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Abstract

In this thesis, we develop and test a technology for computer-assisted assess-

ments of newborn brain maturity from sleep electroencephalogram (EEG). Brain

maturation of newborns is reflected in rapid development of EEG patterns over a

number of weeks after conception. Observing the maturational patterns, experts

can assess newborn’s EEG maturity with an accuracy ±2 weeks of newborn’s

stated age. A mismatch between the EEG patterns and newborn’s physiological

age alerts clinicians about possible neurological problems. Analysis of newborn

EEG requires specialised skills to recognise the maturity-related waveforms and

patterns and interpret them in the context of newborns age and behavioural

state. It is highly desirable to make the results of maturity assessment most

accurate and reliable. However, the expert analysis is limited in capability to

estimate the uncertainty in assessments. To enable experts quantitatively eval-

uate risks of brain dysmaturity for each case, we employ the Bayesian model

averaging methodology. This methodology, in theory, provides the most accu-

rate assessments along with the estimates of uncertainty, enabling experts to

take into account the full information about the risk of decision making. Such

information is particularly important when assessing the EEG signals which are

highly variable and corrupted by artefacts. The use of decision tree models

within the Bayesian averaging enables interpreting the results as a set of rules

and finding the EEG features which make the most important contribution to

assessments. The developed technology was tested on approximately 1,000 EEG

recordings of newborns aged 36 to 45 weeks post conception, and the accuracy

of assessments was comparable to that achieved by EEG experts. In addition, it

was shown that the Bayesian assessment can be used to quantitatively evaluate

the risk of brain dysmaturity for each EEG recording.
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Chapter 1

Introduction

The electroencephalogram or EEG is the recording of electrical activity mea-

sured by electrodes placed on the scalp. Analysis of frequency, amplitude and

form of EEG waves reveals important information about brain function for clin-

ical diagnostics as well as for cognitive research.

The first report on human EEG was published in 1929 by Berger, who ob-

served that different types of brain electrical activity could be described in terms

of their frequency range. He measured the frequencies manually and proposed

the terms Alpha and Beta processes to designate the frequency ranges of waves

found in most recordings. Within 10 years, new results were published in the

main areas of EEG research: sleep study (Loomis et al., 1937; Davis et al., 1938,

1939), distribution of activity over brain regions (Rubin, 1938), potentials re-

lated to muscle control (Jasper and Andrews, 1938), and localization of tumours

(Walter, 1936). The latter publication also described the slow Delta and Theta

waves found along with the Alpha and Beta activity, thus establishing the main

four frequency bands used today in EEG interpretation.

Analysis of EEG frequency composition was first automated by the im-

proved low frequency analyser (Walter, 1943). Brazier and Casby (1952) ap-

plied auto-correlation and cross-correlation techniques to extract features rep-

resenting EEG frequencies. By 1970, the introduction of the fast Fourier trans-

form made automated analysis of EEG frequencies practical (Dumermuth et al.,

1970). With the increase in computational power over the following decades it

became feasible to develop pattern recognition methods to detect EEG waves

and classify types of activity (Robert et al., 2002).

The Bayesian methodology of probabilistic inference, which only recently has

been made computationally practical, can be used to quantify the uncertainty in

results of EEG analysis, and during the last ten years it has been widely applied
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for EEG-based localisation of brain activity sources, see e.g. (Trujillo-Barreto

et al., 2004; Jun et al., 2008).

Analysis of newborn EEG has been developing as a special branch of elec-

troencephalography since the 1960s, when advances in neonatal care markedly

improved survival rates of babies born pre-term. Nevertheless, the pre-term

newborns remained at higher risk of brain injuries, and continuous EEG moni-

toring has been proposed to assess their brain function.

Brain maturation of newborns is reflected in rapid development of EEG

patterns over a number of weeks since conception. Observing the maturational

patterns, experts can assess newborn’s EEG maturity with an accuracy of ±1

or ±2 weeks. Analysis of newborn EEG requires specialised skills to recognise

the maturity-related waveforms and patterns and interpret them in the context

of newborns age and behavioural state (Mizrahi et al., 2003).

In this thesis, we develop and test a technology for computer-assisted as-

sessments of newborn brain maturity from EEG. To enable experts quantita-

tively evaluate risks of brain dismaturity for each case, we employ the Bayesian

methodology of probabilistic reasoning. The use of decision tree models for as-

sessments will enable interpreting the results as a set of rules and finding the

EEG features which make the most important contribution to assessments.

1.1 Motivation

During the past 20 years, the number of pre-term newborns has increased by al-

most 25%, and, despite the improved survival, the risks of neurological problems

are still high (Niemarkt et al., 2008). In the UK, over 80,000 babies every year

are born premature or sick (Bliss, 2012), and their brain development can be

affected by birth injuries, oxygen deprivation, or stress of pre-term birth. Brain

injuries are mainly diagnosed by ultrasound scanning. However, a newborn may

still be at risk caused by the development abnormalities which experts can only

recognise in sleep EEG.

These abnormalities are expressed as altered rates of maturation of EEG

patterns (Scher, 1997; Lombroso, 1985). Observing these maturational patterns,

experts can assess newborn’s EEGmaturity with an accuracy of ±1 or ±2 weeks.

If the EEG assessment matches a newborn’s age, the brain maturity is likely

normal. However, if the patterns are mismatched by more than two weeks, the

maturity is likely abnormal.

Abnormal brain maturation has been found strongly associated with in-

creased risk of sudden infant death syndrome (Scher et al., 2003b) and with

neurological problems in later life (Lombroso, 1985; Tharp et al., 1989; Oku-

mura et al., 2010; Bihannic et al., 2012). Developmental care procedures have
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been shown promising to correct brain dysmaturity (Beckwith and Parmelee,

1986; Scher et al., 2009). Therefore it is crucial to timely recognise abnormal

EEG maturation in order to provide the necessary care. Monitoring the devel-

opmental patterns in weekly EEG recordings is important to detect abnormality

and predict outcome for a newborn (Tharp et al., 1989).

The maturity-related patterns are difficult to recognise in EEG as they

widely vary during the first weeks after birth (Pressler et al., 2003). This makes

the analysis of EEG laborious, and as a consequence of that, EEG analysis

cannot be made available for all newborns at risk. Experts can sadly make

a mistake, as there are no regular rules for interpretation of EEG maturity

patterns.

To assist experts with analysis of EEG, computer-based classification meth-

ods have been proposed (Crowell et al., 1978; Holthausen et al., 2000). Within

these methods, it has been attempted to classify at most three levels of brain

maturity; however, automated assessment of in the range of ±2 weeks of new-

born’s stated age has not been explored. Consequently, the existing approaches

cannot assess brain maturity with the accuracy comparable to that provided by

experts.

Another limitation of the existing approaches is that, being based on a sin-

gle model, they cannot provide accurate estimates of confidence in assessments.

Using the methods of probabilistic inference is of crucial importance to allow

experts to quantitatively evaluate the confidence. The Bayesian theory of prob-

abilistic inference enables the confidence to be estimated most accurately, see

e.g. (Robert and Casella, 2004).

In addition to assisting experts with accurate estimates of confidence, it is

important to provide an explanatory model readable as a set of rules so that

the experts can understand how assessments are made in each case. The use of

decision tree models which are transparent for users will allow EEG experts to

make new finding in the neurological assessment of newborn brain.

1.2 Aim and scope

The aim of this research is to develop and test a computer-assisted technol-

ogy for assessments of newborn EEG maturation. The maturity assessment is

formulated as classification of EEG into ages expressed in weeks since concep-

tion. We expect to achieve the accuracy of the assessment comparable to that

obtained by experts.

The assessments will be made within the methodology of Bayesian averaging

over classification models to allow experts to obtain the exhaustive information

on risk of brain dysmaturity. The use of decision trees for classification enables
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making the results interpretable for experts and selecting EEG features making

important contribution to the assessments.

To obtain accurate assessments of newborn EEG, first, it is important to

minimise the negative influence of noise and artefacts on these weak signals.

Finding of most informative features to represent newborn EEG is an open re-

search area, and so extraction and evaluation of the features describing EEG

maturation will be explored in this work. Then, aiming to classify a large range

of newborns’ ages, we will look into ways of improving the accuracy of multi-

categorical classifiaction. Finally, we will test the computer-based assessments

on ca 1,000 recordings of newborns aged between 36 and 45 weeks.

In this thesis, the post-conceptional ages of the newborns are used as labels

of brain maturity. This approach, however, imposes limitations on estimating

the accuracy of maturity assessments because of the following reasons.

• Maturation of EEG patterns does not necessarily progress at the same rate

for all healthy newborns, and the normal patterns can vary for newborns

of the same age.

• Accurate estimation of post-conceptional age is not always possible and

the ages of some of the newborns could be estimated with an error of ±1

or ±2 weeks.

• The brain maturity of some of the newborns could be mismatched with

their post-conceptional ages because of their health conditions.

For accurate evaluation of the developed technology it would be necessary to

compare the results with expert assessments of brain maturity for each record-

ing. Ideally, each recording would have to be analysed by a few experts in order

to make the assessments more objective. Unfortunately, such analysis would be

infeasible for a large collection of recordings.

Nevertheless, as most of the newborns in the database were neurologically

normal, we assume that the maturational patterns in most of the EEG will be

appropriate for the stated ages. We expect that under the above conditions

the developed technology will be capable of recognising the age-related patterns

in EEG, and in the cases when the assessment will considerably mismatch the

stated age, brain dysmaturity may be suspected. Overall, we expect that the

rates of match between the stated age and the assessed maturity for the devel-

oped technique will be comparable to those of expert assessments performed on

smaller sets of newborn EEG recordings.
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1.3 Thesis outline

Chapter 2 provides the background information about the expert approach to

EEG maturity assessment as well as about previous work on computer-based

assessments. We describe the expected accuracy of maturity assessment based

on results found in literature. Next, we provide background on existing tech-

nologies of EEG maturity assessment. First, we describe the maturational pat-

terns analysed by experts and the rules proposed for assessing maturity from

EEG. Second, we review the existing approaches to computer-based assessments.

Lastly, we describe the EEG data available for our experiments.

Chapter 3 introduces Bayesian methodology of model averaging and the use

of decision tree models within this methodology. It discusses how the Bayesian

methodology is made computationally feasible by using the Markov chain Monte

Carlo method.

Chapter 4 explores how the influence of EEG artefacts can be reduced to

improve the accuracy of maturity assessments. The artefacts are typically de-

tected and marked by experts. Unfortunately, there are no standard rules for

detection of artefacts, and the marks may be subjective and inconsistent. We

assume that automatic removal of artefacts will provide better results within

Bayesian assessments than the manual removal by experts. We test this as-

sumption in experiments.

In Chapter 5 we assume that the accuracy can be improved further by

selecting the most informative EEG features. The standard spectral features

form a multidimensional representation of EEG data. It is unrealistic to expect

that all these features are equally important — some of them may be making a

weak contribution to maturity assessments. We assume that the weak features

unnecessarily increase the dimensionality of a model parameter space, making

it difficult to be be explored in detail within Bayesian integration. The lack of

detailed exploration can negatively affect the accuracy of Bayesian assessments.

Fortunately, the use of DT models within Bayesian model averaging enables the

importances of EEG features to be estimated in post analysis. We propose and

test a technique that uses the information on estimated importances to improve

the results of Bayesian assessments.

In Chapter 6 we assume that complementing the standard spectral features

with the new features which represent time-domain information will increase the

accuracy of assessments. Specifically, we explore extraction of features related

to EEG discontinuity, which is the most important maturational feature. We

propose a new technique to estimate EEG discontinuity as non-stationarity,

and show that the new feature outperforms the conventional discontinuity es-

timates. Used in combination with the standard spectral features, the new
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feature representing EEG non-stationarity significantly improves the accuracy

of assessments.

Having extracted the features which improve the assessment accuracy, in

Chapter 7 we extend the assessment technology to a larger range of ages.

When the number of age groups is increased, it becomes more difficult to learn

to distinguish the multiple age groups (classes). Therefore the accuracy of the

standard multiclass approach becomes negatively affected. We show that the

assessment accuracy can be improved by converting the multiclass problem into

a set of two-class tasks.

Finally, in Chapter 8 we explore the accuracy of Bayesian assessments in

the typical intervals of ±1 and ±2 weeks. We compare the accuracy with that of

expert assessments obtained for similar age groups. We show how the Bayesian

assessments of the posterior probabilities can be used for evaluating the risk

of possible errors and explore the shape of the class posterior distribution for

patient cases with normal and with dysmature assessments. Additionally, for

the found cases of dysmature assessments we tested two assumptions abut pos-

sible causes of the dysmaturity. We show a statistically significant relationship

between the mismatch and very pre-term birth.

1.4 Main contributions

The main contributions of this work in the order of significance are as follow:

• Automated assessment of newborn brain maturation from EEG. The ac-

curacy of the proposed automated assessment was comparable to that of

expert assessments. We tested the assessments on EEG of newborns aged

36 to 45 weeks and counted the accuracy within the intervals of ±1 and

±2 weeks of newborns stated age, as typically done by EEG experts. In

contrast, the automated assessments found in literature were capable of

estimating up to three levels of maturation. We also showed that matura-

tion of newborns aged 36–45 weeks can be assessed from two-channel EEG,

without the conventionally used multiple channels and a polysomnogram

(Chapter 8).

• A new feature describing discontinuity of newborn EEG. The new fea-

ture, estimated as the rate of pseudo-stationary EEG intervals, was shown

strongly correlated with newborns’ age in weeks since conception.The use

of the new feature significantly improved the accuracy of maturity assess-

ment. The new feature provided better accuracy than the conventional

discontinuity estimates based on variability of amplitude (Chapter 6).
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• Technique of refining Bayesian ensembles of decision trees. The idea of

the proposed refining technique is to discard the models which use the

features making weak contribution to assessments. The refining was shown

capable of increasing the performance and decreasing the ensemble entropy

or uncertainty. At the same time, it enabled selecting a subset of most

important EEG features (Chapter 5).

• Technique for binarisation of multiclass EEG assessment problem. We

showed that converting a multiclass problem into a set of binary ones

improves the accuracy of maturity assessments in case of multiple classes

and when the class labels, being ages in weeks, are naturally ordered. A

limitation of this technique is that the assessment decision is combined

from outputs of multiple binary classifier so that it becomes difficult to

interpret. To simplify interpretation of maturity assessments, we proposed

a meta-tree classifier which provides a performance comparable to that

of the pairwise binarisation while using fewer binary classifiers, whose

contributions are defined within a hierarchical structure (Chapter 7).

• Evaluation of techniques for removal of EEG artefacts to improve the accu-

racy of Bayesian assessments. EEG artefacts vary in the form and appear

within different types of activity, so that experts cannot apply standard

rules to artefact detection. Therefore, the detection can be inconsistent

between experts, and the inconsistencies in removal of artefacts can affect

the accuracy of computer-based assessments. We assumed that automated

removal, providing consistent results, will enable achieving better accuracy

of Bayesian assessments of brain maturity. In our experiments, automated

removal of artefacts was shown improving the accuracy of maturity assess-

ments, outperforming the manual removal (Chapter 4).
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with Bayesian averaging over decision trees. Expert Systems with Applications,

39(10):9340-9347. DOI: 10.1016/j.bbr.2011.03.031.

Jakaite, L., Schetinin, V. and Maple, C.(2012). Bayesian assessment of new-

born brain maturity from two-channel sleep electroencephalograms. Computer

and Mathematical Methods in Medicine. DOI: 10.1155/2012/629654.
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rity. The 24th International Symposium on Computer Based Medical Systems,

CBMS 2011, Bristol, UK. DOI: 10.1109/CBMS.2011.5999109.

Schetinin, V., Jakaite, L., Maple, C. and Schult, J. (2011). Informativeness of

sleep cycle features in Bayesian assessment of newborn electroencephalographic

maturity. The 24th International Symposium on Computer Based Medical Sys-

tems, CBMS 2011, Bristol, UK. DOI: 10.1109/CBMS.2011.5999111.

Jakaite, L., Schetinin, V., Maple, C. and Schult, J. (2010). Bayesian model

averaging over decision trees for assessing newborn brain maturity from elec-

troencephalogram. The 9th IEEE International Conference on Cybernetic In-

telligent Systems, CIS 2010, University of Reading, UK. DOI: 10.1109/UKRI-

CIS.2010.5898148.

Jakaite, L., Schetinin, V., Maple, C. and Schult, J. (2010). Bayesian deci-

sion trees for EEG assessment of newborn brain maturity. In the 10th Annual

Workshop on Computational Intelligence, UKCI 2010, University of Essex, UK.

DOI: 10.1109/UKCI.2010.5625584.

Posters presenting research results and related techniques have par-

ticipated in competitions:

Jakaite, L., Schetinin, V. (2012). Computer-Assisted Assessemnt of Newborn

Brain Maturity from EEG. SET for Britain 2012, The House of Commons, Lon-

don. Selected for the exhibition.

Jakaite, L., Schetinin, V. (2010). Feature Selection for Evaluation of Trauma

Death Risk. University of Bedfordshire Conference, Luton. Awarded 1st prize.

Techniques employed in this research have also been used in the fol-
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bustness of pairwise and multiclass neural-network systems for face recognition.

EURASIP Journal of Advances in Signal Processing. DOI: 10.1155/2008/468693.
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on Biomedical Engineering and Medical Physics, 20(3):123-126, Riga, Latvia.

DOI: 10.1007/978-3-540-69367-33 3.

The author’s contribution to these publications was in part of the application of

Bayesian model averaging over decision trees to real data, including contribu-

tion to the conception of research, design and implementation of experiments,

and interpretation of results.
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Chapter 2

Maturational Patterns in

EEG

EEG patterns reflect rapid maturational changes in the brain from prematurity

to a few weeks after birth. Analysing these patterns experts can estimate a

newborns EEG age and compare it to the stated physiological age to assess

brain development. The maturational patterns were being validated during the

past fifty years, whereas finding of the EEG features for automated assessments

is an open research question. This chapter provides the background on the

expert and computer-assisted assessments of newborn EEG maturation.

Section 2.1 introduces the technique of recording newborn EEG and the main

characteristics of the resulting signal. Section 2.2 explains why EEG matura-

tion is typically assessed within the interval of ±2 weeks of a newborn’s stated

age, and summarise the results of assessments described in literature. We also

state the possible causes of abnormal EEG maturity. Next, in Section 2.3 we

provide the background on existing technologies of EEG maturity assessment.

We describe and give examples of the maturity-related patterns interpreted by

experts, and discuss the assessment scales based on these patterns. Section 2.4

discusses the existing approaches to computer-based assessments. First, we de-

scribe extraction of features carrying the information on EEG maturity. These

features can be correlated to ages of newborns or used to represent EEG data

for automated classification. We discuss the existing attempts to classify the

maturational levels. Finally, in Section 2.5 we give characteristics of the data

available for our research, and in Section 2.6 we summarise the chapter.
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2.1 EEG recording technique and properties

EEG enables monitoring a newborn’s brain function continuously during a few

hours to make real-time assessments. This makes EEG the most sensitive tech-

nique for predicting outcome in newborns with brain injury (Boylan, 2008). To

take full advantage of EEG, it is important to record during at least one hour

to capture the maturational patterns which vary with a patient’s sate, specifi-

cally the two main states, called the quiet and active sleep (Pressler et al., 2003;

Scher, 2006).

EEG is typically recorded with non-invasive electrodes placed on patient’s

scalp according to the standard “10–20” electrode placement system in positions

shown in Fig. 2.1. Electrical activity of different brain regions is recorded from

a number of EEG channels, each of which measures the difference between two

electrodes. The channels may be set up according to a given “montage” system.

The two most common montages are the bipolar and referential. In the bipolar

montage two adjacent electrodes are linked into one channel, whereas in the

referential one each of the scalp electrodes is linked to a common reference

electrode.

EEG signal is composed of waves with different frequencies and amplitudes.

The frequencies are typically measured in the range of 0.1 to 30 Hz. The am-

plitudes are measured in a range of -100 to 100 µV (microvolts) with a mean

amplitude of zero and the minimal and maximal amplitudes are symmetrically

distributed around the mean. The absolute amplitudes, measured from peak of

a wave to its trough, usually are in the range of 50-100µV (Boylan, 2008).

The average absolute amplitude and dominant frequencies of newborn EEG

change in time, reflecting short term variations in brain activity as well as

changes between the quiet and active sleep stages. These variations make the

EEG highly non-stationary. Being a weak signal, EEG is easily contaminated by

artefacts which can be biological or caused by external sources. The biological

artefacts can be caused by patient’s movements, breathing, pulse, etc., whereas

external artefacts — by electrical interference from other monitoring devices

in neonatal intensive care units. It is important to recognise and exclude the

artefacts, some of which may appear similar to EEG waves (Clarencon et al.,

1996; van de Velde et al., 1999, 1998).

In general, it is desirable to record EEG from the complete set of electrodes

to capture the whole range of maturity-related patterns which are observed at

different brain regions (Mizrahi et al., 2003). The complete set includes more

than 20 electrodes.

In practice, it may be too difficult or time-consuming to place all the elec-

trodes on a small newborn’s head, especially when other care procedures must be
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carried out (Boylan, 2008). Long preparation for EEG additionally causes stress

for a newborn and consequently affects the quality of sleep so that artefacts oc-

cur more frequently. Moreover, the interpretation of some of the electrodes may

be difficult as they are highly affected by artefacts from eye and head movement

(Chang et al., 2005).

Therefore a minimal set of electrodes often needs to be chosen so that most

of the maturity-related patterns can be captured and at the same time the

preparation costs and the influence of artefacts can be minimised. One way

of achieving such a trade-off is to use four electrodes linked into two bipolar

channels C3T3 and C4T4 (Holthausen et al., 2000). Electrodes in these positions

show maturational changes most clearly (Niemarkt et al., 2011).

EEG is often recorded as part of a polysomnogram comprising measurements

of heart and respiration rates, movements of eyes, limbs and chin, as well as

blood oxygen saturation. The full polysomnographic information is typically

taken into account for assessment of developing sleep cycles, which however

after the 36 weeks are so developed that they become apparent in EEG (Mizrahi

et al., 2003). Therefore, maturity assessment at this age may be done from EEG

exclusively.
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Figure 2.1: Positions of electrodes according to the standard system. Letters
denote head regions: prefrontal (Fp1, Fp2), frontal (F2-F7), temporal (T3-T8),
central (Cz, C3, C4), parietal (P2-P4) and occipital (O1, O2). The odd and
even numbers denote the left and right hemispheres.
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2.2 Accuracy of maturity assessments

This section explains why EEGmaturation is typically assessed within the inter-

val of ±2 weeks of newborn’s stated age. The performance of computer-assisted

method will be assessed in the same interval.

First, we give the terms referring to ages of newborns, used for discussing

maturity assessment techniques. We discuss the assessment accuracy that can

be theoretically achieved based on the conventional criteria. We also note that

assessments can sometimes mismatch because of uncertainty in the estimate

of newborn’s physiological age. We then summarise the results of assessments

described in literature. We also state the common factors of abnormal EEG

maturity which can lead to mismatched assessments.

2.2.1 Terminology of newborn ages

Newborn’s gestational age refers to the time in weeks from conception to birth,

and is counted since mother’s last menstrual period. The Post-Conceptional Age

(PCA) is a sum of the newborns gestational age and weeks since birth. It is

considered that EEG patterns of a newborn are determined by PCA rather than

gestational age (Lombroso, 1985; Pressler et al., 2003), therefore EEG maturity

is assessed in PCA.

Newborns’ ages are conventionally classified into a number of groups. Most

broadly, babies born before 37 weeks are classified as born pre-term. Births at

38 to 41 weeks are full-term, and after 41 weeks – post-term. To distinguish

between different developmental stages from conception till birth, ages of pre-

term babies can be additionally classified as very pre-term (before 32 weeks)

and late pre-term (34-37 weeks).

2.2.2 Assessment intervals and uncertainty

The criteria proposed in literature for estimating EEG maturity are given in

ranges of 3 to 5 weeks PCA (Lombroso, 1985; Mizrahi et al., 2003; Pressler

et al., 2003; Niedermeyer, 2005). According to these criteria, EEG recorded at

neighbouring PCA weeks are very similar, whereas EEG recorded a few weeks

apart can be distinguished more easily. Brain development is, however, a contin-

uous process, and the criteria corresponding to certain weeks should be viewed

as a guide only. In theory, these criteria enable brain maturity to be estimated

with accuracy of ±2 weeks, and the maturity is considered abnormal if an EEG

estimate is out of this range (Tharp, 1990).

When evaluating the gap between the EEG estimate and stated age, we must

keep in mind that PCA can be mistaken. The weeks of PCA are most often
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counted on the base of information obtained from a questionnaire of the mother.

Such information can be imprecise so that the PCA estimate can be mislead-

ing. Ultrasound dating has been shown more accurate than the questionnaire

estimate and normally is undertaken during the first three and six months of

pregnancy. The dates are typically replaced by the ultrasound estimates if the

difference exceeds ±1 week in the first three months and ±2 weeks, in the six

months (Hoffman et al., 2008).

Unfortunately, few publications have compared the EEG estimated ages with

PCA in practice. In one of the first publications on EEG assessment of newborn

brain development (Parmelee et al., 1968), the experts have estimated maturity

of 47 EEG recordings made at 30 to 43 weeks PCA. The estimates matched

the PCA in a range of ±2 weeks for 85% of cases. The rate of match was 60%

within the range of ±1 week and 27% of recordings matched the PCA exactly.

It remains unclear, however, whether the newborns for whom the assessments

were mismatched by more than ±2 weeks had any neurological problems.

Recently, a modified version of the approach by Parmelee et al. has been

tested on 146 recordings of newborns aged 27 to 37 weeks PCA (Kato et al.,

2011). The maturity was assessed for 129 recordings which were found of ac-

ceptable quality. In 77.5% the assessment was within the interval of ±1 week of

stated age and in 96.9% — within ±2 weeks. However, in 17 recordings experts

could not assess brain maturity because of artefact contamination. It must be

also noted that some PCA, especially 32 and 34 weeks, are easy to identify by

characteristic EEG waves, whereas at other ages there are no such markers.

A comparison between the EEG, ultrasound and questionnaire-based es-

timates of PCA has been made by Scher et al. (1994a). They assessed the

EEG maturity of 13 very pre-term newborns who were subsequently reported

as healthy at one to three years of age. It was concluded that average PCA esti-

mates based on EEG, mothers questionnaire, and a number of ultrasound mea-

surements counted over the 13 subjects were not significantly different. However,

for individual patients, the various PCA estimates differed by three to 12 weeks

in 10 of the cases. These results illustrate the difficulty of estimating the PCA

with any of the techniques. To obtain a reliable ultrasound-based estimate, an

expert has to review and compare the different ultrasound measurements, how-

ever, the final estimate was not shown in the paper. From the shown results,

EEG estimate matched the questionnaire-based one in a range of ±2 weeks in

10 of the cases (approximately 77%).

Based on the above discussion, we must keep in mind that the uncertainty in

stated PCA will affect the accuracy of automated maturity assessments which

we aim to obtain in our research. Under the uncertainty, the EEG data of neigh-

bouring weeks will overlap and we cannot expect that the maturity assessments
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will exactly match the stated PCA in most of the cases. However, we aim to

achieve the accuracies in the ranges of ±1, ±2 weeks, which are at least as good

as those provided by experts, as reported by Parmelee et al. (1968).

2.2.3 Causes of dysmaturity

In some of the cases when the maturity assessments mismatch the stated age, the

reason is that PCA estimates were mistaken. However, the causes of mismatch

may be physiological, and so may alert about development problems. Persistent

maturational delays of more than two weeks are usually found in patients with

brain injuries or chronic hypoxia. On the other hand, transient dysmaturity

which becomes resolved within a few weeks has not been found associated with

neurological problems (Lombroso, 1985; Tharp, 1990).

The pioneering studies in newborn EEG reported that maturation progresses

independently of gestational age and birth weight (Parmelee et al., 1967, 1968).

More recently, it has been found that rates of brain development in pre-term

newborns may be altered. Conde et al. (2005) found prolonged dysmature pat-

terns in babies born at or before 28 weeks gestational age. The dysmaturity was

more evident in those of the newborns who were diagnosed with brain lesions.

In (Scher et al., 1994c, 2003a, 2011) it was shown that the maturational trends

are altered even in healthy pre-term newborns. In general, clinical significance

of dysmature patterns in the absence of apparent brain abnormalities is yet to

be established. In this direction, (Beckwith and Parmelee, 1986) showed that

altered maturation in pre-term newborns is associated with lower intelligence in

childhood, however such outcomes were avoided if babies were raised in attentive

environments.

Some studies have attempted to find association between known risk factors

and brain dysmaturity. Sterman et al. (1982) studied EEG maturation in 20

newborns who had a family history of sudden infant death, and therefore were

considered at higher risk. It was found that some of the maturational patterns

for these newborns appeared approximately four weeks earlier, than for a control

group. Authors explained the accelerated maturation by adaptive response to

a mild inborn hypoxia sustained by at-risk infants. Holthausen et al. (2000)

explored association between dysmaturity and apnoea. They analysed 71 EEG

recordings of which seven were found dysmature. All seven were from newborns

at high risk of apnoea.

Based on these findings, we can expect that factors such as pre-term birth

and risk of apnoea can alter the maturational patterns in some of the recordings

included in our data, and so the portion of matching assessments can become

decreased. These factors will be explored in this thesis. In the next section

27



we describe the maturity-related patterns which experts analyse in sleep EEG.

We also review some approaches to scoring of these patterns to brain maturity

assessment.

2.3 Expert assessment technology

Experts typically view newborn EEG at time scale of 1.5 cm/sec and amplitude

scale of 50-100 µV/cm. Under these stetting, experts can detect characteristic

individual waveforms as well as patterns of reoccurring waves and changes in

sleep states (Scher, 2006).

First, we introduce continuity, which is one of the most important charac-

teristics of newborn EEG, and describe how it varies with age. The frequency

is discussed with reference to the main rhythms of EEG patterns evolving with

age as well as to separate waveforms typical for certain weeks. We then describe

how EEG varies over sleep states of newborns and how these variations are de-

veloping with age. Finally we review the maturity assessment scales based on

visual analysis of continuity, frequency and sleep state.

2.3.1 Continuity

EEG of very pre-term and full-term are easily distinguished based on their

continuity (or contrary discontinuity). By definition, an EEG pattern is dis-

continuous if the intervals with the normal voltage range are interchanged with

periods of low voltage below < 20µV, called the inter-burst intervals. Other-

wise, if the average amplitude is relatively constant with no periods of inactivity,

the pattern is continuous.

EEG of very pre-term newborns is discontinuous during most of the record-

ing. Long inter-burst intervals lasting up to 60 seconds, during which there may

be no measurable activity, are interrupted by shorter high-amplitude bursts of

mixed-frequency waves. This pattern is called tracé discontinu (Pressler et al.,

2003; Boylan et al., 2008).

Fig. 2.2 shows segments with different continuity from an EEG recorded at

30 weeks PCA. Here, EEG is plotted at 50% scale of typical display (0.7 cm/sec,

150 µV/cm) to fit sufficient signal on page while keeping the proportions which

are familiar to experts. The upper plot shows a segment with tracé discontinu

pattern. An inter-burst interval is seen during the first ten seconds and then a

burst with amplitude 100-150µV appears. The lower plot shows a continuous

segment from the same EEG recording. Although the amplitude varies, there

are no obvious periods of inactivity.
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Figure 2.2: Continuous and discontinuous segments from an EEG recorded at
30 weeks PCA.

