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Abstract

Quantifying the extent to which geomorphic features can be used to extract tectonic signals is a key
challenge in the Earth Sciences. Here we analyse the drainage patterns, geomorphic impact, and
long profiles of bedrock rivers that drain across and around normal faults in a regionally significant
oblique-extensional graben in southern Turkey that has been mapped geologically, but for which
there are poor constraints on the activity, slip rates and Plio-Pleistocene evolution of basin-
bounding faults. We show that drainage in the graben is strongly asymmetric, and by mapping the
distribution of wind gaps, we are able to evaluate how the drainage network has evolved through
time. By comparing the presence, size, and distribution of long profile convexities, we demonstrate
that the northern margin of the graben is tectonically quiescent, whereas the southern margin is
bounded by active faults. Our analysis suggests that rivers crossing these latter faults are
undergoing a transient response to ongoing tectonic uplift, and this interpretation is supported by
classic signals of transience such as gorge formation and hill slope rejuvenation within the convex
reach. Additionally, we show that the height of long profile convexities varies systematically along
the strike of the southern margin faults, and we argue that this effect is best explained if fault
linkage has led to an increase in slip rate on the faults through time from ~ 0.1 to 0.45 mm/yr. By
measuring the average length of the original fault segments, we estimate the slip rate enhancement
along the faults, and thus calculate the range of times for which fault acceleration could have
occurred, given geological estimates of fault throw. These values are compared with the times and
slip rates required to grow the documented long-profile convexities enabling us to quantify both the
present-day slip rate on the fault (0.45 £ 0.05 mm/yr) and the timing of fault acceleration (1.4 + 0.2
Ma). Our results have substantial implications for predicting earthquake hazard in this densely
populated area (calculated potential M,, = 6.0-6.6), enable us to constrain the tectonic evolution of
the graben through time, and more widely, demonstrate that geomorphic analysis can be used as an
effective tool for estimating fault slip rates over time periods > 10° years, even in the absence of

direct geodetic constraints.
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1. Introduction

In recent years, interest has increased in using geomorphologic features to investigate the
neotectonics of actively deforming regions (Merritts and Vincent, 1989; Leeder and Jackson, 1993,;
Goldsworthy and Jackson, 2000; Kirby and Whipple, 2001; Lavé and Avouac, 2001; Wobus et al.,
2006). This focus is largely attributable to the realisation that as tectonics exerts a first-order
control on landscape through the production or modification of geomorphic features, then in
principle it should be possible to deduce the nature and potentially the magnitude of tectonic forcing
from field observation and measurement of key geomorphic features (Burbank and Anderson,
2001). Such an approach would be particularly useful where direct geological, structural or
geodetic constraints are unavailable (e.g., Kirby and Whipple, 2001; Whittaker et al., 2008).

The fluvial system in particular has become the focus for much work in this field. This is
because rivers are the primary agents by which tectonic signals are transmitted to the surrounding
landscape (e.g., Tucker and Bras, 1998; Snyder et al., 2000) and hence are responsible for setting
hill-slope gradients and topographic relief (Whipple and Tucker, 1999; Whipple, 2004). In
addition, they export geologically significant quantities of sediment from upland regions to
neighbouring basins or to the oceans each year (Milliman and Syvitski, 1992). Moreover, because
the component parts of the fluvial system can respond over differing time periods (from individual
channels to the drainage network as a whole), they offer the opportunity to examine response
timescales in tectonically forced landscapes (Snyder et al., 2000; Whittaker et al., 2007b). Studies
considering drainage pattern evolution in both fold and thrust belts (Burbank et al., 1986; Jackson et

al., 1996; Keller et al., 1999) and in extensional grabens (Paton, 1992; Leeder and Jackson, 1993,



Goldsworthy and Jackson, 2000; Zelilidis, 2000) also demonstrate how drainage patterns can be
used to document the evolution of fault propagation over time periods > 1 My. Recent modelling
work by Cowie et al. (2006) explicitly shows how drainage networks are sensitive to the growth and
interaction of faults and, hence how their network properties can be used to interpret the temporal
and spatial history of active faulting in extensional settings, such as the central Apennines of Italy
and the Gulf of Evia, Greece.

The longitudinal profiles of rivers in areas of active tectonics have also been the focus of
substantial research activity (Merritts and Vincent, 1989; Snyder et al., 2000; Kirby et al., 2003;
Whittaker et al., 2007a). Tectonically unperturbed “equilibrium” fluvial long profiles are typically
smooth and concave-up, representing a balance between downstream reduction in gradient and
concomitant increase in discharge. However, upland rivers are also sensitive to along-stream
variations in differential uplift (potentially leading to changes in the profile concavity or steepness
index) and also to changes in uplift rate through time (Kirby et al., 2003; Wobus et al., 2006). In
particular, modelling work by Whipple and Tucker (2002) demonstrated that a diagnostic response
for any river incising bedrock that is limited by its capacity to detach material from its bed, and
responding to an increase in relative uplift rate (whether caused by tectonics or base-level fall), is
the development of a transient “knickzone” or convex reach that propagates upstream as the channel
successively adjusts to the imposed uplift field. Recent field evidence from the central Apennines
confirms the existence of such transient river responses to tectonics and suggests that the response
timescale of upland fluvial systems with drainage areas < 100 km? to such perturbations is > 1 My
(Whittaker et al., 2007a, b). Moreover, modelling work, theory, and new field observations suggest
that the vertical elevation of long-profile convexities scales with fault slip rate (Niemann et al.,
2001; Whittaker et al., 2008; Attal et al., 2008). This raises the prospect of being able to decode
transient fluvial landscapes to gain quantitative information about regional tectonics over timescales

> 10° years.



Unfortunately, few current studies effectively combine these methodologies together.
Existing work on drainage network evolution is often limited to geomorphically qualitative
inferences (Leeder and Jackson, 1993; Jackson et al., 1996) or is content to demonstrate that
documented geomorphic features are broadly consistent with a tectonic and geodetic framework
derived from other means (e.g., Goldsworthy and Jackson, 2000). Moreover, these studies do not
integrate detailed studies of river long profiles. On the other hand, a plethora of research has
evaluated fluvial profiles in tectonically active areas, but many of these studies have either
explicitly or implicitly assumed that the landscape is in topographic steady-state (e.g., Kirby et al.,
2003; Wobus et al., 2006), are largely concerned with calibrating fluvial incision laws (e.g., Van der
Beek and Bishop, 2003), or are focussed on evaluating the applicability of hydraulic scaling
relationships to tectonically perturbed channels (Duvall et al.,, 2004; Finnegan et al., 2005;
Whittaker et al., 2007a). This means that few workers have succeeded in extracting detailed and/or
novel inferences about regional tectonic forcing from integrated analyses of long profile and
drainage network data in areas where the neotectonic framework is presently poorly constrained.

This paper seeks to address this outstanding challenge. We combine a range of
geomorphologic techniques with available structural and geological data to decipher the
neotectonics of a regionally significant Plio-Quaternary Graben in southern Turkey (the Hatay
Graben), where the rates and timing of fault motion are presently poorly constrained. In particular,
we analyse the drainage patterns in the area to clarify the development of the large-scale basin-
bounding faults, and we compare the location and distribution of wind gaps with the position of
known faults. Additionally, we examine the long profiles of channels crossing the present basin
margins; and by quantifying the presence, size, and distribution of long profile convexities we
deduce which structures are likely to be active at the present time. Significantly, our data and
observations also allow us to estimate the rates and timing of fault motion in the area and to
reconstruct the tectonic evolution of the graben through time. The results are important in terms of

geological development of the eastern Mediterranean region and also for hazard prediction in the



local area. More widely, this study demonstrates that geomorphological analysis is now a powerful

tool to evaluate tectonics, even in the absence of direct geodetic observations.

2. Geological setting
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Figure 1 Plate tectonic map of the eastern Mediterranean, showing the major neotectonic lineaments (NAFZ
— North Anatolian Fault Zone; EAFZ — East Anatolian Fault Zone; DSFZ — Dead Sea Fault Zone) and the

location of the study area (box).

