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Abstract

This paper is an examination of the dual of the fundamental isomorphism relating homomor-
phism groups involving direct sums and direct products over arbitrary index sets. We prove that
for every cardinal μ, with μℵ0 = μ, there exists a non-slender self-slender self-small group of
cardinality μ+.

1 Introduction

There are two fundamental isomorphisms in homological algebra relating homomorphism groups in-
volving direct sums and direct products over an arbitrary index set I – see for example [5, Theorems
43.1, 43.2]:

Hom(G,
∏
i∈I

Ai) ∼=
∏
i∈I

Hom(G,Ai) (1.1)

0This work is supported by the project No. I-706-54.6/2001 of the German-Israeli Foundation for Scientific Research
& Development.
AMS subject classification: primary: 20K25, 20K30; secondary: 13C99. Key words and phrases: E-rings, slenderness,
self–small, homomorphism groups.
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Hom(
⊕
i∈I

Ai, G) ∼=
∏
i∈I

Hom(Ai, G) (1.2)

In this work we look at some of the consequences of trying to “dualize”(1.2) by interchanging direct
sums and direct products, and especially in the situation where each of the groups Ai is isomorphic
to G itself. Recall that interchanging direct sums and direct products in (1.1) leads to the notion of
small groups and self–small groups - see [1].

Thus we shall say that a group G is strongly slender if Hom(
∏
i∈I

Ai, G) =
⊕
i∈I

Hom(Ai, G) for

all indexed families {Ai : i ∈ I}, where we are using “=” to mean that the canonical mapping
from

⊕
i∈I

Hom(Ai, G) → Hom(
∏
i∈I

Ai, G) is an isomorphism; in a similar fashion we say that G is

strongly self–slender if the above is true when each Ai
∼= G. We shall say that a group G is

self–slender, if for all homomorphisms σ :
∏

n<ω
Gn → G( where Gn

∼= G for each n, ) σ � Gn =

0 for all but a finite number of n. In fact the notion of self–slenderness is easily seen to be equivalent
to the statement that if σ :

∏
α<κ

Gα → G, (where Gα
∼= G for each α), σ � Gα = 0 for all but a finite

number of α : in one direction this is immediate, so suppose that G is self–slender and φ is a map from∏
α<κ

Gα → G which does not vanish on an infinite set I of α’s. Then φ restricted to
∏

α∈I

Gα → G would

contradict the self–slenderness of G. At the outset it is important to note that strong slenderness and
strong self-slenderness have possibly weaker generalized concepts, where we require the existence of
some, not necessarily the canonical, isomorphism; there is a clear analogy with the notions of E-rings
and generalized E-rings – see [7, Chapter 13]. Clearly a strongly self–slender group is generalized
strongly self–slender. The concept of self-slenderness, in an equivalent formulation, has been studied
by Faticoni in [3, 4] but working only in models of (ZFC + V = L).

These notions, which have their origin in Abelian group theory, can easily be generalized to a
module setting. Let R be a commutative domain which is slender as an R-module (otherwise the
discussion may be vacuous) and let S be a countable multiplicatively closed subset of regular elements
of R with 1 ∈ S, such that R is S-reduced and S-torsion-free, i.e. R is an S-ring in the terminology
of [7]; further details of this basic situation may be found at [7, p.13]. Throughout we shall restrict
attention to R-modules which are S-torsion-free and S-reduced. The notions of strong slenderness
and self–slenderness are now identical to the group situation if one replaces the word “group”by
“R-module” and interprets Hom(−,−) as HomR(−,−).

We write GIand G(I) for the direct product
∏
i∈I

G and direct sum
⊕
i∈I

G except where the latter

notation is easier to read. EndR(G) stands for HomR(G,G), the module of R-endomorphisms of
G; the notation Ĝ is used to denote the S-completion of the S-reduced S-torsion-free R-module G.
Infinite cardinals are usually denoted by κ, λ, μ; all other notation is standard and may be found in [2],
[5, 6], [7]; in particular all groups shall be additively written Abelian groups. Recall that a cardinal
κ is ω-measurable, if there exists a countably complete non-principal ultrafilter over κ. The family of
countably complete ultrafilters over κ is denoted D(κ); it contains all the principal ultrafilters over κ.
An uncountable cardinal κ is measurable if there exists a κ-complete non-principal ultrafilter over κ.
The least ω-measurable cardinal is measurable and measurable cardinals are strongly inaccessible. If
κ is measurable, then there are at least 2κ κ-complete non-principal ultrafilters over κ and so D(κ)
contains at least 2κ elements. It is, however, consistent with ordinary set theory (ZFC) that no
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measurable cardinals exist. For example, ZFC+V=L implies that there are no measurable cardinals
(and hence no ω-measurable cardinals). We shall use ℵm to denote the first measurable cardinal, if
there exist measurable cardinals, otherwise the condition κ < ℵm is vacuously true for every cardinal
κ. To avoid confusion, we point out that in Fuchs [6] the term measurable refers to a non-trivial
countably additive two-valued measure; this is what we call ω-measurable, as in [2]. Finally recall the
beth function: for a cardinal κ and an ordinal α, define �α(κ) by: �0(κ) = κ, �α+1(κ) = 2�α(κ), and
for a limit ordinal α, �α(κ) = supβ<α �β(κ).

