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ABSTRACT

The work described in this thesis is concerned with procedures for the identification
of nonlinearity in structural dynamics. It begins with a diagnostic method which uses
the Hilbert transform for detecting nonlinearity and describes the neccessary conditions
for obtaining a valid Hilbert transform. The transform is shown to be incapable of
producing a model with predictive power. A method based on the identification of
nonlinear restoring forces is adopted for extracting a nonlinear model. The method is
critically examined; various caveats, modifications and improvements are obtained. The
method is demonstrated on time data obtained from computer simulations. It is shown
that a parameter estimation approach to restoring force identification based on direct
least—squares estimation theory is a fast and accurate procedure. In addition, this
approach allows one to obtain the equations of motion for a multi-degree—of—freedom

system even if the system is only excited at one point.

The data processing methods for the restoring force identification including integration

and differentiation of sampled time data are developed and discussed in some detail.

A comparitive study is made of several of the most well-known least—squares
estimation procedures and the direct least-squares approach is applied to data from
several experiments where it is shown to correctly identify nonlinearity in both single—

and multi-degree~of—freedom systems.
Finally, using both simulated and experimental data, it is shown that the recursive

least—squares algorithm modified by the inclusion of a data forgetting factor can be

used to identify time-dependent structural parameters.

VI



ACKNOWLEDGEMENTS

1 would like to thank Professor Geoff Tomlinson, for introducing me to the subject of
nonlinear dynamics and for his constant help and encouragement throughout the time

this work was carried out.

Sincere thanks are due to all my colleagues in Edinburgh, Manchester and Sheffield
for help and advice. I would particularly like to acknowledge Dr. Steve Billings, Dr.
Steve Gifford, Mike Read, Khalid Mohammad, Dr. Jan Wright and Dr. Moufid Ajjan
Al-Hadid who have all greatly improved my - still limited - wunderstanding of
nonlinear phenomena and basic engineering principles through innumerable helpful

discussions.

Specific thanks are due to Khalid Mohammad, Paul Townsend and Phil Waters for
their invaluable help in the dynamics laboratory at Manchester, and also to Steve
Gifford for providing the majority of the graphics routines used in this work,

particularly the three-dimensional plotting routine.

1 would like to express my gratitude and love to my parents and Heather for all the

support and encouragement they have given me throughout the course of this work.
This work was carried out with the financial support of the Science and Engineering

Research Council and in collaboration with Dr. S.A.Billings of the Department of

Control Engineering, Sheffield University.

VII



INTRODUCTION

This work is concerned with reporting an attempt to develop a method of identifying
an arbitrary nonlinear structural dynamical system using measured time data from the

system. Before proceeding, some of the terms used above require explanation.

The term structural dynamical system or simply structural system shall be used
throughout to refer to a system whose dynamics are governed by Newton's second
law. In the case of a Single Degree—Of-Freedom (SDOF) system, this means that the

dynamics are entirely captured by the equation of motion

my + f()’»)’) = X(t)

Here, the system is one where the total mass m is concentrated at one point. This
mass is always assumed to be independent of time. The mass moves in such a way
that when an external force x(t) is applied the mass has acceleration ¥(t), velocity
y(t) and displacement y(t) at time t. These quantities are related via the equation
above. The term f(y,y), a function of velocity and displacement, is a generic internal
or restoring force which returns the system to equilibrium when disturbed. If the

function f(y,y) is linear in it's arguments i.e.

f(y,y) = cy + ky

for some constants ¢ and k, then the system is said to be linear. If f(y,y) depends on
any products of variables higher than first order the system is nonlinear. A multi
degree—of—freedom system (MDOF) is specified by more than one equation of motion.

A system which requires N equations



mi.¥1 + £1(y1.¥1,¥2,%2,---»IN-IN) = x1(t)

.

my.-¥N + IN(Y1,91.Y2.¥20-- - IN-IND = xn(t)

is said to have N degrees—of-freedom. As before, such a system is nonlinear if any
products of variables higher than first order appear in the restoring force functions
fi,....,fN- In general, systems can have an infinite number of degrees of freedom. It is
assumed in this work that any system can be accurately modelled by one with a finite
number of degrees—of—-freedom. The ultimate problem of identification is to determine
the equations of motion of this model or equivalently the mass m; and the restoring
force functions f;. A less ambitious problem is simply to determine if a system is

linear or not.

The reason why one should be concerned about linearity, is that nonlinear systems
can exhibit very complex behaviour which linear systems cannot. The most spectacular
examples of this can be found in the literature relating to chaotic systems (1); in this
case one can excite a system with a periodic external force x(t) and observe an
apparently random response y(t). A linear system always responds to a periodic
excitation with a periodic output at the same frequency. At a less exotic level, but no
less important for that; the stability theory of linear systems is well understood, in
direct contrast to that for nonlinear systems (2). Consequently if one is attemping to
predict the behaviour of a nonlinear structure with a linear model, one might obtain

results which are seriously in error.

Arguably the simplest test for linearity is to look for violations of the principle of
superposition. This can be stated as follows; given that a system responds to an input
x1(t) with an output yi(t), and to xp(t) with ys(t), superposition is observed if and
only if the input axq(t) + bxp(t) provokes the response ayj(t) + byy(t) for all
contstants a and b ( with appropriate initial conditions). If and only if superposition is

observed for all possible inputs xq(t) and x;(t), can the system be defined as linear.



Clearly, this is of limited use experimentally, one can only carry out a finite number

of experiments.

If one measures the Frequency Response Function (FRF) for a system one can make
use of the fact that the form of the FRF has a well-known mathematical form which
is independent of the level of excitation for a linear system. Attempts have been
made to characterise nonlinearities from observations of how much the FRFs depart

from this form as the level of forcing is increased ((3) and the references therein).

A more sophisticated diagnostic tool is provided by the Hilbert transform ((4) and
references therein). This is essentially an analytic relationship between the real and
imaginary parts of the FRF for a linear system which does not hold for most
common nonlinear systems. The Hilbert transform approach extends naturally to
MDOF systems and can allow one to associate the nonlinearity with particular modes
of vibration of the system (5). Unfortunately, the procedure only gives qualitative

information about the type of nonlinearity.

The Volterra/Wiener functional series approach to identification (6) is considerably
more sophisticated. The curve—fitting procedures of classical modal analysis (7) where
parameters are extracted from the linear FRF, can be extended to nonlinear systems
by fitting surfaces or hypersurfaces to higher order frequency response functions (8).
By this method one can extract the coefficients of nonlinear terms in the equations of
motion. At the moment use of these methods is restricted by the fact that the higher
order FRFs require a great deal of storage space and are difficult to interpret.
Previous criticisms based on the computation time required have been answered by
recent work which allows the higher order FRFs to be calculated very quickly using
the NARMAX time-series methods (9) which themselves provide a very powerful
identification technique as they allow one to construct a nonlinear difference equation

model of a system.

Arguably the most general methods of identification are the restoring force methods



which, in principle, allow one to determine the form of the internal forces and hence
the equations of motion of the system ( or some appropriate finite order
approximation). The raw material for the procedures are samples of measured time
data x(t), ¥(t), y(t) and y(t) obtained from the system. The first appearance of an
approach of this type is in the work of Masri and Caughey (10). Their method allows
one to represent the force f(y,y) as a double expansion in Chebyshev polynomials in
the variables y and y which can be then plotted as a surface over the phase plane.
This gives a direct visual representation of the type of nonlinearity present. In
subsequent papers the authors and their collaborators extended the method to MDOF
systems (11)(12) by expressing the forces f; to fyy as sets of double Chebyshev
expansions. The expansion variables used were the normal coordinates for the system
which meant that an estimate of the modal matrix [¢] was required. As in the SDOF
case, the restoring force expansions can be plotted as surfaces. Very little
experimental data was presented in support of their method, the majority of examples
being computer simulations. In their earlier papers it is assumed that the mass matrix
for the system is known, the more recent work is concerned with estimating the mass

matrix from the measured time data (13).

Essentially the same approach based on polynomial expansion rather than Chebyshev
series was obtained independently by Crawley, O'Donnell and Aubert (14)(15) and
christened the ‘force—state mapping' technique. Direct least-squares techniques are used
on the measured time data to determine the coefficients in the expansion. As before,
the restoring force can be represented by a surface over the phase plane. Although
their work 1is restricted to SDOF systems they do present extremely careful

experimental verification of the utility of their procedure.

Yang and Ibrahim later used least—squares methods to identify MDOF systems (16).
By exploiting the symmetry of the system parameter matrices, they were able to
determine the equations of motion for a single—input-multi—output (SIMO) system by
using only the measured outputs together with an estimate of the total mass of the

system. Only simulated systems were considered. Shye and Richardson (17) later made



use of symmetry in the same way. However, their work was based on measured

fregency response functions and restricted to linear systems.

Recent work by Al-Hadid and Wright (18)(19) has concentrated on direct least—squares
methods. They show using computer simulations that polynomial expansions are
superior to Chebyshev expansions. A particular form for the system model is used
which not only allows one to determine the type of nonlinearity present but also
indicates the location of the nonlinear element within a lumped parameter model. An
experimental study of a two degree—of-freedom system is presented. The thesis of

Al-Hadid (20) presents a novel technique for determining the system mass matrix.

The restoring force surfaces are shown to be obtainable by an optimal control
technique in the work of Lo, Hammond and Seager-Smith (21). This paper is unique
in it's consideration of the identification of a class of hysteretic systems. In the thesis
of Lo (22), the techniques are applied experimentally in a study of a class of
vibration isolators. In their most recent work (23), the optimal control approach

appears to have been discarded in favour of a direct least—squares approach.

A group of researchers from Leuven, Mertens et.al. have presented a method of
obtaining the damping or stiffness curves for a nonlinear SDOF system which they
call the ‘'complex stiffness method' (24). The method appears to be restricted to
SDOF systems. Another limitation is that nonlinear cross—terms i.e. y.y cannot be

accounted for.

The direct least—squares method has also been implemented in the frequency domain
by Hunter et.al. (25). An experimental study of a two degree—of-freedom system is

presented.

The aim of the present work was to develop a practical identification procedure for
nonlinear systems based on the restoring force methods. Chapter 1 introduces the

Hilbert transform and describes how one can use it to diagnose nonlinearity as a first



step in any attempt to identify a system. It is shown that one must take the
asymptotic behaviour of the FRF into account if one wishes to obtain unambiguous
results. The Masri/Caughey procedure is introduced in Chapters 2 and 3. The restoring
force surfaces are obtained using an improved interpolation scheme which can produce
a differentiable surface. Various caveats, modifications and improvements are described.
The use of the procedure is demonstated on a number of simulated systems both
SDOF and MDOF. Chapters 4 and 5 develop the theory for direct least—squares
identification of a general Iumped-parameter nonlinear system. Again, the approach is
demonstrated on a number of simulated systems. The problems of data processing and
design of experiments are addressed in Chapters 6 and 7. In particular, as one would
measure Y(t) in general, and integrate to obtain y(t) and y(t), a comparitive study is
made of various numerical differentiation and integration procedures. Chapters 8 and 9
contain experimental studies of both SDOF and MDOF nonlinear systems. Comparisons
are made with theoretical estimates of the system parameters. Chapter 10 describes a
method of determining system parameters which vary with time. The procedure is
applied to a number of simulated systems with time—dependent stiffnesses and also to
experimental data. Finally Chapter 11 presents conclusions and some suggestions for

further work.



CHAPTER 1

THE HILBERT TRANSFORM AND ASYMPTOTIC BEHAVIOUR OF

FREQUENCY RESPONSE FUNCTIONS

Before one attempts to identify a system in detail, it is useful to have a procedure
which can simply determine if the system is linear or nonlinear. Given this
information one can decide how to proceed and model the system. Such a diagnostic

tool is provided by the Hilbert transform.

1.1. Background.

The Hilbert Transform is an integral transform defined by

+o
(H(P)) () = ;_1I 0 _F@) (1)

which has been used for some time now as a diagnostic tool in the identification of
nonlinear systems (4). The transform is simply a map which carries one function into
another. Unlike the Fourier transform which maps functions in the ‘time-domain' to
functions in the 'frequency—domain' and vice—versa, the image of a function under the
Hilbert transform remains in the same domain. The map actually reduces to the
identity on a particular subclass of functions. The reason for the utility of the Hilbert
transform in dynamics lies in the fact that the Frequency Response Functions ( FRFs)

of linear systems fall inside this subclass.

The FRF for a system can be defined as follows; if one excites a system with a
harmonic force X.cos(wt), one will observe in the response a component at the same

frequency Y.cos(wt + ¢). The response at any given forcing frequency is therefore



specified by the phase lag p(w) together with the amplitude gain factor Y(w)/X(w) =
Y(w)X > 0. The gain and phase can be regarded as the polar representation of a
function taking values in the plane. One can equally well think of such a function as
taking values in the Argand diagram. The response can therefore be specified by a

complex function H(w) = Hy(w) + iHj(w) such that

Hp(w) = (Y(@)/X).coslp(w))

Hij(w) = (Y(w)/X}.sin{p(w)}

It is not difficult to show that for a linear system, the FRF is the same function of

frequency w as the transfer function defined by

Transfer function = Fourier transform of output signal
Fourier transform of input signal

Now, because the Hilbert transform operator reduces to the identity if F(w) is the

FRF of a linear system,

+o0
(HF))(w) = F(v) = -1 J d _E@@) (2)

ir Q-w

The reason for this result will be shown later. If F(w) is the FRF of a nonlinear
system, equation (2) need not hold, the Hilbert transform of F(w) need not be the
same function as F(w). The usefulness of the transform is greatly increased by the
fact that equation (2) does not appear to hold for systems containing the most
commonly occuring types of nonlinearity encountered in structural dynamics. For
example, systems with piecewise linear or polynomial stiffness, or systems with
polynomial damping or Coulomb friction (5).

A number of examples will serve to illustrate the sort of distortions which occur when
one uses the Hilbert transform defined by equation (1) on the FRF of a nonlinear

system. The method used to determine the transform in the examples is the so-called



frequency—-domain method, where one simply discretises the integral (1) to obtain

+n
(HF)Y(wj) = =& Y _E@j) (3)

ir J=-n ‘QJ - wj

so the measurements of the FRF are required at a number of equally spaced
frequency points «; where i = -n,...,+n. Details of how one evaluates the integral
including how one deals with the pole and how one removes the negative frequency

part of the range are given in (5).

The FRFs for the examples which follow are obtained by simulating the systems using
a fourth-order Runge-Kutta procedure. For each frequency wj, the system is excited
with a force X.sin(wjt). The output from the simulation Y.sin(wgt + ¢) is examined
and the amplitude Y(wj;) and phase p(w;) are obtained. The frequency response
function amplitude and phase, Y(wj)/X and p(wj) are now known at w;. Other methods
of obtaining the FRF i.e from random excitation or impulse testing can be shown to

be sub—optimal for carrying out the Hilbert transform test (26).

Example (i).  The FRF for the Single Degree—of-Freedom (SDOF) linear system

governed by the equation of motion,

y + 20y + 10%y = x(t)

was obtained. The FRF and it's Hilbert transform are displayed in Figure 1.1. The
Nyquist plot i.e. the plot of the FRF in the Argand diagram, for the same data is
shown in Figure 1.2. (In general, the Nyquist plot for the FRF of a linear system
will be an ellipse. However, the following plots are all scaled so that they appear to
be circular.) The two functions overlay almost perfectly. There is some difference at
high frequencies; this is the result of approximating (1) by (3). The integral has an

infinite range, the summation only considers data on the truncated range -wp to wp.



Example (ii). In this case a Duffing oscillator, with the equation of motion,

y o+ 20y + 10%y + 5x109y3 = x(v)

was used. The system was excited with the amplitude X equal to 1.0. At lower levels
of excitation the system essentially behaved as if it were linear. The FRF obtained is
shown in Figure 1.3 together with it's Hilbert transform. The transform is shifted to
the right of the FRF near the resonance. This shift is characteristic of systems with
hardening stiffnesses. The distortion is shown most clearly in the Nyquist plane (Figure
1.4). The circle is rotated clockwise and is elongated to form an ellipse. One can see
that the FRF itself suffers no distortion at this level of excitation, it still looks like
that of a linear system. One concludes that the Hilbert transform is quite a sensitive
indicator of nonlinearity. At higher levels of excitation, X = 5.0, the Duffing oscillator
exhibits a jump phenomenon. This is illustrated in Figure 1.5 which shows the FRF
and Hilbert transform at a high level of excitation. In this case one can deduce that
the system is nonlinear from looking at the grossly distorted FRF. The Hilbert
transform is still right—shifted. The characteristic clockwise rotation in the Nyquist

plane is shown in Figure 1.6.