It has been observed that during brain development, the portion of discon-

tinuous patterns is decreased while continuous patterns become longer. At the

same time, the discontinuous patterns become “less discontinuous” as inter-

burst intervals become progressively shorter while bursts become longer. Al-

though this tendency for the decrease in discontinuity has been observed in

several studies (Scher et al., 1994b; Niemarkt et al., 2010; Pressler et al., 2003;

Boylan et al., 2008), the proportion of discontinuous patterns and the mean

and maximal lengths of bursts and inter-burst intervals varied significantly

(Niemarkt et al., 2008). This variation in results can be caused by the lack

of standard rules for detection of inter-burst intervals. Hahn et al. (1989) found

that the mean and maximal durations of inter-burst intervals were significantly

affected by the choice of criteria for detection. Defining the criteria is problem-

atic mainly because the amplitudes of bursts and inter-burst intervals change

during maturation (Pressler et al., 2003), so that a single rule cannot be applied

for detection of discontinuity at different PCA. Because of the lack of agreed

criteria, the assessments of discontinuity can be subjective.

Nevertheless, it is generally considered that at full-term age, EEG is mostly

continuous, except during one pattern named tracé alternant, shown in Fig. 2.3.

In this pattern, inter-burst intervals are only 4-5 sec long and bursts last 2-4 sec.

This pattern starts to replace tracé discontinu at 36 weeks PCA, and it may be

observed till 44 weeks (Mizrahi et al., 2003; Boylan et al., 2008). In contrast to

the very pre-term discontinuous patterns, in the full-term tracé alternant, the

inter-burst intervals show higher amplitude and are never completely inactive.

The amplitude of burst gradually decreases with maturation. As the difference

in the amplitudes of the bursts and inter-burst intervals becomes less prominent,
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the full-term tracé alternant pattern cannot be strictly defined as discontinuous

and sometimes is said to be semi-discontinuous (Pressler et al., 2003).

It is important to note that tracé discontinu and tracé alternant are nor-

mal patterns for healthy newborns, if observed at appropriate PCA. However,

these patterns must be distinguished from a specific pathological discontinuous

pattern called burst-suppression, which is always associated with brain injuries.

Burst suppression appears similar to the tracé discontinu with long inactive

inter-burst intervals and high-amplitude bursts. However a distinct feature of

this pattern is that it does not vary during the whole recording (Mizrahi et al.,

2003).
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Figure 2.3: Tracé alternant pattern at 40 weeks PCA.

2.3.2 Frequency

Conventionally, the range of EEG frequencies is subdivided into a number of

bands: Subdelta (0-1.5 Hz), Delta (1.5-3.5 Hz), Theta (3.5-7.5), Alpha (7.5-

13.5), Beta 1 (13.5-19.5 Hz), and Beta 2 (19.5-25 Hz). These frequencies can

be represented by specific maturity-related waveforms as well as by patterns

consisting of mixed waves. Experts typically assess the frequencies of different

EEG waves by comparing them with a time scale. The frequency of a wave in

Hz can be estimated by comparing its cycle length with a one-second interval.

In newborn EEG, the slow waves normally are higher in amplitude and vice

versa the faster waves are lower.

Fig. 2.4 shows examples of characteristic waves from each of the frequency

bands. The waves which are higher in amplitude, rhythmic and with clearly

visible frequency composition are easiest to detect by visual analysis. There-

fore, experts have explored such waves as maturational features. The overall

frequency composition of a recording, influenced by multiple different waves,

may provide new features, which cannot be assessed visually (Richards et al.,

1986).

Experts have observed that, during maturation, the development of conti-

nuity is accompanied by an increase in the dominant frequency from Subdelta-

Delta to mixed frequencies (Pressler et al., 2003). In the very pre-term EEG,

30



Subdelta
0 -1.5 Hz

Delta
1.5-3.5 Hz

Theta
3.5-7.5 Hz

Beta
13.5-19.5 Hz

Beta2
19.5-25 Hz

Time, s

2 3 4 5 6 7 8 9 1010

Voltage, µV

50

-50

0

Figure 2.4: Examples of EEG waves from each of the frequency bands: Subdelta,
Delta, Theta, Alpha, Beta and Beta2.

high-amplitude Subdelta and Delta waves are predominant during bursts and in

the developing continuous patterns. At full-term PCA, most of the continuous

patterns show a mixture of frequencies.

A specific waveform with high amplitude in the Subdelta-Delta frequency

bands often seen during 26-36 weeks PCA is a Delta brush, a wave consisting of

high-amplitude Subdelta or Delta wave with superimposed Alpha-Beta activity

of lower amplitude forming a ”brush” on the wave, see Fig. 2.5. The Delta

brushes are seen most frequently at approximately 32 weeks PCA, and then

become more rare, finally disappearing at full-term age.

The Theta burst is a rhythmic wave with Theta frequency and amplitude

of 100-200µV, observed at temporal (T*) electrodes. This waveform appears at

28 weeks and is maximal at 32 weeks. After this age during weeks 34-35, the

frequency of the sawtooth shifts to the Alpha band.

Time, s

2 3 4 5 6 7 8 9 1010

Voltage, µV

50

-50

0

Temporal sawtooth Delta brushes

Figure 2.5: Age-related EEG waveforms.

By 36-37 weeks PCA, the largest part of recording is occupied by continuous

patterns visible as a mixture of Delta and Theta waves of a moderate amplitude

of 20-100µV intermixed with some low-amplitude Alpha-Beta activity. Closer

to full-term age, it becomes possible to visually distinguish a number of patterns
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with characteristic frequency composition, which appear during the quiet and

active sleep. A pattern of high-amplitude delta waves remains during a part of

quiet sleep. During the remaining part, tracé discontinu becomes replaced by

tracé alternant, which contains a larger portion of low-voltage high-frequency

activity during the inter-burst intervals. Tracé alternant, in turn, gradually

diminishes during weeks 44 to 48 (Koszer et al., 2006). Half of a recording

contains active sleep patterns of mixed Delta, Theta, Alpha and Beta waves in

low or medium amplitudes. Next, we look in more detail at the development of

the quiet and active sleep as a maturity-related feature.

2.3.3 Sleep states

The development of a cycle of active and quiet sleep states is an important

characteristic of normal brain maturation. At full-term age, the sleep cycle

variations should be clearly visible in EEG. However, some authors consider that

a rudimentary sleep cycle appears in EEG as early as 27 weeks PCA (Curzi-

Dascalova et al., 1993; Koszer et al., 2006).

In general, the active sleep patterns tend to be with higher frequency and

lower amplitude, whereas quiet sleep patterns, contrary, tend to be with lower

frequency but higher amplitude (Boylan et al., 2008). The difference in the

average amplitudes during the active and quiet sleep is clearly seen in full-term

EEG. This difference in amplitudes starts to become distinguishable at 36 weeks

PCA. In the pre-term EEG, the sleep states differ mainly in continuity: the

active sleep patterns tend to be more continuous than the quiet sleep ones. The

cyclic variations in continuity are present in normal EEG at 30 weeks (Olischar

et al., 2004; Koszer et al., 2006). As EEG matures from pre-term to full-term,

the percentage of quiet sleep in a recording increases to approximately 50%.

At full-term age, four patterns typify the sleep stages. Two patterns can be

seen during the quiet sleep: the continuous slow-wave sleep pattern of Delta and

Theta waves with amplitudes of 25-100µV, and the semi-discontinuous tracé al-

ternant. The active sleep is represented by two continuous patterns of mixed

Delta, Theta, Alpha and Beta waves: the low voltage irregular pattern with am-

plitude of 10-15µV, and the mixed pattern with some higher-amplitude (50µV)

Theta waves.

Fig. 2.6 shows the sleep cycle in an EEG recorded at 40 weeks PCA. The

upper plot shows approximately 3.5 h of the recording. The quiet sleep states,

lasting approximately 30 min each, can be identified by an increase in the av-

erage amplitude. The 20 sec segments shown in the lower plots exemplify the

slow-wave sleep, tracé alternant, low voltage irregular and mixed pattern, cor-

responding to marks a, b, c and d.
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It is also possible to recognise the quiet and active awake states in newborn

EEG. However, awake EEG is difficult to record and prone to artefacts, and

therefore is not widely used for brain maturity assessment.
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Figure 2.6: Sleep cycle and corresponding patterns: a) slow-wave sleep, b) tracé
alternant, c) low voltage irregular, d) and mixed pattern.

2.3.4 Scales for assessment

In one of the first publications on newborn brain maturity assessment from

sleep EEG, Parmelee et al. (1968) proposed an EEG pattern coding system

for visual assessment of brain maturity. The coding system defined 5 basic pat-

terns with characteristic continuity level, frequency composition, and amplitude

range. Additionally, the system distinguished maturity-related variations of the

basic patterns for weeks 28, 32, 36 and 40. In total, the system used 10 codes, ad

the descriptions and illustrations were provided for the corresponding patterns.

During analysis, one of the 10 codes was assigned to each 20 sec EEG segment.
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The assessment of maturity was made based on distribution of the codes in the

recording. The resultant assessments were found matching the PCA within the

range of ±2 weeks in 85% of cases.

To use the coding system, it is necessary to learn to identify the patterns

based on descriptions and illustrations. Each 20 sec segment of a recording

has to be coded to obtain the distribution of patterns for maturity assessment.

In practice, the patterns widely vary, and considerable experience is needed to

recognise them. It was found that two experts scoring a set of EEG segments

assigned the same patterns in 65% of cases.

Tharp et al. (1989) employed a simplified technique to quickly estimate mat-

uration in late pre-term and full-term newborns. The technique has been in-

tended to detect significant dysmaturity of EEG after 37 weeks PCA rather than

to study ongoing maturation. The following features were considered appropri-

ate for the age group: infrequent Delta brushes, moderate amplitude (≥ 25µV)

of inter-burst intervals during the tracé alternant, synchronous start and du-

ration of bursts observed at both hemispheres, and rare Theta bursts. In the

absence of these features, a dysmaturity of at least 2 weeks was defined. The

system may be unsuitable to assess ongoing maturation after 37 weeks.

Recently, (Kato et al., 2011) published results of assessments in a range of

±2 weeks made for newborns aged 26-38 weeks. The assessment was mainly

based on the following parameters: amplitude and frequency of Delta waves,

rate of Delta brushes, characteristic waveforms, and percentage of continuous

activity. The latter was counted as the percentage of uninterrupted continuous

segments which lasted at least 20 sec. The rate of Delta brushes was given

qualitatively. To detect some of the waveforms, 8-channel recordings were used.

The technique was tested on 129 recordings of 37 patients aged 27-34 weeks,

and the assessment was matched in the range of ±2 weeks for 97% of recordings.

Kato et al. also noted that the technique required a high level of EEG inter-

pretation skills. Specifically, the observation of the maturity-related waveforms

over the 8 channels was necessary for achieving the high accuracy of assess-

ments, whereas confident assessment from 2 channels was found difficult. In

general, the analysis of waveforms such as Theta and Alpha bursts enables ac-

curate estimation of maturity for 32-35 weeks PCA, whereas for later ages no

such developmental markers are known. Therefore, the accuracy is expected

lower at these ages.

2.4 Computer-assisted maturity assessments

For automated assessments, the continuity, frequency and sleep state variations

need to be estimated automatically. This estimation is termed EEG feature
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extraction. The correlation between the extracted features and ages of new-

borns can be explored to establish their relevance to brain maturation. It has

also been attempted to use the features to represent EEG data for automated

classification.

This section first reviews the approaches to EEG feature extraction and the

associations found between the features and newborn brain maturation. Spec-

tral powers, describing EEG frequency composition, are the most widely used

features for automated assessments, and we first describe the main approaches

to computing the spectral powers, as well as the correlations between spectral

powers and maturation reported in previous studies. Then we introduce ampli-

tude integration, which is becoming an established technique to assist experts

with visual analysis of newborn EEG. The existing approaches to extracting

continuity features are reviewed next. We also review some of the more rarely

used features including spectral edge frequency, entropy and complexity. Some

of these features were employed to differentiate between the sleep states of new-

borns. Finally, we turn to automated classification of EEG data represented

by the maturity-related features and review the previous attempts to classify

different levels of maturity.

2.4.1 Spectral powers

Typically, computer-aided analysis of sleep EEG is carried out with the spectral

powers computed in the standard frequency bands. To compute the spectral

powers, EEG is transformed into the frequency domain using the discrete Fourier

transform. The idea of the transform is to multiply the signal with a pair of

sine and cosine waves for each frequency. These products provide the total

amplitude of activity within the corresponding frequencies. The computation

has been made efficient within the Fast Fourier Transform (FFT) algorithm.

The number of frequencies, or spectral resolution, in the FFT of a signal is

equal to the number of samples divided by two. Obviously, the lowest frequency

that can be represented, in Hz, depends on the duration of signal in seconds, and

the highest frequency depends on the sampling rate. That is, given a signal with

duration of T seconds, sampling rate S, and length N = T ×S, the computable

frequency range will be from
1

T
Hz to

S

2
Hz (Nyquist frequency), and there will

be
N

2
frequency components.

The plot of the amplitudes over frequencies is the frequency spectrum of a

signal. To obtain the powers within the standard frequency bands, the spectral

components falling within each band are averaged and squared. These are called

the absolute powers. The relative powers are obtained by dividing the power in

each band by the summed power of all bands.
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One problem with spectral analysis of EEG is, however, that Fourier trans-

form assumes stationary signals. That is, signals whose mean amplitude and

frequency do not vary over time. This means that the Fourier transform gives

a measurement of the total power of waves with different frequencies, but con-

tains no information about the time distribution of EEG activity. For example,

within a given frequency band, the power of continuous low voltage activity may

be the same as that of rarely occurring waves with high amplitude. Spectra may

also become corrupted by high-amplitude EEG artefacts which introduce non-

stationarities in data (Clarencon et al., 1996).

To cope with the non-stationarity of EEG, it is typical to apply the trans-

form to short epochs which are assumed to be pseudo-stationary, that is, their

amplitude and frequency vary in a small range. The durations of segments are

usually 2-30 sec (Cooper et al., 2003; Victor et al., 2005; Estevez et al., 2002).

Generally it is desirable to transform longer segments in order to obtain a higher

resolution and a better representation of low frequencies. However, the longer

the segments, the more likely they are to be non-stationary. Given that even rel-

atively short (8 sec) segments are often non-stationary (McEwen and Anderson,

1975), the choice of segment length is ad hoc. To avoid presetting the segment

lengths, adaptive segmentation can be used to automatically split EEG into

pseudo-stationary intervals (Barlow, 1985; Aufrichtig et al., 1991; Appel and

Brandt, 1983; Bodenstein et al., 1985; Agarwal et al., 1998).

In a typical few hours long EEG recording, there will be thousands of pseudo-

stationary segments, in which the spectral bands have been computed. Classi-

fication of such large amount of data would be infeasible, and sometimes indi-

vidual segments have to be selected for anlysis (Holthausen et al., 1999; Paul

et al., 2003). However, the selected segments may not be representative of the

whole recording. One way to obtain a compact representation of the whole EEG

recording is to combine the spectral estimates computed in all the segments. A

standard approach is to average spectra over segments. An advantage of such

averaging of the spectra is that transient variations and artefacts, that affect the

individual segments, become suppressed, so that a more robust representation

of a patient’s state can be obtained (Cooper et al., 2003; Victor et al., 2005;

Kropotov, 2009).

Alternatively to using the FFT, spectral characteristics of EEG can be rep-

resented by coefficients of autoregression (Crowell et al., 1978, 1977), which are

can be more robust to non-stationarity according to (Blinowska et al., 1981).

However, the coefficients are not as clearly interpretable as the powers in spectral

bands, and there is no guarantee that all important bands will be represented.

Another alternative is the discrete wavelet transform which provides a time-

frequency representation of EEG. The discrete wavelet transform produces a
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result similar to that of applying a series of band-pass filters. This transform

enables analysing changes of frequency over time and can be useful for detecting

transient pattens with known frequencies, such as the repetitive bursts in tracé

alternant (Turnbull et al., 2001). However, to obtain a compact representation of

an EEG recording, the results of discrete wavelet transform need to be processed

further, as the data size of the transform is equal to that of the original signal.

Maturational changes of the powers in frequency bands have been explored

in several studies (Bell et al., 1991b; Scher et al., 1995; Holthausen et al., 2000;

Niemarkt et al., 2011). The absolute powers in Delta and Theta bands as

well as the relative Delta, Alpha and Beta powers have been found correlated

with maturation from pre-maturity to full-term. Surprisingly, there was no

agreement between these studies about the direction of the correlation for some

of the bands. For example, the groups of Scher and Holthausen found that

the absolute Theta power increased with maturation. Contrary, Niemarkt et

al. found that the Theta power decreased. Likewise, the absolute Delta power

was found decreasing in two studies (Bell et al., 1991b; Niemarkt et al., 2011),

whereas Holthausen et al. found that it was increasing.

The causes of this variability between studies remain unclear. It is possible

that the powers could be affected by variations, especially when the number of

subjects was small as in (Niemarkt et al., 2011). It is also possible that the

relationship of powers and PCA is non-linear and the direction of correlation

depends on the age range analysed. To obtain reliable results, the correlations

need to be studied in various PCA groups and on a large set of recordings.

2.4.2 aEEG features

The amplitude-integrated EEG (aEEG) assists experts in assessing some of

the maturity-related features, such as continuity, maximal amplitude and sleep

cycle. The idea of aEEG is to present experts with a compact display of the EEG

envelope, or the line connecting peaks in the signal. The detection of envelope is

based on the principle of a smoothing capacitor, which is charged on the peaks

and gradually discharged when no peaks are encountered. Consequently, the

minimal and maximal amplitudes of the envelope reflect EEG amplitude as well

as continuity. During continuous patterns, the envelope will stay “charged”,

whereas during discontinuous patterns the envelope will be “discharged” on

inter-burst intervals. The longer the inter-burst intervals, the more will the

envelope decrease in amplitude.

The minimal and maximal amplitudes of the compressed envelope make up

the lower and upper borders of aEEG. The difference between the lower and
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upper borders, analogous to the ripple of the smoothing capacitor, is called the

aEEG bandwidth.

Within the aEEG technique, the envelope is presented in a time-compressed

way to enable experts view the whole recording and assess cyclic variations in

continuity and amplitude from the borders and bandwidth. Guides for aEEG

interpretation describe the values which are characteristic to patterns with dif-

ferent levels of amplitude and continuity, including the normal maturational as

well as pathological patterns (Thornberg and Thiringer, 1990; Olischar et al.,

2004; Hellstrom-Westas et al., 2006, 2008). These values are typically mea-

sured manually by experts as there is no established technique for automated

assessment.

Experts have observed that with advancing PCA the amplitude of the lower

border of aEEG becomes elevated and the bandwidth decreases (Viniker et al.,

1984; Thornberg and Thiringer, 1990). Burdjalov et al. (2003) proposed an

aEEG-based scoring system for brain maturity assessment (Burdjalov score).

The scoring system includes four components: continuity, sleep cycle, lower

border amplitude and bandwidth. For the amplitude and bandwidth, thresh-

olds were proposed, whereas the assessments of continuity and sleep cycle were

qualitative. The total score was shown correlated with brain maturity between

24 and 39 weeks PCA.

Recently, Kato et al. (2011) evaluated results of aEEG-based maturity as-

sessments on 129 recordings from newborns aged 27-37 weeks PCA. They com-

pared the accuracies of the Burdjalov aEEG score and Parmelee coding system

(Parmelee et al., 1968). The visual assessment based on Parmelee coding was

found more accurate; the assessments were in the range of ±2 weeks for 96.7%

of recordings, whereas for the Burdjalov score 79.8% of the recordings were as-

sessed within this range. Authors argued that the parameters of aEEG scores

were limited in describing brain maturation, compared to visual assessment of

patterns.

2.4.3 Continuity features

Most techniques for estimation of continuity are based on measuring the variabil-

ity of maximal EEG amplitudes. The most widely known approach is to assess

continuity from aEEG by manually measuring the lower border and bandwidth,

as well qualitatively assessing the density of tracing.

To measure continuity automatically, it has been suggested to apply ampli-

tude thresholds to segment the bursts and inter-burst intervals (Jennekens et al.,

2011; West et al., 2011). A disadvantage of this approach is that a threshold

needs to be adjusted for every recording.
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Another approach is to evaluate the distribution of envelope amplitudes,

as proposed in (Wong and Abdulla, 2008). Unlike in the aEEG, within this

technique the envelope was detected as a vector of the mean amplitudes of

pseudo-stationary segments. The distribution of the envelope amplitudes was

then approximated with a lognormal distribution, and the mean and variance

of the distribution were proposed as quantitative continuity features. In (Wong,

2008) it was shown that these features were correlated with PCA between 25 and

35 weeks. However the variability between subjects was high and the features

could not be employed for classification of maturity.

Results presented in (Paul et al., 2003) reveal a promising new approach

to estimating continuity, although this work was mainly focused on comparing

frequency and variability features of newborn EEG during the quiet and active

sleep. To extract the features, EEG are first segmented into pseudo-stationary

intervals. An interesting observation was that durations of these intervals were

informative for differentiation of the sleep states. Specifically, shorter segments

were detected in the quiet sleep which is more discontinuous, whereas longer

segments were found in the more continuous active sleep. This finding suggests

that the lengths of pseudo-stationary intervals may be a promising feature to

estimate continuity.

2.4.4 Other features

In addition to the standard frequency bands, other spectral characteristics are

sometimes used for analysis of newborn EEG. Spectral edge frequency (SEF) is

the frequency below which 95% of the total power of a signal is located. Bell

et al. (1991a) found that SEF increases with maturation. Recently, West (2006)

studied SEF in newborns aged 28–38 weeks and found the increase during weeks

28–33, after that SEF stabilised. The increase of SEF during the very pre-term

PCA was explained by the development of low amplitude beta activity in the

delta brushes.

Shannon entropy applied to the powers in spectral bands, or the spectral

entropy, measures the peakedness or conversely uniformity of the spectrum.

Spectral entropy tends to be lower for peaked and higher for uniform spectra.

As the high powers, and consequently peaks, in EEG spectra usually correspond

to low frequencies, decreased spectral entropy tends to be correlated with slow-

wave patterns (Inouye et al., 1991). This feature has been used to estimate

discontinuity within burst-suppression patterns during anaesthesia in adult pa-

tients (Vakkuri et al., 2004), however has not yet been applied to assess neonatal

discontinuous patterns.
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Korotchikova et al. (2009) compared the spectral entropy and SEF during

quiet and active sleep of full-term newborns and found that both values are

significantly higher during active sleep, which tends to be with high frequency

and low amplitude. Based on this observation, spectral entropy is potentially

useful feature to assess the development of the slow wave sleep pattern in full-

term EEG.

Alternatively to using the conventional spectral representation, it has been

recently attempted to apply the chaos theory to analysis of newborn EEG mat-

uration. The idea of the approach is to consider the brain as a non-linear

dynamical system with an attractor whose complexity increases with matura-

tion (Scher et al., 2005). Janjarasjitt et al. (2008) estimated the complexity for

EEG recorded from 50 healthy newborns aged 28–42 weeks PCA. The median

complexity, counted over each 1 min EEG segment, was shown to increase with

maturation approximately during weeks 31–36.

2.4.5 Detection of sleep states

Barlow et al. (1981) proposed the temporal profiles technique for detecting and

encoding main patterns in EEG. The first step of this technique is to segment the

EEG into pseudo-stationary intervals, usually a few seconds long. The intervals

are then clustered based on their mean frequency and amplitude. To create

a temporal profile, EEG segments are coded with the number of the closest

cluster. The different states could then be assessed from their temporal profile.

More recently, temporal profiles have been employed to classify the active

and quiet sleep states in newborn EEG (Paul et al., 2003; Krajca et al., 2009;

Djordjevic et al., 2009). A potential weakness of the temporal profiles technique

is that clustering of segments may produce different results depending on input

data. Barlow et al. (1981) noted that the number of clusters had to be set by

EEG experts after reviewing the results of clustering.

Alternatively to composing the temporal profiles from short segments, Piry-

atinska et al. (2009) proposed that each EEG sleep state can be viewed as a long

pseudo-stationary segment. The quiet and active sleep states were distinguished

based on the standard spectral bands as well the less widely used spectral char-

acteristics including spectral entropy, SEF, and complexity estimates.

A similar extended set of features, aimed to represent diverse characteristics

of the signal, has been employed to classify EEG segments into four labelled

sleep and awake states as well as the pathological burst-suppression pattern

(Lofhede et al., 2010). In total, 22 features, including statistics of power spec-

trum, amplitude distribution, entropy and cepstral coefficients, were counted in

1 sec sliding windows. Each of the resulting 22 ”feature signals” was summarised
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with four statistical parameters, so that each segment was finally represented by

88 ”meta features”. Selecting the most important of these features was the main

problem of the approach, and the set of features for classification with linear

discriminant analysis was optimised using a genetic algorithm. The quiet sleep

and burst-suppression patterns were classified with accuracy of 93 and 100%.

For the other patterns the accuracy was around 50%. One limitation of the

approach is that the employed meta features, describing shapes of distributions

of spectrum, cepstrum and entropy, are difficult to interpret for EEG experts.

2.4.6 Classification of brain maturity

Although various quantitative maturity-related features have been proposed,

few attempts have been made to employ these features in computer-assisted

assessments of newborn brain maturity. In one of the few such works, Crowell

et al. (1978) used autoregression-based estimates of EEG spectrum as features

for classification of brain maturity levels. They trained a logistic discriminant

classifier to distinguish three PCA groups: 35 weeks or less, 40 weeks, and 46

weeks to 3 months. Note that the groups were taken with gaps of 4–6 weeks

so that not all PCA weeks were used in training. The classifier was tested on

two sets of EEG recorded at 40 weeks PCA, each set included approximately

50 recordings. From each recording, they analysed four-second segments taken

from two different electrode channels. The average performances, counted as

the portion of patients classified into the 40 weeks group, ranged between 72%

and 96% for the two datasets. No relationship between the performance and

the electrode channels has been found. The authors stressed that the high

performance could be obtained because the spectral features in the three age

groups were significantly different. Classification of a broader range of PCA

has been proposed for future work, however no subsequent publications on this

topic were found.

Holthausen et al. (1999) employed an Artifical Neural Network (ANN) to

classify EEG recordings of 71 newborns. This study also used three age groups:

28 to 35, 36 to 40, and 41 to 100 weeks PCA. The spectral features were obtained

with the FFT, and the average absolute powers within the frequency bands

along with their variance and entropy were computed within 10 sec epochs. The

performance of classification was counted within the leave-out cross validation,

so that the ANN was trained on 69 patients and tested on the remaining two.

The training and testing was run around 2000 times for each patient. As a

result, the average performance over these runs was 96%. For seven of the

newborns, the classification performance was lower than the average. Three of
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four of these newborns were at high risk of apnoea, one was born extremely

premature, and one recording was with abnormally low-voltage.

In a subsequent publication (Holthausen et al., 2000), the same authors

analysed the importance of spectral powers for classification of EEG maturity in

the PCA groups 28–35 and 36–112 weeks. The importance was estimated from

the synaptic weights of ANN classifying the age groups. The most important

features were the absolute Delta and Theta powers as well as the the ratios of

Beta/Theta and Beta/Delta powers.

The above studies were aimed to distinguish a number of levels of brain ma-

turity, each level included a range of weeks PCA. Therefore these methods may

be inapplicable to detect a mismatch of two weeks, or to make weekly EEG as-

sessments for a newborn. Classification of exact weeks PCA has been attempted

by Schetinin and Schult (2005). An ANN technique has been employed to clas-

sify EEG segments from 65 newborns in 16 PCA groups from 35 to 51 weeks.

As a result, 80% of segments have been classified correctly. However, segments

from the same recording were used for training an for testing of the classifier,

possibly enabling it to adapt to patient-specific variations. Training and testing

a classifier on disjoint sets of patients is yet to be explored.

In general, problems with a large number of classes, such as maturity assess-

ment, are more difficult to solve than two-class problems, because a boundary

separating all classes needs to be learned, see e.g. (Bishop, 2007). In case of

EEG classification, the boundary between classes becomes affected by overlap-

ping of data samples, which creates additional difficulties for training. Some of

the factors causing EEG data to overlap are artefact corruption, between-patient

variations, shifts of sleep states and uncertainty in PCA estimates. To better

handle the difficulties of multiclass EEG assessment, Schetinin and Schult (2005)

employed a pairwise classification system, converting a multiclass problem into

a set of two-class tasks. The pairwise approach has been shown promising to

deal with multiple classes (Friedman, 1996; Hastie and Tibshirani, 1998), par-

ticularly when the class labels are naturally ordered (Frank and Hall, 2001;

Fürnkranz, 2002) as in the maturity assessment problem. We will explore the

pairwise approach further in this thesis.

Another important limitation of conventional methods of EEGmaturity clas-

sification is that they are based on learning a single model from a given set of

data and cannot provide accurate estimates of the uncertainty in assessments.

Such estimates are required to count risk of brain dysmaturity for each patient.

Bayesian classification enables the uncertainty to be accurately estimated by

averaging over areas of high densities of the likelihood (Chipman et al., 1998;

Denison et al., 2002). This motivates us to employ the Bayesian methodol-
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ogy for classification of brain maturity to allow experts to obtain exhaustive

information on uncertainty or risks in EEG assessment.

2.5 EEG data

The newborn EEG dataset used in this research includes 1993 recordings made

at different ages. The EEG have been recorded at the main German university

hospitals, and the dataset has been collected by the University of Jena, Germany.

The distribution of recordings over weeks PCA is shown in Fig. 2.7. Weeks

36-46 take up the largest part of this set (64%) and include at least 100 record-

ings each, so that it becomes possible to learn classification models from this

age group. On the contrary, from 26 to 35 weeks, few recordings are available,

and so we cannot expect to learn to reliably classify EEG in this age group.

The recordings were made during sleep hours of newborns with 2 channels

C3-T3 and C4-T4. The durations of recordings varied between 2 and 10 hours,

and the average was 4 hours. The recordings were available unprocessed. The

sampling rate was 100 Hz and the range of amplitudes was -128 to 127. Experts

have viewed the recordings and provided artefact markings as separate files.

Additionally, for each 10-sec segment, 72 spectral features have been computed.

The first 36 features comprise the average powers in the six frequency bands for

the two channels and their sum, the other half of the features are the variances

of the same measurements.
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Figure 2.7: Numbers of recordings in each week.
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2.6 Summary

This chapter reviewed the existing approaches to newborn EEG maturity as-

sessment. We described the maturational features typically analysed by experts,

namely, continuity, frequency, and sleep cycle. By analysing these patterns ex-

perts can estimate a newborn’s EEG age and compare it to the physiological

age to assess brain development. The accuracy of EEG-estimated age normally

is within an interval of ±2 weeks of a newborn’s stated age. If the mismatch

in ages exceeds this interval, the brain maturity may be abnormal. In cases of

severe mismatch, abnormal maturity may be caused by brain injuries. However,

experts have also found that abnormal EEG maturation is often associated with

pre-term birth, family history of sudden infant death and high incidence of sleep

apnoea.

Assessment of brain maturity requires a high level of skills and experience

in recognising and scoring the EEG patterns, which vary between patients and

change over the weeks PCA, so that the analysis becomes laborious and costly.

