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ABSTRACT 

Colletotrichum lindemuthianum is a pathogen of Phaseolus vulgaris (common 

bean) causing anthracnose disease and poses a threat to food security.  The aim of 

the study was to advance understanding of genotype-phenotype-environmental 

interactions in Colletotrichum spp. through biomolecular approaches including 

multilocus molecular phylogenetic analysis, AP-PCR and morphological diversity 

assessment. Following initial screening five loci were selected for further 

investigation including ribosomal RNA gene block internal transcribed spacer 

(ITS), tubulin (TUB), glyceraldehyde phosphate dehydrogenase, glutamine 

synthetase, and the mating type gene. Study included 18 Colletotrichum isolates 

representing wide biogeographic diversity. Two isolates were identified as C. 

gloeosporioides and C. truncatum, which are not commonly known bean 

pathogens and this needs further research. The TUB marker was the most 

conserved amongst the C. lindemuthianum isolates. Universal marker ITS 

distinguished 5 haplotypes; concatenated sequence data provided the highest 

resolution with 7 haplotypes.  AP-PCR differentiated between 5-9 haplotypes and 
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appeared more suitable for local population monitoring purposes. Variability in 

growth rate, sporulation and colony morphology was observed among the 

Colletotrichum spp. isolates. The study would serve as a platform for genome 

sequencing based studies into environmental change adaptation in Colletotrichum 

spp. particularly C. lindemuthianum using isolates representing historical and 

contemporary populations.  
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CHAPTER 1: INTRODUCTION 

 

1.1. Hypothesis/Aim of the Research 

     Hypothesis of the proposed research is that environmental changes influence 

adaptive evolution reflected by the relationship between the DNA sequence 

variation and the biogeographic diversity of the Colletotrichum isolates. The aim 

is to generate new knowledge and resources to advance understanding of 

genotype-phenotype-environmental interactions in Colletotrichum spp. 

1.1.1. Objectives 

1) Identify markers suitable for multilocus genotyping of Colletotrichum 

lindemuthianum isolates. 

2) Multilocus phylogenetic analysis of a set of Colletotrichum species isolates 

displaying biogeographic diversity. 

3) Comparative analysis of multilocus phylogenetics and amplified fragment 

length polymorphism (AP-PCR) approaches. 

4) Gain an understanding of the differences in the growth, morphology and 

sporulation of the Colletotrichum spp. isolates. 

 

1.2. Fungal Diversity  

     Fungi are diverse, heterotrophic eukaryotic organisms that play very important 

ecological and economical roles. Saprophytes use dead and decaying matter as a 

source of nutrition making them one of the most potent natural recyclers in the 

world. Parasitic fungi attack plants, humans and animals and even bacteria. They 

not only are a threat to immunocompromised people causing infections in hospital 

environment, but also leading to massive crop losses every year. Recent reports 

state that fungi affecting maize, rice and wheat alone costs global economy 
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$60mln, while 125 mln tonnes of five top food sources including the above plus 

soybean and potatoes are damaged every year (Fisher et al., 2012).  

     Previous studies claimed there are 1.5mln of fungal species on Earth 

(Hawksworth, 1991).  The main reason for underestimation of the number of 

organisms was the existence of ‘cryptic species’, that came from homogenous 

groups having virtually same morphology and physiology; however, they may 

differ greatly at molecular level (Hibbett and Donoghue, 1996). The latest 

technology cantered around molecular techniques and high-throughput DNA 

sequencing aka Next-Generation Sequencing (NGS) allowed rapid discoveries of 

new organisms. More recently, ~97,330 species of fungi have been described 

(Kirk et al., 2008) while the new estimate of the overall number of existing 

species is 5.1mln (Blackwell, 2011). Novel molecular methods have led to vast 

improvement of fungal classification providing knowledge about their genetic 

diversity and evolutionary relationships including in the genus Colletotrichum 

(Riccardo Baroncelli et al, Unpublished).  

      There are many types of studies regarding the species concept as outlined by 

Endler (1989) including  amongst others taxonomy and evolutionary type of 

studies. The modern concept of species considers its morphological, biological, 

ecological and phylogenetic characteristics. The latest approach to phylogenetics 

is Genealogical Concordance Phylogenetic Species Recognition that entails 

bioinformatic analysis (Taylor et al., 2000) and it became a leading method for 

fungal systems (Giraud et al., 2008). Speciation is a process where one species is 

divided into two or more new ones as a part of on-going evolutionary 

development, adaptation and a source of biodiversity (Cracraft, 1983). Speciation 

is usually considered in allopatric terms where two groups undergo genetic drift 

due to the geographic barrier (Mayr, 1963). 

       Cryptic species, defined as one or more species described as a single species, 

have posed problems in taxonomy for the past centuries. However, current 

technology including  molecular phylogenetics utilizing DNA sequence 

comparison can differentiate morphologically and physiologically identical 

entities (Bickford et al., 2007).  
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      Due to those advances Colletotrichum phylogenetics have evolved in recent 

years. The name of the species complex would generally refer to the originally 

identified species e.g. boninense. There are 9 major species complexes or clades 

within the Colletotrichum genus (Cannon et al., 2012). 

 

1.3. Colletotrichum Genus 

1.3.1. Ascomycota - Sordariomycetes 

     Colletotrichum genus belongs to Ascomycota - Sordariomycetes and includes 

endophytes, pathogens, mycoparasites and saprobes (Zhang et al., 2006). One of 

the Sordariomycetes is Fusarium genus containing many economically important 

fungi including Fusarium graminearum –a causative agent of head blight 

affecting cereal particularly barley and wheat (Goswami and Kistler, 2004). 

Neurospora (order Sordariales) contains N. crassa- a saprotrophic fungus that 

became a model organism equivalent to Drosophila. Its haploid life cycle allowed 

to carry out many genetic studies including discovery of gene silencing 

mechanism (Davis and Perkins, 2002). 

1.3.2. Biological and Pathological Diversity 

     Colletotrichum is a mainly asexual genus with the sexual morph referred to as 

Glomerella. There is still a lot of confusion regarding taxonomy of the 

Colletotrichum genus (Cannon et al., 2000; Hyde et al., 2009). However, most of 

these issues were addressed by current Colletotrichum research (Cannon et al., 

2012). Colletotrichum species are ubiquitous endophytes meaning they can invade 

their plant host without causing an apparent disease at some stage in their life 

cycle. (Redman et al., 2001). Colletotrichum spp. affect many crop plants and 

ornamentals in the world including legumes, grasses (sorghum), yucca, coffee 

beans, cereals (e.g. maize), sugar cane, and many fruits and vegetables (Broad 

Institute, 2010).  More pressures are imposed on farmers from tropical and 

subtropical countries (Tu, 1992a).  
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        Colletotrichum species are a causative agent of anthracnose spots and blight  

on a wide range of plant hosts (causing chlorosis where lack of chlorophyll lead to 

browning plant tissue and necrosis) as well as few other major diseases specific to 

the host including: red rot of sugar cane infected with C. falcatum Went, coffee 

berry disease caused by C. kahawae (Fig 1.1.), and brown blotch of cowpea by C. 

truncatum (Fig 1.2.) (Lenné 2002; Dean et al. 2013). C. acutatum  is a causative 

agent of root rot/necrosis on strawberry (Mertely and Peres, 2005), while C. 

gloeosporioides and C. fragariae cause crown rot of strawberries (Peres and 

MacKenzie, 2007). Avocado and almond are affected by C. gloeosporioides 

(Penzig) Penzig et Sacc where the avocado is associated with postharvest fruit rot 

while the latter becomes apparent in young fruit (Prusky and Keen, 1993; Striem 

et al., 1989). Postbloom fruit drop of citrus is caused by C. acutatum, while C. 

gloeosporioides causes postharvest anthracnose of the same fruit (Zulfiqar et al., 

1996).  Mango anthracnose is mainly caused by C. gloeosporioides (Jeffries et al., 

1990; Prusky and Keen, 1993) and few minor pathogens including C. asianum  

(Lima et al., 2013). C.  lagenarium is a causative agent of anthracnose fruit rot 

affecting watermelon, muskmelon, cantaloupe, cucumber and more (Prusky, 

1996).  

     Research by Redman et al. (1999) showed that a single gene disruption is able 

to transform the pathogenic Glomerella magna affecting Citrullus lanatus into 

non-pathogenic strain.  They were trying to establish why some pathogenic 

Colletotrichum fungi can also express mutualism and commensalism providing 

the benefits for host plant including: biotic and abiotic stress tolerance, and 

enhanced growth (Redman et al., 2001). Researchers concluded that this type of 

interactions are dependent on plant’s genotype (Rodriguez  and Redman, 2008). 

Colletotrichum spp. are mainly pathogenic, however, there are examples of 

mutualism when exposed to non-disease hosts e.g. C. gloeosporioides  pathogenic 

to strawberry provided drought resistance to its non-disease host watermelon 

(Redman et al., 2001). 
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      Many species from this genus also proved to be excellent models for studies 

surrounding e.g. fungal-plant interactions, nutrition, and host resistance (Tu, 

1992b; Talhinhas and Sreenivasaprasad, 2005; Perfect et al., 1999).  

 

Fig 1.1. Green coffee berry affected by C. kahawee (Silva et al., 2006) 

 

Fig 1.2. Brown blotch on soybeans caused by C. truncatum (Yorinori J. T., 

EcoPort, available at: www.ecoport.org accessed) 

     

   C. lindemuthianum was a break-through organism when the definition of host 

specificity and race were recognised (Barrus, 1911). Colletotrichum affecting 
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beans served as model organisms for research on phytoalexins-antimicrobial 

chemicals (Kuc, 1972).  

    There are still a lot of unanswered questions surrounding shift between 

biotrophy and necrotrophy in Colletotrichum spp.; however, recent advances in  

genomics research is expected to address them.   

1.3.3. Colletotrichum- Major Clades and Clusters 

     Recent studies on Colletotrichum phylogenetics have resolved a lot of 

confusions regarding taxonomy and nomenclature (Cannon et al., 2012). Online 

resources like Q-bank (http://www.q-bank.eu/) solved problems regarding the 

application of C. lindemuthianum name. It also  provides current information on 

Colletotrichum spp. based on multilocus phylogenetic analysis (Q-bank). 

     Early studies based on the ribosomal RNA gene block internal transcribed 

spacer (ITS) region sequence provided an understanding of the genetic diversity 

and phylogenetic relationships amongst various species in the Colletotrichum 

genus (e.g. Sreenivasaprasad et al., 1996). The DNA barcoding was first applied 

to Colletotrichum based on ITS1 sequence polymorphism allowing to differentiate 

between various Colletotrichum spp. and strains within C. gloeosporioides (Mills 

et al., 1992; Sreenivasaprasad et al., 1992).  ITS is continuously used by 

researchers in Colletotrichum phylogenetics (Xie et al., 2010; Yang et al., 2011; 

Crouch and Tomaso-Peterson, 2012). This discovery led to fast progress of 

molecular phylogenetics in Colletotrichum genus. ITS sequence was coupled with 

LSU and resolved 27 strains within 13 different species (Sherriff et al., 1994). 

Further research included combined sequences ITS1 and 2 of 18 Colletotrichum 

species, which formed six phylogenetic groups non-congruent with spore 

morphology results (Sreenivasaprasad et al., 1996). This was followed by studies 

on C. acutatum that involved use of β-tubulin and histone markers (Talhinhas et 

al., 2002) as well as glyceraldehyde-phosphate dehydrogenase and glutamine 

synthetase (Guerber et al., 2003). More recent phylogenetic studies on 

Colletotrichum spp. associated with herbaceous hosts using the above as well as 

actin and chitin synthase-1 markers resolved 20 clades including 12 that were 
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formerly identified as C. dematium  (Damm et al., 2009). Latest research also 

includes calmodulin (Yang et al., 2009), MAT1-2, and SOD2 markers (Crouch 

and Tomaso-Peterson, 2012). More information on the multilocus phylogenetic 

analysis is contained in section 1.4.3.  

     Recent phylogenetic studies of Colletotrichum species carried out by Cannon 

et al. (2012) revealed 9 large clades and few minor clusters with potentially 

separate origins (Fig 1.3.). The acutatum, gloeosporioides and boninense clades 

are the largest in the genus. C. acutatum clade consists of 30 species with the two 

most important subclades. First C. acutatum sensu stricto made of 21 species 

containing C. floriniae and the second one containg 9 organisms including among 

others C. salicis. C. orchidophilum is a separate sister taxon clade (Cannon et al., 

2012). 

     C. dematium clade contains 6 species with C. spinaciae and C. circinans being 

most economically significant (Washington et al., 2006; Kim et al., 2008).  

    The C. destructivum complex entails few economically important species: C. 

higginsianum, C. fascum and C. destructivum. Out of the three, C. higginsianum 

appears to have highest scientific value due to genome sequencing studies as well 

as host-pathogen research using model plant Arabidopsis thaliana (O’Connell et 

al., 2012; Kleeman et al., 2012). C. destructivum is a monopyletic taxon meaning 

all of the species within this clade have a common ancestor (O’Connell et al., 

2012). 

     C. gloeosporioides clade includes 22 species with two principal subclades C. 

kahawee and C. musae (Weir et al., 2012). As with many other taxons within 

Colletotrichum genus, subclades are not well differentiated based only on ITS 

sequence, and further multilocus analysis is required (Cannon et al., 2012). C. 

boninense is a sister taxon of C. gloeosporioides and contains 17 species. 

     C. graminicola taxon consists of 13 species with 2 subclades: C. graminicola 

and C. cereale each represented by a single species and both being grass 

pathogens (Cannon et al., 2012). 
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     The orbiculare clade is a sister taxon to all other Colletotrichum clades and 

contains C.lindemuthianum, C. trifolii, C.malvarum and C. orbiculare (Liu et al., 

2007; Young et al., 2009). All members of the group are characterised by straight, 

short and wide conidia and small appressorium (Sutton, 1980). There was a lot of 

confusion in the past about the C. lindemuthianum classification due to high 

differentiation level in spore morphology. Cannon et al. (2000) and Mordue 

(1971) characterized them as long and narrow of various sizes, while Sutton 

(1980) reported short, wide and spherical conidia, which are universally 

considered typical of orbiculare complex (Bain and Essary, 1906). C. 

lindemuthianum is a common bean pathogen from Fabaceae (Leguminosae) 

family; however, some organisms from the C. gloeosporioides taxon also affect 

these types of plants leading to misidentifications (Cannon et al., 2012).  

      Recent study on C. orbiculare phylogenetics using multilocus molecular 

phylogenetic analysis revealed nine clades out of which four were previously 

known: C. lindemuthianum, C. malvarum, C. orbiculare and C. trifolii. There 

were four new species identified C. bidentis, C. sidae, C. spinosum and C. 

tebeestii. There were two clades recognized within the C. lindemuthianum 

referred to as 1 and 2, however, there was not enough evidence to split the groups 

into separate species due to common origins, similar morphology and host 

preference (Damm et al., 2013). There is still a lot of uncertainty regarding the 

orbiculare complex. However, C. lindemuthianum has been epitypified (Liu et al., 

2013). The purpose of epitype is to find a representative of particular species that 

comply with the original characterization of an organism while fitting with 

modern taxonomy and nomenclature principles (Cannon et al., 2008).      

       The remaining two clades include: spethianum and truncatum- sister to 

gloeosporioides and boninense taxons (Cannon et al., 2012). Outside the clades 

are species that do not fit the phylogenetic tree that includes C. coccodes, which 

became more economically significant due to recent outbursts of infections on 

tomatoes and potatoes (Anon, 1998, cited by: Lees and Hilton, 2003).  
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Fig 1.3. Phylogenetic Tree Illustrating the Colletotrichum Genus Based on 

Bayesian analysis of Concatenated Multiple Sequence Alignment of CHS-1, ACT 

and ITS Sequences (Cannon et al., 2012). 
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1.4.   Infection Mechanisms of Colletotrichum Species  

       Fungi in general obtain their nutrients through two different modes. Biotrophs 

acquire their nutrients from living cells. Necrotrophic fungi kill the host plant 

tissue and obtain their nutrients from decaying matter (Lewis, 1973). C. 

lindemuthianum is a hemibiotroph, an organism that initially exhibits biotrophy 

and later switches to necrotrophy. This mode of action is common amongst 

various pathogens that cause anthracnose diseases (Luttrell, 1974). 

     All members of Colletotrichum genus go through similar infection pathway 

initially: adherence of conidia to the plant surface, germination, and formation of 

germ tubes that lead to development of appresoria.  Intracellular hemibiotrophy is 

marked by swelling of infection peg giving rise to formation of infection vesicle 

and ultimately primary hyphae that permeate through epidermal and mesophyll 

cells. Colonization of living cells is asymptomatic (biotrophic stage) followed by 

development of thin secondary hyphae indicating necrotrophic phase where the 

host plant is killed (O’Connell and Bailey, 1991). Examples of hemibiotrophs 

include: C. lindemuthianum (O’Connell and Bailey, 1991), C. graminicola (Zea 

mays: Politis and Wheeler, 1973), C. truncatum (Pisum sativum: Uronu, 1989), 

and C. orbiculare (Cucumis sativus). Many Colletotrichum species go through 

biotrophy phase without any growth manifestation (Cerkauskas, 1988; Tiffany, 

1951).  

       Subcuticular intramural pathogens like C. capsici on cowpea (Vigna 

unguiculata: Tu, 1992b; Pring et al., 1995) are characterized by development of 

hyphae under the cuticle within the walls of epidermal cells hence the initial 

growth stages remain asymptomatic (Tu, 1992b). Second stage involves 

development of necrothrophic secondary hyphae (Mendgen and Lesemann, 1991). 

       The organism that uses both modes of infection pathways: intracellular 

hemibiotrophy and subcuticular intramural process is C. gloeosporioides when 

colonising Citrus spp. (Brown, 1977) and Stylosanthes spp. (Ogle et al., 1990) 

depending on the available conditions.  
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     C. lindemuthianum is a causative agent of anthracnose in common bean 

(Phaseolus vulgaris L., Fig 1.4.) grown mainly in tropical and subtropical 

countries (Paula Jr et al., 2008).  

      

 

Fig 1.4. Anthracnose pod lesions on beans (Phaseolus vulgaris) (Biddle and 

McKeow, 2007) 

     Currently, there is not enough evidence how the fungus switches its nutritional 

modes of action. It appears cell wall degrading enzymes, particularly endo-pectin 

lyase (PL) are responsible for development of anthracnose lesions, tissue 

maceration and electrolyte leakage (Wijesundera, 1984; Wijesundera et al., 1989).  

 

1.5. Colletotrichum lindemuthianum 

1.5.1. Geographical Distribution  

     C. lindemuthianum occurs in Central and South America, Europe and Africa, 

South and South East Asia and Australasia in temperate and tropical climates. 

Most of geographical locations occupied by C. lindemuthianum were recorded by 
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CABI (Centre for Agriculture and Biosciences International) (Fig 1.5.). The 

countries of occurrence not recorded by CABI but included in work of Ansari et 

al. (2004) are amongst others: Bolivia, Tanzania, Argentina, Dominican Republic, 

Columbia, and Peru. 

 

Fig 1.5. Geographical Occurrences of C. lindemuthianum reported by CABI 
(http://www.plantwise.org) 

1.5.2. Pathogenic Variation  

     There is no clearly defined International Race Designation and a Host 

Differential Set for C. lindemuthianum – bean system. Race classification process 

is based on observation of virulence towards a particular set of common bean 

cultivars. 

    Differentiation of C. lindemuthianum races using Greek letters was first 

introduced by Barrus that described races alpha and beta in 1911 and 1918 

respectively. This was followed by discoveries of gamma (Burkholder, 1923), 

delta (Andrus and Wade, 1942), epsilon (Blondet, 1962, cited by: Thomazella et 

al., 2002), lambda (Hubbeling, 1961; 1974, cited by: Thomazella et al., 2002) and 

Ebnet race also designated as kappa race (Hoffman et al., 1974, cited by: 

Thomazella et al., 2002). The reactions of differential cultivars when exposed to 

specific C. lindemuthianum isolates were reported by Bannerot (1965, cited by: 
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Thomazella et al., 2002) and Charrier and Bannerot (1970, cited by: Thomazella 

et al., 2002) using 3 cultivars: Windusa, Dark Red Kidney and Kaboon (Fig 1.6., 

A). Krüger et al., (1977) introduced the Cornell 49-242 cultivar containing the 

‘Are’ resistance gene that differentiated kappa race (Fig 1.6., B).  Currently, races 

designated with Greek letters constitute race groups as they have been further 

divided into races labelled with Arabic numerals using other differential cultivars 

e.g. Michelite, Perry Marrow (Krüger et al., 1977). This not only indicates 

inconsistent structure of race/differential set for C. lindemuthianum on beans but 

also suggests that it is a dynamic process with new race discoveries along with 

migration of already identified ones. 

 

Fig 1.6. Dataset Produced by Krüger et al. (1977) Demonstrating the Race 

Differentiation of C. lindemuthianum Races Denominated with Greek Letters* 

*A) Shows the results generated by Bannerot (1965, cited by: Thomazella et al., 2002) 

and Charrier and Bannerot (1970, cited by: Thomazella et al., 2002); B) Presents the 

results generated by Krüger et al. (1977) that differentiated kappa race using Cornell 49-

242 cultivar. 
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      The cultivar/pathogen reactions are determined using a scoring system, which 

often leads to misinterpretations and wrong labelling of the race/organisms 

(Ansari et al., 2004). Field isolates have to be separated and subcultured into 

monoconidial cultures that ensure homogeneity (Casela and Fredriksen, 1994). 

Subsequently, races are identified on the basis of reaction to specific variety: 

either susceptible or resistant. However, genetic fingerprinting methods and use of 

molecular markers can help in further clarification and/or validation of the race 

designation process.  

      The gene-for-gene (GFG) model first introduced by Flor (1971) claims that 

for each resistance gene in host plant there is a corresponding avirulence gene in 

the pathogen. This phenomenon driven by reciprocal selection leads to high 

genetic diversity especially in wild populations (Thompson and Burden, 1992; 

Geffroy et al., 1999). 

    Molecular studies have shed some light on the genetic basis of plant resistance, 

which uncovered a multialleic gene cluster (Crute and Pink, 1996). Vast majority 

of those genes have nucleotide-binding site-leucine rich repeat (NBS-LRR) 

protein structure (Hammond-Kosack and Jones, 1997).   

      Higher genetic diversity was observed amongst Central American races based 

on rapid amplified polymorphic DNA (RAPD) and restriction fragment length 

polymorphism (RFLP) studies. Nevertheless, RAPD (Alzate-Martin et al., 1999) 

and isoenzyme analysis (Fabre et al., 1995) did not point out the relationship 

between the country of origin and molecular diversity of the related isolates. This 

was further analysed using an AFLP-based approach (Ansari et al., 2004).  

