
This copy of the thesis has been supplied on condition that anyone who consults it is understood

to recognise that its copyright rests with its author and that no quotation from the thesis and no

information derived from it may be published without the author’s prior consent.

Tracing the Compositional Process

Sound art that rewrites its own past:

formation, praxis and a computer framework

by

Hanns Holger Rutz

A thesis submitted to the University of Plymouth

in partial fulfillment for the degree of

Doctor of Philosophy

Interdisciplinary Centre for Computer Music Research (ICCMR)

School of Humanities and Performing Arts

Faculty of Arts

August 2014

Abstract

Tracing the Compositional Process

Hanns Holger Rutz

The domain of this thesis is electroacoustic computer-based music and sound art. It investigates

a facet of composition which is often neglected or ill-defined: the process of composing itself

and its embedding in time. Previous research mostly focused on instrumental composition or,

when electronic music was included, the computer was treated as a tool which would eventually

be subtracted from the equation. The aim was either to explain a resultant piece of music by

reconstructing the intention of the composer, or to explain human creativity by building a model

of the mind.

Our aim instead is to understand composition as an irreducible unfolding of material traces which

takes place in its own temporality. This understanding is formalised as a software framework

that traces creation time as a version graph of transactions. The instantiation and manipulation

of any musical structure implemented within this framework is thereby automatically stored

in a database. Not only can it be queried ex post by an external researcher—providing a new

quality for the empirical analysis of the activity of composing—but it is an integral part of

the composition environment. Therefore it can recursively become a source for the ongoing

composition and introduce new ways of aesthetic expression. The framework aims to unify

creation and performance time, fixed and generative composition, human and algorithmic

“writing”, a writing that includes indeterminate elements which condense as concurrent vertices

in the version graph.

The second major contribution is a critical epistemological discourse on the question of ob-

servability and the function of observation. Our goal is to explore a new direction of artistic

research which is characterised by a mixed methodology of theoretical writing, technological

development and artistic practice. The form of the thesis is an exercise in becoming process-like

itself, wherein the epistemic thing is generated by translating the gaps between these three levels.

This is my idea of the new aesthetics: That through the operation of a re-entry one may establish

a sort of process “form”, yielding works which go beyond a categorical either “sound-in-itself”

or “conceptualism”.

Exemplary processes are revealed by deconstructing a series of existing pieces, as well as

through the successful application of the new framework in the creation of new pieces.

v

vi

Contents

Abstract v

Acknowledgements xix

Author’s Declaration xxi

Typographic Conventions xxiii

1 Introduction 1

1.1 Background Story . 1

1.2 Motivation . 6

1.3 Objective . 8

1.4 Thesis Overview . 10

2 Two Layers of Time 15

2.1 The Double Nature of the Compositional Process 15

2.2 Outside of Time? . 19

2.3 The Separating Diaphragm . 24

2.4 Creation Time . 36

2.5 Accessing Time . 39

2.6 Access Methods . 47

2.7 Branching and Multiplicities . 52

2.8 A Comprehensive Model of the Compositional Process 57

2.9 Conclusion . 60

3 Beyond Control and Communication 63

3.1 Composers in Control . 65

3.2 Models . 78

vii

3.3 Notes from the Metalevel . 82

3.4 Injection . 90

3.5 Resolution . 102

4 Traces 107

4.1 Introduction . 107

4.2 Dissemination . 109

4.3 That Which Does Not Become Systemic . 128

4.4 Sound Similarity as Transversal Reading/Writing across Pieces 130

4.5 Exploiting Graphemes . 165

4.6 Indeterminus . 171

4.7 Summary . 189

5 Design and Implementation of a Tracing System 191

5.1 The Programming Language . 191

5.2 Framework Overview . 193

5.3 System Façade and Transactional Encapsulation 196

5.4 Durability . 207

5.5 Confluent Semantics . 214

5.6 Building a Confluent System . 229

5.7 Extensions and Alternatives to Persistence . 252

5.8 Event Processing . 258

5.9 Composable Expressions . 269

5.10 Performance Time . 272

5.11 Creating Sound Processes . 277

5.12 Editing Sound Processes . 285

5.13 Summary . 286

6 Conclusions 289

6.1 Discussion . 290

viii

6.2 Process of the Thesis . 293

6.3 Contributions . 303

6.4 Limitations . 307

6.5 Recommendations for Future Work . 308

7 Afterword 313

A Contents of the DVD 321

B Survey of the Scala Programming Language 323

B.1 Basic Syntax and Types . 324

B.2 Scoping and Nesting . 327

B.3 Functional Aspects . 328

B.4 Type System . 338

B.5 Concurrency Abstractions . 347

B.6 Summary . 349

C Record of Activities 351

List of References 357

ix

x

List of Figures

2.1 Diaphragm model of composition . 25

2.2 A patch in Pure Data producing a sequence of tones 26

2.3 Audiovisual installation Command Control Communications 32

2.4 Screenshot from the timeline editor of CCC . 33

2.5 Possible evolution of a PD patch . 38

2.6 Transaction time database . 41

2.7 Schema of a multi-track editor . 43

2.8 Schema of a bitemporal data structure . 45

2.9 Decoupled creation and virtual performance time 46

2.10 A binary search tree . 48

2.11 Modelling bitemporal data as an R-tree . 51

2.12 A branched and temporal structure . 54

2.13 Simple model of the compositional process . 56

2.14 Relationships between the two time layers . 58

3.1 Test-cycle based models . 66

3.2 Regulation and control (Ashby) . 69

3.3 Control system (Heylighen and Joslyn) . 72

3.4 Synthesis process model (Collins) . 76

3.5 Observer roles in the thesis project . 83

3.6 Observer-defined levels of thinking (Checkland) 94

3.7 Computer based tracing of the compositional process, and the limits of control . 99

3.8 Bifurcation opening a space for the dance of material traces 104

4.1 Phase model of relations between writing and reading 108

4.2 Natural Palimpsest and Kalligraphie . 110

xi

4.3 Sound installation Amplifikation . 111

4.4 Model of the installation Dissemination . 112

4.5 Exhibition photos from Dissemination . 113

4.6 Sketching out variants for a new glass plate based installation 114

4.7 Installation Zelle 148 . 116

4.8 Schematic of Kalligraphie . 118

4.9 Schema of the constituent sound processes in Dissemination 119

4.10 Score rendering of Dissemination . 120

4.11 External references for Dissemination and their establishment over time 121

4.12 Code commits to the git repositories of the composition of Dissemination 124

4.13 Sketchbook note about Derrida’s ‘Signature Event Context’ 124

4.14 Momentary image of sound processes in Dissemination 126

4.15 Wolkenpumpe live patching environment . 127

4.16 «Who is producing the sound?» . 131

4.17 Construction diagram of the initial canvas of Residual 133

4.18 Translating a whole sound file to the Fourier domain in FScape 134

4.19 A quotation from Feldman I put down in a diary 135

4.20 Plan for the construction of Zeichnung . 138

4.21 Sketch illustrating the gradual change of form due to imperfect imitations 139

4.22 Timeline arrangement of imitation no. 6 . 139

4.23 Form plan showing the timeline of the four materials 141

4.24 Typology of transitions in Zeichnung . 141

4.25 Different ways of preparing the strings of Inter-Play / Re-Sound 143

4.26 The piano equipped with transducers during the development in the ICCMR lab 144

4.27 Tendency mask . 144

4.28 Screenshot from Inter-Play / Re-Sound . 145

4.29 Example selection in process TOUCH . 147

4.30 Photo of the Writing Machine sound installation 148

xii

4.31 Diagram of the Writing Machine algorithm . 149

4.32 Iteration in constructing the first half of the first part in Leere Null 154

4.33 Screenshot with the user interface for Leere Null 155

4.34 Original concept of the two strategies in Leere Null 157

4.35 Two possibilities of exploring a grapheme . 166

4.36 Wide shot and details of Voice Trap . 167

4.37 Excerpt from the version graph of Voice Trap . 168

4.38 Paper installation Dots . 169

4.39 Sound piece Unvorhergesehen–Real–Farblos . 171

4.40 Screenshot of the (Inde)terminus session in Mellite 173

4.41 Iteration and recursion scheme of (Inde)teminus 173

4.42 Detail screenshots of Mellite . 174

4.43 Planetarium Sternenturm Judenburg . 177

4.44 “Punch cards” of weekly times at which work on the compositions was done . . 178

4.45 Sequence in TK of sound files introduced to Machinae Coelestis 179

4.46 Notes regarding specific parts of the field recordings used 179

4.47 Frequencies of Mellite tool actions . 181

4.48 Distribution of the amount of contraction and expansion in resize actions 183

4.49 Distribution of the relative time shift in move actions 184

4.50 Evolution of the distribution of audio region durations 186

4.51 Motiongram for (Inde)terminus . 188

5.1 Architectural diagram of the framework . 195

5.2 Encapsulating variables, transaction context and executor in our own API 203

5.3 Different attempts to describe associated types 208

5.4 Linked list data structure, and example of its traversal 211

5.5 Subsequent key-value access in the data store for the traversal of list 3,5,8 . . . 211

5.6 Coupling in-memory STM and database transaction 215

5.7 Directed acyclic version graph describing the evolution of a linked list 220

xiii

5.8 Three instances of a node characterised by distinct paths from its seminal version 221

5.9 Illustration of path compression . 225

5.10 Measure type class for Finger Trees . 234

5.11 Finger Trees representing compressed paths . 236

5.12 A sub-tree with marked vertices . 238

5.13 Interpreting ancestor lookup as a two-dimensional nearest neighbour search . . 241

5.14 Querying a field F by locating the query vertex u in the mark tree 246

5.15 Skip octree consisting of a full and one subsampled tree 247

5.16 A skip list storing the marked vertices is used to control octree decimation . . . 250

5.17 Types of equidistant paths . 252

5.18 Pathological configuration violating the NN performance bounds 253

5.19 Problem of operating retroactively on branched elements 257

5.20 A version is retroactively inserted after a parent 258

5.21 Push and pull phase in event dispatch . 268

5.22 Expression chains . 271

5.23 Interaction between scans, graphemes and graph functions 281

6.1 Work on the software framework over time . 295

6.2 Excess of context . 303

B.1 Type hierarchy of Scala . 339

xiv

List of Tables

3.1 Goal taxonomy of Pask . 75

4.1 Cross-correlations in the matching cost function of Leere Null 157

4.2 Conceptual pairs of “condensation” . 161

5.1 System independent abstraction for object identifiers and access 205

5.2 Fat field entries for the head and head fields . 224

5.3 Transaction local cache for ongoing write operations 232

B.1 Common abstractions in the SuperCollider language and Scala 325

B.2 Type system abstractions in Scala . 347

xv

xvi

List of Listings

5.1 Type members of the system abstraction . 206

5.2 Parametrising an object with a system and interaction of its type members . . . 206

5.3 The transaction context provides newID and newVar to instantiate S#ID and S#Var. 207

5.4 Variable (mutable cell) . 207

5.5 Abstract interface of a key-value store for serialised data 210

5.6 Implementation of a durable integer cell . 210

5.7 Factory methods for instantiating a list and its cells 232

5.8 Creating a confluently persistent system initialised with a list of two cells 232

5.9 Interface for querying and updating in a version tree 244

5.10 Algorithms for querying and updating in a version tree 245

5.11 Event definition and composition in EScala . 261

5.12 Reactive signals with Scala.React . 263

5.13 Events in an observed expression . 266

5.14 Engaging event chains and mapping updates . 267

5.15 Expressions, and their special forms variable and constant 270

5.16 A bi-temporal expression associates a magnitude with a point in time. 272

5.17 BiPin, a bi-temporal breakpoint function . 273

5.18 BiGroup, a bi-temporal interval tree . 276

5.19 Interface of a sound process . 277

5.20 Example SynthGraph generating pink noise . 278

5.21 Configuring parameters of a sound process . 279

5.22 The Transport interface scans a group of processes in TP. 282

B.1 Skeleton of a purely functional lazy stream . 332

B.2 Using an implicit argument list for the transaction context 336

B.3 Path-dependent types . 346

xvii

B.4 Type projections . 347

B.5 Dataflow programming with Akka . 350

xviii

Acknowledgements

I would like to thank everyone involved with or affected by this thesis for their patience and

support. First and foremost, my director of studies Prof. Eduardo Miranda who kept giving

me confidence throughout the process, and Prof. Gerhard Eckel who agreed to be my external

supervisor. I am grateful to the Graduate School of the University of Plymouth for investing me

with a scholarship that allowed me to concentrate full time on the thesis.

On my path towards the dissertation, I would like to thank my parents for always supporting me,

no matter what decisions I took; Folkmar Hein for the great time I had at the Electronic Studio

of the TU Berlin, and Robin Minard for sharing the trust in art; during the research period, my

colleagues at the ICCMR in Plymouth, and also my colleagues at the computer music research

group of the IEM Graz who eventually became my coworkers.

Regarding the realisation of sound pieces, I would like to thank Reni Hofmüller for the repeated

invitations to gallery ESC Graz, Peninsula Contemporary Music Festival directors Simon Ible

and Eduardo Miranda for their invitations to participate, and Martin Bricelj and the team from

the Museum of Transitory Art for the invitation to festival SONICA in Ljubljana. I thank the

State of Styria, the Institute for Music and Acoustics of the ZKM Karlsruhe, and the City of

Judenburg for providing me with artist residencies to develop some of these works.

I am indebted to Kate Howlett-Jones for proof reading this text.

Above all, my appreciation goes to my wife and partner Nayarí for her unconditional love and

immense patience, especially during the write-up phase which was marked by difficult periods

of non-existent social life.

Finally, I would like to mention the moral support given by my cat Lucrecia. . .

xix

xx

Author’s Declaration

At no time during the registration for the degree of Doctor of Philosophy has the author been

registered for any other University award without prior agreement of the Graduate Committee.

This study was financed with the aid of a studentship from the University of Plymouth Graduate

School. Part of the practical work was developed through residencies funded by the State of

Styria, the ZKM Karlsruhe, and the city of Judenburg, Austria.

Relevant scientific seminars and conferences were regularly attended at which work was of-

ten presented. A record of activities, including publications and presentations is found in

Appendix C.

Signed:

Date: 14/08/2014

Word count for the main body of this thesis: 78923

xxi

xxii

Typographic Conventions

«quote» A direct quotation from a cited author. The reference usually follows directly

after the closing marks, unless the citation source is obvious from a preceding

reference. Ex. Derrida used the term precisely to denote «disengaging from the

concept of polysemics».footnote

“paraphrase” Creates distance; indicates either a paraphrased quotation, an unusual word usage

or irony. Ex. This is what I have called “limits of control”. The sound recordings

were picked up in “nature”.