Example (iii). In this case the sign of the cubic term in the last example is changed

so that the system now represents one with a softening stiffness nonlinearity i.e.

y o+ 20y + 10%y - 5x109y3 = x(t)

This system becomes unstable at high levels of excitation when the cubic part of the
restoring force becomes dominant and drives the system away from the equilibrium. A
level was chosen which gave an indication of nonlinearity and also allowed the system
output to remain bounded. The FRF obtained and it's Hilbert transform are shown in
Figure 1.7. In this case the transform is left—shifted, this is characteristic of softening
systems. Some distortion of the FRF is noticeable in this case. If one considers the

Nyquist plot for the FRF (Figure 1.8) one observes that the transform of the FRF

10



‘circle' is elongated as before, but rotated anti—clockwise this time.

Example (iv). The FRF Y{/X; is obtained for the linear two degree—of—freedom

system governed by the equations of motion,

E I I Y D I b
y2 y2 -12 (¥ 0
It is displayed in Figure 1.9, together with it's Hilbert transform. The Nyquist plot is

given in Figure 1.10. As before, the overlay is nearly perfect. This is an illustration

that the diagnostic method extends straightforwardly to MDOF systems.

These examples demonstrate the utility of the Hilbert transform as a diagnostic tool.
It is unfortunate but the transform does not seem to be able to give more than gross
qualitative information about the type of nonlinearity present. This appears to be
because the transform is only sensitive to the position of the poles of the FRF in a
fairly coarse way. It is also sensitive to the high—frequency behaviour of the FRF.
These remarks will be justified in subsequent sections of this chapter as the basic

theory is developed.

1.2. The Theory of the Hilbert Transform.

It can be argued that the Hilbert transform arises most naturally in the study of
analytic functions of a complex variable. If one adopts this approach, the starting
point is Cauchy's Theorem (27), which states: given a function F : C 5> C and a

simple closed contour C such that F is analytic on C and inside C, then

_I_JdQ F(Q) =0 (4)

27i Jg Q-ow

if and only if o lies outside C. The basic derivation of the Hilbert transform is well

known. However, it is included here as each step will be considered in reverse order

11



in section 6 when Fourier transform conventions are discussed. Before continuing,
information is needed about the value of the integral in (4); (a) when o is inside C,

and (b) when w is on C.

(a) w inside C. In this case one can use the Residue Theorem (27) to find the value

of the integral, i.e.

1 J d} _F() = 2 Res [ F(Q) ]
27i Jo Q- o Q-0
Poles

where Res( A(z;)) is the residue of the function A(z) at the pole z = z;. Now, if

F(w) is analytic inside C, the only pole in the integrand is the simple pole at Q = w.

As the pole is simple, the residue is given by

limit (@ - w). _E = F(w)
Q- w

1 J dQ _F( = F(w) If w is inside C.
27zi 1o Q- w

(b) w on C. In all the arguments used in this work, only one sort of contour is
needed, so for the sake of simplicity the results shown below are proved using that

contour. The argument is lifted almost verbatim from (28).

Consider the contour in Figure 1.11. Initially @ = u — iv is below the real axis, the

residue theorem gives
+R
F(w) = F(u - iv) = _1 [ dQ F(O) + Ig
27i J.g @2 - u + iv

where I, is the integral over the semicircular part of the contour. If one now allows
R - o and makes the additional assumption that F(Q)/(Q - w) tends to zero as  -» o

fast enough to make I. vanish ( for example supppose F(w) is O(R‘l) as R 5 o,

12



then the integrand is O(R™2) and the integral is =~ 7R.O(R™2) = O(R71) and tends to

zero as R - ), one obtains

+-co
F(w) = F(u -iv) = _1_ I dQ F(Q) (5)

27i ) _g Q- u+ iv

If one wishes to restrict the integrand in (5) to real values one must have v > 0. i.e.
» > u. However, it is essential to the argument that « should lie off the contour i.e.
the real axis. One therefore defines a new section of contour C' which is deformed

around {) = u, as shown in Figure 1.12.

Equation (5) becomes

27i F(w)

27i limit F(u - iv)
va0

wtr ~
= limiB [ [ d@ _F() + I dQ _F)
+c0

Q-ow w-r Q-0

LS
+ I rd(gioz F(w + reif) ]

0 reif

+-c0
- PV J da) _F () + i7rF(w)
o - w

where PV is the Cauchy principal value. The final result is

400
i F(w) = - PV J dQ _F() w,2 ¢ R (6)
w 2 -w

Now,

4+
J d? _F(Q) = (H(F))(w)
—o 0-w

where H(F) is the Hilbert transform of F, so one has the result.

13



-7i F(w) ={H(F))(w) (7)
under the following assumptions:

(i) F is analytic in the area bounded by C, which is the lower

half-plane in the limit R » «.
(ii) F(w) tends to zero fast enough as R » « for I, to vanish.

It is convenient and also conventional to absorb the factor —=i into the definition of

the Hilbert transform. In this case, equation (7) becomes

{H(F)}(w) = F(w) (8)

If one now decomposes F(w) into it's real and imaginary parts, the complex equation

(8) splits into the two real equations

+c0
Re F(w) = - 1PV J dQ) Im F()) (9a)
T — Q-w
+
Im F(w) = + 1PV I dQ) Re F()) (9b)
g —o Q2 -ow

One can now see that under the conditions stated above, the real part of F(w)
uniquely fixes the imaginary part and vice versa. This is not an altogether surprising

result if one recalls that simply assuming that F(w) is differentiable allows one to

relate the real and imaginary parts via the Cauchy-Riemann equations. The

importance of condition (ii) will be made obvious in the following section.

14



1.3. Titchmarsh's Theorem.

The argument of the previous section is expressed rigorously by Titchmarsh's theorem

which states (in the version taken from (29))

Theorem If F(w) is the Fourier transform of a function which vanishes for t < 0 and

+
do | F(@) 12 < =

-00

then F(w) is the boundary value of a function F(w — iy), ¥ > 0, which is analytic in

the lower half-plane. Further

+o0
I do | F(w - iy) 12 < w
-0

The last section indicated that the conditions (i) analycity in the lower half-plane, and
(ii) fast fall-off of F(w), are necessary for the Hilbert transform relations to hold.
Titchmarsh's theorem states that they are sufficient and that F(w) need only tend to

zero as w - o« fast enough to ensure the existence of IdwlF(w)lz.

The theorem is therefore concerned with Lesbegue square—integrable functions.
Square-integrability is in any case a necessary condition for the existence of the
Fourier transform of a function. If one assumes that all relevant transforms and
inverses exist, one can express the theorem in a more straightforward form.

Theorem If one of (i),(ii) or (iii) is true, then so are the other two.

F(w): (i) Satisfies Hilbert transform relations (9),

(ii) has a causal inverse Fourier transform

ie. ift <0, f(t) = (F1(F))(t) = 0,
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(iii) is analytic in the lower half-plane.

The simple arguments of the previous section allowed the proof of (i) & (iii). A

fairly simple demonstration that (i) & (ii) can be made, and this establishes the

theorem.

(a) (i) & (i)

“+c0
One assumes that Flw) = - _1 [ dQ F()
jvel

( dropping the principal value PV). Then as

“+co
£(t) = (FI(F)(t)y = 1 ] dQ elwt F(w)
27 J_o
One has
+c0 +
f(t) = - _1 [ dw eiot 1 { dQ _F(Q)
27 ) _o i J_o O -w

40 +c0
f£(t) = + 1 J dQ F(Q) _1 J do elot
27 ) _ il o -0

It is shown in appendix A that

+oo0
1 l dw eiwt = eillt.g(¢)
i J_o w -1

where ¢(t) is the sign function, e(t) =1 if t > 0, &(t) = -1 if t < 0.

This implies that

o400
f(t) = _1 | a0 F@eilt = f(t) ift>0
27 ) _o
and
-+
F(t) = =1 | d0 F@elllt =~ _f(t) if t <O
27 ) _o
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which is only true if f(t) = 0 for all t < 0. Notice that one does not need to say
anything about the value of ¢(t) at t = 0. This is because &(t) only appears under

the integral sign and it's value at one point cannot affect the value of the integral.

(b) (i) & ().

Suppose that  f(t) = {F"1(F)}(t) = 0 if t < 0. Consider the object
+co
=1 J d _F()
. T Q -w

This is a convolution, equal to F(w)*(2/iw)

<+co
F-1 { -1 J dQ _F(Q) ] = Fl[F(w)] x F'1(2/iw)

i J_o O -w

= f(t)e(t)

and because f(t) is causal
f(t)e(t) = f(¢t)

so Fourier transforming the last equation gives

F(w) =

+oo
_l[d.Q F()

i Q - ow

-0

as required.

The last proof is useful because it provides a time-domain version of the Hilbert

transform

+o0
(R(F))(w) = =1 J d? _F(@)

irl_o Q-ow

4+
- FoF‘l{i] df F(Q)}

irJl_o Q-w
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= F[ e(t)f(t) ]

The symbol o above indicates the composition of functions, i.e. (f o g)(t) = f(g(t)).
These two sections provide a discussion of the relationship between causality and the
Hilbert transform relations (9). It is important to point out again that the previous
theorem only holds if the technicalities of Titchmarsh's theorem are satisfied. The
next section shows how one can apply the Hilbert transform relations to functions
which do not satisfy the necessary conditions, and re-examines cases where confusion

has arisen (30,31).

1.4. Correcting for Bad Asymptotic Behaviour.

The crucial point in Titchmarsh's theorem is that F(w) should be square-integrable
i.e. IdwlF(w)lz < o ., It happens that in many cases of physical interest this

condition is not satisfied. There is however, a way of circumnavigating this problem.
The least troublesome function one can have which is not square—integrable is one
which tends to a constant value at infinity, i.e.

F(w) 5 Fp, as o > =,

A sufficiently general example for the purposes of this report is

ag + ajw + ... + apl
F(w) = A(w) = (10)
B(w) bg + bjw + ... + b

i.e. A(w) and B(w) are polynomials of the same order n, and all the zeroes of B(w)

are in the upper half-plane. Clearly one has

limit F(w) = F(®) = —
W b

18



If one were to carry out a long division on F(w), the result would be

F(w) = (ap/bp) + A'(w)
B(w)
where A'(w) is a polynomial of order n — 1. So
F(w) - F(®) = F(w) - ap/bp = A(w
B(w)
Now, A'(w)/B(w) ~ O(w~1) as w + «. This means that A'(w)/B(w) is square-integrable

and therefore satisfies the conditions required by Titchmarsh's theorem. Hence,

<0
A'(w) = =1 l do A' (@) _ 1
B(w) irJ_o B Q-ow

i.e.

“+o00
F(w) - F(©) = :lI d ( F(Q) - F() )
i o Q - o

So if a function fails to satisfy the conditions required by Titchmarsh's theorem
because it fails to be square—integrable, one can sometimes subtract the asymptotic
behaviour which causes the problems. This leaves a function which does satisfy the

requirements. Equations (9a) and (9b) become:

Re F(w) - Re F(w)

]
|
—

“+
] d) ((Im F(Q) - Im F(x) ) (1l1a)
—0 Q -

3

Im F(w) - Im F(®)

+
+1 [ d? (Re F(@) - Re F(») ) (11b)
T J_o Q - o

These equations are well known in elementary particle physics and optics. The first of
the pair produces the Kramers—Kronig dispersion relation if one takes F(w) = n(w) the
complex refractive index of a material. The term dispersion refers to the phenomenon

of variation of refractive index with the frequency of incident radiation.

One possible obstruction to the direct application of equations (11a) and (11b) is that
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one usually measures F(w) in some experiment. Clearly in this case one cannot obtain
F(»). However, one can make use of a ‘'subtraction' scheme as follows. Suppose for
the sake of simplicity that the imaginary part of F(w) tends to zero as the frequency

tends to infinity and one has a measurement of F(w) at w = «. Equation (11a) yields

+c0
Re F(w) - Re F(») = ildnhn_—li@)_ (12)
* J_o Q-~w

At w = @, one has

+0
Re F(a) - Re F(®) = =1 [ d Im F(Q) (13)
L -0 Q - o
so, subtracting (11) from (12) gives
+c0
Re F(w) - Re F(a) =i]d9[ 1 - _1 }ImF(Q)
T ) _ o Q-0 Q-0
i.e.
4o
Re F(w) - Re F(a) = (0 - @) [ dQ Im F(Q) _ (14)
T o (- 0) (@ - o)

So one can compensate for one's lack of knowledge of F(«). However, notice that in
doing so, one is faced with a more complicated integral. In general if F(w) goes as
some polynomial as w - « one can subtract the bad asymptotic behaviour in much
the same way as above. Unfortunately, every time one performs a subtraction the

integral gets more complicated.

One can now use the theory outlined above to re—examine cases where confusion has

arisen in structural dynamics concerning the applicability of the Hilbert transform.

(1) It is clear from the preceeding arguments that the Hilbert transform provides a
means of detecting which functions F(w) correspond to non-causal f(t). If one
measures the transfer function H(w) of a linear system {F“I(H)}(t) = h(t) is the

impulse response of the system and h(t) = 0 for all t < 0. This means that (
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assuming all other neccessary conditions hold ), {H(H)}(w) = H(w). In general, if the
frequency response function of a nonlinear system Hpj(w) is measured using the
stepped-sine input described earlier, {F'l(Hnl)}(t) = g(t) will not necessarily be
causal. In fact, for all the types of nonlinearity commonly encountered in structural
dynamics the function g(t) is non—causal. So, failure of the Hilbert transform relations

3> g(t) non—causal and one can take this as an indication that the system is nonlinear.

Rodeman in (30) states this correctly. However, in order to show that the Hilbert
transform does not infallibly detect nonlinear systems he considers the following

squaring system.

Nonl inear
X (t)—>—o ———>— y(t) =[x(t)]2
System
letting x(t) = Ae-at t>0, a>0
=0 t <O

(i.e. x(t) causal ) one obtains the frequency response function

Hpp(@) = Y(w) = Ale - ia)

X(w) (w - 2ia)
and
Re Hjj(w) = Ang + 2a2)
w® + 4a
Im Hpj(w) = Aaw
w® + 4a

He then argues that because Hpj(w) is analytic in the lower half-plane, the real and
imaginary parts of Hj; must form a Hilbert transform pair i.e. are related by the

dispersion relations (9a) and (9b). This is not correct. If one evaluates the integrals

one finds

+00
1 l d} Re H () =~ Aaw = Im Hpp(w)
T J_ o ) u)z + 432
-
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as required. However,

“+-co
-1 J dQ Im Hy (Q) = __-2a2A _ # Re Hpj(w)
Ty —mm — w* + 4a
Q0 - w
The reason for the error is that
limit Hyj(w) = A # 0

So Idlenl(w)|2 does not exist and Titchmarsh's theorem does not hold. However,
one observes that as Re Hpj(») = A and Im Hp|(«) = 0, the appropriate dispersion

relation is (11a).

+

Re Hjyj(w) - A = -1 l d Im Hpp ()
n -0 ——
Q - o
ie.
Re Hhj(w) = A - 2a2A
w* + 4a

= A(wz + 2a2)
w< + 4a

as required. ( In evaluating these integrals one obtains terms of the form fdV/(Q - w)
which are proportional to In(-1). If one takes the principal sheet of the In function

one can disregard these terms.)

The problem shows up very clearly in the time domain. There, H = F o X, o F1

( where X, is pointwise multiplication by &(t)). Now

+o0
{F'I(Hnl)}(t) = g(t) = _1 J dw eiot {A(w - ia) ]
2
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+c0 4o
- A [ dw el@t 4+ jaA l do _elot
27 ) _o 2r J_o, w - 2ia

= AS(t) - g'(t).6(t)

so the 'impulse response' g(t) contains a Dirac s—function together with a causal

function.

s+ The removal of this §—function is the time domain

analogue of removing the bad asymptotic behaviour in the frequency domain.

This sort of behaviour will clearly occur for all cases where F(w) = A(w)/B(w) as

before. One needs to remove the s—function (a,/bp).8(t) from the 'impulse response'.

One concludes therefore that analycity in the lower half-plane is not a sufficient
condition for the real and imaginary parts of a function to fprm a Hilbert transform

pair.