1.5.3. Phaseolus vulgaris and other Hosts  of C. lindemuthianum 

     Despite the fact that isolates for this study were collected only from Phaseolus 

vulgaris it is important to note the other host plants affected by C. 

lindemuthianum (Table 1.1.). 
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Table 1.1. List of Major and Minor Host Plants Affected by C. lindemuthianum 

Latin Name Common Name Host 

Importance 

References 

Cajanus cajan pigeon pea Major International 

Agricultural Research 

Centres, 2014 

Canavalia 

ensiformis 

gotani bean Minor International 

Agricultural Research 

Centres, 2014 

Dolichos sp. Range of species Minor Lenne, 1990 

Glycine max soyabean Minor Royal Botanic 

Gardens, Kew, 2014 

Lablab purpureus hyacinth bean, 

countrybean 

Major Zhuang, 2001; 

Manjunath et al., 

2013 

Lens culinaris 

subsp. culinaris 

lentil Minor The International 

Society for Molecular 

Plant-Microbe 

Interactions,1996 

Lotus corniculatus bird's-foot trefoil Minor Mulenko et al., 2008 

Phaseolus 

acutifolius 

tepary bean  Royal Botanic 

Gardens, Kew, 2014 

Phaseolus 

coccineus 

runner bean Minor Mahuku et al., 2002 

Phaseolus lunatus lima bean  Balhorn, 2011 

Phaseolus 

polyanthus 

polyanthus beans  Mahuku et al., 2002 

Pisum sativum pea Minor Royal Botanic 

Gardens, Kew, 2014 

Vicia faba faba bean, broad 

bean 

Minor Zhuang 2005; 

Mohammed, 2013 
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Vigna mungo black gram Minor Basandrai et al., 1999 

Vigna radiata mung bean Minor Mohammed, 2013 

Vigna sinensis 

ssp. sesquipedalis 

asparagus bean Major Pande and Rao, 1998; 

Royal Botanic 

Gardens, Kew 2014; 

Mohammed, 2013 

Vigna unguiculata cowpea Major Wong and Thrower, 

1978; Royal Botanic 

Gardens, Kew, 2014 

*Information obtained from Plantwise (2014). 

       The major host of C. lindemuthianum  is P. vulgaris (common bean) and the 

history of domestication and agricultural intensification of this plant has a crucial 

role in understanding the evolutionary processes, that in turn can relate to the 

evolution of C. lindemuthianum and development of genetic groups.  

     Archaeological evidence from Mexico and Peru based on radiocarbon dating 

shows that Phaseolus is around 10, 000 years old. However, the accelerator mass 

spectrometry (AMS) provided a different estimate. It indicates that P. vulgaris 

started to be cultivated in Mexico 2500 B.P. (Before Present set at 1950) and 4400 

B.P. in Peru. Common bean is the most prevalent crop of all Phaseolus group 

members (Lynch and Kaplan, 1999; Hart et al., 2002). It is consumed by over half 

a billion people in the world predominantly in Latin America. Mendel, Johannsen 

and Sax discovered and demonstrated the genetics and inheritance theory using 

beans (Gepts, 2001). It grows rapidly at temperatures around 22-30ºC and the 

crop is ready for harvesting within 4-8 weeks. Common bean is mostly 

propagated by seeds. Highest yields are in Europe estimated for 1.5 t/ha (Brink 

and Belay, 2006). 

1.5.4. Common Bean (Phaseolus vulgaris) Anthracnose 

      Bean anthracnose (Fig 1.4.) is caused by C. lindemuthianum (Sacc & Magn.) 

Br. & Cav. found ubiquitously around the world (Fig 1.5.). Disease is particularly 

problematic on snap and dry beans including navy beans, kidney beans and pinto 
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(Sherf, 1986). It appears as black spots with reddish/brown outline. In humid 

environment the anthracnose spots acquire pinky/creamy pigment, while in dry 

conditions they become brown. The spore masses are formed from conidia 

emerging from acervuli. Disease can be transmitted from infected plant debris and 

disseminated through wind currents, water splash, insects, animals, and clothing. 

The optimal temperature for fungal growth is 20-25ºC. Post-harvest rotting is also 

a common issue (Snowdon, 2010). 

    The first record of bean anthracnose was by Lindemuth dating at 1875 followed 

by more comprehensive description few years later made by Saccardo. Pathogen 

has the most favourable conditions in temperate climate rather than tropics, which 

is reflected by the crop losses. Free moisture, humidity, frequent rains, wind and 

cooler environment supports faster growth and spreading of C. lindemuthianum 

(Sharma, 2004).  

    First signs of infection appear on bottom part of the leaf and petioles (attaching 

leaf to the stem), which later spreads onto the upper part and onto stem, leaf veins 

and hypocotyl (stem under cotyledons). Stem colonisation can often weaken the 

stem to the point when they fall under the wind (Zaumeyer and Rex, 1958).  

    The perfect state of C. lindemuthianum is known as G. lindemuthianum. The 

disease is both seed-borne and soil-borne. Use of seeds free of contamination, 

crop rotation, spraying, avoidance of contact with wet plants and use of 

anthracnose resistant cultivars are amongst the most commonly used practices 

against the disease.  Fungicides have proven to be ineffective (Schwartz and Hall, 

2005).  

      Future prospects involve wide use of molecular markers, cloning and 

transformation techniques along with high density linkage mapping in order to 

improve  the germplasm of common bean and help with the improvement of 

existing anthracnose resistant cultivars (Kole, 2007). 
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1.6. Molecular Characterization of Colletotrichum spp. and Adaptive 

Markers 

1.6.1. Molecular Markers Related to Adaptation  

   Microsatellites also known as simple sequence repeats (SSRs), short tandem 

repeats (STRs), and variable number tandem repeats (VNTRs) are repetitive 

stretches of DNA variable in number between individuals making them useful 

markers for genetic fingerprinting/barcoding. Microsatellites can also indirectly 

indicate the SNPs (Single Nucleotide Polymorphisms) density (Griffiths et al., 

2008a). 

   Another method used for genetic barcoding is amplified fragment length 

polymorphism (AFLP) technology which is considered superior to microsatellite 

approach for genetic barcoding. AFLP provided much higher resolution and 

reproducibility than microsatellites especially when using large number of isolates 

(Vos et al., 1995). 

    Arbitrary-primed PCR (AP-PCR) is a technique for the detection of AFLPs. 

AP-PCR can be used to illustrate the relationships between organisms and support 

sequencing data in taxonomic and phylogenetic studies. It has an advantage of 

rapid data generation for a large number of isolates (Caetano-Anolles, 1993). 

     SNPs proved very useful in the identification of adaptive divergence of closely 

related populations and species (Renaut et al., 2010). SNP is a sequence variation 

between closely related species/isolates within their genome. SNPs usually occur 

in parts of non-coding DNA and constitute around 1 % of whole genome for 

common and 0.5 % for rarer ones. The SNP density relates to level of genetic 

recombination and mutation as an adaptive response to environmental factors 

(Dale et al., 2008). SNPs may help to locate the genes under positive selection as 

it was demonstrated on Picea glauca (white spruce). Sequencing-based 

approaches including Next Generation Sequencing enables the discovery of SNPs 

on a large scale (Pavy et al., 2006). 
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1.6.2. Molecular Approaches to Phylogenetics and Value of Multilocus Markers   

     In fungal molecular phylogenetic studies based on DNA sequences, the term 

homology is commonly and routinely used in describing and discussing the 

relatedness of various isolates belonging to the same or different species. The 

term homology, in this context is widely used in the literature to provide a 

quantitative estimate of the level of DNA sequence similarity between two or 

more isolates (Damm et al., 2012a; Guerber et al. 2003)  

        The ITS sequence analysis can be very useful in the preliminary 

identification of Colletotrichum species (Sreenivasaprasad et al., 1996). 

Unfortunately, there is a lot of misinterpreted data deposited in the GenBank with 

sequences given a wrong species name (Cai et al., 2009). ITS is highly conserved 

and therefore cannot provide enough resolution that would differentiate between 

taxa and multilocus analysis has proven to be much more effective (Crouch et al., 

2009). Despite that, ITS has been pointed out as a universal marker, mainly due to 

the amount of ITS sequence data available in open access databases (Schoch et 

al., 2011).  

        There are other popular diagnostic markers used depending on the fungal 

species, e.g. translation elongation factor 1alpha subunit (TEF) gene has been 

used successfully with Fusarium genus (Mulè et al., 2004), while beta-tubulin 

(TUB2) and calmodulin (CAL) have been applied well with Aspergillus and 

Penicillium (Samson et al., 2007; Peterson, 2008; Houbraken et al., 2011). In 

terms of Colletotrichum, analysis based purely on ITS sequence data is useful in 

resolving major clades, but lacks resolution at higher order level. Combined 

TUB2 and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) markers 

resolved all 29 sub-clades within C. acutatum clade (Cannon et al., 2012). More 

information about the history of molecular characterization of Colletotrichum spp. 

as well as current methods are included in section “1.3.3. Colletotrichum- Major 

Clades and Clusters”. 
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1.6.3. Markers Used for Characterization of Colletotrichum spp. in this Study  

     Mainly based on previous research, a number of markers were selected for this 

study to characterise a set of Colletotrichum isolates displaying biogeographic 

diversity (e.g. Damm et al., 2009, 2012a,b; Yang et al., 2012). 

       Internal Transcribed (ITS) is a non-coding part of DNA situated between two 

genes encoding structural components of ribosomal RNAs: small subunit (SSU) 

18S rRNA and large subunit (LSU) 28S rRNA. ITS 1 and ITS 2 are partitioned by 

5.8S rRNA gene (Baldwin, 1992). 

       Glyceraldehyde-3-phosphate (GAPDH) is an enzyme used in 6th step of 

glycolysis pathway. More recently it has also been proven that it initiates 

transcription and induces apoptosis (Tarze et al., 2007). Research on Candida 

albicans showed that can also act as virulence factor (Gozalbo et al., 1998). 

       Glutamine synthetase (GS) is responsible for catalysis of ammonia and 

glutamate yielding glutamine (Liaw and Eisenberg, 1994). Evidence indicates that 

GS has pathogenic value in bacteria. It is involved in cell wall resistance in 

Mycobacterium bovis (Chandra et al., 2010). 

     Beta-tubulin (TUB2) amplified with TUB5 and TUB6 primers designed by 

Talhinhas et al. (2002). Β-tubulin is a monomeric globular protein that along with 

α-tubulin makes up the heterodimer tubulin - a building block of microfilaments 

(Kuznetsov et al., 2013). 

     Part of histone 3 (His3) gene was amplified using primers HIS3F and HIS3R 

designed by Glass and Donaldson (1995). Histone 3 is one of five histone proteins 

involved in DNA packaging forming ‘beads on the string’ structure (Griffiths et 

al., 2008b). 

      Actin (ACT) gene fragment was amplified using primers ACT-512F and 

ACT-783R designed by Carbone and Kohn (1999). Actin is a highly conserved 

globular protein playing crucial role in cell processes by formation of polymerised 

microfilaments and facilitating amongst others: cell morphogenesis, cytokinesis, 
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motility, and organelle movement (Walker and Garrill, 2006; Dominguez and 

Holmes, 2011) 

      Chitin synthase1 (CHS) is an enzyme that maintains chitin levels during 

cytokinesis stage in cell division (Silverman et al., 1988; Shaw et al., 1991). 

       Calmodulin-1 (CAL) is a calcium binding receptor molecule with EF-hand 

motif. CAL is one of 20 calmodulin proteins and plays a role in signal 

transduction pathways, cell growth and cycle regulation (Stevens, 1983). 

         The MAT1-2-1 fragment of conserved mating type locus HMG box. MAT1 

has two idiomorphs/alleles: MAT1-1 and MAT1-2 (Turgeon, 1998; Coppin et al., 

1997).  Heterothallic ascomycetes possess either one of the two alleles but not 

both, while homothallic have a pair (Coppin et al., 1997). Members of 

Glomerella, a sexual morph of Colletotrichum are currently known to contain 

only the MAT1-2 allele (Vaillancourt et al., 2000) unlike the vast majority of 

filamentous ascomycetes. 

 

1.7. Sequencing – Developments and Novel Approaches 

1.7.1. History of Genome Sequencing  

       Bacteriophage fX174 (5,386 bp) was the first full genome to be sequenced by 

Fred Sanger and his colleagues in 1977 (Fleischmann et al., 1995). It required 

preparation of genomic library of DNA fragments each cloned into a viral vector 

and taken up by host organisms like Escherichia coli or S. cerevisiae followed by 

sequencing (Sanger et al., 1977).  Sequencing of bacteriophage (lambda) at 

48,502 bp was performed using shotgun cloning method (Sanger et al., 1982). In 

1989, the smallpox virus was a pioneer genome sequenced using automated 

platform (Massung et al., 1993). The first free living organism to be sequenced to 

everyone’s surprise was Haemophilus influenzae in 1995 led by Craig Venter 

from the Institute for Genomic Research (TIGR) (Fleischmann et al., 1995; 

Venter et al., 2004 ). The sequencing of Saccharomyces cerevisiae was set up by 

Andre Goffeau in 1989 resulting in completion of 12.5 Mb genome (Johnston, 
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2003; Levy, 1994). This success inspired the Human Genome Project (HGP) 

established in 1990, while the first draft of 3,000-Mb Human Genome was 

submitted in 2005 (Sawicki et al., 1993; Griffiths et al., 2008a). With the 

progression of sequencing technologies and major historical events was the 

enormous expansion of sequencing database (Fig 1.7.) as reported by NCBI 

authorities (Hutchison, 2007). 

 

Fig 1.7. The Time Scale Illustrating the Growth of Sequencing Database in 

Relation to Major Sequencing Events* (Hutchison, 2007). 

*According to Hutchison (2007) the statistical data covering the size of the database 

before 1981 was retrieved from Dayhoff (1981) and after 1981 it was based on NCBI 

information (http://www.ncbi.nlm.nih.gov/Genbank/). 

 

 

http://www.ncbi.nlm.nih.gov/Genbank/


 

23 
 

1.7.2. Sanger Sequencing 

     Sanger sequencing was developed by Frederick Sanger and colleagues in 1977 

(Sanger and Coulson, 1975; Sanger et al., 1977). Along with the method 

developed by Maxam and Gilbert, it is considered the first generation sequencing 

technology (Maxam and Gilbert, 1977).  Sanger became the primary method of 

sequencing till the beginning of the Millenium when it was replaced by Next 

Generation platforms (Schuster, 2008). Currently, NGS is cheaper and much more 

accessible enabling large-scale genome sequencing studies. However, Sanger’s 

method remained the preferable sequencing method for smaller scale projects 

(Morozova and Marra, 2008).  

     Sanger ‘s method is also referred to as dideoxy sequencing in which the 

deoxynucleotides (dNTPs) are replaced by 2’, 3’-dideoxy derivatives (ddNTPs) 

that lack the ‘OH’-group leading to termination of the reaction (Dale et al., 2008). 

Subsequently, products of the reaction are separated on polyacrylamide gels for 

sequence reads. Alternatively ddNTPs can be labelled with fluorescent dyes and 

separated using capillary electrophoresis (Janitz, 2011). 

    This laborious system was replaced by Applied Biosystems (ABI) capable of 

producing 96 kb data in single three-hour run (Ewing and Green, 1998). 

Nowadays 96-capillary machine can provide 0.5 Mb of sequence data per day 

(Janitz, 2011).  

1.7.3. Next Generation Sequencing (NGS) 

    Over the last three – five years, NGS has become one of the principal 

approaches used by molecular geneticists among other researchers. Genome 

sequencing allows screening the organism in an attempt to find highly variable 

regions with potential susceptibility to adaptation. These markers are associated 

with functional genetic variation. NGS also enables studies at the transcriptome 

level allowing identification of genes expressed under particular conditions 

(Angeloni et al., 2010). Neutral markers like microsatellites and amplified 

fragment length polymorphism are widely used to characterize population gene 

flow, density, size and genetic drift (Foll et al., 2010). However, neutral markers 
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are not fully adequate in defining adaptation processes (Allendorf et al. 2010).  

Furthermore, NGS tools applied at the population level are required to illustrate 

the gene activity in relation to habitat fragmentation, inbreeding depression, and 

environmental change (Primmer, 2009; Avise, 2010).  

    Recent developments in sequencing technologies termed Next Generation 

Sequencing (NGS) has revolutionised genome level analysis of biosystems. It was 

the platform developed by 454 Life Sciences Corporation (now Roche Applied 

Science) that changed the face of NGS. It dramatically reduced the time and cost 

of DNA sequencing (e.g. 25 mln bases in one 4-hour run) while providing 

accuracy of 99% or higher (Margulies et al., 2005) utilizing pyrosequencing 

chemistry (Nyren et al., 1993). In parallel, technological improvements from 

capillary systems limited to only 96 samples (Schuster, 2008) to picolitre plate-

based solid phase systems led to the publication of complete Neantheral genome 

(Green et al., 2010). 

     The SOLiD system developed by Applied Biosystems follows the principles of 

the sequencing by ligation technology (Morozova and Marra, 2008). Due to 

shorter read lengths, compared to the 454 methodology, this method is more 

suitable for resequencing projects rather than de novo sequencing (Dale et al., 

2008)  

     The Illumina-Solexa is a sequencing by synthesis method also referred to as 

bridge amplification sequencing (Morozova and Marra, 2008). Illumina/Solexa 

system provides shorter sequence reads when compared with other NGS platforms 

(Bentley, 2006). Currently available sequencing technologies from Illumina-

Solexa are HiSeq, MiSeq and Genome Analyzer IIx systems. The sequencing 

chemistry behind them is the same; however, there are certain technical 

differences that make them more applicable for different research investigations. 

For example, MiSeq is promoted to have the broadest range of applications 

including RNA sequencing and ChIP-Seq (http://www.illumina.com).  

     Technological advances in NGS also required parallel developments in 

computational analysis of the huge amounts of data for de novo assembly of the 
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genome, resequencing and other applications including transcriptomics (Baker, 

2012). For example, Velvet is a de novo assembler specifically designed for the 

short sequence reads generated by NGS platforms (Young, 2009). SOAPdenovo 

(Li et al., 2010), ABySS (Simpson et al., 2009) and ALLPATHS (Butler et al., 

2008) are some alternatives to Velvet. Similarly, genome annotation and gene 

prediction areas required the development of software such as Augustus (Stanke 

et al., 2004) and GeneMark (Lukashin and Borodovsky, 1998) applicable for 

eukaryotic genomes.  

1.7.4. Colletotrichum and NGS Technology-Current Status  

      Building on the NGS technologies, there are at least four Colletotrichum 

genome sequences available in the public domain: C. higginsianum (O’Connell et 

al., 2012), C. graminicola (O’Connell et al., 2012), C. orbiculare (Gan et al., 

2013) and C. gloeosporioides (Gan et al., 2013). Further, genome sequencing and 

assembly of a selected set of C. acutatum strains is on-going through joint 

research (Baroncelli, Thon and Sreenivasaprasad, pers.com.). C. higginsianum 

host range includes the model system Arabidopsis thaliana and many cruciferous 

crops (Kleemann et al., 2012);  while C. graminicola is virtually confined to 

maize-Zea mays. Genomes of both species were of similar size: 57.4 Mb for C. 

graminicola and 53.4 Mb for C. higginsianum. Fugal genomes encode a range of 

biomolecules like secondary metabolites e.g. polyketides, small secreted peptides, 

toxins and carbohydrate-active enzymes that are linked to pathogenicity and host 

specificity. Recent genome sequencing studies of C. higginsianum and C. 

graminicola recorded relatively high numbers of these virulence factors in both 

species, however, an expansion of secondary metabolism effectors, peptidases 

transporters and other secreted proteins has been reported in C. higginsianum 

(O’Connell et al., 2012). Another Colletotrichum sequencing project completed 

involved two economically significant fungal pathogens: C. orbiculare- primarily 

linked to cucurbits and Nicotiana benthamiana, and C. gloeosporioides with a 

wide host range. C. orbiculare genome size was 88.3Mb, much larger compared 

to other Colletotrichum species including C. gloeosporioides at 55.6 Mb (Gan et 

al., 2013).  
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    Genome sequence of an isolate of C. acutatum sensu lato (C. fioriniae) has just 

been released (Baroncelli et al., 2014). Many more genomes from Colletotrichum 

genus are pending publication e.g.  from within C. acutatum sensu lato species 

complex including C. simmondsii (Riccardo Baroncelli, unpublished). 
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CHAPTER 2: MATERIALS AND METHODS 

2.1. Fungal isolates, culture media and conditions 

2.1.1. Isolates 

     In this study, 18 isolates previously identified as C. lindemuthianum and all 

associated with common bean anthracnose were used (Table 2.1). Isolates 771 and 

449 were used as out-groups where appropriate. 

Table 2.1. Details of Colletotrichum spp. isolates+ Characterised in this Study 

Species 
Serial 

No. 

ATCC 

No. 
Code Race Host Name Origin 

C. lindemuthianum 701 _ 3157B gamma Phaseolus vulgaris Tanzania 

C. lindemuthianum 776 _ UPS9 
gamma-

2(20) 
Phaseolus vulgaris France 

C. lindemuthianum 216 62984 _ beta-1 Phaseolus vulgaris Europe 

C. lindemuthianum 832 _ 
CRS 73-1-1-

M 
_ Phaseolus vulgaris Costa Rica 

C. lindemuthianum 779 _ H433 _ - Europe 

C. lindemuthianum 29 _ 20780 kappa Phaseolus vulgaris Europe 

C. lindemuthianum 45 _ _ _ Phaseolus vulgaris UK 

C. lindemuthianum 206 _ 20884 alpha Phaseolus vulgaris Europe 

C. lindemuthianum 217 _ 10283 delta Phaseolus vulgaris Europe 

C. lindemuthianum 219 _ 20186 iota Phaseolus vulgaris Europe 

C. lindemuthianum 428 _ 20380 lambda Phaseolus vulgaris - 

C. lindemuthianum 533 _ P1-I4 _ Phaseolus vulgaris Malawi 

C. lindemuthianum 560 _ _ _ Phaseolus vulgaris USA 

C. lindemuthianum 693 _ 2860 
31, 

kappa 
Phaseolus vulgaris Brazil 

C. lindemuthianum 694 _ 2862 
137, 

epsilon 
Phaseolus vulgaris Colombia 

C. lindemuthianum 814 _ CRP 7-4-1-M _ Phaseolus vulgaris Costa Rica 

C. lindemuthianum* 771 _ C11G-01 _ Phaseolus vulgaris China 

C. lindemuthianum* 449 _ 1 _ Phaseolus vulgaris Pakistan 

+All isolates were obtained from the collection maintained at Warwick HRI, 

Wellesbourne, University of Warwick, UK and University of Bedfordshire, UK 

by Professors Eric Holub and Sreenivasaprasad, respectively. 
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* 771 and 449 were identified as C. gloeosporioides and C. truncatum, 

respectively in this study based on multilocus sequence data  

- Indicates details not available 

2.1.2. Colletotrichum culturing  

     Potato dextrose agar (PDA) and potato dextrose broth were used for routine 

culturing and in the growth experiments of Colletotrichum isolates following 

manufacturer’s directions. Solutions were autoclaved at 121°C.  

