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ABSTRACT

This thesis reports an experimental and theoretical study on filtration properties of

water based drilling fluids under dynamic and static conditions. The tested muds cover

Freshwater/Gypsum/Lignosulphonate mud and SeawaterlKCLlPolymer mud, barite-

weighted and unweighted. The effects of the solid concentration, pressure and shear rate

on the filter cake characteristics and the erodability were investigated. For static filtration

experiments, all tests were conducted for two hours and the spurt loss, the filter cake

thickness, the ratio of wet to dry cake mass and the cumulative filtrate volume against

time were measured. For dynamic filtration experiments, however, only the spurt loss

and the cumulative filtrate volume against time were measured and all tests were

conducted for at least 8 hours. A general filtration equation was developed based on the

cake filtration theory prevailing in the chemical engineering industry and it was utilised to

obtain the modified classic static filtration equation and the dynamic filtration equation.

The modified classic static filtration equation was then employed to fit the static filtration

experimental data and the average specific static cake resistance and the effective filter

medium resistance were calculated. The dynamic filtration equation showed a substantial

agreement with the dynamic filtration experimental data. Using the static filter cake

properties such as the ratio of wet to dry cake mass (m), the average specific dynamic

cake resistance, the effective filter medium resistance and the dynamic filter cake

erodability were calculated. In the study of the relationship between the static filtration

data and the dynamic filtration data, an attempt of predicting the dynamic filtration data

from the static filtration experimental data was conducted. Also, an attempt was carried

out to predict the static filtration data and the dynamic filtration data in a sequential

process.





NOMENCLATURE

A	 =	 Cross-sectional area of filter cake	 [m2]

a	 =	 Constant defined in equation(3-1.33) 	 [N"m2/Kg]

Also constant defined in equation(3-1.41) 	 [rn/Kg]

a1	 =	 Constant defined in equation(3-2.44) 	 [s/rn3]

a2	 =	 Constant defined in equation(3-2.45) 	 [s/rn6]

B	 =	 Dynamic filtration coefficient	 [Kg/rn2 s]

Also constant defined in equation(3-1.31) 	 [m2/N]

Also viscosity constant for newtonian fluid

defined in equation(3-2.33) 	 [C]

b
	 =	 Constant defined in equation(3-1.41) 	 [m4/Kg •s]

C
	 =	 Constant defined in equation(3-1.12) 	 [Kg/rn3]

C,
	 =	 Proportional constant defined in equation(3-1.7) 	 [rn2m+3n1_3/Nrn s]

C1	 =	 Constant defined in equation(3-3.21) 	 [s/rn3]

Also static filtration rate constant defined in equation(3-2.31) [m/s°5]

C2	 =	 Constant defined in equation(3-3.22) 	 Es]

Also static filtration volume constant

defined in equation(3-2.32)
	

[m/s°5 I

C3	 Constant defined in equation(3-3.23)
	

[rn]

Also spurt loss volume defined in equation(3-2.32)
	

[rn]

C4	 =	 Non-equilibrium shear rate multiplier

defined in equation(3-2.35)
	 [rn/sos]

C5	 =	 Dynamic non-equilibrium constant defined in equation(3-2.35)
	

[rn]

C6	 =	 Dynamic equilibrium constant defined in equation(3-2.36)
	

[rn/sOS]

C7	 Equilibrium shear rate multiplier defined in equation(3-2.36)
	

[rn]

CB	 =	 Constant defined in equation(3-2.20)
	

[m3/s°5]
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CB 	 =
	

Constant defined in equation(3-2.21) 	 [ml

CF 	 =
	

Constant defmed in equation(3-2.1O)	 [m6/s]

Cw 	 =
	

Constant defined in equation(3-2.2) 	 Em]

=	 Empirical constant defined in equation(3-2.4) 	 [1/m°5]

D
	

The rate of deposition defined in equation(3-1.5) 	 [m2]

D1	 Annular inner diameter defined in equation(3-2.38) 	 [ml

d1
	 The diameter of drilling pipe defined in equation(4-2. 1) 	 Em]

d2	 The diameter of weilbore defmed in equation(4-2.1) 	 [m]

E
	

Fluid displacement efficiency of filtrate defined in equation(3-2.37) [-]

e
	

Deviations defined in equation(3-2.7) 	 [m3]

f
	

The coefficient of internal friction of the cake's surface layer defined in

equation(3-2. 19) 	 [-]

h0q	 Filter cake thickness after equilibrium attained 	 [m]

=	 Correction out factor for filtration resistance

defined in equation(3-l.38)
	

[-1

Js	 =	 Correction out factor for filtration resistance

defined in equation(3-l.40)
	

[-I

K
	

=	 Permeability	 [m2]

Also constant defined in equation(3-1.3)
	

[2m43n+J/Nm s]

Also constant defined in equation(3-1.16)	 [m6/s]

K1	 =	 the cake permeability at 1 psi pressure 	 [m2]

Kavg =	 the average cake permeability 	 [m2]

K
	

=	 the cake permeability	 [m2]

K1	 =	 the filter medium permeability 	 [m2]

KL	 =	 Constant for specific mud defined in equation(3-2.6)	
[ms]

K	 =	 Constant for specific mud defined in equation(3-2.7)	
[m3/s° 5 I

K
	

=	 Dynamic filtration eroclability coefficient 	
[Kg/N.s]

k
	

=	 Kozeny's constant defined in equation(3- 1.24) 	
[-I

L	 =	 The length of filter bed defined in equation(3- 1.2) 	
[mi

Also filter cake thickness
[m]
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S=

so	 =

S	 =

Sc	 =

T

=

t'	 =

t c	 =

Nomenclature

q1	 =

avg	 =

cq	 =

=

q1	-

q	 =

R =

R'	 =

R=

R L =

Filtrate flow rate per unit area at interface of medium

and cake defined in equation(3-1.38)

Average value of filtrate flow rate per unit area

defined in equation(3-1.38)

Dynamic equilibrium filtrate flow rate

Dynamic equilibrium filtrate flow rate

Local filtrate flow rate per unit area

Dynamic filtrate flow rate per unit area

Resistance

A function of resistivity of the cake defined in equation(3-2.2)

Resistance of filter cake

Ratio of filtrate volume I volume of deposited

[rn/si

[rn/s]

[rn/s]

[m/s]

[rn/si

[m/s]

[1/rn]

[1/rn]

[1/mi

solids defmed in equation(3-2.6) 	 [-1

Rm	=	 Resistance of filter medium	 [1/rn]

Rm	=	 Effective resistance of filter medium	 [1/rn]

r	 =	 The internal radius of the tube defined in equation(3-1.1) 	 [m]

Also resistance of material defined in equation(3-1.4) 	 [1/rn2]

Also the well radius defined in equation(3-2.14) 	 [ml

Also the constant resistance of filter medium

defined in equation(3-2.22)

Sorptivity defined in equation(3-2.38) 	 [1

Specific surface of solids

Solid percentage concentration in sluny

Also a compaction function of the cake defined in equation(3-2.2)

Solid percentage concentration in cake

Temperature

Time

Time

Some timescale for the transition to the dynamic phase

defined in equation(3-2.39)

[1/rn]

n/s°51

[1/mi

[-I

[-]

[-1

[SC]

[s]

[s]

[s]
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teq

to

t8p	 =

U =

V =

=

Vc

V0	 =

=

V8	 =

Vsp	=

V =

W =

wc =

We =

Ws =

x =

z	 =

Nomenclature

Time at which dynamic equilibrium is attained

Time defined in equation(3-1.17)

Also time defined in equation(3-2.11)

Also time defined in equation(3-2.43)

Spurt loss time

Drilling penetration rate defined in equation(3-2.37)

Cumulative filtrate volume

Cumulative filtrate volume

Annular mud flow velocity

Volume of filtrate collected on cylindrical filter

defined in equation(3-2.14)

Filtrate volume defined in equation(3-1.17)

Also volume defmed in equation(3-2.1 1)

Volume of filtrate collected on plane filter

defined in equation(3-2.14)

Volume of filtrate that flows through the scraped

portion of well wall defined in equation(3-2. 12)

Spurt loss volume

Volume of filtrate that flows through the unscraped

portion of well wall defined in equation(3-2. 12)

Cumulative deposited solids weight per unit area

Filter cake weight per unit area

Eroded solids weight per unit area

Solids weight as laid on the filter medium

Fraction of filtrate through hole bottom removed by drill bit

defined in equation(3-2.37)

Ratio of filtrate volume to cake volume

defined in equation(3-2.14)

[s]

[s]

[s]

[s]

[s]

[rn/si

[ms]

[ms]

[rn/si

[ms]

[mi]

[ms]

[mi]

[ms]

[mi]

[ms]

[Kg/rn2]

[Kg/rn2]

[Kg/rn2]

[Kg]

[-]

[-I
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-1+v =

a	 =

a0	 =

aavg =

a1	=

=

p=

=

E	 =

C ayg 	 =

C avgx	 =

[rn/Kg]

[rn/Kg]

[rn/Kg]

[rn/Kg]

[rn/Kg]

[-1

[m]

[-]

[-I

[-I

[-I

[-]

[1/si

[-1

[s]

[s/m6]

[1/mi]

[s/ms]

[1/si

[1/si

[1/si

[1/si

[N.s/m2]

[N.s/m2]

GREEK SYMBOLS

=

cx 	 =

=

(	 =

1( 1	 =

=

1(3	 =

=

Ymax =

Yrnm -

-

11	 =

,L p	=

A function of cake compressibility

Specific cake resistance

Specific cake resistance constant defined in equation(3-2.46)

Average specific cake resistance

Specific cake resistance defined in equation(3-1.34)

Average specific cake resistance defmed in equation(3-1.36)

Pressure constant defined in equation(3-1.31)

The thickness of the cake subjected to erosion

Porosity

Average cake porosity

Average cake porosity for the portion of cake between

medium and distance x as defined in equation(3-1.40)

Cake porosity defmed in equation(3-1.32)

Local value of porosity at distance x from the medium

Scaling shear rate defined in equation(3-2.41)

Formation porosity defined in equation(3-2.37)

Pre-factor in transition time correlation

defined in equation(3-2.42)

Constant defined in equation(3-3.13)

Constant defmed in equation(3-3.14)

Constant defmed in equation(3-3.15)

Shear rate

Maximum shear rate

Minimum shear rate

Shear rate at channel wall

Viscosity

Plastic viscosity of Bingham Plastic mud



Greek Symbols

.Lf 	 =

Pm	 =

P=

=

p'f(P) =

Pf	 =

Pm	 =

P S 	-

'C	 =

to	 =

ii	 =

'1	 =

Filtrate viscosity	 [N S/rn2]

Mud viscosity	 [N s/rn2]

Density	 [Kg/rn3]

Resistance coefficient of filtering medium and sludge

contained therein defined in equation(3-2.3)	 [-1

A function of the resistance of the filtering medium

defined in equation(3-2.3) 	 [-1

Density of filtrate	 [Kg/rn3]

Density of mud	 [Kg/rn3]

Density of solids	 [Kg/rn3]

The shear stress on the cake surface exerted by the mud stream [N/rn2]

The yield point of the Bingham Plastic mud [N/rn2]

Ratio of volume of filter cake to volume of filtration

defined in equation(3-2.2) 	 [-]

The fraction of the well wail that is scraped clean

defined in equation(3-2.12) [-]
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INTRODUCTION

In order to prevent formation fluids from entering the borehole, the hydraulic pressure

of the mud column must exceed the pressure of the fluids in the pores of the formation.

This differential pressure provides the driving force for mud movement through the

borehole wall into the permeable formations. Massive loss of mud into the formation

usually does not occur except in fractured formations, because the mud solids are filtered

out onto the wall of the hole, forming a cake of relatively low permeability, through

which only filtrate can mainly pass. The deposit of solids in the form of a cake

contributes to borehole stability and limits the invasion of the permeable zone by the

liquid phase and thus reduces the formation damage. Therefore, both borehole stability

and formation damage are functions of the above process which is called the filtration

behaviour of drilling fluids.

The petroleum industry has long been concerned that filtration of drilling fluids is a

major cause of permeability damage to sensitive formations. Everyone concerned realizes

that minimizing filtrate volume will be beneficial to production. The aim of this thesis is to

report the results of an experimental and theoretical study on the static and dynamic

filtration characteristics of drilling fluids under borehole conditions.

In chapter one, the objectives of the filtration study, e.g., for solving the problems

caused by filtration occurrence under borehole conditions, are discussed. To attack these

problems intelligently, it appears necessary to obtain a better understanding of the

filtration mechanisms, hence, an extensive survey of literature spanning more than 5

decades of research on the filtration behaviour of drilling fluids with particular reference

to the experimental investigation has been undertaken and is presented in chapter two.

The theoretical-empirical analysis on cake filtration performances carried out by
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former investigators in both the chemical and petroleum engineering industries are

reviewed in chapter three, which results in the development of a numerical filtration

equation of drilling fluids. A dimensional analysis on dynamic equilibrium filtrate flow is

also included in this chapter.

The experimental apparatus descriptions and procedure are shown in chapter four and

the static and dynamic experimental tests results are presented in chapter five and chapter

six, respectively.

In chapter seven, the analysis of the experimental results is presented.

A comparison of numerical modelling predictions and experimental results is

presented in chapter eight.

Finally, the conclusions drawn from this study are presented in chapter 9 and the

recommendations for future work is listed in chapter ten.

—2-



Chapter One

FILTRATION PROPERTIES OF DRILLING FLUIDS AND ASSOCIATED

DRILLING AND PRODUCTION PROBLEMS

The estimation of filtration properties under borehole conditions is particularly

important during well drilling as it ensures fewer drilling problems and improved

productivity. The fundamental concepts of drilling fluids filtration and associated

problems such as formation damage are discussed in this chapter.

1.1	 FILTRATION BEHAVIOUR OF DRILLING FLUIDS

1. 1. 1	 Definition of Liquid Filtration

There are many definitions of filtration both in the chemical engineering industry and

in the petroleum engineering industry. The author prefers to use the following

description 100:

Filtration is a fundamental unit operation aimed at the separation of suspended solid

particles from a process fluid stream by passing the suspension through a porous

substance refened to as afllter mediwn. In forcing the fluid through the voids of the

filter medium, the liquid phase flows, but solid particles are retained on the surface

and in the medium's pores. The fluid discharging from the medium is calledfiltrate.
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1.1.2	 Borehole Filtration of Drilling and Completion Fluids

There are usually three types of fi1tration 1 involved in drilling and completion

operations:

BENEATH-THE-BIT FILTRATION:

Prior to being actually penetrated by the bit, the formation will be invaded by filtrate

from the mud which is being discharged through the nozzles on the drilling bit. The

hydraulic forces providing the driving force for filtration in such cases would be very

large. In addition since the formation is being drilled, the tendency to create a filter cake

would be counteracted by its removal and the consequent fluid loss could be substantial.

DYNAMIC FILTRATION:

After the bit has drilled out the formation, mud circulation between the drill string and

borehole wall continues. This filtration process which can account for up to 80 percent of

the fluid loss 13 in a well is so called because the flow of mud across the borehole wall

will cause erosion of the depositional force for cake build-up. With extended circulation

time the depositional and erosional forces reach equilibrium and constant cake thickness

and an equilibrium or quasi-steady state fluid loss rate is achieved. Dynamic fluid loss

depends not only on the physical conditions in the circulating borehole but also on the

properties of the components in the fluid system.

STATIC FILTRATION:

Static filtration takes place when the mud is not being circulated, and the filter cake

grows undisturbed. In most cases, static filtration occurs through the cakes already

formed during dynamic filtration.

—4---.
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1. 1.3	 Invasion of Filtrate into Formation

The invasion of filtrate occurs once filtration starts. It is well known that there is a

mud spurt at the start of a filtration process before filtration proper begins. In the drilling

well, mud spurt may be much larger when filtration takes place against the more

permeable rocks95: In fact they can be infinite (i.e. circulation is lost) unless the mud

contains particles of the size required to bridge the pores of the rock, and thus establish a

base on which the filter cake can form. However, the spurt loss may also be higher for

low permeability formation9 if the internal filter cake forms inside the core. Only particles

of a certain size relative to the pore size can bridge. Particles lager than the pore openings

can not enter the pore, and are swept away by the mud stream, particles considerably

smaller than the opening invade the formation unhindered, but particles of a certain critical

size stick at bottle-necks in the flow channels, and form a bridge just inside the surface

pores. Once a primary bridge is established, successively smaller particles, down to the

fine colloids, are trapped, and thereafter only filtrate invades the formation. The mud

spurt period is very brief, a matter of a second or two at the most22.

As a result of the process just described, three zones of mud particles are established

on or in a permeable formation which are shown in Figure(1-1.1)95.

(i) An external filter cake on the walls of the borehole;

(ii) An internal filter cake, extending a couple of grain diameters into the formation;

(iii) A zone invaded by the fine particles during the mud spurt period, which

normally extends about an inch into the formation15'25'89.

Experimental results reported by Krueger and Vogel 85 suggest that these fine particles

do not initially cause much permeability impairment, but may do so after filtration has

proceeded for some hours, presumably because of migration and consequent pore

—5-
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blocking.

1.2	 THE PROBLEMS CAUSED BY FILTRATION

OF DRILLING FLUIDS

1.2.1	 Formation Damage

The formation damage is generally a reduction in permeability near the weilbore with

perhaps a slight porosity reduction. Almost every field operation is a potential source of

damage to well productivity. Diagnosis of formation damage problems has led to the

conclusion that formation damage is usually associated with either the movement and

bridging of fine solids or chemical reactions and thermodynamic considerations105'106.

The fine solids may be introduced from welibore fluids or generated in situ by the

interaction of invading fluids with rock minerals or formation fluids.

There are a number of ways that drilling fluid filtrate might interact with the formation

to cause permeability damage. Some of these have been investigated in laboratories and

described in published papers. Others are suggested by various observations and studies,

but are not documented by actual damage tests. Some of the important formation damage

mechanisms 104 which are related to the borehole filtration are shown in Figure(1-2.1) and

briefly discussed below:

1.2.1.1	 Clay Swelling

One of things to be aware of is that bentonite added to a mud system continues to

hydrate for at least 24 hours. If this material is lost to potential producing zones, it can

continue to swell in the reservoir and block permeability. Many producing formations

also contain clay minerals such as illite, montmorillonite, and mixed layers clays. The

—6-
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hydrated volume of the clay is dependent not only upon its composition and crystalline

structure, but also upon the ionic environment. Certain clays such as the montmorillonite

will upon contact with fresh water absorb hydrogen ions into the structure causing an

increase in volume or swelling of the clay resulting in a reduction in pore volume and

possibly plugging pore throats. In such cores the absolute permeability has been reduced.

The hydration of clays can be presented by using a mud system that offers ions which

will be preferentially absorbed by the clay, e.g., Na, Ca, K by using an inhibited

mud. Remedial treatments for swollen clays are available commercially but it is far easier

to prevent clay swelling than it is to reverse it.

1.2.1.2 Dispersion and Migration of For,nation Clay Particles

To control of flow properties, drilling fluid systems are usually maintained with high

concentrations of strong dispersants. The filtrate from such a drilling fluid will tend to

cause dispersion and migration of formation clay particles. Once dislodged, the clay

particles will move back into the formation, plugging pores and reducing permeability.

1.2.1.3	 Particle Plugging

In addition to formation damage from migrating fines generated in the formation,

weilbore plugging may occur from fine solids carried by weilbore fluids during treatment.

As distinct from particle migration, this term refers to the entry, movement and

subsequent deposition in the pore space or pore throat of the porous media. The size of

the particles which can invade the formation will depend on the porosity, permeability and

stability of the filter cake on the wall of the borehole. Numerous investigators9'15228589

have considered the subject of mud particle invasion/plugging characteristics and

others 108 ' 10910 have considered the mechanics of particle deposition and plugging.

Very few of the reported studies have adequately discussed particle entry and deposition

with dynamic filtration as occurs in circulating boreholes.

1.2.1.4	 Wettability

The use of complex organic chemicals often as finely divided particles (e.g., asphalts)

—7-



Chapter One Filtration Properties of Drilling Fluids and Associated Drilling and Production Problems

and surfactants in muds could have adverse effects on the wettability of cores. If

reservoirs can be converted from being water wet to oil wet, the relative permeability to

oil Kro and thus the productivity will be reduced. Changes in physical conditions such as

temperature, pressure and the pH environment could also cause changes in the

wettability.

1.2.1.5	 Water Blocking

The loss of large amounts of filtrate from water base muds could provide piston like

displacement of in-situ oil. The water would then act as a barrier to oil production on a

temporary basis. The impairment to productivity will reduce as cumulative production

increases. However, if the filtrate has a very high viscosity, e.g., it contains polymer

which is not completely solubilised, then the impairment might be more difficult to

remove.

1.2.1.6	 Emulsions

The formation of an emulsion of water and oil is promoted by a high degree of

turbulence and mixing of two phases and by the presence of chemical emulsifier as used

in oil emulsion mud systems. In the borehole filtration situation, it is unlikely that the

filtration flow rate will be high enough to give rise to turbulence except in the spurt loss

period. Chemicals which act as emulsifiers could be present, e.g., asphalt, bentonite, etc.

Emulsions so formed can possess exceptionally high viscosity and if they are stable the

productivity impairment is almost permanent. The use of surfactants to clear such

emulsions has been tried but is only successful if intimate contact can be achieved which

is very difficult.

1.2.1.7	 Scales and Precipitates

The formation and subsequent deposition of precipitates or scales can occur when an

insitu reservoir fluid is contacted with an incompatible filtrate. The salts so formed can be

insoluble such as BaSO4 or CaSO4 and once present in the pore space they are difficult to

remove. This mechanism can occur with both mud filtrates and also cement filtrates.

—.8-
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All the above formation damage mechanisms depend upon the invasion of filtrates

from the welibore filtration process and consequently the occurrence and severity of

formation damage is very closely related to the filtration properties of the weilbore fluid

and formation characteristics, i.e., controlled fluid loss will minimise near weilbore

impairment.

1.2.2	 Other Problems

1.2.2.1	 Differential Sticking

Thick filter cakes may cause the drill pipe to be come stuck by a mechanism known as

differential sticking95 . This phenomenon occurs when part of the drill string bears against

the side of the hole while drilling, and erodes away part of the filter cake. When rotation

of the pipe is stopped, the part of the pipe in contact with the cake is isolated from the

pressure of the mud column, and subject only to the pore pressure of the filter cake. The

differential pressure thus created may be great enough to prevent the pipe from being

moved.

The risk of stuck drill pipe may be reduced by using a mud that lays down a thin,

tough filter cake.

1.2.2.2	 Hole Instability

The filtration properties required for the successful completion of a well depend

largely on the nature of the formations to be drilled. Stable formations 95 with low

permeabilities, such as dense carbonates, sandstones, and lithified shales, can usually be

drilled with little or no control of filtration properties. But many shales are water-

sensitive, i.e., on contact with water, they develop swelling pressures which cause

caving and hole enlargement. Sealing of incipient fractures by mud filter cake will help

—9--
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control the caving, but the type of mud used and the chemical composition of its filtrate

are more important factors.

Good filtration properties are also necessary when drilling in unconsolidated sands,

which will slump into the hole unless protected by the rapid formation of a filter cake.

10-



Chapter Two

LITERATURE SURVEY ON FILTRATION PROPERTIES OF DRILLING

FLUIDS

The objectives of the study of the filtration of drilling fluids have been discussed in

the preceding chapter. This chapter reviews the previous experimental studies of filtration

properties of drilling muds with particular reference to those which are directly relevant to

the subject under investigation and attempts are made to summarize from the literature, the

effects of the individual parameters under downhole conditions upon the filtration

performances.

2.1	 AN OVERVIEW OF LITERATURE ON BOREHOLE

FILTRATION OF DRILLING MUDS

The published investigations into the borehole filtration properties of drilling muds

were first given by Jones and Babson 1 in 1935. Their tests were conducted upon the

artificial formation prepared from the unconsolidated sand at pressures up to 4000 psi and

temperatures up to 275 °F under dynamic conditions. The following results were

reported:

(1) Filtration flow rate attained a substantially-constant value at the end of about two

hours;

(2) There was no apparent penetration of mud into the formations, and in no case
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was a penetration more than about 1/16 inch.

(3) Regardless of the nature of the mud used or the temperature of the tests,

variations in pressure above 500 psi had very little effect on the filtrate flow rate

or on the thickness of the mud cake deposited.

(4) Regardless of the pressure applied or the nature of the mud involved, both the

fluid loss and mud cake thickness increased materially with an increase in

temperature.

(5) The fluid loss increased rapidly with reduced apparent viscosity for weakly

thixotropic muds but it was not influenced for strong or moderately-strong

thixotropic muds.

(6) In all cases, very thin mud cakes were deposited by mud having low funnel

viscosities, and with the thixotropic mud an increase in viscosity appeared to

have no pronounced effect on the thickness of the mud cake. However, the mud

cakes deposited by the muds having only moderately-strong or weak thixotropic

properties, increased in thickness with an increase in funnel viscosity.

In 1937, Jones2 presented a paper in which he described a static filter loss tester to be

used for routine filter loss tests. This instrument subsequently was adopted by the API as

the standard API filter loss tester.

Williams and Cannon 3 performed a number of experimental tests to evaluate the

properties of filter cakes deposited by static filtration at pressures ranging from 30-1500

psi for a wide range of drilling muds, The results concluded that:

(a) The measured permeability values of filter cakes were between 0.2 x iO and

0.6 x iO md at 8 atmospheres pressure for Gulf Coast field muds, and more

than 100 times higher for a West Texas mud;

(b) At each temperature, the cake permeability increased with increased addition of

weighting material;

(c) Cake resistance was increased by the addition of Bentonite;

(d) The rate of filtration could be varied considerably by adding weighting materials
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having a particular particle-size distributions.

In 1938, Larsen4 reported a study of both static and dynamic filtration experiments of

drilling muds conducted at pressures ranging from 25-8000 psi and temperatures in the

range of 60-250 F. The filter medium included filter paper, sintered alundum disc, sand

packs and cores. He also developed a relationship between filtrate volume and filtrate time

which will be discussed in chapter three and tried to predict the effect of temperature on

filter loss by relating temperature effects through the temperature dependence of filtrate

viscosity. This was undoubtedly an over simplification of the temperature dependence of

drilling fluid filter loss. The conclusions reported by Larsen highlighted the following:

(1) Apart from a small zero error, fluid loss was proportional to the one-half power

of time, and was best plotted against this power of time to give the best straight

line.

(2) Fluid loss was inversely proportional to the one half power of the filtrate

viscosity, which might be calculated from the temperature if other conditions

remained unaltered.

(3) Fluid loss was generally an exponential power of the pressure, and thus might

be plotted against pressure on log-log paper to give a straight line.

(4) Cake thickness was proportional to fluid loss.

(5) Cake composition was largely independent of time and did not vary for a given

mud in various dilutions with water, that is, at different percent solids content of

the mud.

(6) Fluid loss was largely independent of the nature of the filter bed material.

(7) Fluid loss was independent of circulation past the face of the core, as long as

this circulation was slow enough not to hydraulic-erode-off the cake.

(8) Fluid loss was increased by calcium ion flocculation of the mud.

Byck5 studied the plastering properties of six representative drilling muds over a

temperature range of 70 °F to 175 °F at several mud weights, using a high-pressure

circulating filter press similar to the one used by Jones and Babson 1 , with full size

- 13-
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consolidated cores.

The following results were concluded:

(1) In all tests, with untreated as well as with chemically treated muds, the filtration

rates at elevated temperature were higher than at low temperatures and in nearly

every case the increased filtration rate was notably larger than could be attributed

alone to the decreased viscosity of fluid at elevated temperatures, e.g., it was

found that the six muds tested, three had 8% to 58% greater filter loss at 175 T

(70 C) than had been predicted from the filter loss at 70 T (21 °C) by

substituting the changes in filtrate viscosity. The permeability of the cake

increased correspondingly, with the maximum change being from 2.2 x iO to

4.5 x iO 3 md—an increase of over 100% . Filtration rates of the other three

muds deviated from the predicted values by only ±5%, and the permeabilities of

the cakes remained essentially constant.

(2) No existing method would permit even an approximate determination of the

filtration rate at high temperature from data obtained at room temperature.

(3) No relationship was observed between mud viscosity and filter cake

characteristics.

(4) It was found that chemical treatment of the muds for viscosity reduction shifted

the temperature of minimum viscosity to appreciably higher values than for

untreated muds.

Williams6 in a series of experiments conducted dynamic filtration and observed that

the equilibrium filtrate flow rate was reached after only a short time. The value of the

equilibrium filtration rate was related to a constant thickness filter cake which was

produced by an equilibrium between the deposition and the erosion of solids. This value

was to be a function of the pressure, mud circulation rate and the mud properties.

Byck7 investigated the effect of formation permeability on the filtration characteristics

of drilling muds. The filter cake permeabilities measured by him were between

0.46 x iO and 7.42 x iO md at 34 atmospheres pressure with California muds. By
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making some determinations on cores of permeabilities from 10 to 14,000 md, it was

shown that the filtration rate was dependent only on the permeability of the cake—at least

as long as it was several orders of magnitude lower than that permeability of the

formation.

Gates and Bowie8 reported the relationship between particle size distribution and wall

building or filtration properties, the viscosity, PH, and density of mud fluids samples

from drilling wells and laboratory.

The conclusions indicated from the results of the tests described in their report were

as follows:

(a) Most of the mud fluids that had the best filtration or wall building properties

(lowest filtration rates) were composed of particles having a relatively uniform

particle size distribution.

(b) The mud fluids that had the best filtration control properties were composed of

approximately 65% (by weight) colloids (range of 42-88%), 30% silt (range of

7-46%), and 5% sand (range of 0-13%).

