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Abstract

Trauma and Injury Severity Score (TRISS) models have been developed for
predicting the survival probability of injured patients the majority of which
obtain up to three injuries in six body regions. Practitioners have noted
that the accuracy of TRISS predictions is unacceptable for patients with a
larger number of injuries. Moreover, the TRISS method is incapable of pro-
viding accurate estimates of predictive density of survival, that are required
for calculating confidence intervals. In this paper we propose Bayesian in-
ference for estimating the desired predictive density. The inference is based
on decision tree models which split data along explanatory variables, that
makes these models interpretable. The proposed method has outperformed
the TRISS method in terms of accuracy of prediction on the cases recorded
in the US National Trauma Data Bank. The developed method has been
made available for evaluation purposes as a stand-alone application.

Keywords: Bayesian prediction, survival probability, Markov chain Monte
Carlo, classification tree, trauma care.

1. Introduction

Probabilities of survival for patients alive on arrival at a hospital are
calculated by using the Trauma and Injury Severity Score (TRISS) system
[4, 3, 21, 12, 22]. TRISS predictions are based on a logistic regression model
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that considers up to three most severe injuries a patient can obtain in six
regions of the body such as head, face, chest, abdomen, and extremities. The
TRISS model takes into account screening tests as explanatory variables
which include: age, systolic blood pressure, respiratory rate, the severity
scores of injuries as well as Glasgow coma scores and type of injury. The
screening tests are performed on the patient’s arrival at an emergency unit.

To assist the practitioners with predictions of patient’s survival, a TRISS
Calculator has been made available online [6]. The Calculator requires the
user to input the Abbreviated Injury Scales for the six regions, as well as
the systolic blood pressure, respiratory rate, Glasgow coma score, and age
of a patient. The output is a predicted survival probability for blunt or
penetrating type of an injury.

According to the TRISS method, the screening tests are used to form
two aggregated predictors. The abbreviated injury scales form the Injury
Severity Score (ISS) and the systolic blood pressure, respiratory rate, and
Glasgow coma score form the Revised Trauma Score (RTS). Such aggregated
predictors have revealed unexplained fluctuations over actual probabilities of
survival [25, 3, 22, 1, 26].

The match between the actual survival and predicted probabilities is con-
sidered as calibration, and can be visualized as a calibration curve, see e.g.
[17, 33]. The ideal calibration curve is a 45 degree line with zero intercept. It
has been found that the calibration of the TRISS model significantly deviated
from the ideal curve [22, 28].

The regression coefficients of the TRISS model have been calculated on
the Major Trauma Outcome Study (MTOS) database in the 1980s [8] and up-
dated in 1990s [9]. Since that time, the technologies in trauma care have been
advanced, and the TRISS model was shown to be providing over-pessimistic
predictions, and so there is the need to recalibrate the TRISS model, see e.g.
[28]. Such a recalibration has been attempted on the US National Trauma
Data Bank (NTDB), [12], and the updated coefficients were published in [34].
Similar attempts have been undertaken in [10, 23].

As a way of improving TRISS predictions, the recalibration can be ef-
ficient when a model is given appropriately. In practice such a model is
difficult to identify from a given set of data, see e.g. [3]. A model can be fit-
ted to data with the likelihood maximization over a model parameter space.
However, except for trivial cases this method requires much effort to over-
come the optimization problem caused by areas of low likelihood values, so
that the desired improvement in TRISS predictions cannot be guaranteed
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[14, 18, 2, 24].
Despite the problems, the accuracy of TRISS predictions has been found

acceptable when the types and severities of patients injuries are typical. How-
ever, for cases with four or more injuries as well as with some atypical com-
binations of injuries, the accuracy could be improved [22].

Practitioners are interested not only in accurate predictions of survival
probabilities but also in estimating the uncertainty in predictions. In general,
estimates of uncertainty are required to minimize risks of mistaken decisions
and, particularly, to calculate confidence intervals. These intervals can be
accurately estimated when a predictive probability density is fully known,
but the desired estimates cannot be provided within a concept such as TRISS
which employs a maximum likelihood method [1].

In this paper we propose a Bayesian method for prediction of survival,
and discuss the results obtained on the US NTDB which includes about
two million records of injured patients admitted to hospitals and emergency
units [12]. The data include information about a patients age, gender, type
and regions of injuries along with some clinical and background information
about a patients state. The NTDB also includes information about TRISS
prediction and outcome of care (alive or died) for each patient.

