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Abstract

RESTful Web Services are gaining increasing attention from both the ser-

vice and the Web communities. The rising number of services being imple-

mented and made available on the Web is creating a demand for modelling

techniques that can abstract REST design from the implementation in order

better to specify, analyse and implement large-scale RESTful Web systems. It

can also help by providing suitable RESTful Web Service composition methods

which can reduce costs by efficiently re-using the large number of services that

are already available and by exploiting existing services for complex business

purposes.

This research considers RESTful Web Services as state transition systems

and proposes a novel Linear Logic based approach, the first of its kind, for

both the modelling and the composition of RESTful Web Services. The thesis

demonstrates the capabilities of resource-sensitive Linear Logic for modelling

five key REST constraints and proposes a two-stage approach to service com-

position involving Linear Logic theorem proving and proof-as-process based on

the π-calculus.

Whereas previous approaches have focused on each aspect of the com-

position of RESTful Web Services individually (e.g. execution or high-level

modelling), this work bridges the gap between abstract formal modelling and

application-level execution in an efficient and effective way. The approach not

only ensures the completeness and correctness of the resulting composed ser-

vices but also produces their process models naturally, providing the possibility

to translate them into executable business languages.

Furthermore, the research encodes the proposed modelling and composition

method into the Coq proof assistant, which enables both the Linear Logic theo-

rem proving and the π-calculus extraction to be conducted semi-automatically.

The feasibility and versatility studies performed in two disparate user scenarios

(shopping and biomedical service composition) show that the proposed method

provides a good level of scalability when the numbers of services and resources

grow.
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Chapter 1

Introduction

This thesis discusses RESTful Web Service formalisation in the areas of mod-

elling and composition. Modelling RESTful Web systems is demanding in

order to guide the robust system implementation and maximise the benefits of

using the REST architecture style. Composing RESTful Web Services is essen-

tial in order to save costs by efficiently re-using the large number of available

services and exploiting services for complex business purposes.

The thesis investigates a logic-based approach to modelling and composing

RESTful Web Services. It analyses the principles of the REST architecture

style and the characteristics of RESTful Web Services and proposes resource-

sensitive Linear Logic for the modelling task and the inference rule driven

Linear Logic theorem proving for searching service composition results. The

whole approach is performed semi-automatically in the Coq proof assistant

to complete the composition search, obtain the composition results and verify

Linear Logic theorem proving.

This introductory chapter explains the motivation that drives this research,

the research aims and objectives, the main research questions and assumptions,

the overall proposed solution, the key contributions and the organisation of this

thesis.

1



1.1. Motivation

1.1 Motivation

In the last few years, REST has gained increasing attention from the Web,

the mobile and the service communities. REST, which stands for the Repre-

sentation State Transfer, is an architecture style that was firstly introduced

by Fielding [1] in his PhD thesis. The REST architecture aims to make the

Web into a scalable yet reliable network-based hypermedia system. The World

Wide Web (WWW) has evolved with the REST architecture and has become

the largest REST system; this rapid and large-scale WWW development has

shown the potentials of what REST can bring into a system, such as evolv-

ability, simplicity and performance.

1.1.1 RESTful Web Service Modelling

The REST architecture style regulates distributed system implementations

via a set of constraints, such as uniform interface and stateless client-server

development. The applications and systems built in the REST style have

several potential advantages, including being lightweight, being declarative and

providing easy accessibility. Furthermore, the RESTful Web systems usually

have better visibility and are easy to scale [1]. These benefits of REST create

the demand for modelling techniques that can abstract the REST design from

the implementation in order to better specify, analyse and implement large-

scale RESTful Web systems.

Although there exist many systems and services that claim to be RESTful

systems or RESTful Web Application Programming Interfaces (APIs), many

of them do not conform the design constraints recommended by the definition

of the REST architecture style in [1], and there are some misinterpretations of

the REST constraints in the implementation.

For example, the development of Web Services is taking advantage of the

benefits of the REST architecture style, and so-called RESTful Web Services

[2]/RESTful Web APIs have become popular on the Web. When RESTful Web

Services are being developed, the implementation of the REST architecture

2



1.1. Motivation

style typically uses the Hypertext Transfer Protocol (HTTP). This has led to

some wrong assumptions in which services with eXtensible Markup Language

(XML) over HTTP are treated as RESTful Web Services. REST has more con-

straints than HTTP; for instance, the hypermedia as the engine of application

state (HATEOAS) constraint is not addressed in HTTP. As a result, this HA-

TEOAS constraint is typically ignored by many RESTful Web Services/APIs.

In addition, while HTTP is commonly used in Web Services/APIs, REST itself

is not specifically dependent upon any particular communication protocol.

One vital reason for the misinterpretation is believed to be a lack of stan-

dard modelling languages with which to define RESTful Web Services [3]. As a

consequence, it would be helpful for clear and sufficient models to be provided

to assist Web engineers to interpret the RESTful architecture style properly

and to design robust RESTful Web systems.

1.1.2 RESTful Web Service Composition

In addition to the general WWW use of REST, RESTful Web Services are

important use cases of the REST architecture style. RESTful Web Services

have gained more popularity only in recent years in contrast to over a decade

of focus on developing and studying the traditional imperative style of Web

Services (also known as Big Web Services, Remote Procedure Call (RPC) style

Web Services or Simple Object Access Protocol (SOAP) Web Services) [4, 5].

The popularity of the development of RESTful Web Services is illustrated by

the number of large service providers, such as Google [6], Amazon [7] and

Yahoo [8], that offer most of their services in the RESTful style. However,

debates on RESTful Web Services vs. the Big Web Services are still ongoing

[9, 10, 11].

In contrast to the imperative style of Web Services, RESTful Web Services

view business data and functionalities as identified resources, which brings

the immediate advantage of being lightweight. The response of a service is

the representation of the resource itself and does not involve extra encapsula-

tion. RESTful Web Services typically use the direct HTTP protocol and have

3



1.2. Aims and Objectives

a uniform invocation interface as a result of using the same set of methods.

Moreover, there is a standard set of HTTP status codes for understanding the

response of the invocation, so RESTful Web Services are easy accessible by

clients. Because RESTful Web Services focus on the data and resources them-

selves, they are claimed to be self-declarative. Service-oriented applications

built using declarative, rather than imperative, approaches are more loosely

coupled and offer better flexibility and scalability [12].

Service composition is important in the re-usage and exploitation of ser-

vices for complex business purposes [13]. There are broad studies on compos-

ing the traditional imperative style of Web Services [14, 15, 16, 17, 18, 19].

However, being declarative makes RESTful Web Service composition different

from the traditional form and introduces new challenges [20]. RESTful Web

Services focus on resource exposure and representation, so their composition

should integrate individual Web resources to create new resources or applica-

tions. In service-oriented research, the focus on composing services has mainly

been devoted to conventional operation-oriented services, leaving the area of

RESTful Web Services comparatively under-explored. Continued research in

RESTful Web Service composition remains crucial to ensuring that the service

community can understand and perform service composition.

1.2 Aims and Objectives

The aim of this thesis is to consider both RESTful Web Service modelling

and composition from the logic-based point of view. It proposes to apply

Linear Logic theorem proving to search and create composed services and to

use the embedded π-calculus into Linear Logic inference rules for extracting

the composed service in the process calculus.

This logic-based approach will guarantee the completeness and the correct-

ness of the solution. The implementation of the π-calculus embedded Linear

Logic in the theorem prover will ease the composition search and enable final

composed results to be implementable at the executable level.

4



1.3. Research Questions & Key Assumptions

The following lists of objectives that have to be met in order to achieve the

research aims:

� to analyse the features of RESTful Web services and the challenges in

modelling and composing them;

� to investigate a formal method that can efficiently model RESTful Web

Services and can automatically compose them according to user require-

ments; and

� to analyse the method and demonstrate its feasibility and versatility by

applying it to different use case scenarios.

1.3 Research Questions and Key Assumptions

This thesis focuses on introducing a logic-based approach for modelling and

composing RESTful Web Services. By conducting the research work, the thesis

tries to answer the following questions.

� What are RESTful Web Services and why is formalising them necessary?

� What are the current methods for modelling and composing RESTful

Web Services and what are their pros and cons?

� Is it feasible to model RESTful Web Services at the logic level and how

can this be achieved?

� How can RESTful Web Services be composed by a Linear Logic based

approach?

� How does this logical approach compare with other existing modelling

and composition approaches?

Firstly, it is important to know what makes RESTful Web Services differ-

ent from other types of Web Services, such as RPC-style Web Services. This

involves analysing the REST architecture style, the features of overall Web

5



1.3. Research Questions & Key Assumptions

Services and the current Web development. The results of this analysis will

allow a better understanding of why RESTful Web Services are gaining popu-

larity in today’s Web development and why feasible formalisations of RESTful

Web Services are desired.

Secondly, it is essential to know what current formalisation methods have

achieved and why other approaches are required. It will not only enable us to

gain a clear picture of the research status in RESTul Web Service formalisation

especially in the areas of modelling and composition but also allow us to outline

future research work in this area.

Thirdly, logics have been used widely for modelling in different domains, so

it is valuable to investigate whether a logic-based approach can bring benefits

to the RESTful Web Service modelling and composition. The thesis tries to

answer this key question with a set of sub-questions. For example, why is

Linear Logic particularly selected for this purpose? How is the composition

performed? How can service modelling and composing at the logic level be

used in real cases?

Fourthly, in order to evaluate the proposed logical approach, it is important

to compare it with other existing modelling and composition approaches. This

comparison will not only help users to choose the appropriate modelling and

composition method according to their specifications but also provide insight

to future research in these areas.

In addition, a number of key assumptions have to be made in order to ensure

that the thesis focuses on the research aim and research questions outlined.

1) Prior to the service composition, it is assumed that all available services

are discovered and ready for access from a centralised repository. If

no resources or services are matched during composition searching, the

required services are assumed to be unavailable.

2) It is assumed that all specified business constraints/actions among the

services are stored in a centralised repository which can be accessed dur-

ing composition solution searching.
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Figure 1.1: Key research components in Linear Logic for RESTful Web Service
Modelling and Composition.

3) It is assumed that the data resources and their categories have been

defined by unified semantics according to the business models within

the scenarios; there are no conflicting concepts among them once the

business models are defined.

4) It is assumed that RESTful Web Services mentioned in this thesis are

built on HTTP with four standard methods: GET, POST, PUT and

DELETE. All these methods are used according to the original seman-

tics, which was also pointed out as an important necessity when devel-

oping RESTful Web Services [21]. Therefore, GET is for retrieving the

representation of a resource, POST is for creating a new resource, PUT

is for updating a resource and DELETE is for removing a resource.
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1.4 Proposed Solution

This thesis proposes Linear Logic as the base formalism by which to model

RESTful Web Services and plan their composition. Figure 1.1 presents the

key components in this research, in which LL stands for Linear Logic and ILL

stands for Intuitionistic Linear Logic.

The proposed approach is achieved from the following considerations. The

detailed descriptions of this approach are discussed in Chapter 3, 4 and 5.

� Because the representational state transfer feature of the REST architec-

ture style, RESTful Web Service systems are viewed as state transition

systems in which the resource representations are transferred to form the

new application states.

� Linear Logic, which can explicitly model state transition systems, is cho-

sen as a formal model for RESTful Web Services. The proposed ser-

vice modelling techniques can be extended to the modelling of general

RESTful systems.

� RESTful Web Service composition is performed via Linear Logic theorem

proving and a two-stage composition method is proposed in order to

improve the efficiency of proof searching.

� Based on the proof-as-process paradigm and the close relationship be-

tween Linear Logic and the π-calculus, the π-calculus is employed as the

formalism for representing the composition result at the second compo-

sition stage.

� The modelling is encoded in a programming language and the theorem

proving is completed semi-automatically in the Coq proof assistant.

The approach will be further demonstrated with real-world user scenarios

and evaluated by analysing it scalability and comparing with other existing

modelling and composition methods.
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1.5 Contributions

The main contributions of this research are listed as follows. The detailed

evaluation of these contributions is discussed in Chapter 7.

� Development of the first logic-based approach for modelling and com-

posing RESTful Web Services (Chapter 3 and 4). As one type of formal

methods, the logic-based approach can retain the simplicity of the models

and representations. Furthermore, Linear Logic is particularly selected

due to its explicit resource computation feature, its ability to represent

state systems and its close relationship to the process calculus.

� Application of the combination of propositional Intuitionistic Linear Logic

and the π-calculus for composing RESTful Web Services (Chapter 4).

The key feature of this approach is combining two formalisms together

that not only use propositional Linear Logic to guarantee the complete-

ness and the correctness of the composed services but also use the π-

calculus to create the process model for the composition result.

� An implementation of RESTful Web Service composition in Coq (Chap-

ter 5). This allows the verification of the theorem proving and extraction

of the process model. The use of Coq is motivated by the ease of mecha-

nising logics as a one tier system. The type system supported by Coq also

allows the fine specification of the π-calculus. And the graphic CoqIDE

tool provides a user-friendly way to use the Coq proof assistant.

� Feasibility and versatility demonstration of the Linear Logic based ap-

proach for composing RESTful Web Services (Chapter 6). Two use sce-

narios in different domains (i.e. e-commerce and bioinformatics) are

thoroughly studied and implemented in Coq. Feasibility is also demon-

strated by scalability performance measurements of compositions with

the large number of services and business specifications (Chapter 7).

In addition, earlier versions of several parts of this thesis have been pub-

lished and presented in international conferences. These include discussions of
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the Linear Logic modelling at the IEEE ECOWS 2011 [22] and extraction of

the process models at the IEEE NWeSP 2011 [23]. Some other publications,

which are closely related to this research but not directly addressed in this

thesis, can also be found in the publication list.

1.6 Thesis Outline

The thesis is organised as follows.

Chapter 2 provides the background of this research and an overview of

the literature on RESTful Web Service modelling and composition, in which

two surveys are conducted.

Chapter 3 discusses the reasons of choosing Linear Logic as the formalism

for modelling and composing RESTful Web Services and how Linear Logic is

used to model RESTful Web Services, in which RESTful Web systems are

viewed as state transition systems.

Chapter 4 presents a two-stage method to compose RESTful Web Services

and extract process models for the composition results. The π-calculus terms

are attached to the Linear Logic inference rules, and the Linear Logic theorem

proving is used for searching the composition results.

Chapter 5 implements the Linear Logic modelling and theorem proving

in the Coq theorem prover, which greatly eases the theorem-proving process

and double validate the proof.

Chapter 6 demonstrates the feasibility and versatility of this Linear Logic

based approach to RESTful Web Service composition through four case studies

in two user scenarios.

Chapter 7 evaluates the proposed Linear Logic based modelling and com-

position method and compares it to other approaches mentioned in the liter-

ature review.

Chapter 8 summarises the contribution of this thesis and proposes future

research work.
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Chapter 2

Background and Related Work

This chapter provides the background and the literature review for this thesis.

The key scope of this thesis is RESTful Web Services which covers the concepts

of the REST architecture style and Web Services.

The aim of this thesis is to formally model and compose RESTful Web

Services. Thus, this chapter firstly demonstrates the core features of RESTful

Web Services, and then discusses the importance of modelling and composing

them. It then looks separately at existing methods in the areas of modelling

and composing RESTful Web Services.

2.1 Representational State Transfer Architec-

ture Style

REST was introduced as an architecture style for distributed hypermedia sys-

tems at the turn of the Century. It has been widely applied to the current

World Wide Web and enables the Web to continue to expand and evolve for the

future. The REST architecture style is regulated by six software engineering

constraints [1]: client-server, stateless, cache, layered system, code-on-demand

and uniform interface. With these constraints, the REST architecture style en-

ables distributed hypermedia systems to be loosely-coupled, scalable, portable

and reliable. Table 2.1 summarises the pros and cons of the above constraints
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Table 2.1: Pros and cons of the REST constraints in the Web system develop-
ment.

Constraints Pros Cons

Client-Sever Improved portability of client in-
terfaces and scalability of server
components.

Increased network congestion.

Stateless Increased visibility, reliability
and scalability.

Decreased network performance;
Reduction of the server’s control
on consistent application behav-
ior.

Cache Improved network efficiency Decreased reliability

Layered System Reduced complexity Increased overhead and latency

Code-On-Demand Improved extensibility Reduced visibility

Uniform Interface Improved simplicity and visibil-
ity

Decreased efficiency

with regard to the implementation criteria, such as portability, visibility, scal-

ability, reliability and efficiency.

The client-server constraint separates the responsibilities of the client-side

components and the server-side components; clients are not concerned with

data storage, while servers are not concerned with user states. This separation

maximizes the client-side portability and the server-side scalability. RESTful

Web systems generally have two types of client-side agent: one is the human

user agent and the other is the machine agent.

The stateless constraint requires that each request from the client to the

server must contain all of the information necessary to fulfil it - the session

state is kept only at the client side. This weakens the coupling between the

client and the server.

The cache constraint allows the response to be defined as cacheable or

non-cacheable, which reduces the number of network requests and improves

the system performance.

The layered system constraint allows additional middle layers to be added

between the client and the server. These layers separate the functions into

hierarchies, thus increasing the scalability and flexibility of the system.

Code-on-demand is the only optional constraint and it allows the client to
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download and run the server-side code as scripts or applets, thus providing the

possibility of enhanced functionality by consideration of context settings, such

as firewall-prevented communications.

The uniform interface constraint is guided by multiple sub-constraints in-

cluding identification of resources (e.g. Uniform Resource Identifier (URI)),

manipulation of resources through representations, self-descriptive messages

and Hypermedia as the Engine of Application State (HATEOAS). The uni-

form interface constraint simplifies the system architecture and improves the

semantic understanding of the interactions. The HATEOAS constraint ensures

that the systems interact entirely through hypermedia provided dynamically

by the servers - the client needs to know only the entry address of a resource;

it then follows the hyperlinks among the media to find the representations of

other resources. It further decouples the client and the server, so both sides

have the ability to evolve independently.

REST itself does not bind to any particular network protocols. However,

because of the close matching to HTTP, REST together with HTTP has been

widely used in today’s WWW development.

The evolving RESTful systems can be viewed as state transition systems

because of its representation state transfer feature, in which states are ex-

pressed as resource representations with links indicating transitions. Client

agents manipulate resources at one state through their representations which

contain links used by clients to reach the further desired application states.

For example, see Figure 2.1, the BBC website defines a media publication

resource, and the client can access it through its Uniform Resource Locator

(URL) (http://bbc.co.uk). The representation of the resource is returned to the

client as a Web page in this case, and this representation places the client into

a state S1. Links to further resources, such as News, Sport and Weather, are

contained in the representation that allows the client to access them through

their URLs. The client may obtain the representation of the news resource

through the news link http://www.bbc.co.uk/news, which moves it into another

application state, S2. Thus, the client application states change with each

13
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Figure 2.1: An example of RESTful Web system.

resource representation, and this state transfer can be expressed in the state

transition system.

2.2 Web Services

The concept of Web Services first emerged around 2000 [24] based on the ideas

of RPC, Common Object Request Broker Architecture (CORBA) and Remote

Method Invocation (RMI) [25]. The World Wide Web Consortium (W3C) gave

a definition of Web Services as [26]:

“A Web service is a software system designed to support in-

teroperable machine-to-machine interaction over a network. It has

an interface described in a machine-processable format (specifically

WSDL). Other systems interact with the Web service in a manner

prescribed by its description using SOAP messages, typically con-

veyed using HTTP with an XML serialization in conjunction with

other Web-related standards.”
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Furthermore, W3C classified Web Services into two types [26]. One is

REST-compliant Web Services in which Web resources are manipulated by

XML representations through a set of uniform stateless methods. The other

is arbitrary Web Services in which a variety of methods may be exposed.

Web Services that are built on the Web Service Description Language

(WSDL) and SOAP technologies are nowadays referred to Big Web Services

[2, 9]. This type of Web Services views the Web as the universal transport

for communicating messages. The implementation of the services is operation-

oriented and there are no regulations on the definitions of the operations.

These services are typically seen as exposing internal functions through ser-

vice endpoints (such as via WSDL) and transferring SOAP messages for service

communications.

Although REST has been mentioned for Web Services, this original Web

Service definition identifies the key supporting technologies for Web Services

are WSDL, SOAP, XML and HTTP. The early implementations of Web Ser-

vices have been largely demonstrated by enterprise and organisations expos-

ing their mainframe functions into network-accessible services and publishing

WSDL files as service access endpoints. The emergence of Amazon Web Ser-

vices [7] in 2002 is one examples.

Web Services that are developed to adhere to the REST constraints are

known as RESTful Web Services rather than REST-compliant services. Con-

sidering the W3C’s Web Services definition and the characters of the REST

architecture, the REST-compliant services do not exactly follow the REST

architecture principle. This type of service is nowadays treated as hybrid [2],

in which services use HTTP as the envelope format but do not use uniform

access for the methods.

As a result of the development of Web 2.0, the implementation of real

RESTful Web Services becomes popular. The shift from traditional operation-

oriented Web Services to RESTful Web Services has been exemplified by the

actions of Amazon introducing the Simple Storage Service (S3) [27] and Google

deprecated the SOAP format search service in 2009 [28]. Although the debate
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on RESTful Web Services and Big Web Services still continues, RESTful Web

Services are gaining increasing attentions due to their advantages of being

lightweight, being declarative and providing easy accessibility. However, the

majority of the REST movements is in industry. The research on RESTful

Web Service formalisation is still under explored.

2.3 RESTful Web Services

RESTful Web Services, also known as RESTful Web APIs, refer to the type of

RESTful Web Systems that particularly concentrates on systems with machine

client agents. These Web Services are developed according to the REST ar-

chitecture style and use the HTTP protocol. The key element of the service is

a collection of resources, and each resource is identified by its URI. Resources

are represented in different Internet media formats, such as JavaScript Object

Notation (JSON), Atom and XML, and the change of the resource application

state is managed through these representations. The representation of the

resource contains links for driving the application states.

RESTful Web Services typically use standard HTTP operation methods

(e.g. GET, POST, PUT and DELETE) with response status codes for uni-

form access. As mentioned in the previous chapter, this thesis assumes that

all HTTP methods use the semantics expected, which was pointed out as an

important necessity when developing RESTful Web Services [21]. GET is a

safe method which can be performed repeatedly to retrieve the current repre-

sentation of the target resource without any side effect. PUT is an idempotent

method for updating the target resource; being idempotent means that it is

replayable, so the effect of using PUT for N identical messages is the same

as using PUT for one such message. DELETE is used for termination and

is also an idempotent method. POST creates new resources and is thus not

replayable.

To summarise, RESTful Web Services have the following characteristics.

� Addressable: Any piece of information that is related to a service should
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be defined as a resource, and this resource should be identified by a

URI. Unlike SOAP-style services in which WSDL is used to specify the

endpoints of the services, resources are directly accessible through the

URI. This addressability feature enables RESTful Web Services to be

extensible.

� Connectible: As required in the REST architecture style, resource repre-

sentations should contain links to other resources, so resources in services

are connected through this links. The links provide the next available

resources after retrieval of the current resource. This connectivity fea-

ture enables RESTful Web Services to be compatible with the existing

Web infrastructure and to be discovered by Web crawlers.

� Uniform Interface: Resources are typically defined as nouns, and all re-

sources are manipulated through standard HTTP methods with uniform

semantics. Thus, a representation obtained through the GET method is

catchable at the client side.

� Stateless: As required in the REST architecture style, communication

between service providers and service requesters should be kept stateless.

This feature allows multiple requests to be handled simultaneously and

facilitates the system scalability.

� Lightweight: Requests to RESTful Web Services are submitted directly

through HTTP protocols without using any extra encapsulations for the

messages, and responses are well represented in common Internet media

formats without involving any extra encapsulations as well. Compared

to SOAP-style services, which rely on SOAP envelopes to communicate

messages, it is easier to consume RESTful Web Services, and the sizes

of the messages communicated by RESTful Web Services are smaller.

� Declarative: RESTful Web Services view the services from the perspec-

tive of resources rather than the operating methods. Because they have

a uniform interface, RESTful Web Services focus on describing the re-
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sources themselves, so the resources are more loosely-coupled and easier

to be understood by the requesting clients.

2.4 Modelling RESTful Web Systems

Models provide a standardised format for analysing a problem and offer a

systematic approach to problem solving. They can guide the development

process and serve as consistent tools for system evaluation. RESTful Web

Services are becoming popular in implementation and development. However,

as mentioned in Chapter 1, the lack of formal modelling for RESTful Web

Services has caused some misinterpretation during service implementation. It

would be helpful for clear and sufficient models to be provided to assist Web

engineers in interpreting the RESTful architecture style properly and designing

robust RESTful Web systems.

Various modelling techniques may be used for different purposes, such as

graphic/diagram models for requirement analysis in the visual form, symbolic

mathematical models for reliability and performance evaluation, and semantic-

based models for addressing system intelligence and interoperability. The

remainder of this section will examine several approaches to modelling the

complete RESTful Web systems with information on the techniques employed

including Unified Modelling Language (UML), formal methods and semantic

Web, and then compare them according to the REST constraints.

2.4.1 UML

UML [29, 30] is a typical diagram-based modelling language for software engi-

neering. It uses class diagrams for modelling the static structures of a system,

sequence diagrams for showing sequential interactions in a system, and state

diagrams for representing abstract behaviours in a system.

To model resources and process interfaces, Porres et al. [31, 32] introduces

conceptual UML and behavioural UML, respectively. The conceptual resource

models are represented in UML class diagrams, in which each class represents
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a resource, the attributes of the class are data appearing in the resource repre-

sentation, and the associations between classes are the links between resources;

the starting point of the system is a class in the collection type. The process

interfaces are modelled in UML state machines with guards, which aim to

address states and transitions. A state is active if and only if the guard on

the state is true. Transitions are said to be triggered only by HTTP POST,

PUT and DELETE methods and are only enabled when the guard condition is

true. This approach also extends the Web Application Description Language

(WADL) with pre-conditions and post-conditions for publishing services and

providing machine-readable service descriptions.

UML is also used in meta-modelling. Alarcon et al. [33] proposes the Re-

source Linking Language (ReLL) for describing RESTful services and detailed

meta-models in UML class diagrams. The meta-model describes resources,

representations, links and link types; as it is aimed at services, it exhibits

server-side system characteristics, not those of the client side. ReLL enables

machine clients to automatically retrieve Web resources, their domain seman-

tics and the navigation mechanisms. However, this model is a purely static

description of RESTful services and does not cover cases in which new resources

or identification and access schemes are introduced.

2.4.2 Formal methods

Formal methods address system reliability and correctness by modelling and

analyzing systems mathematically. The precision of mathematics helps in re-

duction of faults in systems and reveals inconsistencies, ambiguities and in-

completion at the early stage of system specification. The following discusses

four techniques that have been used in the recent literature.

A finite-state machine (FSM) is a mathematical model for designing com-

puter programs. In an FSM, processes can have only a finite number of possible

states and transitions. Computation begins at the start state and changes to a

new state take place according to the transition function. FSMs are commonly

used with model checking for the formal verification of a system.
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Zuzak et al. [34] presents a view of RESTful systems as state transition

systems. Non-deterministic finite-state machines (FSMs), in which both hu-

man and machine client-side agents are active, are used to model them. The

research addresses the interactions between components and focuses on the

functional properties of the system. In this approach, a RESTful system is

modelled as a complete application in a single FSM. The transition functions

are divided into client and server components. The model accepts the initial

state of the system at startup, and input symbols are generated by the client

component, which transforms input symbols into requests and integrates re-

source representations into the application state. The server component then

processes the requests and gives responses.

Petri nets provide a promising graphical and mathematical modelling for

distributed systems. A graphical Petri net is presented as a directed bipartite

graph, in which nodes represent places and transitions, and tokens occupy

places. A transition may fire when each of its input places has the required

tokens. When a transition fires, all tokens from its input places are removed,

after which, tokens are inserted into all of its output places.

When the original Petri nets are used, excessive proliferation of elements

in the graph becomes a problem if the system being described is complex. To

overcome this, high-level Petri nets were developed, which incorporate some

high-level concepts, such as the use of complex data structures as tokens. Two

existing approaches use high-level Petri nets to model RESTful Web systems.

Decker et al. [35] expresses RESTful process execution using the service

net, a special class of Petri nets supporting value passing. The approach tar-

gets the composition of the RESTful processes and is akin to the traditional

Business Process Execution Language (BPEL)/SOAP approach to process en-

actment. Tokens carry XML data that are consumed in, and produced by,

communication transitions. Transitions are represented as URI passing, and

URIs are considered to be of two types: static ports, which are independent of

any particular process instance, and dynamic ports, which refer to exactly one

activity process. The notation of dynamic ports, which take input tokens to
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generate new URIs, is important in realizing URI passing in RESTful systems.

Li and Chou [3] illustrates a REST chart model based on the Colored Petri

Net topology, an extension to Petri nets that distinguishes tokens by colour.

In the REST chart model, representations are divided into type representa-

tions and resource representations, with type representations being connected

by transitions. A type representation is modelled as a Coloured Petri Net

place that can have tokens denoting the resource representations of that type.

The HATEOAS constraint is enforced by the original Petri Net transition fir-

ing rules. In RESTful systems, they are explained as: a state transition can

be fired only when all of its input type representations have the correct re-

source representations, and after the firing, the input resource representations

are consumed, and appropriate resource representations are created for the

output type representations. The approach models the stateless constraint

by introducing the idempotent transition, which is a transition performed by

idempotent methods (i.e. GET, PUT, DELETE), and the stationary place, in

which all hyperlinks in the representation are available.

The π-calculus, described as processes concurrently communicating through

identified channels or ports, is seen as a powerful formalism to describe con-

currency models and it is a foundation of business process management. It

uses the concept of names to describe terms such as communication channels,

links, and so on. An important characteristic is the mobility that allows pro-

cesses to communicate with each other by exchanging messages through named

channels that can also be sent over the names and be received by processes.

This π-calculus approach shows great promise for modelling many REST

constraints including resources, representations, media types and HATEOAS.

Indeed, the π-calculus has been mentioned by several groups of researchers

[34, 35] as a good candidate for modelling RESTful systems.

In particular, Hernández and Garćıaone [36] models RESTful semantic Web

Services using the π-calculus together with tuple space computing. The model

is bound to the HTTP protocol. According to it, a semantic RESTful system

is formalized as a set of processes with associated triple spaces that receive
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messages through URIs assigned. The approach models the exchange of Web

resources containing resource identifiers between clients and servers as named

channels being exchanged.

2.4.3 Semantic Web

The emergence of Semantic Web aims to transform the current Web, whose

unstructured or semi-structured contents are understandable only by humans,

into a machine-understandable Web with structured information. This would

enable machines to perform more “human-like” tasks, such as discovering and

combining information on the Web. Ontologies are commonly used in the

Semantic Web context and play an important role in defining the concepts of

the resources on the Web. Ontology-based annotations are often used to make

machine-understandable service descriptions.

Zhao and Doshi [37] proposes an ontology-based approach to describing

RESTful Web Services at the conceptual level. It classifies services into three

types: Resource Set Service, Individual Resource Service and Transitional Ser-

vice. Each type of service has a common definition, such as name, URI, de-

scriptions, resource and HTTP methods. The Resource Set Service supports

all four methods: GET, PUT, DELETE and POST, The Individual Resource

Service does not support the POST method, and the Transitional Service sup-

ports only the POST method. This approach uses Transitional Services to

enable the system state changes and proposes the use of situation calculus for

automatically composing services based on these conceptual models.

hRESTs [38] provides machine-readable descriptions for RESTful Web Ser-

vices and APIs by annotating them based on a simple service model. Although

this research discusses the HATEOAS constraint, its model of RESTful Web

Services still closely follows conventional thinking about the development of

operational services (e.g. RPC-based services). Thus, services are still viewed

as a set of operations rather than resources, and it addresses the input/output

messages of the operations more than the representation and metadata of the

resources. Consequently, it is not strictly compared to the other methods.

22



2.4. Modelling RESTful Web Systems

2.4.4 Evaluation of the Modelling Methods

The above modelling methods are summarised particularly with respect to the

constraints in the REST architecture style. Table 2.2 shows results.

Client-server constraint

Two UML modelling approaches and the ontology-based approach discussed

above focus mostly on the resources residing on the server, so they do not

clearly show how requests are submitted from the client side. All other ap-

proaches address the client-server constraint in some way. Client agents are

mostly seen as request providers and initialize the system transitions, while

servers are request processors and deliver responses to clients.

Stateless constraint

The ReLL, service nets, the π-calculus and ontology approaches do not explic-

itly discuss the stateless constraint in their models. All other approaches in-

cluding Porres’s UML, FSM and REST Chart, which are based on the concept

of state transition systems, address this constraint within their own models,

but the understanding of the state is mixed with session state, representation

state, application state and resource state.

Cache constraint

Cache is a non-functional constraint that is included in the REST architecture

style in order to improve network efficiency. None of modelling techniques

explicitly address this constraint, so it is omitted from Table 2.2.

Layered-system constraint

Layered system is the other non-functional constraint; it is included to make

the REST architecture style more scalable. None of the approaches have ad-

dressed this constraint so far, so it is omitted from Table 2.2.
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2.4. Modelling RESTful Web Systems

Code-on-demand constraint

FSM is the only approach that explicitly addresses the code-on-demand con-

straint by using the ε-transition in FSMs. However, this constraint is optional

in the REST architecture style, and systems do not necessarily violate the

RESTful design if they do not obey it.

Uniform interface constraint

All approaches represent the uniform interface constraint to some extent. The

HATEOAS principle has been agreed by all approaches as the key for develop-

ing scalable RESTful systems. It has been modelled typically as link passing

and state transitions in these existing approaches. The identification of re-

source and the representation principles are modelled more statically in the

UML and ontology approaches. The π-calculus shows the dynamic creation of

resources through the new resource induction.

It is still debatable whether RESTful systems should have description

files, or not. According to the original principle of self-descriptive messages,

RESTful systems should be capable of being understood by the message pro-

cessors within their own system models. Porres’s UML approach supports

the provision of separate description files for the system by extending WADL.

Other approaches - ReLL, FSM, and ontology - tend to detail models with

representations, links, link types and media types in order to allow the client

and server processors to understand the request and response messages. Petri

nets and the π-calculus approaches do not explicitly address this principle.

