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Abstract 

Generating plans in real world environments by mobile robot planner is a challenging task due to the uncertainty and 
environment dynamics. Therefore, task-planning should take in its consideration these issues when generating plans. Semantic 
knowledge domain has been proposed as a source of information for deriving implicit information and generating semantic plans. 
This paper extends the Semantic-Knowledge Based (SKB) plan generation to take into account the uncertainty in existing of 
objects, with their types and properties, and proposes a new approach to construct plans based on probabilistic values which are 
derived from Markov Logic Networks (MLN). An MLN module is established for probabilistic learning and inferencing together 
with semantic information to provide a basis for plausible learning and reasoning services in supporting of robot task-planning. In 
addition, an algorithm has been devised to construct MLN from semantic knowledge. By providing a means of modeling 
uncertainty in system architecture, task-planning serves as a supporting tool for robotic applications that can benefit from 
probabilistic inference within a semantic domain. This approach is illustrated using test scenarios run in a domestic environment 
using a mobile robot. 
 
© 2014 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Plan generation by an autonomous robot planner acting in human environments is a complex task as it involves 
dealing with uncertainty and undeterministic situations in which a variable number of objects may be relevant to its 
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tasks and these objects may be related in various ways. Uncertainty is a feature related to robots acting in real 
environments, and may sometimes cause failure in robot operation. To deal with unexpected planning contingencies, 
robotic task-planning employs probabilistic inference procedures, based on  reasoning techniques or learned models, 
to make sure the generation of its plans do not deviate from their intended course of action1. Most approaches to 
plans generation are focusing on deterministic information about the robot environment, such as exact objects and 
their properties, and explicit actions' details (pre-conditions and post-conditions). For instance, in the kitchen, there 
is a fridge and oven and the explicit effect of grasping a glass of water would be that the robot is holding a glass of 
water. 

In a real world environment this is not always realistic as planning with uncertainty is a complex process. 
Therefore, more advanced forms of probabilistic reasoning engaging with semantic knowledge should be proposed 
to derive probabilistic implicit information which is related to the existence of objects and predicting their types. For 
example, a robot moving into a living room could be expected to see at least a tv-set and a sofa. If the robot is 
entering a kitchen instead, it should have more probability to see a fridge and a sink. These probabilities are details 
that would add more complexity to the task planner, if reasoning about them has been left to it. Therefore, it is 
important to build a separate unit, from semantic-knowledge base and the action descriptions uses by the planner, 
which has the ability to learn from a knowledge base and then infer probable information about the robot 
environment to support its task-planner. 

In this paper, the robot semantic-knowledge base is represented with Description Logic (DL)2, which has the 
ability to infer the types of things and the automatic classification of things based on their classes and properties. 
This approach enables the robot to derive new statements from its existing knowledge. Pure description logics 
inference is completely deterministic, so it is often desirable to represent uncertain information in a way that can be 
more useful to robot planner. 

Markov Logic Networks allow to draw probabilistic inferences that combine the expressiveness of first-order 
logics with the representation of uncertainty3. The influence of such relational structures involving variable sets of 
objects on the propositions relevant to the robot’s tasks clearly cannot be accounted for a model that involves a fixed 
set of propositions. What is needed, therefore, is a unification of the principles of first-order logic, which makes 
objects and relations the main building blocks of the representation, and probabilistic graphical models, which 
enable reasoning in the face of uncertainty, within a single representation formalism. This approach allows, by 
combining the respective semantics, to obtain a language that possesses a level of expressiveness that is sufficient 
for robots to be equipped with the much-needed capability of reasoning about situations when they arise in real-
world applications. 

The main contributions of this paper are (i) constructing MLN from semantic-knowledge base to support the 
robot task planner in uncertain situations about objects existence and their types, and (ii) devising an algorithm 
which has a role to create MLN from semantic-knowledge base. The MLN template will be learned by training data 
from SKB, then the learned MLN model is used to answer queries generated from the knowledge base and predict 
the existence and types of objects or places. 