In (31) Goyder illustrates the theory of the Hilbert transform with the linear system

depicted in Figure 1.13. The system has the transfer function

H(w) = ~iw

cw - ik

- ke - i cw?
c2w2 + k2 c2u? + K2
He correctly states that
+co
Re H(w) = -1 J dQ) _Im H(D = ko
T J_o Q-ow 2wl + K2

However,

limit H(w) = -1 # 0
W > ® c
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so the appropriate dispersion relation for calculating Im H(w) is

+-0

Im H(w) + 1 = l[dQRe HO) = k2

c ) o D-w cdw? + ck?
Im H(w) = k2 -1 = —cw?

czc,o2 + ck2 c ccu2 + k2

as required.

1.5. An Example of Engineering Interest.

If one measures the transfer function of a linear system defined by the equation of

motion

my + cy + ky = x(t)

there are three forms it can take depending on the sort of output data one measures

™).

If one measures input force and output displacement one obtains the receptance form

He(w) = (F(WI(w) = 1
(F(x)) () -mw? + icw + k

and

limit Hp(w) = 0
w > ©

Measuring the output velocity yields the mobility form

Hp(w) = (FMi(w) = iw
(F(x)) (w) -ms2 + icw + Kk

and
limit Hp(w) = 0
W > ©

Finally, if one measures output acceleration, one obtains the inertance form
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Hi(w) = (FN)(w) = —w?
(F(x)) (o) -mwé + icw + k

and

limit Hj(w) = # 0

1
W m

This means that if one is testing for nonlinearity by applying the Hilbert transform to
a transfer function, the appropriate Hilbert transform pair is ( Re H(w), Im H(w) ) as
expected, if the function is receptance or mobility type. However, if the function is
of the inertance type the correct pair is ( Re H(w) — 1/m , Im H(w) ) because the
function has the form given in equation (10) i.e.

+c0

J d? ( Re H;(Q2) - 1/m)

~c0

Im Hi(w) =

3 =

A =

after discarding the In(-1) term. And

+c0
Re Hj(w) = _-_l[d.QIm H; (@) + 1
kg -0 —_— m

Q -w

Figure 1.14. shows the receptance transfer function and it's Hilbert transform for the

linear system described by the equation,

y + 20y + 104y = x(1)

As one would expect, the overlay is perfect. Figure 1.15. shows the inertance transfer
function and the uncorrected Hilbert transform. The Hilbert transform is shifted by
-1/m as predicted. Overlay ( apart from errors introduced by having to truncate the
integral to allow for a finite frequency range, ) could be obtained by using a
subtraction, as in equation (14). A much simpler method is to convert the transfer

function to receptance form using



Hp(@) = Hj(w)/(-w?)

carry out the Hilbert transform and convert back to inertance. Figure 1.16. shows the

result of carrying out this procedure.

In the case of a MDOF system (with proportional damping)

A.-wz

Hj(w) =
Wl - w? + i

I O~

r=1

The appropriate Hilbert transform pair is

N
( Re Hj(w) -l-ZAr , Im Hj(w) )

r=1
1.6. Fourier Transform Conventions.

Throughout this work the following conventions are used for the Fourier transform

40
F(w) = {F(f)}(w) = [dt e-iot £(¢)
+c0

F(ry = (FLE() = 1| do e*iot Fo)
27 ) _»

One could equally well choose the conventions,

400
Flw) = dt etiot f(y¢)
7 -0
- +00
1 | dw e-iot F(yu)

27 ) _o

f(t)

These conventions shall be labelled F_ and F, respectively. Clearly, a continuous set

of conventions are possible if one counts movements of the (2*:r)_1 factor.
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As one might expect, the Hilbert transform formulae depend critically on the

convention used. The formulae for F, can be obtained as follows.

In the proof of (i) & (ii) in section 3, the result

4
1 J dow _elot - it g(¢) (Appendix A.)
irl_o w-10

was used. If F, conventions had been used, the term

+0
1 J dw e-dwt  _ _o-i10t ¢(¢)
in J_oe o -0

would have been obtained. In order to cancel the negative sign

generated, one would need the initial definition,

+00
(HF)}(w) = 1 [ d} _F(D)
i

ir o 2 -0
To obtain this expression from the contour integration argument of the first section
one would need the section of contour on the real line to go from —-» to +x. As one
must move anticlockwise round the contour it needs to be completed in the upper
half-plane. This means that the contour in Figure 1.17. is required. As a consequence
of using this contour, one now requires analycity in the upper half-plane. The result
of these arguments is the F4 version of the second theorem of section 3. i.e. if one

of (i)', (ii)' or (iii)' is true, then so are the other two.

Flw) : (i)' Satisfies Hilbert transform relations,

-+

Re F(w) = + 1 | 42 _Im F(Q)

Tl o £ - w
+oo

Im F(w) = -1 dQ? _Re F()

r Jl_o Q - w

(ii)' has a causal inverse Fourier transform,

(iii)' 1is analytic in the upper half-plane.
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The equations in (31) appear to be inconsistent in that equations (14) and (15) belong

tp F4+ while all others belong to F_.

Independently of convention, if one defines convolution by

+0
F(w) * G(w) = 1 J d? F(Q) .G(w - )

27 ) _o

one obtains the result
{F7LE * G}ty = f(t)g()

where f(t) = {F-1(F)}t) and g(t) = {F71(G)}t). The statements about testing transfer
functions for linearity made in section 4 apply to both F, and F_ . Suppose that a
transfer function has poles in the upper half-plane in F_ . This means that the

zeroes of the denominator
d_(w) = -mw? + icw + k

are in the upper half-plane. If one changes from F_ to F,
d_(w) > dy(w) = -mw? - icw + k

i.e. the product of the roots remains the same while their sum changes sign. Clearly
the roots of di(w) are in the lower half-plane and one has analycity in the upper

half-plane as required by the F, Titchmarsh theorem.

28



Bode plol - Mognilude

S04
{ 1 ]

304 .).‘5—4 404 454

Tronsfer Function

File : 1dx1 ¢
Data : Receptonce

Time : 16:08:59
Dote : Tue Jun 13
Year : 1989

b e A b s ke b oW

Bode plot -~ Phase

Figure 1.1

Bode plot of the FRF for the linear system of example

(i) together with the Hilbert transform.

Transfer Function

File : 1dx1_¢
Data : Receptoace
Time : 16:09:26

Dote : Twe Jun 13
Year : 1989

Nyquist plot for transfer function
1 T : T T 1
-20-4 -15-4 -1.02 - -4 20-4 25-4
1
“?
i
0
_ 0
: <
- o~
° '
£ z
g ~
- |
-
N
iy
T
7
T
T
T
w2
bt
T
“w?
Real port
Figure 1.2 Nyquist plot and Hilbert transform for the FRF of the

linear system of example (i).

29




Bode plot ~ Wognitnde

Troasfer Fuaclion

File @ hest_r_s
Dote Receptance
Time 14:51:02
Bote Tee Jun 13
Year 1989
) 1bs N o o o o ©
Bode plol - Phase
- \
LS E .
s :
= - = = o »
4 é
a
3 <
Figure 1.3, Bode plot and Hilbert transform for the FRF of the
hardening cubic system of example (ii). Lower level
of excitation.
Nyquist plot for transfer function Tranaler

Imaginary porl

i §

T T T
-20-4 -1.5-4 -1.0-

T
on

K2

1

1

1

4.5-4 -4.0-4 -3.5-4-3.0-4 -2.5-4-2.0-4 -1.5-4 -1.0-4 -5.0-5

Raal part

File

Date :

Time :
Dote :
Year :

hest_r_a
Receplonce

14:51:45
Tee Jvn 13
1989

Figure 1.4.

Nyquist plot and Hilbert transform for the FRF of
the hardening cubic system of example (ii). Lower

level of excitation.

30




Bode plol - Mogrilade

Transfer Function

File : bcad_r_s
Bale Receptance
Time : 14:56:10
Bote : Tee Jas 13
Year : 1989

o 180 8 o o
Bode plot - Phase

| .
3
s |

- L]
H
L.
.

Figure 1.5.

bardening cubic system of example (ii). Righer level

of excitation.

Bode plot and Hilbert transform for the FRF of

Nyquist plot for transfer function

Troesfer Fynclion

Imeginary part

I T T T T T
-3.5-4 -3.0-4 -2.5-4 -2.0-4 -1.5-4 -1.0-

454 008 =354 <3.0-4 “BS-4 ~2.0-4 -1,

Ruat pert

[ 1 IS

File besd 1 s
Date : Receplance
Time : 14:58:49
Oate :  Twe Jus 13
Yeor : 1989

Figure 1.6.

the hardening cubic system of example (ii). Higher

level of excitation.

Nyquist plot and Hilbert transform for the FRF of




Bode plol - Mogaitnde
Troasfer Fuaction
T Hilbert tronsform
File : scal_r_3
Data : Receplonce
Time : 14:59:54
Dote @ Twe Jon 13
Year : 1989
se0 b 1%} FYEEY PY) o ©
Bode plot - Phose
3
| =
L=
3
L=
L.
Figure 1.7. Bode plot and Hilbert transform for the FRF of the
softening cubic system of example (iiif).
Nyquist plot for transfer function “Transfer Funclion

File : sc8) _r_s

Date : Receptonce

Time : 15:00:20
Date :  Twe Jun 13
Year : 193%

1

1

Imaginary part
L 1 1 1
-

|
N

1

=]
=3
]
-
]
=3
[
-
|
v
|
~-
1
<=
o~
|
-~
(
.
-~
l
-~
]
=
)
|
-
1
w
-
\
-
|
=
-
|
-
1
w
.
-
'
(=
o

Raal port

Figure 1.8. Nyquist plot and Rilbert transform for the FRF of

the softening cubic system of example (iii).

32



Bode plot - Mogrilwde
Transfer Fenclion
3_ T Hilbert Tronsform
I
En File 2051
5“ Date : Receplonce
1
;— Tine 16:11:08
%— Bate : Twe Jon 13
iy Year : 193¢
1]
1
1
1
PR "N " " "N A A TR SN
Bode plol - Phose
L2 r—-—————_____‘\\\
L. é
s i
< o = = - Y & < L)
e :
3
3
Figure 1.9. Bode plot and Hilbert transform for one of the FRFs
of the linear two degree-of-freedom system of example
(iv).
Nyquist plot for tronsfer function Traasfer Functios
T Hithert Trgesform
r T ~ T T T T U 1 24xs_1
File :
-8.0-5-6.0-5 So | 20-5 4.0-5 6.0-5 BUSSJ0-4 12-4 14-4 16-4 e -
=_| Dota : Receplonce
T
Time :  16:11:33
Dote Tee Jun 13
Year : 198%

[maglnery parl

$2.2-42.0-41.8-41.6-8).4-41.2-41.0-48.0-56.0-54.0

1-

1

Real part

Figure 1.10.

Nyquist

FRFs of the linear two degree-of-freedom system of

plot and Hilbert transform for one of the

example (iv).

33




-— = < R
A
& @ = u+ iv
®
Row
|
Figure 1.11. Contour in the complex plane used to obtain the
Hilbert transform relations.
Semicircle of radius r
0 = u
®
-0
Figure 1.12. Deformation of the contour around the pole on the

real axis.

34



y(t)

L Ll

Figure 1.13. A first-order dynamical system.

x(t)

L8 130

lll-l l.r-l

[ X3
1

Trensler function - Real pert

4180 <888
1

_a

EYY]
L

Treasfer funclion - Imaginary perl

latalatiad -Do-3
oy

Lt 1

l-c-l.li-l.u.u.u-l-y.s.n.l

-lll-q.

; < = = = = < & - ¢

Figure 1.14.

Receptance transfer function and Hilbert transform

for the system § + 20y + 10%y = x(1).

35

Traasfer Fonclion

File : 14zt _r
Deto : Receplence

Time :  11:10:16
Date : Tee Feb 14
Yeor : 1989




Treasfer fuaction - Real part

% o = = 3 =
s_\
i
\i
Y

B
e
nJ

w

Treasfer feaclion = Imaginery part

Figure 1.15.

Inertance transfer function and Hilbert transform
for the system ¥ + 20y + 104y = x(t) showing the

shift in the real part of the transform.

Treasies fanclion

File : 1dx1_i
Dele : lnerlance
Time 11:11:40
Oole = Tue fed 14
Year : 1989

1% 1 1 LM
1 i

o3
1

Transfer function - Real port

1 1

1

-1
L

ronsfer function - Jmaginery part

iaiiiirﬁ\a\-ﬁu

Figure 1.16

Inertance transfer function and Hilbert transform
for the system ¥ + 20y + 104y = x(t). In this case
the transform was obtained after converting the

transfer function to receptance.

36

Tronsfer Funclion

File 14x1_i
Dela laerlonce
Time 15:38:19
Dote The Jun 1
Yeot 1939




Figure 1.17. Contour used to obtain the Hilbert transform
relations when the opposite Fourier transform

conventions are used to those for Figure 1.1.

37



CHAPTER 2

THE MASRI/CAUGHEY PROCEDURE - SDOF SYSTEMS

The Hilbert transform procedure of the previous chapter is only able to provide very
limited information about a system. One requires a method of extracting more useful
information. Ideally, one would like to be able to determine the equations of motion
of the system under study. Given that most systems will have a large (if not infinite)
number of degrees of freedom one would be satisfied with the equations for a low
order model. The procedure discussed in this chapter was proposed with these

requirements in mind.

2.1, Basic Theory.

The purpose of this chapter is to describe the Masri/Caughey procedure for the
identification of nonlinear systems (10). In order to introduce the procedure in the
simplest manner possible, the discussion is restricted to Single Degree—Of-Freedom
(SDOF) systems. The extension to Multi-Degree—Of-Freedom (MDOF) systems is

made in the next chapter.

The object of the method is the representation of the nonlinear restoring force in the
system by a surface over the phase plane. Conceptually the method is very simple

indeed. One begins with Newton's second law,

my + f(y,y) = x(t) (D)

where f(¥,¥) is the internal restoring force of the system. For example, in a linear
system f(¥,¥) would be expressible as the linear function cy + ky for some constants ¢

and k. In general it is assumed to be a nonlinear function of the displacement and
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velocity responses y(t) and y(t) but with no explicit time dependence. The mass m is
also assumed to be constant. It is clear that f(y,y) can be regarded as a surface over
the phase plane. x(t) is the externally applied force and ¥(t) is the acceleration
response. For the moment the mass m is assumed known. The time data x(t) and
y(t) are sampled over a given period and the sampling interval need not be constant.

If one now writes equation (1) as

f(y,y) = x(t) - my(t) (2)

the quantities on the right—-hand side of this equation are all known at each sampling
instant, so one can calculate f(y,y) at each of these times. If the ith sampling instant
is denoted by t;, and the sampled data by x; = x(t;) and y; = y(t), then at t;

equation (2) becomes
fi = f(yi.¥i) = %3 - oy (3)

Now, if one has somehow obtained y; = y(tj) and y; = y(t), either from the
experiment which produced the other responses or by numerically integrating the y(t)
data, then one has a sequence of triplets (y;¥j,fj)- This means that for each sampled
point in the phase plane (y;,¥;) the height of the restoring force surface f; above that
point is determined. If one is using numerical integration procedures or filtering it is
neccessary for the sampling to be done at a constant frequency. As this is not an
unreasonable restriction it is henceforth assumed to be the case. The sampling interval

is denoted by At, so t; = (i-1)At.

As the dependence of f; on y; and y; is now known, one can attempt to fit a model

of the form

m n
f(y,y) = izo j;o Cij Ti(y) Tj(¥) (3)
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where Tj(y) is the ith Chebyshev polynomial in the variable y. The Chebyshev

polynomials are useful for a number of reasons.

(i) They are orthogonal polynomials. This means that one can estimate coefficients for
a double summation or series of order (m,n) and the truncation of the series to order
(i,j) where i ¢ m and j ¢ n is the best approximation of order (i,j). This means that
one need not re—estimate coefficients if a lower order model is required, as one
would have to for a simple polynomial model. Similarly, if one estimates coefficients
for an (m,n) order model and it is not accurate enough, one only needs to estimate

the extra coefficients required, the lower order ones remain valid.

(ii) The estimation of the coefficients for an orthogonal polynomial approximation
requires the evaluation of a number of integrals. In the case of the Chebyshev
polynomials a change of variables exists which make the integrals (fairly

straightforward.

(iii) In the family of polynomials of a given order used to approximate a given
function f(x) over a given interval there will be one which has the smallest maximum
deviation from the true function over that interval. This approximating polynomial -
the minimax polynomial is much sought after by numerical analysts. Unfortunately, the
polynomial has proved difficult to find — it has so far eluded discovery. One of the
nice properties of the Chebyshev polynomial is that it is very nearly the minimax
polynomial. The reason for this is that the error in the Chebyshev approximation to a
function oscillates between almost equal upper and lower bounds over the interval on

which the approximation is made. This property is sometimes called the ‘equal-ripple’

property.