It is also noted that, although the REST architecture style is not bound to

any particular transport protocol, all the published descriptions of the various

modelling approaches target the HTTP protocol. It is claimed that the FSM

and ReLL approaches are not restricted to HTTP.
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2.5. Composing RESTful Web Services

2.5 Composing RESTful Web Services

Service composition offers value-added dimensions to Web Services. The com-

position techniques allow service consumers to solve complex problems by

reusing and combining existing services. The full cycle of service composition

normally includes service discovery, service selection and service composition.

This thesis assumes that all available services have been discovered in some

way and focuses on the last stage of how services are combined to fulfil the

business requirements.

With the increasing number of services available on the Web, feasible com-

position techniques are more demanding. RESTful Web Services focus on

resource exposure and representation, so their composition should integrate

individual Web resources to create new resources or applications. In service-

oriented research, the focus in composing services has mainly been devoted

to conventional operation-oriented services [14, 15, 16, 17, 18, 19], leaving the

area of RESTful Web Services comparatively underexplored. Continued re-

search in RESTful Web Service composition remains crucial to ensuring that

the service community can understand and perform service composition. This

section provides an overview of the recent notable work into three categories

and compare them by the selected composition criteria.

2.5.1 Workflow-based Approaches

If the complex collaboration among services is viewed and implemented from a

workflow perspective, Web Service composition is generally regarded as similar

to workflow generation. The typical way to achieve service composition using

a workflow is to program the executable workflow directly. Currently, BPEL

[39] is the most common technique for specifying the interactions among ser-

vices. However, BPEL was originally designed for process-oriented services, so

workflow-based approaches to RESTful Web Service composition have to adapt

or extend the current BPEL language to make it suitable for resource-oriented

features.
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2.5. Composing RESTful Web Services

Pautasso [40] identifies a set of requirements for RESTful Web Service

composition and extends BPEL to accommodate the REST architecture, which

aims to enable composition of both traditional Web Services and RESTful

Web Services within the same process-oriented service composition language.

Moreover, the work also allows publication of BPEL processes as RESTful

Web Services. This work is summarised as a BPEL extension for REST that

is, so far, the most mature approach for RESTful Web Service composition at

the execution level.

Yu et al. [41] adopts the above BPEL extension for REST approach but

focuses on the importance of roles in service description and composition. It

argues that the emphasis on the impact of roles brings high usability, better

security and improved flexibility. The resource meta-model is defined in order

to build resources and their relationships to the roles.

Bite [42] is another workflow-based composition model for Web applica-

tions. It deals with both data interactions and control flows. The work uses

a subset of the existing workflow models with the aim of providing simplicity

and a short development cycle. As in the BPEL extension for REST, the com-

position workflow is published as a composed resource. However, Bite does

not support the HTTP PUT method.

These workflow-based approaches provide good support for composing ser-

vices at the execution level. However, a common issue is that additional cor-

rectness verification is required for the composition created by the business

process. Furthermore, without a formal definition of RESTful Web Services,

it is difficult to achieve automatic service composition.

2.5.2 Model-driven Approaches

In model-driven approaches of RESTful Web Service composition, models are

used to describe user requirements, resources and composition processes. They

see service composition from the high-level design-time point of view.

Rauf et al. [32] models composite RESTful Web Services with UML and is,

so far, the only model-driven approach targeting RESTful Web Service com-
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2.5. Composing RESTful Web Services

position. It introduces conceptual and behavioural models to model resources

and composition processes, respectively, with conceptual resource models be-

ing represented in class diagrams. The RESTful process is a model in an

activity diagram, and the composition process is detailed in a state machine

diagram. The approach considers the composite service resource as the main

resource in the model, and other partner services are navigated from it. The

models are said to have a direct mapping to business flow languages such as

the BPEL extension for REST; however, no detailed work is given.

2.5.3 AI Planning Approaches

In Artificial Intelligence (AI) planning approaches, service composition is re-

garded as a search problem using intelligent systems. The fundamental idea

is to explore a large service space and produce a plan that can bridge the gap

between the initial state (i.e. available services and composition requirements)

and the final goal (i.e. composed services).

In Zhao and Doshi’s [37] RESTful Web Service modelling approach men-

tioned in Section 2.4.3, it also proposes the use of situation calculus for auto-

matically composing RESTful Web Services. However, it is arguable that the

additional verb-like Transitional Service is not necessary in modelling RESTful

Web Services if the URIs of services are meaningful and well defined. For ex-

ample, the submit-payment service in their example can be achieved by using

the POST method on the /payment service.

Alarcon et al. [43] proposes a hypermedia-driven composition approach

based on the previous work on ReLL (mentioned in 2.4.1) and Petri Nets.

Because ReLL focuses on the hypermedia characteristics, it allows resources

to be annotated explicitly with domain semantics. The Service Net approach

introduced in [35] is adopted in this work for composing services, but with extra

consideration being given to hypermedia constraints such as authentication and

content negotiation.
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2.5. Composing RESTful Web Services

Table 2.3: Summary of RESTful Web Service composition approaches.

Automation Scalability Execution Correctness

Pautasso [40] Average
√

Yu et al. [41] Average
√

Bite [42] Average
√

Rauf et al. [32] Low

Zhao and Doshi [37]
√

Good
√

Alarcon et al. [43] Low
√

2.5.4 Comparison of Composition Methods

The thesis selects the following criteria [15, 44] to study the current composi-

tion methods; they will also be used later to evaluate the approach proposed.

Table 2.3 summarise the existing composition approaches based on these cri-

teria.

Automation

Automation is one of the ultimate goals of service composition. The automa-

tion criterion is used to measure the level of automation achieved by different

composition approaches including the technology driven and the process of

composition.

Workflow-based approaches do not have formal definitions of RESTful Web

Services, which is an obstacle for automatic service composition. The model-

driven approach based on UML focuses on modelling the composed services at

a high level without particular targeting automation.AI-planning approaches

greatly facilitate the automation of the composition process through formal

techniques. Both the situation calculus and the service net approaches formally

define the service composition process with the consideration of state transfer.

Scalability

The composition scalability criterion is used to indicate whether the compo-

sition approach is suitable for larger compositions. The complexity and the
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2.5. Composing RESTful Web Services

cost for composition increase at a higher level when the number of services

and resources increases, then the composition scalability is low.

The approaches that rely on diagrams, such as UML and Petri-nets, tend

to have low scalability as the increasing number of services involved increases,

the size of the diagram increases and its legibility becomes lower. Approaches

with formal mathematical or logical expressions, such as that based on the

situation calculus, tend to have better scalability.

Execution

The execution criterion is used to ensure that a composition approach is not

only sound at the design level but also feasible at the implementation level.

Workflow-based approaches put their main effort into defining business

workflow languages, generating executable composition processes and publish-

ing them as new services. They provide good support at the development level

to allow services not only to be composed but also to be invokable.

In model-driven approaches, the models are typically independent and diffi-

cult to use at runtime. Although the resulting models can be transformed into

executable composition specifications, no such work has yet been performed

in the RESTful Web Service area.

In AI-planning approaches, the dedicated expressions can be transformed

into BPEL-like executable languages, but again, no such work is available in

the RESTful Web Service area.

This thesis argues that the primary reason for non-existing transformation

from the design level to the implementation level is because the executable

RESTful Web Service composition language is still under investigation.

Correctness

The correctness criterion is used to assess if the composition behaves as re-

quired in various circumstances. When the correctness of a composition ap-

proach is verified, the composed service should behave according to composi-

tion requirements.
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2.6. Summary

Workflow-based approaches alone lack correctness verification for the com-

position created from the business processes. Further verification techniques

have to be applied in order to ensure the composition correctness. However,

none of the current approaches have addressed this aspect.

Model-driven approaches generally can better capture user requirements

and present the software architecture. However, the correctness of the model

and the dependency of the final implemented application are not assured [45,

46]. Further model checking techniques are required to ensure the models to

be not only syntactically correct but also follow the correct semantics.

AI-planning techniques express the services, resources and related require-

ments in theoretical forms that provide a good foundation for correctness and

verification.

2.6 Summary

This chapter has described the scope of this research on modelling and compos-

ing RESTful Web Services. Although RESTful Web Services are gaining more

popularity in industry, the research work on both modelling and composition

is still required.

The chapter has surveyed existing RESTful Web systems modelling meth-

ods and noteworthy RESTful Web Service composition approaches. Modelling

methods were compared on whether they reflect to the constraints defined by

the REST architecture style. Composition approaches were compared using a

set of criteria including automation, scalability, execution and correctness.

These literature surveys have shown that despite the enthusiasm of the

research community about formalising RESTful Web Services and their com-

position, research is still required to provide a uniform model that can help

Web engineers to develop robust RESTful Web Services.

The following chapters will propose a logic-based approach to modelling

and composing RESTful Web Services, which is not present in the current

approaches.
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Chapter 3

Modelling RESTful Web

Services In Linear Logic

The previous chapter has studied the current approaches to modelling RESTful

Web Services and highlighted that further research on modelling RESTful Web

Services is still required. This chapter proposes, to our knowledge, the first

logic-based approach to modelling RESTful Web Services, and Linear Logic is

chosen for this purpose.

The chapter begins with a brief review of characteristics of Linear Logic

and then discusses its expressiveness with particular focus on the reasons of

choosing it for modelling RESTful Web Services and, later, for composing

services. It then explains that how the key elements of RESTful Web Services

are modelled in Linear Logic, how well this model works according to the

six constraints defined for the REST architecture, together with the Amazon

Simple Storage Service as an illustration example to model. The chapter finally

summarises how the components discussed in this chapter contribute to the

overall process described in Chapter 1.

3.1 Linear Logic

This thesis introduces a logical formalism based on Linear Logic [47, 48] to

modelling RESTful Web Services. The clear advantage of this approach is
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3.1. Linear Logic

that it provides uniform and explicit high-level specifications. Linear Logic

was firstly introduced in [47] as a refinement of the classical logic, and later

Intuitionistic Linear Logic (ILL) [49] was introduced.

Classical and intuitionistic logic focus only on the truth of a statement,

in which there are no restrictions on the hypotheses. The hypotheses can be

repeated or ignored. It is assumed that the hypotheses are still usable even

though the conclusions have been obtained. These logics are sound in pure

mathematics concepts. However, it is difficult to use them to explicitly model

the real-world resource consumption, such as the memory consumption of the

computer [48].

In Linear Logic, the weakness and the contraction rules supported in classi-

cal logic are removed by default. Conclusions have to be achieved by consuming

the assumptions as resources. Each resource can be used only once, and two

copies of the same resource are treated as distinct. Thus, Linear Logic is also

known as the resource-sensitive logic.

Natural deduction in Linear Logic is commonly expressed in sequent calcu-

lus [50] form. A sequent is an expression of the form Γ ` ∆, where Γ and ∆ are

sequences of formulae, and the sequent turnstile (`) separates the assumption

on the left from the conclusion on the right. In general, the deduction between

the logic assumption and the logic conclusion is written as follows:

assumption ` conclusion

The thesis considers each composition requirement as a single goal, so it

uses ILL for RESTful Web Service modelling and composition. ILL is typically

written in a sequent form Γ, ∆ ` G, where Γ is a set of formulae representing

the intuitionistic context, ∆ is a multiset of formulae representing the Linear

Logic context, and G is a formula representing the goal. The sequent turnstile

(`) shows the transition between resource consumption and production. The

sequent Γ, ∆ ` G is described as: given a set of resources Γ, the goal G can

be achieved by consuming resources ∆.

Table 3.1 summarises the linear connectives used in this thesis for modelling
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3.1. Linear Logic

Table 3.1: Linear Logic connectives used in the thesis.

Connective Symbol Example

Linear Implication ( A ( B
Multiplicative Conjunction ⊗ A ⊗ B
Additive Conjunction & A & B
Additive Disjunction ⊕ A ⊕ B

RESTful Web Services. The detailed descriptions are as follows.

Linear Implication (() expresses the possibility of linear deduction. For

example, A ( B indicates that resource A is consumed, and resource B is

produced as a result.

Multiplicative Conjunction (⊗) indicates that both resources coexist. When

these resources appear as hypotheses, both resources are available and both

of them have to be consumed in order to achieve the goal. In terms of service

composition, it shows that two resources are combined for consumption. When

these resources appear as the goal, both resources have to be produced in the

goal. Thus, A⊗B( C indicates that resources A and B are both consumed

to produce resource C, and C ( A ⊗ B implies that both resource A and

resource B are produced after consuming resource C.

Additive Conjunction (&) also indicates that both resources coexist; how-

ever, only one of them is used, and the user has the right to choose which it is.

In computer systems, it can be understood as a “human-in-the-loop” choice.

When these resources appear as hypotheses, both resources are available but

users need to consume only one of them in order to obtain the goal. When

these resources appear as the goal, it means that after the hypotheses are con-

sumed, then the one or other goal is achieved, but not both. For example,

A&B ( C indicates that one can choose to consume either resource A or

resource B, but not both, to obtain resource C, while C ( A&B means that if

resource C is consumed, then the user may choose to produce either resource

A or B. In the service composition context, Additive Conjunction is able to

express human-driven flows.

Additive Disjunction (⊕) indicates that there are two possibilities, but only
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3.1. Linear Logic

A ` A
(id)

Γ, A,B ` G
Γ, B,A ` G

(Exchange)
Γ1 ` A Γ2, A ` G

Γ1,Γ2 ` G
(Cut)

Γ1 ` A Γ2, B ` G
Γ1,Γ2, A( B ` G

(( L)
Γ, A ` G

Γ ` A( G
(( R)

Γ ` A( G

Γ, A ` G
(Shift)

Γ, A,B ` G
Γ, A⊗B ` G

(⊗L)
Γ1 ` A Γ2 ` B
Γ1,Γ2 ` A⊗B

(⊗R)

Γ, A ` G
Γ, A&B ` G

(&L1)
Γ, B ` G

Γ, A&B ` G
(&L2)

Γ ` A Γ ` B
Γ ` A&B

(&R)

Γ, A ` G Γ, B ` G
Γ, A⊕B ` G

(⊕L)
Γ ` A

Γ ` A⊕B
(⊕R1)

Γ ` B
Γ ` A⊕B

(⊕R2)

Figure 3.1: Inference rules of Intuitionistic Linear Logic.

one of them exists, so users do not have a choice. In terms of computer science,

Additive Disjunction is mostly seen in the conclusion sequent to show either

this or that result is produced. For example, C ( A⊕ B indicates that after

consuming resource C, either resource A or B is present, but which is present

is out of the user’s control. In the context of service invocation, it shows that

service is invoked with successful or failed responses.

In order to preserve the logic strength, Linear Logic introduces exponentials

to express unlimited number of hypotheses. For example, !A means that A can

be used as many times as possible. However, these exponentials are not used

in this research for the following reasons.

� The provability of Linear Logic with exponentials is not decidable [51], so

it will be difficult to show whether the composition theorem is provable

or not.

� RESTful Web Services are stateless, although GET, PUT and DELETE

methods are idempotent, so each invocation is treated as a new session.
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3.2. Linear Logic for Modelling

Figure 3.1 lists the key inference rules of ILL, which will be used later in

modelling RESTful Web Services and in Chapter 4 for composing services at

the resource level.

id : presents the identity corresponding to a data resource in RESTful Web

Services.

exchange : enables the arrangement of the data resource consumption.

cut : shows the resource composition flow through resource consumption and

production.

(L: introduces the link between two resources.

shift : shows the initial resource representations with links and changes this

initial presentation into a sequent that can be used for future proofs.

(R: reverses the change made by the shift rule.

⊗L: generates a new data resource that is the composition of two separate

resources.

⊗R: generates a new data resource that consists of two resources in parallel.

&L: provides a redundant input resource that is not used by the process;

however, it can be used in the cut elimination with an external choice.

&R: introduces external choices of the resources.

⊕L: introduces internal choices of the resources.

⊕R: indicates that either resource A or resource B is produced, which is used

in the cut elimination with an internal choice.

3.2 Linear Logic for Modelling

Because of its resource-conscious and inference-rule-driven theorem charac-

teristics, Linear Logic has been used to manage a number of problems with
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3.2. Linear Logic for Modelling

resources in different domains. This section begins with brief discussion of the

expressive power of Linear Logic in current uses and then explains the rea-

sons of selecting it as the fundamental formalism for modelling and composing

RESTful Web Services.

Linear Logic has been used to model concurrent interactions, such as agent

dialogues [52], interactions in multi-player games [53], where it helps to find

and execute plans between different agents in a distributed network system.

The state of an agent is typically modelled as a Linear Logic sequent; the

agent finds a proof of the sequent which corresponds to a plan, and once a

plan is found, it is executed until either a step fails or the plan is completed

successfully. If it is successful, then all available resources are used up and

all goals are achieved. When new resources are introduced or the available

resources are not used up, the agent re-plans to try and find another solution

given the available resources as assumptions.

Rao [54] applies ILL theorem proving to model semantic Web Service com-

position in a multi-agent environment. It attempts to exploit the expressive-

ness of Linear Logic to model both functional and non-functional properties

of Web Services and focuses on the practical aspects of a multi-agent-based

implementation. Rao’s work motivates the ongoing research conducted by Pa-

papanagiotou and Fleuriot [55, 56], in which the classical version of Linear

Logic is used, and Web Service composition and validation are carried out

fully within the Linear Logic theorem prover. Both publication consider the

connection between Linear Logic and the π-calculus for extracting the process

models of the composition results. However, both of them focus only on the

traditional operation-oriented Web Services and do not take into account the

resource-oriented RESTful Web Services.

Because of Linear Logic has the key resource-sensitive nature and the ability

to present state transition systems explicitly, this thesis also selects it as the

foundation for modelling and composing RESTful Web Services. The following

further explains the reasons of this choice.

� Linear Logic is typically written in the style of sequent calculus, which
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3.2. Linear Logic for Modelling

provides clear indications of resources to be consumed and resources to

be produced. This sequent calculus format enables us to present the

REST client-server principle in the style of request and response, which

means that once the request from the client component is consumed, the

response from the server component is produced.

� The resource-sensitive characteristic of Linear Logic enables us to ex-

plicitly express the resource states and the usage of the resources. For

example, A ( B means that the conclusion resource B is achieved by

consuming a single assumption resource A once. If a new conclusion has

to be achieved, a new set of assumptions has to be used, again once only.

This characteristic can clearly express the stateless feature of REST, in

which each request is equipped with all the information required, and

every request is treated as a new resource in Linear Logic.

� The Linear Implication (() shows the relationship between the assump-

tion resources and the conclusion resources. It is capable of modelling

the hyperlinks between different media used in REST systems. It can ex-

plicitly model the links that are produced by navigating from the existing

resource representation.

� The Additive Conjunction (&) and the Additive Disjunction (⊕) in Lin-

ear Logic can be used to distinguish between internal system choice and

external user choice during system state transfer. These two types of

choice are parts of common flows in service composition. For example,

an internal system choice may be between a successful service invocation

and an exception, and an external user choice may be selecting the most

suitable service among several candidates. Thus, Linear Logic models

RESTful Web systems as non-deterministic state transition systems.

� The Linear Logic inference rules show how representation states change

when a given operation is performed. In particular, the dynamic elimi-

nation rule (i.e. Cut) and the induction rule (i.e. Linear Implication()
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3.3. Modelling Key Elements of RESTful Web Services

can be used to model the evolution of REST systems. The cut elimina-

tion rule shows the combination of resources and the Linear Implication

induction rule shows the new resources being introduced from the exist-

ing resources.

� The Linear Logic theorem proving technique driven by its inference rules

is widely used in modelling planning [52, 57] in the style of program syn-

thesis whose aim is to automatically conduct a program that can prov-

ably satisfy a given high-level specification [58]. This approach not only

ensures that the plans are discovered and valid, but also facilitates the

automation process. Linear Logic theorem proving is used for generating

valid RESTful Web Service composition plans.

� Linear Logic has close connections with process calculus (e.g.the π-calculus)

which is the foundation of service composition [59, 60]. The translation

between Linear Logic and the π-calculus has been studied by a number

of researchers [61, 62, 63]. Moreover, as revealed in Chapter 2, the π-

calculus is considered as a powerful model for REST systems. The com-

bination of Linear Logic and the π-calculus would potentially contribute

to both modelling and composition of RESTful Web Service. Chapter 4

will discuss this in further detail.

3.3 Modelling Key Elements of RESTful Web

Services

This thesis models RESTful Web Services as evolving state transition systems

using Intuitionistic Linear Logic (ILL). This section further analyses the key

elements of RESTful Web Services as illustrated in Figure 3.2 and discusses

how Linear Logic is used in modelling them. In general, RESTful Web Services

are viewed in the client-server style, in which the client performs as a service

requester and the server provides the actual service functions. The service

requester submits requests to the service for processing and receives responses
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Service Requester

Service

Resource

Representation

Resource data Metadata Media type

Request

URI Operation Representation

Response

Status 
Code

Representation

Link

Figure 3.2: An overview of RESTful Web Services with key elements.

once they are ready.

The remainder of this section shows that Linear Logic is capable of mod-

elling these key elements of the REST architecture style [1] in the fragment

propositional Intuitionistic Linear Logic.

A URI is used as an identifier of a system resource. URIs are modelled as

propositions in ILL. There are generally two types of URI: static and dynamic

[35]. A static URI is independent of any particular resource instance, and

POSTing to these URIs leads to the creation of activity resource instances; for

example, http://shop.example.com/order is a static URI, which is modelled

as an ILL proposition uriordercollection. A dynamic URI identifies exactly

one activity resource instance and is normally written as a URI template;

for example, http://shop.example.com/order/{oid} is a dynamic URI, which

is modelled as an ILL proposition uriorder.

A Resource is a temporally varying mapping to a set of entities or values

[1]. Resources are modelled as propositions in ILL. For example, a user resource

is modelled as the ILL proposition user, and a book resource is modelled as
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3.3. Modelling Key Elements of RESTful Web Services

the ILL proposition book.

In RESTful Web Services, actions on a resource are performed by using a

representation to capture the current or intended state of that resource and

transfer that representation for changing the state of the application. A re-

source may have a set of representations that may change over time.

A Representation is composed of the resource data, the metadata of the

resource data and the media type, so it can be written as Data⊗Metadata⊗

MediaType in Linear Logic. Metadata defines the semantic structure of the

data and is a key factor affecting the composition outcome. For example,

the semantic structure of a User Service used in an online shopping scenario

must have the properties for the payment method and the delivery address.

Other User Services without this information are insufficient in an online shop-

ping scenario because the lack of the essential payment and shipping functions

for invocation. MediaType is a finite set of representation media types for

RESTful Web Services, such as Atom and JSON.

A Request is a resource manipulation request for obtaining the represen-

tation and is composed of the URI, the Operation and the optional Repre-

sentation, written as Operation ⊗ URI ⊗ Representation in ILL. Here the

Operation is a standard HTTP method, and this thesis covers the four main

methods: GET, PUT, POST and DELETE. With PUT and POST methods,

a representation is required to fulfil the request, while the representation is not

needed for GET and DELETE methods. For example, a place order request

in a shopping scenario requires the URI (http://shop.example.com/order), the

HTTP POST operation and one representation of the order.

A Response is a resource manipulation response containing the response

code and a representation, which is written as Representation⊗ResponseCode

in ILL. The standard HTTP status codes are used as response codes in REST-

ful Web Services. For example, the response to the previous place order request

is the representation of the order containing a new order (identified by oid) and

HTTP status code 201, if successful; otherwise, the response contains HTTP

status code 400 and an error representation.
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3.3. Modelling Key Elements of RESTful Web Services

Representations typically contain a series of Links. These links form the

service communication workflow. Each link has a destination URI, link type

and link relation, which is expressed as URI ⊗ LinkType ⊗ LinkRelation in

ILL. LinkType is defined by the MediaType definition, while LinkRelation

shows the business-level semantics of a link, which will enable the link relation

to be customised by the user. One important link relation is next, which

indicates the next available service in the workflow. For example, the response

representation of the place order request may contain two links as shown below:

one is actual product item for this order, and the other is a possible next action

after placing an order, which is the link to pay this order in this case.

<link type="application/atom+xml"

href="http://shop.example.com/order/abc/item"

rel=" http://item.example.com/rels/item"/>

<link type="application/atom+xml"

href="http://shop.example.com/pay/order/abc"

rel="next"/>

Linear Implication (() in ILL models links to the next available resources.

It explicitly expresses the representation state transfer and allows new re-

sources to be introduced dynamically. For example, order ( orderpay indi-

cates that the representation of the order resource contains a link to pay this

order. Multiple links may be contained in one representation, for example,

order( (orderpay⊕ordercancel) indicates that after obtaining the represen-

tation of the order resource, two options (i.e. paying this order or cancelling

this order) are available to choose for the next action.

The service invocation creates semantically equivalent representations through

response to the client by consuming the service request, so it is expressed as a

Linear Logic sequent in the form Request ` Response. For example, the place

order invocation can be expressed as:

URIOrder ⊗ POST ⊗ RepresentationOrderIn `

RepresentationOrderOut ⊗ ResponseCode
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where, URIOrder is the http://shop.example.com/order, POST is the HTTP

POST method, RepresentationOrderIn is the representation at the request

part (see Listing 3.1 for an example) and RepresentationOrderOut is the

representation at the response part (see Listing 3.2 for an example).

Listing 3.1: An example input representation.

POST /order HTTP 1.1

HOST: shop.example.com

Content-Type: application/xml

<order xmlns=http://shop.example.com>

<customer> ... </customer>

<item> ... </item>

</order>

Listing 3.2: An example output representation.

201 Created

Location: http://shop.example.com/order/1234

Content-Type: application/atom

<feed>

<order xmlns=http://shop.example.com>

<customer> ... </customer>

<item>

<cost>

<link type="application/atom+xml"

href="http://shop.example.com/order/1234/item"

rel=" http://item.example.com/rels/item"/>

</item>

</order>

</feed>

The sequent turnstile (`) in ILL is also used to model the representa-

tion state transition in RESTful Web Services. For example, the sequent

user, item ` order means that both user and item resources are consumed,

and the order resource can be produced.
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The links expressed in the Linear Impliction (() is also translated into

state transition. For example, the sequent ` (order( orderpay) means that

when assuming nothing, the representation of order has a next relation link

orderpay. It is translated into order ` orderpay according to the Shift rule

defined in Figure 3.1, which means that if we assume that order is consumed,

orderpay is produced.

In general, RESTful Web Services are modelled in the style of Request `

Response as follows:

Operation ⊗ URI ⊗ RepresentationIn

` RepresentationOut ⊕ ResponseCode

where a request containing an operation, a URI, and an input resource repre-

sentation is consumed , and a response is produced which contains an output

resource representation and a response code. The output representation nor-

mally contains the links to the next available requests.

3.4 Modelling Corresponding to the REST Con-

straints

The proposed Linear Logic approach can address five of six REST constraints

discussed in Chapter 2 in some degree except the layered-system constraint.

The following presents the detail of how these constraints are modelled in

Linear Logic.

Client-server constraint

Linear Logic models the separation of the client and the server in the two-side

sequent calculus using turnstile (`). The left side of the turnstile is the request

from the client component, and the right side is the response from the server

component. Thus, the client-server constraint is generally expressed in a pair

of request and response as follows:
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request ` response

where both request and response can be further detailed according to the

models discussed earlier in Section 3.3.

Stateless constraint

As discussed earlier, the Intuitionistic Linear Logic applied in this thesis does

not include exponentials, namely of-course (!) and why-not (?), and one main

reason to do so is that all resources expressed in Linear Logic can be consumed

only once. This naturally matches the stateless constraint in which any request

has to be submitted freshly with all information required.

Cache constraint

This thesis will not discuss the mechanism of caching in detail, but explain the

possibility of modelling some aspects of caching in Linear Logic. As resources

expressed in Linear Logic are consumable, it is feasible to model consumable

non-functional properties such as the duration of the cache or the size of the

cached data. For example, if the duration of the cache is used to determine

whether a new response or a cached response is returned, then the request and

response interaction can be modelled as follows in Linear Logic:

Operation ⊗ URI ⊗ RepresentationIn ⊗ CacheDuration1200

` RepresentationOut ⊕ Cache

where the superscript (1200) on CacheDuration indicates that how long the

cache is stored and Cache is the actual cached content. The detail of how

browsers or applications handle the cache is beyond of this thesis, so they are

omitted from this abstract expression. However, this model shows that if a

request is cacheable, the cache duration should be considered when processing

the response. Thus, if no updates are available, the cached content should be

returned rather than a new output representation.
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Code-on-demand constraint

This constraint is optional in the REST architecture and is generally used in

REST Web applications rather than RESTful Web Services, so it will not be

used later for service composition. Here, Linear Logic is used to model the

code-on-demand constraint only in the context of Web applications. Recall

the definition of the code-on-demand constraint in [1], it allows the client to

download scripts from the server and then execute them on the client side.

Thus, if an execution of a script (s) on the client side changes the application

state from A to B, then this change can be modelled using the sequent turnstile

(`) in Linear Logic as follows:

A, s ` B

Taking the same example mentioned in the FSM modelling approach [34]

for this constraint, if a script (s) changes the color of a hyperlink between red

and blue, then it can be modelled as follows:

Amain link blue, s ` Amain link red

Amain link red, s ` Amain link blue

Uniform interface constraint

As mentioned in Chapter 2, the uniform interface constraint has four principles:

identification of resources, manipulation of resources through representations,

self-descriptive messages and HATEOAS.

Identification of resources is supported in the URI model presented earlier

in Section 3.3, so it is shown as Linear Logic propositions. The resource iden-

tification is explicitly used in service requests and links. For example, the link

of paying an order provided earlier has link type as “application/atom+xml”,

has link URI as “http://shop.example.com/pay/order/abc” and has link re-

lation as “next”. The link URI can be modelled by an URI as Linear Logic

proposition.

Manipulation of resources through representations is supported by explic-
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itly model RESTful resource representations as consumable Linear Logic re-

sources, which are used in the service request and response and contain links

for state transitions. For example, to place an order in an online shopping

scenario, both input and output representations are essential in the service

invocation. The request message performs resource requesting by providing

resource URI (URIOrder), the request method (POST) and the request in-

put representation. The response message replies to the request and provides

access to the resource by the output representation (RepresentationOrderOut).

Self-descriptive messages is supported by the stateless interaction together

with the limited consumable Linear Logic resources for resource representa-

tions, media types, links and link types, which are explicitly used in service

request and response. For example, the above mentioned response represen-

tation of a place order request (see Listing 3.2) contains a complete set of

information including the media type (application/atom), the representation

of the order (within the feed tag), the links from the order (indicated by the

link tag) as well as the type, URI and relation of each link.

HATEOAS is supported by modelling RESTful Web Services as state tran-

sition systems using sequent calculus and Linear Implication. The two-side

sequent calculus for Linear Logic (Γ ` ∆) explicitly shows the resource rep-

resentation transition from one state (on the left of the sequent) to another

(on the right of the sequent). The initial state can also be modelled as a

sequent with empty left side, such as ` ∆, which means that nothing is re-

quired in order to transfer to the next state. Linear Implication (() shows

the potential links inside each resource representation, which may be invoked

to transfer to the next state. For example, order ( orderpay indicates that

the representation of the order resource contains a link to pay this order.
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Table 3.2: Amazon S3 Bucket RESTful Web Services.

URI Method

BucketName.s3.amazonaws.com GET, PUT, DELETE
/cors GET, PUT, DELETE
/lifecycle GET, PUT, DELETE
/policy GET, PUT, DELETE
/tagging GET, PUT, DELETE
/website GET, PUT, DELETE
/acl GET, PUT
/location GET
/logging GET, PUT
/notification GET, PUT
/requestPayment GET, PUT
/versioning GET, PUT
/versions GET

3.5 Linear Logic Model for an Example REST-

ful Web Service

This section demonstrates the generality of the proposed Linear Logic mod-

elling methods by applying it to model the Amazon Simple Storage Service

(Amazon S3) Bucket service [27]. More examples and further detail on case

studies are discussed in Chapter 6.

Table 3.2 lists the key resources comprising this Web Service. The Amazon

S3 Bucket service uses a base URI (http://BucketName.amazonaws.com), and

other resources are identified by relative addressing.

The base URI (http://BucketName.amazonaws.com) of the Bucket service

is expressed as an ILL proposition uris3bucket. Similarly, other resource URIs

are modelled as ILL propositions in the style of uris3bucketcors, uris3bucketlifecycle

and so on.

The abstract resources of these services are modelled as ILL propositions,

such as s3bucket, s3bucketcors, s3bucketlifecycle and so on. The representations

of these resources are written as rs3bucket, rs3bucketcors, rs3bucketlifecycle,

etc. with each representation containing resource data, metadata and me-

dia type. The resource data are modelled in the same way as the abstract
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resources. The media type can be choose from application/xml or applica-

tion/text, so it is modelled using an additive conjunction such as xml & text

in ILL.

The request of the resource, for example BucketName.s3.amazonaws.com,

is written as follows:

uris3bucket ⊗ GET ` (200 ⊗ rbucketout) ⊕ 400

uris3bucket ⊗ PUT ⊗ rbucketin ` (200 ⊗ rbucketout) ⊕ 400

uris3bucket ⊗ DELETE ` 404

When the Bucket resource is requested by the GET method, no input

representation is required and the response is either successful with output

representation and HTTP success status code or failed with HTTP failure

status code. When the Bucket resource is requested by the PUT method, an

input resource representation is required and the response is in the style similar

to that from the GET request. When the Bucket resource is requested by the

DELETE method, the resource is removed and the HTTP status code shows

no resource available.

3.6 Summary

Research on formalising RESTful Web Services is still under-explored. This

chapter proposed the first logic approach to modelling RESTful Web Services

in propositional Intuitionistic Linear Logic.

Reflecting the overall approach proposed, Figure 3.3 shows the compo-

nents discussed in this chapter. Modelling RESTful Web Services in ILL has

been particularly discussed, especially in modelling services themselves and the

REST constraints. Modelling service composition requirements and business

constraints will follow the similar approach, which will be discussed during ser-

vice composition in the next chapter because their contexts are closely related

to the composition process.

Linear Logic is chosen for the formal modelling purpose because of its po-

tential expressiveness, its resource-sensitive characteristics, its capability of
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Figure 3.3: Key components discussed in Chapter 3.

explicitly express state transfer in state transition systems and its close rela-

tionship with process models. This chapter has shown that Linear Logic is

capable of explicitly modelling the following most constraints of REST dis-

cussed in Chapter 2 including client-sever, stateless, cache, code-on-demand

and uniform interface.