Each Petri dish (Sarstedt, UK) was dispensed with 20-25ml of PDA in the laminar 

flow bench. Plates were inoculated with isolates in a microbiological safety 

cabinet (MSC) using sterile inoculation loops. 

   Microfuge tubes were filled with 1ml of PDB and inoculated with mycelial 

material from PDA plates minimising the amount of agar transferred to ensure 

efficient DNA extraction. Adequate care was taken to maintain aseptic conditions, 

and the genetic integrity of the isolates.  

2.1.3. Growth conditions 

     Generally, Colletotrichum isolates were grown at 25°C for periods between 10-

14days. For the experiments involving the observation of the growth, 

Colletotrichum sp. isolates were maintained at 20 and 25°C.  

2.1.4. Preparation of stock cultures for storage 

Water stock cultures were prepared for storage of the Colletotrichum sp. isolates. 

Universal tubes with approx. 15 ml sterile water were prepared. Agar blocks 

(~0.7mm square) from fresh cultures (~7 -10 days old) were transferred to the 

tubes, which were maintained at room temperature. 
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2.1.5. Monitoring the growth of Colletotrichum isolates 

     The growth was measured in mm and recorded every 1-5 days for 16 days 

(cultures incubated at 20°C) and 14 days (cultures incubated at 25°C). There were 

8 measurements taken from the plate (Fig 2.1) in order to calculate average values 

for each isolate. Inoculations on PDA plates were prepared using cork borer 8 mm 

in diameter to ensure the comparable results.  

 

Fig 2.1 The Diagram Illustrating the Manner in which Measurements were Taken 

for Growth Monitoring. 

 

2.1.6. Microscopic observation of cultures/sporulation. 

Observation of fungal cultures to assess the level of sporulation was performed 

using a compound microscope. Fungal material mounted on slides was stained 

with lactophenol cotton blue dye to check for sporulation at required 

magnifications. 

2.2. DNA Extraction  

2.2.1. Chelex-based method 

     Microcentrifuge tubes containing 3 to 5 day-old fungal cultures were 

centrifuged at maximum speed (14,680rpm=20,238rcf) for 5-7min. Supernatant 
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was removed and cultures were washed twice each using 500µl of sterile water. 

Tubes were centrifuged for 1-2min at max speed. Supernatant was removed. 

Subsequently, near equal amounts of sand and chelex were added to fungal 

material in a 1:1:1 ratio. Afterwards 300-500µl of molecularly sterile water was 

added to the tube depending on the volume of the components. Autoclaved plastic 

micropestle was used to grind the mycelium with sand and chelex. Separate pestle 

was used for each isolate to avoid cross-contamination. Centrifugation was 

repeated at max speed for 5-7 min and the supernatant was collected into a fresh 

1.5ml eppendorf tube. The supernatant containing the genomic DNA was stored at 

-20 C till further use. 

2.2.2. Column-based method for multilocus sequencing work 

   GenElute Plant Genomic DNA Miniprep Kit (Sigma-Aldrich) was used for 

DNA extractions for multilocus sequencing purposes. Sigma protocol was 

followed as indicated by the manufacturer with omission of the first step 

(Appendix I). Hot block was set for 65ºC 100µl of sterile water (Sigma-Aldrich) 

warmed up at 65ºC on a hot block was used for eluting the DNA for each sample.  

2.2.3. DNA extraction method for genome sequencing 

    The DNeasy Plant Mini Kit (Qiagen) was used for the extraction of DNA for  

the genome sequencing processes. The mycelial material was prepared as below, 

and was used for the genomic DNA extraction according to manufacturer’s 

protocol (Appendix II). 

     The cultures were grown in 20 ml beakers filled with a thin layer of PDB. 

Minimal amount of liquid medium was used to provide optimal surface area for 

fungal growth under aerobic conditions. Inoculum comprised of small pieces of 

mycelial material, with minimal carry over of agar, cut from fresh culture. 

Cultures were incubated at 25ºC for 3-5days; then the mycelial mat was removed 

and washed twice with sterile water. The mat was placed on filter paper and 

excess moisture was removed. Subsequently, fungal material was wrapped in 3 

layers of aluminium foil and frozen in dry ice. Appropriate amount of the frozen 
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material was used for DNA extraction according to Qiagen protocol (Appendix 

III). 

 

2.3. PCR reactions, conditions and primer sequences 

2.3.1. Preparation of 100 µM stock and 20 µM working stock of primers  

    According to the supplier’s instructions (SIGMA) specified quantity of sterile 

water was added to freezedried primers under laminar flow bench to prepare the 

100 µM stocks. Tubes were tapped and inverted repeatedly to ensure the content 

is mixed. To prepare 20 µM working stock, 20µl of the stock primer (100 µM) 

was taken in a 1.5ml eppendorf tube and 80 µl of sterile water were added. Tubes 

were inverted few times to mix the content and centrifuged for 1 min at max 

speed. 

2.3.2. Preparation of 20 µl and 50 µl PCR reactions  

     BioMix Red (Bioline, UK) is a pre-mixed and pre-optimized 2X PCR solution 

using Taq DNA polymerase. The reagent contains dye and loading buffer for 

convenient use. The 20 µl reactions required: 1µl of DNA, 1µl of forward primer, 

1µl of reverse primer, 7µl of sterile water and 10 µl of BioMix Red. For the 50 µl 

reactions, all reagents were scaled-up to 2 µl of DNA, 2.5 µl forward primer, 2.5 

µl reverse primer, 18 µl of water and 25 µl of BioMix Red. Thin-walled flat cap 

200 ul tubes (Sigma-Aldrich) were used for the assembly of PCR reactions. The 

PCR reactions were run using a thermal cycler with a heated lid (Bio-rad). 

2.3.3. Preparation of Arbitrary-Primed PCR 

     Reaction contents were generally same as for standard PCR (details above); 

however, only 1ul of a single AP-PCR primer was added to the mix and adjusted 

accordingly with sterile water.  Final volume of reaction was 20 µl. Later 10 µl 

was loaded on 1.5 % agarose gel and electrophoresed at 80V. 
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2.3.4. PCR conditions  

The PCR conditions for amplification of ITS region using primers ITS1 and ITS4 

were according to standard protocol (Table 2.2.). 

 

Table 2.2. PCR Conditions for the Amplification of the ITS Region 

Process Temperature (°C) Time (min) Cycle No. 

Initial 

Denaturation 
95 3 1 

Denaturation 94 1 

35X Annealing 60 1 

Extension 72 1 

Final Extension 72 5 1 

 

      All other loci used in multilocus phylogenetic analysis were amplified 

following the same PCR conditions as below (Table 2.3.) with only the annealing 

temperature changing for each primer set (Table 2.4.).  

Table 2.3. PCR Conditions for Other Loci Used for Multilocus Phylogenetic 

Analysis. 

Process Temperature (°C) Time (min) Cycle No. 

Initial 

Denaturation 
94 5 1 

Denaturation 94 0.5 

40X Annealing Varied; see Table 3 0.5 

Extension 72 0.5 

Final Extension 72 7 1 
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Table 2.4. Annealing Temperatures Used with Various Primer Sets for Different 

Loci. 

Primer Set 
Annealing 

Temperatures (°C) 

Final Temp. Setting 

(°C) 

ACTF/ACTR 55,63 63 

CHSF/CHSR 52,55 55 

CL1/CL2 55,57 57 

HIS3F/HIS3R 64,65 65 

GDF1/GDR1 52,57 57 

GSF/GSR 52,61,63 63 

TUB5/TUB6 69 69 

HMGDF/HMGDR 61 61 

 

2.3.5. Primer sets used for multilocus sequencing 

     Various primer sets were identified from the literature and applied to 

Colletotrichum spp. in this study. The full sequence, name of the amplified locus, 

expected amplicon size and the source are listed (Table 2.5).  

Table 2.5. List of Primer Sets Used in the Study for Various Loci with Full 

Sequence Information and Amplicon Size 

Name  

of the 

primers 

Primer Sequences 

( 5’-3’) 
Locus/Gene 

Expected 

Size of the fragment 
Ref. 

GDF1/ 

GDR1 

Forward primer 

GDF1: 

GCCGTCAACGAC

CCCTTCATTGA 

 

Reverse primer 

GDR1: 

GGGTGGAGTCGT

ACTTGAGCATGT 

Glyceraldehyde-3-

phosphate 

dehydrogenase 

(GAPDH) 

~115bp 

(C.lindemuthianum)

, 

~200bp 

(C. gloeosporioides) 

(Liu et 

al.,2007;) 

Guerber et 

al., 2003) 
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GSF1/ 

GSR1 

Forward primer 

GSF1: 

ATGGCCGAGTAC

ATCTGG 

 

Reverse primer 

GSR1: 

GAACCGTCGAAG

TTCCAC 

Glutamine synthetase 

(GS) 

~930bp 

(C. lindemuthianum), 

~820bp 

(C. gloeosporioides) 

(Liu et 

al.,2007; ) 

Guerber et 

al., 2003) 

ITS1/ 

ITS4 

Forward primer ITS1: 

TCCGTAGGTGAA

CCTGCGG 

 

Reverse primer ITS4: 

TCCTCCGCTTATT

GATATGC 

Internal transcribed 

spacer  

 

~500bp 
(Innis et 

al.,1990) 

ACTF/ 

ACTR 

Forward primer 

ACT-512F: 

ATGTGCAAGGCC

GGTTTCGC 

 

Reverse primer ACT-

783R: 

TACGAGTCCTTCT

GGCCCAT 

Actin ~230bp 

(Carbone 

and Kohn, 

1999) 

TUB5/ 

TUB6 

Forward primer 

TUB5: 

GGTAACCAGATT

GGTGCTGCCTT 

 

Reverse primer 

TUB6: 

GCAGTCGCAGCC

CTCAGCCT 

β-Tubulin 

~430bp 

(C.lindemuthianum)

, ~450bp (C. 

gloeosporioides) 

Talhinhas 

et al., 

2005 

CHSF/ 

CHSR 

Forward primer CHS-

79 F: 

TGGGGCAAGGAT

GCTTGGAAGAAG 

chitin synthase1 ~250bp 

(Carbone 

and Kohn, 

1999) 

http://www.google.co.uk/url?sa=t&rct=j&q=its%20primer&source=web&cd=2&ved=0CCYQFjAB&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FInternal_transcribed_spacer&ei=6sujUKPHFufB0QWDroDYCQ&usg=AFQjCNGnyB3sw3-pYIYRKg0s0IAl9R7Djw&cad=rja
http://www.google.co.uk/url?sa=t&rct=j&q=its%20primer&source=web&cd=2&ved=0CCYQFjAB&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FInternal_transcribed_spacer&ei=6sujUKPHFufB0QWDroDYCQ&usg=AFQjCNGnyB3sw3-pYIYRKg0s0IAl9R7Djw&cad=rja
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Reverse primer CHS-

354 R: 

TGGAAGAACCAT

CTGTGAGAGTTG 

HIS3F/ 

HIS3R 

Forward primer 

CYLH3F: 

AGGTCCACTGGT

GGCAAG 

 

Reverse primer 

CYLH3R: 

AGCTGGATGTCCT

TGGACTG 

H3-1a and H3-1b parts 

of histone 1 
~370bp 

(Crous et 

al., 2004) 

CL1/ 

CL2 

Forward primer CL1: 
GARTWCAAGGAGG

CCTTCTC 

 

Reverse primer CL2: 
TTTTTGCATCATGA

GTTGGAC 

Calmodulin ~650bp 

(Johnston 

and Jones, 

1997) 

 

     For the mating-type locus MAT1-2-1, two primer sets of primers were tested 

(Table 2.6); one set specific to C. lindemuthianum and one degenerate set 

designed for use with various Colletotrichum spp. (Garcia-Serano et al., 2008). 
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Table 2.6. Primers Tested for the Amplification of the Mating-Type Locus (MAT1-

2-1)** 

Name  of 

the 

primers 

Primer Sequences 

( 5’-3’) 

For 

amplification 

of: 

Used with 

Size of 

PCR 
product 

(bp) 

Ref. 

HMGD 

Degenerate: 

 

Forward primer 

HMGDF: 

 

CCYCGYCCYCCY

AAYGCNTAYAT 

 

Reverse primer 

HMGDR: 

 

CGNGGRTTRTARC

GRTARTNRGG 

 

MAT1-2-1** 

**** 

C. gloeosporioides, 

Colletotrichum spp. 
~200bp 

Garcia-

Serano 

et al., 

2008 

HMGCL** 

Specific: 

 

Forward primer 

HMGCLF: 

CATGCCGCAGTAA

AGCAAAT 

 

Reverse primer 

HMGCLR: 

ATCATCAGACGTT

CTTTGTG 

 

MAT1-2-1 C. lindemuthianum ~150bp 

Garcia-

Serano 

et al., 

2008 

 

*MAT1-2-1 is more variable part of HMG box (mating-type gene). 

**Data not shown in the thesis as the primers were amplifying the same fragment 

of DNA. 
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2.3.6. Arbitrary Primed PCR (AP-PCR) Conditions 

      A set of 10 AP-PCR primers (Table 2.7.) were identified from the literature 

(Talhinhas et al., 2002; Talhilans et al., 2005; Freeman et al., 2000b) and were 

tested for preliminary screening of all isolates at the annealing temperatures 

recommended in the source. The general AP-PCR temperature setting along with 

other details are listed in Table 2.8. 

Table 2.7. Sequence Data and Annealing Temperature of AP-PCR Primers  

Primer Sequence (5’-3’) 

Annealing 

Temp. 

(ºC) 

Species Used in 

Original Study 
Reference 

(TGTC)4 TGTCTGTCTGTCTGTC 48 

C. acutatum, 
C.gloeosporioides 

and 

Colletotrichum 

from almond 

fruit 

Freeman et 

al., 2000a 

(ACTG)4 ACTGACTGACTGACTG 48 

C. fragariae 

C. acutatum, C. 

gloeosporioides 

Freeman et 

al., 2000b 

(GACAC)3 GACACGACACGACAC 48 As above 
Freeman et 

al., 2000a,b 

(GACA)4 GACAGACAGACAGACA 48 As above 
Freeman et 

al., 2000a,b 

(CAG)5 CAGCAGCAGCAGCAG 60 As above 
Freeman et 

al., 2000a, b 

(TCC)5 TCCTCCTCCTCCTCC 60 

Colletotrichum 

spp. 

 

 

C.acutatum, 
C.gloeosporioides 

Talhinhas et 

al., 2002; 

 

 

 

 

Talhinhas et 

al., 2005 
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(GAC)5 GACGACGACGACGAC 60 
As indicated 

above 
Talhinhas et 

al., 2005 

(CAC)5 CACCACCACCACCAC 60 
As indicated 

above 

Talhinhas et 

al., 2005 

(GACG)4 GACGGACGGACGGACG 65 
As indicated 

above 

Talhinhas et 

al., 2005 

(GCA)5 GCAGCAGCAGCAGCA 65 
As indicated 

above 

Talhinhas et 

al., 2005 

 

Table 2.8. Conditions Used for Arbitrary Primed PCR * 

Process Temperature (°C) Time (min) Cycle No. 

Initial 

Denaturation 
95 5 1 

Denaturation 94 1 

30X Annealing 
Varied; see Table 

3.4. 
2 

Extension 72 2 

Final Extension 72 5 1 

 

* Conditions as recommended in Talhinhas et al., 2002. 

2.4. Agarose gel electrophoresis 

2.4.1. Preparation of Tris-Acetate-EDTA electrophoresis buffer 

     The stock 50 X Tris-Acetate-EDTA buffer (40 mM Tris, 20 mM acetic acid, 1 

mM EDTA – pH 8.4; Fisher, UK) was diluted in Milli-Q water for preparation of 

1 X concentration of the solution used both for preparing the agarose gel and the 

running buffer in the electrophoresis tank.  
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2.4.2. Preparation of 1 % (w/v) agarose gel and electrophoresis 

   Agarose powder (Sigma-Aldrich) was melted in 1 X Tris-Acetate-EDTA buffer 

(1g/100 ml).  The gels were routinely electrophoresed at 80 V for 45 min in a 

horizontal gel system (BIO-RAD).  

2.4.3. Staining with Ethidium Bromide (Et Br) and visualization under UV light 

To aid the visualization of DNA bands, 5µl of Et Br (10 mg/ml in H2 O, Sigma-

Aldrich,) was added to every 100 ml of the agarose gel . Adequate health and 

safey precautions were taken in handling, and disposal of the Et Br stained gels 

and the buffer; Et Br stock was stored at room temperature. 

2.4.4. Molecular weight marker 

 2.4.4.1. For amplicon size and concentration estimation 

     2. 4.4.1. Easy Ladder I (Bioline, UK) was used to estimate the size of the 

amplicons, and also to provide an approximate estimate of the DNA concentration 

through comparison of the fluorescence level of the bands on the gel. This 

particular ladder produces 5 bands on the gel allowing the determination of the 

size between 100-2000bp with each band at 50 ng (Fig 2.2.). The reagent was kept 

at -20°C.  
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Fig 2.2 Easy Ladder I (Bioline, http://www.bioline.com) 

2.4.4.2. For assessing the quality and quantity of genomic DNA 

       The Lambda DNA is a linear double-stranded temperate E. coli bacteriophage 

of 48,502 bp size. Lambda DNA was used for assessing the genomic DNA of two 

C. lindemuthianum isolates: 216 and 776. Stock lambda DNA (0.3 µg/µl), was 

diluted 10-fold to 30 ng/µl in order to prepare a working stock. Lambda DNA was 

loaded on 0.7 % agarose gels run at 60 V for 120 min. Final loading volume was 

10µl. While only 1µl of C. lindemuthianum genomic DNA was loaded on gel 

(made up to 10µl with 9µl of water), four different concentrations of Lambda 

DNA were selected: 30 ng (1µl), 60 ng (2µl), 90 ng (3µl), and 120 ng (4µl). 
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2.5. Purification of PCR products  

      QIAquick PCR Purification Kit was used for clean-up of PCR products to 

remove primer dimers, enzyme, and other components present in PCR. The 

process was followed according to the manufacturer’s recommendations 

(Appendix III). 

2.6. Preparation of DNA Samples for Sequencing  

      According to the recommendations provided by the Cambridge Sequencing 

Facility (Appendix IV) 20 ng per 100 base pairs of a PCR fragment was prepared 

in 10µl water. The preliminary fragment size and concentration estimation were 

made using the molecular weight marker Easy Ladder I referred to earlier. 

Calculations regarding the amount of DNA and water dilutions were made for 

each sample as explained with an example below: 

      A PCR amplicon of 600 bp would require 120 ng (at 20 ng per 100 bases). By 

observing the level of brightness of the band on the gel and comparing it to the 

MWM (loaded at 30 ng and 50 ng concentration on the gel) the concentration of 

the PCR product was estimated, e.g. 1µl equals of 30 ng. Therefore 4 µl (equal 

120 ng) were mixed with sterile water to make up a total volume of 10 µl. DNA 

samples were mixed throughly, centrifuged and sealed with parafilm for shipment 

to the sequencing facility. 

2.7. DNA sequencing  

      Sequence data was generated through automated Sanger sequencing using 

ABI  Applied Biosystems 3730xl DNA Analyser technology based on capillary 

electrophoresis as discussed in Introduction Chapter. 

2.8. Multilocus phylogenetic analysis- bioinformatics and software 

2.8.1. Opening and analysing the sequence files/data  

Geospiza, a free software, was downloaded and used to allow DNA sequence 

viewing, reverse complementary sequence and generate the FASTA sequence file 

for further analysis. 
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2.8.2. BLAST- Basic Local Alignment Search Tool  

BLAST (protein blast, nucleotide blast) was used for database searches using both 

accession numbers and FASTA sequences to find sequence homologies with other 

organisms as well as to identify the isolates. BLAST results/sequence data was 

used for multiple sequence alignments.  

2.8.3. ClustalW2- Multiple Sequence Alignment software  

     Multiple sequence alignment (MSA) with ClustalW2 was used for preliminary 

comparison of sequence data, allowing to position and identify the differences like 

SNPs. MSAs were then used for further phylogenetic analysis using Geneious 

software. 

2.8.4. Phylogenetic Analysis 

     Geneious is a software that allows BLAST searches, multiple sequence 

alignment, gene prediction and annotation of RNA and DNA sequence data. It 

also enables phylogenetic analysis including: bootstrapping, maximum likelihood 

analysis, Bayesian analysis (MrBayes), tree building and editing 

(www.geneious.com).  Geneious was used to carry out a range of 

bioinformatics/phylogenetic analysis of the multilocus sequence data generated in 

this study. 

2.9. Preparation of DNA for genome sequencing 

2.9.1. Assessment of DNA quality and quantity using NanoDrop   

   NanoDrop technology was used for assessment of concentration and purity of 

DNA (Appendix V). 

2.9.2. Validation of size of genomic DNA fragments and concentration  

     The size and concentration of genomic DNA was further estimated using uncut 

lambda DNA as molecular marker (section 2.4.4.2. in Materials and Methods).  
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  CHAPTER 3: RESULTS 

 

PART I. Screening of Nine Loci for Multilocus Phylogenetic Analysis and 

their Propriety for Colletotrichum spp. 

    

 Initial screening of the nine selected loci (ITS, ACT, TUB, CL, CYLH, HMG, 

GD, GS, and CHS) was performed using 6 isolates originally identified as C. 

lindemuthianum (216, 701, 771, 776, 779, and 832; Table 2.1.). This was done in 

order to assess the resolution of the chosen markers based on the level of 

conservation within the genome, their potential in species identification, and in 

determining the genetic diversity and relationships within and between species in 

relation to the biogeographic diversity.  

3.1. Species Identification of Colletotrichum Isolates  

   Using ITS sequence data (Appendix VI) generated for each isolate (Table 2.1). 

