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ABSTRACT

The work described in this thesis is concerned with procedures for the identification

of nonlinearity in structural dynamics. It begins with a diagnostic method which uses

the Hubert transform for detecting nonlinearity and describes the neccessary conditions

for obtaining a valid Hubert transform. The transform is shown to be incapable of

producing a model with predictive power. A method based on the identification of

nonlinear restoring forces is adopted for extracting a nonlinear model. The method is

critically examined; various caveats, modifications and improvements are obtained. The

method is demonstrated on time data obtained from computer simulations. It is shown

that a parameter estimation approach to restoring force identification based on direct

least—squares estimation theory is a fast and accurate procedure. In addition, this

approach allows one to obtain the equations of motion for a multi—degree—of—freedom

system even if the system is only excited at one point.

The data processing methods for the restoring force identification including integration

and differentiation of sampled time data are developed and discussed in some detail.

A comparitive study is made of several of the most well—known least—squares

estimation procedures and the direct least —squares approach is applied to data from

several experiments where it is shown to correctly identify nonlinearity in both single—

and multi—degree--of—freedom systems.

Finally, using both simulated and experimental data, it is shown that the recursive

least—squares algorithm modified by the inclusion of a data forgetting factor can be

used to identify time—dependent structural parameters.
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INTRODUCTION

This work is concerned with reporting an attempt to develop a method of identifying

an arbitrary nonlinear structural dynamical system using measured time data from the

system. Before proceeding, some of the terms used above require explanation.

The term structural dynamical system or simply structural system shall be used

throughout to refer to a system whose dynamics are governed by Newton's second

law. In the case of a Single Degree—Of—Freedom (SDOF) system, this means that the

dynamics are entirely captured by the equation of motion

my + f(y,')	 x(t)

Here, the system is one where the total mass m is concentrated at one point. This

mass is always assumed to be independent of time. The mass moves in such a way

that when an external force x(t) is applied the mass has acceleration y(t), velocity

'(t) and displacement y(t) at time t. These quantities are related via the equation

above. The term f(y,'), a function of velocity and displacement, is a generic internal

or restoring force which returns the system to equilibrium when disturbed. If the

function f(y,') is linear in it's arguments i.e.

f(y,T)	 CST + ky

for some constants c and k, then the system is said to be linear. If f(y,') depends on

any products of variables higher than first order the system is nonlinear. A multi

degree—of—freedom system (MDOF) is specified by more than one equation of motion.

A system which requires N equations
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m1.y1+f1(y1,Sr1,y2,2,...,yN,YN)	 x1(t)

mN.yN+fN(yl,yl,y2,y2,...,yN,yN)	 xN(t)

is said to have N degrees—of—freedom. As before, such a system is nonlinear if any

products of variables higher than first order appear in the restoring force functions

•Jr.. In general, systems can have an infinite number of degrees of freedom. It is

assumed in this work that any system can be accurately modelled by one with a finite

number of degrees—of—freedom. The ultimate problem of identification is to determine

the equations of motion of this model or equivalently the mass m and the restoring

force functions f. A less ambitious problem is simply to determine if a system is

linear or not.

The reason why one should be concerned about linearity, is that nonlinear systems

can exhibit very complex behaviour which linear systems cannot. The most spectacular

examples of this can be found in the literature relating to chaotic systems (1); in this

case one can excite a system with a periodic external force x(t) and observe an

apparently random response y(t). A linear system always responds to a periodic

excitation with a periodic output at the same frequency. At a less exotic level, but no

less important for that; the stability theory of linear systems is well understood, in

direct contrast to that for nonlinear systems (2). Consequently if one is attemping to

predict the behaviour of a nonlinear structure with a linear model, one might obtain

results which are seriously in error.

Arguably the simplest test for linearity is to look for violations of the principle of

superposition. This can be stated as follows; given that a system responds to an input

x1 (t) with an output y1 (t), and to x2(t) with y2(t), superposition is observed if and

only if the input ax1 (t) + bx2(t) provokes the response ay1 (t) + by2(t) for all

contstants a and b ( with appropriate initial conditions). If and only if superposition is

observed for all possible inputs x 1 (t) and x2(t), can the system be defined as linear.
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Clearly, this is of limited use experimentally, one can only carry out a finite number

of experiments.

If one measures the Frequency Response Function (FRF) for a system one can make

use of the fact that the form of the FRF has a well—known mathematical form which

is independent of the level of excitation for a linear system. Attempts have been

made to characterise nonlinearities from observations of how much the FRFs depart

from this form as the level of forcing is increased ((3) and the references therein).

A more sophisticated diagnostic tool is provided by the Hilbert transform ((4) and

references therein). This is essentially an analytic relationship between the real and

imaginary parts of the FRF for a linear system which does not hold for most

common nonlinear systems. The Hubert transform approach extends naturally to

MDOF systems and can allow one to associate the nonlinearity with particular modes

of vibration of the system (5). Unfortunately, the procedure only gives qualitative

information about the type of nonlinearity.

The Volterra/Wiener functional series approach to identification (6) is considerably

more sophisticated. The curve—fitting procedures of classical modal analysis (7) where

parameters are extracted from the linear FRF, can be extended to nonlinear systems

by fitting surfaces or hypersurfaces to higher order frequency response functions (8).

By this method one can extract the coefficients of nonlinear terms in the equations of

motion. At the moment use of these methods is restricted by the fact that the higher

order FRFs require a great deal of storage space and are difficult to interpret.

Previous criticisms based on the computation time required have been answered by

recent work which allows the higher order FRFs to be calculated very quickly using

the NARMAX time—series methods (9) which themselves provide a very powerful

identification technique as they allow one to construct a nonlinear difference equation

model of a system.

Arguably the most general methods of identification are the restoring force methods
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which, in principle, allow one to determine the form of the internal forces and hence

the equations of motion of the system ( or some appropriate finite order

approximation). The raw material for the procedures are samples of measured time

data x(t), y(t), '(t) and y(t) obtained from the system. The first appearance of an

approach of this type is in the work of Masri and Caughey (10). Their method allows

one to represent the force f(y,y) as a double expansion in Chebyshev polynomials in

the variables y and ' which can be then plotted as a surface over the phase plane.

This gives a direct visual representation of the type of nonlinearity present. In

subsequent papers the authors and their collaborators extended the method to MDOF

systems (11)(12) by expressing the forces f1 to N as sets of double Chebyshev

expansions. The expansion variables used were the normal coordinates for the system

which meant that an estimate of the modal matrix [1'] was required. As in the SDOF

case, the restoring force expansions can be plotted as surfaces. Very little

experimental data was presented in support of their method, the majority of examples

being computer simulations. In their earlier papers it is assumed that the mass matrix

for the system is known, the more recent work is concerned with estimating the mass

matrix from the measured time data (13).

Essentially the same approach based on polynomial expansion rather than Chebyshev

series was obtained independently by Crawley, O'Donnell and Aubert (14)(15) and

christened the 'force —state mapping' technique. Direct least—squares techniques are used

on the measured time data to determine the coefficients in the expansion. As before,

the restoring force can be represented by a surface over the phase plane. Although

their work is restricted to SDOF systems they do present extremely careful

experimental verification of the utility of their procedure.

Yang and Ibrahim later used least—squares methods to identify MDOF systems (16).

By exploiting the symmetry of the system parameter matrices, they were able to

determine the equations of motion for a single—input—multi—output (SIMO) system by

using only the measured outputs together with an estimate of the total mass of the

system. Only simulated systems were considered. Shye and Richardson (17) later made
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use of symmetry in the same way. However, their work was based on measured

freqency response functions and restricted to linear systems.

Recent work by Al—Hadid and Wright (18)(19) has concentrated on direct least—squares

methods. They show using computer simulations that polynomial expansions are

superior to Chebyshev expansions. A particular form for the system model is used

which not only allows one to determine the type of nonlinearity present but also

indicates the location of the nonlinear element within a lumped parameter model. An

experimental study of a two degree—of—freedom system is presented. The thesis of

Al—Hadid (20) presents a novel technique for determining the system mass matrix.

The restoring force surfaces are shown to be obtainable by an optimal control

technique in the work of Lo, Hammond and Seager—Smith (21). This paper is unique

in it's consideration of the identification of a class of hysteretic systems. In the thesis

of Lo (22), the techniques are applied experimentally in a study of a class of

vibration isolators. In their most recent work (23), the optimal control approach

appears to have been discarded in favour of a direct least—squares approach.

A group of researchers from Leuven, Mertens et.al. have presented a method of

obtaining the damping or stiffness curves for a nonlinear SDOF system which they

call the 'complex stiffness method' (24). The method appears to be restricted to

SDOF systems. Another limitation is that nonlinear cross —terms i.e. y.' cannot be

accounted for.

The direct least—squares method has also been implemented in the frequency domain

by Hunter et.al. (25). An experimental study of a two degree—of—freedom system is

presented.

The aim of the present work was to develop a practical identification procedure for

nonlinear systems based on the restoring force methods. Chapter 1 introduces the

Hubert transform and describes how one can use it to diagnose nonlinearity as a first
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step in any attempt to identify a system. It is shown that one must take the

asymptotic behaviour of the FRF into account if one wishes to obtain unambiguous

results. The Masri/Caughey procedure is introduced in Chapters 2 and 3. The restoring

force surfaces are obtained using an improved interpolation scheme which can produce

a differentiable surface. Various caveats, modifications and improvements are described.

The use of the procedure is demonstated on a number of simulated systems both

SDOF and MDOF. Chapters 4 and 5 develop the theory for direct least—squares

identification of a general lumped—parameter nonlinear system. Again, the approach is

demonstrated on a number of simulated systems. The problems of data processing and

design, of experiments are addressed in Chapters 6 and 7. In particular, as one would

measure y(t) in general, and integrate to obtain r(t) and y(t), a comparitive study is

made of various numerical differentiation and integration procedures. Chapters 8 and 9

contain experimental studies of both SDOF and MDOF nonlinear systems. Comparisons

are made with theoretical estimates of the system parameters. Chapter 10 describes a

method of determining system parameters which vary with time. The procedure is

applied to a number of simulated systems with time—dependent stiffnesses and also to

experimental data. Finally Chapter 11 presents conclusions and some suggestions for

further work.
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CHAPTER 1

THE HILBERT TRANSFORM AND ASYMPTOTIC BEHAVIOUR OF

FREQUENCY RESPONSE FUNCTIONS

Before one attempts to identify a system in detail, it is useful to have a procedure

which can simply determine if the system is linear or nonlinear. Given this

information one can decide how to proceed and model the system. Such a diagnostic

tool is provided by the Hilbert transform.

1.1. Background.

The Hilbert Transform is an integral transform defined by

zi	 dii F(f2)	 (1)
hr

which has been used for some time now as a diagnostic tool in the identification of

nonlinear systems (4). The transform is simply a map which carries one function into

another. Unlike the Fourier transform which maps functions in the 'time—domain' to

functions in the 'frequency—domain' and vice—versa, the image of a function under the

Hilbert transform remains in the same domain. The map actually reduces to the

identity on a particular subclass of functions. The reason for the utility of the Hilbert

transform in dynamics lies in the fact that the Frequency Response Functions ( FRFs)

of linear systems fall inside this subclass.

The FRF for a system can be defined as follows; if one excites a system with a

harmonic force X.cos(ct), one will observe in the response a component at the same

frequency Y.cos(t + p). The response at any given forcing frequency is therefore
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specified by the phase lag p(o) together with the amplitude gain factor Y(oi)IX(c) =

> 0. The gain and phase can be regarded as the polar representation of a

function taking values in the plane. One can equally well think of such a function as

taking values in the Argand diagram. The response can therefore be specified by a

complex function H()	 Hr(ü)) + iH(c) such that

Hr( c ))	 =	 {Y()/X).cos(,(c))

=	 (Y(c)/X}.sin(çc'(o))

It is not difficult to show that for a linear system, the FRF is the same function of

frequency o. as the transfer function defined by

Transfer function	 Fourier transform of output signal
Fourier transform of input signal

Now, because the Hilbert transform operator reduces to the identity if F() is the

FRF of a linear system,

F(o) = -I	 dfl F(L	 (2)
fir

The reason for this result will be shown later. If F(cz) is the FRF of a nonlinear

system, equation (2) need not hold, the Hilbert transform of F() need not be the

same function as F(). The usefulness of the transform is greatly increased by the

fact that equation (2) does not appear to hold for systems containing the most

commonly occuring types of nonlinearity encountered in structural dynamics. For

example, systems with piecewise linear or polynomial stiffness, or systems with

polynomial damping or Coulomb friction (5).

A number of examples will serve to illustrate the sort of distortions which occur when

one uses the Hilbert transform defined by equation (I) on the FRF of a nonlinear

system. The method used to determine the transform in the examples is the so-called
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frequency-domain method, where one simply discretises the integral (1) to obtain

-&L)	 F(2j)	 (3)
ill J=	 [lj - (J)j

so the measurements of the FRF are required at a number of equally spaced

frequency points o where i = -n,. . . ,+n. Details of how one evaluates the integral

including how one deals with the pole and how one removes the negative frequency

part of the range are given in (5).

The FRFs for the examples which follow are obtained by simulating the systems using

a fourth-order Runge-Kutta procedure. For each frequency uj, the system is excited

with a force X.sin(t). The output from the simulation Y .sin(o t + cc) is examined

and the amplitude Y(u) and phase p() are obtained. The frequency response

function amplitude and phase, Y(u)/X and c(c) are now known at . Other methods

of obtaining the FRF i.e from random excitation or impulse testing can be shown to

be sub-optimal for carrying out the Hubert transform test (26).

Example (i).	 The FRF for the Single Degree-of-Freedom (SDOF) linear system

governed by the equation of motion,

y + 20Sr + 104 y	 x(t)

was obtained. The FRF and it's Hubert transform are displayed in Figure 1 .1. The

Nyquist plot i.e. the plot of the FRF in the Argand diagram, for the same data is

shown in Figure 1.2. (In general, the Nyquist plot for the FRF of a linear system

will be an ellipse. However, the following plots are all scaled so that they appear to

be circular.) The two functions overlay almost perfectly. There is some difference at

high frequencies; this is the result of approximating (1) by (3). The integral has an

infinite range, the summation only considers data on the truncated range 	 to
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Example (ii). In this case a Duffing oscillator, with the equation of motion,

y + 20	 + 104 y + 5x109 y3 = x(t)

was used. The system was excited with the amplitude X equal to 1.0. At lower levels

of excitation the system essentially behaved as if it were linear. The FRF obtained is

shown in Figure 1 .3 together with it's Hilbert transform. The transform is shifted to

the right of the FRF near the resonance. This shift is characteristic of systems with

hardening stiffnesses. The distortion is shown most clearly in the Nyquist plane (Figure

1.4). The circle is rotated clockwise and is elongated to form an ellipse. One can see

that the FRF itself suffers no distortion at this level of excitation, it still looks like

that of a linear system. One concludes that the Hubert transform is quite a sensitive

indicator of nonlinearity. At higher levels of excitation, X = 5.0, the Duffing oscillator

exhibits a jump phenomenon. This is illustrated in Figure 1 .5 which shows the FRF

and Hubert transform at a high level of excitation. In this case one can deduce that

the system is nonlinear from looking at the grossly distorted FRF. The Hubert

transform is still right—shifted. The characteristic clockwise rotation in the Nyquist

plane is shown in Figure 1 .6.

Example (iii). In this case the sign of the cubic term in the last example is changed

so that the system now represents one with a softening stiffness nonlinearity i.e.

y + 20' + 104 y - 5x109 y3 = x(t)

This system becomes unstable at high levels of excitation when the cubic part of the

restoring force becomes dominant and drives the system away from the equilibrium. A

level was chosen which gave an indication of nonlinearity and also allowed the system

output to remain bounded. The FRF obtained and it's Hubert transform are shown in

Figure 1.7. 1n this case the transform is left—shifted, this is characteristic of softening

systems. Some distortion of the FRF is noticeable in this case. If one considers the

Nyquist plot for the FRF (Figure 1 .8) one observes that the transform of the FRF
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'circle' is elongated as before, but rotated anti-clockwise this time.

Example (iv). The FRF Y1 1X1 is obtained for the linear two degree-of-freedom

system governed by the equations of motion,

I Y1 1 + 201	 + iø4I 2 -1	 i 1 = I x1 1
{ Y2 J	 I Y2 J	 [-1 2 J[ Y2 J	 [0

It is displayed in Figure 1 .9, together with it's Hilbert transform. The Nyquist plot is

given in Figure 1.10. As before, the overlay is nearly perfect. This is an illustration

that the diagnostic method extends straightforwardly to MDOF systems.

These examples demonstrate the utility of the Hubert transform as a diagnostic tool.

It is unfortunate but the transform does not seem to be able to give more than gross

qualitative information about the type of nonlinearity present. This appears to be

because the transform is only sensitive to the position of the poles of the FRF in a

fairly coarse way. It is also sensitive to the high-frequency behaviour of the FRF.

These remarks will be justified in subsequent sections of this chapter as the basic

theory is developed.

1.2. The Theory of the Hilbert Transform.

It can be argued that the Hubert transform arises most naturally in the study of

analytic functions of a complex variable. If one adopts this approach, the starting

point is Cauchy's Theorem (27), which states: given a function F : C -* C and a

simple closed contour C such that F is analytic on C and inside C, then

LId1 F(1l) -0
	

(4)
2iri	 Il - 0)

if and only if o lies outside C. The basic derivation of the Hubert transform is well

known. However, it is included here as each step will be considered in reverse order
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in section 6 when Fourier transform conventions are discussed. Before continuing,

information is needed about the value of the integral in (4); (a) when o is inside C,

and (b) when c is on C.

(a) w inside C. In this case one can use the Residue Theorem (27) to find the value

of the integral, i.e.

I [ dfl F(fl)	 -	 Res [ F(12)
2,ri c	 12 -	 - c	 ]

Poles

where Res( A(zi)) is the residue of the function A(z) at the pole z = z. Now, if

F(c) is analytic inside C, the only pole in the integrand is the simple pole at 12	 o.

As the pole is simple, the residue is given by

limit	 (12 - u). FW)	 = F(c)
fl-Cs)

I	 [ df2 F(fl)	 = F(c)	 If c is inside C.
2iri J c	 120)

(b) o on C. In all the arguments used in this work, only one sort of contour is

needed, so for the sake of simplicity the results shown below are proved using that

contour. The argument is lifted almost verbatim from (28).

Consider the contour in Figure 1.11. Initially	 = u - iv is below the real axis, the

residue theorem gives

1-FR

F(o) = F(u - iv) = 1	 d12	 FW)	 +
27r1J ..R	 12—U+IV

where I is the integral over the semicircular part of the contour. If one now allows

R -	 and makes the additional assumption that F(12)/(12 - u) tends to zero as 12 -, o

fast enough to make I vanish ( for example supppose F(u) is O(R 1 ) as R - w
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then the integrand is O(R 2) and the integral is 	 xR.O(R 2) = O(R) and tends to

zero as R -	 one obtains

= F(u -iv)	 1	 dfl	 F(f2)	 (5)
f-u+iv

If one wishes to restrict the integrand in (5) to real values one must have v 4 0. i.e.

- u. However, it is essential to the argument that should lie off the contour i.e.

the real axis. One therefore defines a new section of contour C' which is deformed

around l = u, as shown in Figure 1.12.

Equation (5) becomes

2iri F() = 2iri limit F(u - iv)
v-4 0

limit	 limit	 dfl	 F(fl)	
}r40 1 v90 J, fl-u+iv

limit	 FW) +	 F(fl)
r4oj

+	 rd(e'0) F(w + re'°)
0 re0

I+co

= - PV	 dl) FW)	 + iirF(ci)
,

where PV is the Cauchy principal value. The final result is

xi F(c)	 = - PV	 dl) F(1l)	 R	 (6)
_,	 —O)

Now,

C +e

	dl) F(Tl)	 = (H(F))()
i —co	 U-O.

where H(F) is the Hubert transform of F, so one has the result.
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-in F(o) ={H(F))(C))
	

(7)

under the following assumptions:

(i) F is analytic in the area bounded by C, which is the lower

half-plane in the limit R —* .

(ii) F(c) tends to zero fast enough as R - 	 for I, to vanish.

It is convenient and also conventional to absorb the factor -in into the definition of

the Hubert transform. In this case, equation (7) becomes

{ H ( F fl(o ) = F(c)
	

(8)

If one now decomposes F(w) into it's real and imaginary parts, the complex equation

(8) splits into the two real equations

ç+OD

Re F(c) = - I PV	 dl] Im F(fl)	 (9a)
in	 )	 fl-

un F(c) = + I PV	 dl] Re F(flI	 (9b)
in	 J_,	 ]—C)

One can now see that under the conditions stated above, the real part of F(o.)

uniquely fixes the imaginary part and vice versa. This is not an altogether surprising

result if one recalls that simply assuming that F() is differentiable allows one to

relate the real and imaginary parts via the Cauchy-Riemann equations. The

importance of condition (ii) will be made obvious in the following section.
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1.3. Titchmarsh's Theorem.

The argument of the previous section is expressed rigorously by Titchmarsh's theorem

which states (in the version taken from (29))

Theorem If F() is the Fourier transform of a function which vanishes for t < 0 and

+

d	 i F(o) 1 2 <
-

then F(c) is the boundary value of a function F(co - i'y), y > 0, which is analytic in

the lower half—plane. Further

+

J
& I F(o - iy) 2

-

The last section indicated that the conditions (i) analycity in the lower half—plane, and

(ii) fast fall—off of F(c), are necessary for the Hilbert transform relations to hold.

Titchmarsh's theorem states that they are sufficient and that F() need only tend to

zero as o - o fast enough to ensure the existence of fdo I F(o) I 2•

The theorem is therefore concerned with Lesbegue square—integrable functions.

Square—integrability is in any case a necessary condition for the existence of the

Fourier transform of a function. If one assumes that all relevant transforms and

inverses exist, one can express the theorem in a more straightforward form.

Theorem If one of (i),(ii) or (iii) is true, then so are the other two.

F(o.):	 (i)	 Satisfies Hilbert transform relations (9),

(ii) has a causal inverse Fourier transform

i.e. if t < 0, f(t) = (F(F))(t) = 0,

15



(iii) is analytic in the lower half-plane.

The simple arguments of the previous section allowed the proof of (i) — (iii). A

fairly simple demonstration that (i) (ii) can be made, and this establishes the

theorem.

(a)	 (1)	 (ii)

+
One assumes that	 F() = -	 dii F(2)

-

( dropping the principal value PV). Then as

f(t) = (F 1 (F))(t)	 I	 dii et F(u)
2ir

One has

+aD

	f(t) = - I	 d e)t I	 clii F(ii)

	

2ir	 .	 ii - CA)

Assuming that one can interchange the order of integration, one obtains,

+	 +co

f(t) = + I	 dii F(t1) I	 d	 e10)t
2ir -co	 -co

It is shown in appendix A that

1+OD

d	 et	 = ehit.e(t)
in	 -

where r(t) is the sign function, c(t) = I if t > 0,	 t)	 -1 if t < 0.

This implies that

r+0D

1(t) =	 I	 dii F(ii)e t	= 1(t) if t > 0

and

f(t) = -1 1 dii F(ii)e t	= -f(t) if t < 0

2in i_cc,
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which is only true if f(t) = 0 for all t < 0. Notice that one does not need to say

anything about the value of e(t) at t	 0. This is because e(t) only appears under

the integral sign and it's value at one point cannot affect the value of the integral.

(b)	 (ii) 4= (i).

Suppose that	 f(t) = {F 1 (F)}(t) = 0 if t < 0. Consider the object

=1 I df2 F(12)
7riJ_QD	 12	 -

This is a convolution, equal to F()*(2/ic)

F 1	 =1	 d12 F(12)	 F1[F(c)] x F1(2/ic)
17ri

= f(t)€(t)

and because f(t) is causal

f(t)e(t)	 f(t)

so Fourier transforming the last equation gives

+co

	F(c) = -1	 df2 F(f2)

	

,ri	 -	 12	 -

as required.

The last proof is useful because it provides a time-domain version of the Hilbert

transform

+co

(H(F))()	 i 1 dfl FW)
irJ_co	 12—w

I
= FoF1	 .1	 d12 F(12)

	

L ir	 -cx,
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= F[ e(t)f(t) I

The symbol o above indicates the composition of functions, i.e. (f o g)(t) = f(g(t)).

These two sections provide a discussion of the relationship between causality and the

Hubert transform relations (9). It is important to point out again that the previous

theorem Qjy holds if the technicalities of Titchmarsh's theorem are satisfied. The

next section shows how one can apply the Hubert transform relations to functions

which do not satisfy the necessary conditions, and re—examines cases where confusion

has arisen (30,31).

1.4. Correcting for Bad Asymptotic Behaviour.

The crucial point in Titchmarsh's theorem is that F(o) should be square—integrable

i.e. fdoiF(o)i 2 < . It happens that in many cases of physical interest this

condition is not satisfied. There is however, a way of circumnavigating this problem.

The least troublesome function one can have which is not square—integrable is one

which tends to a constant value at infinity, i.e.

F(o) - F,,, as	 -	 .

A sufficiently general example for the purposes of this report is

a0 + a1c, + ... + ao

	

F(o) = A(o.)	 (10)

	

B(o)	 b0 + b10 + ... + bo

i.e. A(u) and B(u) are polynomials of the same order n, and all the zeroes of B(c)

are in the upper half—plane. Clearly one has

a
limit F(w) = F( o ) = -

18



If one were to carry out a long division on F(o), the result would be

F(ci)) = (a/b0) + A'()

B (ca)

where A'(o) is a polynomial of order n - I. So

F(ci)) - F(co) = F() - a/b	 = ____
B (o)

Now, A'(c)/B(c)	 O(o -l ) as o -	 . This means that A'(ci))/B() is square-integrable

and therefore satisfies the conditions required by Titchmarsh's theorem. Hence,

1+00

A'(o) = . 1 	df1!.W.1
B(o)	 hr	 B(fl) Il -

i.e.

F(o) - F( a')	 -1	 dfl ( F(fl) - F(co) )
hr	 Ii -

So if a function fails to satisfy the conditions required by Titchmarsh's theorem

because it fails to be square-integrable, one can sometimes subtract the asymptotic

behaviour which causes the problems. This leaves a function which does satisfy the

requirements. Equations (9a) and (9b) become:

Re F() - Re F(co) = •=i 	dfl C Im F(f) - Im F(co) ) (ha)
11 -

	

Im F() - tin F(00) = +1	 dii C Re F(fl) - Re F(co) )	 (lib)

	

ir	 [I	 -	 Ci)

These equations are well known in elementary particle physics and optics. The first of

the pair produces the Kramers-Kronig dispersion relation if one takes F(o) = n(o) the

complex refractive index of a material. The term dispersion refers to the phenomenon

of variation of refractive index with the frequency of incident radiation.

One possible obstruction to the direct application of equations (ha) and (Fib) is that

19



one usually measures F(w) in some experiment. Clearly in this case one cannot obtain

F(co). However, one can make use of a 'subtraction' scheme as follows. Suppose for

the sake of simplicity that the imaginary part of F(o) tends to zero as the frequency

tends to infinity and one has a measurement of F(c) at o.' = a. Equation (11 a) yields

Re F(o.) - Re F(a) =i]dflinJ1
—,

(12)

At o = a, one has

+co

Re F(a) - Re F(a) =	 (13)

so, subtracting (11) from (12) gives

1+1	 1
Re F(o)) - Re F(a)	 i	 d11	 1_ —	 I	 lm F(I)

J_	 O-	 £l-aJ

i.e.

r+o
Re F() — Re F(cx)	 L- a)	 dfl	 Im F(l)	 (14)

x	 J_	 (-c)(-a)

So one can compensate for one's lack of knowledge of F( a ). However, notice that in

doing so, one is faced with a more complicated integral. In general if F() goes as

some polynomial as o —* c one can subtract the bad asymptotic behaviour in much

the same way as above. Unfortunately, every time one performs a subtraction the

integral gets more complicated.

One can now use the theory outlined above to re-examine cases where confusion has

arisen in structural dynamics concerning the applicability of the Hubert transform.

(1) It is clear from the preceeding arguments that the Hubert transform provides a

means of detecting which functions F() correspond to non-causal f(t). If one

measures the transfer function H(o) of a linear system {F(H)}(t) h(t) is the

impulse response of the system and h(t) = 0 for all t < 0. This means that (

20



assuming all other neccessary conditions hold ), {H(H)}() = H(c). In general, if the

frequency response function of a nonlinear system H 1() is measured using the

stepped—sine input described earlier, {Fl(Hl)}(t) = g(t) will not necessarily be

causal. In fact, for all the types of nonlinearity commonly encountered in structural

dynamics the function g(t) is non—causal. So, failure of the Hilbert transform relations

. g(t) non—causal and one can take this as an indication that the system is nonlinear.

Rodeman in (30) states this correctly. However, in order to show that the Hubert

transform does not infallibly detect nonlinear systems he considers the following

squaring system.

Nonlinear
x(t)—

	

	 -	 y(t) =[x(t)]2
System

letting	 x(t)	 Aeat
	

t>0, a>O

=0
	

t <0

(i.e. x(t) causal ) one obtains the frequency response function

Hnl( 0 )	 ___ =	 - Ia)
X(c,)	 (c - 21a)

and

Re H 1 (c) =	 + 2a2)
+ 4a2

Im Hnl(u))	 Aau
+ 4a2

He then argues that because Hi(o) is analytic in the lower half—plane, the real and

imaginary parts of Hi must form a Hubert transform pair i.e. are related by the

dispersion relations (9a) and (9b). This is p	 correct. If one evaluates the integrals

one finds

+co

i F dfl Re H 1 (I)	 Aao	 — Im Hn1(c)
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as required. However,

Idfl Im Hnl( 2 )	 -2a2A	 ^ Re Hi(u)

U-CL)

The reason for the error is that

limit Hnl(cL))	 A ^ 0

So fdcL)lHnl(0)1 2 does not exist and Titchmarsh's theorem does not hold. However,

one observes that as Re H 1(co) = A and Im H i() = 0, the appropriate dispersion

relation is (ha).

Re Hi(cL)) - A = -1 
J 

dfl Im H1(U)
1•	 -c

U-CL)

i.e.

Re H l(CL)) = A -	 2a2A
+ 4a2

=	 + 2a2)
+ 4a2

as required. ( In evaluating these integrals one obtains terms of the form fdcu/(c1 - CL))

which are proportional to ln(-1). If one takes the principal sheet of the in function

one can disregard these terms.)

The problem shows up very clearly in the time domain. There, H = F o X o F1

( where Xe is pointwise multiplication by e(t)). Now

	

1+co	 r
(F1(H1))(t) = g(t) = _j..	 d	 A(u - ia)

2r J_	 L.	 (	 -2ia)

ç
=	 A	 d e t	1 +	 Ia

2irJ_	 I.	 cL)-2ia
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±	 +

=	 A I d e CL)t + iaA I	 e1 z)t

2ir	 2r	 - 2ia

Ab(t)	 - g'(t).O(t)

so the 'impulse response' g(t) contains a Dirac b-function together with a causal

function.

The removal of this b-function is the time domain

analogue of removing the bad asymptotic behaviour in the frequency domain.

This sort of behaviour will clearly occur for all cases where F(o) = A(c)/B(o) as

before. One needs to remove the b-function (a/b).b(t) from the 'impulse response'.

One concludes therefore that analycity in the lower half-plane is 	 a sufficient

condition for the real and imaginary parts of a function to fprm a Hilbert transform

pair.

In (31) Goyder illustrates the theory of the Hilbert transform with the linear system

depicted in Figure 1.13. The system has the transfer function

H() = _______

c - ik

___________ - I	 co
22 + k2	 C2Ci)2 + k2

He correctly states that

Re H(o) = -1	 dfl Im H(12)	 =	 kc
—co	 i-c	 c2w2+k2

However,

limit H() =	 ^ 0
C
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so the appropriate dispersion relation for calculating Im H(o) is

Im H(o) + I = I I dI Re H(1l)	 k2
C	 i_co	 2 -	 c3o,2 + ck2

ImH() = ____________ - I =	 -co,2
c 3o,2 + ck2	 C	 co,2 + k2

as required.

1.5. An Example of Engineering Interest.

If one measures the transfer function of a linear system defined by the equation of

motion

my + cy + ky x(t)

there are three forms it can take depending on the sort of output data one measures

(7).

If one measures input force and output displacement one obtains the receptance form

Hr() = {F( y)}(o,) =	 I

{F(xfl(o,)	 _2 + jc + k

and
limit Mr(°') = 0

Measuring the output velocity yields the mobility form

Hm()	 {F(Yfl(o,) = _____________
(F(xfl()	 _2 + ico + k

and
limit Hm() = 0

Finally, if one measures output acceleration, one obtains the inertance form

2.



	

H(o) = (F(Y)1Lc1	 _2

	

(F(x))(o)	 _2 + ic + k

and

limit H 1 (oj) = 1 ^ 0
m

This means that if one is testing for nonlinearity by applying the Hubert transform to

a transfer function, the appropriate Hubert transform pair is ( Re H(c), Im H(w) ) as

expected, if the function is receptance or mobility type. However, if the function is

of the inertance type the correct pair is ( Re H(o.) - 1/rn , Tm H() ) because the

function has the form given in equation (10) i.e.

Irn H 1 () = 1. 

j 
dl ( Re H([) - 1/rn)

= 1 

J 

dfl Re Hu(I)

f2 -

after discarding the ln(-1) term. And

f+co

Re H () =	 .i	 dlT Irn H (l) + I

i_co	
rn

f2 -

Figure 1.14. shows the receptance transfer function and it's Hubert transform for the

linear system described by the equation,

y + 20r + 104y = x(t)

As one would expect, the overlay is perfect. Figure 1 .15. shows the inertance transfer

function and the uncorrected Hilbert transform. The Hubert transform is shifted by

—1/rn as predicted. Overlay ( apart from errors introduced by having to truncate the

integral to allow for a finite frequency range, ) could be obtained by using a

subtraction, as in equation (14). A much simpler method is to convert the transfer

function to receptance form using
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Hr()) =

carry out the Hubert transform and convert back to inertance. Figure 1.16. shows the

result of carrying out this procedure.

In the case of a MDOF system (with proportional damping)

N
AH() =	

-	 + Irrr
r= 1

The appropriate Hilbert transform pair is

( Re H1() +riAr , Im H(w) )

1.6. Fourier Transform Conventions.

Throughout this work the following conventions are used for the Fourier transform

F(o) = {F(f))(o.)

f(t)	 (F(F))(t)

J
dt e)t

-

+

d e+1)t F(o)
2r J_,

One could equally well choose the conventions,

F(c)	
J 

dt et f(t)
-QD

f(t) =

	

	 I ( d e)t F(u)
2ir J_

These conventions shall be labelled F_ and F+ respectively. Clearly, a continuous set

of conventions are possible if one counts movements of the (2ir	 factor.
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As one might expect, the Hubert transform formulae depend critically on the

convention used. The formulae for F+ can be obtained as follows.

In the proof of (i)	 (ii) in section 3, the result

+

I [ d	 et =	 e[2t e(t)	 (Appendix A.)

hr J	 0) - [2

was used. If F+ conventions had been used, the term

+,

1	 do e( t = _e 1[2t e(t)

hr _o

would have been obtained. In order to cancel the negative sign

generated, one would need the initial definition,

{H(F))(0)) = ±j	dfl F(f2)

hr -

To obtain this expression from the contour integration argument of the first section

one would need the section of contour on the real line to go from - to -4-. As one

must move anticlockwise round the contour it needs to be completed in the upper

half-plane. This means that the contour in Figure 1.17. is required. As a consequence

of using this contour, one now requires analycity in the upper half-plane. The result

of these arguments is the F+ version of the second theorem of section 3. i.e. if one

of (i)', (ii)' or (iii)' is true, then so are the other two.

F(0)) :	 (i)' Satisfies Hilbert transform relations,

+

Re F(o)	 + 1	 d12 Im F(12)
-	 [2	 -	 Li)

Im F(0)) = - I	 dl] Re F([2)

Il	 -	 Ci)

(ii)' has a causal inverse Fourier transform,

(iii)' is analytic in the upper half-plane.
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The equations in (31) appear to be inconsistent in that equations (14) and (15) belong

tp F while all others belong to F_.

Independently of convention, if one defines convolution by

F(u) * G() =	 J d12 F(fl).G(o - Li)
2r J_,

one obtains the result

{F 1 (F * G)}(t) = f(t)g(t)

where f(t) = {F 1 (F)}(t) and g(t) {F(G)}(t). The statements about testing transfer

functions for linearity made in section 4 apply to both F+ and F_ . Suppose that a

transfer function has poles in the upper half—plane in F_ . This means that the

zeroes of the denominator

d_(o.) = _ 2 + ic + k

are in the upper half—plane. If one changes from F_ to F+

d_(o) 4 d(i)	 _2 - ico + k

i.e. the product of the roots remains the same while their sum changes sign. Clearly

the roots of d+(c) are in the lower half—plane and one has analycity in the upper

half—plane as required by the F+ Titchmarsh theorem.
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Treader Function

Hubert trannlorm

File	 :	 Idol .r

Data :	 Receptaure

Time	 16:08:59

Date :	 Tue Jun 13

Year :	 1989

Tranoler Function

hubert tranoform

File	 :	 1 dxl_r

Data :	 Receptance

Time :	 16:09:26

Date :	 Tue Jan 13

Year :	 6989

FIgure 1.1	 Bode plot of the FRF for the linear system of example

(1) together with the hubert transform.

Figure 1.2	 Nyquist plot and Hubert transform for the FRF of the

linear system of example (1).
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Figure 1.3.	 Bode plot and Hubert transform for the FRY of the

- Treicler ti,ctioi

Hubert trauclorm

File	 :	 eiT_r_o

Date :	 Recepteice

lime :	 14:51:45

Dete :	 Tue Jui 13

leer :	 1989

Treader F.actio,

Hubert treliTorm

rile	 :	 ea1 _r.i

Dote :	 Recete,ei

Time :	 14:51:02

hate :	 lie Ji. 13

leer :	 1989

hardening cubic system of example (ii). Lower level

of excitation.

Figure 1.4.	 Nyqulst plot and Hilbert transform for the FRY of

the hardening cubic system of example (Ii). Lower

level of excitation.
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FIgure 1.5.	 Bode plot and Hubert transform for the FRF of the

Treuater F,.ctioi

Kilert trflhform

File :	 bca3_r _s

Data :	 Receptauce

Ti.e :	 14:58:49

Date :	 Tie Jui 13

Tear :	 1989

Trausler Tu.ctio.

Hubert trailform

File :	 bci3_r_.

Dale	 Receptauce

Time	 14:56:10

Date :	 Tue Jil 13

lear :	 1989

hardening cubic system of example (Ii). Higher level

of excitation.

Figure 1.6.	 Nyqulst plot and Hubert transform for the FRI of

the hardening cubic system of example (II). Higher

level of excitation.
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Treacle	 ru.ctiou

hubert trouclorm

File :	 .cIl _,_.

Dote :	 eceptOlce

Tire :	 14:59:54

Date :	 lie Jul 13

Year :	 1999

Treacle, Filch,.

Hubert tro.cform

rile :	 icul _r_a

Data :	 Recepteuce

Time :	 15:00:20

Dote :	 Tie Ju. 13

Year :	 1999

Figure 1.7.	 Bode plot and Hubert transform for the FRF of the

softening cubic system of example (iii).

Figure 1.8.	 Nyquist plot and Hilbert transform for the FRF of

the softening cubic system of example (iii).

32



Figure 1.9.	 Bode plot and Hubert transform for one of the FRFs

Treu,fer Fiuctioi

Hubert trcuilor,r

File :	 2dx._1

Dote :	 Receptouce

Ti.e :	 16:11:33

Oote :	 Tie Ji. 13

leer :	 1989

lro..ler tu.cj,Gl

Hubert tro.slerm

File	 2dzi_1

Dote :	 leuptalce

Ij.e	 16:11:08

Dote :	 Tue Jue 13

Yeor :	 1989

of the linear two degree-of-freedom system of example

(iv).

FIgure 1.10.	 Nyqulst plot and HUbert transform for one of the

FRFs of the linear two degree-of-freedom system of

example (iv).
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Figure 1.11	 Contour In the complex plane used to obtain the

HUbert transform relations.

Semicircle of radius r

fl—u

Figure 1.12.	 DeformatIon of the contour around the pole on the

real axis.
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Tra.ile, Fuictios

hubert tr..slorm

rile :	 ldzl_r

Oil.	 lecephsuce

:	 1l:*O:lS

hole	 Tue .b II

Toil	 1969

y(t)

Figure 1.13.	 A first-order dynamical system.

Figure 1.14.	 Receptance transfer function and Hubert transform

for the system y + 2O + 10 4 y -
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Teesle, usectoe

hubert IrcieToIm

rile	 :	 ldrl_l

Dde :	 tiertusce

Time :	 11:1 1:40

Ccli :	 lee Feb 14

Veer	 1089

Trenle, luuctior

hubert treuclorm

File	 :	 ldeT_i

Dot. :	 latrine.

Time	 I :30,l 9

Dole :	 Thu J.0

Tier :	 1989

Figure 1.15.	 lnertance transfer function and Hubert transform

for the system y + 2Oy + 104 y — x(t) showing the

shift In the real part of the transform.

Fgure 1.16.	 Inertance transfer function and Hubert transform

for the system y + 2Oy + 10 4 y — x(t). In this case

the transform was obtained after converting the

transfer function to receptance.
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Figure 1.17.	 Contour used to obtain the hubert transform

relations when the opposite Fourier transform

conventions are used to those for Figure 1.1.
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CHAPTER 2

THE MASRJJCAUGHEY PROCEDURE - SDOF SYSTEMS

The Hubert transform procedure of the previous chapter is only able to provide very

limited information about a system. One requires a method of extracting more useful

information. Ideally, one would like to be able to determine the equations of motion

of the system under study. Given that most systems will have a large (if not infinite)

number of degrees of freedom one would be satisfied with the equations for a low

order model. The procedure discussed in this chapter was proposed with these

requirements in mind.

2.1. Basic Theory.

The purpose of this chapter is to describe the Masri/Caughey procedure for the

identification of nonlinear systems (10). In order to introduce the procedure in the

simplest manner possible, the discussion is restricted to Single Degree—Of—Freedom

(SDOF) systems. The extension to Multi—Degree—Of—Freedom (MDOF) systems is

made in the next chapter.

The object of the method is the representation of the nonlinear restoring force in the

system by a surface over the phase plane. Conceptually the method is very simple

indeed. One begins with Newton's second law,

m + f(y,i)	 x(t)
	

(1)

where f(y ') is the internal restoring force of the system. For example, in a linear

system f(y,') would be expressible as the linear function cy + ky for some constants c

and k. In general it is assumed to be a nonlinear function of the displacement and
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velocity responses y(t) and y(t) but with no explicit time dependence. The mass m is

also assumed to be constant. It is clear that f(y,y) can be regarded as a surface over

the phase plane. x(t) is the externally applied force and y(t) is the acceleration

response. For the moment the mass m is assumed known. The time data x(t) and

y(t) are sampled over a given period and the sampling interval need not be constant.

If one now writes equation (1) as

f(y,,') = x(t) - my(t)
	

(2)

the quantities on the right—hand side of this equation are all known at each sampling

instant, so one can calculate f(y,y) at each of these times. If the ith sampling instant

is denoted by 4, and the sampled data by x = x(t) and y = y(t), then at

equation (2) becomes

f i = f(y,T1)	 x - m1	 (3)

Now, if one has somehow obtained Yi = y(t) and 	 = '(t), either from the

experiment which produced the other responses or by numerically integrating the y(t)

data, then one has a sequence of triplets This means that for each sampled

point in the phase plane (yj,'j) the height of the restoring force surface f 1 above that

point is determined. If one is using numerical integration procedures or filtering it is

neccessary for the sampling to be done at a constant frequency. As this is not an

unreasonable restriction it is henceforth assumed to be the case. The sampling interval

is denoted by Lt, so t = (i—i )t.

As the dependence of f on yj and r j is now known, one can attempt to fit a model

of the form

m n

f(y,y) = i— jO	
hi(Y) I(y)	 (3)
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where T 1(y) is the th Chebyshev polynomial in the variable y. The Chebyshev

polynomials are useful for a number of reasons.

(i) They are orthogonal polynomials. This means that one can estimate coefficients for

a double summation or series of order (m,n) and the truncation of the series to order

(i,j) where i m and j n is the best approximation of order (i,j). This means that

one need not re—estimate coefficients if a lower order model is required, as one

would have to for a simple polynomial model. Similarly, if one estimates coefficients

for an (m,n) order model and it is not accurate enough, one only needs to estimate

the extra coefficients required, the lower order ones remain valid.

(ii) The estimation of the coefficients for an orthogonal polynomial approximation

requires the evaluation of a number of integrals. In the case of the Chebyshev

polynomials a change of variables exists which make the integrals fairly

straightforward.

(iii) In the family of polynomials of a given order used to approximate a given

function f(x) over a given interval there will be one which has the smallest maximum

deviation from the true function over that interval. This approximating polynomial -

the minimax polynomial is much sought after by numerical analysts. Unfortunately, the

polynomial has proved difficult to find - it has so far eluded discovery. One of the

nice properties of the Chebyshev polynomial is that it is very nearly the rninimax

polynomial. The reason for this is that the error in the Chebyshev approximation to a

function oscillates between almost equal upper and lower bounds over the interval on

which the approximation is made. This property is sometimes called the 'equal—ripple'

property.

The various properties of Chebyshev polynomials used in this work are collected for

convenience in Appendix B. A comprehensive reference is (32). Reference (33)

contains a number of useful routines and algorithms relating to Chebyshev

approximation.
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The first problem one encounters in forming a model of the form (3) relates to the

normalisation of y and y i.e. their overall scale. To obtain the coefficients C j one

can see from the arguments of Appendix A that the orthogonality properties of the

polynomials are needed. The polynomials T(x) are orthogonal on the interval [-1 ,i]

as follows

+1
1 dx (x) T 1 (x) T(x)	 -	 (4)
i_I

where ljj is the Kronecker delta i.e. äjj 	 I if i = j and t5jj = 0 otherwise. The

weighting factor for orthogonality o(x) is given by

(x) =	 - ,2

Using the relation (4) one can show that

1 +1 1+1
c	 = x(i)X(j) 

J J 

dxdy c(X)c(y)T1(x)Tj(Y)f(x,y)
-1 -1

where X(i) = (1 + t5iO)/T (Appendix B). The problem is that the data is actually

contained in the rectangle [Ymin,Ymax]xb'min,'max] in the phase plane where Ymax is

the maximum sampled displacement etc. However, the orthogonality relations only hold

on the square region [-1 ,1 ]x[-1 ,1]. This means that if Ymax > I very little of the

data can be used for the integral and there will be a consequent loss in accuracy. If

Ymax ( 1 the data will only cover a small area in the centre of [-1 ,1 ]x[-J ,1 j and

one cannot estimate the integral at all. The solution is fairly straightforward; one

transfers the data from [Ymin,Ymax]xb'min,'max] to [-1,1 ]x[-I ,l] using the maps

Yj) = Y = fl_ (Ymax + Ymin)	
(5a)

(Ymax - Ymin)

=	 -	 - (S'max + mjn)	 (5b)

(Ymax - S'min)
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In this case	 does	 mean d/dt. So one actually estimates the model

f(y,y) -

m n
= .:	 .

i=O j=O

m n
=

i=O j=O

C jj I ( ) Ij(Y)

c . ij I [ fl y )] I j[	 ST)]

The first of these three equations is simply the transformation law for a scalar

function under a change of coordinates. It is clear now that the coefficients for the

model will be sample-dependent. The coefficients are now obtained from

1+1 +1
= X(i)X(j) 

J J 

dxdy c(x)o(y)T(x)T(y)f(x,y)

-1 -1

and f(x,y) = f(	 1(x), p1 (y)). If one now makes a change of variables or

coordinates to

0 = cos(x)

= cos(y)

The integral becomes

c - ij = X(i)X(j) : : d0d cos(i0)cos(ji).

.f(cos(0),cos())	 (7)

If the 0-range (O,r) is divided into n 0 intervals of length i0 = r/n 0 and the -range

into n of length ir/n, The integral can be approximated by the summation

no n,

= X(i)X(j)	 z0ii4 f(cos(Ok),cos(m)).
k=I m=1

•COs(Ok)C0S(j)

where 0k = (k-1).0 and v'm = (m-1)..

(6)
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It is clear from this analysis that some sort of interpolation scheme is required to

evaluate the function f at the points (cos(Ok),cos(m)). The interpolation procedure is

the subject of the next section.

The model finally obtained is of the form

f(y,T)
	 m	 n	

Cjj Ij[ fl y )] T ,j [	 (r)]

This is valid on the rectangle [ymin,Ymax]x[ymin,'max]. As long as the force f(y,') is

a multinomial in y and r, and x(t) the excitation used is high enough to excite the

highest order terms, this approximation will extend to all the phase plane. If f(y,') is

a more complicated function e.g. piecewise linear in y, the approximation will only be

valid on the rectangle containing the sample data. This means that in the latter case

the model sample—dependence is actually input—dependence and it may well lose it's

predictive power if a different input to the system generates phase trajectories which

pass through different areas in the phase plane than those of the identification data.

2.2. The Interpolation Procedure.

The problem of interpolating a continuous surface from values specified on a regular

grid is well documented (33), In this case it is a straightforward matter to obtain an

interpolated value or interpolant which can be differentiated many times. However, if

the data is randomly or irregularly spaced the problem becomes considerably more

difficult. Discussions of various approaches can be found in references (34) and (35).

One method in particular - Sibson's Natural Neighbour method is not only capable of

producing a continuous interpolation, it can produce a differentiable interpolation. The

method is rather complicated as it requires the construction of a triangulation of the

phase plane, for this reason a discussion of the theory is postponed until Appendix C.

Fortunately a software package TILE4 is available from Professor Sibson which carries

out the procedure. The software is in the form of approximately 7000 lines of
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FORTRAN code. The user can build programs specific to his requirements from the

subroutines provided. Figure 2.1 - reproduced from (36) illustrates the suitability of

the method for the problem.

In the discussion that follows, the term C° is used to indicate an interpolant or

surface which is continuous. To say that the method produces a C° surface is

equivalent to the statement that the procedure is exact for a linear function f(x,y) i.e.

f(x,y)	 & + 3x + yy	 (8)

A surface which is not only continuous but differentiable is designated C 1 . The C1

surface produced by the Natural Neighbour method is constructed so that it is exact

for all 'spherical' quadratic functions

f(x,y) =	 -1-3x-4-yy+x2+y2	 (9)

This is a slight restriction, to specify a general second order function, one needs the

form

f(x,y) = c+ 3x + yy +	 + ixy +

In order to evaluate the integrals described in the previous section, one needs to find

interpolants for the restoring force over a regular grid in the (O,i,li) plane. In order to

display the surface one needs interpolants over a grid in the (y,') plane. The TILE4

package can take quite a long time to produce the required data - up to 25 minutes

per surface if a lOOxlOO grid is obtained from 10000 sample points. For this reason,

estimating both surfaces from the package is considered too time —consuming. It was

decided that being able to display the force surface was the more basic requirement,

so the interpolation onto a regular grid is carried Out for (y,y) space. The (8,t) data

is obtained from this by a simple bilinear interpolation (3) as described below

Given arrays y(i) and '(i) containing the y and ' values which specify the grid, and

f(i,j) containing the force values estimated at points on the grid, one can obtain a

bilinear interpolant at the general point (y , S') quite simply. If
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y(j)	 y	 y(j+1)	 and

y(k) < 5' i	 y(k+1)

if one defines

f(j,k)

= f(j+1,k)

F3 = f(j+1,k+1)

f4	 f(j,k+1)

and
t	 = ( y - y(j) )/( y(j+1) - Y(i) )	 €	 [0,1]

u	 = (Sr - 5'(k) )/( 5r(k+1) - 5'(k) ) 	 €	 [0,1]

then the interpolant is given by

f(y,5r) = (1-t)(1-u)f1 + t(1-u)f2 + tuf3 + u(1-t)f4

Now the values of the function over a grid in the (O,) plane can be obtained very

simply i.e. the force at the point (Ok,,tm) is given by f(COS(Ok),cos(m))

In order to estimate the coefficients accurately a lOOxlOO grid was used. It was found

that with such a fine grid, the errors produced by making the (O,) grid of secondary

importance, were negligible.

A further problem which may occur is as a result of singularities in the restoring

force. A singularity in this sense being a point at which a derivative of some order

does not exist. For example, a piecewise linear function is quite singular in that the

first derivative does not exist. In the case of Coulomb friction the function itself is

not continuous. This problem is considered in greater detail when a number of basic

SDOF systems are considered at the end of this chapter.
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2.3. The Extrapolation Problem.

The most serious problem associated with obtaining the force surface is caused by the

irregular density distribution of sample points in the phase plane. If one considers

Figure 2.2 which shows the distribution in the phase plane of 10000 simulated data

points for a linear SDOF system excited by a Gaussian noise sequence, one can see

that the data is mainly concentrated in a circular region centred on the origin in

phase space. ( In the physical coordinates (y,'), the area is elliptical. The scaling

transformation to the (,y) maps the region into a circle.) There is no data near the

corners of the square [-1 ,1 ]x[-1 ,1 . The situation shown in Figure 2.3 is even worse.

In this case the variables are (y , y ) the first and third displacement responses from a

three degree—of—freedom system. Because y and y are strongly anti—correlated, the

data is confined to a narrow elliptical region within the square. The problem is that

the interpolation procedure cannot extrapolate. In the case of the C 0 procedure the

interpolant can only grow linearly as one moves away from the data. This is clearly

inadequate to describe a nonlinear system. The situation is slightly improved if one

uses the C1 option which can grow as a quadratic away from the data. However, one

of the simplest types of structural nonlinearity of interest is a cubic ( and some are

not polynomial at all) so even the C 1 procedure is inadequate. In fact it is shown

later that in most cases one loses the option of forming a C interpolant. This means

that one has to have some way of dealing with regions of the phase plane which

have a low density of points.