The next chapter will discuss in detail the relationship of Linear Logic

and process models and will address the way in which they are used within

RESTful Web Service composition.
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Chapter 4

Composing RESTful Web

Services using Linear Logic

Theorem Proving

Although there are some emerging approaches to composing RESTful Web Ser-

vices as studied in Chapter 2, the research in this area is still under-explored.

The previous chapter has proposed and discussed Linear Logic as a suitable

formalism for modelling RESTful Web Services. This chapter will continue the

focus on the application of Linear Logic but will extend it to the composition

of RESTful Web Services.

This chapter will first propose a two-stage RESTful Web Service composi-

tion method based on Linear Logic theorem proving and will then discuss each

stage in detail. The first stage will concentrate on the abstract resource-level

service composition, in which the theorem proving will be based on original

ILL inference rules. The second stage will extend the ILL with the proof-

as-process paradigm, which will perform at the operation level and allow the

composed services to be extracted in process models. The π-calculus is chosen

as the formalism for this process model due to its dynamic name-passing abil-

ity and its strong capability of modelling RESTful Web Services, as discussed

in Chapter 2.

Furthermore, for theorem proving, a backward composition approach is
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proposed for both the resource and the operation level service composition.

The chapter concludes by summarising its key contributions and reflecting on

how the components discussed in this chapter contribute to the overall process

described in Chapter 1.

4.1 Two-stage Composition based on Linear

Logic Theorem Proving

Because of its resource-sensitive characteristic, i.e. assumptions can be con-

sumed during inference, Linear Logic has been considered to provide a flexible

approach to goal planning in evolving state transition systems [52, 57].

The proposed two-stage composition of RESTful Web Services specially

addresses the way in which the hyperlinks modelled in Chapter 3 can drive the

creation of the composition workflows; the composition systems are modelled

as planning using Linear Logic, based on [52, 64, 65].

In this thesis, the search for a composed service is treated as a planning

process using the propositional ILL theorem-proving. A proof in ILL is viewed

as a composition plan for services. Thus, once a Linear Logic proof is found,

the composed service is obtained.

Because of the completeness and soundness rules of propositional logic [66],

if a solution exists, it will certainly be found, and the correctness of the com-

position services guarantees that user composition requirements are satisfied.

Moreover, as mentioned in the previous chapter, without considering exponen-

tials, such as !, Linear Logic has a firm control on normalization [47], which

improves the efficiency of proof searching for composed services.

Linear Logic has the ability to provide natural encoding of notions such as

resources, states and events, and it was used in modelling state updates and

concurrent computations in complete logic settings [47]. There are extensive

studies of the relationship between Linear Logic and process calculus [61, 67],

which facilitates the translation of models from the logic framework into exe-

cutable business process languages. This research embeds the π-calculus pro-
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cess model into the theorem proving process, which enables the result of the

proof to be understood at the process level.

The composition is divided into two stages, as illustrated in Algorithm 1

and in Figures 4.1 and 4.2: firstly, a quick abstract resource-level planning is

used to check whether the existing resources are sufficient to achieve the target

abstract goal resource; secondly, an operation-level planning creates the goal

resource with operations by composing existing services.

This two-stage approach improves the overall planning efficiency, especially

when a large number of services/resources is available. The quick first-stage

planning serves as a filter for checking and gathering the resources necessary

for the composition. If the planning fails at this stage, there is no need to

investigate the detail of the large number of resources, thus saving time and

expense. However, when the number of resources is small, the first stage may

be omitted.

Algorithm 1

Require: resources R1, R2, ..., Rn as LL Axioms
Require: businessConstraints BC1, BC2, ..., BCn as LL Hypothesis
Require: compositionRequirement CR as LL theorem
Require: serviceMethod SM1, SM2, ..., SMn as πLL Axioms
Require: businessConstraints BCM1, BCM2, ..., BCMn as πLL Hypothesis
Require: compositionRequirement CRM as πLL Theorem

Begin Stage 1
prove CR using R and BC in theorem prover;
if CR is proved then

Begin Stage 2
prove CRM using SM and BCM in theorem prover;
if CRM is proved then

extract composition process model (CPM) in π-calculus;
return CPM in π-calculus;

else
return CRM is not achievable;

end if
End Stage 2

else
return CR is not achievable;

end if
End Stage 1
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The proposed method for RESTful Web service composition has a number

of advantageous characteristics.

� It facilitates automated service composition. The whole composition

method based on Linear Logic theorem proving follows the program

synthesis approach, which is a method used in software engineering to

generate programs automatically [68]. The key ideas of correspondence

between theorem with constructive proofs and specifications with pro-

grams are presented in [69]. In the proposed composition approach,

the plan search for the composed service is performed with deductive

program synthesis using Linear Logic theorems and proving techniques,

which provides foundations for automatically composing services.

� It ensures the correctness of the resulting composed service. The service

composition process finds a proof that satisfies the composition require-

ments by applying the business constraints and the available RESTful

Web services, the composite service is, in fact, a proof of Linear Logic.

Further verification of the composition is not necessary because the proof

searching conducted during the propositional Linear Logic theorem prov-

ing guarantees that the resulting composed service will meet the defined

business specifications. The first-stage proof ensures that the right types

of resource exposed by RESTful Web services are available. Furthermore,

the second-stage proof guarantees that resources with suitable metadata

are available.

� It reduces the gap between formal service modelling and executable imple-

mentation. The second-stage theorem proving process adopts the proof-

to-process paradigm, which bridges smoothly between Linear Logic and

the π-calculus. The resulting composed service is ultimately expressed

as a process model in the π-calculus. Furthermore, as the π-calculus

has good connections with executable business process languages (e,g.

BPEL) [70], it is possible to transform the outcome process model into

an executable language to complete the composition from the logic level
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to the execution level.

� It ensures the achievability of search for the composition. The fundamen-

tal theorem proving process is performed within the propositional ILL.

Because of the completeness and soundness rules of propositional Linear

Logic, it is certain that all composition solutions that exist will be found.

The trade-off is that the proposed approach develops at the logic level,

which may be difficult for Web engineers to understand. However, the transfor-

mation from the logic level to the process model level via the proof-to-process

paradigm has brought this approach one step closer to the execution level. On

one side, the theorem prover combined with the process model methods verifies

the composition process and guarantees the correctness of the final composed

service. On the other side, it complements the approaches that are closer to

the execution level, such as workflow-based methods, which do not have an

built-in verification mechanism.

4.2 Stage 1: Resource-level Composition Us-

ing Linear Logic Theorem Proving

This section elaborates the first-stage composition process that focuses on the

resource level service composition. Figure 4.1 shows the general process of the

composition in the style of program synthesis, in which high-level specifica-

tions, such as services, business constraints and composition requirements, are

firstly expressed in a formal language (i.e. Linear Logic in this thesis), then it

tries to prove if the specifications can be satisfied.

Here at the resource level, a RESTful Web Service is specified as a set R

of a number of Web resources:

R = {` resource i : i = 1..n}

where each resource is expressed as a Linear Logic proposition. For example,
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Figure 4.1: The first-stage resource level RESTful Web Service composition.

` user is defined as a Linear Logic proposition that indicates a user service

resource.

Given the availability of the services, these resources are viewed as unlim-

ited non-linear resources and each of them may be invoked as many times as

required. Therefore, the of-course (!) modality may be used to model them to

indicate they are unlimited. However, as mentioned in Chapter 3, Linear Logic

with modalities such as of-course (!) is undecidable, so this thesis chooses not

to use the of-course modality but rather to model all resources as limited re-

sources. Another reason for this is that each service invocation is treated as a

fresh one due to the stateless nature of the REST architecture style.

For the composition purpose, the business constraints among the service

resources are also modelled in Linear Logic hypotheses in the following form.

constraint name: assumptions ` conclusion

where the left side of the turnstile shows the resources to be consumed and

the right side shows the resources to be produced.

Take the e-shopping scenario (see Chapter 6 for the full detail) as an ex-

ample, the place order constraints may be modelled as:

place order : order empty, user, item ` order unpaid
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4.2. Stage 1: Resource-level Composition

where the order unpaid resource is produced by consuming resources order empty,

user and item.

The place order Linear Logic model shows that only one user, one item

and one empty order are occurred to be consumable and they must be con-

sumed, and after a successful transaction only one unpaid order should be

produced. If two items are required to be placed into orders, the quantity of

the resource is able to be indicated in the Linear Logic model according to its

resource-sensitive characteristic. For simplicity, if one item forms one order,

the following model should be used to place two items into orders.

place order two : order empty, order empty, user, item, item

` order unpaid, order unpaid

Hence, the service composition requirement can be generally expressed as

follows:

composition name: existing_resources ` composed_resources

For example, if in an e-shopping scenario, the service resources are available:

`order empty, `user, `item, `pay and the above place order and pay order

business constraints are defined, the composition requirement in the following

theorem is provable:

comp theorem : order empty ⊗ user ⊗ item⊗ payment ` order paid

As discussed earlier, the Linear Logic theorem proving is used for search-

ing composition solutions. At this abstract resource level, the inference rules

introduced in Figure 3.1 are used during theorem proving. Two inference rules

(i.e. ⊗L and cut) are particularly used for forming and planning composed

resources. The ⊗L rule enables the combination of existing resources shown

as follows:

resource1, resource2 ` resource3
(⊗L)

resource1 ⊗ resource2 ` resource3

where resource1 and resource2 are composed via the⊗L rule to produce resource3.

For example, the ⊗L rule can be applied on the above place order business

constraint as follows:
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4.3. Stage 2: Operation-level Composition

order empty, user, item ` order unpaid
(⊗L)

order empty ⊗ user ⊗ item ` order unpaid

where the ⊗L rule ensures that all three resources (order empty, user, item)

have to be used together, which is a composition of these resources.

The cut elimination rule is important to drive the composition from one

state to the other by applying the appropriate business constraints shown as

follows:

resourceA, resourceB ` resourceX resourceX, resourceC ` resourceY
(cut)

resourceA, resourceB, resourceC ` resourceY

where resourceY is obtained by cut resourceX between resourceA, resourceB `

resourceX and resourceX, resourceC ` resourceY .

Thus, for the e-shopping scenario, if the following business constraint is

available:

pay order : order unpaid, pay ` order paid

then the cut rule can be applied as follows:

order empty ⊗ user ⊗ item ` order unpaid ` order unpaid, pay ( order paid
(cut)

order empty ⊗ user ⊗ item, pay ` order paid

where order unpaid is eliminated through the cut rule.

Once the service composition goal is achievable at the resource level, the

composition approach will continue to the operation level (see Section 4.3). On

the other hand, if the composition theorem is not provable using the existing

resources and business constraints, it means that the composition requirement

is not achievable. Chapter 6 will illustrate this method using two complete use

case scenarios.

4.3 Stage 2: Operation-level Composition Us-

ing the Proof-as-Process Paradigm

This section discusses in detail the second-stage RESTful Web Service com-

position, which focuses on the operation level. As shown in Figure 4.2, at

this stage, RESTful Web Service composition is modelled as more concrete
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Figure 4.2: The second-stage operation level RESTful Web Service Composi-
tion.

operation-level information using Linear Logic planning techniques. The the-

orem proving at this stage demonstrates that the composition goal can be

realised from the given services with given resources, metadata and operation

methods by using the business actions in the main inference steps.

Furthermore, the second-stage adopts the proof-as-process paradigm by

attaching the π-calculus to the original ILL inference rules (see Figure 3.1);

by this, the proved goal can be mapped to the process model in the π-calculus

which has a close relationship with executable business process languages [70].

This section begins with an introduction of the proof-as-process paradigm

and the close relationship between Linear Logic and the π-calculus. It then

discusses how the π-calculus embedded ILL is used in operation-level RESTful

Web Service composition. The e-shopping scenario (see Chapter 6 for detail)

is used in the explanations.

4.3.1 Linear Logic with the π-calculus

Process models are considered as important formation representations of the

resulting composed services as well as the formalism of executable business

composition language such as BPEL [59, 60].
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4.3. Stage 2: Operation-level Composition

Thus, in order to produce process models automatically from the logic

proofs, this research adopts the proof-as-process paradigm as presented in [61]

and the concurrent interpretation of ILL in [62], with the π-calculus used as

the formalism for process models.

The π-calculus [71] is described as processes concurrently communicating

through identified channels or ports and uses the concept of names to describe

terms such as communication channels, links, and so on. One of its important

characteristics is the mobility that allows processes to communicate with each

other by exchanging messages through named channels that can also be sent

over the names and be received by processes.

The π-calculus is seen as a powerful formalism to describe concurrency

models and it is a foundation of business process management [70, 72]. Re-

cently, it has also been considered as the formalism for the resource-oriented

architecture [36, 73]. URI link passing in REST is described as mobility in

the π-calculus. Messages, which are either request or response, can be sent

through named channels (i.e. URIs in RESTful Web services), and processes

can send or receive both types of messages. Additionally, (υx)P can be used

to construct a new channel x for process P.

The synchronous π-calculus with guarding is used to represent sequential

communications. In the grammar, sequencing is indicated by the “.” symbol.

The grammar of the synchronous π-calculus with guarding is defined as follows.

P ::= 0 |!P | (υx)P | x〈y〉.P | x(y).P | P |Q | P +Q | P.Q

where lower case x, y are used for names ranging from variables to ports, and

upper case P, Q are used for processes. 0 is an inactive action that does not

perform anything. The restriction (υx)P defines a name x local to process P.

The output prefix x〈y〉.P outputs message y at channel x, then behaves like

process P. The input prefix x(y).P receives a message z from channel x then

behaves like process P with the input message y replaced by the message z. The

replication !x(y).P denotes an unlimited number of inputs. The composition

P|Q indicates that the two processes P and Q execute in parallel, P.Q that
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4.3. Stage 2: Operation-level Composition

they execute in sequence, and P + Q that either process P or process Q will

execute.

The combination of the π-calculus and Linear Logic based on proof-as-

process for composing RESTful Web Services makes two distinctive contribu-

tions to the whole composition process.

� It provides a process formalism for composed services. Process models

have been widely used as a formalism for software/service composition

[74, 75]. This formalism helps to verify the correctness of the composed

services.

� It bridges the gap between the formal logic design and the real system

implementation. The process models, especially the π-calculus, not only

have a close relationship with logic formalisms (e.g. Linear Logic and the

π-calculus through proof-as-process used in this thesis) but they have

also been used to produce executable business languages, such as [76].

Therefore, it is feasible to use the π-calculus as the middle driver to

enable RESTful Web Service composition to be achieved from the logical

level to the execution level.

The π-calculus descriptions are directly attached to the Linear Logic in-

ference rules in the style of type theory (see Figure 4.3), where actions are

modelled as the π-calculus processes with attachments indicated by “::”, and

plan extraction notations are modelled as the π-calculus names with attach-

ments indicated by “:”.

Figure 4.3 lists the key inference rules of ILL with the π-calculus attach-

ment, which are used for composing services at the operation level and ex-

tracting the process models for the composition.

id : shows the identity corresponding to a data resource in RESTful Web

Services. It requires no action, so the corresponding process is empty as

0.
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4.3. Stage 2: Operation-level Composition

x : A ` (υx)0 :: x : A
(id)

Γ, x : A, y : B ` P :: G

Γ, y : B, x : A ` P :: G
(Exchange)

Γ1 ` P :: x : A Γ2, x : A ` Q :: G

Γ1,Γ2 ` (υx)(P |Q) :: G
(Cut)

Γ1 ` P :: x : A Γ2, y : B ` Q :: G

Γ1,Γ2, y : A( B ` (υx)y〈x〉.(P |Q) :: G
(( L)

Γ ` P :: y : A( G

Γ, x : A ` P :: y : G
(Shift)

Γ, x : A ` P :: y : B

Γ ` y(x).P :: y : A( B
(( R)

Γ, x : A, y : B ` P :: G

Γ, z : A⊗B ` y(x).P :: G
(⊗L)

Γ1 ` P :: x : A Γ2 ` Q :: y : B

Γ1,Γ2 ` (υx)y〈x〉.(P |Q) :: z : A⊗B
(⊗R)

Γ, x : A ` P :: G

Γ, x : A&B ` P :: G
(&L1)

Γ, x : B ` P :: G

Γ, x : A&B ` P :: G
(&L2)

Γ ` P :: x : A Γ ` Q :: x : B

Γ ` x.(P +Q) :: x : A&B
(&R)

Γ, x : A ` P :: G Γ, x : B ` Q :: G

Γ, x : A⊕B ` x.(P +Q) :: G
(⊕L)

Γ ` P :: x : A

Γ ` P :: x : A⊕B
(⊕R1)

Γ ` P :: x : B

Γ ` P :: x : A⊕B
(⊕R2)

Figure 4.3: Inference rules of Intuitionistic Linear Logic with the π-calculus
attachments.
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4.3. Stage 2: Operation-level Composition

exchange : enables the consumption of the data resources to be arranged. The

corresponding process remains unchanged.

cut : shows the composition of the resources through consumption and pro-

duction. It corresponds to a fresh name passing in two parallel processes.

(L: introduces the link between two resources. The corresponding processes

run in parallel after sending out the first channel (x) as a fresh name

through the second channel (y).

shift : shows the initial resource representations with links and changes this

initial presentation into a sequent that can be used for the future proof.

The initial channel has to be indicated and the corresponding process

remains unchanged.

(R: reverses the change made by the shift rule. The corresponding process

remains unchanged after the first channel (x) is received through the

second channel (y).

⊗L: generates a new data resource, which is the composition of two separate

resources. The corresponding process remains unchanged after receiving

the first channel (x) through the second channel (y).

⊗R: generates a new data resource that consists of two resources in parallel.

The corresponding processes run in parallel on a composed channel (z)

after sending out the first channel (x) as a fresh name through the second

channel (y).

&L: provides a redundant input resource, which is not used by the process.

However, it can be used in cut elimination with an external choice. The

corresponding process remains unchanged.

&R: introduces external choices of the resources. The corresponding processes

will be chosen accordingly and the name is passed in one of them.

⊕L: introduces internal choices of the resources. The corresponding processes

will be chosen accordingly and the name is passed in one of them.

65



4.3. Stage 2: Operation-level Composition

⊕R: indicates that either resource A or resource B is produced, which is used

in cut elimination with an internal choice. The corresponding process

remains unchanged but with name passing to only one of them.

4.3.2 Proof-as-process for RESTful Web Service Com-

position

Generally, RESTful Web Service composition at the operation level is achieved

through theorem proving performed in successive steps in the form of:

Action: State ` State’

where Action shows how a composition goal can be produced by using an

action hypothesis or services resources in the existing non-linear context, and

a State means the representation state of a data resource in the application

system. When one representation state is available with a suitable action, a

new representation state can be created.

In Linear Logic, RESTful Web Service composition is modelled particu-

larly as probabilistic planning which enables us to express a set of possible

state transitions following an action or a service request. Using Linear Logic

disjunctions, probabilistic planning is expressed either as

Action : S ` S1⊕ S2⊕ ...⊕ Sn or Action : S ` S1&S2&...&Sn

This means that only one state transition will be made after the action

from state S. When this is Additive Disjunction (⊕), the choice is decided by

the server side. For example, after a single service invocation, two states may

occur, one is success, and the other is an exception. When this is Additive

Conjunction (&), the choice is decided by the client side. This is then used

as user input from the next state transition. In this research, Additive Con-

junction (⊕) is specifically used to model service composition when there is

more than one service available for inclusion in the work flow. For example,

the order representation created in the place order request may contain a set

of links for payment options, such as credit card or debit card payment. These

links are modelled as the possible next state transitions.
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4.3. Stage 2: Operation-level Composition

Actions are further classified into two groups: OperationAction and Busi-

nessAction. OperationAction refers to the internal operations (i.e. GET,

POST, PUT, DELETE) modelled in Chapter 3, so the service invocation mod-

elled is modified to:

Operation: URI, RepresentationIn

` RepresentationOut ⊕ ResponseCode

In the perspective of the π-calculus, the action is viewed as the process that

is conducted according to the specifications. In addition, each Linear Logic

proposition is attached with a π-calculus name in the convention starting with

letter “n” followed by the proposition in this thesis, so the above example is

written in the π-calculus attachment format as follows:

nURI:URI, nRepresentationIn:RepresentationIn

` Operation::nRepresentationOut:RepresentationOut

⊕ nResponseCode:ResponseCode

Thus, a typical RESTful Web Service with four possible operations - GET,

PUT, POST, DELETE - may be modelled as follows:

nURI:URI ` GET::nRepresentationOut:RepresentationOut

⊕ nResponseCode:ResponseCode

nURI:URI, nRepresentationIn:RepresentationIn

` PUT::nRepresentationOut:RepresentationOut

⊕ nResponseCode:ResponseCode

nURI:URI, nRepresentationIn:RepresentationIn

` POST::nRepresentationOut:RepresentationOut

⊕ nResponseCode:ResponseCode

nURI:URI ` DELETE::0

⊕ nResponseCode:ResponseCode

BusinessAction refers to the external business constraints among the re-

sources that drive the composition workflow to the ultimate goal. These actions
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4.3. Stage 2: Operation-level Composition

are modelled as hyperlinks in the resource representations at the operation

level.

For example, in the e-shopping scenario, the representation of the create

order action may contain the link for paying this order. The client agent can

choose different links to drive to different representation states.

CreateOrder: URIUser, URIProduct ` URIOrder

LinkPayorder: ` URIOrder ( LinkPayorder

With the attachments of the π-calculus name, these business constraints

are written as follows:

CreateOrder: nURIUser:URIUser, nURIProduct:URIProduct

` CreateOrder::nURIOrder:URIOrder

LinkPayorder: ` LinkPayorder::nLinkPayorder:

(URIOrder ( LinkPayorder)

For modelling composition requirements, the existential is introduced to

show that there should exist such a process for the possible composed service,

so the composition requirement is written as theorem in the following format:

Theorem composition name: ∃ p, initial services ` composed service

where the meta-variable ∃p will become instantiated to the plan process in the

π-calculus format as the proof proceeds. Backward reasoning is used during

the theorem proving process, and the following section will explain this in

detail.

For example, if a composition requirement, which obtains resource D through

resource A and B, is defined as follows:

Theorem get D AB: ∃ P, a:A, b:B ` P::d:D

The existing resources are A, B and C; and the following business con-

straints are available among them:

get C AB: a:A, b:B ` GETC::c:C

get D C: c:C ` GETD::d:D

The proof using the inference rules defined in Figure 4.3 is conducted as

follows:
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4.4. Backward Reasoning in Theorem Proving

(get C AB)
a:A, b:B ` P0::c:C

(get D C)
c:C ` Q0::d:D

(cut)
a:A, b:B ` P::d:D

where the proof is performed backward as discussed in the next section, so pro-

cess P is instantiated into two processes P0 and Q0 through the cut inference

rule.

4.4 Backward Reasoning in Theorem Proving

For both Stages 1 and 2 described in Sections 4.2 and 4.3, the proposed compo-

sition method takes the backward reasoning approach during theorem proving.

The advantage of doing so is to minimise the search space during proving. Rea-

soning in forward would cause heavy searching from the large pool of resources

with less clues of organising them according to the business constraints. As

Intuitionistic Linear Logic is used in the research, the desired composed ser-

vice is expressed a single goal on the right side with a sequent calculus. It is

easier to decompose this single goal into separated resources which can then be

checked against existing resources. If all decomposed resources can be matched

from the existing ones, it means that the proof is completed and the desired

composed service can be achieved.

Depending on the syntax of the goal sequent, the following rules are applied

during the decomposing process at both stages.

� If the goal sequent is of the form A( B, the (-introduction rule (i.e.

(R in Figure 3.1 or 4.3) is applied, which add A into the linear context

and requires that only B is shown as result. No more decomposition is

required after that. For example, a goal of form Γ ` A ( B can be

decomposed into Γ, A ` B.

� If the goal sequent is of the form A ⊗ B, the ⊗-introduction rule (i.e.

⊗R in Figure 3.1 or 4.3) is applied. Meanwhile, the composition context

is divided into two separate contexts corresponding to the two sub-goals

and the decomposition process continues on both sub-goals. For example,
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4.4. Backward Reasoning in Theorem Proving

a goal of form Γ ` A⊗B can be decomposed into two sub-goals: Γ1 ` A

and Γ2 ` B.

� If the goal sequent is of the form A⊕ B, both ⊕-introduction rules (i.e.

⊕R1 and ⊕R2 in Figure 3.1 or 4.3) can be applied. The decomposition

process search for both possibilities. For example, a goal of form Γ `

A ⊕ B can be decomposed into two possibilities: Γ ` A or Γ ` B, only

one of which can be chosen.

� If the goal sequent is of the form A&B, the &-introduction rule (i.e.

&R) in Figure 3.1 or 4.3) is applied, which results in two sub-goals.

Decomposition continues on both sub-goals. For example, a goal of form

Γ ` A&B can be decomposed into two sub-goals: Γ ` A and Γ ` B, only

one of which can be chosen.

� If the goal sequent is not made up of the above forms ((,⊗,⊕,&),

no further decomposition process is required. The backward reasoning

method looks from the available services/resources to find one that re-

alised it. If no services/resources in the context realises the given ones,

the sub-goal is left to be solved later. If the sub-goal can not be realised

at the end of theorem proving, the theorem proving finishes with non-

completed proofs, which also means the composition requirements can

not be achieved with the available services/resources.

The first stage composition can follow the above rules directly, in which

the backward reasoning technique can be performed in the following two major

steps: (i) decomposing the conclusion of the goal sequent; and (ii) applying

inference rules in Figure 3.1.

At the second stage, the backward reasoning technique not only follows the

above rules but also involves typed terms and actions. So a complete reasoning

is done in the following three major steps: (i) decomposing the conclusion of

the goal sequent; (ii) introducing meta-variables; and (iii) applying inference

rules with actions.
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Figure 4.4: Key components discussed in Chapter 4.

When context splitting is required in the second stage as in the goal sequent

is of the form A ⊗ B, new meta-variables have to be introduced to represent

terms of different types. For example, a goal of form Γ ` z : (A ⊗ B) can

be decomposed into two sub-goals: Γ1 ` z1 : A and Γ2 ` z2 : B. During

theorem proving, the actions are extracted according to the predefined π-

calculus embedded Linear Logic inference rules in Figure 4.3.

4.5 Summary

In response to the study of research in RESTful Web Service composition

discussed in Chapter 2, this chapter proposed a two-stage Linear Logic theorem

proving based method, which is the first logic-based approach to composing

RESTful Web Services.

Reflecting to the overall proposed approach, Figure 4.4 shows the discussed

components in this chapter. Following the modelling approach proposed in
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Chapter 3, this chapter continues modelling the business constraints/actions

and the composition requirements in ILL. The planning method based on

the Linear Logic theorem proving is used for searching composed services,

within which a backward reasoning technique is proposed to decompose the

specification of composition requirements and to ensure that inference rules

are properly applied.

One important contribution of the proposed Linear Logic based approach

is the way of composing services as planning in the form of deductive program

synthesis. It not only facilitates the automation of the service composition

process, but also ensures the achievability of search for the composition and

the correctness of the composed services produced.

The other key contribution of the proposed approach is the application of

the proof-as-process paradigm in Linear Logic combined with the introduction

of the π-calculus. This allows the resulting composed services to be automati-

cally expressed in the form of process models, which brings achieving RESTful

Web Service composition at the executable level one step closer.

This chapter has demonstrated the feasibility of composing RESTful Web

Services based on Linear Logic theorem proving techniques. However, until

now all theorem proving has been performed by applying the inference rules

manually, which will be impractical when the number of services, resources and

business constraints increases. The next chapter aims to automate theorem

proving, which will use tool supported proving and validation by encoding the

whole Linear Logic theorem proving process in the Coq proof assistant.
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Chapter 5

Tool Supported Composition

Validation

The previous chapters have described the proposed Linear Logic approach

for modelling and planning RESTful Web Service composition. The manual

approach to planning as theorem proving has been described in Chapter 4.

This chapter encodes the proposed models and plans into the Coq theorem

prover which not only facilitates automatic theorem proving but also validates

the composition plan.

This chapter provides an overview of the possible theorem provers for Lin-

ear Logic and explains the reasons of choosing the Coq proof assistant. It then

describes how the encoding of Linear Logic approach is implemented in Coq

and concludes by summarising the findings.

5.1 Linear Logic Theorem Provers

Manual theorem proving is sufficient when analysing simple scenarios with only

a few number of service resources. Whereas, when the number of resources

involved in the proof increases, it becomes infeasible to complete the theorem

proving manually. Tool-supported theorem proving is essential in the real-

world scenario analysis. This section particularly discusses the available tools

for possible Linear Logic theorem proving.
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The Linear Logic theorem provers have been implemented in two main

forms: one implements Linear Logic directly in logic programming languages

such as Lolli [77], Forum [78] or Lygon [79], while the other mechanises Linear

Logic in existing proof systems such as Coq [80] or Isabelle [81].

The implementations in logic programming languages aim to achieve high

automation in the theorem proving and to improve time efficiency in the proof

search. However, users have to code the proof deeply into the logic and un-

derstand the details of the theorem prover at the low implementation level.

Llprover [82] is another Linear Logic theorem prover which aims to achieve

automated proving as well, but it is not efficient and lacks the capability of

adding the π-calculus attachment to the existing implementation.

In contrast, mechanising Linear Logic in existing theorem proof systems

allows users to build their theorem proofs quickly and control the proof process

interactively in a user-friendly system. By utilising the built-in constructions

or tactics in the theorem prover, the automation of the proof search can be

achieved to a certain extent. Both Isabelle and Coq can be used to encode

Linear Logic and the π-calculus.

Although the provision of tool-supported theorem proving is important in a

logic-based approach for RESTful Web Service modelling and composition, this

research does not delve into too much detail of implementing a full and powerful

Linear Logic theorem prover. Instead, it adopts the approach to mechanising

Linear Logic in the existing Coq proof assistant system. This implementation

in Coq will perform well in searching and validating composition proofs.

Coq [80] is an interactive theorem prover which provides formal reasoning

and extracts certified programs from the proof. Coq is written in OCaml [83]

and is based on the Calculus of Inductive Constructions, which combines both

higher-order logic and a functional programming language [84] which is rich in

types.

Unlike Isabelle, which has a distinct object logic that differs from the system

meta logic, Coq uses a single integrated system that allows built-in concepts

to exist as an ordinary datatype within its system.
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In addition to the command line operation, Coq provides a graphic user in-

terface called CoqIde. The encoding and implementation done in this research

are mainly completed in the CoqIde.

There have been previous formalisations of Linear Logic in Coq. Power

and Webster [85] provides an encoding of ILL in the Coq proof assistant.

However, it does not provide proof terms, so there is no explicit representation

of the composition process model. Sadrzadeh [86] studies the feasibility of

formalising classical modal Linear Logic with Coq. It provides an encoding

that is particularly good in dealing with lists of formulae on both sides of

the sequent relation, but no prove terms are involved, which again makes it

unsuitable for the purpose of this thesis, as composition process models cannot

be extracted. This thesis extends previous formalisations by encoding the π-

calculus as representations of prove terms, which allows composition process

models to be extracted. The following sections will discuss the detail of the

encoding.

The main advantages of formalising Linear Logic theorem proving with the

Coq proof assistant are summarised as follows.

� It provides soundness-preserving technology for exploring the automation

of planning by developing proof tactics for the theorem prover. Coq has

a number of built-in tactics, and users can also define customised tactics;

all of these can be applied during the proving process.

� Linear Logic and the π-calculus rules can be integrated into Coq directly

without changing Coq itself. Meanwhile, the data types already defined

in Coq can be used when encoding Linear Logic and the π-calculus.

� The cut rule in Linear Logic can be defined inductively in Coq, which

drives the automation of the whole synthesis process for obtaining the

composed services.

� Encoding the Linear Logic theorem proving into the Coq proof assistant

can further validate the correctness of the theorem proving.
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5.2 Key Coq Syntax

This section provides a brief description of the Coq syntax that will be used

later in the encoding. The complete Coq document is available in [80].

5.2.1 Inductive Definitions

An inductive definition is normally specified by giving the names and the type

of the inductive sets followed by the constructor declarations. If parameters

are required for the definition, they are added after the definition name.

The definition of a typical inductive type has the following form:

Inductive ident : sort :=

| ident1(param) : type1

... ...

| identn(param) : typen

.

where ident is the name of the inductively defined type; sort is the universe

where it lives; ident1 to identn are the names of its constructors and type1 to

typen their respective types; param is the required parameter.

5.2.2 Assumptions

An assumption in Coq binds a definition to a type that can be default Coq

types or inductive definitions. Three assumptions are used in this thesis: vari-

ables, axioms and hypotheses. Variables are used to introduce terms, axioms

are used to introduce the existing services, and hypotheses are used to intro-

duce business constraints.

Assumptions are normally written in the following forms:

Variable ident : type.

Axiom ident : type.

Hypothesis ident : type.

where ident is the name of the assumption and type is its type.
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5.2.3 Assertions and Proofs

An assertion in Coq states a proposition of which the proof is interactively built

using tactics. Two types of assertions are used in this thesis: theorems and

lemmas. Theorems are used to represent service composition requirements, and

lemmas are used to introduce assistant functions such as adding or removing

an empty list. A proof starts by the keyword Proof completes by the keyword

Qed. Thus, assertions and their proofs are generally written in the following

forms:

Theorem ident : type.

Proof.

tactics

Qed.

5.2.4 Tactic-sytle Proving

In Coq, proofs are conducted by a series of tactics that are built-in or cus-

tomised. Three built-in tactics are primarily used in the proofs in this thesis,

which are apply, econstructor and instantiate.

The tactic apply tries to match the current goal against the conclusion of

the type of term. If it succeeds, then the tactic returns as many subgoals as

the number of non dependent premises of the type of term. For example, apply

TimesRight will try to matched the goal against the result sequent Γ1, Γ2 ` A

⊗ B in the TimesRight inference rule as defined in the Linear Logic inference

rules Figure 3.1.

The tactic econstructor used in this thesis introduces the existential (e.g.

exists P) as a variable. In the Coq syntax,� and [ are used to introduce names

and processes, respectively. The following provides an example of applying

econstructor, in which the existential P is replaced with a variable ?173 defined

by Coq automatically.

