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Abstract 

The thesis systematically investigates the laser interference nanomanufacturing 

technology taking into account its advantages and abilities to realise various 

potential applications. The latest progresses have addressed the major issues 

hampering the cross-scale developments of structural applications, such as 

cost-ineffective fabrication, limited area, low efficiency and challenging 

integration. The studies carried out on high-resolution and large-area laser 

interference nanomanufacturing technology will complement the exploration of 

modern optical devices and extraordinary functional applications. 

With respect to classical interference theory and relevant references, there is still 

a lack of studies providing insight into the effects of polarisation on the 

multi-beam interference while it is found that the polarisation vector plays a key 

role in the formation, period and contrast of interfering patterns. Herein, the 

theory of multi-beam interference is developed through the integration of the 

polarisation vector and electric field vector. It is worth pointing out that based on 

the detailed analysis of the four-beam interference with the special polarisation 

modes, it is demonstrated that the modulation phenomenon in four-beam laser 

interference is the result of the misalignment of incident angles or unequal 

incident angles only in the case of the TE-TE-TM-TM mode. 

In the experiments, a straightforward method of generating various well-defined 

structures on material surfaces is proposed using the nanosecond laser 

interference system. The experimental results of two-, three- and four-beam 

interference show a good correspondence to the theoretical analyses and 

simulations. Artificial bio-structures are fabricated using the four-beam 

interference method with the TE-TE-TE-TE polarisation mode and the fabricated 

microcone structures exhibit excellent properties with both a high contact angle 

(CA=156.3˚) and low omnidirectional reflectance (5.9-15.4%). In order to 



 

 II

fabricate high-resolution structures, the 266nm nanosecond laser interference 

system is employed to treat the organic and metal-film materials. Nanograting 

structures with feature sizes of sub-100nm width and 2nm height are fabricated 

on the organic material surface. An attempt is successfully conduced to produce 

the nanoelectrode arrays by using laser interference lithography and chemical 

deposition. Finally, the advantages of the developed laser interference 

technology and contributions of the research are summarised, and 

recommendations of future work are given. 
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Chapter 1 

Introduction 

1.1 Background 

“There is Plenty of Room at the Bottom” was a lecture given by the professor 

Richard Feynman in 1959. The speaking is regarded as a prime event in the 

history of nano world for it inspires the conceptual beginnings of the field. At 

present, nanoscience and nanotechnology are increasingly important research 

topics since quantities of exciting new physical and chemical mechanisms and 

countless applications are explored when the feature shape or characteristic 

dimension of matter is down to atomic and molecular scales. The latest 

developments have shown that novel nanostructures with reducing the size of 

dimensionality can exhibit a number of exceptional abilities, such as 

meta-materials [1], surface plasmon polaritons (SPPs) [2, 3], quantum dots [4], and 

bionic structures [5, 6]. These progresses in nanostructures design and realisation 

will lead to novel functionalities. Hence, nanomanufacturing is a key branch and 

attracting the global attentions. 

1.2 Overview of Current Micro and Nano Fabrication Technologies 

A number of approaches for fabrication of micro and nano structures have been 

proposed by worldwide scientists, e.g. optical lithography (OL), laser interference 

lithography (LIL), wet and dry etching, electron beam lithography (EBL), focused 

ion beam lithography (FIB), scanning probe lithography (SPL), nanoimprint 

lithography (NIL). 

OL, also named as photolithography, is a process to transfer a geometric pattern 

to a thin layer of photosensitive resist by means of optical mask. A complex 

optical system and series of subsequent processes are included in the whole 
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process, which determines its extremely high cost. It affords the expensive cost 

both in initial (> $20 million) and in operating investments (A typical mask set 

costs exceed $1 million) [7]. Nonetheless, OL is still one of the most powerful tools 

for the mass production of integrated circuits (IC) industry. Quantities of 

advanced microchips or microprocessors are fabricated by OL as well. 

LIL is a regular pattern definition technique without the use of complex optical 

system and mask. The interference pattern consists of a series of periodic grating 

bump or hole features recorded on photosensitive resist. Although LIL is not a 

one-stop process like focused ion beam lithography and laser writing, it has the 

advantage of producing a complete substrate within one single exposure and 

offers the possibility to realise a well-defined micro and nano structured surfaces 

on a macro scale. There are many parameters associated with laser interference 

lithography to achieve precision control, e.g. wavelength, incident angle, 

azimuthal angle, polarised angle, phase and refractive index of surrounding 

medium, but it is regarded as a promising tool for the fabrication of advanced 

structures like anti-reflection and self-cleaning surfaces. 

Wet etching is a micro fabrication method by using liquid chemicals to remove in 

which the material is dissolved when immersed in a solution. Some single crystal 

materials, such as silicon, exhibit the anisotropic etching rate depending on the 

material crystalline direction. The classic example is that the <111> crystal plane 

sidewalls appear when etching rather than a hole in a <100> silicon wafer in the 

potassium hydroxide (KOH). The result is a pyramid shaped hole instead of a hole 

with rounded sidewalls with an isotropic etchant. Wet etching is a standard 

procedure of commercial solar cells texturing. 

Dry etching refers to utilise a physical, chemical principle or a combination of 

both to remove the substrate materials. Generally, plasma etching (PE) and 

reactive ion etching (RIE) are most widely used in mass production. By exposing 

substrate to bombardment ions, only the unmasked material where physical or 

chemical reaction takes place will be removed. Therefore, dry etching is an 



 

 3

anisotropic process and has the advantage of high level of resolution. Similar to 

wet etching, the chemical etchants and gases used during manufacturing are 

quite toxic and corrosive. 

EBL and FIB belong to dry etching and recently have been developed to the 

powerful technologies for prototyping with higher resolution at below 10nm but 

take a competitive disadvantage of time consuming as a result of their serial 

point-by-point writing modality. For example, approximately one week is needed 

to pattern 160nm lines spaced 500nm apart over a 1cm2 area with an e-beam 

operating at 500KHz and with an exposure dimension of 10nm. Hence, they are 

suitable for producing the custom design templates or masks. 

SPL is used to write microscopic patterns on material surfaces. This technique 

uses a scanning tunneling microscope or atomic force microscope to apply 

chemicals to a surface, or manually modify the surface. Through the processes of 

alteration and application with a sharp tip, high-resolution nanoscale patterns 

are created. But, it is extremely slow, and is currently only used for constructing 

surface model systems. 

NIL is an attractive method for low cost nanopatterning. The NIL process is a 

mechanical replication process where a surface relief from a template is 

embossed onto a thin polymer layer on the substrate. Two versions of NIL are 

typically employed: the first is based on thermal embossing of thermoplastic 

polymers and the second is based on transparent stamps and UV-curable 

polymers. 

Any discussion of tools for micro and nano fabrication necessarily involves 

consideration of the manufacturing cost both in resources and in time. There is 

no research community or company which has resources for everything and they 

must make choices based on affordability and productivity. Through many years 

development, each technology has own advantages, disadvantages and special 

potential for various applications, as concluded in Table 1. 
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Table 1 Advantages and disadvantages of OL, LIL, EBL, FIB and SPL. 

Names Advantages Disadvantages 

OL High-throughput, Large area High cost, Fixed pattern 

LIL Controlled periodicity, Low cost Multiple processes 

EBL High resolution, Flexible pattern High cost, Low efficiency 

FIB High resolution, Flexible pattern High cost, Low efficiency 

SPL Flexible pattern Limited materials, Low efficiency 

NIL High throughput, Mass production Template dependent 

In the mentioned technologies, they can be divided into two categories: direct 

technologies and indirect technologies. As shown in Fig. 1.1, indirect technology 

refers to OL, LIL and NIL. Direct technology refers to NIL, FIB, EBL and SPL, 

respectively. Compared with them, direct laser interference nanomanufacturing 

technology has both indirect and direct characteristics. When the fabricated 

material is photosensitivity resist, it’s similar to laser interference lithography. In 

contrast, it also can be used to modify the solid materials (e.g. silicon, metal and 

so on) to generate micro and nano structures on surfaces as the direct 

technology. 

 

Fig. 1.1 Indirect and direct technologies. 

With the merits of simple system and facile technological procedure, direct laser 
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interference nanomanufacturing (DLIN) is a promising tool for mass production 

and expected to overcome drawbacks of other technologies. It is a powerful 

technology with the capability for the manufacturing of micro and nano 

structures at the same time and offers the distinct potential to fabricate various 

materials over large area. Compared with the attentions attracted by LIL, there is 

a lack of the detailed investigation to improve the ability of DLIN and explore 

more significant applications. Thus, laser interference especially direct laser 

interference nanomanufacturing technology with high resolution and large area 

is necessary to be researched and further developed. 

1.3 Overview of Laser Interference Lithography 

Laser interference lithography (LIL) is a maskless technique and the basic 

principle for interference is the same as in interferometer and holography. Due to 

rapid development of surface nanopatterning, nanoelectronic and nanophotonic 

devices, LIL has become increasingly important as it enables to generate a facile, 

inexpensive and large-area micro and nano structures. LIL uses a number of 

coherent beams from different directions in two-dimension or three-dimension 

configuration to produce an interference pattern. The patterns can form with 

arrays or matrices of lines, dots or many different distributions. Periodic 

structures are expected to apply for many advanced devices, such as diffractive 

optical elements, antireflective optical elements, photonic crystals and 

high-density magnetic materials [8]. LIL also plays a role in the fabrication of 

Micro-Electro- Mechanical Systems (MEMS) and biosensor [9]. 

With respect to the principle of LIL, it is well known that the grating period d is 

given by d = λ
2sinθ

 in two-beam interference. So the simplest way of reducing 

the grating period is to use a laser source of shorter wavelength and larger 

incident angles. For example, at a 75° angle of incidence, sinθ =0.97, the limiting 

period is 2λ≥  and extends below 100nm at a wavelength of 193nm. The 
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structure and periodicity are determined primarily by the wavelength of the laser 

used and the angles at which the different beams interfere with each other. But 

the dimensionality of the patterns depends on the number of laser beams. Very 

recently, a cross-scale pattern achieved by six-beam interference has been 

reported by our research team [10]. In the method, bionic Moth-eye structures for 

antireflection in the infrared band were produced. It can be confirmed that there 

will be more and more innovative and significant applications found with deep 

investigation of LIL and DLIN. 

Around 1970, researchers found that holograms or diffraction grating were 

created on the photoresist surface and laser interference lithography was born. 

But the lack of desirable coherent source limits its development. Nonetheless, LIL 

had been an innovative tool since then and offered the focus depth at millimetre 

scale. For the early setup of interference experiment, Lloyd’s minor 

interferometer was used widely because of making optical waveguides coupling 

flexibly. To date, a lot of efforts have been devoted to develop LIL. Ellman et al. 

reported that one and two dimensional periodic patterns were recorded in a 600 

nm layer of AZ-1505 positive i-line photoresist [11]. Areas about 1 cm in diameter 

were processed with an optimum fluence of 20mJ/cm2. They conclude a method 

to realise desired width of structures by controlling the thickness of photoresist. 

Baroni et al. used LIL and RIE to fabricate a hexagonal array of 145μm 

microlenses on a 4-inch quartz wafer [12]. To obtain a dimensional square lattice, 

double-exposure method was used by rotating the sample stage of 90˚. It was 

found that the microlenses structures showed a 15% improvement of reflectivity 

compared to unstructured area. By combining UV mask lithography and LIL, Yang 

et al. fabricated the hierarchical structures on a layer of photoresist [13]. Mask 

lithography was employed first to obtain micropatterns and subsequently the 

wafer was treated by LIL. The processes are shown in Fig. 1.2. Compared to 

one-dimensional nanograting structures achieved by LIL only, the hierarchical 

structures showed hydrophobicity by trapping air inside the structures and the 

maximum contact angle was 120±5˚. The findings will benefit the surface 
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metal particles, a series of antennas with different lengths and widths varied 

from 2.1 to 0.8μm and 1 to 0.4μm respectively were fabricated. It was found that 

the enhanced transmission signal was improved by a factor of 6.4%. The 

fabrication of antenna-assisted SEIRA is enabled by LIL and the findings will 

expand the reach of infrared detection in life science and medicine and offer a 

possibility of chip-based technology [17]. 

From the literature review in brief of LIL, it has been demonstrated that LIL has a 

number of advantages compared to other technologies and additionally they are 

shown clearly in the bullet points. 

 Controllable period (d=λ/2sinθ) 

It is well known that the period of tow-beam interference depends on the 

wavelength and incident angles, which means that the identical laser 

interference system enables to control the period from micrometre to 

nanometre theoretically by changing the incident angles, which is shown in 

Fig. 1.5. With respect to other micro and nano fabrication technologies, it’s 

difficult to realise the controllable period. For instance, the chemical 

technologies are lack of controllability for the resulting structures faithfully 

depend on the order of magnitudes of crystal lattice. It is the only way to 

reduce the period for OL and dry etching with the help of smaller pitch mask. 

Additionally, EBL and FIB enable to adjust the period flexibly but at the cost 

of proximity error. 

 

 

Fig. 1.5 Schematic diagram of controllable period. 

From micrometre to nanometre
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 Various patterns 

For an interference image, there are a number of parameters which have a 

strong influence of the eventual pattern, such as wavelength, incident 

angle, azimuthal angle, polarised angle, phase and number of interfering 

beams. For the examples shown in Fig. 1.6, the grating, square dot, 

honeycomb array and dual-periodic array can be generated by LIL. It is 

worth mentioning that the dual-periodic patterns generally show a good 

agreement with the natural bionic structures. Inspired by these patterns, a 

number of artificial structures are fabricated, such as antireflection and 

self-cleaning coats. Apart from them, there are a huge number of 

variations in the special cases. With a deeper investigation of LIL, numerous 

emerging applications will be discovered. 

 

 

Fig. 1.6 Schematic diagram of various interference patterns. 

 Simple system 

Generally, a LIL system consists of a laser source and several optical mirrors. 

Beamsplitters and high-reflective mirrors are used to divide the laser 

source into two, three, four beams and so on. Additionally, wave plates and 

polariser are used to control the phase and polarised angles of each beam. 
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Fig. 1.7 shows two interference systems in our laboratory, one is 

nanosecond interference system and the other one is 532nm interference 

system. The continuous laser system is basically suitable for exposing the 

photosensitive resist, while the high-pulsed laser system is applied to carry 

out the direct modification. 

 

Fig. 1.7 Schematic diagram of common LIL systems. 

 Parallel fabrication 

Unlike to EBL and FIB, LIL produces the periodic patterns throughout the 

beam area at the same time. The output light from the laser mirror via the 

whole beam expander lens or spherical lenses enables to obtain a large 

area of uniform parallel light, and then several coherent beams 

superimpose together to expose the photoresist. Thus, LIL has the 

capability of large-area fabrication. The significant advantage makes LIL 

produce in a more efficient way. 

 

Fig. 1.8 Schematic diagram of point-by-point and parallel fabrication strategies. 

But for the conventional LIL, its processes are similar with OL. Multiple essential 

processes have to be carried out successively to obtain nanostructures on the 

Y X 

Z 
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samples. Fig. 1.9 indicates that the deposition, exposure, development, pattern 

transfer are indispensable steps in the whole procedure of indirect technologies. 

In comparison, direct technologies enable to fabricate micro and nano structures 

with only a single process. In the view of process number, direct technologies 

appear a category of efficient techniques. Additionally, every process is 

dependent on a number of relevant equipment for the indirect technologies, 

which certainly increases the operation cost. However, the direct technologies, 

for instance EBL, FIB and SPL, take a point by point or line by line writing strategy. 

They all suffer a time consuming nature. Therefore, quantities of applications 

demand current methods to develop a parallel technology which can fabricate 

the various structures with high efficiency and low cost. DLIN is the very 

technology. The pattern generated by the intensity distribution of interference is 

transferred to the material to produce periodic structures directly. In the research, 

a nanosecond laser interference system was used. With the help of fourth 

harmonic generators, ultraviolet wavelength of 266nm allows to carry out the 

high-resolution experiment. Combination with a linear stage and closed-loop 

system, DLIN has the ability to perform a large-area fabrication as well. 

 

Fig. 1.9 Typical flow charts of indirect and direct processes. 
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1.4 Aim and Achievements of the Thesis 

1.4.1 Aim and Objectives 

In my work, I aim to develop LIL further for a high-resolution and large-area 

technique. The traditional LIL needs multiple technological procedures (e.g. 

deposition, exposure, development and wet or dry etching) and expensive 

equipment. To improve the fabrication ability towards high efficiency and low 

cost, Direct Laser Interference Nanomanufacturing (DLIN) is presented because of 

its numerous significant advantages. To realise the aim, a number of objectives 

are identified here and addressed in the following chapters. 

 To gain an in-depth understanding of the principle of LIL, investigate the 

existing lithography technologies and critically analyse their advantages 

and disadvantages 

 To explore the capability of LIL and DLIN for obtaining different 

nanostructure patterns with a large number of interference experiments 

and simulations 

 To carry out nanosecond laser interference experiments and analyse the 

theoretical distribution and the interaction mechanism of materials 

processed with coherent nanosecond laser beams 

 To study the effect of polarisation vectors on four-beam interference 

theoretically and experimentally 

 To achieve large-area anti-reflection and superhydrophobicity structures 

by means of DLIN 

 To simulate overlapping scans to approximate a uniform intensity 

distribution for large-area fabrication using Matlab and improve the 

alignment of scanning 
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 To conduct direct and indirect methods for improving the resolution of 

nanostructures and apply to nanoelectrode arrays 

 To analyse the outcome, draw conclusions and contributions and 

recommend further work 

1.4.2 Achievements 

With respect to theoretical aspect, the work contributes to the multi-beam 

interference theory since the polarisation vector is taken into account and 

integrated into the electric filed vector. Through the combination of polarisation 

vector and electric field vector, a number of significant parameters are analysed 

and moreover the modulation phenomenon occurred in four-beam interference 

can be interpreted verifiably. As for the experiments, the 1064nm and 266nm 

nanosecond laser interference system were set up, aiming to fabricate large-area 

and high-resolution nanostructures respectively. With the investigation of the 

four-beam laser interference, both antireflection and superhydrophobicity 

functional surfaces are achieved successfully. In addition, the nanograting 

structures with feature sizes of sub-100nm width and 2nm height were fabricated. 

These findings pave an avenue for further development of laser interference 

technology. 

During the subject of my PhD research work, a number of significant outcomes 

and meaningful achievements have been published in 7 high impact-factor 

journal papers and 6 conference papers. Some results described in the thesis are 

related to the previously published work in which I am the lead author. Chapter 3 

cites the wok of “Determination of Beam Incidence Conditions Based on the 

Analysis of Laser Interference Patterns” which is submitted in International 

Journal of Light and Electron Optics. Chapter 4 cites the work of “Direct 

Modification of Silicon Surface by Nanosecond Laser Interference Lithography” 

and “Modification of Silicon Surface by Direct Laser Interference”. Chapter 5 cites 

the work of “Effects of Polarisation on Four-beam Laser Interference Lithography”. 



 

 15

Chapter 6 cites the work of “Both Antireflection and Superhydrophobicity 

Structures Achieved by Direct Laser Interference Nanomanufacturing” and 

“Anti-reflection Structures Fabricated by Direct Laser Interference Technology 

under Different Ambiances”. My publications are shown below. 

Journal papers 

1. Dapeng Wang, Zuobin Wang, Ziang Zhang, Yong Yue, Dayou Li, Renxi Qiu and 

Carsten Maple, “Both Antireflection and Superhydrophobicity Structures 

Achieved by Direct Laser Interference Nanomanufacturing” Journal of Applied 

Physics 115, 233101 (2014). 

2. Jinjin Zhang, Zuobin Wang, Xu Di, Le Zhao, and Dapeng Wang, “Effects of 

Azimuthal Angles on Laser Interference Lithography”, Applied Optics 53, 6294 

(2014). 

3. Ziang Zhang, Zuobin Wang, Dapeng Wang, and Yunfeng Ding, “Periodic 

Antireflection Surface Structures Fabrication on Silicon by Four-beam Laser 

Interference Lithography”, Journal of Laser Applications 26, 012010 (2014).  