The method used in (10) to try and circumnavigate this problem is fairly simple. In

the regions where there is a high density of points an unspecified interpolation

procedure is used. Over the areas where there is little or no data the restoring force

is assumed to take the form

f(y,')	 f(y) + d(Y)

so one can model f( y , S') with an expression of the form

46



f(y,i)	 aT[ r(y)J +	 bT[	 )]	 (10)

To evaluate the a j 's for example, one assumes that

's(Y)	 =	 aT1(5)

As before, the expansions only make sense in the (y,y) plane. In order to estimate

the coefficients one takes all the data from the plane contained in some small band

about the r axis i.e such that lyl for some small . This procedure is

illustrated in Figure 2.4. If one associates the force values f(,') now with the

value for each point, one obtains a rather noisy graph of f5(T). If this irregularly

spaced data is now interpolated to give values at regularly spaced values, one can

obtain the coefficients by the same means as the previous section i.e. one evaluates

the integral

1+1
= X(i) 

J 

d	 (y) I(y) f(y,O)
-1

by changing variables to 0 = COS I (y), discretising the integral and summing

no

a 1 = X(i)	 O cos ( io k) f(c0s(Ok),O)
k== 1

Clearly in this case the interpolation procedure should actually find values at regularly

spaced 0 points. As before the coefficents are sample—dependent, from now on this is

accepted to be the case and the superscript is dropped. The same procedure can be

used to evaluate the coefficients for the damping force f(y). Having obtained the

model in equation (10), it is used in (10) to estimate the value of the restoring force

over regions where there is little data.

This method has a serious drawback. It cannot account for cross—product terms of the
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form ymrfl in the restoring force. This type of term will contribute most when the y

and y values are equally large i.e. along the lines y ± = 0. From figure 2.2, one

can see that these are precisely the areas where there is no data. In Figure 2.3. the

distortions caused by the correlation of the variables mean there is more data along

the line - y = 0, but less along y + y = 0. This means that equation (10) is

not a good approximation to the function whether the expansion variables are

correlated or not. Consider the restoring force function for the Van der Pol oscillator

f(y,r) =	 (1 - y2 )' + y

then

f(y,0)	 y

f(0,ST) = fy

and the procedure in (10) produces a linear extrapolation over areas where the force

is actually third—order.

The approach taken in the present work is much more straightforward. Rather than

try to extrapolate, one displays the data and then chooses a rectangular sub—region of

the phase plane which is well covered by data. This produces a reduced data set

which is then mapped onto the square [-1 ,1 ]x[-1 ,1]. The rectangle indicated by the

dotted lines specifying the reduced set is shown in Figures 2.2 and 2.3. The

interpolation and Chebyshev expansion procedures are then carried out. The main

drawback of this method is that one discards the data which corresponds to the

largest displacements and velocities measured. Because of this one must take care. If

the system under test is only just showing signs of nonlinearity, this procedure may

concentrate attention on a region of the phase plane over which the restoring force is

nominally linear. In this case it will be impossible to accurately identify the higher

order Chebyshev coefficients for the model. One must take care in choosing the level

of the excitation used, it muSt be high enough for the reduced data set to still show

signs of nonlinearity. If it is too high, estimation of the lower order terms will suffer
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as the higher terms will dominate. If the model is to be of any use for prediction at

lower excitations, the linear and constant terms must be identified accurately. In

particular, if C00 is incorrect one will observe the wrong position of equilibrium in

the predicted output.

Theoretically there is another possible way of obtaining a surface without discarding

data or extrapolating. One could change to a non —Cartesian coordinate system which

maps the data region onto a square. The situation is simplest when the expansion

variables are uncorrelated as in Figure 2.2. The data is confined within a roughly

circular region; this suggests that one could try polar coordinates (r,ç) such that

y	 rcos(o) and i = rsin(). If the data shown in Figure 2.2 is mapped to

r	 = yj2+rj2

'Pj - tan_l(T1/y)

The resulting distribution of data in the (r,,) plane is shown in Figure 2.5. Because

there is little data at large values of y and ', there is correspondingly little data at

large r. However, because the y and ' values are uncorrelated, the density distribution

of points is independent of . The surface interpolated from this data is shown in

Figure 2.6. Because the restoring force function is highly nonlinear in the (r,.p)

coordinates i.e.

f'(r,)	 crsiri(o) + krcos(o)

c being the damping constant for the system, and k the stiffness), even the C'

routine is inadequate to estimate the surface in areas where there is not much data.

This accounts for the distortions in the surface at large r. If the smaller region

indicated by a dashed line in Figure 2.5 is used for interpolation, one obtains a much

better distribution of points (Figure 2.7), and a correspondingly better surface (Figure

2.8). However, this is after discarding data again which rather defeats the object of

the exercise. The problem is that in gaining a better distribution of points in the new

coordinate system, the interpolation has lost accuracy because the force surface

expressed in the new coordinates is highly nonlinear. Even so, this procedure could
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still be of use if the expansion variables are highly correlated as in Figure 2.3. One

can map the data onto a square by using the sequence of transformations illustrated

in Figure 2.9. Of these transformations only the last, the change to polars, is

nonlinear. In carrying out this sequence one is essentially choosing an elliptical polar

representation. Unfortunately, this idea has other problems, the surface obtained

(Figure 2.8) gives no indication that the system is linear. To plot the surface in a

recognisable form one would need to change coordinates back to the cartesian (y,'),

carrying the force surface back by using an interpolation. This either introduces a

further source of error if one uses the bilinear method, or takes an unnacceptably

long time if one uses TILE4 to form the surface from the basic data. For this

reason, nonlinear coordinate systems are not recommended.

In most cases, one has some control over the test and can adjust the level of

excitation to the system in order to give significant nonlinear contributions to the

restoring force over the reduced data set.

2.4. Simulated SDOF Nonlinear Systems.

In order to test the identification procedure described above, a number of sets of data

corresponding to different types of SDOF nonlinear systems were simulated. A

fourth—order Runge—Kutta procedure was used to generate displacement, velocity and

acceleration response data by integrating over regular intervals the general differential

equation of motion for a SDOF system.

my + f(y,') = x(t)

In all the simulations except for the Van der Pol oscillator, the excitation is a

Gaussian white noise sequence with zero—mean. The Gaussian random numbers are

generated using the routines RAN1 and GASDEV from reference (33). Because the

Runge—Kutta routine is unstable for high frequencies, the excitation signal is filtered
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using a low-pass Butterworth filter which is designed to cut-off at one-fifth of the

sampling frequency, the sampling frequency being the inverse of the time-step used in

the integration procedure. For the sake of simplicity x(t) is held constant between

sampling instants even though the Runge-Kutta procedure needs to know the values at

mid-interval times. This is perfectly adequate for simulation studies. Later, when

experimental data is considered, a more sophisticated integration routine is introduced.

The first example considered is a linear system. The equation of motion used was

y + 40' ^ 104y - x(t)
	

(11)

and x(t) was a Gaussian sequence with mean zero and variance (RMS) 10.0. The

time-step for the simulation was 0.001 seconds, giving a sampling frequency of 1 .0

kHz. The filter produced a band-limited signal in the range 0 - 200 Hz. The

undamped natural frequency of the system is 100 rad/s or 15.92 Hz.

10000 points of displacement, velocity and acceleration data were accumulated. The

distribution of the points in the phase plane is shown in Figure 2.10. The dashed

rectangle in the figure indicates the reduced data set which was chosen for the

interpolation stage. The reduced set shown in Figure 2.11 contains 9486 points. The

number of points discarded is small. However, one observes that the reduced set

contains only those points with displacements up to about 5/8 of the maximum.

The data was then used to construct a C 1 interpolation using the TILE4 package, the

tesselation and associated triangulation are shown in Figure 2.12. The TILE package

proved able to cope with interpolations based on up to 10000 points without difficulty.

The C1 surface obtained is shown in Figure 2.13; the linearity of the system is very

clearly indicated. The restoring force surface shown has been constructed over a

lOOxlOO grid, this grid size was used for all the systems studied. The surface data was

then used to calculate coefficients for a Chebyshev polynomial model. A (3,3) model

was determined i.e. third-order in displacement and third-order in velocity. Because
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of the orthogonality properties mentioned earlier, all models of order (i,j), i3, j3

have also been determined. This means that for each model one can calculate the

force surface values at each point on the grid, and the relative error between the

interpolated surface and the model surface can be estimated. The measure of

difference adopted is the normalised mean—square error, or MSE, defined by

N
MSE(f) =	 100	 ( f 1 - f1 )2	 (12)

Na_f2 i=1

where f is the surface value at a grid point labelled i, and N = 10000 is the number

of grid points. fj is the estimated force from the model ( throughout this work carets

denote estimated quantities). is the standard deviation of the force values and the

summation is over all grid points. The normalisation factor is chosen such that, if a

(0,0) model ( simply the mean—level of the forces) is used to predict the force values

the MSE value will be 100. This is sometimes written as a percentage to reflect the

fact that the MSE above is the mean—square difference expressed as a percentage of

the variance of the measured data. A comparison was made between the interpolated

surface and an exact surface calculated from the analytic expression for f(y,') in the

equations of motion. The comparison is shown in Figure 2.14 and produced an MSE

of 6.7x10 5 indicating excellent agreement.

The coefficients for the models of order up to (3,3) are shown in Table 2.1. The

MSE for each model is shown in Table 2.2 There is a marked drop in the error for

the (1 ,1) model and then no significant decrease as the model order is increased

further; in fact, the model error is a minimum for the (1,1) model. This clearly

indicates that the system is linear. By tabulating the various model errors in this way

it is hopefully possible to determine the actual order of the system. The surface

generated from this model is compared with the interpolated surface in Figure 2.15

and the MSE of 0.186% shows how close the agreement is. The residual surface

plotted in Fig. 2.15 is not important at the moment, it will become so when the

extension to MDOF systems is made in the next chapter. The exact Chebyshev
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coo

Co1

C10

C11

Exact

-0.35203 1

3. 052770

8. 240615

0.0

Est imated

-0. 239064

3.056534

8. 242984

-0.226003

error

-32.09

0.12

0.03

coefficients for this data were calculated by the method described in Appendix B.

Comparison with the estimated coefficients produced the following results.

Using these results to produce an ordinary multinomial in y and ' gave

f ( y ,S')	 4O.05y + 10002.9y

if one neglects the cross term and the constant. The results are very accurate indeed.

A further measure of the model accuracy can now be made. By using the estimated

force in the Runge-Kutta procedure, one can predict the displacement output from

the model system under the excitation x(t). This can then be compared with the

actual or 'measured' displacement. The comparison for this system is shown in Figure

2.16. The MSE is defined as in equation 12, the only difference being that the

summation is made over sampling instants rather than grid points.

N
MSE(y)	 100	 ( y - 5,. )2

Na2 i1

This type of MSE is used throughout the present work whenever two records of time

data are to be compared. For this case, the MSE of 0.106 indicates an excellent fit.

Included in (10) is a study of the linear system

y+O.l5,+y	 x(t)
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The much lower resonant frequency of this system ( 1 rad/s ) reflects the fact that

Masri and Caughey are interested in Civil Engineering systems. They do not compare

their coefficients with the exact ones. However, they provide enough information for

the calculation to be made, the results are

Exact
	

Est imated
	

error

coo	 -0.070	 -0.22
	

209.9

Co1
	

0.793
	

0.65
	

18.0

C10	 7 . 745
	

7.64
	

0.07

cli
	

0.0
	

0.003

The results of the present study are better than those of (10) for this particular case.

This indicates that the extrapolation problem can be dealt with adequately by reducing

the data set.

The second example considered is of a nonlinear system with cubic stiffness. The

Duffing oscillator system with equation of motion

y + 20Sr + 104 y + 5x109 y3 = x(t)

was simulated. This type of nonlinearity is important because it represents the first

level of approximation to any odd nonlinearity. x(t) was a noise sequence as before,

with variance 50.0. The time-step for the simulation was 0.001 seconds. giving the

same frequency range for the filtered x(t) as the previous example

10000 points of time data were obtained. The resulting distribution of sample points is

shown in Figure 2.17. The dashed rectangle indicates the chosen reduced data set

which contained 8694 points in this case. The force surface was obtained using the C1

procedure and the results are displayed in Figure 2.18. A comparison between this

and the exact surface is shown in Figure 2.19, the MSE of 0.196 verifies that the

agreement is excellent. The cubic stiffness is shown very clearly in the surface i.e.
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coo

CO1

C10

CII

C20

C21

C30

C31

Exact

-1.616901

8. 967750

72. 370255

0.0

-0.750752

0.0

16.277388

0.0

error

-60.5

0. 0008

-0.093

208. 14

-0.3894

cc

Est imated

-0.637758

8. 966823

72. 302673

-1. 638723

-2.313370

0. 033068

16. 213997

-0.5 10824

there is curvature in the direction of increasing displacement but none in the direction

of increasing velocity.

The Chebyshev coefficients for models up to order (5,3) were obtained, and are

shown in Table 2.3. The MSEs for the various models are displayed in Table 2.4.

There is a significant drop in the error for the (3,1) model as expected, in fact this

error is a minimum. This is reassuring, the true order of the system is indicated

correctly. The surface generated from the (3,1) model is compared with the

interpolated surface in Figure 2.20. The MSE of 0.19 signals that the fit is very

good. The coefficients for the chosen model compare with the exact results as follows

The procedure has badly overestimated the size of the C 20 coefficient. This is

possibly due to a slight problem with the coefficient estimation which could occur,

small deviations from the correct curvature in the interpolated surface could be

modelled well by the inclusion of spurious terms, even though the other estimates may

not be affected much.

Converting back to a multinomial model for f(y,y) produces the result

f(y,')	 1.99 + 20.0002.' + l0057.y

- 8.35x10.y2 + 4.98x109.y3

after removing those terms which are insignificant. The quadratic term and the
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constant are an unavoidable nuisance, the rest of the estimation is very accurate.

Comparing the 'measured' displacements with those predicted by the (3,1) model

produced the results shown in Figure 2.21. The MSE of 19.4 is quite high. Deleting

the C20 coefficient produces the comparison in Figure 2.22 with a more acceptable

MSE of 6.80. Systematic deletion of the coefficients followed by this sort of

comparison can sometimes allow one to judge the significance and utility of each of

the terms. However, this is time-consuming and can sometimes be misleading. For

example, deleting C00 and comparing is not a good way to estimate the significance

of a constant term as the constant is actually distributed throughout all terms of

(even,even) order.

The cubic system

y + 0.04j + y + 0.003y3 = x(t)

is considered in (10) and the following results are obtained for a (3,1) Chebyshev

model

Exact

COO
	

0.2

C01
	 3.1

C10	 196.07

CII
	

0.0

C20
	

0.0

C21
	

0.0

C30
	

51.64

C31
	

0.0

Est imated

0.06

3.6

193.00

-0.09

0.13

0.27

51.0

0.13

% error

300.0

16.13

1.57

co

1.54

Apart from the overestimated quadratic term the results of the present study are

better. It is interesting to note why there is no quadratic term in their results. This is

because Ymax = lYmin for their simulated data set, so the -transforrnation (5)

on the data is simply a rescaling, no quadratic is introduced. By insisting that the

boundary of the reduced set is symmetric about the origin in the phase plane, the
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r—mappings can be reduced to simple scalings. However, this was considered too

restrictive, if a system has an even nonlinearity the data may be concentrated away

from the origin.

Next, a system with nonlinear damping is considered. The equation of motion used

was

y + 20S' + l00'i'i + 104 y - x(t)

The excitation was a noise signal as before with RMS 100.0. The same time—step was

used. This example is interesting because it is the first with a singular nonlinear

function. It is a fairly mild example, the second derivative of the damping function

does not exist along the line ' = 0 in the phase plane. This means that it cannot

have an exact polynomial representation. However, according to the Weierstrass

representation theorem it can be approximated arbitrarily accurately over a given

interval by an appropriately high—order polynomial. This allows the identification to

proceed as before, bearing in mind that the approximation found will be dependent

on the sample.

As before, 10000 points of the data were obtained, the distribution in the phase plane

is shown in Figure 2.23 along with the boundary for the reduced data set. The

reduced set contains 9272 points. The C 1 interpolation produced from this data is

shown in Figure 2.24. The comparison with the exact restoring force surface is

displayed in Figure 2.25, the MSE of 7.2x10 5 indicates almost perfect agreement.

Chebyshev coefficients were estimated for models up to order (2,8). The coefficients

are shown in Table 2.5 and the MSE values in Table 2.6. The MSE's have a

minimum for the (1 ,3) model. This indicates that for this level of excitation, the

system damping is adequately represented by a cubic term. At high levels of excitation

(1 ,5) or (1 ,7) models would be required. The comparison between the
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model-generated surface and the interpolated surface is shown in Figure 2.26. The

MSE of 0.18 indicates a good fit. The (1,3) model is

f(,') = -4.7419 + 38.68y+ 59.13	 - 1.943.

-O.722T2(') + 5.49T3 (') + 0.02T2(').y

-4.27T3(S') .Y

The comparison between the actual displacement and the predicted displacement from

the model is shown in Figure 2.27. The agreement is excellent. One should bear in

mind that the system has not stricly been identified, an approximation has been

obtained valid on a fixed interval. It is only with the benefit of prior knowledge that

one can avoid concluding that the system has a cubic damping nonlinearity.

A Van der Pol oscillator system is the subject of the next study. Following Reference

(10) in this case, the equation of motion used was,

y - 0.2(1 - y2 )y + y	 x(t)

In this case the linear resonance is at I rad/s. A sampling interval of 0.1 seconds was

used, which gives a sampling frequency of 10 Hz. The excitation used was a 'chirp'

signal of the form x(t) = l0sin(t2/200). 10000 points were accumulated, giving a

sweep range for the signal of 0 to 5 rad/s. The phase trajectory for the first 3000

samples is shown in Figure 2.28. At this stage the behaviour of the system is very

regular. However, as the phase trajectory spirals inwards, it eventually passes into the

region where the damping force is negative. Around this point, there appears to be a

transition to chaotic behaviour. This transition is shown very clearly shown in Figure

2.29. This behaviour will be important later when a comparison is made between the

actual and predicted displacements. The distribution of the 10000 points sampled is

shown in Figure 2.30. The complex shape of the region covered by the data means

that the extrapolation problem will be particularly severe unless a reduced data set is

taken. The reduced set is shown and contains 7913 points. This example allows one
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coo

C01

C10

cli

C20

C21

Exact

0. 359706

3.428425

3. 186125

0. 999160

0.219377

4.267792

Est imated

0.422658

3. 417381

3.182658

0. 994759

0. 149419

4. 198861

error

17.5

-0.32

-0.11

-0.44

-31.9

-1.62

to demonstrate very well how extrapolation can lead to serious errors. Here, the data

is irregularly distributed and the nonlinearity is third-order so even the C1

interpolation cannot represent the surface away from the data.

First, the force surface is obtained from a C 1 interpolation over all the data, this is

shown in Figure 2.31 and the comparison with the exact surface is shown in Figure

2.32. The MSE for the comparison is 33.5% which is extremely high. Next, the

surface is obtained from a C 1 interpolation over the reduced data set (Figure 2.33)

and compared with the exact surface (Figure 2.34). The MSE for the comparison is

reduced to 0.0056 which is more than acceptable.

The Chebyshev fit is made to the second interpolation, models up to order (4,4) were

estimated. The coefficients are displayed in Table 2.7, the associated errors in Table

2.8. As one would expect, the minimum error is for the (2,1) model. Comparison of

the model-generated surface with the interpolation gave an MSE of 0.116. The

comparison is shown in Figure 2.35. The exact Chebyshev coefficients were calculated

and comparison with those estimated produced the results

Comparing the 'measured' displacements to those predicted by the model produces

interesting results. The overall MSE for a comparison over 10000 points is 7.85%.

Yet, the first part of the comparison, shown in Figure 2.36 is excellent. The high

MSE is due to the fact that the predicted output makes the transition to 'chaos'

earlier because of the slight differences in the coefficients. This is entirely consistent

with the behaviour of chaotic systems. Figure 2.37 shows a comparison over the
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coo

Co1

Cl0

CII

C20

C21

Exact

0.035

37.34

6.185

0.892

0.0

39.4

Est imated

0.44

3.58
8.48

-0.27

0.09

-1.30

% error

1157.0

90.4

37.1

130.3

103.3

region of transition.

The results in (10) for this system are

The results are terrible, this is because Masri and Caughey use a (7,7) model and

only the (2,1) subsection is shown here. In their case the higher order terms are

needed to improve the fit. In their model, the largest coefficients are CO3 C3 0 and

C34. This is to be expected as their extrapolation procedure simply cannot cope with

cross terms. In this case using a reduced data set produces significantly more accurate

results and the correct nonlinear order of the system is identified.

The next system considered is a piecewise linear system. Between y = ± 0.001 the

equation of motion is given by

y + 20y + 104 y	 x(t)

outside of this interval the stiffness force is 11 times larger. Once again, the restoring

force can only be approximated by a polynomial. In this case the first derivative of

the stiffness force does not exist along the lines y = ± 0.001. This is a more severe

form of singularity than the nonlinear damping example. Because of this it will be

more difficult to approximate the force by a polynomial.

The input excitation x(t) was a noise sequence with RMS 50.0. The time —step used

was iO 4 seconds corresponding to a sampling frequency of 10 kHz. The Runge—Kutta

filter band—limited the input into the range 0 to 2000 Hz. As usual, 10000 samples of
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data were obtained, their distribution in the phase plane is shown in Figure 2.38. The

reduced data set is also shown, it contains 8815 points in this case.

The C1 surface obtained from TILE4 is displayed in Figure 2.39. The comparison

with the exact surface (Figure 2.40) yields a MSE of 4.6x10 4 which indicates near

perfect agreement.

The Chebyshev coefficients up to order (9,2) were estimated and the results are given

in Table 2.9. The associated error table is given also (Table 2.10). The error has a

minimum for the (9,1) model, which is the highest estimable odd—order model. The

surface generated from this is compared with the TILE surface in Figure 2.41. The

MSE of 0.66 is good. However, it is still clear from the comparison that a 9th order

model is inadequate to model this stiffness behaviour.

The comparison between the exact and estimated displacements produces terrible

results. The two streams of data diverge and the MSE overflows. The reason for this

is simple. In fitting a polynomial to the piecewise linear function, to obtain close

agreement it may be neccessary for the coefficients to be nonphysical i.e the higher

order stiffness coefficients may be negative. When one estimates the displacements

from the model, this is done on the entire data set rather than the reduced set. On

this extended area it is then possible to obtain negative stiffness forces from the

model and the system will quickly become unstable. This phenomenon can occur for

any non—polynomial restoring force. It is a consequence of the approximation

procedure, the model is only valid on the reduced data set.

A system with Coulomb friction is the subject of the next study. The equation of

motion for the system used is

y + 20S' + lOsgn(y) + 104 y - x(t)
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x(t) is a noise sequence with RMS 50.0. The sampling frequency used was I kHz.

The Runge—Kutta filter limited the signal to the range 0 - 200 Hz. Of the examples

considered in this section, this is the most singular. There is a discontinuity in the

restoring force surface along the line ' = 0. This force will be the most difficult to

model with a polynomial.

10000 points of data were accumulated. They are shown in Figure 2.43 together with

the boundary of the reduced data set which contains 9258 points. Initially, the TILE

package was used to provide a C1 interpolation. This is shown in Figure 2.44. A

problem arises here. One can see spikes in the surface. This is because the algorithm

for a C1 surface needs to estimate the gradient of the surface at each sample point.

If the routine considers two points very close together but separated by the

discontinuity it will drastically overestimate the gradients at these points. In fact, the

gradient at points on the discontinuity is infinite. The interpolant is constructed from

the force values and estimated gradients in a similar way to forming a Taylor series,

if the gradients are too high, the estimated interpolant will be too high. If the C°

interpolation scheme is used, this problem does not occur (Figure 2.45). However, in

this case the surface is not as good along the boundary of the data region. In order

to obtain the best possible estimate of the surface, one can form a hybrid by taking

the C1 surface as the basic one and then replacing the neighbourhood of the

singularity by that from the C° surface. This procedure is illustrated in Figure 2.46.

The resulting hybrid surface is displayed in Figure 2.47. Comparing the hybrid C1/C°

surface with the exact one gives a MSE value of 0.0097, this result is excellent. The

comparison is shown in Figure 2.48. The regions of surface used in the transplant are

chosen by considering contour maps of the surfaces. The singular regions show up as

areas with densely packed contours.

Using the hybrid surface, Chebyshev coefficients for models up to order (1 ,9) were

estimated. The coefficients are given in Table 2.11 and the associated errors in Table

2.12. The minimum MSE of 1 .57% occurs for the (1 ,9) model. The Chebyshev

surface generated from this model is shown in Figure 2.49. The model surface clearly
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does not represent the force surface very well at all. Even a 9th order model is

inadequate to model the nonlinear damping force. As one would expect, comparing

the measured and predicted displacements does not produce very good results (Figure

2.50). The MSE is 6.87%.

Finally a hysteretic system is considered. Hysteretic systems or systems with memory

cause particular problems for this method because the restoring force has an explicit

time—dependence and as a consequence the force surface will be multi—valued. (It

would be single—valued if displayed as an appropriate Riemann surface. However it is

not obvious how one can make use of this remark.) There are a number of useful

models of hysteretic systems, the one chosen here is the Bouc—Wen model (37) which

can simulate systems with widely varying hysteresis loop areas and envelopes. The

parameters used in this example were taken from the paper of Hammond et.al . (21).

The equations of motion are

y + l5.O8y + 5684.89y + z	 x(t)

±	 1000k -	 l.5i'i.z.izi	 + l.5y1z12

Naively integrating the second of these equations with respect to time and substituting

the z obtained into the first equation, shows that the 1000S' term is actually a linear

stiffness term. This gives a linear resonance for the system at 13Hz. As before, x(t)

was a Gaussian noise sequence. In order to produce noticeable nonlinear effects an

RMS of 200.0 was used for the input. The sampling frequency was I kHz, giving the

same frequency limits for x(t) as the previous example. The distribution of 10000

sampled points is shown in Figure 2.51. The reduced data set shown contains 8199

points. As with the previous example a problem occurs when the C 1 option is used

for the interpolation. Because the surface is multi—valued, two arbitrarily close points

in the phase plane can have a finite difference between the force values above them.

This causes the overestimation of gradients and the resulting surface will contain

spikes. This is clear from a comparison of Figure 2.52 with Figure 2.53. The former

shows the C1 surface and the latter, the C° surface, the second of these is
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considerably more regular. Both the surfaces are essentially linear. Because there are a

large number of spikes and their distribution is irregular, it is impractical to form a

hybrid surface. For this reason the C 1 option can not be used for systems with

memory.

The Chebyshev coefficents are estimated form the C° surface (Table 2.13). The

associated MSE values are given in Table 2.14. The error is a minimum for the (1,1)

model. This is because the effects of the multivaluedness average out over the 10000

points to give a linear surface. The comparison between the model-generated surface

and the TILE surface is given in Figure 2.54. The MSE of 0.19% indicates that the

system is well modelled over this range by linear forces. If the Chebyshev model is

converted to a simple polynomial model, the results are

f(y,)	 -5.51 + 18.32r +	 +

The effective linear stiffness approximates to 5684.89 + "10O0.O as expected. Also, the

estimation has modelled the hysteresis by an effective viscous damping term equal to

(18.32-15.08)S' = 3.24y. In order to check that this is the correct interpretation and

not simply an error in the damping estimate, a comparison was made between the

actual displacements and those generated from the model above. The comparison is

shown in Figure 2.55, a MSE of 0.87 was obtained. The damping in the model was

then changed to the 'correct' value 15.08, and the comparison was repeated. This

time the MSE was 3.13. This indicates that the estimation has compensated for the

energy loss through hysteresis by adding extra viscous damping.
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function

f(x,y) - cos(	 (x -	 + (y -

on the unit square [O,1)x[O,1].

reconstruction of the function by the

cli) vaiues 01 ne aoove Iunct ion at data sites

in the unit square.

C1 natural neighbour method.

absolute error in the interpolation.

Figure 2.1.	 Natural neighbour interpolation for a function on

the unit square ( reproduced from (36).)
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ge to polar coordinates.

ate so that the major axis of the ellipse

coincides with a coordinate axis.

(Ii)	 Scale the coordinates along the major axis

to give a circular data region.

Figure 2.9.	 The sequence of operations required to map an

elliptical region onto a square region
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Figure 2.12.	 Tesselat Ion and triangulation over the reduced

data region for the linear system.

Figure 2.13.	 C1 restoring force surface for the linear system.
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Figure 2.14.	 Comparison of the interpolated surface with the

exact surface for the linear system.
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Figure 2.15.	 Comparison of the (1,1) Chebyshev model surface

with the interpolated surface for the linear system.
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Figure 2.16.	 Comparison of the (1,1) Chebyshev model displacement

data with the exact displacement for the linear

system.
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Figure 2.18.	 C1 restoring force surface for the system with a

cubic stiffness term.
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Figure 2.19.	 ComparIson of the interpolated surface with the

exact surface for the cubic stiffness system.
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Figure 2.20.	 ComparIson of the (3,1) Chebyshev model surface

with the interpolated surface for the cubic stiffness

system.
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Figure 2.21.	 ComparIson of the Chebyshev model displacement data

with the true displacement data for the cubic stiffness

system.
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Figure 2.22.	 The same comparison as in the previous figure except

that the y2 term has been deleted from the model.

	

•	 •	 .	 ,r

S	 -	 ....	 .... ..	 .	
.

-	 •	 :.	
.

__.___.__.___.__

	

4	 $	 A I

	

•1.	 -,	 I

	

ç	 -,	 I0	 -

' 	
'-	 ..	 I

	

*.	 L

i 	 i5	 C	 lf

'
-	 iL''

	

- 41 4	 .1

It'$ . ;	 I

4	 ,4	 i-.c'	 4,/ ,	 s. .4	 .r-

- Displac.aent y	 -	
55
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Figure 2.24.	 C1 interpolated force surface for the system with

quadratic damping.

Figure 2.25.	 Comparison of the interpolated force surface with

the exact surface for the system with quadratic

damping.
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Figure 2.26. Comparison of the Chebyshev model surface with the
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Figure 2.27.	 Comparison of the model displacement data with the

true displacement data for the system with quadratic

damping.
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Figure 2.28.	 3000 points of the phase trajectory for the Van der Pol

oscillator system described in the text.

Figure 2.29.	 1000 sample points of the Input force and displacement

response for the simulated Van der Pol oscillator system

showing the transition to chaos.
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FIgure 2.30.	 Distribution In the phase plane of 10000 points of data

for the simulated Van der Pol oscillator system.

Figure 2.31.	 C0 interpolated force surface for the Van der Pol

oscillator.
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Figure 2.32.	 Comparison of the C0 interpolated surface with the

exact surface for the Van der P01 oscillator.

Figure 2.33.	 C1 Interpolated force surface for the Van der P01

osc ill at or.

82



2
j.00.0

-100.0

2	
.0

-100.0

100.0

-100.0

100.0

-100.0

0.10

-0.15

Ez.ct Surloco	 I,1oIpoIi(e Surtco
1St tor Coby.eo s,rf,ce : O.55t1e—O2

Figure 2.34.	 Comparison of the C 1 interpolated surface with the

exact surface for the Van der Pol oscillator.
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Figure 2.35.	 Comparison of the (2,1) Chebyshev model surface

with the exact surface for the Van der Pol oscillator.
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Figure 2.36.	 Comparison of the model displacement data with the

true displacement data for the Van der Pol oscillator

showing the data before the transition to chaos.
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Figure 2.37.	 The same comparison as the previous figure except

that the transition to chaos is shown for the true

data.
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Figure 2.38.	 Distribution in the phase plane of 10000 data points

for the simulated piecewise-linear system described in

the text.

Figure 2.39.	 C1 interpolated force surface for the piecewise-

linear system.
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Figure 2.40. Comparison of the interpolated force surface with

the exact force surface for the piecewise-linear

system.
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Figure 2.41.	 Comparison of the (9,1) Chebyshev model surface with

the interpolated surface for the piecewise-linear

syst em.
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Figure 2.42.	 ComparIson of the model displacement data with the

true displacement data -for the piecewise-linear

system.
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Figure 2.43.	 Distribution in the phase plane of 10000 data points

for the simulated system with Coulomb friction

described in the text.
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Figure 2.44.	 C1 interpolated force surface for the system with

Coulomb friction.

Figure 2.45.	 C° interpolated force surface for the system with

Coulomb friction.
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Figure 2.46.	 The formation of the C 1 /C° hybrid surface.
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Figure 2.47.	 C1/C0 hybrid force surface for the system with

Coulomb friction.
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Figure 2.48.	 Comparison of the hybrid interpolated force surface

with the exact force surface for the system with

Coulomb friction.

90



40.0

-40.0

40.0

-40.0

a
C,
C

0.
a

Ii(etpoIled 5,rfict
	 Cbebyii Appreiai(io.

6.0

-10.0

teilduil uuttice
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the Interpolated surface for the Coulomb friction
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Figure 2.50.	 Comparison of the model displacement data with the

true displacement data for the Coulomb friction

system.
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text.

Figure 2.52.	 C1 interpolated force surface for the hysteretic

system.
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system.

lull, polulud S.rl.cu
	

CeIyfleo Approolmullo.

10.0

-10.0

Ii,)d.aI •Irf.CI

FigUre 2.54.	 Comparison of the (1.1) Chebyshev model surface with

the interpolated surface for the hysteretic system.
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Figure 2.55.	 Comparison of the model displacement data with the

true data for the hysteretic system.
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Table 2.1.	 Coefficients for the Chebyshev models for the linear

system
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Table 2.2.	 Mean-Square Errors (MSE) for the Chebyshev models

given in Table 2.1.
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Tab'e 2.3.	 Coefficients for the Chebyshev models for the cubic

stiffness system.
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Table 2.4.	 MSE table for the Chebyshev models given in Table 2.3.
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Table 2.5.	 Coefficients for the Chebyshev models for the system

with quadratic damping.
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Table 2.6.	 MSE table for the Chebyshev models given in Table 2.6.
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Table 2.7.	 Coefficients for the Chebyshev models of the Van der Pol

oscillator system.
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Table 2.8
	

MSE table for the Chebyshev models given in Table 2.7.
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Table 2.9.	 Coefficients for the Chebyshev models for the piecewise-

linear system.
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Table 2.10.
	 MSE table for the Chebyshev models given In Table 2.9.
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Table 2.11.	 Coefficients for the Chebyshev models for the system

with Coulomb friction.
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Table 2.12.	 MSE table for the Chebyshev models given in Table 2.11.
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Table 2.13.	 CoefficIents for the Chebyshev models for the

hysteretic system.
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Table 2.14.	 MSE table for the Chebyshev models given in Table 2.13.
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CHAPTER 3

THE MASRIJCAIJGHEY PROCEDURE - MDOF SYSTEMS

The work of the previous chapter indicated that for simulated SDOF systems Masri

and Caughey's restoring force approach provides a useful technique for the

identification of nonlinear systems. This would be of limited value if it was only

applicable to SDOF systems. In fact, Masri,Caughey and Sassi have shown that the

method allows a fairly straightforward extension to MDOF structural systems (10). This

chapter is concerned with this extension.

3.1. Basic Theory.

The most natural language for the description of multi—degree—of—freedom (MDOF)

systems is that of matrices and vectors. In the discussion which follows square brackets

shall denote matrices and curved brackets { } column vectors. In addition the

convention adopted is that the kernel letter of a generic matrix will be a capital and

the diagonalised form of the matrix will be denoted by the small character of the

same type. Thus [M] is the mass matrix and [m] is the diagonalised mass matrix.

Transposition is indicated by a superscript T.

As before, one begins with Newton's second law

[M]{y} + {f(y , rfl 	{x(t)J	 (1)

for a MDOF system. The assumption is that the mass of the system is concentrated

at N points. The external forces on the system are then assumed to be applied at

these points, the th entry of the vector {x} being the force at mass i. The th entry

of the vector {y} is the acceleration of mass i. The th component of {f} is the
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internal or restoring force which attempts to return mass m 1 to equilibrium when it is

disturbed. This is already a rather restricted model. In general a structural system will

have a continuous distribution of mass and hence an unlimited number of

degrees—of—freedom. The model above has only N. This is reflected in the fact that

the system in (1) has precisely N natural frequencies or resonances, the simplest

continuous system will have an infinite set. For fairly obvious reasons, systems of the

type above are sometimes called lumped—parameter systems. Under normal conditions

one would use a band—limited input to excite a system i.e. one with a limited

frequency range. This means that only a finite number of the system modes would

contribute to the dynamics, one would excite up to say, the Nth natural frequency.

Under these conditions one should be able to model the behaviour of the system

accurately with an N degree—of—freedom system. Equation (1) is therefore adequate for

most purpose.S /

The simplest situation possible is where the restoring force is linear i.e.

(f}	 {f1)	 [C](')	 +	 [1(11(y)	 (2)

[C] is the damping matrix and [K] is the stiffness matrix for the system. If the forces

are nonlinear, there may still be a regime where (2) is a good approximation e.g. if

{f} is a polynomial and a small excitation is used. For such a system, one could

determine the modal matrix [fl . Arguably the most common method of estimating the

modal matrix is by curve—fitting to the system FRFs, a comprehensive reference on

this technique is (7). Having obtained [v'] one can then change to the normal

coordinate system specified by

(u) = [flT(y)

In this coordinate system (7), the equations of motion (1) become

[m]{U) + [c](ü) + [k](u)	 [}T(x)	 =	 {q)

11.LJ.



where [m] = []T [M][] is diagonal, as are [c] and [k] with similar definitions. In

order that [c] be diagonal proportional damping is assumed for the moment. The

equations are now decoupled into N SDOF equations of motion.

m 1 i1 1 + c 1 ü + ku 1 = qj

where m, c and k are the diagonal entries of [m], [C] and [k] respectively. If the

system is nonlinear this decoupling does not occur, one cannot find an appropriate

linear transformation. However, since the underlying linear system can be decoupled,

one can perhaps expect some simplification on changing to normal coordinates.

Equation (1) becomes

[m] (ii) + (h((u) , (ü)) )	 =	 (q(t))	 (3)

where {h} = []T{f}. As before, the method requires estimates of {y}, {'} and {y} for

each sampling instant. However, one also needs estimates of the mass matrix and the

modal matrix. Finding these quantities accurately is a non—trivial problem. The mass

matrix in particular is rather awkward to determine (38). The technique of modal

anlysis (7) allows one to estimate []. For the moment assume that estimates are

available, the restoring force vector can then be calculated from (3)

(h)	 {q) - [m] (U)	 =	 [J]T ({x) - [M] ( y ) )

and the th component is given by

h	 = qj - mti

These equations hold at each sampling instant. As an aid to clarity, the sampling

instant labels are suppressed. Unfortunately h1 is not simply a function of u and U.

In general the nonlinearity of the system can cause a dependency on all the u's and

u's. However, as a first approximation one assumes that the main contribution to h1
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is a function of u and i:i. Just as for the SDOF systems one can interpolate the h

data into a surface above the (u,ii) plane and then fit a model of the form

h j ( 1 )(u 1 ,u 1 )	 ci(1) mn Tm(ui) I(u)	 (4)
mn

For the sake of clarity, the maps which carry the data onto the square [-1 ,1 ]x[—1 ,1]

have been omitted. However, one should bear in mind that they are neccessary for

the evaluation of the coefficients above; consequently, the coefficients are

sample—dependent. The expression (4) will hopefully capture all terms of the form

(u )i)1. To include effects caused by the coupling of normal coordinates by the

nonlinearity one would need terms of the form (uj)(Uj) 3 where i ^ j. Consideration

of the Van der Pol oscillator suggests that one should add further terms of the form

(u j)(ñj )f3 . Masri and Caughey et al. omit to mention that if the nonlinearity is in the

damping forces one also needs terms of the form ()&()13. Hopefully one has then

accounted for all the terms in h 1 . In order to carry out this procedure, one uses (4)

to form the first residual term r(1),

r 1 (fl ((u) , (a))	 h((u) ,{U)) - h( fl (u ,ü)	 (5)

Then by successively interpolating over the (u j u j) planes and expanding, one forms

the expression

h1( 2 )((u))	 C2(CJ	 Tm(ui) T(u)
j mn

r 1 ( 1 ) ((u) , (ü))

including only those modes which interact with the th mode. Of course this might be

all of them. Displacement/velocity coupling is accounted for in the same manner. One

forms

r1(2)(tu),(u))	 = r(1)((ui,(u)) - h(2)((u))
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and

h1(3)((u),(ü}) =	 C3((J)	 Tm(Ui) T(üJ)
3 Inn

r1(2)({u),{ü))

Finally one accounts for the velocity/velocity coupling using

r i (3) ( ( u ) , (ü))	 = r (2) ((u), (ü)) - h (3) ((u), (ü))

and

h(4)((u))	 C4'J	 Tm(1:ui) In(Üj)
j mn

r(3)((u),{ü))

So the final restoring force model has the form

h 1 ((u) , (ü)) = h 1 ( 1 ) (u ,ü 1 ) + h 1 (2 ) ((u))

+ h 1 ( 3 )((u), (ü)) + h1(4)({ü))

Because one has now accounted for the presence of (hopefully) all possible terms in

h, one can remove the proportionality condition on the damping. It is clear that

many expansions may be required in order to obtain an accurate model.

Before proceeding it is neccessary to specify how one forms the residual term in (5).

One begins the procedure with a time series hi(tk) for each component of the

restoring force, tk being the kth sampling instant. In order to find the u,ü1

dependence of the force, one forms the triplets (ul(tk),uj(tk),h(tk)), one for each

sampling instant. A h surface is then interpolated over the (u,u) plane.

Unfortunately, ordering the data with respect to u and removes the ordering with

respect to time and one has only a probabilistic relationship to specify the (u2,ü2)

dependent part of h at each point in the plane. The (u2,ü2) values for each sample

point are randomly distributed over the (u 1 ,i1 ) plane. This means that one cannot
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simply subtract the expansion (4) from the surface and then expand the remainder in

terms of say (u 1 ,u2). One has to subtract the (u 1 ,i 1 ) dependence (4) from the

original time—series h and then interpolate a new surface over the (u1 ,u 2) plane.

Thus, the residual is formed as a time—series

r 1 ( 1 )((u} ,	 = h 1 ( t k) - h 1 (1 ) (u (tk) ,U (tk))

(6)

and the whole sequence, form triplets - interpolate - fit surface, must be repeated

for each expansion term. The procedure is therefore extremely time—consuming if

there are more than a small number of degrees—of—freedom. The probabilistic

relationship between the variables alluded to above will be discussed in more detail

shortly.

3.2. The Effect of Incorrectly Estimating the Mass Matrix.

As indicated, it is not a simple matter to produce an accurate estimate of the mass

matrix for a structure. This section is concerned with identifying the effects of errors

in the estimated masses. To simplify matters a SDOF system is considered first.

Assuming that m and y have been accurately measured, the true restoring force is

obtained from

f(y,') = x - my

If the mass estimate th is in error, the calculated force

= x -

is also in error. If ill - m = m, one can easily show that
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f-amy
	

(7a)

or

= (/m)f - (m/m)x
	 (7b)

Equation (7) shows clearly that I will be inaccurate for two reasons; (i) t will be

scaled by a factor (thlm) and (ii) it will be distorted by a 'noise' term, (imIm)x.

Consider the following example. The SDOF nonlinear system

y + 2Oy + 104 y + 5x109 y3 - x(t)

was simulated with x a gaussian noise sequence with RMS value 150.0. In order to

show the effects of a mass error a technique is anticipated from the next chapter.

Briefly, one takes the r = 0, section from the restoring force surface and plots it,

one can then fit least-squares linear and cubic terms to the resulting 'static stiffness'

curve. The exact result is clearly 1s(Y) = I 04y + 5x1 However, if the incorrect

mass value iii is used to form the surface, one expects errors in the coefficients for

the reasons given above. The estimated coefficients for various values of iii are given

in Table 3.1. Figure 3.1 shows the 'exact' stiffness curve for ili = m = 1 .0. Figures

3.2 and 3.3 show the curves obtained for th = 0.1 and th 	 10.0 respectively.

It is clear from Table 3.1 that f scales roughly according to the rule

f=th
	

(8)
m

as far as the stiffness curve is concerned. The damping coefficient estimates taken

from the damping section (y = 0) of the force surface are also shown in Table 3.1.

The scaling behaviour of the damping estimate is not so simple, the reason for this is

not clear, but may be due to the fact that the damping term is small compared to

the - (m/m)x term in (7b).
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The apparent presence of a high degree of noise in Figures 3.2 and 3.3, can be

easily explained in terms of equation (7a). This explanation is specific to the case of

random excitation. However, it extends simply to other forms of forcing. In this

equation the time dependence has effectively been removed

M(y,T) = -Lmy
	

(9)

So the error in the surface at a point (y,') is proportional to the acceleration, and

the displacement and acceleration are highly correlated as follows. If one neglects the

time dependence as in equation (9), the most one can say about y, given y, is that

considered as random variables they have a joint probabilty distribution P(y,y) i.e.

P(y,y)dydy is the probability that y, is in the range ( y , y + dy ) and at the same

time y is in the interval ( y, y + dy ). At a given point q (yq'q) the probability

distribution for the acceleration is simply Pq(Y) = aP(yqY) where & is a normalisation

factor fixed by the condition

I dy aP(yq ,Y) 	1
	

(10)

This means that the error in the force surface at the point q is given by

M(yqS'q) = _Lm.Xq

where Xq is a random variable with probability distribution Pq(Y). If y and y were

not correlated with each other M would simply be a noise term independent of

position. Figures 3.4 and 3.5 show an estimate of the joint probability function P(y,y).

This was obtained simply by dividing the (y,y) plane into small squares and counting

the number of sample points from the simulation in each square. The figures clearly

show that y and y are in fact anti-correlated, when y is large and positive y is likely

to be large and negative. This is not surprising, for a linear system under sine

excitation the two signals will be proportional to each other. The correlation means
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that M is position dependent and the coefficient estimates will be overestimated.

Systematic over- or under-estimation of this sort is termed bias. This agrees with the

scaling behaviour shown in (8).

This analysis can be extended directly to MDOF systems where the analogues of (7a)

and (7b) are

(f)	 =	 (f) - [Lm](y)

{f}	 =	 {ii][mJ(f) + [m][m](x)

3.3. The Effect of Incorrectly Estimating the Modal Matrix.

The best way of illustrating the problem here is by example. The two

degree-of-freedom system

I y 1 + 201	 1 + :104 1 2 -1 JI	 1 = I xl
[y2 J	 -1	 2 [y2J	 [oj

was simulated with x a Gaussian noise sequence band-limited from 0 to 200 Hz. The

Masri/Caughey procedure was carried out using the modeshape estimate

[]	 = __i. I	 i	 11

j2	 c -1 J

Figures 6(a) to 6(d) show the effect on the force surface h( 1 )1 (u 1 ,ü 1 ) when & is 1.0,

0.9, 0.6 and 0.3 respectively. The correct value for c is 1. There is an apparent

increase in noise on the surfaces as the error in [i] becomes more serious. There is

a simple explanation for this effect. Consider the system above with c	 0.5. In

normal coordinates {u} = [JT{y} the equations of motion become
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ti 1 + 20ü + 12.6ü2 + 13416u1 + 37800u2	q = x/j2

U2 + l2.6ài + 20U1 + 37800u1 + 30000u2	q = x/12

The equations are not decoupled because of the error in the modal matrix. The

restoring forces are now

h1 = 20u 1 + 12.6ü2 + 13416u 1 + 37800u2

12.6ü1 + 20ü2 + 37800u1 + 30000u2

As discussed in the previous section, when the surface h 1 (fl(u1 ,u1 ) is formed, all

information about time is discarded when one assembles the data over the (u1,U1)

plane. This means that the most one can say about the variation of the (u2,u2)

variables which also contribute to h1 (1) is that they have well—defined joint probability

distributions with, say, u 1 i.e. P1 (u 1 ,u2) and P2(u1 ,u2). At a fixed point q

(ulq , 111q) the probability distribution for u2 is Plq(U2) = aP1 (u 1 qu2) and that for ü2

is 2q = 3P2(uIqü2). The constants n and are fixed by conditions like (10). It is

now clear that over the point q the restoring force h 1 value will be

h 1 = 20u1 + 12.6X 1 + 13416u 1 + 37800X2

where X1 is a random variable with probability distribution function P 1 q(U2) and X2 is

a random variable with p.d.f P2q(U2). The interpolation procedure therefore sees a

deterministic u1 and dependent part to h 1 with a stochastic part superimposed. If

u1 , u, u2 and ii are uncorrelated in pairs, the stochastic part will be a noise term

independent of position. In general the variables will be correlated and the coefficients

estimated from the surfaces will be biased. If a residual surface is now obtained it

will be much smoother i.e.

r 1 (U(u2 ,i2 ) = 12.6ü2 + 37800u2

only if the coefficients have been correctly identified in the first step. If the estimates
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are wrong one will not remove all the u 1 and ü1 dependence and the residual surface

will be noisy also.

There is another serious problem associated with errors in [i]. In using the

transformation matrix 11T to normal coordinates one will identify the wrong system.

Consider the linear system

+ [C]{) + [K](y) - (x)	 (11)

The Masri caughey procedure actually identifies the system

+ (JT[C][4].[]T(	 +

]T[K]fl.[]T(yl	 [1T(x)	 (12)

In general, if [] is not estimated accurately it will not be orthonormal i.e. []T[] ^

1. In this case the system specified by equation (12) is not physically equivalent to

that specified by (11). They are not related by a linear transformation of coordinates.

The remedy is almost trivial. If []1 is used throughout rather than []T the systems

are equivalent, the change of coordinates is now {u} = []1 {y}. There is nothing to

be lost by adopting this modification, inversion of a matrix is a little more expensive

than transposition but the inversion need only be carried out once. If the modal

matrix is accurate then of course [4]-1 = []T. If the estimate is bad the attempt to

decouple the equations using the inverse [1-1 will be no worse than using the

transverse [jT. The results of modifying the procedure in this way are illustrated in

the next example.

The same system as in the previous example was simulated. Using the incorrect modal

matrix
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[]	 1	 1	 1
1 0.5 0.5

The identification procedure was carried out on the data, first using the [JT version

of the procedure and then using the [b]_ 1 version. Using each of the models found

in turn the results of comparing the predicted displacements with the actual

displacements are shown in Figures 3.7 and 3.8. The slightly modified procedure gives

significantly better results.

3.4. Application of the Procedure to Simulated Systems.

The two degree-of-freedom nonlinear system

I i i + 20 1S'i 1 + iO4 [ 2 -1 l Iy i 1
-1	 2JyJ1Y2i	 [Y2J

+5x109 1 yi 3 1 	 fX
1 0 J

was simulated with x(t) a noise sequence with RMS 150.0. The modal matrix for the

underlying linear system is

Lv]	 = _i. 1 1	 1

j2 1 i - i i

So the equations of motion in normal coordinates are

+ cü 1 + ku1 + k3 (u1 + u2) 3 = x/j2

+ cii2 + 3ku2 +	 k3(u2 + u1) 3 = x/j2

where c = 20.0, k	 and k3 = 5x109. The nonlinear restoring forces are,

h1 - cü1 + ku1 + k3u13

+	 k3( 3u1 2u2 + 3u 1 u2 2 + u2 3 )	 (13a)
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h2 = Cu2 + 3ku2 + 4 k3u

+ 4 k3 ( 3u2 2u 1 + 3u2u1 2 + u 1 3 )	 (13b)

The results of applying the identification procedure are illustrated in Figures 19 to

3.10. The identification proceeds as follows

(i) Assemble the data for the h1(1 )(u1 ,u1) expansion. The arrangement of data is

shown in Figure 3.9. The reduced data set is shown within the dashed rectangle. The

tesselation and triangulation are formed exactly as for the SDOF systems (Figure

3.10). The TILE package is used to form a C° surface, which is shown in Figure

3.11. Once again, the interpolation appears to be very noisy. The explanation is the

same as before. h 1 is actually dependent on all four dynamical variables u 1 , u, u2

and u2 however only u1 and u are ordered for the interpolation. So considering

equation (13b) this means the procedure sees above a given point q = ( U 1q Ü 1q) a

deterministic term

hd = cü1 + ku 1 + 4 k3u3

and a stochastic term

h5 = 4 k3( 3 u i 2Xq + 3u i Xq2 + Xq3 )

where Xq is a random variable with probability density function Pq(U2) = oP(u1qu2).

The joint probability density P is defined as before.

(ii) Fit a Chebyshev series to the interpolated surface (Figure 3.12). In this case a

model of order (3,1) was chosen. Then subtract the model from the time data to

form the first residual time—series r1 (1)•

(iii) Assemble the residual force data over the (u1 ,u2) plane for the h1 (2) expansion.

The distribution of data in this plane is shown in Figure 3.13. It is obvious from this

12.



figure that the u 1 and u2 data are quite strongly correlated. This means that the

estimated coefficients in step (i) will be biased. However, at this stage one can

correct for errors in the u1 dependence. One then forms the interpolated surface

(Figure 3.14) and fits a Chebyshev model. In this case the model order is (3,3) and

the model surface is shown in Figure 3.15.

(iv) Carry out steps (i) to (iii) for h2. ( Figures 3.16 to 3.20.)

If one is concerned about the parameter bias one should iterate the above procedure

until one has modelled the data correctly. For example, if one only makes one pass

through the data as above, step (i) will introduce a u1 3 ü1 term which is not

corrected for at any subsequent stage. A spurious term of this sort can ruin any

attemp to compare model predictions with actual data. There are two problems here.

(a) Because of the large stochastic term in stage (i) the interpolation will introduce

errors which will propgate through the procedure in the residual term and cannot be

removed, iteration will not help here. (b) The procedure is already time—consuming

enough. To identify a MDOF system by the methods above can take hours, iteration

could multiply this into days, even if problem (a) does not occur and iteration is

possible.

