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Abstract 1 

We challenge the claim that there are distinct neural systems for explicit and implicit memory 2 

by demonstrating that a formal single-system model predicts the pattern of recognition 3 

memory (explicit) and repetition priming (implicit) in amnesia. In the current investigation, 4 

human participants with amnesia categorized pictures of objects at study and then, at test, 5 

identified fragmented versions of studied (old) and non-studied (new) objects (providing a 6 

measure of priming) and made a recognition memory judgment (old vs. new) for each object. 7 

Numerous results in the amnesic patients were predicted in advance by the single-system 8 

model: 1) deficits in recognition memory and priming were evident relative to a control group; 9 

2) items judged as old were identified at greater levels of fragmentation than items judged 10 

new, regardless of whether the items were actually old or new; 3) the magnitude of the 11 

priming effect (the identification advantage for old vs. new items) overall was greater than 12 

that of items judged new. Model evidence measures also favored the single-system model 13 

over two formal multiple-systems models. The findings support the single-system model, 14 

which explains the pattern of recognition and priming in amnesia primarily as a reduction in 15 

the strength of a single dimension of memory strength, rather than a selective explicit 16 

memory system deficit.  17 
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Introduction 18 

One of the most influential distinctions in the cognitive neuroscience of memory is 19 

between explicit and implicit long-term memory. Explicit memory refers to conscious 20 

recollection of prior experiences. Implicit memory refers to changes in behaviour that are due 21 

to prior experience, but are unaccompanied by conscious recollection of those experiences 22 

(Schacter, 1987). Implicit memory is commonly shown via repetition priming, which is a 23 

change or facilitation in identification, production, or detection of an item (e.g., a picture of 24 

an object) as a result of prior exposure to the same or a similar item. Strikingly, despite 25 

profound deficits in explicit memory tasks such as recognition—in which participants judge 26 

whether items have been presented before in a certain context—individuals with amnesia can 27 

show normal levels of repetition priming (Hamann and Squire, 1997). This dissociation is 28 

widely regarded as some of the strongest evidence for the proposal that functionally and 29 

neurally distinct explicit and implicit memory systems exist in the brain: Recognition is 30 

driven by an explicit (declarative/conscious) memory system located in the medial temporal 31 

lobes (damaged in amnesia), whereas priming is driven by implicit (non-32 

declarative/unconscious) memory systems in modality-specific neocortical regions (Tulving 33 

and Schacter, 1990; Gabrieli, 1998; Squire, 2009). Of primary interest here is the proposal 34 

that recognition and priming are driven by distinct explicit and implicit memory sources 35 

(Squire, 2009). 36 

An alternative perspective is that recognition and repetition priming are driven by the 37 

same memory system or source. This view has been formalised in a single-system (SS) model 38 

of recognition and priming (Berry et al., 2006, 2008a, 2008b, 2010, 2012; Shanks and Berry, 39 

2012). Surprisingly, this model can explain numerous results in healthy adults that on the 40 

surface appear to be indicative of multiple systems; it even predicts results that are not 41 
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predicted by multiple-systems versions of the model and can provide better fits to data (Berry 42 

et al., 2012).  43 

Here we provide a critical test of the SS model by applying it to data from amnesia. 44 

We also compare its fit to two formal multiple-systems models. We test a relatively 45 

homogeneous and well-characterized group of amnesic patients that is atypically large (n = 46 

24) (Hayes et al., 2012). The patients had Korsakoff’s syndrome (KS), a chronic disorder that 47 

is often caused by severe alcoholism and thiamine deficiency that results in diencephalic, 48 

frontal, and hippocampal brain damage (Le Berre at al., in press). It is characterized by 49 

anterograde and retrograde amnesia (Kopelman et al., 2009; Fama et al., 2012; Kessels and 50 

Kopelman, 2012; Race and Verfaellie, 2012). Findings from patients with KS have played a 51 

central role in the formulation of multiple-systems views (Hayes et al., 2012) and implicit 52 

memory is widely regarded to be preserved in KS (Kopelman et al., 2009; Oudman et al., 53 

2011). In the current investigation, participants categorized pictures of familiar objects (e.g., 54 

a guitar) at study. At test, participants identified fragmented versions of old (studied) and new 55 

objects (providing a measure of priming) and made a recognition memory judgment (old/new) 56 

after identifying each object.  57 

 58 

Materials and Methods 59 

Participants 60 

Twenty-four patients (16 male; M age = 50.2 years, SD = 7.7) with Korsakoff’s 61 

amnesia were recruited via the Korsakoff Clinic of the Vincent van Gogh Institute for 62 

Psychiatry, Venray, The Netherlands (KOR group). All patients fulfilled the criteria for 63 

alcohol-induced persisting amnestic disorder (American Psychiatric Association, 2000) and 64 

Korsakoff’s syndrome (Kopelman, 2002). The diagnoses were supported by the patients’ 65 

medical history and neuropsychological assessment, and all participants had anterograde 66 
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amnesia, performing in the impaired range on the Rivermead Behavioural Memory Test 67 

(RBMT) (Wilson et al., 1989; Van Balen et al., 1996) (Total Profile Score M = 6.7, SD = 4.0; 68 

where 17-21 = poor memory, 10-16 = mildly impaired, 0-9 = severely impaired), as well as 69 

retrograde amnesia for their biographical history. Premorbid intelligence was estimated using 70 

the Dutch version of the National Adult Reading Test (Schmand et al., 1991) (NART), with 71 

IQs in the below-average to average range, in agreement with the patients’ educational levels 72 

(M NART-IQ = 93.8, SD = 12.5; M educational level = 3.9, SD = 1.1, where education level 73 

was assessed in 7 categories based on the Dutch educational system, where 1 = primary 74 

school, and 7 = academic degree, Verhage, 1964). Neuroradiological findings (CT or MRI) 75 

showed abnormalities associated with KS, such as (diencephalic) atrophy or white-matter 76 

lesions (Pitel et al., 2012). No brain abnormalities were found that countered the clinical 77 

diagnosis (e.g., large strokes, tumors). All patients were abstinent from alcohol since their 78 

admittance to the clinic (> 3 months prior to testing), none was in the acute Wernicke phase 79 

of the syndrome, and none fulfilled the criteria for alcohol-related dementia (Oslin et al., 80 

1998).  81 

The control group (CON group) also consisted of 24 individuals, matched in terms of 82 

age (M = 50.2 years, SD = 13.6; t(46) = 0.59, P = .56), premorbid IQ (M NART-IQ = 96.4, 83 

SD = 12.6; t(46) = 0.72, P = .47), and proportion of males and females. Exclusion criteria for 84 

the controls were a self-reported history of neurologic or psychiatric disorder, or subjective 85 

cognitive complaints. Level of education (M = 5.3, SD = 0.8) was significantly higher in the 86 