In the absence of standard rules for interpretation of maturational patterns the

assessment results may be subjective.

Computer-based assessment technologies have been proposed to assist ex-

perts with assessments. Within these approaches, the EEG data are first repre-

sented by spectral features, and then classified into up to three predefined levels

of maturation. These approaches may be unsuitable for making assessments in

the typical range of ±2 weeks. Development and testing of a technology capable

of making such assessments will be explored in this thesis.

Another area to be explored is the use of features representing EEG con-

tinuity in automated classification of brain maturity. Current approaches are

limited to employing the spectral powers in the standard EEG frequency bands.

These features cannot adequately represent the information on continuity which

is one of the most important maturational characteristics. The extraction and

use of continuity features will be explored in Chapter 6.

An important limitation of the existing methods of automated assessment of

EEG maturity is that they are based on learning a single classification model,

and so cannot provide accurate estimates of the uncertainty in assessments.

Such estimates are required to count the risk of brain dysmaturity for each

patient.

To allow experts to obtain exhaustive information on uncertainty or risks in

EEG assessment, we propose to employ Bayesian methodology for classification

of brain maturity. Within this methodology the uncertainty in assessments is

accurately estimated by averaging over areas of high densities of the likelihood.

44



Chapter 3

Bayesian Model Averaging

In this chapter, first we introduce the methodology of Bayesian inference and

then discuss how this methodology can be used for averaging over decision

tree models. Second, we introduce Markov chain Monte Carlo method which

makes the Bayesian methodology computationally efficient. Lastly, we discuss

problems with the implementation of this method for Bayesian averaging over

decision tree models.

3.1 Introduction

Let us consider a problem of inference from data that are represented by a set

of data points which were assigned to one of C categories or classes. Each data

point is represented by an m-element feature vector or input x = (x1, . . . , xm)

and has a class label y ∈ {1, C}. Therefore, we can consider a data set D that

consists of pairs (x, y). Our problem is now to learn an inference rule or model

that allows us to predict the class y for a given input x. Such an inference model

can be learnt from data D within the probabilistic framework (MacKay, 1998;

Hoeting et al., 1999; Duda et al., 2001; Bishop, 2007; Kruschke, 2011).

Using this framework, we can calculate the prior probabilities of classes,

P (y = 1), . . . , P (y = C), such that
∑C

i=1 P (y = i) = 1. Value of P (y = i) is a

probability that a given input x belongs to the ith class. When the numbers of

data points, ni, included in class y are known, then the probability P (y) are

P (y = i) =
ni

∑C
i=1 ni

. (3.1)

Observing values of x for different classes, we can see that the distribution

of x depends on the class y. We therefore can consider a class-conditional

probability distribution or density function p(x|y) for a given class y.
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When we observe that an input vector has value x and that it is assigned

to the class y, we can consider a joint probability density p(x, y). Taking into

account that the prior probabilities P (y) and the class-conditional densities

p(x|y) are known, the densities p(x, y) are written as follows:

p(x, y) = p(x|y)P (y). (3.2)

At the same time, we can consider the probability of the class y given that

an input vector has value p(x). This is the class posterior probability P (y|x)

which is defined as

P (y|x) =
p(x, y)

p(x)
. (3.3)

The distribution p(x) in Eq. 3.3 is the evidence factor which is the sum of joint

density p(x, y) over all classes y = 1, . . . , C:

p(x) =

C
∑

i=1

p(x, y = i). (3.4)

This summation is called marginalization over y, and and the resultant distri-

bution p(x) is called the marginal probability density.

It is important to note that both equations Eq. 3.2 and Eq. 3.3 include the

joint probability density p(x, y). Therefore we can rewrite these equations in

the following form:

p(x|y)P (y) = P (y|x)p(x). (3.5)

From this equality, we observe that when the densities p(x|y) and p(x) and

the probability P (y) are known, the class posterior probability P (y|x) can be

written as

P (y|x) =
p(x|y)P (y)

p(x)
=

p(x|y)P (y)
∑C

i=1 p(x|y = i)P (y = i)
. (3.6)

This is Bayes’ formula which allows us to calculate the class posterior probabil-

ity P (y|x) when we observe an input vector x for the given densities p(x) and

p(x|y) and probabilities P (y).

In Bayes’ context, density p(x|y) is called the likelihood of y with respect to

x. This term is used to indicate that the larger the likelihood p(x|y), the more

likely that the point x belongs to the true class (Duda et al., 2001).

The evidence factor p(x) given by Eq. 3.4 is the denominator in Bayes’

formula 3.6. It is typically interpreted as a scale factor that allows the class

posterior probabilities P (y|x) to be normalised such that
∑C

i=1 P (y = i|x) = 1.
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Given an input x, the class posterior probabilities P (y|x) are calculated for

each class y = 1, . . . , C. The given x is assigned to the class c∗ which has the

largest probability P (y|x). This decision is made according to the Bayesian

decision rule:

c∗ = max(P (y = i|x))
1≤i≤C

. (3.7)

This rule assigns a given input x to the true class y = c∗ with the largest

probability. The input is assigned to a false class y = i : i 6= c∗ with a smaller

probability; such a decision is called misclassification.

The consequences of misclassification can be serious and when this is the

issue, we consider a cost function λ. Such a function can assign a unit loss to

any error:

λ(y = i|y = j) =







0, if i = j ,

1, if i 6= j .

Given a cost function λ, the conditional risk R is written as follows

R(y = i|x) =
C
∑

j=1

λ(y = i|y = j)P (y = j|x)

=
∑

j 6=i

P (y = j|x) = 1− P (y = i|x),

(3.8)

where P (y|x) are the probabilities calculated by Bayes’ formula 3.6 for the given

input x.

The notations introduced above allow us to analyse models which can be

learnt from data in the Bayesian framework. Next we consider the problem of

model comparison.

3.2 Bayesian model comparison

It is often that we can learn a number of suitable models from given data.

In such cases, we can define a set of such models, Mi, i = 1, . . . , L, and then

compare them in terms of fitness to the given data D. To make such comparison,

we can consider the prior probability density p(Mi) thatMi is the true model

which is capable of generating the data D, see e.g. (Hoeting et al., 1999).

Observing these models in this light, we can define the posterior densities

p(Mi|D) as:

p(Mi|D) =
p(D|Mi)P (Mi)

p(D)
. (3.9)
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Here p(D|Mi) is the probability density of observing the data D given that a

model Mi is true. This density is called the evidence for model Mi, see e.g.

(Duda et al., 2001), or the marginal likelihood, see e.g. (Denison et al., 2002).

The above evidence p(D|Mi) can include all available information about a

model Mi including its parameter Θ. Therefore we can consider the posterior

distribution of the model parameter Θ for a given model Mi, p(Θ|D,Mi). In

this case the evidence is determined by integrating of p(D, |Θ,Mi) over Θ:

p(D|Mi) =

∫

Θ

p(D|Θ,Mi)p(Θ|D,Mi)dΘ. (3.10)

For comparison of competitive modelsMi andMj , we can use the posterior

densities p(Mi|D) written as a posterior odds ratio:

p(Mi|D)

p(Mj|D)
=

p(D|Mi)

p(D|Mj)
×

p(Mi)

p(Mj)
. (3.11)

There exist
(

L
2

)

pairs of models Mi and Mj , i 6= j, j = 1, . . . , L. The best

model has the highest odds ratio, larger than one.

For a given modelM(Θ), we can find the parameter Θ′ that maximises the

odds ratio respect to other model parameters Θ:

p(M|D,Θ′)

p(M|D,Θ)
≥ 1. (3.12)

The modelM(Θ′) is called the maximum a posteriori model (Duda et al., 2001).

3.3 Bayesian learning

The desired class posterior probability P (y|x) is calculated by the Bayes’ for-

mula 3.6 for the given prior probabilities P (y) and the class-conditional densities

p(x|y), y ∈ {1, C}. The prior probabilities P (y) can be given by a domain ex-

pert or calculated by Eq. 3.1. However, the class-conditional densities p(x|y) are

often unknown and their estimation can be the main problem, see e.g. (Duda

et al., 2001).

One way to estimate the densities p(x|y) is to use all available data D that

include the pairs (x, y). Using the class labels y = 1, . . . , C, we can consider the

given data D as a set of independent subsets D1, . . . ,DC . This will allow us to

simplify the notation.

Observing the data D, the desired class posterior probability P (y|x) becomes

conditional on D, that is denoted as P (y|x,D). Then Bayes’ formula 3.6 can be
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rewritten as follows:

P (y = i|x,D) =
p(x|y = i,Di)P (y = i)

∑C
j=1 p(x|y = j,Dj)P (y = j)

. (3.13)

As the formula is calculated separately for each class y = i and subset Di, we

can simplify the notation of p(x|y,Di) by omitting the term y and use p(x|D)

instead. Further we can consider parameters of density function p(x|D) and

denote them as an unknown parameter vector Θ which has to be fitted to the

data.

In the Bayesian context, we consider the parameter Θ as a random variable

with a prior distribution p(Θ). When we observe the available data D, this

distribution is considered as a posterior density p(Θ|D).

Observing values of x and Θ in the data, we can consider a joint posterior

density p(x,Θ|D). Then the integration of this density over Θ allows us to

define the desired density p(x|D) as:

p(x|D) =

∫

Θ

p(x,Θ|D)dΘ. (3.14)

According to the definition of the joint probability, the density p(x,Θ|D) =

p(x|Θ,D)p(Θ|D). Here both functions p(x|Θ,D) and p(Θ|D) are conditioned

on the same data D, and so we can omit one of these conditions. This allows us

to rewrite the function p(x|Θ,D) = p(x|Θ), and finally the density p(x|D) can

be written as:

p(x|D) =

∫

Θ

p(x|Θ)p(Θ|D)dΘ. (3.15)

The integral in Eq. 3.15, and therefore Bayes’ formula 3.13, are analytically

tractable for cases when prior and likelihood distributions are given as the con-

jugate functions, see e.g. (Denison et al., 2002; Bishop, 2007). The numerical

integration over parameter space Θ with the common techniques is limited and

becomes computationally infeasible in a high dimensional space.

However, there is a family of widely known Monte Carlo methods which

have been developed for such calculations. In our case, the posterior distri-

bution p(Θ|D) cannot be directly simulated. However we can use the Monte

Carlo method to generate random samples in order to approximate the desired

distribution. The classical Monte Carlo method has been extended to Markov

chain Monte Carlo (MCMC) in order to avoid limitations and expand areas of

applications, see e.g. (MacKay, 1998; Robert and Casella, 2004; Robert, 2007;

Webb et al., 2011).
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3.4 Markov chain Monte Carlo method

The desired class (or predictive) posterior distribution p(y|x,D) is calculated

by Bayes’ formula 3.13 for given input x, densities p(x|y,Di), p(y), and p(x|D).

The class-conditional densities p(x|y,Di) are determined by Eq. 3.15, where the

term y has been omitted for simplicity as described in the above section. In cases

when the available data are representative, the class posterior density p(y|x,D)

becomes independent from D, and so can be replaced by p(y|x). However, we

keep the full notation p(y|x,D).

These notations allows us to rewrite the desired distribution p(y|x,D) in the

following form:

p(y|x,D) =
p(x|y,D)p(y)

p(x|D)

=

(∫

Θ
p(x|y,Θ)p(Θ|D)d(Θ)

)

p(y)

p(x|D)

=

∫

Θ

p(y|x,Θ,D)p(Θ|D)d(Θ).

(3.16)

The posterior distribution p(Θ|D) in this equation cannot be evaluated as

noted in the above section. However, we can sample parameters Θ from the

posterior distribution p(Θ|D) in order to approximate the integral 3.16 that

determines the desired class posterior distribution p(y|x,D). Having drawn the

samples Θ(1), . . . ,Θ(N), we can rewrite the class posterior p(y|x,D) as follows:

p(y|x,D) =

∫

Θ

p(y|x,Θ,D)p(Θ|D)d(Θ)

≈

N
∑

i=1

p(y|x,Θ(i),D)p(Θ(i)|D)

=
1

N

N
∑

i=1

p(y|x,Θ(i),D).

(3.17)

Such approximation of integrals is known as the Monte Carlo method, see e.g.

(MacKay, 1998; Denison et al., 2002; Robert and Casella, 2004). The accuracy

of this method is increased with the number of samples N .

The Monte Carlo method has been extended to the MCMC simulation

method in order to draw Θ(i) from the posterior distribution p(Θ|D) when the

information about this distribution is limited. In our case, the main idea of

MCMC method can be defined as follows.

A sequence of random samples Θ(0),Θ(1), . . . ,Θ(k) is a Markov chain such

that the conditional density of Θ(k) given the past samples Θ(k−1), . . . ,Θ(1),Θ(0)

50



depends only on the state Θ(k−1). This transition density is defined as q:

q(Θ(k)|Θ(k−1), . . . ,Θ(1),Θ(0)) = q(Θ(k)|Θ(k−1)). (3.18)

The Markov chain posses the following properties.

• It is said a Markov chain is stationary if there exists a density f(Θ) such

that if Θ(k) ∼ f(Θ), then Θ(k+1) ∼ f(Θ).

• A transition density q is designed so that to make moves over all possible

states of Θ.

• A transition density q is called irreducible if for any given Θ(0) a Markov

chain reaches any area of the parameter space Θ with a non-zero proba-

bility, that is q(Θ(k), ·) > 0.

• Having a stationary density, a Markov chain can return to any arbitrary

state an infinite number of times. Such chains are called recurrent.

• If a transition density q generates a Markov chain Θ(1), . . . ,Θ(n) with a sta-

tionary density, then according to the Law of Large Numbers the average of

p(y|x,Θ(i),D) over Θ(i) converges to the integral
∫

Θ p(y|x,Θ,D)p(Θ|D)d(Θ).

The use of these properties allows us to generate random samples Θ(i) from

a posterior distribution p(Θ|D) by running a Markov chain which has achieved

a stationary distribution f(Θ). The samples generated by the Markov chain

should be omitted during so-called burn-in phase when its distribution is non-

stationary.

3.5 Bayesian decision tree models

3.5.1 Decision tree models

Classification or Decision Tree (DT) models are multilevel hierarchical struc-

tures consisting of splitting and terminal nodes, see e.g. (Breiman et al., 1984;

Buntine, 1998). The root node at the first hierarchical level of a DT model

allocates a given input x to one of the nodes at the next level. The allocation is

made until the input x falls into a terminal node which finally assigns the input

to one of the given classes C.

The size of a DT model is defined by the number of terminal nodes k,

and the number of splitting nodes is equal to k − 1. The number of possible

configurations, Sk, is defined by the number of nodes, k, in a DT accordingly

to the Catalan number :

Sk =
1

k + 1

(

2k

k

)

. (3.19)
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This number exponentially grows with the size k; for example, Sk=5 = 42, Sk=10 =

16, 796, etc.

Each splitting node has the attributes (p, v, r), where p ∈ {1, k − 1} is the

position of the node in the DT, v ∈ {x1, . . . , xm} is the predictor variable or

feature employed by the pth node for splitting, and r ∈ {vmin, vmax} is the rule

or threshold used for splitting at this node, min and max denote the minimum

and maximum of variable v, respectively. The structure of a DT model is

described by a sequence of the splitting nodes {pi, vi, ri}
k−1
i=1 , which determines

the model parameter Θ.

Figure 3.1 shows an example of a DT model consisting of two splitting nodes

s1 and s2, and three terminal nodes t1, t2, and t3. The first node s1 splits the

entire data into two disjoint subsets so that data samples from one subset fall

into node s2 via the left branch, and samples from the other subset fall into the

terminal node t2 via the right branch. The node s2 further partitions the data

samples which fall into the terminals t2 or t3 via the left and right branches.

Finally, one of the terminal nodes assigns the given input to one of the given

classes.

Figure 3.1: An example of DT model with two splitting nodes s1, s2 and three
terminal nodes t1, t2, and t3.

The parameter Θ of a DT model is learnt from a given set of labelled data

samples, D. The size of a DT model learned from the data depends on a minimal

number of data samples, pmin, which are allowed to be in the terminal nodes.

Setting a smaller number pmin increases the DT size, and vice versa setting a

larger number decreases the size.

It is often that the structure of a DT is unknown, and we need to grow

DT models of a reasonable size to achieve the maximal accuracy of predicting

unseen data that have not been included in the set of labelled data. Such an
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ability of models is called generalisation. To grow such DT models we can grow

DT models with various numbers pmin and then select the most suitable DT

model.

When DT models learn from data, the attributes of nodes, (p, v, r), are

changed within the given priors, which are defined as available information on

a specified attribute. In the Bayesian context, we define these priors as follows.

In the absence of information on the importance of the variables x1, . . . , xm

used for prediction, a variable v which is assigned to the ith splitting node

is randomly drawn from a set of variables x1, . . . , xm; it is said a variable v

is drawn from the uniform discrete distribution U : v ∼ U(1,m). Similarly, a

rule r can be drawn from the uniform discrete distribution of the vth variable:

r ∼ U(vmin, vmax).

Having defined the parameter Θ of a DT model, we can calculate the class

posterior probability with which a given input x is assigned by a terminal node

to a class y. The samples of Θ are generated by the MCMC simulation method

to calculate the desired class posterior density p(y|x,D) by using Eq. 3.17.

3.5.2 MCMC integration

When the Markov chain becomes stationary, we collect samples Θ(1), . . . ,Θ(N)

to approximate the class posterior distribution p(y|x,D) determined by Eq. 3.17.

In cases when data D are representative, the class posterior density becomes

independent from the data and we can rewrite this equation as follows:

p(y|x) ≈

N
∑

i=1

p(y|x,Θ(i))p(Θ(i))

=
1

N

N
∑

i=1

p(y|x,Θ(i)).

(3.20)

The desired approximation of the posterior distribution p(y|x) is achieved

when the samples Θ(i) are drawn from a stable Markov chain, and the number

of samples, N , is sufficiently large.

Having specified priors on DT models, we can consider algorithms for MCMC

simulation. The most general form of MCMC simulation is known asMetropolis-

Hastings (MH) algorithm or sampler, see e.g. (Robert and Casella, 2004; Deni-

son et al., 2002).

The MH algorithm requires to define the proposal density q for updating

model parameter Θ. Proposals Θp are made dependent on the current state

Θi. Proposal Θp drawn from a given proposal density q is always accepted if

the model likelihood p(D|Θp) is greater than that of the current model, p(D|Θ).
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Otherwise the proposal is accepted with an acceptance probability α which is

determined by the ratio:

α = min

(

1,
p(D|Θp)p(Θp)q(Θ,Θp)

p(D|Θ)p(Θ)q(Θp,Θ)

)

. (3.21)

Here the marginal likelihood p(D|Θ) is defined as the probability density of

observing the data D given the model parameter Θ, that can be written as:

p(D|Θ) =
p(Θ|D)p(D)

p(Θ)
. (3.22)

Particularly, when the costs of misclassification, α, are equal for each class,

the above marginal likelihood for DT models with the k splitting nodes is written

as follows (Denison et al., 2002):

p(D|Θ) =

[

Γ(αC)

Γ(α)C

]k k
∏

i=1

∏C
j=1 Γ(mij + αj)

Γ(ni +
∑C

j=1 αj)
, (3.23)

where ni is the number of data points fallen in the ith terminal node, mij is the

number of data points of the j th class in this node, and Γ denotes the Gamma

function.

The number of splitting nodes is typically unknown and the desired DT

models must be grown to a proper size in order to provide the best generalisation

as discussed above. However, when the size of DT models varies, the MCMC

integration must be done over a parameter space Θ of variable dimensionality.

It is expected to explore as many as possible of DT configurations given by

Eq. 3.19. For such cases, MCMC is extended by Reversible Jump (RJ) proposed

in (Green, 1995).

3.5.3 Reversible jump MCMC

It is important to note that the configurations of DT models with different

numbers of splitting nodes, k, have to be explored in the same proportions

– that is, the samples from the posterior p(Θ|D) have to be collected in the

proportions to the numbers of Sk.

The integration over DT models of variable size is achieved by using the birth,

death, change-split, and change-rule moves (Chipman et al., 1998; Denison et al.,

2002). The first two moves, birth and death, reversibly change the dimensional-

ity of a parameter space Θ, whilst the third and fourth moves change the model

parameters within a current dimensionality. These moves are as follow:
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Birth move randomly splits the data points falling in one of the DT terminal

nodes by inserting a new splitting node with a variable and rule drawn

from the given priors.

Death move randomly picks a DT splitting node with two terminal splits and

then assigns it to be one terminal node with the united data points.

Change-split move randomly picks a splitting node and assigns it to be with

a new splitting variable and rule drawn from the given priors.

Change-rule move randomly picks a splitting node and assign it to be with a

new rule drawn from the given prior.

We can see that the birth move adds a new splitting node and the number

of k increases by one. On the contrary, the death move unites the two terminal

nodes that decreases the k by one.

The change-split move, assigning a new splitting variable, can make a po-

tentially large change in the parameters that increases the chance to properly

sample areas of interest with high posterior. In contrast, the change-rule move

makes a small change which is required for detailed exploration of a surrounding

area.

When there is no prior information on DT models, MCMC algorithm starts

to explore a DT model consisting of one splitting node. Making the above

moves, a DT model is grown in the size and its parameters Θ are changed so

that to increase the likelihood of the model.

The likelihood is gradually increased and then becomes oscillating around

a stable value. This phase is named burn-in and must be preset sufficiently

long in order to achieve a stationary distribution p(Θ|D). During the second

phase called post burn-in, the samples of a random variable with this distri-

bution, Θ(1), . . . ,Θ(N), are collected to approximate the desired class posterior

distribution p(y|x,Θ).

3.5.4 Implementation of RJ MCMC

The above moves are proposed randomly with the proposal probabilities given

for the birth, death, change-split, and change-rule moves. The values of these

probabilities are dependent on the complexity of the problem – more complex

problems require larger DT models, and so the MCMC algorithm has to change

the dimensionality more frequently. However, there is no guidance for setting

the proposal probabilities, and their proper values have to be found empirically

(Chipman et al., 1998; Denison et al., 2002).

When one of the moves change the dimensionality of a DT model, the Markov

chain has to remain reversible in order to ensure the integration over all areas
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of high posterior density p(Θ|D) in a parameter space. The effect of variable

dimensionality can be accounted for with a proposal ratio R inserted in the

acceptance probability α as follows:

α = min

(

1,
p(D|Θp)

p(D|Θ)
×R

)

, (3.24)

When the birth or death move changes the dimensionality, the correspond-

ing ratio Rb or Rd are calculated as follows. First, we define a conditional

probability distribution, q(Θp|Θ), that a DT model with the current vector Θ is

moved to a proposed vector Θp. Similarly, we can define a density of a reverse

move, q(Θ|Θp). Then the desired reversibility of a Markov chain is kept if these

densities are equal:

q(Θp|Θ) = q(Θ|Θp). (3.25)

For the birth moves, the Θp is the (k+1)-dimensional vector, and the number

of DT configurations is Sk+1 : Sk+1 > Sk. Therefore the Markov chain is kept

reversible when the ratio Rb is written as follows:

Rb =
q(Θ|Θp)p(Θp)

q(Θp|Θ)p(Θ)
, (3.26)

where p(Θ) and p(Θp) are the prior densities of parameters Θ and Θp, respec-

tively.

When we assume that all the configurations of a DT with k terminal nodes

are equally likely, the prior density p(Θ) is written as follows:

p(Θ) =

(

k−1
∏

i=1

p(srulei |svari )p(svari )

)

p({sposi }
k−1
1 ). (3.27)

Here svari is the predictor of the ith splitting node which is drawn from the

uniform distribution, svari ∼ U(1,m). The p(srulei |svari ) denotes the conditional

density of the rule srulei given the predictor svari , so that srulei ∼ U(X1, Xn),

whereXi are the values of the variable s
var
i , and n is the number of data samples

that represent the variable. The {sposi }
k−1
1 denotes the set of (k − 1) splitting

nodes a DT model consists of. For a DT model with k splitting nodes there are

Sk combinations given by Eq. 3.19, and therefore the probability of such a DT

model is p({sposi }
k−1
1 ) = 1/Sk, when there are no preferences on the number of

splitting nodes.

Taking the above notations, we can rewrite Eq. 3.27 as follows:

p(Θ) =

(

k−1
∏

i=1

1

N(svari )

1

m

)

k!

Sk

1

K
, (3.28)
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where N(svari ) is the number of possible rules for the variable svari , the factorial

k! denotes the number of all possible configurations of DT with k terminal nodes,

and K ≥ k is the maximal number of terminal nodes.

Using these notations, the proposal distribution q(Θp|Θ) can be ultimately

written as follows:

q(Θp|Θ) =
bk
k

1

N(svari )

1

m
, (3.29)

where bk is the given proposal probability of the birth move.

According to this equation, a new splitting node is made from one of k

terminal nodes, chosen with a probability 1/k. This node gets the variable

svari drawn randomly from the m variables, svari ∼ U(1,m). It gets also the

rule srulei drawn randomly from the N(svari ) possible values of this variable,

srulei ∼ U(X1, Xn).

Likewise, we can write the proposal distribution for the reverse (death) move:

q(Θ|Θp) =
dk+1

DQ
, (3.30)

where dk+1 is the given proposal probability of the death move, and DQ is

the number of splitting nodes both branches of which are are the two terminal

nodes.

Using the above notations, finally we can rewrite Eq. 3.26 for the desired

ratio Rb as follows:

Rb =
dk+1

bk

k

DQ

Sk

Sk+1
. (3.31)

Here DQ ≤ k and Sk ≤ Sk+1, the probabilities dk+1 and bk can be set equal.

Then the ratio Rb : 0 < Rb < 1.

Likewise, the proposal ratio for the death moves, Rd, is written as follows:

Rd =
bk

dk−1

DQ

k − 1

Sk

Sk−1
, (3.32)

and Rd > 1 under the above conditions.

We see that the acceptance probability defined by Eq. 3.24 depends on the

two factors: first on the type of moves (birth or death) and second on the size

of a DT. For the birth move the number of configurations of a DT with (k +1)

terminal nodes increases, and so the ratio becomes smaller than 1, R < 1 . On

the contrary, the death move decreases the number of combinations, and R > 1.

Such variations in R allow the reversibility of a Markov chain to be kept during

MCMC integration over a model parameter space of variable dimensionality

(Denison et al., 2002).
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3.5.5 Problems with RJ MCMC implementation

As DT models are hierarchical structures, changes at a node located at the

upper levels close to the root node can cause drastic changes in the distribution

of data points over nodes at the lower levels. For this reason there is a very

small chance to accept the change in a node near the root. This means that the

MCMC algorithm tends to explore the DT models in which the nodes selected to

be changed are far from the root. Most of these nodes are close to the terminal

nodes, and so contain small numbers of data points that makes a little change in

the likelihood values. As a result such moves are mostly accepted. This affects

the accuracy of integration because the RJ MCMC algorithm cannot explore

all possible areas of interest in a model parameter space (Chipman et al., 1998;

Denison et al., 2002; Schetinin et al., 2006; Jakaite and Schetinin, 2008).

During MCMC integration the moves are made to change distributions of

data samples falling into DT terminal nodes. A move can change the number

of samples in a terminal node so that their number becomes less than the given

number pmin. When it happens such a move is assigned unavailable and a new

move has to be proposed.

In the Bayesian context, this action is determined by a prior on pmin:

p(pmin) =







0, if min(n1, n2) < pmin ,

1, otherwise ,
(3.33)

where n1 and n2 are the numbers of data samples falling into the left and right

branches of the terminal node.

The choice of pmin is dependent on such factors as the class boundaries and

noise level in data. The complex class boundaries typically require large DTs

for which pmin has to be small enough. In practice, the prior knowledge on

favourite shape or size of DT models is absent, and then the appropriate pmin

has to be found experimentally. Setting an inappropriate small pmin can lead to

excessive growth of DT models which is correlated with an accelerated growth

of likelihood values during MCMC averaging. When it happens, the DT models

of a smaller size will not be explored in detail, and the results of integration will

be most likely biased (Buntine, 1998; Domingos, 2000).

The other reason of the excessive growth is that the birth move is favoured to

be accepted when the MCMC algorithm starts to grow a DT model (Chipman

et al., 1998; Denison et al., 2002). The growth of DT size is typically monitored

and the excessive growth can be restricted by setting a larger number pmin as

well as by setting a smaller value of the proposal probability for the birth move.
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The negative effect of sampling oversized DT models has been mitigated by

using RJ MCMC with the restarting strategy (Chipman et al., 1998). The main

idea of this strategy is to grow a DT within a limited period and then average

the multiple runs of DTs randomly initialized. It has been shown that this

strategy provides a better accuracy when a length of the period and a number

of the runs are properly defined.

A similar idea of restricting the growth of DTs has been proposed in (Denison

et al., 2002). The growth is banned within a given interval in order to let MCMC

explore a model parameter space in more detail.

One general drawback of the restriction strategies is that they require ad-

ditional settings for MCMC which must be tuned experimentally during the

burn-in phase. Another side effect appears when a DT becomes grown up and

most of the birth and change moves are made unavailable. This deteriorates the

given proposal probabilities of the moves and forces MCMC to replicate samples

that finally affects the accuracy of integration (Schetinin et al., 2004).

3.5.6 Sweeping strategy of RJ MCMC integration

The sweeping strategy proposed in (Schetinin et al., 2004) exploits a new prior

on moves that assign or update a rule of a DT splitting node so that to decrease

the probability of making unavailable moves – the problem with such moves was

discussed in the previous section. The idea behind this prior is to use a proposal

variable uniformly distributed within a min-max range of data points assigned

to the chosen node. It has been found that this prior is able to prevent DTs

from an excessive growth which affects the ability to generalise unseen data.

For each birth or change move, the proposal parameters are drawn from the

given priors to be assigned to a chosen node. The proposed change can be made

so that one or more terminal nodes in the DT will contain fewer data points

than that allowed by pmin. If such a change is accepted, within the sweeping

strategy a node with the fewer samples is removed from the DT being counted

as the death move. If, however, there are more than one such nodes, the MCMC

algorithm assigns the proposal unavailable in order to keep the balance between

the death and birth moves.

When the birth move adds a new splitting node with the parameters drawn

from the given priors, the MCMC assigns a new splitting variable svari as well as

a new rule srulei taken from a uniform distribution over values of variable svari

at the partition l:

srulei ∼ U(min(X(l)),max(X(l)), (3.34)

where X(l) are the values of the variable svari at the lth partition, l = 1, . . . , k.
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According to this prior, the first partition is made over all data points X(1)

that come at the root node. The second partition is made over a subset of

data points, X(2), coming from one of two branches of the root node. The data

are further split while the terminal nodes contain, at least, 2pmin data points.

Figure 3.2 illustrates the changes in the boundaries xmin and xmax, that are

determined by the above Eq. 3.34, for the first two partitions.

xx
min

x
maxx

min
(1) (2) (2) (1)x

max

Figure 3.2: Illustration of changes in the boundaries xmin and xmax for the first
and second partitions.

During MCMC integration, the birth or change moves can produce a splitting

node in which one of two branches contains fewer data points than pmin. If this

condition is met for one splitting node, this node is removed. More rarely, this

condition is met for a branch with two or more nodes. When this happens,

the proposal is assigned unavailable and the MCMC algorithm makes a new

proposal.

