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Abstract

Femtocell is a small cellular base station used by operators to extend indoor service cov-

erage and enhance overall network performance. In Long Term Evolution (LTE), femtocell

works under macrocell coverage and combines with the macrocell to constitute the two-tier

network. Compared to the traditional single-tier network, the two-tier scenario creates many

new challenges, which lead to the 3rd Generation Partnership Project (3GPP) implementing

an automation technology called Self-Organising Network (SON) in order to achieve lower

cost and enhanced network performance.

This thesis focuses on the inbound and outbound handovers (handover between femtocell

and macrocell); in detail, it provides suitable solutions for the intensity of femtocell han-

dover prediction, Physical Cell Identity (PCI) allocation and handover triggering parameter

optimisation. Moreover, those solutions are implemented in the structure of SON.

In order to efficiently manage radio resource allocation, this research investigates the con-

ventional UE-based prediction model and proposes a cell-based prediction model to predict

the intensity of a femtocell’s handover, which overcomes the drawbacks of the conventional

models in the two-tier scenario. Then, the predictor is used in the proposed dynamic group

PCI allocation approach in order to solve the problem of PCI allocation for the femtocells.

In addition, based on SON, this approach is implemented in the structure of a centralised

Automated Configuration of Physical Cell Identity (ACPCI). It overcomes the drawbacks

of the conventional method by reducing inbound handover failure of Cell Global Identity

(CGI). This thesis also tackles optimisation of the handover triggering parameters to min-

imise handover failure. A dynamic hysteresis-adjusting approach for each User Equipment

(UE) is proposed, using received average Reference Signal-Signal to Interference plus Noise

Ratio (RS-SINR) of the UE as a criterion. Furthermore, based on SON, this approach is

implemented in the structure of hybrid Mobility Robustness Optimisation (MRO). It is able

to offer the unique optimised hysteresis value to the individual UE in the network.

In order to evaluate the performance of the proposed approach against existing methods,

a System Level Simulation (SLS) tool, provided by the Centre for Wireless Network Design

(CWiND) research group, is utilised, which models the structure of two-tier communication

of LTE femtocell-based networks.
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Chapter 1

Introduction

This introductory chapter describes the basic information of the research sce-

nario such as the Long-Term Evolution (LTE) single-tier and LTE femtocell

(two-tier) network. Then, it explains the motivations that drive this research,

aims and objectives, the main research questions, key contributions and the

organisation of this thesis.

1.1 LTE Single-tier Network

Mobile and wireless communications have undergone sustained and ever-increasing

growth in the first decade of this century. It attracts researchers to work with

comprehensive new technologies in order to meet the growing requirements of

high-speed mobile broadband.

LTE refers to Long-Term Evolution, a standard developed by the Third

Generation Partnership Project (3GPP) standardisation body at Release 8

[1]. It is commonly marketed as 3rd Generation (3G) beyond LTE or 3.9G

and represents wireless communication of high-speed data for data terminals

and mobile phones. There are several advantages of LTE when compared with

existing 3G networks:

The first advantage is LTE offers faster data transfer rates which turn to

higher download and upload rates. Generally, when LTE operates at the 20

megahertz (MHz) bandwidth, it should provide at least 100 Mega bits Per
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Second (Mbps) in the downlink and 50 Mbps in the uplink [2].

The second advantage is LTE provides better spectrum efficiency and flex-

ibility than 3G systems by allowing spectrum allocations for cells from 1.4

MHz up to 20 MHz [2]. In LTE, Orthogonal Frequency-Division Multiple Ac-

cess (OFDMA) is used for the downlink and Single-Carrier Frequency Division

Multiple Access (SC-FDMA) is used for uplink and they have the ability to

allocate the Resource Block (RB) for users in the limited spectrum [3]. As

a multiple access, both of them provide diverse time and frequency channel.

They enhance the spectrum efficiency of networks by assigning distinct Or-

thogonal Frequency Division Multiplexing (OFDM) symbols to distinct users.

The third advantage is that LTE considers both Frequency Division Du-

plexing (FDD) and Time Division Duplexing (TDD) modes for uplink and

downlink duplexing [4]. FDD is a method for establishing a full-duplex com-

munications link. It applies two different radio frequencies for transmitter and

receiver operation. Therefore, a defined frequency offset is used to separate

the transmit and receive frequencies. On the other hand, TDD is a method for

emulating full-duplex communication over a half-duplex communication link.

It uses the same frequency on both the transmitter and receiver direction.

However, the transmit and receive traffic is separated by a defined time.

The last advantage is LTE supports the load management of the neighbour-

ing cells to achieve inter-cell interference coordination by providing information

concerning resource use and traffic load conditions [5]. Further information re-

garding LTE/LTE-Advanced (LTE-A) will be introduced in Section 2.1.

A macrocell is a high-power base station (cellular) in a mobile phone net-

work which provides radio coverage service [6]. It has large service coverage,

generally a 1 to 2.5 kilometre (km) radius. If macrocell work with LTE so-

lutions, its coverage can be up to a 100 km radius. However, due to large

coverage, there are two problems which can occur in the network [6]:

� Blind spot problem. Due to the shadow fading during the signal wave

propagation, the service of macrocell cannot cover a number of specific

areas.
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� Hot spot problem. Due to the uneven distribution of traffic load of the

cells, the service of macrocell cannot cover a number of specific areas.

In order to solve these problems (extend the coverage of wireless service), the

standard [7] defines that term macrocell is used to describe the widest range of

cell sizes and provide a large area service coverage. Over a smaller cell area, a

microcell (micro) is used in a densely populated urban area with about 100-500

metres coverage. Picocell (pico) is used for areas even smaller than those of

microcell, about 10 to 80 metres coverage. Femtocell (femto) is used for areas

smaller than those of micro and pico, about 10-20 metres (indoor coverage).

Moreover, in an LTE network, if the micro, pico and femto are all deployed

within the coverage of the macrocell, this structure of network is called a

heterogeneous network. Further information concerning heterogeneous LTE

will be introduced in Chapter 2. If the LTE network only consists of macrocell,

this is known as a single-tier network. Moreover, if the LTE network consists

of both the macrocell and femtocell, it is known as a two-tier network. The

single-tier network structure is shown in Figure 1.1.

Figure 1.1: The structure of LTE macrocell single-tier network
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As shown in Figure 1.1, all users are located in the coverage of the macrocell

and only the macrocell offers wireless communication service for the users in

the network.

1.2 Femtocall Two-tier Network

In mobile communication, it is estimated that nearly 2/3 [6] of calls and over

90% [6] of data services occur in an indoor scenario. Unfortunately, many

indoor users experience poor coverage problems according to some surveys [6].

If this problem cannot be solved satisfactorily, it would seriously impact the

Quality of Service (QoS) to users and result in operators losing their clients.

However, even with advances in 4G technology, the traditional macro cel-

lular network simply cannot satisfy the growth in demand for mobile data

whether in an indoor or outdoor scenario [8]. This is due to the limitations of

the macrocell, such as:

� Limitation of the number of macro stations that can be built due to

macro sites being particularly costly.

� Limitation of the location of the macro due to the new site not being

located at the optimal area.

� Limitation of the spectrum can satisfy the requirements of the network

due to the increase in demand.

� Limitation of the usage of macro cell backhaul due to cost.

Therefore, a small wireless base station, femtocell, has been considered an

important radio access technology which extends the service of macrocell and

which has received wide attention in recent years. Since the femtocell has a

small size, low power, cost-effective and high-performance features [6], it is a

talented solution not only to enhance indoor coverage but also to satisfy the

fast-growing traffic requirements within current cellular networks.
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The femtocell is typically located inside larger cells served by nearby macro-

cell base stations. As a result, this network structure is divided into two

clearly-separated tiers as shown in Figure 1.2.

Figure 1.2: The structure of LTE femtocell two-tier network

As shown in Figure 1.2, all users and femtocells are located within the

coverage of macrocell. The macrocell tier that provides cellular coverage to

mobile users and to the femtocell tier that is used to enhance the coverage of

wireless service in an indoor scenario (blind spot or hot spot). Therefore, this

kind of network with an LTE solution is known as an LTE femtocell two-tier

network.

Moreover, the three network elements that are common to any femtocell

network architecture are listed below and the femtocell network architecture

itself is shown in Figure 1.3 [9].

� The Femtocell Access Point (FAP): FAP is the primary node in a fem-

tocell network. It implements the functions of the base station and base

station controller. Through an Internet connection, FAP is able to con-

nect to the operator network.
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� Security Gateway (SeGW): The SeGW is a network node which ensures

the security of the Internet connection between femtocell users and the

mobile operator core network.

� femtocell Device Management System (FMS): The FMS is located in the

operator network (core network). It can remotely configure the FAP and

play an important role in the operational management, provisioning and

activation of the FAP.

Figure 1.3: The femtocell network architecture

In addition, due to the two-tier network structure, femtocells need to avoid

or mitigate any interference with macrocells and provide a seamless experience

to users within the wireless service coverage. However, the femtocell is designed

to be randomly deployed by the customer (femtocell is a plug-and-play device).

Therefore, this technique brings several technical challenges when working with

the traditional macrocell [10], such as:

Mobility and Handover: The coverage area of an individual femtocell is

small; it is essential to support seamless handovers to and from femtocells to

provide continuous connectivity. Handover scenarios include femto-to-macro

(outbound mobility), macro-femto (inbound mobility) and possibly femto-to-

femto.
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Self-Organizing Networks: femtocell networks are largely installed by cus-

tomers or private enterprises often in an ad-hoc manner without traditional

Radio Frequency (RF) planning, site selection, deployment and maintenance

by the operator. In that sense, femtocells are sometimes referred to as a Self-

Organizing Network (SON).

Interference Coordination: Interference introduced by the femtocell can be

featured as: stronger, less predictable, and more varied interference. Inter-

ference occurs predominantly when femtocells are deployed in the same spec-

trum as the legacy (outdoor) wireless network, but can also occur even when

femtocells are in a different but adjacent frequency band due to out-of-band

radiation, particularly in dense deployments.

Cell Association and Biasing: Assigning users to a proper base station is a

key challenge in a heterogeneous network with a wide variety of cell sizes. A

solution called ’biasing’ has been introduced, whereby users are actively pushed

onto small cells. Despite a potentially significant SINR hit for that mobile

station, this has the potential for a win-win scenario because the mobile gains

access to a much larger fraction of the small cell time and frequency slots. On

the other hand, the macrocell reclaims the time and frequency slots that the

user would have occupied.

1.3 Motivations

The two-tier network offers a flexible solution that benefits both users and

operators, and has been widely deployed in current wireless network systems.

However, the random deployment of femtocells (femtocell is a plug-and-play

device) and the complex architecture of a two-tier network brings several tech-

nical challenges as mentioned earlier.

1.3.1 Physical Cell Identity (PCI) Allocation

Since the coverage area of an individual femtocell is small, it is essential to

support seamless handovers to and from femtocells to provide continuous con-
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nectivity [6]. During the handover, in an LTE network, the PCI is used to

identify the serving and target femtocells. Moreover, the PCI is also used to

achieve channel synchronisation between a UE and newly detected cell [11].

Therefore, the PCI value must be unique during the handover and synchroni-

sation process.

Unfortunately, the number of PCIs is limited to 504 due to the limited

bytes allocated in the standard [12]. The number is insufficient in cases when

introducing large numbers of femtocells. Reflecting this, 3GPP release 9 [12]

introduces (Cell Global Identity) CGI to work together with PCI as a solution.

However, there are unavoidable drawbacks for using CGI. For example, CGI

is obtained by reading system information, which is easily done when UE is

in idle mode. When UE is in connected mode, it uses the autonomous gap

to read the system information, which takes at least 150 ms as mentioned in

release 10 [11]. During that period, UE cannot exchange information with its

serving cell, which may lead to service interruption or a call-drop.

Moreover, in LTE, the trigger of handover is only dependent on the UE

measurement report [11], the longer the cell identity measurement period, the

higher the chance that the UE misses the opening to implement the handover

process, which may also result a serious growth of call-drop ratio. Therefore,

the PCI allocation problem remains crucial to ensuring a successful handover

process.

1.3.2 Triggering Handover Parameter Optimisation

Due to the two-tier structure of femtocell and macrocell deployment, the

handover scenario differs considerably from conventional LTE networks, e.g.

the coverage of the femtocell is much smaller than the macrocells, the han-

dover between macrocell and femtocell would experience more severe Signal-

to-Interference Noise Ratio (SINR) degradation than the handover between

macrocells. Therefore, handover from macrocell to femtocell is the most chal-

lenging issue for femtocell network deployment [6]. Reflecting this, 3GPP

LTE has proposed Mobility Robustness Optimisation (MRO) which focuses
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on autonomous selection and optimisation of handover triggering parameters

to overcome these issues [12].

In terms of the handover triggering parameters, during the handover pro-

cess, non-optimal handover triggering parameters such as hysteresis and Time-

To-Trigger (TTT) may cause unexpected handover failure, which is quite de-

structive to the network’s continuous connectivity. Currently most research,

such as [13] and [14], provide centralised optimal hysteresis for all UEs. How-

ever, the centralised optimised parameters algorithm only considers enhancing

the average handover performance for the overall system and ignores the na-

ture of the problem: UE’s mobility. Therefore, centralised optimal parameter

techniques cannot offer the optimised individual hysteresis to each UE.

As a result, it is anticipated that by designing a more flexible approach, a

unique, optimised hysteresis value for every UE in the network can be provided.

1.3.3 Self-Organizing Networks

As mentioned earlier, femtocell networks are largely installed by customers

or small business often in an ad-hoc manner without the planning, site selec-

tion, deployment or maintenance by the operator. In that case, femtocells are

referred to as a Self-Organizing Network (SON) [12].

SON has been accepted by 3GPP as the technology for LTE femtocell net-

work development [15]. Compared with SON, traditional manual methods

may not be adequate to solve these challenges, or may solve them but while

introducing higher costs to operators. The core idea of SON is to automat-

ically sense and react to changes in the network. The reactions include the

planning, configuration, management, optimisation and healing of network

system. Currently, 3GPP has summarised the self-organisation functions in

two-tier networks as shown in Figure 1.4 [12].

Figure Figure 1.4 shows that many functions have been summarised by

standards to solve the specific issues in LTE two-tier networks. Automated

Configuration of Physical Cell Identity (ACPCI) and Regarding Mobility Ro-

bustness Optimisation (MRO) have been defined in SON by 3GPP standard,
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Figure 1.4: The contents of self-organising network

in order to solve the issues mentioned earlier, such as cell identity allocation

and handover triggering parameter optimisation.

ACPCI is used for PCI self-planning and provides functions such as PCI

allocation situation collection as well as report and PCI management to sup-

port the specific PCI allocation approach. Moreover, ACPCI can be separated

into two parts [16]. The first part is the Physical cell identity Planning Tool

(PPT), and it is used to initialise a Physical Cell Identity (PCI) to the new

powered-up femtocell. The other part is the Physical cell identity Optimisa-

tion Tool (POT), used to update the PCI value of a femtocell which needs to

be changed due to a confusion or collision problem.

Regarding MRO, it is used to optimise handover triggering parameters

and provides functions such as handover information collection and reporting

as well as the adjustment of those parameters.

Since standards have provided the structure and function of the issues

described earlier, it is desirable to design the solutions based on SON.
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1.3.4 Traffic Behaviour Prediction Model

Thorough understanding of traffic behaviours leads to a more efficient alloca-

tion and management of network radio resources [17]. Reflecting this, most

of the current researches on traffic behaviour prediction models are UE-based

in a single-tier scenario (marcocell only). For instance, in [18] and [19], the

authors propose a traffic behaviour model using the Markov process and Hid-

den Markov Model (HMM). A state is modelled when a user remains within

a particular cell’s coverage. If this user stays in on another cell, the state is

changed correspondingly.

Those approaches work well in the single-tier deployment, however, it is

not suitable for two-tier networks with macrocells and femtocells. One vital

reason is that, as mentioned earlier, femtocells are plug-and-play device and

it could turn on and off frequently at any time, therefore, it is impossible to

obtain an accurate transition probability for each state. The other is that,

in the two-tier scenario, a larger number of femtocells also leads to large and

unmanageable states in the analysis, which leads to the lower accuracy of the

prediction [20]. As a consequence, it is necessary to design a new prediction

model for the two-tier network scenario.

1.4 Aims and Objectives

The aim of this thesis is, based on the SON structure, to develop two novel

approaches that overcome the issues which occur at the handover between

femtocell and macrocell. In addition, to design an optimal traffic behaviour

prediction model for the two-tier scenario in order to obtain the necessary

system information to associate with those approaches.

The following is a list of objectives that have to be met in order to achieve

the research aims:

� To study details all the proposed issues and drawbacks of conventional

approaches and prediction models.
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� To present how the proposed approach and prediction model can be

implemented in the system, especially under the SON structure.

� To analyse why the proposed approach and prediction model were cho-

sen carefully and can achieve better performance than conventional ap-

proaches.

1.5 Proposed Solution

The proposed approaches are achieved from the following considerations. The

detailed descriptions of those approaches are discussed in Chapters 3, 4 and 5.

Traffic Behaviour Prediction Model

In order to provide a proper prediction model in a LTE femtocell network,

this thesis proposes a cell-based prediction model to predict the intensity of

a femtocell’s effective mobility (the number of handovers appearing in a cell

over a time period). In this model, based on the HMM, the hidden states are

modelled based on learning the femtocell’s handover, and the future network

situation can be predicted for system management.

The reason for using HMM instead of Markov is that HMM is able to find

more predictive information which is hidden in traffic states than the Markov

process [19]. The advantages of the proposed approach are: firstly, it avoids

the necessity of frequently counting the number of cells as in the UE-based

model, due to the large number of femtocells deployment; secondly, regardless

of whether the cell turns on or off, which happens frequently with the femtocell,

the transition probability and emission probability will not be affected.

Cell Identity Allocation

In order to solve PCI confusion and the drawbacks of reading CGI in a two-

tier network, this thesis proposes a centralised dynamic group PCI allocation

scheme. This scheme can be described by firstly separating PCI resources into

two different groups such as, unique and reused PCI groups. It then uses the

proposed prediction model to determine the Busy femtocell (BFemtocell) with

a higher intensity of handovers (the number of inbound handovers). After that,
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the scheme will assign the unique PCI to those BFemtocells which especially

need to be taken care of. Moreover, since unique PCI is the key parameter in

the proposed scheme, the PCI release is also proposed in the scheme. Overall,

the proposed scheme complies with ACPCI function in the standards and offers

optimised PCI allocation in order to achieve better network performance.

Parameter Optimisation for Triggering the Handover Process

In order to provide the optimised individual hysteresis for every UE, this

thesis proposes a hybrid dynamic hysteresis-adjusting scheme. This solution is

based on each UE’s receiving average Reference Signal-Signal to Interference

plus Noise Ratio (RS-SINR) and the reserved parameters form the central

controller, UE can calculate its individual hysteresis value. The reason the

proposed algorithm uses RS-SINR is that UE’s mobility is the only basic fea-

ture which triggers the handover process (event), and RS-SINR has a close

relation with the UE mobility (UE’s various speeds cause changes in the RS-

SINR scenario). Overall, the proposed scheme provides a self-optimisation

ability to offer the unique optimised hysteresis to the individual UE in order

to achieve better handover performance.

1.6 Research Questions

This thesis introduces one traffic prediction model and two approaches to im-

prove the QoS for a handover in a two-tier network. By conducting the research

work, this thesis tries to answer the following questions.

� What is the traffic prediction in mobility management and why it is

important for resource management in a network system? Moreover,

what are the current prediction models and why should a novel traffic

prediction model for the two-tier scenario be designed?

� What is cell identity allocation and why it is important for the handover

process? Moreover, how to design a centralised PCI distribution ap-

proach and to associate with the proposed novel traffic prediction model?
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� What are the handover triggering parameters and why are the parameters

important for the handover process? In addition, what are the current

hysteresis optimisation approaches and why design a hybrid hysteresis

self-optimisation algorithm for an LTE femtocell network?

1.7 Contributions

The main contributions in this thesis can be illustrated as follows. The detailed

evaluation of these contributions is discussed in Chapter 6.

� Cell-based prediction model

A prediction model based on the intensity of a femtocell’s handover (the

number of handovers) has been presented. It has been designed not only

overcome the drawbacks of conventional UE-based prediction models in

the LTE femtocell two-tier scenario but also it provides higher accuracy

by obtaining the actual traffic behaviour information which hides in the

networks. This prediction model results in extremely high accuracy (up

to 90%) when compared to other conventional models in the proposed

system-level simulation which is described in detail in the Appendix B.1.

� Dynamic group PCI allocation scheme

Based on the centralised SON structure and complying with its ACPCI

function, a dynamic PCI group distribution scheme has been introduced

which provides a kind of self-planning ability to offer an optimised PCI

allocation approach and also a PCI release approach. This work ensures

a higher ratio of successful handovers (an increase of about 40% in the

proposed system level simulation) for the femtocells with higher inten-

sity handovers. Therefore, this approach results in enhanced network

performance overall in the two-tier scenario.

� Dynamic hysteresis-adjusting approach

Based on the hybrid SON structure and functions provided by MRO, a

dynamic UE-based hysteresis-adjusting self-optimisation algorithm has
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been demonstrated, unlike the conventional approach that all UEs share

the same centralised hysteresis value to trigger handover process. This

approach offers the unique optimised hysteresis for the individual UE.

Moreover, the Handover Aggregate Performance Indicator (HAPI) and

Revise Parameter (RP) have been provided to ensure the correctness of

the hysteresis in the handover process. In the system-level simulation,

it shows better handover performance (lower RLF, improved up to 5%;

lower call-drop and redundancy ratios) than the centralised conventional

method in the two-tier scenario.

1.8 Thesis Outlines

In this thesis, the outline of the remaining chapters are organised and their

relationship is shown in Figure 1.5.

In Figure 1.5, in terms of Chapters 3, 4 and 5, Chapter 4 uses the predicted

network information from Chapter 3 to achieve an optimal PCI planning for

distribution. Then, the proposed approach in Chapter 4 offers each femtocell

the optimal PCI value and also ensures successful handover for the UEs. More-

over, during the handover process, the self-optimisation algorithm in Chapter

5 ensures the UE retains better handover quality. Each chapter is described

in detail below:

Chapter 2: Literature Review

This chapter provides the background of this research and an overview of

the literature on traffic prediction model, cell identity allocation, handover-

triggering parameter optimisation and uplink interference mitigation.

Chapter 3: Cell-based Prediction Model for the Intensity of a

Femtocell’s handovers

This chapter firstly introduces the existing issues of the UE-based traffic

model implemented in the two-tier network scenario. It then describes a cell-

based prediction model which is based on the intensity of femtocell’s handover.

Further, this chapter presents metrics such as accuracy, precision, F-measure,
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Figure 1.5: The structure of chapters in this thesis
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sensitivity and specificity in order to evaluate the prediction performance rea-

sonably. The evaluation and results show the significant advantages of the

proposed model in a two-tier network scenario compared to the UE-based pre-

diction model.

Chapter 4: Dynamic Group PCI Allocation Scheme

This chapter firstly presents some important knowledge regarding existing

PCI and CGI problems in a two-tier network scenario. Then, it describes

the ACPCI functions that have been provided in the SON. Secondly, a dy-

namic PCI group scheme is proposed which has implemented the predictor

that mentioned in Chapter 3. Then, a PCI release approach is designed to

associate with the PCI group scheme. Moreover, it also demonstrates how this

PCI distribution approach is implemented in the centralised ACPCI frame-

work. Lastly, the evaluation and system level simulation results show that this

scheme provides a self-planning ability to offer optimal PCI allocation in order

to achieve better network performance.

Chapter 5: Dynamic UE-based Hysteresis-adjusting Algorithm

This chapter firstly describes some important knowledge related to the han-

dover process and failure regarding MRO. Then, it describes the hybrid MRO

framework and functions. Through implementing the framework and func-

tionality in MRO, it demonstrates a unique hysteresis-adjusting algorithm for

the individual UE depending on the received average SINR. Moreover, it also

introduces a handover aggregate performance indicator to evaluate the han-

dover performance. Lastly, the evaluation and results show that this scheme

provides a unique optimal hysteresis for the handover event and leads to bet-

ter overall handover performance in comparison to the conventional centralised

hysteresis-adjusting technique.

Chapter 6: Conclusions and Future Works

This chapter summarises the contributions of this thesis and identifies some

further research works.
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Chapter 2

Background and Related Work

This chapter provides the background and literature review for this thesis.

The key aim of this thesis is to tackle the challenges of inbound and outbound

handovers for LTE two-tier networks.

The approaches in this thesis comply with Self-Organising Network (SON)

functions [12]. Four specific approaches and algorithms are major challenges

in inbound and outbound handovers: UE-based traffic prediction model, cell

identity allocation and handover triggering parameter optimisation.

As a major conceptual design methodology used in the proposed approaches

in this thesis, as described in Chapter 1, core concepts LTE/LTE-Advanced

and features of SON are introduced first in this chapter. The chapter then

describes the general background and corresponding literature reviews of the

above mentioned approaches and algorithm respectively. The sections in this

chapter are listed as below:

� LTE and LTE-Advanced

� Self-organisation features in LTE femtocells

� UE-based traffic prediction model

� Cell identity allocation

� Parameter optimisation for triggering handover process.
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2.1 LTE and LTE-Advanced

In this section, the LTE and LTE-Advanced and their network architectures

are explained. Moreover, the quality of service and the handover process in

heterogeneous networks are also described.

2.1.1 LTE Network

Given the ever-increasing growth of wireless network service requirements,

Long-Term Evolution (LTE) is a standard developed by 3GPP, the standardi-

sation body, which is used to achieve the improvement of end-user throughput

and cell capacity, and reduction of user plane latency [2]. In order to integrate

with multimedia services, LTE is designed to support Voice-over-IP (VoIP)

and all kinds of IP data traffic.

Since the advantages of LTE compared to 3G networks have been explained

in Chapter 1, this section focuses on the network part of LTE. As LTE can

support the IP data traffic, a new network architecture has been defined by

3GPP called the Evolved Packet System (EPS) [21]. EPS consists of two parts,

the Evolved Universal Terrestrial Radio Access Network (E-UTRAN) or LTE,

and the Evolved Packet Core (EPC). The EPS network architecture is shown

in Figure 2.1 according to [22].

As shown in Figure 2.1, the network is comprised of an EPC, usually re-

ferred to as the CN in LTE and the access network E-UTRAN (LTE). The CN

consists of several logical elements: Packet Data Network (PDN) Gateway (P-

GW), Serving Gateway (S-GW), Mobility Management Entity (MME), Home

Subscriber Server (HSS) and Policy Control and Charging Rules Function

(PCRF). LTE is the radio-air interface which consists of the macrocells. A

macrocell is used to connect to the UEs and provide the wireless services for

them. Those elements showing in the EPS network architecture are connected

by the standardised interfaces: S1 and X2 interfaces. This feature enables

multi-vendor interoperability which means various network operators can eas-

ily add function elements belonging to different vendors to the EPS network
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Figure 2.1: The evolved packet system network architecture with S1 and X2
interfaces

[23]. Moreover, in LTE network, two interfaces are used to connect between

macrocell and macrocell or LTE and macrocell. S1 is the interface that con-

nects between macrocell and MME and S-GW. X2 is the interface that enables

macrocells or small cells which is proposed in LTE-Advanced to communicate

directly between each other, which can provide excellent seamless handover

and reduce the complexity of interference management (especially in HetNets)

[24].

The CN has the ability to control the entire network system and establish

bearers [21]. More information about bearers is described in the next section;

the elements in the CN are explained below:

� S-GW: Serving gateway is used to route and forward user data packets

while serving as local mobility anchor point for inter-handover of the

macrocell [2].

� P-GW: PDN gateway is used to allocate IP address to UEs and provide

the service to the external network. Therefore, P-GW also can be treated

as local mobility anchor point [2].

� MME: Mobility management entity is used to [2]: firstly, select a S-

GW or P-GW for an UE at the initial camp in the network; secondly,
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control the UE’s tracking and paging procedure in idle-mode; thirdly,

verify authorisation of a UE to camp on the Public Land Mobile Network

(PLMN) which is provided by the service provider; and fourthly, offer

management and communication for small cells in LTE-Advanced, e.g.

distributing a Physical Cell Identity (PCI) to a femtocell [25].

� HSS: Home subscriber server is used to associate with the MME to

provide capabilities for: mobile management; user security and identifi-

cation; access restriction for roaming; service profile and authentication

[24].

� PCRF: Policy control and charging rules function is used to provide

the QoS authorisation which indicates the flow-based charging control

decisions [22]. More information about QoS is explained in Section 2.1.2.

2.1.2 LTE Quality of Service (QoS) Management Pro-

cess

User-experienced Quality of Service (QoS) and its policy management is the

3GPP standards-defined technique that ensures a wireless network with high

quality serves and network capacity [26]. Since the network operators like to

offer differentiated services to users, manage network congestion and so on,

this technique is designed to provide dynamic resource allocation for network

use in order to achieve these goals.

In LTE network, the 3GPP standard defines an access-agnostic policy con-

trol framework which implements the standardisation of QoS and its policy

management [24]. This kind of framework can support multi-vendor deploy-

ments and enable operators to offer service to the different UEs. This frame-

work is achieved by the EPS bearer model [27].

As mentioned earlier, in the EPS, the service session-level policy decisions

can be made by the PCRF through obtaining the existing network information.

The decisions are then sent to the Policy and Charging Enforcement Function

(PCEF) located in the PDN-GW [24]. The PCEF forcibly implements the
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policy decisions by mapping service data flows to bearers, establishing bearers,

and performing traffic managing and shaping. Moreover, a bearer is defined

by the 3GPP standard to implement QoS indication between UE and PCRF

[27].

Bearer model is the basic traffic separation factor which can enable differ-

ential management for traffic with different requirements of QoS [24]. In this

model, each bearer works together with a set of QoS parameters which denote

the properties of the network system, including bit/bit error rates, packet de-

lay/loss, service interrupt (e.g. call-drop) and scheduling policy in an LTE

station. A bearer has four QoS parameters [27]: QoS Class Indicator (QCI);

Allocation Retention Priority (ARP); Guaranteed Bit Rate (GBR); and Max-

imum Bit Rate (MBR).

� QCI is used for the forwarding treatment (priority) on a particular

bearer. The treatment can be different levels of scheduling weights,

admission thresholds, queue management thresholds, link-layer proto-

col configuration, etc. Then, this bearer is handled by each functional

element (for example, a PDN-GW in EPC or femtocells in LTE) [27].

� ARP is used in bearer establishment [26]. When a new bearer has been

modified or established, it is used to make the decision whether the bearer

request should be accepted by considering the current network situation.

Moreover, it is a particularly essential parameter to indicate handover

situations (e.g. call-drop) [24].

� GBR/MBR are used for real-time services, such as conversational voice

and video. GBR/MBR is the minimum/maximum guaranteed bit rate

per EPS bearer for uplink and downlink [27].

2.1.3 LTE-Advanced Heterogeneous Network

As LTE no longer satisfies the requirements for fast-growing radio link per-

formance, LTE-Advanced Heterogeneous Networks (HetNet) with an evolved
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network topology is becoming the next highlight in wireless network technol-

ogy. Through using joined macro, micro, pico and femto base stations, HetNet

permits flexible and economical deployments and provides a consistent wireless

service to users in the network [7].

The target of LTE-Advanced is to achieve and exceed the International

Telecommunications Union (ITU) requirements and also be compatible with

first release LTE equipment and share frequency bands with first release LTE

[7]. One of the important LTE-Advanced benefits is the capability to take

advantage of advanced topology networks as optimised HetNet with a combi-

nation of macrocells and low power small cells such as micro and femto cells

[7]. The small cells are the performance leap in wireless networks which bring

the network closer to the users. Another LTE-Advanced benefit is that it fur-

ther improves the network capacity and coverage. It also ensures user fairness

in the wireless service [8].

Moreover, LTE-Advanced supports very much higher data rates than LTE.

It enables multi-carrier to use ultra-wide bandwidth, up to 100 MHz of spec-

trum [6]. Therefore, in 2010, 3GPP has determined that LTE-Advanced would

meet the International Telecommunications Union Radio communication Sec-

tor (ITU-R) requirements for 4G [4].

In terms of micro, pico and femto base stations, a microcell (micro) is used

in a densely populated urban area with about 100-500 metres coverage. A

picocell (pico) is used for areas even smaller than those of a microcell, about

10 to 80 metres coverage. A femtocell (femto) is used for areas smaller than

those of micro and pico, about 10-20 metres (indoor coverage). The structure

of HetNet is shown in Figure 2.2 according to [7].

Figure 2.2 shows the macrocell overlaid with micro, pico and femto cells,

which are typically deployed in an unplanned manner. Usually, the femtocell

uses the Internet as the backhaul to connect to the CN. Macro, micro and

pico cells can take other routes, such as, traditional microwave, unlicensed

millimetre wave, fibre optics and so on to connect to the CN [28]. Due to their

lower transmission power and smaller physical size, micro, pico and femto cells
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Figure 2.2: The structure of heterogeneous cells in a LTE macrocell

Table 2.1: Cell Types and Characteristics

Characteristic Macro/Micro cell Pico/Femto cell
Coverage Wide area Hot spot
Type of coverage Outdoor coverage Indoor coverage
Desity Small number of high

capacity sites
Large number of lower
capacity sites

QoS requirement High availability Best effort
Mobility Seamless mobility Nomadic mobility
Bandwidth flexibility Multi-band sectors Sectors support single

band only
Orientation Designed for voice Designed for data

can be collectively referred to as small cells, which can provide flexible coverage

in order to enhance the wireless services. Table 2.1, from [28], summarises the

differences in capabilities and requirements between macro and small cells.

As shown in Table 2.1, macro, micro, pico and femto cells have different

services and coverages. Therefore, under the macrocell, the number of pico

and femto cells is greater than the number of microcells. Although, the QoS

requirement for pico and femto cells is lower than the macro and micro, con-

sidering the number of pico and femto cells deployed and the number of UEs

that can be served by those cells, pico and femto cells can still offer reliable

services to the UEs. Since femto cells are plug-and-play devices and pico cells

are deployed randomly, their mobility is nomadic, which depends on the cell’s
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current location. In terms of the bandwidth, although a microcell belongs

to the small cell, its bandwidth distribution is similar to the macrocell which

can support more wireless users than pico and femto cells. Moreover, due to

the pico and femto cells use to enhance the wireless network service, they can

support the data service which needs higher throughput than voice service.