4. Wenjun Li, Zuobin Wang, Dapeng Wang, Ziang Zhang, Le Zhao, Dayou Li, 

Renxi Qiu, and Carsten Maple, “Superhydrophobic Dual Micro- and 

Nanostructures Fabricated by Direct Laser Interference Lithography”, Optical 

Engineering 53, 034109 (2014). 

5. Jia Xu, Zuobin Wang, Ziang Zhang, Dapeng Wang, and Zhankun Weng, 

“Fabrication of Moth-eye Structures on Silicon by Direct Six-beam Laser 

Interference Lithography”, Journal of Applied Physics 115, 203101 (2014). 

6. Dapeng Wang, Zuobin Wang, Ziang Zhang, Yong Yue, Dayou Li, and Carsten 

Maple, “Effects of Polarization on Four-beam Laser Interference Lithography”, 

Applied Physics Letters 102, 081903 (2013). 

7. Dapeng Wang, Zuobin Wang, Ziang Zhang, Yong Yue, Dayou Li, and Carsten 
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Maple, “Direct Modification of Silicon Surface by Nanosecond Laser 

Interference Lithography”, Applied Surface Science 282, 67 (2013). 

8. Dapeng Wang, Zuobin Wang, Yong Yue, Juncai Yu, Chunlei Tan, Dayou Li, 

Renxi Qiu, and Carsten Maple, “Determination of Beam Incidence Conditions 

Based on the Analysis of Laser Interference Patterns”, International Journal of 

Light and Electron Optics, submission, 2014. 

International conference papers 

1. Dapeng Wang, Yong Yue, Ziang Zhang, Dayou Li, Carsten Maple, and Zuobin 

Wang, “Direct Laser Interference Technology and Potential Applications”, 

International Conference on Manipulation, Manufacturing and Measurement 

on the Nanoscale (3M-NANO), 2014, Accepted. 

2. Ziang Zhang, Zuobin Wang, and Dapeng Wang, “Micro-lens Arrays Fabricated 

by Laser Interference Lithography”, International Conference on Manipulation, 

Manufacturing and Measurement on the Nanoscale (3M-NANO), 2014, 

Accepted. 

3. Dapeng Wang, Yong Yue, Ziang Zhang, Dayou Li, Carsten Maple, and Zuobin 

Wang, “Anti-reflection Structures Fabricated by Direct Laser Interference 

Technology under Different Ambiances”, International Conference on 

Manipulation, Manufacturing and Measurement on the Nanoscale 

(3M-NANO), pp (82-85), 2013. 

4. Le Zhao, Zuobin Wang, Dapeng Wang, Ziang Zhang, Zhankun Weng, Carsten 

Maple, Dayou Li, and Yong Yue, “Silicon Wafer Modification by Laser 

Interference”, 8th IEEE International Conference on Nano/Micro Engineered 

and Molecular Systems (NEMS), pp (1236-1239), 2013. 

5. Dapeng Wang, Zuobin Wang, Ziang Zhang, Yong Yue, Dayou Li, and Carsten 

Maple, “Modification of Silicon Surface by Direct Laser Interference”, 

International Conference on Manipulation, Manufacturing and Measurement 
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on the Nanoscale (3M-NANO), pp (5-8), 2012. 

6. Yinbao Lei, Zuobin Wang, Jia Xu, Jinjin Zhang, Dapeng Wang, Yu Hou, Yong 

Yue, and Dayou Li, “Determination of Two-Dimensional Phase Shifts in 

Three-Beam Laser Interference Patterns”, International Conference on 

Manipulation, Manufacturing and Measurement on the Nanoscale 

(3M-NANO), pp (9-13), 2012. 
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Chapter 2 

Fundamental Theories and Methodology 

2.1 Basic Concepts 

2.1.1 Light Waves and Laser 

In physics, the term “light” refers to electromagnetic radiation, whether visible or 

not. The representative properties of light are intensity, propagation direction, 

frequency or wavelength spectrum and polarisation. The speed of light is a 

constant, around 2.99x108m/s in vacuum. Generally, many waves can be 

regarded as a plane wave in a localized region of space. In the 19th century, James 

Clerk Maxwell concluded that light was a form of electromagnetic radiation and 

gave a full mathematical description known as Maxwell’s Equations [18]. Based on 

the Maxwell’s Equations, the plane sinusoidal equation for an electromagnetic 

wave propagating in the x direction is expressed 

)cos(),( 0 ϕω +⋅−⋅= txkAtxE


 ,               (2.1) 

where A0 is the amplitude, k is the wave number and equals λπ2 ( λ is 

wavelength), x is a point in the x direction, ω is the frequency, t is a given point 

in time, andϕ
 
is the initial phase. 

The term "laser" originates as an acronym for light amplification by stimulated 

emission of radiation. Since laser was invented in 1954, it has been applied for 

many important applications both in the common consumer devices and the 

scientific research. The inventors won the Nobel Prize in 1964 for the 

fundamental work in the field of the construction of oscillators and amplifiers. 

Basically, lasers are distinguished from other light waves by their monochromatic, 

directional and coherent properties. Monochromaticity means a definite 
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wavelength or frequency, while an ordinary white light is a combination of 

different wavelengths. Laser is emitted in a high direction, by which the pointers, 

rangefinders and weapons are invented. Coherence enables a stationary 

interference and is a basis factor for practical applications such as holography, 

optical coherence tomography and telescope interferometers. 

2.1.2 Interference 

Interference is a phenomenon in which two or more waves that are coherent 

with each other to form a resultant wave and the intensities are modulated 

periodically. In the beginning of the 19th century, people tried to propose many 

experimental observations to explain the phenomena, including diffraction 

effects and colours in thin films. Among them, double-slit interference is the 

most famous experiment demonstrated by Tomas Young in 1803 and it gives a 

comprehensive understanding of the wave theory of light. To make interference 

occur, several conditions have to be met: 

 Spatial and temporal overlap of the two light fields, 

 Coherence of the two light fields, 

 Non-orthogonal polarization states. 

In fact, any type of single-frequency waves (e.g. light, radio, acoustic and water 

waves) has the possibility to be observed with interference effect while they 

overlap. Generally, the ideal interference source is the light which consists of a 

very narrow spectrum of frequency. Since laser was invented, a wide variety of 

applications have been developed based on interference principle. 

2.2 Classical Interference Theory 

In the interference area, the intensity distribution of N-beam laser interference 

can be described as the superposition of electric field vectors of N beams and the 

formula is expressed by [19] 
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where mE~ is the complex exponential form of mth electric field vector and *~
nE

represents the conjugate function of nE~ , mk


is the vector in the propagation 

direction, mr


is the position vector and mϕ is the initial phase. 

In Eq. (2.2), mE~ , mk


, and mr


are expressed by [10, 19] 

][~ mmm trki
mm eAE ϕω +−⋅=



 ,                     (2.3) 

)cossinsincos(sin kjikk mmmmmm


⋅−⋅⋅+⋅⋅= θφθφθ  ,         (2.4) 

kzjyixr


⋅+⋅+⋅=  ,                    (2.5) 

where mA is the amplitude,  is the incident angle, mφ is the azimuthal angle, 

ω is the frequency，t is a given point in time, k is the wave number ( λπ2=k , λ

is wavelength), and kji


,,  are unit vectors in Cartesian coordinates. 

Take example for two-beam interference, the schematic is shown in Fig. 2.1. The 

initial laser beam is divided into two beams with the azimuthal angles of °= 01φ  

and °=1802φ . 

 

Fig. 2.1 Schematic of two-beam interference. 

It is assumed that amplitudes of each beam are identical and initial phases are 0. 

X
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According to Eqs. (2.1)-(2.5), the electric field vectors are written as below [19] 
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.                (2.6) 

The intensity distribution of two-beam interference can be concluded [7] 

[ ] 



 −=⋅−= )sin22cos(22)sin2cos(22 22 xAxkAI

λ
θπθ .        (2.7) 

Thus, the period of two-beam interference is determined by θλ sin2=d . 

2.3 Theories for the Applications 

2.3.1 Principle for Anti-reflection 

According to the thin-film optics, as shown in Fig. 2.2, the condition to achieve 

zero reflection is [20] 

21nnn filmAR =−  ,                      (2.8) 

 filmARnh −⋅= 4λ  ,                      (2.9) 

where nAR-film is the refractive index of the media of the antireflection coating, n1 

and n2 are the refractive indices of the ambient and solid media (n1≈1 in air), 

respectively, h is the thickness of the coating, and λ is the wavelength. 

 

Fig. 2.2 Sketch of an antireflection film. 

When the period of structures is shorter than the wavelength of incident light, 
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the sub-wavelength structures can be regarded as an anisotropic optical thin film 

with an effective refractive index. Based on the effective medium theory, the 

effective refractive index (neff) can be expressed as [21] 

( ) 2
2

1
2

eff 1 nnn nn σσ +−=  ,                (2.10) 

PWn n=σ  ,                     (2.11) 

where Wn is the width of structures and P is the period. 

As shown in Fig. 2.3, microcone structures have a slope from the top to the 

bottom, and they show a partial similarity to numerous effective medium layers. 

The reflection from the visible to infrared wavelengths can be suppressed by the 

effective multi-layers with the gradient refractive indices. 

 

Fig. 2.3 Sketch of sub-wavelength structures with effective medium layers. 

In practice, the incident energy is lost both through external reflection on a 

polished wafer surface and through scattering by surface nano structures, while 

the textured surface does absorb more energy through multiple internal 

reflections and refractions. Compared with the effective medium theory, the 

increase of surface area because of the convex and concave structures can be 

attributed to another light-trapping mechanism. Fig. 2.4 shows schematically 
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how radiation is trapped by multiple reflections at both the outer and inner walls 

of a surface structure. 

As an emerging candidate, another novel nanostructures, namely surface 

plasmons (SPs) have attracted much attention due to high absorption or 

light-trapping performance [22]. The underlying mechanism of SPs can be 

attributed to confine the collective oscillations of photonics locally by metal 

nanostructures. Subwavelength metallic nanostructures can couple propagating 

light freely into a thin absorbed layer. But SPs are excited only in the case of the 

frequency of the incident photons matches the resonance frequency of metal 

nanoparticles. Their resonance wavelength is dependent on the 

three-dimensional sizes and the dielectric parameters of the surrounding 

environment [23]. Thus, different approaches are subjected to fabricate various 

feature sizes of nanostructures. Surface plasmon resonance in nanometre-sized 

structures is called as localized surface plasmon resonance (LSPR). Due to the 

high absorption of LSPR for a broad spectral band and a wide angular range of 

incidence with polarisation insensitivity, it has been proved to be a promising 

material for effective absorption in thin-film solar cells [24]. 

 

Fig. 2.4 Sketch of light trapping through multiple reflections. 

2.3.2 Principle for Self-cleaning 

The lotus leaf has the self-cleaning function which can pick up the dirty and dust 

particles by water droplets due to a complex micro and nano scale architecture of 

the surface and the waxy crystal [25, 26]. Previous studies have also investigated 
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the unique property of the superhydrophobic surface is attributed to the micro 

and nano structure [5, 27-30]. Superhydrophobic surfaces with a high static Contact 

Angle (CA) above 150° exhibit excellent repellence and self-cleaning properties. 

The CA is formed by a liquid at the three phase contact line where the liquid, 

vapour and solid intersect. The drop shape is controlled by the three forces of 

interfacial tension shown in Fig. 2.5. The CA is a quantitative measure of the 

wetting of a surface by a liquid. The wettability can be explained with Young 

equation [31] 

VL

LSVS

/

//
0cos

γ
γγθ −

=  ,                   (2.12) 

where 0θ is the Yong CA, VS /γ is the solid/vapour interfacial free energy, LS /γ is 

the solid/liquid interfacial free energy, and VL /γ is the liquid/vapour interfacial 

free energy. 

 

Fig. 2.5 A liquid drop showing the quantities in Young equation. 

Young equation is valid in the case of a flat solid surface. The Wenzel model is 

used in the case of a rough surface that changes the contact angle. The Wenzel 

state is defined by the following Eq. (2.13) for the contact angle on a rough 

surface [32] 

0coscos θθ fR=  ,                     (2.13) 

where θ is the apparent contact angle which corresponds to the stable 

equilibrium state. fR is the roughness factor which is a measure of how surface 

roughness affects a homogeneous surface. The roughness factor is defined as the 

Solid

Vapour
Liquid
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ratio of the solid-liquid area to its projection on a flat plane. 0θ  is the Young 

contact angle defined for a perfect flat surface. 

The Wenzel model is not sufficient to deal with a heterogeneous surface. A more 

complex model is needed to measure the apparent contact angle on composite 

surfaces. This heterogeneous surface is explained by the Cassie–Baxter model, 

illustrated in Fig. 2.6, and the equation is written as [33] 

21 coscoscos θψθψθ AL +=  ,                 (2.14) 

where 1θ  and 2θ  are the contact angles of the flat solid and air surfaces, 

respectively. Lψ  and Aψ  are the solid and air surface area fractions of the solid 

and air, respectively. When the contact angle of the air film is 180˚ and 

1=+ AL ψψ , Eq. (2.14) can be rewritten as [33] 

1)1(coscos 1 −+= θψθ L  .                 (2.15) 

It is known from Cassie-Baxter that two criteria must be necessary to meet the 

condition of hydrophobicity: a contact line density criterion and asperity height 

criterion. The thickness of the air pocket has an effect on gathering the water 

droplet [34]. 

 

Fig. 2.6 Typical Cassie-Baxter model for wetting behaviour of a water droplet on the rough solid 

substrate. 

One of the ways to improve the hydrophobicity of the surface is to increase its 

roughness, and the roughness surface fabrication has become a subject to be 

investigated. The roughness has been used to assess the wettability in order to 
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design the superhydrophobic surface [35]. The fundamental theories described in 

section 2.3 are a basis for chapter 6 which focuses on the applications. 

2.4 Methodology in the Thesis 

In the thesis, effects of polarisation vector on the interference patterns are 

presented and studied as it is found that polarisation has a strong influence on 

contrast, period and formation of interference patterns. Through the integration 

of polarisation vector and electric field vector, the theory of multi-beam 

interference is developed and implemented throughout research strategy. Based 

on them, theoretical analyses of interfering distributions in the two-, three- and 

four-beam interference are studied systematically. Meanwhile, Matlab is 

employed to simulate the patterns and verify the results. 

The polarisation vector is defined as . It’s well known that the electric field 

vector, the propagating direction, and the polarisation vector are perpendicular 

with one another and based on the theory of solid geometry, the expression of 

polarisation vector can be inferred by Eq. (2.16) in terms of incident, azimuth and 

polarised angels. 

 ,         (2.16) 

where ψm is the polarised angle. Consequently, the formulation of intensity 

distribution is rewrote as below 

 .      (2.17) 

The Eqs. (2.16) and (2.17) derived in a new form are two fundamental 

formulations which contribute to the theory of physical optics. According to the 
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microcone structures with a huge number of nano features on the surface were 

fabricated by the developed four-beam interference with the designed 

polarisation mode. 

Benefiting from the methodology, the internal links between the chapters are 

well established. They are revealed in views of the experimental simulations, 

theoretical analyses and applications respectively. Chapter 3 firstly studies the 

multi-beam imaging interference system for the experimental simulations. 

Two-beam interference systems, or named as interferometers are the traditional 

interfering instrument for the high precision measurement. Compared with them, 

the system setup in the work breaks the limitation of number of interfering 

beams. A number of novel outcomes, e.g. dual-periodic structure patterns, are 

found by means of the system. Besides the theoretical demonstrations and 

computer simulations, the experimental simulations for studying the formation 

of interference patterns are of great importance to display the influence of 

parameters in real-time. Subsequently, chapters 4 and 5 are to implement the 

theoretical analyses systematically. The principal objective of chapter 4 is to 

fabricate the well-defined structures whose formations show a good agreement 

with regard to the theoretical derivations and additionally discuss the thermal 

effect of nanosecond laser on the solid matter. The experimental aspects are 

related to the two-, three- and four-beam interference configurations. In contrast 

with previous publications, it is found that the modulation phenomenon of 

four-beam interference is brought about only in the case of TE-TE-TM-TM 

polarised mode. Chapter 5 inserted individually does give a detailed explanation 

of the effects of polarisation vector. In the following chapters 6 and 7, the 

large-area and high-resolution applications are explored finally. Inspired the 

experimental results in chapter 5, a developed method for the fabrication of both 

superhydrophobic and antireflection functional structures is proposed in chapter 

6. It is worth mentioning that DLIN offers an unprecedented way to achieve two 

functions at the same time in a high-efficiency manner. As for the high-resolution 

application, the organic material is selected as the research object in chapter 7 by 
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referring to previous work for the influence of thermal conductivity is obvious 

during the laser modification and meanwhile the strategy of exploiting the best 

contrast configuration in two-beam interference case is applied to improve the 

structural feature sizes. Thus, the methodology focuses into the integrity 

throughout the whole thesis. 

2.5 Summary 

In the chapter, a number of basic concepts in the physical optics, the 

conventional theory of interference and the principles for applications are 

introduced. Although people know Young’s (double-slit) experiment and the 

period of two-beam interference well, the effects of other parameters, e.g. the 

polarisation vector and the azimuthal vector, on the distribution, period and 

contrast in multi-beam interference are complicated and inexplicable. The 

existing works generally focus on applications by using interference technology 

but neglect the analysis of theoretical formulation. In fact, the interference 

patterns are the combination of a number of vectors and any one of them has a 

strong influence of resulting distribution. To overcome the problem specially, the 

methodology is addressed in section 2.4. With the help of the methodology, the 

theoretical analysis and experimental results show a good correspondence, 

which demonstrates that the derived theoretical formulations reveal the 

interfering characterisation in nature. 

With the investigation of classical theory of interference, there is still a lack of 

theoretical analysis of polarisation vector in multi-beam interference. For a given 

configuration of interference system, the formation of interfering patterns is 

complicated and unpredictable without the detailed analysis. In the thesis, 

effects of polarisation vector on the interference patterns are studied and the 

formulations of multi-beam interference cases are derived on a basis of 

polarisation vector. It is also worth pointing out that the theoretical analysis of 

polarisation gives an explanation for the modulation phenomenon in the 
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four-beam interference. Furthermore, the study for the effects of polarisation on 

interference is constructive to carry out the following experiments as well. In the 

subsequent chapters, different polarisation modes are selected to fabricate 

various micro and nano structures and realise a number of significant 

applications. 
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Chapter 3 

He-Ne Laser Interference and Imaging System 

3.1 Introduction 

In this chapter, the He-Ne laser interference imaging system is introduced. 

Compared with LIL and DLIN whose fabricated structures are observed by 

scanning electron microscope (SEM) or atomic force microscope (AFM), the 

He-Ne laser interference system takes the advantage of real-time imaging and 

can contribute to visual feedback on micro and nano scales. The investigation of 

multi-beam laser interference is a complex and challenging problem from a 

book-keeping perspective due to the additional field. Although computer 

software can simulate the formation of interference patterns, there are also a 

number of offsets which deviate a little from theoretical conditions in practice. 

Principal motivation is to better understand the formation of interference 

patterns and analyse different incidence conditions with the combination of 

image processing method. 

It is known that the period of interference can be controlled by changing the 

incident angles of beams or the radiation wavelength. For practical applications, 

the wavelength is first selected so that the period depends on the incident angles. 

Meanwhile, the influences of polarised angles, azimuth angles and number of 

beams are also extremely important for obtaining desired interference patterns 

since the spatial distributions of interfering beams are a function of the 

mentioned parameters. In the case of two-beam laser interference, different 

incidence conditions introduced by the polarisation vectors result in different 

contrasts [36]. In the case of three-beam laser interference, the modulation period 

is produced in the coplanar incidence conditions, and in the case of four-beam 

interference, there are three different types of patterns produced by polarisation 

modes. To determine the relationship between the beam incidence conditions 
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and interference patterns, a series of steps, including image acquisition, 

processing and analysis based on the theory of physical optics, were taken to 

achieve high precision measurements. 

A number of approaches for the period measurement were addressed by the 

previous publications. Wang et al. presented a method of displacement 

measurement based on Young’s experiment at the early stage. The displacement 

or period was determined according to the 100×152 pixels image patches 

obtained from a fiber-optic interferometer by using fringe pattern matching and 

the polynomial curve fitting methods. It was shown that the simulation and 

experiment results demonstrated a subpixel resolution of measurement [37]. 