The rest of this paper is organized as follows. Section 2 describes related works in the field of planning with a 
focus on deterministic and undeterministic approaches. Section 3 briefly describes planning under deterministic 
conditions. Section 4 explores planning under uncertainty and introduces the proposed approach to address this 
issue. Section 5 outlines an example showing the applicability of the MLN model. Finally, Section 6 provides 
conclusions and suggestions for future work. 

2. Related works 

Planning under deterministic conditions suffers from a few number of issues compared to planning under 
undeterministic conditions. The planning domains can be generated by integrating semantic action models with 
common-sense knowledge base4. These domains are input into a robot planner to generate a suitable plan for a given 
tasks. 

Semantic knowledge can be successfully used to support robot task-planning. Previous research5 included 
defining a specific type of semantic maps, which integrate hierarchical spatial information and semantic knowledge. 
This approach is dependent on asserted information and does not take into consideration the uncertainty of robot 
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operation. Another approach6 had proposed a hierarchical task-planning that handled uncertainty in both the state of 
the world and the effect of actions. It introduced mechanisms to handle situations with incomplete and uncertain 
information about the state of the environment by using belief states to represent incomplete information about the 
state of the world, and actions are allowed to have stochastic outcomes. 

Partially observable Markov decision processes (POMDPs)7 provided a principled general framework for robot 
motion planning in uncertain and dynamic environments. Furthermore, POMDPs had been used in8 for motion 
planning under uncertainty. Semantic information can be used as a tool to improve the task-planning in complex 
scenarios where other planners easily may find themselves in intractable situations9. The approach involved 
constructing a “semantic” plan composed of categories of objects, places, etc. that solved a “generalized” version of 
the requested task, and then using that plan for discarding irrelevant information in the definitive planning carried 
out on the symbolic instances of those elements (that correspond to physical elements of the world with which the 
robot can operate). 

Further work in this area10 included developing a formalism of symbolic model of the environment to solve the 
issues of processing large amounts of information in planning and being efficient in human–machine communication 
in a natural form through a human-inspired mechanism that structures knowledge in multiple hierarchies. Planning 
with a hierarchical model may be efficient even in cases where the lack of hierarchical information would make it 
intractable. However, this method was depended on deterministic information. 

To deal with uncertainties, probabilistic methods can be used to link the system variables between each other and 
construct a network among these variables. Markov Logic Networks3 and Bayesian Logic Networks11 can be utilized 
to process probabilistic information to support many applications such as task-planning. 

3. Semantic-Knowledge Based (SKB) Planning System 

Semantic knowledge refers to knowledge about objects, their classes and properties, and the relationships 
between these objects. The representation that refers to this structure is called ontology. Fig. 1 shows the ontology of 
robot environment. For instance, a living room is a concept (class) refers to a room, which has at least a tv-set and a 
sofa. The entities tv-set and sofa are themselves defined as pieces of furniture.  

It can be shown from previous research4, the Semantic-knowledge base (SKB) can be used to support robot task-
planning to generate semantic plans for a given tasks. Semantic knowledge is used in the process of generating 
symbolic plans, i.e. symbols are used to refer to physical objects which will be manipulated by actions. An example 
of such an action is grasp m where m is a symbol that refers to a milk box. 

In this paper, the use of Description Logic (DL)2 is proposed for representing and managing the semantic domain 
knowledge, since it provides a good compromise between representation power and reasoning tractability. An 
important characteristic of DL is their reasoning capabilities of inferring implicit knowledge from the explicitly 
represented knowledge. 

3.1 Robot Environment Ontology 

A large amount of knowledge about objects and their properties in a robot environment can assist the robot to 
learn about the structure of its environment. This knowledge can be represented as an ontology that contains classes 
of all the relevant types of objects and their properties and relations. 
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Description Logic (DL) is used as a formalism to represent the robot’s knowledge about its world. The Web 