‘concept’ Indicates either a term specifically introduced by an author or the fact that the

sentence objectifies a concept. Ex. The processes are inspired by the metaphor of

‘dissemination’.

emphasis Stresses a specific word and makes it stand out visually. Ex. There is a strangeness

in the relation between composing time and performing time.

Title Title of a piece of music, artwork, software library or application, a book or paper.

Ex. Terminus I, SuperCollider, Formalized Music.

NODE Reference to a node in a diagram or to an algorithm. Ex. To survive in an evolving

world the variability of TEST demands an input to ACTION REPERTOIRE.

code Inlined source code or name of a software routine. Ex. Cursors are regular

variables containing the current paths, S#Var[S#Acc].

xxiii

xxiv

Chapter 1

Introduction

This chapter begins by introducing the background layer in front of which the thesis

emerged. It names a number of dispositions that informed the work, such as the

relationship between composer and machine, and a number of constants that pervade

it, such as focusing on the negative structure of “gaps” which lie at the centre of

processes. After a clarification of my motivation in the project, the overall research aim

and objectives are stated. The last part presents the structure of the main chapters.

1.1 Background Story

When I am asked what my work is about, I tend to give a summary answer, usually enumer-

ating that I compose electroacoustic music, that I make sound installations, that I do laptop

improvisation, that I am a researcher in computer music, and that I develop music software.

Depending on the context, I will put one item or the other at the beginning of the list or I will

silently omit some from the list. It appears to be difficult to give them all a unifying frame or to

please everyone. This heterogeneity is also a centre of this thesis, which originally set out to

produce such a unifying frame, or one could say a stool so that I would not be caught between

two stools any more.

My understanding of “making” music has always been very haptic. In my parental home, there

was a piano and I think I tried to learn playing the piano at least three times in my childhood

and adolescence, each attempt being ultimately frustrated by my impatience with practising

the same material over and over again. I had an obstinate relationship with this instrument that

resisted my will. However, I loved the sound that one could produce by striking the strings

directly inside the corpus, perhaps using small objects to alter the timbre.

1

HANNS HOLGER RUTZ

In my teenage years, I was involved with a group of friends running a show on the local

community radio. Part of this activity was producing what could be called a naive form of “ars

acustica”. With a microphone and cassette recorder from the broadcasting station I would go

and collect different sounds from outside, then produce a sort of narrative—although not using

spoken text—by assembling the different pieces. This was accomplished by using two tape

recorders and manually pressing record and play on each of them to transfer bits of sounds from

the source to the target tape. I would also try to physically cut and splice tape, something that

was not very successful due to the fragility of the 4mm compact cassette format. I subjected

the tape to heat, magnetism and other forces, in the hope that this would produce interesting

alterations of the sound. That was also not very successful, usually resulting in the tape simply

being destroyed or becoming silent.

There followed a period where I was saving money to buy a “music workstation”, one of the

huge 1990s digital synthesisers which promised that you could run an entire music production

with it. It had a tiny liquid crystal display and a dozen push buttons which led you to the depths

of five or six levels of sub menus. The sound palette consisted of a few hundred fixed sampled

waveforms which could be slightly manipulated, filtered and processed. For more money you

could buy sound expansion boards, an option I never considered. The “notes” had to be recorded

and overlayed with the claviature. This was also not very successful.

It was only with a digital sampler, a DAT recorder, a microphone and a desktop computer—

I don’t recall the sequence in which these pieces came together—that some time between 1998

and 1999 things began to make sense. Concrete sound was a real material, it was something

that could be captured and manipulated beyond recognition. I changed historiography for

communication science and began to study at the Electronic Studio of the Technical University

Berlin, becoming acquainted with the history and practice of electroacoustic music and learning

about sound installation art. But the official design of the programme was foremost one of

engineering: it included sound engineering and acoustics, digital signal processing, and a small

amount of computer science as well. I had spent a substantial part of my childhood in front

2

CHAPTER 1. INTRODUCTION

of computer screens, although never in relation to music, and now the two came together.

Motivated by my training in signal processing, I began to write my first music software FScape.

But I also developed a separate thread by making friends in Berlin’s electronic underground and

noise music scene. My favourite project from that time was based on tiny electronic feedback

circuits driven by a current generated with solar cells. We would spent days in soldering fumes,

trying to find new sounds by using new combinations of components and integrated circuits. In

a way, this was not unlike me cutting the compact cassette tape and submerging it in coke, but it

was sonically much more convincing.

Why am I starting the text with this lengthy account of things which happened fifteen to twenty

years ago? I find in it three dispositions, two general and one personal, which frame the thesis,

as well as three aspects that will act as constants for the construction of the thesis.

1.1.1 Dispositions

First of all, the anecdote shows that there is only a very short history of general access to

digital and computer-based music technology. While the paradigm of operating on stored sound

material goes back to the beginnings of musique concrète and earlier, the ubiquity of personal

computers is recent and the effects of having electroacoustic music and computers collide have

scarcely figured as a subject of research. We have all sorts of tools which a contemporary

electroacoustic composer or a sound artist working with electronic or electroacoustic sounds

can use, but we do not have thorough concepts of these tools, other than those related to signal

processing or user interfaces. We also have little knowledge of the «profound influence of

computer science»1 on this kind of music or the extent to which software interacts with the

creative process.2

Secondly, we find ourselves in a permanent struggle with the technology. We may have a certain

idea of what we are trying to achieve when using it, but it will always introduce a shift in what

is being produced which is inherent in the machine and not under control—neither the control

1Gareth Loy and Curtis Abbott (1985), ‘Programming Languages for Computer Music Synthesis, Performance,
and Composition’, ACM Computing Surveys (CSUR) 17(2), pp. 235–265.

2Barry Eaglestone et al. (2001), ‘Composition Systems Requirements for Creativity: What Research Methodo-
logy’, in: Proceedings of Mosart Workshop on Current Research Directions in Computer Music, Barcelona.

3

HANNS HOLGER RUTZ

of the composer nor the control of the designer of the machine. It is often assumed that the

machine embodies a “service”, with ideas on two ends of a spectrum. On one end, an engineered

algorithm perfectly adhering to a design specification versus, on the other end, the idea of a

perfect model of the human cognitive capabilities that can be implanted into a machine which

thereby becomes transparent “support”. These ideas need not be dismissed, but they ignore the

possibility that an experimental system arises from the friction between human composer and

machine.

This is my next point: the anchorage of composition in an experimental situation primarily

driven by its material embedding rather than a logical or symbolic foundation. This must not

be mistaken for a preference of the bottom-up or inductive over the top-down or deductive

perspective. One can have formal ideas which do not derive directly from particular givens, yet

there will be a moment when they start to collide with the proper dynamics of the materials

introduced into the piece and of the machines with which they are handled. One needs to gain

experience in using these machines, repeat procedures over and over, to channel these dynamics,

but the outcome will still not be something controlled by an external source.

1.1.2 Constants

My preoccupation with composing, improvising or writing software has always favoured the

process of the making over the regard of the piece or product that stands at its end. This seems

hardly surprising, as the “work” of a composer, researcher or programmer of course is the

construction. But it goes farther in that I often find myself defining a piece based on a set of

procedures I want to try out, rather than a specific anticipated structure that stands at its end.

Naturally, a setting is given; for example, when I plan to make a sound installation in a particular

space, the space and the situation are given, and you have to write a proposal or outline of what

you are going to do, which materials and resources you will need to allocate, etc. But they

remain hypotheses for the sake of getting started. If there is a form plan, it is just a frame inside

which the experimentation happens.

This preoccupation is reflected in my perception of (other artists’) pieces as well. As audience,

I very much prefer to visit a sound installation than to attend a concert. I explain this by the

4

CHAPTER 1. INTRODUCTION

possibility of non-theatrality which allows me to define my own unrolling of a piece or situation

in time. There must always be an element of non-narrativity. I observe a somewhat opposite

motion: there is a tendency towards more theatrality, more staging, more narrativity in sound

art which remains foreign to me. For instance, a keynote speaker at the 2012 International

Computer Music Conference was artist and musician Seth Kim-Cohen, who with his book title

In the Blink of an Ear appears to be picking up Marcel Duchamp’s concept of ‘non-retinal art’.

We seem to be at a point where sound-in-itself is perceived as lagging behind the discourse in

the fine arts. The remedy is seen in a conceptualisation of sound art. We have, for example, at

that same conference the performance of Johannes Kreidler’s work Fremdarbeit, based on the

idea of the composer subcontracting a low-wage labour force in Asia to do the dirty work of

composing.

While one might be stunned by the cleverness of these conceptions, the cheap sensation of shock

cannot, in my opinion, compensate for a lack of self-navigation of the audience. It is therefore

clear that by asking for the possibility of an autonomous traversal of a work, I am precisely

not allotting this space to the quest of retracing the artist’s intention or grand plan. Instead I

am interested, both as audience and composer, to become entangled in the temporal, material

and conceptual structure of a work. I am not opposed to narrativity as such, but I believe it

is something that emerges from this entanglement and is something essentially constructed by

the recipient and not the composer who can only interfere by offering a mesh of fragmented

micro-narratives.

To give a simple example of this entanglement: My first encounter with sound art, at least

according to my leaky memory, was with a work by Rolf Julius in the Weserburg museum in

Bremen, near the place where I grew up. I cannot recall exactly which work it was, but it was a

sound installation inside a narrow severed corner, perhaps with small sounds emanating from

a pile of objects on the floor. I always enjoyed going to that museum because of its rigorous

industrial atmosphere, a very quiet place except for your own footsteps, yet open and airy.

Finding these tiny sounds among this quietness—maybe there was the sound of the kinetic

machines of a Kienholz environment or from a Rebecca Horn swing—was a unique experience.

5

HANNS HOLGER RUTZ

In hindsight it mixes with the effort of taking the bus from my hometown to travel there (I did

not have a driver’s licence yet). It also gets mixed up with things that happen later, for example

seeing Terry Fox’s The Eye is Not the Only Glass that Burns the Mind in Worpswede, probably

merely due to its regional proximity, or maybe because this was in autumn 2011, not so long

after Julius died. No matter what the reasons are, the important factor is that these coherences

are outside the control of the artist. My hypothesis is that just as the essence of an artwork’s

reception lies in the process of its traversal, the same goes for the production of an artwork.

There is a traversal undertaken by the composer, in conjunction with an apparatus, which to a

great extent determines the “excess”3 from which the work lives.

The second constant is the importance of gaps. There are gaps between the involved disciplines,

their language and methodology, gaps between the way time is expressed in the different forms

of sound art, a gap between the composer and the apparatus, a gap between the designer and the

apparatus. Gaps between a piece and the next piece by the same composer, and so on. Another

hypothesis is that what we are trying to observe, ‘process’, is animated mainly by these gaps.

The third constant is the fact that I am not subtracting myself from the equation, I will remain

in it all the time. The original reason for this was that, situating this thesis more in a self-

reflective notion of artistic research, my aim was to analyse and formalise my own work. During

development, however, this point became less important compared to the possibilities of self-

observation as a method not aimed at recreating myself as the artist subject, but enabling me to

look very closely at the differential drift in writing processes, which will be outlined later in this

chapter.

1.2 Motivation

My original motivation in starting the thesis project did not name the compositional process

as its central theme yet. Instead I became more and more interested in using algorithmic ideas

in my work which incorporated some sort of randomness or indeterminacy. I observed a gap

between the sophisticated tools we have for crafting electroacoustic compositions, multitrack

editors and sound transformation tools, and tools typically employed when there is interaction

3I finally come back to this term in Sect. 6.2.2.

6

CHAPTER 1. INTRODUCTION

or a non-linear time structure, such as Max, Pure Data or SuperCollider. The outcome of using

the former are monolithic pieces with no possibilities of algorithmic elements which have not

been fixed in advance (and which usually must be computed outside the application), while it is

very hard to compose larger forms with the latter, often ending up in “live instruments” which

still have to be played and enriched to produce pieces. The concept of a sound artefact is not a

given in these sound synthesis systems, but must be emulated.

On the other hand, we find algorithmic composition, an area in which the acquirements of

computer science are exploited for the compositional practice. There is only one problem:

These systems are made for the manipulation of symbols, something that can be readily applied

to notated instrumental music but less so to electronic or electroacoustic music. Furthermore,

the formalisation here stands at the beginning of the process rather than at its end. Putting

these two worlds together is still a challenge. In addition, others have noted that «generative

systems have . . . tended to be limited to symbolic representations . . . as opposed to audio».4

The following statement from Eduardo R. Miranda is a good illustration of the gap:

«I do find beauty in algorithmic processes, but I often find their musical rendering

somewhat frustrating. It is often the case that algorithmic music processes are

more appealing than their actual outcome. At the end of the day my compositional

methods often boil down to GOFEM (Good Old Fashioned Electroacoustic Music)

practices.»5

So my initial question was: What is necessary to bridge electroacoustic music and generative

sound art, how does one bring algorithmic thinking into the two, when the objects with which

we are operating can hardly be conceived as symbols in a formal language? What is the specific

characteristic of working with concrete sound? What happens to the convenient timeline canvas

offered by tape composition software, if elements and decisions become indeterminate?

4Arne Eigenfeldt and Philippe Pasquier (2011), ‘Negotiated Content: Generative Soundscape Composition by
Autonomous Musical Agents in Coming Together: Freesound’, in: Proceedings of the 2nd International Conference
on Computational Creativity, Mexico City, pp. 27–32.

5Eduardo R. Miranda (2009), ‘Lovely Algorithms, Hot Weather and Uninspiring Solfeggio’, Contemporary
Music Review 28(1), pp. 120–121.

7

HANNS HOLGER RUTZ

For a while I was occupied with trying to think of a representation of musical time when linearity

is taken away. It seemed to be something that was in the air: In 2009, I saw the exhibition on

notation6 at the ZKM Karlsruhe, a collaboration with Berlin’s Academy of Arts. A year after, I

got hold of a beautiful book called Cartographies of Time.7 Thanks in particular to the former,

my attention moved away from the endless possibilities of conceiving mappings of time and

towards the idea that all these fantastic exhibits—ranging from dance to architecture to video

art to literature—were connected by the idea of writing processes that produced them.

Thus, if we could find a way to unify the understanding of the non-linear unfolding of time in

a generative piece and the way one operates on the timeline of tape composition, both would

become possible renderings within an overall framework of computer music composition. At

this point it became clearer that what I would be looking at was the process of composition,

understood as a decision-making process involving both human and computer and occupying

its own temporal field.