The eastern Mediterranean region is dominated by large strike-slip faults that have developed
during the Pliocene as a result of the northward motion of Africa into Eurasia. During the Pliocene,
the Anatolian microplate formed (Fig. 1), with the North Anatolian Fault Zone (NAFZ) and the East
Anatolian Fault Zone (EAFZ) as the northern and southeastern plate boundaries, respectively (Fig.
1). The NAFZ is a dextral strike-slip fault that formed in the earliest Pliocene (~ 5 Ma; Barka and
Kadinsky-Cade, 1988); whereas, the EAFZ is a sinistral strike-slip fault, the timing of which is not
so well constrained as the NAFZ, with the age given as Late Miocene-Early Pliocene (Sengor et al.,

1985; Arpat and Saroglu, 1972) or Late Pliocene (Yiirlir and Chorowicz, 1998; Westaway and



Arger, 1998). Additionally during the Miocene, rifting initiated in the Red Sea and the differential
motion between Africa and Arabia resulted in the formation of the sinistral Dead Sea Fault Zone
(DSFZ). The first motion along the DSFZ occurred in the south sometime in the Miocene, variously
dated as < 20 Ma (Lyberis, 1988), 18 Ma (Garfunkel and Ben Avraham, 1996), Late Miocene

(Steckler et al., 1988) and has subsequently propagated northward throughout the Pliocene.
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faulting in the SE forming the southern boundary of the Hatay Graben. By contrast only shorter, smaller
faults without significant displacement are present along the northern boundary, which is delineated by the
change in lithology from sedimentary to ophiolitic rocks. Although a large fault has been proposed to run

along this lithological contact, no evidence for it was observed during field work.

The Hatay Graben is a Plio-Quaternary basin (Boulton et al., 2006; Boulton and Robertson,
2008) located in south-central Turkey (Fig. 1) adjacent to the northern part of the DSFZ. The graben
is orientated NE-SW and is ~ 20 km wide and over 50 km in length. To the NW it is bounded by the
Kizildag (Fig. 2), a range of mountains that extend northward for about 80 km and rise sharply from
the Mediterranean Sea and the Gulf of Iskenderun to ~ 1800 m in height. To the SE, the basin is

bounded by the mountains of Ziyaret Dag, which rise to ~ 1300 m. The Hatay Graben is a
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topographic low formed because of oblique-extension along the dominantly NE-SW trending
normal faults that strike parallel to these mountain fronts (Boulton et al., 2006). The flanks of the
graben are dominated by basement serpentinite and Middle Miocene bioclastic limestones, while
Upper Miocene marls and Pliocene to Recent sandstones and conglomerates outcrop in the axial
zone (Fig. 2) (Boulton et al., 2006, 2007; Boulton and Robertson, 2007). The asymmetric
topography of the graben (inset, Fig. 3) is apparently controlled by large en-echelon normal faults
on the SE margin with minor antithetic normal and strike-slip faults in the NW (Boulton and
Robertson, 2008); however, a large SE-dipping normal fault has also been postulated to be present
along the entire northern margin of the basin (Yurlr and Chorowicz, 1998). At least two sets of
faults bound the southern margin of the basin (Fig 2); the innermost array currently runs close to the
margin of the basin, with further faults exposed at higher elevations within the Ziyaret Dag.
Detailed structural mapping (Boulton, 2006) shows that these faults are typically segmented over
the length-scale of ~ 5 km (Fig. 2), with estimated Early Pliocene to Recent maximum throw on the
inner-bounding fault of ~ 1000 m east of the city of Antakya; total throw on this fault since the base
of the Upper Miocene is 1500 m, based upon stratigraphic piercing points. Additionally, at least 500
m of throw has been calculated for the fault segment bounding the Samandag mountain. Throw on
the outer fault set is less well constrained but is estimated to be < 500 m (Boulton et al., 2006).

The area (from 35.9° N to 36.75° N, 35.76° E to 36.7° E) has experienced at least 32 earthquakes
in the last 20 years [body wave magnitude < 5.7] (USGS National Earthquake Information Centre)
showing that the Hatay Graben is still undergoing active extension. Focal plane mechanisms of
recent shallow earthquakes suggest the faults to be dip-slip to oblique-slip in nature (Erdik et al.,
1997; Over et al., 2002; Harvard CMT catalogue). Although there are some uncertainties in the
epicentral location, the error is of the order of 10-20 km (Jackson, 2001), which places these
earthquakes firmly within the graben. In addition, Global Positioning System (GPS) measurements
can provide information on current plate motions. Geodetic data from McClusky et al. (2000)

showed that in an Arabian fixed reference frame GPS vectors are oppositely oriented across the



Hatay Graben, indicating the area is experiencing oblique-extension. However, lack of fresh scree,
unweathered fault scarps, and surface ruptures mean that active faults have not been unambiguously
identified in the field.

Although timing of initial normal fault motion has been established stratigraphically as
commencing during the Middle Miocene (Boulton et al., 2006), this faulting apparently resulted
from far-field stresses related to continental collision to the north and did not immediately lead to
graben formation (Boulton and Robertson, 2007), with Middle Miocene syn-rift sedimentation
being entirely marine (Boulton et al., 2006). Instead, it is thought that these early normal faults
were reactivated during the Pliocene resulting in the development of the present subaerial graben as
global sea level fell from 5 Ma onward and as regional uplift took place (Boulton et al., 2006;
Boulton and Robertson, 2008). This resulted in the deposition of > 100 m of Plio-Pleistocene
coastal and fluvial sediments which are completely confined to the basin, the lowermost of which
are shallow marine and dated by micropalaeontological and strontium isotopic analysis to be no
younger than 5.2 My (Boulton et al., 2007). A significant drainage network was therefore
established on the graben flanks by 5 Ma. The chronology of fault motion is based upon a number
of observations, such as fanning Middle and Upper Miocene sediments, differential elevations of
intially contiguous Messinian evaporites, highly deformed Pliocene sediments adjacent to fault
planes, and variation in dips of Quaternary talus (for a full discussion see Boulton et al., 2006).
However, key questions remain unanswered. In particular, the spatial and temporal development of
the graben through the Pliocene to Recent is largely unknown, as are the current rates and
distributions of active faults (see above). These questions are significant for understanding the
tectonic development of this key area in the eastern Mediterranean. In particular, the graben’s
location at the interface between a collisional and precollisional tectonic setting, and in a zone of
transtension resulting from the motion of Anatolia away from Arabia-Africa, means that a greater
understanding of the regional fault dynamics could provide important constraints on existing

models of plate motion for the eastern Mediterranean. In addition, a full knowledge of the location,



and enhanced constraints on the rates of active faults in the area would also signifiantly improve
earthquake hazard assessment, a priority given the high population density in the region,

particularly in and around the city of Antakya (ancient Antioch) located in the NE of the graben

(Fig. 2).

3. Methodology and approach

“?2\ \( AMIK PLAIN 3 L, L & -: ; » i EIuvnhnr!D(m)

A)

Dyke nctwurk has obscured

nstural drainage patterns in
% this area.
N ~ ;
~ sy

N

T

N : )
. Y.
MEDITERRANEAN SEA SAMOLPAG . /
(3 vl 23
—
a Y
- Ma]or N-d\p.plng normal fault .
~
—_—— Normal faulli
.- Graben watershed / : TOPOGRAPHIC CROSS SECTION A - A’
¥y  Startof gorge 7
. 500m
V=

.
0 2 4km N A 2.5km 7.5km 12.5km 17.5km A'

Figure 3. (A) Stream network map of the Hatay area. Inset shows topographic profile across the line A-A’
and the boxes show location of maps in Fig. 6. Numbers 1-3 refer to the points on the River Asi profile
shown in Fig. 5. (B) Colour-shaded DEM of the Hatay area, showing rivers 1-36, which were extracted for
long profile analysis and are presented in Figs. 7-9. Note that the channels in A were derived from “blue-
lined” rivers on topographic maps, whereas in B the stream network was generated from the DEM used, thus

there are some differences between the two networks shown.