BLAST search on NCBI database was performed to validate the species identity 

of the isolates. During the first part of the investigation, isolate 771 was identified 

as C. gloeosporioides. Similarly, during the second part, isolate 449 was identified 

as C. truncatum.  Sequence data for C. truncatum was generated only for the five 

loci that were most useful: ITS, TUB, GD, GS and HMG. However, in order to 

provide a comparative view of the variation in the amplicon size, data for C. 

truncatum was added to the gel images, where available. 

 

3.2. Standardization of PCR Conditions for Each Locus Used in Multilocus  

Phylogenetic Analysis 

     The PCR conditions were standardized for each locus by assessing the banding 

pattern on the gel (Table 3.1. and 3.2.). The aim was to obtain clean single band of 

expected size on the gel with no non-specific amplification and minimal amount 

of primer dimers.  
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Table 3.1. Details of Labelling to Figures used in Standardization of PCR 

Conditions for Each Locus Used in Multilocus Phylogenetic Analysis* 

Number on Picture Isolate Code Species 

1 701 C. lindemuthianum 

2 216 C. lindemuthianum 

3 776 C. lindemuthianum 

4 779 C. lindemuthianum 

5 832 C. lindemuthianum 

6 771 C. gloeosporioides 

7 449 C. truncatum 

C Control (No DNA) C 

A-20µl reactions 

B-50µl reactions 

C-cleanup products 

*The number on the pictures are linked to the codes of the isolates (Table 2.1.).  

 

Table 3.2. Results of Amplification of Multiple Loci in Colletotrichum Isolates. 

Locus Gel Pictures 
Amplified 

at (°C) 
Details 

ITS 

A  

B  

C  

60 

There were no 

visible non-

specific bands  

or 

contamination. 
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CHS 

A  

B  

C  

52 

Non-specific 

banding 

especially 

noticeable in 

sample 5 was 

minimised 

during the scale-

up and the 

purification. 

GS 

A  

B  

C  

61 

Difference in the 

size of the 

amplicon in 

sample 6 that 

was ~100 bp 

smaller than the 

rest of the PCR 

products. 

ACT 

A  

B  

C  

63 
No non-specific 

binding. 

GD/ 
GAPDH A  

57 

PCR product was 

~175 bp for C. 

lindemuthianum 

samples and 

~250 bp for C. 

gloeosporioides 

and C. truncatum 

isolates. Low 
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B  

C  

low level non-

specific binding. 

CAL 

A  

B  

C  

57 
No non-specific 

binding. 

HIS3 

A  

B  

C  

65 As above. 

TUB 

A  

B  

C  

69 
As above. Low 

contamination of 

control. 
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HMG 

A  

B  

C  

61 
No non-specific 

binding. 

*Table 3.1. represents the labelling legend to the pictures. 

Summary of the amplicon sizes for various loci is presented in Table 3.7. 

3.3. Multilocus Phylogenetic Analysis  

3.3.1. Determination of Amplicon Structure and Position using Reference 

Colletotrichum spp. Genomes 

      Sequence data for one isolate C. lindemuthianum 216 was selected for the 

deciphering structure of the sequenced gene and to generate the schematic 

representation. Each locus used in multilocus phylogenetic analysis was mapped 

against the reference high homology gene found on NCBI database. Two 

sequences were aligned using ClustalW2 and the structure of gene was generated 

using Geneious software. The two sequences were then assembled against the 

reference genome of C. orbiculare MAFF 240442 (reference assembly provided 

by Riccardo Baroncelli, Warwick University). Attempts to align the sequence data 

against other Colletotrichum genomes (e.g. C. higginsianum, C.graminicola) were 

not successful potential due to high divergence. The only genome that was 

suitable for reference was C. orbiculare that shares the same clade as C. 

lindemuthianum.  Gene structure images were generated using Geneious version 

6.1, Biomatters (www.geneious.com). 
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Table 3.3. The Labelling Legend to the Fig 3.1.-3.9.* 

Feature on the Diagram Purpose 

Top Scale 
Illustration of the position of given gene 

within the reference C. orbiculare genome. 

Grey/Coloured Bar below 

Represents consensus sequence where dark 

grey/black areas represent the C. 

orbiculare genome and coloured regions 

depict variables. 

Green/Khaki Bar 

Green bar refers to the level of homology 

between the sequences where khaki refer 

to one strand and bright green region to 

both strands. 

Coloured/Black Bar Next to 

Reference Gene with Scale above 

Illustrates the length and/or structure of 

reference gene. Colours represent 

nucleotides within sequence: A (red), T 

(green), C (blue), and G (yellow). 

Red/Pink Bar (ITS Sequence) 

Illustrates the structure of the amplified 

ITS region where red highlights the small 

fragment of 18S rRNA, 5.8S rRNA and 

fragment of 28S rRNA, while pink shows 

2 blocks of the ITS RNA. 

Purple Bar 
Illustrates the Blast Hit between two 

sequences. 

Yellow Bar Represents codons. 

Grey Bar Shows exons. 

Line Bar Represents introns. 

Green Bar Represents full gene/sequence. 

Red Bar Shows mRNA. 

Bottom Grey Bars 

Represent the C. orbiculare genome and 

the gene sequence generated in the study. 

Gaps refer to deletions and black/coloured 

regions are representing variable data. 

*Single diagram may not contain all features. 
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   The ITS structure (Fig 3.1.) shows the 5.8S unit 153 bp in length with ITS on 

each side 164 and 165 bp long. Part of the 28S unit was amplified at 57bp along 

with the 18S on the other side amplified at 30 bp. The BLAST Hit was from 

1,990,386 bp to 1,989,882 bp on the genome contig/scaffold.  

 

Fig 3.1. C. lindemuthianum Ribosomal RNA Gene Block ITS (Internal 

Transcribed Spacer) Region Structure Mapped Against Reference Sequence and 

C. orbiculare Genome  

      The actin (ACT) gene fragment amplified was 251 bp (Fig 3.2.) while the 

reference actin gene (JQ005842) was 250 bases long containing 3 exons spanning 

the reference gene sequence from 22nd base to the 273rd base. The amplicon also 

contained 14 bp of further sequence past the ACT gene, but was missing the first 

31 bp of the exon 1. The amplified fragment contained a small part of exon 1(6 

bp), full sequence of exon 2 (31 bp) and a part of exon 3 (21bp) giving a total of 

89 bp of coding sequence and long stretches of two intron sequences. The BLAST 

hit with the C. orbiculare genome contig was positioned between 340,520 bp and 

340,737 bp.  

 

 Fig 3.2. C. lindemuthianum Actin Gene Fragment (ACT) Sequence Mapped 

against the Reference Sequence and C. orbiculare Genome 
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     The calmodulin (CAL) gene amplified was 648 bp (Fig 3.3.) and alignment 

against the reference calmodulin gene sequence revealed the coverage of small 

part of 2nd intron (14 bp) and full part of exons 3 (16 bp), 4 (126 bp), 5 (74 bp), 6 

(138 bp) and part of 7 (17 bp). The amplicon was positioned between 463 and 

1,111 bases within the reference gene (CTU15993). The reference CL gene 

comprised of at least 7 exons and 6 introns.  The CL amplicon was located 

between 18,726 and 19,373 bases within C. orbiculare genome contig with the 

BLAST hit 646 bp long. 

 

Fig 3.3. C. lindemuthianum Calmodulin (CAL) Gene Structure Mapped against 

Reference Sequence and C. orbiculare Genome 

    The histone 3 gene fragment sequenced was ~370 bp long (Fig 3.4.). The 

sequence was first aligned against the reference gene from NCBI (JX546768) in 

order to reveal its structure. The reference gene was 413 bp long with two exons 

186 bp and 167 bp, respectively separated by an intron of 61 bp. The amplicon 

was spanning parts of the exon 1 (142 bp of the full 186 bp) and full exon 2. The 

BLAST Hit within the C. orbiculare was 370 bp long and located between 60,382 

and 60,751 bases on the genome contig. 

 

Fig 3.4. C. lindemuthianum Histone 3 (HIS3) Gene Structure Mapped against 

Reference Sequence and C. orbiculare Genome 
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    The glutamine synthetase (GS) sequence appeared to be a large intron within 

the  glutamine synthase gene amplified as a 933 bp fragment (Fig 3.5.). The 

BLAST Hit within C. orbiculare genome was 910 bp long and positioned 

between 302,392 to 303,301 bp. The reference glutamine synthase intron gene 

(DQ792886) was 907 bp. The amplicon was fully covering the sequence data 

from both sources with additional 4 bases and 22 bases at the 5’ and the 3’, 

respectively. 

 

 Fig 3.5. Structure of the C. lindemuthianum Glutamine Synthetase Gene (GS) 

Amplicon Mapped against Reference Sequence and C. orbiculare Genome 

     The glyceraldehyde-3-phosphate dehydrogenase (GD) sequence was the 

shortest in the multilocus sequence analysis at only 115 bp (Fig 3.6.). The 

amplicon mainly spanned the  intron between exons 1 and 2 and the 5’ part of 

exon 2. The GD/GAPDH gene is built of 2 intervals of coding sequence of 129 bp 

and 885 bp and a total sequence 2188 bp.  The amplicon covered 84 bp of the 

intron separating the two exons and 28 bp of the 2nd exon. The BLAST Hit for the 

reference C. orbiculare genome was significantly lower at only 66 bp positioned 

between 545,091 and 545,156 bp on the genome contig and covering the 3’ part of 

intron (37 bp) and the 5’part of exon 2 (28 bp).  
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Fig 3.6. Structure of the C. lindemuthianum Glyceraldehyde-3-Phosphate 

Dehydrogenase Gene (GD/GAPDH) Amplicon Mapped against Reference 

Sequence and C. orbiculare Genome 
 

     The beta-tubulin gene (TUB) fragment sequence was 437 bp (Fig 3.7.). The 

reference sequence contained a full beta-tubulin gene (JQ005863) at 485 bp in 

length spanning 4 exons and 5 introns. The sequenced amplicon stretched over the 

intervals 3, 4 and 5. The BLAST Hit with the reference gene was 328 bp long 

from the 158 to 485 bases. The amplicon also contained ~ 110 bp of DNA 

sequence following the TUB gene.  The BLAST Hit with the C. orbiculare 

genome was the same size as the amplicon at 437 bp long and was spanning the 

genome contig from the 146,705 to 147,141 bases.  

 

Fig 3.7. C. lindemuthianum Beta-Tubulin (TUB) Gene Structure Mapped against 

Reference Sequence and C. orbiculare Genome 

       The amplified chitin synthase 1 (CHS-1) gene (Fig 3.8.) was 248 bp in length 

with BLAST Hit within C. orbiculare genome of 245 bp and positioned at 

1,683,116 to 1,682,872 bp of the genome contig/scaffold. The amplified region 

contained only the coding sequence and was a partial sequence of CHS-1 gene. 

The reference gene (Acc.no: JX546660) was larger at 298 bp but was still only a 
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partial sequence of the CHS-1. The amplicon overlapped from the 53 to 298 bases 

of the reference sequence.  

 

Fig 3.8. C. lindemuthianum Chitin Synthase-1 (CHS-1) Gene Structure Mapped 

against Reference Sequence and C. orbiculare Genome 

        The amplified mating type gene/high mobility group domain (HMG) DNA 

fragment spanned the MAT1-2-1 fragment of HMG box (Fig 3.9.). The amplicon 

size was 212 bp covered by 207 bp BLAST Hit from 499,859 to 500,065 bases 

within the C. orbiculare genome contig. The full MAT1-2-1 sequence contains 4 

intervals of coding DNA sequence (CDS) with the amplicon spanning parts of 

interval 3 and 4 including the intervening non-coding sequence.  

 

 

Fig 3.9. C. lindemuthianum mating type gene/high mobility group domain 

(MAT1-2-1 Gene/HMG domain) Structure Mapped against Reference Sequence 

and C. orbiculare Genome 
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3.3.2. Example of Multiple Sequence Alignment for Selected Colletotrichum 

Isolates of GAPDH Sequence Data   

     Sequence data was aligned using ClustalW2 multiple sequence alignment tool 

available on Geneious and presented in text view (Fig 3.10.). Initially, Geospiza 

(Finch TV, Appendix VIII) freeware was used for opening the raw sequence trace 

data and exporting the FASTA files used for the alignment. An example of 

ClustalW2 multiple sequence alignment is contained in Fig 3.10., while the rest of 

the alignment files are presented in Appendix VI. The alignment is presented in 

blocks of 60 bases; the scale above the alignment shows 60 bases at 10 base 

intervals. On the left side isolate codes are shown running in the same order 

across the alignment. Gaps (-) introduced by the algorithm to optimise the 

alignment indicate indels (insertions/deletions). More detailed information on the 

sequence homology/ divergence is presented in Table 3.5. and Table 3.6. where % 

values were calculated based on the number of variable nucleotides within the 

multiple sequence alignment. 
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Fig 3.10. Multiple Sequence Alignment of Glyceraldehyde-3-Phosphate 

Dehydrogenase (GD/GAPDH) Sequence Data Generated for Colletotrichum 

Isolates along with the MAFF_240422 Reference Sequence. 
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Fig 3.11. Diagrammatic Representation of the Multiple Sequence Alignment 

Concatenated Sequence Data of the Nine Loci of Colletotrichum Isolates along 

with the MAFF_240422 Reference Sequence Generated with Geneious* 

*The scale on top shows the size of the sequence running from 1 to 3,796 bp at 200 bp 

intervals. The top and bottom blocks shows first and second part of the sequence 

respectively. The black block refers to the consensus sequence with the gaps linked to 

deletions. The green block below illustrates the level of homology where light green 

patches represent lower level of homology and the bright green indicate more conserved 

regions. Level of similarity is also demonstrated by the height of the graph. Refer to 

labelling legend Table 3.3. 

    Diagrammatic representation of the concatenated alignment (Fig. 3.11.) 

provides an overview comparison of sequences. Concatenated sequence data 

revealed 90.2 - 90.3% homology between C. lindemuthianum isolates and C. 

orbiculare MAFF 240422; while C. gloeosporioides was within 69.0 - 71.5% 

range. Similarity values amongst C. lindemuthianum isolates varied from 99.0 - 

99.9% (Table 3.5. and 3.6.) 

3.3.3. Generation of Phylogenetic Trees for the Nine Loci Used for Multilocus 

Phylogenetic Analysis Based on Multiple Sequence Alignments  

     The multiple sequence alignments for each locus provided the means for 

generation of phylogenetic trees (Fig 3.12.-3.20.) illustrating the evolutionary 

distances between the 6 Colletotrichum isolates. Trees were generated using 
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Bayesian analysis adopting the Jukes and  Cantor (1969) model. The bootstrap 

support values (generated for 10, 000 replicates) varied between 25 - 75% 

depending on the locus. The C. gloeosporioides 771 isolate was used as outgroup. 

Table 3.4. contains legend for figures 3.12.-3.21. used in this section.  

 

Table 3.4. Labelling Legend to Fig 3.12.-3.21.* 

Isolate Species Colour 

771 C. gloeosporioides Blue 

JQ005778; 

MAFF_240422 
C. orbiculare Orange 

832 C. lindemuthianum Green 

701 C. lindemuthianum Green 

776 C. lindemuthianum Green 

779 C. lindemuthianum Green 

216 C. lindemuthianum Green 

*Species are highlighted with different colours. 
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Fig 3.12. Phylogenetic  Tree of Colletotrichum Isolates Obtained Using Bayesian 

Analysis Based on Multiple Sequence Alignment of the Ribosomal RNA Gene 

Block Internal Transcribed Spacer (ITS) Region (see Table 3.4 for legend) 

     While generating the dendrogram/phylogenetic tree based on ITS sequences 

(Fig 3.12.), JQ005778 sequence of C. orbiculare from NCBI was used instead of 

the MAFF_240422 sequence to optimise the analysis. The ITS data was able 

resolve the gloeosporioides and orbiculare clades from the C. lindemuthianum 

isolates. The closer relationship between C. lindemuthianum isolates and C. 

orbiculare is illustrated by the common ancestral branching. C. lindemuthianum 

isolates showed 100 % homology apart from the isolate 832 which is separated 

from the rest as a different haplotype with 99.4% (Appendix VII Table 1.). 
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Fig 3.13. Phylogenetic Tree of Colletotrichum Isolates Obtained Using Bayesian 

Analysis Based on Multiple Sequence Alignment of the Actin (ACT) Gene (see 

Table 3.4 for legend) 

       The ACT gene was one of the highly conserved molecular phylogenetic 

markers, which can be observed from the tree (Fig 3.13.).  All five C. 

lindemuthianum isolates were grouped together although isolate 832 at 99.6 % 

homology represented a separate haplotype from the others (Table 3.5.). Isolates 

701 and 776 had a single ambiguous base within their sequence; despite 

sequencing of the samples with the reverse primer, the ambiguities could not be 

resolved.  
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Fig 3.14. Phylogenetic Tree of Colletotrichum Isolates Obtained Using Bayesian 

Analysis Based on Multiple Sequence Alignment of the Chitin Synthase-1 (CHS) 

Gene 

     The CHS sequence data could not resolve the C. orbiculare and C. 

lindemuthianum species complex and the branches were collapsed (Fig 3.14.). 

Within C. lindemuthianum two haplotypes could be distinguished based on the 

sequence data: 216, 701 and 832 represented first haplotype at 100% homology; 

776 and 779 were assigned to 2nd haplotype with 99.6% homology to the first 

haplotype (Table 3.5.). 
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Fig 3.15. Phylogenetic Tree of Colletotrichum Isolates Obtained Using Bayesian 

Analysis Based on Multiple Sequence Alignment of the Beta-Tubulin (TUB) 

Gene 

     The TUB as well as CL were the most conserved amongst the various loci 

tested with 100% homology among the C. lindemuthianum isolates (Table 3.5 and 

Appendix VII Table 4.). However, the C. lindemuthianum isolates were 

differentiated from the orbiculare clade (Fig 3.15. and 3.16. respectively).  
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Fig 3.16. Phylogenetic Tree of Colletotrichum Isolates Obtained Using Bayesian 

Analysis Based on Multiple Sequence Alignment of the Calmodulin (CAL) Gene 
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Fig 3.17. Phylogenetic Tree of Colletotrichum Isolates Obtained Using Bayesian 

Analysis Based on Multiple Sequence Alignment of the Histone 3 Gene 

      The histone gene sequence revealed 4 haplotypes within the C. 

lindemuthianum species complex.  Isolates 216 and 779 with 100 % homology 

represented a haplotype; whilst 701, 776 and 832 each represented an individual 

haplotype (Table 3.5.).  The C. lindemuthianum isolates were well differentiated 

from the orbiculare clade with bootstrap value at 76.54% (Fig 3.17.). 
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Fig 3.18. Phylogenetic Tree of Colletotrichum Isolates Obtained Using Bayesian 

Analysis Based on Multiple Sequence Alignment of the Glyceraldehyde-3-

Phosphate Dehydrogenase (GD/GAPDH) Gene 

     The GAPDH sequence also revealed 4 haplotypes within the C. 

lindemuthianum species. Isolates 216, 701,779, and 776 at 100% homology 

represented a haplotype; whilst and 832 was an individual haplotype (Appendix 

VII Table 2).  The C. lindemuthianum species complex was well differentiated 

from/within the orbiculare clade despite low number of isolates with high 

bootstrap values at 80.55% (Fig 3.18.). 
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Fig 3.19. Phylogenetic Tree of Colletotrichum Isolates Obtained Using Bayesian 

Analysis Based on Multiple Sequence Alignment of the Glutamine Synthetase 

(GS) Gene 

      The GS gene was moderately conserved (Fig 3.19.) and two haplotypes were 

distinguished represented by 832 at 97.4% homology to 216, 701, 776 and 779 

had 100% homology amongst them (Appendix VII Table 3.). The separation of 

the 832 isolate representing a separate genetic group was supported at bootstrap 

value 81.77%.  The rest of C. lindemuthianum isolates were grouped together with 

bootstrap support value 97.16%. 
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Fig 3.20. Phylogenetic Tree of Colletotrichum Isolates Obtained Using Bayesian 

Analysis Based on Multiple Sequence Alignment of the Mating Type Gene/High 

Mobility Group Domain. 

    The HMG gene was the molecular marker linked to the reproductive biology of 

the fungi and it differentiated the C. lindemuthianum isolates within the tree at 

84.66% bootstrap support value (Fig 3.20.). One haplotype was represented by 

isolates 216 and 776, a 2nd  haplotype by isolates 701 and 779, and a 3rd haplotype 

by isolate 832 (Appendix VII Table 5).  
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3.3.4. Generation of Consensus Tree Using Concatenated Multiple Sequence 

Alignment for All Nine Loci 

     The consensus tree (Fig 3.21.) was built based on concatenated multiple 

sequence alignment containing sequence data generated for all nine loci. The tree 

revealed the close evolutionary relationships between isolates within C. 

lindemuthianum species. Isolates 779, 776, 701 and 216 were recognized as one 

genetic group with bootstrap value 99.98 % within which isolates 776 and 779 

were identified as a subgroup resolved at bootstrap value of 98.24 %. Isolate 832 

was separated as representing a separate genetic group with bootstrap value of 

99.98 %. The closer relationship between C. orbiculare and C.lindemuthianum is 

well reflected by the tree and the C. gloeosporioides remains distinctly separated 

from the orbiculare clade. 
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Fig 3.21. Phylogenetic Tree of Colletotrichum Isolates Obtained Using Bayesian 

Analysis using Jukes and Cantor (1969) Model Based on Concatenated Multiple 

Sequence Alignment (including: ITS, ACT, CHS, HIS3, TUB, GS, GAPDH, CAL, and 

HMG)* 

*Bootstrap support values (10, 000 replicates) above 90% are shown at the nodes. 
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3.3.5. The Resolution of the Loci Based on Sequence Variation and Haplotype 

Identification  

  Homology and divergence values were calculated using the sequence data 

generated from nine different loci for the six Colletotrichum isolates. Data for 

four loci and concatenated alignment is shown in Table 3.5.and 3.6. respectively 

while the rest of the molecular markers datasets are presented in Appendix VII 

Table 1-6. The values were obtained based on the generation of multiple sequence 

alignment, and provide an overview of the level of resolution of the markers and 

their ability in differentiating the haplotypes within C. lindemuthianum species. 

For examples, the GD marker had the highest resolution within the C. 

lindemuthianum species that distinguished four haplotypes. Markers CAL and 

TUB were the most conserved with 100% similarity amongst all C. 

lindemuthianum isolates (Table 3.5. and Appendix VII Table 4).  

