 3 • x3-1	 —3x2• x2

Therefore E, (4 • x3) = 4E (x 3 ) = 4 • 3 • x2

So l(ui ) = - (4 • 3 • x2 • sin (4 • x3))

So the derivative of cos (4 • x3 ) is

— (4 • 3 • x2 • sin (4 • x3))

Help Level was 3

Note that a "dot" notation was used for display rather than multiplication being

implied. This was requested by the students and also enabled multiplication of real

numbers to be more clear. For example, without some multiplication symbol, 4 x 5

would appear as 45.
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5.3.4 Help Levels

Before the experiment took place, students reported that some of the help that

DRIFT gave was too "rigorous". That is, DRIFT gave a detailed description of

all the elements of the differentiation - including the more simple parts within a

complicated problem. For example, if a student was differentiating (sin(x 2 )) 2 using

the chain rule then including help on differentiating x 2 was, for some students, not

necessary.

The concept of a Help Level arose in order to help students who found solutions

too detailed. Here, students could decrease the help level so that the differentiation

of the inner expressions (in this case x 2 ) was assumed and therefore omitted.

5.4 Mathematical Input

Chapter 4 highlighted the difficulties encountered when students are required to

input expressions into the computer. The algorithms described were used to create

the first version of the Input Tool - a DOS based program. This version used a

parsing routine which translated student input into aTF,X. code. This code was

then compiled and viewed using suitable rendering software.

The example below shows how a one-line input of (x-2+1) / (x-1) would be

displayed to the student using aTEX.

Your input was : (x-2+1) / (x-1)

which is represented as

2	 1X ±

x — 1
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A pseudo-code routine which shows the translation from one-line to DTEX code

is provided below:

Procedure LaTeX(var whichtree:Btree);

VAR

NumberString:String;

{

If whichtree<>nil then

CASE NodeStatus of the root of the tree of

OperatorNode: CASE WhichOperator on root of WhichTree of

divide:{

Comment: a/b in LaTeX is \frac{a}{b}

AppendLaTeXby('\frac{');

LaTeX(Left SubTree of WhichTree);

AppendLaTeXby('}{');

LaTeX(Right SubTree of WhichTree);

AppendLaTeXbyel');

Comment: LaTeX the left tree (numerator)

Comment: and right tree (denominator)

power: {

Comment: check if base and power needs to be bracketed

Comment: and use the syntax (a) -{b} if they do - otherwise

Comment: simply miss out the brackets

If (Left SubTree of WhichTree is a Function) or

(Left SubTree of WhichTree is an Operator ) then

{{need extra brackets}

AppendLaTeXby('\left(');

LaTeX(Left SubTree of WhichTree);
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AppendLaTeXby( '\right)-{');

LaTeX(Right SubTree of WhichTree);

AppendLaTeXby('}');

1 else
{

If NeedLeft(WhichTree) then

{

AppendLaTeXbye\left(');

LaTeX(Left SubTree of WhichTree);

AppendLaTeXby( '\right)-{');

1 else

f

LaTeX(Left SubTree of WhichTree);

AppendLaTeXby('-{');

I;
LaTeX(Right SubTree of WhichTree);

AppendLaTeXbyel');

I;
1; Comment: Power

minus: {

Comment: check if left/right trees needs to be bracketed

Comment: and use the syntax (a)-(b) if they do - otherwise

Comment: simply miss out the brackets

LaTeX(Left SubTree of WhichTree);

If NeedRight(WhichTree) then

f

AppendLaTeXbye-\left(');

LaTeX(Right SubTree of WhichTree);
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AppendLaTeXby('\right)');

1 else

f

AppendLaTeXby('-');

LaTeX(Right SubTree of WhichTree);

I; Comment: Minus
UnaryMinus:

f

Comment: check if left tree needs to be bracketed

Comment: and use the syntax -(a) if it does - otherwise

Comment: simply miss out the brackets

If NeedLeft(WhichTree) then

{

AppendLaTeXby('-\lefte);

LaTeX(Left SubTree of WhichTree);

AppendLaTeXby('\right)');

1 else

f

AppendLaTeXby('-');

LaTeX(Left SubTree of WhichTree);

1; {Unary Minus}
Mult: {

If NeedLeft(WhichTree) then

{

AppendLaTeXbye\left(');

LaTeX(Left SubTree of WhichTree);

AppendLaTeXby('\right)');

1 else
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LaTeX(Left SubTree of WhichTree);

AppendLaTeXby(times);

I;
If NeedRight(WhichTree) then

AppendLaTeXby('\left(');

LaTeX(Right SubTree of WhichTree);

AppendLaTeXby('\right)');

I else

LaTeX(Right SubTree of WhichTree);

I;
I; Comment: Mult

Plus: {

LaTeX(Left SubTree of WhichTree);

AppendLaTeXby('+');

LaTeX(Right SubTree of WhichTree);

I; {plus}
I;

ConstantNode: {

case Constant on the root of the Tree of

ee:{

LaTeX(Left SubTree of WhichTree);

AppendLaTeXby('e');

LaTeX(Right SubTree of WhichTree);

I;
FPI:{

LaTeX(Left SubTree of WhichTree);

AppendLaTeXby('\pi ');

LaTeX(Right SubTree of WhichTree);
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I;
I;

FunctionNode: {

Case Function on the root of the Tree of

FSQRT :{

AppendLaTeXbye\sqrt{');

LaTeX(Left SubTree of WhichTree);

LaTeX(Right SubTree of WhichTree);

AppendLaTeXbyel');

I; Comment: square rooting
FSQR	 :{

If NeedLeft(WhichTree) then

{

AppendLaTeXby('\left(');

LaTeX(Left SubTree of WhichTree);

AppendLaTeXby( '\right)-{2}');

I else
f
LaTeX(Left SubTree of WhichTree);

AppendLaTeXby('-{2}');

I;
I; Comment: squaring

FABS	 :{

AppendLaTeXby('\left1');

LaTeX(Left SubTree of WhichTree);

AppendLaTeXby('\right1');

' I; Comment: absolute
FFACT :{

If NeedLeft(WhichTree) then

{
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AppendLaTeXbye\left(');

LaTeX(Left SubTree of WhichTree);

AppendLaTeXby('\right)!');

else

LaTeX(Left SubTree of WhichTree);

AppendLaTeXby('!');

I;
1; Comment: Factorials

FEXP	 :{

If NeedLeft(WhichTree) then

AppendLaTeXbyee-{\left(');

LaTeX(Left SubTree of WhichTree);

AppendLaTeXby( '\right)1');

else

1
AppendLaTeXbyee-{');

LaTeX(Left SubTree of WhichTree);

AppendLaTeXbyel');

I;
I; Comment: Exponentiation

FTANH,FTAN,FSINH,FSIN,FSECH,FSEC,

FLN,FLOG,FCOTH,FC0T,FCOSH,FCOSECH,

FCOSEC,FC0S,FARCTANH,FARCTAN,FARCSINH,

FARCSIN,FARCCOSH,FARCCOS:

AppendLaTeXby(CorrespondingTexCommand(

FunctionType2String(Function on root of

WhichTree))+'\left(');

LaTeX(Left SubTree);
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AppendLaTeXby('\right)');

I;
I;

I;
IdentifierNode:{

LaTeX(Left SubTree of the Tree);

AppendLaTeXby(IdentifierType2String(

Identifier on root of WhichTree));

LaTeX(Right SubTree of the Tree);

I;
RealNode:	 {

If abs(frac(WhichTree".item.WhichReal))<0.001 then

Comment: treat it as an integer

Str(WhichTree".item.WhichReal:0:0,NumberString) else

Comment: treat it as a real to 5 decimal places

Comment: (5 decimal places is usually accurate enough

Comment: but the accuracy could be passed to the

Comment: input tool from a question)

str(WhichTree".item.WhichReal:0:5,NumberString);

LaTeX(Left SubTree of WhichTree);

AppendLaTeXby(NumberString);

LaTeX(Right SubTree of WhichTree);

1;

The problems with this method of input translation were two-fold. Firstly, it

required the use of the DTEX software. Although these programs were available on

the public domain and were consequently free, they could not be bundled as part

of other softwares, such as DRIFT. The DTEX software could also be seen working
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in the background - something that may confuse the students. Secondly, and most

importantly, this method used a lot of computing power and was therefore slow. The

whole process of translation and display took around 12 seconds'. These concerns

of speed and student useability prompted the next version of the software - the DOS

version 2 of the Input Tool (see chapter 4).