To test the proposed method, we selected a set of patients recorded in
the NTDB with 1 to 20 injuries, and for which screening tests have been
filled in; the number of such patients was about 0.5 million. The data have
been divided into three injury groups. The first group includes the majority
of patients which obtained 1 to 3 injuries; for this group the TRISS method
has been designed. The second and third groups include a smaller number of
patients with 4 to 10, and 11 to 20 injuries, respectively. The survival rate
is lowest in the third group and highest in the first group.

We expect that the proposed method will outperform the TRISS method
in the second and third groups, and will perform comparably in the first
group. This research, however, is limited to records without missing values
in screening tests, and we therefore do not generalize our method to the entire
NTDB population. For evaluation of our method, a Bayesian Calculator of
survival has been developed as a stand-alone application [32].

2. Bayesian Predictions

Typically, Bayesian inference assumes that there exist a number of models
which are suitable to use for approximating the relationship between explana-
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tory variables or predictors x and outcome variable y, which represent given
data D. A model M is defined with parameters Θ that are fitted to data D,
and so the goodness-of-fit of model M can be evaluated on the data D.

In the Bayesian context it is unnecessary to assume the existence of a
true model. Instead of that, we assume that the average over suitable mod-
els M1, . . . ,Mk could result in an accurate approximation of the true rela-
tionship. The most efficient averaging over models is achieved within the
Bayesian method [27]. Bayesian methods require to set a prior distribu-
tion of parameters Θ for a given model M , f(Θ|M), as well as a likelihood
function f(D|Θ) to calculate a predictive posterior distribution p(y|x,Θ) ac-
cording to Bayes’s formula. When the desired distribution is calculated for a
given model M , a number of problems have to be addressed. In this paper,
we address a specific problem of Bayesian averaging over hierarchical models
such as Decision Trees (DTs).

DT models are learnt from given data represented by a set of explana-
tory and dependent variables. The models learn to solve a problem using
explanatory variables that make a distinguishable contribution to the prob-
lem. The variables make axis-parallel partitions of the data so that the user
can interpret the DT models [5, 7, 13].

Figure 1 shows an example of a DT model consisting of two splitting
nodes, s1 and s2, and three terminal nodes t1, . . . , t3. The first node, s1,
called the root, splits the entire data into two disjoint subsets so that data
samples from one subset fall into node s2 via the left branch, and samples
from the other subset fall into the terminal node t2 via the right branch. The
node s2 further partitions the data samples which fall into the terminals t2 or
t3 via the left and right branches. Finally one of the terminal nodes assigns
the given input to one of the given classes.

The Bayesian method of averaging over DT models has been proposed in
[11] and discussed in [13]. The method has been made computationally feasi-
ble with Markov Chain Monte Carlo (MCMC) simulation methods aimed at
exploring a posterior density over DT model parameters by making random
walk proposals. The desired density is approximated by drawing samples of
the model parameters from areas of the parameter space (or areas of interest)
that have high posterior density.

MCMC methods are intended to explore all possible areas of interest.
However, posterior density is often multimodal and its detailed exploration
cannot be achieved in a reasonable time. When this is the case, the MCMC
approximation becomes inaccurate, and the Bayesian model averaging de-
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Figure 1: An example of DT model with splitting nodes s1, s2 and three terminal nodes
t1, . . . , t3

grades to the model selection, see e.g. [15].
Results of Bayesian averaging over DT models are dependent on prior

distribution p(Θ) with which the user believes that Θ is the true DT model
parameter. When the prior information is available, the averaging is mostly
done over areas of interest with high posterior probability, and the averaging
is likely to be accurate. However, when prior information is absent, the areas
of possible interest cannot be specified and so may not be explored in detail.
In such cases, the samples of Θ collected during MCMC approximation can
disproportionally represent the posterior distribution p(Θ).

Particularly, we observed that when prior information on explanatory
variables was absent, some DT models, namely samples of Θ, were over-
represented in a DT ensemble collected during the MCMC simulation [19].
We evaluated the importance of these variables as frequencies of using them
in the ensemble, and found that some of these variables have been used
much less frequently. This allowed us to hypothesise that these variables
made a weak contribution to the problem. We removed DT models which
such variables from the ensemble, and observed a decrease in the uncertainty
of the predictive density [20, 31].

In this paper we extend the Bayesian method of averaging over DT mod-
els to a large scale problem of predicting survival probabilities for patients
recorded in the NTDB with 1 to 20 injuries. Additionally we explore the im-
portance of the predictive variables for the prediction, and believe that this
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information will be useful to optimize existing procedures of scoring injury
severities.