CON group than the KOR group, U = 90.50, P < .01; however, this variable was not found to 87 

be significantly correlated with subsequent measures of recognition or priming performance 88 

at test within each group (rs ranged from -0.14 to 0.23).  89 

 90 

Materials 91 
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The stimuli were 80 color photographs of familiar objects (e.g., a bicycle, a guitar). 92 

All stimuli were presented on a computer monitor against a white background. Each object 93 

subtended approximately 7.5 degrees of visual angle in the horizontal and vertical. Stimuli 94 

were arranged into two 40 item lists. Each list acted as the studied or new stimuli equally 95 

often across participants. Approximately half of the objects in each list were larger than a 96 

shoebox. All instructions were presented in Dutch. 97 

 98 

Procedure 99 

At study, participants were told that they would be presented with pictures of objects 100 

and that they must decide whether each object is smaller or larger in size than a shoebox, 101 

indicating their response with a button press. The sequence of events on each trial was as 102 

follows: a) a central fixation ‘+’ was presented for 2000 ms, b) the object was then presented 103 

for 2000 ms, c) if a response had been made, the next trial then commenced; if a response had 104 

not been made, a blank screen was presented until a response was made. For the duration of 105 

the study phase, the reminder cue “Is the object smaller or larger than a shoebox? Z = smaller, 106 

M = larger” remained visible towards the bottom of the screen. The order of presentation of 107 

items was randomly determined for each participant. There was a short (maximum 5 minutes) 108 

retention interval before the test phase commenced, during which standardised tests (e.g., 109 

NART) were administered. 110 

A continuous identification with recognition (CID-R; Stark and McClelland, 2000) 111 

procedure was used to present each item at test. On each trial an item was initially presented 112 

in an extremely fragmented form. The test phase instructions informed participants that the 113 

object would initially be difficult to identify, but that each press of the spacebar would reveal 114 

a less fragmented version of the object (up to 10 levels, see Fig. 1). Their task was to identify 115 

each object at the most fragmented level that they could. Participants were told not to try to 116 
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identify the object until they were sure that they could do so. Identification accuracy was near 117 

ceiling in both groups, although higher in the CON group: proportion of trials correct, CON 118 

group, M = 0.998; KOR group, M = 0.958 (excluding one outlier in the KOR group who only 119 

identified 0.49 proportion of trials correctly; the recognition/priming results reported later are 120 

not affected if this participant is excluded). Trials on which an incorrect identification 121 

occurred were not excluded from the analysis in order to preserve recognition data; however, 122 

the qualitative pattern of results did not differ when they were excluded (one exception to this 123 

was that Prediction 3 in the KOR group was only significant on a one-tailed test). The prompt 124 

“Press SPACE to reveal more of the drawing, and press ENTER at the earliest point that you 125 

can identify the item correctly” remained on screen during the clarification procedure. When 126 

participants pressed enter, a black outlined box and prompt (“Type your response and then 127 

press ENTER”) appeared beneath the fragmented object. After a response was typed, the 128 

non-fragmented version of the object was then presented with the prompt, “Was the object 129 

presented in the first stage?  1 = sure no, 2 = probably no, 3 = probably yes, 4 = sure yes”. 130 

After participants made their recognition response, a blank screen was presented for 2000 ms 131 

before the next test trial was presented. There were 80 trials in total (40 old and 40 new). To 132 

evenly distribute old and new trial types across the test phase, trials were randomly arranged 133 

into four blocks with an equal number of old and new trials in each block (there was no 134 

indication of block transition to participants). 135 

To create fragmented versions of each image, each 400 × 400 pixel image was 136 

divided into 400 20 × 20 pixel squares. At each of ten possible fragmentation levels, a fixed 137 

proportion of the squares containing the target image were displayed. The proportion of 138 

squares displayed at each fragmentation level x, was calculated as 0.75
(10 - x)

, x  [1, 10]. Thus, 139 

the fragmentation procedure was such that the rate of clarification was relatively slow across 140 
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the initial fragmentation levels and more rapid in the later stages. This was done to increase 141 

the difficulty of the task in the early stages of the procedure. 142 

Recognition responses were collapsed across confidence ratings “1” and “2” for “new” 143 

judgments, and “3” and “4” ratings for “old” judgments. This was done because a large 144 

proportion of participants made no responses in at least one of the confidence (1 to 4) × item 145 

status (old, new) response categories (79% of individuals in the KOR group, and 71% of 146 

individuals in the CON group). Recognition performance was measured with Pr and d′. Pr 147 

was calculated as, H – F, where H = p(hit), and F = p(false alarm); d′ was calculated as z(H) – 148 

z(F)); a “hit” is an old judgment to an old item, a “false alarm” is an old judgment to a new 149 

item. Response bias was measured with C (C = -0.5[z(H) + z(F)]). For the calculation of d′ 150 

and C, a correction was applied when calculating H and F for each individual (i.e., H = (no. 151 

hits + 0.5) / (no. possible hits + 1), and F = (no. false alarms + 0.5) / (no. possible false 152 

alarms)) (Snodgrass and Corwin, 1988). This enabled calculation of d′ and C for participants 153 

whose H or F equalled 1 or zero. An alpha level of .05 was used for all statistical tests, and all 154 

t tests were two-tailed unless indicated. Effect sizes are indicated by Cohen’s d (for t tests) 155 

and ηp
2
 (for ANOVA). 156 

 157 

Reliability of the recognition and priming measures 158 

Prior research has shown that it is important to take into account the reliability of the 159 

tasks used to measure recognition and priming when comparing performance (e.g., Buchner 160 

and Wippich, 2000). Accordingly, the reliability of the recognition and priming measures was 161 

calculated using split-half correlations. Each participant’s dataset was split into odd and even 162 

trials, and then recognition (Pr) and priming measures were calculated for the trials in each of 163 

these halves. The split-half correlation for recognition/priming is the Pearson correlation of 164 

the recognition/priming measures for each half, across participants. Importantly, both 165 
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recognition and priming were highly reliable: recognition, r(46) = .91, P < .001; priming, 166 

r(46) = .56, P < .001. The greater reliability of the recognition task is consistent with 167 

previous research (Buchner and Wippich, 2000), however when each group was analysed 168 

individually, the reliability of recognition was only greater than that of priming in the KOR 169 

group and not the CON group (where the reliability of recognition and priming was 170 

approximately equal): KOR group, recognition, r(22) = .84, P < .001, priming, r(22) = .47, P 171 

= .02; CON group, recognition, r(22) = .50, P = .013, priming, r(22) = .58, P = .003.  172 