The three different input methods which the students used were compared. The

results, which are presented in table 5.9 , are quite striking begin to show the

importance of communication between computer and student.

Input Method Simple one-line Using aTEX Interpreter Input Tool
Number of Input Errors (%) 17 13 1

Table 5.9: Errors Using Different Input Methods

In the table, an Input Error is a situation where an answer, be it correct or

incorrect, is input wrongly in terms of either syntax or structure. For example,

inputting 1/x-1 - 2 instead of 1/ (x-1) -2 is deemed an input error.

This shows that, on average, a student would, without the use of the Input Tool,

make a mistake in input 17 times out of 100. On these occasions, therefore, it is

possible that a student would be marked as wrong when they should have been

marked right.

Many examples during the experiment confirm the success of the input tool. The

following examples reflect this and are shown in Table 5.10.

Intended Input Key Sequence Input Tool Used?
x A (1/2) — cos(x)
x A (1/2) — cos(x)
cos(x) — 4sin(x) — x A (-3/4)
—3x A (-5/2) ± 1/4sin(x)
2x A (2/3) — 114cos(x)
1/2x A (1/2) + 2sin(x)

x(1/2)	 A(1/2) — cos(x)
x(1/2) — cos(x)
cos(x) — 4sin(x) — x(3/4)
—3x(-5/2) + 1/4sin(x)
2x A 2/3	 (2/3) — 114cos(x)
1/2x A 1/2 ± 2sinx

Yes
No
No
No
Yes
No

Note: The	 signifies the pressing of the DELETE key

Table 5.10: Examples of the Effectiveness of the Input Tool whilst using DRIFT

The examples in Table 5.10 are by no means isolated cases. Almost all the stu-

dents who did not have access to the Input Tool made similar mistakes as shown

2 measured on 386 SX 16 MHz machines
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here. Mistakes like these were almost completely eradicated for those students who

used the Input Tool. To show the importance of efficient communication with the

computer, we look at the following sequence of events which took place in the ex-

periment:

1. Student inputs sqrt(x) — cos(x) (from a question sheet) and wishes to differ-

entiate it

2. Student answers with 1/2x(-1/2) + sin(x)

3. Student is marked with the message "WRONG ANSWER"

4. Student looked at the solution on screen from 10:17:13 until 10:18:48

5. Student changes input to x(1/2) — cos(x)

6. Student answers with 1/(2x A (1/2)) ± sin(x)

7. Student is marked with the message "WRONG ANSWER"

8. Student attempts to answer again with 1/2x A (-1/2) + sin(x)

9. Student is marked with the message "WRONG ANSWER"

10. Student attempts to answer again with 11(2sqrt(x)) ± sin(x)

11. Student is marked with the message "WRONG ANSWER"

12. Student attempts to answer again with 1/2x A (-1/2) ± sin(x)

13. Student is marked with the message "WRONG ANSWER"

14. Student attempts to answer again with 1/2(x A (-1/2)) + sin(x)

15. Student is marked with the message "WRONG ANSWER"

16. Student attempts to answer again with 9

17. Student is marked with the message "WRONG ANSWER" (The student has

obviously given up)
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18. Student decided NOT to re-attempt answer nor was the solution viewed.

Here, this student did not have access to the Input Tool. The question was firstly

input correctly but the answer had a A missing and therefore was marked as being

WRONG. The student then looked at the solution which explains the transformation

from sqrt to A(1/2). This prompted the student to reenter the expression using

A(1/2) notation. However, the A was again missing and so the answer was marked

incorrectly. The student then tried various forms for the correct answer, all of which

would have been valid if the initial input was correct.

The frustration of this student was shown in the questionnaire at the end of the

session when he wrote:

the computer kept on marking my answer wrong but I couldn't

understand why.

5.5 Marking answers

Since it was required that students were given feedback on answers, there must be

provision for the software to evaluate and mark the students. The uses of CALM

Eval and CALM Compare (see Chapter 3) are limited to scenarios where the pro-

grammer / teacher has compile-time knowledge of the answers to problems. From

this knowledge a suitable range, tolerance, failure rate and variable list can be easily

specified — therefore limiting comparison of two answers to a "safe" range. The prob-

lem with evaluating and comparing answers in DRIFT is that they are only known

at run-time and therefore the range cannot be pre-set. The problem is, therefore,

how can two answers be compared if their "safe" ranges are unknown?

Possible solutions to this question are given below:

5.5.0.1 String Comparison

Chapter 2 highlighted the obvious reason why straightforward string comparison is,

by itself, unusable. For example, the two expressions x 2 — 3x + 2 and (x — 1)(x —

2) are mathematically equivalent and could therefore both be a correct answer to

88



a problem. String comparison would deem these expressions to be different - an

incorrect judgement.

5.5.0.2 Algebraic Comparison

An algebraic comparison of two mathematical expressions is a process where these

expressions are re-written in some canonical form and then compared.

A great deal of work has been done on algebraic comparison of two expressions.

Matz [24] states that

... even though mathematicians knowledge has an established

notation in terms of axiomatic-deductive frameworks, these for-

malisms alone do not make a working problem-solver nor do

they capture the knowledge of mathematics underlying human

competence.

In this paper, Matz quotes Minsky [27] who says:

Minds are complex, intricate systems that evolve through elab-

orate developmental processes. To describe one, even at a sin-

gle moment of that history, must be very difficult. ... Only a

good theory of the principles of the mind's development can

yield a manageable theory of how it finally comes to work.

These two quotes encapsulate the difficulties of algebraic expressions and show

that, even with the large amount of research done in this area, there is no reliable way

of comparing student answers with a true answer algebraically. They also epitomise

the unpredictable nature of students - particularly in the way that they give answers

to questions.

Although algebraic comparison of some simple expressions is possible , certain

examples give unpredictable results - see [38].

Since this experiment Waterloo Maple' have released software which gives pro-

grammers (and therefore teachers) access to very sophisticated computer algebra

routines. However, these routines have yet to be suitably tested in an educational

3 Waterloo Maple is the company responsible for the Maple computer algebra system
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environment. These routines are now a centre of a great deal of work within the

United Kingdom Mathematics Courseware Consortium. Within this project, work

on answer judging and answer comparison is being tested.

5.5.0.3 Numerical Comparison

Notwithstanding the above, it has been shown that, in general, symbolic and alge-

braic comparisons of expressions do not yield a reliable way of comparing expres-

sions. It has also been pointed out that there is no pre-knowledge of a safe range

over which to compare two expressions. A way forward, perhaps, is an attempt to

find a safe range over which both true and student answers can be compared.

A numerical method can be used to compare most expressions and therefore a

detailed description of how this was achieved will be given below. Firstly, however,

the following simple but interesting scenario will show that numerical comparison is

not totally infallible:

Say a student types the expression xVa — b-Vb — a (where a and b are general

constants) and wishes to differentiate it. This yields, because of the square roots,

conditions that (a — b) > 0 and (b — a) > 0. I.e. a > b and b > a. This can

only be true if a = b = 0 and therefore the original expression is equivalent to 0.

If the numerical comparison routine employed found these conditions on a and b 4

then a derivative of 0 would be marked as correct. Moreover, if a student answers

with N/a — bVb — a then, by the same argument, it would be marked as correct.

This could be considered as both an advantage and a disadvantage of a numerical

comparison algorithm. It is quite simple to build in the capability to point out these

situations to the student and hence provide appropriate feedback. However, the

situation where non-real valued functions are input should be catered for - perhaps

by telling the students that an input is not defined on the real line.

Sometimes, a straightforward numerical comparison is not possible. For example,

the expression Va — 2 + arccos(a) has two contradicting conditions on the value of

a. The Va — 2 imposes that a > 2 and arccos(a) means that a < 1. It is impossible,

4 As will be seen later in this chapter, this depends heavily on the method on which the values of
the identifiers are chosen. In particular, because of the method in which DRIFT compares answers,
it will depend on the value of dx
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therefore, for a numerical routine to choose a suitable value for a.

The simple example above shows how difficult it is to get a 100% reliable com-

parison algorithm. The following "solution", which can compare the majority of

student answers, uses both string and numerical comparisons along with some sim-

ple algebraic manipulations.

The work done on expression trees can be used to provide greater meaning as

to the construction of expressions. From such an expression tree, conditions and

restrictions can be made on identifiers (constants and variables) so that comparison

is made safe. In particular, one must be wary of the divide operator, square roots

and trigonometric functions. For example, given an expression 1, a condition on the

identifier a is that its value is sufficiently far from 0 to avoid "blow-up". Also, in

order to evaluate Va, one must insure that the value of a is greater than or equal

to 0.