The above condition can be met for the change move, when one terminal

node is removed. In this case, the likelihood of the new DT model can be slightly

smaller than that of the previous model, and so the proposed change will be

most likely accepted. The sweeping strategy removes a node in which after the

change move the number of data samples becomes fewer than pmin from the

DT model. This strategy is applied during the both, burn-in and post burn-in,

phases.

3.6 Summary

We introduced the Bayesian methodology of averaging over decision tree models

and showed that the Markov chain Monte Carlo simulation method allows us to

implement this methodology. The analysis of this method has revealed a number

of problems which are mainly related to variable dimensionality of decision tree

models, their hierarchical structure and large number of possible configurations.

The main approaches to the problems were described and reviewed in the light

of both accuracy of approximation and usage for solving real-world applications.
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Chapter 4

Influence of EEG Artefacts

Newborn EEG are often contaminated by artefacts which can affect the ac-

curacy of maturity assessments. To improve the accuracy, it is important to

detect the artefacts and mark the affected segments to be removed. Experts

can spend hours to recognise the various types of artefacts within the context

of changing EEG patterns. The wide variations in artefacts and EEG patterns

make it difficult to apply standard rules to artefact detection. In the absence

of rules, the manual marking of artefacts may be inconsistent between experts

and recordings. The inconsistencies in artefact removal may affect the accuracy

of Bayesian assessments.

In this chapter we hypothesise that automated techniques, removing arte-

facts consistently in all recordings, will provide better results within Bayesian

assessments than the manual removal. To test the hypothesis, we explore how

the removal of marked artefacts and automatic artefact detection with various

techniques improve the accuracy of Bayesian assessments of brain maturity.

The manual and automated artefact removal techniques are discussed in

Section 4.1. In Section 4.2, we describe experiments with the artefact removal

techniques. The first experiments test whether the removal of marked artefacts

improves the assessments; we compare the accuracies on EEG data including

artefacts and on clean data after removal of artefacts marked by experts. Next,

we test a standard technique of averaging over EEG segments to suppress the

influence of artefacts. We then describe and test two techniques for automatic

removal of artefacts with abnormally high amplitudes. We summarise the results

of the techniques and conclude the chapter.
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4.1 Manual and automated artefact removal

EEG artefacts need to be recognised and removed to reduce the chance of mis-

taken assessments. In case of visual assessments, the artefacts can be mistaken

for an EEG pattern. For example, the electrode movement artefacts may be con-

fused with high-amplitude delta waves characteristic of very pre-term patterns.

In case of automated assessment, the features extracted from contaminated

EEG will be affected by artefacts. In particular, the spectral features computed

within the FFT, which assumes a stationary signal, may provide biased results,

because the artefacts make EEG data highly non-stationary (Clarencon et al.,

1996).

To remove the artefacts, EEG experts analyse the recordings and mark the

affected segments. The detection of artefacts is time consuming and difficult,

as the artefacts widely vary in appearance and can occur within various EEG

patterns, so that developing and applying standard rules for detection becomes

infeasible. Under the lack of rules, the marking of artefacts becomes subjective.

According to van de Velde et al. (1999) the agreement between two experts

marking artefacts in the same recording is on average 76%, whereas one expert

analysing the same recording repeatedly marks only around 80% of the artefacts

that were detected the first time. The inconsistencies in marking of artefacts

may affect the accuracy of automated maturity assessment.

Computer-based techniques of EEG artefact removal provide consistent re-

sults, and thus we hypothesise that the use of such techniques will improve the

accuracy of Bayesian assessments of brain maturity. The artefact removal tech-

niques are typically based on deleting EEG samples with abnormal features. In

general, artefacts can be considered as abnormal events whose characteristics

are different from normal EEG. For example, the artefacts caused by patient’s

movements have much higher amplitudes than those of normal EEG (Nolan

et al., 2010). Therefore, movement artefacts appear as outliers in the distribu-

tion of EEG amplitudes. A simple technique for removing the artefacts is to

delete the samples whose amplitudes exceed a threshold given as the mean plus

standard deviation of the EEG amplitude distribution.

A weakness of this technique is that a single threshold is used for the whole

recording, and variations of EEG amplitudes over the patterns are not taken

into account. This means that in EEG patterns with low dominant amplitudes

the artefacts can be missed, whereas in patterns with high amplitudes EEG data

can be lost. Therefore, it is desirable to adapt the threshold to EEG variations.

In cases when the frequency the artefact is well defined, the artefacts can

be removed by band-pass filtering without significant loss of EEG information.

For example, a notch filter set to 50 Hz can be used to remove the electrical
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mains interference (Sanei and Chambers, 2007). Such filtering can be useful if

high-frequency EEG waves need to be analysed. In assessment of newborn EEG

however, frequencies above 30 Hz are not typically considered.

When EEG has been recorded frommultiple channels, the Independent Com-

ponent Analysis (ICA) can be applied to minimise the artefacts. This technique

attempts to separate the EEG signal into statistically independent sources. The

sources that are found most strongly affected by the artefact are then elimi-

nated and the remaining sources are mixed to obtain a cleaned EEG signal.

This technique has been shown successfully reducing the influence of artefacts,

however, EEG experts have raised concerns that ICA can distort the power

spectrum of EEG (Castellanos and Makarov, 2006). The ICA-based artefact

removal requires the number of EEG channels to be at least the same as the

number of sources, and this technique cannot be applied to recordings with only

two-channels.

Alternatively to removing the artefacts, another standard approach is to

suppress the influence of artefacts by averaging over EEG features computed

in multiple short segments. The averaging suppresses the transient variations

and artefacts occurring in the individual segments, and therefore the averaged

features are more reliable for EEG analysis (Cooper et al., 2003; Kropotov,

2009). Importantly, the short segments can often be considered as pseudo-

stationary, unlike the whole EEG which is highly variable. This means that

the FFT applied to the segments can provide more reliable results. The choice

of segment length is a trade-off between frequency resolution and stationarity.

The lengths from 2 to 20 sec are typically chosen (Cooper et al., 2003).

4.2 Experiments

We compare the performance of Bayesian assessments of brain maturity on EEG

data after manual and automated removal of artefacts. In the experiments, we

use 210 recordings from newborns in 2 age groups, pre-term (36 weeks PCA)

and full-term (41 week PCA). Each group contains 105 recordings.

First, to test how the manual removal of artefacts improves the assessment

accuracy, we compare the accuracies on EEG data including artefacts and on

clean data after removal of artefacts marked by experts. Next, we compare the

automated artefact removal techniques, starting with the technique of averaging

over segments to obtain more reliable EEG features which are less affected

by artefacts. We hypothesise that the averaging will improve the accuracy of

assessments. Next, we describe and test two techniques for automatic removal

of artefacts with abnormally high amplitudes. The first technique removes the

samples which exceed a threshold found as the mean plus standard deviation
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of amplitudes in the recording. As described above, such a single threshold

is unlikely to provide the best artefact detection within EEG patterns with

different dominant amplitudes. The second technique is more complex and

aims to adapt the threshold to the variable patterns.

4.2.1 Removing the marked artefacts

Experts have analysed the EEG and the corresponding polysomnogram in 10 sec

segments, and marked each segment as artefact or non-artefact. The percentage

of artefact segments in all recordings was around 7%.

To compute the spectral EEG features, the FFT was applied to the whole

recordings to obtain the power spectrum, and then the spectral powers in the

six frequency bands were calculated. Each recording was represented with the

six absolute and relative spectral powers for the two channels C3T3-C4T4 and

their sum, in total 36 features.

The Bayesian classification was run with the following settings: during the

burn-in and post burn-in phases we collected 100,000 and 10,000 DTs. The

pruning factor was set to 4. The variance of change-rule proposals was 1.0, and

the probabilities of birth, death, change-split and change rule-moves were set to

0.15, 0.15, 0.1 and 0.6, respectively. Given these settings, the acceptance rate

was on average 0.26 and the average DT had 5 nodes.

Table 4.1 compares the performances (P) and entropies (E ) of Bayesian

classification on the raw EEG data including artefacts and on the data from

which the marked artefact segments were removed.

Here and in the subsequent chapters, the performance of a technique is

defined as the percentage of test data samples that were classified correctly. The

entropy of the ensemble, expressing the classification uncertainty (Kuncheva,

2004), is defined as follows.

E =
1

t
(−

t
∑

i=1

c
∑

j=1

P (j|xi)log2(P (j|xi))), (4.1)

where t is the number of test data samples xi, c is the number of classes, and

P are the class posterior probabilities. The entropy is measured in the number

of bits per test data sample.

In table 4.1, the performances and entropies are listed along with 2σ confi-

dence intervals counted within the five-fold cross-validation.

We can see that after the removal of artefacts the performance becomes

improved by ca 4%, on average. However, according to the Mann-Whitney U

test this improvement is not statistically significant (p ≈ 0.47). Next, we test
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whether the accuracy can be improved further by averaging over EEG segments

to suppress the influence of artefacts.

Table 4.1: Performance (P) and entropy (E ) before and after the removal of
marked artefacts.

Data P, % E, bits

With artefacts 78.10±13.21 0.126±0.037
Without marked artefacts 82.38±13.72 0.125±0.025

4.2.2 Averaging spectral features over segments

In the experiments, the EEG were split into 10 sec segments, and the 36 spectral

features were computed in the segments. These features were averaged over all

the segments in a recording. From Table 4.2 we can observe that the averaging

over segments has improved the mean performance to 85.7% (p ≈ 0.06). The

entropy has been significantly reduced to 0.111 (p < 0.01). The performance

has been improved by approximately 8%, compared to that achieved on EEG

data with the artefacts.

For comparison, the artefact segments were removed, and only normal seg-

ments were averaged. As shown in Table 4.2, the averaging over the normal

segments provided the performance in a similar range. The uncertainty in terms

of entropy was slightly decreased to 0.096.

Overall, the averaging of spectral features over the segments has improved

the accuracy of maturity assessment by 7%, in comparison to the accuracy

achieved with the features extracted on the whole recording. As the averaging

suppresses the influence of artefacts, the removal of artefact segments prior to

the averaging had insignificant impact on the results. In the next subsection

we will explore how the accuracy can be improved further by using a simple

thresholding technique for automatic removal of artefacts.

Table 4.2: Performance and entropy on EEG data represented by averaged
features.

Data P, % E, bits

All segments 85.71±5.83 0.111±0.022
Without marked artefacts 85.00±10.61 0.096±0.030

4.2.3 Removing artefacts with statistical thresholding

Artefacts with high amplitudes, such as those caused by eye and head movement,

can be considered as outliers in the distribution of EEG amplitudes. A simple
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technique to detect such outliers is to estimate the distribution of amplitudes in

an EEG and then to remove the samples whose amplitudes exceed a threshold

given as the mean plus standard deviation of the distribution.

Fig. 4.1 shows 1 min of EEG with samples considered as outliers given

thresholds of 1, 2 and 3 standard deviations of data. The outlier samples are

marked in grey. An artefact can be seen during approximately the first 20 sec.

 
 

 

Figure 4.1: Artefacts (grey) and normal EEG (black) given different thresholds

With the threshold of 3σ only the highest peaks within the artefact are

detected as outliers and the EEG after the first 20 sec remains intact. With

the threshold of 1σ most samples within the artefact are removed. However,

some peaks within EEG signal are also cut off, making the EEG more difficult

to analyse visually.

Table 4.3 shows the accuracy of maturity assessment on EEG data from

which the outlier samples were removed given confidence intervals ranging from

2.5 to 0.75σ. The percentage of samples considered as artefacts (A) ranged

from 2.5% to 31%. The highest performance, 87.6%, and the lowest entropy,

0.092, are obtained given 1σ confidence intervals, when approximately 20% of

EEG samples are removed as artefacts. Thus, the removal of artefacts by the

statistical thresholding technique improved the average performance of maturity

assessment by 9.5% and decreased the entropy by 26% (p ≈ 0.02 and p < 0.01).

An obvious weakness of the described technique is that a single threshold is

used for the whole recording, and variations of EEG amplitudes during different
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types of brain activity are not taken into account. Specifically, this may lead to

false detection or missing of artefacts within the quiet and active sleep stages,

during which the average EEG amplitudes are significantly different. In the

next subsection, we explore a more complex artefact removal technique capable

of adapting the threshold to variable EEG activity.

Table 4.3: Performance, entropy and percent of artefacts (A) after removal of
outliers.

Threshold, σ P, % E, bits A, %

2.5 83.8±11.4 0.113±0.028 2.5±1.3
2.0 83.8±11.9 0.097±0.030 4.6±2.1
1.5 83.3±12.9 0.094±0.006 9.3±4.3
1.0 87.6±9.2 0.092±0.011 20.4±9.9
0.75 81.0±12.1 0.102±0.019 31.1±13.4

4.2.4 Removing artefacts based on local amplitude

statistics

Instead of finding a single threshold amplitude on the whole recording, the

detection can be made in the context of local EEG variations. We assume that

artefacts are events with abnormally high amplitudes which significantly deviate

from normal EEG.

Based on this assumption, in order to detect artefacts with abnormal am-

plitudes, we estimate the standard deviation of amplitudes in a sliding window.

The technique is summarised in Algorithm 1.

Algorithm 1 Artefact Detection

1: Inputs: X , wlen1, wlen2, q
2: Initialise: sliding windows W1 and W2 with given wlen1 and wlen2

3: X ← |X |
4: while W1 ∈ X do

5: D(W2)← Deviation(X(W1))
6: Increment positions of W1 and W2

7: end while

8: f(d)← ProbabilityDensityEstimation(D)
9: d0 ← argmax(f(d))

10: dthresh ← d0 + (max(d) − d0) ∗ q
11: A← (D > dthresh)
12: return A

According to the algorithm, a window W1 of length wlen1 is moving along

a rectified EEG signal X . For each position of W1, the standard deviation of

samples of X is estimated. When the deviation has been counted for all window
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positions in X , the probability density function of the deviations is estimated

in order to find the most frequent value d and the maximal value dmax.

We expect that normal EEG samples appear most frequently and so their

deviation will be less than or equal to d. On the other hand, artefacts will appear

with a higher deviation. We can set a threshold dthresh for artefact removal to

be proportional to the difference between d and dmax: dthresh = d+(dmax−d)q.

In practice, when setting the constant q, we need to find a trade-off between the

accuracy of artefact detection and the amount of normal EEG samples being

removed. In our experiments, such a trade-off has been achieved with q = 0.15,

and a sliding window was set 10 sec in duration. With these settings, the average

percentage of data considered as artefacts was 16.14±22.35% for all recordings.

Fig.4.2 shows the detection and removal of artefacts in an EEG. The fist

plot shows the EEG with artefacts visible as peaks with high amplitude mostly

during the minutes 40 to 110 and 160 to 210. The second plot shows the

deviations di with the threshold dthresh = 13.2 shown as a dashed line. The

third plot shows the marks of detected artefacts whose rate was 30%, and the

fourth plot shows the EEG cleaned from the artefacts. We can see that most

of the artefacts are removed, and at the same time, the amplitude variations of

normal EEG samples are preserved.

For EEG data, from which the artefacts were removed using the described

technique, the performance and entropy of Bayesian classification were 86.36 ±

6.43 and 0.096±0.016. The performance has improved by approximately 8.2%

and entropy by 19.4% in comparison to those obtained on the EEG data with

artefacts. The results are comparable to those achieved after removing artefacts

with the simple statistical thresholding technique. A benefit of using the local

amplitude statistics for artefact removal is that the sleep cycle variations are

preserved in EEG.

4.3 Chapter discussion and conclusions

EEG artefacts have a negative influence on the accuracy of maturity assess-

ments, which can be improved by removing the artefacts. We hypothesised

that the automatic detection of artefacts and averaging over segments provides

more consistent results than the removal of artefacts marked by experts, and so

enables achieving a better accuracy of Bayesian assessments.

We tested two techniques for automatic removal of artefacts with abnor-

mally high amplitudes. The first technique removes the EEG samples whose

amplitudes exceed a threshold found as the mean plus standard deviation of

amplitudes in the whole recording. This technique, however, does not take into

account variations of EEG patterns, and therefore the detection of artefacts
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Figure 4.2: Detection and removal of artefacts

could be misleading. The second technique calculates the deviation of ampli-

tudes in windows sliding over EEG in order to detect artefacts in the context of

EEG variations. We also expected that averaging over multiple EEG segments

can suppress the influence of artefacts.

Fig. 4.3 compares the performances and entropies of Bayesian assessments

of brain maturity obtained on raw EEG (a), after expert removal of artefacts

(b), after the averaging over segments (c), and automated removal of artefacts

(d, e). The boxplots summarise the results obtained within the five-fold cross-

validation. As expected, the removal of artefacts and the averaging over seg-

ments improved the accuracy of maturity assessments. In our experiments, the

averaging over segments as well as the automatic techniques of artefact detec-

tion provided better results than the removal of expert marked artefacts, which

supports our hypothesis.

The statistical thresholding technique enabled obtaining a slightly better

performance and lower entropy, than the local amplitude deviation technique.

A weakness of thresholding technique, however, is that it may often delete nor-

mal EEG samples with high amplitudes, possibly leading to loss of normal data.

Although in our experiments this did not create problems for Bayesian assess-
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ments, it may make the visual analysis difficult. The detection of artefacts based

on local amplitude deviation was shown to remove most of the artefacts while

preserving the normal EEG samples, so that the sleep cycle variations could

still be analysed. A possible negative effect was, however, that the preserved

variations in EEG slightly increased in the assessment uncertainty in terms of

the entropy.

In the next chapter, we can employ the artefact removal techniques to pre-

pare EEG data for experiments with classification of six age groups. We expect

that the accuracy of Bayesian assessments can be further improved by selecting

the most informative EEG features.
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Figure 4.3: The performance and entropy of Bayesian classification: on raw
EEG (a), after removal of expert marked artefacts (b), averaging over multi-
ple segments (c), artefact removal by statistical thresholding (d), and artefact
removal based on local amplitude deviation (e).
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Chapter 5

Importance of spectral

features

The absolute and relative spectral powers in the standard frequency bands are

considered to be informative EEG features. However, the importance of these

features for the assessment of newborn brain maturity is likely to be unequal —

some of them may be weakly associated with brain maturation. The presence of

such weak features can negatively affect the accuracy of maturity assessments

obtained within the methodology of Bayesian averaging over DTs.

First, the use of weak features obstructs interpretation of DTs. Second,

weak attributes increase dimensionality of a model parameter space, making

it more difficult to be explored in detail within a reasonable time. The lack

of detailed exploration can negatively affect the results of Bayesian averaging.

Prior information about EEG features can be used to reduce the dimensionality,

however, in our case no such prior information is available.

The use of DTs for Bayesian assessment enables obtaining posterior infor-

mation on the importance of EEG features. In this chapter, we hypothesise

that the posterior information about feature importance can be used to refine

the DT ensemble from models using features found making weak contribution.

In Section 5.1 we discuss in more detail the reasons for selecting the impor-

tant EEG features to be used with Bayesian averaging over DTs and outlines the

principle of refining the DT ensemble for feature selection. Section 5.2 describes

the refining technique, which can be used to find a subset of the most important

EEG features. Section 5.3 describes experiments with the proposed technique

for six PCA groups or classes, 36 to 41 weeks. This multiclass problem is ex-

pected to be difficult as the EEG from the neighbouring age groups are hard to

differentiate and so the classes can overlap. Section 5.4 describes experiments
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on two age groups, 36 and 41 weeks. We expect that these groups, including

EEG of pre-term and full-term newborns, will be easier to distinguish, and we

find that these groups can be classified by DTs using only a small portion of

the EEG features. We hypothesise that the subset of features can be further

reduced by setting a larger pruning factor to encourage growing shorter DTs

which use fewer features, and test this hypothesis in experiments. Section 5.5

concludes the chapter.

5.1 Feature selection within Bayesian averaging

over DTs

The spectral features along with their statistical characteristics form a multi-

dimensional representation of the EEG data. As described in Section 2.5 EEG

Data, the spectral features comprise the absolute and relative spectral powers in

the six standard frequency bands, calculated for the two channels C3T3, C4T4,

and their sum. Additionally the statistical variances are calculated for these

features, so that the total number of EEG attributes becomes 72.

Previous research has shown that the importances of the spectral bands for

maturity assessment may be unequal and only some of the bands may make a

significant contribution, however, in different studies different bands have been

identified as most important (Holthausen et al., 2000; Scher et al., 1995). Thus,

we have no reliable prior information on the importance of the 72 features, but

we can expect that some of them do not make a significant contribution.

Under the lack of prior information on feature importance, the MCMC tech-

nique, described in Chapter 3, can sometimes accept a DT model with one or

more of the weak features, even with a slight decrease in performance. In pres-

ence of few weak features, the portion of such DTs included in an ensemble will

likely be insignificant and results will not be affected. Contrary, in presence of

many weak features, the portion of such DTs can become substantial.

The negative impact of this is twofold. First, the use of weak EEG features

obstructs the interpretation of maturity assessments. Employing an excessive

number of features is likely to result in growing oversized DTs. Second, weak

features increase the dimensionality of a model parameter space that needs

to be explored within the MCMC technique. The success in implementation of

Bayesian model averaging is critically dependent on the diversity and proportion

of models sampled for averaging. The models should be diverse in parameters

and structure, and the portion of models whose likelihood is high should be

largest to ensure unbiased estimates.
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To ensure the diversity, the model parameter space must be explored in detail

in order to sample models from diverse areas of interest with highest likelihoods.

The larger the model parameter space, the more difficult it is to be explored.

Thus the results of Bayesian averaging will likely suffer from disproportionally

sampling the posterior distribution, as we cannot expect that a multidimensional

model space will be explored in detail, and the areas of interest will be properly

explored within a reasonable time.

Information about feature importance could be used to specify areas of a

model parameter space to be explored. In our case, this information is unavail-

able and we are forced to make an unrealistic assumption that all the EEG

attributes make an equal contribution to the maturity assessment. However,

the use of DT models provides the feature selection, and therefore the Bayesian

averaging over such models will give us the posterior information about EEG

feature importance, which can be used to improve the results of averaging. This

information is estimated as the frequencies of using each feature by the DTs in

the ensemble. The importance of feature k is estimated as follows:

γk =

∑np
i=1

∑Si
j=1(vj == k)
∑np

i=1 Si
, (5.1)

where np is the number of DTs in the ensemble, Si is the size of ith DT, and

vj is the index of feature used by the jth split of the DT.

If a feature is rarely used in the ensemble, then it likely makes a weak

contribution. We hypothesise that the DTs which use the weak attribute could

be discarded from the ensemble without a decrease in performance.

In the next section we propose a technique for refining the DT ensembles

from features found making weak contribution. A subset of the most important

features can be found within a sequential-forward strategy of eliminating the

weak ones.

5.2 Refining ensembles from DTs using weak

features

Having obtained a range of the posterior probabilities of EEG features, we can

define a threshold value to cut off the ones with the probabilities below this

threshold; we define such features as weak. A trivial way of using the posterior

information on weak features is to rerun the Bayesian averaging on data from

which such features were deleted. This reduces a model parameter space so that

it can be explored in more detail. However this techniques requires multiple

reruns to find the best threshold.
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The other way is to refine the DT ensemble by discarding DTs which use

weak features. For each threshold, we can find the DT models which use these

weak features and discard these DT models from the ensemble. We expect that

such a refining strategy will reduce the original set of features without rerunning

the Bayesian averaging, keeping its performance high. We can also expect that

there is an optimal threshold probability at which the largest number of weak

features can be discarded. It is interesting to explore whether the discarding

of weak features will improve the results of Bayesian model averaging. In a

series of experiments, we could increase the threshold probability in steps and

evaluate the performance of the refined ensemble on the test data.

Alternatively to such try-and-see approach, we can search for the smallest

set of important EEG features by discarding the models using weak features

and monitoring the accuracy of the refined ensemble on the training data. We

use a sequential forward strategy of finding DT models using a weak feature in

order to eliminate these models from the ensemble. The search continues while

the training accuracies of the refined and original ensembles are comparable

within a given p-value of a statistical hypothesis test, such as the two-sample

Kolmogorov-Smirnov test (KS-test). The accuracies are said comparable as

long as the test cannot reject the null hypothesis. The null-hypothesis assumes

that samples of the accuracies are drawn from the same distribution. The test

rejects the null-hypothesis if the modifications made for kth attribute decrease

the accuracy, and then the procedure stops.

To compare the training accuracies with a hypothesis test, the distribution of

the accuracies given each feature subset need to be estimated. To estimate the

distributions it is required to collect sufficient independent samples representing

the accuracies of each of the ensembles. Such samples could be obtained by

calculating the accuracies on multiple independent data sets. When the training

data are limited, the independent data sets can be simulated by resampling

the available data. One of the techniques enabling the multiple independent

datasets to be generated is to randomly subsample two-thirds of data without

replacement. In cases when the simulated data sets are required to be with the

same number of samples as the original data set, bootstrapping with replacement

is typically used. In our case, however, there is no such requirement.

The proposed technique of finding a subset of the most important features

can be summarized by Algorithm 2.

The algorithm returns the number of features which were found weak within

a given p-value. Thus, the indexes of weak features are in positions from 1 to

k of the list F. Obviously, the greater the number of attributes found weak, the

larger is the portion of DT models discarded from the ensemble. As a result,
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Algorithm 2 Refining a DT Ensemble

1: Inputs: training data D represented by m features, ensemble of DTs, num-
ber of subsamples n, p-value, number of attempts vmax,

2: Initialise: counter of attempts v = 0, number of weak features k = 1
3: Estimate the posterior feature importance
4: Sort the list of features, F , in the order of their importance
5: for i = (1, n) do
6: Subsample D and calculate the ensemble accuracy Ai

7: end for

8: while v ≤ vmax and k < m do

9: Find the DT models using feature Fk and delete them from the ensemble
10: for i = (1, n) do
11: Subsample D and calculate the ensemble accuracy ARi

12: end for

13: Run the KS-test to compare the samples {ARi}
n
1 and {Ai}

n
1

14: if null-hypothesis rejected then

15: v ← v + 1
16: else

17: Reset the counter of attempts v, v ← 0
18: end if

19: k : k ← k + 1
20: end while

21: k ← k − v
22: return k

we expect to find the smallest set of attributes making the most important

contribution and keep the performance of the refined ensemble high.

A potential criticism of the refining technique is that the sequential forward

strategy of eliminating the weak features does not take into account the pos-

sible interactions between the features. However, the technique assumes that

the feature interactions have been considered by the collected DT models. Our

hypothesis is that the combinations of the features which make valuable con-

tributions to the classification have been used by the largest portion of the

ensemble’s DT models. On the contrary, the weak features, which are some-

times added to the DT even with a slight decrease in the likelihood, are used

by a much smaller portion of the models. When the MCMC technique adds a

weak feature to a DT by making a birth move, a new “version” of the model

with the weak feature is included in the ensemble. The fact that a weak feature

is rarely used by ensemble’s DTs means that proposals to add this feature tend

to decrease the model’s likelihood and are rarely accepted by the sampler. The

refining technique is aimed to remove those DT versions which include the weak

features while keeping those DTs which have employed the successful feature

combinations. The efficiency of this technique is evaluated in experiments in

terms of performance and accuracy of uncertainty assessment.
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5.3 Experiments with six age groups

The first experiments were run on classification of EEG of newborns in six age

groups or classes, 36 to 41 weeks PCA. This multiclass problem is expected

to be difficult as the EEG from the neighbouring age groups are hard to dif-

ferentiate and so the classes can overlap. For this problem, we first run the

Bayesian DT technique described in Chapter 3, and then obtain the posterior

probabilities of EEG features being used in the DT ensemble. Having found the

ranges of the posterior probabilities, we assign thresholds probabilities to define

features as weak, and test our hypothesis that an ensemble can be refined from

DTs using weak features without a decrease in performance. We then test the

proposed technique of searching for the minimal subset of important features.

For the comparison, we rerun the Bayesian averaging on the data of reduced

dimensionality, having eliminated the weak attributes.

5.3.1 Bayesian classification

The experiments were run with the set of EEG recordings of 686 newborns aged

between 40 and 45 weeks so that the number of age groups was six. Each of

these groups (classes) included around 100 recordings. The EEGs have been

segmented in 10-sec intervals, and the 72 spectral features, namely the spectral

powers and their variances within the standard frequency bands, were computed

within these segments. We averaged the segments of each patient to suppress

the artefacts and transient variations in EEG as described in Chapter 4.

The Bayesian technique was run with the following settings. In a burn-in

phase we collected 200,000 DTs, and in a post burn-in phase 10,000 DTs. During

the post burn-in phase each 7th model was collected to reduce the correlation

between DT models. The minimal number of data samples allowed to be in

DT nodes, pmin, was set to six. Proposal variance was 1.0, and probabilities of

making moves of birth, death, change variable, and change threshold were set to

0.15, 0.15, 0.1, and 0.6, respectively. The performance and entropy of the DT

ensemble collected in the post burn-in phase were evaluated using a five-fold

cross-validation.

The rate of acceptance of DT models was around 0.13 in both phases. In the

burn-in phase, the log-likelihood as well as the size of DT were stabilized after

10,000 samples, as seen from Fig. 5.1, so that the remaining samples were drawn

from an approximately stationary Markov Chain. The average performance of

the Bayesian technique (exact match of weeks) was 27.41±3.9% and the entropy

was 0.414.

In comparison, a single DT, trained with the same pmin setting, provided a

performance of 24.6±3.9%. The Bayesian averaging over DT models provided
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an almost 3% better performance than the single DT, and this result shows that

the sampler has acceptably explored the parameter space.
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Figure 5.1: Log-likelihood, number of DT nodes and distribution of DT sizes
during the burn-in and post burn-in phases.

5.3.2 Feature importance

According to the proposed technique, we estimated the importance of all the

72 attributes in terms of the posterior probabilities of using these attributes by

the DT models collected in the post burn-in phase. The posterior probabili-

ties (frequencies) of using the attributes ranged between 0.0 (exactly zero) and

0.048 as shown in Fig. 5.2. Here, the probabilities were averaged over the 10

folds. We can observe that the three most important features with probabilities

near 0.048 are the mean relative and absolute powers in the Delta range. The

probabilities of all of the mean spectral powers are generally higher than those

of their variances; 12 mean powers are with probabilities above 0.02, but only

seven variance features have probabilities above this threshold. The probabil-

ities of the absolute power variances generally are the lowest, all below 0.02.
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Figure 5.2: Posterior probabilities of 72 EEG attributes characterising the rela-
tive and absolute spectral powers (the upper plot) and their variances (the lower
plot).

5.3.3 Refining the ensemble

Having found the range of feature importances, we applied the proposed tech-

nique to refine the DT ensemble. Table 5.1 shows the number of weak features,

k, versus the threshold values within a 5-fold cross-validation. At threshold value

0.001 the average number of weak features, k, was 15, whilst at level 0.005 their

number has increased to 30. We found that around 30 weak attributes could be

discarded without a significant decrease in performance, P. At the same time,

when the threshold was gradually increased from 0.0 to 0.005, the uncertainty

in decisions insignificantly decreased from 0.414 to 0.403 in terms of entropy E

of the ensemble.

Having confirmed that the DT models using weak EEG features can be

discarded from the ensemble without a decrease in performance, we test the
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proposed sequential-forward strategy of finding the minimal subset of important

EEG features. Fig. 5.3 shows the training accuracy, performance, ensemble size

and p-value of the KS-test calculated within the proposed technique for one of

the five folds. We can observe that for (k = 29) weak features, p-value becomes

lower than 0.5, the given confidence interval. Further discarding of weak features

did not increase the accuracy. Thus we define 28 weak features and select the

remaining 44 as most informative ones.