The various properties of Chebyshev polynomials used in this work are collected for
convenience in Appendix B. A comprehensive reference is (32). Reference (33)

contains a number of useful routines and algorithms relating to Chebyshev

approximation.
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The first problem one encounters in forming a model of the form (3) relates to the
normalisation of y and y i.e. their overall scale. To obtain the coefficients Cij one
can see from the arguments of Appendix A that the orthogonality properties of the

polynomials are needed. The polynomials T,(x) are orthogonal on the interval [-1,1]

as follows

+1

J cllx w(x) T (x) Tj(x) = 1r.6ij - %'6i0'6j0 4
where sij is the Kronecker delta i.e. 5ij =1if i = j and 5ij = 0 otherwise. The
weighting factor for orthogonality w(x) is given by

w(x) = (1-x2)°?
Using the relation (4) one can show that

+1 +1
Cij = X(i1)X(j) J l dxdy w(x)w(y)Ti(x)Tj(Y)f(X,Y)

-17 -1

where X(i) = (1 + &j9)/r (Appendix B). The problem is that the data is actually
contained in the rectangle [Ymin'Ymax)X[Ymin-Ymax] in the phase plane where Ymax is
the maximum sampled displacement etc. However, the orthogonality relations only hold
on the square region [-1,1]x[-1,1]. This means that if ym,x » 1 very little of the
data can be used for the integral and there will be a consequent loss in accuracy. If
Ymax < 1 the data will only cover a small area in the centre of [-1,1]x[-1,1] and
one cannot estimate the integral at all. The solution is fairly straightforward; one

transfers the data from [Ymin:Ymax}X[Ymin:Ymax] to [-1,1]x[-1,1] using the maps

f(y;) = ¥ = Yi~ $Omax * ¥min) (5a)
$(Ymax - Ymin)
?(Yi) = ; = Yi - ?(Ymax * ¥min) (5b)

f(Ymax - Ymin)
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In this case ¢ does not mean d{/dt. So one actually estimates the model
f(y,y) = £@F.9

m ¢ _ -
=20 2 Cij i) T

m n ¢ .
" 2o 2o C i3 Tl IOT L)

The first of these three equations is simply the transformation law for a scalar
function under a change of coordinates. It is clear now that the coefficients for the

model will be sample—dependent. The coefficients are now obtained from

+1 +1
cfij = X(i)X(}) J I dxdy w(x)w(¥)T; ()T j(y)F(x,y) (6)
-1741

and f(x,y) = f( ¢ 1(x), t~1(y)). If one now makes a change of variables or

coordinates to

6 = cos‘l(x)

v = cos‘l(y)

The integral becomes

n x
Cfij - x(i)x(j)[ [ dfdy cos(if)cos(jy¥).

0°’0 —_
.f(cos(8),cos(¥)) 7

If the f-range (0,x) is divided into ny intervals of length A6 = =x/ny and the y-range

into ny of length x/ny, The integral can be approximated by the summation

ng n‘/,
Sii = XX TS A0AY T(cos(8y),cos(¥p)).
1 1 m=1

.cos(ifgycos(jyp)

where 6 = (k-1).46 and ¥, = (m-1).44.
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It is clear from this analysis that some sort of interpolation scheme is required to
evaluate the function f at the points (cos(0x),cos(¥)). The interpolation procedure is

the subject of the next section.

The model finally obtained is of the form

f(y,y) = cfij T F] T EN]

]
%=

i=0 j=0

This is valid on the rectangle [Ymin:Ymax)X[Ymin-Ymax)- As long as the force f(y,y) is
a multinomial in y and y, and x(t) the excitation used is high enough to excite the
highest order terms, this approximation will extend to all the phase plane. If f(y,y) is
a more complicated function e.g. piecewise linear in y, the approximation will only be
valid on the rectangle containing the sample data. This means that in the latter case
the model sample-dependence is actually input—dependence and it may well lose it's
predictive power if a different input to the system generates phase trajectories which

pass through different areas in the phase plane than those of the identification data.

2.2. The Interpolation Procedure.

The problem of interpolating a continuous surface from values specified on a regular
grid is well documented (33), In this case it is a straightforward matter to obtain an
interpolated value or interpolant which can be differentiated many times. However, if
the data is randomly or irregularly spaced the problem becomes considerably more
difficult. Discussions of various approaches can be found in references (34) and (35).
One method in particular ~ Sibson's Natural Neighbour method is not only capable of
producing a continuous interpolation, it can produce a differentiable interpolation. The
method is rather complicated as it requires the construction of a triangulation of the
phase plane, for this reason a discussion of the theory is postponed until Appendix C.
Fortunately a software package TILE4 is available from Professor Sibson which carries

out the procedure. The software is in the form of approximately 7000 lines of
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FORTRAN code. The user can build programs specific to his requirements from the
subroutines provided. Figure 2.1 - reproduced from (36) illustrates the suitability of

the method for the problem.

In the discussion that follows, the term CO is used to indicate an interpolant or
surface which is continuous. To say that the method produces a CcO0 surface is

equivalent to the statement that the procedure is exact for a linear function f(x,y) i.e.

f(x,y) = a+ fx + vy (8)

A surface which is not only continuous but differentiable is designated Cl. The cl
surface produced by the Natural Neighbour method is constructed so that it is exact

for all 'spherical' quadratic functions
f(x,y) = a+ Bx + 9y + x2 + y2 (9)

This is a slight restriction, to specify a general second order function, one needs the

form
f(x,y) = o+ fBx + vy + ex2 + nNxy + oy2

In order to evaluate the integrals described in the previous section, one needs to find
interpolants for the restoring force over a regular grid in the (6,y) plane. In order to
display the surface one needs interpolants over a grid in the (y,y) plane. The TILE4
package can take quite a long time to produce the required data — up to 25 minutes
per surface if a 100x100 grid is obtained from 10000 sample points. For this reason,
estimating both surfaces from the package is considered too time-consuming. It was
decided that being able to display the force surface was the more basic requirement,
so the interpolation onto a regular grid is carried out for (y,y) space. The (8,y) data

is obtained from this by a simple bilinear interpolation (3) as described below

Given arrays y(i) and y(i) containing the y and y values which specify the grid, and
f(i,j) containing the force values estimated at points on the grid, one can obtain a

bilinear interpolant at the general point (y,y) Qquite simply. If

44



y(j) < y < y(j+1) and
Y(k) < ¥y < y(k+1)

if one defines

f1. = £(j.K
fy = f(j+1,k)
f3 = f(j+1,k+1)

fqg = f(j,k+1)

and

-
]

Cy -y /CyU+H) -y ) ¢ (01

(y -y )/ yktl) - y(k) ) e [0,1]

[=4
]

then the interpolant is given by

f(y,y) = (-t)(A-wfy + t(1-u)fy + tuf3 + u(1-rt)f,

Now the values of the function over a grid in the (6,y) plane can be obtained very

simply i.e. the force at the point (6k,¢n,) is given by f_(COS(Ok),cos(¢m)),

In order to estimate the coefficients accurately a 100x100 grid was used. It was found
that with such a fine grid, the errors produced by making the (6,y) grid of secondary

importance, were negligible.

A further problem which may occur is as a result of singularities in the restoring
force. A singularity in this sense being a point at which a derivative of some order
does not exist. For example, a piecewise linear function is quite singular in that the
first derivative does not exist. In the case of Coulomb friction the function itself is
not continuous. This problem is considered in greater detail when a number of basic

SDOF systems are considered at the end of this chapter.



2.3. The Extrapolation Problem.

The most serious problem associated with obtaining the force surface is caused by the
irregular density distribution of sample points in the phase plane. If one considers
Figure 2.2 which shows the distribution in the phase plane of 10000 simulated data
points for a linear SDOF system excited by a Gaussian noise sequence, one can see
that the data is mainly concentrated in a circular region centred on the origin in
phase space. ( In the physical coordinates (y,y), the area is elliptical. The scaling
transformation to the (¥,y) maps the region into a circle.) There is no data near the
corners of the square [-1,1]x[-1,1]. The situation shown in Figure 2.3 is even worse.
In this case the variables are (y; ,y3) the first and third displacement responses from a
three degree—of-freedom system. Because y; and y3 are strongly anti-correlated, the
data is confined to a narrow elliptical region within the square. The problem is that
the interpolation procedure cannot extrapolate. In the case of the CO procedure the
interpolant can only grow linearly as one moves away from the data. This is clearly
inadequate to describe a nonlinear system. The situation is slightly improved if one
uses the Cl option which can grow as a quadratic away from the data. However, one
of the simplest types of structural nonlinearity of interest is a cubic ( and some are
not polynomial at all) so even the cl procedure is inadequate. In fact it is shown
later that in most cases one loses the option of forming a Cl interpolant. This means
that one has to have some way of dealing with regions of the phase plane which

have a low density of points.

The method used in (10) to try and circumnavigate this problem is fairly simple. In
the regions where there is a high density of points an unspecified interpolation
procedure is used. Over the areas where there is little or no data the restoring force

is assumed to take the form

f(y.y) = fs(y) + fa(¥)

so one can model f(y,¥) with an expression of the form
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. m r n g- .
f(y,y) = ,ZO a’iT;[ §(y)] + _ZO bYTil H(y)1  (10)

1= i=

To evaluate the af j's for example, one assumes that
- Fo LU S -
fs = G0 - 3 2T

As before, the expansions only make sense in the (y,y') plane. In order to estimate
the coefficients one takes all the data from the plane contained in some small band
about the ; axis i.e such that |)"_| < ¢ for some small e¢. This procedure is
illustrated in Figure 2.4. If one associates the force values f(¥,y) now with the ¥
value for each point, one obtains a rather noisy graph of f, s(¥). If this irregularly
spaced data is now interpolated to give values at regularly spaced values, one can
obtain the coefficients by the same means as the previous section i.e. one evaluates

the integral

+1
aty = X(i) I dy w(¥) Ti(¥) £(¥,0)
-1

by changing variables to 6 = cos~1(y), discretising the integral and summing

nyg
aly = X(i) kZl A6 cos(iby) f(cos(8y),0)

Clearly in this case the interpolation procedure should actually find values at regularly
spaced 6 points. As before the coefficents are sample-dependent, from now on this is
accepted to be the case and the { superscript is dropped. The same procedure can be
used to evaluate the coefficients for the damping force f, d()'—'). Having obtained the
model in equation (10), it is used in (10) to estimate the value of the restoring force

over regions where there is little data.

This method has a serious drawback. It cannot account for cross—product terms of the
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form yMy? in the restoring force. This type of term will contribute most when the y
and y values are equally large i.e. along the lines y * y = 0. From figure 2.2, one
can see that these are precisely the areas where there is no data. In Figure 2.3. the
distortions caused by the correlation of the variables mean there is more data along
the line y; - y3 = 0, but less along y; + y3 = 0. This means that equation (10) is
not a good approximation to the function whether the expansion wvariables are

correlated or not. Consider the restoring force function for the Van der Pol oscillator

F(y,y) = €1 - yD)y +y
then

f(y,0) = vy

£(0,¥) = ey

and the procedure in (10) produces a linear extrapolation over areas where the force

is actually third—order.

The approach taken in the present work is much more straightforward. Rather than
try to extrapolate, one displays the data and then chooses a rectangular sub-region of
the phase plane which is well covered by data. This produces a reduced data set
which is then mapped onto the square [-1,1]x[-1,1]. The rectangle indicated by the
dotted lines specifying the reduced set is shown in Figures 2.2 and 2.3. The
interpolation and Chebyshev expansion procedures are then carried out. The main
drawback of this method is that one discards the data which corresponds to the
largest displacements and velocities measured. Because of this one must take care. If
the system under test is only just showing signs of nonlinearity, this procedure may
concentrate attention on a region of the phase plane over which the restoring force is
nominally linear. In this case it will be impossible to accurately identify the higher
order Chebyshev coefficients for the model. One must take care in choosing the level
of the excitation used, it must be high enough for the reduced data set to still show

signs of nonlinearity. If it is too high, estimation of the lower order terms will suffer
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as the higher terms will dominate. If the model is to be of any use for prediction at
lower excitations, the linear and constant terms must be identified accurately. In
particular, if Cpq is incorrect one will observe the wrong position of equilibrium in

the predicted output.

Theoretically there is another possible way of obtaining a surface without discarding
data or extrapolating. One could change to a non—Cartesian coordinate system which
maps the data region onto a square. The situation is simplest when the expansion
variables are uncorrelated as in Figure 2.2. The data is confined within a roughly
circular region; this suggests that one could try polar coordinates (r,p) such that

y = rcos(y) and y = rsin(p). If the data shown in Figure 2.2 is mapped to

ri = yiZ+ yi?

p; = tan~1(¥i/yi)

The resulting distribution of data in the (r,p) plane is shown in Figure 2.5. Because
there is little data at large values of y and y, there is correspondingly little data at
large r. However, because the y and y values are uncorrelated, the density distribution
of points is independent of . The surface interpolated from this data is shown in
Figure 2.6. Because the restoring force function is highly nonlinear in the (r,p)

coordinates i.e.
f'(r,p) = crsin(p) + krcos(yp)

( ¢ being the damping constant for the system, and k the stiffness), even the Cl
routine is inadequate to estimate the surface in areas where there is not much data.
This accounts for the distortions in the surface at large r. If the smaller region
indicated by a dashed line in Figure 2.5 is used for interpolation, one obtains a much
better distribution of points (Figure 2.7), and a correspondingly better surface (Figure
2.8). However, this is after discarding data again which rather defeats the object of
the exercise. The problem is that in gaining a better distribution of points in the new
coordinate system, the interpolation has lost accuracy because the force surface

expressed in the new coordinates is highly nonlinear. Even so, this procedure could
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still be of use if the expansion variables are highly correlated as in Figure 2.3. One
can map the data onto a square by using the sequence of transformations illustrated
in Figure 2.9. Of these transformations only the last, the change to polars, is
nonlinear. In carrying out this sequence one is essentially choosing an elliptical polar
representation. Unfortunately, this idea has other problems, the surface obtained
(Figure 2.8) gives no indication that the system is linear. To plot the surface in a
recognisable form one would need to change coordinates back to the cartesian (y,y),
carrying the force surface back by using an interpolation. This either introduces a
further source of error if one uses the bilinear method, or takes an unnacceptably
long time if one uses TILE4 to form the surface from the basic data. For this

reason, nonlinear coordinate systems are not recommended.

In most cases, one has some control over the test and can adjust the level of
excitation to the system in order to give significant nonlinear contributions to the

restoring force over the reduced data set.

2.4, Simulated SDOF Nonlinear Systems.

In order to test the identification procedure described above, a number of sets of data
corresponding to different types of SDOF nonlinear systems were simulated. A
fourth-order Runge—Kutta procedure was used to generate displacement, velocity and
acceleration response data by integrating over regular intervals the general differential

equation of motion for a SDOF system.

my + f(y,y) = x(t)

In all the simulations except for the Van der Pol oscillator, the excitation is a
Gaussian white noise sequence with zero—mean. The Gaussian random numbers are
generated using the routines RAN1 and GASDEV from reference (33). Because the

Runge-Kutta routine is unstable for high frequencies, the excitation signal is filtered
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using a low-pass Butterworth filter which is designed to cut—off at one—fifth of the
sampling frequency, the sampling frequency being the inverse of the time-step used in
the integration procedure. For the sake of simplicity x(t) is held constant between
sampling instants even though the Runge—Kutta procedure needs to know the values at
mid-interval times. This is perfectly adequate for simulation studies. Later, when

experimental data is considered, a more sophisticated integration routine is introduced.

The first example considered is a linear system. The equation of motion used was

y + 40y + 10%y = x(t) (11)

and x(t) was a Gaussian sequence with mean zero and variance (RMS) 10.0. The
time-step for the simulation was 0.001 seconds, giving a sampling frequency of 1.0
kHz. The filter produced a band-limited signal in the range 0 - 200 Hz. The

undamped natural frequency of the system is 100 rad/s or 15.92 Hz.

10000 points of displacement, velocity and acceleration data were accumulated. The
distribution of the points in the phase plane is shown in Figure 2.10. The dashed
rectangle in the figure indicates the reduced data set which was chosen for the
interpolation stage. The reduced set shown in Figure 2.11 contains 9486 points. The
number of points discarded is small. However, one observes that the reduced set

contains only those points with displacements up to about 5/8 of the maximum.