2 Strongly Slender and Self-Slender Modules

A simple observation, which is certainly well known, will be of fundamental use; a proof is included
for completeness.

Lemma 2.1 Let K be an R-module of cardinality less than κ and suppose that K ≤ H. Then
|HomR(Kλ,H)| is at least as large as the number of κ-complete ultrafilters on λ.

Proof. Suppose U is a κ-complete ultrafilter on λ. For a ∈ Kλ, let φU (a) = k iff for k ∈ K,
a−1(k) = {α < λ : a(α) = k} ∈ U . The κ-completeness of U ensures the map φU is well defined since
the sets a−1(k), (k ∈ K) are a partition of λ into fewer than κ subsets – see, for example, [2, Lemma
II 2.6]. It is straightforward to verify that the map φU : Kλ → K is a homomorphism and if U and V
are different κ-complete ultrafilters, then φU �= φV . Since K ≤ H, the result follows immediately.

It is well known from the earliest observations of �Loś that measurable cardinals play a key role in
determining homomorphism groups when the domain is a direct product. To avoid constant repetition
we single out two well-known facts that we shall use constantly in the remainder of this work; proofs
of these facts may be found in [2, II Corollary 3.3, III Corollary 3.6].

Fact 1. For any cardinal λ and slender ring T , if {Ai : i < λ } is a family of T -modules, then
HomT (

∏
i<λ

Ai, T ) ∼= ⊕
D∈D(λ)

HomT (
∏
i<λ

Ai/D, T ).

Fact 2. If T is a ring of non-ω-measurable cardinality, then for any cardinal λ, if D is a countably
complete ultrafilter over λ, then Tλ/D ∼= T .

The following result gives an algebraic characterization of the non-existence of measurable cardinals
which illustrates clearly their fundamental role.

Proposition 2.2 For a slender ring R, the following conditions are equivalent:

(i) Every countable subring T of R which is T -reduced, is strongly slender.

(ii) Some countable subring T of R is strongly self-slender.

(iii) There are no measurable cardinals
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Proof. (iii) implies (ii). Since Z is the prime subring of R, it suffices to show that Z is strongly
self-slender. This follows immediately from Facts 1 & 2 since |D(λ)| = λ as λ is non-measurable.

(iii) implies (i). It suffices to note that if T is countable and T -reduced, then T is slender; now
apply Facts 1 & 2.

(i) implies (ii). The prime subring of R is Z, which is reduced, slender and so, by (i), is strongly
self-slender.

(ii) implies (iii). Since T is countable and strongly self-slender, it follows from Facts 1 & 2 that
Hom(Tκ, T ) ∼= ⊕

κ EndT ∼= ⊕
D∈D(κ)

HomT (Tκ/D, T ) ∼= ⊕
D∈D(κ)

EndT . However if κ is measurable,

then |D(κ)| ≥ 2κ and we are finished by comparing cardinalities.

If G is strongly slender, then clearly any R-homomorphism from Rω into G vanishes on almost all
components and hence G is slender. We begin with a well-known observation:

Proposition 2.3 Assuming that no measurable cardinals exist, then the following holds

(i) An R-module G is strongly slender if, and only if G is slender.

(ii) If G is slender, then G is generalized strongly self–slender.

Proof. By assumption the cardinalities of G and the index set I are not ω-measurable and hence
the results follow from [2, III Corollary 3.7].

The situation changes dramatically if measurable cardinals exist. Note that in the next result we
are not restricted to the first measurable cardinal ℵm.

Proposition 2.4 If there exists a measurable cardinal κ and G is an R-module of cardinality less
than κ, then G is not generalized strongly self–slender.