We used the geological data described above in conjunction with an SRTM-derived digital
elevation model (DEM) of the Hatay Graben and field reconnaissance of key study sites to
document and quantify the geomorphic signature of the area’s tectonic evolution. We analysed
both regional drainage patterns in the Hatay province (section 4.1) and also conducted a quantitative
study of river long profiles draining both flanks of the graben (section 4.2). To do this, a stream
network with a threshold drainage area of 0.1 km? was derived from the DEM (Fig. 3A) and was

verified against “blue-lined” rivers shown on (1:200 000) topographic survey maps and by field
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inspection of selected channel sites. We also extracted long profiles and drainage areas, A, of 36
individual channels in the area (Fig. 3B). These streams

(1) drain the north side of the basin (rivers 1-12);

(i1) are sourced in the southeastern mountains (Ziyaret Dagi) and feed the Amik Plain (rivers
13-18);

(iii) incise across the normal fault-bounded SE margin of the Hatay Graben (rivers 19-31),
and

(iv) drain directly into the Mediterranean Sea, SW of the Hatay Graben (rivers 31-36)

and therefore cover a wide range of tectonic and lithologic conditions shown in Fig. 2.
We also calculated, where appropriate, channel concavity, 6, and steepness index, ks, for the streams
(c.f., Kirby et al., 2003) from
S = kA" (1)

where S is the local channel gradient. For comparative purposes as ks depends on the concavity of
the channel, we also quote the normalised steepness index, ks, which for our purposes is equivalent
to ks using a reference concavity of 0.5. For channels that are in topographic steady-state and where
there are no lithological variations, normalised steepness can be related to rates of rock uplift (see
Wobus et al., 2006, for a detailed review).

Additionally, for each channel, we documented the presence of any prominent convexities in
the long profile and recorded their position and size relative to the location of active faults in the
area (c.f., Whittaker et al., 2008; Attal et al., 2008). Such profile convexities are developed as
rivers near the detachment limited end-member respond to a change in uplift rate (see section 1).
However, because channel long profiles often have small perturbations or knickpoints which can be
related, amongst others, to small changes in rock strength or landslide dams, and hence do not just
reflect tectonics, we concentrate in this paper on significant profile convexities (oversteepened
reaches) that have vertical elevations of ~100 m or more, as measured from the mapped faults to the

break in slope in the long profile (see also Fig. 10 in Whittaker et al., 2008). The break in slope is

11



identified as the point at which the rate of change of slope in the long profile reaches a local
maximum upstream of the fault. Some channels do have more than one slope-break within a small
upstream distance (i.e., 1-2 km). In such cases, we give a range of values for the profile convexity

height.

(A)

(©)

Figure 4. (A) View of the lower reaches of the River Asi incising deeply through Middle Miocene limestones

prior to flowing into the sea. (B) View of river one half to ~ 1 km before flowing out into the Hatay Graben; at
this point the bedrock river is incising through the ophiolite—Middle Miocene boundary. (C) View downstream
(toward the graben) of stream 20 as it incises through serpentinite exhumed in the footwall of the outer
graben-bounding fault (the upper reaches of this stream can be seen in Fig. 12A). (D) View of the
headwaters of stream 13 that drains eastward off the back of the Hatay Graben, showing the bedrock nature

of the stream bed (the white line in the stream bed is an irrigation pipe).

Alongside the above, we also observed selected stream beds (Fig. 4) to document the typical
fluvial incision process and to estimate the extent to which the channel incised bedrock. Finally, we
noted any evidence for wind-gap formation (i.e., saddle points in valleys where drainage reversal
had potentially occurred) and verified these sites in the field by inspection of sediments preserved

within the potential wind gap (section 4.3).  Note that small channels observed flowing off
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Samandag Mountain and elsewhere have been excluded from this study, because of their short
lengths and drainage areas (< 4 km and 5 km? respectively) and evidence for debris-flow-

dominated processes taking place within the channel.

4. Results

4.1. Overview of drainage in the Hatay Graben

Drainage in the Hatay basin is strongly asymmetric (Fig. 3). The axis of the Hatay Graben is
drained by the River Asi (also known as the Orontes), a major water course draining northward
from Syria to Turkey along the DSFZ. It is ~ 400 km long (drainage area > 30 000 km?) and
largely meandering in character, with bankfull channel widths exceeding 100 m at maximum extent.
The River Asi enters the Hatay Graben NE of the city of Antakya, at the northern termination of the
SE graben-bounding mountain front (Figs. 2, 3). Here, the river makes a sharp turn to the SW and
then flows along the southeast side of the graben, close to the inner-most faults that bound this side
of the graben. The river flows along the wide graben floor for > 30 km until it enters a gorge that
has been incised into Samandag Mountain (star, Fig. 3; photo, Fig. 4A), a feature that is mapped as
fault-bounded to the north (Figs. 2, 3B). The gorge is cut into serpentinite and Middle Miocene
limestones, is up to 200 m deep and at its narrowest, is < 100 m wide, compared with valley widths
> 1 km upstream in the graben. The gorge ends near the village of Sutasi, where the river flows over
the boundary fault. The long profile of the River Asi (Fig. 5) shows the river to have a very low
gradient: < 0.1° in the NE as it crosses the Amik plain, much of which was a shallow lake until the
1940s (Kilic et al., 2006). Elevation is not lost immediately as the river enters Hatay Graben;
instead, the river starts to incise downstream of Antakya, ~ 35 km upstream of the sea (point 2,
Figs. 3A; 5). The long profile steepens further as the river enters the gorge, losing an additional 40

m of elevation in just 10 km downstream (point 3, Figs. 3A; 5).
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Figure 5 Long profile of the River Asi. Distances are measured upstream of the sea, and numbers

correspond to localities in Fig. 3A.

The River Asi sets the base-level for all other channels draining the area. Tributaries
draining into the axial river have been observed to be bedrock channels with variable (but minor)
amounts of sediment load, with evidence for seasonal flow if they were observed to be dry during
the field visit (Fig. 4). The larger channels, such as rivers 1-4, transport significant amounts of
bedload in their lower reaches, but are bedrock channels in the upper sections. For example,
although rivers 1-2 transport coarse bedload in the lower reaches and flows all year round, for more
than half of the reach of the river (i.e., upstream of 15 km) it is a bedrock channel with > 50%
exposed bedrock in the channel bottom. In places, the channel has incised > 150 m into the bedrock
(Fig. 4B), and this is typical of the majority of the channels draining the NW margin of the graben.
By contrast, most of the streams draining the SE graben margin are smaller streams with little
bedload (Fig. 4C). Seasonal river flow has been witnessed in these streams in spring months and
following heavy rain; in addition, bedrock in channel bottoms is polished and streams are clear of
dense vegetation up to the headwaters. Sediments, where present, are well-sorted and imbricated,
suggesting that fluvial rather than debris flow processes are responsible for cutting the channels.

The lower reaches of these streams are well-incised (Fig. 4C), whereas the upper reaches sit in wide
14



valleys. Streams flowing east, away from the graben (rivers 13-18) also generally have wide open

valleys with bedrock streams with little or no bedload (river 13; Fig. 4D); however, in these

channels the degree of incision does not increase downstream.
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In general, streams on the northwestern side of the graben are long with a well-developed
network of tributaries (Fig. 3A). The rivers are well-incised forming steep, narrow valleys within
the ophiolite units (Fig. 2) but opening out to form broader valleys in the Neogene sediments of the
basin floor. Note that these valleys reach far to the NW, with the drainage divide being up to 24
km from the confluence with the River Asi (Fig. 3A). By contrast, streams draining the
southeastern flank of the basin are shorter by 60-80% and have far fewer tributaries. Additionally,
the drainage divide is much nearer to the SE margin of the graben (typical distance 4-8 km; Fig. 3)
than it is on the northern flank. The result of this asymmetry is that much of the mountainous area to
the SE of the graben is actually drained by rivers flowing NE, joining the River Asi on or near the
Amik plain (Fig. 3) and implying that some water courses have changed their initial orientation by