Table 5.2 compares the performance and entropy of the original ensemble

with that of the refined ensemble excluding the 26 weak features. The per-

formance, entropy and the number of weak features are counted within the

five-fold cross-validation. We can see that after refining the performance has

slightly increased by 1.8% and the entropy has slightly decreased.

Fig. 5.4 shows the distributions of performances provided by the original and

refined DT ensembles on the test data. We can see that the size of the refined

ensemble becomes significantly smaller. Most of the DTs with performance

above 32.0% have been kept, whilst most of the DTs with performance below

24.0% have been discarded from the refined ensemble.

Table 5.1: Performance (P) entropy (E ) and the number of weak features (k)
for the thresholds

Threshold P, % E, bits k

0.001 27.8±4.5 0.414±0.014 15
0.002 26.8±3.6 0.414±0.014 20
0.003 27.6±3.4 0.413±0.009 23
0.004 27.8±6.2 0.409±0.001 28
0.005 27.6±5.0 0.403±0.011 30

Table 5.2: Performance and entropy of the DT ensembles

Original ensemble Refined ensemble Rerunning

P, % E, bits P, % E, bits P, % E, bits

27.4±3.9 0.414±0.015 29.2±6.9 0.410±0.014 29.3±6.5 0.416±0.024

5.3.4 Rerunning the Bayesian classification

with a reduced set of features

Having found a minimal subset of important EEG features, we can rerun the

Bayesian classification on a dataset of reduced dimensionality. Table 5.2 shows

the performance and entropy of DT ensemble rerun on the EEG data represented
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Figure 5.3: Finding a minimal feature subset. From top: training accuracy,
performance, ensemble size, and p value of KS-test.

by the features found most important. We can see that the performance is

similar to that of the refined ensemble. Compared to the original ensemble,

the increase in performance is 1.9%. This result supports our hypothesis that

dimensionality reduction provides better conditions for proportional sampling.

80



0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36
0

100

200

300

400

500

600

700

800

900

1000

Performance

C
ou

nt

Figure 5.4: Distributions of performances of DTs included in the original (grey)
and refined (black) ensembles

5.4 Experiments with two age groups

In this section we describe experiments with classification of pre-term and full-

term EEG recorded at 36 and 41 weeks respectively. The EEG of pre-term

and full-term newborns are very different, so the classification performance is

expected to be higher than that for the six-class problem. Having run the

Bayesian classification, we use the proposed technique to find the minimal subset

of important features. We then explore whether the set of EEG features could

be further reduced by increasing the minimal number of data points allowed in

DT nodes, or the so-called pruning factor.

5.4.1 Bayesian classification

We used the EEG recorded from 200 newborns in two age groups, 36 and 41

weeks PCA. Each of the groups contained 100 patients. The EEG have been

segmented in 10-s intervals and represented by 36 features, the mean absolute

and relative spectral powers in the six frequency bands.

We ran the BMA with the same settings as for the six-class problem. The

pruning factor, that is the minimal number of data points allowed in DT nodes,

was set to 2 or 1% of data samples. Under these settings, the acceptance rate

was around 0.3 in the burn-in and post burn-in phases. The DT size became

stationary after growing to 5 nodes. The average performance counted within

the five-fold cross-validation was 86.5±7.6% and the entropy was 0.107±0.023.
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5.4.2 Feature importance for EEG recorded at 36 and 41

weeks

Fig. 5.5 shows the posterior probabilities of the 36 features representing the

two-class EEG problem. These probabilities ranged between 0.004 and 0.22.

For this problem, the most important features were the relative powers in the

Theta and Alpha bands with the probabilities around 0.2. The importance of

more than two thirds of the features was approximately 10 times lower, around

0.02.

The relatively low probabilities of most of the features may mean that the

EEG of pre-term and full-term newborns can be distinguished based on a small

set of features. Thus, we can expect that many weak features making insignif-

icant contribution can be excluded from the maturity assessment without a

decrease in performance.
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Figure 5.5: Posterior probabilities of 36 EEG attributes characterising the rel-
ative and absolute spectral powers.

5.4.3 Refining the ensemble

Table 5.3 lists the performance and ensemble entropy obtained in the experi-

ments for the original and refined ensembles without the 27 weak features. The

results show that the performances of the original and refined ensembles are

comparable.

Fig. 5.6 shows the likelihood, performance, ensemble size and p-value of KS-

test calculated within the proposed refining technique for one of the five folds.

We can observe that for (k = 25) weak attributes, p-value becomes below 0.05,

the given confidence interval, and does not improve significantly when the next
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Table 5.3: Performance and entropy of the DT ensembles

Original ensemble Refined ensemble

P, % E, bits P, % E, bits

86.5±7.6 0.107±0.038 86.5±7.6 0.106±0.021

weak features are removed. Thus we define 24 weak attributes and select the

remaining 12 as most informative features.
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Figure 5.6: Finding a minimal feature subset for the classification of EEG in the
two age groups, pmin = 2. From top: training accuracy, performance, ensemble
size, and p-value of KS-test.

Fig. 5.7 compares the probabilities of using the 36 features in the original

and refined ensembles. Here, the probabilities were counted within the five

folds. From the upper plot we can see that the average probabilities in the

original ensemble range between 0.0 and 0.2. We expect that the features with

probabilities close to zero make insignificant contribution to the results. The
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lower plot shows that refining has eliminated some of these features in the

Subdelta, Beta and Alpha bands.
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Figure 5.7: Probabilities of using features in the original and the refined ensem-
ble, pmin = 2.

5.4.4 Pruning of Decision Trees

We investigated how the minimal number of data points in DT nodes, pmin,

affects the results. In our experiments we ran the Bayesian averaging over DTs

with pmin ranging from 2 to 10. Table 5.4 shows the average performance,

entropy, and size of the DT ensembles within the five-fold cross-validation. We

can see that DT size, on average, decreases while pmin increases from 2 to 10.

For larger pmin, the ensemble performance becomes slightly lower, remaining

within a given confidence interval, while the entropy is slightly growing.

Table 5.4: Performance, entropy and average DT size of the ensemble given
different pruning factor, (pmin)

pmin P, % E, bits DT size

2 86.5±7.6 0.107±0.023 5.6±1.0
4 86.5±10.9 0.115±0.018 4.7±0.9
6 85.0±8.7 0.112±0.014 4.1±0.5
8 84.5±14.3 0.112±0.017 3.7±0.2
10 85.0±10.6 0.113±0.026 3.5±0.3

Fig. 5.8 shows the likelihood, performance, ensemble size, and p-value of KS-

test calculated for DT ensembles refined with the proposed technique for pmin =

10. Comparing the results shown in Fig. 5.6 and Fig. 5.8, we can see that a

larger number of the features can be discarded without significant decrease in
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the training accuracy. We can also see that the ensemble size decreases less

steeply for pmin = 10. This is likely because fewer DT models use the weak

features.
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Figure 5.8: Finding a minimal feature subset for the classification of EEG in
the two age groups, pmin = 10. From top: training accuracy, performance,
ensemble size, and p-value of KS-test.

The p-value finally becomes below 0.05 for (k = 31) weak fatures, and sub-

sequently 30 features are assigned as weak, and the remaining 6 features were

most informative. For comparison, we reran the Bayesian technique on the data

represented by these 6 features. The results presented in Table 5.5 show that

the performances of the DT ensembles are comparable within a given confidence

interval.

Fig. 5.9 shows the boxplots of the posterior probabilities of the 36 EEG

features within five-fold cross-validation for the original and refined ensembles.

Features which are most frequently used in the original ensemble represent the

Theta and Alpha bands. The refining technique discarded the least frequently

used (and therefore weakest) features without a decrease in ensemble’s perfor-
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Table 5.5: Performance and entropy of the DT ensembles

Original ensemble Refined ensemble Rerunning

P, % E, bits P, % E, bits P, % E, bits

85.0±10.6 0.113±0.026 84.5±14.3 0.106±0.025 85.5±9.6 0.107±0.018

mance. Overall, we can see that setting a larger number of data points in DT

nodes enables selecting a smaller subset of features.

Examining the median importances of the features in Fig. 5.7 and Fig. 5.9,

we can see that two of the most important features are found among the at-

tributes representing the relative powers in both the Theta and Alpha bands. We

can therefore hypothesise that the most accurate separation of the age groups is

achieved by using the features from these bands. The electrode channels (right

side, left side or their sum) within each of the bands are interchangeable in

terms of the contribution to classification.

Fig. 5.10 shows the scatter plot of the EEG recorded at 36 and 41 weeks

of PCA in the space of two of the most important features. We can see that

most EEGs in the two groups can be separated based on the two features in the

Alpha and Theta bands.
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Figure 5.9: Probabilities of using features in the original and the refined ensem-
ble, pmin = 10.

5.5 Chapter discussion and conclusions

We explored how the posterior information can be used within the methodology

of Bayesian averaging over DTs in order to select a subset of EEG features mak-
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Figure 5.10: EEG recorded at 36 and 41 weeks of PCA in the space of two of
the most important features

ing important contribution in the brain maturity assessment. We hypothesised

that the posterior information about feature importance can be used to refine

the DT ensemble from models using features found making weak contribution.

We assumed that the use of weak features within Bayesian averaging over

DTs unnecessarily increases the model parameter space, which needs to be ex-

plored in detail to achieve proportional sampling from areas of interests. Be-

sides, the use of weak features obstructs the interpretation of the ensemble. In

general, the larger the number of weak attributes, the greater is the number

of DT models using these features, and the greater is their negative impact on

performance. We expect that the discarding of models using weak attributes

will reduce the negative influence on the classification.

A technique we proposed for refining DT ensemble has been tested on two

EEG assessment problems. The first problem was classification of EEG in six

age groups from 36 to 41 weeks of PCA, represented by 72 spectral features. The

results showed that the set of features could be reduced, on average, to 46. At

the same time, the mean performance was increased by 1.8% to 29.2±6.9% and

the uncertainty was slightly decreased. When we rerun the Bayesian averaging

on EEG data of reduced dimensionality represented by the most important

features, a similar increase in performance was observed. This result supports
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our assumption that dimensionality reduction provides better conditions for

proportional sampling.

The second problem was classification of EEG of pre-term and full-term

newborns in two age groups, 36 and 41 weeks of PCA. The EEG were represented

by 36 spectral features. The results of experiments run on this problem showed

that the set of EEG features can be reduced from 36 to 19 on average, keeping

the performance 86.5±7.6 on average.

We expected that the set of EEG features could be further reduced by in-

creasing the minimal number of data points allowed in DT nodes. We found that

a larger pruning factor encourages growing shorter DTs, which use a smaller set

of EEG features. As a result, an ensemble of DTs using 6 features was selected

without a significant decrease in the accuracy of assessment. These features

represent mainly Theta and Alpha bands.

The results of the proposed technique were comparable with the results

obtained by rerunning the Bayesian averaging on the EEG data without the

weak features. To find the minimal set of most important features, the rerunning

technique requires multiple runs of the Bayesian averaging each of which takes

hours to complete. The proposed technique has been shown to provide the

comparable performance without the need of reruns.

88



Chapter 6

Extraction of EEG features

In this chapter, we extract EEG features to obtain more information for Bayesian

assessment of brain maturity. We hypothesise that the new features will com-

plement the standard spectral powers, and their use will increase the accuracy

of assessments. To test the hypothesis, we run Bayesian classification on EEG

data represented by the new feature sets.

First, we explore extraction of time-domain EEG characteristics, assuming

that discontinuity is the most important maturational feature. The techniques

explored in Sections 6.1 and 6.2 assume that discontinuity is conventionally

defined in terms of durations of inter-burst intervals and variability of amplitude.

Specifically, in Section 6.1 we extract information on durations of inter-burst

intervals, bursts, and continuous intervals, and show that this information is

relevant for maturity assessment. Section 6.2 describes application of an aEEG

technique to extract features related to continuity. The amplitudes of the aEEG

borders, reflecting the variability of EEG amplitudes, are quantified to be used

as new features. These features are shown to slightly improve the accuracy of

assessments, when used with the spectral powers.

In Section 6.3 we hypothesise that discontinuity can be estimated as EEG

non-stationarity, and propose a new feature extraction technique. The new

features representing EEG non-stationarity significantly improve the assessment

accuracy, and are shown to outperform the conventional discontinuity estimates.

In Section 6.4 we extract new spectral features. We hypothesise that the

ratios of spectral powers are more informative than the individual powers, as

shown in (Holthausen et al., 2000; Lippe et al., 2007). The ratio of absolute

powers in the Alpha and Theta bands is found most informative, and its use

increases the assessment accuracy. Overall, the highest accuracy is achieved

by supplementing the standard spectral features with both the non-stationarity

estimate and the Alpha/Theta ratio.
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6.1 Detection of bursts, inter-burst intervals

and continuous activity

EEG experts have observed that durations of bursts, inter-burst intervals and

periods of continuous activity reflect EEG maturation levels. Based on these

observations, we hypothesise that EEG features describing these durations will

be informative for assessment of brain maturity.

To extract the features, first, we detect the bursts, inter-burst intervals and

continuous intervals in EEG. In contrast to conventional approaches to event

detection requiring the amplitude thresholds to be set (West et al., 2011; Jen-

nekens et al., 2011), we use a detector based on an Artificial Neural Network

(ANN) trained on examples of the EEG events from the three classes. ANNs

have been shown promising to detect different types of EEG waves (Cooper

et al., 2003).

We estimate the durations of the events of each class in an EEG recording to

represent the continuity information. The durations, summarised by histograms,

are then used as new features for the assessment of EEG maturity. In our

experiments, we us a DT classifier to differentiate two age groups, each including

65 recordings. To test our hypothesis, we compare the classification accuracies

obtained with the new features and with the standard spectral powers.

6.1.1 Codebook of events

To train an ANN detecting the EEG events, a codebook of 90 segments with

1-sec durations representing bursts, inter-burst intervals and continuous activ-

ity was collected. The segments were picked manually from real recordings

according to descriptions of EEG events in the literature (Cooper et al., 2003;

Boylan et al., 2008; Mizrahi et al., 2003). Bursts and inter-burst intervals were

selected from discontinuous EEG recorded from pre-term newborns. Burst seg-

ments contained Subdelta, Delta and Theta waves with maximum amplitude

of 50-80µV. Inter-burst intervals were with very low amplitude close to 0µV.

Segments containing Theta, Alpha and Beta waves with maximum amplitudes

of 0-20µV were marked as continuous. Fig. 6.1 shows examples of segments

chosen to represent the three types of EEG events.

6.1.2 Detection of events

Having collected the codebook, we trained an ANN to classify the events. The

1-sec segments in the codebook were preprocessed using the fast Fourier trans-

form into 64 spectral powers. The spectrum represents the information on the

frequency and amplitude of EEG activity, which enables the types of events to
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Figure 6.1: Examples of EEG segments representing the bursts, inter-burst intervals and continuous activity. The horizontal axes show
seconds, the vertical axes show µV.
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be distinguished. To reduce the dimensionality of data, Principal Component

Analysis was applied to the 64 spectral powers. The principal components that

contributed less than 0.1% to the total variation in the data set were elimi-

nated and the remaining 14 components were used to represent the data. Then

the data were classified with an ANN and DT using the Matlab Neural Net-

work and Statistics Toolboxes. The performances were tested within the 10-fold

cross-validation so that 81 of the 90 segments were used for training and 9 for

testing.

The best performance of ANN was achieved with five hidden neurons with

sigmoid activation. The network was set up with three output neurons, and the

classification outcomes were determined by the unit with the highest activation

value. It was found that either a linear or sigmoid activation function could be

used for the output units without significantly affecting the performance. The

resilient backpropagation method with the gradient descent momentum, and

the learning rate 0.01 were found to be the best settings for training. Each fifth

sample of the training data was chosen for validation. For the DT, the minimal

number of data points in the terminal nodes was set to one, and the splitting

criterion was maximum deviance.

The ANN provided the performance of 85.7±29.4% and the DT 76.9±28.3.

For the ANN, on most of the folds, the performance was close to 90 to 100%.

However on one fold it was 56%. The large variation of performances may be

caused by subjective or erroneous labelling of some of the codebook segments.

Table 6.1 shows the confusion matrix for the classification of EEG events. We

see that

Table 6.1: Confusion matrix for classification of the EEG events

Iinter-burst Continuous Burst

Iinter-burst 28 3 0
Continuous 2 21 2
Burst 0 6 28

Total 30 30 30

We applied the trained ANN providing the best performance to classify

segments in EEG recordings. EEG signals were processed using a 1-sec window

sliding with a step of 25 points. In each window, the fast Fourier transform was

applied and the trained ANN was used to classify the 1-sec segments as burst,

inter-burst intervals or continuous activity. Fig. 6.2 shows the classification

outputs for 20 sec of two EEG recordings. In the absence of reliable labels

for all portions of these recordings, the classification performance cannot be

determined. However, we can see that the first EEG recorded at 28 weeks PCA
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is discontinuous and there are obvious low-voltage inter-burst intervals during

approximately the seconds 0–2, 12–16 and 18–20. Bursts can be seen during

the seconds 8-10 and 16-18. Observing the maximal outputs of the burst and

inter-burst interval classes, we can see that the classification of the EEG events

is plausible during these periods.

The second EEG recorded at 41 weeks has no discontinuities and we can

see that the outputs for the inter-burst class are small. Most of the EEG has

been classified as burst or continuous. We see that no bursts were confused

with the inter-burst intervals, and all the errors were made in discrimination of

continuous activity from the other types.

6.1.3 Segmentation of events

Having obtained the classification outcomes for the bursts, inter-burst intervals

and continuous activity on the windowed signal, we can segment the events

in the signal according to the maximal outcome for one of the three classes.

Because of the variations in data, some of the windows were assigned to a

different class than most of the surrounding activity. Such random variations

caused interruptions in the segmented events.

To suppress the random variations and enhance the dominant type of activ-

ity, the classification outcomes were smoothed with a moving average over 100

samples. Furthermore, the classification was uncertain for some of the windows,

especially on transition between the different events, so that the outcomes for

the classes were in a similar range. Therefore, to avoid misleading segmentation

of events, the windows for which the difference between the maximal classifi-

cation outcome and the next highest outcome was less than 5% were marked

as “transitional”. An example of the final segmentation is shown below in Fig.

6.3. Such segmentation enables the durations of events to be estimated.

6.1.4 Maturity assessment

In the experiments we tested a hypothesis that the durations of the segmented

EEG events can be informative for brain maturity assessment. To test the

hypothesis, the durations of bursts, inter-burst intervals and continuous periods

were computed for 130 recordings in two age groups, 36 and 41 week PCA, each

group included 65 recordings.

From each recording we extracted 75 features representing distribution of

the durations of the events. The number of the event features was made similar

to that of the spectral features in order to compare the informativeness the

features, keeping the dimensionality of the model parameter space similar.
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To extract these features, first the durations of the segmented events lasting

from 0.5 to 50 sec were counted and then the counts for each of the three

event types were summarised with a 25-bin histogram. Thus, the first 25 of the

features represented the durations of bursts, next 25 – durations of continuous

activity, and the last 25 – durations of inter-burst intervals.

A single DT used to classify this data provided the performance of 70.0±20.17%

over five data folds. For comparison, the same recordings were represented by

the conventional 36 EEG attributes and classified by a DT. The performance

achieved on this data was 77.2±20.13%. Combining the event durations and

spectral features did not improve the performance.

6.1.5 Conclusions on section

The average performance of age classification based on the durations of seg-

mented EEG events was 70.0%, that is, 20% better than random guess. We can

conclude that the durations of events can be promising features for age assess-

ment. However, in the current experiments, the use of standard spectral powers

enabled achieving a significantly higher performance, 77.2%.

To provide more information for the age classification, the technique of EEG

event segmentation needs to be improved. One drawback of the current im-

plementation is that the categorisation of EEG events into bursts, inter-burst

intervals and continuous activity may be too general, and more types of events

need to be distinguished to improve the discrimination of the neighbouring age

groups. For example, the continuous activity may be presented as slow wave

sleep or low-voltage irregular pattern, and the proportions of these patterns vary

at different PCA. Detection of such events will be explored in future work.

It will be interesting to explore how hidden Markov models can be applied

to segmentation of EEG events. This technique enables the prior information

about durations of EEG events to be employed in segmentation, and it has been

successfully applied to recognition of patterns related to mental and motor tasks

in EEG see e.g. (Lederman and Tabrikian, 2012).
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Figure 6.2: Classification outputs for EEG recorded at 28 weeks (upper plot)
and 41 week (lower plot).
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Figure 6.3: Segmentation of EEG recorded at 40 weeks PCA.

95



6.2 Envelope and aEEG

The amplitude-integrated EEG (aEEG) shows the peak-to-peak amplitudes,

or envelope (Cooper et al., 2003). Looking at aEEG, clinicians can recognise

different levels of continuity. To assess the continuity, the amplitudes of the lower

and upper borders of the aEEG are measured, and according to (Burdjalov et al.,

2003),the EEG at different PCA can be distinguished based on these amplitudes.

Typically, the aEEG amplitudes are measured manually by experts. In this

section we attempt to measure the amplitudes automatically to extract impor-

tant features for brain maturity assessment. We implement an envelope detec-

tion technique similar to the aEEG technique described in (Hellstrom-Westas

et al., 2008). Then we use the statistics on the lower and upper borders as fea-

tures for maturity assessment. We hypothesise that these features, character-

ising EEG changes in time domain, supplement the standard spectral features,

and so their use will improve the performance of EEG age classification. To

test this hypothesis, we use the envelope and spectral features with Bayesian

classification of 210 EEG in two PCA groups.

6.2.1 Envelope detection

Similarly as in the aEEG technique (Hellstrom-Westas et al., 2008), in our ex-

periments the raw EEG signal was filtered by a band-pass filter with cut-off fre-

quencies of 2 and 15 Hz to suppress the artefacts. Then the signal was rectified,

and the peak-to-peak amplitudes were detected using a simulated smoothing

capacitor.

The implementation of the smoothing capacitor that was used to detect the

peak-to-peak amplitudes is summarised in Algorithm 3. According to this al-

gorithm, the peak-to-peak amplitude follows the voltage of a capacitor (peak

rectifier), which is charged when the amplitude of EEG signal, X , exceeds the

capacitor’s current voltage, V . As long as the EEG amplitude is lower than V ,

the capacitor discharges exponentially until a new peak in the signal is encoun-

tered. An example of the resultant peak-to-peak amplitude is shown in Fig.

6.4.

As described in (Hellstrom-Westas et al., 2008) the peak-to-peak amplitudes

counted for the signal were finally smoothed with a window of 50 samples. After

that the upper and lower borders of the envelope were found as the average

maximum and minimum amplitudes of the peak-to-peak output. To obtain the

upper border, the maximum amplitudes were found in non-overlapping windows

of 10 sec in duration, and then the maximums in each ten subsequent windows

were averaged. Similarly, for the lower border, the the minimal amplitudes were

computed in the 10-sec windows and averaged.
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Algorithm 3 Detection of peak-to-peak amplitudes

1: Inputs: X , τ
2: Initialise: current amplitude V = 0, initial amplitude V0 = 0, t = 0
3: X ← |X |
4: n← NumberOfSamples(X)
5: for i ≤ n do

6: if X(i) > V then

7: V ← S(i)
8: t← 0
9: V0 ← V

10: else

11: t← t+ 1
12: V ← V0e

(−t/τ)

13: end if

14: A(i)← V
15: end for

16: return A
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20

40
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µ
V

Figure 6.4: Peak-to-peak amplitudes (dashed) in a rectified EEG (solid).

Fig. 6.5 shows an example of the obtained aEEG-like signal with the upper

and lower borders along with the corresponding original EEG. We can see that

the amplitude of the lower border decreases, whereas the amplitude of the up-

per border becomes higher during the quiet sleep stages approximately at the

minutes 0–30 and 70–100. Overall, the bandwidth, or the difference between

the lower and the upper border, is greater during the quiet sleep, similarly as

described in (Hellstrom-Westas et al., 2008).

The amplitude of the lower border is dependant on the rate of capacitor’s

discharge. The slower the capacitor discharges, the higher will be the ampli-

tude during EEG periods with frequent bursts. The rate of discharge can be

controlled by tuning the constant τ in the Algorithm 3. This rate has to be

tuned so that the resultant envelope would enhance the different levels of EEG

continuity.

The left column in Fig. 6.6 shows the envelope along with the lower and

upper borders given different values of τ for an EEG recorded at 36 weeks PCA.

The quiet sleep periods can be seen approximately during min 0-30, 90-120 and
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190- 220. We can observe that setting a greater value of τ enhances the difference

in the amplitude of the lower border during the quiet and active sleep stages. In

our experiments with EEG age classification, we will extract the features from

the envelopes constructed with τ = 100 and τ = 200, as these settings enhance

the sleep cycle variations.

We can also observe high-amplitude points in the envelope. These points

correspond to the peaks in the EEG signal, and some of these peaks with the

highest amplitudes are likely caused by artefacts. We can expect that the char-

acteristics of the upper border of the envelope will be negatively affected by the

artefacts. Attempting to reduce the negative influence we can detect the enve-

lope of EEG signal from which the artefacts were removed. The right column

in Fig. 6.6 shows the envelope along with the borders detected in the same

EEG recording after removal of high-amplitude artefacts. We can see that the

sleep cycle variations of the lower border remain similar to those of the border

detected in the raw EEG. However, for the upper border we see that during

the quiet sleep stages the amplitude became lower than during the active sleep,

which is not typical for aEEG. In our experiments, we will explore the informa-

tiveness of aEEG features extracted from raw signal as well as after removal of

artefacts.

6.2.2 The envelope features

Having found the lower and upper borders of the EEG envelope, we can cal-

culate the statistics of the amplitudes of the borders to be used as features for

maturity assessment. It was observed that the distributions of the amplitudes

were slightly skewed, and so they could be better described by statistics of an

asymmetrical distribution rather than by those of the normal one. Assuming

that the data have to be modelled by a family of distributions other than the

normal one, the statistics of the data have to be estimated as parameters of the

model distribution.

Following (Wong and Abdulla, 2008) we chose the log-normal distribution

to model the distribution of EEG envelope amplitudes. The µ and σ of the am-

plitudes were then estimated as parameters of a log-normal distribution fitting

the data. Fig. 6.7 shows the histograms of the amplitudes of the upper and

lower borders along with the fitted distributions.

Additionally, to the µ and σ the minimum and maximum amplitudes of

the borders were counted. In total, the envelope borders provided eight new

features: the four statistics of the upper border: µ, σ, minimum and maximum,

and the same four statistics of the lower border.
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Figure 6.5: Detection of the lower and upper borders of EEG envelope. From
top: original EEG, EEG after filtering and rectification, the envelope (in grey)
with the lower and upper borders (in black).

6.2.3 Maturity assessment

To compare the new envelope features with the standard spectral features, we

used the Bayesian averaging over DTs with the extracted features for classifi-

cation of EEG maturity of newborns at ages 36 and 41 (36/41), and 37 and 39

(37/39) weeks PCA. Each age group was represented by 105 sleep EEG record-

ings. As the EEG maturity of pre-term (36 weeks) and full-term (41 weeks)

newborns is different, the accuracy of classification of these EEG is expected

to be high. In contrast, we expect that EEG maturity patterns of newborns

at ages of 37 and 39 weeks are more close, and the classification accuracy is

expected lower.

The Bayesian technique was run with the following settings. In a burn-in

phase we collected 200,000 DTs, and in a post burn-in phase 10,000 DTs. During

the post burn-in phase each 7th model was collected to reduce the correlation

between DT models. The minimal number of data samples allowed to be in DT

nodes (pruning factor) was set to six. Proposal variance was 1.0, and proba-
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Figure 6.6: EEG envelope (grey) along with the lower and upper and borders
(black) given different constant τ . In the left column, no artefact removal was
applied to the input EEG. In the right column, the artefacts with high amplitude
were removed using statistical thresholding. The envelope has been scaled in
the range of 0 to 1.
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Figure 6.7: Distributions of the upper and lower borders of EEG envelope.
The top plot shows EEG envelope (in grey) along with borders (in black). The
middle and bottom plots show the histograms of the border amplitudes (in grey)
approximated with log-normal distribution (in black).

bilities of making moves of birth, death, change variable, and change threshold

were set to 0.15, 0.15, 0.1, and 0.6, respectively. For the two-class problem,

running the MCMC technique for 200,000 DTs in Matlab on a 64-bit Linux PC

took approximately 3 minutes.

First, in our experiments we compared the informativeness of the envelope

features extracted from raw EEG and after the removal of artefacts. In both

cases, the eight envelope features were appended to the standard 36 spectral

features calculated on EEG without the artefacts. The artefacts were detected as

high-amplitude outliers, as shown in Chapter 4. The best results were obtained

when the envelope was constructed wit the setting τ = 100.
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Table 6.2 shows the performance and entropy of classifying EEG represented

by the above features. The EEG were recorded at 36 and 41 weeks. The

difference in the performances with the envelope features extracted before and

after the removal of artefacts was not significant (p > 0.48).

Table 6.2: Performance and entropy for classification of EEG recorded at 36
and 41 weeks, represented by spectral features as well as by envelope features
extracted before and after the removal of artefacts

With artefacts Without artefacts

P, % E, bits P, % E, bits

87.1±8.0 0.07±0.03 84.3±8.0 0.08±0.03

In the experiments, we compared three different sets of EEG features. The

first set (Spectral) comprised the 36 standard spectral features. The features

were computed from the EEG after the removal of high-amplitude outliers, as

shown in Chapter 4. The second set (Envelope) included the eight envelope

features, and the third set (Combined) included the spectral as well as the new

envelope features, in total 44.

Table 6.3 compares the performance and entropy of maturity assessment on

the EEG data represented by the three feature sets. The performance and en-

tropy are calculated within the five-fold cross-validation. For classification of 36

and 41 weeks, the use of the Combined set improved the average performance by

approximately 2%. However, the improvement was not statistically significant,

when tested with the Mann-Whitney U test (p > 0.7). For 37 and 39 weeks

no improvement was observed.

Fig. 6.8 shows the boxplots of the performance and entropy counted within

the five folds. For 36 and 41 weeks with the Combined set the minimal and

maximal performances became higher whereas the entropies became lower.

Table 6.3: Performance and entropy for the EEG classification with different
sets of features

Spectral (36) Envelope (8) Combined (44)

Weeks P, % E, bits P, % E, bits P, % E, bits

36/41 85.2±9.2 0.09±0.01 80.5±7.8 0.10±0.03 87.1±8.0 0.07±0.03
37/39 66.2±14.4 0.17±0.02 62.9±19.2 0.19±0.01 65.2±7.2 0.17±0.01

Fig. 6.9 shows the average frequencies of the 44 features being used by the

DT models classifying the 36 and 41 weeks. We can see that the feature 14,

Relative Theta power, and feature 43, the minimal amplitude of the lower bor-
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der, were used with the highest probabilities, and so made the most important

contributions to the maturity assessment.