1.3 Objective

The central problem of this thesis is to find a perspective on computer-based sound art that

advances its aesthetics. An approach is sought that, on the one hand, goes beyond the reduction

of “sound-in-itself”, a discourse which has dominated electroacoustic music since the 1950s

and which emphasises the transparency of the tools of production, in fact the transparency of

anything that stands in the way of the purity of the sound surface and its phenomenological

and/or narrative context. On the other hand, the solution is not to propose an intellectualised

“non-cochlear” approach, a reheated version of 1960s and 1970s conceptual art.

The aim then is to stake out the contours of a new aesthetic grounded in a reflective engagement

with the compositional process and its conditions, however understanding these from their

material traces—intimately connected both to the apparatus used in the composition and the

6Hubertus Amelunxen, Dieter Appelt and Peter Weibel, eds. (2008), Notation: Kalkül und Form in den Künsten
(Catalog), Berlin: Akademie der Künste.

7Daniel Rosenberg and Anthony Grafton (2010), Cartographies of Time: A History of the Timeline, New York:
Princeton Architectural Press.

8

CHAPTER 1. INTRODUCTION

actual synthetic or recorded sounds one works with—and not from a linguistic or cognitive point

of view.

The objectives derived from this aim are:

› to review and critique existing concepts and methods of tracing and understanding com-

positional process

› to develop an understanding of the temporal unfolding of the compositional process and

its relation to time as it appears to us in a performance

› to find a suitable representation of this composition time and to establish the limits of this

representation

› to develop a software framework which implements this representation along with a set of

abstractions that allow a broad palette of computer-based sound art to be realised, ranging

from tape composition to generative sound installation

› to analyse existing pieces and to develop new pieces subject to questions of traceability

and reflectivity of the compositional process

› to demonstrate the interweaving of software development, artistic practice and theoretical

reflection as a novel methodology for the emerging field of artistic research

The last item needs some explanation. We argue that due to the difficult nature of observing

process—which will be elaborated during the course of the thesis—we require a heterogeneous

methodology oscillating between these three layers of the discourse. There are two motivations

behind this. First, as Niklas Luhmann points out in a discussion of deconstructivism: «Given the

narrowness of academic citation circles, there are many possibilities of cross-fertilization that

remain unused.»8 In this regard, the methodology is an attempt to bring artistic and scientific

thought together in a new way. Second, we propose to work with the concept of ‘experimental

systems’ coined by Hans-Jörg Rheinberger, because it is compatible with many aspects of

8Niklas Luhmann (1993), ‘Deconstruction as Second-Order Observing’, New Literary History 24(4), pp. 763–
782.

9

HANNS HOLGER RUTZ

artistic production, such as foundation in material traces, a vagueness of the ‘epistemic thing’

(that which we wish to know or experience) and the situation of ‘extimacy’ in which the

researcher finds herself or himself. We are subjecting the thesis itself to differential iterations—

producing both coherence and gaps between the three layers—since this way we create a true

recursion which avoids the problem of vertical hierarchy and lack of connectivity, as discussed

in Sect. 3.3; the re-entry has a distancing effect (disruption, self-observation of the speaker)

which only just allows the traces to appear, as everything is duplicated—or, as Jacques Derrida

says: Deconstruction has to happen from the inside.

1.4 Thesis Overview

The thesis is made up of three products: This text, a software framework, and a number of sound

pieces. Software and sound pieces are documented on the accompanying DVD, the contents of

which are described in Appendix A. Even though I consider all three media essential for the

success of the thesis, for its appraisal this written text should be the main source. It includes the

discussion and analysis of the sound pieces to the degree that is considered relevant with respect

to the objectives, and the same goes for the presentation of the design and implementation of

the software framework.

The written thesis is structured along four chapters which are complementary to each other.

Although each chapter assumes familiarity with the preceding chapters, they can also be read

independently. The reader will encounter snippets of programming code and patches. It is

not always necessary to understand these codes in great detail in order to follow the ideas

being discussed. Generally, code examples are only given when their detailed understanding is

required to follow the thesis, most noticeably in Chap. 5.

The following paragraphs give an overview of the chapters. For each chapter, a “word cloud”

was generated which convenes the most important terms and their relative frequencies, thereby

giving an alternative key to the form of the chapters.

10

CHAPTER 1. INTRODUCTION

Two Layers of Time

Chap. 2 looks at compositional process from the angle of the time in which it takes place. It

proposes that we should distinguish two qualities of time, creation time TK and an anticipated

or virtual performance time T(P) which is attached to musical data. In an actual performance,

that virtual performance time is realised as TP. In specific types of performances involving

“real-time” elements, there is a close correlation between making decisions, the writing in TK,

and the time at which these decisions become audible, T(P). Other concepts important for the

development of our framework are introduced, such as transactions and databases.

Beyond Control and Communication

If time is a medium in which the compositional process is inscribed, Chap. 3 tries to determine

the characteristics of this process. Since we are aiming at tracing the process, the central

11

HANNS HOLGER RUTZ

questions here concern the possibility to observe and to represent process. The chapter title refers

to the fact that we see fundamental problems in the commonly used epistemological assumptions

used in existing research. Consequently, there are also problems in the methodologies employed.

From this critique arises the proposal for a different way of understanding and observing process,

carefully drawing the limits of observability.

Traces

Chap. 4 makes a concrete effort to analyse composition processes using a number of pieces I

composed in the past, as well as showing the pieces created during the phase of the thesis. In

the first case, where the new tracing framework could not be applied ex post, we deconstruct

these pieces by looking at the differences in seemingly stable concepts such as the ‘sound

mobile’ or the use of sound similarity. Special focus is given to the moments in which the

compositional time is reflected inside the pieces themselves, and again how this reflection

moves differentially from piece to piece. Finally, pieces are discussed that used the newly

designed tracing framework.

12

CHAPTER 1. INTRODUCTION

Design and Implementation of a Tracing System

Chap. 5 presents the design of a modular framework for tracing computer music data and arte-

facts. It presents a general transformation for mutable data structures that allows the recording of

their evolution over time. TK is formalised inside a software transactional memory coupled with

a durable key-value datastore. A number of novel ideas regarding the use and implementation

of data structures are contributed. The classical “pull” based data model is then enhanced with

a reactive event system, and some basic abstractions for dealing with computer music data are

introduced, including sound file artefacts and real-time sound synthesis based on DSP graph

functions.

13

HANNS HOLGER RUTZ

14

Chapter 2

Two Layers of Time

The purpose of this chapter is to understand what the compositional process is, and to

reach out for computational models which could be exploited to represent this process.

Noting that process marks both activity and result, this double signification is studied

in the conceptual history of the term and its concrete employment in the work of

Iannis Xenakis and Pierre Schaeffer. Xenakis’ opposition of “outside-time” and “in-

time” stimulates a discussion of representations for musical time, and it is shown how

the writing of this time is itself embedded in a different layer of time, creation time.

Temporal methodologies in database research are reviewed, and the bitemporal model

is identified with creation and performance time. The recognition of branching and

concurrent movements in the process of composition challenges the view that a piece

of music terminates this process and gives birth to a comprehensive model which

may unite seemingly disparate forms such as tape composition and generative sound

installation.

2.1 The Double Nature of the Compositional Process

Composer and computer music pioneer Gottfried Michael Koenig wrote an essay in 1978 titled

Composition Processes. It is an interesting document since it outlines Koenig’s understanding

of the role of a composer, an understanding certainly shared by other composers, but which

will also be challenged in the course of this text. Moreover, it begins with the observation of a

peculiarity of the term ‘composition’ which acted as a detonator for the whole thesis project:

«By musical composition we generally understand the production of an instrumental

score or a tape of electronic music. However, we also understand composition as the

result of composing: the scores of instrumental or electronic pieces, an electronic

15

HANNS HOLGER RUTZ

tape, even a performance (we say for instance: “I have heard a composition by

composer X”). The concept of composition is accordingly closed with regard to

the result, but open with regard to the making of a composition; it tells us nothing

about preparatory work, whether it is essential for the composition or not.»1

It is this confusion between an activity and an observable entity which gave rise to the title

of this section—the double nature of composition. It is born out of the following assumption:

«Composing terminates in pieces». A “piece” is thus like a diaphragm between the process of

composing and the reception of a performance, it makes both separable. From the quotation it

is clear that Koenig assumes an asymmetry between the two sides, production and consumption.

His responsibility as composer is the former, and it ends when the artefact, the score or tape, has

been created. Indeed, as the essay evolves, there is the core of composing—«the intellectual act

of invention»—and there are subordinate, auxiliary activities, such as the «sonic realization»,

which in the case of instrumental music may constitute the duty of others (musicians).

Before questioning the impermeability of the diaphragm, we shall follow Koenig first by dis-

cussing the compositional process as the production of a piece of music. This production is

carried out with the help of computer programs. A program requires certain musical parameters

as input, and will output a table of musical data which will be transcribed into a score or used

for the realisation of a tape. Koenig observes a range of composer personalities forming a

continuum from the «constructive» to the «intuitive» type. He notes that the former prefers to

provide little input to the system and relies more on its ability to autonomously generate results

from which he2 picks the ones that match his taste, whereas the latter type has little trust in the

system’s autonomy and tries to provide as much input and as many constraints as possible.

But there is otherwise very little detail regarding the process as processuality. Process in

Koenig’s text is rather flattened to “procedure”. As such, it encompasses the definition of

rules, the subsequent application of compositional methods, which then produces results (the

1Gottfried Michael Koenig (1978/1993b), ‘Kompositionsprozesse’, in: Ästhetische Praxis, vol. 3, Texte zur
Musik, Saarbrücken: PFAU Verlag, pp. 191–210. The English translation of the originally German text is the
authorised version, as published by Koenig on his website http://www.koenigproject.nl (visited on 02/06/2012)

2Whenever I refer to a composer in general, naturally this is gender neutral. Only for simplicity I have chosen to
use male pronouns.

16

http://www.koenigproject.nl

CHAPTER 2. TWO LAYERS OF TIME

final or preliminary composition). If the composing program is put in the place of method

application, the chain rules → program → results is obtained, and if ‘program’ is taken as a

black box, the composition process is literally timeless. The rules do not reflect the time in

which they have been formulated—they originate from an «act of invention», rather than a

process of invention3—, the application of methods or the program consumes time only due to

an inconvenient requirement (labour), and the results are transcribed into a chronological score

whose temporal extension is independent of the time in which the transcription takes place.

2.1.1 Conceptual History of Process

Intuitively, we relate the notion of ‘process’ to its latin root, procedere meaning “to move

forward”, and imply that this motion has a temporal extent. K. Röttgers has analysed the

conceptual history of the term,4 going backwards from its appearance in the work of Georg

Wilhelm Friedrich Hegel at the beginning of the 19th century. Of the various meanings it

had in the middle ages, that of technical procedure makes its way into alchemy. For instance,

Paracelsus describes process as a work which is carried out according to rules (quite similar to

Koenig’s usage). In early chemistry, it is still the good intention of the chemist and the careful

regard of the sequence of steps which guarantee the success of a process. However, at the end of

the 18th century the view prevails that nature has its own forces which dominate process, man is

becoming less and less the actor. He does not make the rules but merely discovers them in nature.

Process may have natural or artificial origins. The application of the word is slowly extended

to other areas, such as “process of life”, especially with its new ability to be self-sustaining

(autonomous).

In the natural philosophy of Friedrich Wilhelm Joseph Schelling, process and organisation form

an interplay. Natural processes are permanent (their conditions exist continuously), they are thus

“becoming”, they are indeed productivity, but never product. Novalis extends the use of the term

into the cognitive realm (Denkerzeugungsproceß, thought-generating process), and Schelling

finally postulates “first order processes” which no longer require any form of visibility—even

3This is reinforced by Koenig’s proposed approach of using a description of models: «. . . given [!] the rules, find
the music»

4Kurt Röttgers (1983), ‘Der Ursprung der Prozessidee aus dem Geiste der Chemie’, Archiv für Begriffsgeschichte
27, pp. 93–157.

17

HANNS HOLGER RUTZ

though they owe their supposition purely to the need to avoid a tautological explanation of the

causes of the visible processes. According to Röttgers’ interpretation, Novalis amplifies the

process concept beyond the simple sequence of steps. Processes now possess their own adequate

temporal order which must be respected, as otherwise a process is impurified. Furthermore, this

temporal order may be expressed as spatialiation, as can be seen in organic growth which is just

the articulation of time.

2.1.2 A Definition of Process

Before attempting our own definition of process, we seek a contemporary definition to start with.

N. Rescher introduces process philosophy, a branch drawing a line from Heraclitus via Gottfried

Wilhelm Leibniz to Henri Bergson, the American pragmatists, and finally Alfred N. Whitehead.

Although the interest here is not so much in process philosophy or Hegel’s idealism, a useful

definition of process as such is given:

«A process is a structural succession of states of affairs which accordingly form a

unified overall complex of terms connected by “and then.”»5

Rescher furthermore identifies three distinctive features of process: It consists of phases that are

connected to form a complex. This complex establishes a temporal coherence, and the temporal

dimension is irreducible. A process possesses an underlying formal structure or shape.

In the light of this differentiated view, little has been actually said about the compositional

process. As previously noted, despite its title Koenig’s essay somehow navigates around the

process’s complex and temporally cohesive character, merely adumbrating how one arrives

at rules and applies them. He is interested in the modelling of the compositional process in

software, but acknowledges that actual human behaviour may be very irregular, posing «greatest

difficulties of representation in program structures». Indeed he gives a more accurate description

of this behaviour:

«A composer is more accustomed to being influenced by a spontaneous idea than

by prepared plans; he decides and discards, writes down and corrects, remembers
5Nicholas Rescher (2006), Process Philosophical Deliberations, Heusenstamm: ontos verlag, p. 2.

18

CHAPTER 2. TWO LAYERS OF TIME

and forgets, works towards a goal; replaces it during his work by another—guided

by criteria which are more likely to be found in psychology than in music theory.»6

Like Koenig, this thesis also does not look into the psychology of the composer’s mind. Instead,

the interest in process stems from the supposition that a model of this process may be used as

a creative device in the formulation of a piece itself. A tentative definition at this point thus

focuses on the creative aspect of process—becoming—instead of its termination in a product.

A process is. . .

› . . . a succession of steps or phases of change. . .

› . . . which are not necessarily hierarchical, but follow a coherent and temporal pattern.

› It may have been initiated by a concrete intention. . .

› . . . but ultimately it is upheld by its inner dynamic.

› As long as the process is upheld, it is productive. Otherwise it terminates in a product.