Subsequently, Ji et al. took in deep investigation of quality inspection and applied 

Hough Transform (HT) and Maximum Likeihood Estimation (MLE) methods to 

detect nanoscale patterns produced by LIL. It was found that the HT method is 

invalid to deal with the patterns of strong noises and a statistical method based 

on the MLE could estimate each circle’s centre and shape [38]. In order to resist 

the noises, Liu et al. presented a method of fringe pattern correlation. In the 

method, the phase difference between any two fringe patterns is determined by 

the method. Meanwhile, several types of noise such as Gaussian noise, salt and 

pepper noise, and speckle noise were added to the fringe patterns. It was 

demonstrated that the fringe pattern correlation had the advantages of high 

precision and high resistance to noise [39]. Compared with perpendicular fringes, 

the cross-correlation function has been developed to measure the oblique 

fringes and determine the slope [40]. 

The measurement of period is a premise for calculating the incident angles and 

the detailed analyses of the formation of three and four-beam interference play a 

critical role in the determination of beam incident conditions. Any slight change 

of incident angles or intensities of beams will introduce significant variations of 

periods and contrasts of interference patterns. However, there has been no 

published work on the subject. To deal with the challenging problem, 
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interference patterns were captured by a He-Ne laser interference system under 

different incidence conditions, the pattern period measurement was achieved by 

cross-correlation function, and the pattern contrast was calculated by image 

processing. Subsequently, the incident angles and intensities of beams were 

determined based on the analysis of spatial distributions of interfering beams. As 

a consequence, the relationship between the beam incidence conditions and 

interference patterns is revealed. 

3.2 Imaging System Setup 

In the experiment, the He-Ne laser (CVI Melles Griot, 25-LHP-213) with the 

wavelength of 633nm and output power of 0.5mw was used for the LIL imaging 

system. This laser source takes advantages of good beam quality and 30cm 

coherence length. To perform real-time imaging, a CCD camera (PiontGrey, 

CMLN-13S2M-CS) replaces the exposed sample and a 20× Galilean beam 

expander (BE) is fixed before the camera as the period of interference is far 

smaller than the CCD pixel size. 

3.2.1 Two-beam Laser Interference 

From Fig. 3.1 shown, the laser source was divided into two coherent beams by 

beamsplitters (BS) and high reflection (HR) mirrors. To control the power and 

polarised angles of each beam precisely, half-wave plates and polarisers were 

placed before the CCD. The azimuthal angles are 1φ =0˚, 2φ =180˚. Two light 

paths can be seen as: 

(1) laser→BS1→HR1→BE→CCD; 

(2) laser→HR3→HR2→BE→CCD. 
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Fig. 3.1 Schematic set-up for two-beam He-Ne laser interference. 

3.2.2 Three-beam Laser Interference 

In the three-beam interference, there are two cases of non-coplanar and 

coplanar conditions. From Fig. 3.2 shown, the laser source was divided into three 

coherent beams by beamsplitters (BS) and high reflection (HR) mirrors. In the 

non-coplanar condition, the azimuthal angles are 1φ =0˚, 2φ =120˚, and 3φ

=240˚. Three light paths can be seen as: 

(1) laser→BS1→HR1→BE→CCD; 

(2) laser→BS2→HR5→HR2→BE→CCD; 

(3) laser→HR4→HR3→BE→CCD. 

 

Fig. 3.2 Schematic set-up for non-coplanar three-beam He-Ne laser interference. 

From Fig. 3.3 shown, the laser source was divided into three coherent beams by 

beamsplitters (BS) and high reflection (HR) mirrors. In the coplanar condition, the 

azimuthal angles are 1φ =0˚, and 2φ = 3φ =180˚. Three light paths can be seen 

as: 
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(1) laser→BS1→HR1→BE→CCD; 

(2) laser→BS2→BE→CCD; 

(3) laser→HR2→BE→CCD. 

 

Fig. 3.3 Schematic set-up for coplanar three-beam He-Ne laser interference. 

3.2.3 Four-beam Laser Interference 

From Fig. 3.4 shown, the laser source was divided into four coherent beams by 

beamsplitters (BS) and high reflection (HR) mirrors. The azimuthal angles are 1φ

=0˚, 2φ =90˚, 3φ =180˚, and 4φ =270˚. Four light paths can be seen as: 

(1) laser→BS1→HR1→BE→CCD; 

(2) laser→BS1→HR1→BS2→HR2→BE→CCD; 

(3) laser→HR4→HR3→BE→CCD; 

(4) laser→HR4→HR3→BS3→HR5→BE→CCD. 

 

Fig. 3.4 Schematic set-up for four-beam He-Ne laser interference. 
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Fig. 3.8 Dual periodic patterns vs. Matlab simulations. (a) The four-beam interference image and 

(b) corresponding intensity profiles simulated by Matlab; (c) The six-beam interference image and 

(d) corresponding intensity profiles simulated by Matlab. 

3.4 Image Processing for Period and Contrast Measurements 

In order to determine the period of the interference patterns, two patches of 

interference patterns are selected as the fixed and reference image patches. It 

can be calculated that the fixed patch matches with the reference patch by 

means of the cross-correlation coefficient which represents the similarity 

numerically. The schematic of this algorithm is shown in Fig. 3.9(a). The 

correlation coefficient, XYρ , between two matrices from the two image patches 

X and Y is defined as [39] 

                      ( )( )[ ]
YX

YX

YX
XY

YXEYX
σσ

μμ
σσ

ρ −−== ),cov(  ,                 (3.1) 

where E is the expected value, cov is the covariance, Xμ and Yμ are the mean 

values of X and Y, and Xσ and Yσ are the standard deviations. 

According to the theory of optics, the interference contrast is defined as [7, 11] 
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minmax

minmax

II
IIK

+
−= ,                         (3.2) 

where Imax and Imin are the maximum and minimum interference intensities. For 

the calculation of contrast, the pattern is divided into N patches or regions. The 

pattern contrast can be calculated by extracting the maximum and minimum 

grey-scale values in every selected patches or regions firstly and then averaged 

the contrast values of the whole image. Fig. 3.9(b) illustrates the schematic of 

this algorithm. 

 

Fig. 3.9 The schematic of image processing algorithms. (a) Principle of determining the period by 

pattern correlation; (b) Principle of determining the contrast. 

All the equations from (3.3) to (3.12) in this chapter are derived on a basis of Eqs. 

(2.16) and (2.17) and simultaneously refer to the previous work [11, 18-19]. More 

details of the methodology can be seen in section 2.4. In the two-beam laser 

interference, a periodic fringe pattern is produced with the incident angles of 

θθθ == 21 , the azimuthal angles of °= 01φ and °=1802φ , and the polarised 

angles of °== 9021 ψψ , the intensity distribution can be expressed by 

])sinsincos[2 2121
2
2

2
1 xkAAAAI beamtwo θθ +−+=− （ .           (3.3) 

It can be seen from Eq. (3.3) that the period of the interference pattern is 

θλ sin2=d in the case of the symmetrical two-beam incidence. Fig. 3.10(a) is 

the fringe pattern obtained by the CCD camera. The pixel number of phase shifts 

is 29.577 in Fig. 3.10(b). The pixel size of the CCD is 3.75μm, and the measured 

Fixed patch
Reference 
patch 

Max MinX
Y

(a) (b)
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period of the interference pattern is 5.546μm. In the experiments, the incident 

angles were set as θ1=θ2=3.3˚, which resulted in the period of 5.498μm 

theoretically. It is found that the offset between the designed angles and the 

measured angles is 0.03°. Moreover, with the calculation of the contrast, the 

intensity of each beam can be determined. The maximum and minimum 

grey-scale values are extracted from the 96×128 pixels patches which shift in the 

whole interference pattern. The final value is obtained by averaging all the 

contrasts with the shifting step of 10 pixels from the row and column directions. 

According to Eqs. (3.2) and (3.3), in this case, K can be written as  

2
2

2
1

212
AA

AAK beamtwo +
=−  ,                       (3.4) 

and the calculation result is 0.87. It can be concluded that the amplitude of one 

beam is 1.7 times higher than that of the other one. 

 

Fig. 3.10 (a) The CCD image of the two-beam laser interference; (b) Corresponding correlation 

coefficients as a function of phase shifts. 

In the cases of three-beam laser interference, there are generally two different 

configurations corresponding to coplanar and non-coplanar incidence conditions. 
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and the period in the y direction is 

θλ sin32=yd  .                    (3.7) 

This means that the period in the x direction is 3 times larger than the other one, 

which shows a good correspondence with the simulation in Fig. 3.11(a). Thus, the 

three-beam laser interference method is able to generate the triangle or hexagon 

distribution pattern. 

The triangle pattern shown in Fig. 3.12(a) was obtained experimentally. Fig. 

3.12(b) indicates that the respective pixel numbers of phase shifts in the x and y 

directions are unequal. According to the results of the correlation coefficient 

calculations, the measured period in the x direction is dx=7.854μm and the 

measured period in the y direction is dy=4.401μm. The relationship of the ideal 

pattern is 3=yx dd  and the relationship of the experimental result is 

785.1=yx dd . It is demonstrated that the misalignment of the azimuthal angles 

causes a minor offset of 0.74° between the designed angles and the measured 

angles. Unlike the two-beam interference, the contrast of the three-beam 

interference in the non-coplanar incidence conditions is determined by the 

amplitude of each beam and has an effect on the incident angles. The contrast in 

this case is expressed as 

3
3

2
2

2
1

323121

AAA
AAAAAAK beamthree ++

++⋅Δ=− .                (3.8) 

To calculate the contrast, the incident angle needs to be determined first. As Fig. 

3.12(b) and Eq. (3.5) suggested, the incident angle is 5.3°, so 9744.0=Δ . 

Meanwhile, the contrast is calculated by the image processing method which is 

used in the two-beam interference and the result is 0.9706. Thus, it is 

demonstrated that the amplitudes are almost equal with each other. 
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Fig. 3.12 (a) The CCD image of the three-beam laser interference in the non-coplanar incidence 

condition; (b) Corresponding correlation coefficients in x and y directions as a function of phase 

shifts. 

When the azimuthal angles of three beams are in the same plane, a dual-grating 

structure pattern is produced. In the experiment, the initial laser beam was 

divided into three beams with the azimuthal angles of °== 031 φφ  and °= 902φ , 

the polarised angles of °=== 90321 ψψψ , and the incident angles of 

θθθ == 21  and *
3 θθ = ( θθ >* ). In this case, the intensity of interference

'
beamthreeI −  is expressed as 

])cos(cos)sincos[(sin2
])cos(cos)sincos[(sin2

)sin2cos(2

**
32

**
31

21
2
3

2
2

2
1

'

zxAA

zxAA

xkAAAAAI beamthree

θθθθ
θθθθ

θ

−++−

−−−+

⋅−++=−

.       (3.9) 

Eq. (3.9) indicates that the intensity of interference is a function of the 

coordinates in the x and z directions. Generally, the interference is deemed to 

occur in the xy plane. This means that the value of z is zero, so there are three 

interference terms in the x directions. They are expressed as 
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In practice, θ* and θ are approximately equal with each other, consequently, d1 

and d2 are approximately equal, and d3 is larger than them (d1≈d2, d3>>d1). Thus, 

it is the reason that the interference pattern exhibits dual periods. Fig. 3.13 

shows the experimental result. From the curve in Fig. 3.13(b), the periods are 

calculated as d1=3.5625μm, d2=3.1875μm and d3=27.5625μm. According to the 

values and Eq. (3.10), the incidence conditions can be determined, and they are 

θ=5.1˚ and θ*=6.3˚±0.3˚. 

 

Fig. 3.13 (a) The CCD image of the three-beam laser interference in the coplanar incidence 

condition; (b) Corresponding correlation coefficients as a function of phase shifts. 

In this case, the contrast is expressed as 

3
3

2
2

2
1

323121'

AAA
AAAAAAK beamthree ++

++=− .                 (3.11) 
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and the calculation result is 0.734. The decrease of contrast could be caused by 

the unequal amplitudes of each beam. 

The four beams follow a symmetrical configuration with the azimuthal angles of 

0°, 90°, 180° and 270°. The polarisation angles of four beams were 90°. It can be 

seen in Fig. 3.14(a) that a two-dimensional grating pattern and periodic dots are 

produced in this case and the maximum intensities distribute along both x and y 

axes. The formula of the four-beam laser interference can be expressed as 

])sinsincos[2
])sinsincos[2

4242

3131
2
4

2
3

2
2

2
1

ykAA
xkAAAAAAI beamfour

θθ
θθ

+−
+−+++=−

（

（  .     (3.12) 

As Eq. (3.12) suggested, the intensity distribution of the four-beam interference 

is equivalent to the two exposures of two-beam interference by rotating the 

substrate with 90˚. When the incident angles are θθθθθ ==== 4321 , the 

periods in the x and y directions are θλ sin2== yx dd . Fig. 3.13(a) shows the 

captured image of four-beam interference and the measurements of phase shifts 

are illustrated in Fig. 3.13(b).  

 

Fig. 3.14 (a) The CCD image of the four-beam laser interference; (b) Corresponding correlation 

coefficients as a function of phase shifts. 
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The resulting periods in the x and y directions are 5.8121μm and 5.7192μm, 

respectively. According to Eq. (3.13), the incident angles can be concluded that 

θ1=θ3=3.17˚, and θ2=θ4=3.12˚. With the help of theoretical and image analysis, 

the deviations of 93nm and 0.05˚ have been determined. 

The measurements of period and contrast were attained by Matlab and the 

scripts are described as Appendix A. 

It has been demonstrated that the image processing methods is a powerful tool 

for analysing almost all types of beam incidence conditions in LIL. Furthermore, 

the imaging system can also be integrated into a LIL system to achieve real-time 

imaging and lithography. The schematic of the innovative system is shown in Fig. 

3.15. Additional beamsplitter mirrors or prisms are utilised to set up the imaging 

system, keeping the original optical path unchanged. Once the relationship of the 

incident angles between the LIL and imaging systems is determined, real-time 

and dynamic calibrations can be achieved, which is an important application in 

LIL processes. 

 

Fig. 3.15 Schematic of the real-time imaging and lithography system. 

3.5 Summary 

For the conventional LIL, it is a common way that the specimen observations 

have to be taken into sequential action after the fabrication process finishes. The 
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minor adjustments take place dependently according to the SEM/AFM results, 

which is inflexible. As an improved alternative, the imaging interference system 

has the advantage of detecting the patterns in actual time. It is the principle 

motivation that chapter 3 proposes the imaging interference system. By taking 

into a comparative consideration of references [36-40], the algorithms for period 

measurements are presented. However, to resolve the problem of fulfilling the 

feedback on micro and nano scales, the comprehensive theoretical analyses 

especially in the complex multi-beam interference cases must be integrated into 

the systematic methodology. The combination of previous existing algorithms 

and theoretical analyses presented in the thesis makes progress with the 

visualisation and feedback of LIL system. 

In this chapter, the He-Ne laser interference system has been setup and by means 

of it, the multi-beam laser interference patterns can be captured in real-time. 

Besides traditional two, three and four-beam interference configurations, some 

extraordinary bionic micro and nano arrays have been found. It extends the 

capabilities of laser interference technology towards quantities of potential 

applications for a number of landmark findings demonstrate multi or cross-scale 

structures own many incredible properties and they have been surprisingly 

neglected. Moreover, the dual micro and nano interference patterns achieve by 

He-Ne laser interference system show a good correspondence with computer 

simulations. 

The beam incidence conditions (i.e. measurements of periods and intensities of 

each beam) are also investigated theoretically and experimentally. It is 

demonstrated that beam incidence conditions have a significant impact on the 

period, contrast and formation of interference patterns. To determine the beam 

incidence conditions, the periods and contrasts of interference patterns are 

measured by means of image processing algorithms with subpixel accuracy and 

subsequently the incident angles and intensities of beams are calculated based 

on the theoretical analysis of spatial distributions of interfering beams. The 



 

 49

relationship between the beam incidence conditions and interference patterns is 

revealed. The proposed method is useful for the control and calibration of LIL 

processes, and for reverse engineering applications. 

The experimental simulations implemented by the He-Ne imaging interference 

system are instructive to better understand the influence of slight misalignment 

of the parameters and conduct the following practical experiments. In the next 

chapter, an advanced laser interference system is put forward to fabricate the 

silicon material. In order to examine the performances of high throughput and 

versatility, the schemes of two-, three- and four-beam interference are translated 

into actions. Compared to the traditional manner, a high powerful laser is used to 

create the well-defined structures and a series of significant outcomes are 

achieved by properly selecting the process parameters. 
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Chapter 4 

Direct Laser Interference Nanomanufacturing 

4.1 Related Work 

Different from direct laser writing (DLW) which uses a focused laser to modify or 

subtract materials in a serial or spot by spot way [45], DLIN is able to create a 

periodic array simultaneously. It is a parallel technique. Stroisch et al. reported 

that they used a pulsed, frequency tripled picosecond Nd:YAG laser for 

holographic ablation to pattern a surface relief grating onto an organic material [46]. 

The laser was 150ps pulsewidth at a wavelength of 355nm and the repetition rate 

was fixed at 10Hz. In their experiment, two-beam interference method was 

utilised and a fused silica phase mask of 1050.7nm pitch was added into the 

system as a beamsplitter. Generally, picosecond lasers often take disadvantage of 

short coherent length. Therefore, a phase mask is an indispensable element in the 

system. To quantify the ablation yield, energy densities of 5, 7, 13 and 20mJ/cm2 

were applied to treat a 175-300nm thin film of Alq3: DCM on glass substrate. The 

representative of a relief Bragg reflector in their work was shown in Fig. 4.1. The 

structures were ablated using 500 pulses of 5mJ/cm2 and the resulting maximum 

diffraction efficiency of 2.4% was achieved by using 500 pulses of 9.5mJ/cm2. 

 

Fig. 4.1 Representative AFM picture of a relief Bragg reflector. (Stroisch et al. 2007) 
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Voisiat et al. also employed a diffractive optical element (DOE) to split the laser 

irradiation into four beams and they pointed out that the DOE is a key element of 

experiment setup [47]. The laser source was a picosecond laser Foxtrot (Ekspla Ltd.) 

with the wavelength of 1064nm and pulse duration of 60ps and the spot where 

interference of beams took place was 475μm in diameter. The limitation of area 

fabricated by picosecond and femtosecond laser is a disadvantage of low 

efficiency. In their experiment, five different metals were used: Chromium, Gold, 

Copper, Aluminium and Silver. The incident angles of 8.6˚ (±1 order diffraction) 

resulted in the period of 5μm and pulse energy was fixed to 0.7mJ. It was found 

that the Chromium, Aluminium and Silver thin films were formed to quadratic 

matrix arrangement with a single laser pulse while three pulses were required to 

ablate the Gold thin film as it is a highly reflecting metal. Copper film was 5 times 

thicker and 100 laser pulses were required for the throughout ablation. In their 

work, different materials and regular structures were studied by controlling the 

process parameters. However, there is a lack of theoretical analysis of formation 

of four-beam interference, especially considering the polarisation mode. In 

summary, they concluded that the final shape was found to be dependent on 

phase difference between beam pairs. But the phenomenon has not been given a 

more detailed explanation, which is also one of the highlights in my work. 

Not only picosecond laser but also femtosecond laser can generate interfering 

beams to fabricate micro periodic structures. Kondo et al. demonstrated that the 

femtosecond laser was split by a diffraction beam splitter and overlapped with 

two lenses, resulting in one-, two- and three-dimensional microstructures [48]. But 

due to the requirement of 10μm order accuracy in optical path lengths, it is 

inflexible to adjust. Very recently, Wang et al. reported a solution of the limited 

coherence length of femtosecond laser by means of light field tailoring of the 

incident beam with a phase mask. With the interaction of first-order diffracted 

beams and induced waves such as surface plasmon polaritons (SPPs), an 

interesting phenomenon has been found that the structures are consisted of 

periodically arranged sub-wavelength nanogratings, as shown in Fig. 4.2. 
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Furthermore, the orientation of nanogratings relative to microgratings can be 

controlled by changing the polarised angles of beams. The period of nanogratings 

ranging from 200nm to 220nm can be explained by the Drude-like mode and 

defined as
sp

sp

k
π=

Λ
=Λ

2
, where Ksp is the wave vector of SPP. It has been 

demonstrated that the hybrid structures can be attained in semiconductor like 

GaAs, ZnO, ZnS, and ZnSe. 