Table 3.5. Sequence Homology and Divergence between Colletotrichum Isolates 

Based on Sequence Data from Four Different Loci 

CHS Sequence* Homology and Divergence Between Colletotrichum Isolates (%) 

Isolates 216 701 776 779 832 MAFF 771 

216 - 0 0.4 0.4 0 7.2 10.4 

701 100.0 - 0.4 0.4 0 7.2 10.4 

776 99.6 99.6 - 0 0.4 6.8 10.8 

779 99.6 99.6 100.0 - 0.4 6.8 10.8 

832 100.0 100.0 99.6 99.6 - 7.2 10.4 

MAFF 92.8 92.8 93.2 93.2 92.8 - 13.2 

771 89.6 89.6 89.2 89.2 89.6 86.8 - 

*Chitin synthase-1 gene sequence. 

ACT Sequence* Homology and Divergence Between Colletotrichum Isolates (%) 

Isolates 216 701 776 779 832 MAFF 771 

216 - 0.4 0.4 0 0.4 8.5 20.4 

701 99.6 - 0 0.4 0 8.9 20.9 

776 99.6 100.0 - 0.4 0 8.9 20.9 

779 100.0 99.6 99.6 - 0.4 8.5 20.4 
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832 99.6 100.0 100.0 99.6 - 8.9 20.9 

MAFF 91.5 91.1 91.1 91.5 91.1 - 24.4 

771 79.6 79.1 79.1 79.6 79.1 75.6 - 

*Actin gene sequence.  

CAL Sequence* Homology and Divergence Between Colletotrichum Isolates (%) 

Isolates 216 701 776 779 832 MAFF 771 

216 - 0 0 0 0 7.7 30.3 

701 100.0 - 0 0 0 7.7 30.3 

776 100.0 100.0 - 0 0 7.7 30.3 

779 100.0 100.0 100.0 - 0 7.7 30.3 

832 100.0 100.0 100.0 100.0 - 7.7 30.3 

MAFF 92.3 92.3 92.3 92.3 92.3 - 32.4 

771 69.7 69.7 69.7 69.7 69.7 67.6 - 

*Calmodulin gene sequence 

HIS3 Sequence Homology and Divergence Between Colletotrichum Isolates (%) 

Isolates 216 701 776 779 832 MAFF 771 

216 - 0.3 0.5 0 0.3 8.0 13.8 

701 99.7 - 0.8 0.3 0.5 8.3 13.6 

776 99.5 99.2 - 0.5 0.8 8.0 14.3 

779 100.0 99.7 99.5 - 0.3 8.0 13.8 

832 99.7 99.5 99.2 99.7 - 7.8 13.6 

MAFF 92.0 91.7 92.0 92.0 92.2 - 16.4 

771 86.2 86.4 85.7 86.2 86.4 83.6 - 

*Histone 3 gene sequence. 

+C. orbiculare isolate MAFF_240422 was referred in the Table 3.5. as MAFF.  

High mobility group domain/mating type locus gene sequence (HMG) primers were used 

to amplify all 6 Colletotrichum isolates. However, they did not yield an amplicon with the 

771 isolate despite the fact that this primer pair was degenerate and designed for 

Colletotrichum spp. Therefore NCBI database was searched for C. gloeosporioides 

sequence data for the same region; the closest BLAST hit was represented by sequence 

RB001 which was included for the comparative analysis in this study (Appendix VII 

Table 5). 
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Based on the concatenated multiple sequence alignment for all molecular markers 

the total homology and divergence values were calculated (Table 3.6.) illustrating 

the comprehensive relationships between the six Colletotrichum isolates used. 

Table 3.6. Concatenated Sequence Homology and Divergence between 

Colletotrichum Isolates (%) 

Isolates 216 701 776 779 832 MAFF 771 

216 - 0.1 0.2 0.1 0.9 9.7 28.5 

701 99.9 - 0.2 0.1 0.9 9.7 28.5 

776 99.8 99.8 - 0.2 1.0 9.7 28.6 

779 99.9 99.9 99.8 - 0.9 9.7 28.5 

832 99.1 99.1 99.0 99.1 - 9.8 28.6 

MAFF* 90.3 90.3 90.3 90.3 90.2 - 31.0 

771 71.5 71.5 71.4 71.5 71.4 69.0 - 

 

     The difference in the sequence value was generally due to indels 

(insertion/deletion), however in case of C. gloeosporioides GD/GAPDH sequence 

a much larger fragment was amplified (Table 3.7.). Amplicon was 115 bp long in 

original sequence in the case of C. lindemuthianum isolates, while it was 205 bp 

for 771 isolate. However, the data was reduced to only 98 bp for GAPDH marker 

in order to align all Colletotrichum isolates. This type of variation is also observed 

for GS DNA fragment where C. lindemuthianum isolates range from 871-875 

while C. gloeosporioides amplicon is much shorter at only 759 bp.  
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Table 3.7. Amplicon Size of Each Locus for Colletotrichum Isolates (bp)* 

        Isolate 

Locus 
216 701 776 779 832 771 

ITS 500 500 500 500 500 511 

CHS 248 248 248 248 248 250 

ACT 232 231 231 232 231 229 

CL 648 648 648 648 648 673 

HIS  371 372 373 371 371 373 

GS 871 871 871 871 875 759 

GD/GAPDH 98 98 99 98 98 98 

TUB 437 437 437 437 437 449 

HMG 200 201 200 201 200 172** 

*Raw sequence data was edited to optimize the alignment.. 

**Data obtained from NCBI Accession No: RB001 
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CHAPTER 3 

PART II. Results of Multilocus Phylogenetic Analysis of Colletotrichum 

Isolates 

 

       Based on the results from Part I, five loci ranging from conserved to highly 

variable such as ITS, TUB, GD, GS and HMG were selected for the multilocus 

phylogenetic analysis of 18 Colletotrichum isolates including the six used in the 

intial screening (Table 2.1.). 

3.4. Multilocus Molecular Phylogenetic Analysis 

3.4.1. Assembling Multiple Sequence Alignment from Colletotrichum Sequence 

Data for 5 Selected Markers/Loci 

    Fasta files generated from the ABI trace data files were opened with Geneious 

and aligned using ClustalW for each molecular marker/locus (see Fasta files in 

Appendix VI). Sample illustrating the Geneious alignment output (Fig. 3.22.) 

contains all Colletotrichum sequence data generated for GD locus against the C. 

orbiculare isolate MAFF_240442 sequence. The most variable sequences 

generated for C. lindemuthianum were expressed by 3 isolates: 694, 814 and 832 

due to two nucleotide substitutions at 33rd base where ‘T’ was replaced by ‘A’ and 

at 69th base where ‘T’ was substituted for ‘C’; the ‘A’ insertion at the 55th base 

position of the isolate 776 requires further validation.  
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Fig 3.22. Sample of GAPDH Alignment View Generated by Geneious* 

*The top scale shows the number of bases within the sequence in 10 bp intervals. 

Consensus identity is the sequence generated by Geneious based on compared isolates 

sequence information. Nucleotides are colour coded. Numbers 1-16 represent C. 

lindemuthianum isolates followed by C. orbiculare (MAFF_240422), C. gloeosporioides, 

and C truncatum respectively.  

     Multiple sequence alignments for all Colletotrichum isolates was generated for 

ITS, TUB, GS, GAPDH and HMG (Fig 3.23.-3.27.) loci. The percentage 

homology/divergence values calculated based on the aligned sequence data are 

presented in Appendix VII Tables 1-6 based on the number of variable 

nucleotides.  

    MrBayes was used for the creation of phylogenetic trees based on maximum 

likelihood analysis of the multiple sequence alignment which is then analysed 

using Marcov chain Monte Carlo method for calculation of the posterior 

probabilities distribution of the multiple phylogenetic trees (Huelsenbeck and 

Ronquist, 2001) and to identify a consensus tree illustrating the most optimal 

representation of phylogenetic relationships (Mau et al., 1999). 
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Fig 3.23. Multiple Sequence Alignment of Ribosomal RNA Gene Block Internal 

Transcribed Spacer (ITS) Generated for Colletotrichum Isolates along with the 

MAFF_240422 Reference Sequence. 
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Fig 3.24 Multiple Sequence Alignment of Beta-Tubulin (TUB) Sequence Data Generated 

for Colletotrichum Isolates along with the MAFF_240422 Reference Sequence. 
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Fig 3.25. Multiple Sequence Alignment of Glyceraldehyde-3-Phosphate 

Dehydrogenase (GD/GAPDH) Sequence Data Generated for Colletotrichum 

Isolates along with the MAFF_240422 Reference Sequence. 
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Fig 3.26. Mating Type Gene/High Mobility Group domain (HMG) Multiple 

Sequence Alignment of Sequence Data Generated for Colletotrichum Isolates 

along with the MAFF_240422 Reference Sequence. 
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Fig 3.27. Multiple Sequence Alignment of Glutamine Synthetase (GS) Sequence 

Data Generated for Colletotrichum Isolates along with the MAFF_240422 

Reference Sequence 

      Due to the large number of characters and high resolution of the GS marker, 

Appendix IX contains nucleotide substitutions identified in each of the two 

genetic groups recognized through GS sequence data using multiple sequence 

analysis (Fig 3.27.). 
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Fig 3.28. Concatenated Sequence Alignment for Colletotrichum Isolates 

Generated with ClustalW2 and Visualized with Geneious* 

*The scale on top shows the size of the sequence from 1 to 2,228 bp at 250 bp intervals. 

The higher the variation from the consensus sequence within given region, the darker that 

area appears (e.g. most noticeable in 771 and 449 isolates). Refer to description under Fig 

3.28. 

    The concatenated alignment (Fig 3.28.) was performed for 18 Colletotrichum 

isolates (Table 2.1.) based on the sequence data generated for ITS, TUB, GAPDH, 

GS and HMG loci. The highest level of divergence from the C. lindemuthianum 

isolates was observed in C. gloeosporioides ranging from 36.7-37.0 %, while C. 

truncatum ranged from 31.8-32.4%. C. lindemuthianum isolates showed similarity 

between 88.3-89.1% to C. orbiculare, while divergence ranged from 10.9 to 

11.7% (Appendix VII Table 6). 

3.4.2. Generation of Phylogenetic Trees for the Five Selected Loci  

      The multiple sequence alignments provided the means for development of 

phylogenetic trees illustrating the evolutionary distances between the 18 

Colletotrichum spp. isolates (Table 2.1.). Trees were prepared using Bayesian 

analysis adopting the Jukes and Cantor (1969) model. Refer to Table 3.4. for 

general labelling information. The bootstrap support values (generated for 10,000 

replicates) ranged from 25 to 75 % depending on the locus. The C. 

gloeosporioides 771 isolate was used as an outgroup. 
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Fig 3.29. Phylogenetic  Tree of Colletotrichum Isolates Obtained Using Bayesian 

Analysis Based on Multiple Sequence Alignment of the Ribosomal RNA Gene 

Block Internal Transcribed Spacer (ITS) Region. 

 C. lindemuthianum isolates were separated into two clear clusters of seven and 

nine isolates each with high bootstrap values (88.6 – 99.8 %). C. orbiculare 

reference isolate was positioned within the larger cluster, although C. 

gloeosporioides and C. truncatum were well resolved with 100 % bootstrap 

support (Fig. 3.29.).  
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Fig 3.30. Phylogenetic Tree of Colletotrichum Isolates Obtained Using Bayesian 

Analysis Based on Multiple Sequence Alignment of the Glyceraldehyde-3-

Phosphate Dehydrogenase (GD/GAPDH) Gene. 

     Based on the glyceraldehyde-3-phosphate dehydrogenase (GD/GAPDH) 

sequence data C. lindemuthianum isolates were clustered into two main groups of 

3 and 13 isolates (Fig 3.30.) each represented by a distinct haplotype  at 55.1% 

bootstrap value despite C. truncatum being 50.3% divergent from the C. 

lindemuthianum isolates (Appendix VII Table 2; Table 3.8.). The overall tree 

topology was not optimal with this locus as C. orbiculare was positioned between 

C. gloeosporioides and C. truncatum and not close to C. lindemuthianum. 
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Fig 3.31. Phylogenetic Tree of Colletotrichum Isolates Obtained Using Bayesian 

Analysis Based on Multiple Sequence Alignment of the Glutamine Synthetase 

(GS) Gene. 

   GS locus provided a well resolved phylogenetic tree distinguishing three genetic 

clusters within C. lindemuthianum species supported by high bootstrap values 

(Fig 3.31.) linked to various haplotypes. C. lindemuthianum, C. orbiculare, C. 

truncatum and C. gloeosporioides relationships were clearly displayed with 100 

and 99.9 % bootstrap values. 
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Fig 3.32. Phylogenetic Tree of Colletotrichum Isolates Obtained Using Bayesian 

Analysis Based on Multiple Sequence Alignment of the Beta-Tubulin (TUB) 

Gene. 

    The TUB locus was the most conserved amongst the genetic markers used in 

this study with 100 % homology (Appendix VII Table 4) between all C. 

lindemuthianum isolates, which were clustered together to form one genetic group 

at 97.5 % bootstrap value. However, this locus resolved the four Colletotrichum 

species at 100 % bootstrap value including the relatedness between C. orbiculare 

and C. lindemuthianum as representatives of the orbiculare clade (Fig 3.32.).  
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Fig 3.33. Phylogenetic Tree of Colletotrichum Isolates Obtained Using Bayesian 

Analysis Based on Multiple Sequence Alignment of the Mating Type Gene/High 

Mobility Group Domain. 

      The mating type locus MAT1-2-1 (HMG) differentiated the C. 

lindemuthianum isolates into two main groups each represented by 4 and 12 

isolates. Within the larger group a cluster of two isolates 694 and 832 represented 

by a particular haplotype (HT3, Appendix VII Table 5) was differentiated albeit 

with a lower bootstrap value 59.8 %. This locus resolved the four Colletotrichum 

species including C. gloeosporioides represented by RB001 at 100 % bootstrap 

value displaying the close relatedness between C. orbiculare and C. 

lindemuthianum as representatives of the orbiculare clade (Fig 3.33.). 
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3.4.3. Generation of Consensus Tree Using Concatenated Multiple Sequence 

Alignment of the five Loci 

 

Fig 3.34. Phylogenetic Tree of Colletotrichum Isolates Obtained Using Bayesian 

Analysis using Jukes and Cantor (1969) Model Based on Concatenated Multiple 

Sequence Alignment (including: ITS, TUB, GS, GAPDH, and HMG)* 

     The concatenated sequence data produced a phylogenetic tree with an overall 

topology that was well supported by high bootstrap values of 89.9 to 100 % (Fig 

3.34), where C. gloeosporioides, C. truncatum and the orbiculare clade including 

C. orbiculare and the C. lindemuthianum isolates were well resolved at 100% 



 

94 
 

bootstrap values. C. lindemuthianum isolates representing seven haplotypes 

(Appendix VII Tables 6; Table 3.9) were clustered into two main genetic groups 

of eight isolates each with 98.5 % and 100 % bootstrap support. One of the groups 

was further sub-divided into three clusters (e.g. 694 and 832 with 75.3% bootstrap 

value); within the second group isolates 533 and 560 were represented as a cluster 

with 89.9 % bootstrap support).  

3.4.4. Sequence Homology and Divergence among Colletotrichum spp. Isolates  

 Sequence homology values were calculated based on the pairwise analysis of all 

Colletotrichum spp. isolates used in the study. Homology range data is shown in 

Table 3.8; data for individual loci and the concatenated sequence are presented in 

Appendix VII. This   provided a detailed view of the levels of genetic diversity 

identified by various loci as reflected by the number of haplotypes (HT) identified 

(Table 3.9.), and also the relatedness amongst the four species namely C. 

lindemuthianum,  C. orbiculare, C. gloeosporioides and C. truncatum. For 

example, the TUB locus proved to be the most conserved with 100 % homology 

across all C. lindemuthianum isolates, GS differentiated three haplotypes, and the 

HMG differentiated four haplotypes. Concatenated sequence data analysis of the 

five loci namely ITS, TUB, GAPDH, GS, and HMG provided a comprehensive 

synopsis of the genetic diversity amongst the 16 C. lindemuthianum isolates with 

seven haplotypes. 

Table 3.8. Homology Ranges within C. lindemuthianum Isolates, and between the 

Four Different Colletotrihcum Species Compared*  

Locus C. 
lindemuthianum 

C. 
lindemuthianum 

and 
C. orbiculare 

C. 
lindemuthianum 

and 
C. truncatum 

C. 
lindemuthianum 

and 
C. 

gloeosporioides 
ITS 99.0-100.0 96.3-96.8 87.3-87.8 89.9-90.1 
TUB 100.0 96.8 83.6 82.4 

GD/GADPH 98.0-100.0 73.5 49.7 57.6-58.6 
GS 96.8-100.0 91.1-92.5 59.6-60.0 51.2-51.9 

HMG 99.0-100.0 90.0-90.5 72.5-73.5 60.5-61.0 
Concatenated 97.8-100.0 88.3-89.1 67.9-68.2 63.0-63.4 
*based on the data presented in Appendix VII Tables 1 to 6.  
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Table 3.9. Summary of Haplotype Allocations for C. lindemuthianum Isolates 

Based on Sequence Data Generated for ITS, TUB, GS, GD and HMG Loci* 

Locus Haplotypes (HT) 
Allocations 

Isolates Representing the 
Haplotype 

ITS 

HT1 216, 701, 776, 779 
HT2 832 

HT3 29, 206, 219, 693, 694, 
814 

HT4 45, 428, 533, 560 

HT5 217 *(0.2% difference from 
HT4) 

TUB HT1 All isolates 

GD 
HT1 

216, 701, 776, 779, 29, 
45, 206, 217, 219, 428, 

533, 560, 693 
HT2 832, 694, 814 

GS 
HT1 216, 45, 428, 533, 560, 

701, 776, 779 
HT2 217, 814, 832 
HT3 29, 206, 219, 693, 694,  

HMG 

HT1 
45, 216, 533, 560, 693, 

776 
HT2 217, 428, 701, 779,  
HT3 694, 832 
HT4 29, 206, 219, 814 

Concatenated 

HT1 45, 216, 428, 701, 776, 
779 

HT2 694, 832 
HT3 29, 206, 219 
HT4 533, 560 
HT5 693 

HT6 217*(0.3% difference from 
HT3) 

HT7 814*(0.1% difference from 
HT2 and HT3) 

*Based on the data contained in the  Appendix VII Tables 1 to 6; The number of haplotypes 

identified for each locus are presented along with C. lindemuthianum isolate codes representing 

particular HT. Table 2.1. contains biogeographic diversity details of the isolates. 
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CHAPTER 3 

PART III. Arbitrary-Primed PCR (AP-PCR) Analysis of Colletotrichum spp. 

Isolates 

 

3.5. Preliminary Screening of 10 AP-PCR Primers  

    A selection of 10 AP-PCR primers (Table 2.7.) identified from the literature 

were tested with C. lindemuthianum isolates 701 and 832 and C. gloeosporioides 

isolate 771 (Fig 3.35.). Primers (CAG)5,(CAC)5, (GAC)5 and (GCA)5 generated 

profiles consistently with the three isolates tested. . Primers (TCC)5, (GACG)4, and 

(TGTC)4 showed very few or no banding; primers (ACTG)4, 

(GACAC)4,and, (GACA)4 were inconsistent in C. lindemuthianum amplification 

with no banding in C. gloeosporioides. Based on these overall results, primers 

(CAG)5,(CAC)5, and (GAC)5 were selected for further work.  
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Fig 3.35. Preliminary Screening of AP-PCR Primers with a Set of Colletotrichum 

spp. Isolates (701 and 832, C. lindemuthianum; 771, C. gloeosporioides; C, 

Control with no DNA) 
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3.6. AP-PCR Analysis of 18 Colletotrichum Isolates 

 The banding patterns of the 18 isolates including 16 C. lindemuthianum isolates, 

C. gloeosporioides (771) and C. truncatum (449) on the gel (Fig 3.36.) were 

visually compared and isolates with similar profiles were grouped together. This 

provided the basis for the haplotype allocation of the C. lindemuthianum isolates 

(Table 3.11.).  

 

 

 

Fig 3.36. Banding Patterns Produced by Colletotrichum Isolates After 

Amplification with AP-PCR Primers (CAG)5,(CAC)5, and (GAC)5* 

*Table 3.10. provides details of the labelling. 
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Table 3.10. Labelling Legend to AP-PCR Results Shown in Fig. 3.45 A, B and C 

(above)* 

Number on Picture Isolate Code Species 
1 701 C. lindemuthianum 
2 216 C. lindemuthianum 
3 776 C. lindemuthianum 
4 779 C. lindemuthianum 
5 832 C. lindemuthianum 
6 771 C. gloeosporioides 
7 29 C. lindemuthianum 
8 45 C. lindemuthianum 
9 206 C. lindemuthianum 
10 217 C. lindemuthianum 
11 219 C. lindemuthianum 
12 428 C. lindemuthianum 
13 449 C. truncatum 
14 533 C. lindemuthianum 
15 560 C. lindemuthianum 
16 693 C. lindemuthianum 
17 694 C. lindemuthianum 
18 814 C. lindemuthianum 

A- (𝐂𝐀𝐂)𝟓 
B- (𝐆𝐀𝐂)𝟓 
C- (𝐂𝐀𝐆)𝟓 

* The labelling legend depicts the numerical representation and colour coding for 

isolate identification. A, B and C represent the panels with the respective primers 

in Fig 3.36. 

     Position and number of bands was taken under consideration while assigning 

isolates to haplotypes. The brightness of bands was not a factor in allocation 

process. Primer that had the highest resolution was (CAC)𝟓 that distinguished nine 

haplotypes, while (GAC)5 resolved eight haplotypes, and (CAG)5 showed the 

more conserved part of the genome and differentiated only five haplotypes (Table 

3.11). The (CAC)5 produced around six-seven bands while (GAC)5 and (CAG)5 

on average 11 bands. The number of characters was not specified as more runs of 

PCR are required in order to clearly resolve the banding pattern.        
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       The AP-PCR proved more useful in illustrating the intraspecific diversity 

within C. lindemuthianum species complex giving a broad overview of their 

genetic background. On the other hand, multilocus phylogenetic approach proved 

to be beneficial for identification of the isolates (ITS on its own or supported by 

other sequence information, which was required for C. truncatum species 

classification) and designating them to appropriate species complexes as well as 

and gave closer, more specific outlook on genetic biodiversity (Talhinhas et al., 

2002). 