 173 

Formal single- and multiple-systems models 174 

Full details of the models are given in Berry et al. (2012). The single-system SS 175 

model is based on signal detection theory (Green and Swets, 1966) and assumes that at test 176 

each item is associated with a memory strength value, f, which is a normally distributed, 177 

random variable with mean (µ) and standard deviation σf  (i.e., f ~ N(µ, σf)). The mean f of 178 

old items can be greater than of new items because of prior study (i.e., µold ≥ µnew). An item’s 179 

value of f is used to derive its recognition judgment and its measure of priming. To generate a 180 

recognition judgment, random, normally-distributed noise, er, is first added to f to produce the 181 

judgment measure Jr (i.e., Jr = f + er, where er ~ N(0, σr)). If Jr exceeds a particular threshold 182 

of strength, C, the item will be judged old, otherwise it will be judged new. For the priming 183 

task, greater values of f will tend to result in better performance in the task. For example, if 184 

the task is to identify fragmented versions of an object (fragment identification), the greater 185 

the value of f of an item, the greater the level of fragmentation at which it will be identified. 186 

Importantly, however, f is combined with another independent source of random normally-187 

distributed noise, ep, to derive the priming measure (i.e., ID = b – sf + ep, where ID is the 188 

level of fragmentation at which identification occurs; b and s are scaling parameters, b is the 189 



 

11 

 

 

ID intercept, s is the rate of change in ID with f; and ep ~ N(0, σp)). Both of the task-specific 190 

noise variables er and ep have means equal to zero.  191 

 The SS model can be modified to create two “multiple-systems” versions of the 192 

model—the MS1 and MS2 models. The MS1 model is the same as the SS model except that 193 

one “explicit” memory strength signal, fr, drives recognition (where fr ~ N(µr, σf)), whereas a 194 

separate “implicit” memory signal, fp, drives priming (where fp ~ N(µp, σf)). As in the SS 195 

model, fr and fp are combined with task-specific sources of noise (er and ep) to produce the 196 

recognition judgment (i.e., Jr = fr + er) and priming measure (i.e., ID = b – sfp + ep). 197 

Importantly, however, fr and fp are uncorrelated (i.e., r(fr, fp) = 0) and the mean explicit 198 

strength of old items (µr| old) can vary independently of the mean implicit strength of old items 199 

(µr| old) across individuals/conditions. This allows the model to produce dissociations at the 200 

level of individual items (e.g., stochastic independence, Tulving et al., 1982; Poldrack, 1996) 201 

and also at the level of group/condition (e.g., independent effects of a variable upon 202 

recognition and priming, such as the dissociation in amnesia). Thus, this model represents a 203 

relatively strong interpretation of the idea that explicit and implicit memory systems are 204 

independent (Tulving et al., 1982).  205 

Another model, the MS2 model, represents a weaker interpretation of the idea that 206 

there is independence between systems (Berry et al., 2012). This model is identical to the 207 

MS1 model except that the explicit and implicit strengths of individual items may be 208 

positively correlated (with correlation w). A correlation could arise, for example, via 209 

distinctiveness: a more distinctive item may be better encoded into both the explicit and 210 

implicit memory systems. This gives the MS2 model greater flexibility, allowing it to 211 

reproduce associations between recognition and priming measures at the level of individual 212 

items (like the SS model). In fact, the MS2 model subsumes the SS and MS1 models as 213 

special cases of it, and the MS2 model can therefore, in principle, produce any result that the 214 
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SS and MS1 models can (Berry et al., 2012). When the correlation between fr and fp is 1 (i.e., 215 

r(fr, fp) = 1) and the mean fr, and fp of old items are equal (i.e., µr| old = µp| old), fr = fp, and so the 216 

model reduces to the SS model; when the correlation between fr and fp is zero (i.e., r(fr, fp) = 217 

0), the model reduces to the MS1 model (Berry et al., 2012). 218 

 219 

Model fitting 220 

Models were fit using maximum likelihood estimation (full details are given in Berry 221 

et al., 2012). The likelihood of each identification level (ID) and judgment (Z) combination is 222 

given by the following function: 223 

 224 
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where  r| new = 0 when X = new, and  r| old   0 when X = old;  p| new = 0 when X = new, and  p| 234 

old   0 when X = old. In the SS model,  r| old  =  p| old  =  old, and w = 1. In the MS1 model, w 235 

= 0; in the MS2 model, 0 ≤ w ≤ 1. 236 

In fitting the models to the data, an automated procedure was used to find the 237 

parameter values that maximise the summed log likelihood across trials. A full list of 238 

parameters (both free and fixed) is given in Table 1. Certain parameter values are non-239 

identifiable and their value was therefore fixed such that they act as scaling parameters (as in 240 

Berry et al., 2012): SS model, µnew = 0; MS1/MS2 models, µr| new = µp| new = 0; M(ep) = M(er) 241 

= 0; σf = σr = √0.5; finally, the value of s in the MS1 and MS2 models was fixed to that of the 242 

SS model. Fixing σf and σr to √0.5 means that the standard deviation of Jr is equal to one 243 

(because σJr = (σf
2
 + σr

2
)), and  r| old can therefore be interpreted as d′. We have previously 244 

shown that whether s is fixed or free to vary in the MS1 and MS2 models does not affect their 245 

fit (Berry et al., 2012). 246 

This leaves five free parameters in the SS model: µold, the mean strength of the old 247 

item distribution; C, the “old” judgment criterion; b, the ID intercept; s the rate of change in 248 

the ID level with changes in f; and σp, the variance of ep, the noise associated with the 249 

priming task. The MS1 model also has five free parameters: µr| old, the mean explicit memory 250 

strength of the old item distribution; µp| old, the mean implicit memory strength of the old item 251 

distribution; C, the “old” judgment criterion; b, the ID intercept; and σp, the variance of ep. 252 

The MS2 model has six free parameters: µr| old, the mean explicit memory strength of the old 253 

item distribution; µp| old, the mean implicit memory strength of the old item distribution; C, 254 
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the “old” judgment criterion; b, the ID intercept; σp, the variance of ep; and w, the correlation 255 

between fr and fp. 256 

It is usually preferable to fit the models to each participant’s data, however, this was 257 

not possible for all participants because the model parameters could not be estimated for 258 

participants who did not make at least one hit, miss, false alarm, or correct rejection response. 259 

Accordingly, the models were fit to 1) the data aggregated across the 24 participants within 260 

each group, and also 2) to each individual’s data, providing that the individual made at least 261 

one hit, miss, false alarm and correct rejection response (n CON group = 19; n KOR group = 262 

15). We report the AIC and BIC measures of fit because both are frequently reported in 263 

model comparisons. We place more emphasis on the AIC because our previous investigations 264 

indicate that the true generative model can be more reliably identified with this measure 265 

(Berry et al., 2012). 266 

Given the best fitting parameter values for a model, the expected model results can be 267 

calculated analytically as 268 

  269 

P(hit) = 1 −  (C − r| old)  

P(false alarm) = 1 −  (C)  

d′ = r| old  

E[ID| new] = b  

E[ID| old] = b − sp| old  

Priming effect = sp| old  

 270 

The expected values of ID conditional on judgment Z are given by the following 271 

function: 272 
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where σJr = (σf
2
 + σr