 

Fig. 4.2 Nanograting orientation tuning by changing the incident laser beam polarisation. The red 

arrows represent different laser field polarised at (a) perpendicular, (b) 45˚ tilted, and (c) parallel 

to the micrograting direction. (Wang et al. 2014) 

Castro et al. created line and dot structures on the surface of multi-walled carbon 

nanotubes (MWNTs) based coatings dispersed in antimony-doped tin oxide (ATO) 

matrix by means of direct two- and three-beam laser methods [49].  

A high-power pulsed Nd:YAG nanosecond laser (Quanta-Ray Pro-290, Spectra 

Physics) was used in their work. They discussed that both MWNT-ATO and pure 

networks of MWNTs coatings on the borosilicate glass substrates were irradiated 

with one single pulse. Well-defined arrays of conductive coatings were fabricated 

with laser fluence ranging from 207 to 644mJ/cm2 on the MWNT-ATO and 

MWNT-NET film surfaces, as depicted in Fig. 4.3 and Fig. 4.4. The significant 

different topographies of two films were caused by high absorption coefficient of 

ATO.

 



 

 53

 

Fig. 4.3 Scanning electron microscope 

micrographs of irradiated MWNT-ATO films 

with (a and b) two and (c and d) three laser 

beams interference patterns: (a) laser 

fluence=207mJ/cm2; (b) laser 

fluence=483mJ/cm2; (c and d) laser fluence 

=644mJ/cm2. The insert in (d) shows the 

surface morphology at the interference 

maximum and minimum. (Castro et al. 

2008) 

 

Fig. 4.4 Scanning electron microscope 

micrographs of MWNT-NET films deposited 

on borosilicate glass irradiated with (a and b) 

two and (c and d) three laser beams 

interference patterns. The laser fluences 

were (a) 272mJ/cm2, (b) 251mJ/cm2, (c) 

163mJ/cm2, and (d) 211mJ/cm2. The insert 

in (b) shows the surface morphology at the 

interference maximum and minimum. 

(Castro et al. 2008)

Since laser interference metallurgy was proposed [50], numerous efforts have 

been implemented to create micro and sub-micro structures on the bulk metal 

surfaces. For the purpose of fabrication of well-defined structures, a nanosecond 

NG: YAG laser of 355nm wavelength was used by D’Alessandria et al. and they 

studied the mechanism of structure formation on aluminium surfaces and also 

analysed the experimental results by means of thermal simulations [51]. With the 

laser fluence of 688mJ/cm2, the modification on surface took place 

independently of structure shapes. As the increase of laser fluence up to 

2100mJ/cm2, the quality of morphology decreased and countless droplet ejected 

molten metal were observed at the same time. To explain the main forces to 

create the structures during the direct laser interference ablation, a thermal 

simulation determining the temperature distribution of irradiation area was 

developed. It was found that the influence of reflectivity, laser fluence and period 

played important role in laser removal of materials. Their subsequent publication 

gave a detailed explanation for a FEM simulation [52]. According to the method, 
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un-patterned LEDs. 

Actually, the enhancement of efficiency on a basis of structured surface is also 

found to be an effective solution for organic light emitting diodes (OLEDs) [55]. 

Both LEDs and OLEDs are very important energy-saving products and are being 

widely applied for illumination, smartphones, digital cameras, and quantities of 

consumer electronics. It has been demonstrated that direct laser interference 

technique has the capability of producing periodic micro and nano structures 

with high throughput and at the same time promising novelty revolutionary 

applications in a huge number of areas. 

In summary, several research groups have reported that they used the direct 

laser interference technology for the fabrication of periodic structures in 

different materials. However, there is a lack of theoretical analysis of the 

formation of laser interference patterns and their corresponding surface 

structures fabricated. In this work, the silicon material is selected and expected 

to create different well-defined surface structures based on theoretical analysis 

of the formation of laser interference patterns. Two-beam, three-beam and 

four-beam nanosecond laser interference systems were set up to modify the 

silicon surface, resulting in the grating, regular triangle and square structures. 

AFM was employed to observe the profiles of samples and analyse the structural 

dimensions. From the AFM micrographs shown, the critical features of structures 

have a dependence on laser fluences. By properly selecting the process 

parameters, well-defined grating and dot structures can be achieved. 

4.2 Overview of Nanosecond Laser Interference System 

In the work, a nanosecond laser interference system was employed to carry out 

the experimental study. The laser is a Q-switched Nd:YAG laser (INNOLAS 

SpitLight-2000, Germany), producing maximum 2J per pulse at 1064nm at 10Hz. 

The pulsewidth is 6-8ns and beam diameter is approximate to 9mm. It features 

robust and stable resonator structure, which ensures high quality of Gaussian 
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beam and high efficiency. Different harmonic generators extend the wavelength 

range to the second, third and fourth harmonics. Moreover, the laser is injected 

with a seeded laser and the linewidth is low to 0.003cm-1. These features offer an 

excellent coherent source for interference. 

4.2.1 DLIN Concept 

DLIN refers to direct laser interference nanomanufacturing. Compared with 

conventional LIL, the energy distribution modulated by nanosecond laser 

interference is transferred to substrate surface directly and corresponding micro 

and nano structures throughout spot area are fabricated at the same time. 

4.2.2 Advantages of System 

DLIN takes the advantage of straightforward process without the mask and 

photoresist. Additionally, compared with the point by point writing modality of 

EBL, FIB and SPL, it is a parallel technology which can fabricate various structures 

with two or multi-beam laser interference simultaneously. The periodicity of 

structures corresponds to the interference distribution with maximum and 

minimum intensities, which can be controlled from micrometres to nanometres 

continuously by adjusting the incident angles (θ) and/or wavelengths (λ). The size 

of produced structures can be as large as the beam area (>cm2). In summary, the 

advantages of DLIN can be concluded as follows: 

 High throughput 

 Low cost 

 Controlled periodicity (d=λ/2sinθ) 

 Large area manufacturing (>cm2) 

 Various materials (e.g. semiconductor, metal, organic material and so 

on). 
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Due to the simple system and technological procedure, DLIN is a promising tool 

for volume production and suitable for a large quantity of potential applications. 

It is a promising technology with the capability for the manufacturing of micro 

and nano structures. 

To develop the DLIN, the theoretical and experimental investigations are carried 

out systematically. The significances of the work in this chapter are highlighted as 

below: 

 Direct modification of silicon surface by nanosecond laser interference 

technology 

 Theoretical analysis of the formation of laser interference patterns and 

use of silicon material to create their corresponding well-defined surface 

structures 

 Two, three and four beam laser interference systems used to fabricate 

grating, regular triangle and square structures on silicon surfaces 

 Analysis of the critical features of structures obtained from different 

laser fluences 

 Nanosecond laser interference lithography suited to flexibly fabricate 

well-defined micro and nano structures for different applications such as 

anti-reflection and self-cleaning surfaces by properly selecting the 

process parameters. 

4.3 Experimental Procedures 

All the samples used in the experiment were polished single crystal silicon (100) 

wafers and the experiments were carried out under ambient conditions. The 

schematic of optical path is shown in Fig. 4.7. The beams were split by 

beamsplitters and high-reflective mirrors. Quarter wave plates and polarisers 

were placed before the exposed samples to control the power and polarisation 



 

 59

angles precisely. The power and energy of the laser were measured with the Laser 

Power and Energy Meter (Coherent LabMax-top, USA). The surface morphology of 

the samples was characterised with the atomic force microscope (AFM). 

 

Fig. 4.7 Schematic set-up for the direct laser interference system with (a) two-beam; (b) 

three-beam; (c) four-beam. The red line is high-reflective mirror, the blue line is beamsplitter, the 

orange line is quarter wave plate, and the green line is Brewster polariser.  

4.4 Direct Modification of Silicon Surface 

4.4.1 Theoretical Analysis and Simulations 

The theoretical equations of two, three and four-beam laser interference with 

proposed polarisation modes describing the electric field vectors and interference 

intensity distributions are derived on a basis of the methodology in section 2.4 

and expressed in Eqs. (4.1), (4.2) and (4.3) respectively, 

ITE−TE = A2[2−2cos(2k ⋅sinθ ⋅ x)] ,                 (4.1) 

 ITE−TE−TM = A2

3+ 3cosθ ⋅cos k ⋅sinθ ⋅ y( )
− 3 cosθ ⋅cos k 3 2⋅sinθ ⋅ y +3 2⋅sinθ ⋅ x( )





−cos k 3 2⋅sinθ ⋅ y −3 2⋅sinθ ⋅ x( )































 ,      (4.2) 

ITE−TE−TE−TE = A2 ⋅[4 −2cos(2k ⋅sinθ ⋅ x)−2cos(2k ⋅sinθ ⋅ y)] .      (4.3) 

The distribution of the interference patterns was done by Matlab to simulate 2D 

and 3D profiles. Since the theoretical equations are hardly enough to describe all 

the insights of a physical phenomenon, mathematical modelling and 
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in Eq. (4.2) for three-beam laser interference. The direction of dot periods is along 

the X axis, the straight line of xy 3=  and the straight line of xy 3−= , 

respectively. For this reason, three-beam laser interference can fabricate triangle 

dot structures. Eq. (4.3) indicates that the periods along the X and Y axes are 

identical; thereby four-beam laser interference generates the square dot 

structures. The theoretical derivation shows a good correspondence with not only 

simulations but also the experimental results (Figs. 4.9, 4. 10 and 4.11). 

The energy distribution modulated by laser interference is transferred to the 

silicon surface to produce the periodic structures. The structures were obtained 

by nanosecond laser interference lithography, and they were different from those 

in the reference [56]. Tavera et al. used the laser fluences from 0.8J/cm2 to 2.0J/cm2 

and obtained three different structures showing the effects of the laser fluences 

on the result patterns. The absorption coefficient of silicon is about 1.11E+01 

(cm-1) at 1064nm wavelength but 1.04E+06 (cm-1) at 355nm wavelength. Since the 

absorption coefficient at 355nm is much stronger than that at 1064nm [57], the 

well-defined interference structures were observed in the outer perimeter regions, 

and the central areas were likely to be overexposed due to the applied larger laser 

fluences, especially when the focusing lens was used. To meet certain application 

requirements, focusing or objective lens is useful to increase the laser fluence at 

the cost of reduced irradiation areas. With high-peak power pulsed laser, 

macroscale areas (>cm2) of fabrication can be efficiently achieved. In addition, the 

deeper trenches and holes obtained in this work show that the thermal diffusion 

length and structural period play important roles in the result patterns. If the 

period approaches the thermal diffusion length, the temperature difference 

between maximum and minimum intensities decreases and does not bring about 

a periodic melting surface, leading to a more homogenous heating source. 

Consequently, the deeper structures could be easily obtained for larger 

interference periods. Furthermore, the energy of single photon at 355nm is 

around three times then that at 1064 nm. When the 355nm laser irradiated the 

samples, the laser light can induce single-photon or multiphoton inter-band 
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transitions and photon-electron excitation can result in direct bond breaking. But 

infrared laser excites electrons within the conduction band and vibrations in 

silicon. In this case, the thermalization of the excitation energy is fast and the laser 

can be considered as a heat source. 

As another interesting finding, conductivity variations across silicon surfaces were 

observed by conductive atomic force microscopy (CAFM). From the Fig. 4.12 

shown, the current images of three- and four-beam interference (Fig. 4.12(b) and 

(d)) show a correspondence with the topographic images (Fig. 4.12(a) and (c)). 

 

Fig. 4.12 (a) the topographic image of three-beam interference; (b) the conductive image of 

three-beam interference; (c) the topographic image of four-beam interference; (d) the conductive 

image of four-beam interference. 

A 10v bias voltage is applied between conductive tip of CAFM and samples, 

generating maximum current of 0.01nA on the sample fabricated three-beam 
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interference and maximum current of 0.08nA on the sample fabricated four-beam 

interference. Due to the current images were taken from the same position of 

topographic images, it can be identified that the surface conductivity induced by 

laser is rearranged and the arrangement correlating to distribution of 

microstructures may be attributed to the enhancement of effective contact area 

between tip and microstructures [58, 59]. 

Whatever the grating, triangle or square micro and nano structures are found to 

be an effective way to fulfil the applications of Photonic crystals and Quantum 

dots. For instance, the Bragg grating is a type example of one-dimension 

photonic crystal used as an optical switch [46]. Compared to the existing 

techniques which enable to fabricate the functional structures, e.g. EBL and FIB 

that write features with point-by-point or line-by-line strategy, an array of 

uniform periodic structures can be produced at the same time directly by means 

of DLIN. In addition, the resulting structures have the advantage of affecting the 

motion of photons or electrons in an extraordinary way and promise to be used 

in different forms in a wide range of applications. 

4.5 Summary 

The previous chapter mainly addresses a visualized method to observe the 

interference patterns in actual time. Through the implementation of 

experimental simulations, the method enables to verify the correspondences 

between the theoretical analyses and experimental results and moreover offers a 

more intuitive way to explore the principle of interference distribution. 

Benefiting from the extensive detailed analyses in chapter 3, the experiments 

carried out by the high-power laser interference system is put forward. 

In this chapter, the strategy of direct modification of silicon surface is used by 

means of nanosecond laser interference technique and the theoretical analyses of 

the formation of two or multi-beam laser interference are studied as well. The 

pattern generated by the intensity distribution of interference is transferred to the 
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material to produce periodic structures. For a relative low laser fluence, 

well-defined grating and dot structures have been achieved, and with the laser 

fluences increased, interactive thermal effect has been observed. Compared with 

other technologies, DLIN provides an attractive way to fabricate or modify various 

materials with low cost and high throughput. By properly selecting the process 

parameters, nanosecond laser interference system is well suitable to flexibly 

fabricate micro and nano structures for different applications such as 

anti-reflection and self-cleaning surfaces. 

In contrast to two- and three-beam interference, the modulation phenomenon 

takes place obviously in the case of four-beam interference. The phenomenon 

was found and described in a number of previous publications. However, there is 

still a lack of underlying mechanism of modulation and corresponding influence 

factors are not well-interpreted, which remains a challenge and gap for the 

scientific and engineering fields. Thus, chapter 5 is highlighted individually and 

the goal is to explicate the effects of polarisation vector on four-beam 

interference in views of both theoretical and experimental aspects. 
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Chapter 5 

Effects of Polarisation on Laser Interference Technology 

5.1 Related Work 

In laser interference, the intensity distribution is a function of incident angles, 

azimuthal angles, phase differences and polarisation directions. At present, more 

and more applications are focused on the fabrication of periodic and 

quasi-periodic micro and nano structures. Among them, four-beam laser 

interference lithography is the most extensively investigated technology [47, 60-63]. 

Theoretically, four-beam laser interference could generate evenly-distributed 

periodic structure patterns, but in practice, noticeable modulations were almost 

unavoidably introduced in interference patterns due to the misalignment of 

incident angles or unequal incident angle. 

Tan et al. reported that the linear defects were fabricated by four-beam 

interference lithography when the modulation period emerged and then it was 

found that the grade-type defects had the potential to be used for tapered 

transmission line defect resonators, graded photonic crystals (PhC) and tapered 

PhC micro- cavities embedded in photonic wire waveguides [64]. With respect to 

the modulation period, they pointed out a number of influence parameters, i.e. 

incident angles, phase changing and polarisation. Experimentally, the width of 

linear defects showed a dependence on the relationship of intensity and 

threshold of modification. From Fig. 5.1 shown, the centre and border regions, 

corresponding to (a) and (b) in the figure respectively, of one laser spot exhibited 

different defect widths along x-direction. Due to the Gaussian beam distribution, 

position A was irradiated much more strongly than position B. The results were 

W1=1.727μm, W2=2.434μm. Although it was demonstrated that the unequal 

incident angles in four-beam interference would give rise to the modulation or 

secondary period in their case and the quantitative analysis of modulation pitch 
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The sample was a 5nm thick SiO2 layer grown on a 2 inch GaAs (111) wafer by 

means of plasma-enhanced chemical vapour deposition and laser source was a 

gas nanosecond laser (wavelength=308nm, pulsed width=20ns). By controlling 

the laser fluence properly, a phenomenon that the SiO2 thin layer transformed 

into bubble state at the maximum interfering intensities was observed. A model 

of light-matter interaction was proposed to interpret the result. After dry etching 

of SiO2, small nanohole structures appeared and the minimum one was less than 

30nm and depth of 3nm. In summary, periodic nanostructures were formed on 

the wafer including the bubble-like SiO2 features and nanohole in GaAs and hole 

size of 30nm was directly observed by AFM.  

Tavera et al. have reported that laser induced periodic surface patterns, in 

particular micro and nano ripples, were found when the nanosecond laser 

irritated silicon material with a four-beam nanosecond interference system [56]. 

Different laser fluences (0.8J/cm2, 1.3J/cm2, 2.0 /cm2) were used to modify the 

samples and corresponding measurements of solar weighted reflectance were 

obtained. For the below laser fluence of 0.8J/cm2, silicon does not suffer the 

significant modifications in their experiment. With higher laser fluence 

(0.8-1.3J/cm2), the central area is dominated by the micro ripples pattern. Since 

the period of micro ripples shows a correspondence with modulation in 

four-beam interference, it is confirmed that the presence of micro ripples is 

caused by the intensity modulation due to a non-perfectly symmetric 

configuration. According to the simulation result, a 3˚ mistake of one of four 

incident angles will give rise to a period of 12.5μm modulation approximately, as 

show in Fig. 5.3. The conclusion can be also obtained by the previous publications 

but there is still a lack of detailed analysis of different polarisation modes and the 

relationship of polaristion vector and modulation. The formation of nano ripples 

appears when laser fluence further increases up to 1.3-2.0 J/cm2. At first, they 

form concentric circles surrounding the central area and then spread over the 

spot with a laser fluence up to 2.0J/cm2. As a result of presence of micro and 

nano ripples, the reflectivity shows a decrease for the samples processed with 
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with the azimuthal angles of φ1 =0°, φ2 =90°, φ3 =180° and φ4 = 270°. The 

incident angles of the four beams can be set as θθθθθ ==== 4321 . However, if 

any of the incident angles is misaligned, or is unequal to the others, there will be 

a modulation in the pattern. In this case, the incident angle *
3 θθ =  is used in 

the simulations, keeping other parameters unchanged. Based on the Eqs. (2.4), 

(2.5), (2.16), and (2.17), it is assumed that amplitudes of each beam are identical 

and initial phases are 0. Effects of three different polarisation modes are 

discussed below. 

 

Fig. 5.4 Four-beam interference configuration. 

In the case of the TE-TE-TE-TE mode, the polarisation angles of four beams are 

set as °==== 904321 ψψψψ . According to Eqs. (2.4), (2.5), (2.16), and (2.17) 

and the methodology described in section 2.4, the electric field vectors can be 

written as 
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 .         (5.1) 

The intensity of the interference iI and the modulation intensity of the 

interference *
iI are expressed as 

[ ])sin2cos(2)sin2cos(242 ykxkAIi ⋅⋅−⋅⋅−⋅= θθ  ,          (5.2) 
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[ ]{ })sin2cos(2)cos(cos)sin(sincos24 **2* ykzxkAIi ⋅⋅−⋅−−⋅+⋅−⋅= θθθθθ  . (5.3) 

In the case of the TE-TE-TE-TM mode, the parameters of the electric field vectors 

are the same as the TE-TE-TE-TE mode except the polarisation vectors. They are 

changed to 
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The intensity of the interference iiI and the modulation intensity of the 

interference *
iiI  are expressed as 
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In the case of the TE-TE-TM-TM mode, the parameters of the electric field 

vectors are the same as the TE-TE-TE-TE mode except the polarisation vectors. 

The polarisation vectors are 
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The intensity of the interference iiiI and the modulation intensity of the 

interference *
iiiI  are expressed as 
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The equations of interference intensity and modulation intensity in three cases 

are derived. It has been demonstrated that the polarisation vector plays a key 

role in the formation of interference patterns, pattern contrast and periods. 