› The interaction with the process puts the observer in the role of an experimenter.7

2.2 Outside of Time?

We first restrict ourselves to “fixed” compositions. By this it is meant that the composer’s

responsibility indeed ends with an exhaustive notation prescribing the succession of sounds in

a performance. For this, it does not matter whether that prescription takes the form of a “tape”

or an instrumental score devoid of aleatoric elements. It goes without saying that in both cases,

electroacoustic diffusion or reproduction by instrumentalists, a responsibility remains with the

performance—it depends on many factors such as the acoustics, the dynamics of the audience,

the speaker system and setup, the acousmatic interpretation, and so forth. However, the studying

of the composition may be based solely on what is notated or on a recording of an arbitrary

performance. This definition thus covers all the music Koenig was speaking about.

6Koenig, ‘Kompositionsprozesse’, p. 197.
7This proposition stems from the original alchemistic meaning of process.

19

HANNS HOLGER RUTZ

In general, two motions can be distinguished: one using deduction to go from concept to material,

the other using induction to go from material to concept. While this thesis is not about their

work, of the composers in computer and electroacoustic music who have written extensively

about their work, Iannis Xenakis (with Formalized Music, 1992) and Pierre Schaeffer (with

Traité des objets musicaux, 1977) are perhaps good candidates to represent tendencies towards

either of these directions.

For example, in the chapter Free Stochastic Music, Xenakis outlines the phases through which

a musical work is constructed. Assuming the existence of some «initial conceptions» (ideas,

provisional data), he then suggests a decision about the kinds of sounds used—more a choice

of medium, such as a set of instruments, electronic generators, or granular construction—then

prescribing successive decisions about macro structure (overall form and development in time)

and micro structure (relationships between individual elements). In the next phase, macro

and micro structures are “programmed”; finally, the programs are executed, yielding symbolic

results which must then be translated into a form such as a score. The last phase is the sonic

realisation, which may be an orchestral performance, a computerised sound synthesis or the

construction of an electroacoustic tape.

These phases thus constitute a procedure similar to (although more detailed than) the description

that Koenig gave. What is interesting about Xenakis here is that he makes a distinction between

musical structures outside-time and musical structures in-time which he associates with the micro

composition phase. Even though he adds that the order of the phases is not strict—relativising

the perspective of a pure top-down construction—he maintains a hierarchy between outside-time

and in-time structures throughout the book. Especially in chapters Towards a Metamusic and

Towards a Philosophy of Music he emphasises the value of outside-time structures, which he

claims have been neglected in recent Western music and conflated with in-time structures in

serial music.

But what is a musical structure conceived outside time? Let us start with in-time structures.

These relate to what Xenakis calls primary time, a time that «appears as a wax or clay on

which operations and relations can be inscribed and engraved». Entities can either appear

20

CHAPTER 2. TWO LAYERS OF TIME

simultaneously or successively, and in the latter case a notion of anteriority can be established.

Thus, Xenakis argues, the rules which can be applied to in-time structures form an algebra

in-time which is characterised by an asymmetry. For instance, if the anteriority relation is ⊺,

with two distinct sounds a and b we clearly have a ⊺ b ≠ b ⊺ a. In contrast, when forgetting about

their temporal embeddedness, one can just notice that the two sounds are distinct, irrespective

of their relative positions. An algebra outside-time is then symmetric with operator ∨ denoting

«put side by side without regard to time.» The operator is commutative, since a ∨ b = b ∨ a (as

if a and b were put in a set or a “bag”).

Xenakis’ trick is to propose a model in which in-time, the «lexicographic» ordering of sounds,

appears sandwiched between this reduced perception of sounds (just determining whether they

are distinct or not) and another layer which he calls «metric» time. Metric time is the layer

of relative durations. With three non-simultaneous elements one can establish the proportion

in which they «divide time into two sections within the events», e.g. a b c . Since only

relative durations are considered, metric time is indeed part of outside-time construction. The

three parts of the sandwich correspond with successive stages of child development according

to Jean Piaget, and hence Xenakis implicitly defends his emphasis on outside-time structures on

psychological grounds—the first layer is primordial, thus closer to the origin of man, the third

layer requires the greatest ability of abstraction, thus is the purest.

Ultimately this is an aesthetic premise which one may or may not share. It would be easy to

juxtapose it for example with Morton Feldman, who was interested «. . . in how Time exists

before we put our paws on it, our minds, our imaginations, into it.»8 The opposition of in-

time versus outside-time should instead be reduced to a functional angle. From that angle, a

non-psychological and aesthetically less partial interpretation could stress that outside-time on

the one hand is a tool of abstraction which allows the building of structures with generalised

transformations such as taken from set theory or relying on mathematical properties such as

commutativity or associativity. On the other hand, it is also a strategy for partitioning the

compositional process: The spatialisation of the musical material—because this is essentially

8Morton Feldman (1988), ‘Between categories’, Contemporary Music Review 2(2), pp. 1–5.

21

HANNS HOLGER RUTZ

what the mental co-presence stated as elements «put side by side without regard to time» is9—

corresponds with the opening of a temporal interval in the creation process. It is the interval

in which the composer reasons about the sonic entities, constructs transformations, elaborates

rules to be applied on them, and so forth. In a “fixed” composition that interval is only closed

with the transition to the in-time layer, and it is only due to the complete detachedness of the

in-time algebra from any temporal markings within this “interval of reasoning” that one can

speak of the latter as an outside-time activity.

It appears that the process in the case of electroacoustic music is very different. Indeed Schaeffer

begins by discriminating it from what he calls ‘a priori music’. A priori can be translated as

deductive, where statements can be formulated that are not grounded in experience. Schaeffer

criticises that musical constructions can thus be made from the postulates of arbitrary rules. The

dismissal of this kind of rules is based on the concept of music as a communication process—

what is desired is an understandable work, and therefore it must be founded on rules which can

be ultimately rediscovered by the audience who only have their ears to decode the music, and

therefore if the rules are disconnected from the aural perception they will remain obscure.

Composition is only half of the work in electroacoustic music if it is taken literally as synthesis—

putting things together. Most of Schaeffer’s writing concentrates on the new preceding stage of

analysis, an abstraction process only at the end of which an abstracted system of rules appears.10

Under the premise of a successful communication, the translation process of the couple analysis–

synthesis is “dangerous”: «. . . the chemist is never assured to succeed with a synthesis, since it

does not derive with certainty from the analyses.»11

The use of the metaphor of a chemist is of course exciting here,12 as it reveals an understanding

of process which in Röttgers’ essay can be located in the work of Alexander Nicolaus Scherer

9cf. Bergson who goes even further, pointing out in ‘Time and Free Will’ that the conception of a temporal order
already implies a spatial mental image (Henri Bergson [1910], Time and Free Will, An essay on the Immediate Data
of Consciousness, trans. by Frank Lubecki Pogson, London: George Allen & Unwin, chapter II).

10‘Abstract syntax’ versus ‘abstracted syntax’ has been used as one of the two axes along which S. Emmerson
locates the language of electroacoustic music, cf. Simon Emmerson (1986), ‘The Relation of Language to Materials’,
in: The Language of Electroacoustic Music, ed. by Simon Emmerson, London: Macmillan, pp. 17–39

11«Ainsi le chimiste n’est-il jamais assuré de réussir une synthèse, qui ne saurait se déduire avec sécurité des
analyses.» (Pierre Schaeffer [1966/1977], Traité des objets musicaux, essai interdisciplines, Paris: Editions du Seuil,
p. 381)

12See also p. 418, where Schaeffer speaks of an alchemy of sound of which the experimenter is dreaming.

22

CHAPTER 2. TWO LAYERS OF TIME

in 1795 and which marks the transition of chemistry to an empirical science. Schaeffer’s whole

programme is that of a musical research which goes far beyond the mere activity of composing;

it is a “science of hearing”, and it is based on experimentation and observation which take place

in the laboratory.

On the technological level, though, Schaeffer emphasises a correspondence with optics, and

compares his most important apparatus, the tape recorder, both to photography and microscopy.

All contribute to the separation of a sensation from its transitory nature. The recorder provides

«the ability to store, repeat, and freely examine sounds which were hitherto ephemeral, depend-

ing on the play of instrumentalists and the immediate presence of an audience».13 But the

subjection of sound to a meticulous and completely new observation—since the sound can be

looped or slowed down—is not the only contribution of the recorder. For Schaeffer, it is its con-

tribution to abstraction—removing the original context in which the sound occurred—which is

more important, as it forms an integral part of his concept of ‘objet sonore’ based on structuralist

and phenomenologist ideas of an abstract structure within which sound objects are embedded.14

But just as in the Xenakis case, we must separate functional from aesthetical regard. Under the

aspect of the dynamic nature of process, it is interesting to note that the fixation on tape produces

an equivalent of the “outside-time” situation. The captured sound is the physical artefact

adumbrating the abstract ‘objet sonore’, and, not unlike Xenakis’ set theoretical considerations,

may be subject to a set of “timeless” organising operations: «. . . we form collections of objects

where we distinguish a sound criterion, and we find out if these objects, despite being disparate

in their other criteria, will reveal relations of the particular criterion which make sense, that is

to say can be qualified, ordered or located in our field of musical perception».15 Outside-time

again appears as spatial co-presence (ordering in the field of perception).

13«. . . de pouvoir conserver, répéter, examiner à loisir des sons jusqu’ici éphémères, liés au jeu des instrumentistes,
à la présence immédiate des auditeurs», (ibid., p. 32)

14cf. Brian Kane (2007), ‘L’Objet Sonore Maintenant: Pierre Schaeffer, sound objects and the phenomenological
reduction’, Organised Sound 12(1), pp. 15–24

15«. . . nous formons des collections d’objets où nous distinguons tel critère sonore, et nous cherchons si ces objets,
malgré le disparate de leurs autres critères, feront apparaître des relations du critère considéré, qui aient un sens,
c’est-à-dire qui soient qualifiables, ordonnables ou repérables dans notre champ perceptif musical», (Schaeffer,
Traité des objets musicaux, p. 381)

23

HANNS HOLGER RUTZ

2.3 The Separating Diaphragm

The inside-outside brings us back to the double nature of composition as formulated by Koenig.

On the one hand, composition is “a piece”, the process’s result, an engraving of musical data

associated with chronological (Koenig) or lexicographic (Xenakis) time. On the other hand, it is

the process of production itself. The models of the latter seen so far all enumerate phases of this

process, or at least present possible methods. Koenig names three methods: interpolation (from

macro- to micro-structure), extrapolation (from micro- to macro-structure), and chronological-

associative method (an ‘in-time’ anticipation of the temporal unfolding of the piece and linear

construction of musical statements in this order). Xenakis presents various approaches, including

the free stochastic already discussed (choice of medium and sound sources, macro structure,

micro structure, programming, translation to score). Schaeffer distinguishes a conceptual and a

technical process. The conceptual process—musical research—comprises the study of sound

objects through a typological and morphological analysis of existing sounds, the study of musical

objects through the development of musical criteria which organise sound objects, and finally

the synthesis of musical objects, guided by these criteria and through the application of methods

such as ‘variation’ and ‘texture’. The technical process—the electroacoustic chain—identifies

all the phases from the generation of sounds (factures sonores), through their recording, to

cutting and montage, to filtering and ‘modulation’.16

It has also been seen that there is a notion of musical data abstracted from the flow of time,

whether defined as an outside-time algebra or a metric time in the case of Xenakis, or a recording

of a sound in the case of Schaeffer, which can be voluntarily decomposed and re-assembled.

This data is eventually positioned in lexicographic time (Xenakis) or copied to tape through a

synchronised reading (Schaeffer calls lecture synchrone the mixing down of the materials as a

set of synchronised tape tracks). For the sake of unifying terminology, we shall call this temporal

succession the performance time, denoted TP. More precisely, this shall be the physical time17

when the piece is actually sounding, whereas we speak of virtual or prospective performance

16The performance phases, sonic realisation in the case of Xenakis, and acousmatic projection in the case of
Schaeffer, have been left out.

17As this will be later codified in software, we are deliberately excluding any references to psychologically
perceived time here.

24

CHAPTER 2. TWO LAYERS OF TIME

generation of

musical data

assignment of prospective

performance time T(P)

traversal of notation yields

performance time TPnot
ate

d
write read

pie
ce

performing

+

composing

Figure 2.1: Diaphragm model of composition

time, denoted T(P), when referring to a notated or written musical datum. This yields a model

of the compositional process compatible with the three composers discussed so far, shown in

Fig. 2.1.

It shows the piece as diaphragm separating the composition procedure from its performance. It

is permeable only in one direction, and it functions as causa finalis for the composition. But

it is also a lens refracting (actualising) T(P). And finally, it is a memory cell written in the

composition procedure and read in a performance, allowing them to be separated in time and

space, while also allowing multiple performances of the same “composition”. Like any model,

this is a simplification, especially since it shows only an aperture: it neglects that generation of

musical data—if we admit that no musical invention stems from pure “originality”—is a reading

process (development of rule systems, gathering of sound material); and that the performance

itself is a writing process, transforming the piece through an interpretation which goes beyond

the refracting lens (instrumental interpretation, acousmatic interpretation) and inscribing it in

the minds of the audience. While the latter is not a subject of this thesis, the former aspect, the

reading relation of composing, will be addressed at a later point.

2.3.1 Models of Virtual Performance Time

Staying first on the left-hand side of the diaphragm model, existing approaches to modelling

T(P) in computer composition systems are examined. Since this is the only time layer in current

systems, it suffices to speak simply of representation of ‘time’ in this section. A basic typology

25

HANNS HOLGER RUTZ

Figure 2.2: A patch in Pure Data producing a sequence of tones

was given by H. Honing.18 He distinguishes tacit, implicit and explicit representations of time.

The first in this enumeration, ‘tacit’, is a bit misplaced, since it merely means that «time is

not represented at all». It leaves us with two types of representations, ‘implicit’ denoting an

unstructured attribution of temporal positions, i.e. without specific relations between temporal

values, whereas ‘explicit’ representation does allow for the specification of relations.

The trichotomy seems flawed for several reasons. First, the example given of a tacit “repre-

sentation” (or no representation) is Miller Puckette’s Max system19. Max and its variant Pure

Data (PD) use the data-flow paradigm to describe sound processes, so necessarily there are

ways to express time. Fig. 2.2 shows a very simple patch in PD which produces a monophonic

melodic contour that moves up and down in pitch and accelerates and decelerates randomly.

When asking someone unfamiliar with PD to spot the objects responsible for temporal unfolding

here, they might well guess that it is the delay object; and anyone familiar with PD will have no

problem in stating that the temporal succession is produced by random numbers from 0 to 100

which are translated into an exponential scale of 30 to 3000 milliseconds used to space each

tone apart.