The architecture of a LTE-Advanced system is essentially the same as that

of LTE except that LTE-Advanced adopts the deployment of small cells, as

shown in Figure 2.3 according to [8].

Figure 2.3: The heterogeneous network architecture with S1 and X2 interface

Figure 2.3 shows that similar to the LTE network architecture, the HetNet

system comprises two main parts: E-UTRAN which is the radio-air interface

of LTE-A; and EPC (CN). The E-UTRAN entity has macrocells as base sta-

tions and several small cells. EPC includes MME, S-GW, P-GW, HSS and

PCRF. All the functions of those elements are described in the previous sec-

tion. Moreover, for the femtocell, the HetNet architecture allows three different

architecture deployment scenarios [8].

� Femtocell connects to the EPC via S1 interface: the femtocell connects

to the EPC like a macrocell and also has S1 connections to MME and

S-GW.

� Femtocell connects to the EPC (CN) via a Femtocell Gateway (F-GW):
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the F-GW serves as a concentrator for the control plane. It can terminate

the user plane towards the femtocell and towards the S-GW, when there

is a high number of femtocells deployed in the network. The F-GW

occurs towards the MME during S1 setup similar to a macrocell with

multiple cells and towards the femtocell similar to a MME.

� Femtocell connects to the EPC (CN) via a F-GW for the control plane

only. There are some femtocell-particular functionalities, for example,

paging optimisation, defined in the F-GW. If F-GW is less deployed in

the network, those functionalities are implemented by the MME.

2.1.4 Handover Process in LTE Heterogeneous Network

In a cellular network, handover is performed between target and serving cells

to guarantee that a UE is continually connected to the best serving cell [6].

The general handover process is as follows. A UE measures the signal strength

of its neighbouring cells. If the signal strength of a neighbouring cell is higher

than that of its serving cell plus a hysteresis for a specific time period called

the Time-To-Trigger (TTT), the UE will report this information to its serving

cell. The serving cell then initiates the handover process.

In a HetNet, the handover triggering parameters, hysteresis and TTT, are

commonly for all cells and all UEs [29]. However, using the same set of pa-

rameters for all cells/UEs may lower the mobility performance in the HetNet.

Therefore, it is desirable to have a cell-specific handover hysteresis for dif-

ferent small cells. Furthermore, both cell-specific and UE-specific handover

functionalities therefore need to be considered for HetNet [30].

In terms of the handover process in HetNet, first of all, the handover is

categorised into two parts which differ mainly due to the interference condition.

They are intra-frequency and inter-frequency handovers [29].

Intra-frequency handover: This handover denotes that the handover be-

tween two LTE cells (including macrocell or small cell) which uses the same

frequency carriers, the serving and target cells interfere with each other. When
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a UE moves from the serving cell a to a target cell b, the signal strength of

the cell a becomes smaller, and the interference caused by the target cell b

becomes larger. As a result, a handover is essential if the target cell is stronger

than the serving cell, even if the serving cell is still strong.

Inter-frequency handover: This handover denotes that the serving and the

target cells use different frequency carriers. Therefore, they do not interfere

with each other. In terms of interference situation the handover is from one

LTE frequency layer to another.

Handover process in HetNet includes the handover between macro and

small cells, the handover between macrocell and macrocell and the handover

between small cell and small cell. Therefore, for the handover in macro, micro,

pico and femto cells environments, there are 16 different handover processes.

It seems that the handover process is very complex in HetNet. However, due

to the LTE-particular structure feature mentioned earlier, LTE the network

structure enables multi-vendor interoperability which means various network

operators can easily add function elements belonging to different vendors to

the SPE network. The 16 different handover processes can be summarised in

three parts [31].

The first part is Handover Preparation. In this step, UE, serving cell

(macrocell or small cell) and target cell (macrocell or small cell) make prepa-

rations before the UE connects to the target cell. Particularly, in this step, all

the handovers always include four steps [25, 31]:

1. UE measurement control/report. The reason all the handover processes

have this step is because all the handover triggering is based on the

UE measurement report in the LTE. All the macrocells and small cells

require the measurement report from the UE during this step.

2. Handover decision. Once the UE gets the measurement report, it needs

to send this report to the serving cell via air interface. Different cells

may have different channels and modulations, but it does not affect the

communication between the UE and serving cell. When the serving
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cell receives the measurement report, it makes the handover decision

according to the signal strength of the target cell in the report.

3. Admission control. In this step, the target cell performs the admission

control dependent on the QoS information from bearers as mentioned

earlier and prepares the handover. As the different cells in HetNet may

use different Gateway or MME, therefore, the communication between

serving cell and target cell, serving cell and MME (Gateway) and target

cell and MME(Gateway) will be different. But, since the integration

of the LTE-Advanced network, LTE guarantees the different cells can

communicate each other by using S1 or X2 interface [2].

4. Handover response. After communication between serving and target

cells has been established and the target cell decides to accept the UE.

A handover response will be sent to the serving cell. Once the serving

cell receives the handover response, it sends the handover command to

the UE.

The second part is Handover Execution. In this part, there are two steps:

1. UE detaching. In this step, once the UE receives the handover command

from the serving cell, the UE starts to detach from the serving cell.

2. Service Synchronisation. After the serving cell sends the handover com-

mand to the UE, it starts to send the synchronisation information to the

target cell by using the established communication channel mentioned in

the previous part. As different cell types have different settings, the syn-

chronisation information is different in HetNet. After the target receives

the synchronisation information, the UE can start to access the target

cell.

The third part is Handover Completion. In this part, there are two steps:

1. Handover confirm and path switch. The Gateway switches the path of

downlink/uplink data to the target cell. For this, the Gateway exchanges

messages with the MME.

28



2.2. Self-organisation Features in LTE Femtocell

2. Release resource. Once the UE completes the handover process, the tar-

get cell changes to the serving cell. The new serving cell sends the release

resource request to the old cell. On reception of the release message, the

old cell releases the radio and control of related resources. Then, the

new serving cell starts the service to the UE which transmits the down-

link/uplink packet data to the UE.

The specific LTE femtocell handover information is explained in Sections

5.1.1, 5.1.2 and 5.1.3.

2.2 Self-organisation Features in LTE Femto-

cell

In recent years, demand for higher data rates increases rapidly, which then

results in needs for better QoS requirement for indoor service. Network is con-

sidered to be too large to be configured and maintained via regular operation

which means it is impossible to achieve by using the classic manual and field

trial based design approaches. This is particularly true for femtocells since

they are deployed in a random fashion with plug-and-play capability. Com-

plicated structure of two-tier network which causes serious interference and

reduce the performance of network service.

From the operator’s point of view, femtocell deployment is summarised

as higher capacity and QoS comes at the cost of higher Capital Expenditure

(CAPEX) and Operating Expenditure (OPEX) [15, 32]. As a result, the trade-

off between minimising CAPEX as well as OPEX and providing better QoS

as well as capacity is a primary concern for today’s operators.

SON is the viable way to achieve optimal resource management in a cost-

effective manner, the standards identified SON as not just an optional feature

but an inevitable necessity in current femtocell networks as well as in future

wireless systems [26, 33]. In a LTE system, SON function has covered many

aspects, such as: femtocell automatic registration and authentication; radio
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resource management and provisioning; neighbouring cell discovery and syn-

chronisation; cell ID selection and network optimisation.

Specifically, there are nine functions defined in SON:

1. Automated Configuration of Physical Cell Identity (ACPCI)

2. Mobility Robustness Optimisation (MRO)

3. Mobility Load Balancing (MLB)

4. Enhanced Inter-cell Interference Co-ordination (eICIC)

5. Random Access Channel (RACH) optimisation

6. Coverage & Capacity Optimisation (CCO)

7. Interference reduction

8. Energy savings

9. Automatic Neighbour Relation (ANR).

� Considering the MLB, the objective of this function is to intelligently

manage the UE traffic across the radio resources of the network system, in

order to achieve the redirections of load balancing and overcome unequal

traffic load. Moreover, MLB is able to control the system load and the

arrival of UEs according to the specific operator policy, to ensure good

end-user service quality and performance [30]. For instance, in [10],

the biasing is proposed to achieve a win-win scenario for femtocells and

macrocell UEs (MUEs), via actively pushing UEs to access the femtocells,

in order to mitigate the neighbouring cell interference.

� Considering the eICIC, it provides the intelligent coordination of phys-

ical resources between various neighbouring cells (femtocell/macrocell)

to reduce interference from one cell to another. This coordination can be

considered as restriction and preference for the resource usage in differ-

ent cells. Moreover, through the eICIC supports, the neighbouring cells
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are able to collaborate in terms of bandwidth usage, resource blocks and

even the transmission powers across various frequency resource blocks

used in each cell.

� Considering the RACH optimisation, RACH is used to carry the ran-

dom access preamble which a UE sends to access the network in non-

synchronised mode. It is also used to allow the UE to synchronise timing

with the base station. RACH optimisation aims to minimise the num-

ber of attempts from UEs on the RACH channel in order to reduce the

interference via an optimised polling mechanism for UEs.

� Considering the CCO, it offers automatic adjustment of the radio fre-

quency parameters (antenna configuration and power) for the base sta-

tion in LTE network. This method will permit the system to periodically

adjust to modifications in traffic (load and location) in addition to any

changes in the environment, such as new construction, or new cells being

deployed.

� Considering the interference reduction, it is able to switch off those wire-

less cells (femtocells) which are in idle status for a considerablely long

time, in order to achieve interference reduction for other wireless cells.

� Considering energy savings, it offers the wireless cells (femtocells) an

ability which can be automatically switched off when the capacity is no

longer needed and be re-activated on a need basis. Energy saving can

significant reduce the OPEX for operators.

� Considering the ANR, it is able to automatically optimise the neighbour

relations if a new femtocell switches on in the network. This will increase

the number of successful handovers and result in less disconnection due

to missing neighbour relations.

Since this thesis focuses on the ACPCI and MRO functions, more informa-

tion about them is described in the following sections.
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2.2.1 Automated Configuration of Physical Cell Iden-

tity (ACPCI)

As a reference signal sequence, PCI is a fundamental parameter for the LTE

radio configuration. It is used for cell identity and network synchronisation

[25] for two reasons: the PCI can be read within a very short time (20 ms)

from the system information [11]; the PCI is a reliable identification as it can

avoid interference through its structures. The structure of PCIs is: first, 168

pseudo-random sequences denote the cell identity groups’; second, for each cell

identity group, three orthogonal sequences are constructed. Therefore, there

are 504 PCI IDs in the LTE system [25]. For more information about the PCI

structures, please see Section 4.1.2.

ACPCI is the one of key functions in SON defined by the 3GPP. In a LTE

femtocell network, it is obviously more than 504 cells [6, 30]. This leads to

a limited resource’ with a high reuse-rate’ case appearing in the network and

PCIs need to be repeatedly re-used. However, a reused PCI would cause a

collision or confusion (single-tier confusion) problem due to the neighbouring

cells or two closed cells being assigned the same PCIs. There are two reasons

why cell PCIs cannot be shared.

Firstly, the configuration of the PCI directly influences the handover pro-

cess [6]. During the handover, the handover fails if the UE finds that the PCI

of the target cells is same as the one in the serving cell or there are many cells

have the same PCI as the target cell.

Secondly, the configuration of the PCI directly influences the configuration

of other radio parameters [3]. For example, in the uplink reference signals,

there are 30 sequence groups. Therefore, neighbouring cells should be as-

signed different sequence groups (a sequence group is used for resource block

allocation) and the sequence group is obtained from the PCI configuration [24].

As a result, ACPCI is proposed to solve those problems with carefully

assigned PCIs to the cells by SON. More information about PCI collisions,

and single-tier and two-tier confusions is explained in Sections 4.1.2.1 and
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4.1.2.2.

ACPCI can be separated into two parts [16]. The first part is the Physical

cell identity Planning Tool (PPT), which is used to initialise a Physical Cell

Identity (PCI) to the new powered-up femtocell. The other part is the Physical

cell identity Optimisation Tool (POT), which is used to update the PCI value

of a femtocell which needs to be changed due to a confusion or collision prob-

lem. Those functions solve the collision and single-tier confusion by using the

same PCI ID with a maximal distance from each other [6, 15]. However, the

confusion or collision probability increases when there are multiple deployed

small cells which start to overlap within the coverage area of a macrocell in a

heterogeneous network. Each of the cells needs to be configured to be collision

and confusion free. However, if the two small cell, e.g. femtocells have the

same PCI, and a UE handovers from a macrocell to one of the femtocells, in

this case, the macrocell will be confused by those femtocells and the handover

fails. This confusion is called two-tier confusion [6, 25]. More information

about two-tier confusion is explained in Section 4.1.2.2. Therefore, it is es-

sential that the ACPCI provides the collision and single-tier confusion-free

assignment for heterogeneous networks, due to the complexity of collision and

confusion problems.

In order to achieve the careful PCI assignment in heterogeneous networks,

there are some functions already set up in ACPCI.

ACPCI has ability to determine the actual network layout for every cell and

also the cell structure changes when new cells are added or closed in coverage

of the macrocell [16].

ACPCI has ability to achieve the PCI grouping. Instead of operating with

a full set of PCIs, PCIs can be separated and set into many sub-groups. This

process can efficiently assign the PCIs to the cells and proactively avoid repet-

itive reconfigurations [6].

Several approaches which are explained in Section 2.4 have been proposed

for automated PCI assignment. Each of these approaches solves different areas

of the problem with different characteristics.
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2.2.2 Mobility Robustness Optimisation (MRO)

As mentioned in Chapter 1, the general goal of MRO is to ensure the proper

handover in connected mode and proper cell re-selection in idle mode for the

UE, in order to support the UE’s proper mobility [30]. The specific goals of

MRO are given below in order of importance.

� Minimise call-drop: Call-drop is the worst case that occurs during the

handover or re-selection process [30]. This is because that it obviously

makes users unhappy and causes lower QoS.

� Minimise Radio Link Failures (RLF): RLF is the case of discon-

nection from serving or target cell during the handover, if the receiving

SINR from serving or target cell is lower than -6 dB [11]. If a RLF hap-

pens, the UE would re-establish the connection to the serving or target

cell. Therefore, RLF would cause redundancy handover and waste wire-

less radio resources. Moreover, this connection re-establishment is only

possible inside a LTE [30]. In many cases, the RLF is less critical than

the call-drop problem due to it having a connection re-establishment

function, but it is still an important MRO issue.

� Minimise unnecessary handovers: Unnecessary handovers includes

the ping-pong effect and handover to the wrong cell. Ping-pong effect

occurs when there are repeated handovers between two cells within a very

short time [7]. Handover to the wrong cell means the UE has not handed

over to the target cell, but another cell [12]. Unnecessary handovers lead

to inefficient use of wireless radio resources. Therefore, this issue is still

important to MRO.

� Minimise idle mode problem: Suitable re-selection is necessary such

that a connection between a UE and the base station can immediately

be set up at any time [30]. Therefore, the MRO should guarantee that

the users can camp on a suitable cell at any time.
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However, the idle model problem will be not considered in this thesis.

More detail of call-drop, RLF and unnecessary handovers (ping-pong effect

and handover to wrong cell) and how the ratios of these are calculated is

described in Sections 5.1.4 and 5.2.5. The works on MRO by previous authors

are summarised below:

� Call-drop report: the MRO can easily generate the call-drop report

depending on the Key Performance Indicators (KPI) [34].The one of

the most important KPIs is the call-drop ratio. Every cell counts the

identified handover problems caused by itself over a certain period of

time. Then the cell generates the call-drop report (including in the KPIs)

which is collected by the MRO.

� RLF report: the MRO can generate a RLF report for the wireless

system [12]. The process description is: when a RLF happens during

the handover between cell A and B, the UE disconnects from cell A. The

UE then sends the re-establishment request to cell B. Cell B informs cell

A about the RLF, cell A checks the situation of that lost UE and then

reports RLF to wireless system. Moreover, the case of handover to a

wrong cell is also reported to SON system by using the RLF report [30].

� Ping-pong effect report: the MRO can obtain the ping-pong effect

report from the cell via a KPI in the LTE [30]. The ping-pong effect

is detected by a cell when it realises a handover repeatedly occurs in a

shortly time for the same UE. The MRO can collect this ping-pong effect

from that cell report (including in the KPI).

� Mobility parameters correction: Mobility parameters correction is

an actual optimisation process for the MRO [30, 34]. The handover

triggering parameters, hysteresis and Time-To-Trigger (TTT) are im-

portant mobility parameters need to be chosen correctly during the han-

dover. The correction process is vendor-specific, and in this process,

centralised, distributed and hybrid solutions are possible. For more in-

formation about the hysteresis optimisation, please see Chapter 5.
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2.2.3 The Structures of SON Function in a LTE

According to [33], three different structures of SON function in a LTE two-tier

network have been summarised as shown in Figure 2.4.

Figure 2.4: Different SON function structure: (a) Centralised, (b) Distributed,
and (c) Hybrid

Figure 2.4(a) shows that, in a centralised structure, the SON algorithm

resides on a central controller, it first selects all the necessary information from

the overall network to this central controller. After an initialisation operation,

the controller then outputs the specific parameters or management information

to the femtocells or macrocell on a periodic basis or whenever needed.

The advantage of this structure is that it allows the SON algorithm to be

considered by the central controller before modifying the setting of the net-

works. This ensures the fairness of the base stations to obtain the overall

optimal network performance. However, there are two disadvantages of this

SON structure, namely compatibility and efficiency [26]. A compatibility is-

sue arises as a central controller has difficulty selecting the information from

multi-vendor femtocell devices with different system settings. An efficiency

issue arises as the individual wireless base station cannot immediately respond

to requirements and has to wait for commands from the central controller.
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Therefore the centralised SON is slow in terms of response.

Figure 2.4(b) shows that, in a distributed structure, the SON algorithm

resides in the individual wireless base station (or UE). It allows the station

to make autonomous decisions based on the received UE measurement and

additional information from the neighbouring cells.

Compared to the centralised case, this structure obviously overcomes the

drawbacks in terms of compatibility and efficiency. Since the SON algorithm

resides in the individual base station, it is easily implemented in multi-vendor

networks and can immediately respond to the network requirements without

any delay. Thus, the distributed SON is fast in terms of system response.

However, femtocells are designed to be selfish [6], so it is difficult to achieve

fairness for femtocells and at the same time achieve a good overall network

performance in the two-tier network.

Figure 2.4(c) shows that, in the hybrid structure, the SON algorithm resides

in both the base station and the central controller. This structure ensures base

station and central controller work together, in order to be self-organised. Be-

ing a combination of centralised and distributed structure, the advantages and

disadvantages of this structure also depend on the centralised and distributed

algorithms themselves.

Depending on the above description, each structure in SON has its own

advantages and disadvantages, therefore the choice of those structures would

depend on the specific issues in the two-tier network. Moreover, with regards

to the compatibility issue in the hybrid and centralised structures, the SON

approach deployment would require the cooperation of the infrastructure ven-

dor, the operator and, possibly, the third party tool company [33]. Thus,

operators can choose the optimal SON approach based on the current infras-

tructure deployment. Reflecting this, in this thesis, the compatibility issue is

not considered in the proposed approaches.

To summarise, this section introduces the SON functions and its structures.

Those functions and structures are able to support the specific approach to

automatically solve the challenges in two-tier networks. Moreover, the scope
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of SON functions would be expanded and evolved with upcoming releases of

the LTE standard, in order to ensure LTE’s continued success in tomorrow’s

wireless marketplace.

2.3 UE-based Traffic Prediction Model

To cope with the fast growth of mobile networks in terms of user base and

network capacity, in order to satisfy the QoS requests, user mobility manage-

ment becomes one of the hot topics in current wireless network research [35].

In mobility management, traffic behaviour prediction is one of the important

aspects which enables the system to predict the further network situation in

order to achieve the network radio resource reservation. According to the pre-

dicted network situation, the system is able to provide a degree of SON ability

to optimise the network radio resource distribution and gain a better network

performance [17].

In [36], authors proposed a prediction scheme that offers adaptive band-

width reservation for handover and admission control. The strategy of this

paper is that for each cell, the bandwidth reserved for hand-offs is able to be

calculated by optimally estimating the total sum of fractional bandwidths of

the expected hand-offs within a mobility-estimation time window. The pa-

per used a Markov process to model user mobility. In this method, based on

aggregate history of hand-offs observed in each cell, the future mobiles’ direc-

tions and hand-off times in a cell were predicted. Based on the prediction, the

authors then proposed three different admission-control schemes for new con-

nection requests using bandwidth reservation in order to reduce the handover

call-drop ratio.

In [37], authors proposed a prediction approach called Zoned Mobility His-

tory Base (ZMHB) to offer correct triggers for handover, in order to improve

the handover performance. ZMHB employed a six-sector cell structure and

each sector is further divided into three zones based on their handoff proba-

bility. The paper exploited cell-zone numbering and intra-cell-basis movement
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history, which stores a record of the user’s movement in the current cell. In

each of those classified cell-zones, the user’s movement information is modelled

as a Markov process. Through the UE mobility prediction, the approach was

able to offer an efficient resource reservation to decrease call dropping prob-

ability and shorten handoff latency in a micro-cell structure or a metropolis

scenario. The latter normally has a complicated route structure.

Both of the prediction models in [36] and [37] are based on a Markov

process. In this model, according to user’s movement history, the Markov

states are modelled as wireless cells which the user has camped on. Reflecting

this, the further user movement situation can be considered as the next state

prediction.

In [38], the authors proposed a traffic behaviour prediction model using

a k-order Markov process, in order to implement an efficiency and scalability

routing protocol for mobile cognitive radio networks. Cognitive radio is a pop-

ular technology which is capable of sensing the environmental conditions and

automatically adapting its operating parameters in order to enhance network

performance. Using cognitive radio technologies, this paper is able to model

the UE routing with techniques, such as moving-average, Cumulative Distri-

bution Function(CDF) and static neighbour graph predictor. The authors

evaluated the reliability, efficiency and scalability of the routing protocols un-

der the different prediction techniques, the proposed k-order Markov process

combined with CDF offers better accuracy than other techniques.

Different from [36] and [37], the prediction model in [38] models the next

state prediction not depending on the current state but the i-k time period

states, where i is the current time period.

In [18], authors proposed a prediction approach based on the Markov re-

newal processes in order to achieve efficient network radio resource manage-

ment and provide a certain level of QoS as perceived by the mobile users. The

proposed approach was able to estimate the expected spatial-temporal traffic

load and activity at each location in a network’s coverage area. The paper com-

puted the likelihoods of the next-cell transition, along with anticipating the
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duration between the transitions, for an arbitrary user in a wireless network.

In [35], based on the Markov renewal process, authors presented a frame-

work to predict the subsequent transitions in mobility and activity of network

users and to model the traffic population of users with active and idle sessions

within a certain time period. The framework is able to optimise the user traf-

fic loads, such as voice and data connectivity, for the future network service

requirements. Both single-step and multi-step transitions had been considered

in the prediction model in order to enhance the end-to-end QoS up to a certain

level.

Similar to [36] and [37], the states in [18] and [35] are modelled as the

cells (movement history). However, according to the semi-Markov feature, the

next state prediction not only relates to the transition probability between

each state, but also depends on the time period in which a user camps on the

current serving cell.

The above approaches worked well in the macrocell deployment (single-

tier scenario), but are not suitable for LTE femtocell deployment in a two-tier

scenario. This is because the feature of random deployment of femtocells; a

femtocell could turn on and off frequently at any time. Therefore, it is impos-

sible to obtain the integral states history and correct transition probability for

a k-order Markov and semi-Markov.

In [39], the authors proposed an approach to adaptively infer with the sys-

tem parameters and then estimate the channel quality based on the inferred

parameters. This approach uses non-stationary HMM to model the spectrum-

sensing process and infer the model parameters through Bayesian inference

Using Gibbs sampling (BUGs). BUGs is software that implements the al-

gorithm in computational statistics based on a Markov Chain Monte Carlo

(MCMC) method. It can obtain the posteriors for non-conjugate priors nu-

merically [40]. The problems explored suggest that BUGS is able to produce

a posterior distribution via the decision maker’s true non-conjugate belief; in

this case, optimal decision making will be achieved. In this prediction model,

the channel occupancy statuses are modelled as hidden states due to their not
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being directly observable. The spectrum sensing results which are generated

by secondary users are modelled as observation states. Moreover, similar to

semi-Markov, in this approach, the transition probability proposed also de-

pends on the current state’s lasting time. Therefore, the transition probability

is not stationary. Reflecting this, the next prediction state would depend on

both current state and state residence time. According to the predicted state

of channel occupancy, this approach can estimate the channel quality for a

network system.

In [41], based on the history of room visiting, the authors proposed an ap-

proach to predict human behaviour within an office building. The prediction

model is based on the k -order HMM. It is similar to [38]: since hidden states

are a Markov chain, the k-order HMM means that the next period state de-

pends on the i-k time period state, where i is the current time period. The

rooms that people entered are modelled as hidden states due to people not

entering every room would. The rooms that people arrived in are modelled

as observation states. The experimental results show that k-order HMM has

better performance than other prediction techniques such as neural network

and Markov predictors.

According to [39] and [41], the key contribution is that the states which

cannot be observed are modelled as hidden states. Therefore, to model the

issue of femtocells turning on and off randomly in a two-tier scenario, the

femtocells (states) in a UE movement history model may be modelled as the

hidden states.

In [41], it is mentioned that the proposed room visiting prediction model

can be used in routing prediction for cellular phone systems, in order to predict

the next radio cell for a cellular phone owner based on his previous movement

behaviour. In [19], considering both single-tier and two-tier scenarios, the au-

thors proposed to use HMM to model the network traffic behaviours based on

a UE moving history model. In this model, the femtocells in which the UE has

handover are modelled as hidden states. The user’s location cells are modelled

as observation states. By predicting the next hidden state, the system can
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improve communication conditions and provide better service performance.

Moreover, the proposed model in [19] overcomes the drawback of femtocells

being randomly deployed by using hidden states to model those cells that can-

not be observed, i.e., the number of femtocells cannot be actually observed due

to femtocell being a plug-and-play device. Compared to the order-2 Markov

process, this model provides higher accuracy in a two-tier scenario.

However, the model in [19] is still not accurate enough since there are a large

number of femtocells being deployed which lead to large and unmanageable

states in the prediction model in a two-tier scenario [20]. Moreover, in [39],

[41] and [19], their prediction models are all based on HMM and the next state

prediction is based on the hidden part, since the hidden part is a Markov chain.

In contrast to these approaches, the authors in [42] provide a new approach to

use HMM in the prediction model.

In [42], authors proposed a model based on HMM for prediction of human

behaviour in a ubiquitous environment. In this model, since the human’s inter-

est cannot be actually observed, the interests are modelled as the hidden part

and the human behaviours are modelled as the observation part. Compared

to the above approaches that use the hidden part as the prediction states, this

paper models the observation part to predict the next states. The hidden part

is used to find the predictive information called weight’ (the strength of the

relation between the behaviour and interest) which is hidden from the system.

To summarise, all the current UE (in fact, it is also users’ behaviour)

behaviour prediction models are all based on the UE moving history and model

the cells as the states to predict the next visited cell (moving path). However,

those UE-based models no longer work well in the two-tier scenario for two

reasons: the peculiarity of random femtocell turn on and off which leads the

transmit probability matrix to fail; and femtocells being deployed in a large

number which leads to large and unmanageable states in prediction model in

a two-tier scenario. Therefore, Chapter 3 introduces a cell-based prediction

model for LTE femtocell two-tier networks.
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2.4 Cell Identity Allocation

In LTE femtocell systems, the PCI is used by UE to identify a femtocell.

The number of PCIs is limited to 504 in the standards [6]. They are normally

allocated without planning and network operator intervention. Reflecting this,

the PCI assignment problems which are called PCI confliction (collision and

confusion) has been addressed for single-tier and two-tier network scenarios

in the standards [6]. More detail of PCI and Cell Global Identity (CGI) is

provided in Chapter 4. In order to comply with the ACPCI, many research

works have been proposed to achieve automatically optimal PCI planning.

In [43], the authors proposed a Graph-colouring based mathematical method

for PCI auto-planning of a LTE network in a single-tier LTE network. Since

each LTE cell is similar to graph nodes and communication between two LTE

cells is similar to graph edges, each PCI can be modelled as the colour to assign

to the nodes. Moreover, given the feature of Graph-colouring of no identical

colour between the neighbour nodes, this approach can easily solve the PCI

collision issue.

In [44], the authors proposed a Graph-colouring based mathematical ap-

proach for primary component carrier selection and PCI assignment. The au-

thors investigated the possibility to solve these problems in a distributive man-

ner using Graph-colouring algorithms. Moreover, algorithms for real-valued

interference pricing of conflicts converge rapidly to achieve the local optimum.

The algorithm for binary interference pricing has a chance to find a global

optimum. This paper evaluated those algorithms and compared them. The

results showed that the binary pricing of interference with an attempt to find a

global optimum outperforms the real-valued pricing. Considering the PCI as-

signment, this approach can significantly reduce the requirement of the number

of PCIs, and reduce PCI conflictions.

In [45], the authors proposed an automatic centralised PCI assignment

mechanism for a single-tier LTE network, using Operation Administration and

Maintenance (OAM) as the central server to collect cell information and build
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an abstract graph with this information which reflects the relationship in real

world network. Associating this with an enhanced Graph-colouring algorithm

greatly reduces time complexity, and meanwhile keeps a high PCI utility ratio

to provide confliction-free PCIs for the new cells.

In [46], the authors proposed to use mobile measurements to update the

Neighbour Cell List (NCL) in a single-tier LTE network, in order to detect PCI

conflict. The problem solution is that if PCI confliction appears, the mobile

sends this information to the CN and the Operation Support System (OSS)

will require the cells involved in conflict to change their PCIs.

In [47], the authors summarised features in Releases 8 and 9 in a two-

tier LTE femtocell network. In Release 8, the inbound-handover is the big

issue due to two-tier femtocell confusion. In Release 9, it was proposed to

use CGI to replace PCI when the confusion occurred. The general process is

that during inbound-handover, if the serving macrocell finds that the PCI of a

target femtocell from a UE report is not unique, the serving cell instructs the

UE to read system information which includes the CGI-ID of the detected cell

and the CGI-ID will be used for this cell identification.

In [48], the authors proposed to use handover to mitigate the interference

between macrocell and femtocell. However, this method could fail when the

system is fully loaded and no free channel could be offered. Although this paper

mentioned about using power control to overcome this drawback, it could still

result in UE disconnection. Moreover, these researchers also proposed that

using CGI would result in UE disconnection due to it taking a long time to

obtain the UE measurement report.

In [49], the authors introduced a femtocell access control strategy in UMTS

and LTE. Particularly, they described the problem for cell selection/reselec-

tion in three different modes, open, hybrid and closed. It also mentioned the

problems for Closed Subscriber Group (CSG)/non-CSG cell inbound-handover

due to two-tier PCI confusion in Releases 8 and 9. Moreover, it analysed the

drawbacks of using CGI for inbound-handover; using CGI probably leads to

unnecessary service interruption and results in the call being dropped in situ-

44



2.4. Cell Identity Allocation

ations where the signal strength is fading rapidly.

In [50], the authors proposed an approach to reduce the time spent on

femtocell cell selection/reselection. This approach uses two groups of PCIs,

a femtocell group and a macrocell group, as shown in Figure 2.5. When the

UE claims into a new macrocell service, it automatically obtains the network

information of this macrocell, which sets the certain PCI numbers for macrocell

and femtocell. During handover procedure, the UE easily detects whether the

target device is a macrocell or a femtocell by using this information and leads

on reducing unnecessary signalling with the CN and identification time.

Figure 2.5: PCIs in femtocell and macrocell groups

In [51], the authors analysed the usage of CSG-ID introduced in Release

9. The closed mode cells have a CSG-Identity and CSG-Indication bit set to

TRUE; hybrid mode cells have a CSG-Identity and CSG-Indication bit set to

FALSE; and open mode cells do not have the CSG-Identity and CSG-Indication

bit set to FALSE.

CSG-Identity ID involves using the PCI ID. Both hybrid and close cell

modes support CSG-Identity ID. Two-tier LTE femtocells support separate

PCI groups. One group of PCIs is reserved for CSG mode deployment (identi-

fication), the other group of PCIs is reserved for non-CSG mode. This reserved

PCI range is signalled in the system information and UE would easily deter-

mine if the target femtocell belongs to CSG cells or non-CSG cells by using

this CSG cell’s broadcast reserved PCI information. This method is offered to
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help the CSG cell selection/re-selection.

In [52], the authors proposed an automated PCI allocation system and

ACPCI method to allocate the PCI in a two-tier LTE network in order to re-

duce the planning time of the PCI. In the paper, the researchers used the cell

information, including cell state information, type information and neighbour

list information, to create the PCI resource and also allocate the PCIs. Al-

though this method can reduce the planning time of PCI distribution, however,

the approach does not solve the CGI problem.

In [53], the authors proposed an automatic assignment of femtocell PCIs de-

pending on different access modes for network optimization in order to reduce

the operational expenditure for PCI allocation. In the paper, the researchers

proposed a scheme of autonomous planning framework of femtocells which can

autonomously detect the neighbouring cells of a target femtocell and send the

neighbourhood information to the central controller. By using a central con-

troller, the PCIs can be assigned in the optimal way. Although this method

can reduce the operational expenditure for PCI allocation, it does not solve

the CGI problem.

In [54], the authors proposed a visual cell ID to extend PCI and tackle the

conflict issue. In that paper, the combination of the PCIs and System Frame

Number (SFN) is proposed to replace the PCIs to identify the cell. The results

show that it can increase the identification to 1024 which is double the time

of current PCI number. However, the proposed approach heavily depends on

the synchronisation between femtocells and macrocells. This synchronisation

is easily undertaken by the system for only a few cells, but considering the

densely developed femtocell scenario which brings the PCI conflict issue, it is

almost impossible to achieve the synchronisation of a large number of cells at

the same time due to the complexity of the synchronisation process.