5.2.1 Effect on the Period and Contrast 

It can be seen from Eqs. (5.2) and (5.3) that the maximum intensity is 28A  and 

the minimum intensity is 0 in the TE-TE-TE-TE mode. The periods in the y 

direction, expressed by Eqs. (5.2) and (5.3), are identical. But the periods in the x 

direction are changed from θλ sin2=xd  to )sin(sin *
* θθλ +=

x
d . For this 

reason, the dot patterns are changed from the square to rectangle shape. 

In the TE-TE-TE-TM case, the period of dot structures in the x direction is twice of 

the TE-TE-TE-TE mode. Additionally, 10A2 and 2A2 are the boundaries of the 

maximum and minimum intensities respectively, which can be interpreted that 

the intensity peak will not over 10A2 and the background noise will be at least 

2A2 in this case. The periods in the y direction, expressed by Eqs. (5.5) and (5.6), 

are unchanged, and the period in the x direction is changed from θλ sin=xd  to

*sin* θλ=
x

d . 

The period of dot structures in the TE-TE-TM-TM mode is θλ sin/=xd . The 
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boundary of maximum intensity is 16A2 and the minimum intensity is 0, which 

shows in accordance with the intensities bar in Fig. 5.5. It can be confirmed that 

the TE-TE-TM-TM mode has the highest intensity and the best contrast. But there 

is a very obvious modulation. This modulation is mainly caused by slight 

differences in the incidence angles of the beams. From Eq. (5.9) suggested, two 

small periods along the x axis can be found. They are )sin(sin *
1 θθλ +=d  and

θλ sin/2 =d , respectively. In addition, an extra periodical modulation will be 

introduced in the interference pattern. It can be expressed as *
3 sinsin θθλ −=d . 

5.2.2 Effect on the Formation 

From the theoretical analysis obtained in the 5.2 section, the effect of 

polarisation is addressed and given a detailed explanation of spatial distributions 

in three cases. Matlab is used as a powerful tool for the simulations that visually 

display the formation of interference patterns.  

It can be seen from Fig. 5.5 that the maximum intensities distribute both along 

the X, Y axes and periodic dots in the TE-TE-TE-TE mode, which is interpreted in 

the intensity bars of Fig. 5.5(a), (e) and (i). By comparison, the maximum 

intensities are only focused on the periodic dots in the TE-TE-TE-TM and 

TE-TE-TM-TM polarisation modes. Moreover, the maximum intensities of 

TE-TE-TE-TM and TE-TE-TM-TM are higher than those in the TE-TE-TE-TE mode. 

To understand the respective modulation of three cases, the incident angle of 

Beam 3 (Fig. 5.4) is changed from 6˚ to 9˚ and resulting patterns are shown in Fig. 

5.5(b), (f) and (j). In the TE-TE-TE-TE mode, the dot patterns are changed from 

square to rectangle shape. In the TE-TE-TE-TM mode, the features of dots have 

been changed and the distribution of pattern shows a partial similarity to 

three-beam interference. 
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Fig. 5.5 Interference simulation results for three different polarisation modes: (a) TE-TE-TE-TE 

mode with the identical incident angles; (b) Intensity curve along the double arrows line in (a); (c) 

TE-TE-TE-TE mode with a misaligned incident angle; (d) Intensity curve along the double arrows 

line in (c); (e) TE-TE-TE-TM mode with the identical incident angles; (f) Intensity curve along the 

double arrows line in (e); (g) TE-TE-TE-TM mode with a misaligned incident angle; (h) Intensity 

curve along the double arrows line in (g); (i) TE-TE-TM-TM mode with the identical incident angles; 

(j) Intensity curve along the double arrows line in (i); (k) TE-TE-TM-TM mode with a misaligned 

incident angle; (l) Intensity curve along the double arrows line in (k). 

In the case of the TE-TE-TM-TM polarisation mode, an obvious modulation will 

be produced. The period of modulation is defined as . It can 

be interpreted from Fig. 5.6 that if the misaligned incident angle is infinitely 

closed to the normal incident angels, the period of modulation will become 

larger till the whole pattern tends to uniformity. Another phenomenon as a result 

of different modulation periods is that compared to the larger incident angles, 

the incident angles of less than 10˚ suffers from a more obvious modulation, 

even if the extend of derivation is identified. For example, when θ1=θ2=θ4=6˚ and 

*
3 sinsin θθλ −=d
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5.3.1 Fabrication of the TE-TE-TE-TE Polarisation Mode 

The dot or called microcone structures were fabricated in this mode. In the 

experiment, all the incident angles of four beams are difficult to obtain the strict 

equality with each other. But an evenly-distributed microcone structures over 

large area can be achieved in the polarisation mode. The result is shown in Fig. 

5.7. 

 

Fig. 5.7 Micrographs of TE-TE-TE-TE four-beam laser interference with 300 pulses and laser 

fluence=0.64J/cm². The scale bar in the inserted picture is 20μm. 

5.3.2 Fabrication of the TE-TE-TE-TM Polarisation Mode 

In contrast, microhole structures can be fabricated in the TE-TE-TE-TM mode. The 

difference between them can be explained by theoretical analysis based on Eqs. 

(5.2)-(5.3) and (5.5)-(5.6). 

5.3.3 Fabrication of the TE-TE-TM-TM Polarisation Mode 

Unlike the above two modes, in the TE-TE-TM-TM mode, the modulation have 

advantages of high peak intensity and the best contrast. But in this case, the 

patterns can hardly be evenly distributed due to the slight differences of the 

incident angles. In practice, the modulation is hard to be avoided. To obtain 
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large-scale uniform structures, the TE-TE-TE-TE mode and TE-TE-TE-TM mode 

could be better alternatives. 

 

Fig. 5.8 Micrographs of TE-TE-TE-TM four-beam laser interference with 300 pulses and laser 

fluence=0.64J/cm². The scale bar in the inserted picture is 20μm. 

 

Fig. 5.9 Micrographs of TE-TE-TM-TM four-beam laser interference with 300 pulses and laser 

fluence=0.64J/cm². 

5.3.4 Discussion of formations fabricated by the three polarisation modes 

In four-beam interference, the polarisation vector plays a critical role in the 

formation, contrast and period of interference patterns. To explicate the relation 



 

 

and differ

terms of 

However, 

detailed e

derived o

previous w

section 2.

obtained, 

internal in

For the sp

in the TE-T

difference

The expe

fabricated

fabricated

and exper

distributio

TE-TE-TE-T

surroundi

high-peak

microhole

important

minima po

Fig. 5.10

rence of th

theoretical 

by investiga

explanation

on a basis o

work [11, 18-1

.4. Once th

the expres

nterfering te

pecific incid

TE-TM-TM 

es with each

rimental o

d in the TE-T

d in the TE-T

rimental res

on extracted

TE polarisat

ng area abl

k maximum

e structures

t parameter

ositions get

0 Comparison 

(a)

hree differe

aspect pro

ating the sta

. All the eq

of Eqs. (2.1
9, 60-61, 64-65].

he formulat

ssions of th

erms and M

ence condit

polarisation

h other. 

bservations

TE-TE-TE po

TE-TE-TM p

sults are ill

d from Fig. 

tion mode, 

ated by the

m intensitie

s are fabric

r as the mo

homogene

analyses of th

80

ent polaris

ovide instru

ate of the a

quations fr

16) and (2

. More deta

tions of int

he contrast

Matlab enab

tion, e.g. th

n mode, th

s have sho

olarisation m

polarisation 

ustrated in

5.5 (a) and 

microcone 

e laser. In th

es produce

cated. In th

olten mater

eous when t

he simulation

(b

ation mod

uctive insig

art, there is 

rom (5.1) t

.17) and si

ails of the m

tensity distr

and period

bles to realis

he abnorma

e comparat

own that m

mode, while

mode. The

 Fig. 5.10. 

(e) are inte

structures 

he TE-TE-TE

e direct ab

his process,

rials at both

the period g

s and experim

b)

es, the de

hts to anal

barely reco

o (5.9) in t

imultaneou

methodolog

ribution in 

d can be in

se 2D and 3

al or unequa

tive analyse

microcone 

e microhole

 compariso

Two fragme

egrated into

are formed

-TM polaris

blation and

, interferen

h the maxim

goes down. 

mental results.

emonstratio

lysing the 

ord which g

this chapte

usly refer to

gy can be se

three case

nferred from

3D visualizat

al incident 

es can revea

structures 

e structures 

on of simula

ents of inte

o Fig. 5.10. I

d because o

sation mode

d correspo

nce period 

ma position

 

. (a) TE-TE-TE-

ns in 

issue. 

ives a 

er are 

o the 

een in 

es are 

m the 

tions. 

angle 

al the 

were 

were 

ations 

ensity 

n the 

of the 

e, the 

nding 

is an 

s and 

-TE 



 

 

pol

In the TE

modulatio

the offset

with diffe

structures

Fig. 5.11 Th

φ3 =183˚, 

5.4 Summ

Through a

and 4 res

comprehe

four-beam

Although 

give a co

non-unifo

chapter 5 

The effect

chapter. T

patterns, 

different p

have show

(a) 

arisation mod

-TE-TM-TM

on has a min

t of the azim

rent condit

s is result of

he directions o

and φ4 =270

mary 

a series of e

spectively, t

ended. Whi

m interfere

it has been

omprehens

rm structu

is set up ind

ts of polaris

The polaris

pattern co

polarisation

wn a good c

de; (b) TE-TE-T

M polarisatio

nor slope (F

muthal ang

ions of azim

f incident an

of modulation

0˚; (b) φ1 =-5˚

experimenta

the charact

ile the mo

nce as the

 described 

ive explana

res produc

dividually.

sation on fo

sation play

ontrasts and

n modes are

corresponde

81

TE-TM polaris

on mode, 

Fig. 5.9). Th

gles. Fig. 5.1

muthal angl

nd azimutha

n slop with dif

˚, φ2 =90˚, φ

al simulatio

teristics of 

odulation p

e further 

by the pub

ation of u

ed by the 

our-beam l

ys a key ro

d periods 

e discussed

ence with th

ation mode. T

it can be s

he phenome

11 indicates

es. Actually

al factors.

fferent azimut

φ3 =185˚, and 

ns and expe

multi-beam

henomenon

investigatio

lications, th

underlying 

modulation

aser interfe

ole in the 

in four-bea

d systematic

he theoreti

(b)

The scale bars

seen that t

enon could 

s a number

y, the event

thal angels. (a

φ4 =270˚; (θ1

eriment stu

m interferen

n is found 

on is carri

he remainin

mechanism

n effectivel

erence were

formation 

am interfer

cally. The re

cal analysis 

s are 10μm. 

the directio

be attribut

r of modula

tual formati

a) φ1 =0˚, φ2

1=θ2=θ4=6˚, θ*

udy in chapt

nce are bas

in the ca

ied out de

ng challenge

m or avoid

y and ther

e studied in

of interfe

rence and 

esulting pat

 and simula

on of 

ted to 

ations 

ion of 

 

=90˚, 

*=8˚). 

ters 3 

sically 

se of 

eeply. 

e is to 

d the 

refore 

n this 

rence 

three 

tterns 

ations. 



 

 82

The TE-TE-TM-TM mode has the best contrast and highest peak intensity. It is 

found that the secondary periodicity or modulation in four-beam laser 

interference is the result of the misalignment of incident angles or unequal 

incident angles only in the case of the TE-TE-TM-TM mode. Furthermore, the 

formations of resulting structures are associated with the polarisation modes, e.g. 

micro or nano cone and hole structures are fabricated in the cases of TE-TE-TE-TE 

and TE-TE-TE-TM modes respectively. By exploiting the benefits of each case, 

various applications can be realised potentially. As a consequence, DLIN is 

demonstrated to be a promising and versatile technique. Based on the achieved 

outcomes, large-area applications will be studied in the next chapter. 
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Chapter 6 

Large-Area Fabrication and Applications 

6.1 Introduction 

After an intensive study concerning the theoretical analyses in the previous 

chapters, a number of meaningful applications are investigated subsequently in 

this chapter. Since the non-uniform microstructures generated by the modulation 

effect show a relatively less potential in the large-area applications, the 

TE-TE-TE-TM and TE-TE-TE-TE polarisation modes are chosen to fabricate the 

evenly distributed arrays which are suitable for the realisation of optimum 

property. Section 6.2 mainly discusses with the antireflection structures by 

means of difference schemes, while a novel characteristic of microcone 

structures exhibiting both antireflection and superhydrophobicity simultaneously 

is addressed in section 6.3. Respecting the matters of existing technologies, the 

comparative results exhibit the advantages of DLIN. More details can be found in 

the following sections. 

As mentioned above, numerous efforts have been made in recent years to 

fabricate large-area structures on micro and nano scales. Large-area applications 

with extraordinary properties contribute to the progress from laboratory to 

industry. Among them, the extensive attentions in many fields have been 

attracted to antireflection or high absorption structures because they can be 

widely used in optical detection, solar cells, OLEDs (organic light emitting devices) 

and high-power laser system. To achieve the function, chemical and physical 

methods, such as wet chemical etching [69], electrochemical etching, reactive ion 

etching [70] and nanoimprint lithography [71], have been developed to fabricate the 

structures. However, the techniques have not the selectivity to substrate without 

the help of masks. Additionally, some solution and gas sources are quite toxic and 

corrosive. Recently, another elegant method, femtosecond or nanosecond laser 



 

 84

has been employed to irradiate the silicon surface. Micro spike structures (known 

as black silicon) were fabricated and its excellent ability of reducing light 

reflection is attracting more and more attentions. People expect it to open a new 

door for a wide range of applications. 

In this chapter, three different anti-reflection structures were fabricated with the 

direct laser interference technology under sulphur hexafluoride (SF6) and air 

ambiance conditions respectively. The scanning strategy with the four-beam 

nanosecond laser interference system was applied to realise the wafer-scale 

fabrication. Due to a larger laser spot and the disturbance-resisting ability for 

nanosecond laser system, this method is more efficient. 

Under the SF6 ambiance, an array of sharp conical micro spikes was made. By 

comparison, two periodic structures corresponding to two different polarisation 

modes were obtained in the air ambiance. To investigate the reflectance of black 

silicon, microhole and microcone structures, a spectrograph equipped with an 

integrating sphere was used. It is found that a lower reflectivity is achieved for a 

higher structure depth. This behaviour may be caused by multiple reflections to 

improve the amount of light absorbed. Although the reflectivity of black silicon 

treated by nanosecond laser in the SF6 ambiance is extremely low, surface 

photocarrier recombination limits the conversion efficiency due to a high impurity 

concentration. As an alternative, direct laser interference technology is used to 

produce well-ordered periodic structures on the material surface in the air 

ambiance. 

Furthermore, in order to realise the extraordinary functions of both self-cleaning 

and antireflection simultaneously, we propose a straightforward method to 

fabricate well-defined micro and nano artificial bio-structures compared to the 

existing technologies. The proposed method of direct laser interference 

nanomanufacturing (DLIN) takes a significant advantage of high efficiency as only 

a single technological procedure is needed without pretreatment, mask and 

pattern transfer processes. Meanwhile, the corresponding structures show both 
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antireflection (AR) and superhydrophobicity properties simultaneously. The 

developed four-beam nanosecond laser interference system configuring the 

TE-TE-TE-TE and TE-TE-TE-TM polarisation modes was set up to generate periodic 

micro cone and hole structures with a huge number of nano features on the 

surface. The theoretical and experimental results have shown that the periodic 

microcone structure exhibits excellent properties with both a high contact angle 

(CA=156.3˚) and low omnidirectional reflectance (5.9-15.4%). Thus, DLIN is a 

novel and promising method suitable for mass production of self-cleaning and 

antireflection surface structures. 

6.2 Antireflection structures 

6.2.1 Related Work on Black Silicon Fabricated by Femtosecond Laser 

Silicon is one of the most important materials for the semiconductor industry. In 

the matter of many applications, e.g. solar cells, infrared detectors, CCD and 

other categorised semiconductor devices, surface reflection is a limited factor for 

the optoelectronic performances with lack of collecting light. In the past, it was 

found that surface texturing could reduce the surface reflection of light and 

increase absorption. In 1998, Eric Mazur group reported a novel material, namely 

black silicon. It was obtained by femtosecond laser processing of crystalline 

silicon surfaces in the presence of ambient gases SF6 or Cl2 
[72]. With a number of 

investigations of black silicon, it was proved to have an excellent antireflection 

property and the absorbance from near-ultraviolet to the near-infrared can be 

increased over 90%. Black silicon has potential applications such as high 

sensitivity infrared photodiodes, high quantum efficiency photodiodes, field 

emission devices and photovoltaic cells. In order to interpret the mechanism of 

laser-induced etching, fowlkes et al. found there was a dynamic interplay 

between the formation of microholes and microcones [73]. The SF6 total and 

partial pressures have a pronounced effect on the growth of cones. This fact is an 

indication that it is the laser-generated plasma that controls the cone growth. 
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etching level. The other is the formation of shields to avoid oxidation. 

It can be known that SF6 has a large influence on the resulting microcolumn 

morphology. SF6 contributes to the generation of the melted droplet-shaped 

features on the top of conical spikes that growth on the periodic black silicon 

surface. Irradiation in the laser interference region induced decomposition of SF6 

and produced F2 that diffuses in the highly heated substrate. The F2 reacted with 

silicon and formed the volatile SiF2 at the bottom of ablation holes. Then volatile 

SiF2 could react later on the tip and sides of the conical spikes reform 

monocrystalline silicon. 

 

Fig. 6.3 SEM image of black silicon structures fabricated in SF6 ambiance. 

6.2.3 Fabrication of Microcone and Microhole Structures 

According to the results of Chapter 5, two resulting structures on the silicon 

surface can be fabricated corresponding to two polarisation modes.  

 

Fig. 6.4 (a) Cone structures; (b) Hole structures fabricated by the direct four-beam laser 

interference system with the TE-TE-TE-TE and TE-TE-TE-TM polarisation modes, respectively. The 
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Focal length 300mm Pulse width of CA/CC 0.0001 to 1000s 

Resolution 0.1nm 
Min sampling interval 

of CA/CC 
1μs 

Accuracy 
0.2nm (1200 g/mm 

grating) 
Pulse width of 

DPV/NPV 
0.001 to 10s 

Repeatability 0.1nm SWV frequency 1 to 100KHz 

Wavelength 
Range (nm) 

200-2500nm 
i-t min sampling 

interval 
1μs 

The reflectance is the fraction of incident electromagnetic power reflected from a 

specific sample and determined by the Eq. (6.1). 

s
s

m
m R

I
IR ⋅=  .                      (6.1) 

where Im is the current value of measured samples detected by electrochemical 

work station, Is is the current value of standard plate specimen detected by 

electrochemical work station and Rs is the reflectivity of a calibrated standard 

specimen. The date of standard plate for reflectivity corresponding to wavelength 

is shown as Appendix B. 

First, the reflection performs of microcone and microhole structures are 

investigated. Fig. 6.8 shows the measured curves. It indicates that both cone 

structures and hole structures have a lower reflectance than the original silicon 

surface (around 35%) as more light can be absorbed by lengthening the optical 

path or multiple reflections. In addition, the reflectance of microcone structures 

is lower than that of the microhole structures. Halbwas et al. simulated the 

reflectance performance of four different structures, and concluded that the 

spike or cone structures were better in terms of light absorption [81]. In order to 

obtain large-scale uniform cone structures, the TE-TE-TE-TE polarisation mode 

can be an alternative. 
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Fig. 6.8 Reflectance measurements of the microcone and microhole structures. 

The reflectivity of black silicon and microcone structures was measured by the 

system. Fig. 6.9 shows that the reflectivity of black silicon is only several percent 

over the visible spectral range and it is responsible for the black appearance. It is 

also noticeable that microcone structures display light-trapping property. 

D’Alessandria et al. has demonstrated higher structure depths achieved for large 

periods based on simulations and experiments [51]. Multireflection inside deeper 

microcones contributes to iterative absorption. Therefore, microcone structures 

with the period of 15μm have a lower reflectivity than those of 6μm. 

 

Fig. 6.9 Reflectance of three different structures as a function of wavelength. 

A number of previous studies show that a high density of sulphur atoms in the 

sulphur hexafluoride gas is doped in silicon under laser irradiation [78, 80, 82]. The 

“dead layer” will reduce quantum efficiency due to the high enhancement of 

photocarrier recombination. In contrast, well-defined structures can be 

fabricated by direct laser interference technology in air after the hydrofluoric (HF) 
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acid was employed to wipe off the silica. 