It would therefore in this case be better to speak of an implicit or second-order temporal rep-

resentation in this case, meaning that instead of giving a list of temporal values, a process is

18Henkjan Honing (1993), ‘Issues on the representation of time and structure in music’, Contemporary Music
Review 9(1), pp. 221–238.

19At the time Max was still a two part system consisting of the actual signal processing part (MAX) and graphical
front-end Patcher (Miller Puckette [1998], ‘The Patcher’, in: Proceedings of the 24th International Computer Music
Conference (ICMC), Cologne, pp. 420–429)

26

CHAPTER 2. TWO LAYERS OF TIME

described that produces them. Whenever such values have already been produced and are given

as numeric or symbolic lists or attributes of an object, we shall use the term explicit or first-order

temporal representation, and this may have varying degrees of expressiveness (degrees of spe-

cifying relations between those values or attributes). In contrast, ‘tacit’ and non-tacit in Honing’s

proposal are not useful because they are just metonyms for his distinction between declarative

and procedural structures. The temporal effects of the former are «open to introspection and

reflection», while they may be difficult to define in the case of procedural structures, precisely

because they allow the definition of interactions and may yield indeterminate temporal effects.

The delay object appearing “crossed out” by the cables indicates the feedback nature of this

example.

Secondly, A. Marsden notes that the distinction between implicit and explicit as defined by

Honing does not matter from a logical perspective.20 Instead, Marsden begins with an ontology

of musical time, and finds four dimensions:

(1) Shape. Whether the flow of time is linear, branching, or circular. A branching perspective

might see the future as a set of trajectories branching off from the present. In the op-

posite direction, an archaeologist may see the different interpretation of artefacts as time

branching into the past. In musical representation, branching could be useful for parallel

motion between musical layers for which no synchronisation is given, or the possibility

of choosing among alternative versions of a section.

(2) Extent. Finite, having a defined beginning and ending, infinite, where either a beginning

or ending does not exist, or unbounded which is a situation where the bounds are not (yet)

known.

(3) Individuals. The “atoms” of time. Either points (durationless moments) or periods (also

called intervals) or events. Events are entities associated with points or periods, and

therefore a better distinction would be abstract time atoms versus indicated or embodied

time atoms. The latter become clear when considering an event-based system and un-

20Alan Marsden (2000), Representing musical time: a temporal-logic approach, Lisse: Swets & Zeitlinger
Publishers.

27

HANNS HOLGER RUTZ

bounded time; the system may still be operational in time, because time is embodied by

a finite number of events (despite “time as such” having no bound). Events somehow

oscillate between ontological and representational nature. Purely ontologically speaking,

the question is whether time exists independent of something changing (the event) or not.

(4) Texture. Whether time passes in discrete steps or flows continuously. For discrete time,

whether a minimum leap size (granularity) exists or not.

In terms of representation, Marsden chooses the approach of temporal logic. As in other forms

of logic, it is a symbolic system of rules where propositions can be made that are true or false

(which hold or do not hold). It is extended by a temporal qualification of propositions, so that

they become conditional under some temporal constraint—e.g. ‘always’, ‘never’, ‘at some time’,

‘before’, ‘after’ or ‘during’ some time, and so forth. The logical, rule-based approach naturally

corresponds to the declarative representation in Honing’s paper, although logical statements can

be handled procedurally. This will be discussed later in terms of reactive event systems.

For application in artificial intelligence, and consequently in computer music systems, the

work of J. F. Allen is seminal.21 He defines a temporal logic based on time intervals and a

set of six relations that qualify pairs of intervals, such as STARTS(t1,t2), meaning that interval

t1 begins synchronously with t2 but ends before t2 ends, or OVERLAP(t1,t2), meaning that

t1 starts before t2 and ends after t2 begins. These relations are asymmetric, so there are six

variants with reversed arguments, and finally there is EQUAL(t1,t2) to denote two identical

intervals. These relations can be combined with normal logical operators such as conjunction

(‘and’) or disjunction (‘or’) to yield implications or equivalences between expressions. For

example, BEFORE(t1,t2)∧BEFORE(t2,t3)⇒ BEFORE(t1,t3): interval t1 appearing before t2 and

t2 appearing before t3 implies that t1 must appear before t3. What makes Allen’s approach

interesting is that he provides an online algorithm for maintaining a constraints graph. In this

graph, each interval is represented by a vertex, and the constraints (possible relations) form the

21James F. Allen (1983), ‘Maintaining Knowledge about Temporal Intervals’, Communications of the ACM 26(11),
pp. 832–843; James F. Allen (1984), ‘Towards a General Theory of Action and Time’, Artificial Intelligence 23(2),
pp. 123–154.

28

CHAPTER 2. TWO LAYERS OF TIME

arcs between vertices. A 12×12 ‘transitivity table’ is given which defines how the dynamic

insertion of a new constraint propagates to neighbouring nodes.

Temporal relations and temporal constraints have been used interchangeably in the last paragraph.

In constraints programming, a variable such as an initially unrestricted temporal position is

incrementally specified by adding relations/constraints, and the constraint solving algorithm

may then find a solution or several solutions, giving particular values for those variables. Here it

means that possible points or intervals are found for the temporally embedded objects, such that

each of the temporal relations stated for them holds. An overview of constraints programming

in the context of music composition is given by T. Anders.22

Unlike the stepwise narrowing of the possible solutions for the variables through the addition of

constraints, dynamic removal of constraints is more difficult to implement, so a system which

allows constraints to be themselves subject to time requires additional constructs. As an example,

the work of A. Allombert et al.23 picks up both the Allen relations and a temporal constraints

approach called NTCC (non-deterministic temporal concurrent constraint calculus24). They

design a system for the “authoring” of interactive scores, where objects can be placed on a

timeline and connected through temporal constraints. One type of objects are ‘control points’

which function as interactive triggers during the performance. While “interaction” is restricted

to a musician activating those triggers at predefined times, these times allow for variation within

a given interval, and the score playhead may be issued to jump, producing loops or skipping

certain parts. Their research seems to have led to using petri-nets instead of NTCC to model the

temporal succession in a performance, however they are investigating how to add constraints

objects which only for a defined interval provide a particular restriction on the performance,

such as regulating the number of sound layers playing at a time.

22Torsten Anders (2007), ‘Composing Music by Composing Rules: Design and Usage of a Generic Music
Constraint System’, PhD thesis, Belfast: School of Music & Sonic Arts, Queen’s University, chap. 3.

23Antoine Allombert et al. (2006), ‘Concurrent constraints models for interactive scores’, in: Proceedings of the
3rd Sound and Music Computing Conference (SMC), Marseille, 14:1–14:8; Antoine Allombert et al. (2008), ‘A
System of interactive scores based on qualitative and quantitative temporal constraints’, in: Proceedings of the 4th
International Conference on Digital Arts (ARTECH), Porto, pp. 1–8.

24Catuscia Palamidessi and Frank D. Valencia (2001), A Temporal Concurrent Constraint Programming Calculus,
tech. rep. RS-01-20, BRICS Basic Research in Computer Science.

29

HANNS HOLGER RUTZ

2.3.2 Visual Representation of Virtual Performance Time

A major problem arises when trying to present T(P) graphically, for example within a user

interface. Again, with pieces where composition process and performance are clearly distin-

guished, this results in different strategies for graphical representation in either case. As this

study focuses on the compositional side (although we will eventually show how both become

the same), we will restrict this review to questions regarding the score’s accessibility to writing.

A recent special issue on Virtual Scores and Real-Time Playing of the Contemporary Music

Review (Vol. 29, No. 1, 2010) broadly covers the performance aspects of the matter.

As Marsden notes, «Two particular characteristics of musical time, which at least pose difficulties

for representation in a one-dimensional linear order, are of particular importance. These are

indeterminacy and recurrence.»25 That is to say, whenever there is a discrepancy, a required

non-trivial transformation, between T(P) and TP. The need to visualise this transformation stems

from the teleological thinking present to some degree in most composers: it comes from a wish

to anticipate how a piece sounds or unfolds in the performance. For some, it may be sufficient

to imagine this before their mind’s eye, particularly when the conceptual aspect of a piece

dominates or when its theme is unpredictability or rejection of control (Earle Brown’s December

1952, for instance). Here lies an undeniable advantage of notation for instrumentalists, because

on the one hand the composer is only limited by his imagination when writing the score—which

may combine traditional notation with newly invented symbols or graphical and typographical

tricks, descriptive text elements, etc.—and on the other hand he may rely on the intelligence and

skill of the players.

The situation changes for indeterminate or variable compositions involving electroacoustic

material or sound synthesis. A notation for musical data must be found which allows the

sound-producing part of the system to read it in the intended way. A visualisation must be

provided by the system that corresponds with the declarative or procedural statement of the

non-trivial transformation of prospective performance time. Since such transformations are

often not a predefined set within the system but written as statements in a general language,

25Marsden, Representing musical time: a temporal-logic approach, p. 3.

30

CHAPTER 2. TWO LAYERS OF TIME

often the only solution is to dispense with any graphical representation of T(P). This is the case

with most Max patches or pieces of SuperCollider code. Another solution is to develop editors

which are tailored specifically for a piece (because they enable a notation of the idiosyncratic

transformations of that piece, but are not general enough).

Command Control Communications

An example of the idiosyncratic case is the sound installation Command Control Communica-

tions (2007; also CCC), a collaboration between Cem Akkan (who composed the visual part)

and me (sound composition).26 The playful idea is to recycle cultural waste so that an interesting

aesthetic object arises which is both autonomous but also an ironic comment on its material.

The visual material is drawn from commercial Hollywood movie advertising (“movie trailers”)

dissected into small categorised loops. The visitor to the installation is given a huge remote

control with which the four simultaneously projected but otherwise independent “channels” can

be switched. Fig. 2.3 shows a photograph. The irony of the images is counterbalanced by

stripping off the original soundtrack, replacing it with an electroacoustic composition, loosely

synchronised with the image of each channel, creating a polyrhythmic texture with surreal

qualities.

A custom editor was written for the sound composition of the installation. It realises one large

timeline where all the loops are subsequently located, with a total duration of eight hours.27

A screenshot of the timeline in the interval 2h21m13s to 2h21m43s is shown in Fig. 2.4. During

the playback, each of the four video channels controls an individual synchronised playhead on

this timeline. Variability in the sound loops is achieved by two mechanisms:

(1) Each sound object is represented by a container, called ‘molecule’, which can contain any

number of alternative sound regions, called ‘atoms’. The bounding box of a molecule

is formed by the union of the contained atoms. In Fig. 2.4 molecules are shown as

dashed boxes, having labels starting with the letter M, and atoms having labels starting

with the letter A. For example, molecule M1987 contains four atoms which refer to four
26Sound and video examples of this piece can be found on the accompanying DVD.
27The number of video loops was reduced later, however, so sound composition was carried out for only about

half of the material on the timeline.

31

HANNS HOLGER RUTZ

Figure 2.3: Audiovisual installation Command Control Communications

different sound file regions. The atoms have slightly different onset times and durations

on the timeline. Each time a playhead cursor reaches the left margin of the molecule, the

algorithm decides which of the four atoms will be realised (inscribed in TP).

(2) Each atom has three variable parameters: time offset, volume, and pitch/speed. They are

specified as minimum and maximum values along with an algorithm that controls their

realisation within these boundaries. For example, the only atom in molecule M1988 has a

duration of 1.7 seconds and a time offset with a variation span of 1.1 seconds. The interval

in which it is heard is thus constrained to a box of a length corresponding to 2.8 seconds.

The indeterminate parts of this interval (the initial and the final 1.1 seconds) are visually

indicated by vertical stripes. Variations in volume (in this case between −47 and +16

decibels) and pitch (here between −11.80 and −12.20 semitones) are only represented

textually in a separate window containing information about the currently selected objects

on the timeline.

32

CHAPTER 2. TWO LAYERS OF TIME

Figure 2.4: Screenshot from the timeline editor of CCC. The vertical overlap of molecule M943
does not have any sonic implication but is a mere artefact of compressing the
vertical extent of the display.

33

HANNS HOLGER RUTZ

The algorithms to choose between minimum and maximum values are WHITE, BROWNIAN,

SEQUENCE, SERIES, ALEA, and ROTATION.28 The first two are continuous pseudo random

functions, while the remaining four take a list of discrete breakpoints over which they iterate in

various ways.29 In order to adjust the behaviour of individual atoms, molecules can be “frozen”,

preventing the random number generator from advancing that determines which atom inside a

molecule is realised.

The sounds realised by the four playheads are mixed together according to another algorithm

which arranges them in layers and applies different filtering techniques to control the density and

contrast. There is a separate visualisation for the layer arrangement which can also be frozen or

switched off during composition. Only the momentary state of the arrangement is visible, so its

temporal embedding is not represented.

General Systems

General systems are independent of a particular composition. One can distinguish three ap-

proaches:

(1) Similar to the editor constructed for CCC, the data is somehow coerced onto a linear

timeline and enhanced by visual indicators representing the indeterminate elements. For

instance the Virage30 visual front-end for the interactive score system by Allombert et al.

uses dashed stroking for boxes which are actually subject to temporal variations, despite

being rendered as a rigid box at a particular position on the screen.

(2) The idea of one coherent timeline is abandoned and instead it is deconstructed into pieces.

An example of this kind is Iannix31 which is tailored towards graphical scores, as musical

structures are represented by polygons and curves. A number of cursors, which can
28These algorithms were adopted from the granular synthesiser Grinder by Gerhard Eckel, although SEQUENCE,

ALEA, and SERIES seem to originate from Koenig’s Project 2, cf. Charles Ames (1987), ‘Automated Composition in
Retrospect: 1956–1986’, Leonardo 20(2), pp. 169–185

29SEQUENCE traverses the list and then repeats, ROTATION goes from front to back and then reverses back to the
front. ALEA picks random list elements, and SERIES shuffles the list, uses each element once, and then shuffles anew.

30Antoine Allombert et al. (2010), ‘Virage: Designing an interactive intermedia sequencer from users requirements
and theoretical background’, in: Proceedings of the 36th International Computer Music Conference (ICMC), New
York.

31Thierry Coduys and Guillaume Ferry (2004), ‘IanniX: Aesthetical/Symbolic visualisations for hypermedia
composition’, in: Proceedings of the 1st Sound and Music Computing Conference (SMC), Paris, 18:1–18:6.