2
). j = 1 when Z = N, and j = 2 when Z = O; C0 = -∞, C1 = C and C2 = ∞. 273 

Thus, the equation gives the expected ID of hits (E[ID| H]) when X = old and Z = O; it gives 274 

the expected ID of false alarms (E[ID| F]) when X = new and Z = O. Similarly, the equation 275 

gives the expected ID of misses (E[ID| M]) when X = old and Z = N; and gives the expected 276 

RT of correct rejections (E[ID| CR]) when X = new and Z = N. 277 

 In the data, because the mean ID for items judged old/new are weighted means, the 278 

expected ID for items judged old/new are given by the weighted expected IDs to hits and 279 

false alarms (items judged old), or misses and correct rejections (items judged old); hence 280 

 281 

 [          
 ( ) [        ( ) [      

 ( )    ( )
                

and 282 

 [          
[(   ( )  [        [   ( )  [       

   ( )   ( )
     

 283 

The overall fluency effect (see below) can be calculated as E[ID| Z = N] – E[ID| Z = O].  284 

 We should note that the ID response variable is discrete, but is modeled here as 285 

continuous (because fp ~ N(µp, σf) and ID = b – sfp + ep). To justify this way of modeling ID, 286 

parameter recovery simulations were carried out. In these simulations, first, recognition 287 

judgment and ID data (for 10,000 old/new items) was simulated from a given model. The 288 
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parameter values used for this were the mean estimated parameter values for the KOR group 289 

(given on the right-hand side of Table 1). The simulated ID values were then rounded to the 290 

nearest integer; if the value was less than 1 or greater than 10 then it was rounded to 1 or 10, 291 

respectively, thereby producing discretized ID data. The simulated ID and judgment data 292 

were then fit by the models as described above and the estimates of the free parameters were 293 

compared to the values of the parameters that were originally used to simulate the data (i.e., 294 

the true parameter values). For all models, the estimated parameter values matched the true 295 

parameter values. This demonstrates that the parameters of the models can still be recovered, 296 

even though the ID data are discrete. 297 

Another issue concerns the function used to relate fp to ID level. The amount of a test 298 

picture revealed across levels varies by an exponential function whereas the equation relating 299 

ID level to fp in the models is linear. It is possible that an alternative function relating ID to fp 300 

would provide a more complete characterisation of the ID data and improve the performance 301 

of all of the models. However, most important for current purposes is that ID is modeled as a 302 

monotonically decreasing function of fp in all models. We chose to model the ID variable in 303 

this way for consistency with previous applications of the models, and for ease of model 304 

specification.  305 

 306 

Model predictions 307 

Three key predictions are made by the SS model. These predictions follow from the 308 

assumption that greater values of f tend to lead to a greater likelihood of an old judgment and 309 

also better performance in the priming task (i.e., greater values of Jr and lower values of ID, 310 

see Fig. 2). Prediction 1 is that, given a deficit in recognition in amnesic individuals, a deficit 311 

in priming should also be evident. This is because changes in the mean f of old items (µold) 312 

will tend to affect overall levels of both recognition and priming. However, the effect on 313 
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priming can be smaller in magnitude than for recognition because of the greater variance of 314 

the noise associated with the priming task that is typically assumed (Berry et al., 2006). The 315 

MS1 and MS2 models can reproduce any pattern of recognition and priming, and so do not 316 

make this prediction in advance.  317 

Predictions 2 and 3 concern performance in the priming task when broken down by 318 

recognition response (Fig. 2). Prediction 2 is that, within old and new items, items that are 319 

judged old are likely to be identified at greater levels of fragmentation than items judged new 320 

(this is often referred to as a fluency effect, Conroy et al., 2005): Items with values of Jr that 321 

exceed the criterion C are judged old and tend to have larger fs than items judged new. 322 

Because the same f drives identification, items judged old will tend to be identified at more 323 

fragmented levels. Prediction 3 concerns the priming effect for items judged new. This effect 324 

has been reported in numerous studies and on the surface appears to indicate that recognition 325 

and priming have distinct memorial bases since priming occurs in the absence of overt 326 

recognition (Berry et al., 2008a). The SS model predicts that the magnitude of the priming 327 

effect (i.e., the identification advantage of all old items relative to new items) will be greater 328 

than the priming effect within the subset of items judged new (i.e., the identification 329 

advantage for old items judged new relative to new items judged new). This is because values 330 

of Jr tend to be greater for old items than new items, even within the subset of items judged 331 

new. However, the difference in Jr between all old and new items is greater than the 332 

difference in Jr between old and new items within the subset of items judged new (see Fig. 2). 333 

Because differences in Jr tend to reflect differences in f, the priming effect across all items 334 

will tend to be greater than the priming effect within the subset of items judged new. (Though 335 

differences in Jr do not always reflect differences in f as is the case, for example, with false-336 

alarm and miss responses, see Berry et al., 2008a.) Predictions 2 and 3 are not made by the 337 

MS1 model because the identification RT and Jr are uncorrelated within item type (see Figure 338 
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2). The MS2 model can produce the same results as the SS model with regard to Predictions 2 339 

and 3, but the greater flexibility of this model means that it does not make these predictions in 340 

advance. 341 

 342 

Results 343 

SS model prediction 1 344 

Recognition memory was significantly lower in the Korsakoff (KOR) group (n = 24) 345 

than the control (CON) group (n  = 24) (Figs. 3a and 4a): Pr, t(46) = 9.31, P < .001 (Cohen’s 346 

d = 2.69); d′, t(46) = 8.21, P < .001 (KOR group, d′ = 1.00, SE = 0.17; CON group, d′ = 2.64, 347 

SE = 0.11), consistent with the memory disorder in these individuals. Recognition was 348 

reliably greater than chance (i.e., d′ or Pr > 0) in both groups (ts > 5.31, ds > 1.08), and there 349 

was no significant difference in response bias (C) between the groups, t(46) = 1.23, P = .23, d 350 

= 0.36: M C, KOR group = 0.50, SE = 0.21; M C, CON group = 0.23, SE = 0.08. 351 

Priming was calculated as the mean identification level for new items minus the mean 352 

identification level for old items. Both groups showed reliable (i.e., greater than zero) levels 353 

of priming: KOR group, M = 0.35, SE = 0.11, t(23) = 3.18, P =.004, d = 0.65; CON group, M 354 

= 0.68, SE = 0.14, t(23) = 4.78, P < .001, d = 0.98 (Fig. 3b and 4a). Crucially, priming was 355 

significantly lower in the KOR group than the CON group, t(46) = 1.84, P = .036 (one-tailed; 356 

d = 0.53), as predicted by the SS model. Furthermore, there was no significant difference in 357 

the mean identification level for new items across groups (Fig. 3b), t(46) = 0.74, P = .47, d = 358 

0.21, which indicated that any difference in priming across groups could not be attributed to 359 

differences in baseline levels of performance in the task. Identifications were made at all 360 

possible fragmentation levels (Range = 1-10 in both groups; interquartile range, KOR group 361 