The final result is a Chebyshev series model of the nonlinear restoring forces {h}. To

check the accuracy of the model the predicted displacements were compared with the

actual displacements. The results are shown in Figures 3.21 and 3.22. Figure 3.21

shows the results if a linear model is used. Figure 3.22 gives the comparison for the

full nonlinear model. The results are significantly better in the latter case as one

would expect.

The analysis was then carried out on a system with a discontinuous nonlinearity; a

three degree of freedom nonlinear system described by the equations of motion,

1
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The response of the system was simulated with the same input as the previous

example. The nonlinear force f,j was a piecewise linear function with clearance 0.001.

The system is illustrated in Figure 3.23.

The identification procedure was carried out exactly as in the previous example and

the formation of the resulting expansions for h 1 and h2 are illustrated in Figures 3.24

to 3.32. The restoring force surface for the second normal coordinate is flat because

the modal matrix for the underlying linear system is

1 j2	 I
= I	 j2	 0 -j2

1 -j2	 I

Thus the nonlinear force does not appear in the second normal mode. This illustrates

nicely a drawback of the procedure, the change to normal coordinates shuffles the

physical coordinates so one cannot tell from the hi's where the nonlinearity might be.

The derivation of the model for h3 is not shown as it simply mirrors that for h1.

The coefficents are not given above because unless the models can be translated into

a polynomial model, they are meaningless. In the case of MDOF systems, the algebra

involved in carrying out the exercise would be horrendous. If one is interested in

easily obtaining physical parameters this procedure is not really suitable.

Because of the noise in a surface caused by interaction with other modes, one can no

longer use the option of forming a C1 surface using TILE. This is because two

arbitrarily close points in say, the (u1,ü1) plane can have quite large differences in

the force values above them because of the random contibutions from other modes.
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This means that the gradients will be overestimated and the interpolated surface will

contain spurious peaks. This effect is shown in Figures 3.33 and 3.34. This is not just

a problem with TILE. It is difficult to imagine how one could form a C

interpolation without estimating gradients. How would one find a second order Taylor

approximation to a function without estimating the second derivatives?

3.5. How Useful is the MasrilCaughey Procedure.

The preceeding results indicate that it is possible to implement a reasonably direct

version of the Masri/Caughey procedure practically. The systems studied are computer

simulated, admittedly. However, almost all work on restoring force methods is

restricted in the same way. It is useful to examine the claims made for the procedure

in references (10) and (11). The first claim is that the model is nonparametric. This

is open to discussion. If ordinary polynomials were used rather than Chebyshev

polynomials the method would almost certainly be called parametric. One would

suppose that say, a piecewise linear function could be identified by a truly

nonparametric procedure. At best, one would obtain a polynomial approximation using

this method. Al—Hadid and Wright (18) consider the method to have found a

nonparametric model if the system is polynomial and all terms have been identified,

and a parametric model if a polynomial approximation only is obtained. This seems

sensible, a nonparametric identification would pick a function from a function space.

If the function is polynomial one can specify it exactly with a few parameters. The

function space for cubics for example is four—dimensional. In this case nonparametric

identification and parameter estimation coincide. Perhaps such argument is simply

pedantry.

Secondly, it is claimed that the procedure is applicable to a broad class of systems

with 'practically arbitrary nonlinearities (including hysteretic types)'. Certainly the

method can identify a large number of nonlinearities. However, systems with memory

are not included. The procedure simply cannot identify multi—valued force surfaces.
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The best one can hope for is to replace the hysteresis loop with an equivalent viscous

damper. One can not obtain information about the shape of the loop for example, by

fitting polynomials in this way.

It is claimed that there is practically no restriction on the type of excitation used.

This is certainly true and constitutes a statement about restoring force methods in

general. The question of input design will be considered in some detail in Chapter 7.

One should be aware that if the restoring force is not polynomial the model obtained

will be sample-dependent. There is an implicit criticism here of the Volterra/Wiener

functional series approach. It is true that if the functional kernels are obtained by

time-domain correlation the input should theoretically be a Gaussian white noise

sequence. However, the work of Gifford (8) indicates that the procedures will tolerate

inputs which depart quite a lot from Gaussian. There has also been a good deal of

work recently on obtaining the Volterra kernels from sine-testing and from impulse

testing. A bibliography can be found in (8).

It is claimed that computer execution time and storage requirements are 'minimal'.

This is true to an extent, the comparitive slowness of the present work is due to the

use of an accurate interpolation procedure. One could certainly sacrifice a certain

amount of accuracy and gain a good deal of speed. A very quick surface generating

procedure is described in the next chapter which could be used to produce an

interpolation which is at best C°. The procedure is said to give a simple visualisation

of the nonlinearity. This is true certainly. However, the better the interpolation, the

better the surface. As before, comparison is made with the functional series approach.

Since Masri and Caughey's original papers a great deal of work has been done. The

higher order kernels can now be obtained very quickly by using nonlinear time-series

methods (9,39). However, storage requirements for higher dimensional kernels are

unavoidably large. The Masri/Caughey procedure requires one to store at any given

time, a surface for each degree of freedom. As they remark, storage requirements are

modest.
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One concludes that the MasrilCaughey procedure has a number of useful features. It

has also a number of drawbacks. The parameters obtained can be biased. The

procedure does not provide confidence limits for the parameters. It is still

time-consuming, as the coefficients are obtained from a double integration. Accuracy

is only ensured by taking a fine enough grid, and this means the integrations take

time.

The next chapters attempt to develop an identification procedure which has all the

useful properties of the Masri/Caughey approach and as few as possible of the

drawbacks.
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Figure 3.1.	 Stiffness section for the Duffing oscillator in the

example In the text. Estimated mass	 - 1.0, True mass

m - 1.0.

Figure 3.2.	 Stiffness section for the fluffing oscillator, 	 - 0.1,

m - 1.0.
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Figure 3.3.	 StIffness section for the Duffing oscillator, 	 - 10.0,

m - 1.0.

Figure 3.4.	 JoInt probability distribution of displacement and

acceleration for the Duffing oscillator system.

128



Jo.t p'obøbiI.ty de.IitV f..cto.

Displacement y

Figure 3.5.	 Contour map of the joint probabilty distribution in

the previous figure.
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(a) a - 1.0

(b) a - 0.9

Figure 3.6.	 The effect of using the Incorrect modeshape estimate

on a force surface. The example shown Is that from

section 3.3.
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(c) c	 - 0.6

(d) & - 0.3
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FIgure 3.7.	 ComparIson of predicted and measured time data for

the two degree-of-freedom example In section 3.3.

The [/,JT procedure was used here.

the two degree-of-freedom example in section 3.3.

the (J	 procedure was used here.
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FIgure 3.9.	 Data selected from the (u j ,ü 1) plane for the interpolation

of the surface h1(1)(uj,ü1).

Figure 3.10.	 Tesselat Ion and triangulation for tile reduced

data set shown in the previous example.
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Figure 3.11.	 11114 Interpolated surface h 1 ( 1 )(u 1 ,u 1 ) for the cubic

system of section 3.4.
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Figure 3.12.	 Chebyshev model fit of order (3,1) for the surface

in FIgure 3.11.
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Figure 3.13.	 Data selected from the (u 1 ,u2 ) plane for the interpolation

of the surface h1(2)(u1,u2).

Figure 3.14.	 Interpolated surface - h1(2)(u1,u2)
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Figure 3.15.	 Chebyshev fit of order (3,3) to the surface in Figure

3,14.
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Figure 3.16.	 Data selected from the (u2 ,u2 ) plane for Interpolation

of the surface h2(1)(u2,u2).
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FIgure 3.19.	 Interpolated surface - h2(2)(U2,U1).
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FIure 3.20.	 Chebyshev fit of order (3,3) to the surface in

FIgure 3.19.
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Figure 3.23.	 Three degree-of-freedom piecewise-linear

system described in section 3.4.
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Figure 3.24. Data selected trom (u 15 ü1) plane for interpolation

of the surface h1( 1 )(u 1 ,ñ 1 ) for the MDOF piecewise-

linear system.

140



FIgure 3.25.	 Interpolated surface - h1(1)(u1,ü1).
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Figure 3.26.	 Chebyshev fit of order (1,1) to the Interpolated

surface In Figure 3.25.



,

/

a
E
a

a

a

/

B1spacement u

FIgure 3.27.	 Data selected fom (u j ,u 3 ) plane for interpolation

of the surface h1(2)(u1,u3).

Figure 3.28.	 Interpolated surface - h1(2)(u1,u3).
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FIgure 3.29.	 Chebyshev fit of order (8,7) to the interpolated

surface In Figure 3.28.
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Figure 3.30.	 Data selected from (u 2 ,Ü2 ) plane for interpolation

of the surface h2(1)(u2,u2).
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FIgure 3.31.	 Interpolated surface -

litirpoloted Surtoce
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Figure 3.32.	 Chebyshev fit of order (1,1) to the Interpolated

surface In FIgure 3.31.
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Figure 3.33.	 The surface h1( 1 )(u 1 ,ü 1 ) - C1 Interpolation.

Figure 3.34.	 The surface h 1 ( 1 )(u 1 ,ü 1 ) - C° Interpolation.
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Exact Results : k3 = 5.000 e9
kl = 1.000 e4
C = 2.000 el

A
a

I'
k3

A
ki

p..
C

A
NSE(k)

NSE()

1c3/k3

A
kl/kl

Ac/c

0.10	 0.40	 0.70	 1.00	 1.30	 1.60	 10.0

0.61	 2.08	 3.50	 5.00	 6.46	 7.92	 48.9

0.20	 0.47	 0.73	 1.00	 1.27	 1.53	 9.00

1.79	 1.87	 1.94	 2.00	 2.08	 2.15	 4.14

84.9	 20.6	 2.24	 0.00	 0.69	 1.83	 10.0

98.1	 94.8	 83.2	 0.10	 81.1	 94.1	 99.9

	

0.12	 0.42	 0.70	 1.00	 1.29	 1.58	 9.76

	

0.20	 0.47	 0.73	 1.00	 1.27	 1.53	 9.00

	

0.90	 0.94	 0.97	 1.00	 1.04	 1.08	 2.08

Table 3.1.	 Dependence of the restoring force coefficients on the

mass estimate for the SDOF Duffing oscillator considered

in the text.

e9

e4

e2
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[A](13}	 (()

A measure of the accuracy of the estimate {13} is given by the function

I({j3))	 =	 ( (x) - {) )T( (x) - () )

which is simply the sum of the squared error in x1 summed over the sampling

instants. Expanding this equation gives

( {x) - [A] {13) )T( () - [A] {13 ) )

= (x) T (x) - (3)T[A]T(x) - (x)[A]()

+ (13)T[A]T[A](13)

It is a reasonable assumption that, even in the presence of noise, this expression will

be minimised if the estimated parameters are equal to the true parameters {f3}.

Taking the derivative of the equation above with respect to the estimate {3} gives

______ - -[A] T (x) + [A]T[A](3)

For the purposes of calculus {3} and {13}T can be considered as independent variables

in much the same way that a complex variable z and it's conjugate z" can be

considered independent. If I is a minimum the expession above vanishes, giving

[A]T[A]{,3)	 [A]T(x)	 (3)

These equations are called the normal equations. The matrix [A]T[A} is now square

and can be inverted ( if the inverse exists) to give the least-squared-error or simply

least-squares parameter estimate

U3) = ( [A] T [A] )[A] T {x)	 (4)
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[A] - [ Oi(l)
	

O(l)
Oi(2)
	

O(2)

01(N)	 . . .	 0(N)

The method is completely general; consider the SDOF system

P

i=:1 
f3 Oj(y,Sr ,y) + - - x

	 (5)

where the basis function o(y,,' ,y) belongs to the parameter In the example

above, 0i(y ,)',y) = y and 0(y,y,y) = y3 . One can form the design matrix as before,

if one has P parameters

And A J = 0(i) = O j(y , r , y ) . The design equations are obtained as before

[A](3) + ()	 -	 ( x)

except now the general matrix [A] is N x P, {f} is P x 1 and {x} is N x

1

An important question at this point is whether the parameter estimate is accurate.

The reality of the situation is that if one had used a different set of sampled data

one would have probably obtained a slightly different estimate. This means that the

estimate {3} is actually a random sample from a population of possible estimates. In

this case, the strongest condition one could hope for is that the expected value of the

estimates E({f3}) should be equal to the true parameters. The bias of an estimator is

defined as

b((f3))	 - E({3)) - ()

and the expectation is taken over all possible sets of sampled data. Clearly b({(3}) = 0

for an accurate or unbiased estimator. The basic elements of estimation theory
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outlined here are presented essentially as they are in (42). For the least-squares

estimator above, a sufficient condition for obtaining an unbiased estimate is that the

residual sequence j should be a zero-mean white gaussian noise sequence uncorrelated

with the input x.

Given that the estimates {} are distributed randomly about the true parameters ( if

the estimator is unbiased ), one can try to obtain the variance of the distribution.

This gives one information about the possible spread in values of the estimates. The

covariance matrix is defined as

C((3))	 = E[ ((a) - (3))((3) - {3))T )	 (6)

As E({}) = {f3} for an unbiased estimator, the diagonal entries of C are the

variances of the parameters. Now,

(l)	 ( [A] T [A] )1[A]T(x)

substituting

(x)	 [AJ{3) + {r)

from (2) gives

{9)	 ( [A]T[A] ) 1 [A] T ( {A] (3) ^ (l) )

= (3) + ( [A] T [A] )-l[AJT{r)

or

{f3} - (13 )	 =	 ( [A] T [AJ )_l{AITU.)

substituting this expression into equation (6) gives
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and A1 1/A22 is iO 4. Matrices which have elements greatly varying in size in this

manner are difficult to invert, they tend to be ill—conditioned. The solution to this

problem is to scale the data before one enters it into the design matrix. All the

elements of each column are divided by the standard deviation of the column. This

gives a design matrix with all elements the same order of magnitude. After the

parameter estimation step one can recover the physical parameters by simply rescaling.

Unfortunately, even after scaling, the normal equations approach can still fail if the

matrix [A]T[A] is singular. This situation occurs if for example, the columns of [A]

are linearly dependent. However, there are other approaches to least—squares

estimation which can diagnose such problems and deal with them. Two such methods

are described in the following sections.

4.2. The Orthogonal Estimator.

The othogonal solution of least—squares problems has been around for some time now

(43). The particular approach described here is that of Billings and his associates who

have used it with great success in the study of nonlinear difference equation models

of systems (41)(44)(45). As this particular approach is arguably less familiar than other

least—squares schemes, it is described in detail here. As before one starts with the

basic design equations

[A]{3)	 (x)
	

(2)

neglecting noise for the moment. It is useful to rewrite this in the form

( O i}13i + { 0 2}!'32 + . . + { O pH3p	 (x)	 (9)
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where the vector {O) is the th column of [A]. This vector is formed from the basis

function O values at each sampling instant. Clearly [A] is ( {01}'••'{0p} ) ( one can

regard a matrix as a vector of vectors). So {x} is a linear superposition of the

column vectors of [A]. These vectors lie in a N dimensional vector space VN where

N is the number of samples. However, there are only P of them so at most they

span a P—dimensional subspace of VN. This subspace is called the range of [A].

Clearly, the vector {x} need not lie in this subspace; only if it does will the equations

(2) have a solution. If {x} does not lie in the range of [A] the equations have no

solution. However, one can find the parameters {f3} which are mapped to the closest

point in the range from {x}; these parameters are the least—squares estimates. If the

columns of [A] are linearly dependent the dimension of the range will be less than P

and the solution if it exists will not be unique. This is the geometrical background to

the problem, the utility of the definitions given here will be demonstrated in the

remainder of this section and in that which follows.

Suppose that there exists a P x P matrix [T] such that [T] 1 [T] = 1 and that

[W]	 =	 [AJ[T]1
	

(10)

is column orthogonal i.e. if [W] = ( {Wi},...,{W} ) then

<w i ,wj >	 o.iiwii
	

(11)

where <u,v> is the scalar product of the vectors {u} and {'vj, defined by

<v,u> =

and huh is the length of the vector {u}, huh = <u,u. 	
1j is the Kronecker delta.

For two non—zero vectors, this product is zero if and Only if the vectors are

orthogonal; one can easily show that
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<u,v>	 Hull Ilvil cos e

where 0 is the angle between the vectors.

If one defines the auxilary parameters {g} by

{g}	 =	 [T]{j3}
	

(12)

then one has,

[A] {3)	 =	 [A] [TI-I [1] {3)	 [WI (g)	 (x)	 (13)

or, in terms of the columns of [W]

{W1)g1 + ... + (W1}g + ... + {W)	 {x)

Taking the scalar product of this equation with {WJ} gives

<wi ,wj>g i + ... + <W,W j>.+.. + <W,W>5= <x,wJ>

and using the orthogonality relation (11) gives

gj = <W,x> = <W1,x>	 (14)
<wj ,wj>	 liwill

and one can obtain the auxilary parameters one at a time, unlike the situation using

the normal equations where the parameters are obtained en bloc.

The question one is faced with now is how to construct [T]. The first step is to

obtain the orthogonal basis {Wi},...,{W} from {01}'...{0p}. This can be done using

the following simple procedure.
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First, define {W1}	 {°i}• The rest of the basis is obtained sequentially. To form

{W2} one takes {02} and subtracts from it the component parallel to {W1 } i.e.

(W2) = (02) - <W1,O2>.(W1)
<W I ,Wl>

Taking the scalar product of this expression with {W1 } gives

<w 1 ,o 2> - <W1,02><W1W1>
<W i ,Wi>

which is zero as required. Next, one forms {W3} by subtracting from {03}

components parallel to {W2} and {W 1 } etc. The result is an orthogonal set. One can

write the procedure in matrix form

W 1 (I) ... W(1)
	

Oi(i) . . . O,(l)
W 1 (2) . . . W(2)
	

O i( 2 ) . . . O(2)

W 1 (N) ... W(N)
	

0 1 (N) . . . 0(N)

W 1 (1) . . . W(l)	 0	 I2	 13 . . .
-	 W1(2) ... W(2)	 0	 0	 c23 ...	 2p

W 1 (N) ... W(N)	 0	 0	 0	 ...	 0

where cjj = <W1,0>/<W1,W1>. If the matrix with entries 	 above the diagonal

and zeroes elsewhere is denoted by [cr], the equation above can be written in matrix

form.

[WI	 =	 [A] - [W] [cr)

or

[WI .( [ lv] + [] )	 =	 [ A]

which finally gives us the [T] matrix by comparing the last equation with (10) i.e.

[T]	 [l v] + [cr] or
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[1] = 1 1	 12	 13	 1

	

0	 1	 &23	 2p

	

0	 0	 0...	 1	 J

Computing the inverse of [T] is straightforward as the matrix is already

upper—triangular. One simply carries out the backsubstitution part of the Gaussian

elimination algorithm (33). If the elements of [T] 1 are labelled t j then one calulates

the Jth column from the equations

1	 12 &13 .. .	 1p	 tlj	 0
0	 1	 &3 . . .	 t2J	 -

(

where the 1 on the RI-IS is in the jth position. Backsubstitution gives

= 0	 if i>j

= I	 if i—j

J
tij 

=	 k=^ljk t kj	 if i < j

Having constructed the inverse of [T], one can now recover the physical parameters

from the auxilary parameters, using

{1)	 =	 [T](g)	 (15)

This is all rather complicated and begs the question; what is wrong with the normal

equations? Consider again equation (9). The dimension of the range of [A] is called

the rank r If the column vectors are linearly dependent, the rank of A is clearly

less than P, r = P - n for some integer n. n is called the nullity of [A]. Now, a

basic theorem of linear algebra states that the rank of [A]T[A] is the same as that of

[A]. A further theorem states that if the rank of a P x P matrix is less than P, the

matrix is singular (46). In this case, one cannot solve the normal equations.
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Unfortunately things are seldom as clear cut as this. The vectors {Oi} may be close to

linear dependence in which case [A]T[AJ will be close to singular. Under these

circumstances roundoff errors can become very important. In this case the normal

equations are soluble and one will obtain a set of parameters {}; however, they will

typically have very large magnitudes so that the model depends on very delicate

cancellations between them in order to reproduce the measured data {x}. This is

clearly not very encouraging if one wishes to use the model for forecasting.

A very simple argument serves to justify these statements. Suppose one considers the

normal equations where the RHS has a small error {bx}, perhaps due to roundoff

[A]T[A](f3) =	 [AlT ( (x) + (bx) )

The error in the estimated parameters is then ([A]T[AJ)1{5x} which can be

arbitrarily large if [A]T[AJ is close to singularity.

The orthogonal estimator allows one to overcome this problem. If the {°} are linearly

dependent, the procedure informs one in the following way. Suppose {°} depends on

{0j-1},•.•'{01} which are linearly independent. As the subspace spanned by

{W_i},...,{Wi} is the same as that spanned by {0j.1}'.••'{°l}' {°} is linearly

dependent on the {W} vectors so subtracting off components parallel to them will

eventually produce the zero-vector, i.e. {W} = {O} and iiWjii 0. So if one finds a

{W} with length zero at some stage, the data vectors are linearly dependent and one

should remove {O} and the corresponding parameter from the calculation. If the

procedure is allowed to continue unchecked there will be a division by zero at the

next stage. So orthogonal estimation allows one to diagnose linear dependence.

It still remains to show why (14) is a least-squares estimator. Consider again the

equations

{x)	 =	 [A](3) + {)
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If one has found the correct structural form for the equations of motion, then {x}

will lie inside the range of [A]. If one has missed out some terms, or the

measurements are noisy, the residual vector {} will effectively push {x} outside the

range (Figure 4.1). If one thinks of the vectors as position vectors, the vectors can be

identified with points in the space VN. In this case the distance between the point

specified by the model and that specified by the data {x} is the length of the residual

vector {1} which is lifli.

Now, the smallest distance between the point {x} and the hyperplane spanned by the

{W} which is the range, is the perpendicular distance. So the least—squares condition,

which is that iiii is a minimum, is satisfied if the vector {} is perpendicular to the

range. It is sufficient for this that {} be perpendicular to all the {W 1 }. i.e.

= 0	 'V I

i.e. ( putting in the {}'s for once for clarity )

< (x) -	 g(W) , (WI) >	 0

J

<x,W 1 > -	 gj <W,W> = 0

J

and orthogonality (11) gives

= <x,wj>
<Wi ,Wj>

which is equation (9) as required.

This approach applies just as well if the design matrix [A] is used rather than the

auxilary [W]. In this case, the least—squares condition is

0	 V I
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i.e

P
< (x) - .	 (Oj} , (Os) >	 - 0

J=1

P
=	 <oi,oj>

j=1

writing the 0 terms as components of AJ and expanding the scalar products gives

k1 
Xk Aki = j1
	 k1 

A lkA li )

or in matrix form,

[A] T (x) =	 [A]T[A](3)

and the normal equations are recovered as one might expect.

The final task is the evaluation of the covariance matrix. Clearly one could use

equation (7); however, this requires a matrix inversion. One can obtain it directly

from the auxilary model. As [W] is column orthogonal, [WJ T[WJ is diagonal. A

moments thought shows that the 1th diagonal element is IiWIt 2. These lengths have

already been calculated during the construction of the orthogonal basis. This means

that ([W]T [W]) 1 is also diagonal with th element iiWii 2 . So, for practically no

extra effort one has the covariance matrix for the auxilary parameters

[Cig =	 2	 [W]T[W] )-1

As {g} and {3} are related by the linear transformation {g} = [T]{3}, the covariance

matrix is (8)

[C]	 =	 [T]1[C]g[T]
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The orthogonal estimator has a number of advantages. The auxilary parameters can be

obtained one at a time. As Billings and Tsang (45) remark, the estimator allows a

P—dimensional estimation problem to be reduced to P one—dimensional ones. This

means that if one needs to add more terms to the model, one need not re—estimate

those parameters already obtained, only the transformation from {g} to {j3} needs to

be re—done. If one is dealing properly with noise the deterministic terms and the

noise terms can be uncoupled by this procedure, this gives a very clear indication that

the parameter estimates will be unbiased. The algorithm allows one to pinpoint exactly

where linear dependence is causing problems. A considerably more detailed discussion

of the relevant theory can be found in (44).

4.3. Singular Value Decomposition.

The discussion in this section relies fairly heavily on (33) and chapter 9 of (47).

A fairly deep theorem of linear algebra states that if one has a M x N matrix [A]

and M > N, then [A] can be decomposed as follows

[A] =	 [U][][V]T
	

(16)

where [U] is a M xNcolumn orthonormal matrix such that [U] T[U] = 1, []

diag(s1 ,. . . ,s,) is a N x N diagonal matrix and [V] is a N x N column orthonormal

matrix i.e [V]T[V] =1. As [V] is square it is also row orthonormal [V][V] T = 1.

Consider the case when [A] is square. [U] is now squareandconsqljo

orthonormal. The inverse of [A] is easily seen to be

[A]	 [V] [:]_ 1 [U]T	 (17)

and []-1 is diag(s1 1	 Sp l) . It is therefore obvious that [Al can only be singular
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if one of the sj is equal to zero. The s are called the singular values of [A]. The

number of non-zero singular values is equal to the rank of [A]. Problems can also

occur if one of the singular values is very small, in this case it's value may be

composed mainly of roundoff errors. This would indicate that the columns are close

to linear dependence. In order to diagnose this problem one can define the condition

number for the matrix [A] which is the largest singular value divided by the smallest.

If the condition number is infinite, the matrix is singular, if it is large the matrix is

close to singular. The condition number tells one if linear dependence is a problem

or not.

Consider the situation where [A] is nonsingular and {x} is in the range of [A] (this is

guaranteed if [A] is square). In this case the solution of the design equations is

simply

(3) =	 [A] 1 {x)	 -	 [V] []-1[U]T(x)

=	 [V].diag(sf4,...,sl).[U]T	 (18)

The next situation of interest is when [A] is singular but {x} is still in the range of

[A]. The solution still exists, however [A] 1 does not. The solution in this case is not

unique. To obtain one solution one simply replaces each s 1 in []1 corresponding

to a zero singular value by zero and evaluates expression (18). If []1 denotes the

matrix with appropriate deletions, then

U3) = [V][d]l[U]T	 (19)

Some explanation is neccessary. If [A] is singular there will exist vectors {y} such

that

[A]{y)	 =	 (0)
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these vectors form a subspace of the parameter space called the nulls pace. The

dimension of the nulispace is the nullity mentioned previously. It is because of these

vectors that the solution is not unique. Consider the solution of (19) above, one can

add any vector {y} from the nullspace to {f3} and still have a solution i.e.

[A]( ((3) + ( y ) )	 [A]U3) + [A](y)	 Cx) + (0)

It is shown in (33) that the solution {3} given by (19) is the unique solution of

minimum length i.e. iiii is smallest for this estimate.

Singular value decomposition works in this way because the {V} column vectors

corresponding to zero singplar ahies_Iorm an orthonormal basis for the nulispace.

Similarly the {U 1} vectors corresponding to non—zero singular values form an

orthogonal basis for the range. The estimate for {13} given by (19) removes the

contribution from the nullspace vectors {V}, because their contribution is proportional

to s i which has been zeroed. The orthogonal estimator suffers from the same

problem; in that case one is told which are the linearly dependent vectors and one

has to remove them until [A] has full rank i.e. no nullspace. SVD not only diagnoses

the problem it simply ignores the nullspace.

Finally one has the situation which is of most interest; .y}- is not in the range of [A]

whether it is singular or not. In this case, the remarkable equation (19) gives the

least—squares solution. Again, the proof is given in (33).

If one wishes to know the covariance matrix, the derivation proceeds exactly as for

equation (7) and the result is given by

[C] = °r2 [V][d]2[VJT

In practice, problems are caused if some of the singular values are very small. One

then defines a tolerance	 so that if any singular values are less than	 they are
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deleted as if they were zero. The effective nullity n f is the number of singular

values < e. The effective rank is then P - n . The important point about SVD is

that one must delete small singular values, then SYD is foolproof. If one does not

delete small values then SVD is as badly behaved as the normal equations.

4.4. Recursive Least—squares (RLS).

The solution of the least —squares problem by any of the methods above requires that

all the data should be present. They cannot be used in real—time. Such procedures

are called off—line. It is sometimes useful to carry out procedures on—line and have

the parameter estimates updated each time a new data sample becomes available.

Estimators which work in this way are call recursive. It is a fairly simple matter to

make the least—squares procedure recursive. The arguments are based on the normal

equations. The details of the derivation are given in (42) or (50), the results are as

follows

Suppose {f3} is the parameter estimate at the th sampling instant and

= ( [A]T [A]	 is the estimate of the covariance matrix at sampling instant i (

this is really the covariance matrix divided by the variance of the residuals ). At

sampling instant i+1 one measures the present x 1 and " S'i and Y ' so one can

calculate values for all the basis fuctions {e}^1T = { Oi(i+1),...,O(i+l) }. The

parameter estimates are updated as follows

{1}j+I =	 + (K)11.( X j+1 - (e)1T.(f3)1 )

[F] i+l	 [F]	 - (K) j+l . {) i+1T• [P1

where
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(k)11	 [P]1(0)j1

1 +

One starts the recurrence with {L3}o = {O}. One sets [PJ = n[I] initially with c =

iO4 or some other large number. The reason for this is that the diagonal elements of

[P] are proportional to the standard deviations of the parameters, so one starts off

with large values to express the fact that one has little confidence in the initial

estimate.

Recursive Least-Squares can be shown to be a convergent procedure. If the conditions

on the noise mentioned in section 1 are satisfied, RLS always converges to the true

parameters, if they are not RLS may converge to biased parameters.

The method essentially solves the normal equations without inverting a matrix.

Another useful property is, one can choose an accuracy for the parameters, then

check to see if each step is changing the parameters by less than this accuracy, if so

one can stop the recurrence. In situations where convergence is fast, this method can

be quite useful. Fast RLS schemes are also possible where one only updates the

diagonal elements of [P], this can speed things up considerably without changing the

fact that one converges to the true parameters (48).

4.5. Comparison of the Methods.

The operation counts below refer only to multiplications, the assumption being that

additions are relatively negligible.

(i) The Normal Equations.

As the inverse covariance matrix [A]T[A] is symmetric, the number of multiplications

required for it's formation is 	 P(P+1)N	 P2N The matrix inversion is carried out

using an LU decomposition as described in (33) for which the operation count is
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P3 ( If the covariance matrix is not required one can use the LU decomposition to

solve the nonnal equations without inversion, in which case the operation count is

P313 ). Back substitution generates another PN + P 2 operations. This gives a

operation count of P3 +	 PN to leading order.

Considering speed separately, the normal equations have the advantage of simplicity.

To implement the procedure, the most difficult operations one needs to understand

are matrix multiplication and inversion. Problems occur if the matrix [A]T[A] is

singular, the method cannot find a solution. More serious is the case when the matrix

is nearly singular, the method will propose a solution but does not indicate that the

parameters can not neccessarily be trusted. One could of course obtain the

determinant of [A]T[A] and check to see that it is not too small. If one is using a

pivoting procedure to obtain the inverse, the determinant is obtained as a bonus being

simply the product of the pivots. More simply the presence of a very small pivot is a

good indicator that the matrix is nearly singular. However, even if one suspects

something is wrong one cannot find out what one should do the data to improve the

conditioning ot the problem i.e which columns of [A] one should remove.

(ii) The Orthogonal Estimator.

Computing the [T] matrix requires 	 P(P-1)N	 PN operations as it is upper

triangular. Generating the auxilary data also requires 	 P(P—I )N	 P2N

multiplications. Generating the auxilary parameters costs 2PN. After a little elementary

algebra one can see that inverting the [T] matrix requires

1 P(P+1)(2P-i-1) - I P(P+1)	 I P3

Finally generating the true parameters requires	 P(P-1). This gives an overall count

of P3/6 + P2N to leading order. This count is only smaller than that for the normal

equations if N < 5P/3 which is rather unlikely, consequently, using the orthogonal

estimator is generally slightly slower than using the normal equations.
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The orthogonal estimator has a number of advantages over the normal equations. The

most important being that one can use it to find where linear dependence is causing

problems in the data set. One then has to remove the offending data. By this method

one makes the estimation problem one of full rank. The parameters are estimated one

at a time so if the model needs to be enlarged, one need not re—estimate previously

obtained parameters.

(iii) Recursive Least—Squares.

Calulating the {K} vector at each step costs 2P 2 + P multiplications. The [P1 matrix

and {13} vector require 2P 2 and 2P respectively. This gives an overall operation count

of (4P2+3P)N. M the available N is usually a good deal larger than P this method is

much slower than the the two previous methods. One can speed things up by

stopping the recursion when the parameters have converged to values with an

appropriate accuracy. Using a Fast RLS scheme (48) reduces the order of the leading

term from PN to PN - a considerable saving.

From the point of view of conditioning RLS is no better than the normal equations.

It provides no more and no less information. It is useful if one wishes to estimate

parameters in real—time. This method can also be used to track slowly varying

parameters; in fact, it will be put to this use in Chapter 10.

(iv) Singular Value Decomposition.

The routine for SVD used in this work is a 'black—box' routine lifted from (33). This

makes an operation count a little complicated. However, the routine is divided into

two steps. First, a Householder reduction to bidiagonal form is used. Secondly the OR

algorithm is used. Both of these procedures are iterative in that they repeat until

some convergence criterion is satisfied. According to (33) the Householder stage has

an operation count of between 2P313 and 4P3/3. The OR step has an operation count

of aprroximately 3P3 . This gives an overall operation count of approximately 4P3.
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This suggests that SVD is one of the slower of the algorithms considered.

The great advantage that SVD has over the other methods is that if one deletes

singular values as discussed above, the method is foolproof. It not only indicates the

order of singularity of [A] i.e. the nullity, it then ignores the problems and goes on

to find a least—squares estimate in the effective range of [A]. Computationally the

method is rather more difficult to use than the others, witness the use of the routine

from (33) as a 'black—box'. However, it is arguably the most reliable. If one wishes

to use a routine without a reasonably deep understanding of the underlying theory,

this is the one.

In order to test the various implementations of these procedures, data for a Duffing

oscillator system described by the equation of motion

y + 2Oy + 104 y + 5x109	x(t)

was simulated. The methods were then used to fit parametric models of the form

L M
mY + .	 .	 aj y'yJ = x(t)

iO.=

of varying order P (L+1 )(M+1) + 1, with N equal to 1000. The result is a graph

of time taken against number of parameters and is shown in Figure 4.2. The results

agree well with the analysis above. In all cases the methods gave parameter estimates

of the same degree of accuracy. One should bear in mind that the problem in this

case is quite well—conditioned.

4.6. Displaying the Force Data Without Interpolating.

The direct least—squares methods described above do not produce restoring force
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surfaces naturally in the course of their use as the Masri/Caughey procedure does.

However, the force surfaces provide a direct visual means of identifying the

nonlinearity e.g. the presence of a piecewise—linear force would be obvious from the

force surface; one could not tell this from the coefficients of a polynomial

approximation. Clearly some means of generating the surfaces within the framework of

the direct least—squares approach is desirable. One is faced with the problem of

obtaining the force data on a regular array so that one can plot it. Two methods are

used in the work which follows.

(a) Sections.

The idea used here is a modified version of the procedure used by Masri and

Caughey to overcome the extrapolation problem. The stiffness curve or section is

obtained by choosing a narrow band of width ô through the origin parallel to the y

axis, one then records all pairs of values (y,f(y,')) such that — ô < t5. The

y values saved are then placed in increasing order and one can plot the y - f

graph. This procedure gives one a slice through the force surface at S' = 0. It is

essentially the static stiffness curve. The procedure is illustrated in Figure 4.3. The

same procedure can be used to give the damping curve at y	 0. If the restoring

force separates i.e.

f(y,y)	 d(S) + f5(y)

then identification of the damping and stiffness sections is sufficient to identify the

system.

(b) Crawley/O 'Donnell Surfaces.

This method of constructing the force surface was introduced by Crawley and

O'Donnell (55). One begins with the triplets obtained from the integration procedure

One then divides the rectangle in the phase—plane [ymin,yma]x[mjn,maxI
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into small grid squares. If a grid square contains sample points (Yj,'j), the force

values above those points is averaged to give a force value above the centre of the

square. This gives a scattering of force values on the regular grid defined by the

centres of the squares. One then checks all empty squares; if an empty square has

three neighbours each with a force value defined, the values are averaged to give the

value over the new square. One repeats this step until no new points over the grid

are produced. Because the values are defined over a regular grid, the surface (perhaps

with holes) is easy to plot. The procedure is illustrated in Figure 4.4. Almost all the

surfaces obtained from now on are constructed by this method.

Unfortunately, if one insists on using three neighbours, the process invariably stops

before the data region is covered. Alternatively one can define an iterative procedure

such that a force value is defined on an empty square if it has two neighbours with

data. Although one can construct configurations where even this is insufficient to

propogate values over the entire grid, they are extremely unlikely to occur in

practice. Clearly, before one tries the two—neighbour steps, one exhausts the

possibilities using three neighbours. One can also carry out an initial step using four

neighbours, this does not usually generate many new points.The surfaces obtained can

be classified as follows

(i) The three neighbour extended surface is exact for a linear function in one

direction and a constant function in the other. It is not C1 as this requires the

surface to be exact for a bilinear function.

(ii) The two neighbour extended surface is exact only for a constant surface. Because

of this it will tend to level out away from the data. For this region it should only be

used on a reduced data set where the area of phase—plane is evenly covered.

The surfaces obtained are therefore inferior to those obtained form the TILE4

package described in Chapter 2. However, they more than make up for the lack of

accuracy by their speed of construction. A timed example is given in the next section.
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Because of this they will be obtained more accurately. Clearly one could obtain the

initial estimate by fitting parameters with me = 0. Similarly, one could use initial

estimates for all parameters, and this is the approach used in (49) where more

traditional frequency—domain methods are used to correct parameter estimates for

linear systems, the initial estimate coming from finite element analysis. However, it

was found that in this case the accuracy of the procedure was only really sensitive to

the mass estimate.

There are P = (m+1 )(n+1) + I parameters to estimate and the basis functions are y

and the y')'J's. In order to construct the design matrix the rectangular array of basis

functions is mapped into a one—dimensional array as follows.

°k(Y,YY)	 ylvJ

where k = jn + i + I < P . Finally

0p(YS'Y) = y

As Al—Hadid and Wright (18) have pointed out, one can include basis functions for

well—known nonlinearities if one wishes. For example, the Coulomb friction function

and the quadratic damping function

Of(y,y,y) = sgn(r) -	 r/Ir'

°d(Y,Y ' Y)	 YIYI

Having obtained estimates of the parameters, one can use the model to form the

predicted RE-IS for the equation (20). One can then plot the comparison and find the

MSE for the model fit. One can also make an estimate of the significance of each of

the model terms as follows. Each model term, say a12y$' 2, is estimated at each

sampling instant and the variance of the resulting time—series is obtained. This

variance is then expressed as a percentage of the total variance of the RHS. This
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quantity shall be called the significance factor, it is essentially the Error Reduction

Ratio of Korenburg et.al.(44). One then sets a threshold contribution. If any term

contributes less than the threshold it is discarded as insignificant. One of the

properties of the orthogonal approach is that the significance test can be carried out

for the auxilary model. In the simulations which follow the threshold is set at 0.01%.

Alternatively the stiffness and damping models can be identified by estimating

least-squares coefficients for a model of the form

ay' or	 a1

i.e. the basis functions for the fit are simply O (y ,',y) = y' or y'. The data used for

fitting the model is simply that obtained for the purpose of plotting the sections.

Usually all model orders up to 10th are obtained and their MSE values are calculated.

A good indicator of the correct model order n is that the MSE drops sharply in

moving from an (n-I )th order model to one of order n. It is clear that this method

does not allow one to identify systems with cross-term nonlinearities.

The examples are considered in the same order as in Chapter 2. The first is the

linear system described by the equation,

y + 40Sr + 104y = x(t)

This was simulated exactly as before (see section 2.4). The coefficents for a

multinomial model of the form (20) were estimated using the orthogonal estimator. (

In all cases which follow the initial mass estimate is taken to be 1 .0. It was found

that a first estimation always obtained the correct mass value to five or six significant

figures.) The results were
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Exact
	 Est imated

	
error

0.0
	

0.00000006

a01	 40.00
	

40.000031
	

7 . 8x105

a10	 10000.0
	

9999.9951
	

4.9x105

The estimated standard deviations for the two parameters above were 6.1x10 6 and

5.9x10 4 giving 95% confidence limits of ± 1 .2x10 5 and ± 1 .2x10 3 respectively.

These clearly agree with the accuracies obtained above. As the exact values are

known, there is little point in giving the standard deviations, from now on the

percentage error only will be quoted for simulations. Comparison of the true data and

that predicted by the model is shown in Figure 4.5. The MSE for the comparison is

8.7x10 12 which is obviously insignificant. The % errors for the coefficients and the

model MSE using the Masri/Caughey procedure were of the order 0.1 - 0.01 (Section

2.4). The restoring force surface obtained by Crawley and O'Donnell's procedure is

shown in Figure 4.6. One of the characteristics of the three—neighbour version of the

surface shown here is that there is no surface over regions with no data. The surface

shown is just as informative as that produced by TILE and took a fraction of the

time to create.

The stiffness section is shown in Figure 4.7 and the damping section in Figure 4.8.

In each case a linear curve—fit to the data is shown also. The damping curve appears

to be noisy, there is a simple explanation for this. The 'noise' occurs because the

data for the section is taken from a band of finite width. This means that the

contribution from the stiffness force is not zero but varies between —.kb and +.kb

where k is the linear stiffness and o is the width of the band. Because the sample

points are distributed randomly in the plane and y appears to be uncorrelated with y,

the deviations at each ' are independent and so appear to be noise. Similary the

error at a point on the stiffness curve is given by ± .cô. If the bands for each

section have the same size then one has (neglecting the fact that the y and ' axes

have different scales)
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maximum deviation from the r curve = k

maximum deviation from the y curve	 c

which is 250 in this case. Clearly the damping curve will appear noisier than the

stiffness. This ratio is actually an upper bound as the scaling has not been considered.

Curve fitting to the stiffness section gave values for the coefficients a01 and a10 of

40.075 and 9995.9 respectively. The difference in accuracy is purely attributable to the

'noise' in the sections.

The next system considered was the Duffing oscillator system with equation of motion,

y + 20Sr + 104 y + 5x109 y3 = x(t)

(see section 2.4.). The orthogonal estimator was used to obtain the parameters and

1000 points of data were used. The significant least —squares coefficients were

Exact
	

Est imated
	

error

aol
	 20.00
	

20.000023
	

I .2xl0

ai o
	

10000.0
	

10000.087
	

8.7x104

a3 o
	

5.0x109
	

4. 99998x1 9
	

4.9x104

The computer output for this example is shown in Table 4.1. The comparison of the

true data and the predicted data is shown in Figure 4.9. The model MSE of

4.33x10 10 is negligible again. The force surface is shown in Figure 4.10, the cubic

nature of the nonlinearity is very clearly indicated. The stiffness and damping sections

are shown in Figures 4.11 and 4.12 respectively. The best model fits are also shown

in each case. Linear for the damping and cubic for the stiffness. Using the

least—squares estimator on the data taken for the section plots, one obtains linear

parameters of 20.03 and 9984.6 and a cubic term of 5.003x109.
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The next example was the system with nonlinear damping. The equation of motion

was,

y + 2Oy + IOOS'iyI + 104y = x(t)

As indicated previously, this example is a little more interesting as the nonlinear

function does not have a polynomial representation. One can only approximate. A

model of order (1,3) was used initially, i.e. terms up to y.y 3 were included. The

resulting approximation was

f(y,)	 37.37y + 126.44S'3 +

all other terms being discarded as insignificant. A comparison of predicted and

measured data gave an MSE of 0.016. The comparison is shown in Figure 4.13.

Fitting a model of order (1 ,7) gave the result

f(y,) = 29.4ly + 274.56Sr3 - 609.85y5

+ 651.42y7 +

It is encouraging that all even powers of the velocity have been rejected as

insignificant. In this this case the comparison gave an MSE of 0.001. This example

provides one with a warning about the careless use of 'special' basis functions as

suggested in (18). The data is so well described by the 7th order polynomial that if

one had also included a basis function of the form ' i i, one would almost certainly

have introduced near linear dependence into the estimation. The comparison is shown

in Figure 4.14. The restoring force surface obtained from the data is shown in Figure

4.15. The variation in the damping direction is small but visible. The stiffness section

is shown in Figure 4.16, the linearity is evident. Estimating the stiffness from the

section gave a value of 10001 .1. The damping section is shown in Figure 4.17

together with the seventh order curve—fit. The fitting procedure gave the following 7th

order model
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f(y,y) =	 + 268.48y3 - 568.215

+ 578.83	 + i000i.i

One notices that the higher order terms are slightly different from those obtained

from the multinomial model. This is because the higher order terms are less

significant ( in the sense that they contribute less to the variance of the model ) and

are estimated less accurately. One can see this immediately from the standard

deviations shown in Table 4.2. Because their contributions are small over the range

considered, the innaccurate parameters do little damage to the model comparison.

However, if one were to predict responses outside this range one might find that the

results were very innacurate. At the risk of being repettive, this is why parameter

estimation is input dependent.

The next system studied was the Van der Pol oscillator described by the equation

y - 0.2( I -	 + y = x(t)

The multinomial model estimator gave parameters for a (2,1) model

Exact
	

Est imated
	

error

a0 1	 -0.2
	

-0. 19996555
	

0. 0173

a10
	

1.0
	

0.99994242
	

0. 0058

a2 1
	 0.2
	

0. 19999556
	

0. 0023

all other coefficients were rejected as insignificant. The comparison between predicted

and measured data is shown in Figure 4.18. The MSE for the comparison was

1.57x10 7 . The three-neighbour version of the restoring force surface is shown in

Figure 4.19. There are large areas where the sample points are very sparse, this

produces a correspondingly small area of force surface, which also contains holes. If

one transfers attention to the reduced data set shown in Figure 2.30 one can form
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the two—neighbour version of the surface, this is shown in Figure 4.20. In this case

the surface covers all the area. However, the surface is visibly less smooth in regions

with less data. It is worth comparing this surface with the C 1 surface from the TILE

package (Figure 2.33).

The stiffness and damping sections are shown in Figures 4.21 and 4.22 respectively.

In each case the section is linear. This clearly shows that the sections are inadequate

for the identification of nonlinear cross terms. Fitting linear models to the sections

gave a linear stiffness of 1.0043 and a linear damping coefficient of —0.1992. The

linear terms are therefore accurately estimated.

The next example is the piecewise linear system described by the equation,

y + 2Oy + 104y = x(t)

in the range —0.001	 y	 0.001. Outside this range the stiffness is a factor of 11

times greater. Again, this system can only be approximated by a polynomial model. A

model of order (5,1) was estimated. The result was

f(y,r) = 20.26y - 1.363x103 y + 2.248x1011y3

+ 1.387x10 12y4 - 1.809x1016y5

In this case, the estimator has kept the y4 term. The significance factor for the term

was 0.162%. Another interesting point is that the linear term in the expansion has

the wrong sign, this is neccessary for a good fit to the full nonlinear forces. One

learns from this that the linearised equations of motion for a system cannot

neccessarily be obtained from the nonlinear model by truncating the model above the

y' term. This is a simple consequence of the fact that the terms y'yJ do not form an

orthonormal set. The comparison between predicted and actual data is shown in

Figure 4.23. The MSE for the comparison was 1 .26. The restoring force surface is

shown in Figure 4.24. The piecewise linear nature of the surface is very clearly
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shown. The stiffness section is shown in Figure 4.25 together with a 9th order curve

fit. The damping section is shown in Figure 4.26. The 9th order model obtained from

these sections is

f(y,r) = 19.99r - 3.973x103 y + 2.870x104y3

^ 2.529x10 10 y3 + 1.198x10 11 y4 - 2.50x1015y5

- 3.112x10 16y6 + 2.771x10 19y7 + 2.12x1021y8

+ 4.975x1024y9

Au the stiffness coefficients are different from those of the multinomial model as the

model order is different. The significance factors are not calculated for the section

models. If they were, one would expect the even terms above to be deleted.

The penultimate example is the Coulomb friction system with equation of motion,

y + 2Oy + lOsgn(r) + 104 y	 x(t)

This is the most difficult system to model with a polynomial as it is discontinous. A

model of order (1 ,9) was fitted. The estimator retained thirteen terms. The

coefficients are shown in table 4.3. Some of the significant terms are cross terms, this

may be due to the fact that there is a vanishing probability that sample points should

fall on the line of discontinuity in the phase plane. As no points are on the

boundary, it's shape is not known. The estimator is free to reduce the squared errors

by a small amount by fitting a function with an irregular boundary between the upper

region and the lower region of the force surface. The comparison between predicted

and measured data is shown in figure 4.27. The MSE for the comparison is 2.36, this

shows the difficulty of approximating the system by a multinomial. The restoring force

surface is shown in Figure 4.28, one can see that the boundary between the upper

and lower surfaces is irregular.

The stiffness section is shown in Figure 4.29. The curve clearly jumps intermittently
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between two levels. The explanation is simple. No matter how narrow a band is taken

for the section points, because the centre of the band runs along the

discontinuity,some points will be above the discontinuity and some will be below. The

arrangement of upper and lower points will be random, giving the stiffness section

observed. Figure 30 shows the damping section, the discontinuity appears very clearly

in this graph also. The 9th order polynomial curve fit is also shown. As expected,

the fit is not very good.

The subject of the final example is the Bouc—Wen Hysteresis model represented by

the equations,

y + lS.O8y + 5684.89y + z	 x(t)

z	 1000y - 1.5 iSrI.z.IzI + 1.5izi2

A linear model was fitted to the (y,',y) data. The resulting model was

f(y,S')	 17.63S' ^

As with the Masri/Caughey procedure described in Chapter 2, the model includes an

additional viscous damping term with coefficient (17.63 - 15.08) = 2.55. This allows

the model linear system to dissipate energy at the same rate as the hysteretic system.

Also, the stiffness coefficent includes the coefficient of the y term in the second

equation. The effective linear stifness should be approximately 5684.89 + 1000.0 =

6684.89. The comparison between predicted and measured data is shown in Figure

4.31. The MSE for the comparison is 0.074, indicating an excellent fit. The force

surface for this system is actually multi—valued. However, the size of the hysteresis

loop is not very large so one obtains a nearly flat surface using Crawley and

O'Donnell's method (Figure 4.32). The stiffness and damping sections also appear to

be straight lines with a little noise superimposed (Figures 4.33 and 4.34). The linear

damping and stiffness coefficients obtained from the sections were 17.34 and 6839.7

respectively.
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The comparisons between measured and predicted data used in this section are

between the measured RHS of (20) and the predicted RHS. A more stringent test is

the one used in chapter 2, where the coefficient estimates were used to predict the

displacement by integrating the estimated equations of motion. The estimated and

measured displacements were then compared. In the examples above, the coefficients

are obtained with five— to seven—figure accuracy, there is little point in carrying out

such a comparison. The only situation where such small errors in the coefficients

could cause large errors in the predicted output is if the system were chaotic. In this

case, the output is unpredictable no matter how accurate the coefficients are.

4.8. Comparison with the MasrilCaughey Procedure.

It has been stated in Chapter 2 that the Chebyshev polynomial expansion is almost a

minimax polynomial expansion i.e. the polynomial approximation which minimises the

difference between a function and it's approximation over the approximating range.

This sounds rather like the least—squares criterion. In fact the Masri/Caughey

procedure is a least—squares estimator. This result is proved in Appendix B.

So the Masri/Caughey procedure and the least—squares method are seen to be

equivalent in theory. In practice, it is obvious from a comparison between the results

of the previous section and those of chapter 2 that the direct least—squares procedure

is considerably more accurate. It remains to compare the time taken by the two

methods. The system chosen for the comparison was the Van der Pol oscillator of the

examples in section 7 above. The timings for the various routines given below do not

include the time taken to read or write data, as whether one uses one large program

to carry out the procedure or a number of smaller programs can simply be considered

a matter of personal taste. The timings do not include inessential plotting times. The

timings for the identifications were as follows
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(i) Least-Squares.

The time taken to fit the least-squares coefficients to a (2,1) model in example (4)

was 4.2 seconds. For a (4,2) model, the time was 16.1 seconds. This included the

time for scaling the design matrix but not for carrying out the significance test. The

orthogonal estimator was used.

(ii) Masri/Caughey.

In order to choose the reduced data set it was neccessary to plot all 10000 points of

data, this took 142.4 seconds.

The next stage is the interpolation stage. The reduced data set contained 7913 points.

The construction of the TILE C1 surface (Figure 2.33) took 578.9 seconds. The

construction of a TILE C° surface took 450.5 seconds. Finally, the construction of the

Crawley/O'Donnell (CD) surface (Figure 4.20) took 3.0 seconds. These constructions

are in decreasing order of accuracy.

The final stage is the calculation of the Chebyshev coefficients, each coefficient

requiring a double integration over a lOOxlOO grid. The timings here were 43.8

seconds for a (2,1) model and 57.6 for a (4,2) model. The results are summarised in

the following table.

Method
	

Time - ( 2,1)
	

Time - ( 4,2)

Least -squares
	

4.2
	

16.1

Masri/Caughey (C1)
	

765.1
	

778.9

Masri/Caughey (C°)
	

636.7
	

650.5

Masri/Caughey (CD)
	

189.2
	

203.0

This shows that the direct least-squares method is considerably faster than the
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Masri/Caughey procedure. The only possible advantage remaining with the

Masri/Caughey procedure is that the use of orthogonal polynomials means that one

can truncate a given model and have the best model at that lower order without

re-estimating coefficients. In fact, one has this option using the least-squares

procedure also. Instead of using the multinomial basis functions shown in (20), one

simply uses basis functions of the form

0k(YY,Y)	 T1 [	 (y)] .Ij [ US') I

where k = nj + i + I < p. As in Chapter 2,	 and	 are the maps which carry

data onto the region [-1 ,1 ]x[-1 ,1]. A least-squares estimation of a (2,1) model for

the Van der Pol oscillator data using the Chebyshev basis above, gave the results

Exact
	

Est imated
	

% error

a00

a0 1

a1 0

a11

a20

a2 1

0.28523213

54.649864

7.3983140

8.4603481

0.089150546

56. 559067

0.28523210

54. 649738

7.3983040

8.4603291

0.089160604

56.558922

I .05x105

2.31x104

I .35xI0

2. 24x104

1 .02x102

2. 56x104

The output form the program is shown in Table 4.4. The a2 0 term has a significance

factor of only 6.34x10 5 so it is discarded. This means that the MSE for the

comparison between predicted and measured data jumps from 3.4x10 1 ° to 6.34x105.