Ontology Language (OWL)12 has knowledge representation format suitable to describe robot knowledge about its 
environment. It is used for storing Description Logic formulas in an XML-based file format. There are two types of 
knowledge in Description Logic. The first one is called terminological knowledge, the so-called TBOX, and the 
second one is called assertion knowledge, the ABOX. The TBOX contains definitions of concepts, for example the 
concepts Room, Action or Object. These concepts are arranged in a hierarchical way, which is called classification, 
using subclass definitions that describe, for instance, that a Table is a subclass of Furniture. The ABOX contains 
individuals which are instantiated from TBOX concepts, for example, a table1 is an instantiation of the concept 
Table. Individuals properties in knowledge base can be described by roles which reflect the relations between two 
individuals, and can also be used in class definitions to constraint the extent of a class to individuals having certain 
properties e.g. the concept GrasspingABottle can be described as a subclass of GraspSomething with the restriction 
that the objectActedOn has to be some instance of Bottle. The following examples (which are based on Fig. 1) 
describe the definition of atomic classes and defined classes. The roles are used to restrict the extension of some 
classes. 

 
Atomic classes:   Room, Object. 
Defined classes:  Kitchen is a Room and isContaining KitchenObject 
  KitchenObject is an Object and isLocatedAt Kitchen 

3.2 Deterministic Planning System 

The planning method described in4 deals with deterministic knowledge which is stored in a semantic-knowledge 
base. It is used as static information by the planner to generate its plans. The next section extends this planning 
approach by supporting the planning system with probabilistic capabilities. 

4. Planning under uncertainty 

In this section, semantic-knowledge base is proposed to support robot planning system by handling the issues of 
uncertainty in existence of objects in a certain place or predicting the types of objects or places. For instance, to 
insert an action move bedroom1 kitchen1 in the robot plan, it might be necessary to provide robot planner with 
information about the type of the next room that robot should go to. If the task requires the robot to fetch a milk box 
and there is no assertion about the milk box location, it is necessary for the planner to get support from the 
probabilistic module. If the probabilistic module answers with high probability that the most probable location for a 
milk box is the kitchen because it is one of kitchen objects, so the best next location in the move action is the 
kitchen. Planning involving uncertainty in predicting the types of objects or places is conducted in the space of 
weights associated with a formula that describes them. 

Fig. 1. Robot World Ontology 
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In order to support the task planner efficiently, probabilistic models are needed to represent the probability 
distributions of uncertain information in the planning domain. There are several statistical relational models 
represented as extensions of undirected3 or directed graphical models (Multi-Entity Bayesian Networks13 or 
Bayesian Logic networks14. These models can make using of learning and inference methods which have been 
developed for their underlying representations. Markov Logic Networks are used in this paper as a statistical 
relational model to support the task-planning process. Fig. 2 represents the probabilistic planning system 
architecture proposed in this research. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.1 Markov Logic Networks (MLNs) 

The formal definition of MLN L is given by a set of pairs <Fi , wi>, where Fi is a formula in first-order logic and 
wi is a real-valued weight. For each finite domain of constants D, an MLN L defines a ground Markov network ML,D 
= <X,G> as follows (see11 for more details): 
 
 X is a set of boolean variables. For each possible grounding of each predicate appearing in L, add a boolean 

variable (ground atom) to X. 
 G is a set of weighted ground formulas, i.e. a set of pairs <Fj’, wj’>, where Fj’ is a ground formula and wj’ is a 

real-valued weight. 
 
The ground Markov network ML,D specifies a probability distribution over the set of possible worlds X as follows: 
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Fig. 2. Probabilistic Planning System Architecture 
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4.2 Learning MLN 

The learning of a statistical relational model involves the construction of a model from observed training data. 
The structure of the model can either be known a priori, leaving only the parameters to be determined, as shown in15, 
or can be part of the learning problem. One consequently differentiates parameter learning from the harder problem 
of structure learning. The first approach towards learning the structure of MLNs was presented by15. While structure 
learning is clearly important if Artificial Intelligent (AI) systems are to build up probabilistic models with as little 
human assistance as possible, realistic approaches will still rely on engineered structures for the most part. 
Parameter learning, therefore, is the most important aspect for knowledge engineers who typically qualitatively 
assess the properties of a distribution and indicate the dependencies between the variables but cannot quantitatively 
define the degree to which these variables depend on one another. 