(c) The samples of muds tested that had the poorest filtration properties (higher

filtration rates) were composed of approximately 1% colloids (range of 0-6%),

94% silt (range of 87-100%), and 5% sand (range of 0-13).

(d) Apparently no simple relationship exists between the viscosity as measured in

the Stormer (600 rpm) and Funnel viscometers and the particle size distribution

of the mud fluids tested.

(e) Apparently no simple relationship exists between PH and particle size

distribution or the filtration properties of the drilling mud fluids tested.

(f) A small quantity of sand (less than 10% by weight) had no apparent effect upon

the filtration properties of the samples of muds tested.

(g) Without exception, increasing the temperature increased the filtration rates of the

mud fluids tested.

Nowak and Krueger9 presented some results on studies of the effect of mud filtrates
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and mud particles upon the permeabilities of the cores. Their filtration tests were

conducted in a mudding-off cell in which mud and bit action could be simulated under

temperature and pressure conditions approximating those in the weilbore. From the tests

data, they concluded:

(i) Particles were observed to penetrate into and through a test core of alundum,

and plugging caused by mud particle invasion was indicated in deplastering

tests.

(ii) Filtrate loss curves for each of three field drilling fluids (Clay water base, Oil

base, and Emulsion base) indicated from tests on 4 synthetic cores whose

permeabilities ranged from 14 to 248 md that there was a dependence of filtrate

loss upon the permeability of the formation. This result could apparently be

explained by particle invasion into the core. In these particular tests, low

permeability core showed filtrate losses higher than those for high permeability

cores.

Prokop 10 performed radial filtration of drilling mud in a laboratory tester, in which

mud flowed through a concentric hole in a cylindrical artificial core. He measured the

dynamic filtration rates and the filter cake thickness. In addition, he extensively

investigated the mechanisms which govern the build-up of filter cakes and reported that

the major factors controlling filter cake formation in a circulating system should be:

(a) The rate of deposition of solids from the mud;

(b) The erosive force that the flowing mud exerts upon the filter cake;

(c) The erodability of the filter cake;

(d) Any change in filter cake characteristics attributable to the scouring action of the

mud.

He also thought that the rate at which solids were deposited from the mud would be

controlled to a large degree by the filtration characteristics of the mud, the pressure

differential, the temperature under which filtration was taking place, and the thickness of

the filter cake already in place. The erosive action of the circulating fluid should be
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dependent upon the circulation velocity, the fluid properties, and the type of flow existing

in the fluid column, i.e., whether turbulent or viscous.

From the results, the following conclusions were suggested:

(1) A filter cake deposited in a quiescent filter cell showed little change in

permeability during a long filtration period. Filter cakes deposited during

continuous circulation would gradually decrease in permeability as long as the

experiment continued. This was evidenced by a continual decrease in filtration

rate after the filter cake had reached a constant thickness.

(2) A thick filter cake formed during a period of non-circulation was very hard to

erode away by mud circulation.

(3) Much thicker filter cakes were deposited with the mud flowing in viscous rather

than in turbulent flow.

(4) It was found that a fluid flowing in turbulent flow would erode a filter cake at a

rate proportional to the square of the circulation velocity.

(5) Experiments conducted by depositing a filter cake during continuous mud

circulation showed that, in general, the higher the filtration rate of a mud, the

thicker was the equilibrium filter cake and the higher was the eroding velocity

necessary to stop further formation of filter cake. Table 2.1 illustrated the typical

results.

(6) Mud viscosity appeared to affect erosion only in as so far as it controlled the

type of flow existing in the circulating fluid, i.e., whether it was turbulent or

viscous.

Schremp and Johnson 11 divided the filtration process into two steps:

(i) Bridging of opening in the filter medium;

(ii) Filtration of fluid through the filter cake that developed on the filter medium as

filtration takes place.
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loss	 Cake Thickness Eauilibrium

(cc in 30 mm)

19

8

10

85

148

1/32

3/32

6/32

19/3 2

21/32

(mm) (ft/mm) (rn/mm)

	

0.8
	

125
	

38

	

2.4
	

48
	

15

	

4.7
	

72
	

22

	

15.1
	

220
	

67

	16.6
	

530
	

161
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Table 2.1 Equilibrium Cake Thickness under Dynamic Filtration10

iviuo iiase

(all muds treated with lime,
caustic soda and quebracho)

Bentonite

Calcium Bentonite and Barite

Calcium Bentonite

Attapulgite and Bentonite

Attapulgite and Bentonite

Mud circulated through a 2 inch (5.08 cm) diameter hole in consolidated sand. Turbulent
flow. Filtration pressure 350 psi (24.6 kg/cm2)
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and reported the results obtained from high temperature, high pressure filter loss studies

in which field samples of clay-water, emulsion and oil base fluids were used. The filter

loss tests were conducted at temperatures of 150, 200, and 250 °F and at differential

pressures of 100, 1000, and 2000 psi. They showed that there was no way that filter

losses at high temperature could be predicted from measurements made at a lower

temperature. It was therefore concluded by Schremp and Johnson that it should be

necessary to test each mud separately at the temperature of interest in a high temperature

cell.

Beeson and Wright 12 produced a paper on the investigation of the mud loss,

including solid particles, to formations. They discussed the entrance of whole mud, as

well as filtrate, into pore channels of a size that exists in productive oil sands. The

following conclusions could be drawn from their paper:

(1) Their experimental data showed that a mud might give a negligible loss on filter

paper, but give a large one on a permeable formation downhole.

(2) The discrepancy between the gross loss on paper and that on the porous media

was greater with unconsolidated sand than with consolidated rocks, even when

the permeability of the latter was higher.

(3) The discrepancies between the net filter loss on paper and on porous media

increased with increase in spurt loss. Evidently the mud spurt plugged the cores

to such an extent that the pressure drop within the core becomes significant,

thereby reducing the drop across the cake, and reducing cake compaction.

(4) The difference between the fluid loss on fine filter paper and on sand indicated

that mud particles entered the pore channels prior to and during formation of the

cake in the sand.

When accurate values of static cake thickness are required, the following method

advised by von Engelhardt and Schindewelf97 should be used: Only a limited amount of

mud is put in the filter cell, and filtration is stopped at the moment all of the mud is used
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up, so that only filter cake remains in the cell. The critical moment to stop filtration is

determined by observing the filtrate volume at short time intervals, and concurrently

plotting the volume versus the square root of the intervals. Filtration is stopped

immediately when the curve departs from linearity. The total volume of mud filtered is

calculated from the combined weight of the original mud. The cake volume is then

obtained by subtracting the filtrate volume from the volume of mud filtered.

Ferguson and Klotz13 reported an outstanding piece of research on drilling fluids

filtration in a paper published in 1954. They divided the filtration process of muds into

three classes:

(i) Static filtration - Mud does not circulate, filtration rate are controlled by cake

performance. Cake thickness increases and filtration rate decreases continually

with time;

(ii) Dynamic filtration - Drilling mud circulates past the surface of the filter cake.

Filtration rate is controlled by cake thickness. Cake thickness and filtrate flow

rate become constant depending upon mud circulation and upon drilling string

rotation;

(iii) Filtration from beneath-the-bit while drilling - No filter cake forms beneath-

the-bit. Filtration rate is controlled by plugging of the formation ahead of the bit

by mud particles.

Their experiments were conducted on a large scale model welibore which allowed the

simulation at 500 psi of the radial flow of filtrate due to the above three types of filtration.

They also reported a defined interface between filter cake and slurry, which is clearly

shown in Figure(2-1.1). The figure showed the solids content as a function of distance

from the filter cake surface for a classic incompressible filter cake and for a drilling mud

filter cake. The interface between classic incompressible cake and slurry is defined

sharply, but between drilling mud cake and mud slurry, it is not. It is believed that the

solids concentration increases abruptly from the slurry to the cake in the former case,

however, in the latter case, the interface between the cake and slurry has finite thickness,
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and then the solids content increases gradually from the slurry to the cake through a

transition region. They reported that the curves in Figure(2-1.1) as drawn here, are

certainly qualitative, which apply to no particular mud. This transition region influences

dynamic filtration and may account for the apparent equilibrium filter cake thickness

observed in dynamic filtration, whereas shear strength of the cake is so high that

hydrodynamic shear does not disturb it, shear strength of the upper part of the transition

layer is only about 0.005 psi. This layer can therefore be removed by fluid flowing under

a pressure gradient that is typical of mud flow. During dynamic filtration, this transition

layer is swept away continually and cake thickness is limited even though fluid shear does

not erode the dense part of the cake.

During experimental study, they obtained some excellent data on dynamic filtration

rates in a small model well which duplicated field geometry. Holes were drilled in

artificial sandstone blocks with 5'/4 inch and 5I8 inch bits. Figure(2-1.2) through (2-

1.5) showed the change in dynamic filtration rates with time for four muds at various

circulating velocities. The following conclusions were concluded:

(1) Dynamic filtration rate starts high, about the same as the rate that would be

predicted for static filtration. As dynamic filtration continues, the rate does not

drop as rapidly as the static rate, and, after about 15 hours, the dynamic rate

becomes constant or nearly constant, whereas static filtration rate continues to

decrease.

(2) The time to reach constant dynamic filter rates varied from 2 hours to over 25

hours, depending upon the type of mud and upon the flow velocity.

(3) The equilibrium dynamic filtration rates do not appear to be related to the

extrapolated API fluid loss for any of the muds. Moreover, muds with the

lowest API filter loss, do not have the lowest equilibrium dynamic filtration

rate.

(4) The estimated amount of filtrate invasion as shown in Table 2.2 that would take

place during the various stages of drilling and completing a hypothetical

—21-







Time
(hours)

50

8

50

12
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Table 2.2 Drilling Schedule and Filtration Invasion13

2

4

12

Operation

Drill through zone at 5 fph

Drill below zone at 5 fph

Round trip to replace bit

Drill below zone at 5 fph

Pull pipe, log well, run pipe

Condition hole to run casing:

Circulating drilling mud

Pull drill pipe

Run casing

Filtrate	 Invasion	 Zone
Volume	 Radius	 Thickness
(mi/in2)	 (inches)	 (inches)

	

7.3	 3.5

120	 18.4	 14.6

3.5	 18.6	 14.8

61.5	 21.1	 17.3

2.9	 21.3	 17.5

	

2.9
	

21.5	 17.7

	

2.9
	

21.7	 17.9

Cementing casing, end of mud
filtration:

Total Mud Filtration
	

138
	

192
	

21.7	 17.9
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well, assuming a sand at 7,000 feet and a total depth of 7,500 feet showed that

some 95% of the invasion would take place under dynamic conditions while

drilling, and only 6% under static conditions while tripping and completing.

(5) Mud particle bridging and plugging apparently limit the flow of filtrate from

mud stream to formation even beneath-the-bit where no mud cake exists.

They compared the fluid loss behaviour of an incompressible and compressible filter

cake using an analytical model, the filter cake was assumed to exist in thin layers. The

permeability, K1, of each layer was assumed to depend on the pressure gradient, P, in

that layer at the time it was deposited, according to the equation:

= Constant

where

were the permeability and the pressure gradient respectively upon

layer "i" in the cake.

As cake thickness increases, while total filtration pressure remains constant, P1

becomes smaller and K 1 lager, for each succeeding layer of the filter cake. The application

of this to a composite cake leads to a filtration curve of cumulative filtrate volume V vs.

the square root of filtration time Ji which is concave. This does not agree with

experimental observations. Feguson and Klotz therefore proposed a hypothesis that the

filter cake comprised two layers. The lower layer was a filter cake consisting of deposited

and packed solid particles, whilst the upper layer consist of a mud gel. This mud gel

would have two properties:

(a) The velocity of the gel would be greater than that of the solid particles contained

in the gel, i.e. leakoff rate would be high through the cake where as the rate of

the particles deposition would be substantially decreased. This would obviously

only occur after the spurt loss period when the cake would slow down the mud

filtrate velocity through the filtration surface and increase the gel strength.
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(b) The resistance to the flow, because of the gelled layer, would increase with time

(gel strength formation being time dependent) and hence filtration rates would

decrease. This decrease may counteract the concave filtration curve to give the

straight line behaviour observed in experiments.

Havenaar14 presented the experimental filtration data at the bottom of the borehole and

a good quantitative interpretation of the data using a formula derived from the following

assumptions:

(i) Each time a blade of a drag bit, or a cone of a roller bit, moves along the bottom

of the hole, the mud cake is completely removed.

(ii) A new mud cake is immediately formed on the freshly produced surface, and

losses of whole mud into the formation are negligible(this is equivalent to an

immediate plugging of the pores).

(iii) The filtration of the mud at the bottom of the hole follows the classic law.

The equation for filtration through the bottom of the hole while drilling reported by

I-!avenaar will be discussed in chapter three.

Table 2.3 compares filtration rates calculated by his equation with experimental data

of Ferguson and Klotz 13 . The poor correlation obtained with oil base mud is probably

because cakes of oil base muds are easily eroded, and flavenaafs equation neglects

erosion by the mud jets.

In two related papers, Glenn and Slusser 15 concluded from the experimental volume-

time data obtained during exposure of filter paper or a consolidated porous medium to a

mud under differential pressure that there could be three stages involved in an experiment.

viz:

(i) Mud spurt period - An initial period which mud particles bridged pores inside

porous medium and initiated filter cake formation. Filtration rates were very

high.

(ii) Non-uniform cake thickness period - An intermediate period during which
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Table 2.3 Comparison Between Calculated and Experimental
Bottomhole Filtration Rates14

Bottom Hole Filtration Rat
V30	 C	 Rate of	 (Q = cm3/sec)

Muds	 (ml)	 (sec/cm2) Drilling (fph) Calculated Experimental

Field

Gel

Gel

Oil Base

Lime Starch

Lime Starch
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filter cake build-up inside porous medium occurs and the differential pressure

across the cake increases. Additional particles were "piled-up" behind the

bridging particle or particles so that a "filter cake" was rapidly built up.

Filtration rates were in continuous decline.

(iii) Constant pressure filtration Period - A later stage in which pressure across

filter becomes constant. Filtration rates were constant.

The following conclusions were reported:

(1) The mud spurt loss increased with pressure differential for a given sample

permeability and the mud spurt loss at a given pressure differential increased

with increasing original sample permeability.

(2) The bridging phenomenon and the presence of particles in the filtrate indicated

that the mud spurt loss could depend upon the particle size (and shape)

distribution of the mud, the pore entry size distribution of the porous medium.

(3) Particles bridge pores inside porous media during the surge period and filter

cake build-up inside porous media occurs during subsequent fiLtration.

Homer, et al. 16 reported a laboratory study of the effects of physical and easily

measured rheological properties, such as apparent viscosity, plastic viscosity, yield value,

density and API fluid loss under beneath-the-bit and dynamic filtration conditions. Those

conditions were:

Samples: Torpedo sandstone, 2 inch diameter, 4 inch length, 1500 to 2000 md

permeability, 25% porosity;

Saturation Fluid: Distilled water,

Differential Pressure: 5 psi;

Flow rate: Approximately 6 gal.fmin.;

Drilling rare: 1.5-2.0 ftlhr,

Penetration: 3 inch;

Bit size and type: I 1/4 inch microbit.
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The conclusions drawn from their work may be summarized as follows:

(a) The lack of correlation between either the filtration rate beneath-the-bit or

dynamic filtration rate and the API filter loss was ascertained by the

experimental data.

(b) Filtration rates beneath-the-bit, unlike filtration rates through the bore walls, are

influenced by the permeability of the formation.

(c) No relationship could be ascertained between beneath-the-bit and dynamic

filtration and the rheological properties identified above.

In a paper concerned with the effect of borehole variables on drilling rate,

Cunningham and Eenick t7 reported experiments performed to determine the pressure

drop across mud filter cakes. They reported that a pressure of 5000 psi was required to

obtain 0.3 cc/mm of filtrate rate through the core plus filter cake. After removing the cake,

it required 50 psi to achieve the same filtration rate. Five thousandths of an inch was

removed from the end of the core and the experiment repeated requiring only 2 psi to flow

the same rate as before. The influence of these results is that the filter cake permeability is

at least 3 orders of magnitude lower than the core and the internal filter cake formed is

limited to a very close proximity to the core face.

The effects of elevated temperature on the filtration of drilling fluids was reported by

Milligan and Weintritt 18 . They concluded that interpretation of data might be more

involved than in the API filtration tests because some muds might undergo irreversible

reactions or changes in composition while filtering at an elevated temperature. They also

found that more filtration occured at low differential pressures that at high differential

pressure when mud was treated with a surfactant. This behaviour was explained that at

high differential pressure the filter cake is more easily compacted than in the mud without

the surfactant, which could keep the dispersed bentonite broken up into particles.

In 1961, Gatlin and Nemir19 reported an investigation of the effects of particle size

distribution on bridging in lost circulation and filtration tests. They concluded that a
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maximum density distribution of the "large" particles in commercial bentonite reduces the

initial surge or "spurt loss" of a bentonite mud in the standard filter press test and the

maximum density theory , which is based on inert particles, apparently does not hold for

the linear portion of the filtration curve of a bentonite mud.

Krueger20 reported a study aimed at evaluating the effect of various additives on

dynamic fluid loss performance. His tests were conducted in a mud circulating system at

a pressure of 500 psi and temperature of 170 °F. Dynamic filtration rates were obtained in

each experiment under two different simulated weilbore conditions:

(i) Filtration just above the bit through a new mud cake laid down dynamically on a

freshly drilled formation;

(ii) Filtration up hole through a mud cake formed by deposition of a static fiTter cake

on top of the initial dynamically formed cake.

The lack of correlation between the API filter loss and the dynamic filtration rate

reported by Ferguson and Klotz 13 casts doubts upon the validity of the API test as a

criterion for downhole filtration rates. Experimental work by Krueger substantiated these

doubts. His results were presented as graphs of API static fluid loss versus the

equilibrium dynamic fluid loss for muds with an increasing concentration of specific fluid

loss control additives. The results showed that there was a different relationship between

dynamic filtration rate and API filter loss for each agent.

Krueger also produced a typical curve for accumulated fluid loss vs. time which is

shown in Figure(2-1.6). After about 6 to 10 hours, equilibrium conditions are reached

and fluid loss rate becomes constant as indicated by the straight line portion of the curve.

The slope of the portion of the curve in millilitres per hour is the dynamic fluid loss rate

through the equilibrium dynamic mud cake laid down on newly exposed formation. The

second portion of the curve represents the period during which circulation was stopped

and the static mud cake allowed to build-up on top of the dynamic cake. The third portion

of the filtration curve represents the period after circulation is re-started. Shearing action

of the flowing mud stream is insufficient to wash off the mud cake, except for the weak
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surface structure(the "transition layer" defined by Ferguson and Klotz 13) and a new

equilibrium dynamic fluid loss rate is established. Because fluid loss is now restricted by

the combination static-dynamic cake, the equilibrium dynamic fluid loss rate is much less

than the previous rate which was limited by the dynamic cake alone.

In 1963, Outmans21 primarily concerned with the numerical modelling of static and

dynamic filtration and developed a theoretical-empirical nonlinear diffusion equation

describing the mechanisms of filtration through a compressible filter cake based upon

four assumptions:

(i) The fluid flow through a compressible porous medium is governed by Darcy's

law.

(ii) The rate of change in fluid content of an element of the porous medium is

proportional to the rate of change of solid pressure between the particles.

(iii) The solid particles are incompressible within the range of pressures considered.

(iv) The total pressure on a surface normal to the line of flow is equal to the sum of

the fluid pressure and the pressure between the particles (solid pressure) at that

surface.

He suggested that dynamic filtration consists of three distinct stages as shown in

Figure(2- 1.6):

(i) The first stages is the deposition of the particles in the form of "card pack" floc

and is characterised by increasing cake thickness. This stage is represented by

the time interval T0 to T.

(ii) The second stage is characterised by filtration through a cake of constant

thickness. Outmans suggested that during this phase the cake continues to

compact but since the cake thickness is constant the rate of deposition and the

rate of compaction must be equal. This phase is represented by the curve

between times T 1 and T2.

(iii) The third stage is characterised by equilibrium conditions in that the filtration

rate, cake thickness and permeability are constant between times T2 and T3.

- 29-



Chapter Two Literature Survey on Filtration Properties of Drilling Fluids

The theory proposed by Outmans 21 for the generation of an equilibrium filter cake on

a basis of continuing compaction is markedly different from that suggested by Prokop10

of a sorting/classification mechanism due to mud flow through the surface of the cake

leading to denser packing and constant permeability to thickness ratio. The curve

produced by Outmans model 21 is similar in shape to that produced experimentally by

Krueger20.

From the results, the following conclusions were presented:

(1) The most effective fluid loss control agents under dynamic flow conditions were

starch and the organic viscosity reducers, quebracho and complex metal

lignosulfonate in clay-gel drilling fluid.

(2) Experimental data confirmed the theoretical conclusion that a dynamic cake,

once formed, is extremely difficult to erode.

(3) It is also experimentally verified that the dynamic rate of filtration decreases

when the drilling fluid becomes less viscous and also if the rate of circulation is

reduced.

Darley22 designed an apparatus to measure the change of filtrate flow rate during the

first second of the filtration process and reported that initial filtration rates depended upon

the concentration of solids and particle size distribution in the mud. The results presented

by Darley suggested that there was a critical size range for bridging in the surface pores.

Larger or smaller particles did not cause bridging—the larger particles because they could

not enter the pores and were swept away by the mud stream, the smaller particles because

they could pass freely through the pores. However, once the pores were bridged by the

right size particles, successively smaller ones were trapped, and a filter cake was

established.

Bo et al.23 extensively investigated the effect of particle-size distribution on the

permeability of filter cakes and reported that the lack of the definition of "particle size" led

to a anomalous correlations between particle size and filtration rate. They criticized the
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"average particle size" concept and suggested the proper criterion should be particle-size

distribution. Experimental work presented by them showed that widely different

permeabilities and porosities (and hence filtration rates) could exist in beds of particles

with the same overall size range but with different size distributions within that range.

In 1966, Bezemer and Havenaar24 conducted dynamic filtration tests in two different

type of apparatus. One of them consisted of a porous filter pipe through which the drilling

mud was circulated, dynamic filtration rates and cake thickness were determined as a

function of flow rate and time. The other was a simple filter apparatus where mud flow

was similar to that in a rotational viscometer. Filtration pressure was limited to 100 psi.

From the results, the following observations were reported:

(1) A state of equilibrium was eventually reached; i.e., both cake thickness and

filtration rate attained constant values.

(2) The rate of shear at the cake surface is a measure of the effect of mud flow on

dynamic filtration. This means that borehole conditions of laminar mud flow can

be simulated in laboratory filtration tests. Of the two arrangements used, the

dynamic filter apparatus is clearly much more suited than the filter pipe.

(3) The equilibrium filtration rate was found to be proportional and the equilibrium

cake thickness inversely proportional, to the rate of shear at the cake surface for

most types of mud investigated.

(4) The erodability of the cake surface is independent of temperature and pressure.

The equilibrium rate of filtration being independent of temperature, a reduction

in the viscosity of the mud filtrate by raising the temperature is compensated by

a increase in cake thickness. In a similar way, an increase in filtration pressure

is mainly compensated by a reduction in cake permeability. In the limited range

of filtration pressures and temperatures investigated, it was found that: (a)

equilibrium filtration rate is not affected by filtration temperature and differential

pressure; (b) equilibrium cake thickness increases with increasing filtration

temperature (if the cake permeability remains unaffected by temperature,
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equilibrium cake thickness is inversely proportional to mud filtrate viscosity);

(c) equilibrium cake thickness is hardly affected by filtration pressure.

(5) Higher mud circulation rates resulted in higher equilibrium filtration rates and

shorter time for the filtration process to reach equilibrium.

Young and Gray25 conducted beneath-the-bit filtration during microbit drilling tests.

The following results were concluded:

(a) The filtrate flow rate measured beneath-the-bit was found to be independent of

borehole pressure and rock permeability.

The filtrate flow rate beneath the bit using both low fluid loss mud and high

fluid loss mud was constant as core length decreased, which was explained by a

deposition of very low permeability of the filter cake.

(b) An observed reduction in drilling rate is associated more with the reduction in

mud cake permeability rather than spurt loss.

Considerable rock permeability damage was found beneath-the-bit in all samples

tested, this damage was proportional to both borehole pressure and rock

permeability. Extensive permeability reduction was found to about 1 cm

beneath-the-bit in high-permeability rock drilled with water, and to less than 1/2

cm in those drilled with low fluid loss mud.

(c) The API static fluid loss may be a good indicator of beneath-the-bit filtration

rates.

(d) The high differential pressure beneath-the-bit is dissipated over the first

centimetre depth of the formation.

Barkman and Davidson28 showed three characteristic shapes of the cumulative filtrate

volume against the square root of the time curve. Experimental examples of each type of

shape is presented in Figure(2-1.7). They considered the shape of curve that results in

any particular case would depend upon the properties of the suspended solids and of the

filter medium. When the suspended particles are larger than pores of the filter medium, no

invasion takes place and the type of the curve shown in Figure(2-1.7a) results, and the
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intercept of the straight-line portion at time zero is negative. When the suspended solids

are much smaller than the pores of the filter medium, invasion takes place at least during

the early part of the test. A positive intercept results, as shown by Figure(2-1.7b). The

third type of curve, which has a characteristic S-shape, can also occur under some

circumstances, as shown in Figure(2-1.7c).

Barrington and Smith 3° invented an apparatus for determining dynamic fluid loss

trends as a patent, which provided a dynamic fluid loss testing cell comprising a cell wall,

a detachable lid having an inlet for pressurising fluid, a detachable base having a drain,

and a stirrer, the stirrer being journalled in the lid and being provided with an external

drive.

Simpson 31 presented data for filtration of drilling fluid under simulated downhole

conditions, with confining pressures as high as 10,000 psi and temperatures up to 400

°F. He considered that the knowledge of the filtration rate (as an indication of depth of

filtrate invasion) is important in controlling a drilling fluid to minimize productivity

damage.

Following results were summarized:

(i) The effect of very high total pressure on the filtration of a drilling fluid varies

depending upon the temperature of the test. No simple calculation can be made

to normalize the effect of pressure.

(ii) Use of the filtration rate derived based on result of API high-temperature

filtration test for calculation of depth of filtrate invasion can give much higher

values than depths calculated from filtration rates measured under simulated

downhole conditions.

Simpson 35 conducted filtration tests at downhole pressure and temperature upon a

filter—a fused aluminium oxide material having a water permeability of about 500 md.

The equipment was designed to permit filtration tests at pressures as high as 10,000 psi

and at temperatures upto 400 F. Tests were performed at three muds:
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(1) A water-base mud—potassium lignite surfactant system suitable for use at 300

'F;

(2) A conventional invert oil-base mud—conditioned for low filtrate as measured by

API test at 300 'F;

(3) A low colloid oil-base mud—no colloidal solids other than oil-dispersible

bentonite for suspension of solids and emulsifier for emulsification of water and

oil-wetting of barite.

For the purpose of comparison with the customary filtrate values, the three muds

were tested using the API high temperature procedure. The results showed that:

(a) The conventional invert oil-base mud had a very low filtrate flow rate by the

API test at 300 'F;

(b) The water base mud had a satisfactory filtrate;

(c) The filtrate for the low-colloid oil base mud was higher than would be ordinarily

considered acceptable.

Testing at downhole pressure and temperature (500 psi, 300 'F) gave a different

ranking for performance of the muds. The results showed that there was little change in

the filtrates for the first two muds, but the filtrate for the low colloid oil base mud was

much lower than that indicated by the API test when tested at downhole pressure and

temperature, the low colloid oil base mud had a considerably lower filtrate than the water

base mud. Simpson concluded from the results that the difference in performance

indicated by the two test procedures might be explained by two factors:

(1) Greater effect of pressure on the viscosity of oil as compared with water,

(2) The difference in filter media used.

It is believed that the thin sheet of filter paper used in the API test does not provide

pore spaces where internal filter cake might start to form. In contrast, the fused aluminum

oxide filter cylinder is 0.75 inch thick and has interconnecting pore spaces more like those

of permeable rock. A mud having a poor particle size distribution, but containing material
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adsorbable by cellueose, might show an erroneously low filtrate on paper. Conversely, a

mud containing solids that would seal the surface pores of permeable rock might have the

solids stack on the surface of a sheet of paper and delay the formation of a low

permeability filter cake.

Sharma et a!. 36 examined the effect of various drilling fluid additives on water loss

and the permeability of filter cakes. Permeability of filter cakes was measured before and

after addition of chemicals. A straight line relationship was generally found to exist

between water loss and mud cake permeability except in the case of presence of water

loss reducing agents. Different additives affect values of the slope and the intercept in

distinctive ways. Inert materials give rise to low slope values as compared to those

obtained with electrolytes, whereas thinners produce intermediate slope values. Similar

additives produce comparable slope and intercept values.

Peden et al. 37 conducted both dynamic and static filtration tests upon two inhibited

water based muds. The dynamic filtration experiments were performed at the pressure of

100 psi and the room temperature on a filtration column, consisting of two concentric

acrylic tubes of 6 ft length. The static experiments were conducted in a perspex core

holder fitted with a mud sample chamber. The following specific results were proposed:

(i) Annular velocity (shear rate) has a pronounced effect on dynamic fluid loss and

the exact mechanism might be dependent upon the nature of the filter cake,

specifically the size and shape of the constituent particles;

(ii) The filtrate loss is highly dependent upon core permeability for dynamic

filtration;

(iii) Barytes in conjunction with more conventional fluid loss control additives

greatly enhances filtration control;

(iv) The presence of a range of particle size is crucial to effective fluid loss control.