Before econstructor

exists P, ((A<<a)::nil ++ (B<<b)::nil) |- (D<<d[P)
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5.3. Encoding the Logic-based Approach in Coq

After econstructor

(A << a) :: nil ++ (B << b) :: nil |- (D << d) [?173

The instantiate tactic allows one to refine an existential variable with a

new term, which is normally used after econstructor. For example, applying

instantiate (1:= (nu c (par P Q))) to the above example generates:

(A << a) :: nil ++ (B << b) :: nil |- (D << d) [(nu c (par P Q))

5.3 Encoding the Logic-based Approach in Coq

In this research, the composition planning is implemented in Coq which can use

both built-in and customised tactics to assist theorem proving. The encoded

implementation in Coq further validates the composition plans.

More specifically, the implementation is performed at two levels correspond-

ing to the two-stage composition proposed in Chapter 4. The first and the

second stage mainly use the rules defined in Figure 3.1 and 4.3, respectively.

Thus, firstly, ILL and the inference rules defined in Figure 3.1 are encoded in

Coq, and secondly, the π-calculus term attachments in ILL and the inference

rules defined in Figure 4.3 are similarly encoded.

The ILL encoding follows the approach of [85, 86] but focuses on the con-

nectives and inference rules used in this thesis. The code is implemented in

the latest Coq version (v 8.3). The complete resource level encoding of Linear

Logic in the Coq proof assistant is provided in Appendix A.1.

The encoding has been done in five key steps as follows. The next five

sub-sections will present them in detail.

(i) Encoding ILL formulae;

(ii) Encoding the ILL sequent inference rules;

(iii) Encoding the π-calculus syntax;

(iv) Encoding the ILL with the π-calculus sequent inference rules;

78



5.3. Encoding the Logic-based Approach in Coq

(v) Encoding the business constraints and the composition requirements for

theorem proving.

5.3.1 Encoding the ILL Formulas

The Intuitionistic Linear Logic propositions with connectives (e.g. Linear Im-

plication(, Multiplicative Conjuction ⊗, Additive Conjunction & and Addi-

tive Disjunction ⊕) provided in Table 3.1 are defined inductively as ILinProp

in the Set type as follows:

Inductive ILinProp : Set :=

| Implies: ILinProp -> ILinProp -> ILinProp

| Times: ILinProp -> ILinProp -> ILinProp

| With: ILinProp -> ILinProp -> ILinProp

| Plus: ILinProp -> ILinProp -> ILinProp

.

where Implies (() takes two ILL propositions as input and its output is also

an ILL proposition. Similar cases are for Times (⊗), With (&) and Plus (⊕).

Resources are then defined as propositions in the ILinProp variable type,

for example, A and B are defined as linear propositions and Γ is defined as a

list of linear propositions:

Variable A B : ILinProp.

Variable Γ : list ILinProp.

5.3.2 Encoding the ILL Sequent Inference Rules

The Intuitionistic Linear Logic inference rules listed in Figure 3.1 are defined

inductively in Coq. The induction is made on the intuitionistic linear sequent

relation Γ ` G. The sequent relation LinCons is represented as a 2-ary function

that takes two arguments as input: the hypothesis Γ and the conclusion G.

Γ is implemented as a list of formulas (list ILinProp), and G is a single goal

formula implemented as the linear proposition (ILinProp). The output of the
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linear sequent relation LinCons is defined as a Coq proposition Prop that is

either true or false. Thus the sequent relation LinCons definition is as follows:

Inductive LinCons : (list ILinProp) -> ILinProp -> Prop :=

... ...

However, formulas, which do not fit into the sequent relation LinCons style

of (list ILinProp) �ILinProp �Prop, will cause errors in the proving process.

For example, the sequents in the following format will not satisfy the encoding

rules because A and B are not in the type of list ILinProp and the default list

type Γ is missing in the sequent expression.

A,B ` G
A⊗B ` G

(⊗L)

In order to solve this list problem and facilitate the proving process, two

procedures have been introduced. Firstly, all single proposition defined on the

left side of the sequent are modified as the list ILinProp type by attach ::nil at

the end. For example, A is written as A::nil without the π-calculus attachment

or (A�x)::nil with the π-calculus attachment. Secondly, when the default list

type, such as Γ, is missing during the proving processing, a Nil list is added to

the front or end of the left side of the sequent. As a result, the above deduction

is modified as the following:

Nil, A,B ` G
Nil, A⊗B ` G

(⊗L)

The modifications are achieved through a set of lemmas: AddNilFront,

RemoveNilFront and AddNilEnd as shown below.

Listing 5.1: Lemma: AddNilFront.

Lemma AddNilFront (A : ILinProp) (Γ : list ILinProp) :

(((nil ++ Γ) |- A) -> (Γ |- A)).

Proof.

intros.

apply H.

Qed.
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Listing 5.2: Lemma: RemoveNilFront.

Lemma RemoveNilFront (A : ILinProp) (Γ : list ILinProp) :

((Γ |- A) -> ((nil ++ Γ) |- A)).

Proof.

intros.

apply H.

Qed.

Listing 5.3: Lemma: AddNilEnd.

Lemma AddNilEnd (A : ILinProp) (Γ : list ILinProp) :

(((Γ ++ nil) |- A) -> (Γ |- A)).

Proof.

intros.

replace Γ with (Γ ++ nil).

apply H.

elim Γ.

reflexivity.

simpl.

intros.

rewrite H0.

reflexivity.

Qed.

The complete encoding can be found in Appendix A.1. Here, the Cut and

TimesLeft rules defined in Figure 3.1 are used as examples to explain this

encoding in detail.

Γ1 ` A Γ2, A ` G
Γ1,Γ2 ` G

(Cut)
Γ, A,B ` G

Γ, A⊗B ` G
(⊗L)

The cut rule is encoded as:

Cut (A G : ILinProp)(Γ1 Γ2 : list ILinProp) :

((Γ1 |- A) -> ((Γ2 ++ (A::nil)) |- G) -> ((Γ1 ++ Γ2) |- G))

where A, G, Γ1 and Γ2 are parameters used in the definition; (Γ1 |- A) and ((Γ2

++ (A::nil)) |- G) represent two existing sequents (Γ1 ` A) and (Γ2, A ` G),
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Table 5.1: The π-calculus syntax encoded in Coq.

Syntax in π-calculus Syntax in Coq Description Example

0 skip null process 0
! bang replication !P
υ nu restriction/new υx
〈〉 outp output x〈y〉.P
() inp receive x(y).P
| par parallel P | Q
+ sum choice P + Q

respectively; ((Γ1 ++ Γ2) |- G)) represents the concluded sequent (Γ1,Γ2 ` G).

Similarly, the TimesLeft rule is encoded as follows:

TimesLeft (A B G : ILinProp) (Γ : list ILinProp) :

(Γ ++ ((A::nil)++ (B::nil)) |- G -> (Γ ++ ((A ⊗ B)::nil)) |- G)

where A, B, G and Γ are parameters used in the definition; (Γ ++ ((A::nil)++

(B::nil)) |- G) and (Γ ++ ((A ⊗ B)::nil)) |- G) represent the existing (Γ, A,B `

G) and the concluded (Γ, A⊗B ` G) sequents, respectively.

5.3.3 Encoding the π-calculus Syntax

The key π-calculus syntax used in this thesis:

P ::= 0 |!P | (υx)P | x〈y〉.P | x(y).P | P |Q | P +Q | P.Q

is encoded as in Listing 5.4, based on [87]. The notation and syntax are given

in Table 5.1 for further reference. The full Coq code for Linear Logic with the

π-calculus is given in Appendix A.2.

In Listing 5.4, skip is for the silent process (0), bang is for replication (!),

nu is for introducing a new name (υ), outp is for output (x〈y〉.P ), inp is for

receiving (x(y).P ), par is for parallel processes (|) and sum is for different

options of process (+). Thus, in the next section inference rule encoding, the

process for nu is written in the form of nu name proc; and similarly outp name

name proc is for outp, inp name name proc is for inp.
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Listing 5.4: Encoding the π-calculus in Coq.

Parameter name : Set.

Inductive proc : Set :=

| skip : proc

| bang : proc -> proc

| nu : name -> proc -> proc

| outp : name -> name -> proc -> proc

| inp : name -> name -> proc -> proc

| par : proc -> proc -> proc

| sum : proc -> proc -> proc

.

5.3.4 Encoding the ILL with the π-calculus Sequent In-

ference Rules

Together with the previous Linear Logic encoding, the name and process in-

troduced by the π-calculus are defined as linear propositions AddName and

AddProc, respectively, as shown in Listing 5.5. The remainder of the definition

for Implies, Times, With and Plus is same as previous Linear Logic encoding.

Listing 5.5: Encoding Linear Logic with the π-calculus in Coq.

Inductive ILinProp : Set :=

| Implies: ILinProp -> ILinProp -> ILinProp

| Times: ILinProp -> ILinProp -> ILinProp

| With: ILinProp -> ILinProp -> ILinProp

| Plus: ILinProp -> ILinProp -> ILinProp

| AddName: ILinProp -> name -> ILinProp

| AddProc: ILinProp -> proc -> ILinProp

.

Table 5.2 summarises the notations and the corresponding syntax in the

Coq implementation. The ILL inference rules with the π-calculus term attach-

ments are formalised in Coq. Taking the Cut and TimesLeft rules as examples
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Table 5.2: Syntax of Linear Logic with the π-calculus attachment encoded in
Coq.

Syntax in LL with π-calculus Syntax in Coq Description Example

( ( Implies A ( B
⊗ ⊗ Times A ⊗ B
& & With A & B
⊕ ⊕ Plus A ⊕ B
: � AddName �x
:: [ AddProcess [P

again, but with the definition containing the π-calculus in Figure 4.3:

Γ1 ` P :: x : A Γ2, x : A ` Q :: G

Γ1,Γ2 ` (υx)(P |Q) :: G
(Cut)

Γ, x : A, y : B ` P :: G

Γ, z : A⊗B ` y(x).P :: G
(⊗L)

The cut rule is encoded as follows:

Cut (A G : ILinProp)(Γ1 Γ2 : list ILinProp) (x : name) (P Q : proc):

(exists P, (Γ1 |- (A<<x[P)))

-> (exists Q, (Γ2 ++ ((A<<x)::nil)) |- (G[Q))

-> (Γ1 ++ Γ2) |- (G[(nu x (par P Q)))

where A, G, Γ1 and Γ2 are parameters used in the definition; x is a π-calculus

name; P and Q are π-calculus processes; (Γ1 |- (A�x[P)) and ((Γ2 ++

((A�x)::nil)) |- G) represent two existing sequents (Γ1 ` P :: x : A) and

(Γ2, x : A `), respectively; ((Γ1 ++ Γ2) |- (G[(nu x (par P Q)))) represents

the concluded sequent (Γ1,Γ2 ` (υx)(P |Q) :: G).

The TimesLeft (⊗L) rule is encoded as follows:

TimesLeft (A B G : ILinProp)(Γ : list ILinProp)(x y z : name)

(P : proc) :

(exists P, (Γ ++ ((A<<x)::nil)++ ((B<<y)::nil)) |- (G[P))

-> (Γ ++ (((A ⊗ B)<<z)::nil)) |- (G[(inp y x P))

where A, B, G and Γ are parameters used in the definition; x, y and z

are π-calculus names; P is a π-calculus processes; (Γ ++ ((A�x)::nil)++
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((B�y)::nil)) |- G) and (Γ ++ (((A ⊗ B)�z)::nil)) |- G) represent the exist-

ing (Γ, x : A, y : B ` P :: G) and the concluded (Γ, z : A ⊗ B ` y(x).P :: G)

sequents, respectively.

5.3.5 Encoding the business constraints and the com-

position requirements

The business constraints are defined as hypotheses in Coq, for example, the

place order constraint in an e-shopping scenario may be defined as follows:

Hypothesis place_order : ((item :: nil) ++ (user :: nil)

++ (order_empty :: nil)) |- order_unpaid.

The composition requirement is defined as theorem to be proven, for ex-

ample, the ship order composition requirement in an e-shopping scenario may

be defined as follows:

Theorem shipping_order : ((order_empty ⊗ user ⊗ item ⊗ payment ⊗

shipment):: nil) |- order_shipped.

The tactic-style theorem proving is applied in Coq to conduct proofs. A

successful proof shows that the composition requirement is achievable. The

detailed example of theorem proving is explained in the next chapter, with

complete code provided in Appendix B.

When encoding at the service method level, meta-variables (e.g. exists P)

are introduced to represent the processes in the encoding of the inference rules

as shown in the above and the composition requirement theorem at the below.

Theorem get_D_AB: exists P,

((A<<a)::nil ++ (B<<b)::nil) |- (D<<d[P).

The meta-variables introduced in the theorem will be gradually instantiated

within the plan as the proof proceeds based on the inferences rules defined in

Figure 4.3. Theorem get D AB listed above is used as an example to explain

how the meta-variable instantiation is matched to the final process model in

the π-calculus. It is assumed that the following is defined for this example:
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Variable A B C D : ILinProp.

Variable P Q GETC GETD: proc.

Variable a b c d : name.

Hypothesis get_C_AB: ((A<<a)::nil ++ (B<<b)::nil) |- (C<<c[GETC).

Hypothesis get_D_C: (C<<c)::nil |- (D<<d[GETD).

The following tactics are applied to prove the theorem:

econstructor. (* (A<<a)::nil ++ (B<<b)::nil |- (D<<d[?173) *)

apply AddNilEnd.

(* (A<<a)::nil ++ (B<<b)::nil ++ nil |- (D<<d[?173) *)

instantiate (1:= (nu c (par P Q))).

(* (A<<a)::nil ++ (B<<b)::nil ++ nil |- (D<<d[nu c (par P Q)) *)

apply Cut with C.

(* exists P0 : proc, (A << a) :: nil ++ (B << b) :: nil

|- ((C << c) [P0) *)

(* exists Q0 : proc, nil ++ (C << c) :: nil |- ((D << d) [Q0) *)

econstructor.

(* (A << a) :: nil ++ (B << b) :: nil |- ((C << c) [?179) *)

(* exists Q0 : proc, nil ++ (C << c) :: nil |- ((D << d) [Q0) *)

instantiate (1:= GETC).

(* (A << a) :: nil ++ (B << b) :: nil |- ((C << c) [GETC) *)

(* exists Q0 : proc, nil ++ (C << c) :: nil |- ((D << d) [Q0) *)

apply get_C_AB.

(* exists Q0 : proc, nil ++ (C << c) :: nil |- ((D << d) [Q0) *)

econstructor. (* nil ++ (C << c) :: nil |- ((D << d) [?182) *)

apply RemoveNilFront. (* (C << c) :: nil |- ((D << d) [?182) *)

instantiate (1:= GETD). (* (C << c) :: nil |- ((D << d) [GETD) *)

apply get_D_C. (* No more subgoals. *)

where contents expressed within (* *) after each tactic are results of applying

that tactic.

The meta-variable P introduced in Theorem get D AB is firstly instan-

tiated based on the Cut rule in the format of (nu y (Par P Q)), where any

matched variables are also instantiated and any unmatched variables are in-
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troduced as new meta-variables. Thus P is written as (nu c (Par P Q)). Two

new meta-variables P and Q are introduced, which will be instantiated in the

next proving steps.

Following the proving process, meta-variable P is further instantiated into

the process GETC, and meta-variable Q is instantiated into process GETD.

Thus, the process corresponding to the composition requirement is eventually

obtained at the proof progresses. The final process is written as (nu c (Par

GETC GETD)) in the Coq encoding and ((υc)(GETC | GETD)) in the π-

calculus format defined in Chapter 4.

5.4 Summary

Reflecting the overall proposed approach, this chapter has discussed the imple-

mentation of the logic-based RESTful Web Service modelling and composition

approach in the Coq proof assistant as shown in Figure 5.1.

This implementation in the tactic-style Coq theorem prover enables the
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efficient composition proof searching through well defined Linear Logic con-

nectives and rules; therefore, it facilitates the automation of the composition.

Although the completeness and soundness rules of the propositional Linear

Logic ensure the correctness of the proof, the implementation and the theorem

proving in Coq can further validate the whole proof process. The next chapter

will use concrete examples to show how this implementation can be applied in

the real use cases.

The Linear Logic encoding in Coq presented in this chapter can also po-

tentially benefit researchers in other fields to perform Linear Logic theorem

proving in the Coq proof assistant.
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Chapter 6

Case Studies

This chapter demonstrates the feasibility and versatility of the logical approach

proposed in the previous chapters by applying it to two real-world user sce-

narios.

One is a commonly-used e-shopping scenario which is retained in a sim-

plified version for illustration, though it has the possibility to be considerably

extended. It is detailed with three generic use cases, each of which is studied

thoroughly at both the resource level and the service method level, as proposed

in the two-stage service composition design. The other scenario lies in the field

of biomedicine, in which a concrete service composition is discussed.

Because this thesis focuses on the composition aspect of the services, it

is assumed that, in both scenarios, all existing services are discovered and

available to be accessed in particular ways.

6.1 The E-shopping Scenario

E-shopping scenarios and similar holiday booking scenarios are commonly used

in discussions of service composition research [20, 32, 40]. This research adopts

an e-shopping scenario to thoroughly study how the proposed logical method

can be applied in real cases.

This research divides composition into three detailed use cases by consid-

ering how services are involved in a composition process. Services are grouped
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by category according to their semantics and functions. Services in the same

category have the same or very similar functionalities. For example, the British

Airways flight booking service and the Air China flight booking service perform

a similar function, so they are defined in the same category.

The first use case discusses a composition to be performed with only the

minimal category of services/resources, and each category contains only one

available service, so the availability of the services required is an important

factor that determines whether the composition requirements can be achieved

or not. The communication among these available services is mainly controlled

by the constraints defined in the business models. For example, if both Stock

and Shipping services are available, two service composition results may be

created according to two different business model definitions. One composition

may be a product supplying service that ships products to fill the stock, and

the other may be a product selling service that ships products from the stock

to a customer.

The second use case allows more than one service to be available in each

category and keeps the number of categories low for simplicity. Services in

the same category may be provided by different service providers at different

levels of cost and quality. The availability of multiple services not only enables

a particular service to be selected during composition but it also provides the

possibility to replace one service by another in the same category if it is not

available at a particular time. For example, in payment service, users may

be given options of a debit-card or a credit-card payment service, so they can

choose which one is used in the composition.

The third use case introduces more categories of service that may add extra

value to the final composition. This will demonstrate that the proposed logic

framework is capable of modelling and handling complex scenarios, in which

the service composition specifications keep evolving with the user requirements

and newly available services.

The remainder of this section provides an overview of these three use cases

and the detail of modelling and composing services in each of them.
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6.1. The E-shopping Scenario

6.1.1 Case I: Core Categories of Service

Case I demonstrates a service composition scenario, in which only core cat-

egories of service are considered. In the case of e-shopping, realising a basic

shopping scenario requires at least four core functional categories of atomic

services as summarised in Table 6.1: a User Service for managing the data

related to customers, a Stock Service for managing product information, a

Payment Service for handling transactions between the customers and the

shop, and a Shipment Service for delivering products from stock to the cus-

tomers. This use case targets the minimal scenario, so it is assumed that only

these four categories of services are available and that there is only one service

in each category. The key resources represented by these services are User,

Item, Payment and Shipment.

The flows among these services are defined in Figure 6.1, in which the e-shop

acts as a composed service. Thus, the e-shop serves as the entry point to all

other services. This entry URL is defined at http://example.eshop.com in this

thesis. Users register themselves with information such as name and address

via the e-shop service (http://example.eshop.com/user), which then initialises

a POST method on the User Service defined at http://example.user.com/user.

After that, a new user resource is created in the e-shop with user id, say,

http://example.eshop.com/user/1234 that links to the user in the User Ser-

vice http://example.user.com/user/1234. Later, when users update their in-

formation, such as adding a payment method, the e-shop service performs a

PUT method on http://example.eshop.com/user/1234 that corresponds to the

resource http://example.user.com/user/1234 from the User Service.

When a user browses an item from a stock, the e-shop service performs

a GET method on the Stock Service at http://example.stock.com/item. If

a user wants to check the detail of a product, the e-shop service performs

another GET method at http://example.stock.com/item/{iid}, where iid is

replaced by the identification of the item. A user can perform a POST method

at http://example.eshop.com/order to create a new order. The newly-added

order resource in the e-shop service is viewed as a result of the composition
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Figure 6.1: The flow of core categories of service in the e-shopping scenario.

of a User Service and a Stock Service, which allows a registered user to add

an item as a purchasable order. When the payment information is submitted

by the user, the e-shop service initialises a POST method to the Payment

Service at http://example.payment.com/payment, which passes the payment

detail from the user resource to the payment resource. Once the order is

paid, the e-shop service initialises a POST method to the Shipping Service

at http://example.shipment.com/shipment to ship the product to the address

provided by the user. The user can retrieve the entire order information,

including the product information, payment and shipment detail, using a GET

method at http://example.eshop.com/order/{oid}, where oid is replaced by the

identification of the order.

Composition at the First Stage

The application of the proposed composition method is first studied at the

first-stage abstract resource level. The four categories of service defined earlier

are represented by their data resources, which are then modelled as Linear

Logic propositions. Thus, the minimal categories of existing RESTful Web
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Figure 6.2: Case I flow at the abstract resource level.

services can be expressed in Linear Logic as follows:

` user,` item,` payment,` shipment

Linear Logic sequent calculus is used to model the constraints in a business

model. According to the business constraints in the e-shopping scenario, the

following Linear Logic hypotheses are defined to show possible relationships

between the resources, in which Linear Implication (() is used to indicate the

link to the next available resource.

place order : order empty, user, item ` order unpaid

pay order : Lpayorder, payment ` order paid

ship order : Lshiporder, shipment ` order shipped

link payorder :` order unpaid( Lpayorder

link shiporder :` order paid( Lshiporder

Figure 6.2 shows the representation transfer flow among the resources.

When a valid user selects a product, an order is created. The order becomes

a paid order once it is paid, and the payment information is available for the
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6.1. The E-shopping Scenario

order. The order becomes a shipped order when it is dispatched to the user,

and the shipment information is available. The unpaid order representation

contains a link for paying the order, which enables the client agent to choose to

move to the next representation. The paid order representation contains a link

for shipping the order. One possible composition requirement for obtaining the

shipped order is defined as a Linear Logic theorem to be proved:

order empty ⊗ user ⊗ item⊗ payment⊗ shipment ` order shipped

where the state of the order transits from the empty state to the shipped state

after consuming user, item, payment and shipment resources. The Linear Logic

Multiple Conjunction (⊗) used here ensures that the required resources must

be available and the composition is achieved by consuming all these resources.

Following the implementation discussed in Chapter 5, the RESTful re-

sources, business constraints and the theorem proving process are implemented

in the Coq proof assistant. The resources are defined as variables in the Linear

Logic proposition type, the business constraints are defined as hypothesises,

and the composition requirement is defined as a theorem. The following shows

some example definitions.

Variable user item payment shipment order empty order unpaid

order paid order shipped Lpayorder Lshiporder: ILinProp.

Hypothesis place order : ((item :: nil) ++ (user :: nil)

++ (order empty :: nil)) ` order unpaid.

Hypothesis pay order : ((Lpayorder :: nil) ++ (payment :: nil))

` order paid.

Hypothesis ship order : ((Lshiporder :: nil) ++ (shipment :: nil))

` order shipped.

Hypothesis link payorder: nil ` order unpaid ( Lpayorder.

Hypothesis link shiporder: nil ` order paid ( Lshiporder.

Theorem 6.1.1.1 shipping order : (order empty ⊗ user ⊗ item ⊗

payment ⊗ shipment) ` order shipped

Proof. see Appendix B.1. �
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6.1. The E-shopping Scenario

This composition requirement presented in the theorem is proved by ap-

plying the Intuitionistic Linear Logic inference rules defined in Figure 3.1 and

implemented in Appendix A.1. The full detail of theorem proving in Coq are

listed in Appendix B.1.

For legibility, the proof is summarised as proof trees and divided into two

fragments (see Figure 6.3), in which the following abbreviations are used: U

for user, I for item, P for payment, S for shipment, O for order, LPO for the

link to pay the order, and LSO for the link to ship the order.

This proof tree shows two important characteristics that drive the whole

composition planning process. One is the link business action offered by the

nature of RESTful Web Services. The other is the cut inference rule presented

by Linear Logic. For example, because there is a link to paying the order in

the representation of order unpaid (` O unpaid ( LPO) and a predefined

business constraint (LPO, P ` O paid), the paid order (O paid) is deducted

by applying the cut rule.

Composition at the Second Stage

Once a proof is found at the abstract resource level at the first stage, the

composition method continues to apply at the service method level using Linear

Logic theorem proving. The proving task shows that the composition goal

can be realised from the given services by using the business actions as the

main inference steps. This step attaches the π-calculus to Linear Logic, so

the process model in the π-calculus is directly extracted during the theorem

proving. As discussed earlier, this process model can facilitate the translation

of the logic model to executable business process languages.

The key methods in the existing four services are expressed as follows, with

the π-calculus attachments. The operation actions are attached using “:: to

represent the processes in the π-calculus. Variables are attached using “: to

represent the names in the π-calculus.
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6.1. The E-shopping Scenario

User service:

nuriuser:uriuser, nusermsg:usermsg

` PostUser::nuriuid:((uriuser ( uriuid) ⊕ err)

nuriuid:uriuid ` GetUid::nruid:(ruid ⊕ err)

nuriuid:uriuid, nuidmsg:uidmsg ` PutUid::nruid:(ruid ⊕ err)

nuriuid:uriuid ` DeleteUid::(0 ⊕ err)

nuriuidpay:uriuidpay ` GetUidPay::nruidpay:(ruipay ⊕ err)

Stock service:

nuriitem:uriitem, nitemmsg:itemmsg

` PostItem::nuriiid:((uriitem ( uriiid) ⊕ err)

nruiitem::uriitem ` GetItem::nritem:(ritem ⊕ err)

nuriiid:uriiid ` GetIid::nriid:(riid ⊕ err)

nuriiid:uriiid, niidmsg:iidmsg ` PutIid::nriid:(riid ⊕ err)

Payment service:

nuripay:uripay, npaymsg:paymsg

` PostPay::nuripid:((uripay ( uripid) ⊕ err)

nuripid:uripid ` GetPid::nrpid:(rpid ⊕ err)

nuripid:uripid ` DeletePid::(0 ⊕ err)

Shipping service:

nuriship:uriship, nshipmsg:shipmsg

` PostShip::nurisid:((uriship ( urisid) ⊕ err)

nurisid:urisid ` GetSid::nrsid:(rsid ⊕ err)

It is noted that, to simplify the later proof process, the successful HTTP

status codes are removed, and the error HTTP status codes are represented by

err in the expressions. As an example, a complete expression for the PostUser

method in the User service should be written as:

nuriuser:uriuser, nusermsg:usermsg `

PostUser::nuriuid:(((uriuser ( uriuid) ⊗ suc) ⊕ err)
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Figure 6.4: Case I flow at the service method level.

where suc stands for the successful HTTP status codes and err stands for the

error HTTP status codes. The Additive Disjunction (⊕) is used here to show

the possibility of system exceptions, which is out of the control of the users.

The major representation transfer flows at the service method level are

detailed in Figure 6.4. In order to start the e-shopping process, it is assumed

that: there is a valid user identified by http://user.example.com/1234 and

an available item in the stock (http://stock.example.com/001 ); the payment

service is available at the URL http://payment.example.com; the shipping ser-

vice is available at the URL http://shipping.example.com; the order resource

is identified by the URL http://eshop.example.com/order ; and the initial state

for an order is empty.

The key business actions are modelled in the following way.

place order: nruid:(ruid ⊕ err), nriid:(riid ⊕ err),

nuriorder:uriorder ` PlaceOrder::nroid:(roid ⊕ err)

pay order: nLpayorder:(Lpayorder ⊕ err), nruidpay:(ruidpay ⊕ err),

nuripay:uripay ` PayOrder::nroidpaid:(roidpaid ⊕ err)
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6.1. The E-shopping Scenario

ship order: nLshiporder:(Lshiporder ⊕ err), nuriship:uriship

` ShipOrder::nroidshipped:(roidshipped ⊕ err)

link payorder: ` LinkPayorder::nLpayorder:((roid ⊕ err)

( (Lpayorder ⊕ err))

link shiporder:` LinkShiporder::nLshiporder:((roidpaid ⊕ err)

( (Lshiporder ⊕ err))

The place order business action takes as input representation the user and

item information, which are accessed through a GET method on the user

URL and the item URL, respectively. It then performs a POST operation

at the order resource URL (http://eshop.example.com/order) to create a new

resource according to a dynamic URI template (a template of the dynamic

order resource may be defined as http://eshop.example.com/order/{oid} for

creating orders), so a newly-created order could, for example, be identified

by the URL http://eshop.example.com/order/abc. This transfers the appli-

cation state of an order from empty to unpaid. The output unpaid order

representation contains a link to allow the next action to pay the order (e.g.

http://eshop.example.com/pay/order/abc).

The pay order business action uses the pay order link (Lpayorder) to POST

to the payment service. After a successful payment, the order is updated from

the unpaid state to the paid state. The output paid order representation

contains a link (e.g. http://eshop.example.com/ship/order/abc) to allow the

next action, which is to ship the order.

The ship order business action uses the ship order link (Lshiporder) to

POST to the shipment service and after a successful shipment, the order is

updated from the paid state to the shipped state. It is noted that, in reality,

the shipping service may periodically check the order state, rather than waiting

for the POST action to start the shipping process.

The delete order business action performs a DELETE operation on the

order (http://eshop.example.com/order/1234 ), which transfers the order from

the unpaid state to the removed state. There are no further links to the

payment and the shipment services, so they remain uninvoked.
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The cancel order business action performs a DELETE operation on a paid-

but-not-shipped order (http://eshop.example.com/order/1234 ), which trans-

fers the order from the paid state to the cancelled state. The shipment service

remains uninvoked. We note that the detailed refund process is ignored here

to avoid overcomplicating the scenario.

One composition requirement for producing a shipped order is defined as

a theorem to be proven (see Theorem 6.1.1.2). As at the resource level, the

definitions and proofs are implemented in Coq, which is detailed in Appendix

B.2. In the expression, the symbol � and [ are used to introduce names and

processes, respectively.

Theorem 6.1.1.2 order being shipped: exists P,

((uriship � nuriship), (uripay � nuripay),

(uriuidpay � nuriuidpay), (uriorder � nuriorder),

(uripid � nuripid), (uriuid � nuriuid))

` (roidshipped � nroidshipped[P)

Proof. see Appendix B.2. �

This composition requirement is proved by applying the inference rules

defined in Figure 4.3 and implemented in Appendix A.2. The full detail of

theorem proving in Coq are listed in Appendix B.2. Appendix C.1 shows the

proof trees for obtaining a shipped order.

During the implementation in Coq, the meta-variable (exists P) is used,

which will be instantiated into the plan as the proof proceeds. Taking the

proof process for Theorem 6.1.1.2 as an example, Listing 6.1 shows the first

few lines of the proof (see Appendix B.2 for the whole proof).

The proof is performed in backward reasoning as proposed in Section 4.4.

Thus, firstly, the econstructor tactic introduces the existential (exists P) as

a variable. As underlined in Listing 6.2, the existential P is replaced by the

variable ?2634 that is given randomly by Coq. This variable is then instan-

tiated according to the inference rules defined in Figure 4.3. In this case, it

is firstly instantiated (the 3rd line at Listing 6.1) according to the Cut rule
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definition, whose π-calculus attachment is encoded in Coq as (nu y (par P Q))

(see Listing 6.3) before actually applying the Cut rule (the 4th line at Listing

6.1). After using the Cut rule, two fragments are created as shown in Listing

6.4 with two new existentials P0 and Q0.

Listing 6.1: An example Coq proof code.

Theorem order_being_shipped: exists P,

(((uriship<<nuriship) :: nil)

++ ((uripay<<nuripay) :: nil)

++ ((uriuidpay<<nuriuidpay) :: nil)

++ ((uriorder<<nuriorder) :: nil)

++ ((uripid<<nuripid) :: nil)

++ ((uriuid<<nuriuid) :: nil))

|- ((roidshipped ⊕ err) <<nroidshipped[P).

Proof.

1 econstructor.

2 apply AddNilRight.

3 instantiate (1:= (nu y (par P Q))).

4 apply Cut with (Times uriship (Plus lshiporder err)).

5 auto.

6 econstructor.

7 instantiate (1:= (nu nuriship (outp nlshiporder nuriship (par P Q)))).

8 apply TimesRight.

9 econstructor.

10 ... ...

Listing 6.2: After applying the econstructor tactic at line 1.

((uriship << nuriship) :: nil) ++ ((uripay << nuripay) :: nil)

++ ((uriuidpay << nuriuidpay) :: nil)

++ ((uriorder << nuriorder) :: nil)

++ ((uripid << nuripid) :: nil) ++ (uriuid << nuriuid) :: nil

|- (((roidshipped ⊕ err) << nroidshipped) [?2634)
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Listing 6.3: After applying the instantiate tactic at line 3.

(((uriship << nuriship) :: nil) ++ ((uripay << nuripay) :: nil)

++ ((uriuidpay << nuriuidpay) :: nil)

++ ((uriorder << nuriorder) :: nil)

++ ((uripid << nuripid) :: nil)

++ (uriuid << nuriuid) :: nil) ++ nil

|- (((roidshipped ⊕ err) << nroidshipped) [nu y (par P Q))

Listing 6.4: After applying the Cut rule at line 4.

exists P0 : proc, ((uriship << nuriship) :: nil)

++ ((uripay << nuripay) :: nil)

++ ((uriuidpay << nuriuidpay) :: nil)

++ ((uriorder << nuriorder) :: nil)

++ ((uripid << nuripid) :: nil)

++ (uriuid << nuriuid) :: nil

|- (((uriship ⊗ (lshiporder ⊕ err)) << y) [P0)

exists Q0 : proc,

nil ++ ((uriship ⊗ (lshiporder ⊕ err)) << y) :: nil

|- (((roidshipped ⊕ err) << nroidshipped) [Q0)

The Coq theorem prover continues to apply tactics and inference rules until

the proof is completed, the π-calculus process is instantiated during this proof.