It is interesting to explore the performance of Bayesian assessments using the

two most important features. We found that the performance was 88.1±10.6 and

entropy was 0.08± 0.02. Thus, for classifying 36 and 41 weeks, the performance

with the two most important spectral and envelope features was comparable to

that obtained with the full set of spectral features (p > 0.77).
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Figure 6.8: Boxplots of the performance and entropy with different sets of fea-
tures for 36/41 week (top row) and 37/39 weeks (bottom row).
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Figure 6.9: Posterior probabilities of features in the combined set.
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6.2.4 Conclusion on section

We hypothesised that important features for the assessment can be automati-

cally extracted from the EEG envelope which reflects the continuity. We esti-

mated the envelope with a technique similar to that used for aEEG. We also

hypothesised that the envelope features, carrying time-domain information, can

complement the spectral features, and thus their use will increase the perfor-

mance of maturity assessment.

To test the hypothesis, we used the BMA over DTs with the extracted fea-

tures for classification of EEG maturity of newborns at ages 36 and 41 (36/41),

and 37 and 39 (37/39) weeks PCA. In comparison to the standard spectral

features, the use of the extracted envelope features improved the classification

performance by 2% for weeks 36/41, for which the continuity is expected to be

different. For weeks 37/39, the use of the new features provided no improvement

in performance.

We explored the importances of the standard and new EEG features for

classifying weeks 36/41, and found that the most important features were the

relative Theta power and the minimal amplitude of the lower border of the

envelope. The amplitude of the lower border was previously described as the

most important envelope feature in (Viniker et al., 1984). This amplitude is

most strongly influenced by the duration and amplitude of inter-burst intervals,

and therefore it reflects the development of EEG continuity.

The remaining envelope features were making a much smaller contribution.

One explanation of this may be that these features were affected by high-

amplitude EEG artefacts.

Attempting to reduce the influence of artefacts, we extracted the envelope

features after the removal high-amplitude artefacts from EEG. However, in our

experiments, the removal of artefacts did not significantly affect the informa-

tiveness of the envelope features. A negative side effect of removing the artefacts

before the detection of envelope was that the shape of the upper border of the

resultant aEEG became distorted.

The performance of Bayesian assessment rerun with only the two most im-

portant spectral and envelope features was comparable to that obtained with

the full set of spectral features.

We have confirmed our hypothesis that important time domain features, can

be automatically extracted from the aEEG signal. However, the use of the new

features did not improve the performance significantly. Future work will explore

how the informativeness of the envelope features can be improved by using more

complex techniques for removing EEG artefacts before detecting the envelope.
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The informativeness of the envelope features will also be tested for classification

of a larger range of ages.

6.3 EEG segmentation for measuring

discontinuity

In this section we propose a new technique to evaluate the discontinuity of

EEG as the rate of “non-stationarity”. To evaluate the non-stationarity, we

employ adaptive segmentation techniques for splitting the EEG into pseudo-

stationary intervals. We assume that longer pseudo-stationary intervals are

detected in signals which are more stationary, hence the rate of intervals will

reflect non-stationarity of the signal. The rate of of pseudo-stationary intervals

(or segments) refers to the number of intervals detected in an EEG relative to

the length of the recording.

We show that the rate of the intervals is highly correlated with brain matu-

rity. The statistics of the intervals are used as new features for the age classifica-

tion, and the use of the proposed EEG features is shown significantly increasing

the accuracy of age differentiation.

First, we discuss the rationale for using adaptive segmentation to assess the

EEG discontinuity. We then briefly describe the main conventional techniques

of adaptive segmentation of EEG and propose a new technique based on spectral

power statistics. We use the techniques to extract the non-stationarity feature

from synthetic and real EEG. We compare the non-stationarity feature with

the conventional amplitude-based continuity estimates (Wong, 2008) in terms of

their correlation with brain maturity. Having extracted the new EEG features,

we run the experiments with Bayesian classification of newborn ages.

6.3.1 Adaptive segmentation in assessment of

discontinuity

Discontinuous EEG is characterised by sharp changes in the amplitude and fre-

quency during the bursts and inter-burst intervals. Because of these changes

the EEG becomes highly non-stationary and complicated for analysis with con-

ventional methods assuming a stationary signal. Adaptive segmentation aims

to split EEG into pseudo-stationary intervals in which the EEG amplitudes and

frequencies vary within an acceptably small range, see e.g. (Barlow et al., 1981).

These intervals are then used for extracting EEG features. However within this

technique few attempts have been made to measure the discontinuity which is

an important maturity-related feature.
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Recently, adaptive segmentation was employed in a technique for extracting

the discontinuity features from newborn EEG (Wong and Abdulla, 2008). It

was assumed that the discontinuity of EEG can be defined as the variability

of its amplitude, and it was proposed to estimate the variability from statistics

of the EEG envelope, which was composed from the mean amplitudes of the

pseudo-stationary intervals. Within this technique, the mean absolute voltage

of each interval was computed and repeated for the duration of the intervals.

The discontinuity was then quantified by the parameters of the distribution of

the envelope amplitudes. The parameters of the distribution were shown to be

correlated with brain maturation for infants aged between 25 and 35 weeks PCA

(Wong, 2008). However, the obtained values varied between patients and could

only be used for EEG age classification.

The decrease of envelope variability during maturation of pre-term new-

borns may reflect the fact that the portion of the tracé discontinu, a pattern of

long inter-burst intervals and high-amplitude bursts, becomes less pronounced

between the 25 and 35 weeks (Pressler et al., 2003; Niemarkt et al., 2008).

However we expect that this feature will not be as informative for assessing the

maturation in late pre-term or term newborns, for whom the tracé discontinu

normally disappears and the amplitude variability in the discontinuous patterns

becomes lower. At the same time, the development of low-voltage and slow wave

sleep stages may affect the EEG amplitudes.

A potential way of obtaining a more informative measure of EEG discontinu-

ity for newborns aged older than 35 weeks is to take into account the durations

of the pseudo-stationary intervals, which were not considered in the above ap-

proach. It is reasonable to expect that longer pseudo-stationary intervals will

be detected in more continuous patterns with lower variations in frequency and

amplitude, whereas shorter intervals will be detected in the more variable dis-

continuous patterns. A paper by Paul et al. (2003) reported interesting results

obtained with such an approach. In this work, adaptive segmentation of EEG

was employed in analysis of the quiet and active sleep stages of newborns. It was

found that longer pseudo-stationary intervals were detected during the active

sleep EEG which is mostly continuous, whereas shorter intervals were detected

during the more discontinuous quiet sleep. This observation suggests that the

rate of pseudo-stationary intervals is dependent on the discontinuity of EEG.

In this section, we hypothesise that the adaptive segmentation can be used to

evaluate EEG discontinuity as non-stationarity or the rate of pseudo-stationary

segments. We also hypothesise that this rate will decrease with brain matu-

ration. Our hypothesis is based on the clinical observation that during brain

development the continuous EEG patterns become longer, while the discontinu-

ous patterns become shorter and more continuous, that is, their amplitude and
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frequency variation decreases, see e.g. (Pressler et al., 2003). Hence, a lower

rate of pseudo-stationary segments will be detected in EEGs of more mature

newborns.

Next, we briefly describe the concepts of adaptive segmentation techniques

used for the proposed assessment of non-stationarity. The rates of segments

found within the techniques will be compared on model and real EEG data.

6.3.2 Conventional segmentation techniques

The aim of adaptive segmentation is to automatically detect boundaries of

pseudo-stationary intervals in EEG. The segment boundaries are typically found

by evaluating the dissimilarity of EEG in one or more successive intervals. Typ-

ically, the dissimilarity is evaluated between two intervals called the reference

and test windows. If the dissimilarity is small, samples of the reference and

test windows are considered taken from a single stationary process. On the

contrary, if the dissimilarity exceeds a given threshold, the samples are assumed

taken from the different processes, and a segment boundary is assigned between

the reference and test windows. The reference and test windows are typically

made adjoined and sliding along the EEG (Paul et al., 2003; Krajca et al., 2009).

Alternatively, the reference window can be fixed at the beginning of the segment

while the test window is moved until the dissimilarity exceeds a given threshold

(Bodenstein et al., 1985; Aufrichtig et al., 1991).

A more complex approach proposed by Appel and Brandt (1983) uses a

two-stage segmentation technique to find the boundaries most precisely. At the

first stage, the reference window with a fixed starting position is being grown

as the adjoined test window is sliding forward until the dissimilarity threshold

is exceeded. Then, the test window starts shrinking while the reference window

keeps growing. The test window’s starting position at which the dissimilarity

becomes highest is assigned to be the segment boundary. The same segmenta-

tion technique has been employed in (Wong and Abdulla, 2008) for estimation

of EEG envelope.

Within these techniques, the dissimilarity is often evaluated as the difference

between the coefficients of auto-regression (AR) models fitted to the reference

and test windows. This technique requires finding the proper threshold as well

as the proper number of the coefficients.

An adaptive EEG segmentation technique proposed by Agarwal et al. (1998)

aimed to estimate the dissimilarity between the adjoined reference and test win-

dows by using the Nonlinear Energy Operator (NLEO). The NLO, Ψ, enabling

to estimate “frequency-weighted energy” is computed as follows:
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Ψ(x(n)) = x2(n)− x(n− 1)x(n+ 1) (6.1)

The summed frequency-weighted energy computed in the test window is sub-

tracted from that computed in the reference window to produce the dissimilarity

criterion Gnleo(n).

Gnleo(n) =
n
∑

m=n−N+1

Ψ(m)−
n+N
∑

m=n+1

Ψ(m), (6.2)

where N is the window size.

To find the segment boundaries, a threshold is applied to Gnleo(n). The

threshold is adaptive and is automatically found in a sliding threshold adapta-

tion window of a predefined size. For each position of this window, the threshold

is found as the local maximum of Gnleo(n). The proper length of the threshold

adaptation window has to be found from experiments.

6.3.3 Segmentation using Spectral Power Statistics

Alternatively to the above techniques, we propose to segment the EEG by using

estimates of the spectral dissimilarity of intervals. In our implementation, the

dissimilarity is assessed over spectral power bands computed in the reference and

test windows. The spectral estimates can be compared within a two-sample sta-

tistical hypothesis test such as the standard KS-test. The main idea behind our

technique is to employ statistical hypothesis tests for comparing distributions of

spectral powers for making decisions on the dissimilarity of EEG intervals. We

refer to this technique as Spectral Power Statistics (SPS). A similar approach

has been used for evaluating EEG non-stationarity (McEwen and Anderson,

1975); however, the motivation has been to test stationarity before applying the

Fourier transform, rather than to extract a new feature.

Algorithm 4 summarises the main steps of the SPS segmentation technique.

According to the Algorithm, two adjoined sliding windows W1 (reference) and

W2 (test), both of length L, are moving along EEG signal X . At each position

of the windows, the FFT is applied to segments of the signal within W1 and W2

to compute frequency spectra, S1 and S2. The components of the spectra falling

within each frequency band defined in Bands are summed to form the estimates

of spectral powers within the bands, B1 and B2. Next, B1 and B2 are compared

with a two-sample statistical test. Each of the band powers represents a value

in the two data vectors B1 and B2 of size nofbands. The p-value of the test

is compared to the threshold p0. If the value is below the threshold, the signal

portions within W1 and W2 are assumed to have different characteristics, and
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thus a boundary of a pseudo-stationary segment is assigned at the point between

the two windows. The algorithm returns the locations of all the boundaries, T .

Algorithm 4 Adaptive segmentation using Spectral Power Statistics

1: Inputs: X , L, Bands, nofbands, p0
2: Initialise:

3: T ← 0, tind← 0
4: i1 ← 1, i2 ← i1 + L,
5: while i2 + L < length(X) do
6: W1 ← (i1 : i1 + L)
7: W2 ← (i2 : i2 + L)
8: S1 ← FFT(X(W1))
9: S2 ← FFT(X(W2))

10: B1 ← Sum(S1, Bands)
11: B2 ← Sum(S2, Bands)
12: p← Test(B1, B2)
13: if p < p0 then

14: tind← tind+ 1
15: T (tind)← i2
16: end if

17: i1 ← i1 + L
18: i2 ← i2 + L
19: end while

20: return T

The non-stationarity of the signal can then be estimated as the segment rate.

The segment rate is calculated as the portion of segments in which a boundary

has been detected: sr = ‖X‖/L
‖T‖ , where ‖X‖ and ‖T ‖ denote the lengths of the

vectors X and T . The larger the segment rate, the higher is the level of EEG

non-stationarity.

In our implementation, the best results were obtained with the window

length L set to two seconds, and the threshold p0 = 0.95. Although the spectral

powers are typically calculated for the six frequency bands, within our method,

this set is extended in order to meet the requirements of a statistical test. In

particular, the number of bands was increased to nine to provide enough sam-

ples for the standard KS-test. Because the Theta (3.5-7.5 Hz), Alpha (7.5-23.5

Hz) and Beta (13.5-19.5 Hz) bands are wider than the Subdelta (0-1.5 Hz) and

Delta (1.5-3.5 Hz) bands, it was decided to split the Theta, Alpha and Beta

bands into sub-bands and make the widths more uniform.

In the comparison with the conventional segmentation techniques, the pro-

posed technique needs to define a smaller number of parameters. These parame-

ters mainly include the following: the number and widths of the spectral bands,

durations of the reference and test windows, a threshold level of rejecting the

alternative hypothesis, and a form of distribution of the tested samples.
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In the next section, we test the concept of using adaptive segmentation for

assessing the non-stationarity in model EEG data. We compare the NLEO, AR

and SPS-based segmentation techniques.

6.3.4 Measuring non-stationarity on model data

To test how the segment rate reflects the non-stationarity, we run the NLEO,

AR and SPS segmentation techniques on model EEG with various levels of

non-stationarity. To model a stationary signal, we first generated 10,000 samples

(100 seconds) of white noise and then smoothed the noise with a moving average

filter. To model different levels of non-stationarity we generated on this signal 3

to 15 random “bursts” by increasing the amplitude of randomly picked segments

by 3 to 5 times and smoothing them with a moving average filter with adjustable

window of size 5 to 20 samples.

The segment rates (SR) were calculated as the ratio of EEG segments, in

which a boundary has been detected. We generated 1,000 signals for each level

of non-stationarity to obtain statistics of the SR. We evaluated the relationship

between the rates and the number of bursts with the Spearman rank correlation

coefficient ρ.

The first segmentation technique employed the NLEO applied to the ref-

erence and test windows, each of one second duration. The duration of the

threshold adaptation window sliding over the EEG was two seconds.

The correlation between the segment rate and the number of bursts was low

(ρ = 0.2) as the numbers of pseudo-stationarity intervals were similar for all

five non-stationarity levels. This likely happens because the NLEO technique

assigns the maximal energy in the threshold adaptation window to be a thresh-

old, so that pseudo-stationary intervals are most likely broken within the 2-sec

threshold adaptation window.

The second EEG segmentation technique employs the auto-regression (AR)

models computed in the reference and test windows of 2-sec duration. This

technique starts a new interval when the cross-validation errors of the AR models

exceeded a given threshold. For this technique, the correlation between the rate

of intervals and the number of bursts was much higher (ρ = 0.96).

Within the proposed SPS technique we used the KS-test to compare the

reference and test windows. The windows were adjoined, and their durations

were set to two seconds. The spectral powers required by the SPS were computed

with the fast Fourier transform and then summed within the standard frequency

bands, whose number has been increased from six to nine, as described in the

previous section. A segment boundary was assigned when the p-value of the KS-
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test dropped below 0.95. For the SPS technique, the correlation was slightly

lower (ρ = 0.87).

Fig. 6.10 shows examples of segmented signals with 3 and 15 bursts. For

three bursts, we can see that the segment boundaries were assigned at the

beginnings and ends of the bursts (seconds 12, 18, 72, 76, 84 and 88). Because

of random variations in the signal, some unexpected boundaries were detected

in the intervals in which no bursts were generated. Nevertheless, are relatively

few segment boundaries within the more stationary parts of the signal. When

the number of bursts is increased, the segment boundaries are assigned more

frequently.
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Figure 6.10: Segmentation of model signals with three and 15 bursts using the
SPS technique.

From Fig. 6.11 we can see that for both the AR and SPS techniques the

average segment rate (SR) tends to increase linearly as the number of bursts is

increased from three to 15. Fig. 6.12 shows the distributions of the segment

rates in the 1,000 generated signals with 3 and 15 bursts. The distributions of

segment rates for three and 15 bursts are significantly different (p = 0).

In the next section we apply adaptive segmentation to estimate the non-

stationarity of EEG recordings made at different PCA. We apply the described

AR technique as well as the SPS technique. We compare the results of the SPS

technique used with a number of hypothesis tests.
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Figure 6.12: Distribution of segment rates (SR) for signals with three bursts
(dashed) and 15 bursts (solid) for the AR and SPS-based segmentation tech-
niques.

6.3.5 Correletion of non-sationarity features

The experiments were run on 260 EEGs recorded from newborns in 13 age

groups between 32 and 44 weeks PCA, with 20 recordings in each group. The

non-stationarity of an EEG recording has been evaluated by the segment rate,

as described in Subsection 6.3.3 as well as by ten-bin histogram summarising the

durations of pseudo-stationary intervals detected by a segmentation technique.

The ten bins of the histogram represented the portions of segments the durations

of which were from two to 20 sec.

In our experiments, we used the AR-based segmentation technique as well as

the SPS technique with a number of statistical hypothesis tests used to compare

the distributions of spectral powers counted in the adjacent sliding windows,

according to Algorithm 4. Namely, we used the standard two-sample X2 (chi-

squared test), t -test, KS, and AD tests.
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We found that the rates of segments found using the tests correlated with the

PCA differently. Table 6.4 shows the relationships between the rates and ages,

represented by the Spearman rank correlation coefficient ρ. All correlations

were significant (p < 0.05).

The two sample X2-test was the first test that we tried to employ within

the SPS technique. This test is commonly used for comparing two distributions

represented by histograms with the same bin locations. Therefore the X2-test

could be applied to compare the samples represented by spectral powers in the

given frequency bands. We found that the highest value of correlation for the

segment rates computed using this test was ρ = −0.67.

The X2-test, whose critical values are based on the squared differences be-

tween the bin heights of the two histograms, could be excessively sensitive to

EEG variations in the reference and test windows. Specifically, the variations

of the Subdelta and Delta powers, that are typically the highest, can affect the

test more strongly than the variations in the other bands. Furthermore, the

waves in these bands are slowest and therefore their powers will vary within

the short epochs. Increasing the window length would enable the Subdelta and

Delta powers to be estimated more reliably. However, this could lead to poor

detection of short discontinuities. Another possible problem is that the X2-test

is can be highly affected by the choice of the histogram bins, and thus it can

be sensitive to slight variations of EEG power in the frequencies at which the

edges of the bands are defined.

The KS-test, which evaluates the difference between the cumulative distribu-

tion functions of two samples, is expected to be more robust to such variations.

This test also differs from the X2 one in that it will treat each band power as

an independent observation in a sample. This means that the test will not use

the information about the band corresponding to each of the power values, and

the distributions of powers will be assessed irrespectively of the order of bands.

In the experiments we explore whether the KS-test with the above limitation

is suitable for assessing EEG non-stationary. We also compare the results with

those obtained using the more widely used t-test, which has the same limitation

in analysis of EEG spectral powers.

The rates of segments found with the SPS technique employing both the

t -test and KS test have shown similar correlation with PCA, ρ = -0.75, although

t -test is typically applied to samples from a normal distribution, and KS test is

suitable for arbitrary distributions.

A modification of KS-test known as the A-D test tends to assign larger

weight to the tails of distributions (Scholz and Stephens, 1987; Trujillo-Ortiz

et al., 2007). In our experiments, this test provided a better correlation (ρ =

-0.81).

113



Table 6.4: Correlation between the PCA and segment rate.

Technique ρ

AR -0.57
X2-test SPS -0.67
t-test SPS -0.75
KS-test SPS -0.75
AD-test SPS -0.81

Fig. 6.13 shows examples of segmentation of continuous and discontinuous

EEG patterns. We can see that the segment rates are higher for a discontinuous

pattern (a) as well as a pattern which can be considered as semi-discontinuous

because of large variation in amplitudes (b). The rates are much lower for full-

term newborns’ EEGs with smaller variation in amplitudes (c and d). We can

also see that during the quiet sleep (c) the segment rate is slightly higher than

that during the active sleep (d).

In our experiments we used sleep EEGs which are typically contaminated

by artefacts, which can affect the informativeness of the extracted features. For

this reason, we are interested in investigating how artefact removal can improve

the results of the proposed SPS-based segmentation technique.

For these experiments, we used the two techniques of removal of artefacts.

The first technique (AR1) removes EEG samples with amplitudes exceeding a

threshold assigned as the sum of the mean plus standard deviation calculated

in a 10-min sliding window. The second technique (AR2) employs the NLEO to

remove EEG samples with abnormal energy detected in a 3-min sliding window,

as suggested in (Agarwal et al., 1998). The proportions of data removed as

artefacts by these techniques were similar.

Table 6.5 shows the correlation coefficients after the artefact removal, and

we can observe that the first technique (AR1) has increased the correlation for

the KS and AD tests by 3%. The second technique has not improved the result.

Fig. 6.14 shows the rates of segments estimated by the KS-test after the

removal of artefacts by the technique AR1 for newborns aged between 32 and

44 weeks PCA.

Table 6.5: Correlation between the PCA and rate of segments detected by the
KS, AD and t -test after removal of EEG artefacts

Technique Proportion of artefacts, t-test KS-test AD-test

AR1 0.28±0.08 -0.76 -0.85 -0.85
AR2 0.29±0.20 -0.70 -0.71 -0.79
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6.3.6 Comparison with amplitude statistics

For comparison, we evaluated the correlation between the PCA and statistics

of the amplitude vector, as proposed in (Wong, 2008). To obtain the amplitude

vector, each pseudo-stationary segment was represented by its mean absolute

amplitude. The value of the mean absolute amplitude was repeated for the

duration of the segment, so that the dimensionality of the resultant amplitude

vector was the same as that of the EEG. The distribution of the amplitude

vector was modelled with a log-normal distribution. To assess the continuity

of a recording, the mean (µ) and standard deviation (σ) of the log-normal

distribution were counted.

Fig. 6.15 shows examples of two EEG along with the µ and σ counted in

10-min sliding windows with a step of 1 min. For the EEG recorded at 34 weeks

PCA, there are two quiet sleep stages during the minutes 0–40 and 100–140,

which are distinguished from the active sleep by the slightly higher average

amplitude, and are typically more discontinuous. Similarly, as reported by

(Wong, 2008), during these more discontinuous patterns, the µ of the amplitude

vector’s distribution becomes lower and the 2σ interval becomes wider. On

the contrary, for the EEG recorded at 41 weeks, the µ increases during the

quiet sleep. We can explain this change in the properties of the mean absolute

amplitude by the following: closer to the term age, the inter-burst intervals

become so short that their influence on the amplitude distribution is negligible.

Although in the pre-term EEG the mean amplitude is highly influenced by

inter-burst intervals, at term age, it reflects the differences in the dominant

amplitudes of the continuous quiet and active sleep patterns, as seen in the

lower plot.

Fig. 6.16 shows the average µ and σ values for the 260 recordings in the

13 PCA groups. We can see that between 32 and 34 weeks the both values are

decreasing with maturation (ρ = −0.42 and −0.36) as shown in (Wong, 2008;

Wong and Abdulla, 2008). However, after 34 weeks, the µ is increasing with

maturation (ρ = −0.48, p < 0.05). This may be in part due to the brain growing

larger and emitting stronger signals, in part due to the increase in the quiet

sleep ratio. For the σ value, no correlation was found with PCA between 35

and 44 weeks.

Overall, the rates of segments found with the proposed SPS technique have

shown stronger correlation with PCA during the weeks 32-44. In the next

section, we use the segment rates as new features for Bayesian assessment of

brain maturity.
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6.3.7 Classification of EEG maturity

In our experiments, we used the BMA over DTs with the features extracted

from EEG for classification of EEG maturity of newborns at ages 36 and 41

(36/41), and 37 and 39 (37/39) weeks PCA. Each age group was represented by

110 sleep EEG recordings.

To clean the EEG from artefacts, the samples whose amplitudes exceeded

the sum of the mean plus 1σ of amplitude were deleted. Then the EEG were

segmented into pseudo-stationary intervals by using the SPS technique. In the

experiments, we compared three different sets of EEG features.

The Set 1 comprised the conventional 36 spectral features which are the

absolute and relative powers computed in the standard six frequency bands

for the C3 and C4 electrodes and their sum. The Sets 2 and 3 comprised the

features included in Set 1 and the new features representing the non-stationarity

of an EEG recording estimated with the proposed SPS-based techniques which

employ the KS and AD tests, respectively. The new features include the segment

rate and 10-bin histograms of the counts of pseudo-stationary intervals ranging

from 2 sec to 20 sec.

Table 6.6 shows the average performances (P) and entropies (E ) of DT

ensembles along with 2σ intervals obtained for the Bayesian classification of

newborns aged 36/41 and 37/39. The performances of the BMA over DTs em-

ploying the Sets 1, 2, and 3 were compared within the five-fold cross-validation.

From Table 6.6 we can observe that for age classification at 36 and 41 weeks,

the features of Set 3 improve the performance, on average, by 6.4%, and Set 2

only by 3.7%. For classification of ages at 37 and 39 weeks, the gains are 10.0%,

and 8.7%, respectively. Overall, the use of the features from Set 3 increased the

accuracy of age classification by 6.3% and 10.0%, respectively, for the two age

groups. For the first group the increase in performance did not reach statistical

signifficance when tested with the Mann-Whitney U test (p < 0.06), however

for the second group the improvement was signifficant (p < 0.02).

Besides, the new features included in Set 3 decrease the uncertainty of DT

ensembles in terms of entropy. The mean entropy of the DT ensembles has been

reduced from 24.2 to 15.0 for classification of newborns at 36 and 41 weeks, and

from 38.4 to 34.0 for classification of newborns at 37 and 39 weeks.

6.3.8 Conclusion on section

We proposed to evaluate EEG discontinuity as non-stationarity, or the rate of

pseudo-stationary intervals found with adaptive segmentation. We hypothesised

that the rate of intervals would be lower for more continuous EEG patterns and

higher for the discontinuous ones. For continuous patterns the short-term vari-
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Table 6.6: Performance (P) and entropy (E) for the EEG age classification with
different sets of features.

Set 1 Set 2 Set 3

Weeks P, % E, bits P, % E, bits P, % E, bits

36/41 83.6±8.7 0.115±0.031 87.3±12.3 0.080±0.029 90.0±9.4 0.071±0.017
37/39 64.5±6.1 0.183±0.013 73.2±12.6 0.171±0.014 74.5±10.8 0.162±0.023

ability of amplitudes and frequencies is lower, and thus longer pseudo-stationary

intervals can be segmented.

We also hypothesised that the rate of intervals would be correlated with

brain maturation. Our hypothesis was based on the clinical observation that

during brain development the continuous EEG patterns become longer, while

the discontinuous patterns become shorter. Hence, we expected that the rate

of intervals is an important feature for assessment of EEG maturity.

To segment the EEG into pseudo-stationary intervals, we proposed the new

Spectral Power Statistics (SPS) technique testing the hypothesis of similarity

between the distributions of spectral powers in the adjoined EEG intervals. We

found that the SPS technique provides better results, in terms of correlation

between the rates and PCA, than the conventional adaptive segmentation tech-

niques based on auto-regression coefficients and the nonlinear energy operator.

The performance of the proposed SPS-based segmentation technique has been

explored with a number of standard hypothesis tests, namely X2-test, t -test,

Anderson-Darling (AD) and Kolmogorov-Smirnov (KS) tests. We found that

the AD test and KS test provide a better performance in terms of the correlation

coefficient value. We also compared the rates of intervals with the amplitude-

based continuity estimates (Wong, 2008) and found that the rates provide a

stronger correlation with PCA between 32 and 44 weeks.

The histograms of the pseudo-stationary intervals were used to extend the

conventional set of spectral features for the Bayesian assessment of EEG matu-

rity of newborns at ages 36 and 41 weeks as well as 37 and 39 weeks. The use of

the new features has been shown to increase the accuracy of age classification

by 6.3% and 10.0%, respectively, for these age groups. Overall, the classification

accuracies have been increased to 90.9% and 74.5%, respectively.

6.4 Ratios of spectral powers

In this section we explore the interactions between the spectral powers in the six

frequency bands with the aim to extract new information for maturity assess-
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ment. The individual absolute and relative powers have been shown correlated

with maturation, see e.g. (Bell et al., 1991b). Holthausen et al. (2000) showed

that the correlations were stronger for the ratios Beta/Delta and Beta/Theta

than for the individual absolute spectral powers. They explored the ratios in

94 EEG recorded between 28 and 112 weeks and found a significant decrease in

the ratios between approximately 30 and 50 weeks.

A later study (Lippe et al., 2007) explored spectral power ratios in EEG

recoded after visual stimulation from subjects in different age groups. The

Alpha/Theta ratio has been shown associated with brain maturation in one

month old newborns, children and adults. However the trend of this ratio has

not yet been explored in pre-term and full-term newborns.

The above findings motivate us to explore the correlation between the spec-

tral power ratios and PCA during 32-44 weeks. We expect that the correlations

of the ratios will be stronger than those of the absolute powers.

6.4.1 Correlations of features with PCA

We explored the correlations on a dataset of 260 EEG recorded from newborns

aged between 32 and 44 weeks PCA. Each age was represented by 20 recordings.

Fig. 6.17 shows the correlations of the absolute amplitude spectra in the six

bands over the weeks PCA. The powers were computed in 10 sec segments and

then averaged for each recording. The strongest correlations (ρ = 0.53) were

observed for the Delta and Theta bands.

Fig. 6.18 shows the correlations of the ratios Beta/Delta, Beta/Theta and

Alpha/Theta. The ratios were calculated as quotients of the absolute powers.

We can observe that all the ratios tend to decrease with advancing PCA between

the weeks 34 to 44, whereas between the weeks 32 to 34 no correlation with PCA

can be observed.

The Alpha/Theta ratio showed the strongest overall correlation (ρ = −0.84),

although the decrease is not consistent over the whole range of weeks. On the

contrary, the ratio seems growing between weeks 32-34, however, to confirm this

trend, more data from this group have to be analysed.

6.4.2 Classification of EEG maturity

We run the Bayesian classification to evaluate the importance of the the Al-

pha/Theta ratio for classification of EEG maturity. It is interesting to compare

the importance of the ratio with that of the non-stationarity features described

in Section 6.3. The Alpha/Theta ratio and the non-stationarity features provide

a comparably strong correlation with PCA, however we hypothesise that these
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Figure 6.17: Correlations between the absolute amplitudes in the frequency
bands and PCA.

features, describing spectral and time-domain characteristics, will be compli-

mentary for the maturity assessment.

To test the hypothesis, we count the ratio on the same EEG recordings as

those used in the experiments with features representing EEG non-stationarity.

Namely, we use 220 recordings of newborns at ages 37 and 39 (37/39) weeks. The

performances obtained on this data represented with the standard 36 spectral

features (Set 1) and with the non-stationarity features (Sets 2 and 3) were shown

in Table 6.6. For comparison, we represented these EEG with two new feature

sets: Set 4 comprised the conventional features together with the Alpha/Theta

ratio, and in Set 5 the previous features were combined with the non-stationarity

estimates.