Peden et a!. 38 in the second one of a series of papers related to the borehole filtration

reported an extensive investigation on filtration under dynamic and static conditions. The

following observations and conclusions were made:
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(a) Spurt loss is directly dependently upon pressure;

(b) The presence of bridging particles such as CaCO3, Gypsum and Barytes

substantially improves the ability of the mud to limit spurt loss and subsequently

filtration rates.

(c) The cake deposited under static conditions is largely eroded once circulation is

restarted.

(d) For static filtration an increase in concentration of barytes as the weighting

material results in a reduction in fluid loss, an increase in cake thickness and an

increase in cake permeability.

Wyant et al.39 measured the dynamic fluid loss of oil base additives. The aim of his

experiment was to correlate the DFL (dynamic fluid loss) with the static fluid loss, the

sticking coefficient, and the FLCA (fluid loss control agent) concentration in oil muds.

The DFL data (at 250 F and 500 psi) were obtained with a developed cell shown in

Figure(2-1.8), in which filtration occurs in an annulus around a central permeable core.

The following conclusions can be drawn from their paper:

(i) The DFL decreases with decreasing static (API HTIHP) fluid loss.

(ii) The major portion of each short term fluid loss reduction(both static and

dynamic) was obtained by FLCA concentrations of about 4 lbs/bbl [11.4

Kg/rn3]. The long term equilibrium dynamic filtration rate was not changed

greatly by FLCA additions with the exception of the polymer based FLCA 2.

Higher concentrations of this FLCA increased the DFL values.

(iii) The DFL (both long term and short term) increased with increasing shear rate or

fluid pulsation.

(iv) Primary fluid loss control occured at or slightly within the core surface rather

than within the bulk filter cake.

(v) A mechanistic theory, based on pore structure differences between natural

sandstone and synthetic sintered stainless steel cores, was proposed to explain

the consistent variations in DFL. Increasing permeability (from 200 to 600 md)
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of Berea sandstone cores decreased the dynamic filtration, whereas increasing

the permeability of synthetic sintered stainless steel cores (from 47 to 2,000 md)

increased the DFL.

Vaussard4° simulated the borehole conditions to measure the dynamic fluid loss.

Tests were performed at a maximum pressure of 1070 psi and at maximum temperature of

300 °F. He and his coworkers observed no correlation between API static filtration and

dynamic filtration under downhole conditions. Figure(2-l.9) showed the filtration

simulator employed by them. Their findings were:

(a) Dynamic filtration is independent of permeability, except in the case of synthetic

filter media.

(b) Filtration and cake formation depended upon 2 opposing phenomena: the

deposition and erosion of solids. Erosion is facilitated if the solids are only

slightly compressible. If solid arrangement occurs with difficulty, it results in a

more fragile cake, which is less efficient in terms of filtration.

(c) It is the overall physico-chemical equilibrium that allows good filtration control

under borehole conditions, the difference between static and dynamic being in

the first place the ease of erosion, and in the second place only, the cake

permeability.

(d) An efficient cake is one where solids have a high colloidal nature. This explains

the filtration control difficulties, either by the prevention of cake structural

organization in water base muds (excess of fine but only slightly colloidal solids

and/or presence of aggregates between solids and additives is supposed to

reduce filtration) or by the low colloidal nature of solids in oil base muds.

(e) Only a slightly difference in filtration depending upon formation permeability

might be observed at the beginning of dynamic filtration. This would disappear

as soon as a stabilized cake is obtained.

(1) The dynamic rate was reduced by a period of static filtration, but increased if the

annular flow rate was increased-markedly so at the onset of turbulence, which

occured at about 1,800 1/mm as shown in Figure(2-1.10).
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(g) There is considerably less spurt loss with polymer muds because the filtrates

from the polymer systems are much more viscous and therefore have a much

reduced spurt loss.

Bizanti41 reported an investigation on the relationship between static and dynamic

filtration. The experiments were conducted upon the sandstones under dynamic and static

conditions over three mud samples: water, water plus clay and water plus clay plus

barytes. He also presented a regression analysis, performed between the fluid loss

parameter (q/D 2 v) and Reynolds number (NR) and between the fluid loss parameter

(q/D2 v) and the modified Reynolds number (NR . AP/'r 3,). The following conclusions

could be derived:

(1) The greater the pressure drop, the greater the filtration volume;

(2) The greater the mud density, the thicker the mud cake deposited;

(3) An increase in Reynold number (NR) increases dynamic fluid losses.

(4) From the regression analysis conducted on the experimental results, it is seen

that the modified Reynolds number (NR . AP/'r ),) correlates better with the fluid

loss parameter (q/D2 v) than with the Reynolds number (NR);

(5) The pressure drop yield point ratio (AP/'r) has great effect on the fluid loss

parameter (q/D2 v) while the Reynolds number (NR) has less effect on the

fluid loss parameter (q/D 2 v).

Hartmann et al.42 presented an analysis of mud cake structures formed under

simulated borehole conditions. The tiny pieces of filter cake were shock-frozen and

broken while immersed in the coolant. The specimens were then studied with scanning

electron microcopy (SEM) in both freeze-dried and frozen-hydrated stages. The

investigation covered filter cakes of four different drilling fluids with respect to fluid loss

data, as well as thermal and chemical degradation. The following observations were

obtained:

(1) The honeycomb structures of bentonite contained in drilling fluids were found
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in the resulting filter cakes. This may be induced by the edge-to-face attachment

of the bentonite platelets.

(2) The gel strength of the drilling fluid exerts a considerable influence on dynamic

filter cake structures.

(3) A structural orientation in the direction of flow for the drilling fluid within the

filter cake can be observed only if the gel strength has diminished within the

drilling fluid.

(4) During chemical and/or thermal over stressing of the drilling fluid, the bentonite

platelets lose their structure-forming property through coagulation.

Jamison and Fisk43 invented an apparatus for testing fluid loss characteristics of a test

fluid such as drilling mud under static and dynamic conditions. The apparatus having a

filter medium cell which has a generally vertically disposed cylindrical wall, the apparatus

further including a first chamber which is in open communication with the inner surface

of the cylindrical wall and a second chamber which is in communication with the outer

surface of the cylindrical wall, there being a generally vertically disposed rotatable shaft

which is received internally of the cylindrical wall, the shaft being driven by a motor or

the link, the apparatus being capable of providing a differential pressure across the

cylindrical wall such that fluid will flow from the first chamber to the second chamber to

the differential pressure and the liquid passing into the second chamber can be suitably

measured and used to calculate fluid loss rate of the test fluid.

Zamora et al.44 presented a paper on the development and application of three

innovative devices for measuring important physical properties of water and oil-base

muds. These three devices are:

(i) Automatic Shear Meter shown in Figure(2-1.11)---which measures shear

strength of a column of mud after static aging at temperature and pressure;

(ii) HTHP Dynamic Filtration Tester shown in Figure(2-1.12)--which measures

dynamic filtration at operating conditions upto 400 F (204 °C) and 500 psi;

(iii) Filter Cake Penetrometer shown in Figures (2-1.13) and (2-1.14)---which
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determines characteristics and thickness of filter cakes obtained from both low-

or high-pressure, static or dynamic filtration test.

Fisk and Jamison46 presented an experimental study on physical properties of three

types of drilling fluids at high temperatures and pressures. Data were obtained with the

dynamic HPHT test system which is capable of operating at pressures up to 20,000 psi

and maximum temperatures to 650 C and a laboratory dynamic filtration devices which

temperature and pressure limits are 400 °F and 1,000 psi respectively. The results

indicated:

(a) Fluid penetration into the pore space is controlled by the shear forces and the

size of the aggregates in the drilling fluid relative to the pore size of the

formation;

(b) The differential pressure causing the solids consolidation had a greater effect on

the dynamic filtration rate than on the change in the filtrate viscosity, whereas

total system pressure had a minimal effect on the dynamic filtration rates of the

oil and the water based fluids at all temperatures;

(c) Dynamic, radial, filter loss values increase linearly with time at constant shear

and differential pressure for all systems investigated;

(d) Shear prevents the penetration and bridging of the particles which cause the

dynamic filtration rate to increase with shear. If the fluid particles are much

smaller than the size of pores in the formation, the particles can penetrate and

bridge the pores in the formation and reduce the dynamic filtration rates, even at

fairly high fluid velocities;

(e) Oil and water based drilling fluids that contain clays form compressible filter

cakes.

Fordham et al.45 reported an investigation on the variation of key parameters

describing the dynamic fluid loss behaviour of two water-base drilling fluids, baryte-

weighted and unweighted in an annular flow dynamic filtration cell shown in Figure(2-

1.15) designed to provide well controlled laminar flows over a wall shear rate typical of
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those in the welibore during drilling. From the experimental results, they obtained that the

fluid loss might be described by three key parameters: one describing the early ("quasi-

static") behaviour, a second describing the late ("dynamic") behaviour of near-constant

fluid loss rate and thirdly a timescale for the transition between these two regimes. The

following conclusions were reported:

(i) Fluid loss in the "quasi-static" phase is only weakly affected by shear;

(ii) Fluid loss in the "dynamic" phase varies with the tested mud systems according

to (approximately) the 0.6 power of the wall shear rate;

(iii) The irreversible deposition of mud cake under dynamic conditions reported by

others was also observed.

In addition to the above, two fundamental models of dynamic filtration were also

discussed. One of them is Convection-diffusion balance model shown in Figure(2-1.16a)

which based on the mechanism that the control of dynamic fluid loss is a balance between

convective transport of mud particles towards the filtration surface by the filtration flux,

and the diffusion of particles away from the surface. The other is the Particle adhesion

model shown in Figure(2-1.16b) which is supported by the hypothesis that particles stick

at the cake surface, in a manner that depends on both the filtration rate and on the colloidal

interactions between particles; Once stuck, such particles are unable to diffuse away from

the cake.

Arthur and Peden47 reported the results of an experimental programme to investigate

the influence of mud composition, pressure and temperature on the properties of filter

cakes formed during static filtration. The tests were conducted upon three water based

muds at pressures upto 4.2 MPa and temperature upto 93 °C. The filter medium were

filter papers. The spurt loss, cumulative fluid loss, cake thickness and porosity were

measured and, the cake resistance and compressibility were also calculated using a

modified equation. The following results were presented:

(1) Spurt loss (at 2 seconds) was a power function of pressure with the exponent

varying between 0.05 and 0.25 for all the muds tested.
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(2) It is found that the Larsen's relationship which proposes that the increase in the

fluid loss is due solely to the decrease in the filtrate viscosity may be used to

provide reasonably good estimates of the fluid loss when the test temperature is

not greatly different from the temperature of interest.

(3) The cumulative fluid loss, cake resistance and compressibility were unaffected

by the grade of filter paper(filter medium).

(4) The drilling fluid filter cake are highly compressible under pressure. This was

illustrated by experimental data.

Plank and Gossen48 investigated the effects caused by temperature, electrolytes and

polymers on filtration control in which they studied fluid loss polymers such as starch,

polyanionic cellulose (PAC) and a synthetic high temperature stable polymer in drilling

mud filter cakes using SEM photography to visualize the freeze-dried API filter cakes.

The following conclusions were presented:

(a) Bentonite in drilling fluids forms a card-house gel structure in the filter cake;

(b) The average pore size of a mud filter cake is influenced by temperature,

electrolytes and polymers;

(c) Starch polymer forms characteristic bridges within filter cake pores;

(d) PAC is adsorbed onto the edges of clay platelets and forms few bridges;

(e) The synthetic HT-polymer reveals typical polymer fingers extending into the

pore space.

(f) Addition of calcium does not change the appearance of starch and the HT-

polymer. PAC forms conglomerates (precipitated Ca-PAC).

(g) API filtrate data correspond well with temperature and electrolyte solubility of

polymers observed under the SEM.
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2.2	 THE EFFECTS OF INDIVIDUAL WELLBORE VARIABLES

UPON STATIC AND DYNAMIC FILTRATION PERFORMANCE

As can be seen from the foregoing review, much effort has been directed towards the

investigation of the fluid loss characteristics of drilling muds. The complexity of the

borehole filtration has been shown. It is therefore meaningful to identify the effects of

individual variables upon this process. The variables discussed will include, absolute and

differential pressure, temperature, mud constituents and properties, annular velocity and

hydrodynamic parameters, formation characteristics, mechanical erosion of the filter cake

and sequential filtration.

2.2.1	 The Effect of Absolute Pressure and Differential Pressure

A large number of published papers studied the effect of pressure differential rather

than the absolute pressure upon the drilling fluid filtration.

ABSOLUTELY PRESSURE:

Simpson31 '35 identified the effect of total pressure on compressible mud filtrates,

e.g., oil base muds. At 200 F, the viscosity of diesel is of the order of 2.4 cp at 100 psi

and is increased to 4.9 cp at 10900 psi. However the effects of absolute pressure would

be to alter the rheological properties of the mud and the effects of this on the

hydrodynamic shear in dynamic filtration are unknown. In addition the behaviour of

chemical molecules either individually or in groups e.g., polymer, is not well understood

and it is possible that molecular shape and size would be affected thus changing the filter

cake characteristics.

Fisk and Jamison46 concluded that the total system pressure had a minimal effect on
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the dynamic filtration rates of the oil and the water base fluids at all temperatures.

PRESSURE DIFFERENTIAL.

If the filter cake were of constant permeability then the volume of filtrate obtained

would be proportional to the square root of pressure differential according to Darcy's

law, and a log-log plot of filtrate volume versus pressure should yield a straight line with

a slope of 0.5. Actually, this condition is never met because mud filter cake is to a greater

or lesser extent compressible, so that the permeability is not constant, but decreases with

increase in pressure4.

Jones and Babson 1 observed that the filtration rate and the thickness of the mud cake

deposited were little affected by the variation in pressure above 500 psi. This would

suggest a balance between deposition due to increasing differential pressure and

campaction of the cake with a resulting decrease in cake permeability.

An exponential relationship between the cumulative filtration volume and the pressure

drop was obtained by Larsen4. For their muds tested, the exponent varied between 0 and

0.24 and depended largely on the size and shape of the particles composing the cake. The

exponent varies from mud to mud95 , but is always less than 0.5.

The mud spurt loss increased with increase in pressure, and this might be attributed to

the increase in velocity of the mud solids at the instant of application of pressure12.

The pressure drop across the rock sample had little effect upon the filtrate volume

beneath-the-bit16.

The equilibrium filtration rate at a constant value of the rate of shear was independent

of the filtration pressure24. In the case of incompressible filter cakes, the equilibrium cake

thickness h is proportional to filtration pressure. In the case of compressible mud

cakes, little or no increase in cake thickness was observed. This might be explained that

an increase in filtration pressure is mainly compensated by a reduction in cake

permeability.
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In conclusion it would appear that most investigators although not all, observed that

the equilibrium dynamic filtration rate was unaffected by differential pressure 2124. A

balance between compaction and increased deposition rate with increasing differential

pressure would explain these observations.

2.2.2	 The Effect of Temperature

Increase in temperature may increase the filtrate volume in several ways. In the first

place, it reduces the viscosity of the filtrate, and therefore, if changes in the cake structure

and properties do not occur with changing temperature, then the cumulative filtrate

volume will be inversely proportional to the square root of the viscosity. The viscosity of

the water and of 6% brine are shown over a range of temperatures in Table It is

evident that changes in temperature may have a substantial effect on filtrate volume

because of changes in filtrate viscosity.

Change in temperature may also affect filtrate volume through changes in the

electrochemical equilibria which govern the degree of flocculation and aggregation, thus

altering the permeability of the filter cake. As a result of such effects, filtrate volumes may

be higher or lower than predicted from Larsen's equation but usually they are higher5'18.

Chemical degradation of one or more components of the mud is a third mechanism by

which high temperatures can affect filtrate properties. Many organic filtration control

agents start to degrade significantly at temperatures above about 212 °F(100 °C), and the

rate of degradation increases with further increase in temperature until filtration properties

can not be adequately maintained95.

The increase in fluid loss at elevated temperatures was generally higher than would

have been predicted by the viscosity corrected for the change in temperature 5 J 1

Temperature affects the size of particles in a mud12.
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Table 2.4 The Viscosity of Water and 6% Sodium Chloride Brine at
Various Temperatures95

Temperature	 Temperature Viscosity of Water Viscosity of Brine

(°C)	 (°F)	 (cp)	 (cp)

0	 32	 1.792	 -

10	 50	 1.308	 -

20.2	 68.4	 1.000	 1.110

30	 86	 0.801	 0.888

40	 104	 0.656	 0.733

60	 140	 0.469	 0.53 1

80	 176	 0.356	 0.480

100	 212	 0.284	 -
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Dynamic equilibrium filtration rate is independent of temperature change 24 . The

explanation is that if the temperature increases, and accordingly the filtrate viscosity is

reached, the filtrate rate will increase giving rise to increased deposition of cake solids and

increasing cake resistance (thickness). Accordingly the balance is maintained. It is

unlikely that this will be true for all muds as the solids content would vary depending

upon mud type and properties.

2.2.3	 The Effect of the Properties of Filter Medium

Logically it can be reasoned that the filtration rate will depend upon a number of

variables connected with the filter medium which defines the resistance of the medium

and parameters which will cause it to change, e.g.:

(i) the size and distribution of the pores of the filter medium;

(ii) the size and distribution of the grains of the reservoir rock;

(iii) the physico-chemical nature of the suspended particles in the invading filtrate.

If the particle size in the mud is such that particles are capable of penetrating deeply

into the porous rock resulting in plugging, then the filtrate loss may be lower in a high

permeability formation which permits this transport and plugging. However in a low

permeability in which it can not occur, an external filter cake will only be formed due to

bridging, if the particle size distribution of the mud is such that it provides good bridging

for all permeabilities then the fluid loss will appear to be independent of filter medium

permeability. Finally if the cake formed is highly permeable then filtrate could be

dependent upon the formation permeability.

From the above discussion it is apparent that it is difficult to distinguish the effects of

47



Chapier Two Literature Survey on Filtration Properties of Drilling Fluids

formation permeability/pore size characteristics and the size and distribution of particles in

the mud. It is therefore not surprising that conflicting conclusions have been reached by

the researchers on this subject.

Williams and Cannon3 inferred from their work that the filtration properties of muds

are governed by the amount and size of solids in the mud and are therefore independent of

formation permeability.

Larsen4 reports data which support his claim that the filtration rates he obtained were

independent of the filter bed materials used, namely compressed sand, natural sandstone

or filter paper.

Byck7 measured fluid loss and the permeability of cakes deposited on a range of filter

materials with different muds, and concluded that:

(i) fluid loss does not depend upon the formation permeability but does depend

upon the amount and nature of the mud solids

(ii) filter cake permeability does not depend upon the formation permeability;

Nowak and Krueger9 suggested that filtrate flow was controlled primarily by particle

plugging. Their results indicated that in general the cumulative filtrate volume seemed to

be inversely proportional to the core permeability for most cases although the exact

behaviour depended on the mud type. In some cases, this was due to higher spurt loss

and in others to higher filtration rates. These experiments were performed with dynamic

filtration. In addition, for static filtration with cores within a permeability range of 744-

896 md, both spurt loss and cumulative filtrate were inversely proportional to core

permeability.

Dickey and Bryden 92 observed internal bridging by semi colloidal particles which

were transported into the pore space where they bridged thus plugging pore throats and

preventing further filtration.

Simposon31 in his experiments at simulated downhole conditions observed higher
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dynamic fluid losses with low permeability cores(0.5 md) than with high permeability

cores of 50 md. Since he observed that the cores possessed the same static fluid loss it

would appear that in the case of the 50 md core, an internal filter cake was deposited thus

limiting filtration.

In conclusion, it would seem that the effects of the porous medium upon filtration can

not be isolated from the effects of the mud constituents upon dynamic filtration. The

capability to produce low permeability particulate bridges will control fluid loss and this

depends upon both porous media and mud particulate properties.

However, for beneath-the-bit filtration, since a filter cake does not permanently exist,

it would be expected that filtration would depend upon permeability16'25.

2.2.4	 The Effect of the Mechanical Erosion of Dynamically Deposited

Cakes

It can be imagined that simulation of the effects of mechanical attrition of the cake

would be very difficult due to one or more of the following:

(i) the rotation of the drill string causing contact with the filter cake particularly due

to hole deviation, dog legs in the hole, inflexion in the drill string and packed

hole assemblies comprising drill collars and stabilisers;

(ii) retraction of the bit to add a single.

Nowak and Krueger9 used an experimental cell which allowed:

(a) ajet of mud to be continuously jetted on the face of the 1" diameter cores used

for the filtration studies;

(b) a scraper to be reciprocated across the face of the core at a rate of 10 strokes per

minute.
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Unfortunately they did not differentiate between the effects of these two mechanisms.

Their tests were conducted with oil based, emulsion and clay water based muds. The

results indicated that the cumulative filtrate volume after 100 minutes of filtration was

increased by a factor of 10 when circulation and jetting was carried out with dynamic

filtration for the clay water and emulsion based muds. The results for the oil based mud

showed a smaller degree of increase. They also concluded that the effects of scraping

were less significant when both internal and external filter cakes existed.

In a subsequent paper Krueger and Vogel85 using the same cell as described above,

without the effects of the jetting on the core surface, observed that for the clay water mud

there was still a 10 fold increase in the cumulative fluid loss after 100 minutes for

dynamic filtration performed with the cake scraper compared to that without scraping. For

the oil based mud the increase was of the order of two times for the dynamic fluid loss

with the addition of scraping.

It is impossible to generalise on the degree of scraping in a real borehole or on the

fraction of the borehole wall affected e.g. whilst the retraction of the bit might affect the

entire circumference of the borehole, when adding singles and during each round trip, the

effects of rotation in a dog leg might effect only specific sections along the length of the

borehole and small fractions of the borehole circumference.

It would therefore be impossible to generalise on the effects of this in the prediction of

filtration and invasion although clearly they could be substantial.

2.2.5	 The Effect of Annular Hydraulics on Dynamic Fluid Loss

Although a number of researchers have studied dynamic filtration, few have attempted

to evaluate the relationship between the hydraulics in the annular space and dynamic fluid

loss.
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The following variables are involved in this relationship:

(i) Annular fluid circulation velocity;

(ii) Fluid shear rate/shear stress on the surface of the cake;

(iii) Reynold number in the annulus which covers the turbulent or laminar flow in

the annulus.

These variables are related to each other and almost all the researchers did not

consider any difference between any of them.

It was indicated that the dynamic filtration rate was proportional to the square root of

the volumetric mud flowrate 6' 13 and the erosion rate of the cake in inches/minute was

approximately proportional to the square of the circulation velocity10.

Perhaps the greatest contribution by Ferguson and KIotz13 to this particular subject

was the proposed qualitative model for the filter cake formed under dynamic conditions.

They argued that for cake erosion to occur, the hydrodynamic shear of the circulating

mud must exceed the cake shear strength. Since the shear strength of filter cakes was in

the range of 0.3-15 psi it would be necessary for the pressure gradient in the circulating

mud to be of the order of 3-150 psi/ft to ensure that erosion of the cake took place.

Peden et al.38 reported that the statically deposited filter cake could be largely eroded

during the mud circulation.

Bizanti41 found that an increase in Reynold's number (NR) increases dynamic fluid

losses.

Beck et al.86 had measured the hydrodynamic shear rates of the muds and a value of

0.003 psi/ft was typical. Accordingly Ferguson and Klotz 13 argued that erosion of the

cake could not take place. They proposed a model comprising a conventional filter cake

on the borehole wall and a transition zone of low shear strength between the cake and the

mud. The dynamic cake properties were therefore influenced by the erosive action of the

mud stream on this transition zone since this would control the particle size, the
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particulate concentration and thickness of the transition zone.

2.2.6	 The Effect of Mud Properties and Constituents

Most of the published research in this area has been directed at understanding the

relation between the size distribution of particulates in muds and the control of filtration

through the establishment of a filter cake of low permeability.

Cake permeability is, however, influenced by the kind of colloid as well as by the

amount and particle size. For instance, filter cakes of bentonite suspensions in fresh water

have exceptionally low permeabilities because of the flat, filmy nature of the clay

platelets, which enables them to pack tightly normal to the direction of flow.

Gates and Bowie8 in 1942 attempted to correlate mud filtration properties against the

particle size distribution in the mud and reported the following results:

(i) Optimal filtration control was provided by muds having a relatively uniform

particle size distribution.

(ii) The best filtration control was provided by a mud composed of 65% colloids,

30% silt-size particles and 5% sand-size particles.

(iii) Poorest filtration control was observed in muds having a very low concentration

of colloids.

4

This point, regarding the contribution of colloids to fluid loss control, was earlier

suggested by Sawdon87.

Krumbein and Monk88 investigated the effect of particle size and size distribution on

the permeability of sand packs and concluded that:

(i) Cake permeability was minimised by increasing the width of the particle size

range.
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(ii) Cake permeability decreases with a reduction in the mean particle size.

Bo et al.23 concluded that cake porosity was affected by particle size and size

distribution in a way analogous to the effects on permeability reported above8.

Cake permeabilities have been measured for drilling fluids at a variety of pressures

giving values in the range 0.2 x 10 - -250 x iO 3 md3 '5 '7 '8. The range of values indicates

the influence of the mud type.

The initiation of filter cake deposition and the consequent control of spurt loss is

dependent upon mud particulates bridging off against the pore throats of the porous

media. This bridging can take place inside or outside the porous media 15. Darley22 who

confirmed that the significance of the colloidal fraction on fluid loss control has suggested

from experimental measurements that this initial bridging process is accomplished in less

than a second for many drilling fluids. The rapid control of the fluid loss has been

attributed to the presence of the larger bridging particles in the drilling fluid by several

authors 15 ' 19 '83 , by investigating the effect of additions of sized particles to the mud to

control spurt loss for rocks in the permeability range of 70-350 md and for which

particles in the range of 1-6 im were effective. The addition of the 21 ..im particles did

not effect bridging and hence control of the spurt.

It is obvious that the mechanical bridging process and spurt loss will therefore be

characterised by the relationship between the mud particle and mean formation pore size

as indicated by the results of Beeson and Wright 12. Darley22 in a paper discussing

productivity impairment suggests that the presence of a mixture of particle sizes with a

range 2-150 p.m will bridge most formations. It has been reported that invasion due solely

to the spurt loss period can extend to a depth of 1" in consolidated sandstones15'22'25'89.

Abrams89 from experiments with sand packs and cores, suggested that particles with

a medium diameter of about 1/3 of the media pore size would bridge. Smaller particles

would be required to fill in the interstitial spaces between the bridging particles thus

lowering the permeability and subsequent filtration rate. However, universal application

—53-



Chapter Two Literature Survey on Filtration Properties of Drilling Fluids

of this concept is difficult in view of the variations in the pore size distribution of most

reservoirs and the dynamic change in mud solid sizes whilst drilling. In addition McGuire

and McFall90 questioned the validity of the 1/3 bridging rule when applied to

CaCO3/HEC suspensions.

Krueger20 investigated the effect of several fluid loss additives on the dynamic fluid

loss characteristics of drilling fluids. The materials tested were CMC, complex metal

lignosulphonate, starch, polyacrylate and quebracho. Krueger reported his results by

plotting equilibrium dynamic fluid loss rates against the relevant API static fluid loss for

increasing concentrations of these additives in various muds. For the clay gel based mud,

Optimum fluid loss control did not necessarily occur with the maximum addition of these

agents and was greatly influenced by the initial cake structure for sequential filtration.

Homer et al. 16 found no correlation between the rheology of the mud and the

dynamic fluid loss. Prokop 10 suggested that the rheology is only significant in that it

influences the flow regime in the annulus for dynamic filtration.

As yet no significant research has been reported on the influence of particle shape on

fluid loss control although the need has been identified 16. The use of the scanning

electron microscope has highlighted both the complex structure of mud additives 91 , and

the potential use of this technique for evaluating filter cakes32.

The dependence of the fluid loss upon the interrelation between the characteristics of

the porous media and the fluid is most complex and, in any modelling process account

will have to be taken of the statistical nature of these parameters. This will make the

prediction of fluid loss a most difficult task to accomplish.

2.2.7	 The Sequential Filtration

In real drilling operations, borehole filtration actually occurs as a sequence of dynamic
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and static filtration periods as outlined earlier. This means that the latter stages of filtration

will take place through a composite cake.

Figure(2- 1.6) illustrates a typical filtration curve for a sequence of dynamic-static-

dynamic filtration 13 '20. The initial dynamic filtration period(To-T3) results in an

equilibrium filtration rate being achieved which depends upon the properties of the

dynamically deposited filter cake. The next phase of the curve corresponds to the period

of static filtration(T3-T4) which occurs when circulation is stopped. During this time the

filter cake thickness will stan to increase again and accordingly the rate of filtration will be

drastically reduced resulting in little increase in the cumulative filtrate collected2627. The

structure of the cakes deposited during these two phases is markedly different as

confirmed by SEM studies32. This static cake may also affect the subsequent filtration

which takes place once circulation is restarted. The third phase(T4-T6) shown in

Figure(2- 1.6) is after restarting dynamic filtration and it can be seen that the new dynamic

equilibrium filtration rate ultimately achieved is less than the initial value and since no

change in the hydrodynamic conditions is assumed, the total resistance to filtration has

increased because of the cake deposited in the static phase. This infers that upon restarting

circulation the hydrodynamic shear is insufficient to reach the static filter cake except for

the gelatinous outer layer. This confirms the theory proposed by Ferguson and Klotz13.