An example π-calculus process after the second instantiate at Line 7 is shown

as follows.

nu y (par (nu nuriship (outp nlshiporder nuriship (par P Q))) Q0)

The whole π-calculus process for an order being shipped is shown in List-

ing 6.5. For legibility, the connectives are written in the style introduced in

Chapter 4. The corresponding reference can be found in Table 5.1.
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Listing 6.5: The π-calculus process model extracted for Case I of the e-shopping

scenario.

1 (υy1)(((υnuriship)nuriship〈nlshiporder〉.(0
2 | ((υnroidpaid)(((υy2)(((υnuripay)nuripay〈y3〉.(0
3 | ((υnruidpay)nruidpay〈nlpayorder〉.(GETUIDPAY
4 | ((υnroid(((υy4)(((υnuriorder)nuriorder〈y5〉.(0
5 | ((υnriid)nriid〈nruid〉.(GETIID | GETUID))))

6 | (nuriorder(y6).nriid(nruid).PLACEORDER))))

7 | LINKPAYORDER)))))))

8 | (nuripay(y7).nruidpay(nlpayorder).PAYORDER))

9 | LINKSHIPORDER)))

10 | (nuriship(nlshiporder).SHIPORDER))

As the reasoning is performed backwards, the process extracted at the first

outer layer (see the 1st and 10th lines in Listing 6.5) corresponds to the last

business flow in the composition (i.e. shipping the order), and the last inner

layer (see the 5th line in Listing 6.5) corresponds to the first business flow in

the composition (i.e. obtaining user and item information through their ids:

GETIID and GETUID). The unknown parameters, which assist the extraction

but are not defined by the existing services, are represented by y.

Here, GETIID and GETUID can run in parallel. Once the user and the

item information are retrieved, they are passed to the PLACEORDER process

as shown in the 6th line; and the place order process is completed with the 4th

line. After the PLACEORDER process, the LINKPAYORDER process (see

the 7th line) is available and can run in parallel with the GETUIDPAY process

(see the 3rd line ) to make the user payment information ready in order to

submit to the payment service. Once the PAYORDER process (see the 2nd

and the 8th lines) is performed, the LINKSHIPORDER process is available;

and finally the SHIPORDER process is performed at the 1st and 10th lines.
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6.1. The E-shopping Scenario

6.1.2 Case II: Multiple Services in One Category

With the large number of services that can be found on the Web today, it is

to be expected that one functional service category may have several services

available. These services have the same, or very similar, functionalities to the

end users, but they are offered by different providers with differing quality of

service. For example, in the e-shopping scenario, there may be multiple stock

providers for the same product, payment services may be offered by different

providers, and shipment services may also have different providers. The e-shop

service should be able to make all of the existing options available to users,

allowing the user to decide upon which services to include in the composition.

Due to the provision of Additive Conjuction (&) in Linear Logic, the user

choice among services can be explicitly modelled in the proposed logical ap-

proach. This second use case demonstrates this by analysing an example in

which three different services are available in the Payment Service category.

These services are summarised in Table 6.2: the PayPal Service for offering

payment via the Paypal service, a CreditCard Service for allowing use of a

credit card, and a DebitCard Service for allowing use of a debit card. Users

themselves have the choice of which payment method to use through different

payment services.

When the user reaches at the payment step from the e-shop service (i.e.

via URL http://example.eshop.com/payment), links to the three payment op-

tions are available, which are defined by URLs: http://example.paypal.com,

http://example.creditcard.com and http://example.debitcard.com. The POST

payment method in the e-shop service corresponds to the selected payment

services.

Composition at the First Stage

At the first-stage resource level, the Payment Service in Table 6.1 is extended

into three services with detailed resources defined in Table 6.2. As in Case I,

the resources are expressed as Linear Logic propositions as follows:
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Figure 6.5: Case II flow at the abstract resource level.

`user, `item, `paymentpaypal, `paymentcc, `paymentdc, `shipment

The business constraints are modelled as Linear Logic sequent calculus as

follows, where Additive Conjunction (&) is used to offer different payment

choices to the users. The pay order business action specified in Case I is now

replaced by three sub business actions: pay order paypal, pay order cc and

pay order dc.

place order: order empty, user, item ` order unpaid

pay order paypal: Lpayorderpaypal, paymentpaypal ` order paid

pay order cc: Lpayordercc, paymentcc ` order paid

pay order dc: Lpayorderdc, paymentdc ` order paid

ship order: Lshiporder, shipment ` order shipped

link payorder: ` order unpaid (

(Lpayorderpaypal & Lpayordercc & lpayorderdc)

link shiporder: ` order paid ( Lshiporder

Figure 6.5 shows the representation transfer flow among the resources for

this use case. In addition to the flow of Case I illustrated in Figure 6.2, once an

107



6.1. The E-shopping Scenario

order is placed, three possible next payment transitions are available through

links: Lpayorderpaypal, Lpayordercc, Lpayorderdc.

Once a payment link is selected, it will submit payment information to the

corresponding payment service. For example, if Lpayordercc is selected, the

credit card payment service (paymentcc) will be invoked. The use of Linear

Logic Additive Conjunction (&) applies the restriction that only one payment

method can be selected, so once Lpayordercc is selected, Lpayorderpaypal and

Lpayorderdc will be ignored. After the payment is successfully performed, the

representation state of the order changes from unpaid to paid.

Thus, the composition specification of producing a shipped order requires

that three options of payment are available, as shown in Theorem 6.1.2.1. This

composition requirement is proved by applying the Intuitionistic Linear Logic

inference rules defined in Figure 3.1 and implemented in Appendix A.1. The

full detail of theorem proving in Coq are listed in Appendix B.3. For legibility,

the proof is summarised as proof trees as shown in Appendix C.2.

Theorem 6.1.2.1 ship order multipay :

(order empty ⊗ user ⊗ item ⊗

(paymentpaypal & paymentcc & paymentdc) ⊗ shipment)

` order shipped

Proof. see Appendix B.3. �

Composition at the Second Stage

At the second-stage service method level, the Payment Service defined in Case

I is now replaced by three different services and the user provides the corre-

sponding payment method in the User Service.

The following lists the full services available in this use case at the service

method level, in which Paypal Service, CreditCard Service and DebitCard Ser-

vice are newly-introduced for this use case. Again, the operation actions are

attached using “:: to represent the processes in the π-calculus. Variables are

attached using “: to represent the names in the π-calculus. As noted earlier in
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Case I, the successful HTTP status codes are removed, and the error HTTP

status codes are represented by err in the expressions.

User service:

nuriuser:uriuser, nusermsg:usermsg

` PostUser::nuriuid:((uriuser ( uriuid) ⊕ err)

nuriuid:uriuid ` GetUid::nruid:(ruid ⊕ err)

nuriuid:uriuid, nuidmsg:uidmsg ` PutUid::nruid:(ruid ⊕ err)

nuriuid:uriuid ` DeleteUid::(0 ⊕ err)

nuriuidpay:uriuidpay ` GetUidPaypal::nruidpay:(ruipaypal ⊕ err)

nuriuidpay:uriuidpay ` GetUidPaycc::nruidpay:(ruipaycc ⊕ err)

nuriuidpay:uriuidpay ` GetUidPaydc::nruidpay:(ruipaydc ⊕ err)

Stock service:

nuriitem:uriitem, nitemmsg:itemmsg

` PostItem::nuriiid:((uriitem ( uriiid) ⊕ err)

nruiitem::uriitem ` GetItem::nritem:(ritem ⊕ err)

nuriiid:uriiid ` GetIid::nriid:(riid ⊕ err)

nuriiid:uriiid, niidmsg:iidmsg ` PutIid::nriid:(riid ⊕ err)

Paypal service:

nuripay:uripaypal, npaymsg:paymsg

` PostPaypal::nuripid:((uripaypal ( uripid) ⊕ err)

nuripid:uripid ` GetPid::nrpid:(rpid ⊕ err)

nuripid:uripid ` DeletePid::(0 ⊕ err)

CreditCard service:

nuripay:uripaycc, npaymsg:paymsg

` PostPaycc::nuripid:((uripaycc ( uripid) ⊕ err)

nuripid:uripid ` GetPid::nrpid:(rpid ⊕ err)

nuripid:uripid ` DeletePid::(0 ⊕ err)
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Figure 6.6: Case II flow at the service method level.

DebitCard service:

nuripay:uripaydc, npaymsg:paymsg

` PostPaydc::nuripid:((uripaydc ( uripid) ⊕ err)

nuripid:uripid ` GetPid::nrpid:(rpid ⊕ err)

nuripid:uripid ` DeletePid::(0 ⊕ err)

Shipping service:

nuriship:uriship, nshipmsg:shipmsg

` PostShip::nurisid:((uriship ( urisid) ⊕ err)

nurisid:urisid ` GetSid::nrsid:(rsid ⊕ err)

The major representation transfer flows at this service method level are

detailed in Figure 6.6. In contrast to that for Case I in Figure 6.4, the unpaid

order resource is expanded with links to three available payment methods as

well the actual payment services used for composition.

The business constraints are defined as follows. When the users reach the
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payment stage, they may choose their preferred payment method, which is

modelled using the Linear Logic Additive Conjunction (&).

place order: nruid:(ruid ⊕ err), nriid:(riid ⊕ err),

nuriorder:uriorder ` PlaceOrder::nroid:(roid ⊕ err)

pay order paypal: nLpayorderpaypal:(Lpayorderpaypal ⊕ err),

nruidpaypal:(ruidpaypal ⊕ err), nuripaypal:uripaypal

` PayOrderPaypal::nroidpaid:(roidpaid ⊕ err)

pay order cc: nLpayordercc:(Lpayordercc ⊕ err),

nruidpaycc:(ruidpaycc ⊕ err), nuripaycc:uripaycc

` PayOrderCC::nroidpaid:(roidpaid ⊕ err)

pay order dc: nLpayorderdc:(Lpayorderdc ⊕ err),

nruidpaydc:(ruidpaydc ⊕ err), nuripaydc:uripaydc

` PayOrderDC::nroidpaid:(roidpaid ⊕ err)

ship order: nLshiporder:(Lshiporder ⊕ err), nuriship:uriship

` ShipOrder::nroidshipped:(roidshipped ⊕ err)

link payorder: ` LinkPayorder::nLpayorder: ((roid ⊕ err)

( ((Lpayorderpaypal ⊕ err) & (Lpayordercc ⊕ err)

& (Lpayorderdc ⊕ err)))

link shiporder: ` LinkShiporder::nLshiporder:

((roidpaid ⊕ err) ( (Lshiporder ⊕ err))

The three pay order business actions: pay order paypal, pay order cc and

pay order dc use the corresponding pay order links: Lpayorderpaypal, Lpay-

ordercc and Lpayorderdc to POST to the corresponding payment services,

respectively. Other services remain the same as in Case I. After a successful

payment, the order is updated from the unpaid state to the paid state. In a

similar way to Case I, the output paid order representation contains a link (e.g.

http://eshop.example.com/ship/order/abc) to allow the next action, which is

to ship the order.

Theorem 6.1.2.2 below provides one composition requirement for obtaining

a shipped order paid via the Paypal service. The proof for this composition

will search whether the Paypal service is available and whether it can be ap-
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plied in this composition. Other similar composition requirements, such as

replacing the payment service with a CreditCard or DebitCard service, can

also be performed by the same means.

Theorem 6.1.2.2 order is shipped paypal: exists P,

((uriship � nuriship), (uripaypal � nuripay),

(uriuidpay � nuriuidpay), (uriorder � nuriorder),

(uripid � nuripid), (uriuid � nuriuid))

` (roidshipped � nroidshipped[P)

Proof. see Appendix B.4. �

This composition requirement is proved by applying the inference rules

defined in Figure 4.3 and implemented in Appendix A.2. The full detail of

theorem proving in Coq are listed in Appendix B.4. Appendix C.3 shows the

proof trees constructed for obtaining a shipped order.

Listing 6.6: The π-calculus process model extracted for Case II of the e-

shopping scenario.

1 (υy1)((υnuriship)(nuriship<nlshiporder>.(0

2 | (υnroidpaid)((υy2)((υnuripay)nuripay<y3>.(0

3 | (υnruidpay)nruidpay<nlpayorder>.(GETUIDPAYPAL

4 | (υnroid( (υy4) ((υnuriorder)nuriorder<y5>.(0

5 | (υnrpid)nrpid<nruid>.(GETPID | GETUID))

6 | nuriorder(y6).nrpid(nruid).PLACEORDER)

7 | (υnlpayorder)(LINKPAYORDER | 0))))

8 | nuripay(y7).nruidpay(nlpayorder).PAYORDERPAYPAL)

9 | LINKSHIPORDER)))

10 | nuriship(nlshiporder).SHIPORDER)

The whole π-calculus process for an order being shipped is shown in List-

ing 6.6. For legibility, the connectives are written in the style introduced in

Chapter 4. The corresponding reference can be found in Table 5.1. In contrast

to the process model extracted for Case I listed in Listing 6.5, the payment

process is changed. When obtaining the user payment method information,
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the GETUIDPAYPAL process (see the 3rd line in Listing 6.6) is instantiated

for accessing the Paypal payment information; and the pay order process is in-

stantiated by PAYORDERPAYPAL in the 8th line. Other extractions remain

the same as in Case I.

6.1.3 Case III: Extended Categories of Service

This use case demonstrates the capability of the proposed Linear Logic based

approach in terms of evolving the composition. In many composition scenarios,

it is useful to enrich the basic business models with value-added services and

to make the scenario evolve as required. Depending on the user’s requirement

specifications, such services may be added to achieve the ultimate result.

For example, a basic trip-planning scenario may include flight booking and

hotel reservation services, but it may add hotel rating services in order to help

users to select the most suitable hotels when booking the accommodation, and

add currency converter services to allow users to calculate the cost immediately

in a different currency.

Case III assumes that more than four categories of service are available in

the e-shopping scenario. These services are summarised in Table 6.3. A user

security checking service is added to authenticate users before allowing them

to place an order. A rating service category is added to allow users to see the

rating of the product before placing an order. An insurance service category

is added to allow users to buy product protection while purchasing a product.

Table 6.3 summaries these three services.

It is also assumed that there is at least one service available in each category.

When users require such value-added functionalities, these related services are

added into the composition specification.

In particular, this case study defines one service each in the security check-

ing, product rating and product protection insurance service category, and they

are identified by http://example.securitychecker.com, http://example.rating.com

and http://example.insurance.com, respectively.
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Composition at the First Stage

At the first-stage resource level, three resources (i.e. product rating, user

security check and product insurance) are provided on top of Case I, so the

existing resources are expressed as Linear Logic propositions as follows:

`user, `item, `payment, `shipment, `rate, `securitychecker,

`insurance

The business constraints are modelled as follows:

validate user: user, securityschecker ` user valid

rate item: item, rate ` item rated

place order: order empty, user valid, item rated ` order unpaid

insure unpaid order: Linsureorder, insurance ` order unpaid insured

insure paid order: Linsureorder, insurance ` order paid insured

pay order: Lpayorder, payment ` order paid

pay insured order: Lpayorder, payment ` order insured paid

ship order: Lshiporder, shipment ` order shipped

link after order: ` order unpaid ( (Linsureorder & Lpayorder)

link after insured unpaid order: ` order unpaid insured ( Lpayorder

link shiporder1: ` order paid insured ( Lshiporder

link shiporder2: ` order insurerd paid ( Lshiporder

Figure 6.7 illustrates the overall representation transfer flow among the

resources in this use case. A user becomes a valid user once they are authen-

ticated by the Security Checking Service. For an item, its rating information

can be checked via the Rating Service. A valid user may check the rating of

an item and then place it as an order that remains unpaid. This unpaid order

representation contains two links for the possible next state transition: pay

this order or buy insurance for this order. If the pay order is chosen, the order

becomes a paid but uninsured order, then users can choose between buy in-

surance for it or ship it for the next state. If the insure order is chosen for the

unpaid order, the order becomes an insured order, and the link to pay order is

available. If an order is paid and insured, the link for shipping it is available.
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Figure 6.7: Case III flow at the abstract resource level.

In order to explicitly express these two different routes for the service com-

position in this use case (i.e. via pay unpaid order first and via insure unpaid

order first), the business actions defined above deliberately split the paid and

insured order into two resources: order paid insured and order insured paid.

However, in real-world implementations, they can be represented by just a

single resource.

Theorem 6.1.3.1 below shows an example service composition requirement

that uses all seven existing services for obtaining a shipped order. As in pre-

vious cases, at the first-stage abstract level, this composition requirement is

proved by applying the Intuitionistic Linear Logic inference rules defined in

Figure 3.1 and implemented in Appendix A.1. The full detail of theorem prov-

ing in Coq are listed in Appendix B.5. The proof trees are shown in Appendix

C.4.

Theorem 6.1.3.1 ship order extended :

(order empty ⊗ (user ⊗ securitychecker) ⊗ (item ⊗ rate)

⊗ insurance ⊗ payment ⊗ shipment ) ` order shipped
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Proof. see Appendix B.3. �

Composition at the Second Stage

At the second-stage service method level, the user security checking, product

rating and insurance services are added, as shown in the following list. Similar

to the expression in previous use cases, the operation actions are attached

using “:: to represent the processes in the π-calculus. Variables are attached

using “: to represent the names in the π-calculus. Again, as noted earlier in

Case I, the successful HTTP status codes are removed, and the error HTTP

status codes are represented by err in the expressions.

Security Checking Service

nurisecchec:urisecchec |- PostSecchec::nuriuid:(uriuid ⊕ err)

Product Rating Service

nurirate:urirate |- PostRate::nuririd:(uririd ⊕ err)

nuririd:uririd |- GetRid::nrrid:(rrid ⊕ err)

Product Insurance Service

nuriinsur:uriinsur |- PostInsure::nuriinid:(uriinid ⊕ err)

nuriinid:uriinid |- GetInid::nrinid:(rinid ⊕ err)

The overall representation transfer flows at this service method level are

illustrated in Figure 6.8 and the business constraints are defined as follows. In

order to show all seven services being used in this scenario, the place order

business action takes only valid users and rated items, and all orders have

to be insured and paid via insure paid order or pay insured order before

ship order. For shipping the order, two links: link shiporder1 and link shiporder2,

are explicitly defined to show that the pre-shipped order may come from two

different composition plans.

validate_user: nurisecchec:urisecchec, nruid:(ruid ⊕ err)

|- VALIDUSER::nruidvalid:(ruidvalid ⊕ err)
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Figure 6.8: Case III flow at the service method level.

rate_item : nurirate:urirate, nriid:(riid ⊕ err)

|- RATEITEM::nriidrated:(riidrated ⊕ err)

place_order: nuriorder:uriorder, nriidrated:(riidrated ⊕ err),

nruidvalid:(ruidvalid ⊕ err)

|- PLACEORDER::nroidunpaid(roidunpaid ⊕ err)

insure_unpaid_order : nuriinsur:uriinsur,

nLinsureorder:(Linsureorder ⊕ err)

|- INSUREUNPAIDORDER::nroidunpaidinsured

:(roidunpaidinsured ⊕ err)

pay_order: nuripay:uripay, nruidpay:(ruidpay ⊕ err),

nLpayorder:(Lpayorder ⊕ err)

|- ORDERPAID::nroidpaid:(roidpaid ⊕ err)

insure_paid_order : nLinsureorder:(Linsureorder ⊕ err),

nuriinsur:uriinsur

|- INSUREUNPAIDORDER::nroidpaidinsured

:(roidpaidinsured ⊕ err)
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pay_insured_order: nuripay:uripay, nruidpay:(ruidpay ⊕ err),

nLpayorder:(Lpayorder ⊕ err) |- ORDERINSUREDPAID

::nroidinsuredpaid:(roidinsuredpaid ⊕ err)

ship_order: nuriship:uriship, nLshiporder:(Lshiporder ⊕ err)

|- ORDERSHIPPED::nroidshipped:(roidshipped ⊕ err)

link_order_insure: |- LINKORDERINSUR::nLorderinsure

:((roidunpaid ⊕ err) ( (Linsureorder ⊕ err))

link_order_pay: |- LINKORDERPAY::nLorderpay

:((roidunpaid ⊕ err) ( (Lpayorder ⊕ err))

link_after_insured_unpaid_order: |- LINKPAYORDER::nLpayorder

:((roidunpaidinsured ⊕ err) ( (Lpayorder ⊕ err))

link_after_order_pay: |- LINKPAIDORDERINSURE::nLpaidorderinsure

:((roidpaid ⊕ err) ( (Linsureorder ⊕ err))

link_shiporder1: |- LINKSHIPORDER1::nLshiporder:

((roidpaidinsured ⊕ err) ( (Lshiporder ⊕ err))

link_shiporder2: |- LINKSHIPORDER2::nLshiporder:

((roidinsuredpaid ⊕ err) ( (Lshiporder ⊕ err))

Theorem 6.1.3.2 provides the composition requirement that uses all of these

services to obtain a shipped insured order. This composition is proved by

applying the inference rules defined in Figure 4.3 and implemented in Appendix

A.2. The full detail of theorem proving in Coq are listed in Appendix B.6.

Appendix C.5 shows the proof trees for obtaining a shipped insured order.

Theorem 6.1.3.2 order_being_shipped_extended: exists P,

(((uriship<<nuriship) :: nil) ++ ((uripay<<nuripay) :: nil)

++ ((uriuidpay<<nuriuidpay) :: nil) ++ ((uriinsur<<nuriinsur) :: nil)

++ ((uriorder<<nuriorder) :: nil) ++ (((uriiid<<nuriiid) :: nil)

++ ((urirate<<nurirate) :: nil)) ++ (((uriuid<<nuriuid) :: nil))

++ ((urisecchec<<nurisecchec) :: nil))

|- ((roidshipped ⊕ err) <<nroidshipped[P).

Proof. see Appendix B.6. �
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6.1. The E-shopping Scenario

Listing 6.7: The π-calculus process model extracted for Case III of the e-

shopping scenario.

1(υy1)(((υnuriship)nuriship〈nlshiporder〉).(0
2 | ((υnroidinsuredpaid)(((υy2)(((υnuripay)nuripay〈y3〉.(0
3 | ((υnruidpay)nruidpay〈nlpayorder〉.(GETUIDPAY
4 | ((υnroidunpaidinsured)(((υnlinsureorder)

5 (((υnuriinsur)nuriinsur〈nlorderinsure〉.(0
6 | ((υnroidunpaid)

7 (((υy4)(((υnuriorder)nuriorder〈y5〉.(0
8 | ((υnriidrated)nriidrated〈nruidvalid〉
9 .(((υnriid)(GETIID | RATEITEM)))

10 | ((υnruid)(GETUID | VALIDUSER))))))

11 | nuriorder(y6).nriidrated(nruidvalid).PLACEORDER)))

12 | LINKORDERINSURE)))))

13 | nuriinsur(nlinsureorder).INSUREUNPAIDORDER)))

14 | LINKPAYORDER))))))

15 | nuripay(y7).nruidpay(nlpayorder).PAYINSUREDORDER))

16 | LINKSHIPORDER2)))

17| nuriship(nlshiporder).SHIPORDER)

The π-calculus process extracted from the above proof for an order being

insured shipped is shown in Listing 6.7. Again, for legibility, the connectives

are written in the style introduced in Chapter 4. The corresponding reference

can be found in Table 5.1.

As shown in Listing 6.7, GETIID and GETUID processes can run in par-

allel as shown in the 9th and the 10th lines, in which GETIID runs with the

RATEITEM process, and GETUID runs with the VALIDUSER process. Once

the item and user information are retrieved, they are passed to the PLACE-

ORDER process as shown in the 7th and the 11th lines. The LINKORDERIN-

SURANCE process (see the 12th line) continues after the PLACEORDER

process. After the insurance process at the 5th and the 13th lines, the LINK-

PAYORDER process is available together with user payment method informa-

tion via the GETUIDPAY process, which invokes the PAYINSUREDORDER
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process at the 3rd and the 15th lines. Finally, the link to ship order process is

available, the order is shipped as at the 1st and the 17th lines.

6.2 The Biomedical Service Composition Sce-

nario

This section discusses how the proposed logical approach is used to compose

services in real-world biomedical research. The scenario to be used here orig-

inates from one of the author’s previous publications [37] which was based

on a European Commission funded biomedical research project - The Living

Human Digital Library (LHDL). In this project, the service composition has

been remained mainly at the implementation level. This section re-visits the

same scenario but focuses on the logical level modelling and composition.

In this scenario, a biomedical researcher would like to estimate the risk of

bone fracture for a particular patient. The researcher has the 3D imaging data

for the patient from Computed Tomography (CT) and a set of services for

processing the image data. This thesis analyses a part of the flow that allows

the researcher to build a 3D mesh from the CT data, as illustrated in Figure 6.9.

After that, the researcher may continue to use motion-capture data to perform

specific finite element simulations that require extensive computation, which

is not discussed in this composition scenario.

The following lists the core services involved in this scenario in order to

provide an overall picture of the scenario. However, it will not go into detail

because this is beyond the scope of this thesis.

� CT Service: for managing the original 3D image data. It may have

methods for obtaining and removing datasets.

� Visualisation Tool Kit (VTK) Service: for managing 3D image data in

the VTK format. After the Importer Service, all 3D image data are

represented in the VTK format to be used by other services. These

VTK data are either used directly as 3D volumes or transferred to 3D
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upload CT data  

import DICOM  

crop volume  

extract isosurface 

filter surface  

get motion-capture data  build 3D mesh  

finite  element  

Figure 6.9: The overall flow of the services in the biomedical scenario modified
from [37].

surfaces. Thus, in this scenario, VTK data may be referred as vtkvolume

or vtksurface.

� Importer Service: for transforming the original image data into the VTK

format. In this scenario, the Importer Service is mainly used to transform

the original CT data in the Digital Imaging and Communications in

Medicine (DICOM) format into the VTK format, and the results are

VTK-compliant volume data.

� Cropping Service: for cropping image data to retain only the region of

interest. The Cropping Service used in this scenario will mainly crop

volume data according to the specific cropping parameters.

� Isosurface Extractor Service: for extracting isosurfaces from volume data,

so the resulting data are surfaces.

� Filter Service: for filtering surfaces to create a new surface. Two types
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of filter are used in this scenario: decimation and smoothing. The sur-

face decimation filter reduces the number of triangles in the surface but

retains a good approximation to the original surface. Surface smooth-

ing filter adjusts point coordinates using smoothing algorithms, such as

Laplacian smoothing [88] to remove irregularities from the surface.

� Motion-capture Data Service: for managing data related to the move-

ment of a patient, which is not used in the composition flow.

� 3D Mesh Service: will produce the resulting composed service resource.

It may have methods for obtaining and removing data.

The key resource in this scenario is the 3D dataset. The researcher initially

has the CT data of the patient’s femur as a DICOM file. An importer service

converts the data from DICOM to a VTK volume dataset. If the data is large,

it should be cropped to retain only the region of interest before processing;

thus, a new VTK volume is created as output.

The researcher uses an Isosurface Extractor service, which accepts a vtk

volume dataset as input and creates an isosurface as output.

The researcher builds a chain of services to filter the surface and improve its

characteristics (smoothing, decimation). This processing chain may be saved

by the researcher as a new service (which will then be available for use with

other datasets on future occasions). The final surface dataset is created, which

is used to build the 3D mesh.

To assess the risk of fracture, the researcher provides motion-capture data of

stair climbing activities from a subject closely resembling his patient (same age,

sex, physical characteristics) together with the pre-built 3D mesh to specific

finite element simulations for further analysis.

Composition at the First Stage

At the first-stage abstract resource level, the available service resources are

expressed as Linear Logic propositions as follows:
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Figure 6.10: The 3D dataset resource flow in the biomedical scenario.

`CT, `importer, `isoextracter, `smoothFilter, `decimateFilter,

`mesh

The business constraints are modelled as Linear Logic sequent calculus as

follows:

import dicom: CT, importer ` vtkvolume

extract isosurface: lextractisosurface, isoextracter ` vtksurface

crop volume: vtkvolume, volumeCropper ` vtkvolume

smooth surface: lsmooth, smoothFilter ` vtksurface

decimate surface: ldecimate, decimateFilter ` vtksurface

build 3Dmesh: lbuildMesh, mesh ` 3DMesh

link after vloume: ` vtkvolume

( (lextractisosurface & lcropvolume)

link after surface: ` vtksurface

( (ldecimate & lsmooth & lbuildMesh)

Figure 6.10 shows the flow of the change to a 3D dataset during the ex-

ecution in the service composition. When the original CT data (as in the
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DICOM format) and the importer are available, the 3D dataset can be im-

ported as vtkvolume. Two service links are possible for vtkvolume as defined in

link after volume: lextractisosurface and lcropvolume. After the extract isosurface

action, a vtksurface is created that may have three links to the next service

as defined in link after surface: ldecimate, lsmooth and lbuildMesh. Both

smooth surface and decimate surface create new VTK surfaces. The build 3Dmesh

creates a 3DMesh from the available vtksurface.

Theorems 6.2.1 and 6.2.2 define two possible composition requirements:

the first one produces a 3Dmesh by importing the existing DICOM data and

applying isoextractor and decimateFilter a single time, then using the motion

capture data; the second one also produces a 3Dmesh by importing the existing

DICOM data, but as noticed in the theorem definition, the decimateFilter is

applied twice before using the motion capture data. In the resource-sensitive

Linear Logic, resources are defined as consumable, and the frequency of the

resource usage, such as the decimateFilter, is explicitly expressed, which cannot

be clearly emphasised in classical logic. Thus, if all decimateFilter used in

these two theorems are given the same set of settings, the 3Dmesh results are

different.

Theorem 6.2.1: CT ⊗ importer ⊗ isoextracter ⊗ decimateFilter

⊗ mesh ` 3Dmesh

Proof. see Appendix B.7. �

Theorem 6.2.2: CT ⊗ importer ⊗ isoextracter ⊗ decimateFilter

⊗ decimateFilter ⊗ mesh ` 3Dmesh

Proof. see Appendix B.7. �

These composition requirements are proved by applying the Intuitionistic

Linear Logic inference rules defined in Figure 3.1 and implemented in Appendix

A.1. The full detail of theorem proving in Coq are listed in Appendix B.7. For

legibility, the proof is summarised as proof trees as shown in Appendix C.6

and C.7.
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Composition at the Second Stage

At the second-stage service method level, the available services with their core

methods are listed as follows. Again, the operation actions are attached using

“:: to represent the processes in the π-calculus, and variables are attached using

“: to represent the names in the π-calculus. As noted earlier in Case I of the

e-shopping scenario, the successful HTTP status codes are removed, and the

error HTTP status codes are represented by err in the expressions.

CT service

nurict:urict |- PostCt::nurictid:(urictid ⊕ err)

nurictid:urictid |- GetCtid::nrctid:(rctid ⊕ err)

Importer service

nuriimp:uriimp |- PostImporter::nrvtkvol:(rvtkvol ⊕ err)

Isoextractor service

nuriiso:uriiso |- PostIsoex::nrvtksur:(rvtksur ⊕ err)

Decimate filter

nuridec:uridec |- PostDecimate::nrvtksur:(rvtksur ⊕ err)

Smooth filter service

nurismo:urismo |- PostSmooth::nrvtksur:(rvtksur ⊕ err)

3D Mesh service

nurimesh:urimesh |- PostMesh::nrmesh:(rmesh ⊕ err)

The business constraints are defined as follows.

import dicom: nuriimp:uriimp, nurictid:urictid

|- ImportDicom::nrvtkvol:(rvtkvol ⊕ err)

extract isosurface: nuriiso:uriiso, nlexiso:(lexiso ⊕ err)

|- ExtractIso::nrvtksur:(rvtksur ⊕ err)

crop volume: nuricrop:uricrop, nlcropvol:(lcropvol ⊕ err)

|- CropVol::nrvtkvol:(rvtkvol ⊕ err)
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decimate surface: nuridec:uridec, nldec:(ldec ⊕ err)

|- Deciamte::nrvtksur:(rvtksur ⊕ err)

smooth surface: nurismo:urismo, nlsmo:(lsmo ⊕ err)

|- Smooth::nrvtksur:(rvtksur ⊕ err)

build mesh: nurimesh:urimesh, nlmesh:(lmesh ⊕ err)

|- Mesh::nrmesh:(rmesh ⊕ err)

link after volume: |- (((rvtkvol ⊕ err) ( LinfAfterVol::nlonvol

:((lexiso ⊕ err) & (lcropvol ⊕ err)))

link after surface: |- (((rvtksur ⊕ err) ( LinkAfterSur::nlonsur

:((ldec ⊕ err) & (lsmo ⊕ err) & (lmesh ⊕ err)))

Theorem 6.2.3 below provides one composition requirement for obtaining

a 3D mesh from the existing CT data and extract isosurface and decimate

surface services. This composition is proved by applying the inference rules

defined in Figure 4.3 and implemented in Appendix A.2. The full detail of

theorem proving in Coq are listed in Appendix B.8. Appendix C.8 shows the

proof trees constructed for obtaining a 3Dmesh.

Theorem 6.2.3 mesh being built: exists P,

((urimesh<<nurimesh) :: nil) ++ ((uridec<<nuridec) :: nil)

++ ((uriiso<<nuriiso) :: nil) ++ ((uriimp<<nuriimp) :: nil)

++ ((urictid<<nurictid) :: nil)

|- ((rmesh ⊕ err) <<nrmesh[P).

Proof. see Appendix B.8. �

The π-calculus process extracted from the above proof for a 3Dmesh is

shown in Listing 6.8. Again, for legibility, the connectives are written in the

style introduced in Chapter 4. The corresponding reference can be found in

Table 5.1.

As shown in Listing 6.8, the LINKAFTERVOL process is available after

IMPORTDICOM as shown in the 4th line. The EXTRACTISO process is

then invoked (see the 3rd and the 5th lines), and after that the LINKAFTER-

SUR process is available (the 6th line). Following the designated business

constraints, the DECIMATE process is then performed, which makes the
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LINKAFTERSUR process available. Finally, the surface information are passed

to build the 3D mesh (see the 1st and the 8th lines).

Listing 6.8: The π-calculus process model extracted for the biomedical case.