Table 6.7 shows the average performances and entropies of DT ensembles

along with 2σ intervals obtained for the Bayesian classification. The perfor-

mances were calculated within the five-fold cross-validation. From the results

obtained with Set 4, we can see that supplementing the standard spectral fea-

tures with the the Alpha/Theta ratio has increased the average performance by

approximately 10% from 64.5% to 74.2%. The gain in performance is compara-

ble to that provided by the non-stationarity features.
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However, the use of Set 5 increased the performance further to 80.7%. Al-

tough the difference in performances for Set 4 and Set 5 is not statistically sig-

nificant according to the Mann-Whitney U test (p ≈ 0.1508), the Alpha/Theta

ratio and the non-stationarity features seem to be complementary for improving

the performance of maturity assessment. We can also observe that the average

entropy decreased from 0.183 for Set 1 to 0.146 for Set 5.

Table 6.7: Performance and entropy of age classification with the different sets
of features

Set 4 Set 5

P, % E, bits P, % E, bits

74.2±6.5 0.159±0.014 80.7±10.2 0.146±0.017

6.4.3 Conclusion on section

We hypothesised that the ratios of spectral powers Beta/Delta, Beta/Theta

and Alpha/Theta are more strongly correlated with brain maturation than the

absolute powers. We explored the correlations on a set of 260 EEG recorded

at 32-44 weeks. The ratios were shown significantly correlated with advanc-

ing weeks PCA, and the correlations were stronger than those of the absolute

powers. The trends of Beta/Delta and Beta/Theta ratios after 34 weeks were

consistent with those reported by Holthausen et al. (2000).

The strongest correlation was, however, found for the Alpha/Theta ratio

(ρ = −0.84), which has been previously shown to increase with maturation in

EEG of infants, children and adults (Lippe et al., 2007). In contrast to these

findings, we found that the ratio was decreasing. This difference in findings

can be caused by the states of subjects: we used sleep EEG while Lippe et al.
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recorded from awake subjects. Overall, the correlation of the Alpha/Theta ratio

was similar to that of the EEG non-stationarity estimate counted as the rate of

pseudo-stationary segments.

In the experiments with Bayesian classification of EEG recorded at 37 and 39

weeks compared the importance of the Alpha/Theta ratio with that of the non-

stationarity features. We hypothesised that the features, describing frequency

and time-domain characteristics, will provide complementary information for

maturity assessment. We found that the use either of these feature types in-

creases the assessment accuracy on average by approximately 10% making it

74%. However, in combination, the features increased the performance further

to 81%. In subsequent chapters the combined features will be used to classify a

larger range of PCA.

6.5 Chapter conclusion

We hypothesised that the new features extracted from EEG can complement

the standard spectral powers and thus increase the accuracy of assessments. To

test the hypothesis, we run Bayesian classification on EEG data represented by

the new feature sets.

We explored extraction of features describing the level of EEG discontinuity,

based on clinical observations that discontinuity is one of the most important

maturational characteristics. We proposed to evaluate EEG discontinuity as its

non-stationarity, or the rate of pseudo-stationary intervals found with adaptive

segmentation. The new features were used to extend the conventional set of

spectral powers for the Bayesian assessment of EEG maturity of newborns at

ages 36 and 41 weeks as well as 37 and 39 weeks. The use of the new features

has been shown increasing the accuracy of age classification by 6.3% and 10.0%,

respectively.

We also explored conventional approaches to estimating discontinuity. The

first was to extract features describing the durations of bursts, inter-burst in-

tervals and continuous intervals, which we detected automatically. The features

were found relevant for maturity assessments, but unfortunately, they were less

informative than the standard spectral powers. The second approach was to

quantify the amplitudes of aEEG borders. Used in combination with the stan-

dard spectral features, the aEEG amplitudes increased the accuracy of Bayesian

assessment by 2%. The lower border amplitude was found most informative,

similarly as reported by Viniker et al. (1984).

Finally, we looked into extraction of new spectral features. We hypothesised

that the ratios of spectral powers are more informative than the individual

powers, and thus their use will increase the assessment accuracy. The use of the
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ratio of absolute powers in the Alpha and Theta bands increased the accuracy

by 10% for ages 37 and 39.

Overall, the highest accuracy was achieved by combining the standard spec-

tral features with both the non-stationarity estimate and the Alpha/Theta ratio.

The use of the combined set of features enabled achieving the accuracy of 80.7%

for differentiation of the age groups 37 and 39. In comparison to using only the

standard spectral powers, the gain in performance was 16%.

In the next chapter, we use the extracted features for assessment of a larger

range of PCA groups. The chapter will address the problems of handling mul-

tiple classes.
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Chapter 7

Classification systems

In this chapter we explore how the use of binary classification systems, can im-

prove the accuracy of EEG maturity assessments with multiple age groups. We

considered the EEG age classification task as a multiclass problem and trained

the DT models to distinguish between the weeks of PCA. When classifying a

broad range of PCA, the number of classes is increased, and it becomes more

difficult to train a classification model to distinguish between them. It becomes

even more problematic when the data from the neighbouring ages overlap be-

cause of variations in maturational patterns and uncertainty in PCA estimates.

Another limitation of using the standard multiclass approach for maturity as-

sessment is that it cannot take into account the prior information that the class

labels, or newborns’ ages in weeks, are naturally ordered.

We expect that converting the multiclass problem into a set of binary ones

can can provide better performance of maturity assessments, as we discuss in

more detail in Section 7.1. In Section 7.2 we present the accuracy of multiclass

classification with 10 PCA groups. The accuracy is compared with that of the

binary classification systems.

In Section 7.3 we describe experiments with the one-against-all classification,

a conventional binarisation technique. We hypothesise that this technique will

not achieve a better performance on our 10-class EEG problem, because its

training will be affected by imbalance of data.

In Section 7.4 we explore the pairwise classification. We hypothesise that the

pairwise system, shown promising for problems with multiple classes, will out-

perform the one-against-all and multiclass techniques. However, the combina-

tion of multiple binary classifiers makes the pairwise assessments more difficult

to interpret. Therefore, in Section 7.5 we propose and test a meta-tree classifier

which combines the decisions taking into account the prior information about

the structure of maturity assessment problem. We hypothesise that the meta-
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tree classifier will achieve a performance comparable to that of the pairwise one.

At the same time the assessments will be made by fewer binary classifiers, and

so the results will be easier to interpret. We summarise the performances of the

techniques and conclude the chapter in Section 7.6.

7.1 EEG age classification

An important property of the age classification problem is the natural sequen-

tial ordering of class labels which represent the different PCA groups. The con-

ventional multiclass approaches treating the ordered labels as nominal ignore

ordering information, which could be used to improve the results. Therefore, it

has been shown that such approaches are incapable of providing the best perfor-

mance for problems with ordered classes (Frank and Hall, 2001). In cases when

the class labels are continuous values, regression is typically used. However, in

our case the weeks PCA are only coarse estimates, as the brain maturity may

change during the week. Therefore the use of regression would be an ad hoc

approach (Frank and Hall, 2001).

The main difference between the regression and ordinal classification prob-

lems is that in the latter the distances between consecutive ranks may not be

constant (Baccianella et al., 2010). In other words, the values of all the features

do not vary consistently with the labels. In the previous chapter, we saw that

not all the EEG features have a linear relationship with PCA. We might assume

that the features that are less consistent with PCA over a large range of ages

are less informative. However such features may still be useful for separating

some localised age groups.

Under such conditions, when the features do not show a linear relationship

with the labels, it becomes problematic to define the cost function for regression

(Mccullagh, 1980). In (Dembczynski et al., 2008) it was found that regression

algorithms often performed poorly on ordinal problems.

Another characteristic of the maturity assessment problem is the large over-

lap between the samples from the neighbouring age groups. This is mostly

caused by the normal variation of brain maturity patterns in the range of ±1

or ±2 weeks, the uncertainty in estimating the PCA, as well as the noise and

artefacts in EEG. It would be desirable to find a classification model, which not

only tries to assign most samples to their stated PCA group, but also minimises

the error in the range of ±1 or ±2 weeks. For example, given an EEG recorded

at 36 weeks, it would be ”more wrong” to classify it as 40 weeks than as 37, and

the overall results in a range of ±1 or ±2 weeks could be improved by taking

into this information. The overlap between the age groups, uncertainty in PCA
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estimates and the noise in EEG data also affect the between-class boundaries

making them difficult to learn.

And an obvious difficulty with classifying a range of PCA groups is handling

a large number of classes. It has been shown that the performance of multiclass

systems tends to decrease with the number of classes (Uglov et al., 2008). This

is because the larger the number of classes, the more difficult it is to learn the

boundaries separating all the classes.

To handle a large number of classes, a multiclass problem can be trans-

formed into a set of separate two-class problems. This approach is called bi-

narisation. The binarisation often improves the performance on problems with

multiple classes. This is because the boundaries between two classes are easier

to learn(Hastie and Tibshirani, 1998; Friedman, 1996). The most widely used

binarisation technique is the one-against-all classification transforming a prob-

lem with C classes into (C − 1) two-class problems of separating each of the

classes from the rest. A limitation of his approach is that, for a large number of

classes, the portions of training samples in the binary problems may be strongly

imbalanced, making training of the classifiers problematic.

Alternatively, the pairwise or one-against-one classification has shown pro-

viding better performance in presence of multiple classes (Fürnkranz, 2002).

The idea is to train C(C−1)/2 classifiers separating all pairs of classes, and then

combine them to make the final decision. The pairwise system has been shown

outperforming the multiclass approaches for large number of classes (Uglov

et al., 2008), and shown to be promising when samples of different classes over-

lap because of noise and variations (Schetinin and Schult, 2005). A drawback

of using pairwise classification is that the combining of classifiers trained on

different data may increase the uncertainty in outcomes. To mitigate this prob-

lem, instead of using all C(C − 1)/2 pairs to make a decision for each input,

(C − 1) classifiers can be selected and organised into a directed acyclic graph

(Platt et al., 2000; Bishop, 2007).

Problems with ordered labels were attempted to be solved using a modi-

fied one-against-all system as well as the pairwise one (Frank and Hall, 2001;

Fürnkranz, 2002). The performances of the approaches have been counted for

exact match between labels and outcomes. However, the performances in a

range of ±1 and ±2 classes (in our case weeks PCA) are yet to be explored.

In this chapter, we explore how EEG maturity assessments can be improved by

using binarisation. We also explore whether the performances will be improved

in the range of ±1 and ±2. Particularly, we expect that pairwise classification

will provide better results because of its ability to handle a large number of

classes and its robustness to noise and overlap in data.
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Next, we show experiments with multiclass Bayesian classification of EEG

in 10 PCA groups. The performance of the multiclass approach in the range of

0, ±1 and ±2 weeks will be compared to those of the binarisation approaches.

7.2 Multicategorical classification

The settings for running the Bayesian classification were made as follows. The

number of DTs sampled in the burn-in phase was 100,000, and in a post burn-in

phase 10,000. During the post burn-in phase each 10th model was collected in

order to reduce the correlation between DT models. The pruning factor was

set to five. The proposal variance was 1.0, and probabilities of making moves

of birth, death, change-variable, and change-rule were set to 0.15, 0.15, 0.1,

and 0.6, respectively. Under the above settings, the rate of acceptance of DT

models during the integration was around 0.23 in both phases. The average DT

included 66 nodes.

The EEG data included 952 recordings from newborns aged between 36

and 45 weeks of PCA. Each group included approximately 100 patients. All

the recordings were additionally processed with an artefact rejection technique

removing samples with abnormal amplitude deviation, as described in Chapter

4. The EEG recordings were also automatically tested on the presence of level

of artefacts detected as described in Chapter 4.

The EEG were represented by the 36 standard spectral features as well as

the new features describing the non-stationarity of an EEG recording estimated

with the technique described in Chapter 6. The new features included the

segment rate and 10-bin histograms of the pseudo-stationary intervals ranging

from 2 to 20 sec. Additionally, the ratio of absolute powers in Alpha and Theta

bands was included.

The results of age classification within the 10-fold cross-validation are pre-

sented in Table 7.1. The table shows that the performance in terms of the exact

match of weeks is 30.1±12.5% and in the range ±2 weeks it is 85.5±0.8%. The

ranges are similar to those that can be obtained for expert assessment (Parmelee

et al., 1968) as discussed in more details in Chapter 8.

The confusion matrix for the multiclass system is given in Table 7.2.

We expect that the performances can be further improved by using two-class

classification systems. Next, we briefly describe the one-against-all classification

technique and show results of experiments on the age classification problem.
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Table 7.1: Performance in the intervals of 0, ±1 and ±2 weeks and entropy of
multiclass classification

Exact match ±1 week ±2 weeks Entropy, bits

30.1±12.5 65.5±11.6 85.1±8.2 0.209±0.011

Table 7.2: Confusion matrix for the multiclass assessment

Predicted

Actual

1 2 3 4 5 6 7 8 9 10
1 47 23 12 4 3 1 1 1 0 0
2 34 29 18 9 5 3 2 0 0 0
3 20 31 17 12 5 3 2 1 1 0
4 8 8 12 14 17 13 5 3 2 1
5 4 5 6 11 25 17 15 6 1 2
6 1 5 2 12 15 25 15 9 4 3
7 0 2 2 6 16 13 17 18 14 12
8 0 1 2 3 8 7 19 16 18 25
9 0 0 0 0 4 14 11 11 33 30
10 0 0 0 2 2 1 4 4 23 64

7.3 One-against-all classification

The most widely used approach to transform the multiclass problems is the

one-against-all classification (Bishop, 2007). Within this technique, C binary

classifiers are trained to distinguish each of the C classes from the rest. A test

sample is evaluated by C classifiers, and the class whose probability is highest

is assigned to the sample. As the binary between-class boundaries are easier

to learn than the multiclass ones, this technique is expected to improve the

classification performance.

On the other hand, a problem with this technique is that portions of samples

in the binary classifiers become imbalanced as the number of classes increases.

The imbalance may lead to poor fitting of the classifiers, because the errors

for the smaller class can become ignored. Consequently, we hypothesise that

the one-against-all technique will not provide a better performance when the

number of classes is large (Fürnkranz, 2002).

To test the hypothesis, we evaluate the performance of one-against-all tech-

nique on a maturity assessment problem with 10 PCA groups. To integrate

the Bayesian classification with the one-against-all technique, a DT ensemble is

collected for each of the C binary classifiers. The posterior probabilities of each

of the C classes are obtained from the collected ensembles, and the class with

the highest probability is assigned to each sample.
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7.3.1 Experiments

The one-against-all technique was run on the same data and with the same

settings as the multiclass one. Table 7.3 shows the average performances of age

classification counted in the different ranges of weeks within the 10-fold cross-

validation. We can see that the performance for exact match is comparable to

that of the multiclass approach; however, in the range of ±1 and ±2 weeks the

performances are slightly lower (by 2 and 1.5%, respectively).

Table 7.3: Performance of one-against-all classification in the intervals of 0, ±1
and ±2 weeks.

0 weeks ±1 week ±2 weeks

29.9±9.2 63.5±7.8 83.5±8.4

7.3.2 Conclusion and discussion on section

The techniques converting a multiclass problem into a set of binary problems are

typically expected to improve the performance. A commonly used technique is

the one-against-all classification. However, in our experiments, the one-against-

all technique did not improve the performance of age classification of 10 PCA

groups. One explanation to this may be that the learning of binary classifiers

was affected by data size imbalance. Fürnkranz (2002) has similarly observed

that the one-against-all approach performs worse than the multiclass on a set

of problems with 10 classes.

Frank and Hall (2001) proposed to modify the one-against-all technique

specifically to improve to performance for problems with ordered classes. They

suggested that for such problems the binary classifiers can be trained to dis-

tinguish each class from the neighbouring ones. An advantage of this approach

is that data imbalance can be avoided. This technique will be explored in fur-

ther work. In the next section we briefly describe an alternative approach, the

pairwise classification, and show results of experiments on EEG data.

7.4 Pairwise classification

The idea behind the pairwise approach is to independently train two-class mod-

els separating all possible pairs of classes and combine them to approximate

the between-class boundaries. Given that each model is trained on data of two

classes, the pairwise technique is not affected by data imbalance when the num-

ber of classes is increased. Furthermore, it has been shown (Fürnkranz, 2002)
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that pairwise classification outperforms the multiclass and one-against-all ap-

proaches for problems with ordered labels. The performances were counted for

direct match between the labels and classification.

In this section, we hypothesise that pairwise classification will outperform

the multiclass and one-against-all techniques on EEG maturity assessment. In

our experiments we will explore the performances for the exact match as well

as in the range of ±1 and ±2 weeks.

7.4.1 Implementation

Each of the binary classifiers learns to divide the samples from each pair of

classes. Therefore, for C classes, we need to train C(C − 1)/2 binary classifiers.

The outcomes of the classifiers that deal with one class are combined into one

group, so that the number of the groups corresponds to the number of classes.

For each class, (C − 1) outcomes are combined.

To combine the outputs, different approaches have been proposed. An obvi-

ous approach is to combine the pairwise votes of the (C−1) classifiers voting for

either of the two classes and assign a test sample to the class that has most votes

(Friedman, 1996). A drawback of this approach is that the voting ignores the

class posterior probability estimates provided by the classifiers. To take into

account the probability estimates, the outcomes of the binary classifiers can

be combined into the final class posterior probabilities (Hastie and Tibshirani,

1998). This method, aiming to approximate the desired probabilities for each

input, requires additional computations.

Alternatively, we can treat the outputs as class membership values and sum

the outputs for each class to make the final decision. For each input, the class

with the highest value will be assigned (Uglov et al., 2008; Schetinin and Schult,

2005). Within this technique, we can estimate the desired probabilities by

normalising the summed outputs for each class by the sum of the outputs for

all K classes.

Thus the class posterior probability for class ck can be estimated as follows

(Friedman, 1996).

Pr(y = ck|x) =
Pr(x|y = ck)Pr(y = ck)

∑K
l=1 Pr(x|y = cl)Pr(y = cl)

(7.1)

In (Fürnkranz, 2002) it was proposed to integrate the pairwise system with

ensemble classification. Within this technique, for each of the two-class prob-

lems, an ensemble of classifiers is trained, and then the decisions counted over

each ensemble are combined. We can use a similar approach to integrate the

pairwise system with Bayesian classification and and collect an ensemble of
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Bayaesian DTs solving a two-class problem for each of the C(C − 1)/2 classi-

fiers. To make the final decisions, the posterior probabilities integrated over the

ensembles of DTs will be combined, summing (C− 1) posterior probabilities for

each class.

7.4.2 Experiments

The pairwise classification was run on the same data and with the same set-

tings as the multiclass. The probabilities obtained from the two-class ensembles

were combined using the voting technique and the estimation of class posterior

probabilities as described in the previous subsection.

Although Bayesian averaging over pairwise DTs required learning 45 ensem-

bles to classify 10 age groups, the computational time was comparable to that

needed to run BMA over multiclass DTs. This is because the binary DTs, con-

taining 6 nodes on average, were much shorter and easier to learn than multiclass

DTs with more than 60 nodes.

Table 7.4 shows the average performances for both techniques in the ranges

of 0, ±1 and ±2 weeks. We can see that combining of probabilities provides

better performance for exact match while in the larger range the performances

of both techniques are comparable. In comparison with the multiclass approach,

pairwise approach performs better in the range of 0, ±1 and ±2 weeks by 3.4%,

4.5% and 2.4%, respectively. The confusion matrix for pairwise system with the

combined probabilities is given in Table 7.5.

The estimates of class posterior probabilities enable us to count the entropy

of the pairwise classification. The average entropy was 0.312±0.005, around 33%

larger than that of the multiclass classification. This means that the uncertainty

in assessments is significantly larger.

Table 7.4: Performances of pairwise classification in the intervals of 0, ±1 and
±2 weeks, with the techniques of voting and combining probabilities

Voting Probabilities

Exact match ±1 week ±2 weeks Exact match ±1 week ±2 weeks
30.9±0.9 69.7±0.8 87.8±0.6 33.5±0.8 70.0±0.9 87.5±0.9

7.4.3 Conclusion and discussion on section

We hypothesised that pairwise classification, previously shown promising to han-

dle problems with a large number of classes and with ordered labels, will outper-

form the multiclass and one-against-all techniques on EEG maturity assessment.
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Table 7.5: Confusion matrix for the pairwise system with combined probabilities

Predicted

Actual

1 2 3 4 5 6 7 8 9 10
1 49 31 4 2 4 1 1 0 0 0
2 27 48 17 2 6 0 0 0 0 0
3 19 31 25 8 6 1 1 0 1 0
4 5 15 14 18 17 6 6 2 0 0
5 3 11 4 13 36 12 11 1 1 0
6 0 5 7 12 23 21 15 4 3 1
7 0 2 4 3 13 22 20 12 15 9
8 0 0 5 2 8 17 12 16 22 17
9 0 0 0 2 3 8 12 17 30 31
10 0 0 0 1 3 2 5 10 23 56

In our experiments, the pairwise approach outperformed the multiclass one in

the range of 0, ±1 and ±2 weeks by 3.4%, 4.5% ans 2.4%, respectively. The

one-against-all technique was outperformed by 3.6%, 6.5% and 4%. However

the entropy increased by 33% compared to that of the multiclass technique.

As discussed by Hastie and Tibshirani (1998), pairwise classification may be

affected by the following problem. Suppose we have trained 45 binary classifiers

for a 10-class problem. However, for each class C : C = (1, 10), only 9 of the

45 classifiers were trained on samples from this class C. Most of the classifiers

were trained on samples of other classes, and thus their outputs for the samples

of class C may be ambiguous, especially if they were trained on samples similar

to those of class C but not belonging to this class. These outputs, when they

are combined, may affect the classification performance. Especially, this may

be a problem if some classes have very different meanings, although their data

are similar. One example is classification of handwritten digits, if, say, digits 1

and 7 or 0 and 9 look similar.

In case of maturity assessment, the classes are ordered, and the samples

that are most similar are expected to be close in ages. For example, consider

that samples of age groups 36 and 37 weeks are hard to distinguish. If an

EEG recorded at 36 weeks is assigned to 37 weeks, this result reflects the EEG

maturity, which can be slightly delayed or accelerated relatively to the labelled

age.

However, combining the classifiers trained on classes other than C may in-

crease the classification entropy for samples of C. Consider a sample of 36 weeks

being presented to classifiers trained on samples of 38/41 weeks. Typically, 36

weeks will be more similar to 38 than to 41, so the posterior probability of 38

weeks will become increased. Other classifiers may in a similar way contribute

to probabilities of classes other than C, affecting the entropy. Another reason
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for the increased entropy is the uncertainty in the outcomes of classifiers trained

to distinguish between the neighbouring weeks.

Another problem that needs to be explored is the interpretation of the pair-

wise DTs. In general, to interpret the DT ensembles, one DT providing maxi-

mum posterior probability can be selected (Schetinin et al., 2007). Obviously,

shorter DTs are favourable for interpretation. In our experiments, the binary

DTs consist of 6 nodes on average, whereas an average multiclass DT consists of

60 nodes. However, interpretation of the pairwise DT ensembles is complicated

because each sample is processed by 45 ensembles of binary DTs.

One approach to improving the interpretation is to organise the binary clas-

sifiers into a directed acyclic graph, similarly as proposed for DAGSVM (Platt

et al., 2000). Within this approach, only C − 1 classifiers need to be evaluated

for each sample, depending on the path in the graph. Still, some of the classifiers

will be evaluating samples of unseen classes, and so their outputs may increase

the uncertainty in assessments.

Alternatively, to obtain more interpretable results and avoid ambiguous clas-

sification, binary classifiers can be organised in a hierarchical structure to di-

chotomise data iteratively. In the next section, we explore this approach.

7.5 Meta-tree

Instead of training the classifiers on each pair of classes and combining all out-

comes, we can make advantage of the prior information that EEGs recorded

at consecutive post-conceptional ages can be naturally merged into age groups.

Specifically, we can first learn to classify EEGs into groups which merge several

weeks PCA and then split these groups further. We refer to this approach as a

meta-tree. Within this approach, each data sample is evaluated only by those

classifiers which are selected based on the outcomes at previous levels.

We hypothesise that the meta-tree will provide a performance comparable

to that of the pairwise classification. We also expect that meta-tree assessments

with hierarchical dependences between classifiers will be easier to interpret.

One problem is, however, that errors made at the first splits will be carried to

the subsequent levels. We hypothesise that introducing double checking of dif-

ficult samples will provide an opportunity to correct these errors. First, we test

a meta-tree structured for six PCA weeks. Having explored the performance,

we run experiments with the 10 age groups.

135



7.5.1 Implementation

Similarly to the common DT, the meta-tree splits data iteratively; for each

input, the next split is chosen depending on the outcome of the previous split.

However, within our implementation the structure of the meta-tree is predefined

and each split contains a Bayesian DT ensemble. The data are split starting

with two age groups. Each of group contains a half of the age groups. At the last

iteration, a pair of two consecutive post-conceptional weeks are distinguished.

The ensembles are trained on age groups assigned to the corresponding split,

and each data sample is evaluated only by those DT ensembles which are selected

based on the outcomes. Thus the problems of ambiguous classification will be

likely avoided.

We expect that the meta-tree can provide better interpretation of the matu-

rity assessments in comparison to the pairwise approach. While for the pairwise

approach each test sample is evaluated by C(C − 1)/2 classifiers, within the

hierarchical dichotomisation the number of classifiers will be at most equal to

the number of levels of the binary tree. Moreover, each of the classifiers has an

interpretable impact on the decision, as it can be seen from its position in the

meta-tree.

One problem with hierarchical dichotomisation of data, however, is that

classification errors made at the first splits are carried over to the subsequent

ones. With each new level the errors are accumulated. Aiming to mitigate this

problem, we introduce splits enabling the misclassified samples to be rechecked.

We hypothesise that such rechecking will correct the classification errors made

at the first splits of the meta-tree. In the following subsection, we test the

concept of meta-tee classification on EEG maturity assessment problem for six

PCA groups.

7.5.2 Experiments with six age groups

The structure of a meta-tree for 6 classes is shown in Fig. 7.1. This structure

has 3 levels of hierarchy and includes 7 classifiers, each of which is an ensemble

of Bayesian DTs trained to distinguish between the PCA ages grouped into class

A and class B. On the first level, an ensemble of DTs divides all data samples

into two groups, that is separates the samples of classes 1, 2 and 3 from samples

of classes 4, 5 and 6. On the next level, the classes with lower probabilities are

excluded, and the data are split further into the remaining classes.

Note the classifier 2 separating classes 1 and 2 from classes 3 and 4 as well as

the classifier 3 separating classes 3 and 4 from classes 5 and 6. Samples of the

classes 3 and 4 could easily be confused by classifier 1 as they lay close to the
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between-class boundary. By including these classes on the Level 2, we enable

the classification to be rechecked.

In the experiments we used a dataset of 630 EEG in six PCA groups from

36-41 weeks. The Bayesian averaging for all the classifiers was run with the

same settings as used for the pairwise technique in the previous section. The

average DT on Level 1 included 10 nodes, on Level 2 – 6 nodes, and on Level 3

– 4 nodes.

For comparison, we also run the pairwise classification for the same six age

groups. The average performances and entropies of the pairwise classification

and the meta-tree were counted within the 3-fold cross validation. The perfor-

mance of the pairwise classification was 32.5±6.0, whereas that of the meta-tree

was 31.8±6.5, and thus the average performances were comparable for both

methods. The average performances are given for exact age match only; the

counting of outcomes over a range of weeks does not make sense for a six-class

problem, in which the number of outcomes is limited.

The class posterior probabilities within the meta-tree can be estimated as

the portion training samples of each class falling into the terminal splits. The

entropy of the tree classification can be counted from the probabilities, and this

will be explored in future work.

#1
1, 2, 3

1, 2

1 2 3 4 3 4 5 6

3, 4 3, 4

4, 5, 6

5, 6
#2 #3

#4 #5 #6 #7

Class A

Class B
Level 1

Level 2

Level 3

Figure 7.1: Structure of meta-tree for 6 classes with rechecking for samples of
classes 3 and 4.

We have hypothesised that the rechecking of classification outcomes for

classes 3 and 4 enables correcting the the errors made at the first split and

so improves the classification performance. To test this hypothesis, we explore

the numbers of test samples of each of the 6 ages assigned to the classes A and B

by the splits of the meta-tree. Fig. 7.2 shows the numbers counted for 210 test

samples in one of the three data folds. The performance on this fold was 33.0%.

The counts of samples that were correctly assigned to class A or B in each split
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are shown with white bars whereas the misclassified samples are shown with

grey.

Looking at the split 1, we can see that 9 samples of age 4 are wrongly assigned

to class A, and 10 samples of age 3 – to class B. We expect that classification

of these samples will be corrected at terminal splits 5 and 6. However, looking

at the numbers of samples assigned to age group 4 by the split 5, we see that

only samples of the true class 4 are classified correctly. The other samples are

distributed among the classes 1, 2 and 3. Likewise, only one sample of age 3 is

classified at split 6.

From the above observations, it seems that the rechecking did not correct

the classification errors made at the Level 1, contrary to our hypothesis. An ex-

planation to this may be that the maturity-related patterns of the misclassified

samples were more similar patterns of other ages, and so the repeated classifi-

cation could not change the outcomes. It is possible that the rechecking only

increases the possibility of classification errors. In this case, we can hypothesise

that, alternatively, a simplified meta-tree without the rechecking would provide

better results.

Figure 7.2: Numbers of test samples falling in the splits of meta tree.
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To test this hypothesis, we implement a simpler structures of the meta-tree

with no rechecking at Level 2. The structure of this meta-tree is shown in

Fig. 7.3. Tested on the same data, this meta-tree provided the performance of

34.0±8.2%, 2% higher than that obtained with the rechecking.

However, one possible drawback of using this structure is that the data sizes

are imbalanced for classes A and B in the splits 2 and 3. The imbalance may

lead to higher error rates for age groups 3 and 4, which are in the smaller

classes. Therefore, the performance may be improved further by using a three-

class classifier for these splits. This modification will be explore in future work.

Next, we show results of experiments with the simple meta-tree for the 10-class

maturity assessment problem.

#1
1, 2, 3

1, 2

1 2 5 6

3 4

4, 5, 6

5, 6
#2 #3

#4 #5

Class A

Class B
Level 1

Level 2

Level 3

Figure 7.3: Structure of simple meta-tree for 6 classes without rechecking.

7.5.3 Experiments with ten age groups

The experiments with the meta-tree classification of 10 age groups were run

on the same data as those with the multiclass, pairwise and one-against-all

approaches. The meta-tree for 10 age groups is shown in Fig. 7.4. In cases

when the numbers of ages were unequal in classes A and B, the grouping was

done arbitrary. We can see that the meta-tree has four levels, and so each test

sample is processed by at most four ensembles within this structure. The average

DTs in the ensembles of the first, second, third and fourth levels included 12,

8, 4 and 3 nodes, respectively.

Table 7.6 shows the average performances within the 10-fold cross-validation

over the PCA intervals. For the exact match, the performance is 2% lower than

that of the pairwise classification. The imbalance of data in some of the splits

may be the cause may cause the meta-tree to perform worse than pairwise

classification on the exact match of weeks. In case of imbalance, the samples

of the smaller class may tend to be assigned to the larger class, and this causes

the errors for the exact match. Nevertheless, in the ranges ±1 and ±2 weeks

the performances of the meta-tree and pairwise classification are comparable.
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The meta-tree also outperforms the multiclass classification by approximately

3% on average. The confusion matrix for the meta-tree is given in Table 7.7.

Table 7.6: Performance of meta-tree classification in the intervals of 0, ±1 and
±2 weeks.