It is therefore clear that in the modelling of borehole filtration for realistic drilling

conditions, the model must account for sequential filtration 21 '49 '84 . However the shear

strength of the filter cakes deposited during static filtration, their thickness and the

hydrodynamic conditions are likely to be highly variable depending upon the mud

deposition conditions and the borehole.
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Chapter Three

NUMERICAL MODELING OF THE FILTRATION OF DRILLING

FLUIDS

In this chapter, a literature survey of cake filtration theory prevailing in chemical

engineering industry over past several decades is reported. Emphasis in this survey is

placed on the empirical analysis of constant pressure filtration because the filtration

phenomenon of drilling fluids mostly occurs under constant pressure. The filtration

equations used for predicting drilling fluid loss are also reviewed. Based on these results,

a developed filtration equation for drilling fluid loss under borehole conditions is

presented.

Dimensional analysis of dynamic equilibrium filtrate flow of drilling fluid is included

in this chapter as well.

3.1	 LITERATURE SURVEY ON CAKE FILTRATION THEORY

3.1.1	 The Behaviour of Fluids Flowing Through Porous Medium

Filtration through porous medium was compared with flow through a large number of

capillary tubes, and on this assumption the rate of filtrate flow would follow Poiseuille's

law5° which was developed from experimental data:











w
R

A
(3-1.11)

Chapter Three Nwnerical Modeling of the Filtration of Drilling Fluids

where:

W - solids weight as laid on the filter medium.

If letting C = the weight of solids as laid on the filter per volume of filtrate, C was

simply considered constant for any one suspension. Then:

ws = Cv
	

(3-1.12)

Inserting equation(3-1.12) into (3-1.11) and rearranging:

R=aCV/A

Neglecting filter medium resistance temporarily, then:

= 1 dV = Pa =	 = PA

q A dt p.R p.R ap.CV

(3-1.13)

(3-1.14)

It was ascertained that the above equation applied reasonably well to rigid,

noncompressible sludges. It would hold fairly well for either constant pressure or

constant velocity filtration.

In 1933, Ruth et al.58 first analysed the existing theories in detail. Then they

introduced cumulative dra& stress as the agent which causes solid movement and cake

compressibility.

Simply assuming the variables on both sides of equation(2-1.14) except V and t are

constant, By rearrangement and integration, the following equation was obtained:

V 2 = Kt
	

(3-1.15)

where:
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The irregularities observed in the V2 vs. t plots at the beginning of filtration prompted

them to modify the above equation. They found that the above anomalous behaviour was

due to the resistance of the filter medium. If this resistance would be expressed in the

units of cake resistance and considered as an integral part of the filtration cycle, the

relation between volume and time should be shown to be parabolic throughout the whole

course of the filtration. The following equation was suggested by them to correlate with

the actual filtration data:

(V+V0 )2 = K(t-i-t0)
	

(3-1.17)

where:

V0 - was regarded as a measure of the resistance that existed previously

to the instant filtrate began to appear at the measuring device. It

might be considered as the resistance of a layer of solids and filter

medium.

to - a corresponding shift in the time axis.

It is clear that whatever might be the actual nature of V0 and to, equation(3-1.17) had

been verified to predict better filtration data than equation(3 -1.15).

By differentiating equation(3-1.l7), they obtained:

This equation was used to calculate cake resistance but not septem resistance, because

they did not think that the equation was valid for the initial portion of constant pressure

filtration as postulated above.

Ruth et al.58 also proposed the concept of average specific cake resistance:
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cx118 
= 

P	
(3-1.19)

Joa

which is constant for compressible cakes and showed that parabolic behavior was

independent of cake compressibility.

In 1935, Ruth59 extended the above work based on Weber and Hershey 57 , in which

the assumption of equation(3-1.12) could be obtained from a macroscopic mass balance:

Weight of Slurry = Weight of Wet Filter Cake + Weight of Filtrate

or symbolically:

	

W W	
(3-1.20)

S	 Sc

where:

Pr - the density of filtrate;

s, s - the solids fraction in slurry and filter cake respectively.

Comparing equation(3-1.12) with equation(3-1.20), then

C=
1–ms
	 (3-1.2 1)

Where:

m = 1/se , and is the ratio of weight of wet filter cake to dry filter cake.

Combining equation(3-1.10) with equation(3-1.11) and inserting C from equation(3-

1.21) into it, then:

______ -

Adt c ' +R -
A m

cLpfS 
V+R

(1–ms)A

(3-1.22)
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For a constant pressure filtration, integration of equation(3- 1.22) by considering C, a

and Rm constant produced a general equation—the well known Ruth's filtration equation:

alVB.Lpf S	
2 

+ PRm y

(1– ms)P1 A 2	PaA
(3-1.23)

It should be noted that a was replaced by aavg before integration because Ruth59

thought a38 is constant through out the filtration process.

In 1938, Carman 0 extensively studied cake filtration and concluded that the Darcy's

law is applicable to filtration. He modified Kozeny's equation into the form:

which is one of the most widely used equations—Kozeny-Carman Equation.

where:

c - porosity of the cake;

k - Kozeny's constant;

S 0 - Specific surface of solids, i.e., surface area per unit volume of

solid.

According to Darcy'law, the permeability coefficient should be:

Comparing equation(3-1.14) with equations(3-1.24), (3-1.25) and inserting the

following relationship:

Ws LA(1E)tDs CV
	

(3-1.26)

then:
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In equation(3-1.23), both sides are divided by V:

= cç.tp(s	 +

V (1— ms)P1A2	PA
(3-1.28)

Therefore, when t/V is plotted versus V, the slope is related to the average cake

resistance a18 and the intercept is proportional to the septem resistance Rm.

Contrary to the predictions of the theory, however, t/V versus V plot does not give a

straight line in most cases. This prompted the investigators to deduce a mechanism

through internal variations in filter cakes. The device used in the simulation of internal

profiles is called the Compression-Permeability Cell (CPC). It was Ruth 67 who first

suggested the use of the CPC in the simulation of internal profiles. He showed that the

results from simulations and experiments agree to ±10% when average filtration

resistances are compared.

3.1.2.2	 Simulation of Filter Cake Compressibility

Ruth67 suggested that the compression is caused by a pressure on the solids, set up as

a result of the drag of the liquid as it flows fractionally through the cake. He presumed

that the drag was transmitted cumulatively through the cake without loss as shown in

Figure(3-1.1). Then assuming that the area of contact between the particles is negligible,

the following balance can be written:

Pa = Pg + Pj	 (3-1.29)

Where:

Pa - Filtration pressure;

- Pressure on solids at x;

- Hydraulic pressure at distance x from the medium.
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The CP cell which was constructed by Ruth 67 was a small apparatus, in which a

shallow bed of solids could be subjected to a mechanically applied stress.

Porosity and pressure distributions are the key variables for the description of the

internal structure of compressible cakes. The functions describing compressibility

phenomena are not only nonlinear, but appear to be non-analytical. As a result, it

becomes necessary to relate porosity and specific resistance to P with empirical

functions.

The earliest empirical equation from the CP cell which was used to represent variation

in a was:

a (cons tan t) . (P )"
	

(3-1.30)

This form has the serious problem that a approaches zero as P approaches zero,

which is contrary to experience.

An improvement was made by Ti11er 6970 who proposed that:

1— e = BP
	

PS ^ P1	(3-1.3 1)

1—c=1—, =BP.	 PS ^ P1	(3-1.32)

where P1 is some low pressure, below P1 the porosity reaches a limiting value c

which represents the porosity of a cake laid down under virtually zero pressure.

In order to relate the porosity in a filter cake to the porosity in the CP cell, It is

assumed that the porosities in the cake and cell are equal when the solid compressive

pressure in the filter, as indirectly calculated by P5 = P - P5 , equals the compaction

pressure in the CP cell as shown in Figure(3-l.2).

Like porosity, variation of the specific filtration resistance with compressive stress is

empirically represented in the form:

a = aF?	 P,^P1	 (3-1.33)
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a=a1 =aF"	 P1^P1	 (3-1.34)

This modification leads to quite useful practical formulae in many cases, but results in

errors because it is equivalent to assuming cakes to be incompressible in the low pressure

region where rates of change are largest, in fact.

In 1953, Rietema61 evaluated the porosity at various heights in a filter cake by

measuring the electrical resistance between gauge pins in a cake of spherical PVC

(polyvinyl chloride) particles of 5-12 u in diameter. He observed a minimum in the

porosity distribution and called it Retarded Packing Compressibility (RPC), in which a

form of Retarded Packing Compressibility was found where the first layers of cake do

not compress gradually but only after a critical cake thickness was reached and this critical

cake thickness can be reduced by the addition of a deflocculant. The results were ignored

because they conflicted with filter cake simulations which require a monotonic porosity

distribution.

Grace68 also described the application of the CP technique to the study of the

properties of a wide range of compressible filter cakes and conclusively demonstrated that

CP data can simulate filtration to within ±10% when average filtration resistances are

compared.

He introduced a modified definition of average specific cake resistance based on

Ruth's definition58:

= 
f iW dP

a

where:

- Pressure differential across the filter cake,

avg is a function of time if the septem resistance is not negligible.

(3-1.35)
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In 1958, Kottwitz and Boylan 71 successfully predicted average cake resistance using

Compression-Permeability test data. They introduced an alternative definition of average

and concluded that predictions made by using above expression were in some cases

better than predictions made by using equation(3-1.35). In other cases the predicted

values of average specific cake resistance by both methods were in good agreement. In all

cases, however, the a1yg values were lower than the laboratory filtration specific

resistance.

In 1960, Tiller and Cooper8O introduced the concept that average porosity is not

constant but that it decreases and squeezes liquid out of the cake causing the exit flow to

exceed the entrance flow. Subsequently, a correction factor, JT was introduced by Tiller

and Huang72 into the definition of the average cake resistance to account for the internal

flow rate variation. Figure(3-1.1) listed the important parameters in cake formation. The

correction factor:

(aayg)T = JT(aavg)
	

(3-1.37)

j 
_q	

(3-1.3 8)
q1

where:

q.yg - average value of qx;

q 1 - value of q at interface of medium and cake;

aavg - average value of a uncorrected for variation of flow rate;

- correction factor for filtration resistance, ratio of average flow rate to

rate at medium, dimensionless.
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JT would be evaluated from CP data. The average resistance was then a function of

Pa, s and dV/dt and is no longer constant as Ruth 58 initially postulated.

Baird and Perry63 confirmed Rietema's results61 and demonstrated that RPC is a

function of critical cake length and applied pressure. He also criticized filter cake

simulation because it can not take into account the dynamic effect of fluid flow on the

developing cake structure and porosity.

Shirato et al. 74 further developed an empirical exponential function for the

distribution of solids stress in a CP cell arising from side-wall friction in 1968. The

results showed that neglecting side-wall friction in a CP cell leads to significant error in

estimating filtration characteristics and that CP porosities and resistances are not uniform

as previously assumed.

In 1969, another correction factor, J was introduced by Shirato et a1. into the

definition of the average cake resistance to account for the relative velocity between the

solid and liquid:

aavg = i' g ('avg)

=

 S1[[1 - 

(E 	 avgX )(m -1)	
(.)1d(.&)l

0LL	
(l_CjI)Cavg(l_fllS)S L j W j

(3-1.39)

(3-1.40)

where:

- average porosity for entire cake, dimensionless;

- local value of porosity at distance x from the medium,

dimensionless;

e,— average porosity for the portion of cake between medium and

distance x, dimensionless;

is theoretically the average specific resistance of a compressible bed with the

slurry concentration equal to zero. If slurry concentration were actually zero, there would
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be no additional solids deposited. In practice, ct avg is a good approximation of the average

filtration resistance when the slurry is dilute.

J is always less than unity and dependent on slurry concentration and pressure drop

across cake. J is evaluated from CP data.

Tiller et al.77 presented simplified wall friction theory for CP cells and derived the

empirical expression given earlier by Shirato74 . They itemized the variations in CP

methodology that have a significant effect on CP results.

Tiller et a177 also presented the qualitative stress profiles for cakes in CP cells,

especially with regard to the interaction of various solid particulates and different coating

materials for CP cell walls.

In 1973, Tiller and Green78 further found that the methodology of the CP cell is

further complicated by the fact that it is virtually impossible to obtain accurate values of

resistance and porosity from CP cells at low pressure.

Willis et al.66 introduced a novel filter chamber that measures the accumulative drag

experienced by the septem. They measured P/ and found the ratio equal to the average

porosity rather than unity. They suggested that cakes are incompressible up to a critical

cumulative drag stress. The parabolic filtration equation was shown to be independent of

cake compressibility where cake compressibility is determined a priori from axial

distributions.

For constant applied pressure axial filtration, incompressible cakes exhibit a linear

pressure distribution while compressible cakes exhibit a non-linear pressure distribution.

Based on this latter definition Willis et al.66 categorized filter cakes a Priori according to

their axial pressure distributions and showed that cakes with linear pressure profiles are

indeed very rare. Further cakes with either a linear or non-linear pressure distribution are

described best by the parabolic correlation.

Wronski et al.62 observed deviations from Ruth's equation and proposed a model of
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average specific cake resistance of the form:

agvg

to correct the errors caused by Ruth's equation.

Tiller Ct a1 107 proposed another form for the porosity variation with P:

1c (1— CL) (i +
P1th)

(3-1.41)

(3-1.42)

where

Paxb - an arbitrary parameter used to make the equation dimensionless.

Similarly:

(	
pfl	

(3-1.43)

Above equations provides a continuous function over the entire compressive pressure

range.

In 1980, Willis and Tosun73 developed a rigorous cake filtration theory based on the

multiphase equations of change and they found the least permeable part of the cake at the

cakeseptem interface controls the filtrate rate. The internal variations in porosities and

specific cake resistances can be obtained directly from filtration data alone and do not

required a CPC simulation.

In 1982, Tosun and Willis75 verified the validity of the "power law" approximation

equations which states that the average specific cake resistance and average cake porosity

can be expressed by a power law relationship with the pressure on solid and concluded

that these equations should not be used.

Tosun and Willis76 then realized that the classification of filter cakes as compressible
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and incompressible is unnecessary. The parabolic behaviour could be achieved by proper

septem selection. Subsequently, they 79 further concluded that the average cake porosity is

independent of time and filter cake geometry.

Bierck eta!.81 also found that average cake porosity is constant.

3.1.3	 Summary of Cake Filtration Theory

Presented above is a careful examination of the literature in the chronological order of

events over the past 60 years. The papers surveyed are of significance which represented

the current direction of cake filtration mechanisms research 65 . It is clear that there were

two distinct approaches which, one of them was based on direct filtration measurements,

dominating the early development (1912-1933), the other one was based on filter cake

simulation using the compression-permeability (CP) concept, dominating the more recent

(1946-1980) efforts in filtration investigations.

Through the first approach in filtration investigation postulated above, it is evident

that the equation developed by Ruth 58 in 1935 is still considered to be the basic cake

filtration equation. The second approach, which has been recognised by those interested

in the progress of research in solid-liquid separation that the CPC simply does not

work65, are presented because it is believed that this knowledge should be useful to

understand filtration phenomenon more deeply.

The simulation of filtration using CPC depends on two postulates:

(i) When the difference between the applied pressure and the pressure at any point

within the cake is equal to the applied pressure in CP cell, the porosity and the

specific cake resistance obtained from this device are equal to the porosity and

the specific cake resistance of the differential volume element as shown in

Figure(3- 1.3).
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(ii) The local porosity and specific cake resistance can be uniquely expressed as a

function of the compressive pressure P.

Unfortunately, there is no evidence in the literature that quantitative investigations

have been undertaken to investigate these highly questionable postulations. These

postulations have received tacit acceptance. Besides, due to the serious methodology

probliems encountered with the operation of the CPC, such as side-wall friction, the data

obtained from the CPC have never been able to predict actual filtration data65.

3.2	 LITERATURE REVIEW OF FILTRATION EQUATIONS OF

DRILLING FLUIDS

Most of the research on the theoretical modelling of drilling fluids filtration were

based on Darcy's law and the first published paper was given by Williams and Cannon3

who predicted the static filtration of drilling muds. The integrated form of their equation

was:

–C

in which

2P
M=

pDR'(1–s)

- Ap'f(iW)

(3-2.1)

(3-2.2)

(3-2.3)

where

subscript w represents Williams
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t— time

A - filtration area

p. - filtrate viscosity

V - cumulative filtrate volume

s - a compaction function of the cake

R' - a function of resistivity of the cake

- filtration pressure drop across cake

0—ratio of volume of filter cake to volume of filtration

p'f(P) - a function of the resistance of the filtration medium

- resistance coefficient of filtration medium and sludge contained

therein

They found from the experimental results that:

(1) s, the compressibility function varied from 0.80 to 0.87 for the usual

unweighted mud. Addition of weighted material ordinarily lowers this value.

Chemical treatment affects s very little.

(2) R', the resistance coefficient of the filter cake, appeared to depend upon the

specific nature of the solid phase, the particle size distribution and the state of

aggregation of the solid phase.

(3) ii, cake volume/filtrate volume ratio, usually remains within a narrow range.

No fixed rule for evaluation of p1(P) was found, Generally, f(P) seems to be an

exponential function.

The equation(3-2.l) which was only applicable to static filtration was slightly later

extended to the dynamic filtration of muds in a second paper by Williams 6. He found that

the filtration rate during dynamic condition became constant after a short time and this

constant rate attained in any particular test depended on the pressure, rate of mud

circulation, and mud properties. Williams thereafter proposed the following equation

from the experimental results to express the equilibrium filtration rate:
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=	 = CW.JMW
	 (3-2.4)

where

Q - axial mud flow rate;

M - determined in equation(3-2. 1)

- empirical constant

Equation(3-2.1) was also extended from laboratory filter to the borehole radial flow

case by Williams6. The form for the borehole radial filtration was:

v+(L____	 DV	 4irLp'f(P) - 41tLPvJin(i	
rLj	 R'P	 - R'(1—s)	

(3-2.5)

Larsen4 developed a static filtration equation for incompressible cake from Darcy's

law:

where:

R = Vmtrtc
L	 Ratio of filtrate volume /volume of deposited solid

'cakc

KL - constant for specific mud.

The above equation was then modified by Larsen 4 to consider the deviation which

occurs during the initial stage of the filtration as follows:

V=Kfi+e
	

(3-2.7)

Larsen further investigated the validaty of the above equations by varying the applied

differential pressure. It can be seen from equation(3-2.6) that V should be proportional to

the square root of the differential pressure, however, the experimental results showed that
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a more general relationship was valid:

V = kP"
	

(3-2.8)

where x<O.5 and could be evaluated from the log-log plot of volume versus pressure.

Further, Larsen also studied the effect of temperature on the cumulative filtrate

volume and proposed that:

where V and ji are the cumulative filtrate volume and filtrate viscosity at temperature

T 1 and T2 respectively.

Ferguson and KIotz 13 presented a modification of the classic cake filtration equation

to express static filtration upon a dynamic filtration cake. It was assumed that the static

filtration follows the classic law:

V 2 C1:t
	

(3-2.10)

Then they used following equation:

(V+ V0 )2 = CF (t+ t0)
	

(3-2.11)

to express the static filtration upon a dynamic filter cake in which the resistance of the

dynamic cake is represented as the resistance of fictitious static filter cake that was

deposited in to hours with a flow of V0 mi/in 2 of filtrate. However, this modified

equation did not follow the experimental static filtration data for two reasons that they

reported:

(i) As the drill string, including a rock bit, was pulled and the linear run, part of

dynamic cake was scraped from the wellbore so that part of the static cake

deposited on a clean sand face and part on a dynamic cake;

(ii) The equation is derived for filtration through a plane filter whereas filtration in a
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well occurs on the inner surface of a cylinder.

They then presented an equation to calculate the filtration volume that flows through

the well wall after part of wall has been scraped clean by a bit:

V=i1V+(1—Nf)V
	

(3-2.12)

where

V - volume of filtrate that flows through the scraped portion of well

wall

V - volume of filtrate through the unscraped portion

N' - the fraction of the well wall that is scraped clean

V changes with time according to equation(3-2.1O) whereas V changes according to

equation(3-2.1 1). The total volume of the filtration volume is:

V =	 (1 —w)[.JCFt + CF t O - V0 1 	(3-2.13)

Ferguson and Klotz also presented following equation to cover the difference between

the filtration volume from plane filter and from cylindrical filter:

(V \2 (1	
(3-2.14)1j)	 2 2r.i[ t	

jj

where

r - the well radius

Z - ratio of filtrate volume to cake volume

VP - volume of filtrate collected on plane filter

- volume of filtrate collected on cylindrical filter

Glenn and Slusser' 5 used the classic static filtration equation to evaluate the filtration

characteristics of drilling muds in the form:

YV=MGV+NO
	

(3-2.15)
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where

MG - a coefficient defined by physical characteristics of the mud filter

cake and conditions imposed during filtration

NG - a constant defined by the fluid flow characteristics of septem.

In equation(3-2.15), t and V are both cumulative values, and include respectively the

spurt time t, and spurt volume 	 They considered that the septum resistance are very

small compared to cake resistance. It was then neglected without appreciable error. If

and V are subtracted from t and V respectively, equation(3-2.15) becomes:

Vv=MG"
	

(3-2.16)

where

tf=
	 (3-2.17)

V'=V–\ç
	

(3-2.18)

M'0 = a number defining the filtration characteristics of the mud filter

cake.(increases from zero to a value which is constant for the

constant pressure filtration period.)

Outmans21 reported for the first time a theoretical study on dynamic filtration

modelling. The filtration curve produced by him of the various stages is shown in

Figure(2- 1.6). From T 1 to T2 the thickness of the cake remains constant, but the filtration

rate continues to decrease. He explained that the filter cake continue to compact

(presumably, the rate of deposition equals the rate of compaction). At time T2,

equilibrium conditions are reached, and both the filtration rate and the cake thickness

remain constant. The equilibrium filtration rate is then given by the equation:

I dVI - K1(54)"'

=	 - (–v +1)
(3-2.19)

—78 -



_! -
dt 2

(3-2.20)

Chapter Three Numerical Modeling of the Filtration of Drilling Fluids

where

K1 - the cake permeability at 1 psi pressure

-v+1 - a function of the cake compressibility

- the shear stress exerted by the mud stream

- the thickness of the cake subjected to erosion

f— the coefficient of internal friction of the cake's surface layer

Bezemer and Havenaar used another form of the classic static filtration equation:

to evaluate the experimental data. In their dynamic filtration tests, it was found that the

relationship between equilibrium filtration rate and rate of shear at the cake surface could

be given by:

ldV
=qcx3 =C'y

where

- subscript refering to equilibrium conditions

y— rate of shear at the cake surface

Combination of above equations with Darcy's law for a flat cake gives:

KLW
)1Ioq -

where

K - Cake permeability

h - filter cake thickness after equilibrium attained

Chelton29 adapted Darcy's law as follows:
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K —
 AP
	 (3-2.23)

where

L length

q = flow rate

P = pressure

K permeability

A = filter medium cross section

= viscosity of the flowing fluid

at constant pressure:

1(dV	 P

Adt ) - _____
(3-2.24)

He thought the term [UK] represents resistance to flow. In a filter press, the

resistance to flow is made up of the resistance of the filter medium and the filter cake and

thereafter:

L/K = LC /KC + L/K1	 (3-2.25)

where

- length and permeability of filter cake, and

Lf,Kf - length and permeability of filter medium.

Therefore

ldV_	 P
ra t4LC/KC+Lf/Kf]

(3-2.2 6)

The permeability of the filter cake K may depend upon pressure, temperature, and

the type of solids in the fluid, but can be assumed to be independent of the quantity of
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filtrate. The length of filter cake L should be proportional to the amount of solids

deposited in the cake, or proportional to [V/A], and thereafter:

d(V/A) __________

dt	 p(aV/A+r)
(3-2.27)

where

a - a function [of pressure, temperature and type of solids] representing

the specific cake resistance.

r Lf/Kf constant resistance of the filter medium to flow

Separating the variables and integrating:

Pt =I-'V/A+jtr
V/A	 2)

(3-2.28)

Plotting n/v/A vs. V/A should yield a straight line with an intercept of ur and slope

of ur/2. The specific cake resistance a is related to the pressure as follows:

a = a P'
	

(3-2.29)

loga = slogP + loga'
	

(3-2.30)

a plot of loga vs. logP yields a straight line with a slope of s, and an intercept at P=1

of a'.

Hassen49 proposed a series of equations to predict the static and dynamic filtration as

follows:

Static filtration rate declines with time according to classic law:

q = C1t°5
	

(3-2.3 1)

where

C1 - static filtration rate constant
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Integrating above equation then the value of static filtration increases with time much

as described in equation:

V = C2t° 5 + C3
	 (3-2.32)

where

C2 - static filtration volume constant

C3 - spurt loss volume

It is clear that C2 = 0.5 C1

Equation(3-2.31) and (3-2.32) represent filtration under constant temperature and

pressure conditions. In order to include the effect of temperature, it is compensated for by

a factor as shown in equation(3-2.33):

[B (T2 -)1q2=q1exp[- T21 j (3-2.33)

where

B - viscosity constant for newtonian fluid

He believed that the effect of temperature caused by the change of filtrate viscosity.

The effect of pressure on filtrate flow rate were considered as described in equation(3-

2.34):

where

p - pressure correction exponent for filter cake.

If the filter cake is incompressible, the p is 0.5. In fact, in most cases, the p is less
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than 0.5. He found the extreme case, p = 0, such as Wyoming bentonite in fresh water

slurry that has a very compressible filter cake. The typically good mud has a power of 0.1

to 0.2.

Hassen used the following equation to describe the dynamic non-equilibrium period:

q = C4t° 5 + C5
	 (3-2.35)

where

C4 - non-equilibrium shear rate multiplier

C5 - dynamic non-equilibrium constant

1 — fluid shear rate

C4 is approximated by C 1 for water base mud, but may be up to 6 times lager for

emulsion muds. The dynamic equilibrium period was described by

q = C6t 5 + C7
	 (3-2.36)

where

C6 - dynamic equilibrium constant

C7 - equilibrium shear rate multiplier

t - time at which dynamic equilibrium is attained

Here C6 is approximated by C4.

The constant C5 and C7 are a function of how mechanically stable a filter cake is.

Hassen also proposed a equation to calculate the depth of filtration invasion resulting

from the above:

q1"2
DePth=r[(1_)+ . j —r (3-2.37)

where
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r - Radius of welibore

4) - Formation porosity

U - Drilling penetration rate

E - Fluid displacement efficiency of filtrate

X - Fraction of filtrate through hole bottom removed by drill bit

Fordham et al.45 suggested, based on the experimental data, the following equation to

predict dynamic fluid loss of drilling mud:

V=(IEDI L) . S . t	 <<tc	 (3-2.38)

V = (itD i L)[S . t +
	

t>> tc	 (3-2.39)

where

S - sorptivity;

D 1 - annulus inner diameter;

L - filter core axial length

q.. - dynamic filtration rate per unit area

- some timescale for the transition to the dynamic phase.

They concluded that the fluid loss can be described by three key parameters: One

describing the early ("quasi-static") behaviour, a second describing the late ("dynamic")

behaviour of near-constant fluid loss rate, and thirdly a timescale for the transition

between these two regimes.

By simply matching the filtration rate at time t = t ( in model equation(3-2.38) and (3-

2.39), it can be derived:

An empirical correlation:
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q.. =
	 ( 3

	(3-2.41)

where

- shear rate at channel wall

- scaling shear rate (arbitrary value)

m - exponent in dynamic fluid loss correlation

Q,, - Pre - factor in dynamic fluid loss correlation

was obtained when they plot dynamic fluid loss rates qagainst wall shear rates

corrected for rheological and geometry effects in log-log form.

where m takes a value between 0.59 and 0.69. and if lTd (an arbitrary scaling shear

rate) is taken at 100 s, Q,. is approximately 0.15 .tms 1 for their mud systems.

The relation (3-2.40) combined with the correlation (3-2.4 1) implies a similar power

law correlation for t:

The correlation:

where

- pre - factor in transition time correlation

m' - exponent in transition time correlation

models the data satisfactorily, with m' taking the values from 0.62-0.7 1, similar to m

in equation(3-2.41) as expected.

t( thus varies inversely with wall shear. t ( is between about 5 hours and 20 minutes in

their experiments.
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Arthur and Peden47 used the equation:

t'= a2V'2+a1V'+t0

where

-	 J.tct iygPf s
a2 - 2(1 - ms)A2tP

a	
.t(Rm+Rgp)

AAP

(3-2.43)

(3-2.44)

(3-2.45)

t' and V' possess the same meaning as they are in equation(3-2.17) and (3-2.19).

t o represents the correction value of the initial non-constant pressure across cake

filtration.

They used an expression for average cake resistance of compressible filter cakes:

and average porosity and permeability which directly calculated from the definition:

(m-1)
pf

Cavg =

1+(m-1)-
pf

1
Kayg 

= cxayg(1_cavg)ps

(3-2.47)

(3-2.48)

They also found that the spurt loss y is non-linear function of pressure of the form:

= aAPb	 (3-2.49)

and confirm the Larsen's relationship.
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3.3	 DEVELOPMENT OF GENERAL FILTRATION EQUATION OF

DRILLING FLUIDS

3.3.1	 External Mass Balance

The mathematical treatment of drilling fluids filtration is based on the following

concepts:

(i) The weight of eroded solids from the cake is proportional to the duration of

circulation and the shear stress on the filter cake surface if mud is circulating,

and filter cake area;

(ii) Filter cake build-up is a continual process of deposition and erosion, and these

actions occur simultaneously;

(iii) Flow through the filter cake is laminar. Because the pore sizes in the cake and

filter medium are small, and the liquid velocity through the pore is low, the

filtrate flow may then be considered laminar

(iv) The filter cake is incompressible. In fact, the mud cake is compressible and this

will be discussed in chapter five;

(v) The filter medium resistance is constant throughout the whole filtration process.

This assumption requires that the process is no-bridging filtration.