= 5-8; CON group = 4-8). 362 

 363 
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SS model predictions 2 and 3 364 

To test Predictions 2 and 3, the identification level of each item at test was analysed 365 

according to the four possible recognition responses: a correct rejection is a “new” judgment 366 

to a new item, a false alarm is an “old” judgment to a new item, a miss is a “new” judgment 367 

to an old item, and a hit is an “old” judgment to an old item (Fig. 3c). A subset of participants 368 

made no responses in at least one of the four response categories, and so they were not 369 

included in the following analyses. There were five participants from the CON group: one 370 

had a hit rate of 1 and four had a false alarm rate of 0. Nine participants were also excluded 371 

from the KOR group on this basis: one had a hit rate of 1, one had a false alarm rate of 1, and 372 

seven had a false alarm rate of 0. The priming scores in the excluded participants were 373 

slightly higher than in the full set of participants (KOR group, M = 0.45; CON group, M = 374 

0.89). In the CON group, the excluded participants tended to have slightly higher recognition 375 

scores (d′ = 3.17, Pr = 0.82), however, in the KOR group, the recognition scores were similar 376 

to the pre-exclusion group mean (d′ = 1.07, Pr = 0.17). The excluded KOR participants did 377 

not appreciably differ from the pre-exclusion KOR group in terms of age (M = 49.33 years), 378 

NART-IQ (M = 89.00), RBMT (M = 6.22), or education (M = 4.11). Listwise removal of 379 

these participants did not result in any qualitative changes in the recognition and priming 380 

differences reported, with the exception that the difference in the priming effects between the 381 

groups was only marginal, t(32) = 1.51, P = .07, d = 0.53 (one-tailed) (KOR group: M = 0.30, 382 

SE = 0.14; CON group: M = 0.64, SE = 0.16); thus, there is a need for a little caution in the 383 

claim of a deficit in priming in this KOR group. However, the priming effect in the subsetted 384 

KOR group (d = 0.52) was still smaller than that of that of the CON group (d = 0.90) and was 385 

only marginally significantly different from chance, t(14) = 2.09, P = .055, which is, at least, 386 

still consistent with a deficit. 387 
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As predicted by the SS model (Prediction 2), in the KOR group, mean identification 388 

levels for items judged old were lower than those of items judged new within new and old 389 

items: ID(correct rejection) vs. ID(false alarm), t(14) = 3.04, P = .009, d = 0.42; ID(miss) vs. 390 

ID(hit), t(14) = 3.98, P = .001, d = 0.74 (Figure 4b). Furthermore, as predicted by the SS 391 

model (Prediction 3), the magnitude of the priming effect for items judged new (calculated as 392 

ID(correct rejection) − ID(miss)) was significantly lower than the priming effect for items 393 

judged new in the KOR group, t(14) = 2.51, P = .025, d = 0.51. However, the priming effect 394 

for items judged new was not reliable in this group, t(14) = 0.083, P = 0.94, d = 0.02. Similar 395 

trends regarding Predictions 2 and 3 were evident in the CON group, however, these were not 396 

reliable (Figure 4b): Prediction 2, ID(correct rejection) vs. ID(false alarm), t(18) = 1.50, P 397 

= .15, d = 0.23; ID(miss) vs. ID(hit), t(18) = 1.29, P = .21, d = 0.15; Prediction 3, t(18) = 1.18, 398 

P = .25, d = 0.28. The priming effect for items judged new was, however, reliable in the CON 399 

group, t(18) = 2.89, P = .01, d = 0.29. A 2 (Item Type: old, new) × 2 (Judgment: old, new) × 400 

2 (Group: CON, KOR) ANOVA was also conducted on the identification levels. There was a 401 

significant main effect of Judgment, F(1, 32) = 21.23, p < .001, ηp
2
 =.40, indicating that 402 

identification levels tended be lower for items judged old versus new. No other main effects 403 

or interactions were significant (main effect of Item Type: F(1, 32) = 3.28, p = .08; all other 404 

Fs < 2.33, ps > .137, ηp
2
s < .09). 405 

 406 

Model fits 407 

Table 2 shows the fit of the models to the data and Table 1 shows the best fitting 408 

parameter estimates of the SS, MS1, and MS2 models. When fit to the data aggregated across 409 

participants, the SS model provided the best fit to the CON group (indicated by the lowest 410 

AIC value in Table 2), but the MS2 model provided the best fit to the KOR group. However, 411 

the differences in AIC between the SS and MS2 models are very small (a difference of 1.2 for 412 
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the CON group, and 0.3 for the KOR group) indicating that both models fit the data almost as 413 

well as each other (Burnham and Anderson, 2002). Furthermore, as shown in Table 1, the 414 

best-fitting value of w in the MS2 model was equal to 1, and the values of µr| old and µp| old 415 

were also very similar within groups, suggesting that the MS2 model fits the data best when it 416 

behaves more like the SS model. When the models were fit to each individual, the SS model 417 

provided the best fit to both groups (Table 2), and the AIC was substantially smaller for the 418 

SS model compared to the MS1 and MS2 models (i.e., > 10), indicating substantial support 419 

for the SS model (Burnham and Anderson, 2002). The majority of participants in each group 420 

were best fit by the SS model, with the remainder being best fit by the MS1 model (Fig. 5). 421 

The BIC results also tended to support the SS model (Table 2 and Fig. 5).  422 

The expected model results are indicated by the symbols in Figures 3 and 4. All 423 

models closely reproduced the key trends in the data: recognition and priming were lower in 424 

the KOR group than the CON group (Prediction 1); the SS and MS2 models predicted non-425 

zero differences between ID(correct rejection) and ID(false alarm), ID(miss) and ID(hit) 426 

(Prediction 2), and also between priming overall and for items judged new (Prediction 3) (Fig. 427 

4). The MS1 model did not, however, predict any of these differences (Fig. 4).  428 

Data from individual patients who show normal priming despite a complete absence 429 

of recognition memory (e.g., patient E.P., Hamann and Squire, 1997; Stefanacci et al., 2000; 430 

Conroy et al., 2005) is particularly challenging for single-system accounts (Berry et al., 2012). 431 

Three densely amnesic patients from this study who showed priming despite performing 432 

at/near chance in recognition yielded results that did not clearly provide evidence for any 433 

model, but it is important to stress that their results were not incompatible with the SS model 434 

(Figures 6 and 7, patients A-C). Patient A was female, 51 years of age, with a NART-IQ 435 

score of 109, RBMT score of 4, and education level of 5; patient B was male, 54 years of age, 436 

with a NART-IQ score of 101, RBMT score of 2, and education level of 5; and patient C was 437 
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male, 59 years of age, with a NART-IQ score of 87, RBMT score of 12, and education level 438 

of 2.  439 

Patients B and C were best fit by the MS1 model, and patient A by the SS model 440 