To summarise, in [43], [44], [45] and [46], the authors analysed the PCI con-

fliction issue in single-tier LTE systems. However, none of them have included

the impact of the layered structure of a two-tier network with combination of

macrocell and femtocell on PCI auto-planning. In [47], it was proposed that

46



2.5. Parameter Optimisation for Triggering Handover Process

the CGI assist the PCI to achieve the no-confliction cell identity, however, in

[48] and [49], the authors proposed the issue of when UE wants to read the

CGI from system information at inbound handover. In DynamicReservation-

SchemeofPhysicalCellIdentityfor3GPPLTEFemtocellSystems, [52] and [53], the

authors proposed the PCI allocation scheme in two-tier scenarios, but reading

the CGI remains a serious issue at inbound handover. Therefore, the research

in [54] returns back to PCI and provides the extension PCI IDs to achieve

PCI confliction free, but that approach is almost impossible to achieve in a

femtocell scenario. Reflecting this, in order to achieve better cell identity per-

formance in inbound handover, in the Chapter 4, a centralised dynamic group

PCI allocation in LTE femtocell two-tier network is described.

2.5 Parameter Optimisation for Triggering Han-

dover Process

In LTE, UE is considered to play increasingly important role to support han-

dover procedure [29]. In the handover process, ping-pong effect and Radio

Link Failure (RLF) may occur due to many reasons such as: users moving

at various speeds and violent change of signal strength. Since ping-pong ef-

fect and RLF are significantly affect the handover quality, in the standards,

MRO as the solution to automatically detect Ping-pong or RLF and adjust

the handover triggering parameters [12].

In [55], the authors proposed an approach using Received Signal Strength

(RSS) to decide whether or not to enter a handover process. The paper presents

an algorithm based on RSS measurement and Average Path-Gain (APG). By

comparing RSS and APG in the hard handover process, the RSS offers better

handover quality. Moreover, the paper also proposed a modified RSS-based al-

gorithm with TTT window, which can significantly reduce the average number

of handovers with increasing TTT window size while decreasing the average

uplink SINR.

In [56], the authors proposed an approach to solve the conflict of handover
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parameter judgment between MLB and MRO due to MLB and MRO con-

tradictions with each other (MLB encourages UE to have handover, MRO is

contrary). In that paper, the approach was based on restriction on the opera-

tion of MLB in the allowed range. The paper provides a scheme that is able to

balance the priority of MLB and the MRO in handover parameter judgement.

By avoiding the conflicts, this approach offers a better handover performance.

In [57], the authors investigated the handover parameters, such as Refer-

ence Symbol Received Power (RSRP) and Reference Signal Received Quality

(RSRQ) in inter-frequency handover scenarios. Through evaluation of five han-

dover criteria using RSRP, RSRQ or combinations thereof, the results showed

that RSRP-based significantly increases the number of handovers. Conversely

RSRQ-based reduces handovers but slightly increases the packet loss rate. Re-

flecting this, it is desired to use both RSRP and RSRQ which can guarantee

signal quality and also handover quality.

The above approaches are proposed to be used in the single-tier LTE net-

work. The approach in [57] only focused on the measurement parameters, such

as RSRP and RSRQ. It did not evaluate the handover triggering parameters,

such as hysteresis and TTT. The authors in [55] evaluated both RSS and TTT;

the paper demonstrated an awareness of the importance of the TTT window

in the handover process, but it did not offer an optimal TTT for the handover

process. In [56], the authors only evaluated the stationary handover trigger-

ing parameters for MLB and MRO, so [56] also does not offer an optimised

handover triggering parameter scheme.

In [58], the authors introduced an approach which provides the optimised

TTT parameter for a handover process based on macrocell and picocell scenar-

ios. A longer TTT can effectively mitigate the ping-pong effect, but meanwhile,

it also causes undesirable Radio Link Failure (RLF) due to later handover.

The paper investigated adaptive and group TTTs when UEs move at different

speeds with a stationary RLF threshold. The simulation results of this ap-

proach showed that the handover performance of the adaptive TTT value is

greatly improved compared to that of applying fixed TTT values.
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In [14], the authors evaluated impacts and interdependency of handover

triggering parameters, such as offset, TTT and hysteresis settings. The paper

presented a simulation with different parameter combinations in different UE

speeds in a LTE network. In that paper, the authors analyse the RLF and

handover frequency using simulation results and provide the best parameter

combination for the handover process.

In [13], the authors proposed a cell-type adaptive handover margin in a

LTE femtocell network. Similar to [14], the paper investigated RLF and TTT

in inbound and outbound handover in the femtocell scenario. It created RLF

and TTT ratios in the hysteresis model respectively. It then selects the optimal

hysteresis value depending on the minimised ping-pong rate while keeping a

reasonable RLF rate. Simulation results showed that the optimal hysteresis

values can significantly affect the handover performance in a LTE femtocell

scenario.

In [14] and [13], the performance of using various hysteresis and TTT were

studied. The results indicated that the optimal hysteresis and TTT are able

to reduce the RLF and ping-pong effectively. However, neither of them pro-

posed an efficient algorithm in detail to find the optimal handover triggering

parameters.

In [59], the authors presented a rule-based handover optimisation algo-

rithm that tuned the handover parameters TTT and hysteresis values in the

LTE networks. Similar to [14] and [13], this paper investigated ping-pong ef-

fect, call-drop, and RLF from different hysteresis and TTT combinations. By

defining and evaluating Handover Performance Indicators (HPIs) which con-

sidered handover failure ratio, ping-pong ratio and call-dropp ratio together,

it proposed an integrity self-optimising method to seek the best hysteresis and

TTT combination for the current network status. The algorithm is able to im-

prove the overall network performance and diminish negative effects (call-drops

and handover failures).

In [60], the authors provided a self-optimisation algorithm for the two

handover triggering parameters, i.e., TTT and hysteresis. Similar to [59],
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a combination of TTT and hysteresis was evaluated in terms of ping-pong ef-

fect, call-drop and RLF. It also proposed another overall performance metric,

namely Handover Aggregate Performance (HOAP). This metric includes RLF,

handover, and ping-pong ratios with the individual corresponding weightings.

Through evaluating the HOAP and weighting function, the system could record

and update the performance value at the central controller. As a result, the

system is capable of adjusting the hysteresis and TTT to reduce RLF, ping-

pong and handover ratios.

To summarise, [56], [57] and [58] did not offer an optimisation scheme for

handover triggering parameters. [13] and [14] only investigated the relation

between handover performance and handover parameters. They did not pro-

pose an efficient algorithm in detail to find those optimal parameters. [59] and

SelfOrganizedHandoverParameterConfigurationforLTE provided the integrity

self-optimisation algorithm for TTT and hysteresis, however, the algorithm

can only offer the centralised handover trigger parameters. The centralised

handover trigger parameters mean that the UEs within each cell shares the

same handover trigger parameters which are centrally controlled by the base

station. However, each UEs moves at different speeds in the real network,

so their handover triggering parameters should not be the same. Those cen-

tralised values cannot ensure suitable handover performance for the individual

UE. Reflecting this, in Chapter 5, a hybrid dynamic hysteresis adjusting al-

gorithm is proposed that is able to offer the unique hysteresis value for the

individual UE and gain the overall handover performance.

2.6 Summary

This chapter presents an overview of SON function and its features. The chap-

ter also surveys the current approaches for the related research areas mentioned

in Chapter 1, including: traffic activity prediction; cell identity allocation;

and parameter optimisation for triggering handover. The critical review sum-

marises the advantages and disadvantages of the reviewed approaches. Some
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of the detailed descriptions for each of the related areas are described in later

chapters.

Chapters 3, 4 and 5, describe the proposed solutions with regards to the

inbound and outbound handovers.
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Chapter 3

Cell-based Prediction Model of

a Femtocell’s Intensity of

Handover in Two-tier Networks

Recently, research on mobility management has become one of the hot topics

in wireless network systems due to the growth of mobile networking which

is required to support a range of QoS levels [61]. Generally, compared to

the traditional optimisation approach, the proposed predictive ability enables

the equipment (wireless cells) with the intelligence which provides a degree of

proactive management (self-organisation) to optimise its network performance

for the network system [17]. Moreover, the proposed Dynamic Group PCI

Allocation Scheme (DGPAS) is desired to know the further network traffic

situation, thus, the improved prediction model is used to assist PCI allocation

in Chapter 4.

A number of traffic behaviour prediction approaches have been reported in

the literature. Those approaches are applied efficiently allocating and manag-

ing of the network radio resources through well understood traffic behaviours.

Most of the current research works on traffic behaviour prediction are UE-based

schemes which model the UE’s historical routes in each cell as the status. For

instance, in [37] and [39], authors proposed a traffic behaviour model using

a Markov process and a Hidden Markov Model (HMM). A state is modelled

52



3.1. Overview of UE-based Traffic Prediction Model (UTPM)

when a user camps on a cell. These approaches work well in the macrocell

deployment, but they are not suitable for LTE femtocell scenarios. This is for

the following reasons.

Firstly, femtocell is a plug-and-play device. It could turn on and off fre-

quently and unexpectedly at any time, hence, it is impossible to obtain the

correct transition probability for each status. The prediction fails if the faulty

transition probability is derived.

Secondly, a large numbers of femtocells would be deployed in the macrocell

coverage area, which would result in a large and unmanageable status in the

prediction model, and consequently make the analysis unachievable [20].

Based on the number of handovers in the femtocells and the HMM, this

chapter proposes a Cell-based Prediction Model (CPM) to predict the intensity

of a femtocell’s handovers in LTE two-tier networks. Compared to the UE-

based model, this proposed model overcomes their drawbacks and also provides

higher prediction accuracy in the LTE femtocell scenario.

3.1 Overview of UE-based Traffic Prediction

Model (UTPM)

Currently, a UE-based Traffic Prediction Model (UTPM) has been widely used

in improving tolerant network, call admission, and resource management in

mobile communication [18, 61]. Knowing UEs’ movements helps the network

to better allocate radio resources; the latest developments in this area are

described in Chapter 2, and as you can see much research on traffic behaviour

prediction model is based on UE activity.

3.1.1 UE-based Traffic Prediction Model

In the UTPM, prediction is based on the user’s movement history and each

cell which a UE has passed is modelled as a prediction state. The structure

of a wireless network can be modelled as regular and irregular node maps as
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Figure 3.1: Regular wireless network modelling

Figure 3.2: Irregular wireless network modelling

shown in Figures 3.1 and 3.2 according to [62].

In Figure 3.1(a), there are seven hexagonal macro stations denoted. Cell g

is in the central position. The other cells surround cell g, and this is called a

regular structure. Therefore, if the arrow connections denote the neighbouring

relationship of the cells, the relationship between the cells can be modelled as

the arrow-node map (solid-line arrows) and the cells can be modelled as the

nodes as shown in Figure 3.1(b). Moreover, in Figure 3.1(a), a UE movement

history from cell c via cells b, a and f to cell e can modelled in the arrow-node

map (dotted-line arrow). Therefore, based on this model, that UE movement

history can be modelled as a node sequence: c⇒ b⇒ a⇒ f ⇒ e.

In Figure 3.2(a), there are seven hexagonal stations denoted. Those stations

are not regularly located between each other. Some cells, namely c, d, e,
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f and g, are located within the coverage of cells a and b. Therefore, this

non-regular structure is called an irregular wireless network. Cells a and b

can be considered as the macrocells, and the other cells can be considered

as femtocells. Thus, this irregular network describes the two-tier network

structure, referred to as the LTE femtocell network. Similar to the regular

wireless network, if the arrow connections denote the neighbouring relationship

of the cells, the relationship between the cells can be modelled as the arrow-

node map (solid-line arrow) and the cells can be modelled as the nodes as

shown in Figure 3.2(b). Moreover, In Figure 3.2(a), a UE movement history

from cell e via cells d and b to cell a can be modelled in the arrow-node

map (dotted-line arrow). Therefore, based on this model, that UE movement

history can be modelled as a node sequence: e⇒ d⇒ b⇒ a.

Moreover, from another point of view, these arrow-node maps are exactly

the state-transition graphs of every stochastic variable, and every one-step

transition must follow the arrows as shown in Figures 3.1(b) and 3.2(b) from

one node to another. Therefore, a problem of UE movement prediction (node

prediction) in the wireless network can be converted into a problem of stochas-

tic process (finding transition probability between nodes) in the statistics

[38, 62].

Based on this model, in Figure 3.1(b), the UE movement history can be

modelled as state sequence c, b, a, f, e and in Figure 3.2(b), the UE movement

history can be modelled as state sequence e, d, b, a. Thus, according to the

transition probabilities and state sequence of the UE, UTPM will predict its

future state which means the cell UE would camp at next step.

3.1.2 Markov Prediction Model

Some papers model the UE mobility history pattern and next cell prediction

based on a Markov chain [37, 38].

The multi-order Markov chain can be defined as a sequence of symbols

x1, x2, . . . , xn−1 as the moving history states of a given UE. Given a variable

m, then a new sequence can be written as xn−m, xn−m+1, . . . , xn−1 and n > m.
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If the probability of future state Xn = xn depends on the past m states, it can

be described as in Equation (3.1) and called an order-m Markov chain [63].

Pr(Xn = xn|Xn−1 = xn−1, Xn−2 = xn−2, Xn−3 = xn−3, . . . , X1 = x1)

= Pr(Xn = xn|Xn−1 = xn−1, Xn−2 = Xn−2, . . . , Xn−m = xn−m)
(3.1)

According to Equation (3.1), the next cell prediction (future state) can be

obtained by using the m past states. If m=1, the order-m Markov chain is

changed to a normal Markov chain which means that the next cell prediction

only depends on the current cell (current state).

[61] and [64], who have studied many cases which use Markov chain to

predict the next state, proposed that the order-2 Markov chain is much more

quasi-optimal than other Markov chains. Reflecting this, in this chapter, I

only consider the order-2 Markov chain and Equation (3.1) can be rewritten

as Equation (3.2).

Pr(Xn = xn|Xn−1 = xn−1, Xn−2 = xn−2, Xn−3 = xn−3, . . . , X1 = x1)

= Pr(Xn = xn|Xn−1 = xn−1, Xn−2 = Xn−2)
(3.2)

This mobility prediction usually contains two major steps: parameter learn-

ing and next state prediction.

Learning Process of the Markov Model

In this process, the main goal is to find the transition probability matrix. If

A denotes the transition probability matrix, in order to create the matrix A,

each state transition probability can be calculated by training the data (history

states). If sets a1 and a2 are the previous states, this model would use them

to predict the new state a. Then Equation (3.3) can be obtained according to

Equation (3.2) and an order-2 Markov chain.

56



3.1. Overview of UE-based Traffic Prediction Model (UTPM)

Pr(Xn = a|Xn−1 = a1, Xn−2 = a2) (3.3)

L denotes the state space and c is the state that consists of a1 and a2 in

order; c belongs to L. Also N(s′, s) denotes the number of times the state s’

occurs in the state sequence s. Depending on Equation (3.3), the transition

probability for each state can be described as Equation (3.4).

Pr(Xn = a|Xn−1 = a1, Xn−2 = a2) =
N(ca, L)

N(c, L)
(3.4)

where N(ca, L) denotes the number of times the state c + a occurs in the

state space L and N(c, L) denotes the number of times the state c occurs in the

state space L. After calculating each state transition probability, the matrix A

can be created and used for the next state prediction process.

The learning process of the Markov prediction model can be summarised

as:

1. Model the UE moving history (cell IDs) to generate the state space.

2. Train the data over a time period.

3. According to the training data, obtain the initial state sequence at time

domain, and calculate the initial transition probability for each state by

using Equation (3.4)

4. Record the transition probability for each state and create the transition

probability matrix A.

5. Each time the new state occurs, update the state sequence at time do-

main and re-calculate the transition probability for the corresponding

state by using Equation (3.4).

6. According to the new transition probability of the state, update the

transition probability matrix A.
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7. Repeat the process from step 5, which means that the system continually

learns the UE moving history and updates the transition probability

matrix A in time.

Next State Prediction Process of the Markov Model

In this process, the main goal is to predict the next state. According to the

transition probability matrix A which is obtained by the learning process to

find the higher probability next state as shown in Equation (3.5).

Xn+1 = argmaxPr(Ac,a|Xn = c) (3.5)

After the prediction, as soon as the next state (cell) is known, this piece of

information is added to the learning process, and used to update the transition

probability matrix. Markov parameters in a learning and prediction process

can be interleaved and offer the collaborative work for this model in order to

achieve better quality of the mobility prediction model.

The prediction process of the Markov prediction model can be summarised

as:

1. Obtain the current and previous states (cell ID) due to the order-2

Markov.

2. Obtain the transition probability matrix A from the learning process.

3. According to Equation (3.5), predict the future state (cell ID) with the

highest transition probability.

4. Check the accuracy of the prediction when UE moves to the next cell.

Markov Renewal Processes Prediction Model

In the previous section, the Markov process in UTPM is also called a regular

Markov chain. This regular model only considers the state transitions and the
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Figure 3.3: Time-homogeneous Markov vs MRP

interval time between states do not affect these transitions. Reflecting this, the

regular Markov chain can be called a time-homogeneous Markov chain [20].

However, there is a process called a Markov Renewal Process (MRP), which

not only considers the state transitions but also the interval time between states

[20]. The comparison with a regular Markov chain is shown in Figure 3.3.

In Figure 3.3, for the time-homogeneous Markov chain, the transition be-

tween states is a Markov chain and the interval time between states is constant

(T2−T1 = T1−T0). The transition probabilities Pij and Pjk are not related to

the interval time and the next state only depends on the previous state. In the

MRP, the interval between states is not constant and the transition between

states is modelled as a Markov chain. The transition probabilities Pij and Pjk

are related to the interval time and the next state not only depends on the

previous state but also depends on the future interval time (sojourn time).

Reflecting this, the process is not a fully Markov chain, and so it is called a

semi-Markov process [18, 20].

According to the above description, a transition probability Pij of a Markov

process and the sojourn time in any state depends on both current-state and
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the next-state transitions; the MRP can be described as in Equation (3.6).

MRPij(t) = Pr(Xn+1 = j, Tn+1 − Tn<=t|Xn = i) (3.6)

where Xn and Xn+1 represent the states of the system after the nth and n+

1th transitions respectively and Tn and Tn+1 represent the interval time when

the nth and n+ 1th states occur. MRPij(t) denotes the probability of making

the transition from state j into state i, within t units of time [20].Equation

(3.6) can be further rewritten as MRPij(t) = Pij ∗ Gij(t), where Gij(t) is

defined in Equation (3.7).

Gij(t) = Pr(Tn+1 − Tn <= t|Xn+1 = j,Xn = i) (3.7)

In Equation (3.7), Gij(t) denotes the conditional probability that a tran-

sition between state i and state j will take place within an amount of time

t [20]. If Gij(t) → 1, then t → ∞ and Equation (3.6) can be rewritten as

Equation (3.8).

Pij = limt→∞MRPij(t) (3.8)

MRP prediction usually contains three major steps: sojourn time learning,

transition probability learning and next state prediction process.

Sojourn Time in the Learning Process of the Markov Renewal Model

In this process, the main goal is to find the conditional probability Gij(t) when

a UE starts at state i and to state j (cell i and cell j) over the time t.

N(t) denotes the number of transition times 0 < t <= T for the (Xn, Tn), n >=

0, where i and j ∈ M , M is the state space. Thus for time t, Gij(t) can be

calculated by Equation (3.9).
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Gij(t) =
N(t)

N(T )
(3.9)

where T is the maximum time for a transition between states i and j .

Therefore, for two different states, the maximum time of a transition between

them is different.

The learning process of the conditional probability in MRP can be sum-

marised as:

1. Model the UE moving history (cell IDs) to generate the state space.

2. Train the data over a time period.

3. According to the training data, create the initial state sequence at time

domain calculate, and create the initial N(t) and N(T) for each state of

a UE at time t.

4. Calculate the initial Gij(t) of the UE by using Equation (3.9) and create

the initial conditional probability matrix.

5. Update the N(t) and N(T) following the new UE moving history.

6. Update the Gij(t) and corresponding value in the conditional probability

matrix.

7. Repeat the process from step 4, which means that the system continually

learns the UE moving history and update the conditional probability

matrix in time.

Transition Probability in the Learning Process of the Markov Re-

newal Model

In this process, the main goal is to find the transition probability matrix A

in MRPij(t) when UE starts at state i and moves to state j during time t.

MRPij(t) = Pij ∗ Gij(t), as mentioned in the previous section, the transition

probability matrix can be obtained from emphGij(t) and Pij.
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Since Pij is a Markov chain, similar to Section 3.1.2, each state transi-

tion probability can be calculated by training the data (history states). Then

Equation (3.10) can be derived using Equation (3.1) with an order-1 Markov

chain.

Pr(Xn = j|Xn−1 = i) =
N(i, j, L)

N(i, L)
(3.10)

Where N(i, j, L) denotes the number of times the state i+ j occurs in the

state space L. N(i, L) denotes the number of times the state c occurs in the

state space L. After calculating each state transition probability Pij and Gij(t),

the transition probability matrix in MRPij(t) can be obtained.

The learning process of Transition Probability in MRP can be summarised

as:

1. Obtain the information of the state sequence modelling and train the

data from the previous learning process.

2. According to the training data, calculate the initial transition probability

for each state by using Equation (3.10)

3. Record the transition probability for each state and create the transition

probability matrix A.

4. Each time the new state occurs, re-calculate the transition probability

for the corresponding state by using Equation (3.10).

5. According to the new transition probability of the state, update the

transition probability matrix A.

6. Repeat the process from step 5, which means that the system continu-

ally learns the UE moving history and update the transition probability

matrix A in time.
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Next State Prediction Process of the Markov Renewal Model

In this process, the main goal is to predict the next state. According to the

transition probability matrix MRPij(t) during time t as mentioned earlier, to

find the higher probability next state as shown in Equation (3.11).

Xn+1(t) = argmaxPr(MRPij(t)|Xn = i) (3.11)

After the prediction, as soon as the next state (cell) is known, this piece of

information is added to the previous learning process learning process, and to

update both Pij and Gij(t). MRP parameters in the learning and prediction

process can be interleaved and offer the collaborative work for this model in

order to achieve better quality of the mobility prediction model.

The prediction process of MRP prediction model can be summarised as:

1. Obtain the current state (cell ID).

2. Record the duration of UE camps in the current cell as t.

3. Obtain the conditional probability matrix from the learning process.

4. According to the Equation (3.7), current state and the duration t, find

the probability value for each of the possible next states.

5. Obtain the transition probability matrix A from learning process.

6. According to the transition probability matrix A and current state, find

the probability value for each of the possible next states.

7. Calculate the MRPij(t) by Equation (3.6) with the values from steps 5

and 6.

8. Predict the future state (cell ID) by using Equation (3.11).

9. Check the accuracy of the prediction when UE moves to the next cell.
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Figure 3.4: The Structure of hidden Markov model

3.1.3 Hidden Markov Prediction Model

Hidden Markov Model (HMM) is defined as relating two kinds of stochas-

tic sequence such as a hidden sequence and an output sequence (observation

sequence). The states in the hidden sequence is a Markov chain, but these

states cannot be observed due to impossibility, difficulty or imprecision of ob-

servation. However, the hidden part reflects other outputs from system, and

they can be observed from system. Therefore, the states in the observation

sequence are a random sequence and they have the one to one corresponding

relationship with the hidden state sequence. If S1, S2, . . . , Sn is a hidden state

space and O1, O2, . . . , On is the output (observation) state space, n ∈ N , N is

the number of states in the space, the structure of HMM is shown in Figure

3.4 according to [63].

HMM can be summarised as (π,A,B), π represents the probability matrix

which provides the probability of each hidden state occuring. A represents

the transition probability matrix which provides the transition probabilities

between hidden states. B represents the emission probability matrix which

provides the relationship between hidden and observation states.

According to [19], the UE-based HMM is that UEs’ current handovers are

modelled as hidden states, such as communication and non-communication.

The user’s location cells are modelled as observation states. This is because a

UE either completes the handover or cannot be observed before the UE moves

to the target cell.

The process of UE-based HMM prediction usually contains two major steps:
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parameter learning process and next state prediction process, as described

below.

Learning process of the UE-based Hidden Markov Model

In this process, the main goal is to learn the network scenario to obtain the

optimal (π′, A′, B′) and optimal hidden state sequence due to hidden states

which cannot be observed. The optimal (π′, A′, B′) can be obtained by using

the learning function defined in the HMM, and observation sequence at time

domain Ot = Ø1, O2, O3, . . . , OT , t ∈ T, T is the duration of the state sequence.

The process is described in Equation (3.12):

(π′, A′, B′) = argmaxPr(Ot|(π,A,B)) (3.12)

More information about HMM Learning function is described in Section

3.2.2.

The optimal hidden state sequence at time domain St= S1, S2, S3, . . . , ST ,

t ∈ T, T is the duration of the state sequence, can be obtained by using the

decoding function that defined in HMM, optimal (π′, A′, B′) and observation

sequence at time domain Ot. The process is described in Equation (3.13):

St = argmaxPr(St|Ot, (π
′, A′, B′)) (3.13)

More information about the HMM decoding function is described in Section

3.2.2.

The learning process of UE-based hidden Markov prediction model can be

summarised as:

1. Model the UE movement history (cell IDs) to generate the observation

state space.

2. Train the data over a time period.
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3. If this is first time execution of the prediction model, according to the

training data, determine the observation state sequence over a time do-

main. Otherwise update the observation state sequence at time domain.

4. Obtain the optimal (π′, A′, B′) by using Equation (3.12) and the obser-

vation state sequence at time domain.

5. Obtain the optimal hidden state sequence by using Equation (3.13), op-

timal (π′, A′, B′) and the observation state sequence at time domain.

6. Use the current hidden state which is obtained from the optimal hidden

state sequence in the next state prediction process.

7. Repeat the process from step 3, which means that the system continually

learns the UE moving history (observation state), and updates (π′, A′, B′)

and the hidden state sequence.

Next State Prediction Process of UE-based Hidden Markov Model

The next state prediction is defined so as to predict the next hidden state

(communication or non-communication), when a UE is moving to the next

cell. From the previous learning process, the optimal (π′, A′, B′) and current

St can be obtained. Since the hidden states are a Markov Chain, the next

hidden state St+1 can be predicted as:

St+1 = argmaxPr(ASt,St+1|St) (3.14)

Therefore, St+1 would be the optimal state representing a UE that will

handover or not to the new moving target cell at the next time period.

The prediction process of UE-based hidden Markov prediction model can

be summarised as:

1. Obtain the current observation state (cell ID).
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2. Obtain the emission probability matrix B from optimal (π′, A′, B′) in the

learning process.

3. Predict the current hidden state according to the emission probability

matrix B and current observation state.

4. Obtain the transition probability matrix A from optimal (π′, A′, B′) in

the learning process.

5. Predict the next hidden state according to the transition probability

matrix A and current hidden state by using Equation (3.14). If the next

hidden state is communication, this means the UE would handover to

the cell that it is moving to. Then the system can prepare the network

resource for this handover process.

6. Check the accuracy of the prediction when the UE moves to the next

cell.

3.2 The Proposed Cell-based Prediction Model

(CPM)

The current research on UE-based traffic behaviour is introduced in Chapter 2.

Most of the approaches work well in a regular network (macrocell scenario) de-

ployment, but are not suitable for femtocell deployment in a two-tier network

scenario. In this chapter, different from those conversional prediction mod-

els, a novel combined theoretical and factual cell-based approach is proposed,

namely the Cell-based Prediction Model (CPM) for predicting the intensity of

a femtocell’s handover. This approach overcomes the drawbacks explained in

Section 3.3.1 for the UE-based model used in a two-tier network scenario and

provides a more accurate prediction compared to these UTPMs.
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Figure 3.5: A UE served by the macrocell camps in the coverage of a femtocell

3.2.1 The Cell-based Intensity of a Femtocell’s Han-

dover Prediction

The intensity of effective mobility in the CPM represents the different number

of handovers within a femtocell’s coverage. This section introduces how the

prediction of the intensity of effective mobility is modelled.

Newly Arrived vs. Handed-over UE in the Femtocell Deployment

Generally, Markov and Markov renewal processes are both used in the scenario

of regular wireless networks and work well. However, in the scenario of irregular

wireless networks, a serious issue occurs due to the special structure of an

irregular network (femtocell and macrocell overlap in two-tier networks) which

leads to failure of the Markov and Markov renewal processes. More information

regarding the failure is described in Section 3.3.1.

In the regular wireless network, whether a UE is in the idle or connected

model, it should camp on a wireless cell and receive the service from this cell.

However, in the irregular network structure (two-tier network), a UE can camp

on a femtocell but still be connected to the macrocell, as shown in Figure 3.5.

In the case shown in Figure 3.5, when a UE camps on a femtocell, it still

retains its connection with the macrocell. Although the UE has already moved

into the coverage of the femtocell, the femtocell still has difficulty observing

68



3.2. The Proposed Cell-based Prediction Model (CPM)

Figure 3.6: The radio resource distribution in LTE Femtocell system

the activity of the UE since that UE does not have any connection with this

femtocell. Moreover, in a wireless network, changes to the user’s location may

not need extra system resources; only the communication process (handover)

between UE and cell will lead the system to allocate extra communication

channel [19]. Thus, the number of UE handovers is a more meaningful criterion

than UE arrivals for the radio resource management.

Hidden Markov Model in the Proposed Prediction Model

As mentioned in Section 3.1.4, a Hidden Markov Model (HMM) is defined as

relating two kinds of stochastic sequence such as a hidden sequence and an

output sequence (observation sequence). It can be summarised as (π,A,B), π

represents the probability matrix which provides the probability of each hidden

state occurring; A represents the transition matrix which provides the tran-

sition probabilities between hidden states; B represents the emission matrix

which provides the relationship between hidden and observation states.

This chapter proposes CPM. Compared to the UTPM, instead of modelling

the UE’s moving history as states, it models the intensity of a femtocell’s

handover as the state. The intensity of handovers is defined as the average

number of UEs which handover to the target cell. An example is shown in

Figure 3.6.

In Figure 3.6, if a femtocell has a higher average number of handovers, the
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system would allocate more network radio resources to it in order to guarantee

the QoS. This also applies to the femtocells with moderate and lower num-

bers of handovers. Forecasting the intensity of a femtocell’s handovers would

achieve more efficient allocation and management of the network’s resources.

However, the intensity of effective mobility (states) of a femtocell may not

follow the Markov chain, therefore, this prediction model needs to be further

improved.

According to queuing theory, the number of UEs arriving at a cell in each

time period can be modelled by a Poisson distribution. When modelling the

varying number of UEs arriving as the states, those states can be formed as

a Markov chain [65]. However, the number of UE handovers is not equal to

the number of UE arrivals. The relationship between those UE handovers

and arrivals can be summarised as: the greater the number of UEs arriving

at the cell, the higher the probability a UE handover would happen in this

cell; similarly, the lower number of UEs arriving at the wireless cell, the lower

the probability of UE handover in this cell. Reflecting this, the number of

UE handovers can be set as a sequence. The states in this sequence can be

modelled as the different ranges of UE handover numbers (the intensity of

handovers). Moreover, this sequence is easily observed by the base station.

Another sequence can be formed for the number of UE arrivals. The states

are different ranges of UE arrival numbers. Moreover, the states in this se-

quence can be modelled as a Markov chain, but arrival as a state is difficult for

the base station to identify (observe). Therefore, the cell-based prediction can

be modelled as a HMM process. The structure of the proposed HMM model

is shown in Figure 3.7.

In Figure 3.7, states S1, S2 and S3 represent the different level of UE arrivals

as Busy, Moderate and Idle respectively in the hidden part. The Busy state

models a femtocell with a higher number of UE arrivals in a time period.

Similarly, Moderate and Idle model medium and lower numbers of UE arrivals

respectively. The On=O1, O2, . . . , ON is the observation part, n ∈ N,N is

the number of states in the observation state space; they denote the different
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Figure 3.7: The Structure of CPM in hiden Markov model

intensity of a femtocell’s handovers. Moreover, depending on the HMM, the

relationship between each observation state can be connected via the hidden

part.

Proposed Model Prediction Process

As mentioned in the previous section, the system only performs network radio

resource allocation on UE handover to the wireless cell, therefore, only the

number of UE handovers would lead the system to perform resource distribu-

tion. In the proposed CPM, the process will predict the next observation state

(intensity of handovers). If Ot=O = O1, O2, . . . , OT denotes the observation

state sequence at time domain and the hidden state sequence at time domain

is St=S1, S2, , ST (sequence at time domain means that, any hidden or ob-

servation state in state space can appear at time t as Ot or St), t is the time

period and t ∈ T, T is the duration of the state sequence, the next state Ot

prediction process is shown in Figure 3.8.

As shown in Figure 3.8 the next state prediction depends not only on the

current observation state but also the bridge which is made by the hidden states

and Markov chain. Moreover, according to [66], HMM can be summarised as

(π,A,B), π represents the probability matrix which provides the probabil-

ity of each hidden state occurring;. A represents the transition matrix which
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Figure 3.8: Next observation state prediction via hidden states

provides the transition probabilities between hidden states; B represents the

emission matrix which provides the relationship between hidden and observa-

tion states. The optimal (π,A,B) and hidden state sequence can be obtained

by the learning process which is described in detail in the next section. The

next observation state process is described as follows:

Firstly, according to matrix A and the hidden states St−1at time t-1 which

is obtained from hidden states sequence at time domain, the next time ob-

servation state St is calculated by Equation (3.15) which is refer to Equation

(3.13), but with different avariables.

St = argmaxPr(ASt;St−1|St−1)(t > 1) (3.15)

In the CPM, the intensity of the UE arrivals in a femtocell (hidden part)

at time t-1 can be used to predict the next intensity of the UE arrivals at time

t. Since only the handover process can cause changes of network resource as

mentioned earlier, the next step in the CPM is the prediction of the observation

state at time t by using the next intensity of the UE arrivals at time t.

Secondly, according to the St and matrix B , the next observation states

Ot at time t are calculated by Equation (3.16).