3. MCMC Method of Averaging over DT Models

When averaging is made over DT models, the Bayesian formalism can be
outlined as follows [11, 13]. We introduce a DT model with parameter Θ to
be learnt from the data D represented by an m-dimensional input vector x
and categorical outcome y, y ∈ {1, C}, where C is the number of categories
inputs x can belong to. In our case the aim is to calculate the predictive
distribution of survival probability, p(y|x,D), for each patient.

Having defined models M1, . . . ,ML with parameters Θ1, . . . ,ΘL, we can
write the desired predictive distribution as an integral over the extended
parameter vector Θ = (Θ1, . . . ,ΘL):

p(y|x,D) =

∫
Θ

p(y|x,Θ)p(Θ|D)dΘ =
L∑
i=1

p(y|x,Θi)p(Θi|Mi,D)p(Mi), (1)

were p(Mi) is the prior distribution of model Mi, p(Θi|Mi,D) is the poste-
rior density of Θi given model Mi, and p(y|x,Θi) is the posterior predictive
density given the parameters Θi.

This integral is analytically tractable only in cases when the distribution
p(Θ|D) is given in an integrable form. However, in practice, we can only
estimate this distribution by drawing N random samples Θ(1), . . . ,Θ(N) from
the posterior distribution p(Θ|D), and then we can write:

p(y|x,D) ≈
N∑
i=1

p(y|x,Θ(i),D)p(Θ(i)|D) =
1

N

N∑
i=1

p(y|x,Θ(i),D). (2)

The above approximation is achieved with the MCMC method of simulation
or stochastic integration. The approximation is achieved when a Markov
chain becomes a random sequence with a stationary probability distribution.
Then according to Eq. (2), we can draw the random samples Θ(i) to calculate
the desired predictive density.

In general, a DT model with k terminals consists of (k − 1) splitting
nodes, si, i = 1, . . . , (k − 1). The node si, has parameters including: the
node position in the DT model, spi , p = 1, . . . , (k − 1), an input variable
svi , v = 1, . . . ,m, and a threshold sqi , where m is the number of variables
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representing an input vector x = (x1, . . . , xm). The node si tests the vth
variable against the threshold q and assigns the input x to the left branch if
xv < q, or to the right one otherwise. A terminal node ti assigns the input x
to class c with a probability P c

i , i = 1, . . . , k.
Consequently, a DT model is described by a vector of parameters, Θ,

consisting of two parts. The first part includes the following parameters of
nodes si: positions spi , variables svi , and thresholds sqi , i = 1, . . . , (k − 1).
The second part includes the probabilities P c

i , c = 1, . . . , C for each terminal
node i, i = 1, . . . , k.

DT models whose nodes split data into two disjoint subsets are called
binary. The number of possible configurations of binary DTs with k terminal
nodes, Sk, is defined by the Catalan number:

Sk =
1

k + 1

(
2k

k

)
. (3)

The number Sk grows exponentially with k and becomes very large for
DTs with relatively small k. For example, for k = 25, Sk becomes a number
to the power of 12.

In practice, to explain data we need to induce DT models of a reasonable
size; the size of a DT model is defined by the number of its terminal nodes, k.
Oversized DT models are difficult to interpret, and moreover they are prone
to overfit data.

The size of DT models is dependent on the number of data points, pmin,
allowed to be in terminal nodes – setting a smaller pmin increases the size,
while setting a greater pmin decreases the size. In most cases, prior informa-
tion on the size of DT models is unavailable, and a suitable pmin has to be
found empirically.

In practice, the size of DT models is unknown or can be given within a
range. In such cases, areas of interest (high posterior density of parameters
Θ), which have to be explored in Eq. 2, are of variable size, and MCMC has
to be extended to Reversible Jump (RJ) proposed in [16].

Prior information about input variables, such as importance of variables
x1, . . . , xm, is also often unknown. In such cases, we can assign a variable v for
the the node si to be drawn randomly from the uniform discrete distribution,
v ∼ U(1, . . . ,m). Similarly, a threshold q can be drawn from the uniform
discrete distribution, q ∼ U(min(xv),max(xv)).

It has been shown that the above priors are sufficient in order to build and
explore DT models of different configurations within the RJ MCMC method
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[11, 13]. For binary DT models, the number of possible configurations, Sk, is
defined by Eq. 3. From this equation, we see that the larger the k, the larger
is the number Sk. So we expect that MCMC algorithm will explore possible
DT configurations of size k with probabilities proportional to Sk.