(though the differences in AIC between the best fitting models were small—less than 4). The 441 

mean priming effect in this subgroup was equal to M = 0.59 (SE = 0.20), which is lower than 442 

the priming effect shown in the CON group (M = 0.68, SE = 0.14), but still within the 95% 443 

confidence interval of the CON group mean (Fig. 4). From panels (a) and (b) of Figure 7, it is 444 

evident that the MS1 and MS2 models closely fit the recognition and priming results, 445 

whereas the SS model predicts a small amount of recognition in these patients, and a lower 446 

magnitude of priming than was evident in these individuals. From panels (b) and (c) it is 447 

evident that 1) priming in patient A, but not patients B and C, was below the lower 95% 448 

confidence interval of mean priming in the CON group; 2) all patients showed a fluency 449 

effect within old items, and patients A and C, but not patient B, showed a fluency effect 450 

within new items; and 3) patients A and B, but not patient C, showed a greater priming effect 451 

than the priming effect for items judged new. Thus, results (2) and (3), and to a lesser extent 452 

result (1), are largely compatible with the predictions of the SS model (and also the MS2 453 

model). It is noteworthy that the SS model is able to reproduce a substantial priming effect in 454 

patient B despite very low recognition.  455 

 456 

Discussion 457 

Contrary to longstanding views that recognition memory and repetition priming are 458 

driven by distinct memory systems (Squire, 2009), this study showed that numerous results in 459 

amnesic patients could be predicted in advance by a single-system model: 1) reliable deficits 460 

in recognition and priming were found relative to the controls; 2) items judged old were 461 

identified at greater levels of fragmentation than items judged new within both old and new 462 
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items; 3) the magnitude of the priming effect overall was greater than the priming effect for 463 

items judged new (though note that priming for items judged new was not reliable in the 464 

KOR group). Findings (2) and (3) were not predicted by the MS1 model, but were 465 

reproduced by the MS2 model. The AIC and BIC model evidence measures, however, 466 

indicated that there was greater support for the SS model than the MS2 model. Thus, overall, 467 

the data from the amnesic patients favored the SS model over the MS1 and MS2 models. 468 

Findings (2) and (3) are therefore in agreement with a previous study that found similar 469 

results in normal adults (Berry et al., 2012).  470 

The deficit in priming found in the KOR group in this study contrasts with the widely 471 

held view that priming is preserved in amnesia. Although priming is frequently found to be 472 

preserved in amnesia (Gabrieli, 1998), many studies, like ours, have also reported deficits 473 

(Warrington and Weiskrantz, 1968; Cermak et al., 1993; Verfaellie et al., 1996; Ostergaard, 474 

1999; Verfaellie and Cermak, 1999; Meier et al., 2009). When Korsakoff patients are 475 

specifically considered, priming deficits are often reported when the priming task is picture 476 

fragment completion (Hayes et al., 2012). There are different interpretations of such priming 477 

deficits. In KS, one account is that they reflect visuoperceptual impairments (see Hayes et al., 478 

2012). However, such an account does not appear to explain the priming deficit found in this 479 

study because baseline levels of identification (fragment identification levels for new items) 480 

did not differ between the KOR and CON groups, suggesting that the visuoperceptual 481 

abilities of the groups were appropriately matched.  482 

One possible multiple-systems interpretation of the deficit in priming is that priming 483 

is greater in the CON group because these individuals use their greater capacity for explicit 484 

memory to retrieve studied items from memory during the identification portion of a trial; 485 

doing so increases the magnitude of priming relative to the amnesic patients (Squire et al., 486 

1985). Although possible, there is evidence to suggest that such an account is unlikely to 487 
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apply to our data. For example, this type of explicit contamination of fragment identification 488 

performance is deemed more likely to occur (and be more effective) when participants 489 

identify fragments at both study and test. Under these conditions, an association between the 490 

fragment and the picture name can be formed at study and then be recalled at test (Verfaellie 491 

et al., 1996). In our study, however, participants only identified fragments at test, and so there 492 

was no opportunity for specific fragment-picture name associations to be formed at study. 493 

Moreover, in experiments using a CID-R task with normal adults, it has been found that even 494 

under conditions that appear optimal for using an explicit retrieval strategy in a CID-R task 495 

(i.e., informing the participant whether the upcoming trial will contain an old or new item), 496 

there was no evidence of greater priming than under typical testing conditions (Ward et al., 497 

2013) (for a similar finding see also Brown et al., 1991; see also Ostergaard, 1998, 1999, for 498 

a discussion of explicit contamination in a similar task). 499 

The SS model explains the deficits in the KOR group as arising from the weaker 500 

strength of a single underlying memory signal for studied items relative to the CON group. 501 

Interestingly, the effect of KS was larger on recognition than on priming (Cohen’s d, 502 

recognition = 2.69, priming = 0.53), and this was captured by the SS model (Cohen’s d, 503 

recognition = 2.27, priming = 0.51). The SS model is able to predict this interaction because 504 

there is not a one-to-one mapping between strength and performance; the signal is scaled 505 

differently, and subjected to different sources of noise for each task. That a single memory 506 

strength signal is expressed differently in two tasks in the SS model is conceptually similar to 507 

other models in which a single underlying memory trace is accessed in different ways 508 

depending upon the retrieval process (e.g., Greve et al., 2010). The difference in effect sizes 509 

predicted by the SS model is one possible explanation for why deficits are more frequently 510 

found in recognition than priming in amnesia. Consistent with this is the finding that priming 511 

tasks are typically less reliable than recognition tasks (Buchner and Wippich, 2000); indeed, 512 
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the reliability of the recognition and priming tasks in our study tended to confirm this (see 513 

Materials and Methods).  514 

In the CON group, numerical trends were found in support of predictions (2) and (3), 515 

but these were not reliable. This is most likely due to low power: The number of misses and 516 

false alarms in the CON group was relatively low (CON group: median = 5 misses, 2 false 517 

alarms; vs. KOR group: median = 16 misses, 11 false alarms), and so the variability in 518 

identification levels for these responses was relatively high (Figure 3c). Clear evidence of 519 

predictions (2) and (3) in normal adults has, however, been found across three experiments by 520 

Berry et al. (2012) with normal adults. They used a greater number of stimuli than this study 521 

(72-150 vs. 40 old/new items) and overall levels of recognition were lower (d′s < 1.5 vs. d′ = 522 

2.64), which resulted in more false alarms and misses. 523 

One potential concern with the CID-R task is that the identification portion of the trial 524 

may affect the recognition judgment. This may be deemed likely since recognition and 525 

priming trials are necessarily interleaved due to the nature of the task. Early dual-process 526 

theories of recognition proposed that perceptual fluency can act as one basis of recognition 527 

(Mandler, 1980; Jacoby and Dallas, 1981), and studies have shown that the probability of an 528 

old judgment to an item is greater if the rate at which it clarifies from a mask is fast rather 529 

than slow (Johnston et al., 1991). In other words, a relatively fluent identification can be 530 

attributed to prior exposure. It is therefore possible that the relations between priming and 531 

recognition that we find are accentuated by the CID-R task. However, there is evidence from 532 

similar studies that have used blocked designs, which demonstrate that the within-item 533 

recognition-priming measure associations of the kind observed in this study are not 534 

dependent upon the interleaved nature of the CID-R task (Ostergaard, 1998; Sheldon and 535 