The comparison is shown in Figure 4.35. The time for the identification of a (4,2)

model was 18.6 seconds, this is higher than the time of 16.1 seconds for an ordinary

model because the Chebyshev polynomials have to be evaluated to form the design

matrix. This means that by direct least-squares methods one can carry out the

Masri/Caughey expansions in a small fraction of the time required by an interpolation

based method.
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One concludes that direct least—squares methods are faster, more accurate and require

less storage than the Masri/Caughey procedure. In addition, they allow one to

determine the standard deviations for the parameters which in turn allow one to

construct confidence limits.
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( y ) -	 1.tZ1) + 2 .(Z2 ) + (f)

Figure 4.1.	 The geometrical interpretation of least-squares

eat imat Ion.
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FIgure 4.2.	 ComparIson of the least-squares methods described

in the text.

186



Figure 4.3.	 Formation of the stiffness section.
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Figure 4.4.	 Formation of the Crawley/O'DOnfleIl surface.
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Figure 4.5.	 Comparison of the true time data and that predicted

by the least-squares model for the linear system

described in the text.

Figure 4.6.	 RestorIng force surface (Crawley/O'Donnell type) for

the linear system.
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Figure 4.7.	 StIffness section for the linear system.

Figure 4.8.	 Damping section for the linear system.
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Figure 4.9.	 ComparIson of the true and predicted data for the

cubic stiffness system.

FIgure 4.10.	 RestorIng force surface for the cubic stiffness

sys t em.
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Figure 4.11.	 Stiffness section for the cubic stiffness system.

Figure 4.12.	 Damping section for the cubic stiffness system.
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Figure 4.13.	 ComparIson of the true data and that predicted by a (1,3)

polynomial model for the system with quadratic damping

described In the text.

Fiqure 4.14.	 ComparIson of the true data and that predicted by a (1,7)
polynomial model for the quadratic damping system.
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Figure 4.15.	 RestorIng force surface for the quadratic damping

system.

Figure 4.16.	 Stiffness section for the quadratic damping system.
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Figure 4.17.	 Damping section for the quadratic damping system.

Figure 4.18.	 Comparison of the true and predicted data for the

Van der P01 oscillator system described In the text.
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Figure 4.19.	 Restoring force surface for the Van der Pol oscillator

system - obtained using three-neighbour averaging.

Figure 4.20.	 Restoring force surface for the Van der Poi oscillator

system - obtained using two-neighbour averaging.
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Figure 4.21.	 Stiffness section for the Van der Pol oscillator.

Figure 4.22.	 Damping section for the Van der Pol oscillator.
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FIgure 4.23.	 ComparIson of the true and predicted data for the

piecewIse-linear system described In the text.

Figure 4.24.	 RestorIng force surface for the piecewise-linear

system.
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flgure 4.25.	 StIffness section for the piecewise-linear system.

Figure 4.26.	 Damping section for the piecewise-linear system.
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Figure 4.27. ComparIson of the true and predicted data for the

model of the Coulomb friction system described in

the text.

Figure 4.28.	 RestorIng force surface for the Coulomb friction

syst em.
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Figure 4.29.	 Stiffness section for the Coulomb friction system.

Figure 4.30.	 Damping section for the Coulomb friction system.
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FIgure 4.31.	 ComparIson between true and predicted data for the

hysteretic system described In the text.

FIgure 4.32.	 Restoring force surface for the hysteretic system.
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Figure 4.33.	 Stiffness section for the hysteretic system.

Figure 4.34.	 Damping sect ion for the hysteretic system.
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File :	 dxl	 Measured	 .	 Estimated

DOF	 1	 Data	 Dots

Normolised MSE	 63-5	 compared on I 000. points

Figure 4.35.	 ComparIson between true data and that predicted

by a (21) Chebyshev model for the Van der Pot

oscillator.
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* Coefficients for system : ldxl

* Mass corrected to : O.99999970e+OO

a( 0: 0) 0.43617779e-05

a( 0: 1) 0.20000023e+02

e( 1: 0) 0.10000087e+05

a( 1: 1) 0.92633357e-02

a( 2: 0) 0.36072439e+0D

a( 2: 1) -0.56263989e+00

a( 3: 0) 0.49999754e+1O

a( 3: 1) -D.40317437e+04

SC 0: 0)

SC 0: 1)

s( 1: 0)

SC 1: 1)

sC 2: 0)

SC 2: 1)

SC 3: 0)

SC 3: 1)

0.21968820e-11

0. 18655244e+01

0. 175 71 732e+02

0.57367706e-12

0.79792726e-13

0.67925164e-14

0.72433151e+02

0.14980104e-11

* MSE estimate : 0.43272896e-09

* Significant coefficients

	

a( 0: 1) 0.20000023e+02	 StdC 0: 1) 0.35255912e-03

	

n( 1: 0) D.10000087e+05	 std( 1: 0) 0.57437547e-01

	

a( 3: 0) 0.49999754e+10 	 std( 3: 0) 0.27717064e+05

* MSE estimate	 0.43342663e-09

Table 4.1.	 Estimated coefficients for a (3,1) polynomial model

of the cubic stiffness system described in the text.
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* Coefficients for system : ldxl

* Mass corrected to : 0.99991637e+00

a( 0: 0) 0.24037039e-01

a( 0: 1) 0.29412050e+02

a( 0: 2) -0.12774162e+01

a( 0: 3) 0.27455914e+03

a( 0: 4) 0.10854147e+02

aC 0: 5) -0.60985010e+03

a( 0: 6) -0.19111641e+02

o( 0: 7) 0.65142474e+03

a( 1: 0) 0.99860488e+04

a( 1: 1) -0.11353043e+03

a( 1: 2) 0.70319342e+03

a( 1: 3) 0.29199675e+04

a( 1: 4) -0.63556606e+04

a( 1: 5) -O.18138193e+05

a( 1: 6) 0.13825540e+05

a( 1: 7) 0.30354666e+05

s( 0: 0)

s( 0: 1)

s( 0: 2)

s( 0: 3)

SC 0: 4)

s( 0: 5)

s( 0: 6)

S( 0: 7)

SC 1: 0)

s( 1: 1)

Sc 1: 2)

SC 1: 3)

s( 1: 4)

s( 1: 5)

S( 1: 6)

S( 1: 7)

0.16679791e-04

0. 17427596e+01

0.55800012e-03

0.62679195e+01

0.28706761e-02

0.29701328e'-Ol

0.10307526e-02

0.44714123e+00

0.23 137569e+02

0. 19622619e-03

0. 12500623e-02

0.51421141e-02

0.69075800e-02

0.17629625e-01

0.34382432e-02

0.58674603e-02

* MSE estimate : O.79055439e-03

* Significant coefficients

a( 0: 1) 0.29412050e+02

a( 0: 3) 0.27455914e+03

a( 0: 5) -0.60985010e+03

a( 0: 7) 0.65142474e+03

a( 1: 0) D.99860488e+04

std( 0: 1) 0.73777968e+O0

Std( 0: 3) 0.68447094e+01

std( 0: 5) 0.57249924e+02

std( 0: 7) 0.45474176e03

std( 1: 0) 0.69543221e02

* MSE estimate : 0.10429000e-02

Table 4.2.	 Estimated Coefficients for a (1,7) model of the quadratic

damping system.
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* Coefficients for system : ldxl

* Mass corrected to : O.98047'501e+00

a( 0: 0) -0.65301888e-01

a( 0: 1) 0.28116757e+03

aC 0: 2) 0.75559364e+02

aC 0: 3) -0.20762311e+05

a( 0: 4) -0.64575498e+04

n( 0: 5) 0.71290763e+06

e( 0: 6) 0.15397697e+06

a( 0: 7) -0.10004910e+08

a( 0: 8) -0.10601463e+07

a( 0: 9) 0.48427836e+08

a( 1: 0) 0.95422061e+04

a( 1: 1) 0.43732571e+03

a( 1: 2) 0.33637652e#05

a( 1: 3) -0.82371805e+05

a( 1: 4) -0.83454031e+06

aC 1: 5) 0.45943735e+07

a( 1: 6) -0.25091713e+07

aC 1: 7) -0.89147256e+08

aC 1: 8) 0.14510166e+09

a( 1: 9) 0.51725258e+09

s( 0: 0)

SC 0: 1)

s( 0: 2)

SC 0: 3)

s( 0: 4)

Sc 0: 5)

SC 0: 6)

s( 0: 7)

SC 0: 8)

s( 0: 9)

s( 1: 0)

s( 1: 1)

S( 1: 2)

s( 1: 3)

SC 1: 4)

sc 1: 5)
s( 1: 6)

s( 1: 7)

s c 1: 8)

Sc 1: 9)

0.50295412e-03

0.96496465e+02

0.24832259e+00

0.10027693e+04

0.62161818e01

0. 53352 134e+04

0. 18538443e+02

0.60512568e+04

0.5396T700e+01

0.91339111e+03

0. 13305 131e+02

0.28821416e-03

0.57677846e-01

0. 17033761e-01

0.103591 16e+00

0.206444 16e+00

0.43 137949e-02

0.39755771e+00

0.79146318e-01

0. 772 16752e-01

* MSE estimate : 0.20930667e+01

* Significant coefficients

a( 0: 1) 0.28116757e+03

aC 0: 2) 0.75559364e+02

o( 0: 3) 0.20762311e+05

aC 0: 6) -0.64575498e+04

ac 0: 5) 0.71290763e+06

aC 0: 6) 0.15397697e+06

a( 0: 7) -0.10004910e+08

ac 0: 8) -0.10601463e+07

Bc 0: 9) 0.4&427836e+08

aC 1: 0) 0.95422061e+04

a( 1: 4) -0.83454031e+06

aC 1: 5) 0.45943735e+07

a( 1: 7) -0.89147256e+08

stdc 0: 1)

std( 0: 2)

stdc 0: 3)

std( 0: 4)

stdc 0: 5)

stdC 0: 6)

stdc 0: 7)

Std( 0: 8)

std( 0: 9)

std( 1: 0)

std( 1: 4)

Std( 1: 5)

std( 1: 7)

0. 225 52971e+ 02

0.14467059e+03

0.95478790e+03

D.60802617e#04

0.39359293e+05

0. 24977689e+06

0. 16422676e+07

0. 10415498e+08

0.69202528e+0B

0.20747168e+04

0.72095570e+07

0.50818284e+08

0.2336304 6e+ 10

* MSE estimate : 0.23589919e+01

Table 4.3.	 Estimated coefficients for a (9,1) polynomial model of

the piecewise-linear system.
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* Coefficients fo, system : ldxl

* Estimation type : OrthogonaL

* Expansion type : Chebyshev Po'ynomiaL

* Mass corrected to : O.99999714e+OO

a( 0: 0) 0.28523210e+00

e( 0: 1) 0.54649738e+02

o( 1: 0) O.73983040e+O1

a( 1: 1) 0.84603291e+01

( 2: 0) 0.89160604e-02

a( 2: 1) O.56558922e+02

S( 0: 0) 0.17547554e+00

s( 0: 1) O.65526538e+03

s( 1: 0) O.57717682e+02

s( 1: 1) 0.23627956e+01

s( 2: 0) 0.63406005e-04

s( 2: 1) 0.41422495e+03

* MSE estimate : 0.33951142e-09

* Significant coefficients

a( 0: 0) O.28523210e+OO

a( 0: 1) O.54649738e+02

1: 0) O.73983040e+01

a( 1: 1) O.84603291e+01

a( 2: 1) 0.56558922e+02

std( 0: 0) 0.64307824e-03

std( 0: 1) O.20166186e-02

std( 1: 0) 0.92672562e-03

std( 1: 1) 0.52307085e-02

std( 2: 1) 0.64338590e-02

* MSE estimate : 0.63409760e-04

Table 4.4 Estimated coefficients for a (2, 1)

Chebyshev model for the Van der Pol

oscillator system.
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CHAPTER 5

LEAST—SQUARES PARAMETER ESTIMATION - MDOF SYSTEMS

5.1. Transmissibility.

Before proceeding to the study of MDOF systems proper, it is useful to describe the

relative acceleration or transmissibility approach to identification. Under certain

circumstances one can reduce a MDOF problem to an SDOF—like problem by

adopting this approach. Consider a mass m attached to a system by a single elastic

link as in Figure 5.1. The acceleration of the mass m is Ym and the acceleration of

the point of attachment to the system is Yb If one forms the relative acceleration b

= Ym - Yb one can write the equation of motion for the mass m in the following

forms.

myrn + c (S'm - Yb) + k(y - Yb) = 0	 (Ia)

mym+cb+kb = 0
	

(1 b)

mô +cb+k	 Yb
	 (ic)

where ö is the relative displacement etc. It is equation (Ib) which is of greatest

interest here. If Ym and Yb are measured, one can form ó and integrate twice to

form and . One can then fit a parametric model of the form (Ib) to the data.

One should note that if (m,c,k) is a set of parameters which minimise the squared

error, then so is (arn,ac,ok) where c is an arbtirary number. This means that one

can only identify parameters up to an overall scale. One fixes the scale by setting m

1. This means that one actually estimates c' = c/m and k' 	 kim from

c'b + k'o =	 Ym
	 (2)
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Clearly, one is not restricted to fitting a linear model to the restoring force in the

link. One can fit the more general model

f'(ô,) =	 >	 a' J 6' &J	 -Y	 (3)
i=0 J=O

where f'(b,t5) = f(b,&)/m and f(b,b) is the restoring force function for the link. As in

the linear case all coefficients are determined up to an overall scale, ajj = aJIm.

Example 1. The two degree-of-freedom system shown in Figure 5.2 was simulated

and a parametric model of the form (3) with m = 3 and n = I was fitted to the

data using a least-squares parameter estimator. The resulting coefficient estimates were

- 20.000015

k'	 9999.9961

= 5.0000005x109

A comparison of the measured acceleration Ym and that predicted by the model gave

an MSE of 2.6x10 2 . For transmissibility data the restoring force surface is very

simple to construct. One does not need an a priori estimate of the mass. One simply

takes the triplets of sampled and integrated data (â,b,Ym) and constructs the scaled

force surface using Crawley and O'Donnell's technique (55). The surface obtained

from the example above is shown in Figure 5.3.

To sum up, using transmissibility data one can identify all parameters for a system up

to a constant scale without measuring or estimating the mass. If the mass is known,

the scale factor is known. This is only possible because equation (ib) has a zero on

the right-hand side.
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5.2. MDOF Lumped Parameter Systems.

The object of this section is to demonstrate a means of identifying an N

degree-of-freedom lumped parameter system when the system is excited by an

arbitrary number of inputs. The mass of the system is assumed to be concentrated at

N measurement points, m being the mass at point i. Each point is then assumed to

be connected to each other point by a link, point i is connected to point j by the

link lii. Each point i is connected to ground by the link l. The situation is

illustrated in Figure 5.4 for a three degree-of-freedom system.

If the masses are displaced and released, they are restored to equilibrium by the

internal forces in the links. The forces are assumed to depend only on the relative

velocities and relative displacements of the ends of the links. If ó ij	 y - yj is the

displacement of measurement point i relative to point J and 6 ij = 'i -	 is the

corresponding relative velocity, one has

Force in link ljj	 :=

As I is the link with ground ôj = yj and	 =	 . Clearly, as links lj and lj are

the same

-	 (4)

If an external force x(t) is now applied at each point i, one can readily see that the

equations of motion of the system are

+	 L	 - x 1 (t)	 j	 1,. .,N	 (5)

'
As mentioned before, this type of system has N natural frequencies or modes. This

means that one would hope to be able to model a real system with N effective



natural frequencies (i.e. a system with only N modes excited) by a set of equations

like (5). If one measures the N accelerations and input forces at each point, one can

find the relative accelerations and integrate to find the values of the variables and

bjj at each sampling instant. One can then estimate parameters for a least-squares

model of the form

+	
=	 m 1 . 1 +

(6)

j1 kO io a(jj)kI (
1 ) k (6 1 ) l	x - mej.yj

where mej is an initial estimate for m as used in the last chapter. Using arguments

suggested by the transmissibility approach, one can see that if there is no excitation

at point i, one can still find all the coefficients up to an overall scale by fitting a

model of the form.

j1	 = j1 kO i_o a(jj)kl

= -yl
	 (7)

where a jj)kj = a(jj)kjlmi . Models of the form (6) shall be referred to as

inhomogeneous while those of the form (7) shall be called homogeneous in keeping

with the terminology of the theory of differential equations.

In terms of the expansion coefficients, the symmetry relation (4) becomes

a (ij)kI	 =	 ( 1 ) 11 .a(J1)kI	 (8)

or

mj.a(ij)kl =	 (-1) k+l+Im.a('..)kI	 (9)

This model allows one to determine the type and location of nonlinearities within the
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system. If a term of the form (23) appears in the expansions, then one deduces

that there is a cubic stiffness nonlinearity between points 2 and 3. Al—Hadid and

Wright (18) proposed the inclusion of difference terms in least—squares models with

the location of nonlinearities in mind. The type of model above has also been

proposed independently by Yang and Ibrahim (16).

Suppose now that all the inputs x 1 are zero except one, without loss of generality this

can be chosen to be x j . This type of system shall henceforth be referred to as a

SIMO ( Single—Input Multi—Output) system. The equations of motion become

m1.y1 + j1
	

= x1	 (lOa)

+ j1	
= 0	 i	 2,..,N	 (lOb)

Now, one can identify all terms in the Y2 equation up to an overall scale - the

unknown m2. Similarly one identifies all terms in the Y3 equation up to the scale

factor m3 . If there is a link 123 between the masses m 2 and m3, then the Y2 and

equations will contain terms fj3 and f 2 respectively. Now, as

m2f3	 m3.f312

One can transfer the scale factor m2 from the Y2 equation to the Y3 equation. One

simply multiplies the coefficients for the y 3 equation by m3/m2. This ratio is fixed by

choosing any pair of coefficients from terms common to the expansions of fj 3 and

For example one could choose the linear stiffness coefficients, in which case

according to equation (9)

a'23)10
m3	 a(32)lO

Now all the coeffcients in the Y2 and y3 are estimated up to one overall scale factor
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- m2. One can now transfer this factor to the y4 coefficients by the same method if

there is a link 124 or 134. In fact, one can propagate the scale factor through all the

equations because every measurement point is connected to every other point by a

sequence of links. This is an almost trivial observation, based on the following

argument. If a point i is not connected to a point j by movement along a sequence

of links, then the system must consist of two disjoint pieces, one of which contains

point i, the other containing point j. If the two pieces are disjoint, they cannot affect

each others dynamics in any way. In this case one should be studying the two pieces

as two separate dynamical systems. In fact, the subsystem which does not contain the

excitation point I will remain at rest. One is therefore justified in considering only

connected systems. The preceding arguments serve to show that without measuring the

input, just the accelerations Yi to YN one can identify almost all parameters in a

SIMO system up to one overall scale factor, this scale factor being one of the masses

arbitrarily chosen. The only parameters one cannot obtain are those for the link lii.

This is because f11 only appears in the first equation. 11 ; .ss u e S	 &e (

FIc	 ,ini..t ..j-	 .	 cLciL	 DIIt

If the input x 1 is measured, one fits an inhomogeneous model to the Yi equation.

The coefficients in this equation are absolute so the estimates can be used to obtain

absolute values for all other coefficients by the method above. Summarising, one can

identify all parameters in an MDOF system by exciting at one measurement point

only.

Yang and Ibrahim (16) observe the unforced equations of motion, and fit

homogeneous models as above to all the equations. The overall scale required is then

fixed by knowledge of the total mass of the system. Effectively, this means that one

can identify all parameters without using any inputs at all!

If one now restricts attention to linear systems, one can simplify the notation a great

deal. One writes

214



a(ij)O1	 Yij

a(ij)1O	 fLjj

and the equations of motion are

	

m1.y1 + j1 Y1j61j 
+	

IL1J.61j = xl
	 (11)

+	 L -;i.•i +	 L	 ii 
= 0
	

I ^l

where	 = yij/mi and	 = iqj/mi. One can carry out the procedure described

above and obtain estimates for the m1, -yj and	 j. The usual damping and stiffness

matrices [C] and [K] are then obtained from the simple realtions

	

Cjj =	 i'ij
	

k1	 _Ljj	 I ^ j	 (12a,b)

	

=	
YIj
	

k11 
=	

tLij
	

(12c,d)

The symmetry conditions (8) become

Yij = Yji

= lLjj

which become in turn, through the equations (12a) to (12d)

Cjj = Cjj (13a)

k 1	 =
	 (13b)
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One concludes that the model adopted forces symmetry conditions on the damping

and stiffness matrices.

The method described above is now tested on a number of simulated systems.

Example 2. The linear system described by the following equations,

	

1 1 0 0 1[Yh1	 [ 
2-1 0 lfh11

I 020	 11Y21	 + 20.1-i 2-1	 Iy2

	

0 0 3 j { y3 j	 1 0-1 2

2-1 011y i 1	 {x1

+ 1o4 j_i 2-1 '1Y2' =	 01
0-1 2 ][ y3J	 I oi

was simulated with x 1 a Gaussian noise sequence with variance 10.0. The signal was

band-limited into the interval (0,200)Hz. A timestep of 1 ms was used. The

accelerations, velocities and displacements were all taken from the simulation.

An inhomogeneous (2,2) model with an initial mass estimate of mel = 1.0 was fitted

to give the Yi equation of motion. As before, an (m,p) model is one which includes

powers of ô up to b m and powers of 6 up to 5P. The results of the identification

are shown in Table 1. Homogeneous (2,2) and (1 ,1) models were fitted to give the

Y2 and y3 equations of motion respectively. The results are shown in Tables 2 and 3.

The link classification is given in each table. This is obtained simply by checking

which terms appear to be significant in the expansions. The coefficient estimates are

collected together below

a(11)01 - vii - 20.000341

a (lI)10	 = l.0000034x104

a(12)01 = Yl2 = 20.000147

a(12)10 = !zl2 = 1.0000023x104
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a(2l)Ol = Y21 = 9.9999971

a(21)10	 P21	 5.0000020x103

a(23)Ol	 123	 9.9999828

a(23)1Ø	 P23	 5.0000029x103

a(32)01	 Y32	 6.6666503

a(32)1O = P32	 3.3333335x103

a(33)Øl = y33	 6.6666884

a(33)10 = p.33 = 3.3333342x103

(dropping the carets which are usually used to indicate estimates). The scale factor for

the Y2 equation of motion is obtained from the relation m2 	 a(12)Ol/a(2l)O1) =

2.00004, the factor for y3 is then obtained from m 3 = m2 .a (23)0i /a(32)Ol =

3.000007. These factors allow one to form the [-y] and [p.] matrices. The damping

and stiffness matrices [C] and [K] then follow from equations (12a) to (12d). The

estimates are

[C] =	 10.	 4.000043 -2.000009
	

0. 000000

-2.000009
	

4. 000009 -2.000000

	

0. 000000 -2. 000000
	

4. 000011

[K]	 iO4.	 2.000006 -1 .000002
	

0. 000000

-1 .000002
	

2. 000005 -1 .000003

	

0.000000 -1 .000003
	

2. 000005

Beacause it is possible that say, c12.'2 might be a significant term in the Yi equation

while the c21 .y1 term is deleted from the Y2 equation, the [C] and [K] matrices

above are 'symmetrised' i.e. if both ê 12 and c21 are considered significant they are

both replaced by the average (ô12 + c2 1 ). If only c12 is significant, c21 is defined

equal to c1 2. The coefficients above are quoted to seven significant figures in order

to demonstrate how accurate the procedure is when the data is free from noise. It is

clearly unrealistic to expect accuracy of this sort when one is using experimental data.

In the examples which follow the coefficients are only quoted to four figures even
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though they are usually as accurate as those above.

The MSE's for comparisons between measured and predicted right—hand sides for each

equation were

MSE(1)	 2.4x109

MSE(2)	 3.0x1011

MSE(3)	 8.5x1012

A useful feature of the link model approach is that restoring force surfaces arise

naturally for each link. For each link ljj the force or f can be plotted over the

(ojj,j) plane. However, in the MDOF case one cannot partition the data in each

equation into parts depending on each set of link variables until after the model has

been fitted. One can only plot the model surfaces. This is straightforward, for ljj one

determines the maximum and minimum values of ô and b and evaluates the model

expansion for the link on a regular grid over the region

[öij(min)öij(max)]X[ij(min),tij(max)}. This provides the data for the surface plot.

This technique is used in the following examples.

Example 3. This is the same system as in Chapter 3, Example 4. The system

described by the equations of motion,

I	 1 + 20.{ $'i 1 + 1o4.[ -1 2
	 Y2 i

2 -1 

J [ 

i 1
Y2i	 IS'2J

+ 5.0x109.1 Y13

1. o 3	

=	 [3

was simulated with x1 a Gaussian noise sequence with RMS 150.0, band—limited as

before. The sampling is 1 kHz. The accelerations, velocities and displacements were

obtained from the simulation.

An inhomogeneous (4,2) model was fitted for the Yi equation. The fitted equation is
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+ 2O.00.y + 1.000x104 .y1 + 5.000x109.yj3

+ 0.9999x10 4 .(yi - Y2)	 xl

The MSE for the comparison of predicted with measured output was I .Oxl 08. The

comparison is shown in Figure 5.5. The link surfaces or force surfaces for links 11

and 112 are shown in Figures 5.6 and 5.7 respectively.

A homogeneous (2,2) model was fitted for the Y2 equation.	 The results obtained

were

Y2 + 2O.00. y2 + 1.000x104.y2

+ 1.000x104.(y - Yl)	 0

The link surfaces for this equation are simply planes above phase space. There is no

need to transfer any scale factors in this case as the true mass matrix is the 2x2

unit. The overall equations of motion obtained are

+ [ 20.00 0.0 1 Si 1 +
Y2	 0.0	 20.00J	 '2 J

i 4 .1 2.000 -1.000	
[ 

i 11 +L-1.000	 2.000 ii Y2

	

5.000x109 1 Y13 1	 xi

	

0.0	 J	 0 j	 0

The results are perfect. If one were using experimental data one would not obtain

this sort of accuracy. In that case, to improve the estimates one re—estimates

parameters using a (3,1) model for the first equation and a (1 ,1) model for the

second as the best parameters will usually be for the model with the correct order.

Example 4. is the three degree—of—freedom piecewise linear system considered earlier
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in Chapter 3. The equations are repeated here for convenience

yl
	

yl

Y2
	 + 20. Y2

y3
	

y3

2-1 011yil

+ 104 .[ -1 2 -1 II Y2	 +
0-1 2J[y3j

0	 0

=	 xl

0	 0

The piecewise linear force ni is shown in Figure 3.26. The excitation x 1 (t) is the

same as in the previous example.

A homogeneous (2,2) model was fitted for the Yi equation. After deleting insignificant

coefficients the equation was estimated as

Yi + 20.00.571 + 1.000x10 4 .y1 +

1.000x10 4 .(yi - Y2) = 0

The MSE for comparing the model data with measured data was 8.2x10 9. The link

classification correctly indicated that all links to mass m 1 were linear.

An inhomogeneous (5,1) model was fitted for the Y2 equation. The identification data

is given in Table 4. After deleting insignificant coefficients, the estimated equation was

Y2 + 18 .96.572 - 1.089x10 4 .y2 +

0.984x104 .(y2 - Yi ) + 1.024x10 4 ,(y2 - y3) +

2.157x10 12 .y23 - 1.575x10 17 .y2 5 = x

The MSE for the data comparison was 0.652 and the results are shown in Figure 5.8.

The link surfaces for 121, 22 and 123 are shown in Figures 5.9, 5.10 and 5.11

respectively. The 122 surface resembles a piecewise linear surface. However, a higher

order approximation than fifth-order is needed. The stiffness section for the 122
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surface is shown in Figure 5.12

A homogeneous (2,2) model was fitted for the Y3 equation. The significant terms in

the equation gave the model

+ 20.00.	 + 1.000x104 .y3 +

1.000x104 .(Y3 - Y2) = 0

The data comparison gave an MSE of 6.5x102.

The overall fitted model was therefore

yl	 20.00.$'i

Y2	 +	 18.96.$r2

y3	 20.00.Sr3

	

2.000 -1.000	 0.0

+ io4 . -0.984	 0.919 -1.024	 Y2

0.0	 -1.000	 2.000

	

0.0	 101

	

+ [ 2.157x1012Y23 - 1.575x1017.y25 I	 I x I
	0.0 	 1	 tJ

As one might expect, the linear term k22 is estimated badly as part of it appears in

the polynomial expansion for the piecewise linear function.

These results indicate that for simulated systems, one can accurately identify the

equations of motion using only one input. The location of the nonlinear terms within

the linked structure is easy to determine. One would hope that if a real nonlinear

structure was well described by a lumped parameter model of the type above, the

location of the nonlinear elements within the model would correspond to the location

within the real system.
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5.3. Use of Reciprocity Relations.

The reason why the link—model approach of the last section works for SIMO systems

can be traced back to the symmetry conditions (4). For linear systems in particular,

one obtains the symmetry relations for the damping and stiffness matrices (13). These

relations can actually be obtained from a much more general argument.

In order to obtain the equations of motion of an N degree—of—freedom system, one

can define or construct a Lagrangian function L({y},{y},...) which depends on all the

displacements Yj and all the velocities etc. (51). One way of determining the

function L is through the equation L = T - V where T({y},{'},...) is the kinetic

energy of the system and V({y},{y},...) is the potential energy. The unforced equations

of motion of the system are then obtained from the Euler—Lagrange equations

-	
1	 1	 0	 i=1,...,N	 (14)

dt

One can now ask for the most general Lagrangian which defines a linear system.

Because the Euler—Lagrange equations contain a time—derivative operator, one should

only include {y} and {'} terms in the Lagrangian. If L were to contain a y term, the

equations of motion would contain a term. It is known that equations containing

third derivatives or higher have causality problems, an example being the

Abraham—Lorenz—Dirac equation for a particle in an electric field; in this case the

particle can accelerate before radiation hits it (52). In requiring causal equations one

restricts the form of the Lagrangian. Also, if one requires linear equations of motion,

the Lagrangian has to be a homogeneous quadratic in it's dependent variables. This

means that the most general Lagrangian which one can write down is

N N
L((y),('))	

i1 j1	
YA 1 y +	 + S'DS'	 )

(15)
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Now, consider the term	 yAyj	 The matrix [A] can be split into symmetric

parts and anti—symmetric parts as follows

[A]	 [As]	 +	 [Aa]

A IJ	 ( A j + A) + ( A1j - A) = AS 1 + Aa1

It is a simple matter to show that

y A1 Yj = 0

So, without loss of generality one can define [A] to be symmetric. Exactly the same

argument applies to [DJ.

Substituting the Lagrangian (15) into the Euler—Lagrange equations (14) gives the

equations of motion

+	 (Bji - BiJ).i	 -	 2AiJ.YJ	 0

Clearly, one can now make the identifications [D] = [M], [A] = —[K] and [C] =

[BIT - [B] = 2[Ba].

By a quite general argument, one has therefore arrived at a symmetric mass matrix

and a symmetric stiffness matrix. The symmetry condition on [K] produces the

phenomenon known as reciprocity. Whereby, if one applies a unit force at

measurement point i in a system and measures the resulting displacement at point j,

one would measure the same displacement at point i if the force is applied at point

Unfortunately, this argument produces an antisymmetric damping matrix. As
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antisymmetry of the damping matrix does not correspond to a recognisable physical

phenomenon as symmetry of the stiffness matrix does, one usually defines the

damping matrix in another form. If one chooses the damping matrix symmetric, one

obtains agreement with the lumped parameter model of the previous section. One can

go one step further as Modal Analysts do (7), and assume that the damping is

proportional i.e.

[C]	 a[M] + 3[K]

where a and 3 are arbitrary constants. The advantage of this condition is that it

assures that [M], [C] and [K] are simultaneously diagonalisable.

The assumption that [K] and possibly [C] is symmetric is the basis for Mohammad 's

method (26) of identifying SIMO systems. By assuming reciprocity at the outset, the

identification proceeds with rather less effort than for the link—model approach.

Another factor which motivated this approach was the requirement that all results

should be compatible with finite element analysis. The method shall be demonstrated

on the two degree—of—freedom linear system

m1 1 .y1 +	 + c1 2.'2 + k1 1.y1 + k1 2.y2	 x

+ c21.r1 + C22 . )72 + k21.y1 + k22.y2	 0

The first of these equations is identified using an inhomogeneous (1,1) model.

Estimates of the parameters ''fl,	 ê, k	 and k12 are obtained. Now

assumimg that reciprocity holds, one rewrites the second equation in the form

m22.y2 + C22.y2 + k22.y2	 - c1 2. 1 - k12.y1

and the RHS is known from the measured data and the previous estimates. This

allows one to estimate ''22' c22 and k22 There is no scale ambiguity here as the

second equation has now become inhomogeneous. The method extends directly to
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MDOF nonlinear systems (26). Referring back to the earlier argument, if one is

unsure about the symmetry of [C one need only feed back the k estimates from the

earlier equations into later equations.

If the method is applied to the three degree—of —freedom system of example 2, one

obtains the parameter estimates given in Table 5. Because one does not need to

explicitly transfer scales between equations or map the [y] matrix to the [C] matrix

etc. this method is easier to code and faster to run than using the link approach.

One can also see that the number of parameters required in successive estimations

decreases, this also contributes to the speed of the approach. The advantages of the

link approach are that one can more easily use a priori knowledge of the system as

one deals with one equation at a time. It may also be more accurate than

Mohammad's method as one can sometimes feed back badly estimated parameters

using the latter approach; one can see that the errors in the estimated parameters will

then be magnified in each successive step through the equations. Using the link

approach one can easily choose only those parameters which are significant and/or

have small standard deviations for calculating the scale factors.

5.4. Linear Dependence and the Mass Matrix.

It will have been noticed by now that the mass matrix is assumed diagonal throughout

this chapter. The reason for this is that one can only identify a SIMO system by the

methods of this chapter if this condition is satisfied. One might ask how one might

observe a system with a full mass matrix anyway. One possible way is through the

reduction of a system of N equations to a system with M < N. Suppose one is

studying a system specified by three translational states x,y,z and three rotational

states One might wish to obtain the set of three equations which model the

system behaviour best and yet only contain the translational variables. Methods for

obtaining these approximate equations exist, Guyan reduction (53) is an example. A

feature of these methods is that the reduced system equations will usually contain a
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full mass matrix. Now, suppose that one is experimentally studying data from a real

system of the type described above and only measuring the translational variables

(which is usually the case). If one fits the best least-squares three DOF model i.e.

that which descibes the data best, one might reasonably expect it to resemble the

reduced model described above. This rather loose argument motivates the following

discussion.

Consider the two degree-of-freedom system

mii.yi + m1.y2 + Cfl.1 + C12.y2 + k11 .y1 + k1 2.y2 = x

m2 1 . 1 + m22. 2 + c21.yl + C22.y2 + k2 1 .y + k2 2 .y2 = 0

One might expect to obtain the parameters for the first equation by fitting a

least-squares model, one cannot. The reason being that one can add an arbitrary

multiple a of the second equation to the first to obtain

(m11 + °°21)Y1 + (rnj2 +	 + (c11 + ac21)'1 +

(c1 2 + ac22 ) 2 + (k11 + ak21)y1 + (k12 + ak22)y1	 x

Now, the design matrix for this equation is identical to that for the first equation of

the pair above. So is the RI-IS vector {x} for the least-squares problem. This means

that an entire family of parameter estimates labelled by an arbitrary real ( or

complex for that matter!) number a minimises the squared error. Only one of this

family (a = 0) is correct. In general the estimates corresponding to a random,

unknown a will be obtained and there is no way of recovering the true values. One

obtains

= m11 + 21	 =

a11 = C11 +	 C12 + &c22

= k11 + ak21	 k12	 k12 +

226



Another way of looking at this is to observe that while one is trying to fit to the

first equation, the second equation can be regarded simply as a statement of the

linear dependence of the fitting variables. The reason why these problems do not

occur for SIMO systems is obvious, in that case, each equation contains a variable Y

which does not appear in any other.

Suppose one were to try and fit a model with no off-diagonal mass terms. This

amounts to fixing one condition th12 = 0. Unfortunately though, this condition is

actually satisfied for one of the family of estimates described above, namely that with

= -m12/m22. However, it is not satisfied for the true estimate. The estimates which

minimise the squared error in this case are

m 1 - ml2m2l/m22 rn12 - 0

(17)11 = Cli - m12c21/m22

11 =	 - m12k21/m22

= C12 - m12c22/m22

k12 = k12 - rn12k22/m22

One can demostrate this effect using the following example

Example 5. The system

[ 

I ° . 11i1 ^ 20. [ Sr11 +
0.5 1 JLy2J Y2 i

	

104j

2 - 1 11 i	

= [	 I-1	 2j{y

was simulated with x a Gaussian noise sequence filtered into the range (0,200)Hz. If

an inhomogeneous (1,1) model were fitted to the first equation with the off-diagonal

mass term zeroed. One would expect the following results from equations (17): tñ 	 =

0.75,	 = 20.0, 12 = -10.0	 = 2.5x104 and 12 = -2.0x104 . Mohammad's

method was used to estimate parameters from the data and the results shown in Table

6 agree almost perfectly with the theoretical predictions.
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Exactly the same effect occurs for MDOF systems of higher order. If there are N

degrees—of—freedom, one can add a multiple aj i = 2,,,N of the th equation to the

first equation without changing the design matrix etc. for estimating the first equations

parameters. In this case one has a N—I parameter set of possible estimates all of

which minimise the squared error. Zeroing the N—i off—diagonal mass terms fixes N—i

conditions on the variables c. The resulting constraint equations will have a unique

solution which will certainly not correspond to the true estimates unless the solution is

the trivial one.

One concludes that one cannot identify parameters for a SIMO system if the mass

matrix has off—diagonal terms. One must excite such a system at all measurement

points.

5.5. Comparison with the MasriiCaughey Procedure.

The last chapter showed how one could fit Masri/Caughey type models to SDOF

systems using direct least—squares methods; there being no need for interpolation or

integration. One can fit the same sort of models for MDOF systems in exactly the

same manner. One simply estimates coefficients for models of the form

N m

+ j1 kO lO C(jj)kl.
Tk[ r 1( o 1)]. T1[ r(o1)1

x 1 - mej .y j	 (18)

or

Nm
j1 kO lO C(jJ)kl.Tk[	 IJ(blJ)I.Tl[	 ij(ij)I	 =

(19)

This approach has all the advantages previously mentioned over the Masri/Caughey

procedure. In addition one can estimate all the coefficients in an equation in one go

by this method. The Masri/Caughey procedure can only handle two expansion variables
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at a time as one has to order the two variables then plot the surface over the

appropriate region of the phase space. By estimating all coefficients at once, one also

avoids the biasing which plagues the Masri/Caughey approach. Overall there is an

enormous increase in speed over the procedure based on interpolation/integration.

Example 6. Models of the form above were used to identify the data from example

2. A (4,2) model of the form (18) was fitted to give the first equation of motion.

The results are given in Table 5.7. The coefficients were estimated as follows.

Coefficient

C (11) oo + C(12)00

C(11)10

Est imate

1.852

36. 223

624.21

0.418

190.27

70.9

	

Exact	 error

	-0.968	 291.0

	

36.230	 0.02

	

624.09
	

0.02

0.427
	

2.1

	

190.23
	

0.02

	

70.9
	

0.0

In this case the constants calculated for the 1 maps were only recorded to four

significant figures, this is why the exact and estimated coefficients differ slightly, it is

the exact coefficients which are slightly in error. The MSE for the comparison

between measured and predicted data for the RHS of (18) was 2.8x10 3 . This

relatively high error for a simulation is due to the fact that the (0,0) and (2,0) terms

were deleted as a result of setting the significance threshold too high. One can see

from Table 5.7 that if these terms had been retained, the model MSE would have

been 5.7x10 9 The comparison is shown in Figure 5.13. The link surfaces for links

11 and 112 are shown in Figures 5.14 and 5.15 respectively. As one might expect

they are identical to those in Figures 5.6 and 5.7.

229



+ 1O6 + 5x10963

Figure 5.1.	 MDOF system showing the SDOF-Ilke transmissibility

sub-syst em.

Figure 5.2.	 Two degree-of-freedom system with a cubic stiffness

term.
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Figure 5.3.	 RestorIng force surface obtained by transmissibility

analysis of the system In the previous figure.
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Figure 5.4.	 Link model of a three degree-of-freedom system.
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FIgure 5.5.	 ComparIson of the measured data and that predicted

by the model for the two degree-of-freedom nonlinear

system described In the text.

Figure 5.6.	 Restoring force surface for link 11 of the

two degree-of-freedom nonlinear system.
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Figure 5.7.	 Restoring force surface for link 112 of the

two degree-of-freedom nonlinear system.

Figure 5.8.	 Comparison of the measured and predicted data for

the three degree-of-freedom piecewise-linear system

described in the text.
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Figure 5.9.	 Restoring force surface for lInk 121 of the three

degree-of-freedom piecewise-linear system.

FIgure 5.10.	 RestorIng force surface for lInk 122 of the three

degree-of-freedom piecewise-linear system.
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Figure 5.11.	 RestorIng force surface for link 23 of the three

degree-of-freedom piecewise-I bear system.

Figure 5.12.	 Stiffness section for link 122 of the three degree-

of freedom piecewise-linear system.
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Figure 5.13.	 ComparIson of the measured data and that predicted

by the Chebyshev model for the two degree-of-freedom

nonlinear system described in the text.

Figure 5.14.	 Restoring force surface for link l	 of the

two degree-of-freedom nonlinear system.
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Figure 5.15.	 Restoring force surface for link 112 of the

two degree-of-freedom nonlinear system.
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Coefficients for systui : 3dn

Corrected ss value : 0.l0000000esO1

Coefficients for Linkt to nod. I

at 1: 0: 0) -0.2TOlO^SOe-06	 it 1: 0: 0) O.53124822.-12
at 1: 0: 1) O.20000341e02	 at t: 0: 1) O.16430259eQ1
a( I: 0: 2) O.268616hle-02	 cC 1: 0: 2) 0.208921e-10
at 1: 1: 0) 0.10000034e.05	 at 1: 1: 0) O.29652320°O2
at 1: 1: 1) 0.3335B88.e'.0O	 cC 1: : 1) 0.13964462e-l0
at 1: 1: 2) -O.10858138e.02	 St 1: 1: 2) 0.16170400e-10
a( 1: 2: 0) 0.36508930e*02	 sC 1: 2: 0) 0.39551692e10
at 1: 2: 1) -0.11950016e*04 	 it 1: 2: 1) 0.13490104,-b
.( 1: 2: 2) -0.4406845e.O5	 it 1: 2: 2) 0.17651131e-1Q

at 2: 0: 0) O.00000000eOO IC 2: 0: 0) Q.00000000..00
St 2: 0: 1) 0.20000147e.D2	 I( 2: 0: 1) 0.2359077'Ze.Ol
at 2: 0: 2) -0.22302293e-03	 It 2: 0: 2) O.61093925e-12
.( 2: 1: 0) 0.)0000023e*05	 it 2: 1: 0) 0.27643862e*02

at 2: 1: 1) 0.10646132e400	 it 2: 1: 1) 0.I9950211e-11

a( 2: 1: 2) 0.59412336e+01	 if 2: 1: 2) 0.10662?91e10
a) 2: 2: 0) 0.25976746e.02	 iC 2: 2: 0) 0.1M21197e-l0

at 2: 2: 1) -0.30040757e'*04	 cC 2: 2: 1) 0.13477504e-09
at 2: 2: 2) -0.45049990e+04 IC 2: 2: 2) 0.43657B05.-12

• Linear/Mont inear link clasilficatfon

(Model )to(Grou)

Linear stiffness
Linear diing

(Node? 3to(Node2

Linear ,tfffness
Linear dmiping

C Model )toC Mode3

Mo direct ,tiffness term

No direct daiafnG tar.

cC 3: 0: 0) 0.00000000..0O if 3: 0: 0) 0.00000000e'QO

at 3: 0: 1) -0.46000932e-03 10 3: 0: 1) O.10S699T3e-08

it 3: 0: 2) -0.18796795e-02 it 3: 0: 2) 0.33824214,-iC

a) 3: 1: 0) -0.62280431e-01	 IC 3: 1: 0) 0.13133679e-08
at 3: 1: 1) -0.17510749e.00 	 at 3: 1: 1) 06tTZ2O9e-1i
a) 3: 1: 2) 0.26819061e-.02	 IC 3: 1: 2) 0.23976496e-09

at 3: 2: 0) -0.4110054Oe.02 	 It 3: 2: 0) 0.77515896.-b

a) 3: 2: I) 0.18889279e*04	 'C 3: 2: 1) 0.82161791e-10
at 3: 2: 2) 0.11959226e05	 sO 3: 2: 2) 0.47902606.-lI

° MSE ettimate : 0.41215276e-09

* CoeffIcients for links to node 1

at 1:0: 1) O.20000341e.02	 atd( 1: 0: 1) 0.711767'21e-04

at 1: 1: 0) 0.10000034.05	 ItdC 1: 1: 0) 0.83949631e02

at 2: 0: 1) 0.20000147e02 atd( 2: 0: 1) 0.98503740.04
a( 2: 1: 0) O.10000023e+05	 itdC 2: 1: 0) 0.t3066123e02

* NOt estlte : 0.23891757e-08

Table 5.1.	 CoeffIcients for a (2,2) model for the restoring

force in the first equation of motion for the three

degree-of-freedom linear system described In the text.
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* Coefficients for syst	 : 3dgn

Degree of freedcsn : 2

• Mass reresLised to :

• Coefficients for (inks to node 2

Ii 1: 0: 0) 0.10430813e-06 SC 1: 0: 0) O.00000000e,00
at 1: 0: 1) 0.99999971e.*01	 SC 1: 0: 1) 0.42133803,+01
at I: 0: 2) -0.27772916e-04 	 SC 1: 0: 2) 0.41360605e-13
at 1: 1: 0) 0.50000020.04	 SC 1: 1: 0) 0.49358498e02

ii 1: 1: 1) -0.52834094e-01 	 SC i: 1: 1) 0.351075ft5.-11

a( 1: 1: 2) -0.136046S9e*01 	 SC 1: I: 2) 0.40556694e-1l
at 1: 2: 0> 0.45638325e0	 s( 1: 2: D 0.0O4066e-11
at 1: 2: 1) -0.11591269e03	 CC 1: 2: 1) 0.1329S62e-11
a( 1: 2: 2) 0.12617638e.05	 CC 1: 2: 2) 0.19628193e10

at 2: 0: 0) 0.00000000e.00 iC 2: 0: 0) 0.00000000e+00
at 2: 0: 1) 0.29099136e-04 	 it 2: 0: 1) 0.64883913e-I1
at 2: 0: 2) -0.52815246e-04 	 St 2: 0: 2) 0.51004360e-14
at 2: I: 0) -O.16868679e-02	 at 2: 1: 0) 0.44532707,-il

at 2: 1: 1) 0.90017155e-OI	 SC 2: 1: 1) 0.21740235,-lI

a( 2: 1: 2) 0.78195316e*00 	 SC 2: 1: 2) 0.72112692,-l3
at 2: 2: 0) -Q.19539708e*0l 	 SC 2: 2: 0) 0.35033703.e-12
St 2: 2: 1) -0.50522065e.0l	 SC 2: 2: 1) 0.65214681e-15
SC 2: 2: 2) -0.2353.6506e.05 	 SC 2: 2: 2) 0.67606307,-Il

at 3: 0: 0) Q.00000000e*OO SC 3: 0: 0) 0.00000000e.00
at 3: 0: 1) 0.99999820e.01	 SC 3: 0: 1) 0.11914002e.0i
at 3: 0: 2) 02$971603e-03	 SC 3: 0: 2) 0.41942052e-12
at 3: 1: 0) 0.50000029e*04 SC 3: 1: 0) 0.27035810e.02
at 3: 1: I) 0.162CO120e-eOO	 SC 3: 1: 1) 0.61468452e-1i
at 3: 1: 2) 0.20669672e*0i 	 SC 3: 1: 2) 0.11737759e-li

at 3: 2: 0) -0.32610195e+0l 	 iC 3: 2: 0) 0.41172624e-12
at 3: 2: 1) 0.35777969e003	 SC 3: 2: I) 0.16400470e-lI
at 3: 2: 2) O.l743565e.05	 SC 3: 2: 2) 0.1a92M95e-ll

* MOE eStite : 0.75774713e-10

• Coefficients for syst : 3dgn

* Degree of freedcmi : 2

• Mass normal ised to :

* Coefficients for links to node 2

aC 1: 0: 1) 0.99999971e0i 	 StdC 1: 0: 1) 0.24655699e.01

aC 1: 1: 0) 0.50000020e*04 StdC 1: 1: 0) 0.4065l62e°O3

a( 3: 0: 1) 0.99999828e.0l	 icd( 3: 0: 1) 0.65258298eo01
SC 3: 1: 0) 0.50000029e+04 atdC 3: 1: 0) 0.5506)536e+03

* MSE eStimate : 0.30231793e-10

Linear/Nenlinear link clasSificatiOn

C Node2 )to(Nodel )

Linear ,tiffness
Linear ding

C Node2 ) to C Grouid )

No direct stiffness term
No direct dasping term

C Node2 ) to C Wode3 )

Linear Stiffness
Linear ding

Table 5.2.	 Coefficients for a (2,2) model for the restoring

force in the second equation of motion for the three

degree-of-freedom linear system described in the text.
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Mode3 ) to C Model

No direct stiffness term

No direct ding tera

($ode3 )to(Node2 )

Linear stiffness
Linear ding

C Node3 ) to C Groaref )

Linear stiffness
Linesr dping

• Coefficients for syste. : 3dgn	
* Lirsear/Nontinear Link cl.ulfication

• Degree of freedoei : 3

Mass rer.tised to : 1

• Coefficients for C Inks to node 3

a) 1: 0: 0) 0.29802322e-07	 'C 1: 0: 0) 0.00000000e.D0

a) 1: 0: 1) -0.l2665630e-05	 51 1: 0: 1) 0.62229536.-li

5) C: 1: 0) 0.83409500e-03	 S C 1: 1: 0) 0.55571216.-li

• I: 1: 1) 0.94259T17.-0Z	 II 1: 1: I) O.42303343e12

.12: 0: 0) 0.00000000.400 S( 2: 0: 0) 0.00000000.400

.1 2: 0: 1) 0.66666503e01	 at 2: 0: 1) 0.17k6160e.01
SC 2: t: 0) 0.33333335e.G4	 s( 2: 1: 0) 0.3%a0428e*02
5) 2: 1: 1) •0.15067588e400	 IC 2: 1: 1) 0.1T4?3550e-l0

if 3: 0: 0) 0.00000000e00	 SC 3: 0: 0) 0.000O0000e-0O

•(3: 0: 1) 0.66666884e+O1	 SC 3: 0: 1) D.6520707.O0
.13: 1: 0) 0.33333342e*04	 if 3: 1: 0) 0.37209972eO^

a) 3: 1: 1) 0.13366137e.00	 s( 3: 1: 1) 0.47059552e•l1

MOE esti.ate	 0.37391396.-ID

* Coefficients for systeel : 3dgri

• Degree of freedno : 3

• Mass normatised to : 1

Coefficients for links to node 3

if 2: 0: 1) 0.66666503e+O1	 atd( 2: 0: 1) 0.31552546+01

a) 2: 1: 0) 0.33333335.404	 std( 2: 1: 0) 0.24t4664e+O3

a) 3: 0: 1) O.6ó666884e.01	 stdC 3: 0: 1) 0.42166753e01
s(3: I: 0) 0.33333342e+04 atdC 3: 1: 0) 0.222084496403

* MOE eotiaate : 0.85419441.-il

Table 5.3.	 Coefficients for a (1,3) model for the restoring

force in the third equation of motion for the three

degree-of_freedom linear system described in the text.
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° Coefficients for lyltem : 3dxi

Deoreeof freedae : 2

* lass normal ised to : 1

* Coefficients for I Inks to node 2

it 1: 0: 0) 0.46870000e'OO aC 1: 0: 0) 0.00000000,400

1(1: 0: 1) -0.79T75929e400 	 SC I: 0: 1) O.56869248e-02

IC I: 1: 0) O.98404717e*04	 'C 1: 1: 0) 0.41040012,402

aC 1: 1: 1) -O.31077484e+03	 SC 1: 1: 1) 0.91483267e-02

i( I: 2: 0) 0.14878655e.05	 PC I: 2: 0) 0.18364912e-02
aC I: 2: 1) 0.60797320.405	 IC I: 2: 1) 0.10307074e-01
I( I: 3: 0) -O.27214025e+05	 SC 1: 3: 0) 0.46341879e-06
it I: 3: I) 0.13726579.408 'C 1: 3: 1) 0.24307223e-Ot
at I: 4: 0) -0.32680982e*09	 'C 1: 4: 0) 0.37655998e-02
all: 0: 1) -0.10671901e*10	 SC 1: 4: 1) 0.88'.38960e-02
at C: 5: 0) 0.51083495.411	 SC 1: 5: 0) 0.81053088e-02
if 1: 5: 1) -0.36810928e.1l	 5 1 1: 5: 1) 0.74169907e-03

.0 2: 0: 0) 0.00000000.400 SC 2: 0: 0) 0.00000000e.0o

.0 2: 0: 1) 0.18967934e*02 'C 2: 0: 1) 0.599157434.00
iC 2: 1: 0) -0 10891 46,405 sC 2: 1: 0) 0.73256378e+0l

	

at?: 1: 1) 0.31143822e.02	 SC 2: 1: 1) 0.25816371e-05

	