6.3 Investigation of Both Anti-reflection and Superhydrophobicity 

Functional Surfaces 

6.3.1 Motivation 

Triggered by the fantastic surfaces of nature, such as the anisotropy of the rice 

leaves [83], the iridescence of the butterfly wing [84], the self-cleaning of the lotus 

leaves [21, 27, 85], and the antireflection of Moth-eye [86, 87], the fabrication of 

artificial bio-structures has become a hot topic, attracting more and more 

attention in various fields [88-93]. The potential applications demand high 

efficiency and low cost techniques to realise the extraordinary functions and fulfil 

the macroscale fabrication [77, 94-98]. 

Up to now, great efforts have been devoted to study the hierarchical micro and 

nano structures, which are generally regarded to the critical reason for 

multifunctional realisation. On the one hand, Wu et al. achieved the controlled 

anisotropy wetting structures on the photosensitivity resist [29]. They investigated 

the anisotropic wetting property on grooves with different line widths, periods 

and heights of structures fabricated by LIL. Specially, it was found that the 

controlled behaviour strongly depends on the height. Finally, the perpendicular 

CA was enhanced to 131˚±2˚ by using their method. Wang et al. fabricated the 

grating structures on graphene surfaces (CA=156.7˚) by two-beam interference 

method and the structures also showed iridescence behaviour [84]. They pointed 

out that the results contribute to the design of colourful superhydrophobic 

surfaces and understanding of interaction at liquid-graphene interface. Wu et al. 

obtained a high contact angle (CA=175˚) at the cost of time consuming strategies, 

i.e. laser interference, photolithography, PDMS transfer and plasma treatment, as 

shown in Fig. 6.10 [28]. Three different microstructures, 20μm pitch pillar arrays, 

2.5μm periodic pillar and gecko foot-like hierarchical structures, were fabricated. 

With the analysed of Wenzel’s and Cassie’s models, the hierarchical structures 
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as a mask, size reduction of PS with O2 plasma treatment, deep etching with CF4 

and H2 plasma etching, and removal of PS with two cleaning processes [87]. Due to 

depend on the PS as an etching mask, the formation of fabricated structures is 

random. Impressively, 99% transmission was achieved on the glass substrate 

fabricated on the front and back sides. Subsequently, they further investigated 

the geometrical parameters of Moth-eye structures, such as height, periodic 

distance, shape, and arrangement in the reference [103]. In the conclusion, they 

suggested that periodic nanopillar arrays are more effective for light transmission 

than random nanopillar arrays. 

Compared with them, to date, there is still a lack of a straightforward technique 

for realisation of both antireflection and superhydrophobicity simultaneously, 

especially considering the cost and production efficiency. For this reason, a 

straightforward method to fabricate well-defined micro and nano artificial 

bio-structures in this work was put forward. The developed four-beam 

nanosecond laser interference system configuring the TE-TE-TE-TE and 

TE-TE-TE-TM polarisation modes was set up to generate periodic micro cone and 

hole structures with a huge number of nano features on the surface. The results 

have shown that the periodic microcone structure exhibits excellent properties 

with both a high contact angle and low omnidirectional reflectance. 

In recent years, lots of efforts have been focused on the omnidirectional high 

absorption of solar cells to achieve higher conversion efficiency. But the problem 

of incident energy loss caused by dust accumulation has not been properly 

addressed. In practice, not limited to solar cells, photoelectric sensors, detectors 

and other optical devices which are exposed under the surrounding environment 

all require a long-term and effective solution to overcome this problem. With the 

detailed analysis of experimental results, the microcone structure exhibited 

excellent properties with both a high contact angle (CA=156.3˚) and low 

omnidirectional reflectance (5.9-15.4%). Consequently, DLIN provides a new way 

for the fabrication of both antireflection and superhydrophobicity functional 
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structures. 

6.3.2 Experimental Results 

The experiment was carried out in the air and the parameters of the laser fluence, 

number of pulses and period of structures used in the experiment are listed in 

Table 3. Contact angles (CA) were measured by a contact angle measurement 

system (JGW-360A) and the surface topography of structures was characterised 

by a scanning electron microscope (SEM/FEI Quanta 250 FEG). 

Table 3 Laser fluence, number of pulses and period of samples in the experiment. 

No. Laser fluence Number of pules Period

1 710mJ/cm2 200 6.7μm
2 710mJ/cm2 300 6.7μm

3 710mJ/cm2 400 6.7μm

4 710mJ/cm2 200 14.2μm

5 710mJ/cm2 300 14.2μm

6 710mJ/cm2 400 14.2μm

The laser fluence and exposure time were two important parameters which have 

a strong influence on the structural features and performances of both the 

reflectance and CA. In the experiment, a series of laser fluences were applied to 

determine the proper value of modification for the silicon. When a relative low 

fluence is used, the material is ablated with the need of more pulses so the 

efficiency is low. By increasing the laser fluence, more energy is absorbed by the 

material and the relative temperature between the interference maxima and 

minima will decrease. As a result, the whole irradiation area could be regarded as 

an evenly-distributed hot source and the periodic structures tended to form an 

irregularly ordered pattern [104]. Finally, the laser fluence of 710mJ/cm2 was 

chosen to analyse the effects of the period and exposure time on the reflectance 

and CA performances. 

With the laser fluence exceeding the material modification threshold, significant 

textures on the silicon surface were observed with less than 100 pulses. The 
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Fig. 6.12 Structural depths of samples as a function of the number of laser pulses. 

A finite different time domain (FDTD) method was employed to analyse the 

reflectivity behaviour and simulate the power absorption profiles [105]. The model 

was built up according to the structural parameters achieved in the experiment. 

The simulations of reflection and absorption for 6.7μm period structures with 

three depths of 8μm, 12μm, and 14μm were performed. Fig. 6.13(a) shows the 

cross-profiles calculated by the FDTD model and the corresponding quantitative 

results are shown in Fig. 6.13(b). It is demonstrated that the deeper structures 

have lower reflection and higher absorption features, which is in accordance with 

the experimental results. 

 

Fig. 6.13 (a) Power absorption cross-profiles of the structures with three depths, the inserted 

image is the model calculated by FDTD; (b) Normalized reflection and absorption of 6.7μm period 

structures with three depths of 8μm, 12μm and 14μm. 
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The special ability of water repellent plays a significant role in our daily life as the 

superhydrophobic surface can avoid contamination and erosion [106]. The 

microcone structures show not only the property of antireflection but also the 

property of superhydrophobicity at the same time. With the investigation of 

morphology, multi-scale structures in which there are a huge number of 

nanostructures on the top of microcones are observed by SEM. The process of 

direct laser interference ablation involves melting, vaporisation and solidification. 

The sufficient energy of incident laser causes the direct bond breaking of 

molecular chains in single or multi-photon mechanism, resulting in a huge 

number of molecular fragmentations. Fig. 6.14(b) shows the typical 

nanostructures whose sizes are around 100nm. Compared with the ordered 

microstructures, the hierarchical nanostructures enable reducing the solid-liquid 

contact area and increasing the CAs [44]. During the laser processing, a large 

volume of heat gave rise to chemical reactions between Si and O2. In this case, 

hydrofluoric acid (concentration of 5%) was employed to wipe off silicon oxides 

for several minutes. Fig. 6.14 shows the typical SEM images of superhydrophobic 

structures. 

 

Fig. 6.14 Typical SEM images of superhydrophobic structures with nano features on the surface. (a) 

Lateral view; (b) Top view. The inset is the measurement of CA. 

The theoretical CA of a water drop can be calculated based on the Cassie-Baxter 

model. The number of dots of the image in Fig. 6.11(a) is 24 in the area of 

40×25μm2. The average diameter of the micro feature point is 2μm. The result 

value of Lψ is 0.048. The water CA of the untreated Si surface is 84.5°. According 
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to Eq. (2.15), the calculated water CA is about 161.3°, which is close to the 

experimental results. By comparison, the CAs of 6.7μm period structures are 

larger than those of 14.2μm period structures, as shown in Fig. 6.15. That is 

attributed to the fraction of the solid contact area. 

 

Fig. 6.15 The CAs of microcone structures as a function of the number of pulses. 

6.4 Strategy of Beam Overlapping and Large-area Fabrication 

Since the last several years ago, a research group from MIT has developed 

scanning-beam interference lithography (SBIL), which can be described as a 

hybrid between IL and mechanical ruling [107]. Its basic premise is to generate 

large-area grating structures by exposing a photoresist-coated substrate. 

Compared with their work, there are two different features in my thesis. First, the 

grating structures were focused on and their aim was to fabricate the ultralow 

distortion nanoruler. Second, they used a continue laser to expose the 

photoresist. Generally, the exposure time needs several seconds and the 

phase-shifting caused by air disturbance is hardly avoided. The optoelectronic 

modulators (Pockels cells) or acousto-optic modulators (AOMs) has to be used in 

the experiment to realise the fringe locking, while the nanosecond laser is 

utilised in my task. Without the need of pattern transfer and phase control 

system, periodic line or dot structures on the substrate can be fabricated only 

within 6-8 nanoseconds. 
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SBIL takes the parallel and perpendicular scanning strategies to write the 

large-area gratings through the movement of high accuracy stage at the same 

speed of ν [108].  Herein, a point by point (the diameter of single point is 

approximate to 1cm) scanning strategy is applied to attain the wafer-scale 

fabrication, as shown in Fig. 6.16(a). In the most basic scheme, the condition of 

beam overlapping is of importance to the uniformity of the whole pattern and 

property of antireflection. Due to the Gaussian nature of the laser beams it is 

necessary to overlap neighbouring scanned points to achieve a uniform exposure 

does on the substrate. In this case, the linear displacement of one step (shown in 

Fig. 6.16(b)) and pulse number treated with one point (dwell time) are key 

parameters. 

 

Fig. 6.16 Schematic description of the writing strategy in large-area fabrication. (a) Beam 

overlapping under point by point condition; (b) Schematic of intensities distribution within the 

overlapping region. 

To determine the condition of optimum overlapping, different linear 

displacements of scanned overlapping and dwell times were used in the 

experiment. Fig. 6.17 shows the comparison optical micro images of different 

linear displacement. When the displacement was set too long, there would be 

blank regions unexposed and a trail of imprints. Importantly, the displacement of 

a single step is set an integral multiple of interference period. Given the 

conditions of laser fluence, period, pulse number (dwell time), the displacements 

of scanned overlapping (s) are investigated with a series of values setting in the 

precision stage. 
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lambda950 spectrophotometer with 60mm diameter integrating sphere. For 

comparison, the reflectance spectra of unstructured monocrystalline silicon 

surface and typical texture etched wafer using 2% NaOH concentration with 80 

minutes were measured. From Fig. 6.19 shown, the average reflectance is below 

3.5% in the measured wavelength range from the ultraviolet to the infrared. 

Hence, the excellent property of black silicon is suitable for the antireflection 

applications. The proposed method of direct laser interference 

nanomanufacturing (DLIN) takes a significant advantage of high efficiency as only 

a single technological procedure is needed without pretreatment, mask and 

pattern transfer processes. 

 

Fig. 6.19 (a) Measured reflectance spectra of large-area samples; (b) 6 inches silicon sample 

fabricated by DLIN under SF6 gas ambiance. 

It’s worth pointing out that the whole fabrication process only costs 10-40 

seconds in an area of 1cm2 approximately. In terms of the efficiency, DLIN shows 

a more powerful potential than EBL, FIB and so on. It is demonstrated that DLIN 

is suitable for mass production. The resulting structures demonstrated in this 

chapter are basically associated with large-area applications on micro scale. In 

the experiment, the wavelength of laser was 1064nm. The longer wavelength 

laser is used, the larger the period is produced. Additionally, in order to obtain 

the antireflection property, the deeper structures are fabricated in the larger 

period case. There is another flexible characterisation of interference technology 

that the scale of resulting structures can be adjusted by changing the used 

(a) (b)
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wavelength. To further explore the capability of DLIN, the high-resolution 

nanostructures will be investigated by the 266nm laser interference system in the 

next chapter. 

6.5 Summary 

This chapter focuses on the large-area applications. Firstly, DLIN technology was 

investigated to generate three different anti-reflection structures over large area. 

Although the black silicon fabricated under SF6 gas ambiance shows a better 

anti-reflection performance, the surface photocarrier recombination limits the 

conversion efficiency due to a high impurity concentration. Alternatively, 

microcone structures fabricated with the developed four-beam laser interference 

technology in the TE-TE-TE-TE polarisation mode have the capability of trapping 

the light as well. 

Moreover, triggered by the fantastic surfaces of nature, DLIN was used to 

fabricate the artificial bio-structures on silicon surfaces. Both antireflection and 

superhydrophobicity behaviours exhibited by microcone structures were 

systemically studied. The average reflectance of 14.2μm periodic structures is 

from 5.9% to 8.8% while the average reflectance of 6.7μm periodic structures is 

from 13.6% to 15.4% over the spectral range from 380nm to 760nm. It was found 

that the reflective performance was dependent on the structural depth, and 

deeper structures were achieved for larger periods. This phenomenon can be 

explained as a consequence of the thermal effect. The relationship between the 

CAs and structural parameters were investigated as well. Theoretically, the 

fraction of solid surface area has a strong impact on the CAs. In practice, the 

structures with smaller periods resulted in smaller solid surface area fractions. 

Consequently, the microcone structure exhibited excellent properties with both a 

high contact angle (CA=156.3°) and low omnidirectional reflectance (5.9-15.4%). 

In conclusion, DLIN features direct ablation of micro and nano structures on 

substrates without the need of pretreatment, mask and pattern transfer 

processes, and it provides a new way for the fabrication of both antireflection 
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and superhydrophobicity functional structures. 

With respect to large-area application, DLIN has the capability of wafer-scale 

fabrication (6 inches) utilising the overlapping strategy. For different structural 

periods, the optimum condition of overlapping can be found by a number of 

steps, i.e. scanned displacement and dwell time. The experimental results 

demonstrate that by means of the approach DLIN enables to achieve large-area 

fabrication and mass production.  
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Chapter 7 

High-Resolution Fabrication and Applications 

7.1 Introduction 

As for the conventional LIL, an effective way to enhance the resolution is to 

implement the immersion concept and use a high refractive index liquid medium 

in the path of laser beam near to the photoresist layer. In the case, the period of 

two-beam interference is expressed as [109] 

P = λ
n ⋅2sinθ

,                    (7.1) 

where n refers to the refractive index of surrounding medium. In order to 

increase the numerical aperture ( nsinθ ), deep ultraviolet (DUV) light source was 

employed considerably on a basis of prism or other optical components. 

Transmission in a high refractive index medium has the advantage of 

enhancement of the resolution as the effective wavelength is shorter than the 

vacuum wavelength. For example, the index of refraction of sapphire is ≈1.92, a 

193nm wavelength leads to an effective wavelength of ≈100nm in a prism of 

sapphire. It is the same with the immersion medium. However, it must be 

pointed out that at present the high-index immersion fluids have an extremely 

high absorption for DUV wavelength. 

Boor et al. reported that using the immersion interference lithography with a 

laser wavelength of 244nm produced the line patterns on the photoresist 

resulting a period of less than 100nm and a width of 45nm [110]. In their 

experiment, a triangular Littrow prism with one metal-coated side instead of a 

Llyod’s mirror was used. The method remains the advantages of Lloyd’s 

interferometer and improves the flexibility of periodicity. Bloomstein et al. 

utilised immersion interference lithography to fabricate linear photoresist 
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7.2 Influence Factors and Limitation of High Resolution 

Different from conventional laser processing of materials (e.g. drilling, cutting 

and welding) with a single beam, novel material fabrication method has been 

developed based on the laser interference technology which produces various 

patterns via the superposition of two or multiple laser beams. More and more 

applications impel laser interference technology towards the high-resolution 

direction. But there are still a number of influence factors which limit the 

resolution. 

7.2.1 Influence of Contrast 

From Eqs. (2.4), (2.5), (2.16) and (2.17), if two beams follow a symmetrical 

configuration with the same azimuthal and incident angles, the intensity formulas 

with the polarisation of two-beam laser interference can be written as 

[ ])sin2cos(222 xkAI TETE ⋅−=− θ  ,                    (7.2) 

)]sin2cos(2cos22[2 xkAI TMTM ⋅⋅−=− θθ  .                (7.3) 

Eqs. (7.2) and (7.3) indicate that the periods keep constant regardless of the 

polarised angles. However, the contrasts have the distinction in two-beam laser 

interference. Based on Eqs. (7.2), (7.3) and (3.2), the curve can be described as 

below. From Fig. 7.2 shown, the contrast of the TE-TE polarisation mode is equal 

to 1. 

 

Fig. 7.2 Pattern contrast as a function of incident angle in two-beam laser interference. 
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It means that the maximum intensities can reach to 1 and the minimum 

intensities can reach to 0. The contrast of the TM-TM polarisation mode is not 

maintained when the incident angles change. Once the incident angles of two 

beams are 45˚, the contrast declines to zero. It means that the interference 

phenomenon does not occur because the oscillating orientation is perpendicular. 

Both direct and indirect (i.e. photoresist) processes, the lower minimum intensity 

is expected due to the feature shape or called the characteristic dimension has a 

strong dependence on it. If the photoresist is reacted at the position of minimum 

intensities, a linear shape at the bottom and walls of structure could not be 

obtained [11]. As a consequence, the resolution declines. 

7.2.2 Influence of Thermal Properties of Materials 

The spatial resolution of the features on the material surfaces depends on the 

combination of fringe periods, contrasts and effects included the physical, 

chemical and metallurgical properties. Laser fluence (or energy density) along 

with the thermophysical parameters of materials determines the temperature 

field distribution. 

The thermal simulation is based on the equation of Fourier’s heat diffusion [112]: 

))(( Tgradkdivqqq
t
Tc vmap ⋅+−−=

∂
∂ρ  ,            (7.4) 

where ),,( tzxTT = is the temperature at the position (x, z) at time t; qa, qm and qv 

are the absorbed heat, the heat of melting, and the heat of vaporisation 

respectively; ρ, k and cp are the density, the thermal conductivity and the specific 

heat of the material respectively. The energy absorbed into material can be 

expressed by [52]  

)exp()1)(
2

)(
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2
)(
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σπσ
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−

−=  ,            (7.5) 
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2ln22
pτ

σ =  ,                       (7.6) 

where α is the absorption coefficient, I(x) is the interfering intensity distribution, t 

is the time, tp is the pulse time, τp is the pulse duration, r is the reflectivity of 

surface. The energy required melting and vaporisation is given by Eqs. (7.7) and 

(7.8) [52], respectively. 

 
t

TTTerfcLq mm
mm ∂

−∂= ))(5.0( 0ρ  ,                 (7.7) 

t
TTTerfcLq bb

vv ∂
−∂= ))(5.0( 0ρ  ,                 (7.8) 

where Lm is the latent heat of fusion, Tm is the melting temperature, Tb is the 

boiling temperature, Lv is the latent heat of vaporisation, and ρ is the density of 

solid or liquid. The erfc refers to the complementary Error Function. 

For a simplified case of one-dimensional conduction without convection and 

radiation effects, the solution of the heat transfer equation can be re-arranged to 

estimate the energy required to produce a single fringe of a particular surface 

feature size. This equation of energy can be expressed as [113] 












=

−

p

pm

t
zierfc

tkT
E

χ
χ

2
2

10 4

 ,                  (7.9) 

where E is energy fluence (J/cm2), Tm is the melting point (°C), tp is the pulse time 

(s), χ is the thermal diffusivity (m2/s), and z is the surface feature size (m). The 

ierfc refers to the iterated integrals of the complementary error function. 

According to the Eqs. (7.4)-(7.8), it can be found that the feature size or called the 

characteristic dimension must be equal or smaller than the period in order to 

obtain well-defined structures. Among them, the thermal conductivity is a 
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significant parameter. For the low conductivity materials, the region of thermal 

effects is limited into a narrow distance. With the increase of conductivity, the 

feature size approaches or even overs the period, resulting in the unordered 

structures. Based on the theoretical analysis of heat transfer, low conductivity 

materials are possible to achieve higher resolution structures with selection of 

appropriate laser processing parameters. 