Table 3.11. Haplotype Allocations Based on the AP-PCR Results Generated for 

Three Primers for Colletotrichum Isolates* 

Isolate Code* (𝐂𝐀𝐂)𝟓 (𝐆𝐀𝐂)𝟓 (𝐂𝐀𝐆)𝟓 

701 HT1 HT1 HT1 

216 HT1 HT2 HT2 

776 HT2 HT2 HT1 

779 HT2 HT2 HT1 

832 HT2 HT3 HT3 

29 HT3 HT4 HT4 

45 HT4 HT5 HT5 

206 HT4 HT6 HT4 

217 HT4 HT7 HT4 

219 HT5 HT4 HT4 

428 HT5 HT4 HT4 

533 HT6 HT8 HT4 

560 HT7 HT8 HT4 

693 HT8 HT8 HT4 

694 HT9 HT8 HT4 

814 HT7 HT8 HT4 

Total Number of 

Haplotypes 

9 8 5 

*Isolates number according to the Labelling Legend (Table 3.10.);**HT-haplotype. 
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CHAPTER 3 

PART IV. Genomic DNA Preparation and Quality Assessment for Genome 

Sequencing  

3.7. NanoDrop-based  Assessment of DNA Quality and Quantity 

     Genomic DNA from C. lindemuthianum isolates 216 and 776 extracted using 

the Qiagen DNeasy Plant Mini Kit (prepared in quadruplicates) was tested for the 

quality and concentration to fulfil the requirements set by the Illumina MiSeq 

technology. The MiSeq specification included 50 ng of DNA in max 20µl; 

260/280 ratio of ~1.8; and 260/230 ratio of ~2.0. The samples that fit this model 

were 216(2) and 776(2) as shown below (Table 3.12, Fig 3.37). 

Table 3.12. Summary of NanoDrop Data on DNA Quantity and Quality for C. 

lindemuthianum Isolates 216 and 776 Prepared in Quarduplicate* 

Sample Nucleic 

Acid 

Conc. 

Unit A260 A280 260/280 260/230 

216(1) 33.8 ng/µl 0.676 0.366 1.85 3.07 

216(2) 43.9 ng/µl 0.878 0.483 1.82 2.29 

216(3) 32.6 ng/µl 0.653 0.365 1.79 2.50 

216(4) 117.9 ng/µl 2.358 1.505 1.57 1.85 

776(1) 105.3 ng/µl 2.105 1.283 1.64 1.15 

776(2) 79.8 ng/µl 1.595 0.905 1.76 2.32 

776(3) 62.8 ng/µl 1.256 0.718 1.75 2.20 

776(4) 51.5 ng/µl 1.030 0.575 1.79 2.51 

*The readings represent the concentration of DNA in ng/µland absorbance measurements 

at 260, 280, 260/280, and 260/260nm respectively. 
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3.8. Genomic DNA Integrity and Quantity Compared to Uncut Lambda DNA 

 All samples were electrophoresed on agarose gel (Fig 3.37) against four different 

concentrations of lambda DNA in order to cover the range of DNA concentration 

previously estimated using NanoDrop. Visual inspection, and comparison of the 

fluorescence levels of the samples and the marker enabled a clear assessment of 

the integrity and concentration of the genomic DNA samples. For example, 

216(1) was partially degraded and unsuitable for genome sequencing work. Other 

samples, in terms of the size of the fragments, the concentration range as well as 

the removal of RNA were suitable for further genome sequencing processes.  

 

 

 

Fig 3.37 Genomic DNA Integrity and Quality Assessment of C. lindemuthianum 

Isolates Targeted for Genome Sequencing 
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CHAPTER 3 

PART V. Growth Rate, Colony Morphology and Sporulation Patterns of 

Colletotrichum Isolates 

     The data was generated for 5 C. lindemuthianum (216, 701, 776, 779, and 832) 

and 1 C. gloeosporioides isolate (771) (Table 2.1) during incubation at 20 and 

25°C over a 15 day period.  

 

3.9. Growth Rate Monitoring of Colletotrichum Isolates at 20 and 25ºC 

    The fastest growing isolate was 771 C. gloeosporioides (Fig 3.38. and Fig 

3.39.), however its growth rate was higher at 25 ºC with the average values of 

4.109 mm, while at 20 º C it was 3.35mm /24hours. The slowest growth rate was 

recorded for isolate 832 (Fig 3.47. and Fig 3.48.). The rest of the isolates had 

comparable growth rates. However, isolate 776 was growing slightly faster than 

216, 701, and 779 at 25 ºC, while this pattern was not observed at 20 ºC where its 

growth rate was lower than 216 and 779. Fig 3.38. is based on the data contained 

in Table 3.13., while Fig 3.39. reflects data from Table 3.14. 

Table 3.13. Average Growth Values for Each Colletotrichum Isolate Incubated at 

20°C and Monitored Periodically* 

Average Growth Numbers (mm) for Each Isolate 
Date 20/06 

72 
hours 

21/06 
96 

hours 

25/06 
192 

hours 

27/06 
240 

hours 

28/06 
264 

hours 

02/07 
360 

hours 

Average 
mm/24hours 

216 3.375 5.575 13.325 17.4 19.925 28.025 1.751 
701 4.75 6.9 14.325 17.125 18.3 22.25 1.39 
771 8.925 13.4 31.65 36.85 N/A N/A 3.35 
776 4.1 5.775 13.5 17.675 20.075 23.875 1.492 
779 4.3 6.625 14.525 18.3 20.2 24.35 1.521 
832 1.55 2.7 7.7 10.15 11.2 15.375 0.96 

*Table demonstrates the average values calculated based on the raw data (Appendix XI) 

measurements taken for 5 plates at 8 different positions (Fig 2.1.). 
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Fig 3.38. Graph Showing the Growth Rate of Colletotrichum spp. Isolates 

Incubated at 20ºC.*  

*Graph displays error bars for the selected chart series with 5% value. Chart based on the 

average measurements contained in Table 3.13. The isolates are colour coded with the 

legend on the right side from the linear graph. 

Table 3.14. Average Growth Values for Each Colletotrichum Isolate Incubated at 

25°C and Monitored Periodically 

Average Growth Numbers (mm) for Each Isolate 
Date 25/06 

120 
hours 

27/06 
168 

hours 

28/06 
192 

hours 

02/07 
288 

hours 

04/07 
336 

hours 

Average 
mm/24hours 

216 7.5 11.425 13.825 22.275 25.6 1.828 
701 10.875 15 17.275 23.375 25.475 1.819 
771 17.175 27.425 32.875 N/A N/A 4.109 
776 10.2 15 17.7 26.825 30.35 2.167 
779 9.575 13.05 14.825 21.475 25.325 1.8 
832 5.625 8.375 10.1 15.425 17.4 1.242 

*Table demonstrates the average values calculated based on the raw data (Appendix XII) 

measurements taken for 5 plates at 8 different positions (Fig 2.1.). 
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Fig 3.39. Graph Showing the Growth Rate of Colletotrichum spp. Isolates 

Incubated at 25ºC* 

*Graph displays error bars for the selected chart series with 5% value. Chart based on the 

average measurements contained in Table 3.14. The isolates are colour coded with the 

legend on the right side from the linear graph. 

3.10. Level of Sporulation amongst a Set of Colletotrichum Isolates 

       An assessment of the level of sporulation in Colletotrichum isolates (216, 

701, 776, 779, 832 and 771) was performed. The highest level of sporulation was 

observed in 779 especially in the middle and outer edges of the culture. Isolate 

216 showed good level of sporulation but lower compared to isolate 779. Very 

low level of sporulation was observed in isolates 701 and 776; isolates 832 and 

771 had no sporulation. A semi-quantitative scale was used to record the 

preliminary observations (Table 3.15.). 
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Table 3.15. Level of Sporulation Observed amongst a set of Colletotrichum 

Isolates* 

Isolates 216 701 776 779 832 771 

Sporulation 

Level* 
2 1 1 3 0 0 

* Level of sporulation was recorded according to the following scale: 0- no sporulation, 

1-very low sporulation, 2-moderate sporulation, 3-highly sporulating. 

 

3.11. Morphological Variability of Colletotrichum Isolates Based on PDA 

Cultures 

C. lindemuthianum isolates showed considerable variation in their morphological 

characteristics like texture and colour (Fig 3.40). Isolates 701 (B), 776 (C) and 

832 (E) had similar appearance with white cottony mycelium and creamy/beige 

surface. Isolate 216 (A) had grey cottony centre with brown and a lighter outer 

edges of growth.  Isolate 779 (D) had flattened mycelia with grey/green centre and 

light cream outermost edge. Isolate 771 (F) was the C. gloeosporioides, mycelium 

quickly covered the whole plate and had white, grey cottony appearance with 

darker patches (Fig 3.40). 
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Fig 3.40 Morphological Variation among Colletotrichum spp. Isolates in PDA* 

*Culture plates incubated at 25ºC for 10 days; Pictures A-E are of C. 

lindemuthianum (A-isolate 216, B-isolate 701, C-isolate 776, D-isolate 779, E- 

isolate 832), while F is of C. gloeosporioides isolate 771. 
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CHAPTER 4: DISCUSSION 

 

       For the present study, 18 isolates representing the biogeographic diversity in 

the Colletotrichum-bean pathosystem were selected from a historical collection 

spanning nearly 30 years and more than 200 isolates. This collection, currently 

maintained by research scientists at the University of Bedfordshire (Professor S 

Sreenivasaprasad) and the university of Warwick (Professor Eric Holub), mainly 

originated from the early work by a group of research scientists based at Long 

Ashton and Rothamsted (previously known as Institute of Arable Crops Research 

IACR and now known as Rothamsted Research). All 18 isolates were originally 

deposited in the collection as the anthracnose pathogen C. lindemuthianum 

associated with the common bean Phaseolus vulgaris. These 18 isolates 

represented various countries in Africa, Asia, Europe and the Americas and 

belonged to diverse races. 

    Sequence data from the multiple loci analysed in this study confirmed the 

identity of 16 isolates as C. lindemuthianum.  However, isolates 771 and 449 were 

distinct from these, but their identity was not entirely clear based on ITS sequence 

data alone. Various studies have recently pointed to the insufficiency of the ITS 

marker for species identification in Colletotrichum (e.g. Talhinhas et al., 2011; 

Cannon et al., 2012). Based on the multilocus sequence data isolates 771 and 449 

were identified as C. gloeosporioides and C. truncatum, respectively. These 

species have not been widely reported as bean anthracnose pathogens in the 

literature so far and this needs further investigation.  

    ITS and HGM had the highest resolution differentiating five and four 

haplotypes respectively. Moderate resolution was expressed by several markers 

where GADPH, ACT, CHS resolved two haplotypes, while GS and HIS3 

distinguished three. Although loci TUB and CAL were useful in species 

identification, they are highly conserved and were unable to detect  genetic 

diversity within C. lindemuthianum.  Though ITS resolution was highest, the 
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concatenated data provided most detailed information, wherein among the two 

major groups, one of the groups included three sub-groups. 

     The ITS, GS, concatenated  and to some degree GADPH sequence data 

differentiated two distinct genetic groups of around 7-9 isolates each representing 

various geographic locations and races suggesting that these genetic groups have 

separate origins.  This phenomenon was most apparent for  GS DNA fragment 

that contained 25 substitutions (Appendix IX) or variables within the sequence 

that recognized three haplotypes amongst C. lindemuthianum isolates and 

separated C. lindemuthianum isolates into two genetic groups. North Andean 

regions along with Mesoamerica and South of Andes serve as one of the main 

centres of genetic diversity in common bean (Gepts and Bliss, 1985; Koinange 

and Gepts, 1992; Bitocchi et al., 2012). There is a possibility that haplotypes 

represent the three main gene pools established for P. vulgaris suggesting co-

evolution of the host and its pathogen particularly associated with the resistance 

gene cluster reported by Geffroy et al. (1999).  

     The two genetic groups within C. lindemuthianum differentiated by Damm et 

al. (2013) contained isolates from different geographic locations including: USA, 

Europe, and South America. The Costa Rican isolates were grouped together 

complying with the results presented in this study. However the Brazilian isolate 

was separated into another genetic group which is inconclusive as it was placed in 

the same genetic group along with the Costa Rican isolates. There is a clear 

distinction of the two genetic groups within C. lindemuthianum and further 

research is required to examine their evolutionary lineages/origins. 

     This finding may suggest a strong relationship between evolution and the 

origins of the pathogen and reflects the current knowledge about the origins of P. 

vulgaris. Recent reports point at Mesoamerica as the origin of the P. vulgaris 

(Bitocchi et al., 2012), which gave rise to two main gene pools: Mesoamerican 

and Andean serving as two separate evolutionary lineages (Gepts and Bliss, 1985; 

Koinange and Gepts, 1992). Evidence based AFLP studies of wild and 

domesticated P. vulgaris indicates the Mesoamerican origin (Rossi et al., 2009) 

and higher diversity in these regions further support the hypothesis (Gepts et al., 
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1986; Koening and Gepts, 1989).  The third gene pool developed around Peru and 

Ecuador territories that according to certain researchers  are the ancestral regions 

of P. vulgaris (Freyre et al., 1996, Gepts et al., 1999) that spread into two 

opposite directions forming Mesoamerican (Colombia, Mexico, Central America) 

and Andean (Bolivia, Argentina, South of Peru) gene pools. That theory arose 

from the research carried out by Kami et al. (1995) that found ancestral protein 

phaseolin type I exclusive to plants from the Peru and Ecuador.  

   Pathogen populations and their adaptation processes in a geographic location 

could be driven by factors such as local climate change, temperature, humidity 

etc. Colombia and Costa Rica regions are said to be intermediate phase separating 

two main gene pools of P.vulgaris from its ancestral origins (Bitocchi et al., 

2012), which was partially supported by the results grouping Costa Rican and 

Colombian isolates in the same genetic groups and occasionally haplotypes for all 

five loci.  It included isolates 832 and 814 -race unknown from Costa Rica and 

694 representing 137-epsilon race from Colombia (Table 2.1). High homology 

between  the three organisms may have its roots in similar coevolution of the 

same cultivars of P. vulgaris and adapted C. lindemuthianum strains belonging to 

the same gene pool. Alternatively, pathogen spread via the environment and/or the 

planting material by means of air currents many generations ago followed by 

adaptation processes that involved changes in nucleotide sequence is a possibility.   

          Mesoamerican C. lindemuthianum race 137-epsilon has previously been 

reported by Pastor-Corrales et al. (1995) and Mahuku et al. (2002) corresponding 

to isolate CL94 collected in Colombia in 1989. This isolate was exposed to 12 

differential cultivars and 3 have been susceptible: Michelite, Cornell 49242, and 

PI 207262. Amongst other Mesoamerican isolates, CL94 expressed moderate 

pathogenicity just below median value. The source of resistance in Michelite is 

Co-1 gene, in PI207262 it is Co-4 and Co-9 (Poletine et al., 1999), while in 

Cornell 49242 the resistance is facilitated by Are Co-2 locus (Mastenbroek, 1960). 

While race 137-epsilon is pathogenic to the P. vulgaris cultivars above, other 

epsilon races 69 and 453 were non-pathogenic to PI 207262 and Cornell 49242 

differentials (Poletine et al., 1999; Poletine et al., 2000). Michelite cultivar 
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susceptible to epsilon races, have proven resistant to other races of C. 

lindemuthianum like alpha, βeta (130), gamma (102), and amongst others: 8, 64, 

1088, 1344, MA-1 (Mexican) (Goncalves Vidigal et al., 2007). Thus, even in 

situation of the same race type as in this case of epsilon, variable 

resistance/susceptibility (R/S) results have been recorded. Moreover, R/S 

assessment can be very subjective depending on the degree of infection required 

to designate the cultivar as susceptible leading to mischaracterization of the C. 

lindemuthianum races. 

   Molecular markers ACT, CAL, HIS3 and TUB were more conserved and did 

not differentiate any specific genetic groups. However, this pattern could change 

if a much larger number of isolates are screened.  

    Although HMG/MAT1 locus did not identify distinct genetic groups, there 

were two sub-groups where two Costa Rican isolates were separated into HT3 and  

HT4 indicating that occurrence in the same geographic location does not 

necessarily signify genetic identity or common origin.  This differentiation was 

also observed for ITS and concatenated data. There was no clearly evident 

relationship overall between the HMG haplotype allocations of C. 

lindemuthianum isolates and their geographic origins or race.. 

    The opposite is observed based on GADPH analysis where Colombian and two 

Costa Rican isolates were grouped together suggesting that this locus could 

potentially reflect the biogeographic origins of the C. lindemuthianum; however 

more isolates from these regions should be screened in order to confirm this 

potential. Interestingly, isolates belonging to HT1 despite different origins showed 

100% homology (Appendix VII Table 2), which could be due to their association 

with the recent deployment of common bean cultivars. 

     Grouping of isolates from different geographic locations into the same 

haplotypes was observed for all molecular markers in this study and although the 

genetic group allocations vary in some cases, there are some trends observed as 

discussed above linked to host variety deployment. There is a high possibility that 

these isolates were sourced from the same host gene pool either of Mesoamerican 
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or Andean origin. The races may have developed later on as a consequence of 

interaction with different cultivars of P. vulgaris that may have driven the 

adaptive responses in C. lindemuthianum and their pathogenic specificity e.g. 

Cornell 49-242   containing Are resistance gene capable of differentiating race 

kappa that is virulent to other crop varieties (Alzate-Marin, 1999). Theory on 

dissemination processes of P. vulgaris around Africa and Europe was proposed by 

Gepts and Bliss (1988) based on the phaseolin type observed in common bean 

cultivars. Crop exchange began soon after the discovery of the Americas. In first 

instance it reached Iberian Peninsula (Portugal) followed by spreading to the rest 

of Europe and other parts of the world (Simmonds, 1976). First record of common 

bean in Europe was made by Turner in 1538 (Gepts and Bliss, 1988). However, 

there is no clear information on the source or introduction of P. vulgaris in Africa.   

       There are several types of phaseolin observed amongst P. vulgaris cultivars 

associated with its geographic origins: ‘S’-small seeded variety originating from 

Middle America, ‘B’- also small seeded from Colombia, while ‘T’, ‘A’,’C’ and 

‘H’ were large seeded varieties found in South of Andes (Gepts, 1984; Gepts et 

al., 1986). Evidence showed that the most common phaseolin type in Europe and 

Africa was ‘T’ found in 72% and 69% of cultivars respectively (Gepts and Bliss, 

1988). Abundance of ‘T’ type phaseolin type cultivars is said to be due to their 

green pods or better adaptability to the European climate (Brown et al., 1982). 

Crucially, type ‘B’ phaseolin was not reported for the differentials from Europe or 

Africa (Gepts and Bliss, 1988), suggesting that cultivars from Colombian regions 

were not included in large scale deployment processes. Genetic diversity of C. 

lindemuthianum observed in GADPH dataset relates to these findings through 

distinct separation of isolates from Costa Rica and Colombia on the basis of their 

unique nucleotide sequence. There were two substitutions observed in all three 

isolates, where ‘A’ has been replaced by ‘T’ in 33rd position, while ‘C’ 

compensated for ‘T’ in 69th base of the 100bp long sequence. Interestingly, the 

same characters feature in C. orbiculare sequence that may further support the 

belief that these changes have ancestral lineage.  Nevertheless, relationship 

between the 832, 814 and 694 is not so apparent for AP-PCR result analysis, 

where they were split into separate haplotypes.  
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     Frequent association of isolates of various races into the same haplotypes 

suggests that the molecular markers used in this study do not differentiate isolates 

on the basis of their pathogenic specificity, and different markers may have to be 

investigated, which could be revealed through large-scale genome studies. 

    With the concatenated data, 693-kappa from Brazil was separated from the rest, 

which imply their distinct genetic background. Brazil is the main provider of 

common beans in the world with 39.85% being produced between 2000-2004 

(FAO STAT, 2005); however, Brazil is not considered in the main gene pools of 

P. vulgaris. This suggests that the pathogen may have originated from a separate 

gene pool. Dissemination of the pathogen into new/different geographic locations 

either through infected seeds and/or environmental factors needs to be further 

investigated. Multialleic gene cluster linked to pathogen specificity and the 

corresponding resistance gene cluster in the host could be explored in an attempt 

to establish the links between race and genetic diversity in the C. lindemuthianum  

(Crute and Pink, 1996).   

       The available evidence suggests that pathogen has adapted to the cultivars 

from the same geographic location generally. The pathotypes of Andean origin 

have narrower virulence range affecting bean cultivars with large seeds. On the 

other hand, Mesoamerican pathogens are able to infect wide range of hosts 

particularly the small-seeded varieties (Pastor-Corrales et al., 1995). Geffroy et al. 

(1999) identified ancestry resistance specificity gene cluster in common bean 

commencing from the period before the separation into two pathotype gene pools 

identified as Co-9 in Mesoamerican and  Co-y/Co-2 in Andean cultivars. The 

host-pathogen coevolution was revealed when plants expressed resistance to most 

of the ‘non-native’ races while remaining susceptible to local races (Geffroy et al., 

1999). More research needs to be carried out on evolutionary lineage of European 

and African pathotypes, where P. vulgaris is not a conventional crop, which 

would improve the selection process of cultivars in those areas of the world 

(Ansari et al., 2004). 

     AP-PCR profiles for the C. gloeosporioides isolate 771 and C. truncatum 

isolate 449 were distinctive with each of the 3 primers used, confirming their 
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distant genetic background. Within C. lindemuthianum, AP-PCR methodology 

was useful in revealing the genetic diversity enabling the identification of various 

haplotypes. For example, 𝐶𝐴𝐶5 distinguished 9 haplotypes, while 𝐶𝐴𝐺5 provided 

a more conservative estimate of 5 haplotypes reflecting the sequence differences 

in different parts of the genome. These haplotype groupings were not fully 

reflective of the results of the multilocus phylogenetic analysis. For example, 

𝐶𝐴𝐺5 separated isolate 216 from 701, 776 and 779 that were all represented by a 

single haplotype based on the concatenated sequence analysis. Similarly, isolates 

45 and 832 each were distinguished as individual haplotypes by 𝐺𝐴𝐶5 and 𝐶𝐴𝐺5 

primers. Interestingly, an assessment of biological parameters such as growth rate, 

level of sporulation and colony morphology also revealed variation amongst the 

five C. lindemuthianum isolates examined. C. lindemuthianum isolates were in 

general considerably slower growing compared to C. gloeosporioides which is 

well recognised as one of the faster growing species within the genus 

Colletotrichum (e.g. Talhinhas et al., 2002).  

      Thus, the AP-PCR profiling approach is likely to be more suitable for the 

characterisation and monitoring of local populations of Colletotrichum spp. than 

in the context of  phylogenetic analysis of global populations. Consistent AP-PCR 

profiles from various primers under standardized PCR conditions, can be 

subjected to binary matrix analysis (Paul, 2001). Band-matching software (e.g. 

GeneDirectory) in combination with binary data analysis software such as 

Treeson version 1.3b that employs the UPGMA clustering system are especially 

useful when population studies are carried out involving a large number of 

isolates ( Van de Peer and De Wachter, 1997).  