Ot = argmaxPr(BSt;Ot |St)(t > 1) (3.16)
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In the CPM, the Ot is the optimal observation state at time t. Since the Ot

represents the intensity of the femtocell’s handovers, the system can depend on

the value of Ot to optimally distribute the network resource for this femtocell.

3.2.2 Learning process for the intensity of a Femtocell’s

handover prediction

This section introduces how the CPM approach proposes learning the situation

of a femetocell’s handover and provides the optimised transition matrix, and

the hidden state sequence for the prediction model.

Proposed Model Leaning Process

As mentioned in the previous section, the HMM can be summarised as (π,A,B)

and the main goal in this section is to obtain optimal those parameters, based

on the given observation sequence and an initial (π,A,B) from the network

system.

Ot = O = O1, O2, O3, ..., OT , denotes the observation state sequence at

time domain and t ∈ T, T is the duration of the state sequence. Through the

sequence Ot and an initial (π,A,B), the best set of π′, A′ and B can be found

in the learning process. This learning process is described by Equation (3.17).

(π′, A′, B′) = argmaxPr(Ot|(π,A,B)) (3.17)

In Equation (3.14), where initial (π,A,B) can be set as various values which

would depend on the scenario required. This learning process is achieved by

a forward-backward algorithm [66]. The forward and backward intermediate

probabilities are derived in Equations (3.18) and (3.19):

α(Sn,t) =

 π ∗BSn,1,O1 (t = 1)∑N
n=1BSn,t,Ot ∗ ASn,t,Sn,t−1 ∗ α(Sn,t−1) (t > 1)

(3.18)
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Figure 3.9: Forward process in trellis

β(Sn,t) =


∑N

n=1BSn,t,Ot ∗ ASn,t,Sn,t+1 ∗ β(Sn,t+1) (1 <= t < T )

1 (t = T )
(3.19)

where Sn=S1, S2, S3, , SN , n ∈ N is the hidden state, N is the number of

states in the state space. The α(Sn,t) represents a partial probability which is

the probability of reaching state Sn at time t in the forward process. Similarly,

β(Sn,t) represents a partial probability which is the probability of reaching state

Sn at time t in the backward process. Moreover, the forward process can be

modelled as the trellis shown in Figure 3.9.

In Figure 3.9, the circle denotes the partial probability of reaching state Sn

at time t. The arrow line denotes the possible path that transition from state

Sn at time t to the Sn at time t+1, n ∈ N . Therefore, α(Sn,t) is calculated

as Pr(observation — hidden state is Sn) * Pr(all paths to state Sn at time

t) [66], this calculation can be modelled by Equation (3.18). Moreover, when

t=1, there are no paths to the state. Thus, the initial partial probability is

calculated as the Pr(observation — hidden state is Sn ) * π.

Since the backward process is similar as the forward process but in the

opposite directions, the β(Sn,t) is calculated as Pr(observation — hidden state
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is Sn) * Pr(all paths to state Sn at time t), n ∈ N . This calculation can

be modelled by Equation (3.19). Moreover, in the special case where t = T,

there are no paths to the state, thus, each state has 100% probability to be

reached. According to Equations (3.18) and (3.19), another two denotations

are introduced.

ε(Si,t, Sj,t+1) =
α(Si,t) ∗ β(Sj,t+1) ∗ ASi,t,Sj,t+1

∗BSj,t+1,Ot+1∑N
i=1

∑N
j=1 α(Si,t) ∗ β(Sj,t+1) ∗ ASi,t,Sj,t+1

∗BSj,t+1,Ot+1

(3.20)

γ(Si,t) =
N∑
j=1

ε(Si,t, Sj,t+1) (3.21)

where ε(Si,t, Sj,t+1) denotes the partial probability of reaching state Si at

time t and state Sj at t+1, i ∈ N, j ∈ N . According to the forward and

backward processes, ε(Si,t, Sj,t+1) is calculated by taking the partial probability

of reaching state Sj,t+1 from Si,t (forward process), multiplying it by the partial

probability of reaching state Sj,t+1 from t=T (backward process), then dividing

the result by the sum of all possible partial probabilities of reaching state Sj,t+1

which are obtained from forward and backward processes. This calculation is

modelled in Equation (3.20). Moreover, in Equation (3.21), γ(Si,t denotes the

expected number of transitions from other hidden states to state Si at time t.

According to Equations (3.20) and (3.21), the new π,A and B can be obtained

as followed:

πi = γ(Si,1) =
N∑
j=1

ε(Si,1, Sj,2) (3.22)

ASi,t,Sj,t+1
=

∑T−1
t=1 ε(Si,t, Sj,t+1)∑T−1

t=1 γ(Si,t)
(3.23)
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BSj,t,Ot =

∑T
t=1 γ(Sj,t)[s.t.Ot = k]∑T

t=1 γ(Sj,t)
(3.24)

where πi is the expected number of times in state Si at time t=1 as defined

in Equation (3.22). A Si,t, Sj,t+1 is the transition probability calculated as

the expected number of transitions from state Si to state Sj divided by the

expected number of transitions from state Si as denoted in Equation (3.23).

BSj,t,Ot is the emission probability calculated as the expected number of times

that state Ot (Ot = k, k is an specific observation state in state space at time

t) appears in state j divided by the expected number of times that all hidden

states transit to state j. This calculation is summarised in Equation (3.24).

All the πi, i ∈ N , can be formed as the π. Then, the new π,A and B

can be used to execute iteration from Equations 3.20 to 3.21. The iteration

process will stop when the difference of current and previous π,A and B reach

a threshold, for example, 0.0001. Then, the π,A and B are the optimal (π′, A′

and B′).

Proposed Model Decoding Process

The decoding process in this section is used to provide an optimised hidden

state sequence for the prediction process in Section 3.3.1.3. Since the hidden

state cannot be observed by the network system, it can only be obtained based

on the known parameters such as HMM mode π′, A′ and B′ and observation

sequence.

Assume Ot = O1, O2, O3, . . . , OT is observation state sequence at time do-

main and t ∈ T, T is the duration of the state sequence. Assume Sn =

S1, S2, ..., SN , N is the number of hidden states in the state space and Sn,t

denotes the hidden state Sn at time t, t ∈ T . The decoding process is de-

scribed as Equation (3.25).

S ′n,t = argmaxPr(S ′n,t|Ot, (π,A,B)) (3.25)

76



3.2. The Proposed Cell-based Prediction Model (CPM)

Figure 3.10: Viterbi process in trellis

The decoding process uses the Viterbi algorithm [66] to find the optimal

hidden state sequence S ′n,t, where δt(Si,t) denotes the probability of the partial

best path to a state i, i ∈ N) at time t when the observation Ot is seen, as

shown in Figure 3.10.

In Figure 3.10, the thick arrows show the best path. Therefore, if given a

sequence Ot, the best path is chosen by the higher probability of δt(Sn,t) at

time t. This recording (remembering) is done by holding for each state a back

pointer ϕt(Sn,t) which points to the predecessor that optimally provokes the

current state.

When t=1, since there is no route path, the initial probability of the first

path at state Sn,1 is described as δ1(Sn,1) and ϕ1(Sn,1) which are calculated in

Equations (3.26) and (3.27).

δ1(Sn,1) = π ∗Bsn,1,o1(n ∈ N, t = 1) (3.26)

ϕ1(Sn,1) = 0(n ∈ N, t = 1) (3.27)

According to the results from Equations (3.26) and (3.27), the maximum

77



3.2. The Proposed Cell-based Prediction Model (CPM)

states probability and route path of states S when t > 2 are described as

ϕt(Sn,t) and ϕt(Sn,t), as summarised in Equations (3.28) and (3.29).

δt(St,n) = max
1≤j≤N

[δt−1(j) ∗ ASi,t,Sj,t−1
] ∗BSi,t,Ot(2 ≤ t ≤ T ) (3.28)

ϕt(Si,t) = argmax
1≤j≤N

[δt−1(j) ∗ ASi,t,Sj,t−1
](2 ≤ t ≤ T ) (3.29)

If t=T, the current hidden state ST can be obtained in equation (3.30).

Sn,T = argmax(δT (Sn,T )) (3.30)

By using back tracking, the most probable route path can be used to find the

rest of the hidden states, as defined in Equation (3.31).

Sn,t−1 = ϕt(Sn,t)(t = T − 1, T − 2..., 1) (3.31)

Although the network system cannot observe the hidden sequence, the learning

and decoding process can work together to train an optimal hidden states

sequence for prediction process.

3.2.3 Proposed Cell-based Prediction Model Process

There are five main stages in the proposed CPM, as described below:

1. To collect handover information and determine the detail of the observa-

tion states such as number of observation states in model and threshold

in observation state. In CPM, the average number of handovers of the

femtocells (handover information) can be transferred via backhaul to the

Mobility Management Entity (MME) which is the entity used to achieve

the femtocell management communication between cells [25]. In MME,
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according to the specific system requirement and the handover infor-

mation from femtocells, the number of observation states in model and

threshold in each state can be determined for those femtocells.

2. By using the learning process described in Section 3.3.2.1, initial /current

observation states sequences and initial/current (π,A,B) and optimal

(π′, A′, B′) can be obtained for each femtocell in MME. If the CPM is exe-

cuted for the first time in the network, according to the states’ detail from

stage 1, the initial observation states sequence Ot = O1, O2, O3, . . . , OT

at time domain could be collected during the training period T. HMM

learning is achieved through observing sequence Ot, and the best set of

(π′, A′, B′) can be found as described in Section 3.2.2.1.

If the CPM is not executed for the first time in the network, this stage

is only used to add the new state to observation states sequence Ot and

obtain the optimal (π′, A′, B′) by using the learning process.

Moreover, the transition probability A, initial states probability π and

emission probability B cannot be gathered since the hidden states are

unobserved. According to the maximum entropy principle, the proba-

bility distribution can be assumed to be uniform if there is not enough

information to decide the distribution of a random variable [67].

If SBusy, SModerate and SIdle denote the hidden states respectively and ob-

servation states are On = O1, O2, O3, . . . , ON , N is the number of states

in the state space, the initial A, and π can be set as [NxN] and [1xN] uni-

form matrixes with 1/N for the value of elements. The observation states

are described as the intensity of a femtocell’s handovers. To assume that

when an observation state, for example ON , has higher intensity, the hid-

den state would have a higher probability to be in state SBusy. Similarly,

when the observation state has lower intensity, for example O1, the hid-

den state would have a higher probability to be in state SIdle. Based on

the number of observation states, the initial emission probability matrix

B can be created. Moreover, the initial probabilities in B could have any
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value as long as they follow the correct distribution rule.

3. The current hidden state St, t is the current time scale, could be obtained

by using decode process which has been mentioned in section 3.3.2.2.

4. Based on the current state St and optimal (π′, A′, B′), the next optimal

state Ot+1 can be predicted via prediction process as mentioned in section

3.3.1.3.

5. According to the prediction, a LTE system or MME could manage the

network resource for each femtocell in order to achieve the centralised

self-organising for the overall network as mentioned in Chapter 2.

The distribution may controlled by a MME or other entities belonging to

the LTE system due to the difference of network resources. In Chapter

3, through the CPM, the PCI distribution is achieved by MME. More

information, please see Chapter 3.

The flowchart for this process is summarised in Figure 3.11.

3.3 Theoretical and Simulation Analysis

3.3.1 Comparison of UE-based and Cell-based Predic-

tion Models in the LTE Femtocell network

Compared to the macrocell scenario (regular network), one of the important

features in the LTE femtocell is that there is no network planning in develop-

ing femtocells [6]. To consider this femtocell feature in the prediction model,

comparing with the UE-based predictor, the cell-based predictor has two ad-

vantages: firstly, no matter which femtocell turns on or off, the transition

and emission probability are affected; secondly, it avoids the complexity of

calculation and difficulty of evaluation of transition probabilities.

In terms of the first advantage, the UE-based predictor is based on the

transition states and the transition probability matrix. The number of tran-

sition states would not be stable. The unstable number of states results in
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Figure 3.11: Flowchart of the CPM prediction process
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Figure 3.12: A state missing in UE-based prediction model in LTE Femtocell
scenario

an incorrect transition probability as well as lower accuracy. This problem is

presented in Figure 3.12.

In Figure 3.12(1), there are seven hexagonal stations which are irregularly

located between each other, and femtocells a, b, c and d locate with the

coverage of macrocell e. This LTE femtocell network can be modelled as

arrow-node map as shown in Figure 3.12(2) as mentioned in Section 3.1.1.

Therefore, the state sequence can be obtained according to the arrow-node

map.

In Figure 3.12(1), assume a UE stays in macrocell e and will arrive in

femtocell c. Even if the UE-based prediction model gives a right prediction,

since femtocell c turns off. Therefore, it leads the state c is invalid in the state

sequence as shown in Figure 3.12(2) and results in the prediction failure.

However, for the CPM, the special femtocell features, such as states, and

transition and emission probabilities, are not affected. Depending on the de-

scription in the previous sections, unlike the UTPM, the cell-based predictor

models the intensity of the handovers as a state. Therefore, this predictor

avoids the aforementioned problem caused by a UE-based predictor in a two-

tier network.
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In terms of the second advantage, since a large number of femtocells may

deploy in the network, in the UTPM, the calculation of the transition prob-

abilities would be considerably complex. For instance, if there are 5 states

(femtocells) in the network, the transition probability matrix would be a [5x5]

matrix with 52 transition probabilities. If it increases to 10 states, the number

of transition probabilities would be 102. Reflecting this, following the growth

of number of states, the degree of complexity of transition probability grows

geometrically.

Moreover, the larger number of transition probabilities results in little dif-

ference between the values of those probabilities, which results in difficulties

in evaluation for the transition probabilities and ends up with lower accuracy

[20]. Therefore, the number of states should be limited, however, it is difficult

to achieve this due to the fact that there is no network planning for femtocell’s

deployment.

Considering the CPM, the large number of femtocells in deployment does

not affect the number of transition and emission probabilities and the number

of states of this predictor is related only to the handover. Thus, this pre-

dictor overcomes problems in the UE-based predictor in a two-tier network

environment.

Overall, CPM has better performance than UTPM due to the two advan-

tages described above.

3.3.2 Metrics used in the Prediction Model

In general, in the bioinformatics and machine learning area, there are many

ways, such as accuracy, precision, F-measure, sensitivity and specificity, used

to evaluate the quality of prediction model [68]. Thus, those metrics can also

be involved in the evaluation of a prediction model for the wireless system.

Description of Evaluation-metrics

In order to describe these metrics in detail, this section involves the confusion

matrix as shown in Table 3.1.
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Table 3.1: Confusion Matrix for Prediction Evaluation

Prediction Prediction
Positive Negative Sum

Reality Positive True Positive
(TP)

False Negative
(FN)

Reality Positive
(TP+FN)

Reality Negative False Positive
(FP)

True Negative
(TN)

Reality Negative
(FP+TN)

Sum Prediction Posi-
tive (TP+FP)

Prediction Nega-
tive (FN+TN)

In Table B.1, if the reality positive is predicted as the positive, it is called

True Positive (TP) and if the reality positive is predicted as negative, it is

called False Negative (FN ); similarly for False Positive (FP) and True Negative

(TN ).

According to Table B.1, accuracy, precision, F-measure, sensitivity and

specificity are defined as:

� Accuracy is defined as the percentage of predictions that are correct. It

is calculated as (TP + TN ) / (TP + TN + FP + FN ).

� Precision is defined as the percentage of positive predictions that are

correct. It is calculated as TP / (TP + FP).

� Sensitivity also called as recall is defined as the percentage of reality

positive instances that were predicted as positive. It is calculated as TP

/ (TP + FN ).

� Specificity is defined as the percentage of reality negative instances that

were predicted as negative. It is calculated as TN / (FP + TN ).

� F-measure is also called as F-score. It is defined as a harmonic mean of

precision and sensitivity. A harmonic means that a (50%, 50%) system

is often considered better than an (80%, 20%) system. It is calculated

as Equation (3.32).
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F =
(a2 + 1)Precision ∗ Sensitivity)

a2(Precision+ Sensitivity)
(3.32)

When a=1, the Equation (3.32) can be rewritten as Equation (3.33) and this

is called F1. This is the most-used metric in the prediction system.

F1 =
2 ∗ Precision ∗ Sensitivity
Precision+ Sensitivity

(3.33)

Analysis of Proposed Evaluation-Metrics

The different matrices serve the different meaning in the evaluation of the

performance of a prediction system, according to the explanation in [20], which

are described in practical examples below:

1. Set 100 samples as positive in a data set of 10,000 samples. A prediction

model predicts that negative for all the samples. Reflecting this, for this

system, it has TP=0, FN=100, FP=0 and TN=9900, according to Table

B.1. Then calculate the accuracy as 99%, the precision as 100% (there

is no positive predict activity), the sensitivity as 0%, the specificity as

100%, and F1 as 0%. Note that, although, the accuracy, precision and

specificity provide the higher values that indicate this model has very

good performance, this prediction model is still useless as to it cannot

predict the positive sample. According to this example, sensitivity and

F1 seem to be the actual values that evaluate how well this prediction

model performs.

2. The same setting data is used as in example 1. If another prediction

model predicts all the samples are positive, then TP=100, FP=9900,

FN=0 and TN=0. Reflecting this, the accuracy is 1%, the precision is

1%, the sensitivity is 100%, the specificity is 0% and F1 is 1.98%. Note

that, the precision provides the higher value that indicates this model

has very good performance. This prediction model is still not good as
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other metrics have even lower values. According to this example, the

accuracy, specificity precision and F1 seem to be the actual values that

evaluate how well this prediction model performs.

3. Similarly to the data used in example 1 but with 10000 samples used,

set 9900 out of 10000 as positive. Assume a prediction model predicts

all samples as positive, then TP=9900, FP=100, FN=0 and TN=0. Re-

flecting this, the accuracy is 99%, the precision is 99%, the sensitivity is

99%, the specificity is 0% and F1 is 99%. In this example, the specificity

shows the problem that this model cannot predict the negative samples

well.

4. In medical diagnostics, sensitivity represents the ability of a test model

that correctly identifies people with a disease (TP ratio), and specificity

represents the ability of a test model that correctly identifies people

without the disease (TN ratio). For example, say there are 100 people

tested by a test model. In fact, 10 people have disease (Positive) and

the other 90 people do not have the disease (Negative). After the test,

9 people are tested as having the disease (TP=9 ) and 1 person as not

having the disease (FN=1). There are 5 people considered to have the

disease (FP=5 ) in 90 people, and the other people do not have the disease

(TN=85 ). Reflecting this, the sensitivity is 90% and specificity is 94%.

In this example, for the proposed mode, the sensitivity shows the ability

to successfully find the actually ill people in the group of ill people, and

the specificity shows the ability to find successfully the actually healthy

people in the group of healthy people.

According to these examples, the performance of a prediction mode should

consider all these metrics.

3.3.3 Simulation and Analysis

This simulation includes the UE-based order-2 Markov, MRP and HMM pre-

dictors from [18], [19] and [38] as well as CPM predictor simulation, and studies
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Figure 3.13: The Comparison of different prediction models

the performance of them via accuracy, precision, F-measure, sensitivity and

specificity which are proposed in the previous section. These studies give an

insight into the effects of performance of different prediction models on the

two-tier LTE femtocell network.

The implementation of UE-based in the simulation

In order to compare the performance of UTPM and CPM, the simulation

simulates the UE-based order-2, MRP and HMM and CPM prediction models

together. However, UE-based prediction models can only predict the UE’s

future location cell or UE’s future handover situation. It cannot predict the

intensity of a femtocell’s handovers. Therefore, the prediction results from

UE-base prediction models need to covert to the intensity value as shown in

Figure 3.13.

In terms of the order-2 and MRP prediction model, they can predict the

next UE moving cell. In the simulation, the order-2 and MRP can model

the cells which provide the handover process with the UE in the UE moving

history as states. Therefore, order-2 and MRP can predict the next cell which

87



3.3. Theoretical and Simulation Analysis

Figure 3.14: The structure of UE randomly mobility pattern scenario

can provide a handover process. In the simulation, the femtocell can collect

the predicted information and then count the number of handovers that would

happen in a time period. Therefore, the number of handovers can be modelled

as the intensity value in order to compare with the intensity value in CPM.

In terms of the UE-based hidden prediction model, it can predict the next

cell, UE would handover or not from hidden state (communication and non-

communication). Therefore, in the simulation, the femtocell can collect the

predicted information and count the number of handovers that would happen

in a time period. Therefore, the number of handovers can be modelled as the

intensity value in order to compare with the intensity value in CPM.

UE Randomly Mobility Pattern Simulation

In the simulation, it has been configured with 1 macro station; 5 femtocells

are randomly located in the macrocell coverage. 20 UEs are firstly randomly

located in the macrocell coverage area, then gives the UEs random moving

speeds and angles. The UE moving pattern is set as straight and if a UE

reaches the threshold of macrocell coverage, it will be given a new angle to

ensure it will move around in the macrocell, as shown in Figure 3.14.

In this simulation, if a UE reaches the coverage of a femtocell, it has a

probability to handover to the femtocell or remain in the macrocell coverage
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Table 3.2: Parameters in UE Randomly Mobility Pattern Simulation

Macro/Femto ra-
dius

450/ 20 (m)

UE moving speed
(v)

3 ≤ v ≤ 14 (Km/h)

UE moving angles 360 (Degree)
UE moving pattern Straight
The length of UE
camping time in
the Femtocell

Negative Exponential Distribution (3 ≤ λ ≤
5)

Femtocell Status
(Switched on or
off)

Normal distribution

area. When a UE handovers to a femtocell, the time that UE would stay in the

femtocell will follow the negative exponential distribution according to queuing

theory [65]. Moreover, each femtocell can be turned off and on following a

normal distribution. The parameters for the simulation are summarised in

Table 3.2.

Every UE records the cells that it has been camped on or handovers to as a

ID sequence, such as: 0 represents the macrocell, and 1-5 represent the different

femtocells. These IDs are the states used in the Markov chain. Moreover,

every femtocell records the number of UE handovers and the number of UE

arrivals in a time period. More information about the simulation is provided

in Appendix B.1.

According to the discussions in Section 3.3.2, the performance of the pre-

diction model is evaluated via the five metrics: accuracy, precision, F-measure

(F1), sensitivity and specificity. Thus, the UE random mobility pattern simu-

lation results are shown in Figures 3.15, 3.16 and 3.17.

According to the results from Figures 3.15, 3.16 and 3.17, the summarised

mean results for each metric are provided in Table 3.3.

In Table 3.3, four columns represent the models, CPM, Order-2 Markov,

MRP and HMM prediction, respectively. The rows represent the five different

metrics for those prediction models. The elements for each prediction model
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Figure 3.15: The accuracy and precision of the prediction models in cumulative
distribution function

Figure 3.16: The sensitivity and specificity of the prediction models in Cumu-
lative distribution function
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Figure 3.17: The F1 of the prediction models in Cumulative distribution func-
tion

Table 3.3: Results List in UE Randomly Mobility Pattern Simulation

Prediction Model Proposed CPM Order-2 Markov MRP HMM
Accuracy 67.54% 50.45% 53.87% 57.75%
Precision 63.49% 48.17% 51.11% 54.21%
Sensitivity 55.32% 49.19% 52.65% 51.65%
Specificity 53.87% 50.12% 51.93% 49.34%
F1 59.12% 48.67% 51.87% 52.90%

91



3.3. Theoretical and Simulation Analysis

are the mean value of the corresponding metrics which are summarised from

the simulation, as shown in Figures 3.15, 3.16 and 3.17.

As mentioned earlier, accuracy is defined as the percentage of predictions

that are correct. Precision is defined as the percentage of positive predictions

that are correct. Sensitivity, also called recall, is defined as the percentage of

reality positive instances that were predicted as positive. Specificity is defined

as the percentage of reality negative instances that were predicted as negative.

F1 is defined as a harmonic mean of precision and sensitivity

Across the table, in terms of accuracy, precision, sensitivity, specifity and

F1, the proposed CPM performed better than the other UTPMs for two rea-

sons: as mentioned earlier, the femtocell plug-and-play feature does not affect

the perfomance of CPM; CPM takes into account the UE arrivals and han-

dover issues which occur in the two-tier network scenario. Moreover, the MRP

performed better than the order-2 Markov since it not only considers the state

transfers, but also considers the length of time period between two states and

the time of the new state appearing. Moreover, HMM performance is better

than the other UE-based models, because it considers the UE arrivals and

handover issues.

Although the specifity of CPM is the highest value of the predictions, it still

has a lower value than its sensitivity. That means CPM is not good at negative

prediction, rather than positive prediction. Therefore, the percentage of posi-

tive predictions that are correct (precision) has a higher value than specificity.

Moreover, F1 is defined as a harmonic mean of precision and sensitivity which

described the positive prediction ability of the prediction model. As shown in

Table 3.3, CPM provides the highest ability to predict the positive state which

is the highest intensity of a femtocell’s handovers. Since the network resource

distribution should consider the demand of the femtocells, a femtocell with the

highest intensity of handovers is desired to obtain more network resource than

other femtocells. Therefore, the higher ability of positive prediction is good

for network resource distribution. The specific network resource distribution

by using CPM is described in Chapter 4.
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Figure 3.18: The structure of UE Factual mobility pattern scenario

UE Factual Mobility Pattern Simulation

In this section, factual data in this project are used for performance compari-

son. This data comes from Community Resource for Archiving Wireless Data

(CRAWDAD) network trace repository [69], which has recorded the moving

history and communication situation of 20 smart phone devices (UEs) over

half a month. In the simulation, one macrocell station and five femtocells ran-

domly locate in the macrocell coverage. These 20 UEs’ moving patterns are

followed by the factual record from CRAWDAD data. The structure of this

simulation is shown in Figure 3.18.

In this simulation, if a UE reaches the coverage of a femtocell, it has a

probability to handover to the femtocell or still be served by the macrocell.

Moreover, each femtocell can be randomly turned off and on.

Similar to the first simulation, every UE will record the cells that it has been

camped on or handover to as a ID sequence, such as 0 represents the macrocell,

1-5 represent the different femtocells. Those IDs are the states modelled in

the Markov chain. Moreover, every femtocell will record the number of UE

handovers and the number of UE arrivals in a time period.

According to the discussions in Section 3.3.3, the performance of the pre-

diction model will be evaluated via the five metrics, accuracy, precision, F-

measure, sensitivity and specificity. Therefore, the factual UE mobility pattern
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Figure 3.19: The accuracy and precision of the prediction models in cumulative
distribution function

Table 3.4: Results List in UE Factual Mobility Pattern Simulation

Prediction Model Proposed CPM Order-2 Markov MRP HMM
Accuracy 97.78% 68.79% 73.18% 81.27%
Precision 93.54% 66.67% 69.23% 78.27%
Sensitivity 78.34% 59.79% 67.23% 75.61%
Specificity 86.12% 61.30% 66.89% 71.92%
F1 85.27% 63.04% 68.22% 77.25%

simulation results are shown in Figures 3.19 3.20 and 3.21.

According to the results from Figures 3.19, 3.20 and 3.21, the summarised

mean results for each metric are provided in 3.4.

In Table 3.4, four columns represent the models, CPM, order-2 Markov,

MRP and HMM prediction, respectively. The rows represent the five different

metrics for those prediction models. The elements for each prediction model

are the mean value of the corresponding metrics which are summarised from

the simulation, as shown in 3.19 3.20 and 3.21.

According to Table 3.4, compared with Table 3.3, all the values have in-

creased and the top one almost achieves 97%. This is because in this simula-

tion, more information can be learned from the network and there are fewer
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Figure 3.20: The sensitivity and specificity of the prediction models in Cumu-
lative distribution function

Figure 3.21: The F1 of the prediction models in Cumulative distribution func-
tion
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random factors in the network due to UE factual mobility patterns. In Table

3.4, the order-2 Markov still has the worst performance of the prediction mod-

els. The MRP performed better than the order-2 Markov since it considered

two factors: the length of states’ lasting time and the transition probabil-

ity of states. The order-2 Markov chain only considers the state transition

probability factor as mentioned in Section 3.1.1.

Moreover, across the table, the simulation results showed that the pro-

posed CPM has better performance compared to the other UE-based predic-

tion models. It overcomes the drawbacks of the UE-based prediction models

in the two-tier network scenario. However, the sensitivity of CPM is the low-

est value compared to accuracy, precision, specificity and F1. This means

that in this simulation, CPM is good at prediction of negative states rather

than prediction of positive states. This is because, for the specific data from

CRAWDAD, the most frequent state is the negative state (lower intensity of

a femtocell’s handovers). In the prediction, the state with highest frequency

is more predictable than the state with lower frequency [63]. Although, the

CPM provides lower ability to predict negative states, the sensitivity of CPM

still performs better than the other UTPMs.

3.4 Summary

This chapter presents a cell-based prediction model called CPM, based on the

LTE femtocell network in order to predict the intensity of a femtocell’s han-

dover. In the tests using both theoretical and actual UE moving patterns,

the proposed CPM outperforms the existing UE-based approaches for all five

metrics, with higher accuracy, precision, F1, sensitivity and specificity. The

proposed approach avoids the drawbacks of UE-based prediction model im-

plemented in the two-tier LTE femtocell scenario, and it provides a better

performance than the currently available prediction models. In addition, the

intelligence fitted into this approach cooperates with the current trend of selfor-

ganisation processes, and therefore, the result of this work may be incorporated
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into or potentially contribute to SON technology.
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Chapter 4

Dynamic Group PCI Allocation

Scheme

In the previous chapter, a Cell-based Prediction Model (CPM) is proposed, in

order to achieve a self-organised scheme for network radio resource manage-

ment. This chapter describes a Physical Cell Identity (PCI) allocation scheme

associated with the proposed CPM. In the LTE femtocell network, the PCI

is used to identify a cell and also to achieve channel synchronisation between

a UE and a newly detected cell [3]. Unfortunately, the number of PCIs is

limited to 504 due to the limited byte allocation in the standards [6]. This

is insufficient in cases introducing large numbers of femtocells, which brings

PCI collision and confusion problems. The PCI cannot be replaced since it is

also used to achieve channel synchronisation, 3GPP release 9 [11] introduces

CGI together with PCI as a solution. However, there are unavoidable draw-

backs. For example, CGI is obtained by reading system information, which is

easily done when the UE is in idle mode. When the UE is in connected mode,

it uses the autonomous gap to read the system information which takes at

least 150 ms. During that period, the UE cannot exchange information with

its serving cell, which may lead to service interruptions or call-drops. Due

to drawbacks in the CGI implementation, recently, many authors of research

works went back to using the PCI and proposed the schemes that have solved

PCI collision and confusion in regular network (macrocell) scenarios and PCI
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collision in the two-tier network scenario. However, as for the PCI confusion,

in the two-tier network scenario, it remains the problem need to be solved. In

order to solve the PCI confusion problem and avoid the drawbacks of CGI in

the two-tier network scenario and comply with ACPCI function in SON, this

chapter introduces a Dynamic Group PCI Allocation Scheme (DGPAS). Via

combining with the traffic behaviour learning and prediction model described

in Chapter 3, the proposed scheme provides a self-configuration ability to offer

an optimal PCI distribution in order to achieve better network performance.

4.1 Cell Identification in the LTE Femtocell

Before introducing the proposed DGPAS, some important background used in

the proposed scheme is explained in the following sections.

4.1.1 Inbound Handover

Handovers such as handover or handoff to and from the femtocell is obviously

an essential element of the technology. However, this process incurs many

problems for the two-tier network scenario presented in detail in this chapter.

In 3GPP release 8, three kinds of handovers are defined [3, 70]:

� In the LTE femtocell system, a handover occurs between one femtocell

and another nearby femtocell. This process can be called as femtocell-

to-femtocell handover.

� In the LTE femtocell system, if a UE handover is from femtocell to

macrocell, it is called an outbound handover. For more information

about outbound handovers, please check Section 5.1.1.

� In the LTE femtocell system, when a UE handover is from macrocell

to femtocell, it is called an inbound handover. In this chapter, the in-

bound handover will be considered in solving the PCI problems. In-

bound handover is one of the most common handover forms in wireless
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Figure 4.1: Inbound handover in LTE Femtocell

networks with femtocells. But it is also quite challenging due to the ef-

ficient communication required between macrocell and femtocell, which

exist in different network scenarios. The inbound handover is shown in

Figure 4.1.

Figure 4.1: Inbound handover in LTE femtocell

4.1.2 Physical Cell Identity

In the LTE network, Physical Layer Cell Identity (PCI) is used for channel

synchronisation and cell identification. According to [3], the PCI consists of

two parts:

� Physical layer identity (N1
ID)

� Physical layer cell identity group (N2
ID)

The physical layer identity defines the physical layer ID and it has a range

from 0 to 2. The physical layer cell identity group defines the group ID that

the cell belongs to and it has a range from 0 to 167. PCI is calculated as

physical layer ID +3*physical layer cell identity group number which implies

504 possible values as shown in Table 4.1.

Cell synchronisation is an indispensable step if a UE wants to camp on any

detected cell [12]. In this case, UE acquires PCI, to achieve synchronisation
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Table 4.1: Physical Cell Identity Calculation

Cells N1
ID N2

ID PCI
Cell A 0 154 462
Cell B 1 134 403
Cell C 2 78 236
. . . . . . . . . . . .

on both the time slot and frame, in order to enable the UE to read system in-

formation blocks from a particular network. In order to communicate with the

core network, a UE should first acquire synchronisation with the cell. Then, it

can receive and decode system information from the cell. This synchronisation

process is defined as cell search. Cell search is performed on the powering-up

UE and is repeated whenever the UE intends to move to a new station. Via

the public channels, the UE will find that the Primary Synchronization Signal

(PSS) blocks in the OFDM symbol at a particular position [3]. Through using

PSS, the UE is able to obtain a physical layer ID. Then, a similar process

applies to the Secondary Synchronization Signal (SSS). Through using SSS,

the UE is able to obtain a physical layer cell identity group number. After

the process, by using the physical layer identity and cell identity group num-

ber, the UE can obtain the PCI for this cell as mentioned earlier. When the

UE obtains the PCI for a given cell, it would also know the location of cell

reference signals in the OFDM symbol. Reference signals are used in channel

estimation, cell selection / reselection and handover procedures [3]. Cell iden-

tification is another function of the PCI developed in the LTE system [3]. PCI

is used in cell synchronisation, and it needs to be unique to each cell deployed

in the network. Moreover, the PCI can be easily obtained without reading the

system information.