7.3 Experimental Aspects 

In this session, the 266nm and 1064nm DLIN systems and the 405nm LIL system 

were employed to achieve high-resolution nanostructures. Each system has its 

advantage and disadvantage due to its nature of wavelength, power and output 

manner, which is described as below. 

7.3.1 Direct Modification of Organic Material 

The overview of the 266nm DLIN system is shown in Fig. 7.3. 

 

Fig. 7.3 Overview of the experimental setup for 266nm DLIN system. 

By using the ultraviolet wavelength, the 266nm DLIN system is a powerful tool for 

the fabrication of smaller periodic structures. Theoretically, the incident angles 

can approach to 90˚ and the period will be down to a half of wavelength but in 

practice the projection profile of light takes place a change of ellipse obviously 
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when the angles over 60°. Thereby, λ 2period of the interference fringe is 

obtained when two beams are counter-propagating. But for LIL applications, this 

will be unpractical. 

The fundamental laser (1064nm) can be converted into second and third 

harmonics using harmonic generating assemblies containing KTP and KD*P 

crystals. The 266nm laser is the third harmonic generation and the max pulse 

energy at 266nm is 130mJ. In the experiment, the mixture of polyvinyl alcohol 

and cyclohexanone was chosen as the etched material. First, the organic material 

was coated by spinning for 30-40s on a polished silicon surface. Second, the 

hotplate was applied to bake it for 90s at 110˚C. 

 

Fig. 7.4 Two periodic grating structures fabricated by 266nm DLIN system. (a) 190nm period fringe; 

(b) Cross-profile curve along a selected line in (a); (c) 420nm period fringe; (d) Cross-profile curve 

along a selected line in (c). 

From Fig. 7.4 shown, two periodic structures were fabricated corresponding to 

two incident configurations. The modification threshold of the organic material is 

lower than those of semiconductor and metals. The used laser fluence was 

(a) 

(b) 

(c)

(d)
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.             (7.10) 

According to Eq. (7.10), the result is 179.7083nm. To evaluate the stability of 

localization with the method, four group dates from different regions in the Fig. 

7.4(a) were analysed, which is shown in Fig. 7.6. The results of four 

measurements are P1=46.00532 pixels, P2=46.04616 pixels, P3=46.47057 pixels, 

and P4=46.11591 pixels, respectively. The standard deviation of four group dates 

is 0.1893 pixels. 

 

Fig. 7.6 Localization measurement of four different region in the Fig. 7.4(a). 

It is demonstrated that the subpixel accuracy of measurements have been 

realised by correlation function and polynomial curve fitting. The statistical 

analysis shows that the approach is a very useful tool for intensity-based object 

localization. 

7.3.2 Direct Modification of Metal Thin Films 

There are many applications in the structural thin metal films, such as 

metamaterials [117], surface plasmon polaritons [118], filters for terahertz (THz) 

radiation [119] and other research and technological fields. Apart from the 

conventional way of single beam laser writing, FIB and EBL, an alternative 

scheme, DLIN, has been addressed. Laser-induced periodic surface arrays are 

useful to control the surface desirable shape. Two-dimensional (2D) and 

p = x j −
y j

y j+1 − y j

− (xi −
yi

yi+1 − yi

)
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three-dimensional (3D) structures are produced by using interference of several 

coherent beams and the method allows patterning of areas over a beam spot 

size. 

In the experiment, the samples of Platinum (Pt) thin film with a thickness of 

10nm were deposited on the polished silicon substrate. The 1064nm laser was 

split into two beams by a beamsplitter and two high-reflection mirrors with the 

incident angles of 17˚, which results in the period of 1.8μm theoretically. In the 

case of thin films, different topographical regimes were observed depending on 

the laser fluence. All the samples were treated by the nanosecond laser with a 

single shot. For a relative low range of laser fluence, a small quantity of molten 

materials where are the maximum intensities of interference can be seen in Fig. 

7.7(a). As the laser fluence increases, the molten region goes larger from the 

maximum intensities toward the neighbour minimum intensities. In this 

condition, the surface temperature is raised to the melting point and results in a 

number of nanoparticles (shown in Fig. 7.7(b)). With the further increase of laser 

fluence, the Pt thin film is removed and shows a bump silicon structure at the 

maximum intensities. From Fig. 7.7(c) and (d) shown, the process of laser 

ablation is completed. 

 

Fig. 7.7 SEM images of metal thin film treated by the two-beam laser interference system. (a) 
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laser fluence=250mJ/cm2; (b) laser fluence=350mJ/cm2; (c) laser fluence=450mJ/cm2; (d) laser 

fluence=520mJ/cm2; All the scale bars are 1μm. 

It is demonstrated that the damage threshold depends on the natural properties 

of materials. In addition, the defined values of threshold are related to the 

absorption coefficient, reflectance, incident angles, laser wavelength and 

generation of defects. For thin films, the threshold is also dependent on the film 

thickness and substrate materials. Nonetheless, DLIN is a promising attempt to 

achieve high-resolution fabrication. It is typically of interest to study the limited 

resolution of various materials with different wavelengths. 

7.3.3 Silverwire Arrays achieved by 405nm LIL System 

In this session, a complemented method of LIL and chemical deposition is 

proposed to fabricate the nanosilver arrays. In the LIL system, a semiconductor 

laser with a wavelength of 405nm and an output power of 80mW was used as 

the coherent source. The flow chart of the manufacturing processes is shown in 

Fig. 7.8. The negative photoresist of NR9G-500P (Futurrex, Inc.) was used in the 

experiment. It is sensitive to exposure wavelengths shorter than 440nm. The 

detailed procedures can be concluded as below: 

I. NR9G-500P resist is dispensed by spin coating at 3000 rpm for 40s. 

Acceleration from 0 to 3000 rpm is conducted in less than 1s. 

II. Softbake on a hotplate at 110˚C for 60s. 

III. Substrate cooling to room temperature. 

IV. Exposure energy for 0.5μm thick film of NR9G-500P on silicon is around 

8mJ/cm2 for 1-2s.  

V. Post-exposure bake on a hotplate at 110˚C for 60s. 

VI. Substrate cooling to room temperature. 
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VII. Resist is developed by immersion and agitation at 20-25˚C. Development 

time for 0.5μm thick film is 3-5s. 

VIII. Resist rinse in fast flowing stream of deionized water until water 

resistivity reaches prescribed limit. 

IX. Drying resist. 

 

Fig. 7.8 The flow chart of the manufacturing processes. 

The process described as above is similar to the traditional LIL process. Compared 

with previous publications, a spatial filtering and beam expansion system was 

setup in order to improve the quality of beam profile and uniform distribution of 

interfering beams. Generally, semiconductor lasers take the disadvantage of poor 

beam quality. It is a troublesome issue for many nanostructure-based 

applications achieved by LIL. Lasers used for LIL exposures usually produce an 

approximate Gaussian intensity profile. Therefore, a non-uniform Gaussian beam 

results in a non-uniformity distribution of resulting structures. In order to solve 

the problem, a spatial filtering and beam expansion system is presented, which is 

shown in Fig. 7.9. It is similar to the Kaplerian telescope system. Two positive 

focused lenses and a pinhole compose the system. Two focused lenses have 

different focal lengths. Generally, the focal length of f2 is larger than that of f1. In 

the experiment, the f1=35mm and f2=100mm lenses are chosen. The expansion 

ratio is 2.85 times. The input Gaussian beam has various intensity “noises” 

spatially, especially focused by an aspheric lens. That will produce a central 
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Gaussian spot on the optical axis and side diffractive fringes. By putting a pinhole 

in a central Gaussian spot, the unwanted “noises” will be blocked. A diameter of 

25μm pinhole was chosen in the experiment. 

 

Fig. 7.9 Schematic description of spatial filtering and beam expansion system. Left: the beam 

quality of initial laser from 405nm semiconductor laser; Middle: principle for spatial filtering and 

beam expansion system; Right: the beam quality after the spatial filtering and beam expansion 

system. 

The measurement instrument used in the experiment is the high-resolution SWIR 

laser beam profiling system (LaserCam-HR, Coherent Inc.) to characterise the 

beam quality. The compared parameters of beam quality are concluded in the 

Table 4. 

Table 4 Compared parameters of beam quality between initial laser and improved laser. 

Name Initial laser Improved laser 

Effective Diameter 86.5% [mm] 2.671 3.190 

Ellipticity Major, Minor 86.5% [mm] 3.084, 2.533 3.284, 3.144 

Circularity Coefficient 0.821 0.957 

Gaussian Coefficient in x axis 0.0 0.950 

Gaussian Coefficient in y axis 0.813 0.932 

From Fig. 7.9 and Table 4 suggested, the beam quality has been improved by the 

spatial filtering and beam expansion system. The beam quality will influence the 

micro and nano structures on the photoresist obviously. In the exposure 

experiment, the fabricated structures are sensitive to the laser power and 

exposure time (ET). The laser power can be adjusted by the combination of wave 

plates and polariser, and the ET is pre-set by a precision electronic shutter 
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positioned the exit of laser. The optimal energy does suggested in the instruction 

of photoresist company is useful to carry out the well-defined structures. But it is 

worth pointing out that the parameters of most photoresists are suitable to the 

IC industry that commonly employs optical lithography technique. That is quite 

different due to a discrepancy between the Gaussian beam and the collimated 

beam. 

From Fig. 7.10 shown, the topographies of grating structures on photoresist have 

a significant difference with each other. The left image represents the result 

without the spatial filtering and beam expansion system. There are a number of 

adhesive and non-uniform regions. The right one represents the result fabricated 

by two-beam interference method with the spatial filtering and beam expansion 

system. From Fig. 7.10 shown, it is demonstrated that the feature shape and 

profile of structures can be improved by the spatial filtering and beam expansion 

system. That will be constructive to achieve the well-defined structures in the 

next procedures. 

 

Fig. 7.10 Topographies of grating structures on the photoresist. Left: without the spatial filtering 

and beam expansion system; Right: with the spatial filtering and beam expansion system. 

The silver solution was prepared in our laboratory and the preparation involves 

three steps. First a few drops of dilute sodium hydroxide are added to some 

aqueous silver nitrate. The OH- ions from the sodium hydroxide react with the 

Ag+ ions to give silver oxide, which is insoluble and shown as a brown solid. The 

reaction is well-known and expressed as 
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Raman scattering. 

7.4 Summary 

In this chapter, approaches to fabricate the high-resolution structures are 

proposed. A 266nm nanosecond laser interference system was set up and treated 

to difference materials. During the ablation process of organic material, grating 

arrays with a period of approximate 200nm and feature sizes of sub-100nm were 

fabricated. For the metal thin films, the feature sizes of well-defined structures 

were around 200nm. With increase of laser fluences, different topographies of 

samples were observed. A large number of nanoparticles took place at the 

maximum intensities. Compared with two materials treated by 266nm laser 

interference system, it can be seen that the ablation mechanisms of metal and 

non-metal materials are totally different. The thermal properties and parameters 

of materials play a key role in the formation of resulting structures. As an 

alternative, the complemented method of LIL with a 405nm semiconductor laser 

and chemical deposition was studied as well. It has been demonstrated that the 

spatial filtering and beam expansion system has an advantage of improving the 

quality of beam profile. The range of feature sizes of particles is from 20nm to 

120nm. The proposed method is suitable for non-planar fabrication of 

nanoelectrode arrays. 

DLIN has been demonstrated to be an extremely flexible and versatile tool for the 

fulfilment of wide-ranging applications. The fabricating periods are scalable from 

micrometre to nanometre to accommodate varying the incident angles or 

wavelengths, which can be verified from the results in chapters 6 and 7 

respectively. Moreover, DLIN has a highly adaptable to the treated materials as 

well. Compared to quantities of previous studies concerning the indirect method, 

i.e. LIL, the work presented in the thesis can contribute to the high efficiency and 

throughput strategy in a straightforward manner. Importantly, the theoretical 

analyses on a basis of the methodology described in section 2.4 play a vital role 

in achieving the significant outcomes for the explanation of modulation in 
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chapter 5, the deigned scheme of functional structures in chapter 6 and the 

optimum contrast of high-resolution structures in chapter 7 all benefit from the 

detailed theoretical analyses. 
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Chapter 8 

Conclusions 

8.1 Summary of Thesis 

The work presented in the thesis concerns laser interference and direct laser 

interference technologies from both theoretical and experimental perspectives. 

Chapter 1 provides a basic overview of current micro and nano fabrication 

technologies and describes both advantages and limitations of each technology 

respectively. Among them, LIL is regarded as a powerful tool for the fabrication of 

periodic and quasi-periodic structures. With the deep investigation of LIL, it is 

found that using direct modification of materials on a basis of nanosecond laser 

interference system technique makes up the insufficiency of LIL and takes the 

advantages of high efficiency and low cost. For the motivation of developing LIL 

towards high resolution and large area, the aim and objectives are determined. 

Chapter 2 reviews the fundamental theories of classical interference, 

anti-reflection and self-cleaning. Since the effects of polarisation vector on the 

formation, period and contrast of interference patterns are demonstrated by a 

number of experimental observations. The combination of polarisation vector 

and electric field vector is incorporated into the methodology of the thesis. The 

theoretical analyses based on the methodology are implemented throughout the 

experiment research. 

In chapter 3, the He-Ne laser interference imaging system is introduced. It takes 

the advantage of real-time imaging and can contribute to visual feedback on 

micro and nano scales. Meanwhile, it offers an effective way to investigate the 

multi-beam laser interference patterns, especially 3D patterns and analyse the 

beam incidence conditions due to the challenges from a book-keeping 

perspective. In the experiment, the interference patterns were captured by a 

CCD camera under different incidence conditions, the measurement of the 
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pattern periods was achieved by the cross-correlation function, and the pattern 

contrasts were calculated by image processing. Subsequently, the incident angles 

and intensities of beams were determined based on the analysis of spatial 

distributions of interfering beams. As a consequence, the relationship between 

the beam incidence conditions and interference patterns is revealed. The 

proposed method is useful for the calibration of LIL processes and for reverse 

engineering applications. 

In the chapter 4, by taking the strategy of direct nanosecond laser interference 

technology, and the silicon material is selected to create different well-defined 

surface structures based on theoretical analysis of the formation of laser 

interference patterns. Two, three and four-beam laser interference systems were 

set up to fabricate the grating, regular triangle and square structures on silicon 

surfaces, respectively. From the AFM micrographs, the critical features of 

structures have a dependence on laser fluences. For a relative low laser fluence, 

the grating and dot structures formed with bumps due to the Marangoni Effect. 

With the increase of laser fluences, melt and evaporation behaviours can be 

responsible for the laser modification. It can be demonstrated that well-defined 

grating and dot structures can be achieved by properly selecting the process 

parameters. 

Chapter 5 gives a comprehensive study for the effects of polarisation vector on 

the interference patterns. Described in a number of literatures, the modulation 

phenomenon was regarded as a hardly avoided affair in four-beam laser 

interference. But, the theoretical equations according to different polarisation 

modes are derivate and corresponding analyses demonstrate that the 

modulation is the result of the misaligned or unequal incident angles only in the 

case of the TE-TE-TM-TM mode. With respect to TE-TE-TE-TE and TE-TE-TE-TM 

polarisation modes, they can be utilised to fabricate micro and nano cone and 

hole structures respectively. Actually, the conclusion obtained in the work is 

constructive to achieve the anti-reflection and superhydrophobicity applications 
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in chapter 6. The experimental results have shown a good correspondence with 

the theoretical analysis and simulations. 

In chapters 6 and 7, the work is focused on the high resolution and large area 

applications. Inspired by nature, a number of techniques have been developed to 

fabricate the bionic structures of lotus leaves and Moth-eye which enable to 

realise the extraordinary functions of self-cleaning and antireflection. The 

straightforward method, DLIN, of fabricating well-defined micro and nano 

artificial bio-structures is proposed in this work. Both antireflection and 

superhydrophobicity behaviours exhibited by microcone structures were 

observed. It is found that the reflection behaviour is dependent on the structural 

depth, and the deeper structures were achieved for the larger periods. Compared 

with the one-dimension microstructures, the hierarchical nanostructures have 

ability of reducing the solid-liquid contact area and increasing the CAs. 

Consequently, the microcone structures exhibited excellent properties with both 

a high contact angle (CA=156.3°) and low omnidirectional reflectance (5.9-15.4%). 

In order to fabricate high-resolution structures, the 266nm nanosecond laser 

interference system is employed to treat the organic and metal-film materials. It 

can be seen that the thermal effects play a key role in the direct ablation process. 

Sub-100nm width and 2nm height of grating structures with a pitch of 

approximate 200nm was fabricated on the organic material surface, while 

quantities of molten materials where are the maximum intensities of 

interference can be observed on the metal thin films. That is related to the 

threshold of modification and the melting point of materials. Subsequently, 

another attempt to produce the nanoelectrode arrays by means of LIL and 

chemical deposition is put forward as well. In addition, the quality of beam was 

improved obviously by a 4f system. The method has an advantage of non-planar 

fabrication.  

Chapter 8 finally summarises the work of the thesis and lays out the novel results 

and contributions achieved in the research. Recommendations of future work are 
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given as well. 

8.2 Future Work 

The work presented in the thesis has attained a number of significant 

achievements in the field of DLIN, but there are also other issues and potential 

tasks benefited from this work. 

Although DLIN is a promising technology for the fabrication of periodic structures 

with high throughput and low cost, there are still intractable problems for DLIN. 

The interaction between short-pulse laser and matter on the nano scale is not 

well established. Once the radius of thermal region affected by short-pulse laser 

overs the period of interference, as a result, the processes of energy transfer, 

heat conduction and hydrodynamic expansion are complex and unpredictable. In 

this case, laser-matter interaction will bring about a huge number of interesting 

phenomena that need to be explored. The limited resolution or feature sizes for 

various materials treated by different wavelengths from infrared to ultraviolet 

should be investigated further. 

Besides, DLIN is expected to make more aggressive advances in the potential 

applications. Recently, organic light-emitting diodes (OLEDs) have attracted 

considerable attention for their potential in next-generation mobile electronics 

and illuminations. However, the low out-coupling efficiency (20%-30%) that is 

attributed to waveguide effect at the interfaces limits their practical application. 

In 2014, Jeon et al. demonstrated that 2D nanohole arrays embedded between 

cathode and organic layers enhance the efficiency by a factor of 2.16 [120]. They 

used the reverse transfer (R2T) technology to fabricate the period of 530nm 

structure. Compared with R2T, DLIN is more flexible due to maskless. It is the 

same with multi-quantum-well solar cells with nanostructures. In 2014, Bai et al. 

investigated nanorod and nanohole structures inserted into InGaN/GaN solar 

cells by means of nanosphere lithography [121]. It was found that a larger 

enhancement is observed for the nanohole array, where the conversion efficiency 
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is enhanced by 51%. 