Two condition lists (an ordered list of conditions) can therefore be created - one

each from the trees of the true and student answers. Call these condition lists CT

and CS. This compare algorithm also needs to know a list of the identifiers that

appear in both the student answer and true answer — called VL. The way in which

these lists are constructed is described in this section.

The following flow chart (figure 5.4) describes the algorithm that DRIFT uses

to check student answers. Note that within each node (0, 0 or CD) on Figure 5.4

has an associated piece of text; these are shown shown in Table 5.11.

The flow starts at the oval root (CD 1) where the binary trees for the student

and true answers are acquired. If there are extra identifiers' (0 3) or not enough

identifiers (0 2) (but not including the constants 71- or e) then the student answer

is marked wrong (0 24) else they are checked for string equivalence (0 4). If they

are symbolically equivalent then the answer is marked right (0 22) else the answers

are simplified (0 5) (see 5.5.0.4) and checked again for string equality (0 6). Again,

if they are now equivalent then the answer is marked right (0 22) otherwise the

flow advances to (0 10). Here, a lists of conditions, called CS and CT are created

from the student and true answer trees respectively. Then (0 9) creates a list of

5 An identifier is either a symbolic constant or variable (i.e. "A" through to "Z" and "a" through
to "z")
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0 or CD Number Associated Text
CD 1 Get True and Student Answer Trees
0 2 Are there enough identifiers in the Student Answer?
0 3 Are there extra iden. in Student Answer (Compared to True Answer)?
0 4 Are the Student and True Answers symbolically equal?
0 5 Use the simplification routine on both True and Student Answers
0 6 Are the Student and True Answers symbolically equal?
0 7 Assign the values of the variables contained in the variable list VL
0 8 Set the Boolean variable OkAtPoints to FALSE
0 9 Create VL — a list of variables appearing in Student and True Answers
0 10 Create condition lists for Student and True Answers (CS and CT)
0 11 Are the condition lists CS and CT empty?
0 12 Set the Boolean variable OkAtPoints to be TRUE
0 13 Is the conditioin list CS empty?
0 14 Do the variables in VL contravene CT?
0 15 Set the Boolean variable OkAtPoints to FALSE
0 16 Have all possible values on VL been used?
0 17 Is the condition list CT empty?
0 18 Do the variables on VL contravene the conditions on CS?
0 19 Do the variables on VL contravene CS or CT?
0 20 Set the Boolean variable OkAtPoints to be TRUE
0 21 Are Student and True Ans. numerically equal using the values in VL?
0 22 The Student Answer is equal to the True Answer
0 23 The Answers are numerically incomparable (with this algorithm)
0 24 The Student Answer is NOT equal to the True Answer

Table 5.11: Text for nodes on Figure 5.4
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Figure 5.4: Flow Chart showing the Numerical Comparison Algorithm
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identifiers, VL, which appear in both the student and true answer trees. A Boolean

variable OkAtPoints is initialised to TRUE. This variable is used to flag whether or

not values for the identifiers have been found which do not contravene the conditions

contained in both CS and CT. The flow advances to (0 7) where the values of the

identifiers contained in VL are set. Note that the values of these identifiers are

advanced every time the flow reaches (0 7). How the identifiers are advanced will

be explained later.

Now check to see if both lists CS and CT are empty (0 11). If they are empty

then there are no problems in numerical comparison, so set OkAtPoints to be TRUE

(0 12), numerically compare the two answers (0 21) and either mark the answer

correct (0 22) or incorrect (0 23) accordingly. If either CS or CT are non-empty

then check if either CS (0 13) or CT (0 17) are empty. If CS is empty then

check if the identifiers in VL contravene the conditions in CT (0 14). If they do

then set OkAtPoints to FALSE (0 15) and check if all the possibilities of values

of the identifiers in VL have been used. If they have then the answer cannot be

numerically compared (0 23) otherwise, choose other values for the identifiers in

VL (0 7). Similarly, if CT is empty then check if the identifiers in VL contravene

the conditions in CS (0 18). If they do then set OkAtPoints to FALSE (0 15) and

take the same path as before either to (0 23) or (0 7).

If neither CS or CT are non-empty then check if the identifiers in VL contravene

either CS or CT (0 10). If they do then set OkAtPoints to FALSE (0 15) and check

if all the possible values of the identifiers on VL have been used (0 16). If they have

then return to (0 7) and re-assign values otherwise the answers cannot be compared

numerically (0 23). If the identifier values do not contravene the condition lists CS

and CT then set OkAtPoints to be TRUE and numerically evaluate each expression

to see if they are equivalent. If they are then mark the student answer correct (0

22) otherwise mark it wrong (0 24).

The most complex parts of this algorithm are those contained at stages (0 7) and

(0 16). Methods of deciding what values the identifiers should take and whether

all possible combinations of values for the variables have been exhausted are now

considered.
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The method which DRIFT currently adopts to choose the values of the identifiers

on the list VL is to iterate from -MaxValue to MaxValue in steps of dx where

MaxValue and dx are real values. Here, setting MaxValue sufficiently large and dx

small will create a large number of combinations for the values of the identifiers.

This method obviously provides an easy way of knowing if and when all the values

of the identifiers have been exhausted. There is a problem using this limited range

when an expression is not defined within —MaxValue • • • MaxValue. For example, it

is impossible, if MaxValue= 100, to mark the expression Va — 101.

One solution would be to examine all the conditions imposed on the identifiers

and choose the value of MaxValue to be sufficiently high.

The value of dx can also be critical in comparing some expressions. For example,

going back to the expression Va — bVb — a, it was noted that the conditions gave

a = b = 0. Here, if dx is large (perhaps in the order of 1) then iterating through

possible values of a and b may miss out a = b = 0. For example, if MaxValue =

100 and dx = 0.3 then the values of a and b, because of the iteration, would be

—100, —99.7, • • • , —0.7, —0.4, —0.1, 0.2, • • • , 100.

Two examples showing how the algorithm proceeds follows. The first example

(see Figure 5.5) shows how simple algebraic simplification can yield a faster compar-

ison while the second (see Figure 5.6 shows two algebraically different expressions

can be compared.

More sophisticated methods of finding values of the identifiers could be sought,

perhaps by simultaneously solving the conditions imposed. Another possible method,

which is more efficient and yet easy to implement, is described in figure 5.7 below

whose labels are given in table 5.12

0 or CD Number Associated Text
CD 1
0 2
0 3
0 4
0 5
0 6
0 7
0 8

Make a list called CList - a combination of CS and CT
Choose values for the variable list VL

Remove conditions from CList that aren't contravened by VL values
Create new VL for revised cond. in CList (previous values remain)

Have all possible values for iden. in VL been considered?
Is CList empty?

The Answers are numerically incomparable (with this algorithm)
Set the Boolean variable OkAtPoints to TRUE

Table 5.12: An Improvement in Identifier Selection
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Get the True and Student answers (in the form of trees) as
2*x and 2*x+0 respectively

Are there more identifiers in the Student answer than in the True answer? NO

Are there enough identifiers in the Student answer? YES

Are the True and Student answers symbolically equal? NO

Simplify 2*x to 2*x and 2*x+0 to 2*x

Are the True and Student answers symbolically equal? YES

The True and Student answers are equal

Figure 5.5: Example 1 Describing the Numerical Comparison Routing in Figure 5.4
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Get the True and Student answers in the form of trees) as
x+1 and (xA2-1)/(x--1) respectively

Are there more identifiers in the Student answer than in the True answer? NO

Are there enough identifiers in the Student answer? YES

Are the True and Student answers symbolically equal? NO

No simplification done. The simplification routine cannot factorise.

Are the True and Student answers symbolically equal? NO

Create CS as x — 1 � 0 and CT as Empty (no conditions on CT)

Create VL just containing the one variable x

Set OkAtPoints to FALSE. (Assume cannot compare using values in VL)

Assign values of the variables on VL to x = —maxvalue = —100, say.

Are CT AND CS empty? NO

Is CS empty? NO

Is CT empty? YES

Do the values on VL contravene CS? NO (since —100 — 1 � 0)

Set OkAtPoints to be TRUE

Are the True and Student answers numerically equal using x = —100? YES

The True and Student answers are equal

Figure 5.6: Example 2 Describing the Numerical Comparison Routing in Figure 5.4
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Figure 5.7: An Improved Method of Finding Identifier Values
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This algorithm replaces parts of the earlier one by first merging CS and CT into

one condition list called CList (cD 1). Again, values for the identifiers in VL are

now chosen (0 2). This time, however, they are chosen so that the values of certain

identifiers (those which don't contravene CList) don't change. Then, the algorithm

removes all the conditions from CList that aren't contravened by the values of the

identifiers in VL (0 3) and then chooses a new VL from the conditions left in CList

(0 4). If CList is empty of conditions (0 6) then comparison is now valid using

the values of the variables in VL, otherwise, check if all possible values of identifiers

in VL have been considered (0 5). If they have then the student and true answers

cannot be marked numerically (0 7) otherwise choose other values (0 2).