.12: 2: 0) -0.79514194,406	 SC 2: 2: 0) 0.67692816e-01

aC2: 2: 1) O.1Th63463e*06 PC 2: 2: 1) 0.2594399&e-03

	

.12: 3: 0) 0.21569210,411	 SC 2: 3: 0) 0.446859741403
IC 2: 3: I) O.15055643e409 SC 2: 3: 1) 0.925062496-03

	

it 2: 4: 0) 0.151370496.12 	 S( 2: 4: 0) 0.96410140e-01

at 2: 4: 1) 0.21795781e+10 SC 2: 4: 1) 0.87967197e06

	

1(2: 5: 0) -0.15749357,416 	 aC 2: 5: 0) 0.82025551e'02

	

1(2: 5: 1) -0.35739039,414	 SC 2: 5: 1) 0.132477841-02

.( 3: 0: 0) 0.00000000,400 SC 3: 0: 0) 0.00000000.400

	

aC 3: 0: 1) 0.42104995,400 	 IC 3: 0: 1) 0.65863825.-03

at 3: 1: 0) 0.10239522,405 'I 3: 1: 0) 0.14496451,402

	

.1 3: 1: 1) -0.14051515e.04	 SC 3: 1: 1) 0.28775388e-01

	

IC 3: 2: 0) -0.65482078,405	 SC 3: 2: 0) 0.3.4021973e-02

at 3: 2: 1) -0.28882272,406 'C 3: 2: 1) 0.9379151,le-02

Ic 3: 3: 0) -0.43512320,408 SC 3: 3: 0) D.32804970e01
IC 3: 5: I) 0.24512290,409 SC 3: 3: 1) 0.83601765e-01

IC 3: 4: 0) 0.53234135,410 *C 3: 4: 0) 0.67991163e-02

	

IC 3: 4: 1) 0.17008454,411 	 S( 3: 4: 1) 0.60762619e-02
	.1 3: 5: 0) 0.17532288a-.13	 aC 3: 5, 0) 0.16272387.-Cl

IC 3: 5: 1) -0.74630504.413 IC 3: 5: 1) 0.199049496-01

* Coefficients for System : 3dxs

* DeOree of freedem : 2

* Mass normal lied to : 1

• Coefficients for Links to node 2

IC 1: 1: 0) 0.98404717,404 itdc 1: 1: 0) 0.14770295,404

aC 2: 0: 1) 0.18967934.402 itdt 2: 0: 1) 0.17072847+02
IC 2: 1: 0) -0.10891846,405 std( 2: 5: 0) b.43349180,.(g
aC 2: 3: 0) 0.215692101411 atd( 2: 3: 0) 0.24345835,410

aC 2: 5: 0) -0.15749357,416 atd( 2: 5: 0) O.29?56899e*15

IC 3: 1: 0) 0.10239522e+05	 $td( 3: I: 0) 0.2S475Q56a-.04

• MOE estimate : 0.65195405,400

• LIneIr/Nonhlnelr link CLISSICICILIOn

(Node2 )to(Nodel )

Linear stiffness

No direct dwçirig term

C Node? ) to (Groea)

Moni irielr stifinesi : order 5

Linear diping

(Node2 )toCMode3 )

Linear stiffness

Mo direct dfng term

MOE estiemte : 0.62136430.400

Table 5.4.	 CoefficIents for a (5,1) model for the restoring

force in the second equation of motion for the three

degree-of-freedom piecewise-linear system described

in the text.
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* Parameter Estimates (RLS)

* System 3dgn

* Mass matrix

O.99999839e+OO O.00000000e+OO O.00000000e+OO
O.00000000e+OO O.19999906e+O1 O.00000000e+OO
O.00000000e+OO O.00000000e+OO O.29999747e+O1

* Damping matrix

0. 40000031e+02-O . 19999849e+02-0. 36170371e-04
-O.19999849e+02 0.40000050e+02-0.19999994e+02
-0.36170371e-04-O.19999994e+02 0.39999783e+02

* Stiffness matrix

0. 19999957e+05-O.99999854e+04-O.21662798e-02
-O.99999854e+04 0.19999932e+05-0.99999482e+04
-0.21662798e-02-0.99999482e+04 0.19999B57e+05

* MSE (1) 0.25008928e-09
* MSE (2) : O.53652155e-09
* MSE (3) : 0.84677570e-09

* Significant coefficients

* Mass matrix

0.99999839e+OO 0.00000000e+00 O.00000000e+00
0.00000000e+00 O.19999906e+01 0.00000000e+00
0. 00000000e+O0 0. 00000000e+0O 0.2999974 7e+01

* Damping matrix

O.40000031e+02-O.19999849e+02 0.00000000e+00
-O.19999849e+02 0.40000050e+02-0.19999994e-s-02
O.00000000e+OO-0.19999994e+02 0.39999783e+02

* Stiffness matrix

0.19999957e+05-O.99999854e+04 0.00000000e+OO
-0.99999854e+04 0.19999932e+05-O.99999482e+04
0.00000000e+0O-0.99999482e+04 0.19999857e+05

* MSE (1)	 0.24832336e-09
* MSE (2)	 0.53652155e-09
* MSE (3)	 0.84677570e-09

Table 5.5.	 Estimates for the mass, damping and stiffness matrices

for the three degree-of-freedom linear system. The

estimates were obtained using Mohansnads method.
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* Parameter Estimates (RLs)

* System : 2dxs

* Mass matrix

O.74999833e+OO O.00000000e+OO
O.00000000e+OO O.20207560e+OO

* Damping matrix

0. 20000023e+02-0. 99999847e4-01
O.49932465e+02 O.39964729e+02

* Stiffness matrix

0. 24999930e+05-O. 19999951e+05
-0.19999951e+05 0.25436526e+04

* MSE (1)	 O.45953530e-09
* MSE (2) : O.87909889e+02

* Significant coefficients

* Mass matrix

0.74999833e+0O 0.00000000e+00
0.00000000e+00 0.20207560e+O0

* Damping matrix

0. 20000023e+02-O. 99999847e+01
O.49932465e+02 O.39964729e+02

* Stiffness matrix

0. 24999930e+05-0. 19999951e+05
-O.19999951e+05 0.25436526e+04

* MSE (1) : O.45953530e-09
* MSE (2) : 0.87909889e+02

Table 5.6. Esthnates of the parameter atrfces for the two

degree-of-freedom system with full mass matrix

described in the text.
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Coefficients for systeel : 2dxi

Corrected eess vatue : O.l0000000e.01

• Coefficients for links to node I

ci 1: 0: 0) Q.1852O263e01	 S( I: 0: 0) 0.627e3058e02
8(1: 0: 1) 0.36223049e02	 IC I: 0: 1) 0.39605850e+0O
at 1: 0: 2) 0.12941T76e-02 	 SC 1: 0: 2) 0.1e616445e08
1(1: 1: 0) 0.62420959e*03	 SC 1: 1: 0) 0.15486536e+03
a) I: 1: 1) -t.10509141e-02	 IC 1: 1: 1) 0.632e1248e-10
.1 I: 1: 2) -0.59868689e-02	 IC 1: I: 2) 0.a9234407e-08
at 1: 2: 0) 0.41793460e+D0 IC 1: 2: 0) D.I655686e-03
a( I: 2: I) -0.53960116e-05	 'C 1: 2: 1) 0.45265339e-14
.1 I: 2: 2) 0.30205801e-03	 IC 1: 2: 2) 0.53514162e-10
a) I: 3: 0) 0.1902691&e+03	 'C 1: 3: 0) 0.35333511e+02
it I: 3: 1) -0.11979634e-02	 IC 1: 3: 1) O.22348871e09
8(1: 3: 2) -0.54068589e-02	 S ( 1: 3: 2) 0.17681291e-07
it I: 4: 0) 0.256%765e-03	 SC 1: 4: 0) 0.56315379e10
8(1: 4: 1) -0.1?608661e-03	 SC 1: 4: 1) 0.46051544e-1I
it 1: 4: 2) -0.12522335e-03 	 sC I: 6: 2) 0.Th322401e-1I

0(2: 0: 0) 0.00000000e*00	 IC 2: 0: 0) 0.00000000,500

at 2: 0: I) 0.120?0324e-02	 sC 2: 0: 1) 0.5232817'0e09
•12: 0: 2) 0.15195603e-02	 ,( 2: 0: 2) 0.343.4$095e-08
.( 2: t: 0) O.T08?9079e.02	 sC 2: 1: 0) 0.9629?904e.01
,(2: 1: 1) 0.129S3313e-02	 IC 2: 1: 1) 0.85816773e-10
a(2: I: 2) 0.18344108e-01	 s( 2: 1: 2) Q.6S627908e-07

,) 2: 2: 0) • D.17c23253e-02	 ,C 2: 2: 0) D.32923229e-08
at 2: 2: I) 0.46465470e-03 	 IC 2: 2: 1) 0.47630590e10

a(2: 2: 2) -0.14l45105e-02 	 *( 2: 2: 2) 0.11296368e-08
a(2: 3: 0) O.70565l01e-02	 SC 2: 3: 0) 0.4M0436OeD7

a(2: 3: I) O.110760&e-02	 SC 2: 3: 1) 0.22483768e-09
it 2: 3: 2) 0.10501681e-01	 IC 2: 3: 2) 0.62521650e-07

It 2: 4: 0) -0.66?33838e-03 	 IC 2: 4: 0) 0.3905B207e-09

a(2: 4: I) 0.22744141e-03	 SC 2: 4: 1) 0.907917'23e-11

a( 2: 4: 2) -0.48009027e-03	 IC 2: 4: 2) 0.11422117e-09

* Link ,.xiuua nd .ini.a

Link no.	 dein	 x	 Olin	 O

1	 - .533?e-O2O.5341e-02- .117Oe*0i0.1853esOl
2	 -.7030e-020.7147e-Q2- .1070e.010.1947.+01

* Linear/Nonlinear link classification

(Nodel )to(GrotI)

Nonlinear stiffness : order 3

Linear daiing

CNodel )to(Node2 )

Linear stiffness
No direct dasping ter,

MOE ettisete : Q.5763.4701e-08

• Coefficients for (inks to node 1

.1 1: 0: 1) 0.36223049e+02	 •td( 1: 0: 1) 0.39e52451e+02
•C1: 1: 0) 0.62420959e.03	 .td( 1: 1: 0) 0.34696133,+02

it I: 3: 0) 0.l9026910e.03	 atd( 1: 3: 0) 0.3409231202

it 2: 1: 0) 0.70899879e.02	 itd( 2: 1: 0) 0.113958le+O3

* MOE estielte : 0.27749063e-02

Table 5.7.	 Coefficients for a (42) Chebyshev model for the restoring

force in the first equation of motion for the two

degree-of-freedom nonlinear system described in the text.
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CHAPTER 6

INTEGRATION AND DIFFERENTIATION OF MEASURED TIME DATA

The arguments of the previous chapters indicate that as the restoring force methods

can accurately identify the equations of motion for simulated dynamical systems, they

show a great deal of promise as a means of identifying real structures. The main

problem with the methods is that the displacement, velocity and acceleration must be

obtained simultaneously at each sampling instant. This would require a great deal of

equipment, particularly for MDOF systems. For each degree—of—freedom one would

require four transducers and four charge amplifiers. Instrumentation is also required to

sample the data and carry out the analogue to digital conversion. A truly pragmatic

approach to the procedure demands that only one signal should be measured and the

other two should be estimated from it. This chapter is concerned with determining

which signal should be measured and which numerical integration and/or differentiation

procedures should be used to determine the other two. As the work progressed, a

similar study by Stephens and Yao (54) was brought to the attention of the author.

Their paper describes various methods of data processing for earthquake acceleration

records. The present study is rather more comprehensive and attempts to describe the

results in a more analytical fashion. The other main difference between the present

study and (54) is that when one is dealing with earthquake data, one has no control

over the input excitation and consequently the output acceleration. When one is

testing a mechanical structure in the laboratory (and often in practice), one has a

considerable amount of flexibility in choosing the form of the input force. The next

chapter attempts to determine how one can make use of this flexibility. This chapter

is concerned with the data processing problems. If one is only going to measure one

type of output signal per degree—of—freedom, one is essentially faced with two choices.

a) One can measure y(t) and numerically integrate the signal

to produce S'(t) and y(t).
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b) One can measure y(t) and numerically differentiate to obtain

S'(t) and y(t).

There are of course other strategies, Crawley and O'Donnell (55) measure

displacement and acceleration and then form the velocity using an optimisation

scheme. However, the present work is concerned with reporting results obtained in

trying to implement procedures a) and b) on a digital computer. ( Analogue

integration has been used with a certain amount of success (25), however it does

suffer from most of the problems which arise in the numerical or digital integration.)

The methods of integration considered fall into two categories. (1) Time domain

methods i.e. the trapezium rule, Simpson's rule and Tick's rule. (2) Frequency

domain methods, i.e Fourier transform methods. It is assumed throughout that the

data is sampled correctly i.e. the sampling frequency is high enough to eliminate

aliasing problems. Shannon's theorem demands that one should sample at a frequency

at least twice the highest frequency of interest in the data. Some of the methods

applied in this chapter require the time signal to vary smoothly from sample point to

sample point, for this reason the data is usually sampled at over ten times the highest

frequency of interest.

6.1. Time Domain Integration.

There are two main problems associated with the integration, the introduction of

spurious low frequency components into the integrated signal and the introduction of

high frequency components. By using the techniques developed later in section 6.1 .3

one can show that the trapezium rule only suffers from the first of these problems.

For this reason the trapezium rule is used in the following discussion.
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6.1.1. Low Frequency Problems.

In this chapter the data is usually obtained from a computer simulation of the system

described by the equation of motion,

y + 40y + 104 y = x(t)

where x(t) is a Gaussian white noise sequence = 0, o 1 .0. The system was

simulated using a fourth-order Runge-Kutta procedure. The time-step or sampling

interval was 0.001 seconds, giving a sampling frequency of I kHz. As usual, a

low-pass Butterworth filter was used on the input to produce a signal in the range 0

- 200 Hz. The undamped natural frequency of the system above is 100 rad/s or

15.92 Hz. This means that the sampling is carried out at approximately thirty times

the highest frequency of interest. Clearly aliasing is not a problem.

As y, r and y are all available from the simulation one can compare the result of

the integration procedures with the 'exact' results. When a least-squares model of the

form

m + c' + ky + & x

was fitted to the data, the results were

iii = 1.0000000

e = 40.000000

k = 1.0000001 x

= 0.0

and the model MSE was zero. Because of this result one can be confident that in

future, any errors in the parameters reflect the accuracy of the integration procedure

and not that of the parameter estimation algorithm. The force surface obtained from
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this simulation is shown in Figure 6.1. The flatness of the surface clearly reflects the

fact that the system is linear.

A number of attempts were made to obtain force surfaces by integrating the simulated

y(t) data.

Example 1. The trapezium rule

Yj'	 Yj-1'	 + zt ( y +	 )
	

(1)
2

where ' indicates the integrated signal ) was used to integrate the data y(tk). Each

step introduced a constant of integration

(t)	 I dt y(t) + A

y(t) = I dt Sr (t) + At + B

One can clearly see the spurious mean level A in ' and the linear drift component

At + B in y in Figures 6.2 and 6.3. Alternatively if one looked at the Fourier

transforms or spectra for r(t) and y(t) one would see an unwanted peak in the low

frequencies (Figures 6.4 and 6.5). The c = 0 or d.c. line is most severely affected. A

least-squares parameter fit to the estimated data produced the model

Coefficient	 error

= 0.773
	

2.27

= 42.9
	

7.25

k = 0.968 x
	

3.2

& = -0.11

and the model MSE i.e. MSE(f) is 69.8%. The parameter fit isn't too bad

considering how corrupt the data is. However, plotting the force surface produces the
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result shown in Figure 6.6. It is impossible to infer linearity of the system from this

surface.

Usually when one integrates a function the constant of integration is fixed by say,

initial data '(0) = A. Unfortunately when one is dealing with a stream of time data

one does not have such a condition. However, under certain conditions ( x(t) is a

zero-mean sequence, f(y,') is an odd function of it's arguments ) one can assume

that '(t) and y(t) are zero-mean signals. This means that one can set A and B equal

to the appropriate values by removing the mean level from '(t) and removing a

least-squares linear trend from y(t).

Example 2. Again the signal y(t) was integrated twice using the trapezium rule. The

mean of the resulting signal (t) was estimated and removed numerically. Similarly, a

least-squares straight line was fitted to the y(t) data and removed. The comparison

between the exact and estimated signals is shown in Figures 6.7 and 6.8. The

estimate is much better, MSE(y) = 0.718 and MSE(y) = 12.4. It is clear that the

mean removal is sufficient to fix the velocity estimate to a high order of accuracy,

however, higher order polynomial trends remain in the displacement and these must

be removed by other methods. The parameter estimates for this data are

Coefficient	 % error

ii	 0.997	 0.3

40.02	 0.05

k = 0.939 x iO4	6.1

.=0.068

and the MSE for the model is 7.18%. The force surface obtained is shown in Figure

6.9. The force surface and model coefficients are much better now, but the surface

still does not compare favourably with the 'exact' one. One can improve the results

by removing higher order trends from the displacement. Before discussing this, another

effect is worth mentioning. When one measures x(t) and y(t) it is possible that a
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d.c./mean level can be introduced by the instrumentation. Before constructing the

force surface this must be removed. It seems reasonable to do this before the

integration step. However, this may cause problems. Although y(t) may be a

zero-mean signal any finite sample of y will have a non-zero mean value Y, so

subtracting this produces a signal y - y which is not zero-mean. Integrating this

signal, one obtains

$r (t)	 I dt y(t) - y t + A

y(t)	 I dt Sr (t) - ?L.. t2 + At + B
2

and it is now necessary to remove a linear trend from '(t) and a quadratic trend

from y(t). The rather dramatic result of removing the y mean initially on the

integrated displacement is shown in Figure 6.10.

It is obvious from the examples above that one is not removing all the low-frequecy

contamination from the displacement signal. There are essentially two ways of

removing low-frequency trends, namely least-squares polynomial trend removal and

high-pass filtering.

First, polynomial trend removal is considered. A model of the form

nmax
y(t) =	 at'1

n= 1

is fitted and the identified trend is removed from the data. The results of fitting and

removing polynomials of various orders are displayed in Table 6.1. It is clear from

the table that there is little point in removing trends of order higher than n = 6. In

fact, if one removes trends of too high an order, one is also removing low frequency

data which should be there. This means that the MSE begins to increase with

polynomial order after passing through a ( rather shallow ) minimum.

The alternative to this is high-pass filtering. Again, a balancing act is required. If the
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chosen cut-off is too low the data remains corrupted. If the cut-off is too high one

removes data which should be there. It is unfortunate, but there appears to be no

simple method of distinguishing between the actual data and the low-frequency noise

introduced by the integration procedure. Table 6.2. shows the integration error as a

function of cut-off frequency.

Example 3. The data was integrated as before. The velocity and displacement data

were high-pass filtered using a digital Butterworth filter with cut-off at 1.0 Hz. The

resulting data gave MSE(') = 0.709 and MSE(y) = 4.61. A least-squares fit produced

the results

Coefficients	 04 error

= 0.97 4	2.6

40.6	 1.5

R = 0.899 x iO4	 10.1

0.0

with a model MSE of 11.2%. It is worth mentioning that as the force surface is

linear, if the input force and acceleration had been filtered in the same way as the

velocity and displacement data a perfect force surface would have been obtained. This

is not the case for a nonlinear system as one is essentially assuming that the principle

of superposition applies when one makes the above assertion.

It is a fairly simple matter to show that polynomial trend removal is equivalent to

high-pass filtering. Suppose one is given a record of time data of length T seconds

sampled at zt second intervals. If one fits a polynomial of order n to the data, one

can account for n zero-crossings in the record. As there are two zero-crossings per

cycle, this accounts for n/2 cycles. n/2 cycles in T seconds indicates a signal of

frequency n/(2T) or n/(2Nt) where N is the number of points in the record. This

means that removing a polynomial trend of order n is equivalent to high-pass filtering

with cut-off nI(2Nzt).
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Filtering can be rather time consuming as the data must be passed through the filter

both forwards and backwards in order to zero the phase lag introduced by a generic

filter. The phase lag can manifest itself as a time delay which destroys the

simultaneity of the input and output. This can produce serious distortions in the force

surface.

6.1.2 High Frequency Problems.

The other two time domain methods considered here, Simpson's rule and Tick's rule

both suffer from the same low-frequency problems as the trapezium rule.

Unfortunately they are also unstable at high frequencies. This means that the

integrated signals must be band-pass filtered rather than simply high-pass filtered.

Simpson's rule is given by

Yri-i-1	 Y-1 + t. ( Yn+1 + 4j	 Yn-1 )	 (2)
3

where the signal y' is the integral of y as before. Tick's rule is given by the slightly

more complicated formula

Y-i-i	 ;1- + t.( 03854Yn+1 + l.2832y	 + O.3854y...i)

Although the latter algorithm is slightly better over the low frequencies than Simpson's

rule, it is more badly behaved i.e. more unstable at high frequencies.

Example 4. The same system as before was simulated with x(t) a Gaussian

white-noise sequence band-limited to 5-40 Hz i.e. the acceleration contained no high

frequency part. The data was then integrated using Tick's rule. An enormous

high-frequency component was introduced into the signal as shown in Figure 6.11.

Simpson's rule is intermediate between the trapezium rule and Tick's rule i.e. it has

similar low frequency behaviour and intermediate high frequency behaviour. It was
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found throughout that for the examples considered, the extra accuracy offered by

Simpson's rule was unimportant if the data was sampled at an appropriately high rate.

Example 5. The same signal as in example 4 above was integrated using the

trapezium rule. The mean was removed from the estimated velocity and a linear drift

component was removed from the estimated displacement. The resulting errors were

MSE(') 0.159 and MSE(y) = 0.197. The comparisons are shown in Figures 6.12

and 6.13. An LS parameter estimation yielded the results

Coefficients	 % error

ih = 1.02	 2.0

40.6	 1.5

k = 1.03 x	 3.0

& = 0.00	 0.0

and a model MSE of 0.08%. The force surface obtained is shown in Figure 6.14.

The results are excellent. This example clearly suggests that, rather than using more

complicated data processing, one should choose the excitation for the system in such a

way as to minimize processing problems. After filtering the input, there appears to be

so little energy in the output at low frequencies that the integration procedure does

not magnify it to the extent that it becomes a problem. These ideas will be

considered in more detail in the following chapter.

Integration of a signal can be thought of as the solution of the simplest type of

differential equation. This means that numerical routines for the integration of

ordinary differential equations could be used. Best and Stricklin (57) compare six

methods, namely, the centred difference method, Runge—Kutta, Houbolt's method,

Newmark's method, the Wilson theta method and the harmonic acceleration method.

They test the methods on a number of second order systems. All these algorithms

except the centred difference method are more complex and time consuming than

those considered in this paper.
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6.1.3. Frequency Characteristics of Integration Formulae.

It is now time to justify some of the remarks which have been made. Using ideas

from Hammings book (56), one can obtain the frequncy behaviour of the integration

formulae considered above. The simplest case is the trapezium rule. In this section, a

time scale is used such that zt = 1. This means that the sampling frequency is also

1, so the Nyquist frequency is 0.5, the angular Nyquist frequency is 7. Using these

conventions the trapezium rule (1) becomes

Yj = Yj-1 +	 ( x i + xi_l )

where x1 is the sampled input to the algorithm, and y is the integral. Using the

backward difference operator Z 1 = exp(—d/dt), one can write the formula in the

form

( I - Z)y	 ( 1 + Zi)x
so

yi = .( I + Z) x1

( 1 - Z)

so the pulse transfer function (59) for the integrator is

G(Z)	 .( 1 + Z)

( 1 - Z)

The more usual transfer function is obtained by simply substituting Z =	 In this

case

H(o) = C 1 + e)

2( 1 - e'°)

= cos(o/2)

2i .sin(c/2)

Now, following Hamming, one can introduce a transfer function Ha(o), which is a

useful measure of the accuracy of the formula. It is defined as
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Ha()	 Flestimated result)
F(true result)

Now, if x = eiO)t the true integral is e t/ic, and the estimated result is

cos(c/2) .et
21 .sin(c/2)

so Ha(o) for the trapezium rule is given by

Ha(c) = cos(cz/2). f	 c/2

( sin(o/2)

This is equal to unity at	 = 0, and monotonically decreases to zero at c	 r. This

means that the trapezium rule only integrates Constant signals without error. It

underestimates the integral at all other frequencies.

Now, if one considers Simpson's rule (2) in the units of this Section

Yj+1	 + (1/3)( X j+I + 4x 1 + x1_1

or
( Z - Z 1 )Yj	 (1/3)( Z + 4 + z-l)x

and the pulse transfer function is

G(Z)	 Z+4+Z1
3( Z - Z1)

Giving

H()	 2 + cos()
3.sin(c)

Probing with the signal x = e 10)t yields the final result.

Ha(c)	 2 + cOs()
3(sin(oi)/o)
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and one can see easily that Ha() tends to unity as o. tends to zero. This is the

same behaviour as the trapezium rule. However, unlike the trapezium rule, Ha() for

Simpson's rule tends to infinity as c approaches the Nyquist frequency, indicating

instability at high frequencies. In Figure 6.15, Ha(o) is shown for the three integration

rules condidered above. It shows clearly that Simpson's rule and Tick's rule become

unreliable at high frequencies. There are in fact a whole family of Tick's rules, each

is designed to make Ha(o) flat over some region of the Nyquist interval. The one

considered above is flat over the first half of the interval i.e. up to f = 0.25. The

penalty one pays for the flat response is that Ha(c) tends to infinity faster beyond

some frequency.

It still remains to show why these methods are unstable at low frequencies. The

reason is if one considers Ha(c) for the trapezium rule it is only the whole story if x

is known to an infinite precision. If the x 1 have a measurement error or simply a

truncation error associated with them lj, then the estimated integral is given by

= C(Z).( x1 + l	 )

= y +

using the linearity of the procedure. So the error in the integral is given simply by

=	 - y =

So the transfer function F(output noise)/F(input noise) is given by cot(o/2)/2i as

above. This tends to infinity as c tends to 0. This means that the trapezium rule

greatly magnifies errors at low frequencies. It also shows that the integration is

unstable under small perturbations. As the other two methods have the same Ha(o) at

low frequencies, they must suffer from the same problem.

In the examples considered above, the highest frequency of interest is 50Hz when the

band-limited input is used. The Nyquist frequncy is 500Hz. This gives a normalised

value of 0.05 for the highest frequency of interest. One can see from Figure 6.15
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that up to this frequency the procedures are almost indistinguishable as regards

accuracy. One is therefore justified in using the simplest rule to integrate. The

trapezium rule offers a considerable saving in time if it can be used as one does not

need to low—pass filter the output.

If frequencies are present in the signal up to say, one quarter of the Nyquist limit,

one would probably need to use Tick's rule. At this upper limit, one can see from

the diagram that Ha(o) for the trapezium rule is less than 0.8, if one integrated twice

one would only obtain 60% of the data at this frequency. If Simpson's rule were

used, Ha(c) is about 1 .1 so integrating twice would give an overestimate by about

20%. One can see that Tick's rule gives a gain of unity right up to 0.25 just as it

was designed to do. Figure 6.15 is of considerable use in choosing the appropriate

integrator for a problem.

6.2 Frequency Domain Integration.

The theoretical basis of the Fourier transform method of integration is simple if

= Jcit et y(t) = F(y(t))

is the Fourier transform (FT) of the acceleration y(t), then ''a (' 1° = Y (o) is the

FT of the velocity and Ya(c,)I(—o.2) =	 d(') is the FT of the displacement. This

means that in the frequency domain, division by io is equivalent to integration in the

time domain. The mean removal can be carried out by simply setting the 	 = 0 line

( one uses the digital FFT ) to zero. Of course, one cannot divide by iO anyway.

At first sight this seems like a very attractive way of looking at the problem, however

it turns out to be beset by the same problems as the time domain methods and also

to have a few of it's own.

The first problem to arise concerns the nature of the acceleration signal. This need
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not be periodic and consequently the Fourier transform will have leakage problems

(58). One effect of leakage can be the introduction of low frequency trends into the

acceleration signal which will be magnified by the integration. Figure 6.16 shows the

Fourier transform of (a) a sine wave which was periodic over the number of points

taken and (b) of a sine wave which was not. One can see that energy has 'leaked'

out to higher and lower frequencies. It is the low frequencies that cause problems for

integration. To avoid this one multiplies the N points of data to be transformed, by a

window. The window used in this study is the Hanning window (58). The Hanning

window is only close to unity in the centre so only velocity and displacement data

obtained from the centre of the window are reliable. To process the whole

acceleration record one steps through the data using a series of overlapping Fourier

transforms. The loss factor is the percentage of data discarded from each FT. The

effect of multiplying by the windows is the introduction of an amplitude modulation

into the signal, this can be made negligible by taking a high enough loss factor.

Unfortunately one may need many Fourier transforms. It is possible that other

windows may be more efficient.

Example 6. First, the system was excited with a sine—wave periodic over each 32

sample points. The acceleration obtained was then integrated twice by the method

above using a 1024 point Fourier transform with no windowing. There were no

leakage effects and the integration was very accurate, The MSE for the comparison

with the exact data was 0.562 and the comparison is shown in Figure 6.17. Next, the

same data was integrated using a Hanning window and a loss factor of 80%. The

comparison with the exact data is shown in Figure 6.18. The MSE of 0.854 is still

excellent. The only difference between the two procedures is that the second produced

a small amplitude modulation. The acceleration was then obtained for a sine excitation

periodic over 31 sample points. When the integration was carried out as before

without windowing, the results were as shown in Figure 6.19. A large low frequency

component has been introduced, the very high MSE of 344.0 for the comparison

reflects this. The integration was then carried out using the window and the same loss

factor as before. The results are now considerably improved. The comparison MSE is
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0.909. The comparison is shown in Figure 6.20. The results are indistinguisable from

those in Figure 6.18. This example shows that the leakage problem is reduced by

windowing.

The next and most serious problem is the magnification of low frequency trends in

the data by the integration procedure.

Data was simulated for the system as in example 1. The acceleration data was then

integrated using a 1024 point FFT. A Hanning window and a loss factor of 80% were

used. The o = 0 line was deleted. The resulting errors for the velocity and

displacement data were MSE(S') = 1 .01 and MSE(y) = 3.51. A parameter estimation

yielded

Coefficients	 error

flu	 1.002	 0.2

42.4	 6.0

k	 1.012 x 10	 1.2

â=0.0	 0.0

with a model MSE of 3.85%. The results compare favourably with the time domain

methods, however, the FT method is considerably more time consuming.

Table 6.3. shows the displacement and velocity error if one uses various different loss

factors and numbers of lines for the FFT.

The low frequency component appears to arise because in integrating the data twice

one had to divide by -?. This means that any noise in the data at low frequencies

will be magnified by a factor Thus errors at c = 0 could be infinite. There will

almost always be some noise at low frequencies as aliasing will fold back energy from

high frequency noise into this region to add to any noise already present. This is of

course the frequency—domain analogue of the time—domain noise magnification
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mechanism discussed earlier.

The way around this problem, used successfully by A1-hadid and Wright (18) is to

choose a cut-off by integrating the data and looking at the averaged transform of

the displacement, one chooses the cut-off above any spurious low frequency peaks.

The integration is then repeated except this time the value of Y(o) for each 	 <

is replaced in each FT by the value on a line segment joining Y(0) to Y() the

averaged value of Y at

A much simpler way of dealing with this problem is to stop it arising in the first

place.

Data was simulated as in the previous example except that x(t) was filtered to give a

band-limited input 5-30 Hz. Again a 1024 point FFT was used with an 80% loss

factor. The velocity and displacement errors were respectively 0.44 and 0.52.

Parameter estimation gave the model

Coefficients	 % error

ftt = 1.005	 0.05

	

= 40.9	 2.25

k = 1.06 x	 6.00

	

= 0.00	 0.00

with a model MSE of 0.34%. The force surface obtained is shown in Figure 6.21.

The linearity of the system is evident. Note that the division by o means that the

FT method does not suffer from high frequency problems.

6.3. Initial Conditions.

It is important to mention a point concerning initial conditions and integration
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constants. It is not always appropriate to fix constants of integration by removing the

mean level. If one considers a system with a symmetric (i.e. even ) nonlinearity, then

even if the input is zero-mean the system will generate a mean level as an essential

part of the output. The way around this problem is to modify ones experimental

procedure. At the same time as one records the acceleration data one can take a

sample of displacement data in order to estimate the mean level, the integrated data

can then be adjusted to have this mean level. A much simpler procedure is to start

recording data with the system at rest before the input force is applied. This fixes the

initial conditions as y(0) = 0, y(0) = 0. After the integration the null data can be

deleted.

6.4. Differentiation of Measured Time Data.

Because differentiation is defined as a limiting process it is difficult to carry out

numerically. The approximation

limit y	 ( zy,	 t finite )
dt	 6t30	 t	 t

will clearly become better as one takes smaller and smaller t. Unfortunately this is

the sort of operation which will produce significant errors from round-off when one

tries to perform the calculation on a computer ( unless one has accuracy to an

arbitrary number of decimal places as in ADA (60), even so the equipment used for

the data capture will have limited accuracy). Thus numerical differentation requires

one to walk a tightrope between approximation errors and round-off errors. For this

reason it is not recommended that one should measure y(t) and numerically

differentiate to form S'(t) and y(t) for the force surface problem. Unfortunately there

are some situations where one has no choice. For example if one applied the method

to a rotor system in order to estimate bearing coefficients, one would not easily be

able to measure the vertical and horizontal accelerations of the rotor, one usually uses

a non-contact displacement transducer in rotor dynamic problems. For this reason
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some methods of numerical differentiation are considered.

6.5. Time Domain Differentiation.

6.5.1. Centred Difference Formulae.

These formulae implement the differentiation as a digital filter or recursion relation,

the 3,5, and 7 point centred difference formulae are given by

(Yj+1 - Yi-1 )/2t
	

(4)

Yj = [-yi+ + Yi-2 + 8(Yj+1 - y1_1)]/(12t)	 (5)

= [2(y 4 - Yj_3) - 13 (Yj+2 - Yl-2)

+ 50(Yj+1 - y 1 _ 1 )]/(6OLt)	 (6)

It is important to monitor the remainder terms when using these formulae. A careful

analysis including them indicates one is not guaranteed greater accuracy if one uses a

higher order formulae.

For the final example, the system used in the previous examples was simulated with

input x(t) a Gaussian sequence band-limited in the range 0-200 Hz. The resulting

displacement data was then differentiated twice using a five-point centred difference.

The resulting velocity and acceleration errors were 0.015 and 7.84 respectively. Again

the velocity estimate is almost perfect. A least-squares parameter estimation gave

	

Coefficients	 errors

= 0.961	 3.90

= 55.2	 38.0

	

k = 0.98 x	 2.0

0.0
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with a model MSE of 19.5%. The force surface obtained is shown in Figure 6.22.

The reason why the model is so much in error even though the parameters are quite

good is because the error in y(t) appears as a time—shift (Figure 6.23) and this

decorrelates x(t) and y(t). This is reflected in the parameter estimate, innaccuracies in

the damping generate phase errors or time—lags in the output. The reason for this

shift is not obvious. One might suggest that the algorithm, considered as a digital

filter is not zero—phase and one could solve the problem by taking the derivatives in

both the forward and backward directions and then averaging the result However, this

does not help, in the case of this example anyway.

The results of using the various centred difference formulae on the data of example 9

are shown in Table 6.4.

As with the integration formulae one can obtain the frequency characteristics of each

of the formulae above by using the techniques of section 6.1.3.

6.5.2. Differentiating Fitted Polynomials.

This method is very simple in principle. One fits a polynomial to N data points (N

odd) such that the point at which the derivative is required is at the centre. One

then takes the analytic derivative of the fitted polynomial. This is rather time

consuming and for low orders of polynomial simply reproduces the results of using

centred differences ( slight deviations arise due to the way the algorithms are

programmed ). The results of differentiating the data of example 9 using various

polynomial orders are shown in Table 6.5.

If one were to use this method, one would have to be sure that the data is sampled

correctly. If it is undersampled the situation shown in Figure 6.24 might arise.
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6.6. Frequency Domain Differentiation.

The basis of this method is exactly the same as for integration except that to

differentiate one multiplies the Fourier transform by Cz instead of dividing, i.e. Y,(u)

ic Yd(o) . It is obvious from the frequency—domain argument that differentiation

greatly magnifies high frequency noise.

The leakage problem is exactly the same as for integration and is dealt with in

exactly the same way. Table 6.6. shows the errors in the differentiated signals as a

function of loss factor ( Hanning window used ) and number of FFT lines.

If one differentiates the data of the previous example using this method one still

observes the phase drift in the acceleration data obtained. The method in terms of

the continous Fourier transform is zero—phase. In fact Ha() is I. (This is true if one

disregards the effects of windowing etc. If one takes account of these effects correctly

one would arrive at a more complicated form for Ha().)

In conclusion then, numerical differentiation of time data clearly has problems. For

this reason it is suggested that one should always measure acceleration and integrate

to obtain velocity and displacement.
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Figure 6.1.	 Exact restoring force surface for the simulated

linear system used in the examples in the text.

File	 ldxI
	 Meocured	 Estimated

ndol:	 1
	

output
	

output

Velocity
	 amaxi = 0.011

l4ormolised mse :	 13.7
	

Compared onl0000. points

FIgure 6.2.	 comparison of the exact and estimated Velocity data

for example I in the text.
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•	 Measured	 E'itinatcd
output	 output

Displacement	 amaxi = 1.3-3
Normalised mse : 	 4.1+6	 Compared on 10000. points

FIgure 6.3.	 Comparison of the exact and estimated displacement

data for example 1.

Figure 6.4.	 Mobility transfer function obtained using the

estimated velocity data in Example 1.
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Figure 6.5.	 Receptance transfer function obtained using the

estimated displacement data in Example I. The

Transfer function blows up at low frequencies.

Figure 6.6.	 Restoring force surface constructed using the

estimated velocity and displacement data obtained in

example 1.
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•	 Measured	 Estimated
output	 output

Velocity	 omaxl = 9.5-3
Normalised mse : 	 0.718

	
Compared oat 0000. paints

Figure 6.7.	 Comparison of the exact and estimated velocity data

for example 2. In this case the mean has been

removed from the estimated data.

Mcaured	 Ertiniatci
output
	

output

Displacement
	

amaxi = 9.1-5
Normalised mse : 	 12.4

	
Compared on 10000. paints

Figure 6.8.	 Comparison of the exact and estimated displacement

data from example 2. In this case a linear drift

component has been removed from the estimated data.
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Figure 6.9.	 Force surface obtained using the estimated velocity

and displacement data from example 2.

Measured	 Estimated
output	 output

Dispincemerrt	 amost = 8.2-3
Nor malised mse :	 6.4+5	 Compared on 10000. paints

Figure 6.10.	 ComparIson of the exact displacement data from

example 2. with that estimated by Integration after

the acceleration mean-level was removed. The

introduction of a quadratic trend is clearly shown.
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Meosised
	

Etirnntcd
output
	

output

[lisplocement
	

omaxi = 0.014
Norniolised mee	 990.	 Compoied on 10000. points

Figure 6.11.	 Comparison of exact and estimated displacement data

showing the large high-frequency component

introduced into the estimate if Ticks rule Is used.

Meosuied
	

Estinvited
output
	

output

VeIoHly	 omoxi	 0.Qt7
Noirnolised mse	 0.159	 Corupored on 10000. poinls

Figure 6.12.	 Comparison of exact and estimated velocity data if

the system is excited by a band-limited input and

the trapezium rule is used for integration. (Example

5 in the text.)
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Measured	 Estimated
output	 output

Dkplacernent
	

amaxi = 9.6--3
Normalised mse :	 0.197

	
Compared on 10000. points

Figure 6.13.	 Comparison of exact and estimated displacement data

If the system is excited by a band-limited input and

the trapezium rule is used.

Figure 6.14
	

Force surface obtained using the estimated velocity

and displacement data from the previous two figures.
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1.0

Frequency

Figure 6.15.	 Frequency Response Functions for various time-domain

integration procedures.
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Figure 6.16.	 The effect of leakage on the spectrum of a sine wave.
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• Measured	 Estimated

output	 output

Displacement
	

omaxi = 3.4-4
Norrna!ised mse	 0.562

	
Compared on 9216. points

Figure 6.17.	 Comparison of the exact and estimated displacement

data when the system Is excited by a sine wave which

Is periodic over the FF rectangular window.

Measured
	

Estimated
output
	

output

Displacement	 omaxi = 3.4-4

Normalised mse	 0.854	 Compared on 9064. points

Figure 6.18.	 Comparison of the exact and estimated displacement

data when the excitation is a sine wave which is

periodic over the FF. Hanning window used.

275



• Measured	 Estimated

output	 output

Displacement
	

amaxi = 8.1-4

Normalised mse	 344.	 Compared on 9216. points

FIgure 6.19.	 Comparison of the exact and estimated displacement

data when the excitation is a sine wave not periodic over

the FT window. Rectangular window used.

Measured	 Estimated
output
	

output

Displacement	 amaxi = 3.1-4
Normalised mse : 	 0.909	 Compared on 9064. paints

Figure 6.20.	 Comparison of the exact and estimated displacement

data when the excitation is a sine wave not periodic

over the FF window. Hanning window used.
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Figure 6.21.	 Force surface obtained using velocity and displacement data

from frequency domain integration of acceleration data.

The system is excited with a band-limited signal.

Figure 6.22.	 Force surface obtained using velocity and acceleration

data from a five point centred difference formula.
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Meosuied	 Estimolcd
output	 OLltput

Accelerotion	 omoxl =	 1.82
Normolised mse : 	 7.84	 Cornpored on 10000. points

Figure 6.23.	 ComparIson of exact and estimated acceleration data

obtained by using the five point centred difference

formula twice on displacement data.

/

/

1/
0 Sample point

- __________ -	 True tangent

- Estimated tangent

Figure 6.24.	 The affect of undersampling on the estimation of

derivatives.
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Order	 MSE(y)	 MSE(y)

1	 0.718	 12.353

2	 0.718	 7.604

3	 0.718	 5.208

4	 0.719	 4.969

5	 0.719	 5.119

6	 0.718	 4.085

7	 0.719	 4.080

8	 0.718	 4.061

9	 0.718	 4.037

10	 0.718	 5.653

Table 6.1.	 Normallsed Mean-Square Errors (MSEs) In the estimated

velocity and displacement If polynomial trends of

various orders are removed.

Cut-off	 MSE(y)	 MSE(y)

(Hz)

	

0.5	 0.700	 8.029

	

1.0	 0.709	 4.609

	

2.0	 0.715	 4.318

	

3.0	 0.811	 6.172

Table 6.2. MSEs for the integrated velocity and displacement data

after high-pass filtering to remove the low frequency

component Introduced by the integration.
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Lose Factor (5)

50	 60	 70	 80	 90	 95	 99

128	 43.783 34.065 31.602 29.792 28.472 28.276 28.171

	

10.276	 6.278	 3.909	 2.708	 2.465	 2.395	 2.376

0
	 256	 17.307 13.832 12.512 11.840 10.337 10.226 10.191

	

7.316	 4.040	 2.129	 1.119	 0.861	 0.821	 0.816

512	 10.335	 8.108	 5.825	 4.750	 4.645	 4.559	 4.544

	

6.543	 3.605	 1.888	 1.009	 0.732	 0.702	 0.694

1024	 9.577	 6.818	 4.539	 3.513	 3.639	 3.552	 3.563

	

6.648	 3.648	 1.738	 1.006	 0.721	 0.687	 0.685

Table 6.3.	 MSEs for the integrated velocity and displacement. The

fl method of integration was used with various different

window loss factors and numbers of lines in the FFF. The

upper number in each pair is MSE(y) and the lower number

is MSE(y).

MSE(y)	 MSE(y)

3 PoInt	 0.017	 8.600

5 Point	 0.016	 7.836

7 Point	 0.007	 8.213

Table 6.4.	 MSEs for the differentiated time data. Centred difference

formulae of various orders were used.
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Order	 MSE(r)	 MsE(y)

2	 0.138	 9.080

4	 0.015	 9.836

6	 0.012	 8.093

8	 0.014	 8.185

Table 6.5.	 MSEs for the estimated derivatives. Polynomial curve-

fitting was used.

Loss Factor (%)

50	 60	 70	 80	 90	 95	 99

128	 9.771	 5.884	 3.306	 1.660	 0.691	 0.508	 0.471

	

16.177 13.124 11.237 10.048	 9.392	 9.469	 9.410

256	 6.903	 4.134	 2.316	 1.162	 0.812	 0.730	 0.714
0

	

14.040 11.737 10.409	 9.411	 9.492	 9.356	 9.394

z

512	 6.357	 3.769	 4.223	 2.402	 2.537	 3.088	 2.550

13.645 11.328 11.500 10.291 10.722 10.964 10.760

1024	 10.187	 8.890	 5.045	 4.940	 4.648	 4.695	 4.702

17.449 16.511 12.743 13.594 13.229 13.412 13.361

Table 6.6.	 NSEs for the velocity and acceleration estimates. The FF

method of differentiation was used with various different

window loss factors and numbers of lines for the FFF. The

upper number in each pair Is the velocity error, the lower

number is the acceleration error.
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CHAPTER 7

INPUT DESIGN FOR THE IDENTIFICATION PROCEDURE

The results obtained in the previous chapter using a band—limited input suggest that

one can significantly reduce the data processing required in obtaining a force surface

by choosing an appropriate excitation. There are two main criteria involved in

deciding if an input is useful. (a) It should allow as simple an integration procedure

y y ) as possible without sacrificing accuracy, and (b) it should generate a

phase trajectory (y(t),y(t)) which covers as much of the phase plane as possible thus

allowing one to construct a connected and continuous force surface.

This chapter is composed of a series of simple case studies, one for each type of

input. In each case both a linear and a nonlinear system are excited with the

particular input and the results are examined. The linear system is

y + 4Oy + 10 4 y = x(t)

and the nonlinear system ( a Duffing oscillator ) is

y + 2O + 104 y + 5x109 y3 = x(t)

In each case the simplest integration procedure which produces acceptably accurate

results is determined. The force surfaces displayed are constructed by the

Crawley/O'Donnell method. In addition, the stiffness and damping Sections are

obtained.
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7.1. Broadband Noise.

True white noise is impossible to produce as it would contain an infinite amount of

energy, also the input must be low—pass filtered to avoid the instability problems of

the Runge—Kutta procedure. In this case the term broadband means a Gaussian white

noise sequence x(t) with 5 = 0 and o, = 100.0 filtered to produce a signal in the

range 0-200 Hz. The timestep for the simulation is 0.001 seconds. The first 4000

points (4 seconds) of data generated were discarded so that the signal would be free

of transients. As far as the restoring force methods are concerned the transients cause

no problem as the system equations of motion are still satisfied. However, it is

convenient to consider the case of an impulse excitation separately.

7.1.1. Linear System.

The integration was performed using the trapezium rule. The estimated velocity data

simply needed a drift removal. Because the input contained a low frequency

component it was necessary to high—pass filter the displacement data. Trial and error

showed that the best results were obtained with a filter cut—off at 1.5 Hz. The errors

for the estimated velocity and displacement were respectively 0.714 and 3.85. The

estimated phase trajectory is shown in Figure 7.1. It clearly covers a wide area of the

phase plane. A least —squares parameter estimate gave the results

Coefficients	 error

1.013	 1.3

ê	 41.33	 3.3

k	 1.02 x iO 4	2.0

with a model MSE of 0.553%. There is little point in giving the standard deviations

of these parameters as the true results are known. The force surface obtained from

the data is shown in Figure 7.2. The linearity of the system is clearly shown
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7.1.2. Nonlinear System.

The same input as for the linear system was used except that it was scaled by a

factor of 0.1 so that 10.0. Exactly the same integration procedure was used.

Again the optimum cut—off was found to be 1 .5Hz. The estimated velocity and

displacement had comparison errors of 0.36 and 1 .72 respectively. The phase

trajectory looks essentially the same as in the linear case. In fact, in almost all cases

which follow the phase trajectories for the linear and nonlinear systems are

qualitatively the same. The only exception being the chaotic system of section 8. It is

therefore on1j neccessary to plot one of them for each type of input. A least—squares

estimate using the model

my + cSr +ky +k3y3	 x(t)

gave the parameters

Coefficients	 error

iii - 0.992	 0.8

20.5	 1.25

= 0.983 x iO4	1.7

R3 = 5.32	 io	 6.4

with a model MSE of 1.264%. The stiffness section calculated from the data is shown

in figure 7.3. It is clear that one is dealing with a hardening cubic nonlinearity.

Regarding the parameter estimation, it is important to get the level of the excitation

right. If the input level is too low the nonlinearity is not excited sufficiently and the

nonlinear parameters cannot be estimated accurately. If the input level is too high the

highest order nonlinear term will dominate and it will be difficult to estimate the

lower order terms accurately, including of course, the linear terms. It is because of

this that, in the cases which follow, the input applied to the linear system may differ

quantitatively from that applied to the nonlinear system, in that amplitudes and
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frequencies may differ slightly.

7.1.3. Comments.

The broadband signal is clearly very useful for covering a wide area of the phase

plane, this means that one can obtain a reasonable expanse of force surface.

Unfortunately the integration is complicated by the need to use a high—pass filter. An

important factor in obtaining a smooth force surface is the mass estimate. In this case

the mass is determined to within one or two per cent of the true value. The force

surface obtained indicates that this level of accuracy is acceptable.

7.2. Band—Umited Noise.

In this case the input force is a zero—mean Gaussian white noise sequence filtered

using a Butterworth digital filter to give a signal in the range 5-40 Hz. For the

linear system o, = 100.0, for the nonlinear system i = 10.0. Again, the simulation

was allowed to run until the transient died out before the data was recorded.

7.2.1. Linear System.

The data was integrated using the trapezium rule. The mean was removed from the

velocity and a least—squares linear drift was removed from the displacement. In this

case MSE(y) 0.159 and MSE(y) = 0.197. Clearly the agreement between the exact

and the estimated data is excellent. The parameter estimation produced the results,

Coefficients	 error

III	 1.02	 2.0

a = 40.6	 1.5

k = 1.04 x iO 4	4.0
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with a model MSE of 0.082%.

7.2.2. Nonlinear System.

The same integration procedure was used i.e. trapezium rule/drift removal. The

procedure gave the results MSE G') = 0.083 and MSE(y) = 0.128. Once again the

agreement between actual and estimated data is excellent. 1000 points ( I second ) of

the estimated phase trajectory are shown in Figure 7.4. Parameter estimation gave

Coefficients	 error

= 1.0007	 0.07

ê	 20.2	 1.00

= 1.008 x iO 4	0.80

R3 - 5.23 x	 4.6

with a model MSE of 0.086%. The stiffness section constructed from the estimated

data is shown in Figure 7.5. The cubic nature of the nonlinearity is very clearly

shown.

7.2.3. Comments.

The band —limited input is a very useful one. A large area of phase space is covered

and the absence of a low frequency part from the input means that a very simple

integration procedure can be used. The parameter estimation is very good, only k 3 is

not obtained very accurately in the nonlinear system. This is probably because with

the comparitively low level of input used, not much curvature is generated in the

force surface i.e. the contribution of the nonlinear part of the restoring force is

relatively small. In this case the small amount of noise introduced by the integration

procedure would be sufficient to blur the estimation of k3 slightly.

One can expect a whole class of input types to produce similar results to the above
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e.g. pseudorandom sequences, multisines (i.e. Schroeder waveforms (61)), and possibly

pseudorandom binary sequences.

7.3. Harmonic Input.

7.3.1. Linear System.

The system excitation is given by x(t) = 100.Osin(80t) i.e. is at 80 rad/s. As before

the simulation was allowed to continue until the transient had died out.

The integration procedure is again very simple, trapezium rule followed by linear drift

removal. The resulting estimation errors for the velocity and displacement respectively

were 0.173 and 0.175. The estimated phase trajectory was the ellipse which is

characteristic of harmonically excited linear systems. The parameter estimation results

were

Coefficients	 error

	

-0.126	 112.6

35.3	 11.75

R	 0.524 x 10	 47.6

and are appallingly inaccurate, yet the model MSE is 0.19%. Fortunately there is a

simple explanation for this. Given a harmonic input of the form x(t) = Xsin(t) for

a linear system one must have a harmonic output of the form y(t) = Ysin(ot+o).

For simplicity the phase 	 can be transferred to the input.) This means that the

equation of motion

my + cr + ky - x(t)

becomes
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nv2Ysin(t) + coY.cos(c&t) + kY.sin(ct) = X.sin(t)

(_ 2y + cY).sin(t) + cY.cos(o)t)

+ (ki - aY).sin(t) - X.sin(ot-)

is identically satisfied, and so therefore is

fm -	 + cr + ( k - c)y
2j

so the parameter estimation could generate the parameters corresponding to an

arbitrary value of c, (m&,ka). If one knows, say, the correct mass then one can

recover the correct value of k, because

m - rnc )2	 c

?Th \c't'tt

+ 1 m -

Yi tne values m = -O.i26' %c = 5.24x103 , m = 1.0 and	 = 80.0 are substituted

into the equation above, one obtains k = 1 .24x10 4 example above, giving an error of

24%. It is now clear that one cannot use a harmonic input if one is interested in

estimating the parameters of a linear system. One cannot obtain all the coefficients

unless one initially knows some of them.

The force surface for this particular input is useless because the phase trajectory is a

closed curve. The stiffness section will be correct, but only by accident - two points

are sufficient to define a straight line.
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7.3.2. Nonlinear System.

The excitation used this time was x(t) = 100.sin(70t). Again, the transients were

allowed to die out. A great deal of harmonic distortion was present in the

acceleration signal.