Physical Cell Identity Collision

Given both the PCIs are normally allocated without planning and the limita-

tion on the number of PCIs, if the number of cells is higher than the number

of PCIs in the network, two problems appear, namely PCI collision and con-
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Figure 4.2: PCI collision in regular network(LTE network)

fusion. This section describes the PCI collision in a single-tier and two-tier

network scenario. PCI collision happens when a UE starts to handover from

a macrocell station (assigned PCI=21) to its neighbour macrocell station (as-

signed PCI=21). In the handover process in LTE network (regular network),

the UE would report the target macrocell PCI to the serving cell to identify

the target network, if the serving cell has the same PCI ID with the target cell,

then the serving cell cannot distinguish which cell the UE would handover to,

and this results in handover failure. The PCI collision in a regular network is

shown in Figure 4.2. It is worth noting that, Figure 4.2 is only used to illus-

trate the PCI collision. In reality, there are many ways to avoid this happening

in a single-tier network.

For the two-tier network, the PCI collision applies in a similar way as in the

case of the macrocell, the difference is that it happens between the femtocells.

If there are two neighbouring femtocells sharing the same PCI ID, the PCI

collision would occur when the UE is handed over from the femtocell to another

femtocell. According to the descriptions in Chapter 2, some researchers have

proposed distribution schemes to solve PCI collision and ensure that there is no

repeated PCI assignment between neighbouring cells. Moreover, as mentioned

earlier, the reason PCI collision occurs is because of the scarcity of PCIs means

they are not as well distributed as the large number of femtocells and the many

various relations of the neighbouring femtocells. This case can be treated as the

problem of a ’limited resource’ assigned with a high ’reuse-ratio’. Therefore,
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Figure 4.3: PCI confusion in regular network (LTE network)

the frequency of occurrence of PCI collision really depends on the number of

and the location of the femtocells deployed in the network.

Physical Cell Identity Confusion

Similar to PCI collision, PCI confusion happens because PCIs are normally

allocated without planning. PCI confusion includes two cases: PCI confusion

in a single-tier and two-tier network. In terms of PCI confusion in a single-tier

network, it happens when a UE starts to handover from a macrocell station

(PCI=11) to its neighbouring macrocell (PCI=15) station. In the handover

process of the LTE network (regular network), the UE would report the target

macrocell PCI to the serving cell to identify the target network, if there is

another neighbouring station with the same PCI ID as the target macrocell,

then the serving cell cannot distinguish which cell the UE should handover to

and this may result in handover failure. PCI confusion in a regular network

(single-tier network) is shown in Figure 4.3.

Single-tier PCI confusion can be resolved via optimal PCI allocation. As

mentioned in Chapter 2, many researchers have proposed PCI distribution

schemes to solve this PCI confusion which ensures that there is no repeated

PCI assignment in a cell’s neighbouring cells. Moreover, the reason for ap-

pearance of PCI confusion is similar to that of PCI collision. Therefore, the
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Figure 4.4: Two-tier PCI confusion in inbound handover

frequency of occurrence of PCI single-tier confusion really depends on the num-

ber of and the location of the femtocells deployed in the network. In terms of

PCI confusion in two-tier networks, it happens in the inbound handover pro-

cess, and becomes a major problem in the LTE femtocell scenario. This PCI

confusion happens during a UE handover from the macrocell to a femtocell

when there is another femtocell that has the same PCI as the target femtocell,

the macrocell cannot distinguish which cell the UE should handover to and

this may lead to handover failure. However, for the inbound handover in the

two-tier network, this confusion cannot be resolved as it is in the single-tier

network, since the large number of small femtocells are served in the large cov-

erage of macrocell; it is hard to uniquely identify each femtocell. PCI confusion

in the inbound handover is shown in Figure 4.4.

The inbound handover is the most common action in an LTE network

and the PCI cannot be replaced due to the system needing it to achieve cell

synchronization. Reflecting this, in order to solve this problem, in release

9 [3, 12], is proposed a new identity called Cell Global Identity (CGI) to

cooperate with the PCI to achieve the inbound handover. The CGI is described

in the next section.

105



4.1. Cell Identification in the LTE Femtocell

Figure 4.5: The structure of cell global identification

4.1.3 Cell Global Identity

According to 3GPP release 9 [3, 12], Cell Global Identity (CGI) had been

introduced. As the name implies, it is a specific ID which can uniquely identify

a single cell throughout the whole world. CGI consists of multiple components

such a Mobile Country Code (MCC), Mobile Network Code (MNC), Local

Area Code (LAC) and Cell Identity (CI) as shown in Figure 4.5.

According to [71], from the MCC, you can figure out in which country

(specific country code) the cell is located. From the MNC, you can find out

which network operator it belongs to. From LAC, you can find out which

location area it belongs to. From CI, you can identify the exact individual cell.

Unlike the PCI, a CGI is not a reference signal and cannot be directly read from

a public channel. CGI can only be read by the UE via the system information

from its corresponding cell. As mentioned in [3], during the inbound handover

process, when the UE starts the handover process and PCI confusion occurs,

the macrocell would ask the UE to report the CGI. Once the UE receives

the CGI request from the macrocell, the UE will read the target cell system

information, and then report the CGI to the macrocell. Via this process, the

macrocell could obtain the CGI from the target cell and use this CGI instead

of PCI to uniquely identify the target cell. The process is shown in Figure 4.6.

However, due to the fact that the PCI can be directly read from a public

channel and CGI needs to be read via system information, drawbacks of using
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Figure 4.6: CGI in inbound handover

CGI are described in the next section.

Cell Global Identity Reading in UE Idle Mode

The process of a UE read or report CGI can be summarised as a special type

of measurement report [25]. Normally measurement control/reports are for

detecting the signal strength of the target cell, but a CGI report is not used

for measuring signal strength. It is to detect the CGI which uniquely identifies

an individual cell throughout the whole world as mentioned an earlier section.

For the PCI or signal strength measurement report, the UE has only to switch

its tuner to the target cell and measure the signal strength. It does not have

to decode any system information of the target cell and therefore, takes a very

short time to measure them. But it is a different story in the case of CGI when

the UE has to decode the system information of the target cell. It takes up to

160ms for LTE [11]. According to [11], the decoding system is not a big issue if

a UE is in idle mode. This is because the UE can read the system information

during the Discontinuous Reception (DRX) cycle which implements when the

UE is in idle mode. DRX cycle is used in mobile communication by many

researchers in power saving [11]. If a UE is in idle mode, the DRX will be
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Figure 4.7: Idle UE and CGI reading in inbound handover

activated. In a DRX cycle, it gives the UE enough time to measure the system

information of the target cell. The process of a UE read and report CGI in

idle mode is shown in Figure 4.7.

As shown in Figure 4.7, if a UE in idle mode wants to do cell reselection

(Handover in idle mode is called cell reselection) from macrocell to femtocell,

the UE has enough time to read the system information from the target fem-

tocell and cell reselection is more easily achieved for inbound handover in the

LTE femtocell scenario. However, if a UE is in connected mode and wants to

achieve an inbound handover, a problem would occur, as will be described in

the next section.

Cell Global Identity Reading in UE Connected Mode

As mentioned earlier, the 3GPP proposed a new identity as CGI to achieve the

cell identity. However, CGI information can only be obtained from the system

information and the process will take longer during the inbound handover.

When the UE is in connected mode (activity mode), the UE has the ability to

transmit data from the network. This action has higher priority than the DRX

process [11]. Therefore, the DRX cycle cannot initialise and the UE cannot

read the CGI from the system information via DRX and this leads to inbound
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Figure 4.8: Activity UE and CGI reading in inbound handover

handover failure. The process is shown in Figure 4.8.

Due to this problem, in release 10 [11] is proposed an autonomous gap

instead of a DRX cycle which is activated during inbound handover to give the

UE sufficient time to read the CGI. However, the autonomous gap techniques

also bring new challenges which will be described in detail in the next section.

4.1.4 Cell Global Identity vs. Physical Cell Identity

Compared to PCI, using CGI has many serious drawbacks. Firstly, PCI is a

reference signal sequence on the signal level which means that the UE reads the

identity of the target cell in a very short time (up to 20 ms) in LTE. Whereas,

CGI is not a reference signal sequence, and it needs to be obtained by reading

the system information which requires a longer measurement time gap, up to

160 ms in LTE. In release 10, when a UE is in connected mode, intended for

an inbound handover, the UE then activates the autonomous gap to read the

CGI from the system information. However, the autonomous gap requires the

UE to temporarily enter into a similar DRX cycle gap to read the CGI. In

the autonomous gap, the UE still cannot receive or transmit any data from or

to the serving cell [11]. Therefore, it probably results in unnecessary service

interruption and consequently results in the call being dropped in a situation
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where the signal strength fades rapidly. This becomes more critical in a busy

and dense network scenario. This is because that long CGI reading time would

lead to the delay of the CGI measurement report which may make the UE miss

the optimal handover time. Secondly, the autonomous gap approach is a new

approach and currently most UEs do not support this technology. Lastly, a

long measurement time is required to obtain the system information which

causes concerns regarding UE battery life. The UE battery life is important

for battery-hungry multimedia applications. In summary, it is desirable to use

PCI rather than CGI to identify cells. However, PCI has a confusion problem,

in order to mitigate CGI drawbacks and also to avoid PCI confusion, this

chapter proposes an efficient dynamic PCI group scheme.

4.2 The Proposed Dynamic PCI Group Allo-

cation

Firstly, according to the above descriptions, both PCI and CGI drawbacks

are caused by PCI reuse in the LTE femtocell scenario. In fact, some femto-

cells may have a higher number of inbound handovers than others during the

same time period and those femtocells are more deserving of having a unique

PCI than other femtocells. If those femtocells have a unique PCI, the over-

all system will have a lower chance to implement the autonomous gap and

consequently result in a lower chance of handover failure. In this section, a

centralised dynamic group PCI allocation scheme is proposed, the basic frame-

work of centralised Automatic Physical Cell Identity Assignment (ACPCI) in

the proposed scheme are described below.

4.2.1 Framework of Centralised Automated Physical Cell

Identity Allocation

As mentioned in Chapter 2, the SON functionality architectures are sum-

marised as centralised, distributed and hybrid. In automatic PCI planning,
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Figure 4.9: Flowchart of dynamic PCI release process

both the centralised and distributed approaches (currently, there is no hybrid

approach in PCI planning) have been proposed to achieve PCI assignment via

Operation Administration and Maintenance (OAM) system [16]. The OAM

system is a tool which is implemented by standards [72] to achieve the op-

erating, administering, managing and maintaining in the SON. Considering

the centralised SON structure, ACPCI function and the OAM reside at the

network management system level, and the specific SON approach is executed

in the OAM system [16]. Moreover, in LTE, MME is the one of network man-

agement system blocks and used to achieve the wireless cell management and

communication [25]. Therefore, for the centralised ACPCI, the OAM system

should reside in MME and the tunnels between wireless cells and the OAM

are achieved via MME [73]. The general procedure of centralised ACPCI is

shown in Figure 4.9.

� Centralised SON Function: the main work of the centralised ACPCI

function is to select the network information from all the femtocells in the
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two-tier network such as cell identity, cell radius, network traffic situation

and neighbourhood information etc. It then classifies the information

and sends the necessary information which is required by the specific self-

organisation approach to the OAM. Moreover, the necessary information

is sent via Backhaul (MME) to the OAM.

� Data processing: firstly, this process is to arrange the data which is

obtained from the ACPCI function to find the corresponding position

in database, in order to transmit the data to database; secondly, after

the PCI allocating decision is made, this process indicates the cells to

update (allocate); its PCI ID is based on the database record and then

sends the decision back to the ACPCI function.

� Policy Management: this functional block indicates the policy of the

specific self-organisation approach for automatic PCI allocation. Opera-

tors can choose different self-organisation approaches and install in this

block. Therefore, if the current approach cannot achieve the require-

ment QoS, it can be easily created, edited and modified by operators in

order to improve network performance. Reflecting this, the main part

of the proposed PCI allocation scheme in this chapter is located in this

functional block.

� PCI Algorithm Execution: this functional block used to manage the

database depends on the policy from the policy management block. The

different approaches lead to different database operations. Database:

this functional block indicates the related information obtained from the

centralised ACPCI function. The temporary and permanent variables

are obtained from the self-organisation approach.

� PCI Resources Management: this functional block is used to store

the PCI usage status, PCI and CGI map, PCI reuse frequency and the

PCI ranges for macrocell and femtocells respectively. Moreover, MME

have two functional blocks such as Home Subscriber Server (HSS) and
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Neighbour Cell List (NCL). HSS functions include femtocell manage-

ment, authentication, authorisation and the mapping list for PCI and

CGI. NCL stores all neighbouring information for each femtocell. Since

the OAM resides at MME, it could easily retrieve all the PCI and CGI

information in HSS and NCL and store in its PCI Resources Manage-

ment.

Overall, in the centralised ACPCI, the OAM system is supposed to have

complete knowledge and control over PCIs. It also provides an easy way for

the operator to operate the PCI planning approach. The proposed scheme in

this chapter will follow the centralised SON structure and comply with ACPCI

function.

4.2.2 Busy Femtocells Predicted by Cell-based Predic-

tion Model

In the LTE femtocell scenario, inbound handover is the main cause of two-tier

PCI confusion, thus, a higher number of inbound handover events makes things

worse. For the sake of the description in this chapter, a concept called Busy

femtocell (BFemtocell) is introduced. In Chapter 3, the cell-based Prediction

Model (CPM) is proposed based on the intensity of a femtocell’s average num-

ber of inbound handovers. Therefore, this section defines three different levels

of handover intensity. In Chapter 3, the cell-based Prediction Model (CPM)

proposed is based on these handover intensities for femtocells in the macrocell

coverage area, namely, OBusy, OModerate and OIdle, where O is the observation

state and Obusy represents the BFemtoell state. Similarly, it applies to Omod-

erate and Oidle, they represent the normal handover states for femtocells. The

structure of three intensity levels of a femtocell’s handovers in a CPM model

is shown in Figure 4.10.

Figure 4.10 shows that the proposed observation states are not related to

each other, but they are related to the hidden states. In terms of hidden

states in a CPM, they are denoted as SHigher, SMid and SLower which each
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Figure 4.10: The structure of three intensity levels of a femtocells handovers
in a CPM model

represent different average numbers of UE arrivals. Depending on the hidden

Markov model, the state in the hidden part are modelled as Markov chain,

thus, although there is no relation between observation states, the hidden part

has created a bridge to connect the observation states.

4.2.3 Dynamic PCI Groups

In the LTE femtocell system, PCIs have already been categorised as two

groups: macrocell PCI and femtocell PCI groups [3, 70]. Therefore, through

different PCI ranges, the UE can easily determine the type of wireless cell sta-

tion, whether it is macrocell or femtocell. Moreover, the LTE femtocell defines

the Closed Subscriber Group (CSG) as a set of subscribers (registered UEs)

which are only allowed to hand over to specific femtocells (CSG femocells).

On the other hand, non-CSG femtocells represent the femtocells which allow

all UEs to hand over and obtain its service. In order to easily distinguish the

CSG and non-CSG femtocells, the standards define a certain range of PCIs

to be reserved for CSG femtocells [3, 70]. This process is set in the System

Information Block Type 9 (SIB 9), and there are two information elements

in SIB 9, csg-PhysCellIdRange.start and csg-PhysCellIdRange.range. System

information is the information about the system and the serving cell. The UE

could determine the setting of a femtocell via measuring the system informa-

tion. Assuming csg-PhysCellIdRange.start = n, csg-PhysCellIdRange.range =
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Table 4.2: A Certain Range of PCIs for CSG and non-CSG Femtocell

Non-CSG Femtocell CSG Femtocell Macrocell
1, 2, 3, . . . n. n+1, n+2, . . . , n+k . . . , 502, 503, 504

Figure 4.11: The structure of proposed dynamic groups

k. The PCI is distributed between CSG and non-CSG cells as shown in Table

4.2.

Table 4.2 shows that according to the proposed information elements, fem-

tocell PCIs can be well arranged into two groups which easily indicate different

femtocell access types. Moreover, the two-tier PCI confusion happens when

reusing PCIs deployed under the large range of macrocell service. When an

approach guarantees the unique PCIs to be allocated to the Bfemtocells, there

is no confusion in the inbound handover. Considering this obvious reason,

the PCI resource should be well arranged. Therefore, the femtocell CSG and

non-CSG PCI groups in standards need to be further categorised into two

sub-groups, such as unique PCI and reused PCI groups as shown in Figure

4.11.

Unique and reused PCI groups are set in each CSG-group/non-CSG group.

As the name implies, the PCIs in unique PCI groups are used to identify the

CSG or non-CSG mode BFemtocell. The PCIs in reused PCI groups are used

to identify the normal CSG or non-CSG mode femtocells. Moreover, the reused
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PCI groups are also used to guarantee that the single-tier PCI confusion and

PCI collision would not occur in the network, and more information about this

can be found in the next section. Since femtocells are deployed randomly in the

network, the proposed unique and reused PCI groups would not have a certain

PCI range. This is able to be achieved via setting up four information elements

in the system information due to system information being flexible and able

to contain additional information elements [24]. Similarly, this applies to the

two information elements set in SIB 9 as mentioned earlier. Those elements

are:

� unique-csg-PhysCellIdRange.start and resued-csg-PhysCellIdRange.range

for CSG femtocells

� unique-PhysCellIdRange.start and resued-PhysCellIdRange.range for non-

CSG femtocells

Moreover, the dynamic features of the PCI groups are described below: The

number of PCIs in the unique PCI group would decrease due to unique PCIs

being used to assign the BFemtocells as mentioned in Section 4.2.2. Therefore,

after a unique PCI is assigned to the BFemtocell, this PCI would add to the

reused PCI group. As a result, the number of PCIs in the unique PCI group

would become 0 which would make the proposed approach unachievable. In

order to solve this problem, a PCI release function has been proposed in the

next section. This function can collect the redundant PCI usage in the system.

Then it releases the unique PCIs, and fills the unique PCI group. Therefore,

via distribution or release function, the PCIs are dynamically located in either

the unique or reused PCI group which means that the PCI groups are dynamic.

4.2.4 PCI Release Functions

As mentioned earlier, unique PCIs are one of the key factors for PCI confu-

sion mitigation, therefore, the proposed scheme provides an enhanced function

called PCI release to seek the unique PCIs in the network and supplement them

into the unique PCI groups. The PCI release function includes two methods:
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one is static PCI release; the other one is dynamic PCI release. Moreover,

due to CSG and non-CSG femtocells having the same structure of dynamic

PCI groups as mentioned in the previous section, the PCI release functions in

those femtocells are also the same. In terms of static PCI release, it is able

to obtain the PCIs from those femtocells which have been switched off. Then,

those released PCIs would be sent to the OAM, and the OAM would filter

out the unique PCIs. Moreover, since Ping transmits in very small packages

only up to 220 bits for ICMP (Internet Control Message Protocol), it will not

cause any large signal overload. As a result, using ping to check the status of

femtocells is suggested. Therefore, the femtocells in the network can be clearly

separated into two lists: Femtocellon and Femtocelloff. The process of static

PCI release is described in Figure 4.12:

In terms of dynamic PCI release, it is able to obtain the unique PCIs from

the general network PCI resource update. This updating means that in a spe-

cific time interval, the network would check all the relations of femtocells and

PCI usage situations. It then reallocates the PCIs to those non-BFemtocells

with a minimised number of reused PCIs. Proposed dynamic PCI release can

be modelled as Graph-Colouring mathematics as shown in Figure 4.13.

Figure 4.13 shows that different PCIs are modelled as different colours and

the relations between femtocells are modelled as the connections of different

nodes in the Graphs Colouring mathematic. The goal of Graph-Colouring

mathematic is to use the minimal number of colours to colour the nodes and

make sure that two nodes are connected with an edge are not assigned the

same colour. This process can be applied for the problem of PCI collision and

single-tier confusion. Moreover, in order to achieve confusion-free PCIs in the

single-tier network, the rules of assigning colours would be changed to ensure

the different colours not only appear between neighbouring nodes, but also

the neighbour’s neighbour of those nodes. The strategy of this process is to

use the PCI set in the target femtocell’s neighbour’s neighbour’s neighbour to

assign the target femtocell, this structure is shown in Figure 4.14.

As shown in Figure 4.14, the nNeighbour represents the target femto-
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Figure 4.12: Flowchart of static PCI release
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Figure 4.13: Dynamic PCI release in Graphs Colouring

Figure 4.14: Femtocell neighbouring structure
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cell’s neighbour’s neighbour femtocell and nnNeighbour represents the target

nNeighbour’s neighbour femtocell. The process of dynamic PCI release func-

tion is described in Figure 4.15.

However, there is a problem. The dynamic PCI release requires that all

femtocells to update their PCIs at the same time, this would cause extreme

complexity in the implementation, especially when the network is quite busy.

As a result, this is different from a static function that is able to be imple-

mented frequently. This function can only be implemented at a chosen time,

for instance, at midnight. Overall, PCI release and PCI assignment provide the

functions of unique PCI supplementation and consumption. Those functions

ensure the dynamic features of the proposed unique and reused PCI groups.

4.2.5 Dynamic Group PCI Allocation Scheme

As mentioned earlier, the proposed strategy is to use the PCIs in the unique

group (PCIunique) to assign the femtocells which have a higher average of

inbound handovers (BFemtocells) and PCIs in the reused group (PCIreused)

to assign the other femtocells via dynamic unique and reused PCI groups.

There are six processing stages in the proposed DGPAS, described below:

1. PCI group operation. According to the PCI usage in PCI resources

management, to determine the unique PCI and reused PCI and create

PCI groups in PCI resources management as mentioned in section 4.2.3

(PCI algorithm execution).

2. Threshold for each state determination (belongs to PCI algorithm exe-

cution and Centralised SON Function in the proposed centralised frame-

work). In this chapter, the proposed scheme implements the average

threshold for each state and the detail of observation states in the pro-

posed scheme is calculated as below:

After receiving the handover information from the femtocells, If Nk de-

notes the average number of successful inbound handovers for the kth
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Figure 4.15: Flowchart of dynamic PCI release process
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femtocell and the function fMax(Nk) denotes the maximum value of Nk,

the threshold of each observation state is calculated with Equation (4.1)

Threshold = (|fMax(Nk)

Ns

|+ 1) ∗Ns th (4.1)

where Ns is the number of states and Ns th represents the threshold

indicator, for example, for the first state, the value of Ns th are 0 and 1,

for the second state, the value of Ns th are 1 and 2. Based on the approach

described in Section 4.2.2, three observation states, OIdle, OModerate and

OBusy, are proposed. For the observation Idle state, where Ns=3, Ns th

ranges from 0 to 1; so substituting them in (4.1), the Idle state can be

written as Equation (4.2).

0 ≤ OIdle < |
fMax(Nk)

3
|+ 1 (4.2)

Similar calculations apply to Moderate and Busy states in Equation (4.3)

and (4.4):

|fMax(Nk)

3
|+ 1 ≤ OModerate < (|fMax(Nk)

3
|+ 1) ∗ 2 (4.3)

(|fMax(Nk)

3
|+ 1) ∗ 2 ≤ OBusy (4.4)

3. PCI group operation (belongs to PCI Resource Management, Data pro-

cessing and Database in the proposed centralised framework). According

to the PCI usage in PCI resource management, determine the unique PCI

and reused PCI and create PCI groups in PCI resource management as
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mentioned in Section 4.2.1.

4. BFemtocell Determination (belongs to PCI algorithm execution and Cen-

tralised SON Function in the proposed centralised framework). After the

threshold of states has been determined, MME depends on this informa-

tion to implement the CPM proposed in Chapter 3. In order to predict

the next state (the Intensity of a femtocell’s average successful inbound

handover) for each femtocell. Once the predictions have finished, the

femtocells which have the Busy predicted state are defined as Bfemto-

cell.

5. Centralised PCI distribution in OAM (belongs to PCI algorithm exe-

cution in the proposed centralised framework). As mentioned earlier,

for the centralised ACPCI, the OAM system should reside in the MME

and the tunnels between wireless cells and the OAM are achieved via the

MME. Therefore, after BFemtocell determination, MME transfers all the

prediction information to the OAM. The PCI distribution process in the

OAM can be described thus:

In the PCI distribution, PBusy(k) denotes the probability of the kth

femtocell being in the Busy state, and similarly this can be applied to

PModerate(k) and PIdle(k). P k
Busy,t+1 denotes probability of the kth fem-

tocell in Busy state at t+1 time period, similarly for P k
Moderate,t+1 and

P k
Idle,t+1. Then PBusy(k), PModerate(k) and PIdle(k) can be calculated in

Equations (4.5), (4.6) and (4.7) respectively:

PBusy(k) = P k
Busy,t+1(Ot+1 = O1|St+1 = [S1, S2, S3]) (4.5)

PModerate(k) = P k
Moderate,t+1(Ot+1 = O2|St+1 = [S1, S2, S3]) (4.6)
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PIdle(k) = P k
Idle,t+1(Ot+1 = O3|St+1 = [S1, S2, S3]) (4.7)

According to Equations (4.5), (4.6) and (4.7), the three Equations (4.8),

(4.9) and (4.10) can be defined thus:

Busy(x) = sort(Pbusy(k) ≥ [Pmoderate(k), PIdle(k)]) (4.8)

Moderate(y) = sort(PModerate(k) ≥ [PBusy(k), PIdle(k)]) (4.9)

Idle(z) = sort(PIdle(k) ≥ [PBusy(k), PModerate(k)]) (4.10)

Let Busy(x) denotes the sequences of the xth BFemtocells in ascending

order and similar denotation applies to Moderate(y) and Idle(z). Since

the BFemtocells are the likely sources of the so-called PCI confusion

during the inbound handover, the unique PCIs are first be assigned to

the xth BFemtocell. If the number of sequences in Busy(x) is greater

than PCIunique, the rest of the BFemtocells will use PCIreused. If the

number of sequences in Busy(x) is smaller than PCIunqiue, the rest of

the unique PCIs will be assigned to Moderate femtocells. If the number

of values in Busy(x) and Moderate(y) are both smaller than PCIunqiue,

the rest of the unique PCIs will be assigned to Idle femtocells. Moreover,

if PCIunique=0, the proposed scheme will not assign the PCI to femtocells

until PCIunique > 0.

After the PCI distribution, the OAM updates the PCI information in

the PCI resource management.

6. PCI Allocation in the femtocell (belongs to Centralised SON Function in

the proposed centralised framework). After the PCI distribution process

in the OAM, the OAM sends the new PCI allocation command back to
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the femtocells via the MME. The femtocells with unique PCIs will not

be involved in PCI confusion and their performance improvement leads

to an overall network performance improvement.

7. PPCI Release (belongs to PCI algorithm execution in the proposed cen-

tralised framework). Considering static PCI release, the network will

often check the femtocells’ status as mentioned in Section 4.2.4. If the

femtocell has been turned off, its PCI would be released and meanwhile

the released PCI information would be updated in the PCI resource man-

agement via the MME.

Considering dynamic PCI release, the general femtocell PCI update

would be executed by the OAM at an optimal time and released PCI

information would be updated in the PCI resource management via the

MME.

The flowchart of the proposed DGPAS is shown in Figure 4.16.

4.3 Simulation and Analysis

This simulation presents the conventional PCI distribution and proposed dy-

namic PCI group scheme, and then studies the performance of reading CGI

reduction and successful inbound handover specificity. These studies give an

insight into the effects on performance of the proposed PCI allocation scheme

regarding two-tier PCI confusion.

4.3.1 Simulation using Theoretical Data

The parameters for simulation are summarised in Table 4.3. Figure 4.17 shows

the arriving rate (Homogeneous Poisson distribution) of femtocells for each

hour in a day, which approximately corresponds with the human life timetable.

The total number of PCIs is set to 20. Since the minimum arrival rate of fem-

tocells is larger than 20, according to Figure 4.17, the two-tier PCI confusion

takes place in most cases of inbound handovers. Moreover, the number of UEs
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Figure 4.16: Flowchart of dynamic group PCI allocation scheme
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Figure 4.17: The Poisson distribution of the number of active femtocells

arriving at each femtocell depends on the Poisson process according to the

queuing theory [65]. For more information of this simulation, especially the

OAM and MME modelling, please check Appendix B.2.

The proposed PCI allocation scheme aims to reduce the usage of CGI in

the inbound handover due to the drawbacks of using CGI. Hence, the number

of CGI readings is the metric which is chosen to evaluate the performance in

this simulation. The evaluations are undertaken in two cases, the only non-

CSG femtocell scenario case and the blended CSG and non-CSG femtocell

scenario case. The number of CGI readings is presented in Figure 4.18 and

4.19, where the proposed DGPAS schemes (Case1 and 2) are compared with

the conventional method in Release 9 [3, 70] which uses the CGI to solve the

two-tier PCI confusion.

The proposed PCI allocation scheme aims to reduce the usage of CGI in the

inbound handover. Hence, number of CGI reading as the metric is chosen to

evaluate the performance in this simulation. The evaluations are undertaken

in two cases, such as only CSG Femtocell scenario case and blended CSG and

non-CSG Femtocell scenario case.

The number of reading CGI is presented in Figure 4.18 and 4.19, where

the proposed DGPAS scheme is compared with the conventional method in
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Table 4.3: The Parameters in Configurations for the Simulation

Parameter Description
Coverage of Macro/Femto 400/20 (m)
Location of Femtocells Normal Distribution
Least distance of two Femtocells 5 (m)
Arriving model of Femtocells Possion Distribution
Maximum UEs in a CSG Femto-
cell

5

Maximum UEs in a non-CSG
Femtocell

10

Arriving rate of CSG Femtocells
in case 1

20-50

Arriving rate of Femtocells in case
2

20-50

Ratio of CSG and non-CSG Fem-
tocells in case 2

0.3

Arriving model of UEs Possion Distribution
The length of a UE camping in
the Femtocell

Negative Exponential Distribu-
tion (3 ≤ λ ≤ 5)

Available PCIs in total 20

Release 9 which uses the CGI to solve the cross-tier PCI confusion.

As can be seen in Figure 4.18 and 4.19, across the board, in both cases,

the proposed DGPAS scheme consistently performs better compared to con-

ventional approaches. This is because the proposed scheme has dynamically

assigned the unique PCIs to those BFemtocells which are seriously suffering

from two-tier PCI confusion. It can also be observed that the performance dif-

fers according to the varying time in Figure 4.18. This is because the larger the

number of femtocells deployed, the more handovers may occur and the more

CGIs have to be read. In addition, in Figure 4.19, it clearly shows that the

performance does not proportionally increase with the number of femtocells

(reduction appears at in the square area), but with the number of inbound

handovers. This is perfectly understandable, because inbound handover is

directly related to the located PCI and CGI reading.

In terms of Case 1 and 2, the performance in Case 2 is significantly better

than Case 1. This is because CSG and non-CSG femtocells support a different
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Figure 4.18: Time-based Comparison of DGPAS and Approach proposed in
Release 9

Figure 4.19: Number of femtocells-based Comparison of DGPAS and Approach
proposed in Release 9
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number of UEs. In Case 1, considering the home usage scenario, the lower

number of UEs would be supported and less handovers would occur in the CSG

femtocell. This leads to the boundaries of Busy or non-Busy CSG femtocells

not being clear and results in the lower accuracy of BFemtocell determination.

On the contrary, in Case 2, non-CSG BFemtocells can be determined by CPM

with higher accuracy. Reflecting this, the scheme is more suitable for non-

CSG femtocells which are currently the highly favoured femtocell deployment

method. Moreover, in practice, the hot spot, small shop or public area for

example, it is desired to secure fixed unique PCIs from operators, in order to

have a better quality of wireless service for their customers.

4.3.2 Simulation using Real Dataset

In this simulation, one macro station and five non-CSG femtocells are randomly

located in within the macrocell’s coverage. Community Resource for Archiving

Wireless Data (CRAWDAD) network trace repository [69] is used as a traffic

model to record historical movement and communication situations of 20 smart

phone devices over half a month. Moreover, for each time period, the system

recorded the number of handovers in each cell and the movement history of

each UE. In the simulation, handover between femtocells is not considered. The

parameters for simulation are summarised in Table 4.4. These parameters are

recommended by [30]. For more information on this simulation, please check

Appendix B.2.

Since the worst drawback of CGI reading is the call-drop (the quality of

inbound handover), in this section, with the real dataset, the average number

of successful inbound handovers is chosen to evaluate the performance of this

scheme. Moreover, the call-drop criterion is defined as the receiving SINR

from the target of a serving cell below -6 dB [11]. For more information about

call-drops, please check Section 5.1.4.

Figure 4.20 shows the average number of successful inbound handovers

in the coverage of the femtocell (Femtocell radius is 20 m). For a clearer

visualisation, the left side is the results of the proposed DGPAS scheme, and
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Table 4.4: The Parameters in Real Dataset Simulation

Parameter Description
System bandwidth 20 (MHz)
Macro/Femto transmit power 46/20 (dBm)
Macro/Femto radius 500/20 (m)
Hysteresis 5 (dB)
TTT/Autonomous gap 100 (ms)
Macro log-normal shadowing Standard deviation: 8 (dB)
Femto log-normal shadowing Standard deviation: 4 (dB)
Macro/Femto antenna gain 14/5 (dBi)

Macro path loss 15.34+37.6 × log 10(d[m])

Femto path loss1 38.46 + 20× log 10(d[m])d ≤ 20(m)

Femto path loss2 15.3 + 37.6× log 10(d[m])d ≥ 20(m)
CGI/PCI reading length 160/20 (ms)
Call-drop criterion SINR− 6(dB)

Figure 4.20: DGPAS vs. Approach Proposed in Release 9 Conventional
Method at a Femtocell Coverage
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on the right side is the results of the conventional method. The shaded bar

represents the various average numbers of successful inbound handovers in a

time period. Compared to the conventional approach, it is obvious to see that

the successful handover area in DGPAS is larger than that of the conventional

method. This is because the time cost of the CGI reading leads to the handover

procedure triggering late. Therefore, as shown on the right side of Figure 4.20,

most of the handovers happen in the area already deeply within the coverage of

the femtocell. Moreover, the late handover leads the receiving SINR from the

serving cell to easily drop lower than -6 dB [11], and cause a call-drop during

the handover procedure. In other words, the proposed DGPAS method reduces

the number of CGI readings, thus enhancing the handover area as shown on the

left side of Figure 4.20. Moreover, the DGPAS method has a higher number of

successful inbound handovers (Results are up to 12 appearances at radius of

13 to 11 metres from the femtocell) than the one in the conventional method

(Results only reach 10.5 appearances at radius of 13 to 11 metres from the

femtocell). This is because: firstly, most inbound handovers happen in the at

area of the radius 13 to 11metres from the femtocell in this simulation; secondly,

the reason is same as mentioned earlier, the reduction of CGI reading leads to

the lower probability of appearance of call-drop in the areas of most inbound

handovers. Therefore, the DGPAS method can reach 12.