Proof. Apply Lemma 2.1 with K = H = G and λ = κ. However if κ is measurable then there
are 2κκ-complete ultrafilters on κ – see [2, II Exercise 12 p.50]. Thus |HomR(Gκ, G)| ≥ 2κ > κ =
|HomR(G,G)(κ)| and so G is not self–slender.

Corollary 2.5 If there exists a proper class of measurable cardinals, then no R-module is generalized
strongly self–slender.

Slender modules are self-slender, and this suggests the obvious question whether self–slender mod-
ules are necessarily slender. We shall address this question in the next section.

In the context of modules over an S-ring, it is difficult to give necessary conditions for a module
to be a generalized strongly self–slender module. However, in the context of Abelian group theory,
where cotorsion-freeness may be characterized by exclusion of certain groups, there is an immediate
necessary condition:

Proposition 2.6 If G is a generalized strongly self–slender Abelian group, then G is cotorsion-free.
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Proof. It suffices to show that G cannot have a direct summand isomorphic to either Z(pn),
Q or Jp for any prime p. Note that if G decomposes as a direct sum K ⊕ H, then Hom(Gλ, G)
has cardinality at least as large as |Hom(Kλ,K)|. Now if λ = |G| and κ = 2λ, it is immediate
that Hom(G,G)(λ) has cardinality at most κ. However, Z(pn)λ ∼= Z(pn)(κ), Qλ ∼= Q(κ) and so
|Hom(Z(pn)λ, Z(pn))| = |Hom(Qλ, Q)| = 2κ. Moreover Jλ

p
∼= ⊕̂

κ
Jp and, since Jp is algebraically

compact, Hom(
⊕̂
κ

Jp, Jp) ∼= Hom(
⊕
κ

Jp, Jp) so that |Hom(Jλ
p , Jp)| = |Jκ

p | = 2κ. Thus neither Z(pn),

Q nor Jp is a summand of G, as required.

It is now rather easy to show that a generalized self–slender Abelian group with non-trivial dual
is slender, provided that there are no measurable cardinals.

Theorem 2.7 If there are no measurable cardinals, an Abelian group G with Hom(G, Z) �= 0 is
slender if, and only if, G is generalized strongly self–slender.

Proof. We have already seen in Proposition 2.3 that slender Abelian groups are generalized strongly
self–slender provided there are no measurable cardinals. Conversely suppose for a contradiction that
G is generalized strongly self–slender but not slender. It follows from Proposition 2.6 that G is a
cotorsion-free Abelian group which is not slender. Thus we have P ≤ G, where P ∼= Zω. Hence
Hom(Gκ, P ) ≤ Hom(Gκ, G) so that one has the inequality |Hom(Gκ, G)| ≥ |Hom(Gκ, P )|. However
Hom(Gκ, P ) ∼= ∏

ω
Hom(Gκ, Z) ∼= ∏

ω

⊕
κ

Hom(G, Z), the last equality coming from the fact that Z is

slender and |G| is not ω-measurable i.e. Hom(Gκ, P ) ∼= ∏
ω

Y , where Y =
⊕
κ

Hom(G, Z); note that

our assumption on the dual of G means that Y is non-trivial. Now choose the cardinal κ so that
κ > |Hom(G,G)| and κ has cofinality ω; e.g. take κ = �ω(|End(G)|). Thus |Hom(Gκ, P )| = |Y ω| =
κω > κ since Y �= 0. However if G is self–slender, then Hom(Gκ, G) ∼= ⊕

κ
Hom(G,G), so that

|Hom(Gκ, G)| = κ which contradicts the fact that |Hom(Gκ, G)| ≥ |Hom(Gκ, P )|. Thus G cannot
be generalized self–slender as required.

Our final example in this section shows that neither the class of generalized strongly self–slender
R-modules, nor the class of strongly self–slender R-modules, is closed under direct products.

Example 2.8 Let K be any slender R-module which is not of ω-measurable cardinality. Now consider
the R-module G =

∏
ω

K. Let μ = |HomR(K,K)| and λ = �ω(μℵ0). Then on one hand

⊕
λ

HomR(G,G) ∼=
⊕

λ

∏
ω

HomR(
∏
ω

K,K) ∼=
⊕

λ

∏
ω

⊕
ω

HomR(K, K)

and this has cardinality λ. On the other hand

HomR(Gλ, G) ∼=
∏
ω

HomR(Gλ,K) ∼=
∏
ω

⊕
D∈D(λ)

HomR(Gλ/D, K).