34

CHAPTER 2. TWO LAYERS OF TIME

be interpreted as concurrent playheads, “scan” the curves and output their trajectories’

visual coordinates, to which musical meaning must be assigned in the form of a program

receiving Open Sound Control data. Furthermore, trigger points can be defined that

produce an event when a cursor hits them. This is a purely procedural approach, as no

method exists to declare temporal relations and time is only implicit in the dimensions of

the curves and the speed of the cursors set into motion by starting a global transport. While

this is a very playful tool, coordinated manipulation of time is difficult—for example,

there is no notion of inserting an object between other objects in time, as generally there

is no direct relationship between disjoint curves. On the other hand, it allows new means

of expression because different cursors are independent of each other, allowing cyclical

polyrhythmic structures or creation of parallel time layers. It is also possible to create

and modify the graphical objects dynamically through programs, although it may require

some skill and has the side effect that resetting the transport back to a previous offset does

not restore the score to its previous state.

(3) A rather conservative but still very useful approach is to see the score as a particular evalu-

ation of a program, and thus more as a snapshot than the embodiment of the piece itself.

An exemplar is the Maquette object for the Open Music visual patching environment.32

The authors explicitly refer to the outside-time in-time dichotomy introduced by Xenakis.

In a dedicated ‘evaluation’ stage, the in-time ascriptions are carried out and the visual

representation as “temporal boxes” is updated. Objects may depend on each other func-

tionally irrespective of their relative placements in performance time, although Bresson

and Agon mention that it is possible to introduce a cyclical problem—if during evaluation

an object X depends on the temporal position of another object Y and Y ’s position changes

during the evaluation, X has been using an obsolete representation of Y . The performance

phase is strictly repeatable, objects will no longer change their temporal positions unless

another evaluation is issued. This approach is useful because the visualisation is detached

from the underlying algorithms for determining in-time positions. Furthermore, the visu-

32Jean Bresson and Carlos Agon (2006), ‘Temporal control over sound synthesis processes’, in: Proceedings of
the 3rd Sound and Music Computing Conference (SMC), Marseille, 9:1–9:10.

35

HANNS HOLGER RUTZ

alisation truly reflects T(P), as the sonic realisation is another independent stage which

may apply additional transformations and interpretations to the temporal boxes.

In summary, the more a piece confines itself to “fuzzy” objects—objects which may vary in

their actual positioning in TP only within certain bounds—the easier it is to visually represent

its structure in a way that conveys the temporal succession. Taking again the stochastic music

of Xenakis, each piece is fully calculated, so an unambiguous score representation is trivial. If

the piece was defined to be the stochastic process carried out with a fixed set of parameters,

at least the contours of the piece could still be visually represented. As Agostino Di Scipio

notes, in these stochastic processes «. . . the unexpected, the singularity of events, does not

become a source of information and transformation, but rather favors a levelling-off tendency

reflecting the relentless increase of entropic disorder . . . ».33 As soon as a recursive element is

introduced—that is, the temporal development relies on a previously computed datum—a piece

defined as process can only be abstractly represented but not as a tableau of temporal values laid

out as simultaneous spatial positions.

It is for this last reason, and also because this direction leaks too much into the different research

areas of notation techniques and interface design, that we conclude the brief review of graphical

representation of musical time here. In the further course of the thesis, we restrict ourselves

to textual description of musical data and musical processes, although a graphical front-end

Mellite for our computer music system is introduced.

2.4 Creation Time

We now introduce a second layer of time, which shall be called creation time, denoted TK.

This layer covers, but is not limited to, the process of writing a piece. The perspective is

shifted, so that it no longer focuses on what is written—the musical datum—or re-written—the

ascription of T(P) to the musical datum—but on the fact that something is written, and that

this writing necessarily happens in time. Writing takes time just as reading takes time, and this

symmetry is clearly seen in Fig. 2.1. The creation time spans the distance overarching

33Agostino Di Scipio (1998), ‘Compositional Models in Xenakis’s Electroacoustic Music’, Perspectives of New
Music 36(2), pp. 201–243.

36

CHAPTER 2. TWO LAYERS OF TIME

the activities on the left-hand side. In a transitory simplification, this “interval” begins with

the composer’s decision to write a piece, and it ends with him declaring the piece finished.

A second simplification is to restrict this interval to contain only those activities which are

directly observable by computer software.

For example, Fig. 2.2 may be the result of the steps depicted in Fig. 2.5. These are somehow

slides or snapshots showing how the patch, starting from blank, is incrementally constructed.

The sequence is arranged in zig-zag fashion with the new or modified objects and cables in each

slide shown with darker borders. The most obvious thing conveyed is the order in which objects

were created and connected. The interpretation is much more difficult. Hypotheses can be made,

but only verified by asking the composer—and even that may only establish what the composer

did consciously. It seems that the initial idea was to construct a random walk, because the drunk

object is created first. But it may equally be that the initial idea was to create a triggered sine

oscillator, and merely the execution of the idea began with the random walk. So if the aim was

to retrace the conceptualisation process of the composer, clearly the induction from a sequence

of visible actions is afflicted with speculation.

On the other hand, if the observation is plainly described as a motion, the psychological trap is

avoided. It begins with the creation of several objects, forming two disconnected graphs (one on

the left, one on the right side), which are eventually connected. Then a separate group formed

of 20, mtof, and print is added, and the message value undergoes changes to 40 and 140, before

they are deleted again, and an object + 30 is inserted after the previously created mtof. (Again,

an intentional hypothesis would be that the effect of mtof was tried out on different input values,

establishing a useful frequency range for the combination of drunk and + 30.) It follows the

substitution of pack 1 10 0 0 for 1 10, 0 $1 10, and the substitution of scale for expr, finally

the adjustment of the initial parameters for the drunk objects. (An interpretation may be that the

pack object output was unsuitable to create the desired envelope in the vline∼ object, and that

an exponential scale for the random durations was considered more appropriate than a linear

scale.)

37

HANNS HOLGER RUTZ

Figure 2.5: Possible evolution of a PD patch

38

CHAPTER 2. TWO LAYERS OF TIME

In a more complex and realistic scenario, one might see many more deletions and modifications,

as it becomes more difficult for the composer to anticipate the effect of an action within the

ensemble of existing objects. Let us remember Koenig’s description of the composer in front of

a composition program:

«A composer is more accustomed to being influenced by a spontaneous idea than

by prepared plans; he decides and discards, writes down and corrects, remembers

and forgets, works towards a goal; replaces it during his work by another . . . »34

A system that accounts for both qualities of musical time, the creation time and the performance

time, may be used as an analytical tool for a musicologist to guide the determination of the

psychological processes going on inside the composer—given the aforementioned premise that

additional methodology is employed and found credible, which strengthens any hypotheses

about such processes. But more importantly, it will equip the composer with means to observe

his own activity and to connect these two time qualities in a recursive manner, such that a

musical datum may reflect the trajectory of compositional work or that successive compositional

work incorporates “performed work”—decisions made during a performance. In other words,

it will allow an oscillatory movement between both sides of Fig. 2.1, thereby questioning the

diaphragm itself.

2.5 Accessing Time

Now that it has become clear which temporal data should be represented in a composition

system, one must ask how this accomplished; in other words, how this data is written and read.

Two areas in computer science that are relevant in this context are algorithms and data structures

as well as database systems.35 Data structures are the more general field, while database systems

specifically deal with the storage of data on so-called secondary memory (e.g. hard disks).

34Koenig, ‘Kompositionsprozesse’, p. 197.
35These are two areas defined by the CSAB, an accreditation organisation formed by the Association for Computing

Machinery (ACM) and IEEE Computer Society, as reflected in Computing Sciences Accreditation Board (CSAB)
(1986), Computer Science as a Profession, URL: http://web.archive.org/web/20090117183438/http://www.csab.

org/comp_sci_profession.html (visited on 25/05/2012); one might suggest human-computer-interaction as well, but
it is not the focus of this thesis.

39

http://web.archive.org/web/20090117183438/http://www.csab.org/comp_sci_profession.html
http://web.archive.org/web/20090117183438/http://www.csab.org/comp_sci_profession.html

HANNS HOLGER RUTZ

Since the system we are going to design should be able to store the musical data permanently,

it is natural to look at possible approaches in database research. A traditional database has the

notion of “tables”, a matrix in which each row corresponds to an individual entry or object, and

within a row vector, the columns represent different parameters of the entry. In the PD example,

an entry would correspond to a box inside the patcher, and the entry parameters could be the

box’s type, x and y position on the screen, name and default arguments, and connected cables.

Then, in an ephemeral setting, that is without taking into account TK, the steps in Fig. 2.5 would

correspond to the addition, modification and deletion of rows in the table. Of course, this is

all hypothetical, as in fact PD does not maintain a database, but an in-memory data structure,

which is written out only when the patch is saved. Nevertheless, the format of that file, which is

a plain text, resembles the speculative matrix:

...

#X obj 252 -215 osc~;

#X obj 252 -246 mtof;

#X obj 252 -270 + 30;

...

#X msg 33 -327 stop;

...

#X connect 0 0 5 1;

#X connect 1 0 0 0;

...

Indeed objects (obj) and messages (msg) are represented by said parameters. The cables, however,

are separate entities of type connect, taking as parameters four integer numbers representing

source box, source outlet, target box, and target inlet. In a table database, because of the different

shape of the box and connector parameter columns, these would go into two different tables.

When reading in a connect entry, its parameters must be translated to actual boxes. The integers

representing the boxes are called identifiers or surrogates. In the above example, they might just

indicate the row number in the file representing a particular box.

2.5.1 Transactions

How would the evolution of the patch over creation time be represented? A special database

variant, called temporal database, is needed. R. T. Snodgrass and I. Ahn have established a

40

CHAPTER 2. TWO LAYERS OF TIME

obj 83 -269 scale 0 1...

obj 252 -246 mtof

252 -270 + 30

msg 33 -327 stop

obj 252 -215 osc~

obj

transaction

time

Figure 2.6: Transaction time database

taxonomy for time in databases.36 They distinguish three types of time, called transaction time,

valid time, and user time. The last of these is simply any datum which is not managed directly

by the database, for example it is not subject to indexing. In a database, an index allows one

to look up an entry by the index key. The two important dimensions are thus transaction and

valid time. The transaction time is «the time the information was stored in the database.» Now

if the composer performing the steps of Fig. 2.5 is seen as operating on the database, each

step corresponds with a particular point in transaction time, and so the addition, deletion or

modification of an object would be associated with such a point. This is illustrated in Fig. 2.6

(adapted from Snodgrass and Ahn) as a sort of growing cube. This type is also called “rollback”

database because it is possible to go back in the history of the database.

In the illustration, time advances from back to front. Each slice along this axis then corresponds

to a view of the patcher as it was at that time. In the oldest instant shown here, there are three

objects in the patcher (three rows in the database); in the successive time step, the osc∼ is added,

bringing the number of rows to four; in the third and last instant shown, a previously existing

object (perhaps scale) was removed, and the stop message added. It implies that several actions

can be carried out within the same transaction. Physically this is not possible: neither can

the composer delete an object and create another one at the same time, nor can an algorithm

achieve this, since it would need to break down this transaction into two separate steps, even

if those steps were performed so fast that one was under the impression that they happened

synchronously.

36Richard T. Snodgrass and Ilsoo Ahn (1985), ‘A Taxonomy of Time in Databases’, ACM Special Interest Group
on Management of Data (SIGMOD) Record 14(4), pp. 236–246.

41

HANNS HOLGER RUTZ

Transactions are thus a logical abstraction from physical time. They are said to be atomic, which

means:

› Transactions can be composed of a number of sub-actions. A transaction is opened, the

sub-actions are encapsulated, and the transaction is eventually closed. The closure is also

known as commit, and a committed transaction can no longer be broken up.

› Transactions do not “take time”—all sub-actions are considered to happen logically at the

same time instant.

› Time leaps between two transactions, there is nothing to observe between two transac-

tions.37

Furthermore, “wallclock” time can be attached to a transaction, denoting the time in the real

world corresponding to the transaction, e.g. “at which date and time was an object created in the

database?” The wallclock is usually read when the transaction is committed (it has been decided

that no more sub-actions will be included). Wallclock time increases monotonically, and there

is no way to issue a transaction which happens before another already committed transaction. It

follows that the time-line formed by all the transactions can be further abstracted, as shown in

Fig. 2.6, by being composed of equidistant points which are simply incrementally numbered (t1,

t2, t3), even though in the physical world the time span that passed between t1 and t2 might be

greater or smaller than the one between t2 and t3.

A database supporting transaction time will never physically delete an object. Instead, a new

transaction time slice is added where that object simply no longer appears. Therefore, the history

of the creation of a structure (e.g. the patch) is preserved, and it is possible to “roll back” the

database to any previous transaction time instant and view the stored structure as it has been

at that time. If the term creation time, TK, is used to indicate those actions carried out by a

composer in the process of composing a piece, which are observable by the computer system

through association with transactions, then transaction time can be said to represent TK.

37In Marsden’s categories, the individuals of a transaction system are thus point events, and the texture is discrete.

42

CHAPTER 2. TWO LAYERS OF TIME

I1Region

I2Region

I3Region

valid time

Figure 2.7: Schema of a multi-track editor

2.5.2 Valid Time

Another situation requires the expression of time independent of the action of entering it into the

database. Snodgrass and Ahn call this ‘valid time’ because it is «indicating the points in time

when the tuple accurately modeled reality.»38 Without dwelling upon the status of “reality”, to

give an example, in a business application where the database contains entries for the employees,

such datum could be the validity of their contracts. The entry for an employee might be created

before or after he actually starts to work for the company, so temporal information independent

of the transaction time is needed. This information is not just “user time”, but treated specifically

so the database can efficiently answer queries of the type “list all people who were employed on

day X”.

An obvious use case in music is the representation of virtual performance time, T(P). The

“reality” then is the situation of the performance, although a composer will not—except maybe

in very particular pieces—encode a datum such as “play sound X at midnight on September 5,

2012”. Exactly because he encodes T(P) and not TP, this datum will instead refer to a time base,

for example it might be relative to the beginning of the piece, no matter when the piece is played.

Apart from this difference, the situation is quite similar to the business example. A typical query

might be “list all objects which are sounding after 4 minutes from the beginning of the piece”.

38Snodgrass and Ahn, ‘A Taxonomy of Time in Databases’.

43

HANNS HOLGER RUTZ

In a particular composition system, this might be a mediated query. For example, take the com-

mon tool used in fixed media electroacoustic composition, a multi-track editor. Its interface is

schematised in Fig. 2.7. The composer typically works entirely inside this visual representation,

moving around sound “regions” with the mouse. He may focus on a particular part, e.g. “move

the timeline” to a window around four minutes into the piece. If the regions were stored in a

database, the graphical interface would translate this movement into the query “. . . all objects

which are sounding after 4 minutes . . . ”, therefore the database is required to handle valid time,

and valid time can be said to represent T(P).