1(υnlonsur) ((υnurimesh)nurimesh〈nlonsur〉.(0
2 | ((υnlonsur)((υnuridec)nuridec〈nlonsur〉.(0
3 | ((υnlonvol)((υnuriiso)nuriiso〈nlonvol〉.(0
4 | ((υnrvtkvol) (IMPORTDICOM | LINKAFTERVOL)))

5 | ((υnrvtksur)(nuriiso(nlexiso).EXTRACTISO

6 | LINKAFTERSUR)))))

7 | ((υnrvtksur)(nuridec(nldec).DECIMATE | LINKAFTERSUR))))

8 | nurimesh(nlmesh).MESH)

In summary, the proposed Linear Logic theorem proving has been success-

fully applied to composing services in the context of a real biomedical scenario,

which formed part of a recent successfully completed European project. In that

project, the analysis was performed informally and involved the use of ad hoc

procedures; if the approach advocated in this thesis had been available at the

time, much less experimentation would have been required and a greater level

of rigour could have been applied to the processes involved.

Taking advantage of recent developments in distributed systems and Web

technologies, scientific and technological applications are increasingly using

Web Services within a distributed computing environment, and as a result,

increasing numbers of relevant Web Services are becoming available to support

research in these fields. By providing a sound and rigorous method to support

service composition, the proposed logical approach can potentially contribute

not only to service composition relevant to the business community, where the

issues originally arose, but also more generally to the broad range of activities

in which web services are currently applied.
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Figure 6.11: Key components discussed in Chapter 6.

6.3 Summary

This chapter has demonstrated the versatility of the proposed Linear Logic

approach in modelling and composing RESTful Web Services through several

case studies. Reflecting on the overall proposed approach, Figure 6.11 high-

lights the component discussed in this chapter.

Two use scenarios have been discussed in this chapter to illustrate that

the logic approach and the tool-supported validation can be used to model

and consolidate RESTful Web Service composition in real cases in different

domains. Resources, service methods, business constraints and composition

requirements are modelled in Linear Logic, and the encoding in the Coq the-

orem prover has efficiently assisted the theorem proving process for searching

the proofs of the composed process and extracting the process models in the

π-calculus. In particular, the detailed studies of the three use cases in the

e-shopping scenario have provided an evaluation testbed in terms of the scala-

bility of real number of services, service categories and composition scenarios.
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The next chapter will fully evaluate the scalability and effectiveness of this

logic approach taken in these case studies and will compare this approach with

related methods mentioned in the literature review.
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Chapter 7

Evaluation

This chapter provides an evaluation of the Linear Logic based RESTful Web

Service modelling and composition approach proposed in this thesis. The

evaluation will be performed from several aspects including evaluating the

performance based on the use cases discussed in Chapter 6, comparing the

proposed approach with the methods mentioned in Chapter 2 and evaluating

the answers to the main research questions posed in Chapter 1. This chapter

also points out the limitations of the proposed approach.

7.1 Performance Evaluation

Since this research investigates if the Linear Logic based approach is feasible

to model and compose RESTful Web Services, it has focused on presentation

RESTful Web Services using the existing Linear Logic fragments and the de-

sign of a generic method for composing RESTful Web Services based on Linear

Logic theorem proving. The research has taken advantages of a well-developed

existing theorem prover, namely the Coq proof assistant, at the implementa-

tion level, so, the performance of the composition task depends greatly on the

performance of Coq and the predefined business scenarios.

Because Coq is a tactic-style semi-automatic theorem prover, the theorem

proving time is affected mainly by the number of tactics used to complete the

proof. The encoding in this thesis writes the application of one tactic as one
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Figure 7.1: Number of service resource groups vs. lines of Coq code.

line of code, so the measurement will consider how the lines of Coq code (LoC)

develop with the changes of service resources.

Experiments were built using the use cases discussed in Chapter 6 to test

if the performance of the proposed method is sufficient for a real-time com-

position scenario. Although it is possible to increase the number of existing

service resources to 100 or even 1000 and simulate them in theorem proving,

the selection of the service resources in the actual theorem proving mainly de-

pends on the complexity of the business scenarios (i.e. the business constraints

among these service resources). Meanwhile, in real-world service composition

scenarios, we rarely see one composition scenario that includes 100 or even 50

different types of existing service, so, it is believed that experiment analysis

based on the use cases (with a maximum of 8 types of service resource and

a maximum of 30 choices of resource in each type) discussed in this thesis

provides a satisfactory indicator for the performance of the method.

Figure 7.1 shows the trends of the lines of Coq code associated with an

increasing number of resource types for both stages. At each stage, the number

of services has been chosen as 3, 4, 5, and 8 as presented in the e-shopping use

cases. Stage 2 has a significant number of LoCs compared to Stage 1 because

extra lines of code are required for extracting the π-calculus process model
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Figure 7.2: Number of resource choices in one resource groups vs. lines of Coq
code.

during each step of logic inferencing. Overall, both stages show the linear

trend of LoC with an increasing number of resource types, which indicates

that RESTful Web Service composition based on Linear Logic theorem proving

within the Coq proof assistant has reasonable scalability.

Figure 7.2 shows the trends of the lines of Coq code with regard to an

increasing number of service resources in each resource type. In reality, it

is common to have a number of services that provide similar functionalities,

for example there are tens or maybe hundreds of online book selling services

that allow one to buy the same titled book, so, in this analysis, the number of

services in each resource type starts with 2, 3, 4 then increases to 10, 20 and 30.

For both stages, when the number of choices in each resource type is more than

3, every new resource choice adds typically 2 extra lines of code for inferencing

with the With(&) rule. The linear incrementation of LoC with the increasing

number of choices in each resource type again indicates that RESTful Web

Service composition based on Linear Logic theorem proving within the Coq

proof assistant has reasonable scalability.
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7.2 Comparison with Other Methods

Although RESTful Web Services have been used widely in implementation,

associated research, especially in the areas of modelling and composition, is still

under-developed. Compared to the other modelling and composition methods

discussed in Chapter 2, the Linear Logic based approach proposed in this thesis

has the following characteristics.

� It is the first logic-based approach to addressing both modelling and

composition of RESTful Web Services.

� The resource-sensitive Linear Logic provides richer semantic connectives

to model the key elements of RESTful Web Services and most constraints

defined by the REST architecture style.

� The formalisation of state transition systems based on Linear Logic of-

fers a promising way to explicitly model representation state transfer in

RESTful Web Services.

� RESTful Web Service composition via Linear Logic theorem proving

guarantees the completeness and correctness of the resulting composed

services.

� The adoption of the proof-as-process paradigm with the π-calculus bridges

the gap between formalisation and execution in service composition.

� The implementation of theorem proving in the semi-automated Coq proof

assistant takes the overall composition approach one step closer to the

ultimate goal of full automation.

The remainder of this section provides the comparison with exisiting mod-

elling and composition methods.

7.2.1 Comparison with Other Modelling Methods

This section compares the proposed Linear Logic based modelling approach

to others discussed in Chapter 2 with respect to the six REST constraints.
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Table 7.1: Summary of the Linear Logic approach for RESTful Web system
modelling.

Client-Server Modelling service request and response in se-
quent calculus: Request ` Response

Stateless Not using Linear Logic exponentials and mod-
elling key service elements as consumable Linear
Logic resources

Cache Modelling the non-functional properties, such as
cache size, cache duration, as consumable Linear
Logic resources in the service request

Code on Demand Modelling client scripts as linear resources to be
consumed in order to transfer from one state to
another

Identification of re-
sources

Modelling resources by URI as Linear Logic
propositions

Resource manipulation
via representations

Representations are modelled in both service re-
quest and response

Self-descriptive mes-
sages

Not using Linear Logic exponentials for mod-
elling resource representations, media types,
links, link types and link relations

HATEOAS Modelling initial state with one-side sequent (`
∆), modelling state transition with two-side se-
quent (Γ ` ∆) and modelling links with Linear
Implication (()

The key characteristics that make Linear Logic a good candidate for modelling

RESTful Web Services are its resource-sensitive nature and its ability to model

state transition systems explicitly. Table 7.1 summarises the Linear Logic

approach, which can be used together with Table 2.2 for the comparison.

Firstly, in the Linear Logic approach, there is no need to introduce ex-

tra elements in order to model the client and server interaction and the state

transition. The sequent turnstile (`) can clearly express the request and re-

sponse interaction between client and server, and the Linear Implication (()

can clearly indicate the next state for transition. In the existing approaches

discussed in Chapter 2, the π-calculus approach [36] naturally represents the

client and server interaction through sending request messages and receiving

response messages. The FSM approach [34] has to introduce ε-transition to

represent the interaction between client and server. In approaches based on
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Petri-nets, such as service nets [35] and REST chart [3], transitions have to be

defined explicitly. Other approaches do not explicitly address the client-server

constraint.

Secondly, the proposed Linear Logic approach adapted in this thesis ad-

dresses the statelessness constraint in a straightforward way by not using the

exponentials, such as of-course (!) and why-not(?), so resources represented are

consumed once only. In this way, all invocations between client and server are

naturally treated separately in the new sessions. Only two existing approaches,

which also consider RESTful systems as state transition systems, address this

statelessness constraint, but both of them have to introduce a particular state

mechanism to achieve that. The FSM approach [34] stores the current state

of the system, and the REST chart approach [3] introduces a stationary place

for storing states.

Thirdly, Linear Logic is able to model services’ non-functional properties as

abstract consumable resources, such as cache size and duration although more

technical detail have to be considered in the real Web applications. None of

existing modelling approaches have addressed any non-functional constraints

of REST.

Fourthly, the Linear Logic approach is capable of modelling the optional

code-on-demand constraint for RESTful Web applications with the sequent

turnstile (`). Only the FSM approach [34] explicitly addresses this constraint

with the use of ε-transition.

Fifthly, the chosen propositional Intuitionistic Linear Logic in the sequent

calculus form can explicitly support the uniform interface constraints in all of

its four principles. Linear Logic models all key service elements as propositions,

including resource representation, resource identifier, media types, links, link

types, link relations, which provides an abstract view of the service resource.

The application state transfer is naturally modelled as Linear Logic in two-

side sequent calculus and the potential links within the resource representation

are explicitly modelled by the Linear Implication connective. Three existing

approaches, namely ReLL [33], FSM [34] and ontology [37], model these four

136



7.2. Comparison with Other Methods

Table 7.2: Comparison of the proposed logical method with other RESTful
Web Service composition approaches.

Automation Scalability Execution Correctness

Pautasso [40] Average
√

Yu et al. [41] Average
√

Bite [42] Average
√

Rauf et al. [32] Low

Zhao and Doshi
[37]

√
Good

√

Alarcon et al.
[43]

Low
√

Logical method
in this thesis

Semi-automatic Good Towards ex-
ecution with
extracted π-
calculus process

√

principles to a certain degree, another three, namely REST Chart [3], Service

nets [35] and the π-calculus [36], do not explicitly model the self-descriptive

message principle, and one approach (i.e. the UML approach [31, 32]) intro-

duced extended WADL to describe RESTful services which clearly violate the

self-descriptive concept.

7.2.2 Comparison with Other Composition Methods

This section compares the proposed Linear Logic theorem proving approach

to other composition methods discussed in Chapter 2 with respect to four

composition criteria: automation, scalability, execution and correctness (see

Table 7.2).

Firstly, the proposed theorem proving approach has considered automa-

tion as an ultimate goal. The method implemented in this thesis has achieved

semi-automated composition by applying Linear Logic theorem proving in the

style of program synthesis and encoding the complete theorem proving pro-

cess in the Coq proof assistant. Although the program synthesis approach

has the potential to achieve full automation, for a practical implementation,

there are limited tools for achieving automation in all stages of the synthesis
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including automated requirement analysis and modelling, fully automated the-

orem proving and automated transformation to executable languages. Only

AI-planning approaches, such as situation calculus [37] and the service net [43],

have automation as a goal, but neither of them provide a complete automated

composition environment.

Both situation calculus and the service net consider RESTful Web Services

as state transition systems. Unlike the situation calculus approach using flu-

ents, the resource-sensitive characteristic and the sequent calculus expression

allow the proposed Linear Logic approach to model state transition systems

more naturally without using extra elements to represent the transition for

state change. Compared with the other non-logic formalisations, Linear Logic

is more abstract and is able to model many other formal languages, such as

Petri-nets. The abstract logic-level approach with proofs ensures the complete-

ness of the composition outcome.

Secondly, as shown in Section 7.1, the proposed Linear Logic theorem

proving approach and the implementation in Coq of the extraction to the

π-calculus being implemented provide good level of scalability as the number

of resource types and resources increases. Formal mathematics and logic based

approaches, such as situation calculus, tend to provide better scalability com-

pared with those relying on diagrams, such as approaches based on UML and

Petri-nets, comprehensive omission from the existing research work surveyed

in Chapter 2 is a discussion on the scalability of their performance.

Thirdly, the proposed research considers service execution as an important

factor in the composition process. Although the implementation in this thesis

has not produced a final composed result in a fully executable language, the au-

tomatic extraction of the π-calculus process models from Linear Logic theorem

proving has enabled the proposed approach to move one step closer to the exe-

cutable level, with the guarantee of composition completeness and correctness.

Among the existing research, only the workflow-based approaches directly fo-

cus on service composition at the executable level. Other approaches, such

as model-driven and AI-planning, consider the execution requirements, they
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leave the detailed implementation to future work.

Fourthly, the proposed composition approach, which uses theorem proving

and proof-as-process based on propositional Linear Logic and the π-calculus,

ensures two important elements of service composition: completeness and cor-

rectness. The completeness and the soundness rules from propositional logic

guarantee that a composed service will be found if it exists, and once a proof

is obtained through Linear Logic theorem proving, it is guaranteed that the

corresponding composition is achieved correctly. Moreover, with the process

model extraction in the formal π-calculus, the composition result is further

verified, so the correctness of the composition outcome is doubly certain. In

comparison, none of existing methods discussed in Chapter 2 guarantees the

completeness of the composition, though the AI-planning approach can ensure

the correctness of the composed service through verification by the formalism

itself. Workflow-based and model-driven approaches do not provide mecha-

nisms to ensure correctness by themselves, and extra work, such as model

checking or formal verification, have to be performed to verify the correctness

of the outcome.

7.3 Answers to Research Questions

The following summarises the answers for the underlying research questions

posed in Chapter 1.

Research question 1: What are RESTful Web Services and why is formal-

ising them necessary?

� Due to the current over-use of the term “REST”, it is necessary to define

what should exactly be referred to as RESTful Web Services. Chapter

2 has discussed RESTful Web Services as services/APIs that follow the

principles of the REST architecture style. These services should be de-

fined in a declarative resource-oriented way with at least the characteris-

tics of addressability, connectivity, statelessness and uniform interfaces.

This thesis has distinguished RESTful Web Services from those Web Ser-
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vices over HTTP that do not follow the REST principles. Thus in this

research RESTful Web Services are considered to be those that follow

the REST principles.

� Chapters 1 and 2 have pointed out that some so-called RESTful Web

Services are merely those implemented over HTTP without considering

the REST principles proposed initially in [1], which has caused variation

in the implementations of RESTful Web Services. It is important to have

techniques that can guide the implementation of RESTful Web Services

within one concept. Studies on current modelling approaches in Chapter

2 suggests that formal modelling is a technique that can achieve this pur-

pose, because formal models can not only intuitively express fundamen-

tal principles but also keep knowledge focused by omitting unnecessary

information during the formalisation.

Research question 2: What are the current methods for modelling and

composing RESTful Web Services and what are their pros and cons?

� Chapter 2 has provided a survey on the existing modelling approaches

and has evaluated them based on the key principles of the REST architec-

ture style. The survey shows that although there are different approaches

to modelling RESTful Web systems, none of them can fully express the

principles of the REST, so investigating other modelling approaches is

still necessary. All existing approaches ignore the non-functional type

of principles such as cache and layered-system. Apart from the FSM

approach presented in [34], all other existing approaches have not mod-

elled the services in clear correspondence with the REST principles. Ap-

proaches such as the UML modelling presented by [31] still favour the

introduction of service description files (e.g. WADL) without treating

RESTful Web Services in the declarative resource-oriented style. Table

2.2 shows that the formal method approaches including FSM, service

nets, REST chart and the π-calculus have a better capability for ex-

pressing the overall principles. The results of this survey motivated this
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research to continue investigating a formal method to model RESTful

Web Services, thus a Linear Logic approach has been proposed, to our

knowledge, as the first logic-based approach to address the modelling of

RESTful Web Services.

� Chapter 2 also provided a survey on existing approaches to composing

RESTful Web Services, as well as a comparison of these methods based

on a number of service composition criteria: automation, scalability, ex-

ecution and correctness. This study showed that research on composing

RESTful Web Services is still under-explored, and most of the current

approaches are still at their initial stages. There has been no detailed

evaluation in such work, and the study performed in this research is

the first one to summarise and compare them. Furthermore, this survey

found that current approaches are either working at the executable level

without a correctness guarantee or focusing on correctness and automa-

tion without connecting to the executable level. This lack of connection

between formal methods and executable languages has motivated this

research to investigate a method that will behave as follows: 1) it should

be able to perform at the level of the formal method to verify the cor-

rectness of the resulting composed service; 2) it should be able to drive

the composition towards automation; and 3) the formalism should be

capable of being transformed into an executable language for implemen-

tation. In response to these, a program synthesis approach based on

Linear Logic and the proof-as-process paradigm with the π-calculus was

investigated in this research.

Research question 3: Is it feasible to model RESTful Web Services in a

Linear Logic framework and how can this be achieved?

� On one hand, this research has viewed RESTful Web Services from the

perspective of being parts of a system, in which services are presented

by resources that are manipulated through representation state transfer.

RESTful Web Services, together with the communications among them,
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can be summarised as state transition systems as discussed in Chapter 2.

On the other hand, the resource-sensitive Linear Logic is well suited to

explicitly expressing state transition systems, as pointed out in Chapter

3. Hence, Linear Logic can be a good candidate for modelling RESTful

Web Services and representing the composition communications.

� RESTful Web Services themselves have been modelled in Chapter 3 with

regard to the key elements discussed in the REST architecture style in

Chapter 2. This research has focused on the use of the propositional

Linear Logic, and Linear Logic written in the sequent style has been

used throughout the thesis. The sequent turnstile (`) indicates the re-

source representations transitioning from one state to another, and the

Linear Implication (() connective has been used to explicitly express

the hyperlinks within the resource representations. When working on

the composition aspect, existing RESTful Web Services are modelled as

Linear Logic axioms. Chapter 4 has also shown ways to model business

constraints/actions as Linear Logic hypotheses and composition require-

ments as Linear Logic theorems.

Research question 4: How can RESTful Web Services be composed by a

Linear Logic based approach?

� At the logic level, the existing service resources are expressed as Lin-

ear Logic axioms, the business constraints among the services are de-

scribed as Linear Logic hypotheses, and the composition requirements

are described as Linear Logic theorems. Chapters 3 and 4 have provided

guidelines for the translation from RESTful Web Services to Linear Logic

expressions.

� The foundation of the proposed RESTful Web Service composition ap-

proach is deductive program synthesis via Linear Logic theorem proving.

Deductive program synthesis observes proofs as equivalent to programs

because each step of a proof can be interpreted as a step of a computa-

tion, which transforms the problems of software composition or program
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synthesis into a theorem proving task. This research has translated the

characteristics of RESTful Web Services and the hyperlinks among the

service resources into Linear Logic expressions, then used Linear Logic

theorem proving for searching and forming services that satisfy the com-

position requirements specified.

� The research performed transforms logic models into the process models

via the proof-as-process paradigm. The process models are generated in

the π-calculus. Chapter 4 pointed out that the proofs produced by Linear

Logic can guarantee that the outcome of the composed service is correct,

which is the reason for not modelling RESTful Web Services and their

compositions directly from the π-calculus. During theorem proving, the

process information is attached to the logical formulae as proof terms.

The original inference rules presented in Figure 3.1 have been studied

from the point of view of giving each inference rule a concrete computa-

tional interpretation in the context of RESTful Web Service composition.

Thus, a set of inference rules with proof terms attached were presented

in Figure 4.3. They are used during Linear Logic theorem proving to

construct the π-calculus process models from the steps of the proof.

� The research adopted the Coq proof assistant to implement the entire

theorem proving and to facilitate the automation of the composition.

In Chapter 5, Linear Logic, the π-calculus and the inference rules were

encoded in the Coq proof assistant. Coq ensures that the Linear Logic

theorem proving will perform with the behaviour expected. Although

Coq is not a fully-automated theorem prover, the encoding has shown

that its tactic style definition enables the theorem to be proved semi-

automatically, which also facilitates moving the composition process to-

wards automation.

Research question 5: How does this logical approach compare with other

existing modelling and composition approaches?
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� Section 7.2 of this chapter has conducted two sets of comparison for

the proposed Linear Logic approach against existing modelling and com-

position approaches surveyed in Chapter 2. In terms of RESTful Web

Service modelling corresponding to the REST architecture constraints,

nevertheless, none approach discussed in this thesis can address all six

constraints, the proposed Linear Logic approach has shown the capabil-

ity of modelling five of them: client-server, statelessness, cache, code on

demand and uniform interface.

� In terms of RESTful Web Service composition, the comparison is per-

formed with respect to four important composition criteria: automation,

scalability, execution and correctness. As discussed in Section 7.2, ex-

isting approaches studied in Chapter 2 address some of the criteria but

none of them can cover all; and more research work is still required in

this area. Although further work is still required for the proposed logical

and proof-as-process composition approach to achieve the ultimate level

of all these four criteria, the work performed in this thesis provides a

feasible approach that can run in semi-automated tool supported envi-

ronment, has good level of scalability, has correctness guarantee, and can

produce process models for possible transformation to executable level

languages.

7.4 Limitations

This research concentrated purely on how a Linear Logic based approach would

benefit the modelling and composition of RESTful Web Services, so it did not

address issues such as user authorisation/authentication, or the detail of how

services are invoked or discovered.

While this research provides a possible approach to creating executable

programs from the abstract logic level via the connection to the π-calculus, it

does not include detailed examples for transforming the resulting π-calculus

process model to any particular executable language. The main reason for
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this is that existing executable languages for RESTful Web Services are not

sufficiently mature indeed, many of them are still under development. One

business execution language that may be considered is the BPEL extension for

REST mentioned in literature, but a comprehensive study is needed to decide

on its suitability.

The research in this thesis has remained at the formal method level includ-

ing the implementation as formal in the semi-automated Coq proof assistant,

which provides good support for high-level service analysis and correct ser-

vice composition. However, it requires users to have a reasonable knowledge

of the underlying logic used, as well as the theorem prover. This may repre-

sent an obstacle for Web engineers when considering this approach in practice.

Further research is required in order to make the whole approach more user

friendly, such as providing an inter-layer to hide the detail of theorem proving

at the back end but still to offer users opportunities to specify services and

constraints in a user friendly environment.

7.5 Summary

This chapter has evaluated the Linear Logic based RESTful Web Service mod-

elling and composition method proposed in this thesis. The evaluation was

conducted by summarising how the research questions introduced in Chapter

1 are answered by the thesis, by examining the scalability performance of the

proposed method, and by comparing the proposed approach to other existing

modelling and composition methods.

This chapter also highlighted the limitations of the proposed logic-based

approach. Some issues, such as translating the resulting π-calculus model

to a specific executable language and providing user friendly access will be

investigated in future work.
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Chapter 8

Conclusion and Future Work

This thesis has proposed a formal approach, based on Linear Logic, to mod-

elling and composing RESTful Web Services. This approach uses the set of

semantic connectives provided by Linear Logic to model most of the architec-

ture constraints defined by REST and uses the inference rule driven Linear

Logic theorem proving to compose RESTful Web Services. The proposed ap-

proach was conducted semi-automatically in the Coq proof assistant and its

versatility was demonstrated by being applied to a number of real-world use

cases. The evaluation showed that this composition method scales well as the

number of services and resources grows.

This chapter concludes this thesis by summarising the research performed,

highlighting the key contributions and listing future research in the related

area.

8.1 Thesis Summary and Contributions

This research concentrated on formalising RESTful Web Services rather than

the traditional RPC-style Big Web Services because the popularity of RESTful

Web Services is growing for implementation, despite a lack of formal research

on its models and compositions, and this lack of formalism has been seen as

a serious obstacle to Web engineers implementing proper and robust RESTful

Web Services.
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From the literature review conducted in Chapter 2, it can be seen that for-

mal methods are important for abstracting service resources during modelling

and ensuring correct outcomes during service composition. This thesis took

advantage of the resource-sensitive nature of Linear Logic and its close rela-

tionship to the π-calculus process model to present the first logic-based method

to address the modelling and composition issues of RESTful Web Services.

Being aware of the trade-offs that are necessary between the expressiveness

and efficiency and the completeness of the usage of logic, this research selected

the propositional fragment of Linear Logic to ensure the completeness of the

resulting composed services and chose the semi-automatic Coq proof assistant

to allow the whole method to be rigorously expressed in a theorem prover.

This provides efficiency and completeness for the proof searching needed in

the composition process while reducing “human-in-the-loop” activities, thus

moving the whole process closer to full automation.

Modelling RESTful Web Services using propositional Intuitionistic Linear

Logic was presented in Chapter 3. The modelling method specially referred to

the 6 constraints (5 compulsory and 1 optional) defined by the REST architec-

ture style discussed in Chapter 2. The proposed Linear Logic based method

explicitly modelled four compulsory constraints: client-server, statelessness,

cache and uniform interface. Because of the Linear Implication (() connec-

tive and the general expression of Linear Logic in sequent calculus, this method

is particularly good at modelling hyperlinks and state transitions, known as a

sub constraint - HATEOAS within the uniform interface constraint.

The composition method was presented in Chapter 4 as follows: 1) two-

stage Intuitionistic Linear Logic theorem proving was proposed; 2) a backward

reasoning method was introduced to decompose the desired composed service

during proofing; 3) the π-calculus was attached as type terms in each ILL in-

ference rule. The major advantage of using two stages is to increase the proof

search efficiency especially when the composition requirement is complicated

and the number of services is high. The first stage, at the abstract resources

level, would determine if the existing types of resource are sufficient to accom-
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plish a given composition requirement. If no complete proof is found, it saves

the effort of performing detailed theorem proving at the concrete service level.

Thus, the second stage determines if the existing resources can be planned to

achieve the composition requirements. The advantage of using backward rea-

soning is to minimise the resource search effort during proving by decomposing

the single composition goal into resources and matching them to the existing

resources. The advantage of adding the π-calculus into Linear Logic inference

rules is that process models can be directly extracted during the second stage

theorem proving, and because of the close relationship between the π-calculus

and business process executable languages, the gap between the logic level and

the executable level will be largely reduced.

Chapter 5 encoded ILL connectives, its inference rules and its attachments

with the π-calculus and performed theorem proving in a semi-automatic the-

orem prover - the Coq proof assistant. Considering the trade-offs discussed

earlier, the main advantages of choosing Coq over other theorem provers are

that both ILL and the π-calculus can be suitably encoded on top of the Coq

system while using the theorem prover facilities to ensure that the proof is

performed correctly, and the tactic-style proving provided by Coq provides a

certain level of automation, though the user still has some control over the

proving.

The thesis provided a feasibility study based on four use cases in two

real-world scenarios in Chapter 6 and presented a scalability evaluation in

Chapter 7. The proposed logical composition approach is not only capable

of addressing typical service composition scenarios, such as the commercial e-

shopping scenario, but also feasible for tackling non-trivial scientific examples,

such as a real-world scenario within an European Commission funded biomed-

ical project. The results showed that the proposed logic-based approach can

successfully represent possible resource relationships during composition, such

as the sequence of resource introduction (by sequent turnstile ` or Linear Im-

plication(), resource combination (by Multiplicative Conjunction ⊗), choice

of resources by users (by Additive Conjunction &), and service exceptions (by
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Additive Disjunction ⊕). The composition method also scales well when the

number of services and service types grows.

The contributions of this thesis are summarised as follows. Firstly, a novel

logic-based approach was developed, the first of its kind, for the purposes

of modelling and composing RESTful Web Services. Secondly, the proof-as-

process paradigm using Linear Logic and the π-calculus was used to perform

service composition, which not only ensures the completeness and the correct-

ness of the resulting composed services but also produces their process models

naturally, providing the possibility to translate them into executable busi-

ness/programming languages. Thirdly, the proposed composition method was

successfully implemented in the Coq proof assistant, which allows both Linear

Logic theorem proving and the π-calculus extraction to be conducted semi-

automatically. Fourthly, scenario-based feasibility studies were performed, and

the method showed good scalability when the number of services and resources

grows.

8.2 Future Work

Although the proposed method demonstrated that Linear Logic can be a good

approach to the modelling and composition of RESTful Web Services, further

research is required for improvement. The following provides a list of possible

future research directions.

� An executable composition engine for RESTful Web Services.

The implementation described in Chapter 5 has kept at the logic level.

The full implementation of an executable engine which can work effi-

ciently for Web engineers is far from complete. Two main steps have to

be completed in order to achieve that.

(i) Defining methods that enable the resulting π-calculus process to be

translated into a form of executable language. Previous work on

translating the π-calculus to BPEL [76] exists, but BPEL was in-
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troduced for process-oriented RPC-style Web Services, so it is not

reasonable for RESTful Web Services to be translated into BPEL.

Although the BPEL extension for REST method discussed in Chap-

ter 2 provides an approach that allows REST to be embedded into

BPEL, further justification is required to decide to translate the

π-calculus to the BPEL extension for REST or to investigate new

executable languages.

(ii) Developing an application, ideally a Web application, that wraps

the Coq proving process to the back end and presents the executable

result directly to users. In this way, Web engineers can easily define

service resources and business constraints as well as obtain the re-

sulting proofs without deep knowledge of the underlying logic and

theorem provers.

� Semantic models for service resource. The composition approach

proposed in this thesis has considered using the types of service resource

for the first stage composition search and the concrete service resources

for the second stage. Because the focus of the research is on the feasibility

of Linear Logic, it has not provided detail of how the types of resource and

resources themselves are specified and discovered during the composition

search. In real-world applications, it is important to specifically know the

semantics of the resources and their types in order to choose the correct

ones during the composition search. It would be valuable to investigate

Semantic Web techniques and embed them into the current approach. In

this way, the resources could be better identified by the use of semantics

and more accurately chosen during theorem proving for composition.

� Exploration of the use of first order Linear Logic. The propo-

sitional Linear Logic used in this research is suitable for modelling the

type of resource as well as the resources at a more abstract level, with

a completeness guarantee, but it has less expressiveness regarding the

detail of the resources. Whereas, high-order logics such as first-order
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Linear Logic will provide more expressive power when modelling service

resources, they do not guarantee completeness and they may be less effi-

cient for service composition. The research performed in this thesis has

demonstrated the feasibility of applying Linear Logic, so from the logical

perspective, it would be worthwhile investigating different fragments of

Linear Logic in order to obtain the best results for both RESTful Web

Service modelling and composition.
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Appendix A

Encodings in Coq

A.1 Encoding Intuitionistic Linear Logic in Coq

Require Import Utf8 core.

Require Import List.

(* Encoding Linear Logic connectives *)

Inductive ILinProp : Set :=

| Implies : (ILinProp) → (ILinProp) → ILinProp

| One: ILinProp

| Plus : (ILinProp) → (ILinProp) → ILinProp

| Times : (ILinProp) → (ILinProp) → ILinProp

| Top: ILinProp

| With: (ILinProp) → (ILinProp) → ILinProp

| Zero: ILinProp

.

Reserved Notation “x ` y” (at level 85, no associativity).

Infix “ ⊗” := Times (at level 80).

Infix “&” := With (at level 80).

Infix “⊕” := Plus (at level 80).

Infix “(” := Implies (at level 80).
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(* Encoding Intuitionistic Linear Logic Inference rules *)

Inductive LinCons : (list ILinProp) → ILinProp → Prop :=

| Identity (A : ILinProp) : ((A::nil) ` A)

| Exchange (A B G : ILinProp) (Γ : list ILinProp) : ((Γ ++ (A::nil) ++

(B ::nil)) ` G) → ((Γ ++ (B ::nil) ++ (A::nil)) ` G)

| Cut (A G : ILinProp)(Γ1 Γ2 : list ILinProp) : ((Γ1 ` A) → ((Γ2 ++

(A::nil)) ` G) → ((Γ1 ++ Γ2) ` G))

| ImpliesLeft (A B G : ILinProp) (Γ1 Γ2 : list ILinProp) : ((Γ1 ` A)→ ((Γ2

++ (B ::nil)) ` G) → (((Γ1 ++ Γ2) ++ ((A ( B)::nil)) ` G))

| ImpliesRight (A G : ILinProp) (Γ : list ILinProp) : ((Γ ++ (A::nil) ` G)

→ (Γ ` (A ( G)))

| TimesLeft (A B G : ILinProp) (Γ : list ILinProp) : (Γ ++ ((A::nil)++

(B ::nil)) ` G → (Γ ++ ((A ⊗ B)::nil)) ` G)

| TimesRight (A B : ILinProp) (Γ1 Γ2 : list ILinProp) : ((Γ1 ` A) → (Γ2 `

B) → ((Γ1 ++ Γ2) ` (A ⊗ B)))

| WithLeft1 (A B G : ILinProp) (Γ : list ILinProp) : (((Γ ++ (A::nil)) ` G)

→ (((Γ ++ (A & B) :: nil)) ` G))

| WithLeft2 (A B G : ILinProp) (Γ : list ILinProp) : (((Γ ++ (B ::nil)) ` G)

→ (((Γ ++ (A & B) :: nil)) ` G))

| WithRight (A B : ILinProp) (Γ : list ILinProp): ((Γ ` A) → (Γ ` B) →

(Γ ` (A & B)))
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| PlusLeft (A B G : ILinProp) (Γ : list ILinProp) : ((Γ ++ (A::nil)) ` G)

→ ((Γ ++ (B ::nil)) ` G) → ((Γ ++ ((A ⊕ B)::nil)) ` G)

| PlusRight1 (A B : ILinProp) (Γ : list ILinProp) : (Γ ` A) → (Γ ` (A ⊕

B))

| PlusRight2 (A B : ILinProp) (Γ : list ILinProp) : (Γ ` B) → (Γ ` (A ⊕

B))

| AssociateLeft (A B G : ILinProp) (Γ : list ILinProp) : (((Γ ++ (A :: nil))

++ (B :: nil)) ` G) → ((Γ ++ (A :: nil) ++ (B :: nil)) ` G)

where “x ` y” := (LinCons x y)

.