Moreover since K has non-ω-measurable cardinality, so also has G and thus each ultrapower Gλ/D is
canonically isomorphic to G – see e.g. [2, II Corollary 3.3]. Note that D(λ) has cardinality λ since

5



there are always λ principal ultrafilters over λ and the fact that λ is not ω-measurable means that each
countably complete ultrafilter over λ is principal.

Since K is slender HomR(G, K) ∼= ⊕
ω

HomR(K, K) and so HomR(Gλ, G) has cardinality λℵ0 > λ.

Thus G is not generalized self–slender, and hence, a fortiori, not self–slender. Now if we choose
K = R, then K is self-slender but Kω is not; in particular note that while Z is self-slender, the Baer-
Specker group Zℵ0 is not. Finally we remark that if no measurable cardinals exist, then it follows
from Proposition 2.4 that neither the class of generalized strongly self-slender nor the class of strongly
self-slender modules is closed under direct products.

3 Self–slender R-modules which are not Slender

In [3] Faticoni remarked that the only known examples of groups which are self–slender and self–small,
are the reduced torsion-free groups of finite rank; note that in his terminology ‘self-slender groups’
are what we have chosen to call ‘strongly self-slender’ . In this section we show that there are “many”
such R-modules and thus, in particular, many such Abelian groups. Moreover, the R-modules need
not be slender. Thus we answer the question raised in Section 2 in the negative.

It is well known in the theory of Abelian groups that a homomorphism from a product into a
slender group is determined by its restriction to the corresponding direct sum. Our first Lemma
indicates how to extend this to self-slenderness by restricting to R-algebras.

Lemma 3.1 If G is a self-slender R-algebra and φ :
∏

n<ω
Gn → G (where each Gn

∼= G) is a homo-

morphism such that φ �
⊕

n<ω
Gn = 0, then φ = 0.

Proof. The argument follows exactly as in [2, III Theorem 1.2]: the critical point is that once the
summable family x(n) has been constructed, a homomorphism θ : Gω → G can be defined by the rule
θ : (gn) 
→ ∑

n∈ω
gnx(n)φ; this makes sense because G is now an R-algebra. The remainder of the proof

is exactly as in [2].

Our next result, which may be of independent interest, comes from a careful examination of �Loś’s
original argument on slenderness; we follow the argument as given in [7, Theorem 1.4.13, Corollary
1.4.14] pointing out the necessary changes resulting from the fact that our module is only self–slender
and not slender; again a key point is that we work with an R-algebra.

Theorem 3.2 If λ < ℵm and G is a self–slender R-algebra, then

HomR(
∏
λ

G,G) =
⊕

λ

HomR(G,G).

6



Proof. We begin by showing that a map from Gλ → G, which vanishes on G(λ), is identically zero.
Let x =

∑
i<λ xiei ∈ Gλ and ϕ : Gλ → G be such that G(λ)ϕ = 0. We must show that xϕ = 0. For

X ⊆ λ we consider xX =
∑

i∈X xiei as an element in Gλ in the obvious way. The homomorphism ϕ
and the element x induce a map

ϕ∗ : P(λ) → M (X 
→ xXϕ).

If X,Y ⊆ λ are disjoint, then xX + xY = xX∪Y , thus Xϕ∗ + Y ϕ∗ = (X ∪ Y )ϕ∗ and so ϕ∗ is additive.
First we claim that ϕ∗ is also σ–additive; we show, in particular,
that Xiϕ

∗ = 0 for almost all i < ω and for all pairwise disjoint subsets Xi ⊆ λ.
If λ =

⋃
i<ω Xi is an arbitrary partition of λ, then xXi ∈ Gλ (i < ω) is a summable family and

ψ : Gω → Gλ
( ∑

i<ω

aiei 
→
∑
i<ω

aixXi

)

is a well–defined homomorphism taking ei to xXi , since G is an R-algebra. In particular, Xiϕ
∗ =

eiψϕ = 0 for almost all i < ω, because G is self–slender. Thus

Φ : Gω → G
( ∑

i<ω

aiei 
→
∑
i<ω

ai(Xiϕ
∗)

)

is also well defined and Φ coincides with ψϕ when restricted to G(ω). Hence Φ − ψϕ � G(ω) = 0 and
so Φ − ψϕ = 0 follows from Lemma 3.1. Now it is immediate that

( ⋃
i<ω

Xi

)
ϕ∗ = λϕ∗ = xλϕ = xϕ =

( ∑
i<ω

ei

)
ψϕ =

( ∑
i<ω

ei

)
Φ =

∑
i<ω

Xiϕ
∗

and ϕ∗ : P(λ) → G is σ–additive. This shows the first claim.
Now, following exactly the proof of [7, Theorem 1.4.13], one can show that the Boolean algebra

Bλ = (Bλ,≤) defined there, satisfies the descending chain condition. Moreover the measure μ defined
there is σ-additive, and vanishes on singletons because G is self–slender.