The RJ MCMC method has been implemented for Bayesian averaging
over DT models of variable size [11, 13, 31]. To explore DT models it has
been proposed to use the birth, death, change-split, and change-rule moves
made with Metropolis-Hastings (MH) sampler.

The first two, birth and death, moves were proposed to reversibly change
the number of nodes in a DT model (or the dimensionality of the model pa-
rameter vector Θ). The third and fourth moves, change-split and change-rule,
were aimed at changing the parameters Θ within a current dimensionality.
The change-split move replaces a variable v in a chosen DT node si, while
the change-rule move modifies a threshold q in node si.

The change-split moves are aimed at making large changes in the model
parameters in order to potentially increase the chance of sampling from ar-
eas of interest. Such moves are intended to disrupt a long sequence of the
posterior samples drawn from a local area of interest.

In contrast, the change-rule moves are aimed at making small changes in
the parameters to let MCMC explore a surrounding area in detail. These
moves are made more frequently than the others.

The MH sampler starts with a DT consisting of one splitting node whose
parameter Θ is assigned within the predefined priors. Making the above
moves, the sampler attempts to grow the DT model to a reasonable size
by fitting its parameters Θ to the data. The fitness or likelihood of DT
models is gradually increased and then becomes oscillatory around some
value. This phase, named the burn-in, has to be preset sufficiently long in
order to achieve a stationary distribution of the Markov chain. When the
Markov chain becomes stationary, the samples of the posterior distribution
are collected to approximate the desired predictive distribution – this phase
is called post burn-in.

The above moves are made with the given proposal probabilities. Their
values are dependent on the complexity of a classification problem – more
complex problems require larger DT models. To grow such models, the
proposal probabilities for the death and birth moves are set to larger values.
In general, there is no guidance for setting proper parameters of the MH
sampler, and their values have to be found empirically [11, 13, 31].

The proposed change is accepted according to Bayes’ rule [13]. When the
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birth or death move changes a dimensionality of a DT model, the acceptance
rule needs to count a proposal ratio, R. This ratio is dependent on the
number of possible configurations of DT models, Sk, and so we need to count
R to keep the Markov chain reversible during the MCMC simulation. The
reversibility is kept when the following condition is met:

q(Θ|Θp)p(Θp) = q(Θp|Θ)p(Θ), (4)

where q(Θp|Θ) is the conditional distributions of moving from the current
parameter vector Θ to a proposed vector Θp, and q(Θ|Θp) and p(Θp) are the
densities of the reverse move.

4. Problems with the Metropolis-Hastings Algorithm

DT models are multilevel hierarchical structures, as shown in Figure 1.
Nodes located at a lower hierarchical level are strongly dependent on the pre-
decessor nodes located at upper level. In such hierarchical structures, changes
proposed by the MH sampler can significantly redistribute data points falling
into DT terminal nodes. The change made in a node close to the DT root is
most influential on the distribution. The changes in terminal nodes can be
so significant that the likelihood of the DT model is decreased – the closer
the node is to the root, the more significant is the change in distribution of
data points. In most cases such proposals are rejected. In contrast, a change
proposed in a node close to DT terminals is most likely to be accepted as such
a change will insignificantly redistribute data samples in the DT terminals.
As a result, the MH sampler will only explore limited configurations of DT
models [11, 13].

Another problem occurs when the MH algorithm aims to sample large DT
models. When a DT model is small and consists of a small number of terminal
nodes, the number of data samples falling into the nodes is expected to be
much larger than the given minimal number of points, pmin. However, when
a DT has grown large, the number of data points is decreased so that further
partitions become unavailable. This means that birth moves cannot be made
until a death move merges two terminal nodes into one node. As a result the
MH algorithm will sample a series of DT models with similar distributions of
data samples over terminal nodes. Such series affect the diversity of samples
from the posterior distribution and, therefore, the accuracy of approximation
of the predictive distribution [13, 29].
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Another negative effect is that unavailable moves degrade the given pro-
posal probabilities of birth and change moves. When a move is unavailable,
the MH algorithm will repeat the current sample, which reduces the diversity
of model mixing [13].

In most cases, the number pmin is found from experiments – complex
problems typically require a small pmin to allow growth of large DT mod-
els. However, an inappropriately small pmin leads to excessive growth of DT
models.