4.4 Summary

In this chapter, a dynamic group PCI allocation scheme has been proposed

which implements a cell-based prediction model. This scheme is based on the

centralised SON structure and complies with ACPCI functions. It includes the

concept of the Busy femtocell (BFemtocell), dynamic PCI groups, dynamic

PCI allocation and PCI release functions. Through the cooperation of these

proposed concepts and functions, this scheme is able to mitigate two-tier PCI

confusion and offer enhanced handover quality. The proposed scheme has

been tested, the simulation results are positive and its advantages are listed as
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follows:

� By reducing CGI reading times, the approach outperforms the existing

approach by reducing the possibility of handover failure and also achiev-

ing dynamic PCI allocations in the two-tier environment.

� By reducing CGI reading times, the proposed scheme reduces battery

consumption for today’s evermore demanding multimedia mobile appli-

cations.

� To assign unique PCIs to Busy femtocells (BFemtocells) does not affect

the steadiness of the current system due to unique PCIs not causing any

conflict with other cells.
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Chapter 5

Dynamic UE-based

Hysteresis-adjusting Algorithm

In the previous chapter, it introduces a centralised dynamic PCI group scheme,

in order to achieve better inbound handover quality when UE is in the con-

nected mode. However, PCI allocation happens during the handover prepara-

tion stage, this chapter focuses on tackling challenges at a later stage of the

handover process, such as Radio Link Failure (RLF) and ping-pong effect. In

this chapter, a hybrid dynamic UE-based hysteresis optimisation algorithm is

proposed, which provides the optimal handover parameters to improve system

performance.

In LTE femtocell system, the handover decision is made in the source cell.

However, UE also needs to provide assistance for the hard handover proce-

dure. During the handover process, non-optimal handover triggering parame-

ters may cause more handover failure, which is quite destructive. The existing

handover optimisation algorithms focus on dynamically optimising handover

parameters, such as hysteresis and Time-To-Trigger (TTT) from the cell-side.

Those techniques provide the centralised optimal parameters to UE. However,

the centralised optimal parameters algorithms only improve the average han-

dover performance for the entire system but ignor the performance of each

individual UE.

UE Mobility is the unavoidable feature in the handover process. Since each
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UE moves at various speeds and it may suffer from the violent change of signal

strength. Both stationary and centralised optimal parameters techniques can-

not offer the suitable parameters for different speeds of UE, which may lead

to degraded handover quality. Therefore, it is desired to provide individual

parameters for every UE.

Based on the hybrid SON architecture as mentioned in Chapter 2, in this

chapter, Dynamic UE-based Hysteresis-adjusting Algorithm (DUHA) for in-

bound and outbound handover in LTE femtocell system is proposed. It offers

distributed optimal hysteresis for every UE and provides a better overall per-

formance than the centralised optimal hysteresis approach.

5.1 Handover in the LTE femtocell

Before introducing the proposed DUHA, some important background knowl-

edge used in this algorithm are described in this section.

5.1.1 Outbound Handover

In the LTE femtocell system, when UE hands off from macrocell to femtocell, it

is called inbound handover. On the other hand, if UE hands off from femtocell

to macrocell, it is called outbound handover. For the inbound handover, due

to the limited number of PCI and drawback of CGI, the handover suffers the

confusion and collision issues. Conversely, for the outbound handover, there

is no collision or confusion issue. The goal of this chapter is to setup MRO

function in SON which has mentioned in Chapters 1 and 2 and solve the

handover issues for inbound and outbound handover.

The protocol interfaces between the femtocell and macrocell are listed below

[25]:

� MME interface with the MME for control plane traffic.

� S1-U interface with the Serving Gateway (S-GW) for user plane traf-

fic. Collectively the S1- MME and S1-U interfaces are known as the S1
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Figure 5.1: communication interface in LTE femtocell

interface.

� X2 interface with macrocell or femtocell elements.

The X2 interface is used to communicate between femtocells. S1 interface

(S1-MME) is used to communicate between macrocell and femtocells as shown

as Figure 5.1.

X2 interface supports the two cells to communicate directly without the

MME. S1 interface supports two cells to communicate with the MME. Since

inbound handover and outbound handover happen between macrocell and fem-

tocell, only the S1-MME interface (It is called as S1 for convenience ) will be

considered in this chapter.

5.1.2 Handover A3 Event

In the LTE femtocell system, the source cell configures the UE to take measure-

ments of the Reference Symbol Received Power (RSRP) and Reference Signal

Received Quality (RSRQ) of the serving cell and the neighbouring cells. After

the measurement is completed, if the entry event has been maintained for the
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duration of time equal to the TTT, UE would send a handover measurement

report and handover request to serving cell. This entry event is called A3

event. This chapter will only consider the handover with A3 event. A3 event

can be applied using the following equations [29]:

RSRPtarget ≥ RSRPserving +Hysteresis (5.1)

RSRQtarget ≥ RSRQserving + offset (5.2)

RSRP is a measurement of average reference signal strength for the resource

block. RSRQ indicates the quality of the received reference signal. The RSRQ

measurement provides additional information when RSRP is not sufficient to

make a reliable handover decision. In the procedure of handover, if the system

only uses RSRP to trigger A3 event, it results in more frequent handover since

it does not consider the signal quality when making the handover decisions.

On the other hand, if the system only uses RSRQ to trigger A3 event, it results

in higher probability of call-drop. This is because when emphRSRQtarget value

is suitable, but interference value is high, RSRPserving value may drop down

below the threshold, in which case UE can still communicate normally with

the serving cell before handover [11].

Received Signal Strength Indicator (RSSI) is effectively a measurement of

all of the power contained in the applicable spectrum [25]. This could be

signals, control channels, data channels, adjacent cell power, and background

noise. As RSSI applies to the whole spectrum, multiply the RSRP measure-

ment by emphN (the number of resource blocks) will effectively applies the

RSRP measurement across the whole spectrum. This leads to the Equation

(5.3).
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Figure 5.2: The structure of handover process in A3 event

RSRQ =
N ×RSRP
RSSI

(5.3)

More details of RSRQ, RSSI and RSRP will be described in Section 5.2.4.

5.1.3 Hysteresis and Time To Trigger (TTT) in Han-

dover

In A3 event, there are two parameters are used to trigger a handover process,

Hysteresis and TTT [29].

� In terms of TTT, as mentioned earlier, it delays the A3 event to ensure

the signal strength to be more stable, in order to avoid a ping-pong effect.

� In terms of Hysteresis, the role of the hysteresis is to make the measured

target cell looks worse than measured. This parameter keeps the signal

strength of target cell at a certain level before the UE decides to send a

measurement report to initiate a handover process.

The process of the handover in A3 event can be summarised in Figure 5.2.
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In the Figure 5.2, TTT event does not start at the intersection point of

serving cell RSRP and target cell RSRP since the hysteresis delay the start of

TTT. During the A3 report interval, UE would read the PCI from the target

cell which cost 20 ms (millisecond) by using measurement report [11, 25]. If

there is no confusion happens, the UE would leave the A3 event and finish

the handover process. Otherwise, the UE would require the target femtocell

to provide the CGI and this cost 160 ms by using measurement report [11].

After UE gets the CGI ID, the UE would leave the A3 event and finish the

handover process. Moreover, after UE gets the PCI and CGI, the handover

process needs about 300 ms between serving and target cell [74]. Hence, the

A3 report interval should include the 300 ms delay till the A3 event finishes.

According to Figure 5.2, the higher the value of hysteresis the more difficult

to make the handover decision between serving and target cell. On the other

hand, the smaller the value of hysteresis and the faster the calls to be han-

dovered to the neighbouring cells. Therefore, a proper hysteresis value affects

the handover performance. However, in the two-tier structure of femtocell and

macrocell deployment, the handover scenario differs from the conventional LTE

networks, e.g. the coverage of the femtocell is much smaller than the macro-

cells, the handover between macrocell and femtocell experiences more severe

Signal-to-Interference Noise Ratio (SINR) degradation. Therefore, to set an

optimal Hysteresis value in the inbound and outbound handover is one of the

challenging issues for femtocell network deployment [6]. Moreover, during the

handover process, RLF and handover to an incorrect cell may occur as a result

of the sub-optimal hysteresis in the system.

5.1.4 Handover Performance Metrics in 3GPP Stan-

dards

In this section, three important metrics such as RLF, handover oscillations and

call-drop are proposed and used to evaluate handover performance at current

network system. These metrics are described below:
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Figure 5.3: RLF during handover

Radio Link Failure

For the RLF, there are two cases of RLF during handover such as: failures due

to too late handover (LHO); failures due to too early handover (EHO); failures

due to handing over to the wrong cells; LHO and EHO are illustrated in Figure

5.3. If handover is triggered too early, though the signal strength of the target

cell is too low, RLF will occur shortly after the handover procedure; UE will

re-establish the radio link connection to the serving cell. On the other hand, if

handover is triggered too late, though the signal strength of the serving cell is

already too low, RLF will occur before the handover is initiated or during the

handover procedure; the UE will re-establish the radio link connection to the

target cell. Moreover, handover to the wrong cells would not be considered in

this chapter.

Figure 5.3 shows that the handover with lower hysteresis value at the serv-

ing cell may cause RLFs due to EHO. On the other hand, if handover with

higher hysteresis value, LHO would occur. Therefore, efficient values of hys-

teresis need to be investigated to achieve the lower RLFs simultaneously.

Based on the above mentioned metric, many recent works have provided

RLF ratio criteria for system performance evaluation. For instance, [59] has
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proposed the handover failure ratio. Handover failure ratio (Hfr) is defined as

a RLF occurs if SINR stays below a threshold for a duration equivalent to the

critical time [11]. If RLF occurs, the handover fails. Hfr is the ratio of the

number of failed handovers and Nfail is the number of handover attempts. The

number of handover attempts Nattempt is the sum of the number of successful

handover and the number of call-drop Ndropped and the number of incorrect

handover (handover to wrong cell):

Hfr =
Nfail

Nattempt

(5.4)

Handover Oscillations

For handover oscillations, it is usually called as ping-pong effect. A ping-pong

handover is registered due to non-optimal handover parameters, where the UE

made a successful handover from a cell B to cell A in a short time period

after another successful handover had already occurred from A to B with the

same UE. ping-pong causes heavy network traffic and leads to worse quality

of service. Non-optimal handover parameters, such as lower hysteresis value,

may worsen the ping-pong effect [12].

Based on [12], [59] has proposed the way to calculate ping-pong ratio.

Ping-pong ratio (Ppr) is defined as the mobile wildly switch links with either

base station when UE is in the overlapped area of the base stations. The Npp

measures the ratio of handover oscillations. Npp represents the number of

ping-pong handovers to the number of handover attempts Nattempt, thus Npp

can be defined as:

Ppr =
Npp

Nattempt

(5.5)
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UE Call Drop

According to [12] and [59], call-drop is defined as when the RLF or ping-pong

occurs, if UE cannot reconnect to the serving or target cell, and then call-drop

happens. The call-drop is the worst event in the handover process, as it leads

to interrupted communication.

Call-drop ratio (Cdr) is defined as the probability that an existing call is

dropped before it was finished, e.g. during handover. It is calculated as the

ratio of the number of dropped calls as Ndropped to the number of handover

attempts Nattempt in the network:

Cdr =
Ndropped

Nattempt

(5.6)

As mentioned in MRO [11], the handover parameters need to ensure better

performance with these lower criteria value. The multi-parameter optimisation

issue is difficult to satisfy three criteria at the same time.

Overall, according to [12], one of the main functions in MRO is that UE

needs to report RLF to the serving cell in order to assist MRO in monitoring

RLF, such as EHO and LHO. In general, this procedure can be described as:

firstly, that report is sent to the target cell by UE when the handover process

is completed; Secondly, the target cell will send the RLF report to the serving

cell via MME [12].

5.1.5 System Information Block

In 3GPP standard, the system information or broadcast information is in-

formation about the system and the serving cell. It is sent to UE by the

network in a point-to-multipoint manner. The system information elements

are broadcasted in information blocks which consists of System Information

Blocks (SIBs) and Master Information Block (MIB). Moreover, Broadcast in-

formation is sent via the Broadcast Control CHannel (BCCH) or Dedicated

Control CHannel (DCCH). BCCH is a downlink channel for broadcasting sys-
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Figure 5.4: Overall structure of SIBs scheduling tree

tem control information and if a UE in the connected mode, DCCH would be

used in the network to send system information to the UE [24].

SIBs are contained in broadcast information and are named as SIBs type

1 through 18. SIBs are sent depending on a certain schedule, hence the blocks

that are more important than others are sent more often and the less important

blocks are sent less often. The schedule is flexible since it can be adjusted by

the current loading situation [24].

MIB indicates the identity and the schedule of a number of SIBs. The

SIBs may be included in the MIB or Scheduling Blocks (SBs), as illustrated

in Figure 5.4.

According to Figure 5.4, the tree starts from a MIB, which must be received

and decoded first and then move onto the next stage. The system information

is arranged as a blocks tree and UE must maintain this tree in its memory,

therefore it can decode only those blocks that are needed and skip the rest.

This arrangement avoids the networking redundancy and also provides the

possibility to add new types of SIBs to the protocol if such is needed later in

the system. Therefore, the length of the system information is flexible.

If UE gets sequences of blocks that it cannot recognise, it simply ignores

them, but other mobiles which have updated protocol can successfully access

the blocks. Currently, most of femtocell measurement control information is
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Figure 5.5: Three mobility states and their hysteresis in LTE network

contained in the SIBs type 11 [29].

5.1.6 User Mobility States in Standards

In the real network, users in different moving speeds need to be offered with

different hysteresis value [70], the LTE cell provides three different hysteresis

parameters to support three user mobility states.

Depending on users’ speed, the users can be grouped into three states such

as Normal-mobility state, Medium-mobility state and High-mobility state. A

cell offers the different corresponding hysteresis to different user ranks as shown

in Figure 5.5. However, according to MRO [29], the stationary hysteresis is

insufficient to satisfy users’ movement at various speeds.

In order to get a better performance, it is desired to give the optimal

hysteresis to UE. For example: LHO easily happens when higher speed UE with

a higher hysteresis value. In high-mobility states, it offers a lower hysteresis

to the high speed UE in order to avoid LHO. Similar applies to medium and

normal mobility states. Different hysteresis values should be offered to the

different UEs with different speed in order to avoid RLF and ping-pong.
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5.2 Proposed Dynamic Hysteresis Algorithm

When UE moves at a different speed, in LTE standards, some common param-

eters such as the receiving average reference signal Signal-to-Interference-plus-

Noise Ratio (RS-SINR), RSRP and RSRQ, would change in different pace in

a certain period. To ensure that a hysteresis change according to changes of

those three parameters.

UE’s moving speed is complicated to obtain by the network system. How-

ever, the average RS-SINR (It would be called as SINR for convenience), RSRP

or RSRQ is easy to obtain by the UE measurement report. It is desired to use

those parameters rather than speed factor. In this section, a hybrid dynamic

UE-based hysteresis-adjusting and optimisation algorithm is proposed. Based

on the received average SINR, this approach aims to obtain the optimal dis-

tributed hysteresis for users who are moving at various speeds and achieve the

better overall handover performance.

5.2.1 Framework of Hybrid Dynamic Hysteresis Algo-

rithm

In 3GPP, one of the main targets in SON is the self-optimisation in the han-

dover procedure. The MRO focuses on autonomous selection and optimisa-

tion of handover parameters, for instance, hysteresis and TTT. The objective

of MRO is to dynamically improve the network performance of handover in

order to provide improved end-user experience as well as increased network

capacity [12]. The objectives of the MRO can be summarised as listed as

follows:

� To detect and reduce RLFs prior, during or after handovers

� To detect and reduce handovers to wrong cells

� To minimise the handover ratio and handover oscillations while achieving

1 and 2 as described above.
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Figure 5.6: The general framework of hybrid hysteresis optimisation

In order to achieve the objectives proposed in MRO, this chapter proposed

a hybrid SON approach to obtain an optimised unique hysteresis value for

handover process. In terms of the hybrid SON structure, MRO function and

OAM reside at the base station, and specific SON approach is executed partly

at the OAM system and partly at the network elements (UEs) [16, 39]. The

general framework of hybrid MRO is shown in Figure 5.6.

In the following, the main function blocks are described below:

� Distributed MRO Function: the distributed MRO function resides

in the individual UE. Depending on the received the information from

the centralised MRO function, distributed MRO function can provide

the unique optimal hysteresis value for its resided UE. Therefore, this

function has the ability to execute the specific part of SON approach

and fully control the handover triggering parameters such as hysteresis.

� Centralised MRO Function: the main task of centralised MRO func-

tion is to select the observed handover information such as RLF, ping-
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pong and call-drop from each UE within the base station coverage. It

then reports them to the self-organisation approach in OAM system via

Data Processing. Moreover, since OAM and centralised MRO function

reside in wireless cell, the data switching between them is local trans-

mission.

The second task of centralised MRO function is to manage the informa-

tion that OAM returned and send it to the distributed MRO Function in

the specific UE. The communication between distributed and centralised

functions is via wireless downlink transmission.

� Data processing: there are two functions have implemented in this

functional block: firstly, this block arranges the data sent from the cen-

tralised MRO function depending on the database pattern in OAM, in

order to transmit the data to the Database functional block; secondly,

after receiving the necessary information returned from Hysteresis Al-

gorithm Execution, this block would indicate the specific UE and then

send it back to centralised MRO function.

� Policy Management: the same as mentioned in Chapter 4, this func-

tional block indicates the policy of SON approach for MRO and the

specific part of proposed dynamic hysteresis-adjusting algorithm in this

chapter is located in this block. The different from the centralised SON

structure, the operators need to update algorithm at this block and dis-

tributed SON function in UE.

� Hysteresis Algorithm Execution: this functional block is used to

manage the database depends on the policy from Policy Management

block.

� Hysteresis Resources Management: this functional block is used

to store the default hysteresis values, TTT values and UE IDs for the

different user mobility states as mentioned in Section 5.1.6.

� Database: this functional block stores the information that obtained
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from the centralised MRO function such as RLF, ping-pong, call-drop

and UE ID. It also stores the temporary values, for example, the handover

performance indicators.

Overall, in the hybrid MRO, as the centralised approach, OAM system

is supposed to have a complete knowledge of the handover performance

of each UE. On the other hand, as a distributed approach, SON function

can fully control the hysteresis value. Depending on cooperation of cen-

tralised and distributed functions, the SON approach can be executed

and offer an optimised unique hysteresis value for individual UE in the

network system. The next section introduces the key information in the

proposed hybrid dynamic hysteresis-adjusting algorithm.

5.2.2 Comparison of the Proposed Approach against

the Centralised Hysteresis

In 3GPP, the handover parameters such as hysteresis and TTT are all defined

in serving cell and are published by RRC measurement configuration to UE

to support the event like A3 event as mentioned in Section 5.1.2. However,

the handover process is triggered by UE mobility, but the stationary hysteresis

and TTT method no longer offers a reliable service. Reflecting this, the MRO

in SON focuses on the optimisation of handover parameters.

Papers such as [59] and [60] proposed the optimal algorithms based on

the observed handover information to find the optimal hysteresis and TTT

at cell side. These algorithms are centralised cell-based method which means

they select average optimal handover parameters for the entire networking. It

works fine if all the UEs move at the same speed or similar speed. However, in

the realistic network, UE moves at various speeds and this cell-based optimal

algorithm cannot offer the optimal parameters to every UE as shown in Figure

5.7.

Figure 5.7 shows that, most of UEs with neither high nor low moving speed

satisfied with the centralised optimal hysteresis. However, for the UEs with

149



5.2. Proposed Dynamic Hysteresis Algorithm

Figure 5.7: The general framework of hybrid hysteresis optimisation

high or low moving speed, they cannot work well with current hysteresis. Some

of UEs cause decrease in the system performance. DUHA is proposed based

on UE mobility factors (SINR, RSRP and RSRQ from target cell) and it offers

the distributed optimal parameters scheme for each UE.

5.2.3 Proposed Algorithm Handover Parameters

To cope with the different changing pace of these parameters and hysteresis,

this chapter introduces a Revise Parameter (RP). We also introduce a Han-

dover Additional Parameter (HAP) in the proposed DUHA. In this algorithm,

the SINR is used to represent the speed factor and the reason will be described

in the next section.

In the proposed algorithm, HAP is defined as a weighted factor of: RP ×

SINRtarget, n (In linear units). If SINRtarget denotes the received average

SINR of the UE from the target cell and SINRserving denotes the received

average SINR of the UE from the serving cell, the Equation (5.1) can be

rewritten as Equation (5.7), (5.8) and (5.9) in dB units:

HAP = RP + SINRtarget (5.7)
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Hproposed = Hhigh −HAP (5.8)

RSRPtarget ≥ RSRPserving +Hproposed (5.9)

where Hhigh is the highest hysteresis value which corresponds to the lowest

speed boundary. Therefore, in different user mobility states, they have different

RP and same Hhigh for handover. The range of RP value must ensure that

both Hhigh >= RP + SINRtarget are true (in dB units). Hproposed denotes the

optimal hysteresis value for handover and it is obtained by using RP, SINR

and Hhigh according to the Equations.

In the proposed algorithm, RP is the public parameter which needs to be

defined at cell side and HAP is the UE side private parameter in order to

adjust hysteresis value. RP is the public parameter in the centralised MRO

function and HAP is defined in the distributed MRO function, therefore, in

the hysteresis self-optimisation approach, all UEs should share the same RP

but different HAP.

Since RP is the public parameter for the system, it needs to be sent to

UE via cell information using SIBs. SIBs can be easily updated, therefore I

proposed that RP would be involved in existing SIBs type 11 (SIBs type 11

includes most femtocell parameters) or a new SIBs type.

5.2.4 RSRQ vs SINR vs RSRP

In this section, three LTE common handover parameters are evaluated for

DUHA algorithm, in order to achieve better Quality of Service (QoS).
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RSRQ vs RS-SINR

Both RSRQ and SINR from the target cell can be used to reflect the UE’s

speed changes. However, the RSRQ is not more reliable than SINR in the

system handover process. According to [1], the reason is described below:

RSRQ is defined as Equation (5.10) and RSSI is defined as Equation (5.11)

in linear units.

RSRQ =
RSRP ·N
RSSI

(5.10)

RSSI = Pinterference +RSRP ·N · z + Pnoise z N (5.11)

where N is the number of resource block (RB) over which the RSSI is mea-

sured, typically equal to system bandwidth. The z is the number of resource

elements (RE) that are used in the RSSI measured RB. Pinterference is the total

RS interference from adjacent base station for those RBs. Pnoise x N is the total

noise for these REs that are used in RSSI measured RBs. According to [1] and

[3GPPTS36211], one slot has 6 or 7 symbols in time domain, thus, a block

consists of 12 sub-carriers on frequency domain and 1 slot in time domain (6-7

symbols). RE refers to 1 sub-carrier on frequency domain and 1 symbol in

time domain, as shown in Figure 5.8 according to [3].

When z= 2 (RE/RB), it means that only reference signal power is con-

sidered in 2 sub-channels in the serving cell. This means that the resource

block is empty since it needs at least 2 REs for reference signal and no power

is assigned for the others REs. When z=12 (RE/RB), it means that all REs

are carrying data in the 12 different channels, which means the resource block

is fully loaded.

Unlike RSRQ, SINR is not defined in the 3GPP standard but defined by

the UE vendors. Therefore it is may not be reported to the network (depend
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Figure 5.8: LTE downlink frame structure

on vendor’s design). SINR is very commonly used by operators and vendors

[75]. SINR is equal to the ratio of whole spectrum power that UE is using and

RS interference from adjacent base station plus noise power. Thus, it can be

described in the Equation (5.12):

SINR =
RSRP · 12 ·N

Pinterference + Pnoise z N
(5.12)

In Equation (5.12), 12 refers to 12 sub-carries in 1 RB, based on Equation

(5.10) and (5.11), the (5.12) can be rewritten as Equation (5.13).

SINR =
RSRP · 12 ·N

RSRP ·N
RSRQ

−RSRP · z ·N
=

12
1

RSRQ
− z

(5.13)

The relation between SINR and RSRQ through Equation 5.13 are shown in

Figure 5.9.

Figure 5.9 illustrates the load-dependent relation between SINR and RSRQ

schematically. When the value of z increasing from 2 to 12 (traffic load, the

usage of the sub-carries in 1 RB), the RSRQ measurement may differ up to 8

dB depending on the load for the same SINR.

For instance, the RSRQ may reduce 8 dB when UE starts downloading
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Figure 5.9: Load-dependency of RS-SINR and RSRQ measurement

in an empty cell and has to assign all the REs with data. When UE turns

from light traffic load to heavy traffic load, the RSRQ will reduce although

neither the SINR nor RSRP have changed [30]. Hence, RSRQ is very sensitive

to this cell traffic load, but SINR is not affected by the cell traffic load. This

obviously makes RSRQ less attractive to be used to represent the speed factor,

in particular in low loaded cells. Reflecting above, SINR is a better parameter

to use in DUHA than RSRQ.

RS-SINR vs RSRP

Both RSRP and SINR from the target cell can be used to reflect the changes of

UE speed. However, the RSRP is not more reliable than SINR in the system

handover process [30]. The reason is described below:

To substitute Equation (5.7) and (5.8) in Equation (5.9), the (5.9) can be

rewritten as Equation (5.14) in linear units. Then, through replacing the SINR

with RSRP in (5.14), Equation 5.15 can be obtained.
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RSRPtarget ≥
RSRPserving ×Hhigh

RP × SINRtarget

(5.14)

RSRPtarget ≥
RSRPserving ×Hhigh

RP ×RSRPtarget
(5.15)

Therefore, Equation (5.15) is RRSP based and Equation (5.14). The (5.15)

is easier to be rewritten to Equation (5.16) by moving the right side RSRP-

target to the left side and extracting a root at both sides as shown below:

RSRPtarget ≥
√

1

RP
×RSRPserving ×Hhigh (5.16)

Based on Equation (5.12), to rewrite Equation (5.14) to Equation (5.17)

as shown below:

RSRPtarget ≥
RSRPserving ×Hhigh

RP × RSRPtarget×12×N
Pinterference+pnoise z N

(5.17)

To rewrite Equation (5.17) to Equation (5.18) by extracting a root at both

sides as shown below:

RSRPtarget ≥
√
Pinterference + pnoise z N

RP × 12×N
×RSRPserving ×Hhigh (5.18)

Comparing Equation (5.16) and (5.18), it obviously shows that the SINR

based algorithm, the inequality is not only dependents on the adjustment by

RP, but also depends on interference and noise from the scenario. If there is

strong interference or noise, the inequality (5.18) would not be easily satisfied.

This means that it would not be easily handover to the heavy interference cell
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when use Equation (5.18).

RSRP is not reliable as it cannot represent the signal quality, which leads

to the un-reliable handover. The main goal of these equations is to reduce the

Hhigh until it reaches to the optimal hysteresis value. Since the femtocell radius

is much smaller than the macrocell radius, consequently inbound or outbound

handover experience more interference than the handover between macrocells

[58]. To use RSRP as the speed factor, obviously makes the handover ex-

periences a higher interference condition, especially in the two-tier femtocell

scenario. For instance, forthe RSRP as shown in Equation (5.7), when the UE

is close to one neighbour cell, HAP increases quickly as well as RSRP. This

means that hysteresis would decrease quickly and UE is easier to handover

to the cell which may have higher interference. On the other hand, for SINR

as shown in Equation (5.7), when the UE is close to one neighbour cell, the

hysteresis would not decrease quickly if the target cell has higher interference.

This means that UE would not be easily handover to the cell which has a

higher interference and a worse QoS.

RSRP is not good at LTE femtocell system due to the heavy interference.

SINR is a better parameter to be used in DUHA than RSRP.

RSRP is not good at LTE Femtocell system due to the heavy interference.

SINR is a better parameter to be used in DUHA than RSRP.

5.2.5 Handover Aggregate Performance Indicator (HAPI)

It is complicated to satisfy three criteria together as it involves a multi-

parameter optimisation issue. In order to evaluate the performance of pro-

posed DUHA against the existing approach, this chapter proposed a Handover

Aggregate Performance Indicator (HAPI), as the overall performance, for eval-

uation, as defined in Equation (5.19):

HAPI = W1 ×Hfr +W2 × Ppr +W3 × Cdr +W4 ×Rhr (5.19)
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W1 +W2 +W3 +W4 = 1 (5.20)

Rhr represents the redundancy handover rate. It is defined as the ratio of

the number of incorrect handover (handover to wrong cell) Nincorrent to and

Nattempt which is the sum of the number of successful handover, the number

of call-drop Ndropped and the number of incorrect handover Nincorrent as

shown in Equation (5.21).

Rhr =
Nincorrect

Nattempt

(5.21)

Rhr reflects the efficiency handovers in the network, thus according to MRO,

the lower Rhr provides lower handover number rate and also offers lower asso-

ciated signalling load for the network.

In Equation (5.19) and (5.20), the W1,W2,W3 and W4 are defined as

weights and the sum of the values of them should be equal to 1. This is

because of that, for instance, some of the systems would carefully consider

ping-pong rather than RLF or call-drops and number of handovers. In that

case, I can set the W1,W4 and W3 with smaller values or set them to 0. If

W1,W3 and W4, W2 would be equal to 1, thus HAPI would be same as Rhr.

In the other cases, W1,W3 and W4 may set the value as 1 separately and

correspondingly HAPI would represent Hfr, Cdr and Rhr.

The values of W1,W2,W3 and W4 would various but depend on the spe-

cific requirement. In this chapter, the scenario of normal LTE femtocell is

considered, therefore, in general, W1 should outweigh W2 since RLF has more

pronounced effect than ping-pong for user experience and introduces more

signalling overhead [12, 60]. Call-drop has more prominent effect on system

performance than RLF [12, 59], so W3 should outweigh W1. This is because

when RLF occurs the UE can reconnect to a good quality cell instead, and

therefore maintains the call connection. For the W4, Rhr reflect the efficiency
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handover ratio which is the third object in MRO as mentioned in Section 3.3.1,

therefore the value of W4 should be smaller than W3 and greater than W1 and

W2.

Overall, the values of weights can be changed depending on the system

requirements in order to achieve a better performance for specific system.

5.2.6 Proposed Hybrid Hysteresis Algorithm

There are two processes in DUHA, preparing process and optimising process.

Preparing process is used to create the initial HAPI-RP table and optimising

process is for updating the optimal hysteresis for system handover.

HAPI-RP Table

According to Equation (5.7) and (5.8) in Section 5.2.3, (5.7) and (5.8) can be

transferred to Equation (5.22) and (5.23) in linear units, as shown below:

Hhigh ≥ RP × SINRtarget (5.22)

0 < RP ≤ Hhigh

SINRtarget

(5.23)

The range of SINR and Hhigh can be measured by the operators for the

specific cell, thus the range of RP can be calculated by using these information

from system. For instance, the Hhigh is 8 dB, the SINR is from -15 to 30 dB.

The range of RP would be from -22 to 23 in dB units. Moreover, in dB units,

since HAP >= 0, if Hhigh − (RP + SINR) < 0, the HAP will be set back to

0.

Once the system has determined the range of RP, the HAPI-RP table can

be created in OAM database and the range of RP is the row ID to be saved in

table. The HAPI values will be obtained from preparing process and optimising
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process in proposed algorithm.

Proposed Algorithm in Handover Process

There are two processes have been proposed in the algorithm, preparing and

optimising process.

Preparing Process: In this preparing process, the main goal is to train

all RPs and obtain their initial corresponding HAPI in order to complete the

initial HAPI-RP table in the OAM Database. The main process is described

below:

1. Set the range of RP and Hhigh from experience of the cell system network

as mentioned in the previous section. (OAM Database)

2. Create a HAPI-RP empty table. Record all RP values in the table as row

IDs. This table needs to be stored on the cell (macro or femto) and then

the system randomly chooses a RP from the recording to be RPcurrent.

(OAM Database)

3. Send RPcurrent and Hhigh to the UE via SIBs (Centralised MRO Func-

tion). The UE would use these two values and the measured receiving

SINR to calculate the hysteresis value via Equations (5.7) and (5.8) (Dis-

tributed MRO Function). This hysteresis will be used to trigger an A3

event and the UE will require the serving cell to allow it to handover.

4. When the handover is completed, the UE reports the RLF and ping-

pong effect by using an observed handover information report to the

serving cell (Centralised MRO Function). At the cell side, the OAM

system calculates the Hfr, Ppr, Cdr and Rhr depending on this report and

provides the HAPI value by using Equation (5.6) (Hysteresis Algorithm

Execution).

5. The OAM system calculates the HAPI based on observed handover in-

formation from the UE and records it in the HAPI-RP table. After a

time period, the cell chooses another RP from the table row and seeks its
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corresponding HAPI until training with all RP values in table has been

finished. (Hysteresis Algorithm Execution)

6. Once the initial HAPI-RP table is completed, the preparing process

stops; in the meanwhile the optimising process will start.

Optimising Process: In the optimising process, the main goal is to up-

date RPcurrent according to online the HAPI-RP table in order to have the

online distributed optimal hysteresis for UEs.