> 180° in < 20 km.
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Figure 7. Long profiles of rivers crossing the northern margin of the Hatay graben. (A) shows

channels 1-6 and (B) shows channels 7-12. Geographical locality of rivers is shown in Fig. 3B.
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Of the larger streams entering directly into the graben, many appear to take a course
between mapped fault segments. For example, the Karanlik Dere (Fig. 6A; River 31, Fig. 3B), a 13
km-long river with a drainage area of 40 km? cuts between fault segments in two places
downstream (between faults a and B; y and J). Other large streams to enter the graben at the end of
fault segments include rivers 23, 24, and 25, draining a mapped fault-offset south of Antakya (Fig.
3B). Streams with drainage areas > 10 km? cutting directly across the faults are relatively rare;
examples include river 29 (Fig. 6A) and river 21 (Fig. 6B), an 8-km-long stream that cuts through
the footwall of fault « via a narrow gorge (< 10 m wide) incised into the Eocene bedrock. However,
even here, some of the drainage apparently has already been captured by tributaries to river 21 and
by river 20, excavating Neogene sediments between faults k and A (shown by star, Fig. 6B), which

drains through an apparent fault splay farther to the north.
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Figure 8 Long profiles of rivers 13-17, draining the southern margin of the Hatay Graben toward the Amik

plain. Geographical locality of rivers is shown in Fig. 3B.
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4.2. Long profile analysis of tributaries draining into the Hatay Graben

River L(m) A (km?) (1] Iy It
1 24,000 100 0.73 3400 208
) 24,000 100 0.834 10,781 324
3 15,800 395 0.34 6240 399
4 12,350 39.5 0.61 2112 381
h 8700 9.1 0.55 360 200
6 6100 71 0.44 40 179
7 16,600 374 1 22,800 363
8 8800 82 0.57 490 128
9 11,200 132 0.64 8772 442
10 9700 103 0.8 564p 485
1 5100 6.2 0.51 204 195
12 9300 9.7 093 2375 279
13 23,500 125.5 0.54 157 96
14 23,000 146 0.78 4540 71
15 230,000 146 0.64 1572 122
16 19,500 56.7 048 219 101
17 18,500 56.7 0.7 2820 109
18 9800 99 0.59 146 35
19 7900 98

20 5400 63

21 8300 102

22 5300 6.9

23 9000 128

24 7600 9.8

25 7100 148

26 10,100 148

27 5200 81

28 4200 5

29 6200 136

30 5800 83

31 13,100 292

32 9800 16.1

33 5800 6.4

34 5100 59

35 5700 11.2

36 8400 17.7 0.52 202 148

Table 1. Downstream distance, L, drainage

area, A, profile convexity, 6, steepness index,

ks, and normalised steepness index, ksn, for

the rivers shown in Fig. 3, as measured to the

Asi river (or the sea).

The long profiles of tributaries draining the
northern margin (rivers 1-12; Fig. 3B) of the Hatay
Graben are shown in Fig. 7. Dominantly, these
profiles are smooth and concave-up: small profile
convexities in rivers 3 and 4 at ~ 5 km downstream
coincide with the change from ophiolite to
Neogene sediments (Fig. 2). Concavities of these
channels (Table 1) range from 0.5 to 1, and no
discernable trend was found in normalised
steepness index along the margin from SW to NE
(excluding small channels 6 and 8, which only
drain the neogene basin sediments ks, = 336 £ 96).

These long profiles are also similar to

channels draining to the Amik plain from the SE

side of the graben (rivers 13-17; Fig. 8); these channels also have concave-up long profiles and

similar concavities (0.48 < 6 < 0.78), although normalised steepness indices are lower. However,

the contrast in geometry is huge when we compare these rivers to those draining directly into the

Hatay basin from the southern bounding mountains. Channels have substantial profile convexities

(Figs. 9A, B) with channel gradients often > 10% in many downstream reaches. These profile

convexities reach vertical heights of > 400 m (when measured from the inner graben boundary to

the break in slope above the convexity) in several places (e.g., rivers 25, 26 and 32, 34) and are

typically upstream of mapped fault segments (Figs. 2, 3A; white bar, Fig. 9).

We also note that rivers appearing to drain between fault segments also display similar convex

reaches: all the examples in section 4.1 (see also Fig. 6) have profile convexities that range from
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150 to > 400 m, and it seems difficult to distinguish rivers draining across mapped fault segments

from those draining through “relay zones” on the basis of their long profile geometry.
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Figure 9. Long profiles of rivers draining NW from the southern margin of the Hatay Graben directly into the

basin. (A) shows rivers 18-27 and (B) shows rivers 28-36. Note that for clarity of presentation, rivers 27, 35,

and 36 have been shifted along the x axis, and that river 36 is displaced vertically by 350 m, with sea level

for this channel shown separately. Position of the innermost bounding fault is shown by a white rectangle,

and the outermost fault by a grey rectangle in each profile. Geographical locality of rivers is shown in Fig. 3B.
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Importantly, we also note that elevation of long profile convexities varies along strike for
the fault array (Fig. 10). Rivers 18 and 36 at the NE and SW ends of the array, respectively, appear
to have concave longitudinal profiles (6 = 0.59, 0.52, respectively) with no convex reaches, similar
to those in Figs. 7 and 8, while still traversing identical rock types to rivers 19-35. As we head SW
along the strike of the Hatay Graben, the size and height of the profile convexities grows, reaching
an initial maximum for rivers 25 and 26, despite the fact these rivers apparently drain around an
offset in the fault. However, the size of convex reaches is then reduced for the next 10 km along
strike, with a minimum at ~ 20 km, where river 28 has a convex reach ~ 100 m in height. We note
that this zone of small profile convexities is located in the footwall of the mapped Samandag fault
block, which is currently being incised by the axial river (Figs. 2, 3, 4). From river 31 onward,
convex reach elevations increase rapidly, with elevations of 500 m or more typical of channels
draining directly into the sea from the steep topography bounding the coast. In particular, river 33
is steeply convex almost all the way to the headwaters. However, ~ 10 km farther along strike,

concave-up long profiles are regained (river 36).
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Figure 10 Vertical elevation of long profile convexities for rivers 18-36, as a function of distance along strike
of the southern margin of the Hatay Graben from NE to SW. The vertical elevation of these convexities is
measured from the innermost active fault segment bounding the southern edge of the basin to the prominent
break in slope in the long profile (i.e., where the rate of change of slope is a maximum). For channels where
there is more than one slope break upstream, or a gradual change in slope (compare river 21 with rivers

25/26) we use error bars to indicate the range of values for the vertical height of the covnex reach. In a few
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cases (e.g., river 29) where the precise position of the present-day active fault is inferred, we use the
mapped geological boundary of the graben (Fig. 2), separating basin-fill from uplifted footwall, as a proxy for

this. River 33 is convex almost to the headwaters.

Typically, these profile convexities are also correlated with substantial hillslope
rejuvenation. Transects through valleys in the gently sloping headwaters of channels (such as rivers
21, 22, 26, and 31) are open and bowl-shaped (black lines, Fig. 11). By contrast, within the convex
reaches, valleys are predominantly narrow and “v”-shaped, with hillslope angles approaching 30°
(dashed lines, Fig. 11; see also Fig. 4C). We note that the changeover between these two domains

typically occurs near or at the break in slope at the top of the long profile convexity.
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Figure 11 Valley cross sections measured perpendicular to the river for the headwaters (black line) and

within the downstream convex reach (dashed line) for (A) river 21, (B) river 22, (C) river 26, and (D) river 31.

4.3. Wind gaps

Wind gaps (dry palaeo-valleys that represent now-abandoned water courses) record drainage
reversal events (Keller et al., 1999; Burbank and Anderson, 2001). They have been frequently
documented in normal fault-bounded terrains where ongoing tectonic uplift at a point downstream

leads to progressive loss or defeat of the upper part of the catchment (e.g., Burbank et al., 1996;

21



Goldsworthy and Jackson, 2000; Whittaker et al., 2007b). We observe a number of locations in the
southern part of the Hatay area where dry valleys in the footwalls of the normal faults bounding the

southern edge of the graben can be observed (e.g., SE of fault 9, Fig 6A; and E of fault A, Fig 6B).

Windgap

e

Location of inset photograph

Figure 12. (A) Photograph of wind gap at X (Fig. 6); the stream in the foreground is the headwater of stream

20. (B) Inset shows fluvial conglomerates and cross-bedded sandstones observed to be infilling the wind
gap.