Lemma AddNilLeft (A : ILinProp) (Γ : list ILinProp) :

(((nil ++ Γ ) ` A) → (Γ ` A)).

Proof.

intros.

apply H.

Qed.

Lemma RemoveNilLeft (A : ILinProp) (Γ : list ILinProp) :

((Γ ` A) → ((nil ++ Γ ) ` A)).

Proof.

intros.

apply H.

Qed.

Lemma AddNilRight (A : ILinProp) (Γ : list ILinProp) :

((Γ ++ nil) ` A) → (Γ ` A)).

Proof.

intros.
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replace Γ with (Γ ++ nil).

apply H.

elim Γ .

reflexivity.

simpl.

intros.

rewrite H0.

reflexivity.

Qed.

A.2 Encoding Intuitionistic Linear Logic and

the π-caluclus in Coq

Require Import List.

Require Import Setoid.

Parameter name : Set.

(* Encoding the π-calculus syntax *)

Inductive proc : Set :=

| skip : proc

| nu : name → proc → proc

| tau pref : proc → proc

| par : proc → proc → proc

| sum : proc → proc → proc

| inp : name → name → proc → proc

| outp : name → name → proc → proc

.

(* Encoding the π-calculus attachments to Linear Logic *)

Inductive ILinProp : Set :=

| Implies : (ILinProp) → (ILinProp) → (ILinProp)

| Plus : (ILinProp) → (ILinProp) → ILinProp
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| Times : (ILinProp) → (ILinProp) → ILinProp

| With: (ILinProp) → (ILinProp) → ILinProp

| AddName: ILinProp → name → ILinProp

| AddProc: ILinProp → proc → ILinProp

.

Infix “⊗” := Times (at level 80).

Infix “&” := With (at level 80).

Infix “⊕” := Plus (at level 80).

Infix “(” := Implies (at level 80).

Infix “�” := AddName (at level 75).

Infix “[” := AddProc (at level 75).

Reserved Notation ”x ` y” (at level 85, no associativity).

(* Encoding the Intuitionistic Linear Logic inference rules with the π-calculus

attachments *)

Inductive LinCons : (list ILinProp) → ILinProp → Prop :=

| Identity (A : ILinProp) (x : name): (((A�x )::nil) ` (A�x [skip))

| Exchange (A B G : ILinProp) (Γ : list ILinProp) (x y z : name) (P Q :

proc):

((Γ ++ ((A�x )::nil) ++ ((B�y)::nil))

` (G�z [P)) → ((Γ ++ ((B�y)::nil) ++ ((A�x )::nil)) ` (G�z [P))

| Cut (A G : ILinProp)(Γ1 Γ2 : list ILinProp) (x y z : name) (P Q : proc):

(∃ P, (Γ1 ` (A�x [P)))→ (∃ Q, (Γ2 ++ ((A�x )::nil)) ` (G�z [Q))→

(Γ1 ++ Γ2 ) ` (G�z [(nu x (par P Q)))

| TimesLeft (A B G : ILinProp)(Γ : list ILinProp)(x y z z1 : name)(P :

proc) :

(∃ P, (Γ ++ ((A�x )::nil)++ ((B�y)::nil)) ` (G�z [P)) →

(Γ ++ (((A ⊗ B)�z1 )::nil)) ` (G�z [(inp y x P))
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| TimesRight (A B : ILinProp) (Γ1 Γ2 : list ILinProp)(x y z : name) (P Q

:

proc) : (∃ P, (Γ1 ` (A�x [P))) → (∃ Q, (Γ2 ` (B�y [Q))) → (Γ1 ++

Γ2 ) `

((A ⊗ B)�z [(nu x (outp y x (par P Q))))

| ImpliesLeft (A B G : ILinProp)(Γ1 Γ2 : list ILinProp)(x y : name) (P Q :

proc):

(∃ P, (Γ1 ` (A�x [P))) → (∃ Q, (Γ2 ++ ((B�y)::nil)) ` (G [Q)) →

(Γ1 ++ Γ2 ++ ((A(B)�y)::nil) ` (G [(nu x (outp y x (par P Q))))

| ImpliesRight (A B : ILinProp)(Γ : list ILinProp)(x y : name) (P : proc):

(∃ P, (Γ ++ (A�x )::nil) ` (B�y [P)) → (Γ ` ((A(B)�y [(inp y x

P)))

| Shift (A G : ILinProp)(Γ : list ILinProp)(x y : name) (P : proc):

(∃ P, (Γ ` ((A(G)�y [P))) → ((Γ ++ (A�x )::nil) ` (G�y [P))

| WithLeft1 (A B G : ILinProp) ( : list ILinProp)(x : name)(P : proc):

(∃ P, (( ++ ((A�x )::nil)) ` (G [P))) → (( ++ (((A &&& B)�x ) ::

nil)) ` (G [P))

| WithLeft2 (A B G : ILinProp) ( : list ILinProp)(x : name)(P : proc):

(∃ P, (( ++ ((B�x )::nil)) ` (G [P))) → (( ++ (((A &&& B)�x ) ::

nil)) ` (G [P))

| WithRight (A B : ILinProp) ( : list ILinProp)(x : name)(P Q : proc):

(∃ P, ( ` (A�x [P))) → (∃ Q, ( ` (B�x [Q))) → ( ` ((A &&&

B)�x [(sum P Q)))
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| PlusLeft (A B G : ILinProp) ( : list ILinProp)(x : name)(P Q : proc):

(∃ P, (( ++ ((A�x )::nil)) ` (G [P))) → (∃ Q, (( ++ ((B�x )::nil)) `

(G [Q))) → (( ++ (((A ⊕ B)�x )::nil)) ` (G�x [(sum P Q)))

| PlusRight1 (A B : ILinProp) ( : list ILinProp)(x : name)(P : proc) :

(∃ P, ( ` (A�x [P))) → ( ` ((A ⊕ B)�x [P))

| PlusRight2 (A B : ILinProp) ( : list ILinProp)(x : name)(P : proc):

(∃ P, ( ` (B�x [P))) → ( ` ((A ⊕ B)�x [P))

where ”x ` y” := (LinCons x y)

.

Lemma AddNilLeft (A : ILinProp) (Γ : list ILinProp) (x : name) (P : proc):

(((nil ++ Γ ) ` (A�x [P)) → (Γ ` (A�x [P))).

Proof.

intros.

apply H.

Qed.

Lemma RemoveNilLeft (A : ILinProp) (Γ : list ILinProp) (x : name) (P :

proc):

((Γ ` (A�x [P)) → ((nil ++ Γ ) ` (A�x [P))).

Proof.

intros.

apply H.

Qed.

Lemma AddNilRight (A : ILinProp) (Γ : list ILinProp) (x : name) (P : proc):

(((Γ ++ nil) ` (A�x [P)) → (Γ ` (A�x [P))).

Proof.
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intros.

replace Γ with (Γ ++ nil).

apply H.

elim Γ .

reflexivity.

simpl.

intros.

rewrite H0.

reflexivity.

Qed.
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Appendix B

Use case implementations in

Coq

B.1 E-shopping Scenario - Case I Resource

Level Implementation in Coq

Variable user item payment shipment order empty order unpaid order paid

order shipped Lpayorder Lshiporder : ILinProp.

Hypothesis place order : ((order empty :: nil) ++ (user :: nil)

++ (item :: nil)) ` order unpaid.

Hypothesis pay order : ((Lpayorder :: nil) ++ (payment :: nil))

` order paid.

Hypothesis ship order : ((Lshiporder :: nil) ++ (shipment :: nil))

` order shipped.

Hypothesis link payorder : nil ` order unpaid(Lpayorder.

Hypothesis link shiporder : nil ` order paid(Lshiporder.

Theorem shipping order : ((order empty ⊗ user ⊗ item ⊗ payment

⊗ shipment):: nil) ` order shipped.

Proof.

apply AddNilLeft.

apply TimesLeft.
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apply AssociateLeft.

apply Cut with Lshiporder.

apply TimesLeft.

apply AssociateLeft.

apply Cut with order unpaid.

apply TimesLeft.

apply Exchange.

apply TimesLeft.

apply Exchange.

apply place order.

apply AddNilLeft.

apply Exchange.

apply RemoveNilLeft.

apply Cut with Lpayorder.

apply AddNilLeft.

apply Shift.

apply link payorder.

apply AddNilRight.

apply Cut with order paid.

apply AddNilLeft.

apply Exchange.

apply pay order.

apply Shift.

apply link shiporder.

apply AddNilLeft.

apply Exchange.

apply RemoveNilLeft.

apply ship order.

Qed.
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B.2 E-shopping Scenario - Case I Service Method

Level Implementation in Coq

Variable uriuser uriuid ruid uidmsg uriuidpay ruidpay : ILinProp.

Variable uriitem uriiid ritem riid iidmsg : ILinProp.

Variable uripay uripayid rpayid : ILinProp.

Variable uriship urisid rsid : ILinProp.

Variable nuriuser nuriuid nruid nuidmsg nuriuidpay nruidpay : name.

Variable nuriitem nuriiid nritem nriid niidmsg : name.

Variable nuripay nuripayid nrpayid : name.

Variable nuriship nurisid nrsid : name.

Variable GETUID GETIID CREATEORDERURI PLACEORDER

GETUIDPAY PAYSHIPORDER POSTORDER POSTOIDPAY

POSTOIDSHIP POSTPAY GETPAYID POSTSHIP GETSID

GETOID PUTOIDPAY PUTOIDSHIP PAYORDER

SHIPORDER: proc.

Variable uriorder urioid uriorderpay roid roidpaid roidshipped urioidpay

urioidship: ILinProp.

Variable nuriorder nurioid nuriorderpay nroid nroidpaid nroidshipped

nurioidpay nurioidship moidpaymsg moidshipmsg : name.

Variable lpayorder lshiporder : ILinProp.

Variable nlpayorder nlshiporder : name.

Variable LINKPAYORDER LINKSHIPORDER: proc.

Variable err : ILinProp.

Variable P Q : proc.

Variable x y : name.

Axiom post user : (uriuser :: nil) ` uriuid.

Axiom get uid : (uriuid�nuriuid) :: nil ` ((ruid ⊕ err)�nruid [GETUID).

Axiom put uid : ((uriuid :: nil) ++ (uidmsg :: nil)) ` ruid.

Axiom delete uid : (uriuid :: nil) ` Zero.

163



Axiom get uid pay : ((uriuidpay�nuriuidpay) :: nil)

` ((ruidpay ⊕ err)�nruidpay [GETUIDPAY ).

Axiom post item : (uriitem :: nil) ` uriiid.

Axiom get item : (uriitem :: nil) ` ritem.

Axiom get iid : (uriiid�nuriiid) :: nil ` ((riid ⊕ err)�nriid [GETIID).

Axiom put iid : ((uriiid :: nil) ++ (iidmsg :: nil)) ` riid.

Axiom post pay : ((uripay�nuripay) :: nil)

` ((uripayid ⊕ err)�nuripayid [POSTPAY ).

Axiom get payid : ((uripayid�nuripayid) :: nil)

` ((rpayid ⊕ err)�nrpayid [GETPAYID).

Axiom delete payid : (uripayid :: nil) ` Zero.

Axiom post ship : ((uriship�nuriship) :: nil)

` ((urisid ⊕ err)�nurisid [POSTSHIP).

Axiom get sid : ((urisid�nurisid) :: nil) ` ((rsid ⊕ err)�nrsid [GETSID).

Axiom post order : ((uriorder�nuriorder) :: nil)

` ((urioid ⊕ err)�nurioid [POSTORDER).

Axiom get oid : ((urioid�nurioid) :: nil)

` (((roid(urioidpay) ⊕ err)�nroid [GETOID).

Axiom put oid pay : ((urioid�nurioid) :: nil ++ (rpayid�nrpayid) :: nil)

` ((roidpaid ⊕ err)�nroidpaid [PUTOIDPAY ).

Axiom put oid ship : ((urioid�nurioid) :: nil ++ (rsid�nrsid) :: nil)

` ((roidshipped ⊕ err)�nroidshipped [PUTOIDSHIP).

Axiom post oid ship : ((urioidship�nurioidship) :: nil)

` ((roidshipped ⊕ err)�nroidshipped [POSTOIDSHIP).

Hypothesis place order : (((uriorder�nuriorder) :: nil)

++ (((riid ⊕ err)�nriid) :: nil)

++ (((ruid ⊕ err)�nruid) :: nil))

` ((roid ⊕ err)�nroid [PLACEORDER).

Hypothesis pay order : (((uripay�nuripay) :: nil)

++ (((ruidpay ⊕ err)�nruidpay) :: nil)
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++ (((lpayorder ⊕ err)�nlpayorder) :: nil))

` ((roidpaid ⊕ err)� nroidpaid [PAYORDER).

Hypothesis ship order : (((uriship�nuriship) :: nil)

++ (((lshiporder ⊕ err)�nlshiporder) :: nil))

` ((roidshipped ⊕ err)� nroidshipped [SHIPORDER).

Hypothesis link payorder : nil

` (((roid ⊕ err)((lpayorder ⊕ err))�nlpayorder [LINKPAYORDER).

Hypothesis link shiporder : nil

` (((roidpaid ⊕ err)((lshiporder ⊕ err))�nlshiporder [LINKSHIPORDER).

Theorem order being shipped : ∃ P, (((uriship�nuriship) :: nil)

++ ((uripay�nuripay) :: nil) ++ ((uriuidpay�nuriuidpay) :: nil)

++ ((uriorder�nuriorder) :: nil) ++ ((uriiid�nuriiid) :: nil)

++ ((uriuid�nuriuid) :: nil)) ` ((roidshipped ⊕ err)�nroidshipped [P).

Proof.

econstructor.

apply AddNilRight.

instantiate (1:= (nu y (par P Q))).

apply Cut with (Times uriship (Plus lshiporder err)).

auto.

econstructor.

instantiate (1:= (nu nuriship (outp nlshiporder nuriship (par P Q)))).

apply TimesRight.

econstructor.

instantiate (1:= skip).

apply Identity.

econstructor.

apply AddNilRight.

instantiate (1:= (nu nroidpaid (par P Q))).

apply Cut with (Plus roidpaid err).

auto.

econstructor.
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apply AddNilRight.

instantiate (1:= (nu y (par P Q))).

apply Cut with (Times uripay (Times (Plus ruidpay err) (Plus lpayorder

err))).

auto.

econstructor.

instantiate (1:= (nu nuripay (outp y nuripay (par P Q)))).

apply TimesRight.

econstructor.

instantiate (1:= skip).

apply Identity.

econstructor.

instantiate (1:= (nu nruidpay (outp nlpayorder nruidpay (par P Q)))).

apply TimesRight.

econstructor.

instantiate (1:= GETUIDPAY).

apply get uid pay.

econstructor.

apply AddNilRight.

instantiate (1:= (nu nroid (par P Q))).

apply Cut with (Plus roid err).

auto.

econstructor.

apply AddNilRight.

instantiate (1:= (nu y (par P Q))).

apply Cut with (Times uriorder (Times (Plus riid err) (Plus ruid err))).

auto.

econstructor.

instantiate (1:= (nu nuriorder (outp y nuriorder (par P Q)))).

apply TimesRight.

econstructor.
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instantiate (1:= skip).

apply Identity.

econstructor.

instantiate (1:= (nu nriid (outp nruid nriid (par P Q)))).

apply TimesRight.

econstructor.

instantiate (1:= GETIID).

apply get iid.

econstructor.

instantiate (1:= GETUID).

apply get uid.

econstructor.

instantiate (1:= (inp y nuriorder P)).

apply TimesLeft.

econstructor.

apply RemoveNilLeft.

instantiate (1:= (inp nruid nriid P)).

apply TimesLeft.

econstructor.

instantiate (1:= PLACEORDER).

apply place order .

econstructor.

instantiate (1:= P).

apply Shift.

econstructor.

instantiate (1:= LINKPAYORDER).

apply link payorder.

econstructor.

instantiate (1:= (inp y nuripay P)).

apply TimesLeft.

econstructor.
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apply RemoveNilLeft.

instantiate (1:= (inp nlpayorder nruidpay P)).

apply TimesLeft.

econstructor.

instantiate (1:= PAYORDER).

apply pay order.

econstructor.

instantiate (1:= P).

apply Shift.

econstructor.

instantiate (1:= LINKSHIPORDER).

apply link shiporder.

econstructor.

instantiate (1:= (inp nlshiporder nuriship P)).

apply TimesLeft.

econstructor.

apply RemoveNilLeft.

instantiate (1:= SHIPORDER).

apply ship order.

Qed.

B.3 E-shopping Scenario - Case II Resource

Level Implementation in Coq

Variable user item paymentpaypal paymentcc paymentdc shipment order empty

order unpaid order paid order shipped Lpayorderpaypal Lpayordercc

Lpayorderdc Lshiporder : ILinProp.

Hypothesis place order : ((item :: nil) ++ (user :: nil)

++ (order empty :: nil)) ` order unpaid.

Hypothesis pay order paypal : ((Lpayorderpaypal :: nil)
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++ (paymentpaypal :: nil)) ` order paid.

Hypothesis pay order cc : ((Lpayordercc :: nil)

++ (paymentcc :: nil)) ` order paid.

Hypothesis pay order dc : ((Lpayorderdc :: nil)

++ (paymentdc :: nil)) ` order paid.

Hypothesis ship order : ((Lshiporder :: nil) ++ (shipment :: nil))

` order shipped.

Hypothesis link payorder : nil ` order unpaid

((Lpayorderpaypal & Lpayordercc & Lpayorderdc).

Hypothesis link shiporder : nil ` order paid(Lshiporder.

Theorem ship order paypal : nil ` ((((order empty ⊗ user ⊗ item ⊗

(paymentpaypal & paymentcc & paymentdc) ⊗ shipment)))

( order shipped).

Proof.

apply ImpliesRight.

apply TimesLeft.

apply AssociateLeft.

apply Cut with order paid.

apply TimesLeft.

apply RemoveNilLeft.

apply Cut with order unpaid.

apply AddNilLeft.

apply TimesLeft.

apply Exchange.

apply RemoveNilLeft.

apply TimesLeft.

apply Exchange.

apply place order.

apply AddNilLeft.

apply Exchange.

apply RemoveNilLeft.
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apply WithLeft1.

apply WithLeft1.

apply Cut with (Lpayorderpaypal & Lpayordercc & Lpayorderdc).

apply AddNilLeft.

apply Shift.

apply link payorder.

apply WithLeft1.

apply WithLeft1.

apply AddNilLeft.

apply Exchange.

apply RemoveNilLeft.

apply pay order paypal.

apply AddNilLeft.

apply Exchange.

apply RemoveNilLeft.

apply Cut with Lshiporder.

apply AddNilLeft.

apply Shift.

apply link shiporder.

apply AddNilLeft.

apply Exchange.

apply ship order.

Qed.

Theorem ship order creditcard : nil ` ((((order empty ⊗ user ⊗ item ⊗

(paymentpaypal & paymentcc & paymentdc)⊗ shipment)))( order shipped).

Proof.

apply ImpliesRight.

apply TimesLeft.

apply AssociateLeft.

apply Cut with order paid.
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apply TimesLeft.

apply RemoveNilLeft.

apply Cut with order unpaid.

apply AddNilLeft.

apply TimesLeft.

apply Exchange.

apply RemoveNilLeft.

apply TimesLeft.

apply Exchange.

apply place order.

apply AddNilLeft.

apply Exchange.

apply RemoveNilLeft.

apply WithLeft1.

apply WithLeft2.

apply Cut with (Lpayorderpaypal & Lpayordercc & Lpayorderdc).

apply AddNilLeft.

apply Shift.

apply link payorder.

apply WithLeft1.

apply WithLeft2.

apply AddNilLeft.

apply Exchange.

apply RemoveNilLeft.

apply pay order cc.

apply AddNilLeft.

apply Exchange.

apply RemoveNilLeft.

apply Cut with Lshiporder.

apply AddNilLeft.

apply Shift.
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apply link shiporder.

apply AddNilLeft.

apply Exchange.

apply ship order.

Qed.

Theorem ship order debitcard : nil ` ((((order empty ⊗ user ⊗ item ⊗

(paymentpaypal & paymentcc & paymentdc)⊗ shipment)))( order shipped).

Proof.

apply ImpliesRight.

apply TimesLeft.

apply AssociateLeft.

apply Cut with order paid.

apply TimesLeft.

apply RemoveNilLeft.

apply Cut with order unpaid.

apply AddNilLeft.

apply TimesLeft.

apply Exchange.

apply RemoveNilLeft.

apply TimesLeft.

apply Exchange.

apply place order.

apply AddNilLeft.

apply Exchange.

apply RemoveNilLeft.

apply WithLeft2.

apply Cut with (Lpayorderpaypal & Lpayordercc & Lpayorderdc).

apply AddNilLeft.

apply Shift.

apply link payorder.
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apply WithLeft2.

apply AddNilLeft.

apply Exchange.

apply RemoveNilLeft.

apply pay order dc.

apply AddNilLeft.

apply Exchange.

apply RemoveNilLeft.

apply Cut with Lshiporder.

apply AddNilLeft.

apply Shift.

apply link shiporder.

apply AddNilLeft.

apply Exchange.

apply ship order.

Qed.

B.4 E-shopping Scenario - Case II Service Method

Level Implementation in Coq

Variable uriuser uriuid ruid uidmsg uriuidpay ruidpay : ILinProp.

Variable uriprod uriiid rprod riid iidmsg : ILinProp.

Variable uripay uripayid rpayid : ILinProp.

Variable uriship urisid rsid : ILinProp.

Variable nuriuser nuriuid nruid nuidmsg nuriuidpay nruidpay : name.

Variable nuriprod nuriiid nrprod nriid niidmsg : name.

Variable nuripay nuripayid nrpayid : name.

Variable nuriship nurisid nrsid : name.

Variable GETUID GETIID CREATEORDERURI PLACEORDER

GETUIDPAYPAL GETUIDPAYCC GETUIDPAYDC PAYORDER
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SHIPORDER PAYSHIPORDER POSTORDER POSTOIDPAY

POSTOIDSHIP POSTPAY GETPAYID POSTSHIP GETSID

GETOID PUTOIDPAY PUTOIDSHIP : proc.

Variable uriorder urioid uriorderpay roid roidpaid roidshipped urioidpay

urioidship: ILinProp.

Variable nuriorder nurioid nuriorderpay nroid nroidpaid nroidshipped

nurioidpay nurioidship moidpaymsg moidshipmsg : name.

Variable err : ILinProp.

Variable uripaypal uripaycc uripaydc ruidpaypal ruidpaycc ruidpaydc

lpayorderpaypal lpayordercc lpayorderdc: ILinProp.

Variable nlpayorderpaypal nlpayordercc nlpayorderdc: name.

Axiom post user : (uriuser :: nil) ` uriuid.

Axiom get uid : (uriuid� nuriuid) :: nil ` ((ruid ⊕ err)�nruid [GETUID).

Axiom put uid : ((uriuid :: nil) ++ (uidmsg :: nil)) ` ruid.

Axiom delete uid : (uriuid :: nil) ` Zero.

Axiom get uid paypal : ((uriuidpay�nuriuidpay) :: nil)

` ((ruidpaypal ⊕ err)�nruidpay [GETUIDPAYPAL).

Axiom get uid paycc : ((uriuidpay�nuriuidpay) :: nil)

` ((ruidpaycc ⊕ err)�nruidpay [GETUIDPAYCC ).

Axiom get uid paydc : ((uriuidpay�nuriuidpay) :: nil)

` ((ruidpaydc ⊕ err)�nruidpay [GETUIDPAYDC ).

Axiom post prod : (uriprod :: nil) ` uriiid.

Axiom get prod : (uriprod :: nil) ` rprod.

Axiom get iid : (uriiid�nuriiid) :: nil ` ((riid ⊕ err)�nriid [GETIID).

Axiom put iid : ((uriiid :: nil) ++ (iidmsg :: nil)) ` riid.

Axiom post pay : ((uripay�nuripay) :: nil)

` ((uripayid ⊕ err)�nuripayid [POSTPAY ).

Axiom get payid : ((uripayid�nuripayid) :: nil)

` ((rpayid ⊕ err)�nrpayid [GETPAYID).

Axiom delete payid : (uripayid :: nil) ` Zero.
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Axiom post ship : ((uriship�nuriship) :: nil)

` ((urisid ⊕ err)�nurisid [POSTSHIP).

Axiom get sid : ((urisid�nurisid) :: nil) ` ((rsid ⊕ err)�nrsid [GETSID).

Axiom post order : ((uriorder�nuriorder) :: nil)

` ((urioid ⊕ err)�nurioid [POSTORDER).

Axiom get oid : ((urioid�nurioid) :: nil)

` (((roid(urioidpay) ⊕ err)�nroid [GETOID).

Axiom put oid pay : ((urioid�nurioid) :: nil ++ (rpayid�nrpayid) :: nil)

` ((roidpaid ⊕ err)�nroidpaid [PUTOIDPAY ).

Axiom put oid ship : ((urioid�nurioid) :: nil ++ (rsid�nrsid) :: nil)

` ((roidshipped ⊕ err)�nroidshipped [PUTOIDSHIP).

Axiom post oid ship : ((urioidship�nurioidship) :: nil)

` ((roidshipped ⊕ err)�nroidshipped [POSTOIDSHIP).

Variable lpayorder lshiporder : ILinProp.

Variable nlpayorder nlshiporder : name.

Variable LINKPAYORDER LINKSHIPORDER PAYORDERPAYPAL

PAYORDERCC PAYORDERDC : proc.

Variable P Q : proc.

Variable x y : name.

Hypothesis place order : (((uriorder�nuriorder) :: nil) ++

(((riid ⊕ err)�nriid) :: nil) ++ (((ruid ⊕ err)�nruid) :: nil))

` ((roid ⊕ err)�nroid [PLACEORDER).

Hypothesis pay order : (((uripay�nuripay) :: nil) ++

(((ruidpay ⊕ err)�nruidpay) :: nil) ++

(((lpayorder ⊕ err)�nlpayorder) :: nil))

` ((roidpaid ⊕ err)� nroidpaid [ORDERPAID).

Hypothesis pay order paypal : (((uripaypal�nuripay) :: nil) ++

(((ruidpaypal ⊕ err)�nruidpay) :: nil) ++

(((lpayorderpaypal ⊕ err)�nlpayorder) :: nil))

` ((roidpaid ⊕ err)� nroidpaid [PAYORDERPAYPAL).
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Hypothesis pay order cc: (((uripaycc�nuripay) :: nil) ++

(((ruidpaycc ⊕ err)�nruidpay) :: nil) ++

(((lpayordercc ⊕ err)�nlpayorder) :: nil))

` ((roidpaid ⊕ err)� nroidpaid [PAYORDERCC ).

Hypothesis pay order dc: (((uripaydc�nuripay) :: nil) ++

(((ruidpaydc ⊕ err)�nruidpay) :: nil) ++

(((lpayorderdc ⊕ err)�nlpayorder) :: nil))

` ((roidpaid ⊕ err)� nroidpaid [PAYORDERDC ).

Hypothesis ship order : (((uriship�nuriship) :: nil) ++

(((lshiporder ⊕ err)�nlshiporder) :: nil))

` ((roidshipped ⊕ err)� nroidshipped [ORDERSHIPPED).

Hypothesis link payorder : nil ` (((roid ⊕ err)(((lpayorderpaypal ⊕ err) &

(lpayordercc ⊕ err) & (lpayorderdc ⊕ err)))

�nlpayorder [LINKPAYORDER).

Hypothesis link shiporder : nil ` (((roidpaid ⊕ err)(

(lshiporder ⊕ err))�nlshiporder [LINKSHIPORDER).

Theorem order being shipped paypal : ∃ P, (((uriship�nuriship) :: nil) ++

(((uripaypal & uripaycc & uripaydc)�nuripay):: nil) ++

((uriuidpay�nuriuidpay) :: nil) ++ ((uriorder�nuriorder) :: nil) ++

((uriiid�nuriiid) :: nil) ++ ((uriuid�nuriuid) :: nil))

` ((roidshipped ⊕ err) �nroidshipped [P).

Proof.

econstructor.

apply AddNilRight.

instantiate (1:= (nu y (par P Q))).

apply Cut with (Times uriship (Plus lshiporder err)).

auto.

econstructor.

instantiate (1:= (nu nuriship (outp nlshiporder nuriship (par P Q)))).

apply TimesRight.

econstructor.
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instantiate (1:= skip).

apply Identity.

econstructor.

apply AddNilRight.

instantiate (1:= (nu nroidpaid (par P Q))).

apply Cut with (Plus roidpaid err).

auto.

econstructor.

apply AddNilRight.

instantiate (1:= (nu y (par P Q))).

apply Cut with (Times uripaypal (Times (Plus ruidpaypal err) (Plus lpay-

orderpaypal err))).

auto.

econstructor.

instantiate (1:= (nu nuripay (outp y nuripay (par P Q)))).

apply TimesRight.

econstructor.

instantiate (1:= P).

apply AddNilLeft.

apply WithLeft1.

econstructor.

instantiate (1:= P).

apply WithLeft1.

econstructor.

instantiate (1:= skip).

apply Identity.

econstructor.

instantiate (1:= (nu nruidpay (outp nlpayorder nruidpay (par P Q)))).

apply TimesRight.

econstructor.

instantiate (1:= GETUIDPAYPAL).
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apply get uid paypal.

econstructor.

apply AddNilRight.

instantiate (1:= (nu nroid (par P Q))).

apply Cut with (Plus roid err).

auto.

econstructor.

apply AddNilRight.

instantiate (1:= (nu y (par P Q))).

apply Cut with (Times uriorder (Times (Plus riid err) (Plus ruid err))).

auto.

econstructor.

instantiate (1:= (nu nuriorder (outp y nuriorder (par P Q)))).

apply TimesRight.

econstructor.

instantiate (1:= skip).

apply Identity.

econstructor.

instantiate (1:= (nu nriid (outp nruid nriid (par P Q)))).

apply TimesRight.

econstructor.

instantiate (1:= GETPID).

apply get iid.

econstructor.

instantiate (1:= GETUID).

apply get uid.

econstructor.

instantiate (1:= (inp y nuriorder P)).

apply TimesLeft.

econstructor.

apply RemoveNilLeft.
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instantiate (1:= (inp nruid nriid P)).

apply TimesLeft.

econstructor.

instantiate (1:= PLACEORDER).

apply place order .

econstructor.

apply RemoveNilLeft.

apply AddNilRight.

instantiate (1:= (nu nlpayorder (par P Q))).

apply Cut with ((lpayorderpaypal ⊕ err) & (lpayordercc ⊕ err) & (lpay-

orderdc ⊕ err)).

auto.

econstructor.

apply AddNilLeft.

instantiate (1:= P).

apply Shift.

econstructor.

instantiate (1:= LINKPAYORDER).

apply link payorder.

econstructor.

instantiate (1:= P).

apply WithLeft1.

econstructor.

instantiate (1:= P).

apply WithLeft1.

econstructor.

instantiate (1:= skip).

apply Identity.

econstructor.

instantiate (1:= (inp y nuripay P)).

apply TimesLeft.
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econstructor.

apply RemoveNilLeft.

instantiate (1:= (inp nlpayorder nruidpay P)).

apply TimesLeft.

econstructor.

instantiate (1:= PAYORDERPAYPAL).

apply pay order paypal.

econstructor.

instantiate (1:= P).

apply Shift.

econstructor.

instantiate (1:= LINKSHIPORDER).

apply link shiporder.

econstructor.

instantiate (1:= (inp nlshiporder nuriship P)).

apply TimesLeft.

econstructor.

apply RemoveNilLeft.

instantiate (1:= ORDERSHIPPED).

apply ship order.

Qed.

Theorem order being shipped cc: ∃ P, (((uriship�nuriship) :: nil) ++

(((uripaypal & uripaycc & uripaydc)�nuripay):: nil) ++

((uriuidpay�nuriuidpay) :: nil) ++ ((uriorder�nuriorder) :: nil) ++

((uriiid�nuriiid) :: nil) ++ ((uriuid�nuriuid) :: nil))

` ((roidshipped ⊕ err) �nroidshipped [P).

Proof.

econstructor.

apply AddNilRight.

instantiate (1:= (nu y (par P Q))).
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apply Cut with (Times uriship (Plus lshiporder err)).

auto.

econstructor.

instantiate (1:= (nu nuriship (outp nlshiporder nuriship (par P Q)))).

apply TimesRight.

econstructor.

instantiate (1:= skip).

apply Identity.

econstructor.

apply AddNilRight.

instantiate (1:= (nu nroidpaid (par P Q))).

apply Cut with (Plus roidpaid err).

auto.

econstructor.

apply AddNilRight.

instantiate (1:= (nu y (par P Q))).

apply Cut with (Times uripaycc (Times (Plus ruidpaycc err) (Plus lpay-

ordercc err))).

auto.

econstructor.

instantiate (1:= (nu nuripay (outp y nuripay (par P Q)))).

apply TimesRight.

econstructor.

instantiate (1:= P).

apply AddNilLeft.

apply WithLeft1.

econstructor.

instantiate (1:= P).

apply WithLeft2.

econstructor.

instantiate (1:= skip).
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apply Identity.

econstructor.

instantiate (1:= (nu nruidpay (outp nlpayorder nruidpay (par P Q)))).

apply TimesRight.

econstructor.

instantiate (1:= GETUIDPAYCC).

apply get uid paycc.

econstructor.

apply AddNilRight.

instantiate (1:= (nu nroid (par P Q))).

apply Cut with (Plus roid err).

auto.

econstructor.

apply AddNilRight.

instantiate (1:= (nu y (par P Q))).

apply Cut with (Times uriorder (Times (Plus riid err) (Plus ruid err))).

auto.

econstructor.

instantiate (1:= (nu nuriorder (outp y nuriorder (par P Q)))).

apply TimesRight.

econstructor.

instantiate (1:= skip).

apply Identity.

econstructor.

instantiate (1:= (nu nriid (outp nruid nriid (par P Q)))).

apply TimesRight.

econstructor.

instantiate (1:= GETPID).

apply get iid.

econstructor.

instantiate (1:= GETUID).
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apply get uid.

econstructor.

instantiate (1:= (inp y nuriorder P)).

apply TimesLeft.

econstructor.

apply RemoveNilLeft.

instantiate (1:= (inp nruid nriid P)).

apply TimesLeft.

econstructor.

instantiate (1:= PLACEORDER).

apply place order .

econstructor.

apply RemoveNilLeft.

apply AddNilRight.

instantiate (1:= (nu nlpayorder (par P Q))).

apply Cut with ((lpayorderpaypal ⊕ err) & (lpayordercc ⊕ err) & (lpay-

orderdc ⊕ err)).

auto.

econstructor.

apply AddNilLeft.

instantiate (1:= P).

apply Shift.

econstructor.

instantiate (1:= LINKPAYORDER).

apply link payorder.

econstructor.

instantiate (1:= P).

apply WithLeft1.

econstructor.

instantiate (1:= P).

apply WithLeft2.
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econstructor.

instantiate (1:= skip).

apply Identity.

econstructor.

instantiate (1:= (inp y nuripay P)).

apply TimesLeft.

econstructor.

apply RemoveNilLeft.

instantiate (1:= (inp nlpayorder nruidpay P)).

apply TimesLeft.

econstructor.

instantiate (1:= PAYORDERCC).

apply pay order cc.

econstructor.

instantiate (1:= P).

apply Shift.

econstructor.

instantiate (1:= LINKSHIPORDER).

apply link shiporder.

econstructor.

instantiate (1:= (inp nlshiporder nuriship P)).

apply TimesLeft.

econstructor.

apply RemoveNilLeft.

instantiate (1:= ORDERSHIPPED).

apply ship order.