Growing a DT model, the MH algorithm makes birth moves and almost
each birth move increases the likelihood of the model. The MH algorithm
accepts these moves and the DT model grows rapidly. The growth of the
model continues while the number of data samples in its terminal nodes
exceeds pmin and the likelihood of a proposed model remains acceptable.
During this period, the dimensionality of the DT model increases rapidly,
and the sampler cannot explore the posterior within each dimensionality
in detail. It is unlikely that samples will be drawn from areas of highest
posterior density [11, 13].

The growth of DT models is typically monitored, and the modeller can
reduce excessive growth by increasing pmin as well as by setting a smaller
value of the proposal probability for the birth moves.

To mitigate the negative effect of fast growing DT models, Chipman et al
[11] have proposed a restarting strategy. This strategy allows a DT model to
grow within a limited period in multiple runs. The average over all models
grown in these runs produces a better approximation accuracy when the
duration of the growth period and the number of the runs are properly set.

A similar idea of restricting the growth of DT models has been proposed
by Denison et al [13]. The growth is restricted within a given interval to
allow the MH sampler to explore a model parameter space in detail. Both
strategies require additional settings for the MH sampler, which have to be
found experimentally.

As an alternative to the restricting strategies, the RJ MCMC method
could be modified so as to reduce the number of replications of samples from
the posterior density. In our previous work [29], we proposed a sweeping
strategy aimed at reducing the number of unavailable moves.

For making a change-split move, the sweeping strategy assigns a new
variable xv, v ∼ U(1,m), and a threshold q:

q ∼ U(a, b), (5)
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where U(a, b) is a uniform distribution on the interval between a = min(xv,j)
and b = max(xv,j) defined by Np data points falling into the chosen node,
where j = 1, . . . , Np.

For making change-rule moves, a new threshold q′ is drawn from a re-
stricted Gaussian distribution:

q′ ∼ N ′(q, σ2, a, b), (6)

with mean q and given proposal variance σ2 on the interval (a, b).
The proposed move can be made so that one or more terminal nodes in

a DT model will contain fewer data points than pmin. If this happens in
terminal nodes with a common parent node, these terminals are recombined
into one terminal node, and the MH sampler counts such a move as a death
move. If however there are two or more such terminals with different par-
ents, the algorithm will assign the proposal unavailable in order to keep the
reversibility of the Markov chain.

Similarly to a change move, a birth move assigns a new splitting node
with parameters drawn from the given prior. A new splitting variable xv is
drawn from a uniform distribution, v ∼ U(1,m), and a new threshold q is
assigned as described by Eq. 5.

In our experiments, we observed that a MH sampler using the above prior
proposes fewer unavailable moves and, therefore, the sampler accepts fewer
replications of a current parameter vector Θ. Taking this into account, we
hypothesise that a reduced number of the replications collected during the
MCMC simulation will improve the diversity of model mixing.

In support of this hypothesis, in our previous experiments [30] on the
benchmark problems, we observed that the MH sampler using the above
prior significantly reduced the dimensionality of parameter vector Θ as well
as the uncertainty in estimates of predictive density. The above strategy,
named sweeping in [29], is applied to the Markov chain in both burn-in and
post burn-in phases.

As described in Section 3, a MH sampler makes the birth, death, and
change moves. The sweeping strategy is implemented for the change move
as follow.

1. Select a random splitting node i ∼ U(1, k − 1) and read its variable v
and threshold q

2. For change-split assign a new variable, v′ ∼ U(1,m)

3. For change-rule assign a new threshold q′ defined by Eq. 6
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4. Apply the proposed change to the DT and count the numbers of data
points, pi, falling into its terminal nodes

5. If pi ≥ pmin for all i = 1, . . . , k terminal nodes, then go to Step 9

6. If else, find terminal nodes with pi < pmin and count their number n0

7. If n0 == 1, then apply the death move to the found node and go to
Step 9

8. If n0 > 1, then assign the proposal unavailable

9. Let MH sampler check acceptance of the proposal

In the following sections we explore the proposed strategy on a data set of
patients from the NTDB. We attempt to improve the accuracy of estimates
of predictive density.

5. Data

For this study, we selected a set of patients recorded in the NTDB with
1 to 20 injuries, who were alive on arrival at hospitals. TRISS predictions
recorded in the NTDB were calculated with the MTOS coefficients. For com-
parison, we calculated predictions of survival probabilities with the regression
coefficients updated on the NTDB; these coefficients were given in [34].