This algorithm is more efficient since once "safe" values for certain identifiers

have been found, they are taken out so the conditions which they satisfy are not

re-considered later. The only problem with this method is that the very identifiers

taken out at an early stage may be required to be reconsidered if stage (7) is reached.

The following simple example will illustrate this point:

Say one of the answers to be compared (either true or student answers) is la + 1 1 a

then the conditions will be a 0 0 and 1 — a 0 0. The algorithm will take the first

condition away from CList (as long as a 0 0 and fix the value of a. However, if this

value of a was fixed as 1 then this will contravene the later condition 1 — a 0 0.

One way to avoid this is to take conditions away from CList only if the variables

which they contain do not appear in the remaining conditions. For example, if an

answer was 1 ±	 then taking out the condition b 0 from CList and fixing the
b	 1—a

value of b would have no effect on the remaining condition 1 — a 0 0.

The problem of how to choose values for the identifiers in VL (2) still remains.

However, with the above improvement, simple iteration through the permutations of

values for identifiers will be more efficient. DRIFT currently chooses the values in VL

by looking at the permutations of the possible values for the identifiers. I.e. it uses

the permutations of the variables each with values from -MaxValue to MaxValue.
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5.5.0.4 Expression Simplification

The numerical routine described above makes use of a basic simplification sub-

routine. This enables simple expressions to be simplified and therefore possibly

easier to compare. For example, the expression x + 0 is simplified to x, x + x is

simplified to 2 * x and x g is simplified to

5.5.0.5 The Condition Lists

The conditions used in section 5.5.0.3 are now described. So far only the logical

operators >, � and have been used to specify a condition on an identifier or

expression. The logical operators used for marking answers all have an associated

binary tree (representing the expression) and a numerical value. The operators used

are given in the following Turbo Pascal TYPE declaration:

TYPE

CondType = (LessEqual,Less,GreaterEqual,Greater, Equal,

NEqual, Product0f, NProduct0f);

(* Comment:

the N in front of Equal and ProductOf indicate

NOT (i.e NotEqual and NotProduct0f)

*)

Examples of possible conditions are given in table 5.13:

Tree to Compare Condition Tree Log. Operator Value
.--1

a
a NEqual 0

1

Va N/Ft NEqual 0

tan(x)
a
x —

2

GreaterEqual
NProductOf

0
71

arccos(x) x LessEqual 1
x GreaterEqual —1

Table 5.13: Examples of Conditions on Expressions and Identifiers

To conclude this chapter, it is pointed out that there is access to the DRIFT

package on the diskette provided with this thesis. This is included to give demon-

stration of both the Input Tool and the marking procedure which are described in

the text. It is not provided as a demonstration of DRIFT's facilities or functionality.
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In order to accommodate the Input Tool, a demonstration version of DRIFT

is included which runs in Microsoft Windows on IBM PC compatible computers6.

To run DRIFT (for Windows), simply double click on the DRIFTWIN.EXE file in

the Windows' File Manager.

'this has superceded the DOS version of DRIFT
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Chapter 6

Formally Assessing Mathematical

Ability by Computer

6.1 Introduction

This chapter describes an educational experiment which took place at the Heriot-

Watt University in Edinburgh during the Autumn Term 1994. The experiment set

out to perform 40 % of the assessment for a mathematics module taken by 82 first

year engineering students. The experiment was designed so that the computer would

set and mark exam questions while the students were sitting at a computer keyboard.

The chapter first describes the method of question delivery and explains the process

of preparation for such a technically difficult event. The important educational

issues which arose during the experiment will be discussed — such as partial credit,

input, examination security and software design. The chapter concludes with an

evaluation of the success of the computer assessment and implications for future

research.

A computer's ability to enhance the process of learning is well documented (for

example, [34], [15], [3], [4], [7], [31] and [40].) However, it is important to show that

a computer can have a broader role in education in that it can be used to reduce

some of the chores of teaching.

In particular, the computer can be used to automatically mark hundreds of

computer-set exam scripts at the end of a university term. Moreover, a computer's
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speed brings with it other advantages such as a more flexible approach to testing

(i.e. an examination is available either more frequently or perhaps when a student is

ready to be tested). A computer examination brings objectivity in that the student's

name is irrelevant. An important feature of computer examinations is that they give

instant results.

Naturally, there are drawbacks to the use of the computer for assessment. There

are important questions which teachers must consider. How does the computer

compensate in giving partial credit and how significant is students' familiarity with

technology? Another issue, as discussed in chapters 3 and 4, is that there is a mis-

match of notations between writing mathematics on the computer and on paper.

This concern is magnified when one sets computer examinations which are not of

the multiple choice format — as is the case here. All of these concerns are discussed

throughout this chapter.

6.2 The Mathwise Testing Mechanism

To deliver mathematics exam questions over the computer successfully requires a

robust, well structured, and easy to use software package. The method of question

delivery used for the experiment will now be described.

The Mathwise 1 test mechanism was written within the Mathwise project to

provide an assessment methodology to accompany modules written across the whole

of the TLTP 2 project.

6.2.1 Banking Questions

It employs a method of question delivery which groups questions into banks. Bank-

ing questions in this way enables a higher flexibility in terms of which questions can

be delivered to the students. For example, a particular mid-term examination may

require the testing of one particular topic or a selection of topics. Therefore the

banks of questions can be made to coincide with parts of the syllabus which are to

i Mathwise is one of the three mathematical consortia funded during the first phase of the
Teaching and Learning Technology Programme (TLTP) underway in British Universities 1992-5

2 TLTP = Teaching and Learning Technology Program
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be tested.

For the purpose of this experiment, the questions were picked randomly from

all banks, which covered the syllabus, to make up a whole computer examination

"paper".

6.2.2 Browsing the Questions

Traditional examination papers usually allow students to answer questions in any

order. Therefore, a browsing facility was included in the testing mechanism which

enabled the students to choose which questions could be answered first. Education-

ally this is very important since confidence during an exam is often lost or found

whilst answering the first question. It was observed during the experiment that

students employed the browsing mechanism often, using it to pass on the harder

questions.

6.2.3 The Marking Scheme and Sub/Key-Parts

The marking scheme was a very simple one. The number of marks available for any

one question is the number of parts it contains — one mark for each part.

The individual questions are designed to contain up to 12 parts with each part

worth one mark. However, for the purposes of the experiment, questions contained

either two or four parts. Any number of these parts are then deemed to be "key"

or "sub", depending upon their importance within the question.

Figure 6.8 shows a question on differentiation within the test mechanism. The

question asks to differentiate the function f where f (x) = 6 cos2 (6x5 ) and displays

part 4 which is a key-part. This key-part simply asks for the derivative of f, assuming

that student can apply the chain rule to both 6x 5 and to the square of the cosine

function. If a student cannot answer this part then they can press on the "+" button

and reveal the sub-parts 1,2 and 3. Figure 6.9 shows these revealed sub-parts, giving

a break down of the question. Note that if sub-parts are revealed then they must

be answered, along with their key-part, to gain full marks. Each key-part is worth

1 plus the value of its subparts.
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1..
Differentiate the function f where

Tx) = 6cos2(6x5).

[4]

Derivative fi(x)=?

venSPO.	

4
[J.

".74=011=CTIT,

I Input
; 

QuitErich Help;

Figure 6.8: Figure showing Key-Parts
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6.	 Differentiate the function f where

f(x) = 6cos
2

6 ).

Derivative of 6x5 is ?

Derivative of cos(6x5) is ?

Derivative of 6z2 in terms of z is ?

Derivative i(x) =?

[4]

Figure 6.9: Figure showing revealed Sub-Parts
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6.2.4 Randoms and Test Re-Usability

Questions can contain random parameters. That is, constants, coefficients, powers

etc. can be randomised in order to change the question for subsequent examination

sittings. In the example above (in figure 6.8), the two 6s, the power 2 and the 5

were random integers from 2 through to 9. This concept is vital for such a testing

mechanism for if the test is to be re-used in subsequent years, and therefore justify

the effort in the creation of the test, then the questions must be different each time

they are displayed or used.