The data was then used to construct a Cl interpolation using the TILE4 package, the
tesselation and associated triangulation are shown in Figure 2.12. The TILE package
proved able to cope with interpolations based on up to 10000 points without difficulty.
The C! surface obtained is shown in Figure 2.13; the linearity of the system is very
clearly indicated. The restoring force surface shown has been constructed over a
100x100 grid, this grid size was used for all the systems studied. The surface data was
then used to calculate coefficients for a Chebyshev polynomial model. A (3,3) model

was determined i.e. third—order in displacement and third-order in velocity. Because
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of the orthogonality properties mentioned earlier, all models of order (i,j), i<3, j<3
have also been determined. This means that for each model one can calculate the
force surface values at each point on the grid, and the relative error between the
interpolated surface and the model surface can be estimated. The measure of

difference adopted is the normalised mean—square error, or MSE, defined by

N A
MSE(f) = _100 S ( f; - f1)2 (12)
NO'f2 1=

where f; is the surface value at a grid point labelled i, and N = 10000 is the number
of grid points. fi is the estimated force from the model ( throughout this work carets
denote estimated quantities). oy is the standard deviation of the force values and the
summation is over all grid points. The normalisation factor is chosen such that, if a
(0,0) model ( simply the mean-level of the forces) is used to predict the force values
the MSE value will be 100. This is sometimes written as a percentage to reflect the
fact that the MSE above is the mean-—square difference expressed as a percentage of
the variance of the measured data. A comparison was made between the interpolated
surface and an exact surface calculated from the analytic expression for f(y,y) in the
equations of motion. The comparison is shown in Figure 2.14 and produced an MSE

of 6.7x1073 indicating excellent agreement.

The coefficients for the models of order up to (3,3) are shown in Table 2.1. The
MSE for each model is shown in Table 2.2 There is a marked drop in the error for
the (1,1) model and then no significant decrease as the model order is increased
further; in fact, the model error is a minimum for the (1,1) model. This clearly
indicates that the system is linear. By tabulating the various model errors in this way
it is hopefully possible to determine the actual order of the system. The surface
generated from this model is compared with the interpolated surface in Figure 2.15
and the MSE of 0.186% shows how close the agreement is. The residual surface
plotted in Fig. 2.15 is not important at the moment, it will become so when the

extension to MDOF systems is made in the next chapter. The exact Chebyshev
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coefficients for this data were calculated by the method described in Appendix B.

Comparison with the estimated coefficients produced the following results.

Exact Estimated % error
Coo -0.352031 -0.239064 -32.09
Co1 3.052770 3.056534 0.12
C10 8.240615 8.242984 0.03
C11 0.0 -0.226003 o

Using these results to produce an ordinary multinomial in y and y gave

f(y,y) = 40.05y + 10002.9y

if one neglects the cross term and the constant. The results are very accurate indeed.
A further measure of the model accuracy can now be made. By using the estimated
force in the Runge—-Kutta procedure, one can predict the displacement output from
the model system under the excitation x(t). This can then be compared with the
actual or 'measured' displacement. The comparison for this system is shown in Figure
2.16. The MSE is defined as in equation 12, the only difference being that the

summation is made over sampling instants rather than grid points.

N 0. 12
MSE(y) = 100 Z Cyi -¥%i)

This type of MSE is used throughout the present work whenever two records of time

data are to be compared. For this case, the MSE of 0.106 indicates an excellent fit.

Included in (10) is a study of the linear system

y+0.1ly+y = x(t)
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The much lower resonant frequency of this system ( 1 rad/s ) reflects the fact that
Masri and Caughey are interested in Civil Engineering systems. They do not compare
their coefficients with the exact ones. However, they provide enough information for

the calculation to be made, the results are

Exact Estimated % error
Coo -0.070 -0.22 209.9
Co1 0.793 0.65 18.0
C10 7.745 7.64 0.07
C11 0.0 0.003 ©

The results of the present study are better than those of (10) for this particular case.
This indicates that the extrapolation problem can be dealt with adequately by reducing

the data set.

The second example considered is of a nonlinear system with cubic stiffness. The

Duffing oscillator system with equation of motion

y + 20y + 104y + 5x109y3 = x(t)

was simulated. This type of nonlinearity is important because it represents the first
level of approximation to any odd nonlinearity. x(t) was a noise sequence as before,
with variance 50.0. The time-step for the simulation was 0.001 seconds. giving the

same frequency range for the filtered x(t) as the previous example

10000 points of time data were obtained. The resulting distribution of sample points is
shown in Figure 2.17. The dashed rectangle indicates the chosen reduced data set
which contained 8694 points in this case. The force surface was obtained using the Cl
procedure and the results are displayed in Figure 2.18. A comparison between this
and the exact surface is shown in Figure 2.19, the MSE of 0.196 verifies that the

agreement is excellent. The cubic stiffness is shown very clearly in the surface i.e.
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there is curvature in the direction of increasing displacement but none in the direction

of increasing velocity.

The Chebyshev coefficients for models up to order (5,3) were obtained, and are
shown in Table 2.3, The MSEs for the various models are displayed in Table 2.4.
There is a significant drop in the error for the (3,1) model as expected, in fact this
error is a minimum. This is reassuring, the true order of the system is indicated
correctly. The surface generated from the (3,1) model is compared with the
interpolated surface in Figure 2.20. The MSE of 0.19 signals that the fit is very

good. The coefficients for the chosen model compare with the exact results as follows

Exact Estimated % error
Coo -1.616901 -0.637758 -60.5
Co1 8.967750 8.966823 0.0008
Ci0 72.370255 72.302673 -0.093
C11 0.0 -1.638723 ©
Cr0 -0.750752 -2.313370 208.14
Ca1 0.0 0.033068 o
C3p 16.277388 16.213997 -0.3894
C31 0.0 -0.510824 ©

The procedure has badly overestimated the size of the Cpg coefficient. This is
possibly due to a slight problem with the coefficient estimation which could occur,
small deviations from the correct curvature in the interpolated surface could be
modelled well by the inclusion of spurious terms, even though the other estimates may

not be affected much.

Converting back to a multinomial model for f(y,y) produces the result

f(y,y) = 1.99 + 20.0002.y + 10057.y

- 8.35x105.y2 + 4.98x109.y3

after removing those terms which are insignificant. The quadratic term and the
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constant are an unavoidable nuisance, the rest of the estimation is very accurate.
Comparing the ‘'measured’ displacements with those predicted by the (3,1) model
produced the results shown in Figure 2.21. The MSE of 19.4 is quite high. Deleting
the Cy coefficient produces the comparison in Figure 2.22 with a more acceptable
MSE of 6.80. Systematic deletion of the coefficients followed by this sort of
comparison can sometimes allow one to judge the significance and utility of each of
the terms. However, this is time—consuming and can sometimes be misleading. For
example, deleting Cpp and comparing is not a good way to estimate the significance
of a constant term as the constant is actually distributed throughout all terms of

(even,even) order.

The cubic system

y + 0.04y + y + 0.003y3 = x(t)

is considered in (10) and the following results are obtained for a (3,1) Chebyshev

model

Exact Estimated % error
Coo 0.2 0.06 300.0
Co1 3.1 3.6 16.13
C10 196.07 193.00 1.57
C11 0.0 -0.09 o
C20 0.0 0.13 o
C21 0.0 0.27 o
C3o 51.64 51.0 1.54
C31 0.0 0.13 ©

Apart from the overestimated quadratic term the results of the present study are
better. It is interesting to note why there is no quadratic term in their results. This is
because 1Ymax! = 1Ymin! for their simulated data set, so the {-transformation (5)
on the data is simply a rescaling, no quadratic is introduced. By insisting that the

boundary of the reduced set is symmetric about the origin in the phase plane, the
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{-mappings can be reduced to simple scalings. However, this was considered too
restrictive, if a system has an even nonlinearity the data may be concentrated away

from the origin.

Next, a system with nonlinear damping is considered. The equation of motion used

was

y + 20y + 100y1y1 + 104y = x(t)

The excitation was a noise signal as before with RMS 100.0. The same time-step was
used. This example is interesting because it is the first with a singular nonlinear
function. It is a fairly mild example, the second derivative of the damping function
does not exist along the line y = 0 in the phase plane. This means that it cannot
have an exact polynomial representation. However, according to the Weierstrass
representation theorem it can be approximated arbitrarily accurately over a given
interval by an appropriately high—-order polynomial. This allows the identification to
proceed as before, bearing in mind that the approximation found will be dependent

on the sample.

As before, 10000 points of the data were obtained, the distribution in the phase plane
is shown in Figure 2.23 along with the boundary for the reduced data set. The
reduced set contains 9272 points. The C! interpolation produced from this data is
shown in Figure 2.24. The comparison with the exact restoring force surface is

displayed in Figure 2.25, the MSE of 7.2x1073 indicates almost perfect agreement.

Chebyshev coefficients were estimated for models up to order (2,8). The coefficients
are shown in Table 2.5 and the MSE values in Table 2.6. The MSE's have a
minimum for the (1,3) model. This indicates that for this level of excitation, the
system damping is adequately represented by a cubic term. At high levels of excitation

(1,5) or (1,7) models would be required. The comparison between the
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model—generated surface and the interpolated surface is shown in Figure 2.26. The

MSE of 0.18 indicates a good fit. The (1,3) model is

£(7,9) = -4.7419 + 38.68y+ 59.13y - 1.943.y
-0.722T5(y) + 5.49T3(y) + 0.02T5(3).¥

-4.27T3(y).¥

The comparison between the actual displacement and the predicted displacement from
the model is shown in Figure 2.27. The agreement is excellent. One should bear in
mind that the system has not stricly been identified, an approximation has been
obtained valid on a fixed interval. It is only with the benefit of prior knowledge that

one can avoid concluding that the system has a cubic damping nonlinearity.

A Van der Pol oscillator system is the subject of the next study. Following Reference

(10) in this case, the equation of motion used was,

y - 0.2(1 - yhy + y = x(t)

In this case the linear resonance is at 1 rad/s. A sampling interval of 0.1 seconds was
used, which gives a sampling frequency of 10 Hz. The excitation used was a ‘'chirp'
signal of the form x(t) = 105in(t2/200). 10000 points were accumulated, giving a
sweep range for the signal of 0 to 5 rad/s. The phase trajectory for the first 3000
samples is shown in Figure 2.28. At this stage the behaviour of the system is very
regular. However, as the phase trajectory spirals inwards, it eventually passes into the
region where the damping force is negative. Around this point, there appears to be a
transition to chaotic behaviour. This transition is shown very clearly shown in Figure
2.29. This behaviour will be important later when a comparison is made between the
actual and predicted displacements. The distribution of the 10000 points sampled is
shown in Figure 2.30. The complex shape of the region covered by the data means
that the extrapolation problem will be particularly severe unless a reduced data set is
taken. The reduced set is shown and contains 7913 points. This example allows one
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to demonstrate very well how extrapolation can lead to serious errors. Here, the data
is irregularly distributed and the nonlinearity is third-order so even the cl

interpolation cannot represent the surface away from the data.

First, the force surface is obtained from a cl interpolation over all the data, this is
shown in Figure 2.31 and the comparison with the exact surface is shown in Figure
2.32. The MSE for the comparison is 33.5% which is extremely high. Next, the
surface is obtained from a Cl interpolation over the reduced data set (Figure 2.33)
and compared with the exact surface (Figure 2.34). The MSE for the comparison is

reduced to 0.0056 which is more than acceptable.

The Chebyshev fit is made to the second interpolation, models up to order (4,4) were
estimated. The coefficients are displayed in Table 2.7, the associated errors in Table
2.8. As one would expect, the minimum error is for the (2,1) model. Comparison of
the model-generated surface with the interpolation gave an MSE of 0.116. The
comparison is shown in Figure 2.35. The exact Chebyshev coefficients were calculated

and comparison with those estimated produced the results

Exact Estimated % error
Coo 0.359706 0.422658 17.5
Co1 3.428425 3.417381 -0.32
C10 3.186125 3.182658 -0.11
C11 0.999160 0.994759 -0.44
C20 0.219377 0.149419 -31.9
Caq 4.267792 4.198861 -1.62

Comparing the ‘'measured' displacements to those predicted by the model produces
interesting results. The overall MSE for a comparison over 10000 points is 7.85%.
Yet, the first part of the comparison, shown in Figure 2.36 is excellent. The high
MSE is due to the fact that the predicted output makes the transition to ‘chaos'
earlier because of the slight differences in the coefficients. This is entirely consistent

with the behaviour of chaotic systems. Figure 2.37 shows a comparison over the
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region of transition.

The results in (10) for this system are

Exact Estimated % error
Coo 0.035 0.44 1157.0
Co1 37.34 3.58 90.4
Cio0 6.185 8.48 37.1
C11 0.892 -0.27 130.3
Ca20 0.0 0.09 ©
Ca1 39.4 -1.30 103.3

The results are terrible, this is because Masri and Caughey use a (7,7) model and
only the (2,1) subsection is shown here. In their case the higher order terms are
needed to improve the fit. In their model, the largest coefficients are Cp3, C3g and
C34. This is to be expected as their extrapolation procedure simply cannot cope with
cross terms. In this case using a reduced data set produces significantly more accurate

results and the correct nonlinear order of the system is identified.

The next system considered is a piecewise linear system. Between y = * 0.001 the

equation of motion is given by
y o+ 20y + 10%y = x(t)

outside of this interval the stiffness force is 11 times larger. Once again, the restoring
force can only be approximated by a polynomial. In this case the first derivative of
the stiffness force does not exist along the lines y = % 0.001. This is a more severe
form of singularity than the nonlinear damping example. Because of this it will be

more difficult to approximate the force by a polynomial.

The input excitation x(t) was a noise sequence with RMS 50.0. The time-step used
was 10™4 seconds corresponding to a sampling frequency of 10 kHz. The Runge~Kutta

filter band-limited the input into the range 0 to 2000 Hz. As usual, 10000 samples of
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data were obtained, their distribution in the phase plane is shown in Figure 2.38. The

reduced data set is also shown, it contains 8815 points in this case.

The Cl surface obtained from TILE4 is displayed in Figure 2.39. The comparison
with the exact surface (Figure 2.40) yields a MSE of 4.6x10~4 which indicates near

perfect agreement.

The Chebyshev coefficients up to order (9,2) were estimated and the results are given
in Table 2.9. The associated error table is given also (Table 2.10). The error has a
minimum for the (9,1) model, which is the highest estimable odd-order model. The
surface generated from this is compared with the TILE surface in Figure 2.41. The
MSE of 0.66 is good. However, it is still clear from the comparison that a 9th order

model is inadequate to model this stiffness behaviour.

The comparison between the exact and estimated displacements produces terrible
results. The two streams of data diverge and the MSE overflows. The reason for this
is simple. In fitting a polynomial to the piecewise linear function, to obtain close
agreement it may be neccessary for the coefficients to be nonphysical i.e the higher
order stiffness coefficients may be negative. When one estimates the displacements
from the model, this is done on the entire data set rather than the reduced set. On
this extended area it is then possible to obtain negative stiffness forces from the
model and the system will quickly become unstable. This phenomenon can occur for
any non-polynomial restoring force. It is a consequence of the approximation

procedure, the model is only valid on the reduced data set.

A system with Coulomb friction is the subject of the next study. The equation of

motion for the system used is

y + 20y + 10sgn(y) + 104y = x(t)
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x(t) is a noise sequence with RMS 50.0. The sampling frequency used was 1 kHz.
The Runge-Kutta filter limited the signal to the range 0 - 200 Hz. Of the examples
considered in this section, this is the most singular. There is a discontinuity in the
restoring force surface along the line y = 0. This force will be the most difficult to

model with a polynomial.

10000 points of data were accumulated. They are shown in Figure 2.43 together with
the boundary of the reduced data set which contains 9258 points. Initially, the TILE
package was used to provide a cl interpolation. This is shown in Figure 2.44. A
problem arises here. One can see spikes in the surface. This is because the algorithm
for a Cl surface needs to estimate the gradient of the surface at each sample point.
If the routine considers two points very close together but separated by the
discontinuity it will drastically overestimate the gradients at these points. In fact, the
gradient at points on the discontinuity is infinite. The interpolant is constructed from
the force values and estimated gradients in a similar way to forming a Taylor series,
if the gradients are too high, the estimated interpolant will be too high. If the cO
interpolation scheme is used, this problem does not occur (Figure 2.45). However, in
this case the surface is not as good along the boundary of the data region. In order
to obtain the best possible estimate of the surface, one can form a hybrid by taking
the Cl surface as the basic one and then replacing the neighbourhood of the
singularity by that from the CO surface. This procedure is illustrated in Figure 2.46.
The resulting hybrid surface is displayed in Figure 2.47. Comparing the hybrid cl/co
surface with the exact one gives a MSE value of 0.0097, this result is excellent. The
comparison is shown in Figure 2.48. The regions of surface used in the transplant are
chosen by considering contour maps of the surfaces. The singular regions show up as

areas with densely packed contours.