0 weeks ±1 week ±2 weeks

31.5±6.5 70.6±8.5 88.3±6.2

1, 2, 3, 4, 5 6, 7, 8, 9,10

1, 2, 3

31, 2

1 2

4, 5

4 5

6, 7

6 7

8, 9,10

8 9,10

9 10

Class A

Class B

Figure 7.4: Structure of meta tree for 10 age groups.

Table 7.7: Confusion matrix for the meta-tree

Predicted

Actual

1 2 3 4 5 6 7 8 9 10
1 47 37 1 2 2 1 2 0 0 0
2 27 59 59 6 4 3 1 0 0 0
3 15 47 9 9 11 6 1 2 1
4 4 23 5 18 14 7 8 3 1 0
5 3 12 2 11 20 26 12 3 3 0
6 0 6 3 11 17 28 11 9 6 0
7 0 3 2 2 11 27 11 12 24 8
8 0 0 3 1 6 13 9 21 31 15
9 0 0 0 1 8 13 16 43 22
10 0 0 0 1 2 3 4 3 43 44

7.5.4 Conclusion and discussion on section

We proposed to organise the binary classifiers in a hierarchical meta-tree struc-

ture to dichotomise data iteratively. We hypothesised that the meta-tree will

provide the performance comparable to that of the pairwise approach, and at

the same time enable better interpretation of maturity assessments. In our ex-

periments, we found that the performance of meta-tree in the range of ±1 and

±2 weeks is comparable to that of the pairwise classification (p > 0.18,p > 0.64).
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Each decision can be interpreted using at most four short DTs whose contribu-

tions to the classification can be understood from their position in the meta-tree.

However, the meta-tree slightly underperformed the pairwise classification

on the exact match of weeks. One reason for this may be the imbalance in data

for the binary classifiers dealing with data from an odd number of age groups.

To improve the results, in cases of imbalance, three-class classification could be

used instead of the binary to make the numbers of samples per class similar.

Alternatively, we can take advantage of the ordered nature of the maturity

assessment problem and omit from the training the class that is further from

the between-class boundary, similarly as in the ordinal classification technique

proposed by Frank and Hall (2001). These points will be researched in future

work.

7.6 Chapter discussion and conclusion

The brain maturity classification task is characterised by large number of classes,

sequential ordering of class labels, and large overlap between samples of neigh-

bouring age groups. For such applications, the conventional multiclass ap-

proaches may perform poorly, because the decision boundary separating all

the classes becomes difficult to learn. We hypothesised that the performance of

brain maturity assessments can be improved by using a classifier system which

is more suitable given these characteristics of data.

Binarisation techniques, such as the one-against-all and pairwise classifica-

tion, have been shown outperforming the multiclass approaches by splitting a

multiclass problem into a set of binary ones which are easier to solve. We

hypothesised that pairwise classification, specifically, would provide better per-

formance, as it has been shown effectively handling problems with ordered labels

and with large number of classes whose data samples overlap. We also expected

that performances in the range of ±1 and ±2 weeks can be improved.

In our experiments with Bayesian maturity assessment of 10 PCA groups,

the pairwise classification outperformed the multiclass approach in the range

of 0, ±1 and ±2 weeks by 3.5%, 4.5% and 2.4%, respectively. The p val-

ues of these improvements, computed with the Mann-Whitney U test, were

p < 0.14, p < 0.09 and p < 0.19, respectively. The pairwise classification also

outperformed the conventional one-against-all binarisation by 4.5%, 6.5% and

4.0%, p < 0.09, p < 0.01 and p < 0.1. Thus, the improvement for ±1 week was

statistically significant.

However, a drawback of the pairwise approach is that multiple binary clas-

sifiers trained on all pairs of classes are combined for the decision. The com-

bination of multiple classifiers makes interpretation of assessments difficult and
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increases uncertainty in results. To provide more interpretable results and re-

duce the uncertainty, we proposed to train binary classifiers to split the data

iteratively and organised the classifiers in a meta-tree. The performance of

the proposed meta-tree classifier was shown comparable to that of the pairwise

classification in the ranges of ±1 and ±2 weeks. Within the meta-tree, each

test sample was evaluated by 4 binary classifiers whose contribution was clearly

defined.

Fig. 7.5 compares the performances of the methods in the ranges of 0, ±1

and ±2 weeks. We can see that the pairwise (PW) and the meta-tree (MT)

techniques outperform the multiclass (MC) and one-again-all (1/all) classifica-

tion in all ranges. Overall, the results support our hypothesis that binarisa-

tion improves the accuracy of maturity assessments. hypothesised The meta-

tree outperforms the multiclass approach by 1.2%, 5.1%, and 3.2% on average,

p < 0.68, p < 0.05 and p < 0.11. Thus, the improvement was statistically

significant for the interval of ±1 week.

The median performance of the meta-tree in the range of 0 weeks is, however,

4% lower than that of the pairwise classification. This lower performance may

be caused by imbalance of class samples in the binary classifiers dealing with

data from an odd number of age groups. We hypothesise that the performance

may be improved if the imbalance is reduced, and will test this hypothesis in

future work.

An alternative way of improving the performance of the multiclass DT in the

range of ±1 and ±2 weeks is by appropriately setting cost of misclassification

during training. This would enable penalising those outcomes which are further

from the labelled PCA and allow more tolerance to misclassification in a close

range of ages. This approach will be explored in future work.

Another question left for further work is the estimation of class posterior

probabilities within the meta-tree technique. A possible approach is to estimate

the probabilities as the portion of training samples of each class falling into the

terminal splits of the meta-tree. The entropy of the meta-tree classification can

then be counted from the probabilities.
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Figure 7.5: Performances in the intervals of 0, ±1 and ±2 weeks for the classifi-
cation techniques: multiclass (MC), one-against-all (1/all), pairwise (PW) and
meta-tree (MT).
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Chapter 8

Results of maturity

assessments

In this chapter, we explore the accuracy of Bayesian assessments over the typical

intervals of±1 and±2 weeks PCA. We compare the accuracy with that of expert

assessments obtained for similar age groups.

In Sections 8.1 and 8.2, we describe the dataset used in our experiments and

show the results of Bayesian age classification with 10 PCA groups. Then, in

Section 8.3, we show the relative importances of the standard spectral features

and the most informative new features described in Chapter 6. Having estimated

the feature importances, we employ the refining of Bayesian DT ensemble, as

described in Chapter 5, to discard the DTs which use weak EEG features. We

expect that the refining will improve the accuracy of maturity assessments and

decrease the uncertainty. We will also explore how the refining affects the class

posterior distribution

Having found the cases of matched and mismatched maturity assessments,

in Section 8.6, we will explore the shape of the class posterior distribution

calculated over DT models for a given PCA. We expect that the shapes will be

different for cases of matching and mismatching assessments. We hypothesise

that when PCA matches EEG estimate, the distribution shape tends to be

symmetrical as the areas of interests are mainly located around one age category.

On the contrary, for the mismatching cases, the distribution becomes rather

asymmetrical as the areas of interests are spread over different age categories.

We will test this hypothesis on the EEG.

Finally, in Section 8.7 to provide interpretation of the assessment results, we

will use the information from EEG database to test hypotheses about possible

reasons for the mismatch in assessments. Specifically, we investigate how the
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cases of dysmature assessments are related to patients’ apnoea risk and to pre-

term birth. We conclude the chapter in Section 8.8.

8.1 Data

In our experiments we used 952 EEG recordings from newborns aged from 36

to 45 weeks of PCA. Each of the 10 age groups has been made including around

100 recordings. The electrode movement artefacts causing a significant change

or shift in EEG amplitude were removed as described in Chapter 4.

For our experiments, the EEG features were made consisting of two groups,

basis and extension ones. The 36 features of the basis group represent the

relative and absolute average powers in the six frequency bands computed for

the two electrodes and their sum. The basis features were first computed in

each 10 sec segment, and then averaged over all segments in a recording. The

averaging helps suppress variations and artefacts as shown in Chapter 5.

The features of the extension group represent the discontinuity of an EEG

recording. The discontinuity is assessed as the distribution of the pseudo-

stationary segments in EEG. The extension group included the total segment

rate and 10 bins of the histogram of the segment lengths ranging from 2 to 20

sec. Finally, we added the ratio of absolute spectral powers in Theta and Alpha

bands. The extraction of these new features has been described in Chapter 6.

The total number of features in the extension group was 12. The two feature

groups together included 48 EEG features computed in 10 sec EEG epochs.

8.2 Bayesian classification

The settings for running the Bayesian classification were made as follows. The

number of DTs sampled in the burn-in phase was 100,000, and in a post burn-in

phase 10,000. During the post burn-in phase each 10th model was collected in

order to reduce the correlation between DT models. The pruning factor was set

to five. The proposal variance was 1.0, and probabilities of making moves of

birth, death, change-variable, and change-rule were set to 0.15, 0.15, 0.1, and

0.6, respectively. Under the above settings, the rate of acceptance of DT models

during the integration was around 0.23 in both phases. In the burn-in phase,

the log-likelihood as well as the size of DT became stabilised on average after

10,000 samples, as can be seen in in Fig. 8.1, so that the remaining 90,000

samples were drawn from an approximately stationary Markov Chain.

The performance and uncertainty of the DT ensemble collected in the post

burn-in phase were evaluated within a 10-fold cross-validation. The average
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Figure 8.1: Log-likelihood, number of DT nodes and distribution of DT sizes
during the burn-in and post burn-in phases.

performance was 30.6% and the the 2σ interval was 12.8% and the uncertainty

in terms of entropy of the ensemble was 0.209±0.011.

8.3 Importance of EEG features

Although the 48 features from the basis and extension groups have been found

informative for maturity assessment, there is no prior information about the

most important features or a feature combination in the context of DT models.

As discussed in Chapter 5, in the absence of the prior information about the

importance of EEG features, the results of Bayesian classification will likely

suffer from the lack of detailed exploration of a multidimensional space of model

parameters. To improve the results, we can obtain posterior information on

EEG feature importance, and use this information to refine the Bayesian DT

ensemble. Additionally, the information on EEG feature importance will assist

EEG experts in interpretation of the assessments.

As discussed in Chapter 5, using DT models for classification within the

Bayesian methodology allows us to count the importance of the EEG features in
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terms of the posterior probabilities of their use in DT ensemble. Fig. 8.2 shows

the posterior probabilities of using all 48 EEG features in the basis (upper plot)

and extension (lower plot) groups. The probabilities are averaged over the 10

folds.

First, we see the importance of the features ranges between 0.0025 (AbsSub-

deltaC3T3) and 0.078 (Theta/Alpha Ratio). Second, we observe that not all

the features of the basis group are equally important, only 12 out of the 36

features are of the importance greater than 0.02. In contrast, the importance

of all the features of the extension group is higher than that.
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Figure 8.2: Importance (posterior probabilities) of 48 EEG features characteris-
ing the relative and absolute spectral powers (upper plot) and the Theta/Alpha
ratio and EEG non-stationarity (lower plot).
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8.4 Refining the ensemble

The above Fig. 8.2 shows that the probabilities (or importance) of the given

features vary in a wide range. Some of the features with low importance are

probably weak to make a distinguishable contribution to the classification. As

described in Chapter 5, we can hypothesise that discarding DTs using such weak

features will improve the performance within the proposed method.

According to this method, we found a set of 8 weakest features with probabil-

ities below 0.006, and discarded the DTs using these features from the ensemble.

After discarding, it was found that the performance median slightly increased

from 31% to 34% when the threshold was changed to 0.003 and 8 weak fea-

tures were defined. The uncertainty counted in terms of entropy of an ensemble

is slightly decreased from 0.209±0.011 to 0.208±0.012. Further increasing the

threshold to 0.006 lead to discarding 13 weak features without a significant drop

in the performance. Clearly, the removal 13 out of 48 features makes the DT

ensemble shorter and easier for interpretation.

The box plots in Fig. 8.3 show the average numbers of DT splits for the

original and refined ensembles as well as for the discarded DTs. The original

ensemble included 10,000 DTs, but after refining it included 5,800 DTs. We

see that the median number of splits in the discarded set of DTs is 66.3, which

is higher than that in the original ensemble. The median number of splits in

the refined ensemble decreases to 65.5, as the portion of larger DTs has been

removed. In the next subsections we will explore the accuracy of the refined

ensemble of DTs.
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Figure 8.3: Average number of DT splits in the ensembles.
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8.5 Performance of EEG assessment

Having obtained an ensemble of DT models, we can count the performance of

the Bayesian assessment of brain maturity. The performance was counted within

the three intervals: exact match, ±1 weeks, and ±2 weeks. The performances

within each of these intervals were 30.1%, 65.5%, and 85.1%, respectively. As

discussed in Chapter 1, the neurological assessment of newborn brain maturity

is mainly made within ±2 weeks of PCA.

The performance of Bayesian assessments in the interval of ±2 weeks is

comparable to that of the expert assessment reported in (Parmelee et al. 1968).

These results, however, have been obtained on EEG in different age ranges and

with different sample sizes: we used 952 recordings from newborns aged 36-45

weeks, whilst the experts have assessed only 47 recordings at ages 30 to 43

weeks.

Table 8.1 shows the spread of age classifications over the given age groups

from 36 to 45 weeks of PCA. The table columns present the numbers of classi-

fications fallen into the age groups ranged from -6 to +7 weeks. Thus Column

0 shows the numbers of classifications fallen into the actual age groups (exact

matches), Column 1 shows the number of classifications fallen into an age group

which is less than the actual age group by one week, Column 2 – less than by

two weeks, etc.

Table 8.1: Spread of age classifications

Mismatch (weeks)

PCA -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 Total

36 46 24 11 5 3 2 0 1 92
37 32 33 16 10 5 3 1 0 0 100
38 18 29 18 15 5 3 2 1 1 0 92
39 8 9 10 15 17 13 5 3 2 1 83
40 4 5 6 11 26 16 14 6 2 2 92
41 1 5 2 11 15 26 15 10 3 3 91
42 0 2 2 6 16 12 18 17 15 12 100
43 1 1 3 10 9 19 14 19 23 99
44 0 0 3 14 12 10 35 29 103
45 2 2 1 3 5 25 62 100

Total 3 6 18 48 86 163 293 168 101 39 16 8 2 1 952

The Total column presents the number of EEG recordings in each age group.

This column shows that the numbers of recordings in each group are similar.

The Total row shows that the numbers of age classifications fallen in the age

groups ranged between -6 and +7.
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Assessing brain maturity within some age ranges may be more difficult than

within others, because the EEG features may have different informativeness

within different age ranges. Therefore, it is interesting to compare the accura-

cies of Bayesian and expert assessments within similar age groups. Table 8.2

shows the performance of the expert assessment of EEG maturation described

in (Parmelee et al., 1968) together with the performance of the Bayesian assess-

ment calculated within the same five age groups from 39 to 43 weeks of PCA

within the ranges ±1 and ±2 weeks. We used the 465 recordings (in the above

five age groups), whilst the experts have assessed only 27 recordings.

Table 8.2: Performances of expert and Bayesian assessments

Interval, weeks Expert, % Bayesian classification, %

±1 59.5 53.7
±2 77.3 80.8

Such a difference in the sample sizes does not allow us to compare the re-

sults directly. Nevertheless, we observe that the Bayesian assessment within ±2

week interval, on average, slightly outperforms the expert assessment. It is also

interesting that Bayesian assessments were made on EEG date from two elec-

trodes, whereas the experts used 8 electrodes and additional polysomnographic

channels.

It is important to note that an EEG assessment obtained within the Bayesian

methodology is provided with an accurate estimate of the uncertainty. Below

we describe our experiments and results in estimating the uncertainty for EEG

assessment.

8.6 Estimation of uncertainty

In this section, we describe how the estimates of uncertainty obtained within

the Bayesian assessment can assist experts to reduce possible errors. Having

obtained an ensemble of DT models, first we calculate the desired estimates by

using the original ensemble and then explore whether the estimates are improved

by using the refined ensemble.

Second, we explore the class posterior probabilities obtained within the

Bayesian assessment for patients assigned in different age groups. The assign-

ments can be made matching or mismatching the stated PCA. We consider a

mismatch of more than 2 weeks as the case of abnormal brain maturity, and

therefore it is important to identify risk of the mismatch by analysing the pos-

terior probability.
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In our experiments, we used the ensemble of DTs obtained on the 857 cases

to test the other 95 cases, roughly equally distributed over the 10 PCA groups.

According to the spread of age classification given in Section 8.5, a few EEG

assessments were found mismatching the PCA within the ±2 week interval.

We expect that the class posterior probability distribution obtained for a mis-

matched case differs from that obtained for a matched case. To test this hy-

pothesis, we first look at two cases of 6th class (41 weeks of PCA), one matching

and the other mismatching the newborn’s stated PCA.

Fig. 8.4 and 8.5 show the class posterior probabilities for these cases. Here,

the left side plots show the class posterior probability distribution over the

10 classes within the 1σ intervals computed over all the DTs included in the

original ensemble. For the matching case, the average probabilities of the classes

6 and 5 (weeks 41 and 40) are highest. This indicates normal brain maturity

as these classes are within the interval of ±1 weeks. We can also see that the

1σ intervals of the classes 6 and 5 do not overlap those of the other classes, and

therefore the uncertainty in assessment is low. Contrary, for the mismatching

case, the 1σ intervals of the probabilities of most classes are overlapping, and

the uncertainty is much higher. The probability of class 1 is maximal; however,

the probability of class 7 is second highest, and it is comparable within the 1σ

interval. The probabilities indicate that the recording contains a mixture of

dismature patterns and those appropriate for the age.
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Figure 8.4: Probability distributions estimated for matching case.

These two cases illustrate the use of the class posterior probability distri-

butions obtained within the Bayesian methodology for estimating the uncer-

tainty. We observed that the distribution counted for the newborn’s stated

PCA (shown in the middle plots) becomes asymmetrical when an EEG assess-

ment mismatches the PCA. The uncertainty can be quantitatively represented,

and the shape asymmetry can be visually recognized.
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Figure 8.5: Probability distributions estimated for mismatching case.

The asymmetry of the shape of a distribution can be quantified by its skew-

ness. We observed that the class posterior probability distributions for the

stated ages tend to be skewed in cases of mismatched assessments. Fig. 8.6

compares the asymmetry of class posterior distributions in cases of matched

and mismatched assessments in a set of 96 patients. We can see from the box-

plots that the asymmetry (in terms of skewness) tends to increase with the

magnitude of mismatch.
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Figure 8.6: Skewness of the class posterior distributions in cases of matched and
mismatched assessments

152



As described in the previous subsection, the refined ensemble of DT models

has improved the performance of EEG assessment and reduced the entropy, and

therefore we can observe the corresponding changes in the class posterior distri-

butions. Fig. 8.7 shows these probabilities obtained with the refined ensemble

for the above two cases.
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Figure 8.7: Probability distributions estimated with the refined ensemble of DTs
for matching (upper plot) and mismatching (lower plot) cases.

The comparison shows that the average probabilities of classes 5 and 6 shown

in the upper plot of Fig. 8.7 are slightly higher than those shown in Fig. 8.4

while their intervals are slightly smaller. As a result, using the refined ensemble

decreases the uncertainty of EEG assessment. Comparing the posterior distri-

bution obtained with the refined ensemble for the mismatching case shown in

the lower plots of Fig. 8.7 and those obtained with the original ensemble (Fig.

8.5), we observe a similar decrease in the uncertainty of EEG assessment.

8.7 Causes of mismatched assessments

In the previous section, we found the cases for which the Bayesian assessments

were mismatched by at least two weeks. It is interesting to explore the hy-

potheses about the causes of this mismatch, or brain dysmaturity. The first

hypothesis is that the dysmature assessments are linked with high risk of ap-
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noea, as previously shown in (Holthausen et al., 1999) on a smaller subset of

the EEG data. The second hypothesis is that very pre-term birth is associated

with dysmaturity observed when the newborns reach full-term age (Scher et al.,

1990, 2003a; Conde et al., 2005).

To test the hypotheses, first we compare apnoea risk indexes of newborns

with the matching and the mismatching assessments. Second, we explore whether

the rate of mismatched assessments is higher for the very pre-term newborns

than that for babies born at later gestational ages.

8.7.1 Apnoea risk

Each EEG recording in our dataset has been accompanied by an apnoea index,

counted as the number of apnoea episodes per hour. The episodes, defined as

periods of stopped breathing lasting at least 3 sec, have been detected automat-

ically based on monitoring of respiration and oxygen saturation.

Having found the 811 recordings for which the assessments were matched

within the interval of ±2 weeks and 141 recording for which the assessments

exceeded this interval, we compare the distributions of apnoea indexes in both

these groups to see whether there exists a relationship between the mismatched

assessments and higher apnoea index. Fig. 8.8 shows the distributions for

matching and mismatching assessments. Although the sample sizes are dif-

ferent, we can see that both distributions have a similar shape. The indexes

range between 0 and 100 and the median values are around 16 in both groups.

Contrary to the hypothesis, it seems that no relationship exists between the

dysmaturity and apnoea index, as the distributions are similar. To verify this

we use hypothesis testing.

As the distributions are not normal, the t -test is not suitable, and we use the

non-parametric KS-test to verify the null hypothesis that the apnoea indexes of

both groups are from the same distribution. The two-sample KS-test could not

reject the null hypothesis providing p > 0.98. The hypothesis was also tested

on the 293 cases of exactly matching and 141 cases of dysmature assessments,

and could not be rejected with p > 0.71. Thus, our data do not support the

hypothesis that mismatched assessments are associated with high apnoea risk.

8.7.2 Very pre-term birth

For each EEG recording, the patients gestational age has been noted in the

database alongside PCA. We use the information on gestational age to test

the hypothesis that mismatched assessments are more likely for the very pre-

term newborns than for babies born at later ages. We explore the mismatched
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Figure 8.8: Distributions of apnoea indexes for cases with matched and mis-
matched assessments.

assessments between 41 and 45 weeks, when the full-term EEG patterns are

expected to be fully developed.

In this PCA range, we identified two gestational age groups: 84 babies were

born very pre-term, that is before 33 weeks gestational age, the remaining 409

babies were born aged 33 or more weeks. In the very pre-term group, 21 record-

ings was assessed as dysmature, whereas in the group with older gestational ages

there were 55 such recordings. Table 8.3 summarises this data in a so-called 2×2

contingency table. Analysis of this data with a standard X2 test with 1 degree

of freedom showed a statistically significant difference p < 0.02. Thus the data

support the hypothesis that mismatched assessments at full-term age are more

likely for very pre-term newborns than for babies born after 32 weeks gestation.

Table 8.3: Numbers of matched and mismatched assessments with the different
gestational age

Gestational age Matched Mismatched Total

< 33 weeks 63 21 84
≥ 33 weeks 354 55 409

Total 417 76 493

8.8 Chapter discussion and conclusions

We explored the accuracy of Bayesian assessments of EEG maturity and showed

that the accuracy was comparable to that obtained by experts. Although the
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EEG recordings used in our experiments were different, the assessment accura-

cies in the intervals of ±1 and ±2 weeks PCA were in a similar range.

Having obtained an ensemble of Bayesian DT, we estimated the importances

of the EEG features in terms of the frequencies of their use in the ensemble. It

was found that the new features described in Chapter 7 had higher importances

than 66% of the standard spectral features.

We also expected to obtain accurate estimation of class posterior distribution

within the Bayesian assessment to provide experts with the exhaustive informa-

tion on risk in EEG assessment of the newborn’s brain. In our experiments, we

showed that the Bayesian assessment of the posterior probabilities are accurate

and can be used for evaluating the risk of possible errors.

The results of Bayesian assessments were improved by using the refining

technique described in Chapter 6. We showed that the refining reduced the

uncertainty of assessments and this effect was observed in the ensemble en-

tropy counted over all test data as well in class posterior probabilities shown for

individual patients.

Finally to provide interpretation of assessment results, we tested two hy-

potheses abut possible causes of the mismatched assessments. We found that

the assessed dysmaturity was not related to high apnoea risk, contrary to re-

sults reported by (Holthausen et al., 1999). However a statistically significant

relationship was found between the mismatch and very pre-term birth. The

lag in maturation of pre-term newborns has been observed previously by EEG

experts (Scher et al., 1990, 2003a; Conde et al., 2005). This finding supports

the validity of our assessment technology.
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Chapter 9

Conclusions

We studied how brain maturity of newborns can be automatically assessed from

sleep EEG. It was proposed to assess the brain maturity within the methodology

of Bayesian averaging, which in theory provides the most accurate assessments

along with the estimates of uncertainty enabling experts to take into account

the full information about the risk of decision making. Such information is

particularly important when assessing the EEG signals which are highly variable

and corrupted by artefacts.

The work presents the first results on automated assessment of the brain

maturity made in the typical intervals of newborns stated age. The assess-

ment technology was tested on 952 EEG recordings of newborns aged 36 to

45 weeks after conception, and the accuracy was comparable to that achieved

by EEG experts manually analysing EEG maturational patterns. Moreover,

we showed that maturation of newborns aged 36 to 45 weeks can be assessed

from two-channel EEG, without the conventionally used multiple channels and

polysomnogram (Chapter 8).

The use of decision tree models within Bayesian averaging enabled select-

ing the EEG features most important for the assessment. The feature selection

becomes important when data are represented by multiple features the prior in-

formation on which is unavailable. In our case, The EEG data were represented

by multiple EEG features, and it was expected that some of the features were

making a weak contribution to the assessments.

It was hypothesised that the use of weak features within Bayesian averag-

ing over decision trees unnecessarily increases a model parameter space, which

needs to be explored in detail to achieve proportional sampling from areas of

interests. The larger the number of weak features, the greater is the number of

models using these features, and the greater is their negative impact on results

of Bayesian classification.
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We expected that discarding of models using weak features will reduce the

negative influence, and proposed a technique for refining a decision tree ensemble

from models which use the weak features. The proposed technique was shown

capable of increasing the performance and decreasing the ensemble uncertainty.

At the same time, this technique enabled finding a subset of the most important

EEG features (Chapter 5).

To further improve the accuracy of assessments, we extracted the new EEG

features complementing the standard spectral powers. Based on the clinical

observations that discontinuity is the most important maturational character-

istic, we explored the conventional and new techniques for extracting features

representing EEG discontinuity. Specifically, we proposed to estimate EEG dis-

continuity as the ”non-stationarity”. The new feature, counted as the rate of

pseudo-stationary EEG intervals, was shown outperforming the conventional

discontinuity estimates. Used in combination with the standard spectral fea-

tures, the new feature improved the accuracy of assessments by 6% on average

(Chapter 6).

When classifying a large range of newborns’ ages, the accuracy of conven-

tional techniques may be negatively affected by an increase in the number of

classes. We hypothesised that converting a multiclass problem into a set of bi-

nary ones will improve the accuracy of assessments with multiple classes. We

also hypothesised that the assessment accuracy can be improved by taking into

account the prior information that the class labels, or newborns’ ages in weeks,

are naturally ordered.

In the experiments, the pairwise binarisation technique improved the as-

sessment accuracy. However, a weakness of this technique is that classification

decisions are made by combining outputs from multiple binary classifiers. This

means that decisions become difficult to interpret. To simplify interpretation

of maturity assessments, we proposed a meta-tree classifier which provides a

performance comparable to that of the pairwise binarisation, while using for

each decision only a few binary classifiers, whose contribution is clearly defined

within the meta-tree structure (Chapter 7).

A general problem of newborn EEG analysis is that the EEG signals are

weak and easily corrupted by muscle and technical artefacts which affect the

clinical interpretation. Therefore experts need to detect and mark the artefacts

to be excluded from analysis. The results may be subjective or inconsistent

between different experts. The inconsistencies in artefact removal may affect

the accuracy of Bayesian assessments. This motivated us to hypothesise that

the accuracy can be improved by removing the artefacts automatically. To

test this hypothesis, we compared the accuracy of assessments after expert and

automated removal of artefacts. We showed that the accuracy achieved after the

158



automated removal is comparable or slightly better than that achieved after the

removal of the artefacts marked by experts. We also showed that the negative

influence of EEG artefacts on the maturity assessment can be suppressed by

averaging over multiple short epochs of EEG (Chapter 4).

Finally, having evaluated the assessment accuracy on EEG recorded at 36

to 45 weeks, we explored the patient cases for which the Bayesian assessments

were mismatched with the stated ages. We found that mismatched assessments

at full-term age were more likely for newborns born very pre-term. This finding

agrees with observations of EEG experts that maturational patterns of very

pre-term newborns may be altered (Chapter 8).

9.1 Future work

• Recognition of EEG patterns. In this thesis, we assessed brain maturity

from EEG features extracted from the whole recordings. This approach

does not take into account the patterns and waves which experts typically

analyse, such as patterns of the quiet and active sleep states, delta brushes

and Theta/Alpha bursts. We expect that extraction of new features de-

scribing these patterns and waves could provide additional information to

improve the accuracy of assessments.

The first step to obtain such information is to detect the quiet and active

sleep states and count the EEG features in each of these states. The pre-

liminary results (Schetinin et al., 2011) have shown that features extracted

from the quiet sleep state are more informative than those from the active

sleep, and the use of these features can improve the assessment accuracy.

• Improving performance of the meta-tree. To improve the accuracy of

Bayesian maturity assessment on 10 PCA groups, or classes, we proposed

a meta-tree classifier to split the multiclass problem into a set of binary

ones. The meta-tree outperformed the conventional multiclass approach

by approximately 3% on average. Yet, the performance of the meta-tree

was found affected by data imbalance problem, and we expect that an

improvement can be obtained by reducing the imbalance. One way of

dealing with the imbalance is to take into account the natural ordering of

classes and concentrate on training the binary classifiers to discriminate

only the neighbouring age groups.

Another open question is the estimation of class posterior probabilities

within the meta-tree. A possible approach is to estimate the probabilities

as the portion of training samples of each class falling into the terminal
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splits of the meta-tree. The entropy of the meta-tree classification can be

counted from the probabilities.

• Introducing misclassification costs to improve results of ordered classifica-

tion. Taking into account the ordered nature of the maturity assessment

problem, an alternative way of improving the performance is by appropri-

ately setting cost of misclassification during training. This would enable

penalising those outcomes which are far from the labelled PCA and allow

more tolerance to misclassification in a close range of ages.

• Extension to other PCA groups. We have tested our technology of matu-

rity assessments on EEG of newborns aged 36 to 45 weeks PCA. Assess-

ment of maturation of newborns younger than 36 weeks is an important

clinical problem. To make Bayesian assessments for this age group suf-

ficient EEG data are required. It will be interesting to explore the im-

portances of the extracted EEG features on this age group, for which the

EEG maturational patterns are different, and so the feature importances

may change.

• Validation of assessments by experts. The EEG data available for our

research have been recorded from newborns in hospitals. Some of the

newborns could have clinical conditions that caused their EEGmaturity to

be altered and to mismatch their stated PCA. Obviously, such alterations

introduce noise in data, affecting accuracy of assessments. To validate

our results, it would be valuable to obtain expert assessments of brain

maturity for a subset of recordings from our dataset including cases for

which the Bayesian assessments were matched and mismatched to PCA.

• Improving informativeness of aEEG features. aEEG is becoming an es-

tablished technique in monitoring brain function of newborns. We found

that time domain features, enabling the performance of maturity assess-

ment to be improved, can be automatically extracted from the aEEG

signal. Future work will explore how the informativeness of these features

can be improved by removing EEG artefacts prior to applying the aEEG

technique.
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