In each of these cases, the dry V-shaped depressions in the surrounding topography link to active
valleys with streams flowing in opposite directions, suggesting these may indeed be carved by now-
defeated channels. These features are most abundant along the drainage divides upstream of faults
& and A, which form the outer fault boundary of the Hatay Graben. Field investigation of these dry
valleys verifies this hypothesis; for example at point X (Fig. 6B), we identify a poorly consolidated
conglomerate (Fig. 12B) that fines upwards into parallel bedded sands, which infills the dry valley
(Fig. 12A). These sediments appear to be incised into the surrounding Miocene sediments, while
the active part of the present-day channel has its headwaters to the west and flows to the NW. We
therefore interpret this to be a palaeochannel deposit, recording a time when streams in this area
flowed to the west, directly across valley-bounding fault A. In general, the streams showing reversed
drainage have the reversed element of the river flowing dominantly to the NE (Fig. 2), while the

remainder of the misfit fore-shortened channels flows westward into the Hatay Graben. In the
22



north, near Antakya, wind gaps are generally orientated E-W, whereas farther to the south the wind
gaps are more often orientated NW-SE, neatly reflecting the difference in the fault strike.

Additional evidence for drainage reversal events can be observed at Y (Fig. 6A). Here an
internally drained basin, sourced by several ephemeral streams, is located behind a southeastward
dipping normal fault, labelled € (Fig. 6A), which is apparently antithetic to fault y. Sedimentary
analyses of the deposits on the basin floor suggest this is a dry lake bed, argued to be Quaternary in
age (Boulton, 2006). A wind gap at point Z indicates that the old drainage was blocked by ongoing
uplift on fault €, beheading the channel that once drained into river 32 (Fig. 3B). Notably, this
internal basin has not yet been captured by neighbouring channels. This makes it similar to young,
normal fault-bounded, internally drained basins found, for example, in the Italian Apennines (e.g.,

Piano di Peccore on the Irpinia fault; Papanikolaou and Roberts, 2006).

5. Interpretation

5.1. Neotectonics — which faults are active?

Although the north of the graben is topographically higher than the south (Fig. 3) and
bordered by mountains that reach > 1600 m in altitude, little evidence is apparent for any substantial
dip-slip movement on faults that have been argued by some workers to bound this part of the Hatay
Graben (e.g., Ydrir and Chorowicz, 1998; Tatar et al., 2004). Structural mapping and sedimentary
logging have provided no field evidence for the presence of such a basin-scale fault along the
northern graben margin (Boulton et al., 2006); instead Lower to Upper Miocene sediments are
observed to progressively onlap the ophiolitic basement along an erosive, conformable contact
observed in several river and road sections. Upward from the basal contact, the sedimentary
sequence again shows no evidence for a major boundary fault. These observations are supported by

the geomorphology: streams draining this side of the Hatay Graben are long, with well-developed
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tributary systems typical of equilibrium rivers that have reached topographic steady-state (e.g.,
Whipple and Tucker, 2002; Whittaker et al., 2007b). Additionally, they display concave-up
longitudinal profiles, little variation in normalised steepness index along strike, and no significant
perturbation where they cross the postulated fault (Fig. 3). Furthermore, no wind gaps have been
documented in this area, and the drainage divide for the basin passively follows the ridge crest of
the mountains bounding the graben to the north. However, we note that profile concavities (Table
1) are, on average (~ 0.68), larger than oft-quoted “typical” values of 0.5, but still within the range
commonly found by other workers (c.f. Kirby and Whipple, 2001; Duvall et al., 2004; Whipple,
2004 amongst many others). An increase in concavity values are explainable at topographic steady-
state if the rate of base-level fall increases downstream, which is what we would expect for these
channels if the southern margin of the graben is active (see below). Hence, the rivers flow toward
the locus of maximum accommodation generation in the hanging wall.

This synthesis of structural and geomorphic evidence suggests that the northern margin of
the graben is tectonically quiescent, and previous interpretations for major faults on the northern
margin (e.g., Yurur and Chorowicz, 1998) are without foundation. In contrast, the southern margin
of the graben is characterised by short, steep catchments (Fig. 3A) with prominent long profile
convexities upstream of mapped graben-bounding faults (Fig. 9), and the presence of several well-
documented wind gaps suggesting that northerly directed rivers have been foreshortened through
time. Moreover, the axial river drains close to the southern margin of the basin, while much of the
area behind the southern-bounding Ziyaret Dagi mountains is now drained by rivers running to the
north and east, entering the River Asi near the Amik plain. This geometry means the drainage
divide on the southern edge of the basin appears to have migrated toward the basin margin since the
Pliocene. Such qualitative observations are typically reproduced by both theoretical and modelling
studies of river response to ongoing normal faulting (e.g., Leeder and Jackson, 1993; Cowie et al.,

2006).
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Such an interpretation is strongly supported by the documented presence and distribution of
long profile convexities. For rivers at or close to the detachment-limited end-member (i.e., bedrock
rivers), substantial convex or “over-steepened” reaches develop in response to a relative change in
uplift rate; for example, through base-level fall, fault initiation, or slip rate increase on pre-existing
fault segments (Whipple and Tucker, 2002; Whittaker et al., 2007a) (section 1). In each of these
cases, a transient wave of incisional rejuvenation migrates up through the river system as the
channel steepens to increase its erosive power to match the new uplift rate. The break in slope
above the convex reach represents the boundary between the part of the catchment that has or is
adjusting to the “new” uplift rate, compared to the part of the channel that is yet to feel the effects
of the relative base-level change (Whipple and Tucker, 2002). For a set convexity migration rate
upstream, the vertical elevation of the convex reach is also a positive function of the magnitude of
the slip rate perturbation, and the time since it developed (Niemann et al., 2001; Whipple, 2001;
Whittaker et al., 2008; Attal et al., 2008). If the transient incisional wave reaches the top of the
profile, (or alternatively, if the headwaters are defeated by ongoing fault uplift), a concave-up
profile can be regained — although recent field examples from Italy show that this process can take
longer than 1 My (Whittaker et al., 2007b, 2008). Therefore, the long-profile convexities, which
are ubiquitous on streams draining the southern edge of the graben, are interpreted as evidence that
the rivers are undergoing a transient response to ongoing active faulting on the innermost bounding
faults of the Hatay Graben. This interpretation is consistent with the fact that these channels also
show many of the associated diagnostic features of a transient response to tectonics (see Fig. 17 in
Whittaker et al., 2007b), such as narrow valley widths in the transient reaches with hill-slopes
rejuvenated to the angle of repose, headwaters with low channel slopes, and drainage divides close
to the active fault. These convex reaches are an unlikely result of lithology or external base-level
fall. Lithological boundaries (Fig. 2) do not appear to match well with the breaks in slope in the
convex reaches; channels at both ends of the fault array do not have long-profile convexities despite

traversing similar rock types. Envisaging how an externally driven base-level fall would produce
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the characteristic distribution of convex reach heights mapped along strike is also difficult. This is
because a base-level fall in the River Asi would have maximum amplitude near the southwestern
end of the Hatay Graben and would decay upstream; it would not produce convex reaches with
large elevations half way along the valleys that die out at both ends.

The wide range of geomorphic evidence presented above means that the Hatay basin is best
interpreted as an asymmetric half-graben, which is bounded by an active normal fault running along
the southeastern margin of the basin. This interpretation is also consistent with the position of the
River Asi, which therefore occupies the locus of maximum hanging wall subsidence within the
valley (c.f., Leeder and Jackson, 1993). We also argue that the Samandag fault, which bounds the
Samandag Mountain on its northern flank (Figs. 2, 3), is an active structure. This fault has a clear
topographic expression, displays triangular facets on the north-facing slope, and has an apparent
fault scarp at several points along the slope break (Boulton, 2006). Moreover, the River Asi flows
through a steep knickzone and associated gorge in the footwall of this structure (Fig. 5), despite the
large drainage area at this point (> 30 000 km?). Given that the Samandag fault clearly steps out
toward the basin axis and the fact that it significantly perturbs the axial river, an obvious
interpretation is that it initiated after the River Asi became established in the hanging wall of the
southerly graben margin faults.