Note that the sound regions represent temporal successions in themselves, i.e. they refer to

audio files representing samples of sound taken at a particular sampling rate (such as 44.1 kHz).

An audio file could be seen as a temporal database, too, but its structure is much simpler than

the regions list, where regions can appear at arbitrary positions and there may be overlaps on

the timeline or empty parts with no regions. A “query” such as “all audio samples between

one and two seconds” for an audio file can be directly translated to a logical offset into the file

and a number of samples to be read, given that the audio file format is not using a compression

scheme.

2.5.3 Bi-Temporality

Just as there is very little research on the creation timeline, none of the computer music systems

known to us supports storage of the transaction timeline. The only option is to combine the

music software with a generic software versioning system.39 While this allows one to restore a

previous version of a piece, the versioning information remains external: it is not possible to

handle historical traces within the representation model of the music software itself.

When looking at a valid or T(P) timeline, such as Fig. 2.7, no information is preserved as to how

the regions came into existence and ended up in their final positions.40 Widely used multi-track

editing systems, such as Protools or Ardour, only provide support for the standard desktop

39This is for example suggested by C. Burns, although he acknowledges that this might be useful for a language
such as Common Lisp Music, and less for other applications such as Protools. Christopher Burns (2002), ‘Tracing
Compositional Process: Software synthesis code as documentary evidence’, in: Proceedings of the 28th International
Computer Music Conference (ICMC), Göteborg, pp. 568–571

40Although there may be subtle indicators—observe the numbering of the molecules in Fig. 2.4.

44

CHAPTER 2. TWO LAYERS OF TIME

t

v v v v v

I1 I1 I1 I1 I1

I2 I2

I3 I3 I3

t1 t2 t3 t4 t5

Figure 2.8: Schema of a bitemporal data structure

application metaphor of an undo-history. While the application is running, editing actions can

be reverted step-by-step. When the application is closed, this history is lost. The purpose of the

undo-history, as its name suggests, is merely to be able to correct recent mistakes by making the

last editing steps undone.

Fig. 2.8 shows what a multi-track editor supporting transaction time might look like. The

figure is adapted from an investigation into bitemporal databases.41 A bitemporal database

system is one which combines transaction time and valid time.42 As depicted, both layers can

be conceived as orthogonal to each other. The transaction time axis t runs horizontally, with

individual points labelled t1,t2, . . ., and the valid time axis v extends into the z-plane, while the

vertical space is merely used to handle the overlap between the valid time entities I1,I2,I3. Two

things can be noted:

(1) Although not a requirement for bitemporality, in many cases transaction time is atomic

(punctiform) whereas the valid time data often has the form of intervals.

(2) The transactional timeline grows constantly, new transactions are appended. Objects on

the valid timeline however may be freely adjusted. For example in transaction t5, the

duration of interval I1 is extended.

This second observation stems directly from the independence of both time dimensions. It

places musical time at the unrestricted disposal of the composer, because it is not necessarily

41Anil Kumar, Vassilis J. Tsotras and Christos Faloutsos (1998), ‘Designing Access Methods for Bitemporal
Databases’, IEEE Transactions on Knowledge and Data Engineering 10(1), pp. 1–20.

42Christian S. Jensen et al. (1992), ‘A Glossary of Temporal Database Concepts’, ACM Special Interest Group on
Management of Data (SIGMOD) Record 21(3), pp. 35–43.

45

HANNS HOLGER RUTZ

P

K

(P)

Figure 2.9: Decoupled creation and virtual performance time

a musical datum that causes another musical datum (requiring the latter to appear after the

former); instead, the composer is the “prime mover”, able to rest as long as desired between

transactions. This view is illustrated in Fig. 2.9. The composer has a bird’s eye view of the

musical data and can relate it independent of any temporal ascriptions (in the case of “in-time”

data). Very much like a god he embodies the role of creating ex-nihilo, starting with a blank

screen or piece of paper. Transformations between T(P) and TP are fixed and the piece is clearly

delimited. Compare this with a clock-wise rotated view of Fig. 2.1.

Xenakis reflected this role in his answer to the question “What is a composer?” in the chapter

Concerning Time, Space and Music.43 In his first remark, concerning entropy, he writes that

«Indeed, much like a god, a composer may create the reversibility of the phenomena of masses,

and apparently, invert Eddington’s “arrow of time.”» The god metaphor however is not so much

used in the Aristotelian sense, but in reference to a theory of the evolution of the universe,

having begun in complete order and moving towards increasing entropy. A. S. Eddington44

explains the directionality of time (the “arrow of time”) from this increase in entropy, which

is embodied in the second law of classical thermodynamics—a “secondary law” applying to

groups of elements, as opposed to the “primary” laws of physics concerning only individual

entities. The time of primary laws is the time of mathematics, Xenakis’ metric (symmetric)

time, which appears as a reference, a functional argument, something that can be «undone» as

Eddington says: A sequence of instants beaded on a chain, which can be traversed from either

direction. In Xenakis’ works dealing with masses of events, the statistical methods can be used

43Iannis Xenakis (1992), Formalized Music, Thought and mathematics in composition, Revised Edition, Stuyves-
ant, NY: Pendragon Press.

44Arthur S. Eddington (1929), The Nature of the Physical World, Cambridge: Cambridge University Press.

46

CHAPTER 2. TWO LAYERS OF TIME

to go from disorder to order at will, as the temporal algebraic functions used for establishing

lexicographic order are a secondary process.

Xenakis’ second remark addresses the problem of «creating something from nothing», which

will appear a number of times in our text (e.g. Sect. 4.4.5).

2.6 Access Methods

With the bitemporal taxonomy established, it must be demonstrated how such data can be

accessed. Accessing the data means to read, write or update an entry in the database. Each

access comes at a cost in terms of space usage and time. Space usage describes how much

storage space (e.g. bytes in memory or on hard-disk) is necessary to represent a datum. The

time cost describes how long it takes the computer to perform a given operation. This time

is not included in the bitemporal model, since being logically without duration is part of the

abstraction of a transaction. And this is mostly sufficient, as in a system design we do not

want to model temporality based on the speed of a particular computer or storage medium.

Nevertheless, it means that assumptions are made about the insignificance of the access times—

in an offline system, where the composer works “outside time”, there are no real restrictions

on this access time, however they might disturb the process of composition if the composer

experiences noticeable delays when carrying out an action. In a real-time system, where the

computer performs the piece or parts of it during the compositional process, the access times

need to be small enough not to introduce perceivable distortions during the production of musical

events in TP.

The costs can be specified in the O-notation45 as the asymptotic worst case (upper bound)

behaviour function of a number of crucial parameters. A simple scenario would be an in-

memory representation for valid time only, where valid time is given in points and not intervals.

A binary search tree would be a suitable structure to efficiently store and query such values.

45Thomas H. Cormen, Charles E. Leiserson and Ronald L. Rivest (1990), Introduction to Algorithms, Cambridge,
MA: The MIT Press, pp. 6–10, 23–32.

47

HANNS HOLGER RUTZ

6

4 11

2 5 8 14

1 3 7 10 13 16

9 12 15 17

Figure 2.10: A binary search tree

The AVL tree46 and the red-black tree47 are two data structures with good performance (low

costs): In both cases, the insertion and deletion of a point have a time cost of O(logn), where n

is the current size of the tree, i.e. the number of entries in the tree.48 The query, i.e. to answer

whether a point is contained in the structure or to retrieve a point closest to a given point, has the

same time cost of O(logn). The ideal time cost would be O(1) which means constant cost—no

matter how large the tree is, a point can always be found in the same amount of computation

time. AVL tree and red-black tree have optimal space costs of O(n) which means that to store n

entries, no more than n memory cells are needed. An example tree is shown in Fig. 2.10. To

find an element, one starts at the root, compares the query element to the root element and then

either descends to the left or the right. The comparison is then repeated until either the query

element has been found or the leaves of the tree have been reached.

Cost predictions are made difficult due to the following contributing aspects:

› Computation Model The above values are assuming the RAM (random access memory)

model of computation, which means that following from one node of the tree to a child

node or the creation of a new node are constant time operations, and there are no require-

ments as to how the branches and leaves are localised in the memory. If these structures

46Caxton C. Foster (1965), ‘Information retrieval: information storage and retrieval using AVL trees’, in: Proceed-
ings of the ACM 20th National Conference, Cleveland, OH, pp. 192–205.

47Leo J. Guibas and Robert Sedgewick (1978), ‘A dichromatic framework for balanced trees’, in: 19th Annual
Symposium on Foundations of Computer Science (FOCS), IEEE, Ann Arbor, pp. 8–21.

48Since the O-notation only denotes the magnitude of performance, leaving out constant factors, the base of the
logarithm is irrelevant. Some authors prefer to write lg = log2 instead, although lg is ambiguous and may also be
read as log10.

48

CHAPTER 2. TWO LAYERS OF TIME

are stored on a hard-disk, a different model might be more appropriate which measures

the amount of contiguous blocks read from or written to disk, giving way to alternative

structures such as the B-tree.49

› Amortisation Some algorithms only guarantee amortised costs.50 This means that the

worst costs are to be understood only as an average over a number operations, while

a single operation may occasionally require more time, e.g. because the insertion of a

datum requires the splitting of a node. These algorithms are thus problematic under strict

real-time requirements.

› Dynamic Behaviour Some data structures might have optimal bounds, but are static

and cannot provide those guarantees under dynamic modification.

› Parallelism Current computer processor development exhibits an increase in the number

of cores which can work in parallel. Not all data structures are suitable for parallelisation

and may thus perform inferior to well parallelised structures.

› Concurrency As a result of parallel processing capability, a program may require that

different threads access a data structure concurrently. Classic data structures often assume

mutable memory cells, and their algorithms need to be adapted to cope with the concurrent

situation. New approaches such as purely functional data structures51 might be favoured,

but these again interfere with the potential for storing them on hard-disk . . .

In conclusion, care must be taken in the choice of existing, and the creation of new, data

structures with respect to their performance. Whenever feasible, structures that provide constant

time operations O(1) should be given preference. However, due to the difficulty of taking

all cost aspects into account—and since this thesis aims to explore a new creative approach

instead of making claims about optimal bounds of the algorithms and structures used—generally

49See for example the following paper which applies the cache-oblivious model to B-trees, making them pre-
dictable under different conditions where memory is hierarchical (e.g. the structure must be transferred between
main memory and a secondary memory such as the hard-disk): Michael A. Bender, Erik D. Demaine and Mar-
tin Farach-Colton (2000), ‘Cache-Oblivious B-Trees’, in: Proceedings of the 41st Annual Symposium on Foundations
of Computer Science, IEEE, Redondo Beach, pp. 399–409

50cf. Cormen, Leiserson and Rivest, Introduction to Algorithms, pp. 356–377
51Chris Okasaki (1998), Purely Functional Data Structures, Cambridge: Cambridge University Press.

49

HANNS HOLGER RUTZ

structures are accepted whose time costs are logarithmic in the size of the structure, O(logn).

Then, even if due to transfer to secondary memory or nesting of data structures the costs rise to

a polylogarithmic term, the rise is slower (“sub-linear”) than the growth of the data structure,

becoming less and less significant as the database grows.

2.6.1 Multidimensional and Interleaved Structures

Since bitemporal databases merely provide a point of departure for our model, we do not wish to

go into too much detail. A thorough comparison of access methods for temporal and bitemporal

databases is given by B. Salzberg and V. J. Tsotras.52 Nonetheless, an examination of the

bitemporal systems of A. Kumar, V. J. Tsotras and C. Faloutsos53 will help clarify some of

the methods later used in our own design. Their initial observation is that naïve solutions,

such as copying the whole data structure for each transaction step or just recording a log book

of incremental changes to the initial structure, yield very bad update and query performance

respectively.

An interesting idea is born directly from the visualisation of Fig. 2.8—transaction and valid

time can be seen as two orthogonal axes of a plane in which the data is inscribed. Thus, any

well performing spatial data structure can be used. A spatial data structure can encode multi-

dimensional data and offers search algorithms such as finding all objects within an interval,

within a rectangle or near a given point. Spatial structures have been well researched in the

field of computational geometry, spatial databases and geographic information systems (GIS).54

Kumar, Tsotras and Faloutsos use the R-tree55 in one of their implementations. Fig. 2.11,

adapted from their paper, shows this idea. An example query (ti,v j) finds any interval existing

at (i.e. containing) transaction time point ti and containing the valid time point v j. Since interval

I1 is changed in t5, it is represented by two adjacent rectangles.

52Betty Salzberg and Vassilis J. Tsotras (1999), ‘Comparison of Access Methods for Time-Evolving Data’, ACM
Computing Surveys 31(2), pp. 158–221.

53Kumar, Tsotras and Faloutsos, ‘Designing Access Methods for Bitemporal Databases’.
54For an overview of spatial data structures see Hanan Samet (1995), ‘Spatial Data Structures’, in: Modern

Database Systems: The Object Model, Interoperability and Beyond, ed. by Won Kim, New York: ACM Press and
Addison-Wesley, pp. 361–385

55Antonin Guttman (1984), ‘R-trees: A dynamic index structure for spatial searching’, in: Proceedings of the
1984 ACM SIGMOD international conference on Management of data, Boston, pp. 47–57.

50

CHAPTER 2. TWO LAYERS OF TIME

t

v

I1

I2

I3

t1 t2 t3 t4 t5

now

(ti,vj)

Figure 2.11: Modelling bitemporal data as an R-tree

The R-tree requires that all data is bounded by a root rectangle, putting an artificial restriction

on the valid time and posing a problem to the representation of musical data that extends to

the current transaction, i.e. exists in the most recent version. This problem of representing

“now” can be solved by either using a special coordinate for “now”—e.g. the largest number

representable with a given number of bits—or by maintaining two trees, one for past data and

one for actual data.

A second method is to decompose the access into two strategies. In the first stage, again an

off-the-shelf data structure is taken which performs well in the valid time case, but it is then

interleaved in the second stage to provide the additional transactional layer. Good structures

for representing the valid time intervals are the Interval Tree56 and the R-tree (only one of the

two dimensions of the R-tree is necessary, the other dimension could be used for an additional

key). The trick is then to transform this structure according to the partial persistence approach

developed by J. R. Driscoll et al.57 In this transformation, a data structure is modified in such a

way that each mutable field records the history of its “overwriting”. When a query is performed

and the structure traversed, mutable fields are read by finding the version most recent with

respect to a given query version. That is to say, looking at Fig. 2.8, a given transaction time is

passed into the query of the spatial data structure which will then be viewed as if it was a single

historic time slice. A clever methodology is guiding the persistent transformation to minimise

spatial and temporal costs in contrast to the naïve scheme of verbatim copies of each time slice.