1. According to the HAPI-RP table created in the preparing process, if the

HAPI which corresponds to RPcurrent is not the minimum value, then

pick the RPoptimal which corresponds to the minimum HAPI value in the

table as the RPcurrent. Else, the RPcurrent is not changed and its HAPI

is trained and updated in the HAPI-RP table. (Hysteresis Algorithm

Execution)

2. Send RPcurrent and Hhigh to the UE via SIBs. The UE uses these two

values to calculate HAP via Equation (5.7) (Distributed MRO Function).

3. After the UE obtains the HAP, the private hysteresis can be calculated

using Equation (5.8) (Distributed MRO Function). In DUHA, the UE

needs to use this hysteresis value into an A3 event which is represented in

Equation (5.9). In an A3 event, the measured RSRPserving, RSRPtarget

and private hysteresis are used to trigger the event. If UE has a higher

speed, which is evaluated by its changes of SINR, this hysteresis value

decreases quickly, which is the same as RSRPtarget increasing quickly.

Reflecting this, the A3 event is triggered early to avoid the LHO as the

UE has higher speed. On the other hand, if the UE has a lower speed,

this hysteresis value would decrease slowly, which is the same as the

RPcurrent increasing slowly to avoid the EHO and ping-pong effect.

4. In the case when an A3 event is triggered, the UE sends the handover

request to the serving cell requesting a handover. The serving cell will

decide whether to attempt the handover or not.
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5. When the handover procedure is completed, the UE reports observed

handover information to the serving cell, as mentioned in Section 5.2.3.

The cell calculates the Hfr, Ppr and Cdr depending on this report and

provides the HAPI value by using Equation (5.6). (Hysteresis Algorithm

Execution)

6. Update the HAPI value in the table and check the HAPI, which corre-

sponds to RPcurrent, if it is the minimum value. (Hysteresis Algorithm

Execution)

7. Repeat the process from step 1 in optimising process.

The flowchart of the proposed algorithm including preparing and optimising

processes is shown in Figures 5.10 and 5.11.

5.3 Simulation and Analysis

In this simulation, performance of HAPI, RLF ratio, ping-pong ratio and Call-

drop ratio, for the centralised optimal hysteresis algorithm proposed in [59] and

proposed DUHA in three different user mobility states are evaluated. These

studies give an insight in the effects of various handover Hysteresis affect the

system performance.

5.3.1 Simulation Description

In the simulation, one macro station and 20 femtocells are randomly located in

the macrocell coverage. 300 UEs are randomly located in macrocell coverage

area with random moving speeds. Since only inbound and outbound handover

are considered in this algorithm, the handover between femtocells is not con-

sidered. Furthermore, the hysteresis is only considered in this chapter, thus

the TTT will be set a constant value during the simulation. This chapter also

assumes that each UE can easily decide its serving cell: either macro or femto

and sets that the RLF occurs when SINR from serving cell drops below -6 dB
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Figure 5.10: The flow chart of preparing process
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Figure 5.11: The flow chart of optimising process
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Table 5.1: The Parameters in Real Dataset Simulation

Parameter Description
System bandwidth 20 (MHz)
Macro/Femto transmit power 46/20 (dBm)
Macro/Femto radius 500/20 (m)
Hhigh 8 (dB)
Hysteresis 0, 1, 2, ..., 9, 10 (dB)
RP -20, -19, ..., 25 (dB)
TTT 100 (ms)
Macro log-normal shadowing Standard deviation: 8 (dB)
Femto log-normal shadowing Standard deviation: 4 (dB)
Macro/Femto antenna gain 14/5 (dBi)

Macro path loss 15.34+37.6 × log 10(d[m])

Femto path loss1 38.46 + 20× log 10(d[m])d ≤ 20(m)

Femto path loss2 15.3 + 37.6× log 10(d[m])d ≥ 20(m)
Macro/Femto noise figure 5/8 (dB)
High speed user mobility state 10 < v ≤ 14 (km/h)
Medium speed user mobility
state

7 < v ≤ 10 (km/h)

Low speed user mobility state 3 ≤ v < 7 (km/h)
UE’s speed 3 ≤ v ≤ 14 (km/h)
UE moving pattern straight
Call-drop criterion SINR -6 (dB)

before the handover procedure completes [11]. The parameters for simulation

are summarised in Table 5.2. These parameters are recommended by [74].

5.3.2 The trend of average hysteresis value in inbound

handover

In the simulation, W1 = 0.2,W2 = 0.1,W3 = 0.5 and W4 = 0.3. Since the

outbound handover is happened in randomly location within the coverage of

macrocell, it is difficult to show the trend of changes of the average dynamic

hysteresis value based on the macrocell (outbound handover). As illustrated

in Figure 5.12, this result only shows the average dynamic hysteresis value of

the UEs at different locations of the femtocell in inbound handover.

In Figure 5.12, the curve with circle points represents the hysteresis changes

with the optimal RP and the optimal hysteresis value depends on the HAPI in
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Figure 5.12: The trend of average UE hysteresis value in inbound handover

DUHA. The hysteresis value drops down faster when the UE is closer to the

centre of femtocell. This is because when the UE is far away from the target

cell, the receiving SINR from target cell changes smoothly. When the UE is

closer to the target cell, the receiving SINR of this UE from target cell would

increase violently.

Moreover, according to the optimal RP, it is able to draw three boundaries,

such as early, late and critical. According to the Section 5.1.4, early handover

boundary denotes the receiving SINR from target femtocell is lower than -6

dB. Therefore, it could calculate the hysteresis value when SINR= -6 dB via

Equation (5.7) and (5.8). Similarly, this applies to late handover boundary

SINR = 6 dB (received SINR from macrocell = -6 dB) and critical handover

boundary SINR= 0 dB. Critical boundary represents the line of RSRPtarget

is equal to PSRPserving. Due to the definition of hysteresis, in the ideal case,

most of the handover should happen after this critical boundary.

According to Figure 5.12, it is obviously that using DUHA, the hysteresis

is able to reach the higher value while the UE resides on earlycritical handover

boundary in order to avoid EHO. Meanwhile, the hysteresis is able to reach

165



5.3. Simulation and Analysis

Figure 5.13: The HAPI of each UE in different speeds

the lower value while the UE is closed to the late handover boundary in order

to avoid LHO.

5.3.3 HAPI without Redundancy Handover Ratio

When set the W4 = 0, this means that scheme has the same equation as the

conventional method proposed in [59] which only considers the redundancy

handover ratio. According to [HandoverparameteroptimizationinLTEselforga-

nizingnetworks], if W1 = 0.3,W3 = 0.6 and W2 = 0.1, that means that RLF,

call-drop and ping-pong effect are ordered by priority, thus the weight factors

would be considered in normal LTE femtocell scenario as mentioned in Section

5.2.5. The results are shown in Figure 5.13 in three ranges of speed which are

defined in the user mobility states.

In Figures 5.13, the solid and broken lines represent the HAPI fitting curve

for centralised and DUHA approaches. Those lines are fitted from the HAPI

points by using quadratic polynomial in Matlab. The results show that com-

pared to the conventional methods (centralised optimal hysteresis algorithm),

the proposed DUHA obviously improves the overall system performance. In

the conventional methods, even if the hysteresis updates according to the per-
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formance indicator of HAPI values, without taking into account the individual

UE side speed factor, it only provides the centralised hysteresis for all UEs.

However, in DUHA, every UE can have the distributed optimal hysteresis and

performance would gain from every UE side. Reflecting above, it summarises

that a compromised centralised hysteresis is to blame for declined overall sys-

tem performance.

Furthermore, in three different user mobility states, the handover in higher

speed user mobility state has better performance than other user mobility

states. This result shows that DUHA has the higher ability to adjust hysteresis

value. This is because that, for the DUHA, the hysteresis value is adjusted by

SINR (UE speed factor). Therefore, if UE moves at a higher speed, the SINR

and HAP would experience a higher drop, where HAP = RP + SINR in dB

unit. According to Equation (5.8), the HAP with a higher value changes leads

the higher ability to adjust hysteresis value.

5.3.4 Result of Ping-pong Effect Metric is Measured

When W2 = 1, this means that the ping-pong effect is the only factor to be

considered in this scenario. The results during optimising process period are

shown in Figure 5.14 and 5.15 with three different user mobility states.

In Figure 5.14 , it shows that the ping-pong ratio of each speed UE. Most

of the UEs with lower speed have higher ping-pong ratio compared to the UEs

with higher speed. This is because the lower speed may lead the UE to trigger

the A3 event after TTT with received non- stable signal strength.

In Figure 5.15, it shows that compared to the conventional centralised

method, the proposed DUHA does not quite improve the ping-pong effect in

the three user mobility states (about 0.02%). This is because that hysteresis is

not effective parameter to reduce the ping-pong effect issue compared to TTT.

TTT is considered as the main factor to reduce the ping-pong ratio [58, 76].
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Figure 5.14: The ping-pong ratio of each UE in different speeds.

Figure 5.15: The average ping-pong ratio in different mobility states
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Figure 5.16: The RLF ratio of each UE in different speeds

5.3.5 Result of Radio Link Failure Metric is Measured

When set the W1 = 1, this means the RLF is the only factor to be considered

in this scenario. The results during optimising process period are shown in

Figures 5.16 at three different user mobility states.

In Figures 5.16, the solid and broken lines represent the RLF ratio fitting

curve for centralised and DUHA approaches. Those lines are fitted from the

RLF ratio points by using quadratic polynomial in Matlab. The results show

that compared to the conventional method, the proposed DUHA obviously

improve the RLF performance up to 5%. This is because of that the optimal

hysteresis value directly influent the EHO and LHO as mentioned in Section

5.1.4 and the faster changes of SINR (speed factor) values causes the higher

ability to adjust hysteresis as mentioned in Section 5.3.2. In addition, since

HAPI calculation takes into account of the ping-pong ratio, the RLF ratio

performances better than the HAPI result.
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Figure 5.17: The redundancy handover ratio of each UE in different speeds

5.3.6 Result of Redundancy Handover Metric is Mea-

sured

When W4 = 1, this means the redundancy handover ratio is the only factor to

be considered in this scenario. The results during optimising process period

are shown in Figures 5.17 at three different user mobility states.

In Figures 5.17 , the solid and broken lines represent the redundancy han-

dover ratio fitting curve for centralised and DUHA approaches. Those lines are

fitted from the redundancy handover ratio points by using quadratic polyno-

mial in Matlab. Both of the solid and broken lines are reduced from the lower

to higher speeds. This is because the UE may frequently receive the similar

RSRP values from the neighbour cells due to its slow moving. As a result,

those received RSRP leads UE has a higher chance to trigger the A3 event

and handover to a wrong cell. In other words, when UE moves at a higher

speed, the received RSRP from target cell and the other neighbour cell would

be much different. As a result, UE would trigger the A3 event and handover

to the target cell with higher signal strength.

Moreover, the Figure 5.14 also shows that compared to the conventional
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Figure 5.18: The call-drop ratio of each UE in different speeds.

method, although the DUHA has the similar performance with the centralised

approach in the lower mobility state, the proposed DUHA obviously reduces

the redundant handover ratio in the higher mobility state. This is because,

in DUHA approach, when the UE with higher speed and close to the target

cell, this leads the receiving SINR of the UE from target cell would increase

violently. The increased UE’s receiving SINR causes the optimal hysteresis

decrease according to Equation (5.7), (5.8) and (5.9). This leads the UE easily

triggers the A3 event and handover to the target cell compare to the other

neighbour cell with a higher hysteresis.

5.3.7 Result of Call-Drop Metric is Measured

When W3 = 1, this means the call-drop ratio is the only factor to be considered

in this scenario. The results during optimising process period are shown in

Figure 5.18 in three different user mobility states.

In Figures 5.18, the solid and broken lines represent the call-drop fitting

curve for centralised and DUHA approaches. Those lines are fitted from the

call-drop ratio points by using quadratic polynomial in Matlab. The results
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show that compared to the conventional methods, the proposed DUHA ob-

viously reduce the call-drop ratio. This is because reduction of RLF and in-

correct handover causes unexpected handovers which consequently decreases

the chance of call-drop. Moreover, most of the higher call-drop ratios happen

in higher mobility states for the centralised approach and the degree of call-

drop ratio reduction is not very obviously for the proposed DUHA. This is

because when RLF and ping-pong effect or incorrect handover occur, the UE

with higher speed is not easily to reconnect to the serving or target cell due to

its receiving SINR is easier to drop lower than -6 dB.

5.4 Summary

In this chapter, DUHA algorithm is proposed to assist handover in the two-tier

network for users moving at various speeds. It avoids the drawbacks of the

conventional centralised hysteresis adjustment approach, as a hybrid approach

which implements MRO functions requested in the standards. DUHA out-

performed the existing approach with the feature of online unique hysteresis

adjusting mechanism.

In addition, the simulation results also showed that, in different scenarios,

the proposed DUHA has not only outperformed the existing approach with

a less combined evaluation parameter HAPI but also provides a better RLF

performance with a lower call-drop ratio. Furthermore, for these high speeds

UEs, DUHA has higher ability to obtain the optimal hysteresis value than UE

moving at a lower speed.
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Chapter 6

Conclusions and Future Work

This chapter presents the conclusions consisting of a brief summary, answers

to the research questions and contributions, and suggestions for future work.

6.1 Conclusions

6.1.1 Summary

Self-Organising Network (SON), as the new technology, not only reduces Op-

erating Expenditure (OPEX) and Capital Expenditure (CAPEX), but also

improves performance of the networks. In the two-tier network, since femto-

cells are randomly deployed by end users (femtocell is a plug-and-play device),

SON structures are desired to be used in the algorithms developed in the LTE

two-tier network.

In order to comply with SON, this thesis proposes the SON architec-

ture, namely the centralised, hybrid and distributed architecture as well as

its functions, particularly, Automated Configuration of Physical Cell Identity

(ACPCI) and Mobility Robustness Optimisation (MRO) functions. In a cen-

tralised architecture, the SON Algorithm developed under the SON structure

resides in the central controller which is able to control and monitor the overall

network. In the distributed architecture, the SON algorithm controller resides

in the individual wireless base station or UE which is able to respond faster to
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network change or requirement than a centralised architecture. The selection

of any particular architecture would depend on the specific approach.

ACPCI and MRO functions are used to support the implementation of the

proposed approaches. In this thesis, three approaches are presented, Cell-based

Perdition Model (CPM), Dynamic Group PCI Allocation Scheme (DGPAS),

and Dynamic UE-based Hysteresis-adjusting Algorithm (DUHA).

The summary of each approach is as follows:

� Summary of the Cell-based Perdition Model (CPM)

Being aware of the drawbacks of conventional UE-based Traffic Predic-

tion Models (UTPM) implemented in the two-tier LTE femtocell sce-

nario, Chapter 3 presents the CPM which can learn and predict the in-

tensity of the handovers for femtocells. The proposed predictor is based

on a HMM (Hidden Markov Model) to model the different intensities

of handovers for a femtocell as observation states. Through using the

learning and decoding functions in the HMM, the CPM can predict the

femtocell’s future handover situation. Both theoretical and real data

based UE moving patterns have been used in the simulations. Their

results show that the proposed CPM outperform the existing UTPM ap-

proaches with higher accuracy, precision, F1, sensitivity and specificity.

� Summary of the Dynamic Group PCI Allocation Scheme (DG-

PAS)

The strategy of the proposed scheme is based on the different intensity

of femtocell inbound-handovers and PCI groups to allocate specific PCIs

to specific femtocells, in order to mitigate two-tier PCI confusions and

avoid call-drop by reading the CGI. Since the proposed prediction model

can be used to find the femtocells (BFemtocells) which have a higher in-

tensity of femtocell inbound-handovers at next time period, it is desired

to implement this predictor in proposed PCIs allocation scheme to deter-

mine those BFemtocells. Moreover, PCI is the key radio resource in the

PCI allocation, so the idea of dynamic group is designed in the proposed
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scheme. The PCIs are well managed by the PCI groups, e.g., unique and

reused. In order to achieve the dynamic feature for the groups, the PCI

release functions are also provided.

In addition, the proposed approach also complies with the centralised

SON architecture and was implemented using ACPCI functions. The

functions include necessary information transmitted between femtocells

and the macrocell, including: knowledge of PCI confliction, control of

PCI assignment in the network and a centralised controller in Operation

Administration and Maintenance (OAM).

Both theoretical and real UE moving patterns have been implemented

in the simulations. The results show that the proposed PCI allocation

scheme outperforms the existing approach by reducing the frequency of

CGI reading and also the possibility of handover failure.

� Summary of the Dynamic UE-based Hysteresis-adjusting Algo-

rithm (DUHA)

In chapter 5, the dynamic hysteresis-adjusting scheme is presented which

complies with the hybrid MRO functionality to assist handover in two-

tier networks for users moving at various speeds. Given the drawbacks of

conventional centralised optimal hysteresis methods, this algorithm pro-

vides an optimal unique hysteresis value for each individual UE which

moves at various speeds. The strategy of the proposed scheme is to

use a combination of centralised and distributed functions to obtain the

unique hysteresis for the UE: the centralised SON function offers the

public parameter Revise Parameter (RP) to UEs; the distributed SON

function depends on the RP and Reference Signal-Signal to Interference

plus Noise Ratio (RS-SINR) to calculate the unique hysteresis value for

the specific UE. The SON functions include necessary handover informa-

tion transmitted between base stations and UEs, knowledge of ping-pong

effect, RLF, redundancy handover and call-drop, full control of handover

parameters such as hysteresis in the network, and a hybrid controller in
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OAM.

Moreover, the combined evaluation parameter Handover Aggregate Per-

formance Indicator (HAPI) is also proposed in the scheme to evaluate

the overall handover performance. Users move at different speeds are

modelled in the simulation, and results show that the proposed scheme

has not only outperformed the existing approach with the HAPI, but

also provides lower ping-pong effect, RLF, redundancy handover and

call-drop ratios than the centralised hysteresis approach.

6.1.2 Answers to the Research Questions

The following summarises the answers to the research questions as proposed

in Chapter 1.

1. What is the traffic prediction in mobility management and why

it is important for resource management in a network system?

Moreover, what are the current prediction models and why

should a novel traffic prediction model for the two-tier scenario

be designed?

As described in Chapter 3, traffic prediction is used to predict future traf-

fic situations, such as, the future handover, the future quality of channels

and the future usage of the resource blocks etc., and depends on the cur-

rent traffic behaviour. The predictive ability equips the femtocell with

intelligence which provides a degree of proactive SON ability for the cell

to optimise its network radio resource [17]. Therefore, it is desired to im-

plement a kind of predictor for network radio resource self-optimisation

in a two-tier scenario.

The current traffic prediction model is UE-based and it models every cell

that the UE has camped in as the states. This model is usually used in

a single-tier scenario, for instance, a LTE network. Implementing this

model in a two-tier scenario would cause many drawbacks, such as in-

correct transition probability and would predict large and unmanageable
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states, as mentioned in Chapters 2 and 3. Those drawbacks lead to lower

accuracy due to the femtocell plug-and-play feature which is deployed in

a large number of two-tier scenarios [20]. Reflecting this, this thesis

proposes a CPM for a two-tier scenario.

2. What is cell identity allocation and why it is important for the

handover process? Moreover, how to design a centralised PCI

distribution approach and to associate with the proposed novel

traffic prediction model?

As described in Chapter 4, cell identity allocation includes PCI and CGI

which are used to identify the cell. During the handover process, if

PCI conflict occurs, the UE reports the target cell CGI to the serving

cell. The serving cell then depending on that ID, communicates with

the target cell via the X2 or S1 interfaces. However, to read the CGI of

the target cell with connected model needs at least 150 ms from system

information. During this fairly long time period, the handover process is

easily triggered late and this leads to handover failure.

Higher intensity of a femtocell’s handovers represents the higher number

of inbound handovers within that femtocell. Therefore, if allocating the

unique PCI to those femtocells with higher intensity value, during the

inbound handover process, the UE would not need to read the CGI of

the targeted cell from system information. As a result, handover failure

can be largely avoided.

Since one of the core parts in the centralised PCI distribution approach

is to find the different intensity level of the femtocell’s handovers, the

CPM proposed for a two-tier scenario in Chapter 3 is used to predict the

handover situation for the femtocells in the network. Therefore, in the

centralised PCI distribution approach, the CPM provides the information

of the handover intensity level of the femtocells, then this information is

associated with the PCI distribution approach.

3. What are the handover triggering parameters and why are the

177



6.1. Conclusions

parameters important for the handover process? In addition,

what are the current hysteresis optimisation approaches and

why design a hybrid hysteresis self-optimisation algorithm for

a LTE femtocell network?

As described in Chapter 5, A3 event is the entry that allows the UE

to send a handover measurement report and handover request to the

serving cell. A3 event is triggered by handover trigger parameters, such

as hysteresis and Time-To-Trigger (TTT). The optimal handover trig-

gering parameters largely reduce handover failure from ping-pong effect,

RLF and call-drop, thus the parameters are desired to be optimised for

handover Quality of Service (QoS).

The current hysteresis optimisations are all centralised approaches, which

means that the serving cell uses only one centrally determined hysteresis

value for all the UEs to trigger a handover.

As the handover in two-tier scenarios differs from conventional LTE

single-tier network, e.g. the coverage of the femtocell is much smaller

than the macrocells, the handover between macrocell and femtocell ex-

periences more severe Signal-to-Interference Noise Ratio (SINR) degra-

dation than the handover between macrocells. Thus, as the UE moves

at various speeds, it would more seriously suffer from the violent change

of signal strength, and the centralised hysteresis value is not suitable for

that individual UE. As a result, a unique optimal hysteresis should be

provided to achieve better performance.

6.1.3 Contributions

The contribution of each approach is as follows:

� Contribution of the Cell-based Perdition Model (CPM): The

cell-based perdition model is designed for LTE femtocell two-tier net-

works. It not only overcomes the drawbacks of the conventional UE-

based prediction model, such as, incorrect transition probability matrix
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and large and unmanageable state issues, but also provides an intelli-

gence to present a thorough understanding of the future femtocell han-

dover situation. This understanding could provide the necessary system

information for SON to distribute the network resources carefully. As a

result, CPM enhances the SON in a two-tier network system. Compared

to the existing UTPM approaches, CPM can offer, particularly, higher

accuracy (up to 97%) and also provide the best ability for both posi-

tive and negative perditions with higher precision, F1, sensitivity and

specificity.

� Contribution of the Dynamic Group PCI Allocation Scheme

(DGPAS): The dynamic group PCI allocation scheme is designed for

LTE femtocell two-tier networks. It complies with a centralised ACPCI

functionality proposed by standard [16] and introduces an optimal PCI

assignment which offers a self-planning ability for PCIs allocation. This

work ensures a higher ratio of successful handovers (an increase of about

40%) for the femtocells with higher intensity handovers. Therefore, this

approach mitigates significantly the two-tier confusion issue in the in-

bound handover process and results in enhanced network performance

overall in the two-tier scenario.

� Contribution of the Dynamic UE-based Hysteresis-adjusting

Algorithm (DUHA): The dynamic UE-based hysteresis-adjusting al-

gorithm is designed for LTE femtocell two-tier networks. It complies with

a hybrid MRO functionality proposed by standard [12] and introduces

a UE-side mobility consideration approach. Compared to conventional

centralised optimal hysteresis methods which do not consider the UE

speed the main factor causing the handover process the proposed ap-

proach provides a unique optimised hysteresis-adjusting mechanism for

the UEs which suffer seriously from the violent change of signal strength

at various speeds. This approach overcomes the drawbacks of the con-

ventional methods and provides lower RLF (up to 5%), redundancy han-
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dover and call-drop ratios. Moreover, in a high-speed user mobility state,

the proposed approach can offer a higher ability to obtain the optimal

hysteresis value for UEs than in a low-speed user mobility state.

Overall, the proposed approaches can significantly overcome the two-tier han-

dover issues and offer better performance than conventional approaches in LTE

femtocell two-tier networks.

6.2 Future Works

Two-tier LTE femtocell networks remains an interesting research area, espe-

cially in terms of inbound and outbound handovers. Although the proposed

approaches can provide better performances than conventional methods, fur-

ther research is required to improve the current works. The following outlines

some thoughts on possible future works:

� Extend the Cell-based Prediction Model

Chapter 3 proposed a CPM based on the normal Hidden Markov Model.

The main challenges for the CPM is how to improve the ability for both

positive and negative predictions. Therefore, in future work, the k-order

HMM would be considered in this predictor.

Moreover, this proposed CPM can offer the ability to support the system

to obtain the future network radio resource requirement situation. This

kind of feature is similar to the function of cognitive radio networks [38],

thus, future work would be to extend prediction into the cognitive radio

resources in order to achieve optimal radio resource management such as

frequency distribution, power control etc.

� Improve the Dynamic Group Physical Cell- identity Allocation

There are two main challenges in the proposed scheme, namely, the opti-

mal time period to predict the future intensity of a femtocell’s handovers
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since a different time period would affect the perdition results. The op-

timal dynamic PCI release method due to the unique PCI is the key

parameter in the proposed scheme.

Therefore, the work will be carried out on optimising the parameter time

period and also to optimise the dynamic PCI release method to obtain

the more unique PCI resource for network.

� Enhance the Dynamic UE-based Hysteresis Optimisation

Since the current approach only considers the hysteresis value optimisa-

tion, the main challenge of the approach is to consider the TTT with

hysteresis together. Therefore, in future, work, both TTT and hysteresis

would be combined to achieve a hybrid dynamic TTT and hysteresis op-

timisation for inbound and outbound handovers. Moreover, the research

work can be applied where inter-femtocell handovers are allowed, and is

particularly desired in order to reduce non-necessary handovers.

In addition, recently, the small cell concept has been introduced, where in

terms of the usages scenario, considering their sizes, small cells are clarified as

femtocells, picocells, metrocells and microcells. In fact, the underlying tech-

nologies for these types of small cell are based on the femtocell technologies,

and use the same standards, software, open interfaces and chipset technology.

In addition, small cells also facilitate new applications of mobile services, such

as location detection. Therefore, when talking about small cells, many stan-

dards and discussions are centred on femtocells. In which case, the research in

this project can still be applied in the small-cell scenario.
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Appendix A

System-Level Simulation (SLS)

This System-Level Simulation (SLS) tool has been designed by the Centre

for Wireless Network Design (CWiND) group since 2010. It has been provided

to evaluate the performance of the self-organising network for LTE and LTE

femtocell. Since author of the thesis was in CWiND at 2010, he has chance to

learn and use this tool.

In SLS, a series of events are modelled as the life’ of the network through

time [77, 78]. For instance, when a user connects to the network, a UE changes

its current position or handover to a cell, an optimisation procedure is triggered

in the network, they all can be modelled as the events.

Each event can easily obtain the data from the simulator configuration and

also be implemented in the simulation process. The SLS has the main thread

process system which can be modified by the research. Moreover, the main

process and those events (branch process) are independent threads. Therefore,

the research can only change the main process without modifying any events.

Each event can report the results to either the main process or the final output.

In SLS, it includes three main blocks, the network configuration, the simu-

lator execution and the output collection. The more detail of those blocks are

described below.

195



A.1. The Network Configuration Block

A.1 The Network Configuration Block

In the SLS, the network configuration block is used to store the basic modelling

and functions which are listed below:

� Traffic behaviour modelling

� Path loss modelling

� Shadow fading modelling

� Signal strength modelling

� Signal quality modelling

� Channel quality indicators

� Throughput modelling

� Neighbourhood modelling

� UE measurement report function

� Network structure modelling

A.1.1 Traffic Behaviour Modelling

In SLS, it has three default traffic behaviour models:

� In each cell, a fix number of User Equipments (UEs) are uniformly dis-

tributed within its coverage. Those UEs stay in the network from begin-

ning to end of simulation.

� In each cell, a fix number of UE are uniformly distributed within its

coverage. Different from the previous one, there is a holding time that

set for every UE. If the time expires, this UE would disappear and a new

one would be generated at different location.
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� In each cell, a various number of UE are uniformly distributed with its

coverage. The number of users is generated in a period of time T, through

the homogeneous Poisson process [79].

P [N(t+ T )−N(t) = Nu] =
(λ · T )Nu · e−λ·T

Nu!
(A.1)

where Nu is the number of UEs appear and locate in the network. λ · T

is the mean users’ arrival ratio, also known as process intensity’. More-

over, the holding time th is provided by exponential distribution (a.k.a.

negative exponential distribution). This distribution is described as:

f(th) = µ · e−µ·th (A.2)

where µ is the mean holding time of users.

A.1.2 Path Loss Modelling

In SLS, it has four default path loss models for LTE:

In terms of macrocell environment, two different models have been used.

� Firstly, this path loss model is recommended by [78], it is an empirical

model and works at 2.0 GHz. It can be described in meters unit as:

Lp[dB] = 15.34 + 37.6 · log 10(d[m]) +Wn ·WL(indoorscenario) (A.3)

Lp[dB] = 15.34 + 37.6 · log 10(d[m])(outdoorscenario) (A.4)

where d represents the distance in meter between transmitter and re-

ceiver. WL denotes the mean wall penetration loss and Wn denotes the

number of walls.

� Secondly, this path loss model is recommended by [77], it is an empirical
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model and works at 3.5 GHz, it can be described in meters units as:

Lp[dB] = 15.46 + 39.11 · log 10(d[m]) +Wn ·WL(indoorscenario) (A.5)

Lp[dB] = 15.46 + 39.11 · log 10(d[m])(outdoorscenario) (A.6)

where d represents the distance in meter between transmitter and re-

ceiver. WL denotes the mean wall penetration loss and Wn denotes the

number of walls.

In terms of femtocell environment, two different models have been used.

� Firstly, this path loss model is recommended by [74], it works for any

frequency except 3.5 GHz. It can be described in meters unit as:

Lp[dB] = 38.46 + 20 · log 10(d[m]) + 0.7 · dmin(indoorscenario) (A.7)

Lp[dB] = 38.46+20 · log 10(d[m])+0.7 ·dmin+Wn ·WL(outdoorscenario)

(A.8)

where dmin denotes the minimum distance in meter between transmitter

and receiver

� Secondly, this path loss model is determined as Finite-Difference Time-

Domain (FDTD) based model. It works on frequency 3.5 GHz and it

is based on Maxwell’s equations and calibrated with indoor-to-outdoor

measurement.
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A.1.3 Shadow Fading Modelling

In SLS, the shadow fading between transmitter and the receiver is modelled

as the log-normal distribution with the zero mean and different standard de-

viations σ2
s .

Ls[dB] = logN(0, σ2
s) (A.9)

This shadowing loss complements the path loss and hence they multiply

each other. However, this shadowing model does not apply to the Finite-

Difference Time-Domain (FDTD) propagation model, due to this model is

based on Maxwell’s equations which already predicts the shadow effects [6].

A.1.4 Signal Strength Modelling

To assume that the Cell Mm is transmitting to its connected UE Un in sub-

channel k. the strength of the carrier signal received by UE from its serving

cell in sub-channel k is modelled as (linear unit):

Wm
n,k =

Pm,k · gm · gn
lm,n · Lsm,n

= Pm,k · Cgm,n (A.10)

where Wm
n,k is the signal strength the UE received from the cell, Pm,k the

power applied by cell Mm to each of the subcarriers of sub-channel k, lm,n

represents the path loss between cell Mm and UE Un. Lsm,n represents the

shadowing between cell Mm and user Un. The g and l stand for the antenna

gains and equipment loses, respectively. The Cgm,n denotes the channel gain

between macrocell Mm and Un.

A.1.5 Signal Quality Modelling

The signal quality in terms of SINR γn,k of UE Un in sub-channel k is thus

modelled as:

γn,k =
Wm
n,k

W u
n,k + σ2

(A.11)
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Table A.1: A part of CQI and Modulation and Coding Schemes

CQI indez Modulation Code rate x1024 Efficiency
1 QPSK 78 0,1523
2 QPSK 120 0.2344
3 QPSK 193 0.3770
4 QPSK 308 0.6016
5 QPSK 449 0.8770
6 QPSK 602 1.1758
7 16QAM 378 1.4766
8 16QAM 490 1.9141
9 16QAM 616 2.4063
10 64QAM 466 2.7305

Where Wm
n,k is the signal strength of UE Un received in sub-channel k and

W u
n,k is sum of the signal strength the Un received from other macrocell Mu

(inter-cell interference). σ2 is the background noise density.

In SLS, it is assumed that the σ2 is an additive white Gaussian noise which

is a zero-mean Gaussian process and its variance equals the sum of the powers

received from all surrounding cells.

A.1.6 Channel Quality Indicators

To calculate the channel quality indicator Cn,k of UE Un in sub-channelk is

modelled as:

Cn,k = Fmap(SINRn,k) (A.12)

Fmap is a monotonically increasing function, which means that the higher

SINR brings higher Channel Quality Indicator (CQI) value and indicates lower

interference of the target channel [80].

CQI is an indicator carrying the information on how good/bad the com-

munication channel quality is. In the LTE system, there are 15 different CQI

values which are from 1 to 15 and mapping between CQI and modulation

scheme as defined in Table A.1 [81].

Efficiency is defined as ratio of information (data) bits per symbol. Due
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to channel fading, in order to ensure a lower of Bit Error Ratio (BER), in the

standard [81], modulation process sets some redundancy symbols which ensure

the resource element cannot achieve the maximum transfer data. As shown in

Table A.1, there are 6 efficiency values within the same modulation type, this

is because that the same modulation can also offer the different information

bits per resource element depends on CQI value.

Code rate x1024 is defined as how many effective modulation symbols can

be transmitted when transmitted 1024 symbols. For instance, when CQI value

is 1, the code rate can be calculated as 0.1523*1024/2=78%, which the 2 is

the QPSK maximum transfer bits per resource element.

A.1.7 Throughput Modelling

To calculate the throughout TPn,k (bits/sec) of user Un in sub-channel k when

using Modulation and Coding Scheme (MCS) is modelled as:

TPn,k = TBSn,k · 1000 (A.13)

Where TBSn,k denotes the Transport Block Size which is the transport

resource block per sub-frame (1 transport resource block per sub-frame = 2

resource blocks) in LTE [80].

The TBS is determined by the MCS index and MCS is determined by CQI.