However, the basin is also bounded by a second set of mapped normal faults (Fig. 2), which
run parallel to the innermost bounding set (e.g., faults y, 8, A; Fig. 6). These faults are thought to
have initiated during the Middle Miocene (Boulton et al., 2006) and clearly are associated with
several sets of wind gaps, demonstrating that uplift on these faults was sufficient to defeat many of
the smaller channels that used to drain directly across them. However, we suspect that these faults
are not active at the present day. Firstly, rivers 21-26 and 31, which flow across both sets of faults,
only display significant convex reaches (i.e., several hundred metres) upstream of the inner-
bounding fault near the axial river. Where they cross the outer fault set (shown by grey bars; Fig. 9)

there is either little change of slope just upstream of this (e.qg., rivers 22, 23, 24, 25), or alternatively
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very small profile convexities near the headwaters (e.g., rivers 21, 22). Given the small drainage
area and hence stream power of these upstream channel segments, significant continued slip on
these faults might be expected to generate a vertically significant knickzones, which we do not see.
This means that there is likely no-ongoing transient response to fault activity, which is obviously
easily explained if the faults are inactive. However, this could, theoretically, also be resolved if the
upper portions of these rivers had completely adjusted to continued uplift on the outer-bounding
fault set despite their small drainage area (i.e., the channels had reached topographic steady-state
with respect to the long-term uplift field). This could be achieved if they maximised their incision
capacity by gorge formation or channel narrowing, rather than by streamwise gradient changes, as
has been documented in other steady-state rivers crossing normal faults over time periods > 3 x 10°
years, albeit with much larger discharges (Whittaker et al., 2007b). However, field evidence argues
against this interpretation. The upper parts of rivers crossing these faults (such as river 31) appear
to have wide open valleys in the headwaters (see Fig. 11C), which would not be expected if the
channel had regained a concave-up profile, but had narrowed valley widths to enable the river to
keep pace with ongoing fault uplift. Additionally, these faults have much less present-day
topographic expression than the inner faults; and field investigation shows that the remnants of the
fault planes are completely degraded, unlike the innermost bounding fault set. Therefore, we

interpret the outermost bounding faults to be presently inactive.

5.2. Fault development, lengths and slip rates

5.2.1. Fault evolution and size

The fact that rivers crossing apparent fault offsets and relay zones (Fig. 6) along the strike of the
southern inner-bounding fault all display large convex reaches, as well as those crossing mapped
fault segments, is particularly significant. The clear interpretation is that although some rivers, such
as 25 and 31 etc., originally drained between short fault segments on the inner-bounding faults of

the graben, as is typically seen in extensional terrains (c.f., Leeder and Jackson, 1993; Cowie et al.,
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2006), these rivers are now being perturbed by tectonic uplift. The simplest explanation for these
observations is that the rivers are responding transiently to fault uplift because the once separate
fault segments bounding the southern margin of the Hatay Graben have become linked. Such an
event would produce substantial convex reaches as the rivers adjust to the new uplift rate imposed
on the channel. Moreover, this effect has been documented both in numerical studies of river
response to fault growth and interaction (e.g., Cowie et al., 2006; Attal et al., 2008) and also for
field examples in Italy, Greece, and the canyon lands of Utah (Cowie and Roberts, 2001; Commins
et al., 2005; Whittaker et al., 2008; Cowie et al., 2008). In all these examples, the evidence is
excellent that fault linkage has occurred and has perturbed channels draining through former fault
offsets. We also note that fault growth and interaction is typically associated with (i) an increase in
slip rate along the strike of the whole array, but particularly toward the middle of newly linked fault
segments, because the central faults find themselves under displaced for the longer structure of
which they now form a part and (ii) the “switching off” of distal fault segments that run parallel to
the linked fault if the total rate of extension across the graben is to remain the same (McLeod et al.,
2000; Cowie and Roberts, 2001; Roberts and Michetti, 2004).

We believe that the Hatay area provides good evidence of this process. No evidence is
available for current activity on the outermost faults bounding the graben, whilst we have
documented that these faults were active in the past, suggesting these faults have now “switched
off.” Moreover, all the channels draining across the inner-bounding faults of the graben display
convex reaches that vary systematically along strike. This is important because rivers crossing pre-
existing fault segments that became subaerial by the Pliocene, but had not changed their slip rate
since that time, might be expected to either:

(i) have been defeated in the 5 million years available (something that has clearly happened

to channels draining the outermost graben-bounding faults given the documented wind gaps);
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(if) have reached topographic steady-state with concave-up profiles [documented response
times are ~ 1-2 x 10° My for channels with similar drainage areas, and lithologies and a comparable
Mediterranean climate (Whittaker et al., 2007b)]; or

(iii) display anomalously high convex reach heights compared to rivers nearby that were
perturbed more recently, representing the additional time available for the profile convexity to grow
and to migrate upstream.

As we make none of these observations, we argue that a far simpler and cogent explanation
is that all the channels are simultaneously responding to fault slip rate acceleration as a result of
fault interaction and linkage along the array. In this interpretation, we would expect vertical height
of long-profile convexities to mirror the throw rate increase along the fault — i.e., low or absent at
the ends of the fault, and largest for rivers cutting across the centre of linked fault segments
(Whittaker et al., 2008). In fact, along the southern margin of the Hatay Graben, we document two
peaks in convex reach heights (Fig. 10) at ~ 15 and 30 km along strike. Moreover, the significant
minimum in convexity heights at ~ 20-25 km along the array (for rivers 28-30) coincides with the
position of the Samandag fault, which runs parallel to the southern margin but has stepped out into
the basin. Therefore, any continuation of the basin-bounding faults is in the stress shadow of the
Samandag fault in this area, depressing the throw rate on the former. This geometry is well known
in other areas such as around the Fucino fault, Italy (Roberts and Michetti, 2004). The faults
probably join at a shallow level in the crust, and therefore the total throw rate across the overlapping
strands can be taken cumulatively. This geomorphic analysis suggests that the Hatay Graben is
bounded along its southern margin by at most three fault strands: one linking from 0-25 km along
strike (starting from the north), another from 25-40 km along strike, and additionally, the Samandag
fault that runs parallel to the zone where the former meet. However, given the significant
topographic expression and geomorphic impact of this latter structure and the relatively large throw
it has accumulated (> 500 m) for a segment that is apparently only 6.5 km long, the Hatay Graben is

now quite conceivably bounded by a soft-linked active normal fault (the Antakya fault) that is > 40
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km in length and runs along the entire southern margin of the graben. This finding has substantial

hazard implications for the area (see section 5.4).

5.2.2. Estimating fault slip rates

These results evidently raise questions about the timing of fault linkage and acceleration and about
the present day slip rate on the fault. Clearly, a minimum slip rate for parts of the basin-bounding
fault can be deduced by dividing the total amount of throw accumulated since the early Pliocene by
the time available. For the northern end of the array near the city of Antakya, this calculation (1000
m / 5 My) gives time-averaged rates of up to 0.2 mm/y for this part of the fault. However, this
figure does not take into account any increase in slip rate through time, for which we provide
evidence above. However, an estimate of the relative slip rate enhancement factor, E, along a
linking fault array can be calculated from the length of the pre-existing fault segments, L; ,and the
distance from the midpoint of the i -th segment to the nearest tip of the newly linked fault, R;
,(Cowie and Roberts, 2001). For a simple triangular displacement profile, this is calculated as:

E =2 (Ri/Ly) )

Detailed geological mapping (Fig. 2; see also Boulton et al., 2006; Boulton and Robertson, 2007)
suggests that the fault segments that divide relay ramps and transfer zones are ~ 5 km long. From
the evidence presented above we can (to first order) model the rivers draining the SE margin of the
Hatay basin as crossing two linked arrays, each up to 25 km long (note that apart from the main
axial river none of these channels traverse the Samandag fault). Assuming the constituent fault
segments linked at approximately the same time, we can therefore predict the slip rate enhancement
along strike (Fig. 13). In this case, central parts of both the NE and SW faults underwent a slip rate
increase of up to 5 times upon linkage, with a throw rate minimum at the centrally located segment
tips, 20-25 km along strike. If, at a subsequent time, these two 25-km-long faults have became soft-
linked via the basin-stepping Samandag fault, Eq.2 suggests that this 6.5-km-long structure could

have slip rates up to 7 times greater than the initial slip rate for segment 5, which runs
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approximately parallel. However, throw rate detected by rivers crossing the middle parts of the two
25-km-long fault strands would show little additional enhancement [i.e., for segment 3 (Fig. 13), we

predict E = (2 x 12.5) / 25, i.e., no throw rate enhancement].
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Figure 13. Estimates of throw rate enhancement factor, E, for two linked 25-km-long fault strands,
segmented in 5 km intervals, running along the NE (white circles) and SW (grey circles) of the southern

margin of the Hatay basin.