Once a question is completed, by pressing the End button, it is taken out of the

bank and the student returns to browse mode'.

6.2.5 Levels of Feedback

The mechanism contains 4 levels of feedback. Level 4, help level, provides students

with maximum feedback. Here, students are marked after each part with a tick or

a cross or are allowed to reveal the answers (perhaps, therefore, helping them in

subsequent parts). Level 3 provides slightly less help. Students are not allowed to

reveal the answers to questions but still get the parts to the questions marked as

they go. This mode is useful to monitor the moderate students. Level 2 provides

marking at the end of the question only and there is no revealing of answers allowed.

Here, the main use could be for revision for the final level, level 1. This level

is termed exam mode and, as the name suggests, is useful for the use in formal

assessment as students receive no marking throughout the test. Teachers can decide

if students marks should be displayed at the end of the test. During the run-up to

the experiment, the students practised using the Mathwise mechanism in feedback

level 2 but for the actual experiment examination mode was used.

3 problems associated with taking out the question from the test at this stage will be considered
later
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Mathwise Practice Exam (11.1 UA2)

Derivative of 6x5 ?

Derivative of cos(6x5) is ?

Derivative of 6z2 in tents of z

Expecting something around /

360)(11cos(6x1)sin(6x^5)/

•	 Differentiate the function f where

6.2.6 Methods of Input

The IBM-PC version of the testing software 4 includes a button for the "Input

Tool". When this button is pressed in (on), input is via the Input Tool as described

in chapters 3 and 4 otherwise, it is via a one-line input in the white rectangular box

at the bottom of the screen. The screen layout, showing the position of the Input

Tool, is shown in figure 6.10.

Figure 6.10: The Mathwise Mechanism using the Input Tool

4The Mathwise test software is available on both Apple Macintosh and IBM-PC
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6.2.7 Marking Answers

The Mathwise Test Mechanism uses the CALM compare software to mark the stu-

dents' answers. However, because of the restrictions in CALM compare, which are

identified in 3.3.2.4, extra facilities are provided to enable the setter to encourage

the student to give the correct form of the desired answer.

6.2.7.1 MaxLength and MinLength

Sometimes, it will be required that the number of characters contained in a student

answer needs to be restricted. The following example illustrates this point: "Fac-

torise x2 — 1". The software should not accept x-2-1 as a correct answer; rather

it should force the student to factorise the quadratic. A simple way to solve this

would be to insist that the student answer contains at least 10 characters (Min-

Length=10). Although this does mean that students cannot type just x-2-1 as an

answer, ( ( ( (x-2-1) )) ) would be marked as correct.

A way around this would be the use of Must-Have and Not-Allowed strings.

6.2.7.2 Must-Have and Not-Allowed Strings

In the example above, the problem of what to allow as student answers can be solved

by insisting that they must contain the "(" character AND must NOT contain either

the "((" string or the "" string. This type of answer restriction is very useful,

particularly in questions which ask students to expand or simplify answers.

So as not to waste student input time, the Input Tool could be made aware of

MaxLength, MinLength, Not-Allowed String and Must-Have String for a particular

answer and advise the student about them as they type. This would be quite a

simple and yet powerful extension to the Input Tool.

Take, for example, the question: "What is 0.5 as a fraction ?." Because CALM

compare does not make a distinction between fractions and decimals, an answer of

0.5 or .5 would be marked as correct.
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6.2.8 Recording Marks and Student Information

As the software is used, two files are generated and amended. The first, a .mrk file,

contains the student's name (identification), the date, the title of the examination,

the number of questions that were selected from each bank, the total number of

parts and the percentage mark and the status at the end of the test. A sample .mrk

is now given:

David, 10/07/95, 11. 1UA1 EXAM, 1, 1/LU1 , 1/LU2, 1/LU3, 1/LU4, 1/LU5,

1/LU6, 1/LU7, 1/LU8, 24, 42, quit

The second file, with extension .tst, contains more detailed information about

each question and the answers given by the student. The test file corresponding to

the above .mrk file is shown below:

Results File

********************

Start Test Data

TestStartDate	 10/07/95

TestStartTime	 13:57

TestTitle	 11.1UA1 EXAM

SectionsTested 1/LU1, 1/LU2, 1/LU3, 1/LU4, 1/LU5, 1/LU6,

1/LU7, 1/LU8,

NumQuestions	 8

QuestionSet	 10

18

29

38

43

57

64

80

Randoms
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(10) -22,-33

(18) 5,-3,5,9

(29) 4,-4

(38) 3,2,5,8

(43) 4,6

(57) 4,1,2

(64) 9

(80) 5,8

Question 43

SeciNo	 5

StartDate	 10/07/95

StartTime	 13:57:59

ID	 43

Parts 2

Keys	 2

Rands

MaxScore	 2

StudScore	 2

Time In 477

Tries 2

FinDate 10/07/95

FinTime 14:06:00

PartNo 1	 2

Tans	 6	 4-6

Vset

Range	 1,2,5	 1,2,5

Tolfr	 0.001,0.0 0.001,0.0
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MaxLen	 100

MinLen	 0

MaxScore

Studans 6

Tries	 1

Done	 0

Emode	 R

100

0

1

-2

1

0

R

1

++++++++++++++++++++++++++++++++++++++++

********************

Quit Test at 14:10 on 10/07/95

********************End Test Data

Date	 10/07/95

Time	 14:10

Time in Test

Score	 42%

A description of all the elements in this file is shown in table 6.14.

6.3 Preparing for the Computer Examination

Two groups of Computer Science and Electrical Engineering students were chosen

as an appropriate pilot class from within the whole of the first year. From these

classes, totaling 82, five students agreed to assist with feedback as term and our

preparations progressed.

The main student concerns were isolated through a series of meetings with the

small group and from follow-up questionnaires to the whole class.
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Key Description
SelectionsTested
NumQuestiOns
QuestionSet
Randoms
SeqNo
ID
Parts
Keys
Rands
MaxScore
StudScore
TimeIn
Tries
PartNo
Tans
Vset
Range
Tolfr
MaxLen
MinLen

List of the number of questions selected from each bank
Identifies the number of questions in the examination
The set of questions which were picked from the banks
Lists, for each question, the value of the randoms
The number of the question as it appears to the student
Identification number of the question
The number of parts that the question contains
Indicates the numbers of the parts which were "key"
Find out what this is
The max. score for this question (= number of parts)
The score achieved by the student on this question
The time taken for the question
Number of tries at all the parts on the question
The number of the part being attempted
The "True" answer (correct answer) to a PartNo
The "variables" contained in the question (identifiers)
The "safe" range and number of points for compare (see Chapter 2)
Tolerance and Failure Rate
Maximum allowable characters in answer
Minimum allowable characters in answer

Table 6.14: Table to Explain the .mrk and .tst Files

6.3.1 Class Questionnaires

The questionnaires given out, along with the responses received are now described.
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Questionnaire on December Computer Test

1 What advantages to do you see in using the computer for part of your assess-

ment in mathematics?

2 What concerns or worries can you identify in using the computer for part of

your assessment in mathematics?

3 Could we have improved the information about the test? Yes/No. If Yes can

you suggest what would have been more helpful?

4 It may not be possible but if it is would you want to know your mark imme-

diately at the end of the test? Yes/No

Figure 6.11, below, shows the responses to question 1 on the questionnaire. Here,

26 students from group 1 and 31 from group 2 returned questionnaires and listed

possible advantages of taking assessment on the computer. Figure 6.12 alters the

Group 1 response frequencies (multiplying by R) to allow for the different number

of questionnaires returned from each group. This gives greater pictorial clarity of

the likeness between the questionnaire responses to question 1 and is equivalent to

using a relative frequency scale (note that this does not alter the correlation figure).

The students identified 15 advantages which are labelled in table 6.15.

Figures 6.11 and 6.12 show that, overall, the main considered advantages (of

using the computer for assessment in mathematics) of both groups were similar.