Qed.

Theorem order being shipped dc: ∃ P, (((uriship�nuriship) :: nil) ++

(((uripaypal & uripaycc & uripaydc)�nuripay):: nil) ++

((uriuidpay�nuriuidpay) :: nil) ++ ((uriorder�nuriorder) :: nil) ++

((uriiid�nuriiid) :: nil) ++ ((uriuid�nuriuid) :: nil))

184



` ((roidshipped ⊕ err) �nroidshipped [P).

Proof.

econstructor.

apply AddNilRight.

instantiate (1:= (nu y (par P Q))).

apply Cut with (Times uriship (Plus lshiporder err)).

auto.

econstructor.

instantiate (1:= (nu nuriship (outp nlshiporder nuriship (par P Q)))).

apply TimesRight.

econstructor.

instantiate (1:= skip).

apply Identity.

econstructor.

apply AddNilRight.

instantiate (1:= (nu nroidpaid (par P Q))).

apply Cut with (Plus roidpaid err).

auto.

econstructor.

apply AddNilRight.

instantiate (1:= (nu y (par P Q))).

apply Cut with (Times uripaydc (Times (Plus ruidpaydc err) (Plus lpay-

orderdc err))).

auto.

econstructor.

instantiate (1:= (nu nuripay (outp y nuripay (par P Q)))).

apply TimesRight.

econstructor.

instantiate (1:= P).

apply AddNilLeft.

apply WithLeft2.
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econstructor.

instantiate (1:= skip).

apply Identity.

econstructor.

instantiate (1:= (nu nruidpay (outp nlpayorder nruidpay (par P Q)))).

apply TimesRight.

econstructor.

instantiate (1:= GETUIDPAYDC).

apply get uid paydc.

econstructor.

apply AddNilRight.

instantiate (1:= (nu nroid (par P Q))).

apply Cut with (Plus roid err).

auto.

econstructor.

apply AddNilRight.

instantiate (1:= (nu y (par P Q))).

apply Cut with (Times uriorder (Times (Plus riid err) (Plus ruid err))).

auto.

econstructor.

instantiate (1:= (nu nuriorder (outp y nuriorder (par P Q)))).

apply TimesRight.

econstructor.

instantiate (1:= skip).

apply Identity.

econstructor.

instantiate (1:= (nu nriid (outp nruid nriid (par P Q)))).

apply TimesRight.

econstructor.

instantiate (1:= GETPID).

apply get iid.
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econstructor.

instantiate (1:= GETUID).

apply get uid.

econstructor.

instantiate (1:= (inp y nuriorder P)).

apply TimesLeft.

econstructor.

apply RemoveNilLeft.

instantiate (1:= (inp nruid nriid P)).

apply TimesLeft.

econstructor.

instantiate (1:= PLACEORDER).

apply place order .

econstructor.

apply RemoveNilLeft.

apply AddNilRight.

instantiate (1:= (nu nlpayorder (par P Q))).

apply Cut with ((lpayorderpaypal ⊕ err) & (lpayordercc ⊕ err) & (lpay-

orderdc ⊕ err)).

auto.

econstructor.

apply AddNilLeft.

instantiate (1:= P).

apply Shift.

econstructor.

instantiate (1:= LINKPAYORDER).

apply link payorder.

econstructor.

instantiate (1:= P).

apply WithLeft2.

econstructor.
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instantiate (1:= skip).

apply Identity.

econstructor.

instantiate (1:= (inp y nuripay P)).

apply TimesLeft.

econstructor.

apply RemoveNilLeft.

instantiate (1:= (inp nlpayorder nruidpay P)).

apply TimesLeft.

econstructor.

instantiate (1:= PAYORDERDC).

apply pay order dc.

econstructor.

instantiate (1:= P).

apply Shift.

econstructor.

instantiate (1:= LINKSHIPORDER).

apply link shiporder.

econstructor.

instantiate (1:= (inp nlshiporder nuriship P)).

apply TimesLeft.

econstructor.

apply RemoveNilLeft.

instantiate (1:= ORDERSHIPPED).

apply ship order.

Qed.
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B.5 E-shopping Scenario - Case III Resource

Level Implementation in Coq

Variable user user valid item rate item rated payment securitychecker

shipment insurance order empty order unpaid order unpaid insured

order paid order paid insured order shipped order insured paid

Linsureorder Lpayorder Lshiporder : ILinProp.

Hypothesis validate user : ((user :: nil) ++ (securitychecker :: nil))

` user valid.

Hypothesis rate item : ((item :: nil) ++ (rate :: nil)) ` item rated.

Hypothesis place order : ((item rated :: nil) ++ (user valid :: nil)

++ (order empty :: nil)) ` order unpaid.

Hypothesis insure unpaid order : ((Linsureorder :: nil)

++ (insurance :: nil)) ` order unpaid insured.

Hypothesis insure paid order : ((Linsureorder :: nil) ++ (insurance :: nil))

` order paid insured.

Hypothesis pay order : ((Lpayorder :: nil) ++ (payment :: nil))

` order paid.

Hypothesis pay insured order : ((Lpayorder :: nil) ++ (payment :: nil))

` order insured paid.

Hypothesis link after order : nil ` order unpaid ( (Linsureorder

& Lpayorder).

Hypothesis link after insured unpaid order :

nil ` order unpaid insured ( (Lpayorder).

Hypothesis link shiporder1 : nil ` order paid insured ( Lshiporder.

Hypothesis link shiporder2 : nil ` order insured paid ( Lshiporder.

Hypothesis ship order : ((Lshiporder :: nil) ++ (shipment :: nil))

` order shipped.

Theorem ship order extendedservices : ((order empty ⊗ (user

⊗ securitychecker) ⊗ (item ⊗ rate) ⊗ insurance ⊗ payment ⊗
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shipment) :: nil) ` order shipped.

Proof.

apply AddNilLeft.

apply TimesLeft.

apply AssociateLeft.

apply Cut with order insured paid.

apply TimesLeft.

apply RemoveNilLeft.

apply Cut with order unpaid insured.

apply AddNilLeft.

apply TimesLeft.

apply RemoveNilLeft.

apply Cut with order unpaid.

apply AddNilLeft.

apply TimesLeft.

apply RemoveNilLeft.

apply Cut with (order empty ⊗ user valid).

apply AddNilLeft.

apply TimesLeft.

apply RemoveNilLeft.

apply TimesRight.

apply Identity.

apply AddNilLeft.

apply TimesLeft.

apply RemoveNilLeft.

apply validate user.

apply Cut with item rated.

apply AddNilLeft.

apply TimesLeft.

apply RemoveNilLeft.

apply rate item.
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apply AddNilLeft.

apply Exchange.

apply RemoveNilLeft.

apply TimesLeft.

apply Exchange.

apply place order.

apply AddNilLeft.

apply Exchange.

apply RemoveNilLeft.

apply Cut with (Linsureorder & Lpayorder).

apply AddNilLeft.

apply Shift.

apply link after order.

apply WithLeft1.

apply AddNilLeft.

apply Exchange.

apply RemoveNilLeft.

apply insure unpaid order.

apply AddNilLeft.

apply Exchange.

apply RemoveNilLeft.

apply Cut with Lpayorder.

apply AddNilLeft.

apply Shift.

apply link after insured unpaid order.

apply AddNilLeft.

apply Exchange.

apply RemoveNilLeft.

apply pay insured order.

apply AddNilLeft.

apply Exchange.
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apply RemoveNilLeft.

apply Cut with Lshiporder.

apply AddNilLeft.

apply Shift.

apply link shiporder2.

apply AddNilLeft.

apply Exchange.

apply RemoveNilLeft.

apply ship order.

Qed.

B.6 E-shopping Scenario - Case III Service Method

Level Implementation in Coq

Variable uriuser uriuid ruid uidmsg uriuidpay ruidpay ruidvalid : ILinProp.

Variable uriitem uriiid ritem riid iidmsg riidrated : ILinProp.

Variable uripay uripayid rpayid : ILinProp.

Variable uriship urisid rsid : ILinProp.

Variable urirate uririd rrid : ILinProp.

Variable urisecchec : ILinProp.

Variable uriinsur uriinid rinid : ILinProp.

Variable uriorder urioid uriorderpay roid roidpaid roidshipped urioidpay

urioidship : ILinProp.

Variable roidunpaid roidunpaidinsured roidpaidinsured

roidinsuredpaid : ILinProp.

Variable nuriuser nuriuid nruid nuidmsg nuriuidpay nruidpay : name.

Variable nuriitem nuriiid nritem nriid niidmsg nriidrated : name.

Variable nuripay nuripayid nrpayid : name.

Variable nuriship nurisid nrsid : name.

Variable nurirate nuririd nrrid : name.
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Variable nuriinsur nuriinid nrinid : name.

Variable nurisecchec : name.

Variable nuriorder nurioid nuriorderpay nroid nroidpaid nroidshipped

nurioidpay : name.

Variable nurioidship moidpaymsg moidshipmsg nroidunpaid

nroidunpaidinsured :name.

Variable nroidpaidinsured nroidinsuredpaid : name.

Variable nruidvalid : name.

Variable lpayorder lshiporder linsureorder : ILinProp.

Variable nlpayorder nlshiporder nlinsureorder nlorderinsure

nlorderpay nlpaidorderinsure : name.

Variable GETUID GETUIDPAY : proc.

Variable GETIID : proc.

Variable POSTPAY GETPAYID : proc.

Variable POSTSHIP GETSID : proc.

Variable CREATEORDERURI PLACEORDER POSTORDER

POSTOIDPAY POSTOIDSHIP : proc.

Variable GETOID PUTOIDPAY PUTOIDSHIP PAYORDER

SHIPORDER : proc.

Variable PAYSHIPORDER PAYINSUREDORDER : proc.

Variable RATEITEM POSTRATE GETRID : proc.

Variable POSTSECCHEC : proc.

Variable POSTINSUR GETINID : proc.

Variable VALIDUSER INSUREUNPAIDORDER LINKORDERINSURE

LINKORDERPAY : proc.

Variable LINKPAYORDER LINKSHIPORDER1 LINKSHIPORDER2

LINKPAIDORDERINSURE : proc.

Variable err : ILinProp.

Variable P Q : proc.

Variable x y : name.
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Axiom post user : (uriuser :: nil) ` uriuid.

Axiom get uid : (uriuid�nuriuid) :: nil ` ((ruid ⊕ err)�nruid [GETUID).

Axiom put uid : ((uriuid :: nil) ++ (uidmsg :: nil)) ` ruid.

Axiom delete uid : (uriuid :: nil) ` Zero.

Axiom get uid pay : ((uriuidpay�nuriuidpay) :: nil)

` ((ruidpay ⊕ err)�nruidpay [GETUIDPAY ).

Axiom post item : (uriitem :: nil) ` uriiid.

Axiom get item : (uriitem :: nil) ` ritem.

Axiom get iid : (uriiid�nuriiid) :: nil ` ((riid ⊕ err)�nriid [GETIID).

Axiom put iid : ((uriiid :: nil) ++ (iidmsg :: nil)) ` riid.

Axiom post pay : ((uripay�nuripay) :: nil)

` ((uripayid ⊕ err)�nuripayid [POSTPAY ).

Axiom get payid : ((uripayid�nuripayid) :: nil)

` ((rpayid ⊕ err)�nrpayid [GETPAYID).

Axiom delete payid : (uripayid :: nil) ` Zero.

Axiom post ship : ((uriship�nuriship) :: nil)

` ((urisid ⊕ err)�nurisid [POSTSHIP).

Axiom get sid : ((urisid�nurisid) :: nil) ` ((rsid ⊕ err)�nrsid [GETSID).

Axiom post rate : ((urirate�nurirate) :: nil)

` ((uririd ⊕ err)�nuririd [POSTRATE ).

Axiom get rid : ((uririd�nuririd) :: nil) ` ((rrid ⊕ err)�nrrid [GETRID).

Axiom post secchec : ((urisecchec�nurisecchec) :: nil)

` ((uriuid ⊕ err)�nuriuid [POSTSECCHEC ).

Axiom post insur : ((uriinsur�nuriinsur) :: nil)

` ((uriinid ⊕ err)�nuriinid [POSTINSUR).

Axiom get inid : ((uriinid�nuriinid) :: nil) ` ((rinid ⊕ err)�nrinid [GETINID).

Axiom post order : ((uriorder�nuriorder) :: nil)

` ((urioid ⊕ err)�nurioid [POSTORDER).

Axiom get oid : ((urioid�nurioid) :: nil)

` (((roid(urioidpay) ⊕ err)�nroid [GETOID).

194



Axiom put oid pay : ((urioid�nurioid) :: nil ++ (rpayid�nrpayid) :: nil)

` ((roidpaid ⊕ err)�nroidpaid [PUTOIDPAY ).

Axiom put oid ship : ((urioid�nurioid) :: nil ++ (rsid�nrsid) :: nil)

` ((roidshipped ⊕ err)�nroidshipped [PUTOIDSHIP).

Axiom post oid ship : ((urioidship�nurioidship) :: nil)

` ((roidshipped ⊕ err)�nroidshipped [POSTOIDSHIP).

Hypothesis validate user : ((urisecchec�nurisecchec) :: nil

++ ((ruid ⊕ err)�nruid) :: nil) ` ((ruidvalid ⊕ err)

� nruidvalid [VALIDUSER).

Hypothesis rate item : ((urirate�nurirate) :: nil

++ ((riid ⊕ err)�nriid) :: nil) ` ((riidrated ⊕ err)

� nriidrated [RATEITEM ).

Hypothesis place order : (((uriorder�nuriorder) :: nil)

++ (((riidrated ⊕ err)�nriidrated) :: nil)

++ (((ruidvalid ⊕ err)�nruidvalid) :: nil))

` ((roidunpaid ⊕ err)�nroidunpaid [PLACEORDER).

Hypothesis insure unpaid order : (((uriinsur�nuriinsur) :: nil)

++ (((linsureorder ⊕ err)�nlinsureorder) :: nil))

` ((roidunpaidinsured ⊕ err)�nroidunpaidinsured

[INSUREUNPAIDORDER).

Hypothesis pay order : (((uripay�nuripay) :: nil)

++ (((ruidpay ⊕ err)�nruidpay) :: nil)

++ (((lpayorder ⊕ err)�nlpayorder) :: nil))

` ((roidpaid ⊕ err)� nroidpaid [PAYORDER).

Hypothesis insure paid order : ((((linsureorder ⊕ err)�nlinsureorder) ::

nil) ++ ((uriinsur�nuriinsur) :: nil))

` ((roidpaidinsured ⊕ err)�nroidpaidinsured [INSUREUNPAIDORDER).

Hypothesis pay insured order : (((uripay�nuripay) :: nil)

++ (((ruidpay ⊕ err)�nruidpay) :: nil)

++ (((lpayorder ⊕ err)�nlpayorder) :: nil))

` ((roidinsuredpaid ⊕ err)� nroidinsuredpaid [PAYINSUREDORDER).
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Hypothesis ship order : (((uriship�nuriship) :: nil)

++ (((lshiporder ⊕ err)�nlshiporder) :: nil))

` ((roidshipped ⊕ err)� nroidshipped [SHIPORDER).

Hypothesis link order insure: nil ` (((roidunpaid ⊕ err)

( (linsureorder ⊕ err))�nlorderinsure[LINKORDERINSURE ).

Hypothesis link order pay : nil ` (((roidunpaid ⊕ err)

( (lpayorder ⊕ err))�nlorderpay [LINKORDERPAY ).

Hypothesis link after insured unpaid order : nil ` (((roidunpaidinsured

⊕ err) ( (lpayorder ⊕ err))�nlpayorder [LINKPAYORDER).

Hypothesis link after order pay : nil ` (((roidpaid ⊕ err)

( (linsureorder ⊕ err))�nlpaidorderinsure

[LINKPAIDORDERINSURE ).

Hypothesis link shiporder1 : nil ` (((roidpaidinsured ⊕ err)

((lshiporder ⊕ err))�nlshiporder [LINKSHIPORDER1 ).

Hypothesis link shiporder2 : nil ` (((roidinsuredpaid ⊕ err)

((lshiporder ⊕ err))�nlshiporder [LINKSHIPORDER2 ).

Theorem order being shipped extended : ∃ P, (((uriship�nuriship) :: nil)

++ ((uripay�nuripay) :: nil) ++ ((uriuidpay�nuriuidpay) :: nil)

++ ((uriinsur�nuriinsur) :: nil)

++ ((uriorder�nuriorder) :: nil) ++ (((uriiid�nuriiid) :: nil)

++ ((urirate�nurirate) :: nil))

++ (((uriuid�nuriuid) :: nil)) ++ ((urisecchec�nurisecchec)

:: nil)) ` ((roidshipped ⊕ err) �nroidshipped [P).

Proof.

econstructor.

apply AddNilRight.

instantiate (1:= (nu y (par P Q))).

apply Cut with (Times uriship (Plus lshiporder err)).

auto.

econstructor.
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instantiate (1:= (nu nuriship (outp nlshiporder nuriship (par P Q)))).

apply TimesRight.

econstructor.

instantiate (1:= skip).

apply Identity.

econstructor.

apply AddNilRight.

instantiate (1:= (nu nroidinsuredpaid (par P Q))).

apply Cut with (Plus roidinsuredpaid err).

auto.

econstructor.

apply AddNilRight.

instantiate (1:= (nu y (par P Q))).

apply Cut with (Times uripay (Times (Plus ruidpay err) (Plus lpayorder

err))).

auto.

econstructor.

instantiate (1:= (nu nuripay (outp y nuripay (par P Q)))).

apply TimesRight.

econstructor.

instantiate (1:= skip).

apply Identity.

econstructor.

instantiate (1:= (nu nruidpay (outp nlpayorder nruidpay (par P Q)))).

apply TimesRight.

econstructor.

instantiate (1:= GETUIDPAY).

apply get uid pay.

econstructor.

apply AddNilRight.

instantiate (1:= (nu nroidunpaidinsured (par P Q))).

197



apply Cut with (Plus roidunpaidinsured err).

econstructor.

apply AddNilRight.

instantiate (1:= (nu nlinsureorder (par P Q))).

apply Cut with (Times uriinsur (Plus linsureorder err)).

econstructor.

instantiate (1:= (nu nuriinsur (outp nlorderinsure nuriinsur (par P Q)))).

apply TimesRight.

econstructor.

instantiate (1:= skip).

apply Identity.

econstructor.

apply AddNilRight.

instantiate (1:= (nu nroidunpaid (par P Q))).

apply Cut with (Plus roidunpaid err).

auto.

econstructor.

apply AddNilRight.

instantiate (1:= (nu y (par P Q))).

apply Cut with (Times uriorder (Times (Plus riidrated err) (Plus ruid-

valid err))).

auto.

econstructor.

instantiate (1:= (nu nuriorder (outp y nuriorder (par P Q)))).

apply TimesRight.

econstructor.

instantiate (1:= skip).

apply Identity.

econstructor.

instantiate (1:= (nu nriidrated (outp nruidvalid nriidrated (par P Q)))).

apply TimesRight.
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econstructor.

instantiate (1:= (nu nriid (par P Q))).

apply Cut with (Plus riid err).

econstructor.

instantiate (1:= GETIID).

apply get iid.

econstructor.

instantiate (1:= RATEITEM).

apply rate item.

econstructor.

instantiate (1:= (nu nruid (par P Q))).

apply Cut with (Plus ruid err).

econstructor.

instantiate (1:= GETUID).

apply get uid.

econstructor.

instantiate (1:= VALIDUSER).

apply validate user.

econstructor.

instantiate (1:= (inp y nuriorder P)).

apply TimesLeft.

econstructor.

apply RemoveNilLeft.

instantiate (1:= (inp nruidvalid nriidrated P)).

apply TimesLeft.

econstructor.

instantiate (1:= PLACEORDER).

apply place order.

econstructor.

instantiate (1:= P).

apply Shift.
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econstructor.

instantiate (1:= LINKORDERINSURE).

apply link order insure.

econstructor.

instantiate (1:= (inp nlinsureorder nuriinsur P)).

apply TimesLeft.

econstructor.

apply RemoveNilLeft.

instantiate (1:= INSUREUNPAIDORDER).

apply insure unpaid order.

econstructor.

instantiate (1:= P).

apply Shift.

econstructor.

instantiate (1:= LINKPAYORDER).

apply link after insured unpaid order.

econstructor.

instantiate (1:= (inp y nuripay P)).

apply TimesLeft.

econstructor.

apply RemoveNilLeft.

instantiate (1:= (inp nlpayorder nruidpay P)).

apply TimesLeft.

econstructor.

instantiate (1:= PAYINSUREDORDER).

apply pay insured order.

econstructor.

instantiate (1:= P).

apply Shift.

econstructor.

instantiate (1:= LINKSHIPORDER2).
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apply link shiporder2.

econstructor.

instantiate (1:= (inp nlshiporder nuriship P)).

apply TimesLeft.

econstructor.

apply RemoveNilLeft.

instantiate (1:= SHIPORDER).

apply ship order.

Qed.

B.7 Biomedical Scenario - Resource Level Im-

plementation in Coq

Variable ct importer isoextracter cropper smoothfilter decimatefilter

mesh : ILinProp.

Variable vtkvolume vtksurface mesh3d : ILinProp.

Variable Lextractisosurface Lcropvolume Ldecimate Lsmooth

Lbuildmesh : ILinProp.

Hypothesis importdicom : ((ct ::nil) ++ (importer ::nil)) ` vtkvolume.

Hypothesis extractisosurface : ((Lextractisosurface::nil)

++ (isoextracter ::nil)) ` vtksurface.

Hypothesis cropvolume : ((Lcropvolume::nil)

++ (cropper ::nil)) ` vtkvolume.

Hypothesis decimatesurface : ((Ldecimate::nil)

++ (decimatefilter ::nil)) ` vtksurface.

Hypothesis smoothsurface : ((Lsmooth::nil)

++ (smoothfilter ::nil)) ` vtksurface.

Hypothesis buildmesh : ((Lbuildmesh::nil)

++ (mesh::nil)) ` mesh3d.
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Hypothesis link after volume : nil ` (vtkvolume

( (Lextractisosurface & Lcropvolume)).

Hypothesis link after surface : nil ` (vtksurface

( (Ldecimate & Lsmooth & Lbuildmesh)).

Theorem buildmesh decimate 1 : ((ct ⊗ importer ⊗ isoextracter

⊗ decimatefilter ⊗ mesh)::nil) ` mesh3d.

Proof.

apply AddNilLeft.

apply TimesLeft.

apply AssociateLeft.

apply Cut with (Ldecimate & Lsmooth & Lbuildmesh).

apply RemoveNilLeft.

apply AddNilRight.

apply Cut with vtksurface.

apply AddNilLeft.

apply TimesLeft.

apply AssociateLeft.

apply Cut with (Ldecimate & Lsmooth & Lbuildmesh).

apply RemoveNilLeft.

apply AddNilRight.

apply Cut with vtksurface.

apply AddNilLeft.

apply TimesLeft.

apply AssociateLeft.

apply Cut with (Lextractisosurface & Lcropvolume).

apply RemoveNilLeft.

apply AddNilRight.

apply Cut with vtkvolume.

apply AddNilLeft.

apply TimesLeft.

apply RemoveNilLeft.

202



apply importdicom.

apply Shift.

apply link after volume.

apply WithLeft1.

apply AddNilLeft.

apply Exchange.

apply RemoveNilLeft.

apply extractisosurface.

apply Shift.

apply link after surface.

apply WithLeft1.

apply WithLeft1.

apply AddNilLeft.

apply Exchange.

apply RemoveNilLeft.

apply decimatesurface.

apply Shift.

apply link after surface.

apply WithLeft2.

apply AddNilLeft.

apply Exchange.

apply RemoveNilLeft.

apply buildmesh.

Qed.

Theorem buildmesh decimate 2 : ((ct ⊗ importer ⊗ isoextracter

⊗ decimatefilter ⊗ decimatefilter ⊗ mesh)::nil) ` mesh3d.

Proof.

apply AddNilLeft.

apply TimesLeft.

apply AssociateLeft.
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apply Cut with (Ldecimate & Lsmooth & Lbuildmesh).

apply RemoveNilLeft.

apply AddNilRight.

apply Cut with vtksurface.

apply AddNilLeft.

apply TimesLeft.

apply AssociateLeft.

apply Cut with (Ldecimate & Lsmooth & Lbuildmesh).

apply RemoveNilLeft.

apply AddNilRight.

apply Cut with vtksurface.

apply AddNilLeft.

apply TimesLeft.

apply AssociateLeft.

apply Cut with (Ldecimate & Lsmooth & Lbuildmesh).

apply RemoveNilLeft.

apply AddNilRight.

apply Cut with vtksurface.

apply AddNilLeft.

apply TimesLeft.

apply AssociateLeft.

apply Cut with (Lextractisosurface & Lcropvolume).

apply RemoveNilLeft.

apply AddNilRight.

apply Cut with vtkvolume.

apply AddNilLeft.

apply TimesLeft.

apply RemoveNilLeft.

apply importdicom.

apply Shift.

apply link after volume.
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apply WithLeft1.

apply AddNilLeft.

apply Exchange.

apply RemoveNilLeft.

apply extractisosurface.

apply Shift.

apply link after surface.

apply WithLeft1.

apply WithLeft1.

apply AddNilLeft.

apply Exchange.

apply RemoveNilLeft.

apply decimatesurface.

apply Shift.

apply link after surface.

apply WithLeft1.

apply WithLeft1.

apply AddNilLeft.

apply Exchange.

apply RemoveNilLeft.

apply decimatesurface.

apply Shift.

apply link after surface.

apply WithLeft2.

apply AddNilLeft.

apply Exchange.

apply RemoveNilLeft.

apply buildmesh.

Qed.
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B.8 Biomedical Scenario - Service Method Level

Implementation in Coq

Variable urict urictid rct rctid : ILinProp.

Variable uriimp : ILinProp.

Variable uriiso : ILinProp.

Variable uridec : ILinProp.

Variable uricrop : ILinProp.

Variable urimesh rmesh rvtkvol rvtksur : ILinProp.

Variable lexiso ldec lsmo lmesh lcropvol : ILinProp.

Variable nurict nurictid nrctid : name.

Variable nuriimp : name.

Variable nuriiso : name.

Variable nuridec : name.

Variable nurismo : name.

Variable nuricrop : name.

Variable nurimesh nrmesh nrvtkvol nrvtksur nlonvol nlonsur : name.

Variable nlexiso nldec nlsmo nlmesh nlcropvol : name.

Variable POSTCT GETCTID POSTIMPORTER POSTISOEX

POSTDECIMATE POSTSMOOTH POSTMOT

POSTMESH : proc.

Variable IMPORTDICOM EXTRACTISO CROPVOL DECIMATE

SMOOTH MESH LINKAFTERVOL LINKAFTERSUR : proc.

Variable err : ILinProp.

Variable P Q : proc.

Variable x y : name.

Axiom post ct : (urict�nurict) :: nil ` ((urictid ⊕ err)�nurictid [POSTCT ).

Axiom get ctid : (urictid�nurictid) :: nil ` ((rctid ⊕ err)�nrctid [GETCTID).

Axiom post importer : (uriimp�nuriimp) :: nil

` ((rvtkvol ⊕ err)�nrvtkvol [POSTIMPORTER).
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Axiom post isoex : (uriiso�nuriiso) :: nil

` ((rvtksur ⊕ err)�nrvtksur [POSTISOEX ).

Axiom post decimate : (uridec�nuridec) :: nil

` ((rvtksur ⊕ err)�nrvtksur [POSTDECIMATE ).

Axiom post smooth : (urismo�nurismo) :: nil

` ((rvtksur ⊕ err)�nrvtksur [POSTSMOOTH ).

Axiom post mesh : (urimesh�nurimesh) :: nil

` ((rmesh ⊕ err)�nrmesh[POSTMESH ).

Hypothesis import dicom : (uriimp�nuriimp)::nil ++ (urictid�nurictid)::nil

` ((rvtkvol ⊕ err )�nrvtkvol [IMPORTDICOM ).

Hypothesis extract isosurface : (uriiso�nuriiso)::nil

++ ((lexiso ⊕ err)�nlexiso)::nil ` ((rvtksur ⊕ err)

�nrvtksur [EXTRACTISO).

Hypothesis crop volume : (uricrop�nuricrop)::nil

++ ((lcropvol ⊕ err)�nlcropvol)::nil ` ((rvtkvol ⊕ err)

�nrvtkvol [CROPVOL).

Hypothesis decimate surface : (uridec�nuridec)::nil

++ ((ldec ⊕ err)�nldec)::nil ` ((rvtksur ⊕ err )

�nrvtksur [DECIMATE ).

Hypothesis smooth surface : (urismo�nurismo)::nil

++ ((lsmo ⊕ err)�nlsmo)::nil ` ((rvtksur ⊕ err )�nrvtksur [SMOOTH ).

Hypothesis build mesh : (urimesh�nurimesh)::nil

++ ((lmesh ⊕ err)�nlmesh)::nil ` ((rmesh ⊕ err )�nrmesh[MESH ).

Hypothesis link after volume : nil ` (((rvtkvol ⊕ err)

( ((lexiso ⊕ err) & (lcropvol ⊕ err)))�nlonvol [LINKAFTERVOL).

Hypothesis link after surface : nil ` (((rvtksur ⊕ err)

( ((ldec ⊕ err) & (lsmo ⊕ err) & (lmesh ⊕ err)))�nlonsur [LINKAFTERSUR).

Theorem mech being built : ∃ P, ((urimot�nurimot) :: nil)

++ ((uridec�nuridec) :: nil) ++ ((uriiso�nuriiso) :: nil)

++ ((uriimp�nuriimp) :: nil) ++ ((urictid�nurictid) :: nil)
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` ((rmesh ⊕ err) �nrmesh[P).

Proof.

econstructor.

apply AddNilRight.

instantiate (1:= (nu nlonsur (par P Q))).

apply Cut with (Times urimesh (With (With (Plus ldec err) (Plus lsmo

err)) (Plus lmesh err))).

econstructor.

instantiate (1:= (nu nurimot (outp nlonsur nurimot (par P Q)))).

apply TimesRight.

econstructor.

instantiate (1:= skip).

apply Identity.

econstructor.

apply AddNilRight.

instantiate (1:= (nu nlonsur (par P Q))).

apply Cut with (Times uridec (With (With (Plus ldec err) (Plus lsmo

err)) (Plus lmesh err))).

econstructor.

instantiate (1:= (nu nuridec (outp nlonsur nuridec (par P Q)))).

apply TimesRight.

econstructor.

instantiate (1:= skip).

apply Identity.

econstructor.

apply AddNilRight.

instantiate (1:= (nu nlonvol (par P Q))).

apply Cut with (Times uriiso (With (Plus lexiso err) (Plus lcropvol err))).

econstructor.

instantiate (1:= (nu nuriiso (outp nlonvol nuriiso (par P Q)))).

apply TimesRight.
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econstructor.

instantiate (1:= skip).

apply Identity.

econstructor.

apply AddNilRight.

instantiate (1:= (nu nrvtkvol (par P Q))).

apply Cut with (Plus rvtkvol err).

econstructor.

instantiate (1:= IMPORTDICOM).

apply import dicom.

econstructor.

instantiate (1:= P).

apply Shift.

econstructor.

instantiate (1:= LINKAFTERVOL).

apply link after volume.

econstructor.

apply RemoveNilLeft.

apply AddNilRight.

instantiate (1:= (nu nrvtksur (par P Q))).

apply Cut with (Plus rvtksur err).

econstructor.

apply AddNilLeft.

instantiate (1:= (inp nlexiso nuriiso P)).

apply TimesLeft.

econstructor.

instantiate (1:= P).

apply WithLeft1.

econstructor.

instantiate (1:= EXTRACTISO).

apply extract isosurface.
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econstructor.

instantiate (1:= P).

apply Shift.

econstructor.

instantiate (1:= LINKAFTERSUR).

apply link after surface.

econstructor.

apply AddNilRight.

instantiate (1:= (nu nrvtksur (par P Q))).

apply Cut with (Plus rvtksur err).

econstructor.

instantiate (1:= (inp nldec nuridec P)).

apply TimesLeft.

econstructor.

instantiate (1:= P).

apply WithLeft1.

econstructor.

instantiate (1:= P).

apply WithLeft1.

econstructor.

instantiate (1:= DECIMATE).

apply decimate surface.

econstructor.

instantiate (1:= P).

apply Shift.

econstructor.

instantiate (1:= LINKAFTERSUR).

apply link after surface.

econstructor.

instantiate (1:= (inp nlmesh nurimesh P)).

apply TimesLeft.
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econstructor.

apply RemoveNilLeft.

instantiate (1:= P).

apply WithLeft2.

econstructor.

instantiate (1:= MESH).

apply build mesh.

Qed.
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