To first order, the twin-peaked distribution of transient profile convexities along strike (Fig.
10) roughly matches the acceleration calculation shown in Fig. 13. In particular, we document that
convex reach heights vary by ~ 4 times between 5-15 km along strike from the NE, which is very
similar to the throw rate enhancement predicted between strand 1 and 3 in Fig. 13A. Similar
arguments apply for the SW strand of the bounding fault. Clearly, the peak in convex reach heights
for the northern strand is somewhat asymmetric along strike (maximum at 16 km); but as small
deviations from a geometrically “ideal” distribution of throw and throw rate are common (See
Roberts and Michetti, 2004; Commins et al., 2005) and convex reach heights are evidently not an
exact proxy for fault slip rate [see Whittaker et al. (2008) for more discussion] we do not find this
unexpected. For channels near Antakya (e.g., rivers 23-27; ~ 15 km along strike) where we have
the best constraints on the throw of the faults [~ 1000 m (section 2; Boulton, 2006)] this analysis

suggests that they have likely seen a throw rate increase of a factor of 4-5.
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Assuming this throw rate increase is a product of a single linkage event, we can express the

total throw, D, since the Early Pliocene at any point along strike as
D =nti+rt; 3)

where ry, rp are the throw rates before and after the linkage event, respectively; t; is the time
between fault initiation and fault linkage; t, is the time after the slip rate increase. Therefore, t; + t,
=5 My and r, = Er;. Given an estimate of D, we can therefore constrain the range of times that a
single slip rate increase could have occurred and the respective absolute slip rates that date would
imply. This is computed in Fig. 14 for the vicinity of rivers 23-27, where D is ~ 1000 m, and the
throw rate enhancement, E, is a factor of 4-5. For any given time since the slip rate acceleration in
the past, t, we can thus estimate the throw rate before acceleration (squares) and the throw rate
afterward (circles). Note that for comparative purposes we also show r; predictions for E = 5; D =
1050 m, and E = 4; 950 m respectively (lines) — these form the upper and lower bounds,
respectively. rypredictions for fault displacements of 1000 + 50 m lie within the squares shown.

However, the throw rate on the fault post acceleration, r;, should also be independently
consistent with the time taken to grow a long-profile convexity measured on a river at that point.
For channels close to the detachment-limited end member and crossing active faults, Whittaker et
al. (2008) showed both theoretically and through modelling work that the vertical convexity height,
Hs should scale directly with the throw rate perturbation. For our purposes, this means that H =
to(ro-r1). Maximum convexity heights for rivers on the NE part of the southern bounding fault are ~
400 m and, additionally, the thickness of Plio-Pleistocene sediments in the basin (section 2) is > 100
m. This means we need to account for 500 = 50 m of slip near the centre of the NE fault strand
since the fault linkage event. Using this additional constraint, we can therefore estimate both the
timing of fault linkage and also predict the current slip rate on the fault. For fault acceleration times
<1 My, clearly we would need a slip rate to generate the profile convexity rnickzone) (triangles, Fig.
14) that is much higher than the predicted post-acceleration throw-rate, r, (circles). The opposite is

true for fault acceleration occurring before 2 Ma. Our results show the best fit is for fault linkage
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and slip rate increase at ~ 1.4 £ 0.2 Ma, implying a current slip rate on this part of the fault of 0.45 +
0.05 mm/yr with slip rates of ~ 0.1 mm/yr prior to this point in time. Profile convexities for the SE
strand (e.g., river 34) produce almost identical results — H as directly measured is larger (~ 500 m),
but as sediment is not stored in the hanging wall, the total amount of slip to be accommodated is

similar.
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Figure 14. Calculation of possible slip rates for the central part of the NE fault strand before and after fault
linkage as predicted by Eq. 3. Given a fault displacement of D = 1000 m, squares show required slip rate
before fault linkage, ry, as a function of time since the slip rate increase occurred, t,; and circles show the
rate after linkage, also as a function of t,. Grey symbols are for a throw rate enhancement factor, E = 4; black
symbols are for E = 5. Black lines show variability in r, for E = 4; D = 950 m (lower bound) and E =5; D =
1050 m (upper bound). Triangles show the throw rate, rinickzone), N€€ded to generate a 500 m high convex
reach in a river profile as a function of time. Dashed bounding lines show rynickzone) fOr profile convexities of
450 and 550 m, respectively. Assuming a single linkage event, we require rynickzone) = 2. Arrows and grey

bars show best fit occurting at 0.45 + 0.05 mm/y, implying the fault linkage event occurred at 1.4 £ 0.2 Ma.
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The above calculation is evidently an approximation as we assume a single, instantaneous
increase in slip rate on the fault as a result of linkage; we have used a uniform fault segment length
of 5 km to estimate E; and we do not account for any knickzone migration that will serve to
increase the vertical elevation of long profile convexities through time. Nevertheless, evidence
from the central Apennines suggests that changes in fault slip rate from linkage are very rapid in
geological terms (Cowie and Roberts, 2001; Roberts and Michetti, 2004), while fault segment
lengths in the Hatay area are unlikely to be significantly different from the value used.

Importantly, a comparison of the rate derived above to other methods of calculating uplift
rates is favourable. For example, radiocarbon dating of uplifted marine terraces identified on the
southern coastal margins of the graben indicate that the region has been uplifting at ~ 0.55 mm/yr
for the last 5000 years (Pirazzoli et al., 1991; Erol and Pirazzoli, 1992). Therefore, this analysis
demonstrates that it is now possible to derive well-constrained estimates of both fault-slip rates and

the temporal evolution of fault arrays from geomorphic data.

5.3. Structural evolution of the area

The detailed observations and new tectonic constraints allow us to build upon previous models for
the evolution of the Hatay Graben in order to develop a sophisticated understanding of the tectonic
evolution of the area (Fig. 15). Syn-sedimentary relationships indicate that normal faulting in the
Hatay Graben was active during the Middle and Late Miocene (Boulton et al., 2006; Boulton and
Robertson, 2008), although relatively high sea level and high rates of sedimentation meant these
faults had little topographic expression (Boulton et al., 2006) (Fig. 15A). Faulting is inferred to be
the result of far field stresses related to continental collision to the north resulting in flexural,
regional subsidence (Boulton and Robertson, 2008). Stratigraphic offsets indicate ~ 500 m of throw
on initial basin-bounding faults from the base of the Upper Miocene (11 Ma) to the early Pliocene

(~ 5 Ma), suggesting slip rates of ~ 0.1 mm/yr for this time period. A drainage network in the area
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developed after the onset of a regional regression
during the Messinian, associated with the well-
documented salinity crisis (Fig. 15B). During
this time, erosional surfaces formed on the
graben flanks and evaporites were deposited in
the axial zone attesting to a change in graben
dynamics (Boulton, 2006). River systems likely
did not switch on until the later part of this period
when regional evidence suggests that the climate
became wetter at about 5.8 Ma (Griffin, 2002).
Pliocene and younger sediments are
confined to the axial zone of the graben, whereas
Messinian evaporites are also present in
subbasins on the graben flanks (Boulton et al.,