Table 1 shows the screening tests, variables x1, . . . , x17, which were used
for predicting survival. Variables x1 (age), x4 (blood pressure), and x5 (res-
piration rate) are continuous, and the others are categorical; the output
variable is the discharge status, y = {0, 1}. This table shows the ranges of
the screening tests. We used these ranges to select a set of patients. Af-
ter exclusion of missing and out-of-range values, the number of patients was
571,148.

The analysis of injuries of these patients showed that 67.3% of the whole
population have 1 to 3 injuries, and 32.6% have obtained 4 to 20 injuries.
The Table 2 shows the ratios and mortalities in the four groups of patients
with 1 to 20, 1 to 3, 4 to 10, and 11 to 20 injuries. We can seen that the
mortality is highest in the group with 11 to 20 injuries, and lowest in the
group with 1 to 3 injuries.

The average values of the tests x1, . . . , x17 in these groups are shown in
Table 3. We can see that some values, such as Glasgow scores x6, . . . , x8,
change with an injury group.

It is obvious that the TRISS method will predict the survival most ac-
curately for patients in the first injury group 1-3. On the contrary, for the
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Table 1: Screening Tests with Ranges

Test Name Range
x1 Age 0-99
x2 Gender 0 female, 1 male
x3 Injury type 0 penetrating, 1 blunt
x4 Blood pressure 0-299
x5 Respiration rate 0-59
x6 GCS Eye 1-5
x7 GCS Verbal 1-5
x8 GCS Motor 1-6
x9 Head severity 0-6
x10 Face severity 0-6
x11 Neck severity 0-6
x12 Thorax severity 0-6
x13 Spine severity 0-6
x14 Abdomen severity 0-6
x15 Upper extremity severity 0-6
x16 Lower extremity severity 0-6
x17 External severity 0-6
x18 Discharge status 0 alive, 1 dead

other injury groups TRISS predictions will be less accurate because of the
larger number of injuries a patient can obtain in the nine body regions.

Figure 2 shows the TRISS predictions and the observed survival proba-
bilities for patients with 1 to 20 injuries. Here TRISS denotes the predictions
with the NTDB regression coefficients, and TRISSo denotes the predictions
with the MTOS coefficients. We can see that the differences between the
TRISS predictions and actual survival are progressively increased with the
number of injuries.

Figure 3 shows the calibration curves of the TRISS model with the NTDB-
based coefficients for patients in the four injury groups. We can see that the
observed probabilities are significantly higher than the predicted values. The
difference is largest for patients with a predicted survival between 0 to 0.7 in
injury groups 1-20, 4-10, and 11-20.

The goodness-of-fit or calibration of prediction models can be evaluated
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Table 2: Statistics of Injury Groups 1-20, 1-3, 4-10, and 11-20

1-20 1-3 4-10 11-20
Population 100% 67.3% 29.9% 2.7%
Mortality 4.33% 2.69% 6.89% 16.87%

with the Hosmer-Lemeshow (HL) statistic as shown in the related literature
[21, 3, 33]. The HL statistic is typically calculated for patients that fall into
10 intervals of survival probabilities. The smaller the value of HL statistic,
the better is the calibration.

In our experiments the HL statistic values were calculated for each injury
group as shown on the top of each plot in Figure 3. The calibration curve
shown for injury group 1-3 shows unexpected fluctuations in the range of
predicted survival between 0.3 and 0.6. These fluctuations can be caused by
using the aggregated predictor ISS as discussed in [22].

6. Experiments

The set of patients described in the previous section was used for testing
the Bayesian Decision Trees (BDT) we proposed for predicting survival. The
proposed and TRISS methods are compared in terms of HL statistic, classi-
fication accuracy, and the area under the Receiver Operating Characteristic
(ROC) curve, that are typically used in the related literature, see e.g. [21, 3].

The BDT was run with different settings, and the best results were ob-
tained with the following settings. The proposal probabilities were set to 0.2,
0.2. 0.1, and 0.5 for the birth, death, change-split and change-rule moves,
respectively. The proposal distribution was a Gaussian with zero mean. The
numbers of samples for the burn-in and the post burn-in phases were 100,000
and 5,000, respectively. The minimal number of data samples allowed in DT
terminals was set to 200.