In a Markov logic network, the goal of parameter learning is to set the weights of the model’s formulas such that 
they reflect observations that have been made about the particular part of the world the model is concerned with. 
The observations that were made are representative of the particular aspects of the world that are to be captured by 
the model, such that they allow the model to extract precisely the general principles. The observations used for 
learning can be stored in a training database that uses the same language as the model. Since MLNs use logical 
predicates, the database should thus contain the truth values of a number of ground atoms. The entities appearing in 
the training database implicitly define a set X of ground atoms. Any ground atoms in X whose truth values are not 
given in the training database are assumed to be false (closed world assumption). Under this assumption, the training 
database thus specifies a full assignment X = x. 
Maximum Pseudo-Likelihood Learning: This problem can be addressed by maximum Pseudo-Likelihood. 
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where Xk is a ground atom, xk is Xk’s truth value in x, and MBx (Xk) is the assignment of Xk’s Markov blanket in x3. 
The pseudo-likelihood approximates P(X = x) by making strong independence assumptions, avoiding an expensive 
inference process. 
Discriminative Learning. The most attractive feature of undirected models and therefore MLNs is that they can 
also be trained discriminatively, i.e. they can be trained to represent not a full-joint distribution but a conditional 
distribution. Assuming that there is a strict separation between observable and unobservable variables in the 
application at hand (e.g. a classification task, where only the classes are always unknown but everything else is 
given), discriminative training can yield models with superior performance. Methods for the discriminative training 
of MLNs were introduced by16. Fig. 3 explains the components of the MLN learning phase. 

4.3 MLN as inference engine 

The probabilistic semantics of Markov logic networks are defined via ground Markov random fields, so 
inference can essentially be handled by applying standard inference methods for Markov networks.  
Markov chain Monte Carlo (MCMC) scheme17 methods are essentially approximate, sampling-based methods 
where the individual samples are not drawn independently but taken from a Markov chain, i.e. a model describing 
sequences of states. Fig. 4 explains the components of MLN query phase. 
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Fig. 5. Robot Environment 

4.4 SKB To MLN Algorithm 

The algorithm proposed to create MLN from SKB is as follows: 
 

 

 

 

 

 

4.5 Example 

Suppose that the planner has to insert the movement action move r2 r1 (where r2 is a living-room and r1 may be a 
bedroom or an office), so there are two possible values to r1. Then r1 value depends on the result of the query that is 
returned from the learned MLN model. If the result shows that r1 could be a bedroom with probability of 0.2 or an 
office with probability of 0.8, then the move action should be move r2 r1 with r1 = office. 

5. Testing scenario 

The test scenario involves performing a navigation task in a house environment. This house consists of 4 rooms 
named k1, k2, o1 and o2 as shown in Fig. 5. These rooms have not been identified yet and the robot depends on the 
MLN module to identify them. The semantic-knowledge base contains, among other things, the following classes 
and roles definitions (see Fig. 1): 
Classes 
Room, Object, Kitchen 
Office, KitchenObject, OfficeObject 
Rules 
Kitchen is Room and Kitchen isContaining KitchenObject 
KitchenObject is Object and KitchenObject isLocatedAt Kitchen 
Office is Room and Office isContaining OfficeObject 
OfficeObject is Object and OfficeObject isLocatedAt Office 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Algorithm1: 
Input: SKB Classes (C), Roles (R) 
Output: MLN 
P = null 
F = null 
For every c in C 
 P = P + Create predicate (c) 
For every r in R 
 F = F + Create formula (r) 
MLN = combine ( P + F) 
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These definitions are then translated from SKB to MLN (using Algorithm1) to create the following MLN model: 

Room(place), Object(entity), Kitchen(place), Office(place), KitchenObject(entity), OfficeObject(entity) 
Containing(place!, entity), LocatedAt(entity, place!) 
Room(x) ^ KitchenObject(y) ^ isLocatedAt(y, x) => Kitchen(x) 
Room(x) ^ OfficeObject(y) ^ isLocatedAt(y, x) => Office(x) 
Office(x) ^ Containing(x, y) => OfficeObject(y) 
Kitchen(x) ^ Containing(x, y) => KitchenObject(y) 