In Figure(3-3.1), if the eroded mass of solid is expressed in terms of equivalent filter

cake mass, the external mass balance can also be used.

since:

WW +W
	

(3-3.1)
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where:

W - filter cake weight per unit area (Kg/rn2)

We - eroded solid weight per unit area (Kg/rn2)

W - cumulative deposited solids (filter cake) weight per unit area(Kg/rn2)

According to above concepts, we may express We as:

W =Kr•t	 (3-3.2)

or

W =Bt	 (3-3.3)

where:

t = time (sec)

B dynamic filtration coefficient (Kgfm2.sec)

t = shear stress on the filter cake surface (N/rn2)

= dynamic filtration erodabiity coefficient (KgfN.sec)

K is defined as the eroded solid mass per unit of shear stress on a unit of filter cake

surface area in a unit of time

Writing external mass balance:

Solving equation(3-3.4) for W,

where:
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1

Sc

Substituting We, W in equation(3-3.3) and equation(3-3.5) for W, We in equation(3-

3.1), we may obtain W:

fS V
V/ = i_ms_Bt

Now we can write Darcy's law:

1dVzP_____

dt IIRt(Rc+Rm)

where

= aW

(3-3.6)

(3-3.7)

(3-3.8)

Combining equation(3-3.6) with equation(3-3.8) and inserting the resultant R into

equation(3-3.7), and rearranging:

dt	 J.tctpf S	 .taB	 J•1.RmV—	 t+	 (3-3.9)
dVAPA2 (1—ms) APA APA

This is a first order nonhomogeneous linear differential equation if all the terms on the

right hand side, except t and V, are assumed to be constant with time, and solving for t

vs. V with the boundary condition:

if t=O, then V=O

we can get the relation between cumulative filtrate volume and time and this will be

discussed next.
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3.3.2
	

Solution of Differential Equation of Filtration

A first order differential equation is said to be linear if it can be written:

y'+p(x)y=r(x)
	

(3-3.10)

The characteristic feature of this equation is that it is linear in y and y', whereas p and

r on the right may be any given function of x. If right-hand side r(x) is zero for all x in the

interval in which we consider the equation(written r(x)=O), The equation is said to be

homogeneous, otherwise it is said to be nonhomogeneous. For the nonhomogeneous

first-order linear differential equation(3-3.10), we have the general solution:

y(x) = e_h 
[J &'r(x)dx + C], h = fp(x)dx

	
(3-3.11)

where the choice of the value of the constant of integration in $ p(x)dx is immaterial.

Now we can write our problem equation(3-3.9) in the form of nonhomogeneous first-

order linear differential equation as follows:

dt
—+K2 t= K1V+K3
dV

Where:

K - 
PaavgPts

tPA2(1–ms)

K = .ta1ygB

2 L\PA

(3-3.12)

(3-3.13)

(3-3.14)

It should be noted that a was replaced by a1yg for integration because a, 8 is assumed
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to be constant throught out the whole filtration.

Comparing equation(3-3.12) with equation(3-3.1 1), the general solution of equation

(3-3.12) is then given by:

_fK2dVr	 fK2dV
t=e	 [Se	 (K1V+K3)dV+C] (3-3.16)

Simplifying equation(3-3.16), we obtain:

t = e_K2V[5e1c2\7(K1V + K 3 )dV + C]

K2V
= e2"	 (icv —1).

[2
+.e2" +C

(3-3.17)
K2	K2 K

Applying the initial condition, V=O, when t=O to above equation, we could get the

integration constant::

Hence, inserting C from equation(3-3.18) into equation(3-3.17), the general solution

of our initial value problem is obtained:

t =	
- K - K2K3 [i - e2"]

K 2	K
(3-3.19)

By inserting K1,K2,K3 from equation(3-3.13), (3-3.14), (3-3.15) into equation(3-

3.19), we get:

-	 f S V (	 LWf S	 Rm	
puB v \

- (1— ms)B A (l - ms)a18B2
 - a1ygB j [i - eJ (3-3.20)
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Equation(3-3.20) is the general equation of filtration.

Letting:

PS
(1—ms)AB

2 [
	 APpS	 Rm '

— (1— ms)i.cz 1vgB2 - aavgBJ

(3-3.2 1)

(3-3.22)

Then equation(3-3.20) becomes:

= c1 v - c2(i- e_C3')
	

(3-3.24)

3.3.3	 Applications of General Filtration Equation

3.3.3.1 Erodability of Dynamically Deposited Cake

Differentiating equation(3-3.24) on both sides with respect to time:

1 = C1	 - C2C3e_C3' dV
dt	 dt

Rewriting above equation:

dV_	 1

- C1 - C2C3e"

When -	 V —3 oo, then e" —p o, .Yj =	 .1..
dt	 dt.	 C1'

(3-3.25)

(3-3.26)

So that:
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ldV	 1	 (1—ms)B
Adt eq AC1	 fS

(3-3.27)

q is then defined as the dynamic equilibrium filtration rate.

Combining equation(3-3.2) with (3-3.3), it is obtained:

B=K•t
	

(3-3.28)

Inserting equation(3-3.28) into equadon(3-3 .27), we obtain:

- (1 - ms)Kt
eq -

S
(3-3.29)

Equation(3-3.29) represents the relationship between the dynamic equilibrium

filtration rate and shear stress on the filter cake surface. From equation(3-3.29), we can

get:

3.3.3.2
	

Static Filtration Equation

If letting B=O in equation(3-3.20), then

on the left hand side:

limt=t
	

(3-3.3 1)
B -O

on the right hand side:

• I f f S V (_APpfs	 Rmhm<
BO [(1— ms)B A	 - ms)aivgB2 - aaygB) - 

e

-	 Pf Lav
gV2 

+ LRm v

- 2APA2 (1 - ms)	 iWA
(3-3.32)
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hence:

=	 PrSJIcLIVg	 2 + I.tRm v
2LPA2 (1—ms)	 LPA

letting:

pfs.taayg
a=
2 2zWA 2 (1— ms)

(3-3.33)

(3-3.34)

then

t = a2V2 + a1V
	

(3-3.36)

this is the classic static filtration equation.

3.4
	

THE DIMENSIONAL ANALYSIS OF DYNAMIC FILTRATION

OF DRILLING FLUIDS

3.4.1
	

The Buckinghamfl Theorem98

In a physical problem including n quantities in which there are m dimensions, the

quantities can be arranged into n-rn independent parameters. Let A1, A2 , A3......., A1 be

the quantities involved, such ressure, viscosity, velocity, etc. All the quantities are

known to be essential to the solution, and hence some functional relation must exist.

F(A1,A2,A3,...,A)=O
	

(3-4.1)
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If H1, fl2, ... represent dimensionless groupings of the quantities A1,A2,A3, ... then

with m dimensions involved, an equation of the form:

b(1li,fl2,ll3,_.,l1n_m)=O
	

(3-4.2)

exists.

The method of determining the fl parameters is to select m of the A quantities, with

different dimensions, that contain among them the m dimensions, and to use them as

repeating variables together with one of the other A quantities for each H. For example,

let A 1 ,A2,A3 contain M,L and T, not necessary in each one, but collectively. Then the

first IT parameter is made up as:

Il l A'A"A'A4

the second one as

n2 = A2A2AA5

and so on, until

u n _rn = AAA"A

(3-4.3)

(3-4.4)

(3-4.5)

In these equations the exponents are to be determined so that each H is dimensionless.

The dimensions of the A quantities are substituted, and the exponents of M,L, and T are

set equal to zero respectively. These produce three equations in three unknowns for each

fl parameter, so that the X,Y and Z exponents can be determined, and hence the H

parameter.

3.4.2	 The Application of IT Theorem to the Dynamic Filtration

So far as the H theorem is concerned, filtration flows are similar to those for which
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the H theorem holds. However, due to the complexities of filtration mechanism, few

researchers have attempted to apply dimensional analysis to it. One of the most significant

limitations of the application of the H theorem is that the quantities selected should

represent all the main factors of the problem.

Based on this fundamental principle, dynamic equilibrium filtration is chosen as the

problem to which the fl theorem will be applied. Hence the dynamic filtration equilibrium

rate must be a function of a number of variables which are listed as follows:

(1) Differential pressure across the filter cake, AP (psi)

(2) Viscosity of filtrate,

(3) Filter cake thickness, h (mni)

(4) Filter cake permeability, K , (m2)

(5) Annular mud flow velocity,	 (mis)

(6) Temperature, T, (°C)

In addition to the above, the following parameters are also variables which will affect

the dynamic equilibrium filtrate flow rate, however these variables can be reduced or

ignored when using fl theorem:

(7) Absolute pressure, Pab, (psi)

The absolute pressure will only affect the viscosity of the mud and filtrate.

(8) Shear rate, y, and shear stress, 'r

The shear rate and shear stress are functions of annular velocity 	 and mud

viscosity p. if a specific model of mud type is determined.

(9) Mud density, pm and solids density, Ps

The flow of fluid through porous medium is not like that through pipes or conduits.

The dominant filtration forces are capillary and applied hydraulic pressure. The weight of

the particulates themselves are too small relative to the forces mentioned above. So Pm'Ps
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are often ignored.

(10) Gravitational Acceleration, g

There are five forces associated with filtration mechanisrn 99, they are: the inertial

force, the viscous force, the pressure force, the gravity force and the interfacial force.

However the interfacial force and the gravity force are relatively negligible compared to

the others. We can then neglect g and consider that the dominant effectfactors of filtration

are pressure and viscosity)not gravity.

(11) Filter Cake Pore Size Function (Size, Shape, Distribution)

(12) Mud Particle Function (Size, Shape, Distribution)

Both (11) and (12) are very important items which play a dominant role in the

filtration. However, it is assumed that filter cake pore size and mud particle only affect the

cake thickness h and cake permeability K. It should be noted that the use of statistical

methods99 rather than dimensional analysis is simple.

(13) Time,t

When equilibrium is reached, all the variables occur independent of time, hence the

time t is omitted.

(14) Filtration Area, A

If the item de is defined by

q d = 

ldV	
(3-4.6)

we can then eliminate the variable of area.

After that, a general equation can be made:

= 0	 (3-4.7)
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fl - ldc
1 KCAPC

.Lfh

(3-4.10)

fl_hL2 (3-4.11)
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In order to make the equation simpler, it is assumed that the filtration takes place at-

constant temperature. Reaffanging above equation as follows:

0
	

(3-4.8)

By using the H theorem, and selecting	 K, .tf as the independent variables

(repeating variables), the dimensionless equation can be obtained:

fl_ V

I.tfhC

Substituting Hi ,fl2,H3 into equation(3-4.9)

____ 
m MANN -o

K C .PC Ji.f ' K APC -
.L f h C	 .tfh

(3-4.12)

(3-4.13)

Writing equation(3-4.13) in another form:
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Equation(3-4.14) would apply to both compressible and incompressible cake dynamic

filtration.

For incompressible filter cakes, both h and K will not change once equilibrium is

reached, hence Darcy's law can be used, thus

1 dv i	KCAPC

=	 =

so the dimensionless equation becomes

de = VftJ .

(3-4.15)

(3-4.16)

If assuming that the viscosity of mud and filtrate do not change or the parameters

which affects them such temperature, pressure do not change, equation(3-4.16) will be

simplied as

= Constant x	 (3-4.17)

in which constant is only the function of tf, tm.

Equation(3-4.17) is very similar to that reported by Bezemer and Havenaar24 who

found from the experimental results that equilibrium filtrate flow rate is proportional to the

rate of shear on the cake surface.

For a compressible filter cake, the equation(3-4.14) will also hold, however, KCAPC

JLfhC
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m_should be determined by experiments which use 4 
K C PC	 -	

, since both h

and K are variables.
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Chapter Four

THE EXPERIMENTAL EQUIPMENT AND PROCEDURES

The object of this chapter is to describe the static and dynamic experimental facilities

and procedures. It is necessary to point out that the static experiments are covered because

it was initially hoped that the dynamic filtration might be predicted using static

experimental filtration data in a filtration numerical model as has been discussed in chapter

three. A number of static filtration tests were therefore conducted , prior to commencing

dynamic filtration tests and those filter cake characteristics, such as averagpecific cake

resistance cxavg. cake wet/dry mass ratio m and cake thickness h, which were obtained

will be used for the dynamic filtration modeling in chapter eight.

4.1	 STATIC FILTRATION

4.1.1	 Description of the Modified Static Filtration Cell

The modified static filtration cell was originated from a cell which was previously

used for static filtration with filter papers. Its schematic diagram is showed in Figure(4-

1.1) and Figure(4-1.2) shows the cross section of the cell. The cell is made up of 5 main

parts:

(1) the cell base;
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Figure(4-1 .1) Schematic of Room Temperature Filtration

Cell and Associated Equipments



Top Cover

Figure(4-1.2) A Schematic Drawing of Cross Section of Static Filtration Cell
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(2) the core holder,

(3) the cylindrical body;

(4) the top cover,

(5) the system of restraining plates.

The core holder consists of 4 core-location holes which have an inside diameter of

about 35 mm. The PTFE sleeve which has an outer diameter of approximately 35 mm and

an inner diameter of 25 mm is used between the hole and core so that the leakage of mud

around the core is prevented. The length of the hole is approximately 1.5 inch.

4.1.2	 Muds Tested for Static Filtration

Two mud systems were used in this study, viz:

(1) SeawaterfKCL/Polymer mud

(2) Freshwater Gypsum-Ferrochrome Lignosulphonate mud

All are commonly used in the North Sea and elsewhere94. The compositions of the

two muds are listed in Table 4.1. A very brief description of the main components and

their function is given in Table 4.2.

4. 1.3	 Mud Preparation

The list of components in Table 4.1 is the order in which the chemicals were added.

For the Seawater/KCL/polymer mud, the Seawater was made up to the composition

shown in Table 4.3. The components were added in the order shown in Table 4.1, whilst

stirring, and the mud left overnight and then remixed before use.The caustic soda and

—102--



Chapter Four The E.rperimenzal Equipment and Procedures

Table 4.1 Composition of the Two Basic Muds Used

Mud System 1: Seawater!KCL/Polymer

Component

Seawater

Caustic Soda

Sodium Carbonate (Soda Ash)

Potassium Chloride(KCL)

Drispac

XC Polymer

Barite

Concentration

0.965 bbls

1.0 lbs/bbl

1.0 lbs/bbl

30 lbs/bbl

1.0 lbs/bbl

1.0 lbs/bbl

70 lbs/bbl

Mud System 2: Freshwater/Gypsum-Lignosulphonate

Component

Freshwater

Wyoming Bentonite

Caustic Soda

Gypsum

Ferrochrome Lingnosulphonate

LV CMC

Bathe

Concentration

0.967 bbls

20 lbs/bbl

0.75 lbs/bbl

4.0 lbs/bbl

3.0 lbs/bbl

2.0 lbs/bbl

70 lbs/bbl
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Table 4.2 Brief Description of Mud Components

	Components	 Brief Descriptions

Mainly sodium montmorillonite clay used to impart

Wyoming Bentonite rheological properties to the mud and to control fluid loss by

__________________ the formation of thin filter cakes of low permeability

	

nate	 A sub-colloid used to deflocculate the colloidal clay particles

Gypsum	 Calcium sulphonate, added as a source of soluble calcium to

___________________ inhibit clay swelling

LV CMC	 Low Viscosity Carboxymethyl Cellulose, a polymeric fluid

___________________ loss additive which gives very little, if no, rise in viscosity

Drispac	 polyanionic cellulosic polymer, a more refined cellulose

__________________ which gives viscosity and fluid loss control

Xanthan Gum Biopolymer, mainly used as a thicker to give

XC Polymer	 viscosity but is less affected by Ca and Mg ions than

___________________ Drispac

Potassium Chloride Added as a soluble source of potassium to prevent

____________________ shales/clays sweeling
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Table 4.3 Composition of Simulated North Sea Water

Compound	 Concentration (1bfbb1)

CaCl2.6H20	 0.790

MgCl2.6H20	 3.863

KCL	 0.296

NaCI	 8.091

Na2SO4	 1.478
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soda ash were added 1'to treat out Ca and Mg ions present in the Seawater, which

have a detrimental effect on the polymer.

For the Freshwater/Gypsum-Lignosulphonate mud, the Wyoming bentonite was

added directly, slowly to the tap water whilst stirring with a salveson mixer. The mixture

was then left for 18-24 hours to allow the bentonite to pre-hydrate. The caustic soda,

dissolved in a small quantity of water, was then added whilst stirring, resulting in the

mixture getting extremely thick. At this point, part of the required amount of

lignosuiphonate in effort to thin down the mud would be added before carrying on with

the additions as they are listed.

After the addition of the LV CMC the mud thickened slightly but this was temporary.

and if left, mixing in the next day it 'broke' back to a reasonable viscosity.

4.1.4	 Core Preparation

The filter media used were sandstone cores which were drilled from natural clashach

block. All cores tested in this study were 1" in diameter, about 1" in thickness and had

permeabilities between 50 and 5000 md.

4. 1.5	 Experimental Procedure

The static filtration tests were carried out through following steps:

Preliminary work and core saturation: To ensure that no leakage of mud around the

core was occured, a PTFE sleeve was used. The core was inserted into the sleeve before

the sleeve with the core was pressed into the core holder. The core holder was then put
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onto the cell base when the bronze disc had already been inserted below each core and the

four "0" rings had been added between core holder and cell base as well, which made

sure that the filtrate went through the outlet individually. The body of the cell was

carefully lowered onto the core holder and the top cover was placed in position. The end

plate was then located on the restraining rods and the bolts were tighten.

In order to purge the air inside the core, below it and the outlet tubing, a vacuum

pump was used and the brine(NaCL2 45,000 ppm and CaCL2 4,500 ppm) which is most

similar to the underground fluid in reservoir, was then allowed to flow through the core.

Once saturation was completed, the outlet valve was then closed.

Measurement of initial fluid permeability of the core: Figure(4-1.3) shown the

schematic of permeability measurement. The fluid of measurement was saturation brine

which has viscosity in range of 1.09-1.24 .tp. A small scale pressure iransducer(3.5 bar)

was used in stead of the big scale one(35 bar) due to low applied constant pressure so that

a more accurate pressure value was obtained. Two big vessels were employed to store

Nitrogen to keep the filtration cell under constant pressure even the liquid volume

declined very rapidly when the measurement of permeability was processing. To make

sure that the permeability value obtained was available, the cumulative volume vs. time

was noted by balances and logged by computer as longer as required. Subsequently,

permeability was calculated according to Darcy's law. The brine in the cell was then

drained off once permeability measurement was completed.

Filtration data logging: After the bolts were untighten and end plate was removed, the

top cover of filtration cell was carefully lifted and the inside surface was dried by tissue

paper before a freshly mixed mud to be tested was slowly dropped into the cell. The top

cover, end plate and bolts were then put back in position The nitrogen inlet line, pressure

gauge and pressure transducer (35bar) were then connected to the cell and two clean

beakers placed on the balances and the balances zeroed individually. With the outlet valve

closed the cell was then pressurized to the required filtration pressure. Filtration test was

then commenced by opening the outlet (electrical) valves and simultaneously running the

- 107-



Pressure
Release

Pressure
Transducer

II	 I	 I	 I
I	

I	
I	 I	 I	 IFiltration	

l•c I	 I	 I	TginJ	
Cell	 lI	 'II	 IC

I H	 i	 I)
computer	

i	
Saturration	 i I	 I

I	 lI	 I	 I	 IBrine	 (s•)

Steel Vessels

Balance I Balance

Figure(4-1 .3) Schematic of Liquid Permeability Measurement



Chapter Four The Experimental Equsvment a,id Procedures

program. Filtrate weights and pressure were automatically measured as a function of time

with the electronic balances and pressure transducers, and transmitted into BBC computer

and then saved on the floppy disk. The data on the BBC floppy disks can be transferred

through KERMIT to VAX mainframe or any other computers such as, IBM personal, or

Macintosh etc. for further processing.

Filtration test was stopped after about two hours(or any time as required) by stopping

the program and closing the outlet (electrical) valves and the pressure was then released.

After that, the mud was drained off and the bolts, the end plate and top cover were

removed.

The cell body was then carefully separated from the base and any excess mud lying

on the surface of the cake was then gently washed off using tap water. Since the electrical

circuit connected to the depth gauge touches any electrical conductor, any excess water

lying on the surface of the cake was removed using a hot air blower for about 20 to 30

seconds.

The depth gauge was then placed over the cake surface and the gauge lowered until

the buzzer sounded. The depth reading was noted and the whole procedure repeated 8-9

times to obtain an average value of the depth from the top of the cell base to the cake

surface.

The filter cake was then carefully removed and put into a weighted glass plate which

would be weighted, dried by putting into the humidity oven for one day, then reweighted.

After that, the depth gauge was placed over the core surface and the gauge lowered until

the buzzer sounded. The depth reading was noted and the whole procedure repeated 8-9

times to obtain an average value of the depth from the top of the cell base to the core

surface. By subtracting the initial average depth with filter cake from the average depth

without the filter cake, the average cake thickness could be obtaifled. Figure(4-1.4)

shows the schematic of the micrometer arrangement for measuring filter cake thickness.

Finally the cell was cleaned.
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4.2	 DYNAMIC FILTRATION

4.2.1	 Experimental Rig and Procedure

The new dynamic filtration cell was designed based on the static filtration cell which

has been discussed earlier in this chapter. The concept of the design is to simulate a cone-

and-plate viscometer, shown schematically in Figure(4-2.l), which consists essentially of

a stationary flat plate, upon which is placed a puddle of the liquid(mud) to be tested, and

an inverted cone, which is lowered into the puddle until its apex just contacts the plate. If

the angle between the conical and flat surface is kept small, say about two degrees, the

magnitude of shear stress and shear rate is very near constant throughout the fluid.

A schematic of assembled dynamic filtration rig and associated equipments is shown

in Figure(4-2.2) and Figure(4-2.3) shown the cross section of the new dynamic filtration

cell. The new cell is very similar to the static filtration cell showed in Figure(4-1.1) with

exception of the difference between the top covers which the new one consists of a cover

with cone-rotor and shift. The dynamic filtration experiment tests were therefore

completed under a similar procedure as static filtration conducted. For the equipment, the

top cover were replaced by the cone-rotor-shift cover which connected to a motor. The

experiment was conducted as same as static experiment discussed before but run the

motor to a required shear rate prior to pressurising of the cell.
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Figure(4-2.1) Schematic Diagram of the Cone-and-Plate Viscometer.
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4.2.2	 The Determination of the Shear Rate and Rotational Speed from

Equivalent Annular Velocity

Simulation of 8 h/2"_ 6 1/2" annulus conditions, with good working mud flows

(laminar flow) using power law model the shear rate on the wall is given by:

4VA (2 -F')
1=	

n
d2 d1

(4-2.1)

where

n - the behaviour index of the mud, usually 1.0-0.4

- annular circulating velocity, usually 0.5-1.30 m/s

d2 - the diameter of well bore, 5/8"-8 1/2"

- the diameter of drilling pipe, 3"__61/4"

It should be noted that these values are only approximately covered in drilling

engineering.

The maximum and minimum rate of shear were then determined:

'Ymax = 294.80 (us) and 'ymm =75.6 (us)

As it is shown in Figure(4-2.l), if the cone rotates at a constant speed of N rps, the

linear velocity at r is 2irrN. The gap height at r is r tan4. The magnitude of the shear rate

at r is therefore:

2itrN	 2tN

1r-tanitan	
(us) (4-2.2)

The shear rate is evidently constant over the range 0^r^R so that shear stress
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must also be constant over this range. In practice, the angle I between the conical and

flat surface is kept small, say, about one and half degree so that strong secondary flows

can be prevented.

It is clear that measurement of the rotational speed permits the calculation of the shear

rate. Converting above shear rates to the rotational speed:

100 rpm and Nmjn 25 rpm

4.3	 THE ADVANTAGES OF THE MODIFIED FILTRATION CELL

The following advantages of new modified filtration cell might be drawn:

(1) The four cores whether or not they are synthetic or natural can be used

simultaneously.

(2) It is possible to conduct both static and dynamic filtration.

(3) Four electronic balances can be used(even only two have been used so far) to

measure the cumulative filtration volume/weight at any moment and these

readings with those from the pressure transducers can automatically be logged by

BBC computer.
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Chapter Five

PRESENTATION OF STATIC FILTRATION EXPERIMENTAL RESULTS

This chapter presents the results of static filtration experiments conducted for two

mud systems.

5.1	 MUDS TESTED AND THEIR PROPERTIES

One of the purposes of static filtration tests is to produce relevant data to allow the

prediction of the dynamic filtration properties of drilling muds. The experiments did not

consider the effects of the components of the muds on the static filtration behaviours.

Nevertheless, the muds used were based muds and only solids concentrations were

changed which is directly related to the filter cake characteristics. Details are showed in

Table 5.1 and Table 5.2 which list the compositions of Seawater/KCL/ Polymer &

Freshwater/Gypsum/Lignosulphonate muds respectively. The corresponding rheological

properties and specific weight of those two muds were presented in Table 5.3 and Table

5.4. It should be noted that the rheological data were calculated using the Bingham plastic

model. Each mud was tested at pressures of 100, 200, 300, 400, 500 psi.

When converting filtrate mass to volume the density of the filtrate was measured and

for this mud it was found to be equal to 1014 Kg/rn 3 . Also the filtrate viscosity was

measured by a low shear viscometer and it was found to be between 1.09-1.24 cp.
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Table 5.1 Composition of the Tested Seawater/KCL/Polymer Mud

Components	 Concentration tested

_____________________________________	 (lbs/bbl)

Caustic Soda (NaCI)	 1

Soda Ash (Na2CO3)	 1

Potassium Chloride (KC1)	 30

Drispac	 1

XC Polymer	 1

Barite (BaSO4)	 50	 70	 140	 210

Table 5.2 Compositions of the Tested Freshwater/Gypsum-
Lignosuiphonate Mud

Components	 Concentration tested

_____________________________________	 (lb s/b bi)

Wyoming Bentonite	 20

Caustic Soda (NaOH)	 0.75

Gypsum (CaSO4)	 4

Ferrochrome Lignosulphonate 	 3

LVCMC	 2

Barite(BaSO4)	 0	 70	 140	 210
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Table 5.3 The Properties of Seawater/KCL/Polymer Mud

	oncentration Appaient	 Plastic	 Yield Point Mud Weight
Component	 (lbs/bbl)	 Viscosity	 Viscosity

____________ ___________	 (cp)	 (cp)	 (lbs/lOU ft2) (lbs/gal.)

50	 22.00	 12.50	 19.00	 9.75

Barite	 70	 25.00	 15.50	 19.00	 10.00

140	 30.00	 22.00	 16.00	 11.10

__________	 210	 35.50	 26.00	 19.00	 12.00

Table 5.4 The Properties of Freshwater/Gypsum/Lignosulphonate Mud

	oncentration Apparent	 Plastic	 Yield Point Mud Weight
Component	 (lbs/bbl)	 Viscosity	 Viscosity (lbs/lO0 ft2)	 (lbs/gal.)

___________ __________ 	 (cp)	 (cp)	 ___________ __________

0	 42.50	 31.50	 22.00	 8.65

Barite	 70	 51.25	 39.00	 24.50	 9.90

140	 53.75	 41.00	 25.50	 10.95

__________	 210	 65.25	 48.50	 33.50	 12.00
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5.2	 EXPERIMENTAL RESULTS OF STATIC FILTRATION

5.2.1	 Spurt Loss

The relationship reported by Arthur94 which the spurt loss is an exponential function of

pressure was not found in this study. Figure(5-2.l) shows the spurt loss as a function of

pressure and barite concentration. The experimental data demonstrated that the spurt loss

would depend more upon the relation between filter medium characteristics and slurry

constituents than upon the applied pressure alone. Extensive discussion on this problem

will be made in the chapter six.

5.2.2	 Effect of P-fessure--a1d- Barite Concentration upon Cumulative

Filtrate Volume

Figure(5-2.2) to (5-2.5) show the cumulative filtrate volume as a function of time and

pressure for a range of barite concentrations. It is clearly demonstrated that the effects of

pressure and barite concentration upon cumulative filtrate volume are significant. An

increase in pressure or barite concentration generally results in an increase in cumulative

filtrate volume. This may be explained by that, at high barite concentration, the filter

cakes become less compressible and thus increases the filter cake permeability.
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Chapter Five Presentation of Static Filtration Experimental Results

5.2.3	 Effect of Pressure and-Barite-Correntration upon Filter Cake

Thickness

Figure(5-2.6) shows the measured filter cake thickness as a function of pressure and

barite concentration. In general, when pressure or barite concentration increases, the filter

cake thickness will increase. However, the effect of pressure on cake thickness is not so

significant when the barite concentration is less than 70 lbs/bbl for which an increase in

pressure does not make apparent change in filter cake thickness. This suggests that the

filter cakes formed in a low barite concentration, say 50 lbsfbbl, are more compressible

than those formed at a high barite concentration. It is assumed that, for compressible filter

cakes, two opposing actions exist: one increases the filter cake thickness by piling-up

solid particles, the other decreases the filter cake thickness by compacting. The two

actions compensate for each other and create no pronounced change in filter cake

thickness with increase in pressure. For incompressible cakes, however, the filter cakes

would vary with the pressure apparently, e.g., filter cake thickness should be

proportional to the square root of pressure because no compaction exists.

5.2.4	 Effect of Pressure and Barite Concentration upon Wet to Dry

Cake Mass Ratio (m)

Figure(5-2.7) shows the ratio of measured mass of wet to dry cake (m) as a function

of pressure and barite concentration. Generally, m declines with increase in pressure and

barite concentration. At low barite concentration in the mud, say 50 lbs/bbl, 70 lbs/bbl, m

changes significantly with increase in pressure. This corresponds with the above results

that the filter cakes formed under those conditions are more compressible. However, at
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Chapter Five Presentation of Static Filtration E.xperimental Results

high barite concentration, "m" seems not to change very much when the pressure changes

from 100 psi to 500 psi. This further supports the view that filter cakes deposited at this

condition should be less compressible. Comparing with Figure(5-2.6), it should be noted

that m varied very little with changing pressure for mud with a high barite concentration.