The trapezium rule followed by a drift removal was used to integrate the data. The

errors in the estimated signals were MSE(y) = 0.298 and MSE(y) 0.303. The

estimated phase trajectory is shown in Figure 7.6. One observes the characteristic limit

c.jcte. of the Duffing oscillator. Parameter estimation yielded the results

Coefficients	 error

	

= 0.93	 7.0

= 1200	 40.0

	

1.02 x	 2.0

	

4.80	 4.0

with a model MSE of 0.01%. So, for the nonlinear system the parameter estimate is

much better. The reason for this is that the output contains harmonics. For the

Duffing oscillator the displacement will have the form

y(t) - a 1 sin(ct) + a3sin(3ot) +

if one ignores the phases, which have no affect on the argument. The acceleration is

y(t) = -aiw2sin@t) + -9a3ü 2 sin(3ut) + .

Clearly, the harmonics break the linear dependence between displacement and

acceleration. This would be obvious from looking at the data as the harmonics are

weighted differently in the two signals. If the level of excitation is low the parameter

estimator will still have difficulty in finding the physical values of m and k. For this
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case one cannot plot the stiffness section. However, the projection of f(y,y) onto the

= 0 plane indicates the nature of the nonlinearity very clearly (Figure 7.7).

7.3.3. Comments.

The harmonic input is very simple to generate and allows a very simple integration

procedure. Unfortunately it is useless for the purposes of constructing a force surface.

In addition, it should not be used if one desires an accurate parameter estimation

unless the system is nonlinear and the level of excitation is high enough to break the

linear dependence between displacement and acceleration. If the transient had been

included an accurate parameter estimation might have been possible, this effect is

considered in the next section.

7.4. Two Harmonic Inputs - 'Beating'.

If two harmonic inputs are superposed i.e. x(t) = Asin(ot) + Bsin(o, 2t), the result is

a 'beat' signal i.e. an amplitude modulated signal with carrier frequency c	 = 0)1 -

0)2.

7.4.1. Linear System.

The input signal used had the form x(t) = l0sin(lOOt) + l0sin(101t). The beat

frequency is therefore I rad/s. Steady—state data was used as before.

The data was integrated using the trapezium rule with drift removal. The velocity and

displacement errors were 0.044 and 0.047 respectively. 5500 points of the estimated

phase trajectory are shown in Figure 7.8. The integration is clearly very accurate and

one can see that the trajectory covers the phase plane very effectively. The parameter

estimates are
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Coefficients
	 error

0.961
	

3.9

40.9
	

2.29

k = 0.983 x iO4
	

1.7

with a model MSE of 0.000128. Given the remarkable accuracy of the model one

might expect the parameter estimates to be better. The explanation is again probably

linear dependence. if y(t) = 10[sin(lOOt) + sin(101t)] then y(t) = —10[l0000sin(lOOt) +

101OOsin(101t)J and y(t) —l0000y(t) to within 1%. As one would expect from the

model MSE the force surface is nearly perfect (Figure 7.9).

7.4.2. Nonlinear system.

The input used was x(t) = 10( sin(80t) + sin(81t) ). Again, giving a beat frequency of

O woik exqec this in'vt to be better for nonlinear systems because the

harmonics in the output will help to break the linear dependence. However the same

harmonics may possIbly reduce the accuracy of the integration.

The data was integrated using the trapezium rule followed by a drift removal. The

resulting velocity and displacement estimates had errors of 0.503 and 0.525

respectively. Parameter estimation produced the results

Coefficients
	

% error

ill	 1.006
	

0.6

ô	 10.7
	

46.5

k	 1.02 x iø
	

2.0

R3	 5.10 x 10
	

2.2

with a model MSE of 0.005%. This data produces an excellent restoring force surface

and stiffness section as shown in Figures 7.10 and 7.11. The damping section shown

in Figure 7.12 is a different matter. An interesting effect occurs here, the damping
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appears to be very nonlinear. If one considers the estimated velocity (Figure 7.13)

one can see an amplitude dependent error in the estimate, an underestimation in fact.

This means that the force values f1 are associated with the wrong points in the phase

plane ($j,). If the error in	 depends on how large ' is, then the force surface will

have a nonlinear dependence. The 'nonlinearity' of the damping section is of a

softening type, this is the explanation for the fact that the parameter estimator

drastically underestimated the damping coefficient c. This effect is unfortunate, one

must be careful that one is actually identifying a nonlinearity and not simply a

systematic error in the integration procedure.

7.4.3. Comments.

This appears to be a very useful type of input. It is fairly simple to generate. The

sirrr?et thtegraton proceàvre can e nsed with accuracy. Coverage of the phase plane

depends on the closeness of the two frequecies chosen, in this case the frequencies

are close enough to give excellent results. Figure 7.14. shows the estimated phase

&a'jectory for ç - 100, = 110 for the linear system. In this case the coverage is

not very good, however the errors in the velocity and displacement estimates and the

model error were close to those obtained for the input considered in section 4.1

Once ri^z^e., f 1fe system s swar the parameter estimates may be unreliable

as a result of linear dependence.

7.5. Harmonic Input with Time Dependent Amplitude.

7.5.1 Linear System.

The system was excited by x(t) = lOt.sin(lOOt), i.e. at constant frequency 100 rad/s

with a linearly growing amplitude. Data was recorded after the transient had died out.

As before the trapezium rule/drift removal procedure proved acceptable for the
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integration of the data. The errors were MSE(Y) = 0.044 and MSE(y) = 0.049.

Parameter estimation produced the results

Coefficients
	

% error

Th = 0.299
	

70.1

ê	 41.1
	

2.75

k = 0.301 x iO4
	

69.9

with a model MSE of 0.029. The disappointing parameter estimation is again due to

linear dependence. The amplitude used is slowly varying, so over short time scales the

input is harmonic. As one would expect from the model MSE the force surface and

stiffness section obtained from this data are excellent.

. L	 ite.a Ssteru.

The system was excited with the signai x(t) lOt.sin(SOt). The acceleration data was

integrated exactly as in the previous section. The errors in the estimated velocity and

displacement were 1.16 and 3.34 respectively. The displacement estimate is good

nTha)y but begins to àe'iate horn tht tne. data as the amplitude increases and

harmonic distortion effects become large. The estimated phase trajectory is shown in

Figure 7.15. Parameter estimation produced the following coefficients

Coefficients
	

% error

i?i	 1.005
	

0.5

= 14.5
	

27.5

= 1.02 x
	

2.0

	

5.11 x
	

2.2

with a model MSE of 0.0066%. This estimate was made on 1000 points near the

start of the recored where the harmonic distortion was not too high, surprisingly

perhaps, a second estimate based on points where distortion was considerable produced
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results which were almost as good. The force surface obtained from this data is

shown in Figure 7.16. The cubic nature of the nonlinearity is evident. The level of

excitation here is fairly high, correspondingly the amount of curvature in the force

surface is high. This is probably the reason why the damping coefficient is

innacurately estimated even though the estimated velocity is good. The effect of the

damping term is small compared to that of the cubic stiffness.

7.5.3. Comments.

This is an extremey simpe input to 'use experimentally. The simplest integration

pioreuiure can be used. Coverage of the phase plane depends on how fast the

ampfftuae is increased, The slower the rate of increase, the higher the density of

n fie '),ase p)ane. }owever, if one %nceases the amplitude quickly, more area

is covered. The results of this section indicate that for parameter estimation purposes

this lype of input it is only suitable for reasonably well excited nonlinear systems. By

using faster variation of the amplitude or different time —dependencies it may be

Cc l.isiear systems. This type of input was used by Crawley and O'Donnell

(55). They allowed the amplitude to rise to a maximum and then fall linearly to

zero.

7.6. Harmonic Input with Time Dependent Frequency - 'Chirp'.

7.6.1. Linear System.

The input x(t) = 20sin(20t + 18t2) was used. The frequency changes linearly from u,
3O

20 rad/s at t = 0, to	 =	 rad/s at t = 10 seconds. Clearly it is a simple

matter to ensure that no low frequency component is included. In this case the

transient is included, however, it is small.

The data was integrated by the trapezium rule/drift removal method. The errors in
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the estimated velocity and displacement are given by MSE(') 	 0.25 and MSE(y)

0.34. Parameter estimation gave

Coefficients	 error

Eli = 0.716
	

28.4

15.7
	

60.8

P. = 0.967 x iO4
	

3.3

with a model MSE of 0.54%. As the model error is small the poor parameter

esation can probab'y be attributed to 'linear dependence again.

7.6.2. Nonlinear System.

The input x(t) = 10.sin(20t + 1St 2) was used. Again the transient is included. A very

clear jump phenomenon was displayed as the excitation frequency passed through the

region of the resonance.

The data was Integrated as in the fast section. The velocity and displacement estimates

were a little innacurate towards the beginning of the record but settled down. The

overall errors were MSE() = 0.045 and MSE(y) = 0.237. The estimated phase

trajectory is shown in Figure 7.17. The jump is shown clearly. Parameter estimation

on the 1000 points centred around the jump region ( where the nonlinearity is most

evident ), gave the results

Coefficients	 error

Eli = 1.008
	

0.8

= 20.5
	

2.5

P.	 1.03 x IO
	

3.0

P.3 = 5.34 x i09
	

6.8

with a model MSE of 0.008%. This data allows the construction of the force surface
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shown in Figure 7.18. The surface is excellent; the cubic nature of the nonlinearity is

clearly shown.

7.6.3. Comments.

This particular input gave qualitatively the same results as the rest of the class studied

which included swept—sines and stepped—sines. All these signals can be produced fairly

simply. All can be produced with no low frequency part so the simplest integration

procedure can be used. Coverage of the phase plane is good, so large expanses of

force surface can be obtained. If one is concerned with parameter estimation, there

are no problems with nonlinear systems, but one must take care to sweep the

frequency fast enough to eliminate linear dependence in the case of linear systems.

One point common to the 'ast two types of input studied is that they both produced

velocity and displacement data which was more accurate in some parts than others. If

one is concerned about accuracy in the parameter estimation it is a good idea to fit

models to different sections of the data and choose the parameters which minimise the

model error or perhaps have smallest standard deviations. Of course, one must make

sure that the excitation levels are high enough in each section for the nonlinear

parameters to show up clearly.

7.7. Impulse Excitation.

In this case the impulse was simulated by starting the Runge—Kutta procedure with

zero displacement but a finite value for the velocity. This situation is equivalent to

exciting the system with a true Dirac impulse which would give the system infinite

acceleration at t = 0. In this section the two systems have the same coefficients as

before except that c, the damping coefficient is 2.0. This change is made so that one

can capture a reasonable amount of data before the damping brings the system to a

standstill. As an alternative the sampling frequency could have been increased. The
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small damping was chosen to demonstrate that the integration procedure does not

require the system to be highly damped. c = 20.0 corresponds to 10% of critical

damping, c = 40.0 to 20% while c = 2.0 represents only 1%.

Another point which needs to be mentioned concerns the parameter estimation

procedure. During the recording of the data the equation of motion is

my + f(y,r) = 0

Consequently, one can only obtain the coefficients up to an overall scale. As in the

transmissibility case (Section 5.1), in order to plot the force surface this scale is fixed

by setting m = 1. Because the mass can be fixed at an arbitrary value it is not

neccessary to carry out a parameter estimation before plotting the surface. Another

important consequence of fixing the mass is that linear dependence is no longer a

problem.

7.7.1 Linear System.

The initial velocity was taken to be 100.0. Trapezium rule integration followed by

drift removal proved sufficient to estimate the velocity and displacement. The errors

were MSE(y) = 0.0001 and MSE(y) = 0.016. The integrated phase trajectory is shown

in Figure 7.19. The force surface obtained by setting m = 1 is shown in Figure 7.20

in this figure the 'stray' points have been removed i.e. those grid squares which

contain isolated points have had their force values zeroed.

7.7.2, Nonlinear System.

The initial velocity was taken as 10.0. The same integration procedure as the previous

section was used. The estimated velocity and displacement had errors of 0.308 and

0.346 respectively. The force surface and stiffness section obtained from this data after

setting m	 1 were excellent (Figures 7.21 and 7.22).



7.7.3. Comments.

The class of impulsive inputs - including step functions - are potentially the most

simple of all. They are excellent for obtaining force surfaces provided the sampling

interval is taken small enough for a large number of oscillations to be recorded. If

one strikes the system then observes the unforced motion, one can only obtain the

parameters for the system up to an overall scale. If a finite duration impulse is used

any other type is not physically realisable anyway ), as long as one records a

non-zero x(t) at some instant, one should be able to carry out a parameter

estimation.

A Ill/the? imporlafl point about impulse responses is that they are not zero-mean

signals. Taking this to extremes, if the system is critically damped or overdamped the

signal y(t) will be positive (or negative) for all time. At lower levels of damping the

wi Dst ate but the mean of the output will be non-zero. This means that

one must start recording the data before the system is struck. This fixes the initial

data as that corresponding to the equilibrium condition of the system.

7.8. A Chaotic System.

This system is included mainly for interest. Ueda's Duffing oscillator system (1)

y + O.05y + y3	7.5.cos(t)

was simulated. The initial conditions y(0) = 3.0 and y(0) = 4 were chosen in order to

ensure that no transient was present. Although the input force is harmonic the output

of the system contains energy associated with a continuous range of frequencies.

Althougth the output contains low frequencies a trapezium rule/drift removal

integration was found sufficiently accurate. The errors for the estimated velocity and

displacement data were 0.17 and 1.07 respectively. 2000 points of the estimated phase
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trajectory is shown in Figure 7.23. The coverage of the phase plane is excellent as in

the case of the random input. Parameter estimation yielded the results

Coefficients	 errors

il'i = 0.999	 0.1

k	 0.0489	 2.2

k3 = 1.005	 0.5

with a model MSE of 0.08%. The force surface is shown in figure 7.24.
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FIgure 7.1.	 Phase trajectory based on estimated velocity

and displacement data for a linear system

subjected to a broadband excitation.

FIgure 7.2.	 EstImated restoring force surface for a

linear system subjected to a broadband

excitat ion.
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FIgure 7.3.	 Estimated stiffness section for a nonlinear

system with cubic stiffness subjected to

broadband excitation.

Figure 7.4. Estimated phase trajectory for a system with

cubic stiffness subjected to a band-limited

random excitation.
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Figure 7.5.	 Estimated stiffness section for a system with

cubic stiffness subjected to a band-limited

random excitation.

Figure 7.6.	 Estimated phase trajectory for a Dufflng

oscillator system subjected to a harmonic

input.
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Figure 7.7.	 Projection Onto the plane y - 0 of the

estimated force surface for the harmonically

excited Duffingoscillator.

Figure 7.8. Estimated phase trajectory for a linear

system excited by two sinusoidal forces

of differing frequencies.
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Figure 7.9.	 Estimated restoring force surface for a linear

system excited by two sinusoidal forces of

differing frequencies.

Figure 7.10. Estimated restoring force surface for a

Duffing oscillator system excited by two

distinct sinusoidal forces.
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Figure 7.11.	 Estimated stiffness section for a Duffing

oscillator system excited by two distinct

sinusoidal forces.

Figure 7.12.	 Estimated damping section for a Duffing

oscillator system excited by two distinct

sinusoidal forces.
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- Measured	 E'lirna1ed
output	 output

Velocity	 amaxi = 0.099
Normalised mse	 0.503	 Compared on 10000. points

Figure 7.13.	 Comparison of the exact and estimated

velocity data for a Duffing oscillator

excited by two distinct sinusoidal forces.

Figure 7.14.	 Estimated phase trajectory for a linear

system excited by two sinusoidal forces.
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FIgure 7.15.	 Estimated phase trajectory for a Duffing

oscillator system excited by a harmonic force

with time-dependent amplitude.

Figure 7.16.	 Estimated restoring force surface for a

Duffing oscillator system excited by a

harmonic force with time-dependent amplitude.
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FIgure 7.17.	 Estimated phase trajectory for a Duffing

oscillator system excited by a chirp

signal.

FIgure 7.18.	 EstImated restoring force surface for a

Duffing oscillator system excited by a

chirp signal.
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Figure 7.19.	 Estimated phase trajectory for a linear

system excited by a Dirac impulse.

Figure 7.20.	 Estimated restoring force surface for a

linear system excited by a Dirac impulse.
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Figure 7.21.	 Estimated restoring force surface for a

Duffing oscillator system excited by a

Dirac Impulse.

Figure 7.22.	 Estimated stiffness sect ion for a Dulling

oscillator system excited by a Dirac Impulse.
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FIgure 7.23.	 Estimated phase trajectory for a chaotic

system subjected to harmonic excitation.

Figure 7.24.	 Estimated restoring force surface for a

chaotic system subjected to harmonic

excitation.

311



CHAPTER 8

EXPERIMENTS ON SDOF SYSTEMS

It has been established in the previous chapters that the force surface method can

accurately identify simulated systems. The real test of a procedure's utility is if it can

adequately deal with real systems. This chapter describes an attempt to determine how

well the method works in a series of experiments. This chapter is restricted to SDOF

systems.

8.1. Sampling and Interpolation.

The problem one is faced with in an experiment is that the input force and

acceleration response must be sampled simultaneously at each sampling instant. The

instrument for sampling used for this study is the CED 1401 intelligent interface (62).

This can sample on up to sixteen channels. However, the channels are multiplexed. If

sampling is carried out on n channels with a sampling interval zt, the channels are

sampled in order it/n apart. For example, if x(t) is sampled on channel 0 and y(t)

on channel 1, the signals are recorded as follows

Sampling Instant i-i	 I

.
	

S

Xi_1
	 xi

y l -1

t1

i+1

S

xi +1

yl	 YI+1
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Consider Figure 8.1 a, the points marked B are the sampled values from the CED

1401. The points marked A are the values of the y(t) signal when the associated x(t)

was sampled. One clearly needs a method of calculating the A values from the B's.

Fortunately, this is quite straightforward. One can use polynomial interpolation (33). A

polynomial is fitted to the B values, the fitted polynomial is then evaluated at the

times when the x(t) was sampled. This procedure is illustrated in Figure 8.lb where

A3 is obtained. The effect of this is to shift the y(t) data forward in time by a

distance &12.

If one is using this approach it is important that the sampling frequency be high

enough. If the data is undersampled, the polynomial through the B points will not lie

close to the data and it will be impossible to accurately shift the data forward. This

situation is shown in Figure 8.2. A3 is the value required, A3 is the value obtained

from the interpolation. A cubic polynomial is shown fitted to the points B 1 to B 4. It

is also important to keep the polynomial order as small as possible as high order

polynomials may differ wildly from the actual data over the fitting range while still

passing through the sample points.

In order to test the procedure, y(t) data was simulated for the linear system

y + 20 + 104y = x(t)

with x(t) a noise sequence with variance 1 .0 band—limited into the range (5,30)Hz.

The sampling frequency used was I kHz. Two hundred points of the original data are

shown in Figure 8.3a. The data is then shifted forward by one sampling interval using

a sixth order polynomial, the results are shown in Figure 8.3b. Finally, the data is

shifted back by the same amount. Figure 8.3c shows that the twice—shifted data

overlays the original data almost perfectly. This example is sufficient to give one

confidence in the method.

It is a useful exercise to determine the effect on the estimated coefficients if the
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time-lag from the sampling device is not corrected for. Suppose one is studying the

linear System

my + cSr + ky = x(t)
	

(1)

The sampled signals are x(t) and y(t + Xt) where Xt << 1. Now if y(t + XLXt) is

denoted by (t), one has

z(t) = y(t + Xt)	 y(t) + Xt.(t) + O(X2t2)

±(t) = y(t + Xt) = $'(t) + xt.y(t) + o(x2t2)

z(t) = y(t + Xt) = y(t) + X1t.S'(t) + O(X2t2)

and consequently

y(t) = z(t) - XLt.(t) + O(X2t2)

(t) = z(t) - XLt.z(t) + O(X2t2)

y(t) = z(t) - Xt.±(t) + O(X2t2)

Substituting these expressions into equation (1) gives the equation of motion for ±(t)

up to order Xt.

- mXt.I(t) + (m - cXt).z(t) + (c - kXit).±(t)

+ k.z(t) = x(t) + O(X2 t 2 )	 (2)

This means that if one estimates coefficients for the x(t), y(t) system without shifting

the data, one should expect to obtain the following estimates.

Ri = m - cXit + O(X2zt2)

= c - kXit

k=k
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A 'noise' term (t) = - mXt(t) is also induced. As y(t) and y(t) are anticorrelated,

one would also expect '(t) and y(t) to be and hence 1(t) and z(t). This means that

the 'noise' term above will bias the estimate of the damping coefficient, this effect

being added to the shift above. In fact, the noise term would cause an overestimate

of the damping. As an example consider the system used in the simulation earlier, m

= 1, c 20, k and t = If one assumes a X value of 0.5 as one would

expect from the CED for a two channel system, one obtains

t) = 0.0005.(t)

= 0.99

ê	 = 15.0

- 1.0x104

and the damping term is changed by 25% while the mass term is only changed by

1%. The stiffness is unchanged. The r(t) may well affect the estimations in practice.

One concludes from this analysis that time/phase lags in the data will affect the

damping estimates most severely. In fact if

k>	 C
	

(3)

Xt

the damping estimate could be negative.

This analysis can be extended straightforwardly to MDOF systems. Suppose one studies

a SIMO system with a diagonal mass matrix [m] and damping and stiffness matrices

[C] and [K] respectively, and further that the input channel is used as the reference

channel. In the general case, the acceleration measured at node j will be shifted in

time by an amount Xt. So if y(') denotes dl)y/dtTl

Z J ( T))(t) - xt.z(Tl)(t) + O(X2t2)

The th equation of motion for the x,y system is
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+	 c.Srj +	 ô1i.x(t)	 (4)

so the th equation of motion for the x,z system is

N
m 1 j.(z 1 - X1t.1) +	 cjj.(±j - Xt.z)

N
+	 k1.(zj - XLt.±) = ô1 j .x(t) + O(X2t2)

j1

i.e.

- m11X1t.i1 + j1 { ô 1 m	 - cIJXJt }.
	 +

j1	
CJ - kIJXJLt	 +

o 1 .x(t) + O(X2zt 2 )	 (5)

and the situation is almost exactly the same as for the SDOF system. The coefficient

estimates for [ml and [Cl are shifted as follows

ó jJ mJJ - c jj X jLt + O(X2i.t2)

= Cjj - k1Xzt

while the stiffness matrix remains unchanged. In addition, all the coefficient estimates

will be affected by the noise term

- m1X1t.z1

A point worth observing is that the z(t) equations of motion (5) have a full mass

matrix. The system is still a SIMO system, so one might expect problems with linear

dependence as discussed in Chapter 5. This would perhaps be the case if the z terms

are small; if they are large they might be expected to break the linear dependence.
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They would of course severely affect the coefficient estimates in this case.

8.2. Noise.

As this chapter is concerned with experimental data for the first time, it is the

appropriate place to discuss the effects of noise on the measured data. The integration

procedures described in Chapter 6 introduced errors into the velocity and displacement

data and it was evident that the parameter estimation was fairly insensitive to those

errors. However, it is important to determine the effect of errors in the measured

data on the integration itself, and the subsequent parameter estimates. As usual, the

study is based on a number of simulations.

Example 1. The system

y + 40Sr + 104y = x(t)

was simulated, with x(t) a Gaussian noise sequence with RMS 10.0 and zero mean,

band-limited into the range (0,200)Hz. To each of the signals x, y, ' and y, A white

Gaussian noise term was added. In each case the RMS value of the noise was a fixed

percentage a % of the RMS value of the signal. For each a used, a linear

least-squares model was fitted to the noisy data. The results are tabulated below

together with the MSE for the model (predicted data compared with measured data).

a

	

1.0	 0.9997

	

2.0	 0.9990

	

5.0	 0.9951

	

10.0	 0.9826

k	 MSE

	

39.98	 1.0000x104	 0.021

	

39.96	 0.9995x104	 0.084

	

39.90	 0.9951x104	 0.524

	

39.79	 0.9787x104	 2.053

The comparison between predicted and measured data for a = 5.0 is shown in Figure
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8,4. The force surface for this case is shown in Figure 8.5. The values of the

parameter estimates above indicate that the estimation procedure is quite insensitive to

measurement noise. The force surface is still discernably linear.

Example 2. The same system as above was simulated with x(t) a Gaussian noise

sequence of RMS 10.0 band-limited into the range (5,40)Hz. A percentage = 1.0%

of white Gaussian noise was added to the signals x(t) and y(t). The signal y(t) was

then integrated twice using the trapezium rule followed by a linear drift removal from

r(t) and y(t). The resulting velocity and displacement data are shown in Figure 8.6.

The small amount of noise introduced at low frequencies is sufficient to introduce

significant low-frequency trends into the estimated displacement.

The integration was then repeated using the trapezium rule followed by a band-pass

filter with lower and upper cut-offs 5 Hz and 40 Hz respectively. The resulting data

are shown in Figure 8.7. The low frequency problems are absent. Using the noisy

input and acceleration data and the estimated velocity and displacement data in the

least-squares procedure gives a linear model with coefficients th = 1.015, = 41 .02

and k = I .033x1 0. The MSE for comparing the predicted data with the measured

data was 0.08%. The force surface is shown in Figure 8.8.

The same procedure was repeated for a simulation where c = 5.0%. The comparison

between estimated and 'exact' velocity is shown in Figure 8.9, The MSE for the

comparison is 0.689. One can see that the estimate is very good. The same

comparison for the displacement data is shown in Figure 8.10 with MSE 1.66. This

indicates that the integration procedure is insensitive to measurement noise provided

one removes the low frequency component. Because of aliasing, this also entails

removing the noise component above the Nyquist frequency. These results indicate that

for experimental data, one is usually going to be faced with filtering the integrated

data even if a band-limited input is used. A parameter estimation using the data

above gave coefficients th = 0.98, = 41.32 and = 0.964x10 4 . The comparison

between measured and predicted data is shown in Figure 8.11, the MSE being 0.41.
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The force surface is shown in Figure 8.12. These results are encouraging; both the

least-squares estimator and the integration procedure appear to be reliable in the

presence of measurement noise. Having reassured oneself about this, one can proceed

to the study of experimental systems.

8.4. A Nonlinear Cantilever Beam.

The system studied in this section is a beam made of mild steel, mounted vertically

with an encastré end and a free end as shown in Figure 8.13. If the amplitude of

transverse motion of the beam exceeds a fixed limit, projections fixed on either side

of the beam make contact with a steel bush fixed in a steel cylinder surrounding the

lower portion of the beam. By changing the bush one can vary the clearance gap on

either side of the beam. In the experiments below a clearance of 0.5 mm was used.

Clearly when the beam is in contact with the bush, the effective length of the beam

is lowered, this gives an effective increase in stiffness. Overall, for transverse

deflections, the beam has a piecewise-linear stiffness. Initial tests on the beam

indicated that is was very lightly damped indeed. To increase the possibility of

identifying the damping coefficient for the system, the damping was increased by

placing constrained layer damping material on both sides. Separate tests were carried

out on the beam at low and high levels of excitation.

8.3.1. Low Excitation Tests.

The purpose of carrying out experiments with small levels of forcing is to study the

behaviour of the beam as a linear system. Beacause of linearity at low levels the

beam is amenable to a theoretical study. The dimensions and material contants etc.

for the beam are listed below

Length L
	

0.7 m

Width w	 2.525x102 m

319



Thickness t	 :	 1.25x102 m

Density p	 :	 7800 kgm3

Young's modulus E	 :	 2.OlxlOfl Nm2

Second moment of area I : 	 4.1097x109 m4

Mass per unit length M	 :	 2.462 Kgm2

EL	 :	 826.05 Nm2

According to Blevins (63), The first two natural frequencies of a cantilever

(fixed-free) beam are given by

f . =	 I (X 1 /L) 2 (EI/m)	 HzI

where X1 is 1 .8751 and X2 is 4.6941. This gives theoretical natural frequencies of

16.05 Hz and 100.62 Hz.

In order to test these predictions, an impulse test was carried out on the beam. The

beam was struck at the level of the shaker link (Figure 8.13) with a PCB

instrumented hammer and the response was obtained using an Endevco 213E

accelerometer placed at the end of the beam. The Frequency Response Function

(FRF) was displayed on a Scientific Atlanta SD380 spectrum analyser. The FRF is

shown in Figure 8.14. This indicates that the first two natural frequencies are at 15.0

Hz and 97.0 Hz. These are overestimates because the accelerometer at the top

increases the effective mass of the beam. This in turn will reduce the natural

frequencies. The test was repeated with the accelerometer also placed at the level of

the shaker link. The natural frequencies obtained in this case were 35.5 Hz and 98.5

Hz. This is acceptably close to the theoretical results, closer agreement could have

been reached by removing the cylindrical cover and placing the acceleromater at the

base of the beam. This test gives one confidence that the system is behaving as a

fixed-free beam.
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One can now proceed to estimate the theoretical stiffness of the beam. If a unit force

is applied at a distance 'a' metres from the free end of the beam ( i.e. at the point

where the shaker is attached, a = 0.495 m ), Simple beam theory (64) shows that the

displacement y at a distance d metres from the free end is given by

y(d)	 ..j..... [ Ed-al 3 - 3(L-a) 2d ^ 3(L-a) 2L - (L-a)3 
I

6E1

(6)

where [...] is a Macauley bracket which vanishes if the argument is negative. This

shows that the stiffness constant

k(d) =	 force applied at a

displacement measured at d

is given by

k(d)	 6E1

[d-a] 2 - 3(L-a) 2d + 3(L-a) 2L - (L-a)3

When the displacement is measured at the same point as the force is applied i.e. at

d a, the stiffness is referred to below as the direct stiffness kd and the theoretical

value is kd = 9.654x104 Nm 1 . When the displacement is measured at the free end

of the beam, the stiffness is referred to as the cross stiffness kc and has theoretical

value k,, = 2.769x104 Nm.

The first and second natural frequencies are seen to be well separated. This means

that one could hopefully band-limit the input around the first frequency so that only

the first mode is excited. If this is the case, as the first mode is the bending mode

(which resembles the static deflection curve), one might reasonably expect the system

to behave as an SDOF system with stiffness k(d) when the response Yd( t) is measured

at the point d metres form the free end. With these assumptions, the equations of

motion are seen to be



m(d).yd(t) + c (d).d(t) + k(d).yd(t)	 x(t)

The mass m(d) is fixed by the requirement that the natural frequency f1 of the

system is given by

2 ir fi	 ( k(d)/m(d) )

Two experiments were carried out. In both cases the excitation signal was a

zero-mean white Gaussian noise sequence band-pass filtered into the range (10,20)Hz.

The input signal was produced using a Korman noise generator and filter modules.

This was then passed through a KEMO VBF/4 filter in order to sharpen the cut-offs.

The signal was then amplified using a Gearing and Watson SS3O amplifier and passed

on to a Gearing and Watson V2OB electrodynamic shaker. The shaker was attached to

the beam by a rigid link. The arrangement is shown in Figure 10.15. The input force

was measured using a Kistler 9311 A force transducer in series with a Bruel and Kaer

2635 charge amplifier. The response was measured using an Endevco 213E

accelerometer also with a B & K 2635 charge amplifier. Finally, the data was

sampled using the CED 1401 intelligent interface as described in section 8.1.

In the first of the tests at low level, the accelerometer was placed near the free end

of the beam at the cross stiffness point. 5000 points of data were obtained from the

CED 1401 with a sampling frequency of 500 Hz. The data was transferred from the

1401 to a HP 310 computer. Finally the data was transferred to the Sun 3/50

workstation where the following analysis was carried out. The acceleration data was

shifted forward in time by half a sampling interval. One hundred points of the

sampled signal together with the shifted signal are shown in Figure 8.16. The shifted

data was then integrated twice to give y(t) and y(t). A Trapezium rule integration was

used followed by the application of a filter with pass-band (10,20)Hz. Five hundred

points of data were deleted from each end of the data records in order to eliminate

any filter transients. The phase trajectory for the data obtained is shown in Figure

8.17.
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A linear least—squares model was fitted to 1000 points of the data. Using an initial

estimate for the mass of m = 0.0, the following results were obtained

ii	 (Kg)
	

= 3.113

CC (Nm1s)
	

= 0.872

C (Nm)
	

= 2.771x104 ± 80.90

as shown in Table 8.1. The damping coefficient was deleted as insignificant. The

stiffness value shows excellent agreement with the theoretical estimate of 2.769x104.

The natural frequency of the model above is 15.01 Hz, again ahowing excellent

agreement with the measured value of 15.0 Hz. Comparing the measured and

predicted inputs (RHS's) gave a MSE of 0.08 as shown in Figure 8.18. The estimated

restoring force surface is shown in Figure 8.19, it is almost perfectly flat as

required.

A more stringent test of the model was now applied. As with the SDOF simulations

in Chapter 2, the model equations of motion were stepped forward in time using the

measured input x(t) as the forcing term, the model displacements obtained were then

compared with the displacements from the integration procedure. Two comparisons

were made, one using all the coefficients above and one with the damping coefficient

set to zero. The first comparison gave a MSE of 8.88, the second gave a MSE of

7.45. This simply reaffirms how little confidence one has in the damping estimate, the

damping is too small to estimate with any accuracy. Five hundred points of the

second comparison are shown in Figure 8.20.

The procedure used above to step the equations of motion forward in time was an

adaptive fifth—order Runge—Kutta procedure which used linear interpolation to estimate

the value of x(t) in between sampling instants. Although this is considerably more

complicated than the fourth—order scheme used previously, it was deemed neccessary

to use some procedure which did not hold the forcing term constant over a sampling

interval.
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In the second low—level test, the response was measured at the direct point. In all

other respects the experimental procedure and data processing were identical to the

test above. In this case a linear least—squares fit produced the coefficients

md (Kg)
	

= 10.03

cd (Nm 1 s)
	

= 1.389

kd (Nm1)
	

= 9.69x104 ± 0.28x104

Again, the damping coefficient was deleted. As before, the estimated stiffness agrees

very well with the theoretical value of 9.65x10 4 Nm 1 . The natural frequency of the

model is 15.66 Hz in almost direct agreement with the value of 15.5 Hz obtained

from the SD380 spectrum analyser. Comparing measured and predicted inputs gave an

MSE of 2.43 in this case and the comparison is shown in Figure 8.21. The restoring

force surface is shown in Figure 8.22. Comparing the predicted and 'measured'

displacements using the fifth—order Runge—Kutta procedure gave an MSE of 3.28; the

comparison is shown in Figure 8.23.

8.3.2. High Excitation Test.

This test was carried out with the accelerometer at the cross point. The level of

excitation was increased until the projections on the side of the beam began to make

contact with the bush. As before, the input signal was band—limited into the range

(IO,20)Hz. Figure 8.24 shows the input and output spectra, one can see that the

output contains a significant component at higher frequencies. Because of this, the

data was recorded using a sampling frequency of 2.5 kHz. Two hundred points of

input and response data are shown in Figure 8.25. One can see that the high

frequency content of the acceleration signal will make accurate shifting difficult.

Because of this, the data was processed in two ways.

In the first case, the data was integrated without shifting. The trapezium rule was

used followed by filtering into the interval (10,200)Hz. In order to estimate the mass

for the surface plot a linear least—squares model was fitted which gave tii = 2.24 Kg.
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The restoring force surface is shown in Figure 8.26. The stiffness section is shown in

Figure 8.27 together with a fifth-order curve-fit. The section clearly shows a

piecewise-linear characteristic with singularities at around ± 0.6 mm. This is close to

the design clearances of ± 0.5 mm. The damping section is shown in Figure 8.28.

The fact that the damping appears to be negative is explicable in terms of the

inequality (3). If the values of c and k for the linear tests above are used together

with X = 0.5 and t = 1/2500, one can see that negative damping estimates are

expected for both the direct and cross points.

In the second case the data was shifted forward in time by half a sampling instant

using a fourth-order interpolating polynomial. The results of the shift are shown in

Figure 8.29, they are clearly not very accurate. However, the stiffness section (Figure

8.30) shows a clear piecewise-linear characteristic with singularities at ± 0.6 mm.

8.4. The ETH Box.

The box in question is a collection of three analogue circuits, each of which behaves

as a nonlinear SDOF system. The box was provided by Dr. A. Frachebourg of

ETH-Zentrum in Zurich. The idea was for a number of research groups with

interests in system identification to attempt to determine the 'equations of motion' of

each circuit or to simply determine the form of the nonlinearity. The Heriot-Watt

Univeristy group used Wiener! Volterra series, Hilbert transform and restoring force

surface approaches, while S.Billings and K.M.Tsang at Sheffield University used

NARIvIAX modelling and Higher order transfer functions. The results obtained were

found to be consistent.

The equation for each circuit has the form

my+cr+ky+g(y,) = x(t)
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One supplies a voltage signal x(t) to input terminal of the box and records the output

voltage y(t). Each circuit has an overload indicator which signals that the output has

saturated because a certain input level has been reached. Unfortunately, for the

restoring force method it is unsatisfactory to measure y(t) and numerically

differentiate. To overcome this problem, the box was opened and the output signal

was taken from the circuit before the final two integrators, this gave an acceleration

signal (possibly with a scale factor). To confirm that the signal obtained was actually

acceleration, the Frequency Response Function was obtained using the SD380 spectrum

analyser. The Nyquist plot showed the FRF to be of inertance type (7), confirming

the nature of the signal. This action is justified by the fact that one usually has

control over what type of signal one measures, it is usually acceleration which is

measured in structural vibration tests.

The input signal chosen for circuit I was a swept—sine generated in the SD380

analyser. For circuits 2 and 3, a random input was used which was obtained from a

Korman noise generator with filter modules in series with a KEMO VBF/4 filter. In

all cases the signal was then passed to a Gearing and Watson SS3O amplifier. As the

input and output signals were voltages, transducers and charge amplifiers were not

needed. The signals were sampled directly using the analyser in the case of circuit 1,

and the CED 1401 for circuits 2 and 3.

8.4.1. Circuit 1.

Tests at low levels indicated that the system had a linear natural frequency of 150

Hz. At higher levels the resonant frequency was observed to shift downward,

indicating a softening stiffness nonlinearity i.e a polynomial stiffness with negative

leading coefficient. This was confirmed by a Hilbert transform analysis carried out by

other members of the dynamics group, the results of which are shown in Figure 8.31.

In the Nyquist plane, the transform is rotated anti —clockwise. This indicates the

presence of a softening stiffness

nonlinearity as described in chapter 1.
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The input used for the restoring force identification was a swept—sine, the frequency

increasing from 80 Hz to 280 Hz over the 12000 points of data sampled. The

amplitude of the input used was 3.5 V, any increase in this excitation level caused

the circuit to overload. A sampling frequency of 1280 Hz was used, the sampling was

carried out using the SD380 analyser. Alter sampling the data was stored in the

analyser's time buffer. The data was then transferred to a HP 300 computer, and

then to a Sun 3/50 workstation where the the analysis was carried out. The 12000

points of input and response data are shown in Figure 8.32. The acceleration data

was integrated twice using the trapezium rule followed by filtering into the interval

(30,400)Hz. As in the previous section, 500 points of data were removed from each

end of the data records to eliminate any filter transients.

Having prepared the data least—squares models of the form

m n
m.y +	 ylyJ	 x(t) - m 1 .y	 (7)

1=0 j=0

were fitted to data points 2000 to 3000. The initial mass estimate used was m =

3.10, a value obtained from a previous test at low levels. Two models were fitted, a

linear model and a nonlinear model of order (3,2). The resulting coefficients in each

case are shown in Table 8.2. When a comparison was made between predicted and

measured data, the MSE values were 9.40 for the linear model and 0.066 for the

(3,2) model. The nonlinear model obtained is

f(y,') = -0.1307 + 331.5r - 5.557x104y2

+ 3.214x106y + 5.381x10 10y2 - 3.3x1015y3

- 6.56x106yr

However, the constant and cross terms have small significance factors, 0.23% and

0.17% respectively, if they were discarded the MSE would rise to about 0.466, this is

still much better than the linear model.
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Three hundred points of the comparison for the nonlinear model are shown in Figure

8.33. Using the mass of 3.175 from the (3,2) estimate, the force surface for the

system was obtained and is displayed in Figure 8.34. The surface appears to be

almost linear. However, if one looks at the stiffness section with a cubic curve-fit

superimposed (Figure 8.35), one can see that the stiffness actually has a nonlinear

characteristic. The actual improvement in the fit that one obtains if one moves from

a quadratic to the cubic approximation shown is small, this indicates that the quadratic

term dominates. The damping section is shown in Figure 8.36 with a quadratic

curve-fit. The (3,2) model appears to be valid for all the data as the sections are

obtained from all 12000 points. Curve-fitting to the sections gives a model

f(y,r) = -0.065 + 327.O' - 5.477x1O4'2

+ 3.168x10 6y + 5.308x10 10y2 - 2.99x1015y3

which agrees quite well with the one above.

The conclusion reached is that circuit 1 is a SDOF system with quadratic stiffness and

softening cubic stiffness terms and a quadratic damping term. Quadratic stiffness terms

always produce a softening characteristic independently of the sign of the coefficient

(65). Hence, this identification is consistent with the Hilbert transform results.

8.4.2. Circuit 2.

Tests at low levels indicated that this system also had a linear resonance at 150 Hz.

At higher levels of excitation the resonant frequency shifted upwards. This fact,

together with the Hilbert transforms (Figure 8.37) indicate that the system has a

hardening stiffness nonlinearity.

In this case, a band-limited random input in the range (100,200)Hz was used for the

restoring force surface identification. The level of excitation was increased until the

resonant frequency shifted up to 154 Hz. Beyond this level, the circuit overloaded.
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The input and response signals were recorded on the CED 1401 using a sampling

frequency of 1 kHz. As above, the data was passed to Sun computer for analysis.

The acceleration data was shifted forward in time by half a sampling instant. The

shifted data was then integrated using the trapezium rule followed by high-pass

filtering with cut-off 100 Hz. . Least-squares models of order (1,1), (3,1) and (5,1)

were fitted and the results are shown in Table 3. When a comparison of predicted

and measured data was made for each model, the results were

Model Order
	

MSE
	

Mass

(1,1)
	 0.0556
	

3.28

(3,1)
	

0.0181
	

3.33

(5,1)
	

0. 0185
	

3.33

One hundred points of the comparison for the (3,1) model are shown in Figure 8.38,

there is almost perfect agreement. As the MSE for the (5,1) model is slightly greater

than that for the (3,1) model one concludes that the system has a cubic stiffness.

This is confirmed by the fact that the only terms considered significant in the (5,1)

are those from the (3,1) model, and also by the fact that the two sets of coefficients

agree (Table 8.3). The restoring force surface is shown in Figure 8.39. Even more

than for the first circuit, the surface appears to be linear. However, one can see the

cubic nature of the nonlinearity clearly if one considers the stiffness section with

linear and cubic curve fits superimposed (Figures 8.40 and 8.41). The cubic curve-fit

overlays the data almost perfectly. The damping section is shown in Figure 8.42, the

linear curve-fit is clearly adequate to describe the damping.

The conclusion reached is that circuit 2 is a SDOF system with a hardening cubic

stiffness nonlinearity. The equation of motion can be read off from Table 8.3b.

8.4.3. Circuit 3.

The main problem associated with the identification of the first two circuits was that
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the box tended to overload before the nonlinear dynamics could be sufficiently

excited. No such problem existed with circuit 3. Low level tests indicated that the

linear resonance was at 477.5 Hz. At higher levels of excitation the resonance shifted

downwards by a great amount. It was possible to move the resonance to 200 Hz

without overloading the circuit. This fact, together with the Hubert transforms (Figure

8.43), indicate that the system possesses a very strong softening stiffness nonlinearity.

The excitation signal used in this case was a random signal band—limited into the

range (200 ,300)Hz. The level of excitation was increased until the resonance had

shifted down to approximately 300 Hz. Eight thousand points of the input and

response data were sampled on the CED 1401 using a sampling frequency of 2500

kHz. The data was then passed to the Sun computer. The acceleration was integrated

twice using the trapezium rule followed by filtering into the range (100,500)Hz. After

cutting out data to remove the filter transients, 7000 points remained.

Initially, it proved rather difficult to fit a model of the form (7). Because of this, a

mass estimate was not available to form the force surface. The mass was estimated by

repeatedly curve—fitting a ninth—order polynomial to the stiffness section and adjusting

the mass estimate each time until the MSE for the curve fit was a minimum. The

mass estimate obtained from this procedure was 3.60 giving an MSE of 0.291. The

corresponding stiffness section is shown in Figure 8.44, It shows a very clear softening

piecewise linear characteristic. The damping section is shown in Figure 8.45, the

damping appears to be linear. Using the mass value above, the restoring force surface

was obtained (Figure 8.46). This surface is rather interesting. At low velocities, the

stiffness characteristics are piecewise linear as indicated by the section at ' = 0.

However, at higher velocities the stiffness characteristics are linear. This can be seen

more clearly in a contour plot of the surface (Figure 8.47). This indicates that

significant cross—terms are present in the restoring force. Armed with this knowledge,

a (9,3) model was fitted. The coefficients are shown in Table 8.4. The MSE for the

comparison between predicted and measured output is 0.765, 240 points of the

comparison are shown in Figure 8.48. If one looks again at the damping section, one
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can see that the scatter in the data is higher at low velocities, corresponding to the

fact that the stiffness is greater there.

The conclusion here is that circuit 3 was perhaps intended to be a softening piecewise

linear system. In fact, this is only the case for low velocities. At high velocities

cross-terms become significant.
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A3 - f(t3)

NJ

t1	 t2	 t3	 t4	 t5

________	 (a) Time data.

Fitted polynomial ...._.—f(t)
t3

(b) Time data with curve-fit.

Figure 8.1.	 The shifting procedure for the time data.
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y(t)

f(t)

A.

I	 I	 I

Figure 8.2.	 The effect of undersampling on the fitting

procedure
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(a) Sampled data.

(b) Sampled data with shifted data.

(c) Sampled data with twice ahifted data.

Figure 8.3.	 Verification that the shifting procedure

works.
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FIgure 8.4.	 Comparison of true time data and that

predicted by a model for a simulated linear

system with 5% noise added to the time data.

Figure 8.5.	 Estimated restoring force surface for a

linear system with 5% noise added to the time

dat a.
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F,I.	 I d. I
Dto	 DpIocn..t

Figure 8.6.	 Estimated displacement and velocity data for

a linear system with 1% noise added to the time

data. Trapezium rule used for integration.

Figure 8.7.	 Estimated displacement and velocity data for

a linear system with 1% noise added. Trapezium

rule/band-pass filter used for integration.
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Figure 8.8.	 Estimated restoring force surface obtained

using the data in the previous figure.

- Measured	 Estimated

output	 output

Velocity	 amoxi = 0.084

NormaliSed mse :	 0.689	 Compared on 9000. points

Figure 8.9.	 Comparison of the true velocity data with

that estimated by Integration, for the linear

system with 5% noise added to the time data.

337



Measured	 Estimated

output	 output

Displacement	 omcxl	 9.9-4

Normalised mse :	 1.66	 Compared on 9000. points

FIgure 8.10.	 Comparison of the true displacement data

with that estimated by integration. Linear

system with 5% noIse added.

FIgure 8.11. Comparison of measured system data with that

predicted by a model. Linear system with 5%

noise added.
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Figure 8.12.	 Estimated restoring force surface for the

simulated linear system with 5% noise added.
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- Cross response point

Figure 8.13.	 Nonlinear cantilever rig.
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Figure 8.15.	 Instrumentation for cantilever experiments.
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Figure 8.16.	 Sample of measured input and response data

showing the shifted response.

Figure 8.17.	 Estimated phase trajectory for the cantilever

at low level of excitation. Response taken

at the cross point.
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Figure 8.18.	 Comparison of measured data and that

predicted from a linear model for the

cantilever. Data taken from the cross point.

Figure 8.19.	 Estimated restoring force surface for the

cantilever at low level of excitation. Data

taken from the cross point.
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FIgure 8.20.	 Comparison of the displacement data obtained

by Integration with that predicted by the

model when the measured Input was applied.

Data taken from the cross point.

Figure 8.21. Comparison of measured data and that

predicted from a linear model for the

cantilever. Data taken from the direct

point.
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Figure 8.22.	 EstImated restoring force surface for the

cantilever at low level of excitation. Data

taken from the direct point.

FIgure 8.23.	 Comparison of the displacement data obtained

by integration with that predicted by the

model when the measured input was applied.

Data taken from the direct point.
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Figure 8.25.	 Input and response data for the cantilever

experiment at high level of excitation.

Figure 8.26.	 Estimated restoring force surface for the

cantilever at high excitation. The response

data was not shifted.
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Figure 8.27.	 Estimated stiffness section for the cantilever

subject to a high level of excitation. The

response data was not shifted.

Figure 8.28.	 Estimated damping section for the cantilever

at a high level of excitation. The response

data was not shifted.
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Figure 8.29.	 Input and response data together with the

shifted response data for the cantilever

at a high level of excitation.

Figure 8.30.	 Estimated stiffness section for the cantilever

at a high level of excitation. The response

data was shifted.
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Figure 8.31. Frequency response function and Hubert

transform for ETH-1 at a high level of

excitation.
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Figure 8.32.	 Swept-sine input and response data for the test

of ETH-1.

Figure 8.33.	 Comparison of measured data and that predicted

using the (3,2) eode1 for ETH-1.
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Figure 8.34.	 Estimated restoring force surface for ETH-1.

Figure 8.35.	 Estimated stiffness section and cubic curve-

fit for ETH-].
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Figure 8.36.	 Estimated damping section and quadratic

curve-fit for ETH-1.
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Figure 8.37. Frequency response function and Hubert

transform for ETH-2 at a high level of

excitation.
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Figure 8.38.	 Comparison of measured data and that

predicted by the (3,1) model of ETH-2.

Figure 8.39.	 EstImated restoring force surface for ETH-2.
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Figure 8.40.	 Estimated stiffness section and linear

curve-fit for ETH-2.

Figure 8.41.	 EstImated stiffness section and cubic

curve-fit for ETH-2.
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Figure 8.42.	 Estimated damping section and linear

curve-fit for ETH-2.
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Figure 8.43.	 Frequency response function and HUbert

transform for ETH-3 at high level of

excitation.
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Figure 8.44.	 Estimated stiffness section for ETH-3.

Figure 8.45.	 Estimated damping section and linear

curve-fit for ETH-3.
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Figure 8.46.	 EstImated restoring force surface for ETH-3.

Figure 8.47.	 Contour map of the estimated force surface

for Efli-3.
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FIgure 8.48.	 Comparison of the measured data with that

predicted by the (9,3) model for ETH-3.
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* Coefficients for system : vcbc

* Estimation type Orthogonal

* Expansion type : PoLynomiaL

Mass corrected to	 O.313338Oe+O1

a( 0: 0) -O.16639438e-03

e( 0: 1) O.87239575e400

a( 1: 0) 0.27778961e+05

a( 1: 1) -O.12959176e+02

s( 0: 0) O.24384852e-06

s( 0: 1) O.3?1l9884e-01

s( 1: 0) O.38027429e+04

SC 1: 1) O.39803244e-05

* MSE estimate : O.38624682e-01

* Significant coefficients

a( 1: 0) O.27718961e+O5	 std( 1: 0) O.4l276905e+02

MSE estimate : O.75733989e-01

Table 8.I	 Estimated coefficients for a linear mode'

of the cantilever at low levels of

excitation. Data taken from the cross point.
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* Estioxtion type : Orthogonal

Expansion type : Potynasist

* Mess corrected to : O.6988tD6eOO

a) 0: 0) 0.19647665e-02	 it 0: 0) 0.59056183e-04

a) 0: 1) 0.31.194412ex03	 it 0: 1) 0.3194T78e*02

a) I: 0) 0.gl748531e06	 SC 1: 0) 0.2353094e03

.( 1: 1) -0.71238540e'07	 S( 1: 1) 0.22495158e°0O

° MSE estimate : D.94039049e*01

Significant coefficients

al 0: 1) 0.3.4194412e+03	 Std( 0: 1) O.6536371602
at 1: 0) 0.81148531e*06	 itd( 1: 0) O.59569430e*05

a) 1: 1) -0.71238540e0?	 Std( 1: 1) O.16909300e+08

* MSE estimate : 0.94039593e01

° Estimation type : Orthogonal

* Expansion type : Polynomial

• Mess corrected to : 0.3t75L.45e*01

at 0: 0) -0.13074569e+O0 	 it 0: 0) 0.23694375e00
eC 0: 1) 0.33145114e*03	 i( 0: 1) 0.29109579e+02
at 0: 2) -0.55565996e.05 	 i( 0: 2) 0.31875908e°02

a( 1: 0) 0.32143860e.07 it 1: 0) Q.32962654e'04
.0 1: 1) -0.65600750e*07	 it 1: 1) 0.17285502e*00
at I: 2) 0.56987968e09 cC 1: 2) 0.42137861e-01
.t 2: 0) 0.53806957e.11	 cc 2: 0) O.41116726e02
at 2: 1) 0.22143354e.12	 iC 2: 1) 0.729$4241.e-02

at 2: 2) -0.4O49562exl4	 it 2: 2) 0.8116935e-02

at 3: 0) 0.32995529e*16 at 3: 0) 0.93649483e01
at 3: 1) 0.11719096es17 	 i( 3: 1) D.1072?026e-02
at 3: 2) 0.22018443e*19 i( 3: 2) 0.93840359e03

° P450 estimate : 0.80339741e-02

* Significant coefficients

aC 0: 0) 0.13074569e*D0	 itd( 0: 0) 0.24576128e-01

at 0: 1) O.33145114e03	 itdC 0: 1) 0.55066071e01

(a)	 (1,1) Model .	 •( 0: 2) -0.55565996e05 Std( 0: 2) 0.12361Qt8e*04
ut I: 0) 0.32143860eOT	 atdt 1: 0) O.50431011e01.

SC I: 1) 0.65600750e07	 itdC I: 1) 0.14245353e'07

aC 2: 0) 0.53806957e+1l	 Std( 2: 0) 0.11727013e10

a) 3: 0) -0.32995529e*Ió ItdC 3: 0) 0.19173813e15

ISO estimate : 0.66206329e-01

(b)	 (3,2) Model.