  

4.1. Conclusions and Future Directions 

     Results indicate significant genetic diversity within C. lindemuthianum 

associated with P. vulgaris. The multilocus analysis indicated some level of 

correlation between the geographic origin and genetic diversity, by separating the 

C. lindemuthianum isolates into two distinct genetic groups. It reflects the current 
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information of two main gene pools of Mesoamerican and Andean locations 

associated with P. vulgaris origins (Pastor-Corrales et al., 1995). 

   Multilocus analysis was useful in species delimitation and identification of 

genetic diversity within C. lindemuthianum.  Resolution of the markers ranged 

from high (ITS, HMG), moderate (GD, ACT, CHS-1, GS, HIS3) to low (TUB, 

CAL).  Nonetheless, conserved low resolution markers such as β-tubulin (TUB)  

were able to establish the right taxonomic order for Colletotrichum genus. All 

molecular markers differentiated between 1 and 5 haplotypes for C. 

lindemuthianum isolates. Results established by GD parsimony analysis 

positioned the C. orbiculare isolate MAFF_240422 further from C. 

lindemuthianum than C. truncatum. However, the sequence homology showed 

higher similarity of C. lindemuthianum with C. orbiculare at 73.5% than C. 

truncatum calculated at 49.7%. Results generated for AP-PCR were not 

compatible with the multilocus phylogenetic analysis and provided more general 

overview of genetic diversity. However, it did identify C. truncatum and C. 

gloeosporioides as separate haplotypes outlining their distinct genetic 

background. Hence, multilocus analysis remained a crucial element in the study 

giving basic information about genetic diversity and phylogenetic relationships 

within C. lindemuthianum species that serve as a useful platform for further 

research.  

   The homology ranges between C. lindemuthianum, C. truncatum and C. 

gloeosporioides revealed that homology within C. lindemuthianum based on all 

molecular markers and concatenated data was 97.8-100%, C. lindemuthianum in 

relation to C. truncatum range was 49.7-87.8%, while for C. gloeosporioides it 

was 51.2-90.1%. 

    The limited number of molecular markers only provided restricted amount of 

information about the genetic diversity of the C. lindemuthianum isolates. 

Genome sequencing would provide a much better understanding of the adaptive 

responses in relation to the biotic and abiotic environmental variables. More 

specifically, which genomic regions and genes are affected the most and the 
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extent of change, e.g. based on  comparison of the historical isolates with 

contemporary isolates.  

     Results of the present study provide an overview of the population 

biogeographic diversity in C. lindemuthianum. Further development of the 

research would involve genome sequencing of selected C. lindemuthianum 

isolate(s) using NGS technology that would serve as reference genome(s) 

adopting the methodologies and strategy used with C. orbiculare (Gan et al., 

2013). Genome sequences constitute a platform for further research using 

appropriate molecular strategies that would provide the experimental validation of 

gene function and the genotype- phenotype-environmental interactions, the 

developmental focus of this project.  

      A combination of single nucleotide polymorphisms (SNPs) and individual 

haplotypes (HTs) are an important resource in understanding population level 

adaptations as demonstrated with human demographic investigations (e.g. 

Nielsen, 2000). This strategy also requires the development and/or use of stringent 

statistical models/analysis for the robust identification of SNPs and HTs  (Ewing 

and Greeen, 1998). Identifying highly polymorphic segments of genome whilst 

avoiding underestimation of SNPs (Li et al., 2008) and maintaining the accuracy 

and prediction of any erros are all critical issues (Schaffner et al., 2005). Principle 

component analysis (PCA), genome-wide association studies and the use of 

software like STRUCTURE have proved suitable to large-scale population studies 

(Kaeuffer et al., 2007).   

      Functional genomics to investigate and understand gene function and the 

evolution of gene networks is another area that is evolving dramatically with the 

availability of vast quantities of genome data emerging from the application of 

NGS. There are several different approaches for assessing gene function in 

filamentous fungi (Weld et al., 2006). This includes random and targeted 

insertional mutagenesis/gene knockout (Alberts et al., 2002) based on 

homologous recombination (Weld et al., 2006), RNA interference (RNAi) for 

gene expression knockdown (Arenz and Schepers, 2003) and the use of 

Agrobacterium-mediated fungal transformation (Michielse et al., 2005). High 
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throughput gene disruption strategies have been adapted for large scale genomic 

studies, where large number of genes needs to be assessed e.g. use of overlapping 

or fusion PCR (e.g. Wendland, 2003).  

     The present study has contributed to the development of new knowledge and 

resources that would serve as a platform for further NGS-based investigations to 

decipher environmental change adaptation in Colletotrichum species such as C. 

lindemuthianum. Comparative analysis of historical isolates characterised in this 

study with contemporary isolates would be a key in this strategy.  
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Appendix 

Appendix I 

GenElute Plant Genomic DNA Miniprep Kit (Sigma) Protocol 

Sigma based method for multilocus molecular phylogenetic analysis purposes. 

   GenElute Plant Genomic DNA Miniprep Kit was used for DNA extractions for 

multilocus phylogenetic analysis purposes. Sigma protocol was followed as 

indicated by manufacturer with omission of the first step. Hot block was set for 

65ºC and 100µl of molecularly sterile water (Sigma) was heated up for each 

sample allowing an additional 50µl in case of evaporation.  

a) The first step involves disruption of cells, which was achieved by previously 

described chelex/sand method. 

b) In order to lyse the cells 350µl of Lysis solution (Part A) and 50µl of Lysis 

Solution (Part B) were added to the supernatant and mixed by vortexing and 

inverting. The tubes were incubated on hot block for 10min. Upon formation of 

white precipitate, the tubes were inverted few times during incubation process in 

order to dissolve it. 

c) Subsequently, 130µl of Precipitation Solution was added and mixed by 

inversion. Then tubes were placed on ice for 5min followed by centrifugation at 

max speed for 5 min to precipitate debris. 

d) The supernatant was removed and pipetted onto the GenElute filtration column 

placed in 2ml collection tube. Tubes were centrifuged at max speed for 1min to 

ensure debris-free solution. 

e) Then the flow-through liquid was topped with 700µl of Binding Solution and 

mixed by inversion. 

f) To prepare the GenElute Miniprep Binding column, 500µl of the Column 

Preparation Solution was added and centrifuged at max speed for 30s to 1min. 

The flow-through liquid was discarded. This process ensures optimal adsorption 

of nucleic acid to the solid phase. 
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g) 700µl of lysate from step e) was loaded into prepared  the GenElute Miniprep 

Binding column followed by centrifugation at max speed for 1min. Flow-through 

liquid was discarded and step was repeated with remaining sample.  

h) The binding column was placed in fresh 2ml collection tube and 500µl of 

diluted Wash Solution was loaded. Tubes were span at max speed for 1min. Flow-

through liquid was discarded and collection tube was re-used for second wash 

with 500µl of diluted Wash Solution. Tubes were span for 3min in order to dry the 

column. 

i) DNA was eluted in water previously heated up to 65ºC instead of elution buffer 

provided in the kit. The 100µl of water was loaded onto the column and after 

1min centrifuged at max speed. The flow-through liquid was re-loaded into the 

column and after 1 min centrifuged one more time. This process ensured high 

concentration of DNA extract. 
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Appendix II 

DNeasy Plant Mini Kit (Qiagen) Protocol 

Qiagen kit method for extraction of genomic DNA. 

The DNeasy Plant Mini Kit (Qiagen) was used for DNA extractions prior genome 

sequencing processes following manufacturer’s protocol. 

     The cultures were grown in 20ml beakers filled with thin layer of PDB 

(between 3-5mm). Minimal amount of liquid media ensures that the mycelia float 

on top of PDB instead of drowning which would in turn create anaerobic 

conditions halting fungal growth. Previously prepared culture plates were cut into 

squares 3/3mm in diameter and dropped on top of PDB. Minimal amount of agar 

was removed while inoculating liquid cultures to maximize optimal results during 

DNA extraction. Beakers were tightly closed and incubated at 25ºC for 3-5days. 

After incubation period the PDB was removed and mycelial mat was washed 

twice in autoclaved water. Then mat was placed on filter paper and excess 

moisture was removed. Subsequently, fungal material was wrapped in 3 layers of 

aluminium foil and frozen in dry ice to stop the fungi from dying. 

a) Dry ice (BOC) (CO2) and coffee blender (mortar and pestle with dry ice worked 

equally well) were used for grinding of the fungal material. The fungal material 

was weighted and ~100mg wet weight was used for grinding (with additional 

allowance in order to compensate for the loss of mycelia due to grinding process). 

Ground material was placed in 20ml beakers and 400µl of Buffer AP1 was added 

straight away to stop biochemical reactions within DNA. The mixture was left till 

the dry ice evaporated.  

b) Subsequently, the mycelia-buffer solution was placed in fresh 2ml eppendorf 

tube and 4µl of RNase A was added to remove the RNA from the solution. Mix 

was vortexed and incubated at 65ºC for 10min. Tubes were inverted 2-3 times 

during incubation. 

c) Afterwards, 130µl of Buffer P3 was added and tubes were incubated on ice for 

5min in order to halt the process. Lysate was centrifuged at max speed for 5 min. 
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Then supernatant was pipetted into QIAshreader spin column (placed in 2ml 

collection tube) in a way to avoid the disturbance of pellet. The tubes were span at 

max speed for 2min. 

d) The flow-through liquid was transferred into the fresh 2ml microcentrifuge 

tube without disturbing the pellet and 1.5 volumes of Buffer AW1 was added and 

mixed by pipetting. 

e) The 650µl of solution was removed into the DNeasy Mini spin column placed 

in 2ml collection tube and centrifuge for 1min at ≥6,000 x g. The supernatant was 

discarded and procedure was repeated with the remaining sample. 

f) Column was put into a fresh collection tube and 500µl of Buffer AW2 was 

added followed by centrifugation for 2min at max speed. Then, spin column was 

placed in fresh 1.5ml eppendorf tube. 

g) The elution buffer was heated to 65ºC and 100µl was pipetted into each 

column. Tubes were incubating at room temperature for 5min followed by 

centrifugation at ≥6,000 x g for 1 min. The 100µl of flow-through liquid was re-

loaded into the column and procedure was repeated. This process ensures high 

concentration of DNA extract.  
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Appendix III 
 
QIAquick PCR Purification Kit Protocol  
 
Add ethanol (96–100%) to Buffer PE before use (see bottle label for volume). All 

centrifugation steps are carried out at 17,900 x g (13,000 rpm) in a conventional 

table-top microcentrifuge at room temperature. Add 1:250 volume pH indicator I to 

Buffer PB. The yellow color of Buffer PB with pH indicator I indicates a pH of ≤7.5. 

If the purified PCR product is to be used in sensitive microarray applications, it may 

be beneficial to use Buffer PB without the addition of pH indicator I. Do not add pH 

indicator I to buffer aliquots.  

1. Add 5 volumes Buffer PB to 1 volume of the PCR reaction and mix. If the color of 

the mixture is orange or violet, add 10 μl 3 M sodium acetate, pH 5.0, and mix. The 

color of the mixture will turn yellow.  

2. Place a QIAquick column in a provided 2 ml collection tube or into a vacuum 

manifold. For details on how to set up a vacuum manifold, refer to the QIAquick Spin 

Handbook.  

3. To bind DNA, apply the sample to the QIAquick column and centrifuge for 30–60 

s or apply vacuum to the manifold until all the samples have passed through the 

column. Discard flow-through and place the QIAquick column back in the same tube.  

4. To wash, add 0.75 ml Buffer PE to the QIAquick column centrifuge for 30–60 s 

or apply vacuum. Discard flow-through and place the QIAquick column back in 

the same tube.  

5. Centrifuge the QIAquick column once more in the provided 2 ml collection 

tube for 1 min to remove residual wash buffer.  

6. Place each QIAquick column in a clean 1.5 ml microcentrifuge tube.  

7. To elute DNA, add 50 μl Buffer EB (10 mM Tris•Cl, pH 8.5) or water (pH 7.0–  

8.5) to the center of the QIAquick membrane and centrifuge the column for  

1 min. For increased DNA concentration, add 30 μl elution buffer to the center  

of the QIAquick membrane, let the column stand for 1 min, and then centrifuge.  

8. If the purified DNA is to be analyzed on a gel, add 1 volume of Loading Dye to  

5 volumes of purified DNA. Mix the solution by pipetting up and down before  

loading the gel.  
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Appendix IV 
 
DNA Sample Requirements for Sequencing Provided by Cambridge 
Sequencing Facility 

 
New! For information on our Next-Gen DNA sequencing service go to our MiSeq 

Sequencing page or our 454 Sequencing page. 

For information on our Cosmid DNA sequencing service go to our Cosmid 

Sequencing page. 

For large sequencing orders we now offer a DNA preparation service. Please 

contact John Lester for further information.  

DNA submitted to the facility needs to be very pure, much purer for instance than 

for manual sequencing. It is for this reason that we recommend that DNA should 

be prepared using a commercial kit such as Qiagen, the most commonly used type 

being the Tip 20. Traditional methods, ie. alkaline lysis, can work if care is taken.  

 

For plasmids we require 10µl of DNA in water at a concentration of 100ng/µl per 

sequencing reaction. 

Cosmids should be submitted at a concentration of 150ng/µl in water.  

PCR fragments should be supplied at a concentration of 20ng per 100 base pairs 

in 10µl water.  

 

Any non-standard primers submitted should be at a concentration of 10pm/µl 

(10µM) in water. We use 2µl of primer solution per reaction but please give us an 

excess to allow for evaporation or any other potential loss.  

 

We need the correct amount of DNA and most experienced sequencers will be 

able to make an accurate assessment of DNA quantity but some may have 

difficulty. One method is to use a Pharmacia Gene Quant. This can give consistent 

accurate results and automatically provides abs. 260/280 ratio (which for best 

results should be around 1.8) however one must ensure careful use and that the 

cuvette used is very clean if spurious results are to be avoided.  

http://www2.bioc.cam.ac.uk/~pflgroup/DNA_Facility/illumina.html
http://www2.bioc.cam.ac.uk/~pflgroup/DNA_Facility/illumina.html
http://www2.bioc.cam.ac.uk/~pflgroup/DNA_Facility/454.html
http://www2.bioc.cam.ac.uk/~pflgroup/DNA_Facility/Cosmids.html
http://www2.bioc.cam.ac.uk/~pflgroup/DNA_Facility/Cosmids.html
http://www2.bioc.cam.ac.uk/~pflgroup/DNA_Facility/contact.html
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N.B. DNA for sequencing should always be supplied in water only and not TE or 

Tris buffer. Also please submit samples in tubes no smaller than 0.5ml to avoid 

handling problems.  

 

Samples and completed DNA sequencing and Cosmid sequencing request forms 

can be dropped off in the basket provided in the Biochemistry reception (Sanger 

Building) or posted to the facility at the following address: 

 

Older Macs use Editview 

MacOSX use 4Peaks 

Windows, Linux and MacOSX use FinchTV  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://www2.bioc.cam.ac.uk/~pflgroup/DNA_Facility/DNAReqForm.pdf
http://www2.bioc.cam.ac.uk/~pflgroup/DNA_Facility/cosmidrequestform.pdf
http://www.cam.ac.uk/map/v3/drawmap.cgi?mp=oadd;xx=304;yy=336;mt=c;tl=Department%20of%20Biochemistry%20-%20new%20building
http://www.cam.ac.uk/map/v3/drawmap.cgi?mp=oadd;xx=304;yy=336;mt=c;tl=Department%20of%20Biochemistry%20-%20new%20building
http://www.appliedbiosystems.com/support/software/dnaseq/installs.cfm
http://mekentosj.com/4peaks/
http://www.geospiza.com/Products/finchtv.shtml
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Appendix V 

Assessment of DNA Concentration and Purity Using NanoDrop Technology 

    NanoDrop technology entails microvolume UV-Vis spectrophotometers and 

fluorospectrophotometers enabling to load 0.5-2.0 µl of sample, which greatly 

reduce the wastage of resources. It provides fast information about quality and 

quantity of the nucleic acid. The surface tension between the two optical fibers 

eliminates the need for cuvettes. The concentration of nucleic acid is measured at 

260 nm, while purity is assessed using 260/230 and 260/280 ratios. The 260/280 

ratio of ~1.8 for DNA and 2.0 for RNA suggest high purity of the sample. Lower 

values could indicate contamination with protein (especially aromatic amino 

acids), phenols and other impurities that strongly absorb light at 280 nm. The 

260/230 ratio expected values range from 2.0-2.2, lower results indicate 

contamination with carbohydrates, phenolic solutions and buffers used for 

DNA/RNA isolation/purification e.g. EDTA, TRIzol reagent. Carbohydrates and 

phenols absorb light at 230 nm, while phenolic solutions like TRIzol reagent will 

absorb light both at 230 and 270nm (Thermo Fisher Scientific). DNA samples 

were analysed using a Thermo Scientific NanoDrop 2000 Spectrophotometer.  
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Appendix VI 

Multiple Sequence Alignments Generated for Colletotrichum Isolates and the 
Corresponding C. orbiculare MAFF 240442 

 

Fig 1. Multiple Sequence Alignment of Ribosomal RNA Gene Block Generated 
for Colletotrichum Isolates along with the MAFF_240422 Reference Sequence. 



 

165 
 

 

 

 

Fig 2. Multiple Sequence Alignment of Chitin Synthase (CHS) Sequence Data 
Generated for Colletotrichum Isolates along with the MAFF_240422 Reference 
Sequence. 
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Fig 3. Multiple Sequence Alignment of Glutamine Synthetase (GS) Sequence 
Data Generated for Colletotrichum Isolates along with the MAFF_240422 
Reference Sequence 
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Fig 4. Multiple Sequence Alignment of Actin (ACT) Sequence Data Generated 
for Colletotrichum Isolates along with the MAFF_240422 Reference Sequence. 
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Fig 5. Multiple Sequence Alignment of Calmodulin (CAL) Sequence Data 
Generated for Colletotrichum Isolates along with the MAFF_240422 Reference 
Sequence. 
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Fig 6. Histone (His3) Multiple Sequence Alignment of Data Generated for 
Colletotrichum Isolates along with the MAFF_240422 Reference Sequence. 

 



 

172 
 

 

Fig 7. Multiple Sequence Alignment of Beta-Tubulin (TUB) Sequence Data 
Generated for Colletotrichum Isolates along with the MAFF_240422 Reference 
Sequence. 
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Fig 8. Mating Type Gene/High Mobility Group Domain (HMG) Multiple  
Sequence Alignment of Sequence Data Generated for Colletotrichum Isolates 
along with the MAFF_240422 Reference Sequence. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

174 
 

Appendix VII 
 

Sequence Homology and Divergence among Colletotrichum spp. Isolates 

 

Table 1 RNA Gene Block Internal Transcribed Spacer (ITS) Region Sequence Homology 
and Divergence (%) amongst Colletotrichum spp. Isolates  
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Table 2 Glyceraldehyde-3-Phosphate Dehydrogenase (GD/GAPDH)Sequence Homology 
and Divergence between Colletotrichum Isolates (%) 
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Table 3 Glutamine Synthetase (GS)  Sequence Homology and Divergence between 
Colletotrichum Isolates (%) 
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Table 4 Beta-Tubulin (TUB) Sequence Homology and Divergence between 
Colletotrichum Isolates (%) 
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Table 5 Mating Type Gene/High Mobility Group Domain (HMG) Sequence Homology 
and Divergence between Colletotrichum Isolates (%). 
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Table 6 Concatenated Sequence Homology and Divergence (%) amongst Colletotrichum 

Isolates including: ITS, TUB, GS, GAPDH, and HMG. 
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Appendix VIII 
 

Examples of Sequencing Results for Each Locus of C. lindemuthianum Isolate 
216 opened Using Geospiza Software. 
 
 

 
 
Fig 1 FinchTV Sequencing Results of ITS- Raw Data for Isolate 216 (Sample). 

 
 

 
 

Fig 2 FinchTV Sequencing Results of ACT- Raw Data for Isolate 216 (Sample). 
 
