
Object Shadowing - a Key Concept for a
Modern Programming Language

Marc Conrad1, Tim French1, and Carsten Maple1

University of Luton, LU1 3JU, UK
marc.conrad@luton.ac.uk, tim.french@luton.ac.uk,

carsten.maple@luton.ac.uk

Abstract. Object shadowing is an established programming concept
that is supported by languages such as LPC. Thus far, shadowing in
LPC appears to have been driven mainly by pragmatics rather than
having followed any particular formal evolutionary path. In this paper,
we describe the concept of object shadowing and suggest a number of
suitable application areas that would benefit from further development
of the concept. We explain how the concept must be specifically tailored
for these application areas.

1 Introduction

LPC is an interpreted language that was created by Lars Pensjö for his invention
LPMUD (Lars Pensjö Multi User Dungeon). MUDs, which can stand for Multi-
ple User Dimensions, Multiple User Dungeons, or Multiple User Dialogues, are
computer programs in which users control a computerised persona or character
(for further details see [14] for example). Pensjö developed his own flavour of
C, Lars Pensjö C or LPC, in 1988 as a simple language for the development
of MUDs. As the name suggests, the basic syntax of LPC owes much to the
language C, but with the addition of an object-oriented structure. There are
no classes in LPC. Objects are either instantiated at run time from a file, or
otherwise cloned from other run-time objects.

The evolution of LPC has been highly pragmatic and driven by the demand
from the various programmers of MUDs, rather than following any particular
systematic evolutionary path or academic imperative. Thus, shadowing support
in LPC must be seen in this context: it has proved to be useful “as is” but
has not, thus far, been evaluated academically. We hope to encourage further
systematic research into this relatively simple concept with a longer-term goal
of direct implementation within a mainstream language. In order to initiate this
objective we proceed to present a description of shadowing from first principles.
We then go on to suggest a number of suitable application domains (indicating
the potential benefits of shadowing for both the domain and for the evolution of
shadowing itself as a concept). Finally we tentatively suggest how wider adoption
of shadowing within these areas might enable us to establish a more conceptually
unified approach to aspects of dynamic inheritance in general.



2 The functionality of a shadow

���������	 
�������������������

������	����
��������

������

�	������

�	�����������

������������

������������

���
�����
����

������

��� ���
�����!

Fig. 1. Sequence diagram for a typical situation in a computer game. An evil witch
transforms a player (named fabian) into a frog. For that a suitable shadow object is
created and added to the player. All messages sent to the player are then received by
the shadow. The shadow basically “becomes” the player. In this example the shadow
defines a method kiss() that destroys the shadow when it is sent by a princess.

The idea with the shadow functionality is to mask one or more methods in a
target object (the “shadowed” object) for a certain amount of time. A shadow
is applied at run-time rather than compile-time, in response to the dynamic
need of programming applications (see figure 1). Every method that is sent to
the shadowed object will then be processed first by the shadow (if the shadow
defines it). If a method is not explicitly defined in the shadow it will be passed
on to the shadowed object as if there were no shadow in between.

In the following we list some properties of shadows in LPC to give a better
understanding of the concept. However, we should bear in mind that a shadow
implementation in a future language may require “better” or more evaluated
properties. It is partly the purpose of the paper to encourage a discussion on
these possible variations of the shadow concept.

– A shadow cannot be shadowed, however an object can have more than one
shadow.

– When an object returns “true” on a method call query prevent shadow()
it cannot be shadowed. A special situation occurs, when a shadow defines
query prevent shadow() returning “true”: This shadow disallows any further
shadows on the shadowed object.

– A method cannot be shadowed if it is declared nomask.
– Attributes cannot be shadowed.
– Only calls made from “external” objects can be shadowed. We illustrate

this in an example: Let us consider a Java implementation of shadows, in
which a method bla() of an object fred is shadowed. Then a method call
fred.bla() will be received by the shadow while a call bla() in the object



fred itself will go to fred directly. We enable the possibility of shadow-
ing an “internal” call by artificially making it external using the syntax
this.bla().