Using the hybrid surface, Chebyshev coefficients for models up to order (1,9) were
estimated. The coefficients are given in Table 2.11 and the associated errors in Table
2.12. The minimum MSE of 1.57% occurs for the (1,9) model. The Chebyshev

surface generated from this model is shown in Figure 2.49. The model surface clearly
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does not represent the force surface very well at all. Even a 9th order model is
inadequate to model the nonlinear damping force. As one would expect, comparing
the measured and predicted displacements does not produce very good results (Figure

2.50). The MSE is 6.87%.

Finally a hysteretic system is considered. Hysteretic systems or systems with memory
cause particular problems for this method because the restoring force has an explicit
time-dependence and as a consequence the force surface will be multi-valued. (It
would be single—valued if displayed as an appropriate Riemann surface. However it is
not obvious how one can make use of this remark.) There are a number of useful
models of hysteretic systems, the one chosen here is the Bouc—Wen model (37) which
can simulate systems with widely varying hysteresis loop areas and envelopes. The
parameters used in this example were taken from the paper of Hammond et.al. (21).

The equations of motion are

y + 15.08y + 5684.89y + z = x(t)

z = 1000y - 1.51y1.z.1z1 + 1.5y1z12

Naively integrating the second of these equations with respect to time and substituting
the z obtained into the first equation, shows that the 1000y term is actually a linear
stiffness term. This gives a linear resonance for the system at 13Hz. As before, x(t)
was a Gaussian noise sequence. In order to produce noticeable nonlinear effects an
RMS of 200.0 was used for the input. The sampling frequency was 1 kHz, giving the
same frequency limits for x(t) as the previous example. The distribution of 10000
sampled points is shown in Figure 2.51. The reduced data set shown contains 8199
points. As with the previous example a problem occurs when the Cl option is used
for the interpolation. Because the surface is multi-valued, two arbitrarily close points
in the phase plane can have a finite difference between the force values above them.
This causes the overestimation of gradients and the resulting surface will contain
spikes. This is clear from a comparison of Figure 2.52 with Figure 2.53. The former

shows the Cl surface and the latter, the cO surface, the second of these is
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considerably more regular. Both the surfaces are essentially linear. Because there are a
large number of spikes and their distribution is irregular, it is impractical to form a
hybrid surface. For this reason the Cl option can not be used for systems with

memory.

The Chebyshev coefficents are estimated form the CO surface (Table 2.13). The
associated MSE values are given in Table 2.14. The error is a minimum for the (1,1)
model. This is because the effects of the multivaluedness average out over the 10000
points to give a linear surface. The comparison between the model-generated surface
and the TILE surface is given in Figure 2.54. The MSE of 0.19% indicates that the
system is well modelled over this range by linear forces. If the Chebyshev model is

converted to a simple polynomial model, the results are

f(y,y) = -5.51 + 18.32y + 6666y + 4.6y.y

The effective linear stiffness approximates to 5684.89 +\1\000.0 as expected. Also, the
estimation has modelled the hysteresis by an effective viscous damping term equal to
(18.32-15.08)y = 3.24y. In order to check that this is the correct interpretation and
not simply an error in the damping estimate, a comparison was made between the
actual displacements and those generated from the model above. The comparison is
shown in Figure 2.55, a MSE of 0.87 was obtained. The damping in the model was
then changed to the ‘correct' value 15.08, and the comparison was repeated. This
time the MSE was 3.13. This indicates that the estimation has compensated for the

energy loss through hysteresis by adding extra viscous damping.
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(i) The function
F(x,y) = cos( [ (x - D2+ (y - HZ 1)
on the unit square [0,1]x[0,1].

(ii) Values of the above function at data sites

in the unit square.

(iii) The reconstruction of the function by the
¢! natural nefghbour method.

(iv) The absolute error in the interpolation.

Natural nejghbour interpolation for a function on
the unit square ( reproduced from (36).)
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Figure 2.7, Reduced data set in the (r,p) plane.
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(i) Rotate so that the major axis of the ellipse

coincides with a coordinate axis.

(i{) Scale the coordinates along the major axis

to give a circular data region.

(iii) Change to polar coordinates.

Figure 2.9. The sequence of operations required to map an

elliptical region onto a square region
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Figure 2.24. cl interpolated force surface for the system with

quadratic damping.
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response for the simulated Van der Pol oscillator system

showing the transition to chaos.
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Table 2.1. Coefficients for the Chebyshev models for the linear
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NSE for various Chebyshev model orders.
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Chebyshev coefficients for restoring force.
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Table 2.3. Coefficients for the Chebyshev models for the cubic

stiffness system.
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Coefficients for the Chebyshev models for the system

with quadratic damping.
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Table 2.7. Coefficients for the Chebyshev models of the Van der Pol

oscillator system.
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MSE table for the Chebyshev models given in Table 2.7.
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Table 2.9. Coefficients for the Chebyshev models for the piecewise-
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MSE for various Chebyshev model orders.
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Chebyshev coefficients for restoring force.
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Coefficients for the Chebyshev models for the

hysteretic system.
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NSE for various Chebyshev model orders.
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Table 2.14. MSE table for the Chebyshev models given in Table 2.13.
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CHAPTER 3

THE MASRUVCAUGHEY PROCEDURE - MDOF SYSTEMS

The work of the previous chapter indicated that for simulated SDOF systems Masri
and Caughey's restoring force approach provides a useful technique for the
identification of nonlinear systems. This would be of limited value if it was only
applicable to SDOF systems. In fact, Masri,Caughey and Sassi have shown that the
method allows a fairly straightforward extension to MDOF structural systems (10). This

chapter is concerned with this extension.

3.1. Basic Theory.

The most natural language for the description of multi-degree—of-freedom (MDOF)
systems is that of matrices and vectors. In the discussion which follows square brackets
[ ] shall denote matrices and curved brackets { } column vectors. In addition the
convention adopted is that the kernel letter of a generic matrix will be a capital and
the diagonalised form of the matrix will be denoted by the small character of the
same type. Thus [M] is the mass matrix and [m] is the diagonalised mass matrix.

Transposition is indicated by a superscript T.

As before, one begins with Newton's second law

M1y} + (f(y,¥)) = (x(t))} (1)

for a MDOF system. The assumption is that the mass of the system is concentrated
at N points. The external forces on the system are then assumed to be applied at
these points, the ith entry of the vector {x} being the force at mass i. The ith entry

of the vector {y} is the acceleration of mass i. The ith component of {f} is the
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internal or restoring force which attempts to return mass mj to equilibrium when it is
disturbed. This is already a rather restricted model. In general a structural system will
have a continuous distribution of mass and hence an unlimited number of
degrees—of-freedom. The model above has only N. This is reflected in the fact that
the system in (1) has precisely N natural frequencies or resonances, the simplest
continuous system will have an infinite set. For fairly obvious reasons, systems of the
type above are sometimes called lumped—-parameter systems. Under normal conditions
one would use a band-limited input to excite a system i.e. one with a limited
frequency range. This means that only a finite number of the system modes would
contribute to the dynamics, one would excite up to say, the Nth natural frequency.
Under these conditions one should be able to model the behaviour of the system
accurately with an N degree—of-freedom system. Equation (1) is therefore adequate for

most purposeS /

The simplest situation possible is where the restoring force is linear i.e.

(f}y = ({f1} = [Cl{y} + [K]{y) (2)

[C] is the damping matrix and [K] is the stiffness matrix for the system. If the forces
are nonlinear, there may still be a regime where (2) is a good approximation e.g. if
{f} is a polynomial and a small excitation is used. For such a system, one could
determine the modal matrix [y]. Arguably the most common method of estimating the
modal matrix is by curve—fitting to the system FRFs, a comprehensive reference on
this technique is (7). Having obtained [y] one can then change to the normal

coordinate system specified by

(wl = Wity

In this coordinate system (7), the equations of motion (1) become

[m]{u} + [c]{a) + [K]{w) = [YIT(x) = {(q)



where [m] = [y]T[M][y] is diagonal, as are [c] and [k] with similar definitions. In
order that [c] be diagonal proportional damping is assumed for the moment. The

equations are now decoupled into N SDOF equations of motion.

mjuj + cjuy + kiui = qj

where mj, ¢; and k; are the diagonal entries of [m], [c] and [k] respectively. If the
system is nonlinear this decoupling does not occur, one cannot find an appropriate
linear transformation. However, since the underlying linear system can be decoupled,
one can perhaps expect some simplification on changing to normal coordinates.

Equation (1) becomes

[m] (i) + (h({u),{u}))} = {q(t)} (3)

where {h} = [¥]T{f}. As before, the method requires estimates of {y}, {y} and {y} for
each sampling instant. However, one also needs estimates of the mass matrix and the
modal matrix. Finding these quantities accurately is a non-trivial problem. The mass
matrix in particular is rather awkward to determine (38). The technique of modal
anlysis (7) allows one to estimate [y]. For the moment assume that estimates are

available, the restoring force vector can then be calculated from (3)

(h)y = {q) - [m}(u) = [IT.((x) - [MI(¥) )

and the ith component is given by

hj = qj - mjiij

These equations hold at each sampling instant. As an aid to clarity, the sampling

instant labels are suppressed. Unfortunately h; is not simply a function of u; and u;.

In general the nonlinearity of the system can cause a dependency on all the u's and

u's. However, as a first approximation one assumes that the main contribution to h;j
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is a function of u; and u;. Just as for the SDOF systems one can interpolate the h;

data into a surface above the (uj,j) plane and then fit a model of the form
hi (D cug,up) = 55 Apy Ty(up) TnCap) ()

For the sake of clarity, the maps which carry the data onto the square [-1,1]x[-1,1]
bhave been omitted. However, one should bear in mind that they are neccessary for
the evaluation of the coefficients above; consequently, the coefficients are
sample—-dependent. The expression (4) will hopefully capture all terms of the form
(u)*(1;)B. To include effects caused by the coupling of normal coordinates by the
nonlinearity one would need terms of the form (ui)“(u]-)ﬁ where i # j. Consideration
of the Van der Pol oscillator suggests that one should add further terms of the form
(ui)a(ﬁj)ﬁ. Masri and Caughey et al. omit to mention that if the nonlinearity is in the
damping forces one also needs terms of the form (ﬁi)o’(ﬁj)ﬁ- Hopefully one has then
accounted for all the terms in h;. In order to carry out this procedure, one uses (4)

to form the first residual term ri(l)’
ri (uy, (0)) = hjw, () - by (uy,85)  (5)

Then by successively interpolating over the (ui,Uj) planes and expanding, one forms

the expression

hi)((u)) = 3352 T (up) Tp(uj)

jmn

~ rl(l)((u},(ll})

including only those modes which interact with the ith mode. Of course this might be
all of them. Displacement/velocity coupling is accounted for in the same manner. One

forms

ri 2wy, )y = riM ey, ) - w2 ()



and

h; (3) ((u), () Sy S a3 Talug) Tp(aj)

jmn

R

r; (2) ({u), (a))

Finally one accounts for the velocity/velocity coupling using

ri® )y = rp@uy, ) - by G (uy, (a))

and

hi(4) ((a)) = Ejzmznu(i)(.i)mn Tp(93) Ta(aj)

= r; 3 ((uy, (u))

So the final restoring force model has the form

hy({u),(a)) = hyM)(uy,aq) + b; (2 ((u))

+ b3 ((uy, (1)) + hy ) ((ay)

Because one has now accounted for the presence of (hopefully) all possible terms in
h;, one can remove the proportionality condition on the damping. It is clear that

many expansions may be required in order to obtain an accurate model.

Before proceeding it is neccessary to specify how one forms the residual term in (5).
One begins the procedure with a time series hj(ty) for each component of the
restoring force, ty being the kth sampling instant. In order to find the wu;,y;
dependence of the force, one forms the triplets (uj(tg),uj(tk),hj(ty)), one for each
sampling instant. A h; surface is then interpolated over the (u;u;) plane.
Unfortunately, ordering the data with respect to u; and 14; removes the ordering with
respect to time and one has only a probabilistic relationship to specify the (uj,u5)
dependent part of h; at each point in the plane. The (uj,u3) values for each sample

point are randomly distributed over the (up,u1) plane. This means that one cannot
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simply subtract the expansion (4) from the surface and then expand the remainder in
terms of say (up,up). One has to subtract the (uq,u1) dependence (4) from the
original time-series hj and then interpolate a new surface over the (uj,u2) plane.

Thus, the residual is formed as a time-series

ri (D tu), () (k) = hi(tp) - hi (D (uy(eg) a5 (1))

(6)

and the whole sequence, form triplets — interpolate - fit surface, must be repeated
for each expansion term. The procedure is therefore extremely time-consuming if
there are more than a small number of degrees—of-freedom. The probabilistic
relationship between the variables alluded to above will be discussed in more detail
shortly.

3.2. The Effect of Incorrectly Estimating the Mass Matrix.

As indicated, it is not a simple matter to produce an accurate estimate of the mass
matrix for a structure. This section is concerned with identifying the effects of errors

in the estimated masses. To simplify matters a SDOF system is considered first.

Assuming that m and § have been accurately measured, the true restoring force is

obtained from

f(y,)’) = X - my

If the mass estimate h is in error, the calculated force

fly,y) = x - @y

is also in error. If M - m = Am, one can easily show that
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>

= f - Amy (7a)

or

>

= (f/m)f - (Am/m)x (7b)

Equation (7) shows clearly that f will be inaccurate for two reasons; (i) it will be

scaled by a factor (fi/fm) and (ii) it will be distorted by a ‘'noise’ term, (Am/m)x.

Consider the following example. The SDOF nonlinear system

y + 20y + 104y + 5x109y3 = x(t)

was simulated with x a gaussian noise sequence with RMS value 150.0. In order to
show the effects of a mass error a technique is anticipated from the next chapter.
Briefly, one takes the y = 0, section from the restoring force surface and plots it,
one can then fit least-squares linear and cubic terms to the resulting ‘'static stiffness'
curve. The exact result is clearly f(y) = 104y + 5x109y3. However, if the incorrect
mass value M is used to form the surface, one expects errors in the coefficients for
the reasons given above. The estimated coefficients for various values of m are given
in Table 3.1. Figure 3.1 shows the ‘exact' stiffness curve for i = m = 1.0. Figures

3.2 and 3.3 show the curves obtained for h = 0.1 and i = 10.0 respectively.

It is clear from Table 3.1 that f scales roughly according to the rule

(8)

= P>
212

as far as the stiffness curve is concerned. The damping coefficient estimates taken
from the damping section (y = 0) of the force surface are also shown in Table 3.1.
The scaling behaviour of the damping estimate is not so simple, the reason for this is
not clear, but may be due to the fact that the damping term is small compared to

the ~ (Am/m)x term in (7b).
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The apparent presence of a high degree of noise in Figures 3.2 and 3.3, can be
easily explained in terms of equation (7a). This explanation is specific to the case of
random excitation. However, it extends simply to other forms of forcing. In this

equation the time dependence has effectively been removed

Af(y,y) = -Amy (9)

So the error in the surface at a point (y,y) is proportional to the acceleration, and
the displacement and acceleration are highly correlated as follows. If one neglects the
time dependence as in equation (9), the most one can say about ¥y, given y, is that
considered as random variables they have a joint probabilty distribution P(y,y) i.e.
P(y,y)dydy is the probability that y, is in the range ( y, y + dy ) and at the same
time ¥ is in the interval ( ¥, ¥ + dy ). At a given point q = (yq,yq) the probability
distribution for the acceleration is simply Pq(y) = aP(yq,Y) where o is a normalisation

factor fixed by the condition

§dy aP(yq,9) = 1 (10)

This means that the error in the force surface at the point q is given by

Af(yq.¥q) = -Am.Xg

where Xq is a random variable with probability distribution Pq(y). If y and y were
not correlated with each other Af would simply be a noise term independent of
position. Figures 3.4 and 3.5 show an estimate of the joint probability function P(y,¥).
This was obtained simply by dividing the (y,y) plane into small squares and counting
the number of sample points from the simulation in each square. The figures clearly
show that y and ¥ are in fact anti—correlated, when y is large and positive y is likely
to be large and negative. This is not surprising, for a linear system under sine

excitation the two signals will be proportional to each other. The correlation means
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that Af is position dependent and the coefficient estimates will be overestimated.
Systematic over— or under—estimation of this sort is termed bias. This agrees with the

scaling behaviour shown in (8).