Figure 4 shows the log likelihood, number of DT nodes, and distribution
of DT sizes during the burn-in and the post burn-in phases. We see that the
log likelihood and DT size became stable after 50,000 samples of burn-in.
The collected DT models have grown on average to 150 nodes. The average
acceptance rates were 0.4 for both burn-in and post burn-in phases, that lay
in the optimal interval (0.25, 0.5) according to [13].
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Table 3: Mean Values of Screening Tests in Injury Groups

Test 1-20 1-3 4-10 11-20
x1 39.29 39.79 38.28 37.70
x2 0.66 0.64 0.70 0.69
x3 0.88 0.86 0.92 0.97
x4 134.57 136.10 132.35 120.83
x5 19.09 19.29 18.79 17.29
x6 3.72 3.84 3.52 2.86
x7 4.55 4.73 4.27 3.33
x8 5.60 5.77 5.32 4.32
x9 0.93 0.61 1.49 2.49
x10 0.35 0.19 0.65 1.16
x11 0.03 0.02 0.05 0.11
x12 0.66 0.33 1.25 2.47
x13 0.38 0.22 0.65 1.36
x14 0.38 0.24 0.62 1.26
x15 0.56 0.40 0.86 1.40
x16 0.85 0.72 1.04 1.79
x17 0.11 0.09 0.14 0.18

The lower plots in Figure 3 show the calibration curves for the proposed
method of predicting survival. We can see that the BDT predictions are
much closer to the observed survival than the TRISS predictions shown in
the upper plots in this figure. The values of the HL statistic shown in the
plot titles were significantly smaller than those for the TRISS model.

The comparison of methods for predicting survival can be done in terms of
the classification or discrimination accuracy which is calculated by assigning
the outcome ”alive” if a survival prediction is higher than 0.5, and ”died”
otherwise, see e.g. [21, 3]. Table 4 shows the classification accuracy (AC),
sensitivity (SE), and specificity (SP) along with the area under ROC curve
(AUC). We can observe that the AUC of the Bayesian method is slightly
higher in all four groups, and for patients in groups 3-10 and 11-20 is higher
by 1.2% than for the TRISS method. Figure 5 shows the ROC curves for
both BDT and TRISS methods.

Figure 6 shows the uncertainty intervals in the four injury groups. We
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Figure 2: Observed and predicted survival probabilities for patients with different numbers
of injuries.

can see that many of the TRISS predictions lie outside of the uncertainty
intervals in all these groups. In contrast the BDT predictions are much close
to the observed survival. The differences between the observed and predicted
probabilities were estimated in terms of the weighted variance, v, shown in
the plot titles.

Figure 2 shows the Bayesian (BDT) predictions versus the TRISS predic-
tions and the actual survival probabilities for patients with injuries 1 to 20.
We can see that the Bayesian predictions are much closer to the actual prob-
abilities for patients with 4 and more injuries, while the TRISS predictions
are mostly over-pessimistic.
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Figure 4: Likelihood (top), number of DT nodes (middle) and distribution of DT sizes
(bottom) in the burn-in and post burn-in phases.

Table 4: Classification Accuracy for the Bayesian and TRISS Models in the four injury
groups

1-20 1-3 4-10 11-20
TRISS BDT TRISS BDT TRISS BDT TRISS BDT

AC 0.968 0.971 0.983 0.984 0.944 0.952 0.838 0.875
SP 0.988 0.994 0.997 0.997 0.975 0.989 0.874 0.956
SE 0.528 0.474 0.489 0.504 0.532 0.447 0.664 0.475
AUC 0.948 0.954 0.950 0.955 0.932 0.944 0.882 0.894
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Figure 5: ROC curves for the TRISS and BDT models.
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7. Importance of Screening Tests

The ensemble of DT models collected during MCMC simulation allows
us to estimate the contribution of the predictors x1, . . . , x17 to the outcome.
The importance of the predictors can be estimated in terms of frequencies
(or posterior probabilities) of using them in the ensemble. These frequencies
were calculated and shown in Table 5.

Table 5: Importance of Screening Tests

Rank Test Name Importance
1 x1 Age 0.156
2 x12 Thorax severity 0.151
3 x4 Blood pressure 0.109
4 x13 Spine severity 0.107
5 x9 Head severity 0.102
6 x8 GCS Motor 0.068
7 x7 GCS Verbal 0.060
8 x10 Face severity 0.056
9 x16 Lower extremity severity 0.055

10 x14 Abdomen severity 0.034
11 x3 Injury type 0.033
12 x5 Respiration rate 0.032
13 x15 Upper extremity severity 0.017
14 x17 External severity 0.010
15 x2 Gender 0.007
16 x6 GCS Eye 0.002
17 x11 Neck severity 0.001

We can see that the most important contribution is made by the predictor
x1 (Age), x12 (Thorax severity), and x4 (Blood pressure). By contrast, the
variables x2 (Gender), x6 (Glasgow Eye Coma Score), and x11 (Neck sever-
ity) are least important or redundant. Therefore their contribution can be
insignificant for predicting the survival of patients with the proposed BDT
method.
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8. Bayesian Calculator of Survival Probabilities

For evaluating the proposed Bayesian method, we developed a Calculator
for predicting survival and tested it on the data set described in Section 5.
The Calculator allows the practitioner to predict survival probability for a
given set of patient’s screening tests.