A Java package that implements shadows can be found on the web site [5]
that also contains a number of examples. It extends the idea of shadowing objects
in LPC to the concept shadowing of classes: A shadow of a class means that a
shadow is thrown over every object that is instantiated from this class.

3 Application areas for Shadows

The first two examples in this section are in the context of software development.
The third and fourth example show how shadows can be used to implement
“non-standard” inheritance. Subsection 3.5 finally gives a provocative view on
the relationship between shadows and inheritance.

3.1 Deprecated methods

Software Libraries are under constant evolution and it is a fact that sometimes
methods are replaced by other methods that may be more consistent with, for
example, naming conventions. The problem is that legacy code usually continues
to use deprecated methods. Hence it is impossible for the provider to remove
them completely from the library.

A shadow system could help the provider of the software to separate an
object into two parts. The actual, official version of the object where the depre-
cated methods have been removed and a collection of shadows that implement
deprecated methods. In cases that the deprecated method is necessary for an
application the object would then be shadowed. This reduces the overhead of
having the additional, deprecated, method as part of a library to applications
where these methods are used.

Syntactically this could be provided similar to the Java properties mecha-
nism: The required shadows for each class are specified in “environment vari-
ables”. The class loader then can automatically decide when to add a shadow
depending on the values defined by the environment.

3.2 Prototyping

Following the suggestion in the previous section that shadows could be used
for “fading out” deprecated methods, in a similar manner, shadows could also
be employed in prototyping for software development. This is especially the case
when a development process starts from an existing library and it is vital that the
library is not changed (or that it is not possible to change the library because, for
example, it is bought from an external supplier or because of copyright issues).

A shadow then could be used to change the behavior of a class or object tem-
porarily or for a well defined situation during development. An evaluation with



extended experiments using the shadow may then be used to collect arguments
for or against the adoption of the proposed change of the class.

Shadows can also be used (automatically) in a concurrent version system
(CVS) to implement branching in software development.

3.3 Reclassification and Dynamic Inheritance

Reclassification and a special case of it, dynamic inheritance, is the process of
changing the class of an object at run-time. These are extremely useful concepts
and as such there have been ideas developed to overcome the limitations of C++
in this area: dynamic inheritance in C++ is discussed in [6]. Automatic reclassi-
fication based on the value of predicates is implemented as predicate classes [2]
in Cecil [3]. In [11] a Java extension featuring dynamic inheritance is proposed.
Dynamic inheritance is further supported in Lava as part of the Darwin project
[10]. However, the most significant approach for reclassification can be found in
Fickle (e.g. [9], [1], [8]).

It is not a coincidence that the Fickle example in [8] is in the context of a
computer game. A Player that is (an instance of) a Frog is reclassified to a Prince
after being kissed. It is exactly this kind of problem that is, in practice (namely
using LPC), pragmatically solved with shadows. The main goal in reclassification
is the change of the behavior of an object: The behavior of a Frog is different
from the behavior of a Prince. This is achieved by the application of a shadow
to a player object. Different shadows may change the default behavior of the
player. For instance, a magic spell might add a “Frog shadow” to the prince,
thus enabling “Frog”-like behavior. A kiss of a princess may then replace the
“Frog shadow” by a “Prince shadow” (see also figure 1).

3.4 Interclassing

For a motivation of Interclassing we refer the reader to [13], [7] (in a general
context), or [4] (in a mathematical context). The basic underlying principle in
interclassing is the insertion of a new class in an existing inheritance hierarchy.
Here the assumption is that the inheritance hierarchy to be modified is in the
context of an existing library that cannot be changed (for instance because of a
copyright or that it has to be left unchanged for existing applications etc).

The shadowing concept can be useful in such situations. We illustrate this
using an example presented in [7]. An existing hierarchy with Parallelogram as
a parent of a class Square should be extended by a class Rectangle. In [7] the
proposed solution is the introduction of a “reverse inheritance” (specialization)
relationship established from the Rectangle to the Square. A shadow – in contrast
to that – could change the methods in the Square directly. A shadow class inherits
from the Rectangle and shadows the Square (see figure 2).