2006). This implies that the innermost faults

Figure 15. Simplified block diagrams illustrating the
fault evolution of the graben. (A) Late Miocene
(Tortonian); a relative sea level high, normal faulting
begins to result in syn-sedimentary thickening into the
fault zone but topography is still subdued. (B) Late
Miocene (Messinian); the Messinian salinity crisis, low
sea level and evaporite deposition within the basin
and initial development of a river system, increased
topographic expression of fault zone. (C) Pliocene;
inner fault relay becomes active, graben increasingly
well defined with corresponding effect on river
evolution, although the graben floor is partly marine at
this time. (D) Early Pleistocene ~1.6 Ma; fault linkage
of the inner fault array takes place; around this time or
shortly after, the outer fault array becomes inactive.
(E) Present day; development of fault zones and river

networks into present configuration.
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became active or only developed significant topographic expression between the deposition of the
Messinian evaporites and the Pliocene sediments, at ~ 5 Ma. During the Pliocene (Fig. 15C), the
faults continued to grow and lengthen. As a result, continuing uplift on the flanks of the graben
apparently defeated the antecedent stream network near the palaeoridge crests, bringing the
drainage divide closer to the forming half graben. By the early Pleistocene, the inner faults began to
interact and link (Fig. 15D), resulting in throw rates in the centre of basin-bounding faults
increasing to ~ 0.45 mm/yr. This slip rate increase also drove up the flank elevation of the southern
margin of the graben and caused footwall incision of graben-draining streams (with concomitant
formation of transient knickzones). The outmost fault zone likely became inactive at this time, as
all extension in the area became focussed on the inner array (c.f., Cowie and Roberts, 2001).
Concomitantly, the palaeo-Asi adopted a position in the proximal hanging wall of the southern
bounding faults as accommodation space was generated rapidly here. The Samandag fault was the
last major fault to develop; this fault has stepped out into the graben after the establishment of the
course of the River Asi, which has subsequently kept pace with footwall uplift, incising a
significiant gorge only a few kilometres upstream of the point of discharge into the sea (Fig. 15E).
Ongoing seismicity (Boulton and Robertson, 2008) and the analysis presented in this paper
show that the basin-bounding normal faults continue to be active. However, strike-slip faulting has
been increasingly important in the deformation of this area, with high numbers of strike-slip faults
recorded in Pliocene sediments (Boulton, 2006; Boulton and Robertson, 2008). This latter
observation has led to two contrasting models of graben formation being proposed for this region of
Turkey: A two-phase evolution, consisting of an initial phase of extension during the Miocene
forming the graben-bounding faults, followed by strike-slip faulting in a second phase, during or
after the Pliocene; or alternatively, a model invoking strain-partitioning or “partitioned
transtension”, where two styles of faulting coexist in different areas; i.e., extensional basin-
bounding faults (extension-dominated transtension) versus strike-slip faulting (wrench-dominated

transtension) within the graben (Boulton and Robertson, 2008). Our analysis here unequivocally
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shows that the graben-bounding normal faults have been active throughout the Plio-Pleistocene to
the present day and that strain has not all been transferred onto strike-slip faults in the axial zone of
the graben. Therefore, the model of oblique extension through partitioned strain between normal

and strike-slip faulting is the most appropriate for this graben.

5.4 Hazard assessment

Seismic hazard is based upon the quantitative estimation of the peak ground shaking at a particular
site; therefore, the accurate determination of ground acceleration is of paramount importance for
countries such as Turkey, which are situated along major seismic belts. Several attempts have been
made at quantifying the level of earthquake risk in Turkey. The present seismic hazard zonation
map (published by the Turkish Ministry of Reconstruction and Settlement, 1996) is divided into
five subclasses (I-V); however, as Kayabali (2002) and Kayabali and Akin (2003) discussed, a
number of major flaws have been noted in this current and official seismic hazard map. This led
Kayabali (2002) and Kayabali and Akin (2003) to develop new and more sophisticated hazard maps
for Turkey that were based upon the active fault map of Turkey by Saroglu et al. (1992) and the
tectonic lineament map of Yaltirak et al. (1998). Unfortunately, these maps do not include 25-40
km long fault(s) bounding the southern margin of the Hatay Graben. As a result, the predicted
maximum peak ground acceleration for the area is likely to be far too low, significantly
underestimating the hazard in this area.

The construction of a detailed seismic hazard map for this region of Turkey is beyond the
scope of this paper, but it is useful to recalculate the potential ground acceleration for the Hatay
area, using the deterministic approach to seismic hazard assessment. This requires the calculation
of the maximum magnitude of a causative fault and the attenuation of seismic energy away from the

fault zone. The maximum magnitude for a fault can be calculated using surface rupture length,
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generally considered to be between one half and one third of the total length of the fault (Mark,
1977). Following Wells and Coppersmith (1994), this can be expressed, for a normal fault, as
M,, = 4.86 + 1.32logL (4)

where M,, is moment magnitude; and L is fault rupture length (in km).

Assuming that the Antakya fault is linked for the total 40 km, a rupture along one third to one half
of the length would result in an M,, of between 6.3 and 6.6. If the faults are linked to the lower
estimate of 25 km, the predicted M,, is reduced slightly, to range between 6.0 and 6.3. If the
attenuation relationship of Joyner and Boore (1998) is then used [shown by Kayabali and Akin
(2003) to be the most appropriate for Turkish geology] an upper estimate for peak horizontal
ground motion of 0.34 g can be calculated for a distance of 10 km away from the fault, which
includes most of the Hatay Graben. This value corresponds to the areas of highest seismic hazard
as defined by the seismic hazard zoning for Turkey. In addition, we should note that the
unconsolidated nature of the graben fill will also act to increase the effect of an earthquake and the
effects will be greater than on the graben flanks that are composed of solid bedrock and are less
densely populated than the graben floor. Clearly, therefore, recent revisions to the seismic hazard
maps of Turkey grossly underestimate the hazard in the Hatay region and must be revised to reflect

this.

5.5. Wider Implications

In addition to the implications for the tectonic evolution of the eastern Mediterranean region, this
work has a significant generic impact. We have demonstrated that a synthesis of detailed
geomorphic observations, in particular river long profile convexities, and pre-existing geological
data can be a powerful, quantitative tool for unravelling the active tectonics of extensional basins.
This is important because, until recently, attempts to extract tectonics from topography have only
met with limited success (c.f., Kirby et al., 2003; Wobus et al., 2006) and have been restricted in

applicability to systems that have reached topographic steady state. In contrast, this is one of the
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first studies (see also Kirby et al., 2007, 2008) not only to use geomorphological techniques to
demonstrate that an area is undergoing a transient response to tectonics, but also to quantify slip
rates on basin-bounding faults and to estimate the timing of fault interaction.

In principle, our analysis is applicable to any neotectonic province undergoing a transient
response to tectonics. As published estimates of landscape response times to tectonic perturbation
are typically of the order of 1-3 My (Whittaker et al., 2007b, 2008), and can be longer (e.g. Clark et
al., 2005; Pelletier, 2007), this implies that “young” extensional basins (drained by sediment-starved
bedrock catchments) are the most fertile targets for further investigation. Given the number of
normal fault-bounded grabens for which some geological and structural data do exist, but where
tectonic rates over time periods of ~ 10° years are poorly constrained (e.g., much of the Western
Anatolian Extensional Province), we believe this approach could be applied widely to many

extensional systems.

6. Conclusions

We have combined qualitative inferences drawn from stream network analyses and geological field
mapping with quantitative data derived from long profile analyses of streams, to unravel the
tectonic evolution of a regionally significant oblique-extensional basin (the Hatay Graben) in
southern Turkey. We show that footwall channels crossing basin-bounding faults display transient
long-profile convexities that vary along strike, and we interpret these to be a response of the
channels to linkage along the fault array. Our data enable us to quantify the present-day slip rates of
graben-margin normal faults and the tectonic evolution of the region through time. In particular, we
show that from 5 My to ~ 1.4 My, throw rates on the faults were no more than 0.1 mm/y and that
post-acceleration at 1.4 Ma, maximum slip rates increased to 0.45 mm/y. We also demonstrate from
a synthesis of structural, geological, and geomorphic analyses that despite topography being highest
in the north of the graben all the major active normal faults are located on the southeastern

boundary and that no evidence was found for active extension along the northwestern margin of the
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Hatay Graben. Additionally, our analysis shows the half-graben is now bounded by a soft-linked
normal fault, which may be as much as 40 km in length, a finding that has substantial hazard
implications for the area.

These findings support previous models of graben formation as an oblique-extensional
graben where strain partitioning has occurred, forming part of the diffuse plate boundary between
Africa and Anatolia. Moreover, this paper now demonstrates that a synthesis of geomorphological
observations with pre-existing geological data can now be successfully used to calculate realistic

slip rates on active faults for time periods > 10° years.
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