It is important that the Calculator allows the practitioner to estimate
the predictive probability density in order to assess the confidence intervals,
which are associated with risk of making mistaken decisions. These estimates
are made individually for each patient, whilst the TRISS method is unable
to provide such estimates.

Figure 7 shows a screenshot of the calculator interface. The first column
in the table Screening Tests shows the 17 screening tests that are described
in Table 1. The second column shows the ranges of these tests. The third
column displays values which the user can input or edit within the specified
ranges.

The graph Predicted Probabilities of Survival displays the probabilities
of survival for a patient with the given screening tests. Each of the predicted
probabilities can be interpreted as a hypothesis which is tested on the data
set in the context of Bayesian inference. The bars on the graph show the
observed probabilities of these hypotheses. The estimates of the predictive
density shown in the graph provide all the information required to calculate
the confidence intervals.

Consider the example shown in Figure 7 recorded in the NTDB with a
TRISS survival probability 0.680 and outcome ”alive”. For this patient, the
Calculator predicts a probability of 0.582 within a 95% confidence interval
0.43 and 0.71. As this value exceeds 0.5, the predicted outcome is ”alive”.
The locations and heights of the bars shown in the graph present the esti-
mates of predictive density. All the bars on the left from the 0.5 mark on
the x-axis represent low probabilities of survival associated with the outcome
died whereas all the bars on the right represent high probabilities of survival.
Observing these probabilities, the user can analyse the risk for this patient.

In this example, the sum over the first bars (on the left from 0.5) is
smaller than the sum over the bars on the right. The substantial proportion
of the former bars warns the user about a high death risk attached to this
prediction. These bars make the predicted probability distribution wider and
the uncertainty interval larger.

In addition to a predicted probability of survival, the user can analyse
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Figure 7: Bayesian Calculator Screenshot.

the confidence interval calculated for a given patient. The lengths of the
intervals can be associated with the difficulty of treatment for patients – the
larger the interval, the more difficult is the case.

The Calculator can be downloaded from a web page [32] to be run on a
Windows XP 32-bit or Linux 64-bit machine. The Bayesian risk assessments
are computationally expensive, and so a high performance machine with a
64-bit processor and 4 GB memory is recommended.

9. Discussion and Conclusion

We analysed the TRISS predictions for survival of patients recorded in
the NTDB with 1 to 20 injuries and found that the goodness-of-fit and clas-
sification accuracy can be improved. The TRISS model cannot provide the
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estimates of predictive probability density that are required to evaluate con-
fidence intervals. The Injury Severity Score which is used as an aggregated
predictor in TRISS model fluctuates unexplainably and may cause misleading
predictions.

We explored the Bayesian Decision Tree models for predicting survival.
The DT models are induced from data and capable of selecting important
predictors.

Bayesian methods have been made computationally feasible by using
MCMC simulation. However the results may be biased when samples are
drawn from multiple areas of the posterior distribution of model parame-
ters. We found that during the burn-in phase of the MCMC simulation, DT
models tend to grow excessively, and that the existing MCMC strategies are
unable to manage the growth efficiently in terms of diversity of model mixing.

We proposed a MCMC method capable of providing better conditions for
detailed exploration of the posterior density during simulation. This method
has been tested on a large set of patients recorded in the NTDB, and the
results showed that the Bayesian Decision Tree model outperforms the TRISS
model in terms of goodness-of-fit and classification accuracy.

We also showed that the ensemble of DT models collected during simu-
lation allow practitioners to estimate the contribution of each screening test
to the prediction. The importance of the tests was estimated as frequencies
of their use by DT models.

The above results allows us to conclude that the proposed method can
improve the accuracy of predicting survival for a patient with 4 to 20 injuries.
The desired confidence intervals can be accurately estimated for each patient.
Information about the importance of screening tests could be useful for cost
analysis and for further improvement of the prediction accuracy.
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