This supports the results discussed previously.

5.3	 THEORETICAL MODELLING OF STATIC FILTRATION

EXPERIMENT

5.3.1	 Derivation of Static Filtration Equation

In chapter three, equation(3-3.33) was derived and it has been widely used as a basic

law of static filtration in the history of drilling fluids. This equation, however, is only

valid under conditions that the filter cake is incompressible and the filter medium

resistance could be neglected. The requirement of the incompressible filter cakes is

necessary because it ensures that the average specific cake resistance a,, in stead of the

local specific cake resistance a, could be used. The asumption that the filter medium

resistance is negligible is important because the differential pressure across the cake is

constant under this condition. In fact, in drilling engineering, the filter cake formed from

the muds is compressible95. It is understood that the pressure differential across the cake

at the initial stage of the filtration process increases from zero to maximum while the

pores of the filter medium are plugged and bridged, and/or the first layer of filter cake is

forming. It is clear therefore that the assumption of constant pressure filtration is

approximate. The equation would need to be modified before it can be used for predicting

drilling fluid filtration.

Equation(3-3.33) can also be derived from equation(3-3.9).
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Letting B = 0, then equation(3-3.9) becomes:

dt -	 tapfS	 + tR

dVLWA 2 (1—ms)	 L\PA
(5-3.1)

If the filter cake is incompressible, we can then integrate the above equation, which

gives equation(3 -3.33). For a compressible filter cake, Kozicki et al.96 modified the

basic filtration equation to allow for the variation in (Xavg and Cavg in the initial stages of

filtration. The above equation is then rewritten to include a correction term yielding the

correct values of dt/dV in the initial period:

dt	 J.tapfS	
+F(V)	 (5-3.2)

dViPA 2 (1—ms)	 APA

where

F(V)^O, O^V^V

F(V)=0, V^V

in which V is the volume of filtrate collected before parabolic behaviour is reached

and	 and m are the constant values reached subsequent to the initial non-parabolic

period.

The assumption that the formation is a no bridging porous medium may lead to

erroneous analysis of the borehole filtration. Glenn et a!. 15 subtracted the spurt volume

and the spurt time from the data of cumulative filtrate volume vs. time. Filtration then

commences with solids already deposited in the pores and on the surface of the filter

medium. This process may reduce a lot of errors encountered at initial filtration stages.

Designating the added resistance of the solids deposited during the spurt period as

Equation(5-3.2) becomes:
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dt' -	 ivgPiS yi t(Rm +Rsp) 
+F(V')	 (5-3.3)

dV1 - APA2 (1— ms)	 APA

in which the new integrating limits:

t'=O, V'=O

t'= t — tsp , V'=V-Vsp

Separating the variables in equation(5-3.3) and integrating:

S	 V—Vdt' = P.VP1	
5 'V'dV' + 

Mm + Rsp)	
dv'

0	 iWA2(1—ms) 0	 PA	 JO

+ J F(V')dV'
	

(5-3.4)

which gives:

v_v1 ji(R
m + R3) 

1V—V,

=	 J.LaivgPfs	

,2('°	 2PA2(1—ms) 10	 PA
10

Vi

where I F(V')dV' is represented by t0
Jo

Simplifying the above equation:

- =	 avgPfS (v - vsp )2 +m_+	 - v5 )+ 0t tsp 2L\PA
2 (1—ms)	 tWA

(5-3.6)

Kozicki et al.96 defined to as the effective time of Commencement of filtration since

when t = 0, V =0. Comparing equation(5-3.6) with equation(3-3.36), then:

t= t0 + a1V'+a2V'2
	

(5-3.7)

where:
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t' = t - tgp

V'=V—V

This is the modified static filtration equation.

The possibility of a negative value for to was considered by Kozicki er al. 96 and they

concluded that since:

m 1 ^ mm

and

[cx1yg] <1a 
]mavg

where the subscript i and m refer to the initial and main stages of filtration

respectively. It is possible for to and F(V) to be negative, depending on the relative values

of m 1 , mm , [aavg], and

Equation(5-3.7) is then used to fit experimental data points V-t using the least-squares

method and coefficients to, a l,a2 are obtained.

Equation(5-3.7) can be rewritten:

t i —t
° = a 1 + a2V' (5-3.8)

It is clear that plot of	 vs. V' should yield a straight line.

Inserting a1, a2, into the equations(3-3.34) and (3-3.35), the average specific cake

resistance, effective filter medium resistance could be determined.

From equations(3-3.34) and (3-3.35):

aavg = 
2PA2 (l - ms)	

(5-3.9)
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LPA
Rm =	 a1 (5-3.10)

Chapter Five Presentation of Static Filtration Experimental Results

5.3.2	 Application of Static Filtration Equation to Experimental Data

5.3.2.1 Average Specc Cake Resistance and Effective Filter Medium Resistance

Table 5.5 and Table 5.6 listed the coefficients of static filtration experiments for

Seawater/KCLJPoIymer and Freshwater/GypsumlLignosulphonate mud respectively. The

coefficients were observed by fitting experimental data points V-t to a second order of

polynomial.

In order to further investigate the static cake characteristics, equations(5-3.9) and (5-

3.10) would be employed. So far, all variables in equation(5-3.9) except s (solid fraction

in slurry) are known. s can be determined as follows: (Assuming Freshwater/Gypsum-

Lignosuiphonate base mud as an example)

According to definition:

Mass of Solidin Slurry

Mass of Slurry

= (70 + 20) lbs / bbl x 1.0 bbl

9.90 lbs/ gal	 1.0 bbl

= 0.2165

Figures(5-3.1) to (5-3.4) are plots of (t-t-t0)/(v-v) vs. (v-v,) as

function of pressure and solid concentration. The straight lines through the plots were

produced by the equation y = a 1 + a2x in which y represents the (t - - t 0 )/(V - v)
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Table 5.5 Regression Coefficients of Static Filtration Experiments
(Seawater/KCL/Polymer Mud)

Barite	 Solids	 Applied	 V,	 a2	 a1
Concentratioi Fraction of Pressure

(lbs/bbl)	 Slurry (%)	 (psi)	 (/2) (mm/mI2) (mm/mi)	 (mm)

	

100	 12.631	 10.364	 11.168	 3.842

	

200	 5.658	 4.214	 11.268	 -2.246

	

50	 12.40	 300	 10.263	 5.445	 3.709	 -0.500

	400	 9.670	 4.851	 1.636	 0.064

	

_________ ________	 500	 6.513	 4.407	 1.346	 0.087

	

100	 2.434	 9.111	 2.816	 -0.155

	

200	 1.447	 4.913	 1.725	 0.356

	

70	 16.90	 300	 0.395	 3.333	 3.562	 0.006

	

400	 0.000	 2.868	 2.412	 -0.277

	

_________ ________	 500	 4.737	 2.869	 0.410	 0.23 1

	

100	 1.099	 10.264	 14.206	 -0.869

	

200	 16.578	 3.729	 9.787	 0.612

	

140	 30.26	 300	 6.820	 1.938	 2.421	 -0.177

	

400	 20.591	 1.564	 4.923	 -0.860

	

_________ ________ 500 	 14.210	 0.993	 0.78 1	 0.204

	

100	 13.618	 4.307	 0.489	 -0.273

	

200	 5.066	 2.110	 0.248	 -0.277

	

210	 41.89	 300	 9.144	 1.179	 1.101	 -0.365

	400	 8.355	 0.972	 1.459	 -0.408

	

__________ ________	 500	 5.921	 0.912	 1.542	 -0.612
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Table 5.6 Regression Coefficients of Static Filtration Experiments
(Freshwater/Gypsum/Li gn osuiphonate Mud)

Barite	 Solids	 Applied	 a2	 a1
	oncentratior Fraction of Pressure	

x102(lbs/bbl)	 Slurry (%)	 (psi)
___________ _________ _________ (ml/cm 2 ) (mm/mi2) (mm/mi)	 (mm)

100	 0.889	 57.074	 39.685	 -2.449

70	 22.14	 200	 0.000	 58621	 18.295	 -1.818

300	 3.216	 48.298	 13.464	 -0.874

__________ ________	 400	 3.947	 60.467	 10.617	 -1.025
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axis, and x represents (v - v,.) axis, where al and a are coefficients corresponding to

the data. It is clear that substantial agreement between modified equation and the

experimental data points exists. It is further seen that most of the values of

(t - - t0 )/(v - v5 ) and (v - v) fall on a straight line.

Figure(5-3.5) shows the calculated average specific cake resistance as a function of

barite concentration and pressure. It is clear that the average specific cake resistance

declines when the barite concentration increases and it will increase when the pressure

increases. However, the figure also illustrates that the average specific cake resistance

varies considerably with the pressure when the barite concentration in the mud is low, say

50 lbs/bbl. The average specific cake resistance remains in a very narrow range when the

barite concentration is high, say 210 lbs/bbl. This is not contradictory to the conclusion

discussed earlier in this chapter. Since we have already noted the effects of pressure and

barite concentration upon the filter cake thickness and ratio of measured mass of wet to

dry cake, it is therefore easy to understand that at the high barite concentration, the filter

cake is less compressible and thus results in no pronounced effect of pressure upon

average specific cake resistance.

Figure(5-3.6) shows the effective filter medium resistance as a function of pressure

and barite concentration. The data points are very scattered and no specific relationship

was found for this mud under static filtration but it worth noting that the effective filter

medium resistance is in the same order of magnitude as the filter cake resistance.

5.3.2.2 Average Cake Porosity and Permeability

According to the definition of m:

Wet Filter Cake Mass
Dry Filter Cake Mass

= p5 (l -	 LA + PfC1V8LA

Ps(1_Eavg)
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= Pz(1_Cavg)+PtCavg

p(i— Cavg)
(5-3.11)

Rearrange:

(rn—i)

Cavg (m_1)+PL
pg

From equation(3-1.27):

1

Kgyg = p(i -

(5-3.12)

(5-3.13)

Above equations can be used to determine the average cake porosity and average cake

permeability if the ratio of wet to dry filter cake mass, the density of the filtrate and solids

can be obtained. It is important to note that the solid density as appears in the above

equation should be determined by the true density because the filter cake is made up of

several types of solids, such as, bentonite, barite, and polymer, for example in

Freshwater/Gypsum-Lignosulphonate mud system. It is therefore necessary to describe

the calculation method for the true solid density of the mud consisting of several kind of

solids as follows.

Assuming the Freshwater/Gypsurn-Lignosulphonate base mud as an example which

the compositions are listed in Table 4.1. First, we use the following densities:

Bentonite	 2300 kg/rn3

Barite	 4300 kg/rn3

LV CMC 1600 kg/rn3

Whether or not the polymer should be included is questionable. However, there are

many investigators4894 who found that the polymer exists in the filter cakes. In this

study, we will neglect the effects of polymer upon the filter cake true solids density
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because it will make little difference when the effects of the polymer on calculation of

mixed solids density is considered.

The density of above example should approximately be:

20	 70
p —x2300+—x4300-38556 Kg/rn

90	 90	 -

If we include the polymer in calculation, it would be:

- 20 2300 + x 4300 + x 1600 3879.2 Kg/rn3
92	 92

The error caused by neglecting the polymer should be:

13855.6-3879.21
lx100=0.62%

3855.6	 I

The error is very small and it is accurate enough for engineering practice.

Figure(5-3.7) shows the average cake porosity as a function of barite concentration

and pressure. The curves are very similar to those plotted in Figure(5-2.7) because all the

parameters affecting m (ratio of measured mass of wet to dry cake) will also influence the

porosity.

Figure(5-3.8) shows the average cake permeability as a function of barite

concentration and pressure. The average cake permeability was found to be between

0.3x10 and 5.2xl0 darcies.
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Chapter Six

PRESENTATION OF DYNAMIC FILTRATION EXPERIMENTAL

RESULTS

This chapter presents the results of dynamic filtration experiments.

6.1	 MUD SYSTEMS TESTED AND THEIR PROPERTIES

In order to compare the parameters obtained from static and dynamic experiments, the

same mud systems as were utilised for static tests were used. The muds were a

Seawater/KCL/Polymer base mud and Freshwater! Gypsum/Lignosuiphonate base mud

for which the compositions are listed in Table 5.1 and Table 5.2 and properties in Table

5.3 and Table 5.4. It should be noted that no attempts were made to perform dynamic

filtration tests for a mud with a high solids (barite) concentration because due to the

equipment utilized in this study, the filter cake could not be allowed to form more than 1

mm. The solid fraction, s, was calculated in the same way as in chapter five. The

viscosity of filtrate was found to be 1.09-1.24 cp for Seawater/KCL /Polymer base mud

and 1.1-1.25 cp for Freshwater/Gypsum/Lignosulphonate base mud. In this study, the

viscosity of filtrates in all calculations was assumed to be equal to 1.195 cp for

convenience.



Chapter Six Presentation of Dynamic Filtration Experinental Results

6.2	 EXPERIMENTAL RESULTS

6.2.1	 Spurt Loss and Cumulative Filtrate Volume

Unlike static filtration experiments, the filter cake characteristics such as thickness,

ratio of wet/dry cake mass etc., could not be obtained during dynamic filtration tests

because dynamic filter cakes formed in the experiments were so thin that they were

impossible to measure accurately using the method reported in chapter four. The attempts

to measure filter cakes thickness suggested that the thickness of most cakes formed under

our experimental conditions were less than 1.00 mm. The spurt loss and the cumulative

filtrate volume were recorded. Every test was conducted for at least 8 hours. According to

the result of plots of cumulative filtrate loss vs. time, it is clear that the test time of 8

hours was adequate to ensure that the dynamic filtration reached equilibrium. As pointed

out in chapter 5, the spurt loss under static conditions was found to have no relationship

with the tested variables, which contradicts with the results 47'94 that the spurt loss is an

exponential function of the pressure. This may be explained by the difference between the

filter mediums utilised. Arthur er al.47 '94 used filter papers as filter medium whereas in

these experiments the filter medium was natural sandstone core which may have a very

random surface pores size distribution and liquid permeability. It is understood that the

spurt loss is a function of a large number of variables such as, pressure, mud solids

concentration and solids size distribution, filter medium pore size and size distribution,

filter medium permeability, shear rate, etc. Therefore, it is possible for the above

contradictory to exist. Simpson 35 explained that thin filter paper does not provide pore

spaces where internal filter cake might start to form compared to the natural core.

Figures(6-2.1) and (6-2.2) show the spurt loss under dynamic conditions as a

—128-



,cI

lo
i140

0
4)

E411
0

0
14
0
OEi

9
c'1

00
v-40

C,,

0

'-I

- - _..- -.-vlrlrlrI
NU)

v.IO0Cs
N-4rl

14
0

q4

o
U) 1

0
1.I .i4

o
0	 C04J

•t, •rl

U
0 .14

0	 14

U)

14

0
0
CrI	-

.14	 0
O	 .1414
p4 	 .ijw

0
C4	 rzo

0)
0)
0
14

o
o	 014

(SI

4Jt

040
0	 U)Cl)
U)
r4

(1

'-I
0
14

.14
o	 Ii.

0

(mobB/Tux) eso'I	 nds



- - --

r-in
-4OOCl

• •

I

'—I
C-)

4,
4)

4J

4,
4,
$4
0
OEs

0

.1.)

$4
4)
1—I

14 •rI
OIzi

'44
0

4 •v1

,	 •r
Cl)

4).
'40)

0414

9
Cs1

0

4,
$4

a
U.)

0
0

0
U-,
Cr,

0
0

•1•1
0)

p4

0

$4C4

0)
0)
4,
'4

o
0
c.1

0
It)
I-'

0
0
TI

'-II

	

10
	

0
	

0

	

(V)
	

C.1
	

rl
	

0

(mobe/tjm) sso'j xrid



Chapter Six Presentation of Dynamic Filtration Experimental Results

function of pressure and shear rate for two different muds. It is difficult to define whether

or not an effect of pressure upon spurt loss exists under conditions where there is a shear

stress on the surface of core.

Figures(6-2.3) and (6-2.4) show the cumulative filtrate volume at 8 hours as a

function of shear rate and pressure in dynamic filtration. It can be understood from these

figures that, the cumulative filtrate volume at 8 hours for SeawaterfKCL,Polymer mud

decreases slightly with increasing shear rate, for Freshwater/GypsumfLignosulphonate

mud, however, this volume increases with increasing shear rate. This can be explained if

the effect of shear rate is considered as two actions: the erosion and the sorting. The mud

stream can continuously erode the freshly deposited cake and under this condition, the

cumulative filtrate volume will increase rapidly and then reach an equilibrium when the

shear rate increases from zero to maximum. On the other hand, when the filtration

process continues, the particles sorting will increase the filter cake resistance and in this

case, the cumulative filtrate volume will decline slowly and then reach an equilibrium

whilst the shear rate approaches to maximum from zero. The above two actions affect the

cumulative filtrate volume simultaneously. Considering the range of the shear rates of the

above two figures, it is clear that the difference can be produced by these two mud

systems.

Figures(6-2.5) to (6-2.10) present plots of dynamic cumulative filtrate volume versus

time for various differential pressures and shear rates. Figure(6-2. 11) shows cumulative

filtrate volume as a function of time at low pressure and various shear rates. As with spurt

loss, the effect of pressure and shear rate upon the cumulative filtrate volume are not very

clear.

In general, increasing pressure would increase compaction of the filter cake which

would lead to an increase in filter cake resistance and thus reduce filtrate volume if the

filter cake is compressible. On the other hand, an increase in pressure could increase the

driving force and thus should increase the filtrate volume according to darcy's law. For

static filtration, the effect due to compaction of the cake on the filtrate volume may be less
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Chapter Six Presentation of Dynamic Filtration Experimental Results

than that caused by pressure as driving force. In dynamic filtration, however, the shear

stress/shear rate on the filter cake surface may affect the compaction of the filter cake

which may lead to a more compacted and subsequently a higher resistance cake. A

suitable shear rate could make the particles deposit properly, ciusing them to more easily

plug and thus create a very high filter medium resistance. When the shear rate continue to

increase, the transition layer 13 of the filter cake would be eroded more and more, which

would prevent the deposition of more filter cake.

From the plots, it is observed that the effect of pressure upon cumulative filtrate volume

under shear conditions is not a simple exponential function as Larsen 4 reported.

6.2.2	 Derivation of Dynamic Filtration Equation

Similar to the derivation of the static filtration equation, the dynamic filtration equation is

not difficult to derive based on the general equation developed in chapter three. Rewriting

equation(3-3.12) in the form:

dt'
—+K t=ic1V'+K3+F(V')
dv'	 2 (6-2.1)

where t', V' and F(V') are defined as in equation(5-3.3)

Integrating the above equations, then:

=

 {

K2dVr f1c2dv'	 -r 1VV

e1	 Lie	 (K1V'+K3 +F(Vt))dV'+C]JJ

.' IVVç

= 2 V'+ !2. -	 + C . e" + e_x2 f' eK2V' F(V')• dv'
K2 K	 JL

(6-2.2)
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Simplifying:

t_t(V_V)_'121(3"	 -ic1—e 2(V_V))

+e2	
.V1 eX2 (VV.ç,) F(V') . dv'	 (6-2.3)

Jo

Designating:

2(' V
t0=e	 - J'e1d2'.F(vt).dv (6-2.4)

and replacing K, 2, 1(3, by equations(3-3.13) through (3-3.15) in equation(6-2.3),

the dynamic filtration equation for drilling fluids becomes:

t—t = 
p1	 V—V 

-í	
LPpS	 Rm )

(1—ms)B A	 (1—ms)a1ygB2 - aaygB 1—e
	 A J+to

(6-2.5)

This can be simplified to:

t' = c1 v'+c2 (i - e_C3'1) + to	 (6-2.6)

in which C 1 ,C2,C3 were defined in equations(3-3.21) to (3-3.23).

The equations(6-2.5) and (6-2.6) are the general equations for drilling fluid dynamic

filtration as utilized in this study.

6.2.3	 Application of Dynamic Filtration Equation

By fitting the dynamic filtration experimental data points V' vs. t' to equation(6-2.6)

using the least squares method, then the coefficients C1, C2, C3, to could be determined.

Because the equation(6-2.6) is nonlinear for the unknowns t' and V', it would take a
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large amount of time to write a program for calculating the coefficients by fitting

experimental data. A short program in FORTRAN 77 utilising a NAG subroutine which

solves the nonlinear regression problems was developed in this study.

It would be very important to note that the NAG subroutine (EO4HEE) used in this

study is a comprehensive modified Gauss-Newtonian Algorithm for finding an

unconstrained minimum of a sum of squares of M nonlinear functions in N variables

(M^N), That is:

Minimize: F(X) =
	

(6-2.7)

where

X=(Xl,X2,..,XN)T andM^N.

The function f1 (X) are often referred to as residuals.

Before it is used, the equation(6-2.6) should be rearranged:

Let:

c1v'–c2(i - e_C3') + C4	
(6-2.8)

It should be noted that to is replaced by C 4 for convenience.

Input the data points V', t', a call to the NAG subroutine may result in the solution

point which ensures that the F(C) is minimum. The subroutine program for this

regression is delivered in Appendix I.

Table 6.1, Table 6.2 and Table 6.3 list the regression results—coefficients of

dynamic filtration experiments for Seawater/KCLJPolymer mud and Freshwater/Gypsum!

Lignosuiphonate mud, respectively. It is necessary to note that the spurt loss of each test

is determined by taking the value of the filtrate volume at the fourthse&cnd of the

experimental process. If the value at fourth second inside a data file recorded during
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Table 6.1 Regression Coefficients of Dynamic Filtration Experiments
(Seawater/KCL/Polymer Mud)

V	 Relative
Applied	 2	 C2	 C3	 c (t ) Standard

Shear Ratc Pressure x10	 ° Deviation
(us)	 (psi)	

(nil/cm2) 
(mm/mi)	 (mm)	 (1/mi)	 (mm)	 (%)

50	 2.348	 56.126 33.485	 1.638	 0.004	 0.079

100	 4.079	 51.132	 66.939	 0.739	 -0.001	 0.067

71	 200	 3.415	 50.064	 75.722	 0.605	 -0.008	 0.115

300	 5.920	 40.194 62.059	 0.564	 0.074	 0.040

_______	 400	 13.618 39.981 142.298 0.273	 0.042	 0.061

50	 10.262	 76.364	 30.349	 1.384	 0.367	 0.753

100	 2.763	 86.747 172.628	 0.399	 0.047	 0.035

89	 200	 4.934	 47.383	 50.866	 0.842	 -0.003	 0.075

300	 4.424	 46.597	 71.229	 0.594	 -0.014	 0.059

_______	 400	 8.390	 45.364 158.435 0.278	 -0.005	 0.009

50	 0.955	 72.037	 32.761	 2.161	 0.007	 0.140

100	 7.105	 81.808 145.538	 0.500	 0.019	 0.048

107	 200	 2.368	 50.490	 60.258	 0.798	 -0.109	 0.049

300	 8.684	 47.648	 97.157	 0.478	 0.052	 0.110

_______	 400	 15.196 40.357 76.124	 0.474	 0.085	 0.273

50	 2.348	 56.126	 33.485	 1.638	 0.004	 0.079

100	 1.974	 58.394	 38.506	 1.368	 -0.204	 0.057

124	 200	 3.158	 53.817	 41.045	 1.113	 -0.185	 0.061

300	 8.001	 47.003	 82.191	 0.504	 0.013	 0.404

________ 400	 8.684	 47.303 105.924 0.409	 0.266	 0.039
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Table 6.2 Regression Coefficients of Dynamic Filtration Experiments
(Freshwater/GypsumfLignosulphonate Mud)

Relative
Applied	 Cl	 C2	 C3	 C (t) Sta.ndd

	

Shear Rat Pressure x102	 0 Deviation
(us)	 (psi)	 (mi/cm2) (min/m!)	 (mm)	 (1/mi)	 (mm)	 (%)

100	 0.789	 114.44	 27.11	 3.292	 -0.173	 0.07

71	 200	 1.067	 107.37	 33.39	 3.019	 -0.037	 0.08

300	 5.329	 131.77	 42.84	 1.800	 -0.476	 0.23

_______	 400	 3.947	 162.76	 95.18	 1.405	 -0.767	 0.16

100	 1.579	 127.15	 65.61	 1.889	 0.204	 0.04

89	 200	 1.579	 117.00	 62.16	 1.712	 -0.030	 0.24

300	 5.723	 146.80	 99.13	 1.018	 -0.327	 0.14

_______	 400	 5.723	 165.33	 105.95	 1.241	 -0.005	 0.02

100	 1.335	 101.508 20.054	 3.153	 -0.084	 0.081

107	 200	 0.890	 124.92	 57.87	 2.085	 -0.004	 0.80

300	 4.539	 142.90	 102.29	 1.096	 -0.017	 0.12

_______	 400	 5.526	 146.264 87.069	 1.373	 0.259	 0.071

100	 3.750	 144.25	 23.23	 4.167	 0.356	 0.23

124	 200	 7.499	 129.48	 44.92	 2.545	 -0.056	 0.24

300	 6.118	 117.26	 33.92	 2.530	 0.305	 0.05

_______	 400	 12.240	 115.31	 38.10	 2.276	 0.483	 0.10
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Table 6.3 Regression Coefficients of Dynamic Filtration Experiments
(Freshwater/Gypsum/Lignosulphonate Mud)

I	 I	 I	 Relative
Barite	

x102	 C1	 I	 C2	 i	 C3	 C4 (t0) Stafld2ld
Shear Rate Concent.	 I	 I	 Deviation

(ifs)	 (lbs/bbl) (/cm2) (mm/mi)	 (1/mi) I (mm) ___________

0	 4.539	 118.11	 53.85	 2.157	 0.058	 0.27

107	 70	 0.890	 124.92	 57.87	 2.085	 -0.004	 0.80

140	 3.750	 132.78	 71.56	 1.588	 -0.462	 1.07

_______	 210	 4.342	 118.20	 49.30	 1.799	 -0.139	 1.10
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experiment is unavailable, V is then calculated from the nearest two points around the

time of 4 seconds using linear interpolation. The fitting errors are calculated using the

general formula of Relative Standard Deviations as follows:

Relative Standard Deviation(%) = lOOx 	

-

iiL
M-1

(6-2.9)

where

- theoretically calculated from the regressed equation

- experimental recorded data

M - total data point involved in regression.

So far, we have discussed the method that obtains the dynamic filtration equation's

coefficients. It is therefore useful to analyse the filter cake characteristics based on the

above results.

From equations(3-3.21) to (3-3.23), we can write:

(1— ms)APA2C1C3
aayg =

S

Rm 
= L.PA (C

1 - c2c3)

(6-2.10)

(6-2.11)

B= (1— ms)AC1
	 (6-2.12)

Inserting equation(3-3.28) into equation(6-2.12), and rearranging:
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S
K=

(1— ms)tAC1
(6-2.13)
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Equations(6-2.1O), (6-2.11), (6-2.13) are then used to obtain the average specific

cake resistance, effective filter medium resistance, and filter cake dynamic erodability.

Before the above equations are used, we have to clarify the rheological properties of

the mud and then the shear stress on the filter cake could be determined. Assuming that all

muds tested are Bingham plastic and their rheological properties can be modeled by:

t = to + J.tp'Y
	

(6-2.14)

The constants t0, Pp in the above equation could be determined from the Fann

viscometer readings. The practical units are:

to -4 lbs/i OOft2

—cp---i.0x103N.s/m2

In SI units, equation(6-2.14) should be rewritten:

t=0.4788xt0 +1.0x10 xjJ. xy

where

- shear stress (N/rn2)

- yield point (lbs/i 00 ft2)

- plastic viscosity (cp)

shear rate (s-i)

Table 6.4 lists the shear stress values acting on the filter cake surface on the

assumption that the muds tested can be considered as Bingham Plastic fluids.

Figures(6-2.12) and (6-2.13) show the average specific dynamic cake resistance as a

function of pressure and shear rate for SeawaterlKCLfPoiymer mud and Freshwater
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Chapter Six Presentation of Dynamic Filtration Experimental Results

Table 6.4 The Shear Stress Acted on Filter Cake Surface for Different
Muds (N/rn2)

Barites__________	 Shear Rates (us)	 __________
Mud Type	 Concentration

________________ (lbs/bbl)	 71	 89	 107	 125

50	 9.985	 10.210	 10.436	 10.647
Seawater

70	 10.198	 10.477	 10.756	 11.019
KCLfPolymer

140	 9.223	 9.619	 10.015	 10.389

________________	 210	 10.943	 11.411	 11.879	 12.321

0	 12.770	 13.337	 13.904	 14.440
Gypsum

70	 14.500	 15.202	 15.904	 16.567
Lignosuiphonate

140	 15.120	 15.858	 16.596	 17.293

________________	 210	 19.483	 20.356	 21.229	 22.054
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Chapter Six Presentation of Dynamic Filtration Experimental Results

Gypsurn/Lignosuiphonate mud respectively.

For Seawater/KCLIPolymer mud, the average specific resistance is a complicated

function of pressure which is obviously influenced by the shear rate. The average specific

cake resistance seems to increase with increasing pressure until a critical pressure is

reached, and then decreases.

For Freshwater/GypsumlLignosulphonate mud, it is clear that the average specific

cake resistance increases with the pressure, however, the effect of the shear rate upon the

average specific cake resistance is also very significant but no relationship between them

could be obtained. This may be explained if we consider that the range of shear rate

values was very narrow.

Figures(6-2. 14) and (6-2.15) show the effective filter medium resistance as a function

of pressure and shear rate.