Moscovitch, 2010) (see also discussion in
 
Berry et al., 2012). 536 
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An important question is whether the SS model extends to other explicit tasks that are 537 

more reliant upon recollection (i.e., remembering prior context). Berry et al. (2012) found 538 

some evidence for this using a modified CID-R task with remember-know judgments 539 

(Tulving, 1985). Remember judgments are widely thought to measure a recollection memory 540 

process (Yonelinas, 2002). Berry et al. (2012) found that identification RTs to items given 541 

remember judgments were faster than for those given know judgments (commonly thought to 542 

measure a familiarity process), and this was predicted by the SS model. In future research it 543 

will be important to determine if the model extends to other tasks that are reliant upon 544 

recollection such as source memory.  545 

Finally, a remaining issue is whether the SS model can explain the opposite kind of 546 

dissociation to that reported in amnesia, namely, evidence of brain regions that support 547 

priming but not recognition. Although initial neuropsychological studies indicated that the 548 

right occipital lobe was such a region (e.g., Gabrieli et al., 1995), subsequent investigations 549 

have not corroborated this (Yonelinas et al., 2001; Kroll et al., 2003). Nevertheless, it is clear 550 

that regions outside the medial temporal lobe are involved in priming (and also recognition) 551 

(Schacter et al., 2007), and one avenue for future research will be to determine how the 552 

activity of different regions maps onto the single strength signal in the SS model. 553 

To conclude, the results from amnesic patients supported the predictions of the SS 554 

model. Numerous results were inconsistent with the MS1 model; this suggests that 555 

recognition and priming are not driven by completely independent explicit and implicit 556 

memory signals. Like the SS model, the MS2 model could account for the data. The MS2 557 

model explains the deficits in recognition and priming in amnesia as reductions in the 558 

strength of both the explicit and implicit memory signals. There is also a substantial degree of 559 

association between the explicit and implicit memory strengths of a given item according to 560 

this model. The SS model, however, tended to be preferred according to model evidence 561 
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measures and could predict the majority of results in amnesia in advance. Thus, the SS model 562 

appears to provide the most parsimonious account for the pattern of recognition and priming 563 

in amnesia found in this study.  564 
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Figure Legends 690 

Figure 1. Example of a fragmented stimulus used in the identification portion of a CID-R 691 

trial at test. An object was initially presented at a highly fragmented level (level 1). 692 

Participants were instructed to try to identify the item at the most fragmented level they could. 693 

If the item could not be identified, a button press revealed a less fragmented version of the 694 

object (up to level 10). 695 

 696 

Figure 2. Model representations and Predictions 2 and 3. The top panels illustrate the 697 

relationship between the ID (identification level) and Jr variables in the models. The ellipses 698 

represent bivariate normal distributions of each class of item (old or new), cut horizontally 699 

and centred on a point that represents the mean Jr and ID for that class of item. Prediction 2 700 

concerns whether ID levels are facilitated for items judged old within new and old items, that 701 

is, whether the mean ID of false alarms is less than that of correct rejections (i.e., CR – FA), 702 

and whether the mean ID of hits is less than of misses (i.e., MISS – HIT), where a correct 703 

rejection is a “new” judgment to a new item, a false alarm is an “old” judgment to a new item, 704 

a miss is a “new” judgment to an old item, and a hit is an “old” judgment to an old item. 705 

Prediction 3 concerns whether the priming effect overall (across all items) is greater than the 706 

priming effect for items judged new. Priming is calculated as mean ID(new items) − mean 707 

ID(old items); priming for items judged new is calculated as mean ID(CR) − mean ID(FA). 708 

The SS model predicts positive differences between ID(CR) – ID(MISS), ID(MISS) – 709 

ID(HIT), and Priming – Priming items judged new. The MS1 model predicts no differences. 710 

The MS2 model predicts positive differences when the explicit and implicit strengths of an 711 

item are positively correlated (i.e., w > 0), and predicts no differences when there is no 712 

correlation (i.e., w = 0). 713 

 714 
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Figure 3. Recognition and priming task performance. (a). Proportion of hit and false alarm 715 

responses in the KOR and CON groups. (b). Fragment identification performance according 716 

to whether the object at test is actually new or old, or judged new or old. (c). Fragment 717 

identification performance classified according to the recognition response (correct rejection 718 

[CR], miss, false alarm [FA], hit) in the KOR and CON groups. Bars indicate experimental 719 

data (error bars indicate 95% confidence intervals of the mean). Symbols indicate the 720 

expected result from each model when fit to data aggregated across individuals ((a) and (b)) 721 

(because the data in these figures are derived from all of the participants), or the mean 722 

expected result from each model when fit to each individual’s data (c) (because the data in 723 

these figures are derived from the subset of participants with responses in all four recognition 724 

categories). In panel (c), the letters represent the individuals in each group. SS = single-725 

system model; MS1 = multiple-systems-1 model; MS2 = multiple-systems-2 model.  726 

 727 

Figure 4. Model prediction results. (a). Recognition discrimination (Pr: proportion of hits 728 

minus proportion of false alarms) and priming (i.e., fragment identification advantage for old 729 

objects) for the KOR and CON groups. Fluency effects (i.e., fragment identification 730 

advantage for objects judged old) across all items are also presented. Prediction 1 of the SS 731 

model is confirmed by lower recognition and priming in the KOR group than the CON group. 732 

(b). Differences in the ID level for items judged old versus judged new within new and old 733 

item types, and differences in the priming effect (overall) and the priming effect of items 734 

judged new. Predictions 2 and 3 of the SS model are confirmed in the KOR group. Bars 735 

indicate experimental data (error bars indicate 95% confidence intervals of the mean). 736 

Symbols indicate the expected result from each model when fit to data aggregated across 737 

individuals (row a) (because the data in this row are derived from all of the participants), or 738 

the mean expected result from each model when fit to each individual’s data (row b) (because 739 
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the data in this row are derived from the subset of participants with responses in all four 740 

recognition categories). SS = single-system model; MS1 = multiple-systems-1 model; MS2 = 741 

multiple-systems-2 model; KOR = Korsakoff group; CON = Control group. 742 

 743 

Figure 5. Model selection results. Each bar represents the percentage of participants best fit 744 

by each model according to the Akaike Information Criterion (AIC) and the Bayesian 745 

Information Criterion (BIC) in the CON and KOR groups. The SS model was the best fitting 746 

model for the majority of participants, with the remainder being best fit by the MS1 model. 747 

 748 

Figure 6. Best fitting models for each participant (according to the AIC; individual level fits). 749 