Table 8.2.	 Eat hoated coefficients for polynomial models of

ETFI-l.
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Ti.edatO fiteneo* : c0leth3

lijt pø5s :	 3.600000

Hess error	 0.53036493e00

New ss estiete : 0.30696349e01

p( 0: 0) -0.23626830e*00

pC 0: 1) 0 0.32546014e03

p( 0: 2) 0 0.25606955e05

pC 0: 3)	 0.43581828e*06

p( 1: 0)	 0.23042330eO8

p( 1: 1) - -0.91376712e+08

p( 1: 2) - 0.10861275e13

PC 1: 3) 0.28851fl7e*14

pC 2: 0) = 0.71270302e12

pC 2: 1)	 -0.21904226e+14

pC 2: 2) • -0.52425780e*17

p( 2: 3)	 -0.7201522e+1B

p( 3: 0)	 -0.10878223e*20

p( 3: 1)	 0.25102345e.21

pC 3: 2)	 0.82021970e*24

p( 3: 3)	 -0.6562477e26

p( 4: 0)	 -0.50167805e*24

pC 4: I)	 0.l3489168e26

pC 4: 2)	 0.40373872e*29

pC 4: 3) 0 0.22723415e+31

p( 5: 0) o O.30323178e+31

pC 5: 1)	 -0.l44106?2e+33

p( 5: 2)	 -0.23542789e.36

pC 5: 3)	 0.34098914e.38

PC 6: 0)	 0.10137888e*36

p1 6: 1) 0 -O.21045613e-.37

p1 6: 2)	 lnf

p1 6: 3)	 -Int

p1 7: 0)

PC 7: I)	 lot

p( 7: 2)	 lot

pC 7: 3)	 - Int

pC 8: 0)	 -lot

pC 8: 1)	 lot

p1 8: 2) 0 lot

p( 8: 3)	 InC

pC 9: 0)	 lnf

p1 9: 1) • -lot

pC 9: 2)	 - mt

p1 9: 3)	 lot

CC 0: 0) -

cC 0: 1)

cC 0: 2)

CC 0: 3)

CC 1: 0)

SC 1: 1) -

51 1: 2)

cC 1: 3) 0

51 2: 0)

SC 2: 1)

St 2: 2)

SC 2: 3)

cC 3: 0)

SC 3: 1)

51 3: 2)

SC 3: 3)

SC 4: 0)

51 4: 1)

SC 4: 2)

51 4: 3)

CC 5: 0)

SC 5: 1)

SC 5: 2)

SC 5: 3)

cC 6: 0)

SC 6: 1)

SC 6: 2)

CC 6: 3)

51 7: 0) 0

SC 7: 1)

SC 7: 2)

SC 7: 3)

SC 8: 0)

CC 8: 1)

SC 8: 2)

SC 8: 3)

IC 9: 0)

SC 9: I)

cC 9: 2)

CC 9: 3)

0.29564882e-01

0.25 160563e.00

0.16656676e-01

0.71295566e-04

0. 392492 19e.00

O.2395691e-0)

O.32208279e02

O.292631.lOe.00

0.1585l300e01

048399037e-02

0.21881112e00

0.43605024e-03

0. 22363337e*04

0.31763947e401

0.22824791es03

0.14l4850e02

0.33978649e.02

O.55390999e-01

0.2BP6O9l9e+01

0.lBl.79469e-01

0.97272539e.04

0.42797661e02

0. 5873308 Ce. 03

0.942386?0e02

0.90329521e*02

0.66698007e-01

0.45312877e*01

0.43232346e.00

0.97633984e04

0.80741348e.02

0. 33673843e. 03

0. 11078708e.03

0.2434320&e.02

0.32182983e-02

0.67903370e00

0. C994565Se*00

0. 13489303e.04

0.17200325e+02

0. 25393970e'02

0.16635258e.02

HSE for de1 :	 0.765297

Table 8.4.	 Estimated coefficients for a (93) polynomial

model for ETH-3.
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CHAPTER 9

EXPERIMENTS ON AN MDOF SYSTEM

The identification procedure described in the previous chapters has proved to be of

use in the study of simulated systems and SDOF experiments. The final and most

important test of the utility of the procedure is made by observing it's performance in

the attempted identification of an experimental MDOF system. Both linear and

nonlinear systems are considered.

9.1. The Linear System.

The system used for the linear experiment was a mild steel cantilever (fixed-free)

beam mounted so that it's motion was confined to a horizontal plane. In order to

make the system behave as far as possible like a system with a finite number of

degrees-of-freedom, three lumped masses in the form of mild steel cylinders were

attached to the beam at equally spaced points along it's length. The system was one

of two developed by other researchers, the other system from the pair being a

fixed-fixed beam which was studied using Volterra/Wiener series methods in (8). As in

the case of the vertical cantilever described in Chapter 8, the damping in the system

was very small. To increase the energy dissipation in the system, constrained layer

damping material was fixed to both sides of the beam in between the cylinders. The

arrangement of the system is shown in Figure 10.1. The various geometrical and

material constants for the system are as follows

Beam

Length L	 :	 0.762 m

Width w	 2.54x102 m
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Thickness t	 :	 6.35x103 m

Density p	 :	 7800 Kgm3

Young's Modulus E	 2.01x10 Nm2

Second moment of area I	 5.394x10° m4

Mass per unit length m	 1.258 Kgm

El	 :	 111.658 Nm2

Lumped Masses

Mass mm	 :	 0.455 Kg

Spacing d	 :	 0.254 m

In order to determine the theoretical natural frequencies of the system, one needs an

estimate of the mass matrix [Ml and stiffness matrix [K I. One assumes that the

system can be treated as a three DOF lumped parameter system, the mass is assumed

to be concentrated at the three cylinders which served as the measurement points.

The labelling of the points is given in Figure 10.1. Using the masses of the cylinders

alone one obtains

[M	 -	 0.455 0.000 0.000	 (Kg)

0.000 0.455 0.000

0.000 0.000 0.455

Now, the mass of the beam is assigned to the measurement points as follows. The

mass of beam within a distance d/2 of a point is assigned to that point. A length d

of beam has a mass I .258d Kg, so the final mass matrix is estimated as

1M1	 0.7745 0.0000 0.0000	 (Kg)

0.0000 0.7745 0.0000

0.0000 0.0000 0.6148
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The stiffness matrix is assumed to be determined by the properties of the beam alone

and is estimated via the flexibility matrix [A] defined as follows (66); ajj is the

deflection at measurement point i due to a unit force at point j . Equation 8.6

immediately gives

a jj	 ( [a - aj ] 3 - 3a(L - aj)2

+ 3L(L - aj) 2 - (L - a j ) 3 }/(6E1)	 (1)

where a is the distance of point j from the free end of the beam. In terms of the

spacing between the points, a1 = 2d, a2 = d and a3 0. A simple calculation

showed that

[A] -	 d3	2	 5	 8	 (Nm)

	

6E1	 5 16 28

8 28 54

The stiffness matrix is then obtained by inverting the flexibility matrix i.e.

[K] - [A)

The result is

[K] -	 1.2579 -0.7233	 0.1887	 (Nm)

-0.7233	 0.6919 -0.2516

	

0.1887 -0.2516	 0.1101
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Given the mass and stiffness matrices, one can solve the eigenvalue problem

= [K]{1'1)

for the natural frequncies f1 = o/2-, and the modeshapes {&}. In this case, the first

three predicted natural frequencies were 4.76 Hz, 22.34 Hz and 77.11 Hz. Now, as

the integration procedure for the force surface method requires a band—limited input

to be used, it would have proved difficult to excite the first mode and still have no

signal at lower frequencies. For this reason, a helical compression spring was placed

between point 3 and ground as shown in Figure 9.2. A static test showed the spring

to have a stiffness constant of I .106x104 Nm. The modification to the system

stiffness matrix is minimal, k33 changes from 0.1101x10 5 to 0.2207x10 5 . However, the

first natural frequency changes dramatically. Solving, the new eigenvalue problem gives

natural frequencies 17.20 Hz, 32.00 Hz and 77.23 Hz.

The arrangement of the experiment is shown in Figure 9.2. The input was produced

by a Korman noise generator and filter modules. The signal was then passed through

a KEMO VBF/4 Filter in order to sharpen the signal cut—offs. The signal was then

amplified using a Gearing and Watson SS3O amplifier and passed on to a Gearing and

Watson V2OB electrodynamic shaker. The shaker was attached at masurement point I

using a rigid link.
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A Kistler 9311A force transducer was placed between the shaker and the mass m 1 in

order to measure the input force x(t). Endevco 213E accelerometers were placed on

each of the cylinders for measuring the output signals y 1 (t), y2 (t) and y3(t). The

signals from the transducers were then passed to Bruel and Kaer 2635 charge

amplifiers. The signals were then sampled and digitised using the CED 1401 intelligent

interface under the control of a HP 300 series computer. The sampled data was

finally passed from the HP to a Sun 3/50 workstation where the analysis was carried

out.

The first experiment carried Out Ofl the system was a modal analysis to accurately

determine the natural frequencies of the system. The transfer functions Y1(c)/X(c),

Y2(0))/X(0)) and Y3 (o)/X(w) were obtained on a Scientifica Atlanta SD380 analyser.

The first of these transfer functions is shown in Figure 9.3. Curve—fitting to the

transfer functions showed that the first three natural frequencies were 16.914 Hz,

31.781 Hz and 77.778 Hz. These values showed fairly good agreement with the

theoretical estimates, and therefore gave a certain amount of confidence in the

estimated mass and stiffness matrices. The output spectrum for the system when

excited by a band—limited input in the range (10,100)Hz is shown in Figure 9.4.

There is clearly no significant contribution from higher modes than the third. Because

of this, one would expect the system to be well—modelled by a three

degree —of—freedom model if the input is band—limited in this way.

An experiment was then carried out with the intention of fitting least —squares linear

models of the type given in equation (5.11) to the data. The excitation used was a

noise sequence band—limited into the range (10,100)Hz. The data x, Yi Y2 and y3

were captured on channels 0, 1, 2 and 3 of the CED system. The sampling frequency

used was 1666.6 Hz. 3000 points per channel were taken.

After passing the data to the Sun computer it was shifted in time as described in

Chapter 8 in order to restore simultaneity of the samples, x was taken as the

reference channel so the Yi data was shifted forward in time by a distance t/4, the
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Y2 data was shifted forward by 2t/4 and the data by 3t/4, t being the sampling

interval. The shift was accomplished very accurately. The acceleration signals were

integrated using the trapezium rule followed by band—pass filtering into the range

(10,100)Hz. 500 points were then deleted from the beginning and end of each channel

in order to remove any filter transients. This left 2000 points per channel.

A inhomogeneous (1,1) model was fitted to the data points 500 to 1500 in order to

estimate the Yi equation of motion. The identification data including the significance

factors and standard deviations is given in Table 9.1. The estimated form of the

equation is

- 4.33Y1 + 7.87x104 y1 + 1O.1(yi - Y2) +

8.33x104(y1 - Y2) - 2.23x10 4 (yi - y3)	 x

Comparing the predicted and measured data gave a MSE of 0.035, the comparison is

shown in Figure 9.5. In all the models for this system the significance threshold was

set at 0.1%.

A homogeneous (1 ,1) model was fitted for the Y2 and Y3 equations of motion, The

identification data is shown in tables 9.2 and 9.3. The estimated equations were

Y2 + 9.11x10 4 (y2 - yi) - 3.55x104y2

+ 3.34x104 (y2 - Y3) = 0

T3 + 6.84(S73 -	 - 7.13S'3 - 3.85x104(y3 - Yl)

+ 4.63x10 4 (Y3 - Y2) + 3.00x10 4 y3	 0

The comparisons between measured and predicted data were made and gave MSE

values of 0.176 and 0.066, the data is shown in Figures 9.6 and 9.7.

The scale factors were transferred from the first equation of motion to the other two
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as described in Chapter 5, giving the [y] and [] matrices, the symmetrised [C] and

[K] matrices were then obtained. The final results were

[M]	 0.8595 0.0000 0.0000	 (Kg)	 (2a)

0.0000 0.9152 0.0000

0.0000 0.0000 0.5800

[C] =	 10.	 1.4060 -1.0094 -0.3966	 (Nsm-1) (2b)

-1.0094 1.0094 0.0000

-0.3966 0.0000 -0.0171

[K] = i05 .	 1.3969 -0.8334 0.2233	 (Nm1)	 (2c)

-0.8334 0.7949 -0.2869

0.2233 -0.2869 0.2379

These compare favourably with the theoretical results. Using the estimated [M] and

[K] matrices, the first three model natural frequencies were calculated. Again,

agreement was good, the results being

Frequency
	

Experimental
	

Model	 error

	

16. 914
	

17.044	 0.77

	

31.781
	

32.247	 1.47

f3	 77.529
	

77.614	 0.11

As a final test, the fifth-order Runge-Kutta procedure described in the previous

chapter was used to estimate the displacement time-histories from the model when

forced by the signal x(t). The MSE values for the comparisons were 2.13, 4.01 and

9.82. These values were obtained by setting the damping matrix to zero, if the

estimated damping matrix was used the MSE values increased. This shows how little

confidence one has in the damping estimates. This is because the structure is very

lightly damped, and the damping forces contribute very little to the restoring forces.

The results of the experiment are seen to be very good. However, one is entitled to
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ask the question, do these parameters correspond to actual physical masses and

stiffnesses? In an attempt to answer this, the following experiment was carried out.

M additional 1 Kg mass was attached to measurement point 2 and the experimental

procedure was repeated exactly as above using the same type of excitation. The

Transfer function Y1 (c)/X(o) was obtained and is shown in Figure 9.8. The

experimental values for the natural frequencies were obtained from the analyser. This

time Mohammad's method (26) as described in Chapter 5, was used to identify the

system, the resulting matrices were

[M]	 0.8888 0.0000 0.0000	 (Kg)

0.0000 1.9297 0.0000

0.0000 0.0000 0.7097

[C]	 9.5525 5.6652 0.0000	 (Nsm)

5.6652 0.0000 0.0000

0.0000 0.0000 0.0000

[K] = iø.	 1.3709 -0.8099 0.2245	 (Nm)

-0.8099 0.7841 -0.3014

0.2245 -0.3014 0.2646

The MSE values for comparing predicted and measured data for each equation were

0.940, 0.130 and 0.989, indicating an excellent fit again. The results have changed

very little from those of the previous experiment, the only exception being that m22

has increased by 1 .01 Kg. This result gives one confidence that the parameters

obtained by the method are physical. The natural frequencies for the model were

obtained, the results being

Frequency	 Experimental	 Model
	

error

fi (Hz)
	

13.624	 13.252
	

2.73

	

29.124	 29.846
	

2.48

f3
	

69.500	 69.365
	

0.19

Again, showing good agreement.
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9.2. The Nonlinear System.

The final experimental system considered was based on work in (8). The same

experimental arrangement as in the previous section was used with a number of

modifications. An additional accelerometer was placed at measurement point 2 (Bruel

and Kaer 4934) the signal obtained was then passed to a B & K 2635 charge

amplifier which was used to integrate the signal giving an output proportional to

velocity '2 The velocity signal was then passed through a nonlinear electronic circuit

which produced an output proportional to velocity cubed i.e. The cubed signal

was then amplified in a Gearing and Watson SS2O amplifier. Finally, the output from

the amplifier was used to drive a Ling Dynamics V403 electrodynamic shaker which

was attached via a rigid link to measurement point 2. The overall effect of this

feedback loop is to introduce a restoring force at measurement point 2 proportional to

the cube of the velocity at point 2. The layout of the feedback ioop is shown in

Figure 9.9. The electronic circuit was designed and constructed in the Department of

Mechanical Engineering at Heriot—Watt University.

The experimental procedure was the same as in the linear case. The excitation used

was a noise sequence in the range (10,100)Hz. Figure 9.10 shows the transfer function

for the system with the feedback shaker attached, but no signal through the nonlinear

circuit. The damping in the system is clearly increased by the presence of the shaker.

The natural frequencies for the system with the shaker attached (but passive) are

approximately 19 Hz, 32 Hz and 74.9 Hz. The level of excitation used was recorded

by simply marking the position of the amplitude dial on the input amplifier. The

cubic circuit was then switched in, the amplitude of the feedback amplifier signal was

increased until a noticeable increase in damping and loss of coherence was obtained in

the transfer function as shown in Figure 9.11. The coherence function (58) plotted in

the upper section of the figure is a simple indicator of the presence of nonlinearity

or noise. For clean signals produced by a linear system, the coherence is 1 .0 over the

frequency range of the excitation. The position of the dial on the feedback amplifier

was then marked.

375



4000 sampled paints of data were obtained for each channel x, Yi. Y2 and y using

the CED box. After passing the data to the computer, each channel was shifted

forward in time as described in the previous section. The measured and shifted data

for the Y3 channel is shown in Figure 9.11, the shifting has clearly been accomplished

with a high degree of accuracy. The acceleration signals were then integrated using

the trapezium rule followed by filtering. In this case the pass—band used was (10,300)

Hz, the high cut—off was chosen so that any third harmonic content in the data

would be retained. As before, 500 points were removed from the beginning and end

of each record in order to eliminate transients.

The Yt equation of motion was obtained by fitting an inhomogeneous (1 ,1) model to

1000 points of the remaining data. The estimated equation was

- 22.4y + 8.59x104y + 207 (i - S'2) +

7.96x104(y1 - Y2) - 2.31x10 4 (yi - y3)	 x

The comparison between measured and predicted data gave an MSE of 0.056, and is

shown in Figure 9.13. The very low MSE indicates that the equation is adequately

described by a (1,1) model i.e. it has no nonlinear terms. As a check, a (3,3) model

was fitted to the same data. All but the linear terms were discarded as insignificant,

the mass and stiffness terms did not change but the damping values did slightly, this

was further indication that the damping values are not to be trusted.

The second equation of motion was obtained by fiiting a homogeneous (1,3) model.

An initial estimate using 1000 points of data indicated the presence of a term cubic

in Y2• However, the term only contributed 3% of the variance of —Y2 i.e. it's

significance factor was 3.0. In order to improve the chances of identifying this term

accurately a (1 ,3) model was then fitted using 2500 points of data. The identification

data is given in Table 9.4. The estimation gave
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Y2 - 16 .7('2 - yl ) + 154.3Y2 + 8.45x104 (Y2 - yi) -

2.93x104 y2 + 3.07x10 4 (y2 - Y3) +

228.(S'2 -	 - 183. ,2 2+ 5.63xl0'2 3 = 0

The MSE for the comparison between predicted and measured data was 0.901, the

comparison is shown in Figure 9.14. The MSE obtained when a (1,1) model was tried

was 1.77, this increase indicates that the equation truly requires a nonlinear model.

The force surfaces for links 121, 122 and 123 are shown in Figures 9.15, 9.16 and

9.17 respectively. One can see from Figure 9.15 that the surface is almost flat even

though a cubic term is present in the force model for the link. Also, the significance

factor of the cubic term in f21 is only 0.17% indicating that it if one discards it the

MSE for the model will only rise to approximately 1 .06. A further indication that this

term should be discarded is that if one calculates the 95% confidence interval, one

finds that the estimated coefficient is 228 ± 482 so one cannot even assert which sign

the term has. Finally, no nonlinear term appears in the f12 expansion obtained above.

Similar remarks apply to the quadratic term in f2 2 , the estimate is —183 ± 503 and

the significance factor is only 0.13%. This means that if both the terms discussed are

removed, the MSE will rise to approximately 1 .21 which is still significantly better

than the nonlinear model. Finally, the cubic term in f22 must be retained as the

estimate gives 5630 ± 4882 for the coefficient, the coefficient is larger than the error.

Also, the significance factor for this term is 2.6. Finally, one can see from the force

surface in Figure 9.16 that the cubic term is significant. One concludes that the

procedure has identified a cubic velocity term in the link connecting measurement

point 2 to ground.

The Y3 equation was obtained by fitting a homogeneous (1 ,1) model to 1000 points of

data. The estimated equation was

+ 8.37(Sr3 - i ) + 27.1(S'2 -1) - 36.4 3 -

3.98x10 4 (y3 - y i) + 4.47x10 4 (Y3 Y2) +

3.35x10 4y3 - 0
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The comparison between predicted and measured data gave an MSE of 0.31 and is

shown in Figure 9.18. Again, the low MSE indicates that a linear model is adequate.

To check, a (3,3) model was fitted and all but the linear terms were discarded as

insignificant.

After transferring the scales from the Yi equation to the other two, the [-y] and []

matrices were constructed as before, and from them the [M], [CJ and [K] matrices of

the underlying linear system were obtained, i.e. the system which one would obtain if

all nonlinear terms were deleted. The results were

[M]	 0.8720 0.0000 0.0000	 (Kg)

0.0000 0.9648 0.0000

0.0000 0.0000 0.5804

[C] =	 10.	 0.3107 -2.0690 -0.4858	 (Nsm)

-2.0690 19.0250 -1.2116

-0.4858 -1.2116 -0.4129

[K]	 1.4240 -0.7960 0.2310	 (Nor1)

-0.7960 0.7950 -0.2711

0.2310 -0.2711 0.2345

These parameters show good agreement with those in (2a,b,c). The only difference

being the significant increase in the damping c22, this is of course due to the linear

damping introduced by the shaker. Solving the eigenvalue problem using these matrices

gives natural frequencies of 19.6 Hz, 32.1 Hz and 76.3 Hz for the linear system,

giving good agreement with the frequencies shown in Figure 9.10.

All that remained to be done now was to determine the true cubic coefficient in the

experiment. In order to do this a force transducer was placed between the feedback

shaker and its connection to measurement point 2 as shown in Figure 9.19. The

excitation level and the feedback amplifier level were then set as they were in the

identification experiment. The characteristics of the nonlinear circuit were obtained by
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exciting the circuit with a sinusoid and fitting a polymonial to the measured input and

output voltages (8). The results were

V2	1.34.V1 + 1.25.V1 2 + O.713.V1 3	(3)

where V1 is the input voltage and V2 is the output voltage (see Figure 9.19). The

gain factor V1 1y2 is obtained from the relevant charge amplifier settings as

v1 = 31.6S12
	

(4)

Substituting into equation (3) gives

V2 = 42.34.2 + 1248.2.Sr2 2 + 22498.$'2	 (5)

The gain factor VF/F is again fixed by the approriate charge amplifier settings

VF - 31.6F
	

(6)

To find the missing gain factor Fl y2, the quadratic and cubic parts of the circuit

were switched out leaving only the linear term. The signals V 1 (t) and Vp(t) were

passed to a spectrum analyser and the transfer function V1()lVF{O) was obtained,

this is shown in Figure 9.20. The transfer function magnitude is fairly constant at

about 0.16, this gives the final gain factor as

VF = -6.06V1

which implies, using (4) and (6) that the overall gain is given by

F - -6.06'2

comparing this final equation with (5) shows that the force characteristics would be
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F	 - ( 6.O6.	 + 178.7.Sr22 + 322O . r23 )

if all parts of the circuit were switched in. Finally one concludes that the nonlinear

restoring force between measurement point 2 and ground when only the cubic term

was used was

F = - 322O.f2

The coefficient value estimated by the identification procedure was 5630 ± 4882. The

percentage error is 75%. The estimation has the right order of magnitude and the

error interval of the estimate encloses the true value.

These results are encouraging, although the coefficient for the nonlinear term could be

better, the identification procedure has correctly identified the type and location of the

nonlinearity.

In Summary, the results of this chapter indicate that the direct least —squares procedure

can be used to identify real i.e. experimental MDOF systems, both linear and

nonlinear with a fair degree of accuracy. The method actually gives a set of equations

of motion for the system, which is a considerable gain over most other methods.
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FIgure 9.2.	 Instrumentation for the experiments on the

three degree-of-freedom system.
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FIgure 9.5.	 Comparison of measured data and that predicted

by a Unear model for the first equation of

of motion for the linear 3DOF system.

Figure 9.6.	 ComparIson of measured data and that predicted

by a linear model for the second equation of

of motion for the linear 3D0F system.
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Figure 9.7.	 Comparison of measured data and that predicted

by a linear model for the third equation of

of motion for the linear 3DOF system.
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FiI	 Odn3	 prc....d	 . M.oer.d
Doto	 ]npot	 doto	 doto

Figure 9.12.	 Measured input and y3 response data showing

the shifted response data.

FIgure 9.13.	 ComparIson of measured data and that predicted

by a linear model for the first equation of

of motion for the nonlinear 3DOF system.
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Figure 9.14. Comparison of measured data and that predicted

by a nonlinear model for the second equation of

of motion for the nonlinear 3DOF system.

Figure 9.15.	 Restoring force surface for link 121 in the

nonlinear 3DOF system.
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Figure 9.16.	 Restoring force surface for link 122in the

nonlinear 3DOF system.

FIgure 9.17.	 RestorIng force surface for lInk 123 In the

nonlinear 3DOF system.
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Figure 9.18.	 Comparison of measured data and that predicted

by a linear model for the third equation of

of motion for the nonlinear 3DOF system.
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Coefficients for system :

Corrected mass value : D.85949999e.0o

* Coefficients for Links to node 1

	

al 1: 0: Li) 0.40283203e-02	 SC 1: 0: 0) 0.11240279e-03

	

1: 0: 1) -0.C3298974e*01	 S( 1: 0: 1) 0.1049524e-01

	

eC 1: 1: 0) 0.T8679336eo05	 s( 1: 1: 0) 0.63332321es02

	

at I: 1: 1) -0.15646159e+03	 SC 1: 1: 1) 0.l760l408e-07

	

at 2: 0: 0) 0.00000000eoDO	 SC 2: 0: 0) 0.00000000e+00
a( 2: 0: 1) 0.10093966e*02 	 SC 2: 0: 1) 0.14840727e00

	

at 2: 1: 0) 0.83343516e°05	 SC 2: 1: 0) O.t3483986e*03
at 2: 1: 1) 0.36901421r°04	 S( 2: 1: 1) 0.5129957e-04

at 3: 0: 0) 0.00000000e00	 SC 3: 0: 0) 0.00000000e.O0

	

at 3: 0: 1) -0.68396693e000	 SC 3: 0: 1) 0.87285251e-03
C 3: 1: 0) -0.22327'586e.05 	 'C 3: 1: 0) 0.31858860es02

	

eC 3: 1: 1) -0.31311501e.04	 St 3: 1: 1) 0.15237379e-03

MSE estimate : 0.34117058e-01

• Coefficients for tinko to node 1

at 1: 0: 1) -0.43298974e01	 Std( 1: 0: 1) 0.15696470e.01
at 1: I: 0) 0.786?'9336e°05	 stdt 1: 1: 0) 0.46140118e.03

at 2: 0: 1) 0.10093966e.02	 Std( 2: 0: 1) 0.68127739e.O0
at 2: 1: 0) 0.83343516e. 05	 std( 2: 1: 0) 0.34310822e.03

at 3: : 0) 0.22327586e*05	 Stdt 3: 1: 0) O.13755908e03

* Linear/Nonlinear (ink classificatimi

C Wodel C to( Grota)

Lfrrear stiffness
Linear drping

(Wodel )toC Wode2 C

Linear stiffness
Linear daiirrg

C Nodel ) to C Wode3 )

Linear stiffness

No direct dairing term

* MSE estimate : 0.35119697e-01

lable 9.1. Estimated coefficients for a (1,1) polynomial

model for the first equation of motion of the

three degree-of-freedom linear system
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• Linear/Nonlinear link Classification

Mode2 ) to C Model

Linear stiffness
No direct daITin9 term

C Node2 3 to ( Grourd I

Linear stiffness
No direct darrçring term

C Node2 ) to C Node3 )

Linear stiffness
No direct dNrVirrg term

* Coefficients for system : 3rr

* Degree of freedom : 2

* Mass norroalised to :

• Coefficients for links to node 2

MC 1: 0: 0) -0.4M828125e-02	 af 1: 0: 0) 0.00000000e.00
MC 1: 0: 1) O.17816147e+01	 MC 1: 0: 1) 0.550203T7e-02
aC 1: 1: 0) 0.91058961e005 	 MC 1: 1: 0) 0.19153053ee03
at 1: 1: 1) O.t0345221e.05	 £( I: I: 1) 0A523l299e-03

at 2: 0: 0) 0.00000000es00	 MC 2: 0: 0) 0.00000000erOtJ
at 2: 0: 1> 0.8148l304e'Ol	 SC 2: 0: 1) 0.759a5685e-01
MC 2 1: 0) 0.35547785e*05	 Sf 2: 1: 0) 0.52211178.02
MC 2: 1: 1) -0.95321309er04 	 Sf 2: 1: 1) 0.49578532e-03

MC 3: 0: 0) 0.00000000e.00	 s( 3: 0: 0) 0.00000000e+O0
MC 3: 0: 1) 0.3l853068e0l	 SC 3: 0: 1) 0.28017942e-01
at 3: 1: 0) 0.333846'.Be.05 	 SC 3: 1: 0) 0.54613537e*02
MC 3: 1: 1) 0.34854004e.04 	 Sf 3: 1: 1) 0.17973383e-03

MOE estimate : 0.47'3l5024e-0l

* Coefficients for system : Ori

Degree of freedom : 2

* Mass normal ised to :

* Coefficients for Links to node 2

	

at 1: 1: 0) 0.91058961e*05	 Std( 1: 1: 0) O.63332727e403

	

.1 2: 1: 0) -0.35547785e05	 Std( 2: 1: 0) D.472904l7e+03

	

at 3: 1: 0) 0.33084648e+05 	 Std( 3: 1: 0) 0.23399791e+03

• liSt estimate : 0.17600454e.0O

Table 9.2.	 Estimated coefficients for a (11) polynomial

model for the second equation of motjcrn of the

three degree-of-freedom linear system
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* Linear/Nonlinear link clasifficatlon

Node3 ) to C Model

Linear stiffness
Linear danping

(Node3 )to(Ilode2

Linear stiffness
No direct daeing term

( Node3 I to ( Grotaid )

Linear stiffness
Linear damping

* Coefflcients for system : 3o

* Degree of freedom : 3

• Mass normalised to :

Coefficients for Links to node 3

at 1: 0: 0) 0.19531250e-DZ	 SC 1: 0: 0) 0.00000000e00
at 1: 0: 1) 0.6a381968e*01	 SC 1: 0: 1) 0.176l2873e*O0
at 1: 1: 0) -0.38501?66e*05	 CC 1: 1: 0) 0.19125078e.03
at I: 1: 1) -0.27414263e.04	 it 1: 1: 1) 0.Z3589864e-03

at 2: 0: 0) D.00000000e00	 ii 2: 0: 0) 0.00000000e+00
at 2: 0: 1) 0.59192163e.00	 at 2: 0: 1) 0.16419583e-02
at 2: 1: 0) 0.462614l4e.05	 CC 2: 1: 0) 0.1TT9895eO3
at 2: 1: 1) 0.l3839548e.04 	 it 2: 1: I) 0.48091511e-04

at 3: 0: 0) D.00000000e00 it 3: 0: 0) 0.00000000e.00
at 3: 0: 1) -0.713l.0771e.Dl	 at 3: 0: 1) 0.1317547'3e*00
at 3: 1: 0) O.30049697e.05	 St 3: 1: 0) D.11621576e03
at 3: 1: 1) -D.33735208e+04	 ii 3: 1: 1) 0.22124090e-03

* iSt estimate : 0.64)420l1e-Ol

Coefficients for System : 3n

Degree of freedom : 3

Mass r,ormaLised to : 1

* Coefficients for (inks to node 3

at 1: 0: 1) 0.68381968e*0l	 atd( 1: 0: 1) 0.715l457le.OD
a( 1: 1: 0) -0.38501766e+05 	 std( 1: 1: 0) 0.23937126e+03

at 2: 1: 0) 0.46261414e.05	 atd( 2: 1: 0) 0.1527122Be03

at 3: 0: 1) 0.71340771e01	 itd( 3: 0: 1) 0.96666116e+0Q
at 3: 1: 0) 0.30049697e.05 	 itd( 3: 1: 0) 0.17690149e+03

MOE estimate : 0.66241875e-01

Table 9.3. Estimated coefficients for a (1,1) polynomial

model for the third equation of motion of the

three degree-of-freedom linear system
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* LinearfNonlinear link clsssific.tjc*,

(Node? )to(Nodel

Linear stiffness

Nonlinear daTping : order 3

Node? ) to C Groud

Linear stiffness
Nonlinear dalTping : order 3

Node? ) to ( Node3

Linear stiffness

No direct da,ping tera

* Coefficients for systee :

• Degree of freedas : 2

Mess normelised to :

Coefficientt for links to node 2

CC 1: 0: 0) 0.693125Oe.*00 cC : 0: 0) O.00000000e00
at 1: 0: 1) -0.1677136e.O2	 cC 1: 0: 1	 0.67426652e+o0
cC 1: 0: 2) 0.18631172e+O1	 IC 1: 0: 2) 0.161720?Te-03
CC I: 0: 3) 0.22Bó93D1e03	 a( 1: 0: 3) O.)6702117e.D0
at 1: 1: 0) 0.B44525B6e*05	 cC C: 1: 0) 0.10851234e.03
cC 1: 1: 1) -0.17575605e03	 aC 1: 1: 1) 0.47063664e-Ot
cC 1: 1: 2) 0.75378062e+04 	 sC 1: 1: 2) 0.2331124&e-03
cC 1: 1: 3) 0.64341525e.06	 cC 1: 1: 3) D.65659981e-01

ci 2: 0: 0) 0.00000000e*00 sC 2: 0: 0) 0.00000000e00

cC 2: 0: 1) 0.15427815e+03	 cC 2: 0: 1) O.17893520e02
CC 2: 0: 2) 0.18304352e . 03	 cC 2: 0: 2) D.1309&69e.00
aC 2: 0: 3) 0.56297539e+04	 CC 2: 0: 3) 0.26246119e-*0l
a( 2: I: 0) -0.29348428e05	 IC 2: C; 0) O.90539646e+O1
cC 2: 1: 1) -0.15652909e05	 IC 2: 1: 1) 0.7437146e-02
cC 2: 1: 2) D.25861909e.06	 cC 2: 1: 2) 0.106I88Ce-Ot
cC 2: 1: 3) -0.18025930e06	 IC 2: I: 3) 0.77158795e-04

C( 3: 0: 0) 0.00000000e*00 sC 3: 0: 0 0.0000(JOe.*Q

CC 3: 0: 1) -0.15205666e*01 	 IC 3: 0: 1) 0.56255874e-02
CC 3: 0: 2) -0.19376213e+02	 ( 3: 0: 2) 0.15325763e-D1
cC 3: 0: 3) -0.75451012e'02	 cC 3: 0: 3) D.17021768e-01
•( 3: 1: 0) 0.30748771e.05	 cC 3: I: 0) 0.344A215e02
cC 3: 1: C) 0.29437680e.04	 IC 3: 1: 1) 0.2944B93e-02
'C 3: 1: 2) 0.38126682e.03	 CC 3: 1: 2) 0.12590650e-05
at 3: 1: 3) -0.89329586.05	 IC 3: 1: 3) 0.25751923e-02

* MOE estimate : 0.73786420e00

* Coefficients for lysteili :

• Degree of freedcal : 2

• Mass normal, iced to :

• Coefficients for links to node 2

a( 1: 0: 1) -0.t6771366e.02 Itd( 1: 0: 1) 0113084&e02
at 1: 0: 3) O.22g69301e+03	 .td( 1: 0: 3) 0.24621257e+03
aC 1: 1: 0) 0.84452586..05	 atd( I: 1: 0) D.34717124e04

aC 2: 0: I) 0.1542Th15e+03 ItdC 2: 0: 1) 0.34635288e02
cC 2: 0: 2) -0.18304352e.03 stdC 2: 0: 2) 0.25703OO9e03
IC 2: 0: 3) 0.56297539e*04 itdC 2: 0: 3) 0.24906716a.0.4
IC 2: 1: 0) -0.29348428.05 etdt 2: 1: 0) Q.43054966en04

.1 3: 1: 0) 0.307487fle.05 stdC 3; I: 0) 0.19617064e04

• NSE eitite : 0.90I5275e'00

Table 9.4. Estimated coefficients for a (1,3) polynomial

model for the second equation of motion of the

three degree-of-freedon nonlinear system
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CHAPTER 10

IDENTIFICATION OF TIME-DEPENDENT PARAMETERS

One of the first assumptions which was made in order that parameter estimation

techniques could be applied was that the parameters have no explicit

time-dependence, i.e. the restoring forces vary in time only because y(t) and '(t)

vary. The purpose of this chapter is to indicate that it is possible to obtain useful

information about the system even if this assumption is relaxed. The initial impetus

for this work was provided by the arrival of some experimental data from the Los

Alamos National Laboratories, New Mexico, U.S.A. The analysis of the data carried

out by the Los Alamos group seemed to indicate that the stiffness of the structure

had changed during the course of the experiment. Recorded here is an attempt to

refine that analysis.

10.1. The Experimental Data - Analysis in Batches.

The data was provided on a cartridge tape. The experiment concerns the excitation of

a scaled structure mounted on a slide table using a recorded earthquake excitation.

The structure under test is depicted in Figure 10.0 ( taken from (67)). Two channels

of data were provided, the base acceleration Yb and the response acceleration Ym

The data are shown in Figure 10.1. 4000 points were provided in each channel;

however, only the points 1-2500 were considered for this work as the input signal

appeared to be negligible outside this range. The sampling interval was 0.001 seconds.

The data has also been high-pass filtered with cut-off 18 Hz.

The Los Alamos group integrated the relative acceleration Ô 	 Ym - Yb to form the

relative velocity ô and the relative displacement b. They then assumed a linear

equation of motion for the system of the form
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(k/in)b + (c/m)b -	 Ym	 (1)

and used a least-squares estimator to obtain parameter estimates for k' k/rn and c'

= c/rn. An overall fit using all data points 200-1800 gave values of c' = 49.12 and k'

= 161280. They then divided the data into three disjoint sets and estimated

parameters for each set, the results were

Points	 k'

	

100 - 600	 170 460.	 53.26

	700 - 1000	 150 560.	 47.19

	

1000 - 1500	 154 910.	 41.71

The stiffness for the first batch is higher than that for the second, while the second

and third batches agree quite well. The Los Alamos group concluded from this that

the structural stiffness had changed somewhere in the first batch, possibly through

failure of the structure. Using the model parameters to predict the data in each batch

they then compared it with the measured data, and obtained reasonable agreement.

This gives some confidence in the estimated parameters.

Initially the present study used the same approach as the Los Alamos group. The

relative acceleration was integrated twice using the trapezium rule to obtain the

relative velocity and displacement. Unfortunately, the integrations introduced spurious

low-frequency trends into the relative displacement data as described in Chapter 6.

These proved to be impossible to remove by subtracting low-order polynomial trends.

Because the data had already been high-pass filtered with a cut-off at 18 Hz, the

trends were removed by re-filtering all the data with the same cut-off. This also had

the effect of fixing the initial conditions. The integrated data is shown in Figure 10.2.

At the same time, the correlation test of Billings (68) was applied in order to test for

nonlinearity. The results shown in Figure 10.3 indicate that the cross-correlation

function is well within the 95% confidence interval for a null result. This indicates

that the system is either linear or has a purely odd nonlinearity.
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Because one cannot tell what the effect of a filter transient will be, the first analysis

discarded the first 500 points of data. The sample points were renumbered so that

point j in the following discussion corresponds to point j+500 in the original data.

The original sample numbers will be given in brackets where appropriate. Points 0 -

1800 (500-2300) were divided into batches of 200 points and parameters were

estimated for a model of the form (1). The standard recursive least—squares estimator

described in Chapter 4 was used. The results were:

Points	 k'
	

± error

	

0 - 200
	

159 116
	

56 195

	

200 - 400
	

156 993
	

32 783

	

400 - 600
	

163 279
	

45 540

	

600 - 800
	

162 096
	

34 513

	

800 - 1000
	

159 723
	

35 161

	

1000 - 1200
	

185 572
	

5 777

	

1200 - 1400
	

194 912
	

3 976

	

1400 - 1600
	

188 371
	

3 685

	

1600 - 1800
	

188 319
	

1 443

Points	 C,
	

± error

	

0 - 200
	

55.83
	

112.6

	

200 - 400
	

46.03
	

62.23

	

400 - 600
	

48.44
	

85.75

	

600 - 800
	

39.98
	

64.95

	

800 - 1000
	

41.62
	

65.88

	

1000 - 1200
	

25.29
	

10.45

	

1200 - 1400
	

17.60
	

7.21

	

1400 - 1600
	

22.19
	

6.62

	

1600 - 1800
	

20.67
	

2.58

In order to check the accuracy of the estimations, the acceleration response was

calculated using the model parameters for each batch and then a comparison was
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made with the true data for each batch. The results are shown in Figures 10.4 to

10.12. In all cases one can see that the agreement is excellent. The MSE values for

the batches were:

Points	 MSE

	

0 - 200	 0.63

	

200 - 400	 0.43

	

400 - 600	 1.12

	

600 - 800	 0.51

	

800 - 1000	 0.51

	

1000 - 1200	 0.46

	

1200 - 1400	 0.54

	

1400 - 1600	 0.33

	

1600 - 1800	 0.17

The small values of the MSE values indicate that the parameter estimates are good.

This in turn indicates the the recursive least—squares algorithm used is converging to

an acceptable result in 200 points or less.

The stiffness values and their 95% confidence intervals are plotted in Figure 10.13.

These results appear to indicate that there is a change in stiffness from about 160

000 to about 190 000 at sample point 1000 (1500). This change in stiffness

corresponds to a change in the amplitude of the signals, they are reduced by a factor

of 10. No information is given about this sudden change in excitation level. The

change in stiffness may or may not be significant. The damping coefficient appears to

change also; it decreases steadily over the time interval considered. Having said this,

one should be careful of making statements about the damping given that the error

bounds on the damping coefficient are very large.

This study indicates that the change in stiffness which the Los Alamos group identified

must occur between points 0 and 500 of the original data as it is not indicated

above. The data was integrated once more, except this time only 100 points were
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discarded in order to eliminate the filter transient. In the following discussion sample

point j corresponds to sample point j+100 in the original data. A least—squares fit to

points I to 500 (100-600) gave values k' = 177 880 and c' = 52.29 which agrees well

with the results obtained from Los Alamos. Dividing the first 400 points into two

batches of 200 points gave the results

Points
	

k'
	

± error

	

0 - 200
	

213 074
	

121 194

	

200 - 400
	

175 219
	

100 382

Points	 C,
	

± error

	

o - 200
	

47.59
	

236.03

	

200 - 400
	

50.52
	

186.14

The stiffnesses for the first 400 points are therefore considerably higher than those

observed in the data following. The comparisons of predicted with measured data for

each batch are shown in Figures 10.14 and 10.15. The MSE values being 1.53 and

0.63 for the first and second sets respectively. The good agreement indicates that the

filter transient probably didn't cause too many problems. If one makes that

assumption, the results obtained above are very consistent with those of the Los

Alamos group. There appears to have been a marked decrease in stiffness over the

first 0.4 seconds of data. There is also an increase in stiffness at about 1 .5 seconds.

The damping appears to decrease steadily over the interval considered. The stiffess is

plotted against time in Figure 10.16, in this case the error bars are omitted.

10.2. Recursive Estimation with Forgetting Factors.

The analysis of the previous section depended on the rather arbitrary division of the

data into batches. This section introduces a method which allows one to examine the
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variation in the parameters from point to point.

Because the recursive least—squares (RLS) procedure is iterative, one would expect that

one could display the parameters at each sampling instant and thus show the variation

with time. However, the RLS estimator is completely equivalent to the normal

equations, which are an off—line estimator. They produce the same results on a given

set of data. This means that the parameters obtained are averaged over all the points

considered. The reason for this is that the recursion above effectively remembers all

past data so it tries to generate parameters which describe the data at long past

instants as well as the data at present. In order to show the variation of a parameter

with time one needs some way of making the algorithm forget past data values. One

limits the least—squares criterion to points in the recent past. This is achieved by

taking the squared error J at instant i+l to be

J i+1 - Xi i + ( (Ym)f+1 - (x)l^ITU3)l )2

One can see that if the 'forgetting factor' X is less than one, the effect of past data

is exponentially weighted out. The effect of this modification on the normal RLS

recursion relations is simple. One begins as before and iterates as follows (42),(50)

+ {')1+i((Ym)i+i -

[P]1	 -	 (1/X)( [1] - (K)1(x)11 T ). [P]j

=	 [PJ(x)+i

X + tx)1^1T[PJ1(x)11

A possible problem with this modification is that convergence of the algorithm is only

guaranteed mathematically if X is 1 .0. However, if one uses a X in the range 0.9 to

0.99 one can obtain information about the time—dependence of the parameters if the

procedure converges. The effect of using the modified algorithm is shown in the

following examples
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(1) The following SDOF system was simulated using a fourth order Runge-Kutta

procedure to integrate the equations of motion.

y + 40S' + k(t)y	 x(t)

The stiffness k(t) is 10000.0 for t < 6 and 5000.0 for t > 6. The excitation used

was a zero-mean Gaussian noise sequence of variance 10.0 band-limited into the

range 0-200 Hz. A time-step of 0.001 seconds was used corresponding to a sampling

frequency of 1 kHz. 4000 points of data from t = 4 to t	 8 were saved.

A parametric model of the form

my + cr + ky	 x(t)

was fitted. As the equation is non-homogeneous and the input has been measured one

can obtain the absolute values of c and k. All 4000 points of data were processed

each time. First, X = I gave the results shown in Figures 10.17 and 10.18 for the

stiffness and damping parameters as functions of time. The averaging effect on the

stiffness parameter is clearly shown. The final values of m,c and k for this run are

0.969, 40.4 and 6660.0 respectively. The identification was then repeated with X =

0.95. The final values in this case are 1.0000000, 40.000000 and 5000.0000, perfect.

The parameters are shown as functions of time in Figures 10.19-10.21. The stiffness

is shown in Figure 10.19. Figure 10.20 shows how quickly the stiffness parameter

makes the transition between values. Finally, the damping is shown in Figure 10.21.

There is a sharp notch in the damping graph corresponding to the stiffness transition

point. Figures 10.22 to 10.25 show the results of using X 0.97 and X 0.99 on

the stiffness graphs. The final parameters are almost as good. However, the transition

time between stiffnesses increases with X. In the figures above the transition should

take place at sample point 2000. The results are summarised in the following table:
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X	 Final Stiffness	 Transition Time

seconds (points)

	

1.00	 6660.00488	 2.0 ( 2000)

	

0.99	 5000.00005	 045 ( 450)

	

0.98	 5000.00005	 0.15 ( 150)

	

0.97	 5000.00000	 0.07 (	 70)

	

0.96	 5000.00005	 0.07 (	 70)

	

0.95	 5000.00000	 0.06 (	 60)

(2) The next example is of a SDOF system which has for it's equation of motion the

forced damped Mathieu equation. This type of equation is of considerable interest in

the study of randomly excited marine structures (69). The equation used was

y + 40y + 10.( I + .cos(2Tt) )y	 x(t)

The same excitation and sampling interval was used as in the previous example. As a

random excitation was used, there were none of the stability problems associated with

harmonic forcing of a Mathieu oscillator. Again, 4000 points of data

( 4.0 ( t 8.0 ) were taken corresponding to four periods of the stiffness variation.

The first parameter/time graphs were obtained using X = 1. The results are shown in

Figures 10.26 and 10.27. As before the stiffness curve tends towards an average value.

The damping curve is little disturbed. The final values for m, c and k(t) are 0.9557,

40.503 and 8022.6 respectively. The correct values are 1.0, 40.0 and 15000.0. The

identification was then repeated using X = 0.9. The stiffness graph is shown in Figure

10.28; the harmonic variation is captured very well indeed. The damping graph

(Figure 10.29) shows a little disturbance to the damping estimate. However, the final

values for the parameters are estimated as 1.0002, 40.03 and 14988.9 showing

excellent agreement with the true values. The stiffness graphs for intermediate values

of X ( 0.975, 0.95, 0.925 ) are shown in Figures 10.30-10.32. The results are

summarised in the following table:
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Final Stiffness
	 Final Damping
	 Final Mass

1.00

0.975

0.95

0.925

0.90

8022.6333

14386.319

14958. 351

14982.580

14988. 971

40. 503830

41.470818

40.109737

40. 049244

40.037243

0.95570004

0. 99861252

1.0004003

1.0002798

1.0002012

The results from these simulations indicate that the 'forgetful' recursive least—squares

algorithm can be used to track the time—variation of structural parameters. The next

task is to apply the method to the data provided by the Los Aiamos group.

Points 100 to 2500 from the original data set were considered. To recap, the first 100

points were removed as one would expect them to be corrupted by a filter transient

introduced during the integration procedure. The stiffness graph obtained with X = 1

is shown in Figure 10.33. There is a fairly sharp drop in stiffness over the first 400

points after which the graph settles to an averaged value. The damping (Figure 10.34)

rises to a maximum over the first 400 points then settles. Next the identification was

repeated with X = 0.95. In this case, the alogrithm clearly failed to converge. The

procedure was repeated with X = 0.99. In this case the results obtained are quite

good. As shown in Figure 10.35, the stiffness falls over the first 400 points as before;

however, now there is a small variation between points 400 and 1400 and finally a

rise to a steady plateau between points 1400 and 2400. The final stiffness in this case

is 182568 which agrees well with the value for the final batch obtained in section 1.

The graph also agrees quite well with that obtained previously (Figure 10.16). The

damping graph (Figure 10.36) shows the steady decline in damping indicated by the

batch analysis. The results of using the 'forgetful' estimator are therefore consistent

with the earlier analysis of the data in batches which are in turn consistent with the

analysis by the Los Alamos group.

Thanks are due to Drs C.R.Farrar and E.Endebrock of the Los Alamos National

Laboratories, U.S.A. for providing us with a chance to try out these methods on
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some experiment.al data. Thanks are also due to the sponsors of the testing program,

the United States Nuclear Regulatory Commission's Office of Nuclear Regulatory

Research for the permission to include the results of the study in the thesis.
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FIgure 10.0.	 Geometry of the scaled structure under test in

the Los Alainos Experiments.
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FIgure 10.1 Base acceleration and response acceleration data
provided by the Los Alamos group.
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Figure 10.2 Relatfve displacement and velocity data obtained
from trapezium rule integration and high-pass
filter.

Figure 10.3 Cross-correlation function for the nonlinear
structure detection test.
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Figure 10.4 ComparIson of measured data and predicted data
for batch 1.

Figure 10.5 Comparison of measured data and predicted data
for batch 2.
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FIgure 10.6 Comparison of measured data and predicted data
for batch 3.

Figure 10.7 Comparison of measured data and predicted data
for batch 4.
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Figure 10.8 Comparison of measured data and predicted data
for batch 5.

Figure 10.9 Comparison of measured data and predicted data
for batch 6.
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FIgure 10.10 Comparison of measured data and predicted data
for batch 7.

Figure 10.11 ComparIson of measured data and predicted data
for batch S.
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Figure 10.13 Estimated stiffnesses associated with each batch
together with the 95% confidence intervals. Each
stiffness Is assigned to the centre point of the
batch.
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Figure 10.14 ComparIson of measured data and predicted data
for points I to 200 (100 to 300).

Figure 10.15 Comparison of measured data and predicted data
for points 200 to 400 (300 to 500).
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Figure 10.16.	 Variation In estimated stiffness over the whole

data set.

Figure 10.17 Estimated stiffness parameter for each iteration,
points I to 4000 (t - 4 seconds to t - 8).
Example (I), > - 1.
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Figure 10.18 EstImated damping parameter for each
Iteration, points 1 to 4000 (t - 4 seconds to
t - 8). Example (1), X - 1.

Figure 10.19 EstImated stiffness parameter for each Iteration,
points I to 4000 (t - 4 seconds to t - 8).
Example (1), X - 0.95.
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Figure 10.20 Estimated stiffness parameter for each iteration,
poInts 1900 to 2100 (t - 5.9 seconds to t - 6.1).
Example (1), X - 0.95.

Figure 10.21 Estimated damping parameter for each iteration,
points I to 4000 (t - 4 seconds to	 - 8).
Example (1), ) - 0.95.
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FIgure 10.22 Estimated stiffness parameter for each iteration
points I to 4000 (t - 4 seconds to t - 8).
Example (1), X - 0.97.

Figure 10.23 Estimated stiffness parameter for each iteration,
points 1900 to 2100 (i - 5.9 seconds to t - 6.1).
Example (1), X - 0.97.
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Figure 10.24 Estimated stiffness parameter for each iteration
points 1 to 4000 (t - 4 seconds to t - 8).
Example (1), X - 0.99.

Figure 10.25 Estimated stiffness parameter for each iteratfon
points 1900 to 2500 (t - 5.9 seconds o t - 6.5).
Example (1), X - 0.99.
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Figure 10.26 Estimated stiffness parameter for each iteration,
points 1 to 4000 Ct - 4 seconds to t - 8).
Example (2), X - 1.

Figure 10.27 EstImated damping parameter for each
Iteration, points I to 4000 (t - 4 seconds to
- 8). Example (2), X - I.
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Figure 10.28 Estimated stiffness parameter for each Iteration,
points 1 to 4000 (t - 4 seconds to t - 8).
Example (2), ) - 0.90.

Figure 10.29 Estimated damping parameter for each
Iteration, points I to 4000 (t - 4 seconds to
t - 8). Example (2), X - 0.90,
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Figure 10.30 EstImated stiffness parameter for each Iteration
points I to 4000 (t - 4 seconds to t - 8).
Example (2), >. - 0.975.

Figure 10.31 Estimated stiffness parameter for each iteration,
points 1 to 4000 (t - 4 seconds to t - 8).
Example (2), X - 0.95.
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Figure 10.32 Estimated stiffness parameter for each Iteration,
points I to 4000 (t — 4 seconds to t — 8).
Example (2), ). — 0.925.

Figure 10.33 Estimated stiffness parameter for each iteration,
points 100 to 2500 (t — 0.1 seconds to t — 2.5).
Los Alamos data, X - I.
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Figure 10.34 Estimated damping parameter for each iteration,
points 100 to 2500 (t - 0.1 seconds to t - 2.5).
Los Alamos data, X - 1.