As noted above, self–slenderness is equivalent to “λ-self–slenderness” with the obvious interpreta-
tion of this latter term, and so the proof of [7, Corollary 1.4.14] carries over immediately since the set
E defined there, is again finite.

In fact the Theorem above can be generalized to all cardinals λ as below; the proof follows exactly
that in [2] once one notes that G is an R-algebra and so the critical definition 3.2.4 there again makes
sense.

Theorem 3.3 An R-algebra G is self-slender if, and only if, for all λ,
HomR(Gλ, G) =

⊕
D∈D(λ)

HomR(Gλ/D, G). If there are no measurable cardinals, then G is self-slender

if, and only if, G is strongly self-slender.

If R is an S-ring, G is an S-reduced S-torsion-free R-module and S′ is a multiplicatively closed

subset derived from S = {si : i < ω} by replacing the terms qn =
n∏

i=1

si by the corresponding ‘factorials’

7



obtained by replacing si with sizi, where zi ∈ EndR(G), then we shall say that the resulting topology
defined on G by replacing S by S′, is an S-derived topology. In the situation where G is an E(R)-
algebra, and thus the elements zi may be considered as elements of the algebra G, the derived topology
will be Hausdorff if the original S-topology was Hausdorff.

Proposition 3.4 Let G be an S-reduced S-torsion-free R-module which is also an E(R)-algebra, and
which is not complete in any S-derived topology, then G is self–slender.

Proof. Suppose that σ :
∏

n<ω
Gn → G, where each Gn is isomorphic to G. Then, as G is an

E(R)-algebra, σ � Gn → G can be identified as multiplication by an element of G, zn say. Suppose,
for a contradiction, that G is not self–slender so that infinitely many of the zn are non-zero. By
omitting those Gn for which zn is zero, and working with the remaining infinite direct product, we
may, without loss of generality, assume that zn �= 0 for all n. Note that φ = σ �

⊕
n Gn acts as the

summation map (g1, g2, . . . gn, 0, . . . ) 
→ z1g1 + z2g2 + · · · + zngn.
Let S′ be the multiplicatively closed set obtained as the multiplicative closure of {sizi : si ∈ S}.

As observed above the resulting S′-topology will be Hausdorff.
Now, by assumption, G is not complete in its S′-topology. Thus there is an element x =

∑
n<ω

wnqngn

which lies in ĜS
′ \ G; here wn is divisible by zn and so we write wn = vnzn. Take g ∈ Gω to be the

element with nth coordinate vnqngn, so that g ∈ Gω ∩ Ĝ(ω)
S
′

. Since the maps σ and φ agree on a

dense subset of Ĝ(ω)
S
′

, it follows by continuity that gσ = gφ̂. Now φ̂ is just the extension of the
summation map, so gφ̂ =

∑
i<ω

gizi = g /∈ G, but gσ ∈ G – contradiction.

The final step required to establish the existence of non-slender, self–slender modules is to exhibit
suitable non-slender E(R)-algebras. Our construction is based on the construction of such modules
using the Strong Black Box and follows closely the development in [7, Theorem 13.4.1]. Whilst we
will not repeat all the details of that theorem, concentrating instead on the crucial first step which
establishes that the outcoming module is not slender, it is important to point out that one must
actually rework the proof; it is not sufficient to simply replace the ring R with a non-slender one
R′ and use the established version of the theorem since this will exhibit E(R′)-algebras rather than
E(R)-algebras. Note that at this point it is necessary to assume that R+ is actually torsion-free and
not just S-torsion-free.

Theorem 3.5 Let R be a domain which is an S-cotorsion-free S-ring with R+ torsion-free. Let λ and
μ be infinite cardinals such that μℵ0 = μ, λ = μ+ and |R|ℵ0 ≤ λ. Then there exists an E(R)-algebra
A of cardinality λ which is not slender and is not S′-complete for any S′ derived from S.