This model becomes as a template and can be trained by using training data e.g.: 
 

Room(R1), Room(R2), Room(R3), Room(R4),  
Kitchen(R1), Kitchen(R4),  
Office(R2), Office(R3),  
KitchenObject(Oven), KitchenObject(Fridge), KitchenObject(MilkBox),  
OfficeObject(Pc), OfficeObject(Chair),  
isContaining(R1, Oven), isContaining(R1, Fridge), isContaining(R2, Pc), isContaining(R3, Chair), isContaining(R4, MilkBox), 
isLocatedAt(Oven, R1), isLocatedAt(Fridge, R1), isLocatedAt(Pc, R2), isLocatedAt(Chair, R3), isLocatedAt(MilkBox, R4) 
 

This paper uses the ProbCog18 Toolbox to train and query the MLN model. By applying this information to the 
model in Fig. 3, the resulting learned MLN is represented as follows (only a part of the MLN model is displayed due 
to the limited space): 

 

1.42655  Room(x) ^ KitchenObject(y) ^ isLocatedAt(y,x) => Kitchen(x) 
1.38352  Room(x) ^ OfficeObject(y) ^ isLocatedAt(y,x) => Office(x) 
1.41033  Office(x) ^ isContaining(x,y) => OfficeObject(y) 
1.39625  Kitchen(x) ^ isContaining(x,y) => KitchenObject(y) 
-0.185971  Kitchen(a1) 
 0.185143  Office(a1) 
Next, this learned MLN model is used to predict and infer the probability of objects existence and their types. 

For example, if the testing data is: 
 

Room(K1),Room(K2),Room(O1),Room(O2),KitchenObject(Table),KitchenObject(Microwave),KitchenObject(WashingMachine),Of
ficeObject(Chair),OfficeObject(Sofa),OfficeObject(PC),isContaining(K1,Table),isContaining(O1,Chair),isContaining(O2,PC),isCon
taining(K2,Microwave),isContaining(K2,WashingMachine),isContaining(O2,Sofa),isLocatedAt(Table,K1),isLocatedAt(Chair,O1),is
LocatedAt(PC,O2),isLocatedAt(Microwave,K2),isLocatedAt(WashingMachine,K2),isLocatedAt(Sofa,O2). 

 
and by inputting it to the model in Fig. 4 and selecting MCMC inference method17, then the result is shown in 

table 1: 
 

Table 1. Places and their probabilities 

No. Things Probability 
1 Kitchen(K1) 0.791971 
2 Kitchen(K2) 0.779972 
3 Kitchen(O1) 0.172033 
4 Kitchen(O2) 0.154035 
5 Office(K1) 0.225027 
6 Office(K2) 0.239026 
7 Office(O1) 0.834967 
8 Office(O2) 0.823968 
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From table1, it is important to calculate the standard deviation to show the best selection of the Kitchen or Office 
places. The mean value for Kitchen probability is 0.474502, the variance is 0.097071 and the standard deviation is 
0.311562, as shown in Fig. 6. 

 
 
 
 
 
 
 
 
 
 

 
 

 
So, that K1 and K2 are more probable to be kitchen than office. The same steps can be done with office place 

and Fig. 7 can explain that. 
From this result, a decision can be taken to specify the type of rooms (in uncertain situations) according to the 

objects inside them. After this procedure, the robot task planner can use this information to generate its plans, so the 
uncertainty is handled in robot task planner. 

6. Conclusions and future works 

This paper developes a new method to enable the robot to deal with uncertainty. A template of the MLN model 
is created based on information stored in the semantic-knowledge base. Then this model is trained in order to get 
learned MLN, which has the ability to answer any query that is generated from the SKB and can infer (in a 
probabilistic way) the types and the existence of objects or places in the robot environment. 

Future work includes obtaining more training data in order to cover most of the situations that may face the robot 
operations and using it to learn the model and recover from situations when the domain parameters are not 
deterministic. The use of other types of statistical relational model such as Bayesian Logic Netwoks in supporting of 
the task planner will also be considered. 
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