The best fitting models are plotted according to recognition (Pr) and priming (M 750 

identification new – M identification old) performance (row a) and the difference in ID levels 751 

for items judged old and new (i.e., fluency effects) within old and new items (row b). It is 752 

evident that the participants in the KOR group who were best fit by the MS1 model tended to 753 

show priming (or recognition) in the near-absence of recognition (or priming). The MS1 754 

model can reproduce such a pattern because the µr| old and µp| old parameters can vary 755 

independently of one another. In the CON group, there were also participants who were best 756 

fit by the MS1 model even though they showed relatively large positive recognition and 757 

priming effects. These participants tended to show an absence of fluency effects (or even a 758 

negative fluency effect) within old or new items (row b, right panel). Because fp and fr are 759 

uncorrelated in the MS1 model, it does not predict fluency effects within old/new items. Thus, 760 

the participants best fit by the MS1 model appeared to exhibit results that were consistent 761 

with its predictions. The letters A, B and C above the points in the KOR group label patients 762 

who showed priming effects despite performing very close to chance in recognition. 763 

 764 
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Figure 7. Performance of the KOR group patients A, B, and C (as labelled in Fig. 3c and 6). 765 

(a) Recognition. (b) Priming. (c) Differences in ID levels for items judged new and old within 766 

old and new items (i.e., fluency effects), and differences in the priming effect (overall) and 767 

the priming effect of items judged new (Predictions 2 and 3 of the SS model). Bars denote 768 

data, and symbols indicate the expected result from each model when fit to the data from 769 

each individual. The dashed lines in (a) and (b)  indicate the lower 95% confidence interval 770 

for the mean recognition and priming performance, respectively, in the CON group (from Fig. 771 

4). SS = single-system model; MS1 = multiple-systems-1 model; MS2 = multiple-systems-2 772 

model.  773 

 774 

Table legends 775 

Table 1. Mean and standard deviation (in parentheses) of the model parameters. A value 776 

preceded by an equals sign indicates that the value was fixed, otherwise it was free to vary in 777 

fitting the data. 778 

Table 2. Goodness of Fit Values for the Models. AIC = Akaike Information Criterion 779 

(Akaike, 1973), calculated as AIC = −2ln(L) + 2P, where P = p × z is the total number of free 780 

parameters for each fit, p is the number of free parameters for each model, and z is the 781 

(effective) number of participants modeled in each experiment; BIC = Bayesian Information 782 

Criterion (Schwarz, 1978), calculated as BIC = −2ln(L) + Pln(q), where q is the number of 783 

observations; q(Aggregated, KOR group) = 1920, q(Aggregated, CON group) = 1920, 784 

q(Individual, KOR group) = 1200, q(Individual, CON group) = 1520. For the aggregate fits, 785 

data from all 24 participants are modeled as if from one participant (hence z = 1). For the 786 

individual fits, it was not possible to model participants who had zero hit, miss, false alarm or 787 

correct rejection responses (hence zs < 24). A smaller AIC or BIC value indicates greater 788 
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support for a model. BOLD indicates that the model fit the data best according to the AIC 789 

measure.  790 
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Figure 7 
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Table 1  
Mean and Standard Deviation (in Parenthesis) of the Model Parameters. 

  Aggregate Fits  Individual Fits 

  SS  MS1  MS2  SS  MS1  MS2 

Parameter Meaning KOR CON  KOR CON  KOR CON  KOR CON  KOR CON  KOR CON 

 r| old M(fr| old) 0.69 2.48  0.72 2.49  0.72 2.49  1.06 2.66  1.01 2.66  1.01 2.66 

           (0.76) (0.57)  (0.83) (0.57)  (0.83) (0.57) 

 p| old M(fp| old) = r|old = r|old  0.51 2.18  0.51 2.18  = r|old = r|old  0.83 2.54  0.92 2.53 

              (0.66) (1.20)  (0.69) (1.15) 

w r(fr, fp) = 1 = 1  = 0 = 0  1.00 1.00  = 1 = 1  = 0 = 0  0.82 0.62 

                 (0.35) (0.43) 

C Judgment criterion 0.69 1.45  0.71 1.45  0.71 1.46  0.80 1.55  0.77 1.55  0.77 1.55 

           (0.83) (0.43)  (0.78) (0.43)  (0.78) (0.43) 

b ID intercept 6.51 6.23  6.45 6.18  6.45 6.18  6.53 6.22  6.53 6.22  6.53 6.22 

           (0.90) (1.47)  (0.89) (1.47)  (0.89) (1.47) 

s ID slope 0.68 0.31  = SS = SS  = SS = SS  0.57 0.25  = SS = SS  = SS = SS 

           (0.55) (0.21)       

σp SD(ep) 1.88 2.36  1.89 2.36  1.88 2.36  1.59 1.73  1.59 1.73  1.58 1.72 

           (0.32) (0.38)  (0.32) (0.38)  (0.32) (0.38) 

σf SD(fr), SD(fp) =1/2 =1/2  =1/2 =1/2  =1/2 =1/2  =1/2 =1/2  =1/2 =1/2  =1/2 =1/2 

σr SD(er) = σf = σf  = σf = σf  = σf = σf  = σf = σf  = σf = σf  = σf = σf 

M(ep) M priming task noise = 0 = 0  = 0 = 0  = 0 = 0  = 0 = 0  = 0 = 0  = 0 = 0 

M(er) M recognition task 

noise 

= 0 = 0  = 0 = 0  = 0 = 0  = 0 = 0  = 0 = 0  = 0 = 0 

 r| new M(fr| new) = 0 = 0  = 0 = 0  = 0 = 0  = 0 = 0  = 0 = 0  = 0 = 0 

 p| new M(fp| new) = r|new = r|new  = 0 = 0  = 0 = 0  = r|new = r|new  = 0 = 0  = 0 = 0 
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Table 2  

Goodness of Fit Values for the Models. 

 
 

 
SS 

  
MS1 

 
 MS2 

Data Fit Group p ln(L) AIC BIC 
 

p ln(L) AIC BIC 
 

p ln(L) AIC BIC 

Aggregated  
 

 
 

 
  

 
 

 
  

 
 

 

 

Korsakoff 

(z = 1) 
5 -5172.7 10355.4 10383.2 

 
5 -5196.7 10403.4 10431.3 

 
6 -5171.5 10355.1 10388.5 

 

Control 

(z = 1) 
5 -5035.2 10080.4 10108.2 

 
5 -5042.7 10095.4 10123.2 

 
6 -5034.8 10081.6 10115.0 

Individual  
 

 
 

 
  

 
 

 
  

 
 

 

 

Korsakoff 

(z = 15) 
5 -2925.5 6001.1 6382.8 

 
5 -2943.3 6036.7 6418.4 

 
6 -2922.1 6024.2 6482.3 

 

Control 

(z = 19) 
5 -3444.8 7079.6 7585.6 

 
5 -3446.2 7082.4 7588.4 

 
6 -3443.2 7114.5 7721.7 

 