This analysis can be extended directly to MDOF systems where the analogues of (7a)

and (7b) are

,..,

]

-
I

(f) - [Am] (¥}

(F) = [&)[m)-Yf) + [Am][m]-1{x)

3.3. The Effect of Incorrectly Estimating the Modal Matrix.

The best way of illustrating the problem here is by example. The two

degree—of-freedom system

0 R 0 Rl BN | 8 I

was simulated with x a Gaussian noise sequence band-limited from 0 to 200 Hz. The

o X
—

Masri/Caughey procedure was carried out using the modeshape estimate

Figures 6(a) to 6(d) show the effect on the force surface h(l)l(ul,ﬁl) when o is 1.0,
0.9, 0.6 and 0.3 respectively. The correct value for o is 1. There is an apparent
increase in noise on the surfaces as the error in [¢] becomes more serious. There is
a simple explanation for this effect. Consider the system above with o = 0.5. In

normal coordinates {u} = [\,l/]T{y} the equations of motion become
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iy + 200; + 12.6up + 13416u; + 37800uy = gq

X/ /2

iy + 12.6u; + 200; + 37800u; + 30000u; = gq

x/ /2

The equations are not decoupled because of the error in the modal matrix. The

restoring forces are now

hy = 2007 + 12.64y + 13416u; + 37800u,
hy = 12.60; + 20ay + 37800u; + 30000u,

As discussed in the previous section, when the surface hl(l)(ul,ﬁl) is formed, all
information about time is discarded when one assembles the data over the (up,up)
plane. This means that the most one can say about the variation of the (uj,u3)
variables which also contribute to hl(l) is that they have well-defined joint probability
distributions with, say, uj i.e. Pj(uj,up) and Pp(uy,ip). At a fixed point q =
(u1q,i1q) the probability distribution for uj is Piqlup) = oP1(uyq,u2) and that for up
is P2q = BPz(ulq,ﬁz). The constants o and @ are fixed by conditions like (10). It is

now clear that over the point q the restoring force hy value will be

hy = 20u; + 12.6X] + 13416u; + 37800X;

where X; is a random variable with probability distribution function qu(uz) and X is
a random variable with p.d.f Pjq(up). The interpolation procedure therefore sees a
deterministic u; and U; dependent part to h; with a stochastic part superimposed. If
u;, Uy, up and uy are uncorrelated in pairs, the stochastic part will be a noise term
independent of position. In general the variables will be correlated and the coefficients
estimated from the surfaces will be biased. If a residual surface is now obtained it

will be much smoother i.e.

r1(1)(uy,0p) = 12.6u; + 37800u;

only if the coefficients have been correctly identified in the first step. If the estimates
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are wrong one will not remove all the u; and uj dependence and the residual surface

will be noisy also.

There is another serious problem associated with errors in [;]. In using the
transformation matrix [{]T to normal coordinates one will identify the wrong system.

Consider the linear system

IMILYY + [CHy) + [KI{y)} = (x) (11)

The Masri Caughey procedure actually identifies the system

FITMIN. 1Ty + T Ty +

ITIKI]-¥1Tyy = [¥1Tix) (12)

In general, if [{] is not estimated accurately it will not be orthonormal i.e. [{]I[{] #
1. In this case the system specified by equation (12) is not physically equivalent to
that specified by (11). They are not related by a linear transformation of coordinates.
The remedy is almost trivial. If [¢]] is used throughout rather than [¢]T the systems
are equivalent, the change of coordinates is now {u} = [a,i]‘l{y}. There is nothing to
be lost by adopting this modification, inversion of a matrix is a little more expensive
than transposition but the inversion need only be carried out once. If the modal
matrix is accurate then of course [{]~1 = [¢]T. If the estimate is bad the attempt to
decouple the equations using the inverse [1,,6]‘1 will be no worse than using the
transverse [:,!]T. The results of modifying the procedure in this way are illustrated in

the next example.

The same system as in the previous example was simulated. Using the incorrect modal

matrix
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The identification procedure was carried out on the data, first using the [¢1T version

of the procedure and then using the [¢]~! version. Using each of the models found

in turn the results of comparing the predicted displacements with the actual

displacements are shown in Figures 3.7 and 3.8. The slightly modified procedure gives

significantly better results.

3.4. Application of the Procedure to Simulated Systems.

The two degree—of—freedom nonlinear system

FIRSFIRa ER )
) - (3]

was simulated with x(t) a noise sequence with RMS 150.0. The modal matrix for the

underlying linear system is

v

So the equations of motion in normal coordinates are

i + cip + kup + § k3(ug + w)3 = x/»2
Uy + cup + 3kupy + 4 kz(uy + u1)3 = x//2

where ¢ = 20.0, k = 104 and k3 = 5x109. The nonlinear restoring forces are,

hy = ci1 + kup + 4§ k3u13

+ 4 Kk3( 3u12u2 + 3uqup? + up3d ) (13a)
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hy = cup + 3kupy + % k3u23

+ % k3( 3up2uy + 3upug? + uy3) (13b)

The results of applying the identification procedure are illustrated in Figures 3.9 to

3.10. The identification proceeds as follows

(i) Assemble the data for the hl(l)(ul,ﬁl) expansion. The arrangement of data is
shown in Figure 3.9. The reduced data set is shown within the dashed rectangle. The
tesselation and triangulation are formed exactly as for the SDOF systems (Figure
3.10). The TILE package is used to form a CO surface, which is shown in Figure
3.11. Once again, the interpolation appears to be very noisy. The explanation is the
same as before. hy is actually dependent on all four dynamical variables uj, 41, up
and 9y however only u; and u; are ordered for the interpolation. So considering
equation (13b) this means the procedure sees above a given point q = (ujqujg) a

deterministic term
hg = cip + kuy + 3§ k3ug3
and a stochastic term
hg = 4 k3( 3u2Xg + 3uiXg? + X3 )

where Xq is a random variable with probability density function Pq(uz) = aP(ulq,uz).

The joint probability density P is defined as before.

(i) Fit a Chebyshev series to the interpolated surface (Figure 3.12). In this case a
model of order (3,1) was chosen. Then subtract the model from the time data to

form the first residual time-series rq(1).

(iii) Assemble the residual force data over the (uq,uz) plane for the h1(2) expansion.

The distribution of data in this plane is shown in Figure 3.13. It is obvious from this



figure that the u; and uj data are quite strongly correlated. This means that the
estimated coefficients in step (i) will be biased. However, at this stage one can
correct for errors in the u; dependence. One then forms the interpolated surface
(Figure 3.14) and fits a Chebyshev model. In this case the model order is (3,3) and

the model surface is shown in Figure 3.15.

(iv) Carry out steps (i) to (iii) for hy. ( Figures 3.16 to 3.20.)

If one is concerned about the parameter bias one should iterate the above procedure
until one has modelled the data correctly. For example, if one only makes one pass
through the data as above, step (i) will introduce a u131'11 term which is not
corrected for at any subsequent stage. A spurious term of this sort can ruin any
attemp to compare model predictions with actual data. There are two problems here.
(a) Because of the large stochastic term in stage (i) the interpolation will introduce
errors which will propbgate through the procedure in the residual term and cannot be
removed, iteration will not help here. (b) The procedure is already time-consuming
enough. To identify a MDOF system by the methods above can take hours, iteration
could multiply this into days, even if problem (a) does not occur and iteration is

possible.

The final result is a Chebyshev series model of the nonlinear restoring forces {h}. To
check the accuracy of the model the predicted displacements were compared with the
actual displacements. The results are shown in Figures 3.21 and 3.22. Figure 3.21
shows the results if a linear model is used. Figure 3.22 gives the comparison for the
full nonlinear model. The results are significantly better in the latter case as one

would expect.

The analysis was then carried out on a system with a discontinuous nonlinearity; a

three degree of freedom nonlinear system described by the equations of motion,
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Y1 ¥1 2 -1 0 Y1
Yo | +20[ yp | + 104 -1 2 -1}y
¥3 ¥3 0 -1 2 v3

13- 1

The response of the system was simulated with the same input as the previous
example. The nonlinear force f;; was a piecewise linear function with clearance 0.001.

The system is illustrated in Figure 3.23.

The identification procedure was carried out exactly as in the previous example and
the formation of the resulting expansions for hy; and hy are illustrated in Figures 3.24
to 3.32. The restoring force surface for the second normal coordinate is flat because

the modal matrix for the underlying linear system is

1 »n2 1

[yl = 1 2 0 -2

21 1-2 1
Thus the nonlinear force does not appear in the second normal mode. This illustrates
nicely a drawback of the procedure, the change to normal coordinates shuffles the

hysical coordinates so one cannot tell from the h;'s where the nonlinearity might be.
phy i Yy g

The derivation of the model for h3 is not shown as it simply mirrors that for hj.

The coefficents are not given above because unless the models can be translated into
a polynomial model, they are meaningless. In the case of MDOF systems, the algebra
involved in carrying out the exercise would be horrendous. If one is interested in

easily obtaining physical parameters this procedure is not really suitable.

Because of the noise in a surface caused by interaction with other modes, one can no
longer use the option of forming a Cl surface using TILE. This is because two
arbitrarily close points in say, the (uj,u;) plane can have quite large differences in

the force values above them because of the random contibutions from other modes.
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This means that the gradients will be overestimated and the interpolated surface will
contain spurious peaks. This effect is shown in Figures 3.33 and 3.34. This is not just
a problem with TILE. It is difficult to imagine how one could form a C!
interpolation without estimating gradients. How would one find a second order Taylor

approximation to a function without estimating the second derivatives?

3.5. How Useful is the Masri/Caughey Procedure.

The preceeding results indicate that it is possible to implement a reasonably direct
version of the Masri/Caughey procedure practically. The systems studied are computer
simulated, admittedly. However, almost all work on restoring force methods is
restricted in the same way. It is useful to examine the claims made for the procedure
in references (10) and (11). The first claim is that the model is nonparametric. This
is open to discussion. If ordinary polynomials were used rather than Chebyshev
polynomials the method would almost certainly be called parametric. One would
suppose that say, a piecewise linear function could be identified by a truly
nonparametric procedure. At best, one would obtain a polynomial approximation using
this method. Al-Hadid and Wright (18) consider the method to have found a
nonparametric model if the system is polynomial and all terms have been identified,
and a parametric model if a polynomial approximation only is obtained. This seems
sensible, a nonparametric identification would pick a function from a function space.
If the function is polynomial one can specify it exactly with a few parameters. The
function space for cubics for example is four—dimensional. In this case nonparametric

identification and parameter estimation coincide. Perhaps such argument is simply

pedantry.

Secondly, it is claimed that the procedure is applicable to a broad class of systems
with ‘practically arbitrary nonlinearities (including hysteretic types)'. Certainly the
method can identify a large number of nonlinearities. However, systems with memory

are not included. The procedure simply cannot identify multi-valued force surfaces.
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The best one can hope for is to replace the hysteresis loop with an equivalent viscous
damper. One can not obtain information about the shape of the loop for example, by

fitting polynomials in this way.

It is claimed that there is practically no restriction on the type of excitation used.
This is certainly true and constitutes a statement about restoring force methods in
general. The question of input design will be considered in some detail in Chapter 7.
One should be aware that if the restoring force is not polynomial the model obtained
will be sample-dependent. There is an implicit criticism here of the Volterra/Wiener
functional series approach. It is true that if the functional kernels are obtained by
time-domain correlation the input should theoretically be a Gaussian white noise
sequence. However, the work of Gifford (8) indicates that the procedures will tolerate
inputs which depart quite a lot from Gaussian. There has also been a good deal of
work recently on obtaining the Volterra kernels from sine—testing and from impulse

testing. A bibliography can be found in (8).

It is claimed that computer execution time and storage requirements are ‘'minimal’.
This is true to an extent, the comparitive slowness of the present work is due to the
use of an accurate interpolation procedure. One could certainly sacrifice a certain
amount of accuracy and gain a good deal of speed. A very quick surface generating
procedure is described in the next chapter which could be wused to produce an
interpolation which is at best CO. The procedure is said to give a simple visualisation
of the nonlinearity. This is true certainly. However, the better the interpolation, the
better the surface. As before, comparison is made with the functional series approach.
Since Masri and Caughey's original papers a great deal of work has been done. The
higher order kernels can now be obtained very quickly by using nonlinear time-series
methods (9,39). However, storage requirements for higher dimensional kernels are
unavoidably large. The Masri/Caughey procedure requires one to store at any given
time, a surface for each degree of freedom. As they remark, storage requirements are

modest.
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One concludes that the Masri/Caughey procedure has a number of useful features. It
has also a number of drawbacks. The parameters obtained can be biased. The
procedure does not provide confidence limits for the parameters. It is still
time—consuming, as the coefficients are obtained from a double integration. Accuracy
is only ensured by taking a fine enough grid, and this means the integrations take

time.

The next chapters attempt to develop an identification procedure which has all the

useful properties of the Masri/Caughey approach and as few as possible of the

drawbacks.
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Figure 3.5. Contour map of the joint probabilty distribution in

the previous figure.
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Figure 3.6. The effect of using the incorrect modeshape estimate
on a force surface. The example shown is that from

section 3.3.
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the two degree-of-freedom example in section 3.3.

The [¢]T procedure was used here.
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the [\6]'1 procedure was used here.
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mse (k)

MSE (€)

%3/x3

A
k1/k1

Exact Results : k3 = 5.000 e9
kl = 1.000 e4
c = 2,000 el
0.10 0.40 0.70 1.00 1.30 1.60 10.0
0.61 2.08 3.50 5.00 6.46 7.92 48.8
0.20 0.47 0.73 1.00 1.27 1.53 9.00
1.79 1.87 1.94 2.00 2.08 2.15 4.14
84.9 20.6 2.24 0.00 0.69 1.83 10.0
98.1 94.8 83.2 0.10 81.1 94.1 99.9
0.12 0.42 0.70 1.00 1.29 1.58 9.76
0.20 0.47 0.73 1.00 1.27 1.53 9.00
0.90 0.94 0.97 1.00 1.04 1.08 2.08
Table 3.1. Dependence of the restoring force coefficients on the

mass estimate for the SDOF Duffing oscillator considered

in the text.
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CHAPTER 4

LEAST-SQUARES PARAMETER ESTIMATION - SDOF SYSTEMS

There are a number of problems associated with the Masri/Caughey procedure. (i) It
is time—consuming, (ii) there are many routes by which errors can enter the
procedure, (iii) the restoring forces are expanded in terms of Chebyshev polynomials
which rather obscures the physical meaning of the parameters, and (iv) one cannot
obtain confidence limits for the parameters obtained. Direct least-squares parameter
estimation can be used to overcome all of these problems. Parameter estimation has
been applied successfully in the study of difference equations for a number of years
now, both in the linear case (40) and the nonlinear case (41). However, it appears to
have seen little use in the study of continuous systems; this is perhaps surprising as it

is equally useful for this purpose as the arguments of this chapter will show.

4.1. The Normal Equations and Some Simple Estimation Theory.

As the objective of this work is to find the optimal procedure for identifying
parameters for systems, having decided to use direct least-squares it is important to
examine carefully the different algorithms which can be used. This section and those

which follow consider the four least-squares methods which are arguably the most

commonly used.

As an example, consider a SDOF system which is known to have the form

my + ky3 = x(t)

In order to identify the system fully one needs to estimate the values of the

coefficients m and k. If the force x, displacement y and acceleration y are sampled
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at N instants tj, one obtains N equations .
myy + ky;3 = x5 = x(ty)

where i = 1,...,N. This set of equations can be written in matrix form as

3
Y1 N [m] - [ x
Y2 2 k x2
N YN XN

The matrix on the LHS containing the functions of the output data is called the
design matrix and is denoted by [A]. (m,k)T is the parameter vector {8}. (x1,....xN)T

is {x} the input vector. With this notation the equation directly above is

[A)J(B) = (x) (1)

In general, the measured quantities will be corrupted by noise. If one assumes that all

noise terms can be transferred to the input, equation (1) becomes
[AJ(B) + () = (x) (2)

where {{} is the vector of residuals, {; is the difference between LHS and RHS in
the ith equation of motion, due to measurement errors. The assumption that noise can
be transferred to the input can be justified in the case of linear systems ( in the case
of difference equations it is usually transferred to the output ); it cannot be justified
for nonlinear systems. However, correctly modelling the noise process is a complicated
business and for high signal to noise ratios, equation (2) should hold quite well. For
this reason the form (2) is adopted. Because the system of equations is
overdetermined and [A] is not square, equation (2) cannot be inverted directly to give
the parameters {S8}. If one uses a set of estimated parameters {B} to predict the input

{8} from a given set of output data, one obtains
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[A](B} = (&}

A measure of the accuracy of the estimate {8} is given by the function

1B = ¢ (x} - (2) )T (x} - ()))

which is simply the sum of the squared error in x; summed over the sampling

instants. Expanding this equation gives

1B = C(x) - [AMAHTC (x) - [A1(B) )

= x3Tx) - (BITIAITIx) - (x)[A](B)
+ (BITIAIT(A1(B)

It is a reasonable assumption that, even in the presence of noise, this expression will
be minimised if the estimated parameters are equal to the true parameters {g}.