MCS is a table which store the modulation and coding information. In SLS, the

cell uses CQI value to select modulation type from Modulation and TBS index

table as shown in Table A.2 and the modulation type will be informed UE.

After the information has been received, the UE would change its modulation

type to achieve the lower BER.

A part of TBS table is shown in Table A.3 [81], NPRB denotes the number

of transport Resource Blocks (RBs) per sub-frame.

According to Equation (A.13), to calculate throughput, if the bandwidth

is 20 MHz, 10% of 20MHz is used as guard band, thus the effective bandwidth

will be 18 MHz. Since a sub-carry is 15 KHz, thus there are 1200 sub-carries
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Table A.2: A part of Modulation and TBS index table for PUSCH

MCS Index Modulation Order TBS Index
0 2 0
1 2 1
2 2 2
3 2 3
4 2 4
5 2 5
6 2 6
7 2 7
8 2 8
9 2 9

Table A.3: A Part of Transport Block Size Table

TBS
Index
\NPRB

91 92 93 94 95 96 97 98 99 100

0 2536 2536 2600 2600 2664 2664 2728 2728 2728 2792
1 3368 3368 3368 3496 3496 3496 3496 3624 3624 3624
2 4136 4136 4136 4264 4264 4264 4392 4392 4392 4392
3 5352 5352 5352 5544 5544 5544 5736 5736 5736 5736
4 6456 6456 6712 6712 6968 6968 6968 6968 6968 7224
5 7992 7992 8248 8248 8248 8504 8504 8760 8760 8760
6 9528 9528 9528 9912 9912 9912 10296 10296 10296 10296
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and 100 RBs (1 RB has 12 sub-carries). If MCS index is 0, look up table, we got

the bits value 2792. The hole bandwidth throughput is 2792*1000=2792000

bits/sec and 2792 ∗ 1000 ÷ 1000000 = 2.792 Mbits per sec. The average sub-

channel throughput is 2.792÷ Nk Mbits per sec where Nk is the number of

sub-channels.

A.1.8 Neighbourhood Modelling

There are three different neighbourhood models in SLS.

1. Neighbourhood cells. The coverage of the neighbouring cells are adjacent

disjoint. In SLS, this model is used in Macro scenario.

2. Overlap neighbourhood cells. The coverage of the neighbouring cells are

overlap by their coverage. In SLS, this model is used in macro and femto

scenario.

3. Non-neighbourhood cells. The neighbouring cells are not adjacent. In

SLS, this model is used in macro-femto scenario.

A.1.9 UE Measurement Report Function

During the cell selection and handover procedures, the Physical Cell Identities

(PCIs) are used to identify the different neighbouring cells. However, due to

the limitation of the number of PCI, the confusion and collision problems occur

and impact the performance of the network. (The more information about PCI

problem, please check Section 4.1.2)

In order to avoid confusion or collision, In SLS, it denotes that each UE

should report the PCIs of the nearby cells by using Measurement Report (MR)

to its serving cell. Then this cell can either change its PCI or report this

confusion or collision to the Mobility Management Entity (MME). MME could

change the PCIs for those cells which are involved in the confusion or collision.
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Figure A.1: The structure of the network in system-level simulation

A.1.10 Network Structure Modelling

There are four different network layers in this simulator, such as macrocell,

femtocell, UE and core network layer.

As shown in Figure A.1, macrocell layer contains all the activities for the

macrocells. Femtoocell layer contains all the activities for the femtocells. UE

contains all the activities for the UEs. Core network layer is used to control the

entire network and also achieve the communication interface (Section 5.1.1)

between macrocell and femtocell. MME is the function that manages the

handover, PCI distribution in the core network.

A.2 The Output Collection Block

Each result is collected in this block and output as the XML file. The XML

file is imported into Matlab for analysis and to draw the figure and analysis.

Moreover, since different approach needs to be simulated in different scenarios

and have different output data, the structure of elements in the XML would

be different.
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Figure A.2: The relationship of the function blocks in system-level simulation

A.3 The Simulator Execution Block

This block consist three main functions, such as system initialising, system

looping and resource scheduling function. The relationship between this block

and configuration block is shown in Figure A.2.

In the Figure A.2, resource scheduling function is used to setup the main

process and manage the other functions or events in the simulation to imple-

ment the proposed approach. System initialising function is used to import

the system parameters to the network configuration block. Since the main pro-

cess of the simulator is the looping process, the looping function would obtain

the functions from the network configuration block and meanwhile, provides

the results and send to the output collection block. The details of simulation

process in this thesis will be described in Appendix B.
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Simulations in This Thesis

This section will introduce the simulations for each chapter.

The following assumptions are made in order to evaluate the performance

of the system analytically without the loss of generality.

� Hexagonal base station sites (Femtocell or Macrocell) placed at the centre

of each hexagon.

� The simulation scenario only considered one Macrocell with many Fem-

tocells due to the research focus on the inbound handover.

� Propagation model is based on 2.0 GHz.

� This thesis only considers the handover simulation. Hence, in the simu-

lation of each chapter, there is always data available to be transmitted

to all users and each cell is fully loaded and it does not consider the

multiply antenna system (MIMO).

� The sub-channel bandwidth is smaller than the coherence bandwidth, in

order to achieve the fading of all subcarriers within a sub-channel due to

multipath is constant and flat
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Figure B.1: The structure of simulation in Chapter 3

B.1 Simulation for Cell-based Prediction Model

in Chapter 3

The simulation for Cell-based Perdition Model (CPM) can be summarised as

Figure B.1. The semi-dark blocks are the custom functions that add to the

SLS in order to achieve the simulation requirements.

Due to this simulation doesn’t consider the throughput, in SLS, some of

the blocks (dark) are disabled or replaced by the other custom blocks which

will be described as following sections.

B.1.1 The Modification of the Configuration Block

UE Randomly Mobility Pattern Scenario Modelling

Since this simulation needs to model the UE moving history as states for UE-

based Traffic Prediction Model (UTPM), there are many new requirements
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need to be achieved:

For the UE object in this simulation:

� The number of UEs in the simulation scenario should be fixed.

� The speeds and directions of UEs should be different.

� UEs should have the camping time in the coverage of femtocell.

� UE should record its moving history (cell IDs) and the status of handover

or camping in the serving cell.

� UE should have the ability to calculate the transition and emission prob-

ability matrix in order to predict the next cell for CPTM.

� UE should have the ability to walk back to the macrocell, if the UE walk

out from the coverage of macrocell.

According to the requirements, the author modifies the traffic behaviour

model as a set number of UEs uniform randomly located in the coverage of

a macrocell. Add the speed and direction features to the UE object at UE

layer and give them uniform randomly value. The camping time of a UE in

the femtocell is based on the exponential distribution.

Moreover, the action of handover or camping is based on the uniform ran-

domly value. UE also has the function to record its moving history in order to

calculate the transition probability matrix and emission probability matrix.

Return Back Function

In terms of return back function, since the coverage of the macrocell is hexago-

nal and it difficult to calculate the angle when the UE return back to macrocell.

Therefore, the author set the circle as the return back boundary for the cov-

erage of the macrocell as shown in Figure B.2. When a UE arrives at the

boundary of the circle, the return back function would be triggered.

However, there are four different cases need to be considered in return back

function due to the UE needs different new angles as shown in Figure B.3.
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Figure B.2: Four return back cases in macrocell network
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Figure B.3: The return back boundary in macrocell network

In Figure B.3, UE 1 represents the return back case happened at the first

quadrant and the new angle would take random value between 180 and 270

degree. UE 2 represents the return back case happened at the second quadrant

and the new angle would take random value between 270 and 360 degree.

Similar applies to UE 3 and 4 in third and fourth quadrants. When the UEs

get the new directions, their speeds would be also changed a new value in this

simulation.

Femtocell Modelling

For the femtocell object in SLS:

� The number of femtocells should be changed to simulate the plug and

play feature

� Femtocell should have the ability to record the number of handovers

(traffic level) and camped UEs in a given time period.
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� Femtocell should have the ability to calculate the transition and emission

probability matrix in order to predict the next traffic level.

According to the requirements, the author modifies the traffic behaviour

modelling as 5 femtocells uniform randomly located in the coverage of a macro-

cell. During the simulation, location of femtocells are not changed, but the

femtocell would turn off or on followed Normal distribution. Moreover, add

the recording function to record the number of handovers and camped UEs

for each femtocell object at femtocell layer. Moreover, femtocell also has the

function to calculate the transition probability matrix and emission probability

matrix.

Mobility Management Entity Modelling in Chapter 3

The MME is already modelled in the SLS as mentioned in Chapter 2.1. As

mentioned in thesis, MME is the one of network management system blocks

and used to achieve the wireless cells management and communication [25].

Therefore, in this simulation, MME is set in the core network layer which can

control the other three layers. MME has four main functions:

� Collects all the information from the femtocells. The information in-

cludes the number of average handover of the femtocells for CPM and

CPTM processes (information of average handover of the femtocells for

CPTM, please Section B.1.1.10).

� Models the information from the femtocells as the states, and then exe-

cutes forward-backward function and viterbi function for CPM.

� Collects the reality states from the femtocells and calculate the prediction

accuracy, precision, sensitivity, specificity and F1 for CPM and CPTMs.

The calculation of those results is based on the Table B.1 which refers

to Table 3.1.

Since the main purpose of the prediction is to predict the Busy Femtocell

(BFemtocell) (Section 4.2.2), this positive is considered as the traffic level
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Table B.1: Confusion Matrix for Prediction Evaluation

Prediction Prediction
Positive Negative Sum

Reality Positive True Positive
(TP)

False Negative
(FN)

Reality Positive
(TP+FN)

Reality Negative False Positive
(FP)

True Negative
(TN)

Reality Negative
(FP+TN)

Sum Prediction Posi-
tive (TP+FP)

Prediction Nega-
tive (FN+TN)

at Busy and Negative is considered as the traffic level at Moderate and

Idle (not Busy). The calculation rules are:

– If reality Busy, but predict not busy, it is considered as False Neg-

ative.

– If reality not busy, but predict not busy, it is considered as false

positive.

– If reality Busy, but predict as Busy, it is considered as true positive.

– If reality not busy, but predict as Busy, it is considered as true

negative.

� Send the prediction results to the output collection block.

UE Factual Mobility Pattern Scenario Modelling

In this scenario, the factual data are used in the SLS. This data comes from

Community Resource for Archiving Wireless Data (CRAWDAD) network trace

repository, and it has recorded movement history and communication situation

of 20 smart phone devices (UEs) over half month.

The date from CRAWDAD is saved as excel file. Each UE’s position, ID

and recording time been recorded as the rows in that excel file in every 20

second. Therefore, each of the UE’s moving direction and UE speeds can be

calculated and modelled as the UE moving history.
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Forward-backward Function

To calculate the optimal parameters in HMM, in this simulation, the author

sets the forward-backward function in the simulation. More information about

forward-backward algorithm, please check Section 3.2.2.

Viterbi Function

To calculate the sequence of hidden states, in SLS, the author sets the viterbi

function in the simulation. More information about viterbi algorithm, please

check Section 3.2.2.

Order-2 Markov Modelling

To generate the transition probability matrix in order-2Markov model, the

author sets a Makrov function in the simulation. More information about

order-2 Markov, please check Section 3.1.2.

Markov Renewal Process Modelling

To generate the transition probability matrix and condition probability in

Markov Renewal Process (MRP) model, the author sets a MRP function in

ths simulation. More information about MRP, please check Section 3.1.3.

UE-base Prediction Converter Function

UE-base prediction models only can predict the UE future locating cell not

the intensity of a femtocell’s handovers. Therefore, the UE-base prediction

converter is used to convert the prediction results to the traffic level.

In this simulation, the femtocell object has a function to collect the pre-

dicted information from UEs. Then it counts the number of that UE predicted

take a handover to this femtocell in a given time period.

After the femtocell got the information of the number of UE handovers, it

send the all information to MME as mentioned earlier, MME would generate
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the prediction process for all CTPMs. More information about the process,

you can check the Section 3.3.3.1.

B.1.2 The Modification of the Simulator Execution Block

Simulation of Order-2 Markov Prediction Model

In this simulation, each of the UE moving history (Cell ID) will be record in

the UE object and generate the transition probability matrix, each time of

UE take a handover to a cell, and this transition probability matrix would be

updated. An array [the number of order-2 states * the number of states] is

defined in the UE object to represent the transition probability matrix. In

transition probalility matrix table, the percentage numbers are the transition

probability from the first column to the top row. When the UE campus time

finish and move to the new state (Cell), it could use the transition probability

matrix to predict the next state with the highest probability. Once the UE has

moved in the new cell, the predicted results and reality results would be save

as new an array defined in UE object. Then the femtocell object would load

this array to provide the traffic level via UE-base prediction converter function

as mentioned earlier. Moreover, during the prediction, if one of the femtocell

has been turned off or on, the simulation tool would recalculate the transition

probability matrix to predict the next UE’s moving location (the next state).

More information about order-2 Markov model, please check Section 3.1.2.

The Simulation of Markov Renewal Processes Prediction Model

In Markov Renewal Processes (MRP) prediction model, the next state predic-

tion is not only based on the transmit probability but also the interval time

between two states occurs (condition probability). Hence, there are two arrays

[6x6] and [6xT] (T is the time that transition between two states) in the UE

object, and represent transition and condition probability matrix.

The transition probability matrix is similar to the previous model but with

less elements. in condition probability matrix table in UE object, the percent-
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age numbers are the transition probability from the first column to the top

row. When the UE campus time finish and move to the new state (Cell), it

could use the transition probability matrix and condition probability to pre-

dict the next state with the highest probability. Once the UE has moved in

the new cell, the predicted results and reality results would be save as new an

array defined in UE object. Then the femtocell object would load this array to

provide the traffic level via UE-base Prediction Converter function. Moreover,

during the prediction, if one of the femtocell has been turned off or on, the

simulation tool would recalculate the transition probability matrix and MRP

condition probability to predict the next UE moving location (the next state).

More information about MRP, please check Section 3.1.3.

The Simulation of Cell-based Prediction Model

In SLS, the Cell-based Traffic Prediction Model (CTM) defined as three hidden

states, such as SBusy, SModerate and SIdle and three observation states, such as

OBusy, OModerate and OIdle. Hence, in the programme, to create three arrays

as A [3x3], π [1x3] and B [3x3], where A represents the transition probability

matrix which provides the transition probabilities for hidden states. π rep-

resents the probability matrix which provides the probability of each hidden

state occur. B represents the emission probability matrix which provides the

relationship between hidden and observation states.

In CTM, via the forward-backward function to update the (π,A,B) and

via the viterbi function to find out the hidden states sequence.

Since the hidden states in CTM are Markov chain, the MME can calculate

the next hidden states and predict the observation state via emission matrix

B. After that, when the MME receive the reality number of handovers from

femtocells, then it sends prediction results to the output collection block.

The Simulation of UE-based Hidden Markov Prediction Model

The UE-based HMM is that UE has present handover are modelled as hidden

states. The user’s locating cells are modelled as observation states. In SLS, it
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defines as 2 hidden states such as communication and non-communication and

six observation states (0-5 cell IDs). Hence, in the programme, similar to the

CTM to create three arrays as A [the number of current observation states *

the number of next observation states], π [1* the number of observation states]

and B [the number of hidden states * the number of observation states] due

to five femtocells and one macrocell are set in the network.

The initial value of elements in A and pi is 1/ (the number of observation

states) and the initial value of elements in B is obtained from small time

training.

Similar applies to CTM, this prediction uses the forward-backward function

and observation sequence to update the (π,A,B). Then it uses the viterbi

function to find out the hidden states sequence.

Since the hidden states is a Markov chain, once the UE object can have

the current observation state, and UE start to handover. It then calculates

the current hidden state, and predicts the next hidden states via matrix A and

also predicts the next cell via matrix B. Therefore, this model provides the

communication (handover) probabilities to the cells that UE moving to.

B.1.3 The Modification of the Output Collection Block

After MME send the results of accuracy, precision, sensitivity, specificity and

F1 for different models to this block, this block can transfer those data into

the XML file. Each element’s name is the name of the model, and its children

elements are accuracy, precision, sensitivity, specificity and F1. The more

information about those evolution results, please check Section 3.3.1 and 3.3.2.

B.2 Simulation for Dynamic Group Physical

Cell Identity Distribution in Chapter 4

The requirements in this simulation are described below:

� The number of femtocells and their locations should be changed in order
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Figure B.4: The structure of simulation in Chapter 4

to simulate the plug-and-play feature.

� The number of PCIs should be less than the number of the femtocells in

order to simulate the PCI confusion and collision.

� The handover process should be simulated in the simulation.

� The call-drop event should be recorded in UE objects and then it would

be reported to the core network layer.

In order to achieve those requirements, some modelling and functions have

been proposed. This simulation can be summarised as Figure B.4. Some blocks

(semi-dark) are the custom functions that add to the SLS in order to achieve

the simulation requirements.

Due to this simulation doesn’t consider the throughput, in SLS, the dark

blocks are disabled or replaced by the other custom blocks which will be de-

scribed below.
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B.2.1 The Modification of the Configuration Block

Femtocell Location Modelling

The number of femtocells should be changed to simulate the plug-and-play

feature. femtocell location is uniform randomly. In the macrocell, a various

number of femtocells are uniformly distributed with its coverage (from 20-50).

The number of femtocells is generated in a period of time T, through the

homogeneous Poisson process.

P [FN(t+ T )− FN(t) = FNu] =
(λ · T )FNu · e−λ·T

FNu!
(B.1)

where FNu is the number of femtocells appear and locate in the network.

λ·T is the mean users’ arrival rate, also known as ’process intensity’. Moreover,

the holding time th is provided by exponential distribution (a.k.a. negative

exponential distribution). This distribution is described as:

f(th) = µ · e−µ·th (B.2)

where µ is the mean holding time of femtocells.

Femtocell Access Type Modelling

There are two access types are considered in this simulation, Closed Subscriber

Group (CSG) and non-CSG (Section 4.2.3). In this simulation, some of the

UEs would be signed as the registered UE for CSG femtocell.

For the CSG femtocell, if a registered UE arrived at the femtocell, it would

take the handover process to the femtocell in 100%. Otherwise, the non-

registered UE cannot take the handover process to that femtocell.

For the non-CSG femtocell, all the UEs can have the chance to take the

handover to the femtocell, unless the femtocell is fully load (2 RBs are the

minimum for one UE).
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Collision and Confusion Modelling

According to the neighbourhood model, after the femtocells have been located,

the femtocell will record the conflicted femtocell IDs. Moreover, for the one-tier

confusion case, femtocell would also record its neighbour, neighbour’s neigh-

bour and neighbour’s neighbour’s neighbour cell IDs in order to achieve the

PCI release. The more information about PCI release methods, please check

Section 4.2.4.

PCI Distributing Function

This function will achieve two goals:

Firstly, MME could use this function to distribute the PCIs to the femto-

cells.

Secondly, during the PCI distribution, this function ensures the PCI col-

lision and one-tier confusion free by using the PCI release methods (Section

4.2.4).

Handover Process Modelling

In this simulation, the handover model only considered the RSRP trigger equa-

tion as:

RSRPtarget ≥ RSRPserving +Hysteresis (B.3)

RSRPtarget and RSRPserving are the measurement of average reference sig-

nal strengths for the resource block at target and seving cell. Hysteresis can be

used to delay the handover happening until the signal strength become more

stable. The more information about handover process is described in Sections

5.1.2 and 5.1.3. Due to no reference signal defined in the simulator, RSRP is

calculated from the average power of the whole sub-channels.

The process of the handover can be summarised in Figure B.5.

In the Figure B.5, the hysteresis delay the time that Time-To-Trigger

(TTT) happened and TTT is used to delay the A3 event triggering in order
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Figure B.5: The stureture of handover process in system-level simulation

to achieve the signal strength become more stable.

During the A3 report interval, UE would read the PCI from the target

cell which cost 20 ms by using measurement report. If there is no confusion

happened, the UE would leave the A3 event and finish the handover process.

Otherwise, the UE would require the target femtocell to provide the CGI

and this would cost 160 ms by using measurement report. After UE got the

CGI ID, the UE would leave the A3 event and finish the handover process.

Moreover, after UE got the PCI and CGI, the handover need about 300 ms to

be estimated between serving and target cell [8]. Hence, the A3 report interval

should include the 300 ms delay till the A3 event finished. Moreover, in the

simulation, the loop function will check the A3 event trigger or not.

Radio Link Failure Modelling

According to the standard [9], if the average received SINR drop below -6 dB,

the call of the UE would has higher probability to disconnect to the connected

cell and this is defined as Radio Link Failure (RLF). The number of RLF event

would be stored in the UE object and then reported to the target cell. After

that, the femtocell or marcocell sends the RLF information to MME in core

network layer.
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Ping-pong Effect Modelling

Ping-pong effect is registered due to non-optimal handover parameters, where

the UE made a successful handover from a cell B to cell A in a short time

period after another successful handover had already occurred from A to B

with same UE. In the simulation, this short time is defined as 5 second [59].

The number of ping-pong event would be stored in the UE object and then

reported to the target cell. After that, the femtocell or marcocell sends the

RLF information to MME in core network layer.

Call-drop Modelling

When the RLF or ping-pong happened, the UE would try to connect back the

serving cell or to the other cells. Therefore, in this simulation, the call-drop

model is defined as the UE is fail to connect back the serving cell or to the

other cells due to average SINR received from them is lower than -6 dB after

RLF or ping-pong effect happened. The number of call-drop events would be

store in the UE object and then reported to the target cell. After that, the

femtocell or marcocell sends the RLF information to MME in core network

layer.

Mobility Management Entity Modelling

MME resides in the core network layer in SLS, core network layer is used

to control the entire network and also achieve the communication interface

between macrocell and femtocell. MME is the function that manages the

handover, PCI distribution in the core network.

In this simulation, Operation Administration and Maintenance (OAM) is

reside in MME and can have all the functions from MME. OAM modelling

will be described in next section.
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Operation Administration and Maintenance Modelling

As mentioned in thesis, OAM is a tool which is implemented by standards to

achieve the operating, administering, managing and maintaining in the SON.

Considering the centralised SON structure in this simulation, the OAM reside

together with MME in the core network layer which can control the other three

layers.

In this simulation, the OAM would implements those modelling that have

been proposed earlier to achieve some functions which are list below:

� Collect the handover information from the femtocell objects and execute

the cell-based prediction for those femtocell objects.

� Manager the PCI groups and PCI IDs in the simulation. In this function,

it includes: distributed unique PCI IDs to the BFemtocells; seek the PCI

IDs via PCI release method (Section 4.2.4).

� Calculate/collect the prediction results, reading CGI results and call-

drop results then send them to the Output Collection Block.

B.2.2 The Modification of the Simulator Execution Block

Initiated PCI Distributing Function

After the all the femtocell located in the simulation, this function could achieve

two purposes in this simulation for Chapter 4.

� To initially distribute the PCIs by using PCI distribution model.

� To obtain the reused and unique PCI IDs after the distribution process

and then send them to the PCI group function.

PCI Grouping and Distributing Function

After the initiated PCI distribution, this simulation would create the reused

and unique PCI groups. The, via the MME (OAM) and proposed approach

(Section 4.2), this simulation start to sign the PCI to the new femtocell appears
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or get the PCIs from the turned off femtocells. A loop programme will be

executed in the simulator to ensure this process and also update the PCI

groups.

Moreover, the results of the CPM from OAM are used in this function to

find the BFemtocells in the PCI distributing process. During this process,

the UE would report the call-drop, ping-pong, RLF to the femtocells. The

femtocell would report all the information from UEs and also the number of

CGI reading and number of successful handover to the OAM.

PCI Release Function

This function will be executed when fewer femtocell is working in the network.

In this function, the whole network PCI distribution would be changed and

the PCI groups would be update at same time. Then the simulator can start

to process of PCI group function and output the results.

Simulation of Dynamic Group PCI Allocation Scheme

There are two different scenarios have been simulated in this simulation, UE

randomly mobility pattern and UE factual mobility pattern scenarios.

In terms of UE randomly mobility pattern scenario, this simulation is focus

on the analysis of the CGI reading time between CSG and non-CSG femto-

cell due to there are higher number of femtocells (20-50) can be generated in

the network. Therefore, the femtocell Access Type Model is involved in the

process. Moreover, the traffic model uses the same as the previous simulation.

In terms of UE factual mobility pattern scenario, similar applies to the pre-

vious factual mobility pattern scenario simulation. In this scenario, the factual

data are used in the simulation. 20 UEs are record from the CRAWDAD over

half month. This simulation only considers the call drop rate. Therefore, only

five non-CSG femtocells are located in the network and Call Drop Model is

involved in the process.

In both of the scenarios, the femtocell object implements the femtocell

location, collision and confusion and handover process with CGI or PCI models
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from the configuration Block. Moreover, the processes of the initiated PCI

distribution, PCI groups and PCI release function are involved in both of the

simulation.

B.2.3 The Modification of the Output Collection Block

In this simulation, this block collects the number of CGI reading time and

successful handover Nsuccessful and the number of call drop Ndrop from the

OAM.Then the number of CGI reading and call-drop ratio are saved into the

XML file.

B.3 Simulation for Distributed Dynamic UE-

based Hysteresis adjustment in Chapter

5

The requirements in this simulation are described below:

� To assume that no two-tier PCI confusions happened during handover,

due to the simulation only considers the handover triggering parameter.

Therefore, the number of femtocells and their location are fixed.

� The handover process should be simulated in this simulation.

� RP-HAPI table (Reserved Parameter (RP) and Handover Aggregate Per-

formance Indicator (HAPI)) can be calculated and updated in the fem-

tocell object.

� The optimal hysteresis can be calculated in the UE object.

� The RLF, ping-pong effect, redundancy handover and call drop event

should be recorded in UE objects and then it would be reported to the

femtocell object.

In order to achieve those requirements, some functions have been added

to this simulation. Those functions can be summarised as Figure B.6. The
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Figure B.6: The structure of simulation in Chapter 5

semi-dark blocks are the custom functions that add to the SLS in order to

achieve the simulation requirements.

Due to this simulation doesn’t consider the throughput, in SLS, some of

the blocks (dark) are disabled or replaced by the other custom blocks.

B.3.1 The Modification of the Configuration Block

Mobility Management Entity Modelling

MME resides in the core network layer in SLS, core network layer is used

to control the entire network and also achieve the communication interface

between macrocell and femtocell. MME is the function that manages the

handover, PCI distribution in the core network.

In this simulation, MME is only used to control the handover process.

Centralised and distributed OAMs don’t reside in MME.
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Operation Administration and Maintenance Modelling

As mentioned in thesis, OAM is a tool which is implemented by standards to

achieve the operating, administering, managing and maintaining in the SON.

Considering the hybrid SON structure in this simulation, the OAM has been

separated into two parts: centralised OAM and distributed OAM. Both of

them implement those modelling that have been proposed earlier to achieve

some functions are list below:

In terms of centralised OAM, it resides in the femtocell object. The func-

tions are:

1. Collect the handover information from the UE object and calculate the

HAPI.

2. Create/update the HAPI-RP table according to the handover informa-

tion and HAPI.

3. Obtain the optimised RP value and send it to the UEs which are serving

by the femtocell.

4. Report the simulation results to the output collection block.

In terms of distributed OAM, it resides in the UE object. The functions are:

1. Collect the handover information during the handover process.

2. Send the handover information to serving femtocell (centralised OAM).

3. Receive the optimal RP value and calculate the optimised hysteresis

value.

Handover Additional Parameter Modelling

To calculate the Handover Additional Parameter (HAP) from distributed MRO

function (UE object), it can be described as:

HAP ≥ RP + SINRtarget (B.4)
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where RP is the reserved parameter that record in femtocell object (cen-

tralised OAM), SINRtarget is the average SINR received from target femtocell

(inbound handover) or macrocell (outbound handover). This HAP then uses

in the Equation (B.5) as mentioned in Section 5.2.3 to calculate the optimal

hysteresis Hproposed.

Hproposed ≥ Hhigh −HAP (B.5)

where Hhigh is a constant value that used for the lowest speed UE in the

network, in this simulation, Hhigh is 8 dB according to [13, 74].

Revise Parameter Modelling

Before the creation of HAPI-RP table, this simulation needs to generate a

sequence RP values and the steps of this sequence generation are list below:

� Calculate the maximum average received SINRmax,averagefrom the sim-

ulation.

� Since the Hhigh−HAP is greater or equal to 0 (Section 5.2.3), according

to the Equation (B.5) and (B.6) the RP should be smaller or equal to

Hhigh − SINRmax,average. Therefore, the simulation can calculate the

maximum RP value and generate a sequence RPs with a 1dB reduction

step. The range of SINR and Hhigh can be measured by the operators for

the specific cell, thus the range of RP can be calculated by using these

information from system. For instance, the Hhigh is 8 dB, the SINR is

from -15 to 30 dB. The range of RP would be from -22 to 23 in dB units.

Moreover, in dB units, since HAP >= 0, if Hhigh − (RP + SINR) < 0,

the HAP will be set back to 0.

� During the process, if the Hhigh − HAP smaller than 0, the simulation

would set the result as 0. Moreover, RP is the public parameter in

the centralised OAM (reside in the femto or macro object) and HAP is

defined in the distributed OAM (reside in UE object), therefore, in the
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hysteresis self-optimisation approach, all UEs should share the same RP

but different HAP.

Redundancy Handover Modelling

Redundancy handover represents the redundancy handover rate. It is defined

as the ratio of the number of incorrect handover (handover to wrong cell).

In the simulation, if the UE take a handover to the wrong cell which one

has the poor signal strength the target cell, the UE would record this as the

redundancy handover events in the UE object. Then it will be reported to the

target femtocell.

Handover Aggregate Performance Indicator Modelling

To calculate the Handover Aggregate Performance Indicator (HAPI) from fem-

tocell, it can be described as:

HAPI = W1 ×Hfr +W2 × Ppr +W3 × Cdr +W4 ×Rhr (B.6)

W1 +W2 +W3 +W4 = 1 (B.7)

where the Hfr, Ppr, CdrandRhr represent handover link failure, ping-pong,

call-drop and redundancy handover ratio, respectively. The W1,W2,W3 and

W4 are defined as weights and the sum of the values of them should be equal to

1. The more information about HAPI and calculation of handover link failure,

ping-pong, call-drop and redundancy handover ratio, please check Section 5.1.4

and 5.2.5.

Optimised Hysteresis Handover Modelling

Due to the SLS does not consider the reference signal, the average SINR is

calculated by whole sub-channels. This calculation is set in the UE object to

trigger the A3 event.
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Handover Performance Indicators Modelling

In this simulation, in order to compare with the proposed optimised hysteresis

approach, this research simulates the scheme that proposed in [19]. Handover

Performance Indicators (HPI) is evaluation which considers the handover fail-

ure ratio, ping-pong ratio and call-drop ratio together.

HPI = W1 ×HPIhof +W2 ×HPIhpp +W3 ×HPIdc (B.8)

where W1,W2 and W3 are the weights and the sum of the values of them

should be equal to 1. HPIhof , HPIhpp and HPIdc represent the handover

failure ratio, ping-pong ratio and call-drop ratio. The more information about

this scheme, please check Section 2.4.

B.3.2 The Modification of the Simulator Execution Block

HAPI-RP Table Updating Function

In the proposed approach, the HAPI-RP table is used to record the RP val-

ues and its corresponding HAPI values in the centralised OAM, in order to

obtain the optimal RP value. Moreover, the number of RLF, ping-pong, redun-

dancy handover and successful handover events are stored in the UE object.

Therefore, during the handover process, centralised OAM could collect that

information from UEs and calculate the HAPI value via handover aggregate

performance indicator modelling. Then, centralised OAM update the HAPI

value in the HAPI-RP table for each RP value.

HPI Table Updating Function

In order to create the HPI table, each of the value in the sequence of given

hysteresis would be implemented in the simulation. Then the RLF, ping-pong

and call-drop information can be collected by femtocell object to calculate the

HPI value via handover performance indicators modelling and create the HPI

table with the corresponding hysteresis value. After that, the simulator can
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choose a optimal hysteresis with the lower HPI value from table, and wait for

the next time HPI table updating.

Simulation of Dynamic UE-based Hysteresis-adjusting Algorithm

In the simulation, UE randomly mobility pattern is implemented with 20 Fem-

tocells and 300 UEs. The handover process with CGI and PCI is involved in

this simulation, however, the simulation considers all the network have enough

PCIs to sign the femtocells. Therefore, the handover process only considered

the 20 ms reading PCI and 300 ms handover signalling time.

The HAPI Table is updated in a fix time period (100 ms). Each femtocell

object has its unique RP and the hysteresis value updating for each UE is only

implemented after the UE finish the handover process. This is because during

the handover process, the hysteresis can be changed.

Each time of the HAPI-RP table updating, the RP may change to the

optimal one. Then the centralised OAM sends the information of RLF, ping-

pong, call-drop, redundancy handover ratios, HAPI, optimal hysteresis, RP

value, UE’s speed to the output collection block.

Simulation of Conventional Approach

Since in the simulation, TTT is set as the constant value, the approach [11] only

considers the hysteresis value. Same to the previous simulation, UE randomly

mobility pattern is implemented with 20 Femtocells and 300 UEs and the

handover process only considered the 20 ms reading PCI and 300 ms handover

signalling time.

The hysteresis value in the given sequence is used in the simulation and

the HPI Table is updated in a fix time period (100 ms). Each femtocell object

can obtain the optimal hysteresis value from the HPI table. The hysteresis for

each femtocell only can be updated after the UE handover finish.

Each time of the HPI table updating, the hysteresis value may change to

the optimal one. In this simulation in order to compare with the proposed

approach, this simulation also calculate the HAPI value and redundancy han-
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dover rate. Then the fermtocell object sends the information of RLF rate,

ping-pong, call-drop, redundancy handover ratios, HAPI to the output collec-

tion block.

B.3.3 The Modification of the Output Collection Block

In this simulation, this block collects the RLF, ping-pong, redundancy han-

dover, call-drop ratios, HAPI, optimised hysteresis values, RP values and UEs’

speeds from the centralised OAM or femtocell object. Then, this block records

the results into the XML file.
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