For Seawater/KCLlPolymer mud, the effective filter medium resistance seems to

increase a little bit with an increase in pressure, but the effect of shear rate is not clear.

For Freshwater/Gypsum/Lignosulphonate mud however, it is apparent that the

effective filter medium resistance increases with increasing pressure and the more

interesting thing is that the range of pressures can be divided into three zones: In the first

and third zone, representing the pressures of 0-200 and 300-400 psi, the effective filter

medium resistance seems not change. In the second zone, representing the pressure of

300-400 psi, the effective filter medium resistance increases rapidly. The author considers

that the above results may be explained by the following: because the effective filter

medium resistance consists of the filter medium resistance, the internal cake(formed

inside the pore space of the core surface) resistance, and the resistance of the first layer of

the filter cake deposited on the core surface until the spurt time comes to the end. In the

above three resistances, the filter medium resistance can be neglected comparing to the

other two. The internal filter cake resistance could be very big if the value of pressure, the

shear rate and the particle size distribution are suitable. Therefore, it is assumed that the
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Chapter Six Presentation of Dynamic Filtration Experimental Results

pressure of 300-400 psi should be suitable for the internal filter cake to form for that mud

at those shear rate range.

Figures(6-2. 16) and (6-2.17) show the erodability of dynamically deposited cakes as

a function of pressure and shear rate for SeawaterfKCL/Polymer mud and Freshwater

/Gypsum/Lignosulphonate mud respectively. Comparing those two figures for two mud

types, it is clear that the erodabilities of filter cakes for Freshwater/Gypsum/Ligno-

sulphonate mud are about three times smaller than those for SeawaterfKCLlPolymer mud.

This may be explained by the effect of bentonite on the mud cake structure. The mud with

bentonite forms the flat plate cake and this cake is more compressible.

Equation(3-3.27) was utilised to secure the dynamic filtration equilibrium flow rate.

Figures(6-2.18) and (6-2.19) show the dynamic equilibrium filtrate flow rate as a

function of pressure and shear rate respectively. The erodability of the filter cakes are

directly related to the dynamic equilibrium filtrate flow rate, nevertheless, quite similar

curves as shown in Figures(6-2.18) and (6-2.19) compared to those in Figures(6-2.16)

and (6-2.17) are obtained.

Equation(5-3. 13) is used to calculate the average dynamic filter cake permeability.

Figures(6-2.20) and (6-2.21) show the average dynamic filter cake permeability as a

function of pressure and shear rate for two base muds.

6.3	 RESULTS OF SEQUENTIAL FILTRATION EXPERIMENTS

Figure(6-3. 1) shows the cumulative filtrate volume as a function of time in sequential

filtration for Seawater/KCL/Polymer mud. Figure(6-3.2) shows the corresponding filtrate

flow rate as a function of time. The tests conducted consisted of 4 hours of dynamic

filtration as a first phase. At the end of the first phase, the dynamic filtration was already

reached equilibrium. A static filter cake was then deposited upon the dynamic filter cake
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Chapter Six Presentation of Dynamic Filtration Experimental Results

for a period of 2 hours. Then the filtration was continued in the third phase by restart

dynamic filtration at a shear rate higher than that in the first phase. The third phase lasted

5 hours which was enough to reach equilibrium again.

Figures(6-3.3) and (6-3.4) show the cumulative filtrate volume and filtrate flow rate

as a function of time in a sequential filtration for Freshwater/Gypsum/Lignosulphonate

mud. A similar filtration process was carried out and a similar filtration curve was

obtained.

So far, we can conclude that in a sequential filtration, the static filter cake deposited

upon a dynamic filter cake could not be removed by the mud shear even if the shear rate is

higher than that in the first phase. It is interesting that the filtration reached equilibrium

and filtrate flow rate attained constant values in the first phase, after depositing a static

filter cake in the second phase in which the filtrate flow rate declines according to

equation(5 .-3.7). However, the filtration in the third phase still took a short period of time

to reach equilibrium even at a relatively higher shear rate than that in the first phase, and it

is useful to emphasize that at this stage, the filtrate flow rate does not go up again, but

remains constant. This supports the conclusion drawn above that the static filter cake

deposited upon dynamic filter cake in sequential filtration would not be removed.

More sequential filtration tests were conducted to verified the above results which are

postulated in Figures(6-3.5) to (6-3.8).

Figure(6-3.5) and (6-3.6) are plotted on cumulative filtrate volume and filtrate flow

rate as a function of time. The smooth curve in Figures are produced by dynamic filtration

equation(6-2.6) which coefficients are obtained by fitting the equation to the first four

hour data. It is very clear that both cumulative volume and filtrate rate are in substantial

agreement with the experimental data. From the 5th to 6th hour, the filtration process was

static and the cumulative volume and filtrate flow rate then drops down because the static

filter cake is forming. After 6 hours, the shear stress acts again and at this time, the

cumulative volume increases proportional to the time, but the filtrate flow rate keeps

constant. Figures(6-3.7) and (6-3.8) are the similar tests which further confirm this
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Chapter Six Presentation of Dynamic Filtration Experimental Results

sequential filtration process.

Those the application of shear stress could not remove static cakes, would increased

shear stress erode the dynamically deposited cake? The following experiments could

answer this question.

Figures(6-3.9) to (6-3.12) show the cumulative filtrate volume and filtrate flow rate

as a function of time in the sequential filtration process for Seawater/KCLJPoIymer mud

and Freshwater! Gypsum/Lignosulphonate mud respectively. The tests were performed at

a low shear rate of 711/s for first 4 hours and then at a higher shear rate of 125 1/s for

another 4 hours. Very little difference was found between the equilibrium filtrate flow

rates in the first 4 hours and in the second one.
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Chapter Seven

DISCUSSION OF EXPERIMENTAL RESULTS

In chapters five and six, the results of the experimental investigation of static and

dynamic filtration were presented. In this chapter, an extensive discussion (analysis) on

these results are presented.

7.1	 DEVIATIONS FROM THE MODIFIED EQUATION

7. 1. 1	 Static Filtration Modelling

There are many methods proposed to plot filtration experimental data V vs. t.

However, which of these is the best has been addressed by a number of investigators.

Through the history of drilling fluid filtration, to date, Ruth's equation is still the basic

law even though a lot of research has been conducted to modify it.

There are several ways to express the filtration data:

V = a2V + a1	 (7-1.1)

t-..tgp 
=a2(V_V,1,)+a1

V—V8p (7-1.2)



Chapter Seven Discussion of Experimental Results

ttt0 =a2(V–V,)+a1
v-VIP

dt
—=a V+a
dV

(7-1.3)

(7-1.4)

An extensive literature review in chapter three revealed that deviation from classical

filtration theory is inevitable. The generally accept explanations are as follows:

(i) The assumption of constant pressure filtration is not satisfied;

(ii) The filter medium resistance is not negligible or the filter medium is more or less

capable of bridging on surface, plugging in the pores and thus inevitably leads

to an increase in filter medium resistance.

(iii) Filter cakes are to a greater or lesser extent compressible, so that the

permeability of cakes is not constant, replacing the local specific cake resistance

by the average specific cake resistance is by itself questionable. Further more,

assuming the average specific cake resistance to be constant through out the

whole filtration process in spite of the degree of compressibility of the filter cake

which was initially observed and accepted by Ruth 59, has not been verified to

date. The failure of CPC simulation which would had proved that the average

specific cake resistance was variable, could no longer be used.

The general equation developed in this study is still not perfect but it is only

considered to be better than other published so far. Three different types of filtration

curves will be discussed below.

Figures(7-1.1) to (7-1.5) show an example in which filtration conducted was at a

pressure of 500 psi for KCL/Polymer mud with the solids concentration of 140 lbs/bbl

under static conditions. It is clearly demonstrated that the modified equation utilised in the

study best fits the experimental data.

Figures(7-1.1) and (7-1.2) show the cumulative filtrate volume and filtrate flow rate

as a function of time respectively. Unlike dynamic filtration, the filtrate flow rate under
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Chapter Seven Discussion of Experimental Results

static conditions still continues to decline after the filtration process has lasted for 23

hours.

For first type of filtration equation, Figure(7-1.3) shows the plot of time/volume

versus volume. Unfortunately the negative filter medium resistance determined by

interpolation of curve could not explained. Further, the resultant curve could not be

expressed by a straight line as well.

For the second type of filtration equation, Figure(7-1.4) shows the plot of

(t - t,)/(v - v,) versus (V- V) in which the spurt loss and spurt time was subtracted

from the cumulative volume and time respectively. This modification was first made by

Bezemer and Havanaar24 who considered that the spurt loss could be expressed as a part

of filter medium resistance and it was verified that the filter medium resistance determined

by interpolation of the above filtration curve is positive which avoided suggestion of the

negative filter medium resistance as occurs in the first filtration model.

For third type of filtration equation, Figure(7-1.5) show the plot of

(t - t,1, - t0 )/(V - v) versus (V-V) in which not only spurt loss and spurt time were

subtracted from the cumulative volume and time respectively, but also a correction term

was employed to represent the error caused by the variable pressure differential across the

cake at the first stage of filtration process. This improvement was first used by Arthur94.

who combined the modifications produced by two former investigators.

Comparisons of the above three types of equations should verify that the third one

provided the best fit for the experimental data.

It is therefore not necessary to show all the plots of experimental data to further

confirm the conclusion postulated above.
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Chapter Seven Discussion of Experimental Results

7.1.2	 Dynamic Filtration Modelling

From the survey of literature in chapter three, it is understood that only a few

investigators6 '21 .24 .49 '45 have presented the dynamic filtration equations for drilling

fluids. It is however necessary to conclude that all the equations are applicable for limited

conditions and the irrelationship to classic static filtration equation has not been

considered. During this investigation, a general equation which covers static and dynamic

filtration conditions was produced and experimentally verified. In order to make it

perfect, the parameters which possibly cause deviations and the conditions of the

application of this equation are therefore needed to clarify.

All the variables which may cause deviations in static filtration as discussed above

will produce the same effects in dynamic filtration. In addition, there is another

assumption which may lead to deviation in dynamic filtration and that is the concept of the

constant removal of a dynamically deposited cake.

Figure(7-1.6) shows theoretically the relationship of filter cake thickness between

static and dynamic conditions as a function of time. The curves are produced using the

general filtration equation developed in chapter three in this study based on the simulation

of an experimental test. This test was conducted using clashach core for KCLIPolymer

mud at pressure of 50 psi and shear rate of 71 1/s under room temperature. The curve

marked by small triangles demonstrates the dynamic filter cake thickness as a function of

time and the curve identified by dots demonstrates the total deposited filter cake thickness

in dynamic filtration which includes the continuously removed filter cake thickness

marked by small stars. The curve defined by inverted triangles was produced by

assuming that the filter cake thickness is built-up according to the general equation under

the same conditions as the above dynamic filtration processes except the shear rate on the

cake is zero.
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(7-2.1)

Chapter Seven Discussion of Experimental Results

Figures(7-1.7) to (7-1.22) show the dynamic filtrate flow rate as a function of time

for Seawater[KCL/Polymer mud and Freshwater/GypsumfLignosulphonate mud under

different pressure and shear rate conditions. From all the plots, it is clear that under the

same pressure and shear rate, the filtration rate for Seawater/KCLJPolymer mud is always

greater than that for Freshwater/Gypsum/Lignosulphonate mud. This may be explained

by the effect of bentonite in the Gypsum/Lignosuiphonate mud.

7.2	 PRESSURE DIFFERENTIAL ACROSS THE FILTER CAKE

According to constant pressure filtration theory, the pressure differential across the

filter cake should be constant throughout the whole filtration process. However, this will

never be reached in practice, because the filter medium resistance will never be zero

whatever material. Of course, if size distribution and diameter of the filter medium and

solids from slurry are suitable, the resistance of filter medium would be very small and

could be neglected compared to the huge filter cake resistance. In fact, it is impossible to

obtain the above conditions for drilling fluids. Therefore, the filter medium resistance is

due not to the filter medium, but more important, the plugging and bridging of the pores

on its surface will cause an effect of the same order of magnitude as the filter cake

resistance. From the following pressure differential comparison between across the filter

cake and across the filter medium, it will clarify the above analytical conclusion.

7.2. 1	 Pressure Differential Across Static Filtration Cake

According to Darcy's law, the pressure differential across a filter is expressed as:
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Chapter Seven Discussion of Experimental Results

where:

- pressure differential across a filter

- filtrate viscosity

q - filtrate flow rate through the filter

R - filter resistance

Now we can write the formula to calculate the pressure differential across filter cake

and filter medium at any moment of filtration.

Differentiate both sides with respect to V in equation(5-3.7) and rearrange, we

obtain:

,ldV'l	 1

q - A dt' - A 2a2V'+a1
(7-2.2)

From equation(7-2. 1), we can calculate the actual pressure across filter medium as

follows:

LWmcff = p.q' R m	 (7-2.3)

Inserting q' from equation(7-2.2) and Rmeff from equation(5-3. 10) into equation(7-

2.3) and arranging:

1	 1	 APA	 a
AP = p. . -	 a1 -	 1	

LW	 (7-2.4)

A 2a2V'+a 1 p.	 2a2V'+a1

so that:

2a2V'
APc APmCff _ 	 LW

2a2V' +a1
(7-2.5)

Combining equation(5-3.7) with equations(7-2.4) and (7-2.5), we can plot the

differential pressure across either the cake or the filter medium as a function of time.

Figures(7-2.1) and (7-2.2) show the pressure across cake and core divided by the
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Chapter Seven Discussion of Experimental Results

total applied pressure of filtration as a function of time for Seawater/KCL/Polymer mud

and Freshwater/GypsumfLignosulphonate mud at the pressure of 200 psi under static

filtration conditions. The smooth lines are plotted using values of V' which are predicted

by equation(5-3.7) and dotted points are plotted using values of V from experimental

data. It is not practical to include all the plots obtained in this thesis. However, from the

plots postulated here, we can conclude:

(1) For the Seawater/KCL/Polymer mud system, the percentage of pressure drop

across the cake to the total applied pressure rapidily approaches a constant value

after about half an hour. It is clear that the pressure drop across the cake

continues to increase slightly with time. This is because the filtrate flow rate still

decreases with time and leads to a decrease in pressure drop across the filter

medium. The resistance caused by core and particle plugging and bridging

(during spurt loss time) are large enough to be of the same order of magnitude

as the cake resistance.

(2) For Freshwater/Gypsum/Lignosulphonate mud system, the percentage of

pressure drop across the cake over the total applied pressure approaches

constant very slowly. The pressure drop across the filter cake are only about

90% of total applied pressure. This suggests that the resistance caused by core

and particle plugging/bridging (during spurt loss time) are very large.

7.2.2	 Pressure Differential Across Dynamic Filtration Cake

In a similar way, we can determine the pressure across the dynamic filter cake and

core.

Differentiating both sides with respect to V in equation(6-2.5) and rearranging, we

get:
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ldV'	 1	 1
q AcWAC1—C2C3e

(7-2.6)

Inserting q' from equation(7-2.6) and Rmeff from equation(6-2. 11) into equation(7-

2.3):

1	 •.!(c1_c2c3)=_C1—C2C3
mcff = 

A C1 - C2C3e_C3	 C1 - C2C3eV'

(7-2.7)

Hence,

c2c3 (i - e_C3\')
= - APmeff =

C1 - C2C3e"	
(7-2.8)

With the help of equations(6-2.6), (7-2.7), (7-2.8), we can plot the pressure

differential across either the cake or the filter medium as a function of time.

Figures(7-2.3) and (7-2.4) show the pressure drop across the cake and core divided

by the total applied pressure of filtration as a function of time for Seawater/KCL/Polymer

mud and Freshwater/Gypsum/Lignosulphonate mud at a pressure of 200 psi under

dynamic conditions. The smooth lines were plotted using values of V' which are

predicted by equation(6-2.6) and the dotted points are plotted using values of V' from the

experimental data. Figures(7-2.5) and (7-2.6) are plotted for the first two hours in order

to compare those plotted under static conditions.

Similar conclusions to those obtained for static filtration conditions can be drawn for

dynamic filtration conditions. From the plots, however, they also clearly demonstrate the

difference between the static and dynamic conditions namely that the pressure drop across

the filter cake reaches a constant under dynamic conditions. This suggests that the filtrate

flow rate reaches a constant after a period of time and thus leads to a constant pressure

differential across the filter medium (core).
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Chapter Seven Discussion of Experimental Results

7.3	 SUMMARY

7.3.1	 Cake Erodability

Dynamic filter cakes differ from static cakes in that the soft surface layers of the static

cake are not present in the dynamic cake 95 . The surface can be eroded to an extent that

depends on the shear stress exerted by the hydrodynamic force of the mud stream relative

to the shear strength of the cake's upper layer. Obviously, the thickness of these soft

surface layers (also called "transition region" which was originally defined by Ferguson

and Klotz 13 shown in Figure 2-1.1) would be the function of pressure, mud properties,

temperature etc. When the shear stress produced by the mud stream attains a certain value

which is big enough to erode all the soft surface layers, the mud stream would not wash

away any solid filter cake and the erodability of the cake would be independent of the

exerted shear stress.

Prokop 10 made the direct measurement of the erodability of pre-formed filter cakes

which were exposed to a circulation velocity of 300 ft/mm (1.524 mIs). The circulating

fluid was flowing in turbulent flow and was similar in composition to the filtrate from the

muds which formed the cakes. A tenfold difference between the erosion rates was

observed for the two muds tested. A caustic-quebracho-clay-barytes mud deposited a

filter cake that would erode at 3 x lO in/mm (4.572 mm/hour), where as a clay-fresh-

water mud deposited a filter cake that would erode at a rate of only 3 x 10 in/mm (0.457

mm/hour).

In this study, the dynamic coefficients (B) obtained are from 0.859 Kg/m 2.s to 1.8 13

Kg/m2.s for SeawaterfKCLlPolymer mud, which correspond to erodabilities above from

0.072 mm/hr to 0.152 mm/hr. For Freshwater/Gypsum/Lignosulphonate mud, the
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Chapter Seven Discussion of Experimental Results

dynamic coefficients are from 0.860 Kg/m 2.s to 1.469 Kg/m2.s, which correspond to

erodabilities above from 0.080 mm/hr to 0.137 mm/hr. It should be noted that the

erodabiity observed in this study is obtained when the cake is being formed.

7.3.2	 Average Specific Cake Resistance

The experimental results presented in chapter five and six revealed that there is a big

difference between the average specific resistance of static and dynamic cakes. It is clear

that the average specific dynamic filter cake resistance is generally greater than the

corresponding average specific static cake resistance. This may be caused by the plugging

of the cake pore space because the the small particles would be easier to invade the pore

when they are moving cross the cake surface than when they are static.
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8. 1 . 1	 Estiniat ion of iverage Specific Cake Resistance

If the filter cake is incompressible and the particles from the slurry could not invade

the filter cake, the average specific resistances of both static and dynamic filter cakes

could be equal and in that case, the prediction of the dynamic filtration depends only upon

the erodability of the dynamically deposited cake. In fact, the above case would never

occur for drilling fluids. The results obtained in this study presented in chapter five and

six clearly show a big difference between the dynamic filter cake specific resistances and

static filter cake specific resistances. Therefore, extensive laboratory tests would be

required if the accurate estimation of average specific cake resistance is necessary.

8.1.2	 Prediction of Effective Filter Medium Resistance

If the filter medium material could not be invaded by the slurry particles and the first

layer of the filter cake would form immediately after commencement of filtration, the

spurt time should be very short and the effective filter medium resistance could be equal

to the resistance caused by the filter medium itself. However, this is not the case in

practice. So the effective filter medium resistance must be investigated before the filtration

performance could be predicted. The prediction of the effective filter medium resistance

should be efficient if the investigation was directed to determine the effects on the

effective filter medium resistance of core material, original liquid permeability, pores sizes

amid their distribution, solids sizes and their distribution, pressure, temperature etc.
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8.1 .5	 Assumptions on Spurt Time and Spurt Loss

The spurt loss flight be obtained in laboratory tests and during the prediction, this

value could be added directly to the cumulative filtrate volume.

8.2	 PREDICTION OF DYNAMIC FILTRATION DATA FROM

STATIC FILTRATION RESULTS

As pointed out earlier, it is possible to predict dynamic filtration data using the static

filtration results such as, average specific cake resistance, effective filter medium

resistance. An example for the prediction of dynamic filtration data using the statically

obtained data is presented below:

The experiments were conducted on Seawater/KCUPolymer mud system to compare

the data predicted by dynamic equation and obtained experimentally. Figures(8-2.!) and

(8-2.2) show the filtration flow rate and cumulative filtrate rate as a function of time

respectively. The dots represent the measured experimental data and the smooth curves

were plotted by the data predicted through dynamic filtration equation(6-2.5) in which m,

aavg, Rnieff, tsp, V are correspondingly static experimental data and B is the dynamic

experimental data obtained in chapter six. The predicted value are much higher than those

obtained by experiment. However the two curves are rather similar in shape. It is

understood that the difference between the test values and the theoretical values is caused

by the difference between average specific resistance of dynamic cake and of static cake.
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8 .3	 PREI)ICTION OF FILTRA'l'!ON 1)ATA IN A SEQUENTIAL

PROC ES S

Static filtration of drilling fluids usually occurs after a dynamic cake has already been

deposited upon the walls of the borehole. It is therefore necessary to predict the static

fluid loss in which the filter cake forms upon a previously deposited dynamic filter cake

and after that a dynamic filtration is usually resumed. In this case, a cyclical process

occurs which can be by assuming three phases exist in a filtration process: dynamic-

static-dynamic filtration. In the first phase, the prediction as discussed earlier in this

chapter could be used. In the second phase, however, according to the static filtration

equation(5-3.6), only the effective filter medium resistance is unknown because the other

parameters can be obtained in a laboratory test. The effective filter medium resistance in

this stage (second phase) would be the sum of the resistance caused by the dynamic filter

cake that already deposited plus the effective filter medium resistance in the first phase.

Based on this hypothesis, the static filtration upon a dynamic filter cake could he

predictable. In the third phase, however, not only the effective filter medium resistance

but also the cake erodability are unknowns according to equation(6-2.5). The effective

filter medium resistance of third phase would he calculated by the effective filter medium

resistance of second phase plus the filter cake resistance formed in the third phase. There

is difficulty in determining the erodability of the filter cake in the third phase. The

erodability would depend upon the thickness of the transition layer between mud cake and

mud slurry which was defined by Ferguson and Klotz 13 . However, the transition region

would become thinner after a static cake was deposited upon the dynamic cake because

the pressure gradient decreased due to the huge static cake thickness. It is also necessary

to note that the deposited static cake in second phase will not be removed unless the
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pre-formed cake is to be removed by the resumption in mud flow. This has been

addressed by a number of investigators, Some of which 13,38 reported that the deposited

cake could be wash away, but others 10 presented the opposite conclusions. The

experimental results conducted in this study show that a very little mud cake could be

removed. This is evidenced by the operation that a very small increase in filtration rate

occurs when the circulation (shear stress) is restarted. Therefore, in order to predict the

data in the third phase, we assume that the filter cake deposited in the second phase could

not be removed and the third phase would follow the normal dynamic filtration process.

Figure(8-3.1) and (8-3.2) are examples which show the filtrate flow rate and the

cumulative filtrate volume as a function of time in a sequential filtration proceass at a

pressure of 200 psi, respectively. The dots represent the experimental data points and the

smooth curves represent the data generated by the general liltration equation in which the

coefficients correspondent to the experimental conditions were obtained in chapter six.

Figure(8-3.3) through (8-3.6) are similar examples for two mud systems at a pressure

of 50 psi.
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Chapter Nine

CONCLUSIONS

Previous chapters presented the results secured in this study both theoretically and

experimentally. This chapter presents the conclusions which are drawn from this study in

two separately sections.

9.1	 EXPERIMENTAL CONCLUSIONS

9.1.1	 Conclusions for Static Filtration Tests

1. The static filter cake thickness generally increased with increasing pressure for all

muds tested. However, the increase in thickness would be faster when the barite

concentration in slurry was at 140, 210 lbslbbl. This suports the results that the filter

cakes under these conditions would be less compressible.

2. The ratio of wet to dry cake mass decreased with increasing pressure for all muds

tested. This decline was more substantial when barite concentration in slurry is at 50, 70

lbs/bbl. This supports the view that the filter cakes formed at these conditions would be

more compressible.

3. Average specific cake resistance declined when the barite concentration increasesd

and it would increase when the pressure increased. The effects of pressure on the average
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specific cake resistance would be more significant when barite concentration in the slurry

remained at a low level because the filter cake is more compressible at this condition.

Thus effects would become weaker when the barite concentration was changed to a very

high value. Also, the effect of pressure upon the average specific cake resistance would

not be expressed by a "power law" relationship, which does not agree with Arthur94.

However, Tosun and Tiller75 investigated the validity of the "power law" approxmation

and proposed that the "power law" approximate equations should not be used.

4. Static cake permeability for SeawaterfKCLfPolymer mud tested in this study was

observed between 0.3 x 10 and 5.2 x 10 darcy.

9.1.2	 Conclusions for Dynamic Filtration Tests

1. The dynamic equilibrium filtration flow rate was attained at 2-4 hours for all muds

tested. Specifically, the time to reach equilibrium for Freshwater/GypsumlLigno-

suiphonate mud was less than that for SeawaterlKCLfPolymer mud under the same

conditions.

2. The spurt loss was very important for dynamic filtration which led to an enormous

effective filter medium resistance and filtration then reached equilibrium at the end of

spurt time. Figure(9-1.1) and Figure(9-l.2) show an example which illustrates this

conclusion. It is clear that the cumulative filtrate volume increased linearly with time after

commencement of filtration and the filtrate flow rate remained at a constant value

thereafter.

3. The effect of shear rate (shear stress or annular velocity) on filtrate loss volume

were quite complicated for both muds tested. This is in accord with the results reported

by Peden82 that a maximum filtrate rate will occur at an intermediate value for the annular

velocity. He explained the above phenomenon by two efffcets caused by annular velocity
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upon the filtration systems: (a) to erode filter cakes; (b) to lower the permeability of the

filter cake either by mechanical sorting or by changing the characteristics of the

constituent molecules. He futher concluded that at lower annular velocities the erosion

mechanism prodominates leading to increased fluid loss, at high rates, despite the

increased mechanical erosive forces, the decline in cake permeability controls the fluid

loss and hence a trend towards a reduction in fluid loss is observed.

3. The effect of pressure upon average specific cake resistance was demonstrated

clearly for Freshwater/Gypsum/Lignosulphonate mud, which the average specific cake

resistance increased with increasing in pressure. But it is rather complex for Seawater!

KCL/Polymer mud. The "power low" relationship between average specific cake

resistance and the differential pressure could not be applied as well.

4. The filter cakes formed under static and dyanmic conditions could not be or at least

were very hard to remove. The experimental results in this study suggested that only a

little minimal increase in filtrate flow rate would occur. However, the removal of

deposited cakes should depend upon a lot of factors such as pressure, temperature, the

magnitude of shear rate on the cake surface, and whether or not the flow is turbulent or

laminar, etc.

5. The erodability of dynamically deposited cake, K, was found to be within the

ranges of 0.761 x	 - 1.778 x lO KgfN.s for Seawater/KCLIPolymer mud, and

0.354 x	 - 0.572 x i0 5 Kg/N s for Freshwater/GypsumILignosulphonate mud.

9.2	 GENERAL CONCLUSIONS

1. The modified classic static filtration equation which was initiated by Glenn etal.15

and Kozicki et al.96 and was improved by Arthur94 showed substantial advantages over

the others when it is used to fit the static filtration data of drilling fluids.
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2. The effective time of commencement of filtration, to for a few of the static filtration

tests exceeded the maximum range that observed by Arthur94. Arthur94 obtained a range

of -28.79 to 29.33 seconds whereas the maximum of t in this study reached to 3

minutes. This may be caused by the use of the heterogeneous Clashach cores.

3. The proposed dynamic filtration equation showed a very good aggreement with the

experimental data. Using cake characteristics observed in static filtration tests such as m,

(ratio of wet to dry cake mass), the average specific dynamic cake resistance and cake

erodability were calculated. It should be noted that in the above calculation, m was

assumed to be equivalent for both static and dynamic cakes. Obviously, this would lead

to errors. Unfortunately, the dynamic cake characteristics could not be measured owing to

the extremely limited thickness of the cake deposited.

—162-



Chapter Ten

RECOMMENDATIONS FOR FUTURE WORK

The author would like to make following recommendations in three sections. Namely:

(i) Filtration Modelling;

(ii) Filtration Equipment;

(iii) Theoretical Study of Filtration of Drilling Fluids.

10.1	 FILTRATION MODELLING

10.1.1 Further Verification of Dynamic Filtration Equation Under

Downhole Conditions

The fundamental basis of equipment utilized in this study is correct, but it might be

questionable whether it can be used for routine tests, because the angle between the cone

surface and the bottom plate surface is limited to 2 degrees and therefore, limited space

exists for the filter cake to deposit on the core surface if the internal diameter of filtration

cell is not big enough.

In this study, the dynamic filtration equation has already been shown to be in a

substantial agreement with the experiment data under room temperature. However,

further experimental data are required before it can be utilised to predict field filtration
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data.

Firstly, the range of shear rates should be extended. Shear rates of 70-130 1/s have

been used in the tests, however in actually drilling conditions, the shear rate range might

be between 70-300 1/s (sometimes even higher). Also, whether the annular flow is

turbulent or laminar would be a factor affecting dynamic filtration data or erodability.