3.5 Specialization and Inheritance

The usual way to implement specialization in a class-based language is to derive
a child class and make appropriate changes. However, alternatively we could also



���������

	�
�������
��

���
�

���
������

	�
�������
��

���
�

�������������

Fig. 2. The Rectangle is added into the Square / Parrallelogram hierarchy. However as
we assume that Square cannot be recompiled it has to be shadowed to become a child
class of Rectangle. Note that on the right hand side, because of the shadowing and
because the Rectangle is also a child class of Parallelogram, the Square – Parallelogram
generalization is irrelevant

think of instantiating an object and then shadowing the object where the shadow
provides the specialized functionality. When using the well known Vehicle/Car
inheritance example (The vehicle defines a method move() that is implemented
in Car), we could equally think of an instantiation of a vehicle object that is
then shadowed with a shadow that implements the move() method. This simple
example illustrates the power of the shadow concept: It might even be able to
emulate inheritance. That means we could think of a programming language
that has shadows as a first class feature and derives inheritance as a special
application of shadows.

4 Conclusion

We have discussed the concept of shadows, a technique already employed in
programming applications in which there is a need for dynamic updating, most
notably games programming. We have shown that shadows provide a useful tool
in a number of other application areas. Moreover it would be a unified approach
for a diversity of applications such as deprecating methods, prototyping, reclas-
sification, interclassing, and specialization. Certainly a dynamic object oriented
language would profit when shadows are embodied as a key concept.

References

1. D. Acnona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca. A type
preserving translation of Fickle into Java Electronic Notes in Theoretical Computer
Science 62 (2001). Available at: http://www.elsevier.nl/locate/entcs/volume62.html

2. C. Chambers. Predicate classes, in: Proceedings of the ECOOP’93, volume 707 of
Lecture Notes in Computer Science, pages 268–296, Kaiserslautern, Germany, July
1993.



3. C. Chambers. The Cecil Language: Specification & Rationale, avialable at:
http://www.cs.washington.edu/research/projects/cecil/www/pubs/cecil-
spec.html.

4. M. Conrad, T. French, C. Maple, S. Pott: Approaching Inheritance from a “Natural”
Mathematical Perspective and from a Java driven viewpoint: a Comparative Review,
Preprint available from: http://ring.perisic.com.

5. Marc Conrad. The com.perisic.shadow package, http://perisic.com/shadow.
6. James Coplien. Advanced C++ programming styles and idioms, Addison-Wesley

1992.
7. Pierre Crescenzo, Philippe Lahire. Using Both Specialisation and Generalisation in

a Programming Language: Why and How? Advances in Object-Oriented Information
Sytems, OOIS 2002 Workshops, Montpellier, pages 64–73, September 2002.

8. F. Damiani, M. Dezani-Ciancaglini, P. Giavinni Re-classification and Multi-
thrading: FickleMT , in: SAC 2004, to appear.

9. S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini and P. Giannini. Fickle: Dy-
namic object re-classification, in: ECOOP’01, LNCS 2072 (2001), pp. 130–149.

10. The Darwin Project, http://javalab.iai.uni-bonn.de/research/darwin.
11. Günter Kniesel. Darwin & Lava - Object-based Dynamic Inheritance ... in Java,

Poster presentation at ECOOP 2002.
12. Lars Pensjö. LPC. Documentation available at:

http://www.lysator.liu.se/mud/lpc.html
13. P. Rapicault, A. Napoli. Evolution d’une hirarchie de classes par interclassement.

In: LMO’2001, Hermes Sc. Pub. ”L’objet”, vol. 7 - no. 1–2/2001.
14. Ronny Wikh, LPC, available at: http://genesis.cs.chalmers.se/coding/lpcdoc/lpc.html

(last update 2003)