Proof. The construction of an E(R)-algebra via the Strong Black Box is described in [7, Con-
struction 13.4.3]; in essence one constructs inductively a sequence Aβ of S-pure, S-cotorsion-free
R-submodules of the S-completion B̂, where B is the polynomial ring in λ commuting variables,
B = R[xα|α < λ]. We need to replicate this construction but in the process modify it in such a way
that the final module A =

⋃
α<λ Aα is not slender. This can be achieved by modifying the initial step

so that a copy of the product Rω is embedded in A0; note that this will suffice since the final module

8



A constructed is a union of a chain of modules and hence will necessarily contain the embedded copy
of Rω. This modification can be easily achieved: let B = R[xα|α < λ] and observe that B =

⊕
m∈M

Rm,

where M denotes the set of monomials in the variables xα. If qi =
∏
j<i

sj , set

P ′ = {
∑
i<ω

riqixi|ri ∈ R}

and note that P ′ ∼= Rω. If now we choose A0 as the S-purification of the subalgebra of B̂ generated
by B and P ′, A0 ≤ B̂

⋂ ∏
m∈M

Rm and so A0 is a torsion-free, S-cotorsion-free domain which is not

slender. The remainder of the construction is exactly as in [7, Construction 13.4.3]. The proof of [7,
Theorem 13.4.1] carries through to give the desired E(R)-algebra.

The final statement in the theorem follows by a minor extension of the proof of Theorem 13.4.1 in [7,
p. 486] using the construction of I. Using the existence of such a set I = {α1 < α2 < · · · < αn < . . . }
such that

I ∩ [a] is finite for all a ∈ A, (3.1)

we consider the element g =
∑

i<ω qizixαi
in an S′-topology on A given by 〈sizi | i < ω〉 as explained

above. Then clearly g ∈ Â, the S′-completion of A, but g /∈ A by (3.1). Thus A is not S′-complete.

Putting these results together we can deduce the existence of non-slender self–slender modules.
Thus we have:

Corollary 3.6 Let R be a domain which is an S-cotorsion-free S-ring with R+ torsion-free and let λ
and μ be infinite cardinals such that μℵ0 = μ, λ = μ+ and |R|ℵ0 ≤ λ. Then there exists a non-slender,
self–slender R-module G of cardinality λ.

Proof. Let G be the E(R)-algebra given by Theorem 3.5. Then G is not slender, but by Proposition
3.4 it is self–slender.

Corollary 3.7 Let R be a domain which is an S-cotorsion-free S-ring with R+ torsion-free and let
λ and μ be infinite cardinals such that μℵ0 = μ, λ = μ+ and |R|ℵ0 ≤ λ. If there are no measurable
cardinals then there exists a non-slender, strongly self-slender R-module G.

Proof. Choose G as in Corollary 3.6. It is a self-slender R-algebra, so by Theorem 3.2 and our
assumption, it is strongly self-slender.

Corollary 3.8 For any cardinal μ with μℵ0 = μ, there exists a non-slender self–slender Abelian group
of cardinal μ+. In particular there exists a non-slender self-slender Abelian group of cardinality (2ℵ0)+.

It is now easy to address the question raised by Faticoni in [3], again using our assumption that
no measurable cardinals exist. We state the result for Abelian groups although it clearly holds in our
more general module setting.

Corollary 3.9 If there are no measurable cardinals, then for any cardinal μ with μℵ0 = μ, there exists
a self–small, strongly self–slender Abelian group of cardinal μ+, which is not slender.
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Proof. Choose S = {pn|n < ω} and R = Z in Corollary 3.5 above. Then the E-ring so obtained
is a domain and hence the finite topology on its endomorphism ring is discrete. Thus the group is
self–small – see [1, Corollary 2.1].

Finally we consider a seemingly innocent question with a surprising answer: does there exist a self-
slender, but not slender Abelian group of cardinality ℵn? The answer to this is independent of ZFC.
In any model of (ZFC + CH), ℵℵ0

n = ℵn for all n ≥ 1, and so it follows from Corollary 3.8 that there
exists such a group of power ℵn for all n ≥ 2. However, in any model of (ZFC + 2ℵ0 ≥ ℵω+1), any
reduced torsion-free group of cardinality ℵn is slender by a famous result of Sa̧siada. It is interesting to
note that the non-existence of measurable cardinals does not eliminate the independence phenomenon
here: both (ZFC + CH + there are no measurable cardinals) and (ZFC + 2ℵ0 ≥ ℵω+1 + there are
no measurable cardinals) are relatively consistent. It would be interesting to know whether in ZFC,
self-slenderness implies slenderness for groups of power ℵ1,ℵω, or ℵω+1.
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