The product-moment correlation coefficient (see Appendix B) between group 1 and

group 2 responses was 0.743 which clarifies this.
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Made a nice change 1
Faster results 2
Improve Comp. literacy 3
Good prep. for written exam 4
Less writing 5
Allows easy resit 6
Handwriting isn't important 7
More at ease at computer 8
Questions vary for individuals 9
Working need not be shown neatly 10
Marking is more consistent (fairer) 1 1

More Time 12
Less work needed by teachers 13
Splitting questions into sub-parts 14
Final mark doesn't depend on just one exam 15
No advantages 16

Figure 6.11: Responses to Questionnaire Question 1
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Figure 6.12: Group 1 Scaled Responses to Questionnaire Question 1 (adjusted)

A very interesting observation from the responses appears in this analysis. Group

2, who filled in their questionnaires on a later day from those in Group 1, reported

advantage 6 (resits) far more heavily than students in group 1. This advantage

would perhaps be less obvious unless a teacher pointed it out (which is, in fact,

what happened). In other words, it appears that word of mouth (concerning the

computer examination) played a part.

The questionnaire also showed general agreement concerning students' appre-

hensions of the computer exam. Again two figures are given, 6.13 and 6.14 (figure

6.14 shows compensations for differing size groups I and 2), which give the responses

to question 2 on the questionnaire. Here, the Answer Types are described in table

6.16, below.
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III	 1	 1	 1	 1	 1	 1	 1	 II	 ii	 I
2 34 5 6 7 8 9 10 11 12 13 1415 16

Predicted problems of computer assessment Label
Computer doesn't give partial credit 1
Not sure about strategy for computer examination 2
Computer Exam is ergonomically uncomfortable 3
Correct answers will be marked as being incorrect 4
Mistakes in the questions 5
inexperience with the Mathwise Test Mechanism 6
Problems inputting answers 7
Can't re-enter a question once it is finished 8
Time constraints 9
One set of questions may be harder than another 10
Network collapse 11
None 12

Figure 6.13: Responses to Questionnaire Question 2

117



I	 I	 I	 I	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 6.14: Responses to Questionnaire Question 2 (adjusted)

It is interesting to note again that the two groups had very similar worries con-

cerning the computer examination. This time, the correlation coefficient between

the groups 1 and 2 is 0.939.

The results of question 3 were very encouraging. Out of the 57 questionnaires

returned, 47 students said there we couldn't have improved the information about

the computer examination. Eight students from the remaining 10 students thought

that more practice for the examination should have been available. However, it was

made clear to all the students, both verbally and in the written hand-outs that the

practice version of the Mathwise exam was available from 9am until lOpm, Monday

to Friday for 2 weeks prior to the actual examination. There were also two practice

sessions5 in the students' tutorial times but it was possible that the 8 students who

didn't have enough practice were those students missing from the tutorial.

The small discussion group was chosen to decide if students' marks were to be

displayed at the end of the examination. This group unanimously chose not to get

the marks immediately and so this strategy was adopted within the software. It is

surprising, therefore, that g = 84.2% of students chose Yes to question 4 on the

questionnaire. This seems to indicate that there is an initial attraction in knowing

a result immediately but, in practice, students prefer time for reflection after the

5 The practice tutorial sessions were designed to give the students experience with the Mathwise
mechanism. The questions were not the same as those seen in the examination.
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examination.

6.3.2 Concerns Identified by the Discussion Group

The main educational issues which arose from the small discussion group were found

to be similar to those found in the questionnaires; they were:

1. that screens are visible to neighbouring students presenting a security problem;

2. how the computer marking could cope with partial credit; and

3. the mis-match between mathematical and computer notations.

For the computer examination, the Mathwise Test mechanism was loaded with 8

banks of questions. With random parameters also present in most of the questions,

the number of different questions in any particular examination and / or bank

increases enormously so that the possibility of any two students receiving the same

question is very low. In this way, we sought to minimise the difficulty identified in

1 above — why look at a neighbour's screen when your questions are different? The

questions for the examination were constructed in a way which strove to attain a

similar standard across the eight banks, each bank containing ten questions.

Moreover, the design of the questions tried to minimise the problem of partial

credit. Questions were staged in either two or four parts with key-parts enabling

good students to move more quickly through a question. Weaker students, who

generally opted to take their questions with all the parts on view, appeared not to

suffer too much from lack of partial credit but some of the better students, who felt

they could go directly to an answer through key-steps, occasionally failed to score

the marks that a human teacher might have awarded. Students therefore need to

strike a balance between speed obtained by just answering the key-parts and making

some progress by clicking for more steps. This balance is for the individual student

to judge and is a new examination strategy for the student to consider and practice

in advance. The precise effect of key/sub-parts is analysed later in this chapter.

The problems that students have with mathematical input have already been

discussed in depth in chapters 3 and 4. Figure 6.15, below, shows how the Input Tool
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integrates with the Mathwise Test. The pre-examination questionnaires highlighted

the need for the Input Tool. In particular, students expressed concern that they

would make syntactical errors as they input their answers and be unaware that

the computer had mis-judged their answer. Questionnaires after the examination

showed that the Input Tool dramatically reduced students' concerns about input,

with comments like:

• "The Input Tool helps you see how the computer understands what you have

written";

• "It made sure that I didn't make any input errors"; and

• "I was always sure that the answer was being constructed in the way that I

wanted."

The effectiveness of the Input Tool is discussed more thoroughly later in this

chapter.

6.4 Post-Examination Analysis

The most important criterion to ensure that the experiment was successful is that it

provides consistent results when compared with more conventional ways of grading

student ability. This section attempts to evaluate the effectiveness of the computer

examination by means of some simple statistical analysis. It compares and contrasts

the differences between computer-based and traditional written examinations. In

addition, a report on information gathered through questionnaires and interviews is

provided. Before this, however, some further detail is needed about the structure of

the written and computer examinations.

For several years, December the written examination paper in Service Mathe-

matics at Heriot-Watt University has been in two sections — Section A containing

questions on Algebra (Trigonometry and Complex Numbers) and Section B on Cal-

culus (Limits and Differentiation). In the last two years, this structure has evolved

further so that each section divides into two parts with part 1 in each section hav-

ing short questions worth 2 - 4 marks and a part 2 with longer questions worth 10
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Mathwise Practice Exam (11.1UA2)

6.	 DitTerentiate the fiinction f where

fe4 = 6cos2(6.x5).

[41

Derivative of 6x5 is ?

Derivative of cos(6x5) is ?

Derivative of 6z2 in thins of z

Derivative f '(x) = ?

4	 (	 5
360 x	 cos .6 x ..,

5

sin	 6 x j

?

Expecting something around /

360f4cos(6x1)sin(6x1)/

, Cancel OK

Figure 6.15: The Mathwise Mechanism using the Input Tool

121



marks each. In this way, 40 % of the written paper can be scored in the compul-

sory part 1 questions and a further 60% is available in the longer part 2 questions.

It was envisaged that the computer could take over the assessment of the part 1

shorter questions and it is this analogy which this computer assessment experiment

investigates.

It is important to point out that the students taking the computer examina-

tion were told it was an experiment and that their results would not count against

their grade in the written examination. We were anxious not to disadvantage this

group by asking them to do more work than the others in their year. Therefore,

to re-dress the balance and give us a genuine comparison, the University gave per-

mission for the results of the computer examination to be used in borderline cases.

This incentive appeared to be enough to ensure that the bulk of the pilot group

approached the computer examination in the right spirit though not always with

the right preparation.

6.4.1 Partial Credit

After the examination, the students' .MRK and .TST files were analysed to see how

the key-parts and sub-parts had been used. It was found that, as expected, the better

students were answering key-steps whereas the weaker ones were revealing sub-parts.

On a few occasions, these students would attempt to answer a key-part when perhaps

they would have fared better if they had attempted the sub-parts first. The effect of

this was sometimes very significant. This indicates, as with written examinations,

that students need to practice their strategies for the computer examination. As

part of the analysis, students' files were examined and credit was given to those

students who answered a key-part wrongly but would have gained marks for the

sub-part(s). This process was also aided by looking at the students' rough working

on paper. Table 6.17, below, contains two rows; the first shows student marks before

key-part credit was awarded and the second after credit was awarded.

Before 58 33 29 42 50 54
After , 71 42 42 67 79 75

Table 6.17: Before and after awarding partial credit marks
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This table shows the only significant changes due to partial credit. The two

results of most concern would be those who passed only because of the human-added

partial credit marks (i.e. the second and third columns). However, in combination

with the written paper, such border line cases may disappear but if not then a human

check may be necessary. Indeed, the inclusion of partial credit did not change the

overall picture though it is believed that the original design of four part questions

with only one key-step (i.e. the final answer in one step) should not be repeated.

One strong recommendation from the results is that there should be at least two

key-steps in any four part questions. In this way, the problem of partial credit can

be minimised. From the work described in chapter 3, it may also be possible, in

the future, to analyse wrong answers and award a proportion of marks for those

with only one error. It is important to stress the need for students to practice their

examination strategies in this novel mode of assessment.