Moreover, optical metamaterials (MMs) offers unprecedented functionalities of 

controlling the flow of light [122]. Surface plasmon polaritons (SPPs) has the 

advantages of tight spatial confinement, high local field intensity [123]. All of them 

show a dependence on nanostructures. For these reasons, DLIN has an excited 

potential for nano-optics, bio-photonics and so on. 
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Appendix A-Matlab Scripts 

%Measurement for period in the x axis direction 

Clear all 

format long; 

format compact; 

I1=imread('');% filename of interference patterns 

save zhouqi1.mat; 

load zhouqi1; 

T0=40; 

t1=100; t2=199; 

T=200+2*T0; 

A=I1(t1:t2,200:T); 

j=0; 

k=0; 

m=0; 

n=0; 

a=1:1:120; 

for i=1:1:120 

    j=i+200; 

    k=T+i; 

    D=I1(t1:t2,j:k); 

    a([i])=corr2(A,D); 

end 

plot(a); 

hold on; 

xlabel('Pixel number of phase shifts');ylabel('correlation coefficients'); 

legend('r0'); 

grid on; 

N=a; 

i=0; 

for k=1:119 

    if (N(k)>=0)&(N(k+1)<=0) 

        i=i+1; 

        x(i)=k; 

    end; 
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end; 

x1=[x(1) x(1)+1]; 

y1=[a(x(1)) a((x(1)+1))]; 

yi=0; 

xi1a=interp1(y1,x1,yi); 

z2=[x(2) x(2)+1]; 

y2=[a(x(2)) a((x(2)+1))]; 

yi2=0; 

xi1b2=interp1(y2,z2,yi2); 

p=xi1b2-xi1a 

%Measurement for period in the x axis direction 

clear all 

 format long; 

format compact; 

I1=imread(''); % filename of interference patterns 

save zhouqi1.mat; 

load zhouqi1; 

T0=40; 

t1=100; t2=199; 

T=200+2*T0; 

A=I1(t1:t2,200:T); 

j=0; 

k=0; 

m=0; 

n=0; 

a=1:1:120; 

for i=1:1:120 

    j=i+100; 

    k=199+i; 

    D=I1(j:k,200:T); 

    a([i])=corr2(A,D); 

end 

plot(a); 

hold on; 

xlabel('Pixel number of phase shifts');ylabel('correlation coefficients'); 

legend('r0'); 

grid on; 
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N=a; 

i=0; 

for k=1:119 

    if (N(k)>=0)&(N(k+1)<=0) 

        i=i+1; 

        x(i)=k; 

    end; 

end; 

x1=[x(1) x(1)+1]; 

y1=[a(x(1)) a((x(1)+1))]; 

yi=0; 

xi1a=interp1(y1,x1,yi); 

z2=[x(2) x(2)+1]; 

y2=[a(x(2)) a((x(2)+1))]; 

yi2=0; 

xi1b2=interp1(y2,z2,yi2); 

p=xi1b2-xi1a 

 

%Measurement for contrast of interference patterns 
clc; 
clear all; 
format long; 
I1=imread(''); % filename of interference patterns 
I2=double(I1); 
A=I2; 
clear vision; 
k=1; 
for i=1:10:(960-96); 
for j=1:10:(1280-128); 
m1=max(max(A(i:i+95,j:j+127))); 
m2=min(min(A(i:i+95,j:j+127))); 
vision(k)=(m1-m2)/(m1); 
k=k+1 
end; 
end; 
visionk=mean(vision)  
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%2D intensity profile of TE-TE-TM-TM polarisation mode 

clc 

clear 

lamda=200*1e-9; 

k=2*pi/lamda; 

thita=(pi/180)*6;%incident angles 

thitb=(pi/180)*9;%misaligned angle 

x=linspace(-2000,100,2000)*1e-8; 

y=linspace(-2000,100,2000)*1e-8; 

z=0*1e-9; 

[X,Y,Z] = meshgrid(x,y,z); 

I=4+2*(sin(thita)^2-cos(thita)^2)*cos(2*k*sin(thita)*Y)+2*cos(thita)*cos(k*sin(thita)*X-k*sin(thit

a)*Y)-2*cos(thita)*cos(k*sin(thita)*X+k*sin(thita)*Y)-2*cos(k*sin(thita)*X+k*sin(thitb)*X)-2*cos(

thita)*cos(k*sin(thitb)*X+k*sin(thita)*Y)+2*cos(thita)*cos(k*sin(thitb)*X-k*sin(thita)*Y); 

imagesc(x,y,I);
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Appendix B-the Data of Standard Plate for Reflectivity 

Init E (V) = 0 
Sample Interval (s) = 0.1 
Run Time (sec) = 1 
Quiet Time (sec) = 0 
Sensitivity (A/V) = 1e-6 

380nm 390nm 400nm 410 

Time/sec, Current/A 
1.000e-1, 5.519e-8 
2.000e-1, 5.512e-8 
3.000e-1, 5.487e-8 
4.000e-1, 5.520e-8 
5.000e-1, 5.491e-8 
6.000e-1, 5.499e-8 
7.000e-1, 5.525e-8 
8.000e-1, 5.476e-8 
9.000e-1, 5.529e-8 
1.000e+0, 5.519e-8 

Time/sec, Current/A
1.000e-1, 6.818e-8 
2.000e-1, 6.806e-8 
3.000e-1, 6.863e-8 
4.000e-1, 6.817e-8 
5.000e-1, 6.790e-8 
6.000e-1, 6.820e-8 
7.000e-1, 6.830e-8 
8.000e-1, 6.784e-8 
9.000e-1, 6.736e-8 
1.000e+0, 6.776e-8 

Time/sec, Current/A
1.000e-1, 8.594e-8 
2.000e-1, 8.602e-8 
3.000e-1, 8.589e-8 
4.000e-1, 8.610e-8 
5.000e-1, 8.567e-8 
6.000e-1, 8.558e-8 
7.000e-1, 8.595e-8 
8.000e-1, 8.568e-8 
9.000e-1, 8.595e-8 
1.000e+0, 8.582e-8 

Time/sec, Current/A
1.000e-1, 9.000e-8 
2.000e-1, 8.971e-8 
3.000e-1, 8.956e-8 
4.000e-1, 8.938e-8 
5.000e-1, 8.995e-8 
6.000e-1, 9.016e-8 
7.000e-1, 9.056e-8 
8.000e-1, 9.013e-8 
9.000e-1, 8.949e-8 
1.000e+0, 8.956e-8 

420nm 430nm 440nm 450nm 

Time/sec, Current/A 
1.000e-1, 9.943e-8 
2.000e-1, 1.000e-7 
3.000e-1, 9.939e-8 
4.000e-1, 9.976e-8 
5.000e-1, 1.002e-7 
6.000e-1, 1.004e-7 
7.000e-1, 1.009e-7 
8.000e-1, 1.007e-7 
9.000e-1, 1.006e-7 
1.000e+0, 9.988e-8 

Time/sec, Current/A
1.000e-1, 1.169e-7 
2.000e-1, 1.160e-7 
3.000e-1, 1.164e-7 
4.000e-1, 1.161e-7 
5.000e-1, 1.158e-7 
6.000e-1, 1.157e-7 
7.000e-1, 1.158e-7 
8.000e-1, 1.157e-7 
9.000e-1, 1.148e-7 
1.000e+0, 1.150e-7 

Time/sec, Current/A
1.000e-1, 1.228e-7 
2.000e-1, 1.223e-7 
3.000e-1, 1.212e-7 
4.000e-1, 1.220e-7 
5.000e-1, 1.217e-7 
6.000e-1, 1.224e-7 
7.000e-1, 1.221e-7 
8.000e-1, 1.221e-7 
9.000e-1, 1.224e-7 
1.000e+0, 1.225e-7 

Time/sec, Current/A
1.000e-1, 1.342e-7 
2.000e-1, 1.347e-7 
3.000e-1, 1.353e-7 
4.000e-1, 1.347e-7 
5.000e-1, 1.348e-7 
6.000e-1, 1.346e-7 
7.000e-1, 1.340e-7 
8.000e-1, 1.349e-7 
9.000e-1, 1.343e-7 
1.000e+0, 1.338e-7 

460nm 470nm 480nm 490nm 
Time/sec, Current/A 
1.000e-1, 1.741e-7 
2.000e-1, 1.733e-7 
3.000e-1, 1.743e-7 
4.000e-1, 1.743e-7 
5.000e-1, 1.750e-7 
6.000e-1, 1.734e-7 
7.000e-1, 1.749e-7 
8.000e-1, 1.737e-7 
9.000e-1, 1.750e-7 
1.000e+0, 1.750e-7 

Time/sec, Current/A
1.000e-1, 2.480e-7 
2.000e-1, 2.493e-7 
3.000e-1, 2.475e-7 
4.000e-1, 2.478e-7 
5.000e-1, 2.482e-7 
6.000e-1, 2.473e-7 
7.000e-1, 2.489e-7 
8.000e-1, 2.481e-7 
9.000e-1, 2.499e-7 
1.000e+0, 2.487e-7 

Time/sec, Current/A
1.000e-1, 2.279e-7 
2.000e-1, 2.272e-7 
3.000e-1, 2.267e-7 
4.000e-1, 2.277e-7 
5.000e-1, 2.267e-7 
6.000e-1, 2.252e-7 
7.000e-1, 2.268e-7 
8.000e-1, 2.272e-7 
9.000e-1, 2.276e-7 
1.000e+0, 2.281e-7 

Time/sec, Current/A
1.000e-1, 2.337e-7 
2.000e-1, 2.341e-7 
3.000e-1, 2.330e-7 
4.000e-1, 2.352e-7 
5.000e-1, 2.352e-7 
6.000e-1, 2.339e-7 
7.000e-1, 2.344e-7 
8.000e-1, 2.345e-7 
9.000e-1, 2.343e-7 
1.000e+0, 2.347e-7 



 

 144

500nm 510nm 520nm 530nm 
Time/sec, Current/A 
1.000e-1, 2.335e-7 
2.000e-1, 2.332e-7 
3.000e-1, 2.322e-7 
4.000e-1, 2.339e-7 
5.000e-1, 2.339e-7 
6.000e-1, 2.334e-7 
7.000e-1, 2.350e-7 
8.000e-1, 2.339e-7 
9.000e-1, 2.339e-7 
1.000e+0, 2.351e-7 

Time/sec, Current/A
1.000e-1, 2.306e-7 
2.000e-1, 2.312e-7 
3.000e-1, 2.333e-7 
4.000e-1, 2.326e-7 
5.000e-1, 2.314e-7 
6.000e-1, 2.321e-7 
7.000e-1, 2.300e-7 
8.000e-1, 2.314e-7 
9.000e-1, 2.316e-7 
1.000e+0, 2.304e-7 

Time/sec, Current/A
1.000e-1, 2.388e-7 
2.000e-1, 2.377e-7 
3.000e-1, 2.384e-7 
4.000e-1, 2.388e-7 
5.000e-1, 2.405e-7 
6.000e-1, 2.396e-7 
7.000e-1, 2.388e-7 
8.000e-1, 2.413e-7 
9.000e-1, 2.393e-7 
1.000e+0, 2.391e-7 

Time/sec, Current/A
1.000e-1, 2.461e-7 
2.000e-1, 2.472e-7 
3.000e-1, 2.474e-7 
4.000e-1, 2.462e-7 
5.000e-1, 2.462e-7 
6.000e-1, 2.450e-7 
7.000e-1, 2.429e-7 
8.000e-1, 2.454e-7 
9.000e-1, 2.469e-7 
1.000e+0, 2.452e-7 

540nm 550nm 560nm 570nm 
Time/sec, Current/A 
1.000e-1, 2.540e-7 
2.000e-1, 2.525e-7 
3.000e-1, 2.534e-7 
4.000e-1, 2.536e-7 
5.000e-1, 2.541e-7 
6.000e-1, 2.518e-7 
7.000e-1, 2.538e-7 
8.000e-1, 2.531e-7 
9.000e-1, 2.513e-7 
1.000e+0, 2.549e-7 

Time/sec, Current/A
1.000e-1, 2.582e-7 
2.000e-1, 2.592e-7 
3.000e-1, 2.583e-7 
4.000e-1, 2.592e-7 
5.000e-1, 2.593e-7 
6.000e-1, 2.589e-7 
7.000e-1, 2.582e-7 
8.000e-1, 2.588e-7 
9.000e-1, 2.584e-7 
1.000e+0, 2.596e-7 

Time/sec, Current/A
1.000e-1, 2.623e-7 
2.000e-1, 2.625e-7 
3.000e-1, 2.642e-7 
4.000e-1, 2.647e-7 
5.000e-1, 2.658e-7 
6.000e-1, 2.640e-7 
7.000e-1, 2.647e-7 
8.000e-1, 2.642e-7 
9.000e-1, 2.634e-7 
1.000e+0, 2.646e-7 

Time/sec, Current/A
1.000e-1, 2.689e-7 
2.000e-1, 2.691e-7 
3.000e-1, 2.683e-7 
4.000e-1, 2.705e-7 
5.000e-1, 2.669e-7 
6.000e-1, 2.692e-7 
7.000e-1, 2.687e-7 
8.000e-1, 2.698e-7 
9.000e-1, 2.692e-7 
1.000e+0, 2.698e-7 

580nm 590m 600nm 610nm 
Time/sec, Current/A 
1.000e-1, 2.757e-7 
2.000e-1, 2.744e-7 
3.000e-1, 2.723e-7 
4.000e-1, 2.730e-7 
5.000e-1, 2.749e-7 
6.000e-1, 2.739e-7 
7.000e-1, 2.747e-7 
8.000e-1, 2.741e-7 
9.000e-1, 2.734e-7 
1.000e+0, 2.750e-7 

Time/sec, Current/A
1.000e-1, 2.779e-7 
2.000e-1, 2.784e-7 
3.000e-1, 2.776e-7 
4.000e-1, 2.775e-7 
5.000e-1, 2.776e-7 
6.000e-1, 2.772e-7 
7.000e-1, 2.778e-7 
8.000e-1, 2.777e-7 
9.000e-1, 2.782e-7 
1.000e+0, 2.773e-7 

Time/sec, Current/A
1.000e-1, 2.665e-7 
2.000e-1, 2.665e-7 
3.000e-1, 2.666e-7 
4.000e-1, 2.659e-7 
5.000e-1, 2.656e-7 
6.000e-1, 2.662e-7 
7.000e-1, 2.660e-7 
8.000e-1, 2.658e-7 
9.000e-1, 2.660e-7 
1.000e+0, 2.658e-7 

Time/sec, Current/A
1.000e-1, 2.576e-7 
2.000e-1, 2.576e-7 
3.000e-1, 2.582e-7 
4.000e-1, 2.582e-7 
5.000e-1, 2.602e-7 
6.000e-1, 2.592e-7 
7.000e-1, 2.585e-7 
8.000e-1, 2.570e-7 
9.000e-1, 2.577e-7 
1.000e+0, 2.590e-7 

620nm 630nm 640nm 650nm 
Time/sec, Current/A 
1.000e-1, 2.681e-7 
2.000e-1, 2.671e-7 
3.000e-1, 2.677e-7 
4.000e-1, 2.692e-7 
5.000e-1, 2.702e-7 

Time/sec, Current/A
1.000e-1, 2.613e-7 
2.000e-1, 2.593e-7 
3.000e-1, 2.606e-7 
4.000e-1, 2.601e-7 
5.000e-1, 2.604e-7 

Time/sec, Current/A
1.000e-1, 2.459e-7 
2.000e-1, 2.470e-7 
3.000e-1, 2.458e-7 
4.000e-1, 2.467e-7 
5.000e-1, 2.467e-7 

Time/sec, Current/A
1.000e-1, 2.437e-7 
2.000e-1, 2.436e-7 
3.000e-1, 2.432e-7 
4.000e-1, 2.433e-7 
5.000e-1, 2.439e-7 
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6.000e-1, 2.693e-7 
7.000e-1, 2.700e-7 
8.000e-1, 2.696e-7 
9.000e-1, 2.691e-7 
1.000e+0, 2.709e-7 

6.000e-1, 2.614e-7
7.000e-1, 2.612e-7 
8.000e-1, 2.619e-7 
9.000e-1, 2.613e-7 
1.000e+0, 2.600e-7 

6.000e-1, 2.468e-7
7.000e-1, 2.466e-7 
8.000e-1, 2.474e-7 
9.000e-1, 2.474e-7 
1.000e+0, 2.458e-7 

6.000e-1, 2.442e-7
7.000e-1, 2.441e-7 
8.000e-1, 2.442e-7 
9.000e-1, 2.440e-7 
1.000e+0, 2.440e-7 

660nm 670nm 680nm 690nm 
Time/sec, Current/A 
1.000e-1, 2.288e-7 
2.000e-1, 2.299e-7 
3.000e-1, 2.309e-7 
4.000e-1, 2.306e-7 
5.000e-1, 2.287e-7 
6.000e-1, 2.302e-7 
7.000e-1, 2.287e-7 
8.000e-1, 2.286e-7 
9.000e-1, 2.295e-7 
1.000e+0, 2.283e-7 

Time/sec, Current/A
1.000e-1, 2.309e-7 
2.000e-1, 2.316e-7 
3.000e-1, 2.312e-7 
4.000e-1, 2.315e-7 
5.000e-1, 2.315e-7 
6.000e-1, 2.309e-7 
7.000e-1, 2.310e-7 
8.000e-1, 2.309e-7 
9.000e-1, 2.312e-7 
1.000e+0, 2.318e-7 

Time/sec, Current/A
1.000e-1, 2.326e-7 
2.000e-1, 2.327e-7 
3.000e-1, 2.324e-7 
4.000e-1, 2.312e-7 
5.000e-1, 2.299e-7 
6.000e-1, 2.312e-7 
7.000e-1, 2.291e-7 
8.000e-1, 2.291e-7 
9.000e-1, 2.308e-7 
1.000e+0, 2.301e-7 

Time/sec, Current/A
1.000e-1, 2.559e-7 
2.000e-1, 2.551e-7 
3.000e-1, 2.568e-7 
4.000e-1, 2.565e-7 
5.000e-1, 2.565e-7 
6.000e-1, 2.554e-7 
7.000e-1, 2.562e-7 
8.000e-1, 2.580e-7 
9.000e-1, 2.562e-7 
1.000e+0, 2.550e-7 

700nm 710nm 720nm 730nm 
Time/sec, Current/A 
1.000e-1, 2.045e-7 
2.000e-1, 2.057e-7 
3.000e-1, 2.044e-7 
4.000e-1, 2.055e-7 
5.000e-1, 2.039e-7 
6.000e-1, 2.045e-7 
7.000e-1, 2.049e-7 
8.000e-1, 2.047e-7 
9.000e-1, 2.054e-7 
1.000e+0, 2.049e-7 

Time/sec, Current/A
1.000e-1, 1.927e-7 
2.000e-1, 1.934e-7 
3.000e-1, 1.930e-7 
4.000e-1, 1.934e-7 
5.000e-1, 1.934e-7 
6.000e-1, 1.928e-7 
7.000e-1, 1.941e-7 
8.000e-1, 1.928e-7 
9.000e-1, 1.937e-7 
1.000e+0, 1.932e-7 

Time/sec, Current/A
1.000e-1, 2.174e-7 
2.000e-1, 2.177e-7 
3.000e-1, 2.172e-7 
4.000e-1, 2.164e-7 
5.000e-1, 2.177e-7 
6.000e-1, 2.174e-7 
7.000e-1, 2.174e-7 
8.000e-1, 2.182e-7 
9.000e-1, 2.188e-7 
1.000e+0, 2.178e-7 

Time/sec, Current/A
1.000e-1, 2.046e-7 
2.000e-1, 2.046e-7 
3.000e-1, 2.048e-7 
4.000e-1, 2.036e-7 
5.000e-1, 2.054e-7 
6.000e-1, 2.049e-7 
7.000e-1, 2.056e-7 
8.000e-1, 2.061e-7 
9.000e-1, 2.051e-7 
1.000e+0, 2.051e-7 

740nm 750nm 760nm 770nm 

Time/sec, Current/A 
1.000e-1, 2.168e-7 
2.000e-1, 2.167e-7 
3.000e-1, 2.155e-7 
4.000e-1, 2.173e-7 
5.000e-1, 2.169e-7 
6.000e-1, 2.157e-7 
7.000e-1, 2.172e-7 
8.000e-1, 2.167e-7 
9.000e-1, 2.148e-7 
1.000e+0, 2.159e-7 

Time/sec, Current/A 
1.000e-1, 1.929e-7 
2.000e-1, 1.915e-7 
3.000e-1, 1.938e-7 
4.000e-1, 1.927e-7 
5.000e-1, 1.925e-7 
6.000e-1, 1.954e-7 
7.000e-1, 1.960e-7 
8.000e-1, 1.954e-7 
9.000e-1, 1.931e-7 
1.000e+0, 1.948e-7 

Time/sec, Current/A 
1.000e-1, 2.000e-7 
2.000e-1, 2.011e-7 
3.000e-1, 1.990e-7 
4.000e-1, 1.999e-7 
5.000e-1, 1.996e-7 
6.000e-1, 2.011e-7 
7.000e-1, 1.992e-7 
8.000e-1, 1.994e-7 
9.000e-1, 2.012e-7 
1.000e+0, 2.000e-7 

Time/sec, Current/A 
1.000e-1, 2.713e-7 
2.000e-1, 2.703e-7 
3.000e-1, 2.699e-7 
4.000e-1, 2.704e-7 
5.000e-1, 2.700e-7 
6.000e-1, 2.701e-7 
7.000e-1, 2.701e-7 
8.000e-1, 2.723e-7 
9.000e-1, 2.707e-7 
1.000e+0, 2.711e-7 

 