Secondly, the high pressure/high temperature (HPHT) conditions should be

investigated. Because temperatures in excess of 175 °F to 200 °F alter some commonly

used drilling fluids additives, therefore the HPHT test should become the primary

filtration control standard when the bottom hole temperature reaches this level. Usually

the conditions for running HPHT filtration tests are at 300 °F temperature and 500-psi

differential pressure. But the current procedure calls for a 500-psi pressure differential

and the test temperature should approximate welibore temperature. The effect of

temperature was not studied and the pressure differential did not exceed 500-psi in this

research programme due to equipment limitation.

Thirdly, the effects of mud compositions should be extensively tested. The dynamic

coefficients would be influenced by those parameters which change the characteristics of

the mud.

Fourthly, the filtration tests of oil base muds should be conducted.

10.1.2 Determination of Dynamic Filter Cakes Characteristics

So far, from the drilling fluids filtration history, very little has been published on

dynamic filter cake characteristics. The thickness, ratio of wet to dry cake mass and the

relevant average porosity of the dynamic filtration cakes, such data would be very useful

to the modelling and prediction of dynamic filtration.
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10.1.3 The Study of the Effect of Effective Filter Medium Resistance

The effective filter medium resistance would be a function of following parameters:

(i) pressure,

(ii) temperature,

(iii) shear rate,

(iv) solids fraction in slurry,

(v) solid particle size distribution,

(vi) filter medium liquid penneability,

(vii) the surface pore size distribution of the filter medium.

The author considers that the particle and pore size distribution could be the decisive

factors in defining effective filter medium resistance and suggest that an extensive study

on this subject should cover both static and dynamic filtration tests. An understanding of

pore plugging and the sizing of particulates for bridging in real (or closely simulated)

formations may lead to some real progress in drilling fluids management and to lower

drilling costs. The significance of the subject could be more if the people consider the

filtration beneath-the-bit because in this case, the external filter cake deposited is instantly

scraped and the internal cake formation is dependent upon the solid particle and pore size

distribution, therefore the effective filter medium resistance is the filtration resistance.

10.1.4 Fluid Loss Study and Associated Formation Damage

One of the main objectives of any future filtration study could be to investigate the

formation damage caused by the fluid loss. Therefore, it is believed that it would be the
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best way to conduct formation damage investigation while the filtration study is

processing. Figure(1O-1 .1) showed the relationship between fluid loss and associated

welibore parameters and Figure(1O-1.2) listed the borehole filtration prediction program.

10.2	 FILTRATION EQUIPMENT

In order to simulate filtration in the drilled well more closely, it is necessary to limit

the growth of the filter cake by either liquid or mechanical erosion. Over the years, a

number of investigators have studied dynamic filtration in specially designed

apparatus610131624 . The most meaningful results were obtained in systems that either

closely simulated conditions in a drilling well, or which permitted the rate of shear at the

surface of the cake—which is the critical factor limiting growth—to be calculated.

Ferguson and Klotz 13 came close to simulating well conditions by measuring

filtration rates through permeable lumnite cement and sand cylinders in a model well

using full-size drilling tools. Homer er al. 16 used a microbit drilling machine and rock

cores. Novak and Krueger9 observed filtration rates through cores exposed on the side of

an annulus through which mud was being circulated. A mechanical scraper enabled

filtration conditions under the bit to be simulated when desired.

The rate of shear at the cake surface can be calculated in systems, such as that of

Prokop 10 , in which mud is circulated under pressure through a permeable cylinder. The

internal diameter of the cylinder should be large relative to the thickness of the filter cake

so that the growth of the cake does not change the internal diameter significantly, and

thereby change the rate of shear. Bezemer and Havenaar 24 developed a compact and very

convenient dynamic filtration apparatus as shown in Figure(1O-2.l), in which mud was

filtered into a central core or sleeve of paper, while being sheared by an outer concentric

cylinder rotating at constant speed. The equilibrium filtration rate and cake thickness were

related to the rate of shear prevailing at the conclusion of the test.
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In order to simulate the bottom hole conditions, an ideal experimental filtration system

might be a multifunctional circulating system in which mud is circulated around a closed

circuit while being maintained at a designed temperature by heating coils, after

equilibrium temperature and shear conditions have been obtained, various mud properties

can be either intermittently or continuously measured by switching the flow through

branch loops containing the appropriate apparatus. For instance, viscosity can be

measured by passing the flow through a straight section of pipe of accurately-known

internal diameter and measuring the differential pressure between two pressure taps

thereon. The dynamic filtration rate can be measured by flowing the mud through

permeable cylinders.

Wyant's33 circuit as shown in Figure(10-2.2) includes high shear valves, which

rapidly break down clay aggregates and rigid gel structures and a filtration cell and a

corrosion unit. A more elaborate system by Lautrec32 enables rheological properties, and

static and dynamic filtration, to be measured at flow rates upto 4 mIs, temperature upto

250 C, and pressure upto 7250 psi.

10.3	 THEORETICAL STUDY OF DYNAMIC FILTRATION

—MULTIPHASE THEORY OF CAKE FILTRATION

Survey of the classic filtration theory(empirical analysis) in chemical engineering

suggest that without the application of the multiphase cake filtration theory, the progress

in cake filtration which has been essentially stagnant for more than three decades, would

not occur65'99

The major disadvantages of empirical models are that they are usually limited in

application to specific multiphase systems, have a narrow range of validity, must be

independently verified for each substance and, hence, required a considerable amount of
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experimental principles to all substances that meet the assumptions used to develop the

theory.

The development of multiphase equations of change using volume averaging

technique and their application to the filtration process have been given by Tosun 101 and

Willis and Tosun73

The following summary of the advantages of multiphase theory over the empirical

analysis were given by Willis et al.103.

1. The procedure is systematic and requires specific assumptions to eliminate terms

from the general equations.

2. The gross dimensions of the porous media can be of arbitrary geometry.

3. The interstitial boundary conditions appear as surface integrals in the multiphase

equations which eliminates the need to specify any restrictive pore geometry

(i.e., a bundle of parallel capillary tubes).

4. There is a continuity and motion equation for each phase, a total of eight scalar

equations, rather than the rate expression and mass balance of the empirical

approach.

5. The equations are applicable to liquid phases that are Newtonian or non-

Newtonian and particulate phases which can be mobile, rigid or elastic, or

soluble.

One of most important advantages is that this approach provides a rigorous

framework for further study'02.

If the filtration process is isothermal and composed of a solid particulate phase and

continuous liquid phase, then there are two continuity conditions and two motion

equations. The motion equations contain terms that represent the inertial, viscous,

pressure, interfacial drag and the gravity forces.

Darcy's law can be obtained from the liquid phase equation of motion if the inertial

force and viscous force are neglected. The remaining two terms represent the pressure
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and drag forces and constitute Darcy's law. Such a simplification of the general liquid

phase equation of motion has the following implications. Removing the inertial force

means that the equation of motion is not explicitly dependent on time and hence Darcy's

law holds at each instant throughout filtration. The absence of the viscous force implies

that for a cylindrical filtration, the velocity profiles have no radical dependence and are

flat. Willis and Tosun73 showed by order of magnitude analysis that the drag and the

pressure forces are greater than the inertial and viscous forces by about 6 orders of

magnitude.

The solid particulate equation of motion is satisfied identically if the particulates do

not deform under the stress that exist in a filter cake. This assumption does not

however, restrict the motion of these non-deformable particulates.
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APPENDIX I

Programe to Calculate the Coefficients of Dynamic Filtration Equations.

***** ******************* Program DyFit ****************************
C
C	 Programme DyFit is designed to correlated the
C	 experimental data with the developed dynamic filtration model.
C	 The output will give the regressed coefficients by the
C	 least square method and correlation deviations, CC(T,J),Fsumsq(T)
C

Program DyFit
C
C

REAL X(9, l000),Y(9, 1 000),Xa( 1 000),Ya( 1000),Xsp(9),Ysp(9),DELT,
1 Xx(9, 1000),Yy(9, 1 000),C(4),CC(9,4),DELTA(9,5),FSUMSQ(9),
2 Xt(1000),Yvol(1000),tO

INTEGER NUMDAT,NPTS (9) ,I1 ab,Ilable,I,J,K,YN ,VALUE,Icheck,Imode
CHARACTER*80 YORN* 10
COMMON Xt,Yvol,Ipts

C
C	 Reading the original data from the "[.TEMP]TEMP.DAT"
C

OPEN(3,STATUS = 'OLD',FILE = '[.TEMP]TEMP)
READ(3,9999) NUMDAT

9999 FORMAT(1X,14)
DO I = 1,NUMDAT

READ(3,9999) NPTS(I)
DO J = 1,NPTS(I)

READ(3,9998) X(I,J),Y(I,J)
9998	 FORMAT(1X,2E12.5)

END DO
END DO
CLOSE(3)

C	 Calculating from here
C
10	 D01501=1,NUMDAT

DO 20 J = 1,NPTS(I)
Xa(J) = X(I,J)
Ya(J) = Y(I,J)

20	 CONTINUE
tO = 4.0

C	 Determining Spurt Loss & Spurt Time
C

CALL SPURT(tO,Xa,Ya,NPTS(I),Xsp(I),Ysp(I))
DO 40 J = 1,NPTS(I)

Xa(J) = X(I,J)-Xsp(I)
Ya(J) = Y(I,J)-Ysp(I)

40	 CONTINUE
DO 80 J = 1,NPTS(I)

Xx(I,J) = Xa(J)
Yy(I,J) Ya(J)



80

C
C
90

100
110
120
130

140

C

150
200

Appendix I

Xt(J) = Xa(J)
Yvol(J) = Ya(J)

CONTINUE
Ipts = NPTS(I)
Sorting data points to appreciable distribution density

WRJTE(6,*)' The Correlation Technique:'
\VRITE (6,*) '
WRITE(6, 100)
WRITE(6,1 10)
WRITE(6, 120)
WRITE(6, 130)
FORMAT($,1OX,'l. No derivatives are required;')
FORMAT($,1OX,'2. First derivatives are required;')
FORMAT($,1OX,'3. First & second derivatives are required;')
FORMAT($,5X,'Which Way Will You Choose_[RETURN for "3"]:')
READ(5,'(A)') YORN
IF (YORN.EQ.' ')YORN='3'

Imode VALIJE(YORN)
IF (Imode.LT.-3.OR.Imode.GT.3)GOTO 90
WRITE(6, 140)
FORMAT($,5X,'Do Checking Derivatives?(y/n)_[RETURN for "n"]:')
READ(5,'(A)') YORN
Icheck =0
IF (YORN.EQ.'Y'.OR.YORN.EQ.'y')Icheck = 1
CALL DFLnag(Imode,Icheck,C,SUM)

DO 150K= 1,4
CC(I,K) = C(K)
FSUMSQ(I) SUM

CONTINUE
STOP
END

C
*****	 END OF PROGRAM ***************************
*
*****	 SUBROUTINE DFLnag *************************
C
C
	

The subroutine is designed to obtain the coefficients by
C
	

correlating the dynamic filtration model with the experimental
C
	

obtained data by calling NAG libaray routine EO4F1EE
C
	

EO4HEE is a comprehensive modified Gauss-Newton algorith for
C
	

finding an unconstrained minimum of a sum of squares of M
C
	

non-linear functions in N variables (M>=N). First and Second
C
	

derivatives are required.
C

SUBROUTINE DFLnag(Imode,Icheck,C,SUM)
C
C
C
	

Imode, on entry, gives message to select one model.
C
	

Icheck, on entry, gives message to/not to check first and second
C
	

derivatives.
C
	

on exit, gives the coefficients of the model which are
C
	

determined by correlating experimental data.
C
	

SUM, on exit, gives the total sum of the squares
C
	

which minimized
C

REAL Xt( 1 000),Yvol( 1000),FVEC( 1 000),FJAC( 1 000,4),X(4),C(4),
S (4),V(4,4),B (1 0),W( 1 0000),ETA,XTOL,STEPMX,FSUMSQ,SUM
INTEGER M,N,LJ,LV,IW( 100) ,LIW,LW,IFAIL,Ipts,Imode,Icheck,

11
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&	 I,IPRINT,MAXCAL,NF,NITER
EXTERNAL LSQFUN 1 0,LSQFUN 11 ,LSQFUN2O,LSQFUN2 1,

&	 LSQHES3O,LSQHES31,LSQMON
COMMON Xt,Yvol,Ipts
M =Ipts
U =M
N =4
LV =4
LIW =100
LW =10000
LB =10
IF (Icheck.EQ.0)GOTO 40

C
10
	

CALL IN1TIAL(0,X)
IFAIL =-1

C
	

Check the first derivatives
C

IF (Imode.EQ.2.OR.Imode.EQ.3) THEN
CALL

EO4YAE(M,N,LSQFI.JN2 1 ,X,FVEC,FJAC,LJ,IW,LIW,W,LW,IFAIL)
ELSE IF (Imode.EQ.-2.OR.Imode.EQ.-3) THEN

CALL
EO4YAE(M,N,LSQFUN2O,X,FVEC,FJAC,LJ,IW,LIW,W,LW,IFA1L)

ELSE! IF (Imode.EQ.1.OR.Imode.EQ.-1) THEN
GOTO 40

END IF
WRITE(6,20) WAIL

20	 FORMAT($,1X,'IFAIL = ",12,".',2X,'First derivatives were calculated
& correctly!')

WAIL =0
C	 Check the evaluation of B
C

IF (Imode.EQ.3) THEN
CALL EO4YBE(M,N,LSQFUN21,LSQHES3 1,X,FVEC,FJAC,LJ,B,LB,

& IW,LIW,W,LW,IFAIL)
ELSE IF (Imode.EQ.-3) THEN

CALL EO4YBE(M,N,LSQFUN2O,LSQHES 30,X,F VEC,FJAC,LJ,B ,LB,
& IW,LIW,W,LW,IFAIL)

ELSE ! IF (Imode.EQ.2.OR.Imode.EQ.-2) THEN
GOTO 40

END IF
WRITE(6,30) WAIL

30
	

FORMAT($,1X,'IFAIL = ",12,".',2X,'Second derivatives were
& calculated correctly!')

C
	

Continue setting parameters for EO4HEE
C
40
	

IPRINT = 0
MAXCAL = 50*N
IF (Imode.EQ.1.OR.Imode.EQ.-1)MAXCAL = 500*N
ETA =0.9
XTOL = 10.0*SQRT(XO2AAE(XTOL))
STEPMX =500.0
I	 =1
CALL INITIAL(I,X)
WAIL =1

C
50
	

IF (Imode.EQ.1) THEN
CALL EO4FCE(M,N,LSQFUN 11 ,LSQMON,IPRINT,MAXCAL,ETA,XTOL,

1	 STEPMX,X,FSUMSQ,FVEC,FJAC,LJ,S,V,LV,NITER,NF,IW,
2	 LIW,W,LW,IFAIL)
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ELSE [F (Imode.EQ.- 1) THEN
CALL EO4FCE(M,N,LSQFUN 1 O,LSQMON,IPRINT,MAXCAL,ETA,XTOL,

1	 STEPMX,X,FSUMSQ,FVEC,FJAC,LJ,S,V,LV,NITER,NF,IW,
2 LIW,WLW,1FAIL)

C	 No derivatives are required when above routines are excuting
ELSE [F (Imode.EQ.2) TF[EN
CALL EO4GDE(M,N,LSQFUN21 ,LSQMON,IPRINT,MAXCALETA,XTOL,

1	 STEPMX,X,FSUMSQ,FVEC,FJAC,LJ,S,V,LV,NITER,NF,IW,
2	 LIW,W,LW,IFAIL)

ELSE IF (Imode.EQ.-2) THEN
CALL EO4GDE(M,N,LSQFUN2O,LSQMON,IPRINT,MAXCAL,ETA,XTOL,

1	 STEPMX,X,FSUMSQ,FVEC,FJAC,LJ,S,V,LV,NITER,NF,IW,
2 LIW,W,LW,IFAIL)

C	 The first derivatives are required when above routines are excuting
ELSE IF (Imode.EQ.3) THEN
CALL EO4HEE(M,N,LSQFUN21 ,LSQHES3 1,LSQMON,JPRINT,

I	 MAXCAL,ETA,XTOL,STEPMX,X,FSUMSQ,FVEC,FJAC,LJ,S ,V,LV,
2	 NITER,NF,1W,L1W,W,LW,IFAIL)

ELSE IF (Imode.EQ.-3) THEN
CALL EO4HEE(M,N,LSQFUN2O,LSQHES3O,LSQMON,IPRINT,

1	 MAXCAL,ETA,XTOL,STEPMX,X,FSUMSQ,FVEC,FJAC,
2	 LJ,S,V,LV,NrFER,NF,IW,LIW,W,LW,IFAIL)

C	 The first & second derivatives are required when above routines
C	 are excuting

ELSE
WRITE(6,*YABNORMAL EXIT
CALL EXIT

END IF
C
C
	

since [FAIL was set to 1 before entering EO4HEE, it is essential
C
	

to test whether WAIL is non-zero on exit.
wPJTE(*,60) WAIL

60
	

FORMAT(/,$,1X,'Current Failure No. is "',12,". Please pay
& attention!',!)

IF (TFAIL.EQ.- 1) THEN
1=1+1
CALL INITIAL(I,X)
[FAIL = 1
GOTO 50

ELSE IF (IFAIL.EQ.0) THEN
GOTO 100

ELSE IF (IFAIL.EQ.2) THEN
WAIL = 1
GOTO 50

ELSE IF (IFAIL.EQ.3) THEN
1=1+20
CALL INrnAL(I,X)
IFA[L=1
GOTO5O

ELSE [F (WAIL.EQ.4) THEN
1=1+1
CALL INITIAL(I,X)
WAIL = 1
GOTO 50

ELSE
WRITE(6,70) WAIL

70
	

FORMAT($,1X,'IFAIL = ',12)
CALL EXIT

END IF
100 DO 1501=1,N
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C(I) = X(I)
150 CONTINUE

SUM =FSUMSQ
200 RETURN

END
C

SUBROUTINE LSQFUN 10(IFLAG,M,N,XC,FVECC,IW,LIW,W,LW)
C	 +++++++++++++++++++++++++++++++-f•+++++++++++++++++++
C	 LSQFUN must calculate the vector of values fi(x) at any point X.
C

INTEGER IFLAG,M,N,IW(LIW),LIW,LW,I,Ipts
REAL XC(4),FVECC(M),W(10000),Xt(1000),Yvol(1000)
REAL DEMO,EDEMO
COMMON Xt,Yvol,Ipts
DO 1001= 1,M

DEMO = Yvol(I)*XC(3)
IF (DEMO.GT.80.0.OR.Xt(I).EQ.0.0) THEN

IFLAG=-1
GOTO 200

ENDIF
EDEMO = EXP(DEMO)
FVECC(I) (Yvol(I)*XC( 1 )XC(2)* (1 .0-EDEMO)+XC(4))-Xt(I)

100 CONTINUE
200 RETURN

END
C == =

SUBROUTINE LSQFUN 11 (IFLAG,M,N,XC,FVECC,IW,LIW,W,LW)
C	 ++++++++++++++++++++++++++++++++++++++++++++++++++
C	 LSQFUN must calculate the vector of values fi(x) at any point X.
C

INTEGER IFLAG,M,N,IW(LIW),LIW,LW,I,Ipts
REAL XC(4),FVECC(M),W(10000),Xt(1000),Yvol(1000)
REAL DEMO,EDEMO
COMMON Xt,Yvol,Ipts
DO 1001= 1,M

DEMO = Yvol(I)*XC(3)
IF (DEMO.GT.80.0.OR.Xt(I).EQ.0.0) THEN

IFLAG=- 1
GOTO 200

ENDIF
EDEMO = EXP(DEMO)
FVECC(I) (Yvol(I)*XC( 1 )XC(2)*( 1 .0-EDEMO)+XC(4))/Xt(I)- 1.0

100 CONTINUE
200 RETURN

END
C

SUBROUTINE LSQFUN2O(IFLAG,M,N,XC,FVECC,FJACC,LJC,IW,
&	 LIW,W,LW)

C	 ++++++++++++++++++++++++++++++++++++++++++++++++++++
C	 LSQFUN must calculate the vector of values fi(x) and Jacobian
C	 matrix of first derivatives delt_fi/delt_Xj at any point X.
C

INTEGER IFLAG,M,N,LJC,TW(LIW),LIW,LW,I,Ipts
REAL XC(4),FVECC(M),FJACC(LJC,4),W( 10000) ,Xt( 1000) ,YvoI( 1000)
REAL DEMO,EDEMO
COMMON Xt,Yvol,lpts
DO 1001= 1,M

DEMO = Yvol(I)*XC(3)
IF (DEMO.GT.80.0) THEN

IFLAG=- 1
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GOTO 200
END IF
EDEMO = EXP(DEMO)
FVECC(I) = Yvol(I)*XC( 1)XC(2)*(1 .0-EDEMO)+XC(4)-Xt(I)
FJACC(I,1) = Yvol(I)
FJACC(I,2) = EDEMO-1.0
FJACC(I,3) = -1 .O*XC(2)*Yvol(I)*EDEMO
FJACC(I,4) = 1.0

100 CONTINUE
200 RETURN

END
C

SUBROUTINE LSQFUN2 1 (IFLAG,M,N,XC,FVECC,FJACC,LJC,
&	 IW,LIW,W,LW)

C	 +++++++++++++++++++++++++++++++++++++++++++++++++
C	 LSQFUN must calculate the vector of values fi(x) and Jacobian
C	 matrix of first derivatives delt_fi/delt_Xj at any point X.
C

INTEGER IFLAG ,M,N,LJC,IW(UW),LIW,LW,I,Ipts
REAL XC(4) ,F VECC(M) ,FJACC(LJC,4),W( 10000),Xt( 1000) ,Yvol( 1000)
REAL DEMO,EDEMO
COMMON Xt,Yvol,Ipts
DO 1001= 1,M

DEMO = Yvol(I)*XC(3)
IF (DEMO.GT.80.0.OR.Xt(I).EQ.0.0) THEN

IFLAG=- 1
GOTO 200

END IF
EDEMO = EXP(DEMO)
FVECC(I) = (Yvol(I)*XC( 1)XC(2)*( 1 .0-EDEMO)+XC(4))/Xt(I)- 1.0
FJACC(I,1) = Yvol(1)/Xt(I)
FJACC(I,2) = (EDEMO-1.0)/Xt(I)
FJACC(I,3) = -1 .0*XC(2)*Yvol(1)*EDEMO/Xt(I)
FJACC(I,4) = 1.0/Xt(I)

100 CONTINUE
200 RETURN

END
C

SUBROUTINE LSQHES3O(IFLAG,M,N,FVECC,XC,B,LB,IW,LIW,W,LW)
C	 ++++++++++++++++++++++++++++++++++++++++++++++++++++++
C	 Routine to calculate the elements of the symmetric matrix
C	 B(X)=EPSTAfi(X)Gi(X)
C	 at any point X, where Gi(X) is the Hessian matrix of 11(X)
C

INTEGER IFLAG ,M,N,LB,IW(LIW),LIW
REAL FVECC(M),XC(4),B(LB),W(10000)
REAL Xt(1000),Yvol(1000),DEMO,EDEMO,SUM32,SUM33
INTEGER I
COMMON Xt,YvoLlpts
DO 50 I=1LB

B (I)=0.0
50 CONTINUE

SUM32 = 0.0
SUM33 = 0.0
DO 1001= 1,M

DEMO = Yvo1(I)*XC(3)
EDEMO = EXP(DEMO)
SUM32 = SUM32 + FVECC(I)*( 1 .0)*Yvol(I)*EDEMO
SUM33 = SUM33 + FVECC(I)*XC(2)*Yvol(I) *yvol(])*EDEMO

100 CONTINUE
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B(5) = SUM32
B(6) = SUM33

200 RETURN
END

C
SUBROUTINE LSQHES3 1 (IFLAG,M,N,FVECC,XC,B,LB,IW,LIW,W,LW)

C
	

+++++++++++++++++++++++++++++++++++++++++++++++++++++++
C
	

Routine to calculate the elements of the symmetric matrix
C
	

B(X)=EPSTAfi(X)Gi(X)
C
	

at any point X, where Gi(X) is the Hessian matrix of fi(X)
C

INTEGER IFLAG,M,N,LB,IW(LIW),LIW,LW
REAL FVECC(M),XC(4),B (LB),W( 10000)
REAL Xt(1000),Yvol(1000),DEMO,EDEMO,SUM32,SUM33
INTEGER I
COMMON Xt,Yvol,Ipts
DO 50 I=1,LB

B(I)=0.0
50 CONTINUE

SUM32 = 0.0
SUM33 = 0.0
DO 1001= 1,M

DEMO = Yvol(I)*XC(3)
EDEMO = EXP(DEMO)
SUM32 = 5UM32 + FVECC(I)* (-1 O)*yvol(I)*EDEMO/)(t(I)
SUM33 = SUM33 + FVECC(Il)*XC(2)*Yvol(I)*Yvol(I)*EDEMO/Xt(I)

100 CONTINUE
B(5) SUM32
B(6) = SUM33

200 RETURN
END

C
SUBROUTINE LSQMON(M,N,XC,FVECC,FJACC,LJC,S ,IGRADE,

1
	

NITER,NF,IW,LIW,W,LW)
C
	

Monitoring routine
C
	

++++++++++++++
C
	

If Iprint >= 0, this subroutine is suitable for monitoring
C
	

the minimization process.
INTEGER M,N,LJC,IGRADE,NITER,NF,IW(L1W),LIW,LW,I,Ipts
REAL XC(N),FVECC(M),FJACC(LJC,N),S (N),W(LW),Xt( 1000),

&
	

Yvol(1 000) ,DEMO,EDEMO
COMMON Xt,Yvol,Ipts
\VRITE(6,20) ((I,XC(I)),I=1,N)

20
	

FORMAT($,1X,4('XC(',I 1,') = ',F9.3,1X))
200 RETURN

END
C

SUBROUTINE INITIAL(N,X)
C	 +++++++++++++++++++++++
C	 Routine to produce a set of initial values of X array

REAL X(4),Y(10000,4)
INTEGER I,J,K,L,M,N,Iseed
Iseed = 999
IF (N.EQ.0)GOTO 150
M=0
DO5OL= 1,20
DO5OK= 1,20
DO5OJ= 1,5

DO 501= 1,5
M=M+1
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Y(M,l) = 1*25.0
Y(M,2) = J*400
Y(M,3) = K*0.1
Y(M,4) = L*0.01

50 CONTINUE
DO 1001= 1,4

X(I) = Y(N,I)
100 CONTINUE

GOTO 200
150 X(1) = 100.0*RAN(Iseed)

X(2) = 100.0*RAN(Iseed)
X(3) = 10.0*RAN(Iseed)
X(4) = 1.0*RAN(Iseed)

200 RETURN
END

C
SUBROUTINE SPURT(tO,t,V,N,tsp,Vsp)

C
REAL tO,t( 1 000),V( 1000),tsp,Vsp,tran,tspurt,tl ,t2,V 1 ,V2
INTEGER N,K
tspurt = tO
IF (tspurt.LT.0.0)tspurt=0.0
DO 100 K=1,N

tran=t(K)*60.0
IF (tran.EQ.tspurt) THEN

Vsp=V(K)
GOTO 200

ELSE iF (tran.GT.tspurt.AND.tran.LT.(tspurt-i-3.0)) THEN
ti =t(K- 1)
V1=V(K-1)
t2=t(K)
V2=V(K)
Vsp=V 1 +(tspurt/60.0-tl )*(v2...v 1)f(t2-tl)
GOTO 200

ELSE IF (tran.GE.(tspurt+3.0)) THEN
Vsp=V(K- 1)
GOTO 200

ELSE
GOTO 100

ENDIF
100 CONTINUE
200 tsp=tspurtj6o.0

RETURN
END

C
FUNCTION VALUE(STRING)

C
CHARACTER*(*) STRING
CHARACTERC1 CHAR,DIGITS( 10)
INTEGER I, CHLOOK,S WITCH,NONEXT, VALUE
DATA DIGITSIO',' 1','2' 131141 I 51 ,'6','7,'8' ,'9'/

C
C	 Written by S J PENG, 15/12/89
C	 This function finds the value of a string of digits.
C	 The parameter:
C	 STRING Input, Character*(*) a valid string of
C	 digits, left justified, terminated by a blank.
C

1=1
VALUE =0
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NONEXT = 0
SWITCH = 1

C
C
	

For each new digit, adjust the answer based on that digit's value
C
10
	

IF (STRING(I:).EQ.' ')GOTO 100
CHAR = STRING(I:I)
1=1+1
IF (CHLOOK(CHAR,DIGITS,10,1O).EQ.0) THEN

IF (NONEXT.EQ.1)GOTO 100
GOTO 10

ELSE
NONEXT = 1
IF (STRING(I-2:I-2).EQ.'-')S WITCH = -1
VALUE = 10*VALUE + CHLOOK(CHAR,DIG1TS,10,10) -
GOTO 10

ENDIF
100 VALUE = VALUE*S WITCH
200 RETURN

END
C ==

INTEGER FUNCTION CHLOOK(KEY,ARRAY,ASIZE,N)
C

INTEGER ASIZE,N,I
CHARACTER*(*) KEY,ARRAY(AS IZE)

C
C
	

This integer function looks up a string of any length in an array
C
	

of strings. It returns the position of the first occurrence (or 0
C
	

if no occurrence).
C
C
	

These parameters are used:
C
	

KEY --- input, character --- string we are looking for.
C
	

ARRAY --- input, character array of length asize --- array
C
	

in which to search for string.
C
	

ASIZE --- input, integer --- length of the array.
C
	

N --- input, integer --- position of array in use.
C

CHLOOK =0
DO 501= 1,N

IF (KEY.EQ.ARRAY(I)) THEN
CHLOOK = I
GOTO 200

ENDIF
50 CONTINUE
200 RETURN

END
C
***** ******************* END OF SUBROUTINE *************************
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