6.4.2 The Input Tool

As described earlier in this chapter, the Input Tool was designed to decrease student

concern about typing mathematical expressions into the computer. Because the

Input Tool could be easily turned off during the examination, it is important to

note how many students preferred to use it. Within the .TST files (described earlier

in this chapter), a note is made whether the input tool was on or off. These files

showed that with the class of 82 students, 80 preferred to use it. These files also

indicated that there were very few occasions where students input incorrectly formed

expressions (in terms of mathematical meaning, syntax or structure). In fact, those

student who did not use the Input Tool had each made mistakes in input. The

post-examination questionnaire asked the question:

• "Was the Input Tool useful and if so Why?"

Students were requested to grade their answer from 1 (useful) to 5 (useless).

Some examples of the responses, which were the consensus, to this question have

already been quoted and the result of the grading follows in table 6.18:
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Response 1 2 3 4 5 Abstain
Frequency 26 19 28 4 3 2

Table 6.18: Responses to grading of Input Tool

The computer marked students' answers according to the rules described in

Chapter 2 and a computer grade was recorded. This record was subsequently com-

pared to the written results derived from a conventional pen and paper examination

as described earlier.

The following diagram (Figure 6.16) gives an overall picture of the relationship

between the students' computer mark and their corresponding part I written mark:
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Figure 6.16: Relationship between computer and written marks

It can be seen from the diagram that there are some students with conflicting marks

for the computer and written examinations. In order to explain why this was so,

students with both similar and differing marks were interviewed. The vast majority

of those students with differing marks were accounted for when they reported that

they had either not revised or had not practiced using the computer software but

had done their revision in the week in between the two examinations. Generally, the

students found the tutorial room (where the computer examination took place) to be
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less daunting as the larger written paper examination halls This fact may account

for the few students who scored higher marks on the computer. These students also

found the computer conducive to better performances as they "related to computers

more than examination papers"

Table 6.19 gives product-moment correlation coefficients for the computer exam-

ination and varying sections and parts of the written paper and Table 6.20 gives the

correlation between the computer marks and the total part 1 marks (i.e. section A

part 1 and section B part 1).

Written Mark to Section A Part 1
Written Mark to Section B Part 1 0.579
Written Mark to Section A Part 2 0.563
Written Mark to Section B Part 2 0.437

Computer Mark (accounting for partial credit) 0.503

Table 6.19:

Written Mark to Part 1 (Sections A and B)
Computer Mark (accounting for partial credit)

	
0.503

Table 6.20:

Looking at the Table 6.20 above, it can be seen that the correlation between the

part I written and computer examination was 0.503. Although this is regarded

as "highly significant" at a 1% significance level, it was thought, at first, to be

disappointing. However, it is important to put this result in the context of other

parts of the analysis. By looking at the correlations between the parts in the two

sections of the written examination (see Table 6.19), it can be seen that there is

a natural variability in the data. For example, the correlation between the marks

scored by students in the part l's of sections A and B is 0.579 and between part 2 of

sections A and B the correlation is 0.563 — only slightly higher than for computer

against written part 1. Taking this natural variability into account, the correlation

of 0.503 can be regarded as satisfactory.

In order to improve the assessment strategy for future examinations, it is hoped

that particularly significant parts of the computer examination can be assessed. For

example, the use of the Input Tool has been discussed and the following graphs illus-

trate some other considerations, including "Ease of use" of the computer software,
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"Amount of time" available in the examination and "Difficulty" of the examina-

tion. The symbol 2 which appear on these graphs show a point where 2 students'

responses are plotted on the same point on the graph.

Students were asked whether they thought the software was easy to use. Figure

6.17, below, shows students' computer marks plotted against their corresponding

written marks. The points are marked with a grading letter from A to E. An A

indicates a student response of "easy to use" through to E which indicates that it

was "difficult to use".
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Figure 6.17: Ease of use

Looking at figure 6.17, there are no particular patterns in the data. This shows

that the software (in terms of useability) did not discriminate against students'

mathematical ability. This is, of course, an extremely important consideration when

using computers to grade students.

Figure 6.18 shows students' responses to the question "Was there enough time to

complete the computer examination?". Again, the points are plotted using a key —

this time A represents an answer of "not enough time" and E represents "plenty of
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time". Looking at the data shows two distinct groups. The first, marked 1, indicates

a group of able students (those who gained high marks in the computer examina-

tion) who had enough time to complete the examination. The second group, marked

2, shows that the weaker students (those who gained lower marks on the computer)

reported that they had too little time. Again, this is a result which one might expect.
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Figure 6.18: Enough time

6.5 Conclusions

Overall, the experiment can be considered a success. The experiment has given

insight as to how to improve the testing mechanisms and, with the benefit of hind-

sight, these improvements can now be addressed. Notably, a re-design of the four

part one key step questions will be carried out and a facility to enable students to
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update their answers at any stage during the examination will be included. However,

the accuracy of the computer examination to predict mathematical ability seemed

clear with 5 out of 82 failures in the computer examination and the same number

in the written examination. They were not the same five students in each case but

there were 3 students who failed on both the computer examination and the written

paper.

It is important, of course, to justify the use of computers in this way and to high-

light benefits that an automatic testing mechanism can provide from both teachers

and students' viewpoints. The advantages for students are that the computer is

consistent; that is, it gives the same marks for identical correct or incorrect answers

for each student. The computer does not look at the front of the answer booklets,

and therefore does not favour particular students. Also, with the advent of modular

courses and student centred learning, sitting examinations more frequently becomes

increasingly important. The computer offers countless different examination papers

in one package because of the in-built randomness and therefore offers re-sit exam-

inations on request. In fact, two students who narrowly failed were offered a resit

examination at the start of the following term. One student passed the re-sit suffi-

ciently well to carry their total marks for that module to a pass. This flexibility in

the delivery of re-sit examinations is a genuine bonus for modern students.

This leads naturally to what advantages there are for staff. As the last paragraph

describes, easier to set re-sits means that staff have to spend less time in setting such

papers. Of course, this is true for setting examination papers in general and the

time saved on staff setting and marking examination scripts can be spent on helping

students learn. The real benefit to teachers appears in the greater flexibility that

the computer examination brings. There is a real prospect of letting the students

decide when they are ready to take the grading assessment for the course. Indeed,

such a system enables an approach like that of the vehicle driving test to be adopted

in education with the concomitant advantages of forcing down the failure rate.

The other obvious advantage to teachers is that of time saved in marking tra-

ditional examinations. It has been estimated that over a period of 5 years, over

350 person hours can be saved for a group of 400 students per year for the type of
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examination considered in the experiment.

6.5.1 A Year On

After reporting the above conclusions, the use of the Computer for formal examina-

tions was encouraged by the University. Withstanding this 268 students sat, as part

of their formal assessment, a computer examination at the end of a term's module.

The examination took the same form as the experiment in the previous year. The

data gathered from this second examination, although slightly less detailed, was

then used to judge if the conclusions and inferences made above were justified.

Firstly, with the increase in population size, any conclusions drawn were more

statistically valid and therefore give a more accurate measurement of any findings.

This second analysis starts with some product moment correlations for the different

elements of the examination - shown in Table 6.21.

- Section B (%) Section A (%) Computer Exam (%)
Section A (%) 0.627 -

Computer Exam (%) 0.552 0.521 -
Written Paper Total (A and B) (%) 0.888 0.915 0.595

Table 6.21: Product Moment Correlations

First notice the figure of 0.595 which shows the correlation between the written

and computer examinations. This figure, although slightly higher than for the first

experiment is still surprisingly low. However, as before it is important to compare

this with the correlation between the different sections on the written paper - 0.627.

These results back up the conclusion from the first experiment in that there is large

natural variability with this sort of data. However, one might expect more vari-

ability since the written paper consisted of just the longer type questions. More

importantly, it re-emphasises the need to address the traditional methods of assess-

ing students ability. Figures 6.19 6.20 and 6.21 give a good pictorial representation

of this variability. These graphs plot marks for Section A against Computer, Section

B against Computer and Total Written against Computer respectively.
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This second analysis has therefore shown that, overall, the computer examina-

tions have given just as a reliable picture of students' mathematical ability as the

written examinations. Moreover, the computer, again, brought forward benefits to

the student that the written papers couldn't - the flexibility of re-take examinations.