 
 



 

181 
 

Appendix IX 
 

Table 1 Nucleotide Variables among C. lindemuthianum Isolates clustered into 
Two Genetic Groups on the Basis of GS Multiple Sequence Alignment (Fig 
3.36)* 

Position within the 
sequence Genetic group 1 Genetic group 2 

140bp C T 
199bp C T 
229bp T C 
240bp C T 
241bp G A 
317bp C T 
352bp A T 
413bp - T 
414bp - T 
415bp - G 
416bp - C 
418bp T C 
454bp A G 
460bp C G 
569bp C T 
648bp C T 
683bp T C 

718bp C 
A (apart from 217,814, 
832 that had ‘C’ in this 

position) 
722bp C T 
731bp A T 
757bp T C 
786bp G A 
797bp G A 
868bp G A 
870bp C T 

*C. lindemuthianum isolates were separated into two groups in the phylogenetic 
tree (Fig 3.40). 
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Appendix X 
 

Examples of DNA Quality and Quantity Assessment using NanoDrop for two 
C. lindemuthianum Isolates 216 and 776  
 

 
 

 

Fig 1 Examples of NanoDrop Read-out.for Isolate 216 C. lindemuthianum Sample 
1 and 2. 
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Appendix XI 

Tables Containing Raw Data Growth Rate Monitoring  at 20ºC  

Table 1 Growth Measurements Taken from culture plates of isolate 216 

incubated at 20°C 
Date 20/06 

72 hours 
21/06 

96 hours 
25/06 

192 hours 
27/06 

240 hours 
28/06 

264 hours 
02/07 

360 hours 
216 (Plate:1)  

I 
II 
III 
IV 
V 
VI 
VII 
VIII 

2 
3 
4 
3 
3 
3 
4 
3 

5 
5 
5 
6 
5 
5 
5 
5 

13 
13 
14 
14 
13 
13 
14 
14 

18 
17 
18 
18 
17 
18 
18 
17 

20 
20 
21 
21 
20 
20 
20 
20 

28 
28 
29 
28 
28 
28 
29 
29 

3216 (Plate:2)  
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

3 
3 
4 
4 
3 
4 
3 
3 

5 
6 
6 
6 
6 
6 
6 
5 

13 
13 
13 
14 
13 
13 
13 
13 

17 
17 
18 
18 
17 
18 
17 
17 

20 
20 
20 
20 
20 
20 
20 
19 

28 
28 
29 
29 
27 
28 
28 
27 

216 (Plate:3)  
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

3 
3 
5 
4 
4 
4 
3 
3 

5 
6 
7 
7 
7 
6 
5 
5 

13 
13 
14 
14 
14 
13 
13 
12 

17 
17 
18 
18 
18 
17 
17 
17 

20 
20 
21 
21 
20 
20 
20 
19 

28 
28 
29 
29 
28 
28 
28 
28 

216 (Plate:4)  
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

4 
4 
5 
4 
3 
3 
3 
4 

6 
6 
6 
6 
5 
5 
5 
5 

14 
14 
14 
14 
13 
13 
13 
13 

19 
18 
17 
18 
17 
17 
17 
16 

20 
20 
20 
20 
20 
20 
19 
19 

29 
28 
28 
28 
28 
30 
29 
28 

216 (Plate:5)  
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

3 
4 
4 
4 
3 
2 
2 
2 

5 
6 
7 
6 
6 
4 
5 
5 

13 
14 
14 
14 
13 
13 
12 
13 

17 
18 
18 
18 
18 
17 
16 
16 

19 
20 
20 
21 
20 
19 
19 
19 

26 
27 
28 
28 
27 
27 
26 
27 
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Table 2 Growth Measurements Taken from culture plates of isolate 701 

incubated at 20°C 
Date 20/06 

72 hours 
21/06 

96 hours 
25/06 

192 hours 
27/06 

240 hours 
28/06 

264 hours 
02/07 

360 hours 
701 (Plate:1)  

I 
II 
III 
IV 
V 
VI 
VII 
VIII 

5 
6 
5 
5 
5 
5 
3 
4 

7 
8 
7 
7 
7 
7 
6 
7 

14 
15 
14 
14 
14 
14 
13 
14 

17 
17 
17 
17 
17 
16 
15 
16 

18 
19 
18 
18 
19 
18 
17 
18 

21 
22 
22 
21 
23 
22 
21 
22 

701 (Plate:2)  
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

5 
5 
5 
5 
5 
4 
4 
5 

7 
7 
7 
7 
7 
6 
6 
7 

14 
15 
14 
15 
14 
14 
14 
15 

17 
17 
17 
18 
17 
17 
16 
17 

19 
18 
18 
19 
18 
18 
18 
19 

23 
22 
22 
23 
22 
22 
22 
22 

701 (Plate:3)  
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

3 
5 
6 
2 
4 
5 
6 
5 

6 
7 
8 
4 
6 
7 
8 
8 

13 
15 
16 
12 
14 
15 
15 
15 

16 
20 
19 
14 
17 
18 
19 
18 

17 
20 
20 
15 
18 
19 
19 
19 

21 
25 
24 
18 
21 
24 
23 
23 

701 (Plate:4)  
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

5 
5 
5 
4 
4 
4 
5 
5 

8 
8 
7 
6 
7 
6 
7 
7 

15 
15 
15 
14 
14 
14 
15 
15 

18 
18 
17 
17 
17 
17 
18 
18 

19 
20 
19 
17 
18 
18 
19 
19 

23 
24 
23 
22 
23 
23 
24 
23 

701 (Plate:5)  
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

5 
6 
6 
6 
5 
4 
4 
5 

7 
8 
8 
7 
7 
6 
6 
7 

14 
15 
15 
15 
14 
13 
14 
14 

17 
19 
18 
18 
16 
16 
16 
16 

18 
19 
19 
19 
18 
17 
17 
17 

20 
23 
23 
23 
22 
21 
21 
21 
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Table 3 Growth Measurements Taken from culture plates of isolate 776 

incubated at 20°C 
Date 20/06 

72 hours 
21/06 

96 hours 
25/06 

192 hours 
27/06 

240 hours 
28/06 

264 hours 
02/07 

360 hours 
776 (Plate:1)  

I 
II 
III 
IV 
V 
VI 
VII 
VIII 

3 
5 
5 
5 
4 
3 
3 
3 

6 
8 
7 
7 
7 
6 
5 
6 

12 
15 
14 
14 
14 
13 
12 
13 

16 
19 
19 
19 
18 
18 
16 
17 

19 
21 
21 
20 
20 
19 
18 
18 

22 
25 
25 
25 
25 
24 
23 
23 

776 (Plate:2)  
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

4 
3 
4 
3 
4 
4 
5 
5 

6 
5 
4 
5 
5 
5 
6 
6 

14 
14 
13 
13 
13 
13 
14 
14 

18 
17 
17 
17 
17 
17 
18 
19 

20 
19 
19 
19 
18 
19 
20 
20 

25 
23 
23 
22 
23 
23 
24 
25 

776 (Plate:3)  
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

4 
3 
4 
5 
5 
5 
5 
5 

5 
5 
5 
6 
7 
7 
7 
7 

13 
13 
14 
14 
15 
15 
15 
14 

18 
16 
18 
18 
20 
20 
19 
17 

20 
19 
20 
20 
22 
22 
21 
20 

23 
23 
24 
24 
26 
27 
26 
24 

776 (Plate:4)  
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

3 
4 
4 
4 
4 
3 
3 
2 

5 
5 
6 
6 
5 
5 
5 
5 

12 
13 
13 
14 
14 
13 
13 
12 

18 
17 
18 
18 
18 
18 
17 
16 

19 
19 
20 
20 
20 
19 
19 
18 

23 
23 
24 
25 
24 
23 
23 
24 

776 (Plate:5)  
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

5 
5 
5 
5 
4 
4 
5 
5 

7 
6 
6 
5 
5 
5 
6 
6 

14 
13 
14 
14 
13 
13 
14 
13 

18 
17 
17 
17 
17 
17 
18 
18 

20 
20 
19 
19 
19 
20 
20 
20 

24 
24 
23 
23 
23 
24 
24 
24 
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Table 4 Growth Measurements Taken from culture plates of isolate 779 

incubated at 20°C 
Date 20/06 

72 hours 
21/06 

96 hours 
25/06 

192 hours 
27/06 

240 hours 
28/06 

264 hours 
02/07 

360 hours 
779 (Plate:1)  

I 
II 
III 
IV 
V 
VI 
VII 
VIII 

3 
3 
4 
5 
5 
4 
4 
4 

6 
6 
7 
7 
8 
6 
6 
5 

15 
15 
16 
15 
16 
15 
15 
15 

19 
19 
20 
20 
21 
20 
19 
19 

21 
21 
22 
22 
23 
22 
21 
21 

25 
25 
27 
27 
28 
27 
24 
25 

779 (Plate:2)  
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

3 
4 
5 
9 
5 
4 
4 
4 

6 
6 
9 

11 
7 

12 
6 
6 

14 
15 
17 
19 
15 
15 
15 
14 

18 
18 
20 
22 
19 
19 
18 
18 

20 
20 
22 
24 
20 
20 
20 
20 

24 
24 
26 
27 
24 
24 
24 
25 

779 (Plate:3)  
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

3 
4 
4 
4 
7 
4 
4 
4 

6 
5 
6 
5 
9 
6 
6 
6 

13 
12 
14 
12 
16 
13 
13 
14 

16 
16 
17 
16 
20 
16 
16 
17 

18 
18 
19 
18 
21 
19 
18 
19 

22 
22 
23 
22 
25 
23 
22 
23 

779 (Plate:4)  
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

4 
4 
4 
4 
4 
4 
5 
4 

6 
5 
6 
5 
9 
6 
6 
6 

13 
12 
14 
12 
16 
13 
13 
14 

16 
16 
17 
16 
20 
16 
16 
17 

18 
18 
19 
18 
21 
19 
18 
19 

23 
22 
23 
22 
25 
22 
23 
23 

779 (Plate:5)  
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

4 
4 
5 
5 
5 
4 
4 
4 

5 
7 
9 
7 
7 
6 
6 
6 

14 
16 
17 
15 
15 
15 
14 
15 

18 
20 
21 
20 
19 
19 
19 
19 

20 
22 
22 
21 
21 
21 
21 
21 

24 
26 
27 
26 
25 
25 
25 
25 
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Table 5 Growth Measurements Taken from culture plates of isolate 771 

incubated at 20°C 
Date 20/06 

72 hours 
21/06 

96 hours 
25/06 

192 hours 
27/06 

240 hours 
28/06 

264 hours 
02/07 

360 hours 
771 (Plate:1)  

I 
II 
III 
IV 
V 
VI 
VII 
VIII 

8 
9 
8 
8 
8 
8 
8 
8 

13 
13 
13 
12 
12 
13 
12 
12 

30 
31 
31 
31 
31 
30 
31 
30 

33 
31 
39 
40 
41 
38 
35 
33 

N/A N/A 

771 (Plate:2)  
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

9 
9 
9 
9 
9 
9 
9 

10 

14 
14 
13 
14 
13 
14 
14 
13 

32 
32 
32 
32 
31 
32 
32 
33 

36 
38 
39 
40 
38 
36 
36 
36 

N/A N/A 

771 (Plate:3)  
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

10 
9 
9 

10 
10 
9 
9 
9 

14 
14 
14 
14 
14 
14 
13 
13 

32 
32 
33 
33 
33 
32 
31 
32 

35 
37 
39 
40 
40 
36 
35 
34 

N/A N/A 

771 (Plate:4)  
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

9 
8 
9 
9 
9 
8 
9 
9 

13 
13 
14 
14 
14 
13 
14 
14 

32 
31 
32 
32 
32 
31 
31 
31 

36 
38 
40 
39 
38 
35 
34 
35 

N/A N/A 

771 (Plate:5)  
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

9 
8 
9 

10 
10 
10 
9 
9 

14 
12 
13 
14 
14 
14 
13 
14 

32 
31 
32 
33 
33 
32 
30 
32 

32 
40 
41 
41 
38 
35 
33 
34 

N/A N/A 

 

 

 



 

188 
 

Table 6 Growth Measurements Taken from culture plates of isolate 832 

incubated at 20°C 
Date 20/06 

72 hours 
21/06 

96 hours 
25/06 

192 hours 
27/06 

240 hours 
28/06 

264 hours 
02/07 

360 hours 
832 (Plate:1)  

I 
II 
III 
IV 
V 
VI 
VII 
VIII 

1 
1 
1 
1 
1 
3 
2 
1 

2 
2 
2 
2 
3 
4 
3 
3 

7 
6 
7 
6 
8 
9 
7 
7 

9 
9 
9 
10 
11 
12 
10 
10 

10 
10 
10 
11 
12 
13 
12 
11 

14 
15 
15 
15 
16 
17 
16 
15 

832 (Plate:2)  
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

1 
0.5 
0.5 
0.5 
1 
2 
1 
1 

2 
2 
2 
2 
2 
3 
2 
2 

8 
8 
6 
7 
7 
8 
8 
7 

12 
10 
8 
9 
11 
11 
10 
11 

13 
12 
10 
10 
11 
12 
12 
11 

17 
16 
14 
14 
15 
17 
16 
16 

832 (Plate:3)  
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

2 
2 
2 
1 
2 
2 
2 
2 

3 
3 
2 
2 
3 
3 
3 
3 

8 
8 
7 
7 
7 
7 
8 
8 

10 
10 
9 
9 
9 
9 
10 
10 

12 
11 
10 
10 
10 
11 
11 
11 

16 
15 
14 
14 
15 
15 
15 
16 

832 (Plate:4)  
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

2 
2 
1 

0.5 
1 
2 
2 
3 

4 
3 
2 
2 
2 
3 
4 
4 

8 
8 
7 
7 
8 
7 
9 
9 

11 
8 
7 
9 
10 
11 
11 
11 

13 
8 
8 
9 
11 
11 
12 
13 

17 
12 
12 
13 
15 
16 
16 
17 

832 (Plate:5)  
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

2 
2 
1 
2 
2 
2 
2 
2 

3 
3 
2 
3 
3 
3 
3 
4 

8 
9 
10 
11 
8 
7 
8 
8 

10 
11 
13 
13 
11 
10 
11 
11 

11 
11 
14 
15 
12 
10 
12 
12 

15 
15 
18 
19 
16 
14 
16 
16 
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Appendix XII 

Tables Containing Raw Data Growth Rate Monitoring at 25° C 

Table 1 Growth Measurements Taken from culture plates of isolate 216 

incubated at 25°C 
Date 25/06 

120 hours 
27/06 

168 hours 
28/06 

192 hours 
02/07 

288 hours 
04/07 

336 hours 
216 (Plate:1) 

I 
II 
III 
IV 
V 
VI 
VII 
VIII 

12 
7 
8 
8 
7 
6 
6 
7 

11 
11 
12 
11 
11 
10 
10 
11 

14 
14 
14 
14 
14 
13 
13 
13 

22 
22 
23 
22 
22 
20 
21 
21 

25 
25 
26 
26 
25 
24 
24 
25 

216 (Plate:2) 
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

8 
7 
8 
7 
7 
7 
7 
7 

12 
12 
12 
11 
11 
11 
11 
11 

14 
14 
14 
14 
13 
13 
13 
14 

22 
22 
22 
22 
22 
21 
22 
22 

25 
25 
25 
26 
24 
25 
25 
25 

216 (Plate:3) 
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

7 
8 
8 
8 
8 
7 
8 
7 

12 
12 
12 
12 
12 
11 
12 
11 

13 
14 
14 
15 
14 
14 
14 
14 

22 
23 
23 
23 
23 
22 
23 
22 

26 
26 
26 
27 
26 
26 
26 
26 

216 (Plate:4) 
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

8 
8 
8 
7 
7 
7 
7 
8 

12 
12 
12 
12 
12 
11 
12 
12 

14 
14 
15 
14 
14 
14 
14 
14 

22 
23 
24 
23 
23 
23 
23 
23 

26 
27 
27 
26 
25 
26 
26 
26 

216 (Plate:5) 
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

8 
9 
8 
6 
6 
7 
8 
8 

13 
12 
12 
10 
10 
11 
11 
11 

15 
15 
14 
13 
13 
13 
13 
14 

23 
23 
22 
22 
22 
22 
22 
22 

26 
27 
26 
25 
25 
26 
25 
26 
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Table 2 Growth Measurements Taken from culture plates of isolate 701 

incubated at 25°C 

Date 25/06 
120 hours 

27/06 
168 hours 

28/06 
192 hours 

02/07 
288 hours 

04/07 
336 hours 

701 (Plate:1) 
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

11 
11 
11 
10 
10 
11 
11 
12 

15 
15 
15 
14 
14 
15 
15 
16 

17 
18 
17 
17 
17 
17 
18 
18 

23 
23 
23 
23 
22 
23 
24 
24 

25 
26 
25 
25 
25 
25 
26 
26 

701 (Plate:2) 
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

9 
11 
11 
11 
11 
12 
10 
10 

14 
15 
15 
15 
15 
16 
14 
15 

16 
18 
17 
18 
17 
18 
16 
17 

22 
24 
24 
24 
23 
25 
23 
23 

25 
26 
26 
26 
26 
27 
25 
25 

701 (Plate:3) 
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

11 
11 
11 
12 
13 
12 
11 
11 

15 
16 
15 
16 
17 
15 
15 
15 

17 
18 
17 
19 
19 
18 
17 
18 

24 
25 
23 
25 
25 
23 
23 
24 

26 
27 
26 
27 
27 
25 
25 
26 

701 (Plate:4) 
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

11 
11 
11 
11 
11 
10 
10 
11 

15 
15 
15 
15 
15 
14 
14 
15 

17 
17 
17 
18 
17 
16 
16 
17 

23 
23 
23 
23 
23 
22 
23 
23 

25 
25 
25 
25 
25 
24 
25 
25 

701 (Plate:5) 
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

11 
11 
11 
11 
10 
10 
10 
11 

15 
16 
15 
15 
14 
15 
15 
15 

17 
18 
17 
17 
17 
17 
17 
17 

23 
25 
24 
24 
23 
22 
23 
23 

26 
27 
25 
25 
25 
24 
24 
26 
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Table 3 Growth Measurements Taken from culture plates of isolate 776 

incubated at 25°C 
Date 25/06 

120 hours 
27/06 

168 hours 
28/06 

192 hours 
02/07 

288 hours 
04/07 

336 hours 
776 (Plate:1) 

I 
II 
III 
IV 
V 
VI 
VII 
VIII 

11 
9 
10 
9 
10 
11 
10 
10 

13 
15 
14 
14 
15 
15 
14 
14 

19 
17 
17 
17 
17 
19 
17 
17 

28 
26 
26 
26 
27 
28 
26 
27 

32 
29 
30 
30 
30 
31 
30 
30 

776 (Plate:2) 
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

11 
11 
11 
10 
10 
11 
10 
11 

15 
17 
16 
16 
15 
16 
15 
15 

19 
19 
18 
17 
17 
18 
18 
18 

28 
28 
26 
27 
26 
27 
27 
28 

31 
32 
31 
30 
30 
30 
31 
30 

776 (Plate:3) 
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

10 
11 
12 
12 
11 
10 
10 
10 

15 
16 
17 
15 
15 
14 
14 
14 

17 
18 
20 
18 
18 
17 
16 
17 

26 
28 
29 
27 
27 
25 
26 
26 

30 
32 
33 
31 
31 
29 
29 
29 

776 (Plate:4) 
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

10 
11 
10 
10 
10 
11 
10 
10 

15 
17 
15 
16 
16 
16 
15 
16 

18 
19 
18 
18 
18 
18 
18 
18 

27 
28 
28 
27 
27 
28 
27 
27 

30 
32 
31 
31 
31 
30 
30 
31 

776 (Plate:5) 
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

9 
9 
9 
10 
10 
10 
9 
9 

14 
15 
14 
14 
15 
15 
14 
14 

17 
17 
17 
17 
18 
18 
17 
17 

26 
26 
26 
27 
27 
26 
26 
25 

29 
30 
30 
30 
30 
30 
29 
29 
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Table 4 Growth Measurements Taken from culture plates of isolate 779 

incubated at 25°C 
Date 25/06 

120 hours 
27/06 

168 hours 
28/06 

192 hours 
02/07 

288 hours 
04/07 

336 hours 
779 (Plate:1) 

I 
II 
III 
IV 
V 
VI 
VII 
VIII 

9 
10 
9 
9 
9 
9 
9 
9 

13 
12 
13 
12 
13 
12 
12 
12 

14 
14 
13 
14 
14 
14 
14 
14 

20 
20 
21 
21 
20 
21 
20 
20 

25 
25 
25 
25 
24 
25 
24 
23 

779 (Plate:2) 
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

9 
11 
10 
10 
9 
9 
9 
9 

13 
14 
14 
14 
13 
13 
13 
12 

14 
15 
14 
15 
14 
14 
13 
13 

21 
23 
21 
22 
21 
21 
20 
20 

25 
26 
25 
25 
25 
25 
24 
25 

779 (Plate:3) 
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

10 
10 
10 
11 
11 
10 
10 
10 

14 
13 
14 
13 
13 
13 
13 
13 

15 
16 
15 
15 
16 
15 
16 
15 

22 
22 
23 
21 
21 
22 
21 
21 

25 
26 
26 
26 
25 
26 
25 
25 

779 (Plate:4) 
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

10 
10 
10 
10 
9 
9 
10 
9 

16 
15 
13 
14 
12 
13 
13 
12 

20 
16 
16 
16 
14 
15 
15 
16 

29 
25 
22 
22 
21 
21 
21 
25 

32 
30 
26 
25 
25 
25 
25 
28 

779 (Plate:5) 
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

10 
11 
11 
9 
8 
8 
9 
9 

14 
14 
14 
12 
12 
12 
12 
13 

15 
16 
16 
15 
14 
14 
14 
15 

22 
22 
23 
21 
20 
19 
20 
21 

25 
26 
26 
24 
24 
23 
24 
25 
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Table 5 Growth Measurements Taken from culture plates of isolate 771 

incubated at 25°C 
Date 25/06 

120 hours 
27/06 

168 hours 
28/06 

192 hours 
02/07 

288 hours 
04/07 

336 hours 
771 (Plate:1) 

I 
II 
III 
IV 
V 
VI 
VII 
VIII 

18 
14 
20 
19 
19 
21 
20 
19 

27 
25 
31 
30 
29 
31 
31 
30 

35 
32 
36 
36 
34 
36 
35 
35 

N/A N/A 

771 (Plate:2) 
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

20 
20 
20 
20 
18 
16 
17 
18 

30 
31 
32 
30 
28 
23 
28 
27 

34 
37 
37 
36 
34 
26 
33 
33 

N/A N/A 

771 (Plate:3) 
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

13 
20 
20 
20 
18 
15 
11 
8 

24 
30 
28 
30 
28 
25 
22 
16 

30 
36 
31 
36 
33 
32 
27 
21 

N/A N/A 

771 (Plate:4) 
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

10 
13 
12 
13 
14 
14 
14 
13 

20 
24 
21 
24 
24 
24 
25 
22 

27 
28 
27 
30 
29 
30 
31 
29 

N/A N/A 

771 (Plate:5) 
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

21 
13 
20 
21 
21 
20 
21 
23 

32 
26 
30 
33 
31 
29 
32 
34 

38 
33 
36 
38 
37 
33 
36 
38 

N/A N/A 
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Table 6 Growth Measurements Taken from culture plates of isolate 832 

incubated at 25°C 

Date 25/06 
120 hours 

27/06 
168 hours 

28/06 
192 hours 

02/07 
288 hours 

04/07 
336 hours 

832 (Plate:1) 
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

6 
6 
6 
6 
6 
7 
7 
6 

9 
9 
9 
9 
10 
9 
9 
8 

10 
11 
10 
10 
11 
11 
10 
10 

16 
16 
16 
16 
17 
17 
16 
16 

19 
18 
18 
18 
20 
19 
19 
18 

832 (Plate:2) 
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

5 
7 
6 
6 
6 
6 
7 
5 

7 
10 
9 
9 
10 
10 
10 
8 

8 
12 
11 
11 
12 
11 
11 
10 

13 
16 
17 
16 
17 
17 
17 
15 

13 
18 
19 
19 
20 
19 
19 
17 

832 (Plate:3) 
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

5 
6 
5 
7 
4 
4 
5 
5 

8 
8 
9 
10 
7 
8 
7 
8 

10 
10 
10 
12 
10 
10 
9 

10 

14 
15 
15 
17 
16 
14 
14 
15 

16 
16 
17 
19 
18 
16 
16 
16 

832 (Plate:4) 
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

5 
4 
5 
5 
6 
5 
6 
5 

8 
7 
7 
7 
7 
8 
9 
8 

9 
8 
8 

10 
10 
9 

10 
9 

14 
13 
13 
15 
16 
15 
15 
15 

16 
15 
15 
16 
17 
16 
17 
16 

832 (Plate:5) 
I 
II 
III 
IV 
V 
VI 
VII 
VIII 

6 
6 
6 
5 
5 
6 
5 
6 

10 
8 
8 
7 
8 
8 
7 
8 

12 
11 
10 
9 

10 
10 
9 

10 

17 
16 
16 
14 
14 
16 
14 
16 

20 
19 
18 
15 
16 
17 
17 
19 
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