Figure 10.35 EstImated stiffness parameter for each Iteration,
points 100 to 2500 (t - 0.1 seconds to t - 2.5).
Los Alamos data, X - 0.99
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Figure 10.36 Estimated damping parameter for each iteration,
points 100 to 2500 (t - 0.1 seconds to t - 2.5).
Los Alamos data, X - 0.99
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CHAPTER 11

CONCLUSIONS AND FURTHER WORK

11.1. Conclusions.

1. It is shown that care is needed in the use of the Hubert transform to detect

nonlinearity if the resuilts are to be interpreted unambiguously. It is important to

recognise that the asymptotic structure of an FRF may be as important as it's pole

structure when one is attempting to apply the Hubert transform relations. A correction

term is given which generates Hubert transform pairs even if the FRF under

investigation is not square —integrable. The Hilbert transform conventions must be

tailored to the Fourier transform conventions.

2. The Masri/Caughey procedure has been implemented with an improved interpolation

scheme which can generate both continuous and differentiable surfaces. The

extrapolation problem is solved by operating on a reduced data set in the phase

plane. The results for simulations are an improvement on those of Masri and Caughey

for the types of systems they studied. The analysis is extended to systems with

singular restoring forces. It is verified that hysteretic systems can be modelled in the

sense that the energy loss through hysteresis is modelled by an addition to the viscous

damping term. It is shown that quite high—order models are needed for systems with

non—polynomial restoring forces; in addition, the models for these systems are input

dependent.

3. The extension of the Masri/Caughey procedure to MDOF systems is examined. It is

shown that the procedure can be very time—consuming and the parameters obtained

can be biased. The effects of innaccuracies in the measured mass matrix and modal

matrix are demonstrated. It is shown that a simple modification allows one to

overcome the problems caused by an innaccurate modal matrix.
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4. It is shown using computer simulation that direct Least—squares (LS) parameter

estimation is considerably faster and more accurate than the Masri/Caughey procedure.

In addition, one can estimate the mass of the system and find confidence limits for

the parameters. It is shown that one can use direct LS methods to obtain

Masri/Caughey type Chebyshev expansions in a fraction of the time required by the

interpolation based approach. A comparitive study is made of several of the more

well—known LS estimators. Singular value decomposition and orthogonal estimation are

seen to provide the most foolproof estimators while orthogonal estimation and the

normal equations are fastest. A comparison is made with the Masri/Caughey procedure

for SDOF systems.

5. It is shown that by using transmissibility data for an SDOF system one can obtain

the restoring force up to an overall scale without needing an estimate of the mass.

The approach is extended to SIMO systems and it is demonstrated using simulations

that one can find all parameters for an MDOF system by exciting it at one point

only, as long as the system mass matrix is diagonal. The problem of linear

dependence caused by off—diagonal terms in the mass matrix is identified. A

comparison is made with the Masri/Caughey procedure for MDOF systems.

6. It is demonstrated that time data from simulations can be integrated simply and

accurately using a computer. Differentiation is less accurate, it appears to introduce

phase lags and also magnifies high—frequency noise. A comparitive study of a variety

of integration and differentiation methods is made, both in the time—domain and the

frequency domain. It is shown that unwanted trends in the data can be removed by a

variety of methods. The trapezium rule emerges as the preferred method of

integration as other methods require the data to be low—pass filtered. One concludes

that the recommended experimental procedure is to measure force and acceleration

and obtain the velocity and displacement data by integration.

7. It is shown using simulations that one can choose various types of input force for

the restoring force method which minimise the amount of data processing required. In
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almost all cases a simple trapezium rule integration followed by a linear trend removal

is sufficient to produce accurate velocity and displacement data from 'measured'

acceleration data. The inputs based on harmonic forcing are shown to introduce linear

dependence between displacement and acceleration, this makes tham less suitable for

parameter estimation than for producing a force surface. The input which appears to

emerge as the most useful is a band-limited random signal. This input gives good

coverage of the phase plane, producing a large expanse of force surface, allows a

simple integration procedure and produces accurate parameter estimates. These

conclusions apply equally well to SDOF and MDOF systems, provided the signal

excites all modes of interest.

8. A number of experiments are carried out on linear and nonlinear SDOF systems,

Specifically data is obtained from a set of nonlinear analogue circuits and from an

impacting cantilever beam. The results for the circuits are consistent with those

obtained by other methods. The parameters for the cantilever agree well with

theoretical predictions. One concludes that the method can accurately identify

experimental SDOF systems. It is shown that time delays in the measured data can be

effectively removed by interpolation. Using simulations it is shown that the

identification procedure is fairly insensitive to measurement noise as long as low

frequency components are filtered out, if allowed to remain they can seriously affect

the integration of the data.

9. The Direct Least-squares method is apilied to a linear three degree-of-freedom

experimental system with lumped masses. Estimates of the mass and stiffness matrices

are obtained which show good agreement with the theoretical predictions. The estimate

of the damping matrix is innaccurate because the damping forces in the system are

very small. It is shown that the mass estimates correspond to the actual physical

masses in the system. The method is applied to the same system with a cubic velocity

dependent force applied at one of the masses, the type and location of the

nonlinearity is correctly identified by the method.
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10. A sample of time data was provided from a structural test at Los Alamos

National Laboratories in the U.S.A. where the structural stiffness was thought to have

changed during the course of the experiment. The data was analysed using two

methods which allow one to capture time variation of parameters, batch analysis and

Recursive Least—Squares (RLS) analysis with an exponential forgetting factor. The

conclusion was that the system stiffness dropped sharply, settled to a constant level

and then rose slightly. The damping appeared to decrease steadily throughout the test.

These conclusions are consistent with those of the Los Alamos group. The RLS

algorithm with forgetting factor is shown to correctly track time—varying parameters in

two simulated structural systems, in one the parameter change is a step function, in

the other the variation is periodic.

Overall, one concludes that the restoring force methods, particularly those based on

direct least—squares parameter estimation provide a powerful identification technique for

nonlinear systems. In principle, one can actually obtain the equations of motion for a

finite—order model of the system under test. This is beyond the capabilities of most

other methods. In addition, one also has the possibility of tracking time—variation in

the parameters of interest.

11.2. Suggestions for Further Work.

If the Hubert transform is ever to be of use in identifying specific types of

nonlinearity, a large amount of work remains to be done. A useful exercise would be

to calculate the analytical form of the Hilbert transform for the FRF of a specific

nonlinear system, where the FRF has been obtained from a harmonic balance

approach. The integrals which one would have to evaluate are very difficult even for

simple nonlinearities. However, if closed form expressions were available for Hilbert

transforms one might see a way of extracting more detailed information about systems

from the transforms.
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2. The restoring force surface methods described in this work are all based on the

general form of Newton's second law for a lumped—parameter structural system. A

possible area of research would be to apply parameter estimation techniques to other

systems where the form of the equations is known or a specific interaction term is

known to be present. An extension of the approach which allowed the study of

continuous or distributed parameter systems would be of interest.

3. A more careful study of hysteretic systems is required. It seems unsatisfactory to

simply model hysteresis by a viscous damping term. One possible approach is to use a

Bouc—Wen type model and estimate parameters. The problem with this idea is that

the parameters appear in the model nonlinearly; for this reason a nonlinear

least—squares estimator would be required.

4. In order to test the parameter estimation procedures experimentally it would be

very useful to have a multi—degree—of—freedom system where one could control the

type and location of the nonlinearity. One possibility would be to simulate an MDOF

system using an analogue circuit in the same way that the ETH box simulates SDOF

systems.

5. It is assumed throughout this work that any noise in the system is uncorellated and

can be transferred to the input. In general, neither of these assumptions is justified.

Failure to take account of this introduces bias into the estimated parameters. The way

to eliminate this problem is add a nonlinear noise model during the parameter

estimation stage. Another useful adjunct to the procedure would be to introduce model

validity tests as used in NARMAX ( nonlinear difference equation ) modelling.

6. There are a number of specific situations where one can see the procedures being

of use experimentally. One application which is being pursued at the moment concerns

the identification of damping and stiffness coefficients for bearings. At low levels of

excitation (unbalance) this simply requires one to identify a two degree—of—freedom

linear system. At higher levels of excitation nonlinear effects become important;

435



however, the form of the nonlinear forces is known in some cases from Reynold's

equation, so parameter estimation techniques could be applied. An interesting feature of

this work is that the displacement of the rotor is measured using a non—contact

transducer, this signal is then differentiated to produce velocity and acceleration data.

This is in direct contrast to the preferred situation where the acceleration is

measured. This suggests that more theoretical work should be done on the numerical

differentiation of time data. In particular one would need to understand the

mechanism by which phase—lags appear to be introduced into the estimated derivative.

7. One could investigate more sophisticated methods of detecting time dependence in

structural parameters than recursive least—squares, e.g. random walk methods. These

techniques could then be used in specific situations i.e. it has been suggested that one

could study electro—rheological materials where the system stiffness varies with the

applied electromagnetic field strength.
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APPENDIX A

FREQUENCY DOMAIN REPRESENTATIONS OF 5(t) AND £(t)

Fourier's theorem for the Fourier transform gives

r
f(t) =	 1	 d e10)t 

1	 dr eO)T f(r)
2w -	-

i.e.

r
f(0)	 I	 d	 dr e ()T f(r)

	

2i- 	 I.

I
dr_iIde_Tf(r)

-	 2TJ_	 J

Now, the defining property of the Dirac 5 —function is

f(0) - ] dr 5(r) f(r)

So one can make the identification

5(r) -	 I	 dz el)T
2 - -

or, equally well,

+co

5(r) - ._j_ 1 d e1
2r

Now, consider the integral

1(t)	 J d e L)t	 t > 0

-	 0)

1+co

- 21 d sin(0)t)
0	 0)

Taking the one—sided Laplace transform of both sides yields
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ç+co

L(l(t))	 r(p) = 21	 dt eP t	dLz) sin(Ot)
Jo	 0)

assuming that one can interchange the order of integration, one finds

rir°'
T(p)	 21	 d0)	 dt ePt sin(0t)

J 0 	 I_Jo	 JO)

f+co

= 2iId
Jo	 22

hr

p

Inverse transforming gives 1(t) = hr if t > 0. It is obvious that a simple change of

variables would give 1(t) = —hr if t < 0. So 1(t) = hr.e(t) and one has the integral

representation

+

=	 1 1 d e10)t
iTi_co	0)

or ( in F )

£(t) = _i I do et
0)

A simple application of the shift property for Fourier transforms gives ( in F_ )

•_j	 do. eI0)t = e1t e(t)
hr -co
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APPENDIX B

PROPERTIES OF CHEBYSHEV POLYNOMIALS

B.1. Definitions and Orthogonality Relations.

The basic properties are now very well known (32,33). However, for the sake of

completeness they are described here along with one or two perhaps less well—known

properties.

The definition of the Chebyshev polynomial of order n is

T(x)	 cos( n.cos 1 (x))	 lxi	 I

T(x)	 cosh( n.cosh(x))	 lxi	 1	 (B.1)

It is not immediately obvious from this definition that T(x) is a polynomial.

However, it is a simple matter to show that this is indeed the case. For example

T3(x) - cos(3cos(x))

4 cos 3 (cos(x)) - 3 cos(cos(x))

= 4x3 - 3x

The Chebyshev polynomials are orthogonal on the interval [-1 ,1 J with weighting factor

o.(x) = ( I - x2 )	 which means that

+1

dx (x)Tn(x)Tm(x)	 ( 1 + ô nO	 (B.2)
i_I
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Again, the proof of this is simple. One makes the substitution y = cos 1 (x) then

using the definition of the T(x) changes the integral above to

rI.
dy cos(my)cos(ny)

Jo

This integral is easy to evaluate. It should be familiar from the theory of Fourier

series. In fact expansion in a Chebyshev series is entirely equivalent to the more usual

Fourier sine and cosine expansions. Returning to the integral, one has

II.
dy cos(my)cos(ny) = 0
	

if	 m^n

if	 m=n=0

-	 if	 m=n^O

With the help of the orthogonality relation (A.2) it is possible to expand any given

function in terms of a summation of Chebyshev polynomials i.e.

N
f(x) =	 a1 T1(x)
	

(B.3)

using the relation (A.2) gives for the coefficients

f+l
a1 - X(i) 

j 
dx i(x)f(x)T1(x)

-1

where X(i) = 1/ if i ^ 0 and X(i) = 2/T if i	 0.

The extension to a double series is trivial. If one desires an expansion

f(x,y)	 .	 .	 C jj Ij(X)Ij(Y)
i=0 j=O

+1 +1

= X(i)X(J)J	
J 

dxdy (x)o(y)f(xy)T1(x)T(y)

-1 -1

440



One can also use the orthogonality relations to show that the Chebyshev

representation of a function is unique ( up to the order of the expansion ). The

proof is straightforward. If

n	 n
f(x) =	 a1 T 1 (x)	 b T1(x)

i=O

then multiplying by o(x)T(x) and integrating over [-1 ,I] gives

a = b

B.2. Recurrence Relations and Clenshaw's Algorithm.

Like all orthogonal polynomials, the Chebyshev polynomials satisfy a number of

recursion relations. Arguably the most useful being

Tn+i(x) - 2x T(x) - T _i( x )	 (B.4)

Proof is elementary. If y = cos 1 (x) then

Tn+i(x) - cos((ri+1)y) = cos(ny)cos(y) - sin(ny)sin(y)

Tn_i(x)	 cos((n-1)y) - cos(ny)cos(y) - sin(ny)sin(y)

Tn+l(x) + Tn_1(X) - 2cos(ny)cos(y) 	 2x T(x)

as required.

It is clear that if one starts the recurrence with T0(x) I and T1 (x) = x, by using

(A.4) one can obtain the value of T(x) for any n. This should be the preferred

means of evaluating T(x) on a computer, where function evaluations may be much
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more expensive than repeated multiplications and additions. ( Obviously there is a

threshold value of n beyond which one makes no saving by using the recurrence

realation. )

In order to evaluate how good a Chebyshev approximation to a function is, one would

compare the true function to the approximation at a number of points. This means

that one would be faced with many summations of the form

f(x) =
	

ai T1(x)

Fortunately, there is a much more economical means of evaluating this expression

than evaluating the polynomials and summing the series. One uses Clenshaw's

recurrence formula. One can use this to sum a sequence composed of any type of

polynomial which satisfies a recurrence relation. The version given here is specific to

Chebyshev polynomials. The general result is given in (33).

First define a sequence Yi by

Yn+2 - Yn+1 =0

y1 = 2x.yj-1 - Yi + a
1	(B.5)

Then

f(x)	
[ y - 2,.Yn+l + Yn+2 ] Tn(x)

+ ... + [ Yl - 2x.Yj+1 + Yj+2 I T1(x)

+ ... + [ a	 Y2	 Y2

after adding and subtracting y2 .TO(x). In the middle of this

summation one has
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+ [ Yi+l - 2x .y i+2 + Yi+3 I T1^1(x)

+ [ Yi	 - 2x.y i+l + Yii-2 I T(x)

+ [ y_i - 2x.y	 + Yj+1 I T 1 _1(x) +

so the coefficient of Yi+1 is

T^1(x) - 2x.Tj(X) + Ti...i(x)

which vanishes as a consequence of the recurrence relation

(A.4). Similarly all the coefficients vanish down to Y2' and

all that remains is the end of the summation

+ T2(x)

+T1(x) [ Yi -

+T0(x) [a0 -	
a

10( X) ( a 0 - Y2 ) + T1(x) yl	
0

so finally

f(x) - a0 + x.y1 - Y2	 (B.6)

Therefore, to evaluate f(x) for each x one simply passes downward through the

recurrence (B.5) to obtain Yi and Y2 and then evaluates the linear expression (B.6).

Unfortunately, no obvious two—dimensional analogue of Clenshaw's result seems to

exist. This means that in evaluating a double series one can only use this result if the

function f(x,y) splits into single—variable functions i.e f(x,y) = g(x) + h(y). Of all the
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examples considered in chapter two, only the Van der Pol oscillator of example 4

fails to satisfy this condition.

Clenshaw's recurrence can also be used algebraically in order to turn Chebyshev

expansions into ordinary polynomial expansions. However one should be aware that

this is not always a good idea (33).

B.3. Exact Chebyshev Coefficients for a Class of Simple Functions.

In Chapter 2, the Chebyshev expansion for the restoring force f(y,') is estimated for

a number of simple systems. In order to form an opinion about the accuracy of these

estimates, one needs to know the exact values of the coefficients. A function

sufficiently general to include the examples of chapter 2 is

f(x,y)	 ax3 + bx2 + cx + dy + ey2 + fx2y

The x and y are then subjected to a linear transformation

x -*	 x)-5 - (x-c2)/cl

	

y -	 = ( Y	 - (2 )/(3i

where

	

( Xmax - 'min )	 '	 a2	 C Xmax + Xmin )

	

1 ( YmaxYmin)	 '	 2(Ymax+Ymjn)

The form of f in the (,5') coordinates is given by

- f(x,y) = f( _1(),	 _ l (y) )

f( a1x + a, 3 iY + l2 )
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A little algebra produces the result

f(,y)

+	 + 5 5 +

where

= aa13

b = 3ac1 2a2 + ba1 2 +

3ac1c22 + 2bcqc2 + 2fa1a2j32

d - d31 + 2e3 1 32 + fc22f3l

- e32

- fa12f31

- 2fcy1c232

h - aa23 + bc2 2 + c&2 + d32 + e32 2 + fcy2232

One can now expand this function as a double Chebyshev series

iO jO	
I() I(Y)

One could use the orthogonality relations to find the coefficients Cj. However, it is

far simpler to use direct substitution i.e. consider the a 3 term

T3(x) - 43 - 35	 ,	 T()

=	 ( T3() + 35 )

- 1	 T3 () + .. I T()
4

The exact coefficients for f(,7) are

C00 =

Co1 =

Co2 -

Cl0 -

Cl i -
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C 1 2 - 0

C20 =

C2 1 -

C2 2	 0

C30 =

B.4. Least—squares and Chebyshev Series.

It has already been remarked that the Chebyshev polynomials are remarkably good

approximating polynomials. In fact, fitting a Chebyshev series to data is equivalent to

fitting a least—squares model. With little extra effort one can show that this is the

case for any orthogonal polynomials (70) as follows,

let {	 (x ), i = 1,.. o } be a set of polynomials orthonormal on the interval [a,b}

with weighting function (x). i.e.

J
dx o(x)j(x)j(x)	 ojj	 (B.7)

a

( The Chebyshev polynomials used in this work are not orthonormal. However the

polynomials (x) = (2/i).T(x) and 0(x) ir are. ) Suppose one wishes now to

approximate a function f(x) by a summation of the form

f(x)	
i0 c
	 j(x)

One can define a least—squares error functional by

b

I[c] -	 1 dx (x)	 f(x) - (x) i2	 (B.8)

bI dx o(x) I f(x) -	 Cj \j(x) 21=0
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expanding this expression gives

rb
l[c]	

j	
dx c(x) i f(x) 12

a

b
+ 2	 c 

'a 

dx (x)f(x)1(x)	 (B.9)

b

+ cjCj	
J 

dx
i=0 j=O a

Now, the Fourier coefficients a1 for an expansion are defined by

a	
- J 

dx o(x)f(x)t1(x)

a

Using this definition and the orthogonality relations (B.7) gives for (B.9)

b
n

I[c] - I dx u(x) I f(x) 1 2 - 2	 a1c1

'a	
1=0

+
i =0

Completing the square gives

b

J[cJ = ja 
dx o(x) I f(x) i2 - iO

n
+	 ( c - a1 )2

i =0

Now, the first two terms of this expression are fixed by the function f(x) and the

Fourier coefficients so minimising the error functional by varying c is simply a matter

of minimising the last term. This is only zero if a1 c. This shows clearly that

using a Fourier expansion of orthogonal functions is a least—squares procedure. The

only point which needs clearing up is that the usual least—squares error functional is
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J{c1] - jb dx	 f(x) - 1(x) 2

a

For the case of Chebyshev polynomials, changing variables from x to y = cos(x)

changes (B.8) from

+1

I[c 1 ]	 I dx (1 - x2 )	 i f(x) - I(x) 2

i_i

to

I{c1] -
	

dx I f(cos 1 (y)) - I(cos_ 1 (y)) 12

which is the required functional.
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APPENDiX C

NATURAL NEIGHBOUR INTERPOLATION

The purpose of this appendix is to outline the theory behind the natural neighbour

method of interpolation used in the earlier chapters. The method (36,71) is capable of

producing a C° or C1 surface ( C° is continous, C 1 is differentiable ), based on data

measured at irregularly spaced points in the plane. In order to keep the theory fairly

simple the theory for finding a C° interpolant is described. The description here

roughly follows that in (36).

The algorithm is based on the construction of the Dirichlet tesselation and it's

associated Delaunay triangulation. The triangulation has previously been used in

Engineering by practitioners of the finite element method as it can be used to

generate a mesh.

Consider a set of N points { P, i = I ,. . . ,N } distributed in the plane. Choosing two

points from this set m and P defines three regions in the plane

(i)	 Amn , which contains all points in the plane nearer to

m than to

(ii) A	 , which contains all points nearer to P than to P

(iii) Lmn , which is a line which bounds Amn and A	 and

contains all points equidistant from m and P.

If one now constructs the set Anq fl Anm ( where fl represents set—theoretic

intersection, in this case common area ), one can immediately see that this contains

all those points in the plane which are nearer to P than to bOth Pq and	 One
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can now extend this construction to form

:- A i fl An2 1 . . fl AN	 (C.1)

This set contains all points in the plane which have P as their nearest neighbour

from the set of 'sample' points { P}. T is called the tile ( or Voronoi or Thiessen

polyhedron ) of P with respect to { P }. The set of tiles { T, i = I ,. . . ,N }

together with their boundaries cover the plane. This subdivision of the plane is called

the JDirichlet tesselation. Equation (C.I) suggests the most direct method of

constructing the tesselation. The construction is demonstrated pictorially in Figure C.I

for an example where N = 4. As one might expect, much more efficient methods of

constructing the tesselation are known. Reference (72) outlines one such method -

that used in the TILE4 package developed by R. Sibson.

If two tiles Tn and Tm have a section of boundary in common, even if this is only

a single point, they are termed contiguous. If one now joins all pairs of points P

and m by a line segment if their tiles T and Tm are contiguous, the network of

line segments produced provides a triangulation of the plane called the Delaunay

triangulation. Pairs of points with contiguous tiles are termed natural neighbours. A

simple example of a triangulation is shown in Figure C.I.

Having constructed the tesselation for a set of points, one can then refine it by

defining the subtiles Tnm which contain all the points in the plane which have P as

their nearest neighbour from { P1} and m as their second nearest neighbour. The

subtile structure for the example in Figure C.I is shown in Figure C.2. If one

denotes the area of Tn by 'n and that of Tnm by 'nm' it is obvious that

K nm =
	 (C.2)

m

where the summation index m runs over the indices of all the natural neighbours of

P. If one defines the normalised subtile area Xnm = (nm1'kn equation (C.2) directly
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gives

Xmn
	 (C.3)

m

It is now possible to prove a ( non—trivial) result which is crucial to the interpolation.

If	 is the position vector of the point P, then

Xnrnm
	 (C.4)

m

This means that if a mass equal to the area of Tnm was placed at each m then the

centroid of these masses would be at P Equation (C.4) means that the Xmn'S

provide a local coordinate system in the neighbourhood of x. For this reason (C.4)

is called the Local Coordinate Property (LCP) (71). The >mn'S are also sometimes

called a barycentric or centre of mass coordinate system for obvious reasons.

As indicated, it is the LCP which allows one to construct the interpolation. Suppose a

new point P(s) is added at the point . One can refine the tesselation and

triangulation and obtain T(), the tile of P(x) and it's subtiles Tm(x). The index m

now runs over the indices of the natural neighbours of P(x). The tile and subtile

areas, K(x) and Km() can now be found, along With >m() = Km(X)/K(X). The Local

Coordinate Property now gives

X(X).X	 (C.5)
m

A consequence of this is that if m is the value of a function f defined at each point

m' the value of a C° interpolant for the function at 	 i.e. an estimate of f(x) is

given by

-

	

	 (C.6)
m

This interpolant is continuous ( and differentiable except at the data sites m )• It is

also possible to estimate gradients for the function f at each of the data sites, and
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these can be used to construct a differentiable or C 1 interpolant.

The C° interpolation is exact if the function is linear, i.e. if f() has the form

f() - c +
	

(C.7)

where	 is a vector of coefficients. The proof of this follows very simply from the

LCP.

f()	 X(X) m
m

Xm(x) (a+.x)
m

X(X) +	 . {	 X(X) 2 m )m

- c +

as required. The C 1 interpolation is designed in such a way that it is exact if f() is

a spherical quadratic.

f(x)	 & +	 .x + x.x

A general quadratic would contain a term of the form t.M.x where	 is a matrix of

coefficients.

The results described in this appendix actually extend to an arbitrary number of

dimensions because the LCP does not depend on the fact that one is working in the

plane. However, interpolating a function of say three variables is considerably more

difficult because the efficient construction of the Dirichiet tesselation is an open

problem in three dimensions or higher.

Software which constructs the tesselation/triangulation and carries out the interpolation

procedure is available in the form of the TILE4 package (73) from Professor R.Sibson

of the University of Bath.
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0

-77/k 0

79,
0

(1)	 A21 (ii)	 A21 fl A3

I

I
I

I

a'
-

— - -

(ill)	 A21 fl A23 fl A2	 - T2	
(lv)	 Tesselatlon and

triangulation

Figure C.1.	 The construction of the triangulation for a set of

four points.
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-	 Tile boundary

Subtile boundary
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\
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I
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I
112

.5

I
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I	 .5

T23 \ 132

I	 .5	 -

/	 P2	 .5
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.5 -7-
.5
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134
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-----S.. --

	

-	 143I
-I

T24	 --

I
I

\
I

I

.5I

I

I T4	 •F,4	
\

S

\'
\

Figure C.2.	 Refinement of the example in Figure C.1 showing the

subtile structure.

454



REFERENCES

1. Thompson (J.M.T.) & Stewart (H.B) 1986 Nonlinear Dynamics

and Chaos John Wiley and Sons, London and New York.

2. Porter (B.) 1969 Synthesis of Dynamical Systems Nelson.

3. Low (H.S.) 1989 Identification of Non-Linearity in

Vibration Testing B.Sc. Project, Department of Mechanical

Engineering, Heriot-Watt University.

4. Simon (M.) & Tomlinson (G.R.) 1984 Journal of Sound and

Vibration 90 pp. 275-282. Application of the Hubert

Transform in the Modal Analysis of Linear and Non-Linear

Systems.

5. Ahmed (I.) 1987 Developments in Hubert Transform

Procedures with Applications in Linear and Non-Linear

Structures Ph.D. Thesis, Department of Mechanical

Engineering, University of Manchester.

6. Billings (S.A.) 1980 lEE Proceedings 127D pp. 272-285.

Identification of Nonlinear Systems - A Survey.

7. Ewins (D.J.) 1984 Nodal Testing: Theory and Practice

Research Studies Press, Letchworth England.

8. Gifford (S.J.) 1989 Volterra Series Analysis of Nonlinear

Structures Ph.D. Thesis. Department of Mechanical

Engineering, Heriot-Watt University.

9. Tsang (K.M.) 1988 Spectral Analysis for Nonlinear Systems

Ph.D Thesis. Department of Control Engineering, University

of Sheffield.

10. Masri (S.F.) & Caughey (TiC) 1979 Journal of Applied

Mechanics 46 pp. 433-447. A Nonparametric Identification

Technique for Nonlinear Dynamic Problems.

455



11. Masri (S.F.), Sassi (H.) & Caughey (TiC) 1982 Journal

of Applied Mechanics 49 pp. 619-627. Nonparametric

Identification of Nearly Arbitrary Nonlinear Systems.

12. Masri (S.F.), Miller (R.K.), Sassi (H.) & Caughey (TiC)

1984 Journal of Applied Mechanics 51 pp. 391-398.

A Method for Reducing the Order of Nonlinear Dynamic

Systems.

13. Masri (S.F.), Miller (R.K.), Saud (A.F.) & Caughey (T.K.)

1987 Journal of Applied Mechanics 54 pp. 918-929.

Identification of Nonlinear Vibrating Structures:

Part I - Formulation & Part II - Applications.

14. Crawley (E.F.) & Aubert (A.C.) 1986 AIAA Journal 24

pp. 155-162. identification of Nonlinear Structural

Elements by Force-State Mapping.

15. Crawley (E.F) & O'Donnell (K.J.) 1986 AIAA Paper 86-1013

pp. 659-667. Identification of Nonlinear System

Parameters in Joints Using the Force-State Mapping

Technique.

16. Yang (Y.) & Ibrahim (S.R.) 1985 Journal of Vibration,

Acoustics, Stress and Reliability in Design 107

pp. 60-66. A Nonparametric Identification Technique for

a Variety of Discrete Nonlinear Vibrating Systems.

17. Shye (K.) & Richardson (M.) 1987 Proceedings of the

5th International Modal Analysis Conference pp. 756-761.

Mass, Stiffness and Damping Matrix Estimates from

Structural Measurements.

18. Al-Hadid (M.Ajjan) & Wright (J.R.) 1989 Journal of

Mechanical Systems and Signal Processing 3 pp. 269-290.

Developments in the Force-State Mapping Technique for

Non-Linear Systems and the Extension to the Location of

Non-Linear Elements in a Lumped-Parameter System.

456



19. Al-Hadid (M.AjJan) & Wright (J.R.) 1989 Paper presented

at the European Forum on Aeroelasticity and Structural

Dynamics, Aachen. Application of the Force-State Mapping

to the Identification of Nonlinear Systems.

20. Al-Hadid (M.Ajjan) 1989 Identification of Non-Linear

Dynamic Systems Using the Force-State Mapping Technique

Ph.D. Thesis. Department of Aeronautical Engineering,

Queen Mary College, London.

21. Hammond (J.K.), Lo (H.R.) & Seager-Smith (J.) 1987

Proceedings of the 5th International Modal Analysis

Conference pp. 1467-1473. Identification of

Nonlinearities in Vibrating Systems using Optimal

Control Techniques.

22. Lo (H.R.) 1988 System Characterisation and Identification

of Non-Linear Systems (with Particular Reference to

Hysteretic Systems) Ph.D. Thesis. Institute of Sound and

Vibration Research, University of Southampton.

23. Lo (H.R.) & Hammond (J.K.) 1989 Identification of a Class

of Non-Linear Structures Preprint. Institute of Sound and

Vibration Research, University of Southampton.

24. Mertens (M.), Van der Auweraer (H.), Vanherck (P.) &

Snoeys (R.) 1989 Journal of Mechanical Systems and Signal

Processing 3 pp. 37-54. The Complex Stiffness Method to

Detect and Identify Non-Linear Dynamic Behaviour of SDOF

Systems.

25. Hunter (N.), Paez (1.) & Gregory (D.L.) 1989 Proceedings

of the 7th International Modal Analysis Conference

pp. 381-389. Force-State Mapping Using Experimental Data.

26. Mohammad (K.S.) To be submitted 1990 Ph.D. Thesis.

Department of Mechanical Engineering, Heriot-Watt

University.

27. Ahlfors (L.) 1966 Complex Analysis Second Edition, McGraw Hill.

457



28. Muirhead (H.) The Physics of Elementary Particles Pergamon

Press, Oxford.

29. Goidhaber (M.) Dispersion Relations In Theorie de Ia

Particules Elementaire Hermann, Paris.

30. Rodeman (R.) 1988 Proceedings of the 6th International

Modal Analysis Conference pp. 37-40. Hubert Transform

Implications for Modal Analysis.

31. Goyder (H.G.D.) 1984 Proceedings of the 2nd International

Conference on Recent Advances in Structural Dynamics

Southampton, pp. 89-97. Some Theory and Applications

of the Relationship Between the Real and Imaginary Parts

of a Frequency Response Function Provided by the Hubert

Trans form.

32. Fox (L.) & Parker (1.) 1968 Chebyshev Polynomials in

Numerical Analysis Oxford University Press.

33. Press (W.H.), Flannery (B.P.), Teukolsky (S.A.) &

Vetterling (W.T.) 1986 Numerical Recipes - The Art of

Scientific Computing Cambridge University Press.

34. Mclain (D.M.) 1978 The Computer Journal 21 p.168. Two-

Dimensional Interpolation from Random Data.

35. Lawson (C.L.) 1977 Software for C' Surface Interpolation

In Mathematical Software III Academic Press.

36. Sibson (R.) 1981 A Brief Description of Natural Neighbour

Interpolation in Interpreting friultivariate Data edited by

V. Barnett. John Wiley and Sons, London and New York.

37. Wen (Y.K.) 1976 Journal of the Engineering Mechanics

Division pp. 249-263. A Method for the Random Vibration

of Hysteretic Systems.

38. Wright (J.R.) Generalised Mass Unpublished Lecture Notes,

Department of Mechanical Engineering, University of

Manchester.

45'.)



39. Peyton-Jones (J.C.) & Billings (S.A.) 1989 A Recursive

Algorithm for Computing the Frequency Response of a Class

of Nonlinear Difference Equation t4odels Preprint.

Department of Control Engineering, University of

Sheffield.

40. Strejc (V.) 1980 Automatica 16 pp. 535-550. Least-Squares

Parameter Est imat ion.

41. Leonaritis (I.J.) & Billings (S.A.) 1985 International

Journal of Control 41 Pp. 303-328. Input-Output Parametric

Models for Nonlinear Systems: Part I - Deterministic

Nonlinear Systems.

42. Billings (S.A.) Parameter Estimation Unpublished Lecture

Notes. Department of Control Engineering, University of

Sheffield.

43. Lawson (C.L.) & Hanson (R.J.) 1974 Solving Least-Squares

Problems Prentice Hall Series In Automatic Computation.

44. Korenburg (M.), Billings (S.A.) & Liu (Y.P.) 1988 An

Orthogonal Estimation Routine for Nonlinear Stochastic

Systems Research Report 307. Department of Control

Engineering, University of Sheffield.

45. Billings (S.A.) & Tsang (K.M.) 1988 Spectral Analysis for

Nonlinear Systems: Part I - Parametric Nonlinear Spectral

Analysis Research Report 337. Department of Control

Engineering, University of Sheffield.

46. Birkhoff (C.) & Maclane (S.) 1977 A Survey of friodern Algebra

Fourth Edition, Macmillan.

47. Forsyth (G.E.), Malcolm (M.A.) & Moler (C.B.) 1972

Computer Methods for Mathematical Computations Englewood

Cliffs N J : Prentice Hall.

48. ProceedIngs SERC Summer School 1985 Signal Processing for

Control Springer Verlag.

459



49. Foster (C.D.) & Mottershead (i.E.) 1989 Parameter

Estimation Techniques for Monitoring Machines and

Structures in Modern Practice in Stress and Vibration

Analysis edited by J.E.Mottershead. Pergamon Press,

Oxford.

50. Ljung (L.) & Söderström (T.) 1987 Theory and Practice of

Recursive Identification MIT Press.

51. Leech (J.W.) 1958 Classical Mechanics Methuen.

52. Jackson (J.fl.) 1979 Classical Electrodynamics Second

Edition. John Wiley and Sons, London and New York.

53. Collar (A.R.) & Simpson (A.) 1987 Matrices and Engineering

Dynamics Ellis Harwood Series in Engineering Science.

54. Stephens (J.E.) & Yao (J.T.P.) 1985 Data Processing of

Earthquake Acceleration Records Structural Engineering

Report CE-STR-85-5. Purdue University.

55. O'Donnell (k.J.) & Crawley (E.F.) 1985 Identification of

Nonlinear System Parameters on Space Structure Joints

Using the Force-State Mapping Technique Report SSL-16-85.

MIT Space Systems Laboratory.

56. Hamming (R.W.) 1989 Digital Filters Third Edit ion,Prent ice

Ha II.

57. Bert (C.W.) & Stricki in (J.D.) 1988 Journal of Sound and

Vibration 127 pp. 221-229. Comparitive Evaluation of Six

Different Integration Methods for Non-Linear Dynamic

Systems.

58. Bendat (J.S.) & Piersol (A.C.) 1971 Random Data: Analysis

and Measurement Procedures Wiley Interscience.

59. Terrell (T.J.) 1988 Introduction to Digital Filters Second

Edition, Macmillan.

460



60. Pyle (I.C.) 1981 The ADA Programming Language Prentice Hall

International Inc.

61. Burrows (C.R.) 1980 An Appraisal of Schroeder-Phased

Harmonic Signals for Bearing identification Paper presented

at the Winter Annual Meeting of the Dynamic Systems and

Control Division of the ASME.

62. The CED 1401 intelligent interface Programmers's Handbook.

Cambridge Electronic Design Ltd. Science Park, Milton

Road, Cambridge CB4 4FE.

63. Blevins (R.D.) 1979 Formulas for Natural Frequency and

t4ode Shape Van Nostrand Reinhold.

64. Roark (R.J.) & Young (W.C.) 1976 Formulas for Stress and

Strain Fifth Edition, McGraw Hill.

65. Nayfeh (A.H.) & Mook (D.T.) 1979 Nonlinear Oscillations

John Wiley and Sons, London and New York.

66. Rao (S.S.) 1986 !'Jechanical Vibrations Addison Wesley.

67. Farrar (C.R.), Dove (R.C.) & Baker (W.E.) 1989 Preliminary

Report: Simulated Seismic Testing of TRG-7 Through TRG-11

Civil Engineering Division, Los Alamos National

Laboratories, U.S.A.

68. Billings (S.A.) & Voon (W.S.F.) 1983 IEEE Proceedings 130

pp. 193-199. Structure Detection and Model Validity Tests

in the Identification of Nonlinear Systems.

69. Jefferys (E.R.) 1988 Journal of Offshore Plechanics and

Arctic Engineering 110 pp. 245-253. Nonlinear Marine

Structures Under Random Excitation.

70. Erdflyi (A.), Magnus (W.), Oberherringer (F.) & Tricomi

(F.G.) 1953 Higher Transcendental Functions: Volume II The

Bateman Manuscript Project, McGraw Hill.

461



71. Sibson (R.) 1980 !lathematical Proceedings of the Cambridge

Philosophical Society 87 pp. 151-156. A Vector Identity

for the Dirichlet Tesselation.

72. Green (P.J.) & Sibson (R.) 1978 The Computer Journal 21

pp. 168-173. Computing Dirichiet Tesselat ions in the

Plane.

73. Sibson (R.) Manual for the TILE4 Interpolation Package

Department of Mathematics and Statistics, University of

Bath.

462


	DX078734_1_0001.tif
	DX078734_1_0003.tif
	DX078734_1_0005.tif
	DX078734_1_0007.tif
	DX078734_1_0009.tif
	DX078734_1_0011.tif
	DX078734_1_0013.tif
	DX078734_1_0015.tif
	DX078734_1_0017.tif
	DX078734_1_0019.tif
	DX078734_1_0021.tif
	DX078734_1_0023.tif
	DX078734_1_0025.tif
	DX078734_1_0027.tif
	DX078734_1_0029.tif
	DX078734_1_0031.tif
	DX078734_1_0033.tif
	DX078734_1_0035.tif
	DX078734_1_0037.tif
	DX078734_1_0039.tif
	DX078734_1_0041.tif
	DX078734_1_0043.tif
	DX078734_1_0045.tif
	DX078734_1_0047.tif
	DX078734_1_0049.tif
	DX078734_1_0051.tif
	DX078734_1_0053.tif
	DX078734_1_0055.tif
	DX078734_1_0057.tif
	DX078734_1_0059.tif
	DX078734_1_0061.tif
	DX078734_1_0063.tif
	DX078734_1_0065.tif
	DX078734_1_0067.tif
	DX078734_1_0069.tif
	DX078734_1_0071.tif
	DX078734_1_0073.tif
	DX078734_1_0075.tif
	DX078734_1_0077.tif
	DX078734_1_0079.tif
	DX078734_1_0081.tif
	DX078734_1_0083.tif
	DX078734_1_0085.tif
	DX078734_1_0087.tif
	DX078734_1_0089.tif
	DX078734_1_0091.tif
	DX078734_1_0093.tif
	DX078734_1_0095.tif
	DX078734_1_0097.tif
	DX078734_1_0099.tif
	DX078734_1_0101.tif
	DX078734_1_0103.tif
	DX078734_1_0105.tif
	DX078734_1_0107.tif
	DX078734_1_0109.tif
	DX078734_1_0111.tif
	DX078734_1_0113.tif
	DX078734_1_0115.tif
	DX078734_1_0117.tif
	DX078734_1_0119.tif
	DX078734_1_0121.tif
	DX078734_1_0123.tif
	DX078734_1_0125.tif
	DX078734_1_0127.tif
	DX078734_1_0129.tif
	DX078734_1_0131.tif
	DX078734_1_0133.tif
	DX078734_1_0135.tif
	DX078734_1_0137.tif
	DX078734_1_0139.tif
	DX078734_1_0141.tif
	DX078734_1_0143.tif
	DX078734_1_0145.tif
	DX078734_1_0147.tif
	DX078734_1_0149.tif
	DX078734_1_0151.tif
	DX078734_1_0153.tif
	DX078734_1_0155.tif
	DX078734_1_0157.tif
	DX078734_1_0159.tif
	DX078734_1_0161.tif
	DX078734_1_0163.tif
	DX078734_1_0165.tif
	DX078734_1_0167.tif
	DX078734_1_0169.tif
	DX078734_1_0171.tif
	DX078734_1_0173.tif
	DX078734_1_0175.tif
	DX078734_1_0177.tif
	DX078734_1_0179.tif
	DX078734_1_0181.tif
	DX078734_1_0183.tif
	DX078734_1_0185.tif
	DX078734_1_0187.tif
	DX078734_1_0189.tif
	DX078734_1_0191.tif
	DX078734_1_0193.tif
	DX078734_1_0195.tif
	DX078734_1_0197.tif
	DX078734_1_0199.tif
	DX078734_1_0201.tif
	DX078734_1_0203.tif
	DX078734_1_0205.tif
	DX078734_1_0207.tif
	DX078734_1_0209.tif
	DX078734_1_0211.tif
	DX078734_1_0213.tif
	DX078734_1_0215.tif
	DX078734_1_0217.tif
	DX078734_1_0219.tif
	DX078734_1_0221.tif
	DX078734_1_0223.tif
	DX078734_1_0225.tif
	DX078734_1_0227.tif
	DX078734_1_0229.tif
	DX078734_1_0231.tif
	DX078734_1_0233.tif
	DX078734_1_0235.tif
	DX078734_1_0237.tif
	DX078734_1_0239.tif
	DX078734_1_0241.tif
	DX078734_1_0243.tif
	DX078734_1_0245.tif
	DX078734_1_0247.tif
	DX078734_1_0249.tif
	DX078734_1_0251.tif
	DX078734_1_0253.tif
	DX078734_1_0255.tif
	DX078734_1_0257.tif
	DX078734_1_0259.tif
	DX078734_1_0261.tif
	DX078734_1_0263.tif
	DX078734_1_0265.tif
	DX078734_1_0267.tif
	DX078734_1_0269.tif
	DX078734_1_0271.tif
	DX078734_1_0273.tif
	DX078734_1_0275.tif
	DX078734_1_0277.tif
	DX078734_1_0279.tif
	DX078734_1_0281.tif
	DX078734_1_0283.tif
	DX078734_1_0285.tif
	DX078734_1_0287.tif
	DX078734_1_0289.tif
	DX078734_1_0291.tif
	DX078734_1_0293.tif
	DX078734_1_0295.tif
	DX078734_1_0297.tif
	DX078734_1_0299.tif
	DX078734_1_0301.tif
	DX078734_1_0303.tif
	DX078734_1_0305.tif
	DX078734_1_0307.tif
	DX078734_1_0309.tif
	DX078734_1_0311.tif
	DX078734_1_0313.tif
	DX078734_1_0315.tif
	DX078734_1_0317.tif
	DX078734_1_0319.tif
	DX078734_1_0321.tif
	DX078734_1_0323.tif
	DX078734_1_0325.tif
	DX078734_1_0327.tif
	DX078734_1_0329.tif
	DX078734_1_0331.tif
	DX078734_1_0333.tif
	DX078734_1_0335.tif
	DX078734_1_0337.tif
	DX078734_1_0339.tif
	DX078734_1_0341.tif
	DX078734_1_0343.tif
	DX078734_1_0345.tif
	DX078734_1_0347.tif
	DX078734_1_0349.tif
	DX078734_1_0351.tif
	DX078734_1_0353.tif
	DX078734_1_0355.tif
	DX078734_1_0357.tif
	DX078734_1_0359.tif
	DX078734_1_0361.tif
	DX078734_1_0363.tif
	DX078734_1_0365.tif
	DX078734_1_0367.tif
	DX078734_1_0369.tif
	DX078734_1_0371.tif
	DX078734_1_0373.tif
	DX078734_1_0375.tif
	DX078734_1_0377.tif
	DX078734_1_0379.tif
	DX078734_1_0381.tif
	DX078734_1_0383.tif
	DX078734_1_0385.tif
	DX078734_1_0387.tif
	DX078734_1_0389.tif
	DX078734_1_0391.tif
	DX078734_1_0393.tif
	DX078734_1_0395.tif
	DX078734_1_0397.tif
	DX078734_1_0399.tif
	DX078734_1_0401.tif
	DX078734_1_0403.tif
	DX078734_1_0405.tif
	DX078734_1_0407.tif
	DX078734_1_0409.tif
	DX078734_1_0411.tif
	DX078734_1_0413.tif
	DX078734_1_0415.tif
	DX078734_1_0417.tif
	DX078734_1_0419.tif
	DX078734_1_0421.tif
	DX078734_1_0423.tif
	DX078734_1_0425.tif
	DX078734_1_0427.tif
	DX078734_1_0429.tif
	DX078734_1_0431.tif
	DX078734_1_0433.tif
	DX078734_1_0435.tif
	DX078734_1_0437.tif
	DX078734_1_0439.tif
	DX078734_1_0441.tif
	DX078734_1_0443.tif
	DX078734_1_0445.tif
	DX078734_1_0447.tif
	DX078734_1_0449.tif
	DX078734_1_0451.tif
	DX078734_1_0453.tif
	DX078734_1_0455.tif
	DX078734_1_0457.tif
	DX078734_1_0459.tif
	DX078734_1_0461.tif
	DX078734_1_0463.tif
	DX078734_1_0465.tif
	DX078734_1_0467.tif
	DX078734_1_0469.tif
	DX078734_1_0471.tif
	DX078734_1_0473.tif
	DX078734_1_0475.tif
	DX078734_1_0477.tif
	DX078734_1_0479.tif
	DX078734_1_0481.tif
	DX078734_1_0483.tif
	DX078734_1_0485.tif
	DX078734_1_0487.tif
	DX078734_1_0489.tif
	DX078734_1_0491.tif
	DX078734_1_0493.tif
	DX078734_1_0495.tif
	DX078734_1_0497.tif
	DX078734_1_0499.tif
	DX078734_1_0501.tif
	DX078734_1_0503.tif
	DX078734_1_0505.tif
	DX078734_1_0507.tif
	DX078734_1_0509.tif
	DX078734_1_0511.tif
	DX078734_1_0513.tif
	DX078734_1_0515.tif
	DX078734_1_0517.tif
	DX078734_1_0519.tif
	DX078734_1_0521.tif
	DX078734_1_0523.tif
	DX078734_1_0525.tif
	DX078734_1_0527.tif
	DX078734_1_0529.tif
	DX078734_1_0531.tif
	DX078734_1_0533.tif
	DX078734_1_0535.tif
	DX078734_1_0537.tif
	DX078734_1_0539.tif
	DX078734_1_0541.tif
	DX078734_1_0543.tif
	DX078734_1_0545.tif
	DX078734_1_0547.tif
	DX078734_1_0549.tif
	DX078734_1_0551.tif
	DX078734_1_0553.tif
	DX078734_1_0555.tif
	DX078734_1_0557.tif
	DX078734_1_0559.tif
	DX078734_1_0561.tif
	DX078734_1_0563.tif
	DX078734_1_0565.tif
	DX078734_1_0567.tif
	DX078734_1_0569.tif
	DX078734_1_0571.tif
	DX078734_1_0573.tif
	DX078734_1_0575.tif
	DX078734_1_0577.tif
	DX078734_1_0579.tif
	DX078734_1_0581.tif
	DX078734_1_0583.tif
	DX078734_1_0585.tif
	DX078734_1_0587.tif
	DX078734_1_0589.tif
	DX078734_1_0591.tif
	DX078734_1_0593.tif
	DX078734_1_0595.tif
	DX078734_1_0597.tif
	DX078734_1_0599.tif
	DX078734_1_0601.tif
	DX078734_1_0603.tif
	DX078734_1_0605.tif
	DX078734_1_0607.tif
	DX078734_1_0609.tif
	DX078734_1_0611.tif
	DX078734_1_0613.tif
	DX078734_1_0615.tif
	DX078734_1_0617.tif
	DX078734_1_0619.tif
	DX078734_1_0621.tif
	DX078734_1_0623.tif
	DX078734_1_0625.tif
	DX078734_1_0627.tif
	DX078734_1_0629.tif
	DX078734_1_0631.tif
	DX078734_1_0633.tif
	DX078734_1_0635.tif
	DX078734_1_0637.tif
	DX078734_1_0639.tif
	DX078734_1_0641.tif
	DX078734_1_0643.tif
	DX078734_1_0645.tif
	DX078734_1_0647.tif
	DX078734_1_0649.tif
	DX078734_1_0651.tif
	DX078734_1_0653.tif
	DX078734_1_0655.tif
	DX078734_1_0657.tif
	DX078734_1_0659.tif
	DX078734_1_0661.tif
	DX078734_1_0663.tif
	DX078734_1_0665.tif
	DX078734_1_0667.tif
	DX078734_1_0669.tif
	DX078734_1_0671.tif
	DX078734_1_0673.tif
	DX078734_1_0675.tif
	DX078734_1_0677.tif
	DX078734_1_0679.tif
	DX078734_1_0681.tif
	DX078734_1_0683.tif
	DX078734_1_0685.tif
	DX078734_1_0687.tif
	DX078734_1_0689.tif
	DX078734_1_0691.tif
	DX078734_1_0693.tif
	DX078734_1_0695.tif
	DX078734_1_0697.tif
	DX078734_1_0699.tif
	DX078734_1_0701.tif
	DX078734_1_0703.tif
	DX078734_1_0705.tif
	DX078734_1_0707.tif
	DX078734_1_0709.tif
	DX078734_1_0711.tif
	DX078734_1_0713.tif
	DX078734_1_0715.tif
	DX078734_1_0717.tif
	DX078734_1_0719.tif
	DX078734_1_0721.tif
	DX078734_1_0723.tif
	DX078734_1_0725.tif
	DX078734_1_0727.tif
	DX078734_1_0729.tif
	DX078734_1_0731.tif
	DX078734_1_0733.tif
	DX078734_1_0735.tif
	DX078734_1_0737.tif
	DX078734_1_0739.tif
	DX078734_1_0741.tif
	DX078734_1_0743.tif
	DX078734_1_0745.tif
	DX078734_1_0747.tif
	DX078734_1_0749.tif
	DX078734_1_0751.tif
	DX078734_1_0753.tif
	DX078734_1_0755.tif
	DX078734_1_0757.tif
	DX078734_1_0759.tif
	DX078734_1_0761.tif
	DX078734_1_0763.tif
	DX078734_1_0765.tif
	DX078734_1_0767.tif
	DX078734_1_0769.tif
	DX078734_1_0771.tif
	DX078734_1_0773.tif
	DX078734_1_0775.tif
	DX078734_1_0777.tif
	DX078734_1_0779.tif
	DX078734_1_0781.tif
	DX078734_1_0783.tif
	DX078734_1_0785.tif
	DX078734_1_0787.tif
	DX078734_1_0789.tif
	DX078734_1_0791.tif
	DX078734_1_0793.tif
	DX078734_1_0795.tif
	DX078734_1_0797.tif
	DX078734_1_0799.tif
	DX078734_1_0801.tif
	DX078734_1_0803.tif
	DX078734_1_0805.tif
	DX078734_1_0807.tif
	DX078734_1_0809.tif
	DX078734_1_0811.tif
	DX078734_1_0813.tif
	DX078734_1_0815.tif
	DX078734_1_0817.tif
	DX078734_1_0819.tif
	DX078734_1_0821.tif
	DX078734_1_0823.tif
	DX078734_1_0825.tif
	DX078734_1_0827.tif
	DX078734_1_0829.tif
	DX078734_1_0831.tif
	DX078734_1_0833.tif
	DX078734_1_0835.tif
	DX078734_1_0837.tif
	DX078734_1_0839.tif
	DX078734_1_0841.tif
	DX078734_1_0843.tif
	DX078734_1_0845.tif
	DX078734_1_0847.tif
	DX078734_1_0849.tif
	DX078734_1_0851.tif
	DX078734_1_0853.tif
	DX078734_1_0855.tif
	DX078734_1_0857.tif
	DX078734_1_0859.tif
	DX078734_1_0861.tif
	DX078734_1_0863.tif
	DX078734_1_0865.tif
	DX078734_1_0867.tif
	DX078734_1_0869.tif
	DX078734_1_0871.tif
	DX078734_1_0873.tif
	DX078734_1_0875.tif
	DX078734_1_0877.tif
	DX078734_1_0879.tif
	DX078734_1_0881.tif
	DX078734_1_0883.tif
	DX078734_1_0885.tif
	DX078734_1_0887.tif
	DX078734_1_0889.tif
	DX078734_1_0891.tif
	DX078734_1_0893.tif
	DX078734_1_0895.tif
	DX078734_1_0897.tif
	DX078734_1_0899.tif
	DX078734_1_0901.tif
	DX078734_1_0903.tif
	DX078734_1_0905.tif
	DX078734_1_0907.tif
	DX078734_1_0909.tif
	DX078734_1_0911.tif
	DX078734_1_0913.tif
	DX078734_1_0915.tif
	DX078734_1_0917.tif
	DX078734_1_0919.tif
	DX078734_1_0921.tif
	DX078734_1_0923.tif
	DX078734_1_0925.tif
	DX078734_1_0927.tif
	DX078734_1_0929.tif
	DX078734_1_0931.tif
	DX078734_1_0933.tif
	DX078734_1_0935.tif
	DX078734_1_0937.tif