In fact, out of the 268 students who sat the examinations, 21 students attempted the

computer examination a short time after the first sitting. From these 21, 6 students

gained enough marks to increase their score to the pass mark of 40%6

6 To be fair to those students who had already passed the module, the maximum mark for
re-take students was a 40% pass.
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Chapter 7

Future Research and

Developments

The work described in this thesis has provided foundations for future research and

development within the field of Computer Assessment of Mathematics and in par-

ticular the CALM Project. These developments are described below.

7.1 An Improved Answer Comparison Routine

Improved numerical algorithms, along with their associated data structures, are

currently being developed . These routines will continue using the work with trees,

whilst implementing N-ary structures 1 thus providing the ability to compare more

answers such as vectors, matrices, lists and sets whilst enabling mathematical prop-

erties such as associativity and commutativity to be recognised. It uses an extendible

grammar which, along with these new structures, enables future integration of dif-

ferent answer types and different methods of comparison.

1 an N-ary structure can have N children as a sub-structure. Therefore an N-ary Tree is a tree
where any node can have N children, each being an N-ary Tree
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7.2 A New Input Tool

After realising the importance of the Input Tool, a new version is being constructed

which implements several improvements. Characters can be displayed using a vari-

able size font and special symbols, such as 7r, v and Greek letters have been instru-

mental in the development of the tool. The Input Tool window can change size as

an expression expands, therefore allowing far larger and more complex expressions

to be input. This work may lead towards more complex answers (such as those

containing comparison operators) being asked within a mathematics question.

7.3 A New Assessment Mechanism

The work highlighted in Chapter 6 has spurred the evolution of another assessment

mechanism with the fuelling of the ongoing TERCENT (Test Enhancement Re-

search - Computer Examination Network Trials) proposa12 . An AIM (Assessment

In Mathematics) engine has been created which will be used to deliver mathematics

testing over a Local Area Network (LAN) and the Internet. This will enable com-

puter examinations to be sat outside of the university and at school level throughout

Scotland. The results and conclusions from Chapter 6 will provide a basis for the

educational testing of the network trials.

2 this proposal won the first Bank of Scotland Tercentenary Award to Education
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Appendix A

An Example Using Dijkstra's

Algorithm from Chapter 4

Given the expression x+SIN (y/3) = x + sin () the lexical analysis procedure

would produce and array of tokens A as: A [x,+,SIN, (,y,/,3,)]. Note that

the elements of A are stored, for example, as A[1].NodeStatus=IdentifierNode and

A[1].WhichIdentifier=xx but for simplicity they will sometimes be written in the

former notation.

Assume that the postfix array in which tokens are being stored (in postfix order)

is called B. As the example progresses the values of OC (the Output Counter used

to iterate through the elements of B) and IC (the Input Counter used to iterate

through the elements of A) will be given.

The stack used is called S.

OC=1, IC=1 Get the token A[IC]=A[1].

A[1].NodeStatus = IdentifierNode A[1].WhichIdentifier = xx

Is A[1].NodeStatus in [RealNode, IdentifierNode, ConstantNode]? ANSWER

-YES

Hence B[OC]:=A[IC] i.e. B[1]:=A[1]

Therefore the array B becomes B [xx, . . . .]

OC=2, IC=2 Get the token A[IC]=A[2].
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A[2].NodeStatus = OperatorNode A[2].WhichOperator = Plus

Is A[2].NodeStatus in [RealNode, IdentifierNode, ConstantNode'? ANSWER

-NO

Is A[2].NodeStatus = DelimiterNode? ANSWER - NO

TEST CONDITION WHILE ( NOT (EMPTY (S )) )

TRUE.---,..--.
FALSE

(ignore inside the WHILE loop)

Default to: PUSH IC (=2) onto the stack S so that S becomes

S=

2

OC=2, IC=3 Get the token A[IC]=A[3].

A[3].NodeStatus = FunctionNode A[3].WhichFunction = FSIN

Is A[3].NodeStatus in [RealNode, IdentifierNode, ConstantNode]? ANSWER

-NO

Is A[3].NodeStatus = DelimiterNode? ANSWER - NO

TEST CONDITION

WHILE ( NOT (EMPTY (S )) ) AND (Prec(A[3]) < Prec(A[Top(S)]))

FALSE	 100	 2

TRUE	 FALSE

FALSE

(ignore inside the WHILE loop)

Default to: PUSH IC (=3) onto the stack S so that S becomes
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S=

4
3
2

S=

3
2

OC=2, IC=4 Get the token A[IC]=A[4].

A[4].NodeStatus = DelimiterNode A[4].WhichDelimiter = OpenBracket

Is A[4].NodeStatus in [RealNode, IdentifierNode, ConstantNode]? ANSWER

-NO

Is A[4].NodeStatus DelimiterNode? ANSWER - YES

Since A[4].WhichDelimiter = Open bracket then PUSH IC (=4) onto the stack

S so that S becomes

OC=2, IC=5 Get the token A[IC]=A{5].

A[5].NodeStatus =- IdentifierNode A[5].WhichIdentifier yy

Is A[5].NodeStatus in [RealNode, IdentifierNode, ConstantNoder ANSWER

-YES

Hence B[OC]:=A[IC] i.e. B[2]:=A[5]

Therefore the array B becomes B [xx , yy ,

OC=3, IC=6 Get the token A[IC]=A[6].
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6
4
3
2

S=

A[3].NodeStatus = OperatorNode A[3].WhichOperator = Divide

Is A[6].NodeStatus in [RealNode, IdentifierNode, ConstantNode'? ANSWER

- NO

Is A[6].NodeStatus .,--- DelimiterNode? ANSWER - NO

TEST CONDITION

WHILE ( NOT (EMPTY (S )) ) AND (Prec(A[6]) � Prec(A[Top(S)]))

FALSE	 3	 0.---„,..---.
TRUE	 FALSE

FALSE

(ignore inside the WHILE loop)

Default to: PUSH IC (=6) onto the stack S so that S becomes

OC=3, IC=7 Get the token A[IC]=A[7].

A[7].NodeStatus = RealNode A[7].WhichReal = 3.0

Is A[7].NodeStatus in [RealNode, IdentifierNode, ConstantNode]? ANSWER

- YES

Hence B[OC]:=A[IC] i.e. B[3]:=A[7]

Therefore the array B becomes B [xx ,yy ,3 .0 , ....]

OC=4, IC=8 Get the token A[IC]=A[8].

A[8].NodeStatus = DelimiterNode A[8].WhichDelimiter = ClosedBracket

Is A[8].NodeStatus in [RealNode, IdentifierNode, ConstantNode]? ANSWER

- NO
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S=

This element is popped. However, since this is a delimiter

(since A[4].NodeStatus=DelimiterNode) then it is not output

4
3
2

S=

S=
3
2

Is A[8].NodeStatus = DelimiterNode? ANSWER - YES

Since A[8).WhichDelimiter -=-- Closed Bracket then keep popping the stack S

and filling the array B until a delimiter is found at the top of the stack.

Top of the stack is popped

So B[OC]=B[4]:=A[6]-="/"
i.e. the array B becomes B [xx, yy,3. 0, /, ....]

OC=5, IC=8 Now the stack S is popped again as shown below:

0C-=5, IC=9 Since A[IC] is empty (i.e. the end of the input array A has been reached)

continue by popping what is left in the stack S, whilst outputting to the array

B. This is shown in the diagram below:

A[3] = "SIN" so let B[OC]=B[5]:="SIN".
Hence the array B becomes B[xx,yy , 3 . 0, / ,SIN, ....]

OC=6, IC=9 The last element in the stack S is now popped as shown below:
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S=

2

A[2] = "+" so let B[OC]=B[6]:="+" .
Hence the array B becomes B [xx , yy , 3. 0 , / , SIN , + , . . . . ]

The algorithm finishes and the output array B has been created as

B [xx , yy , 3. 0 , / , S IN , +] which is the postfix form of the input array A.
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Appendix B

The Product-Moment Correlation

Coefficient

Correlation is defined (see [13]) as:

the extent of correspondence between the ordering of two RAN-

DOM VARIABLES. It is a positive correlation when each variable

tends to increase or decrease as the other does, and a negative or

inverse correlation if one tends to increase as the other decreases

which leads to the product moment correlation coefficient begin defined as:

a statistic that measures the linear relationship between two

variables in a sample and used as an ESTIMATE of the COR-

RELATION, p, in the whole population.

The correlation coefficient between the two variables x and y, say, is usually

denoted r and can be calculated as

	S x„	 (xy) — y
r= 	 — 	

	

SxSy	 7 x2 y2 E y2 y2
n

where Sxy is the covariance and Sx and Sy are the standard deviations of the x

and y variables respectively.
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