Taking the derivative of the equation above with respect to the estimate {23} gives

SIIE)] = -[A1T(x) + [A]T[A](B)
T

For the purposes of calculus {B} and {Zé}T can be considered as independent variables
in much the same way that a complex variable z and it's conjugate z* can be

considered independent. If I is a minimum the expession above vanishes, giving
(A1T(Al(B) = [A1Tix) (3)

These equations are called the normal equations. The matrix [A]T[A] is now square

and can be inverted ( if the inverse exists) to give the least-squared—error or simply

least—-squares parameter estimate

By = ( [AIT[A) )-1[A)T(x) (4)
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The method is completely general; consider the SDOF system

1]

NI ICR N N (5)

i

where the basis function 6i(y,y,y) belongs to the parameter @;. In the example
above, 01(y.y.¥) = ¥ and 67(y,y.¥) = y3 One can form the design matrix as before,

if one has P parameters

[A] = 01(1) ... 6p(D)
01(2) ... 6p(2)
BI(N) ... 6p(N)
And Ajj = 60 = Oj(yi,yi,yi). The design equations are obtained as before
[Al{B) + (5) = (x)

except now the general matrix [A] is N x P, {f} is P x 1 and {x} is N x

1.

An important question at this point is whether the parameter estimate is accurate.
The reality of the situation is that if one had used a different set of sampled data
one would have probably obtained a slightly different estimate. This means that the
estimate {23} is actually a random sample from a population of possible estimates. In
this case, the strongest condition one could hope for is that the expected value of the
estimates E({fi}) should be equal to the true parameters. The bias of an estimator is

defined as

b({(B)) = EW(B)) - (B)

and the expectation is taken over all possible sets of sampled data. Clearly b({é}) =0

for an accurate or unbiased estimator. The basic elements of estimation theory
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outlined here are presented essentially as they are in (42). For the least-squares
estimator above, a sufficient condition for obtaining an unbiased estimate is that the
residual sequence {; should be a zero-mean white gaussian noise sequence uncorrelated

with the input x;.

Given that the estimates {fi} are distributed randomly about the true parameters ( if
the estimator is unbiased ), one can try to obtain the variance of the distribution.
This gives one information about the possible spread in values of the estimates. The

covariance matrix is defined as

CUB)) = E[ (B - BUB - (8NHT ) (6)

As E({fi}) = {B} for an unbiased estimator, the diagonal entries of C are the

variances of the parameters. Now,

¢ [A)T[A] H)-1[A1T(x)

o)
1

substituting

(x) [A1{B) + (%)
from (2) gives
(B)y = ( [A)T[A] )-1[A]T ( [A]1(B) + (£} )

= (B + ( [A)T(A] )-1[A]T()

or

By - By = ( [A)T[A) H-L[A) (s

substituting this expression into equation (6) gives
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cgy = E[L (AITAD AT (N TIA)C (A1T(AD T )
The residuals are the only stochastic variables in this expression, therefore
C(1B)) = ¢ [MTAD-MAIT.EL (511(1T ). [A1( [A)T[A]) !
If one assumes that the residuals at different sampling instants are uncorrelated with

each other i.e. E(f;¢ j) = 0 if i#j, and also that the residual signal is weakly

stationary in that it's variance 0;2 is independent of the sampling instant, then
E[ 51T ) = op2[y]

where [IN]) is the N x N unit matrix. Substituting this into the previous equation

gives the final result
cCBN = op2 ( (A)T[A) )71 Q)

In particular, the standard deviation for the estimate of the ith parameter Bi is
of = op.[ ([AIT(AD-1g4 )4 (8)

If the parameter estimates are distributed with a Gaussian distribution, standard

probability theory gives a 95% probability that the true parameters are in the range

{B} ¢ 1.96{0)}

A practical problem associated with this method is that the different columns in [A]
may vary greatly in size. If one returns to the original (y,y3) example, one can see
that if the y data has variance 10.0, the y3 data will have variance 1000.0 and the

resulting [A] matrix is, up to orders of magnitude
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102 104
[ 104 106 ]
and Aq11/App is 10~4. Matrices which have elements greatly varying in size in this
manner are difficult to invert, they tend to be ill-conditioned. The solution to this
problem is to scale the data before one enters it into the design matrix. All the
elements of each column are divided by the standard deviation of the column. This
gives a design matrix with all elements the same order of magnitude. After the

parameter estimation step one can recover the physical parameters by simply rescaling.

Unfortunately, even after scaling, the normal equations approach can still fail if the
matrix [A]T[A] is singular. This situation occurs if for example, the columns of [A]
are linearly dependent. However, there are other approaches to least—squares
estimation which can diagnose such problems and deal with them. Two such methods

are described in the following sections.

4.2, The Orthogonal Estimator.

The othogonal solution of least-squares problems has been around for some time now
(43). The particular approach described here is that of Billings and his associates who
have used it with great success in the study of nonlinear difference equation models
of systems (41)(44)(45). As this particular approach is arguably less familiar than other
least—squares schemes, it is described in detail here. As before one starts with the

basic design equations

[Al{B} = (x} (2)

neglecting noise for the moment. It is useful to rewrite this in the form
(01161 + (62162 + ... + (0p)Bp = (x) (9
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where the vector {6;} is the ith column of [A]. This vector is formed from the basis
function 6; values at each sampling instant. Clearly [A] is ( {01},...,{0p} ) ( one can
regard a matrix as a vector of vectors). So {x} is a linear superposition of the
column vectors of [A]. These vectors lie in a N dimensional vector space Vy where
N is the number of samples. However, there are only P of them so at most they
span a P-dimensional subspace of V). This subspace is called the range of [A].
Clearly, the vector {x} need not lie in this subspace; only if it does will the equations
(2) have a solution. If {x} does not lie in the range of [A] the equations have no
solution. However, one can find the parameters {B} which are mapped to the closest
point in the range from {x}; these parameters are the least—squares estimates. If the
columns of [A] are linearly dependent the dimension of the range will be less than P
and the solution if it exists will not be unique. This is the geometrical background to
the problem, the utility of the definitions given here will be demonstrated in the

remainder of this section and in that which follows.

Suppose that there exists a P x P matrix [T] such that [T)71[T) = 1 and that
W] = [A][T)-! (10)

is column orthogonal i.e. if [W] = ( {Wl},...,{Wp} ) then

Wi, W = 8 IWin (11)

J

where <u,v> is the scalar product of the vectors {u} and {v}, defined by
N
<u,v> = <v,w> = ¥ ujvj

and Il is the length of the vector {u}, tun = <uw,u>i} 5 is the Kr ker delta
onecker .

For two non-zero vectors, this product is zero if gapq only if 1
y 1t the vectors are

orthogonal; one can easily show that
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<u,v> = i Ilvll cos B
where 8 is the angle between the vectors.
If one defines the auxilary parameters {g} by

{g} = [T}B) (12)
then one has,

[Alg) = [(AlTINTIEY - (VI8 = g (13)
or, in terms of the columns of [W]

(Wilgg + ... + (Wylgj + ... + (Wp)8p = (x)
Taking the scalar product of this equation with {Wj} gives

W1, Wj>gy + ...+ W Wt F <WP’WJ'>3:»= <x,Wj>

and using the orthogonality relation (11) gives

<Wj,x> = <Wi’x> (14)

<Wj’wj> HWJH

&j =

and one can obtain the auxilary parameters one at a time, unlike the situation using

the normal equations where the parameters are obtained en bloc.
The question one is faced with now is how to construct [T]. The first step is to

obtain the orthogonal basis {W},...,{Wp} from {01},...{0p}. This can be done using

the following simple procedure.
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First, define {Wq} = {61}. The rest of the basis is obtained sequentially. To form

{W3} one takes {67} and subtracts from it the component parallel to {Wq} i.e.

_ <W1,02>.{w1}

{(Wa)} = ({697}
<Wi,Wi>

Taking the scalar product of this expression with {W7} gives

<Wi,00> - <w1s02>.<W1,W1>

<Wi,Wp> =
<Wi,W1>

which is zero as required. Next, one forms {W3} by subtracting from {63}

components parallel to {W3} and {Wq} etc. The result is an orthogonal set. One can

write the procedure in matrix form

wi(l) ... Wp(l) 61(1) ... 8p(1)

W1(2) .. Wp(z) 01(2) e ﬂp(z)

Wi(N) ... Wp(N) 81 (N) ... OP(N)
wi(l) ... Wp(l) 0 a2 o13 ... Q1p
w1 (2) ... Wp(2) 0 0 @23 ... 0Qp
Wi(N) ... Wp(N) 0 0 o ... 0

where o4 = <Wi,0j>/<Wi,Wi>. If the matrix with entries o above the diagonal

and zeroes elsewhere is denoted by [o], the equation above can be written in matrix

form.

(Wl = [A] - [W][x}

or

(W.C [1p]) + [e] ) = [A]

which finally gives us the [T] matrix by comparing the last equation with (10) i.e.

[T] = [1p] + [e] or



[T] = 1 @12 @13 ... Qp
0 1 23 ... @2p
0 0 o ... 1

Computing the inverse of [T] is straightforward as the matrix is already
upper-triangular. One simply carries out the backsubstitution part of the Gaussian
elimination algorithm (33). If the elements of [T]~] are labelled tjj then one calulates

the jth column from the equations

1 012 13 ... o1p tlj 0
0 1 a3 ... ®2p t2j .
: . , - 1
o 0 o0 ... 1 tp] 0

where the 1 on the RHS is in the jth position. Backsubstitution gives
tij = 0 if 1>

tij = 1 if i = J

J
tij = - =;

K +lajk tkj if i<

Having constructed the inverse of [T], one can now recover the physical parameters

from the auxilary parameters, using

By = [11-1(g) (15)
This is all rather complicated and begs the question; what is wrong with the normal
equations? Consider again equation (9). The dimension of the range of [A] is called
the rank r_If the column vectors are linearly dependent, the rank of A is clearly
less than P, r = P — n for some integer n. n is called the nullity of [A]. Now, a
basic theorem of linear algebra states that the rank of [A]T[A] is the same as that of
[A]. A further theorem states that if the rank of a P x P matrix is less than P, the

matrix is singular (46). In this case, one cannot solve the normal equations.
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Unfortunately things are seldom as clear cut as this. The vectors {#j} may be close to
linear dependence in which case [A]T[A] will be close to singular. Under these
circumstances roundoff errors can become very important. In this case the normal
equations are soluble and one will obtain a set of parameters {é}; however, they will
typically have very large magnitudes so that the model depends on very delicate
cancellations between them in order to reproduce the measured data {x}. This is

clearly not very encouraging if one wishes to use the model for forecasting.

A very simple argument serves to justify these statements. Suppose one considers the

normal equations where the RHS has a small error {6x}, perhaps due to roundoff

[A)TIAY(BY = (AT ( (x) + (6x) )

The error in the estimated parameters is then ([A]T[A])'l{ax} which can be

arbitrarily large if [A]T[A] is close to singularity.

The orthogonal estimator allows one to overcome this problem. If the {6;} are linearly
dependent, the procedure informs one in the following way. Suppose {ej} depends on
{6]-_1},...,{01} which are linearly independent. As the subspace spanned by
{Wj_l},...,{Wl} is the same as that spanned by {ej_l},...,{ol}, {0]-} is linearly
dependent on the {W} vectors so subtracting off components parallel to them will
eventually produce the zero-vector, i.e. {Wj} = {0} and ||Wj|| = 0. So if one finds a
{Wj} with length zero at some stage, the data vectors are linearly dependent and one
should remove {Oj} and the corresponding parameter from the calculation. If the
procedure is allowed to continue unchecked there will be a division by zero at the

next stage. So orthogonal estimation allows one to diagnose linear dependence.

It still remains to show why (14) is a least—squares estimator. Consider again the

equations

{x) = [A]{B} + (£)
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If one has found the correct structural form for the equations of motion, then {x}
will lie inside the range of [A]. If one has missed out some terms, or the
measurements are noisy, the residual vector {{} will effectively push {x} outside the
range (Figure 4.1). If one thinks of the vectors as position vectors, the vectors can be
identified with points in the space V). In this case the distance between the point
specified by the model and that specified by the data {x} is the length of the residual

vector {{} which is 1.

Now, the smallest distance between the point {x} and the hyperplane spanned by the
{W;} which is the range, is the perpendicular distance. So the least-squares condition,
which is that {1 is a minimum, is satisfied if the vector {{} is perpendicular to the

range. It is sufficient for this that {{} be perpendicular to all the {W;}. i.e.
<, Wi> = 0 Vi
i.e. ( putting in the {}'s for once for clarity )
< {x} - Zg_j{Wj} , (Wi} > =0
J

> = 0

<x,Wi> - Z 8 <Wi,WJ

and orthogonality (11) gives

gj = <x,Wl->
<Wj'wj>

which is equation (9) as required.

This approach applies just as well if the design matrix [A] is used rather than the

auxilary [W]. In this case, the least-squares condition is

<f,0i> = 0 Vi
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i.e

P
< - i (035} , {(65) > = 0
{x) jZl 6J J 1

<Xx,0i;> =

1~

Bj <0i,0j>

j=1

writing the 6 terms as components of [A] and expanding the scalar products gives

1% 5"]

S x A
% . =
K k ki

=1 J

N
g Pi Q2 Mikkig )

or in matrix form,
()T = [AIT[AL(B)
and the normal equations are recovered as one might expect.

The final task is the evaluation of the covariance matrix. Clearly one could use
equation (7); however, this requires a matrix inversion. One can obtain it directly
from the auxilary model. As [W] is column orthogonal, [W]T[W] is diagonal. A
moments thought shows that the ith diagonal element is IIWillz. These lengths have
already been calculated during the construction of the orthogonal basis. This means
that ([W]T[W])™! is also diagonal with ith element IIWiII"z. So, for practically no

extra effort one has the covariance matrix for the auxilary parameters
[Clg = o2 ( (w1T[w) )1

As {g} and {B} are related by the linear transformation {g} = [T]{B}, the covariance

matrix is (8)

(€] = (1171 [ClglT]
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The orthogonal estimator has a number of advantages. The auxilary parameters can be
obtained one at a time. As Billings and Tsang (45) remark, the estimator allows a
P-dimensional estimation problem to be reduced to P one—dimensional ones. This
means that if one needs to add more terms to the model, one need not re—estimate
those parameters already obtained, only the transformation from {g} to {B} needs to
be re-done. If one is dealing properly with noise the deterministic terms and the
noise terms can be uncoupled by this procedure, this gives a very clear indication that
the parameter estimates will be unbiased. The algorithm allows one to pinpoint exactly
where linear dependence is causing problems. A considerably more detailed discussion

of the relevant theory can be found in (44).

4.3. Singular Value Decomposition.

The discussion in this section relies fairly heavily on (33) and chapter 9 of (47).

A fairly deep theorem of linear algebra states that if one has a M x N matrix [A]

and M > N, then [A] can be decomposed as follows
[A] = [U](3)1(VIT (16)

where [U] is a M x N column orthonormal matrix such that [U]T[U] = 1, 5] =

diag(sl,...,sp) is a N x N diagonal matrix and [V] is a N x N column orthonormal

matrix i.e [V]T[V] =1. As [V] is square it is also row orthonormal [V][V]T = 1.

Consider the case when [A] is square. [U] is now square and consequently row

orthonormal. The inverse of [A] is easily seen to be

(al-1 = (vI(s)-tuT (17)

and [§]1 is diag(sl‘l,...,sp"l). It is therefore obvious that [A] can only be singular
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if one of the s; is equal to zero. The s; are called the singular values of [A]. The
number of non-zero singular values is equal to the rank of [A]. Problems can also
occur if one of the singular values is very small, in this case it's value may be
composed mainly of roundoff errors. This would indicate that the columns are close
to linear dependence. In order to diagnose this problem one can define the condition
number for the matrix [A] which is the largest singular 