56Herbert Edelsbrunner (1983), ‘A New Approach to Rectangle Intersections (Part I+II)’, International Journal of
Computer Mathematics 13(3-4), pp. 209–229.

57James R. Driscoll et al. (1989), ‘Making data structures persistent’, Journal of Computer and System Sciences
38(1), pp. 86–124.

51

HANNS HOLGER RUTZ

The advantage of this second approach is that TK and T(P) are decoupled. Musical data might be

heterogenous, and not all data might have temporal ascriptions (cf. “outside time”). A uniform

approach to modelling creation time based on ‘persistence’ can be combined with multiple

representations of performance time. Since a variant of persistence is also used in our imple-

mentation, a longer discussion is given in Sect. 5.5.

2.7 Branching and Multiplicities

It seems that a suitable model for the representation of the compositional process has been found:

In a bitemporal database TK corresponds with the transaction timeline, and T(P) is represented

by valid time data. But is it sufficient to view each dimension as a time-line?

2.7.1 Branching as Parallel Motion

It has already been noted that a composer’s behaviour may not be led by a clear goal, but that the

strategy may shift during the compositional process, and moreover that he might make decisions

which he later revokes as errors. Schaeffer, too, acknowledges a “groping” which characterises

at least the first phase of the process, in which establishing groupings and relationships between

sounds only become gradually clear.58

In one of the few studies systematically observing composers at work, D. Collins traces the

actions of a professional composer working with a MIDI- and synthesiser-based system.59 He

confirms that the composer works with incremental goal adjustment, and most importantly

detects a concurrency of strategies. The composer in his case study would develop different

themes independently and eventually chose not to settle on either of them, but to combine them

into one piece. Moreover, «he took the unusual step of looking outside the composition to

material he had written elsewhere and ‘imported’ a new theme . . . ». In conclusion, Collins

advocates a model of the “problem solving” process which includes branching.

An exhaustive tracing of the compositional process thus needs to be able to represent this

concurrency. A regular bitemporal system is limited, as transactions can only be appended

58Schaeffer, Traité des objets musicaux, p. 381.
59David Collins (2005), ‘A synthesis process model of creative thinking in music composition’, Psychology of

Music 33(2), pp. 193–216.

52

CHAPTER 2. TWO LAYERS OF TIME

to the most recent state of the data structure. In contrast, concurrency is well addressed in

collaborative software and revision control systems.60 Here, a group of people needs to be able

to work concurrently on a project—this might be a text document, or a software development

project—which implies that multiple “timelines” branch off from a common root. In software

development, a branch that evolves more or less into a self-contained project is also called a

‘fork’. Yet, just as important as branching, a mechanism is needed through which the different

threads are merged again into one body (of text, of software). Returning to the music com-

position system, the composer must be enabled to start working on an idea from any previous

situation (point in TK), either

› in order to dismiss the most recent actions on a branch

› in order to develop concurrent (alternative) versions of a piece

› in order to develop variants within a piece which are then merged back into the “main”

piece

It goes without saying that a fourth perspective indeed is to allow multiple composers to work

on the same piece, although this scenario is not investigated in this thesis.

It should further be clarified that “branching in TK” is not in conflict with the linear advancement

of time. The transactions may still be ordered linearly on a timeline, however the musical

structure is multiplied and must be logically represented as a tree or—when branches are

merged together—as a graph. It is thus not sufficient to ask how the piece looked “last Monday

at noon”, but an additional information denoting the branch is needed, e.g. “last Monday at

noon in the main branch”. If transactions are restricted to include only sub-actions within

one branch, then instead of associating them directly with wallclock time, they can be given

incremental logical numbers (t1,t2,t3, . . .) which uniquely identify them. A ‘version’ in the

graph of transactions then denotes the view of the data structure that results from traversing

the graph from its root up until and including a particular transaction which “concludes” the

60For an early account on revision control see Walter F. Tichy (1982), ‘Design, Implementation, and Evaluation
of a Revision Control System’, in: Proceedings of the 6th international conference on Software engineering ICSE,
IEEE, Tokyo, pp. 58–67

53

HANNS HOLGER RUTZ

I1 I1 I1 I1 I1

I2 I2

I3 I3 I3

t1 t2 t3 t4 t6

I1

I3

t5

I2

Figure 2.12: A branched and temporal structure

version. We can then ask how the piece looked “in version X”, and wallclock time and branch

are attributes of the version’s concluding transaction. This is illustrated in Fig. 2.12, where

version t5 initiates a new branch, and hence when referring to object I1 in t5, we refer to that

branch along with a transaction belonging to that branch.

This tuple indexing is also called “branched and temporal”, and L. Jiang et al. have developed

a structure called the BT-tree implementing this index.61 However, valid time data is not

directly supported, and performance degrades with the number of branches. An example

of a direct versioning approach, indexing by the unique version identifier instead of the tuple

(Branch,Time), is the fully persistent B-tree.62 This variant of the persistence method of Driscoll

et al. allows transactions to branch off any past version of the data structure. None of these

branching structures support the merging of branches, however.

2.7.2 Branching as Serial Motion

The translation from T(P) to TP might not be as direct as in a tape composition for which a single

performance timeline is sufficient. In the example of the CCC installation, two tricks were used

to be able to use a single timeline: First, multiple real-time cursors allowed the production of

61Linan Jiang et al. (2000), ‘The BT-Tree: A Branched and Temporal Access Method’, in: Proceedings of the
26th International Conference on Very Large Data Bases (VLDB), Cairo, pp. 451–460.

62Gerth Stølting Brodal et al. (2012), ‘Fully Persistent B-Trees’, in: Proceedings of the 23rd Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), Kyoto, pp. 602–614.

54

CHAPTER 2. TWO LAYERS OF TIME

several independent playbacks of the timeline which were then overlaid, furthermore the cursors

were instructed to jump at the end of a section, dividing the monolithic timeline into a multitude

of short looping timelines. Second, the aleatoric variations of the ‘molecules’ and ‘atoms’ were

individual, so no sound region would depend on the position of another region but only relate to

an absolute position on the timeline, making it possible to graphically represent the region and

encode it in an efficient underlying search structure.

The questioning of the timeline goes back to what has been said about visual presentability in

Sect. 2.3.2. The more the composition is based on algorithmic elements, the more the notion

of a linear timeline becomes meaningless or at best blurry, and the composer is reasoning more

about actions and reactions, behaviours and so forth. It is that the writing has become meta-

writing. As D. Harel notes, «programming is not about doing; it’s about causing the doing».63

The composer writes instructions for the inscription in time. As a hypothetical example, let us

imagine a stochastic composition along the lines of Xenakis. The interesting (primary) process

is the writing of the parameters that control the stochastic movements, not the (secondary)

individual calculations of these movements. Nevertheless, the secondary process might be a

crucial element in the composition process: It is observed by the composer as the verification of

the designed algorithm.

In this scenario, the “groping” becomes manifest in two stages—first in the rewriting of the

algorithm, under the assumption that the system can trace this somehow; and second, as the suc-

cessive “rendering” of the algorithm as lexicographic temporal inscriptions in each development

cycle. For example, Di Scipio notes about Xenakis that he «. . . tends to create a mechanism that,

once started, exhibits itself in time, rendering auditorily explorable the potential of knowledge

captured in the theoretical premises and assumptions behind the model mechanism».64 Now,

even if he does not talk about his process of finding the parameters of the models he uses, the

mastery evident in his work strongly suggests that he thoroughly tested and tuned them to arrive

at their final values.

63David Harel (2008), ‘Can Programming Be Liberated, Period?’, Computer (IEEE) 41(1), pp. 28–37.
64Di Scipio, ‘Compositional Models in Xenakis’s Electroacoustic Music’.

55

HANNS HOLGER RUTZ

ACTION TEST STORE

MODIFICATION?

accept?

(poiesis) (research)
Yes

No

Figure 2.13: Simple model of the compositional process

Such a test-cycle model has been proposed by Emmerson65 as a first simplified approximation

of the compositional process, and it is shown in slightly modified form in Fig. 2.13. The TEST

node would degenerate into the rendering of the algorithm output, observable by the system,

and the listening and judgement of the composer, not observable by the system, although once

more an implicit speculation may be made by looking at the successive action taken (which

again is inscribed and observed by the system).

In this iterative approach, the rendering can be seen as the production of stretches of T(P). Al-

though each in a way replaces its predecessor, keeping them as traces—almost like a palimpsest—

can shed light on the process in which the algorithm was developed. It may sound redundant,

as it has been said that the system ideally traces the formulation of the algorithm itself, and

therefore would be able to re-render each iteration at a later point for review. However

› the rendering might involve unique material from outside of the system (e.g. a live sound

signal being recorded as part of the process)

› the “redundancy” is reflected in two orthogonal representations, a procedural description

and an explicit temporal condensation66

› if identifiers are given to individual sound objects, it may be possible to follow their

motion across the iterations (e.g. view them simultaneously in space)

All these points will become more clear in the course of this text. It suffices here to emphasise

that the branching in the version tree can be exploited to account both for parallel (concurrent,

forking) activities as well as for the preservation of sequential iterative processes.

65Simon Emmerson (1989), ‘Composing strategies and pedagogy’, Contemporary Music Review 3(1), pp. 133–
144.

66cf. Honing, ‘Issues on the representation of time and structure in music’

56

CHAPTER 2. TWO LAYERS OF TIME

2.8 A Comprehensive Model of the Compositional Process

Until the last section, the assumption has been upheld that TK and T(P) can be clearly separated,

and indeed this is true for many approaches to composition and is reflected in many software

systems («AlgoScore has a non-realtime perspective, where the composer can relate freely

to time and construct the composition outside of time.»67) This model is again depicted in

Fig. 2.14a. The freedom with respect to manipulation of time during the compositional process

is contrasted with the product character of the work—«. . . closed with regard to the result,

but open with regard to the making . . . »68 It is a paradoxical situation: The random access

which for example a tape composition system offers, allows the composer to explore the virtual

performance time in a very concrete form, as he can listen directly to the piece. Before his

mind’s eye, many different paths may appear, some of which he may try out in the process. But

the closure of the piece means that only one designated path in the decision space is left to be

presented.

So if a transaction time registration is used to capture the exploration of this horizon of virtu-

alities, it still hits the diaphragm which separates composition from performance. Why should

this observation process remain restricted to the composer himself and perhaps a musicologist

analysing his work? The closure of the piece is described by Emmerson as a “masterwork

syndrome”.69 The masterwork’s paradigms include that the composer only creates one version

of a work which is then a monolith, unaffected by the time and site at which it is performed, and

that the test-cycle of experimentation only takes place once until a final form is found for the

work.

Dissent is uttered from different sides, challenging the boundary between composition and

performance. One side is “interactive composing”, as coined by J. Chadabe. This type of

composing is still founded on an asymmetry of steps:

67Jonatan Liljedahl (12th Nov. 2008), AlgoScore user guide, URL: http://download.gna.org/algoscore/Help/

algoscore-manual.pdf (visited on 10/05/2012).
68Koenig, ‘Kompositionsprozesse’.
69Emmerson, ‘Composing strategies and pedagogy’.

57

http://download.gna.org/algoscore/Help/algoscore-manual.pdf
http://download.gna.org/algoscore/Help/algoscore-manual.pdf

HANNS HOLGER RUTZ

P

K

(P)

(a) Decoupled

K/P

(P)

(b) Coupled

Figure 2.14: Relationships between the two time layers. The horizon of potential actions in
TK is indicated by dashed lines, actual actions by white circles. Prospective and
realised performance time are indicated by grey and black shapes respectively.

«(1) a design stage, where the composer designs a specific compositional process,

using any of the modules available in the program, and

(2) an operation stage, where the composer’s process plays back and the composer

interacts with the playback according to the design»70

Yet it is clear that the piece is not static but augmented in each performance. Although one

writing process has terminated—the design of the interactions—the secondary writing process

in which the composer interacts with the piece in a performance (note that Chadabe does not

use the word ‘performer’ here) is kept indefinitely open.

More radically departing from the idea of the “piece” is the discourse on improvisation.

G. E. Lewis criticises the Eurocentric view that a composition is embodied by a structure

which «. . . inevitably arrives in the form of a written text, a coded set of symbols, intended for

realization in performance by a “performer.”»71 Instead, in his own software, Voyager, which

he alternatively calls an “environment”, a “program”, a “system”, and a “composition”, he tries

to dissolve the difference between composing and improvising. This resonates well with the

prompt by D. Charles to conceive «a music that takes care to consider the composer not as the

organizer of a technological ritual but, more modestly, as the first listener».72

70Joel Chadabe (1984), ‘Interactive Composing: An Overview’, Computer Music Journal 8(1), pp. 22–27.
71George E. Lewis (2000), ‘Too Many Notes: Computers, Complexity and Culture in “Voyager”’, Leonardo Music

Journal 10, pp. 33–39.
72Daniel Charles (1965), ‘Entr’acte: “Formal” or “Informal” Music?’, The Musical Quarterly 51(1), pp. 144–165,

p. 152.

58

CHAPTER 2. TWO LAYERS OF TIME

What these approaches have in common is that they convolve the time in which a piece is

perceived and the time at which decisions are made. This convolution is the essence of ‘real-

time’. This is shown in Fig. 2.14b. The composer-performer here is embedded in the real-time

of the performance, and in each moment the “future” (horizon of virtualities) appears as a more

or less wide cone with fuzzy borders. Each decision is embedded in the play, and TK and TP

coalesce. This experience of time is described by Marsden as being

«. . . inexorably drawn along. We move continuously in one direction and cannot

voluntarily change our ‘viewpoint’. This is clearly true of ‘actual’ time . . . It is

hard to imagine any other kind of time in which, if we (or any other agent, whether

human or machine) are ‘in’ the time, we would not similarly and necessarily find

our viewpoint changing as time advanced.»73

The hierarchy of Chadabe is not needed: both of his stages are equally potent writing processes,

and they can both be represented as pending transactions. A situation of composing-performing

may be preceded by a variable amount of composing “outside-time”, creating structures that

become then available as building blocks during the real-time situation. This is indicated by the

enclosed box in the top part of Fig. 2.14b. The extent to which this prescription of structures

constrains the freedom of the composer-performer is reflected by the angle of “possible futures”

at each instant of the performance.

It must be made clear that, although the T(P) box in the top of Fig. 2.14b looks like the

miniaturisation of 2.14a, the coupled model is not something that follows the decoupled model,

but the decoupled model is rather a special case in a system which oscillates between the two

access modes of time. If the diaphragm has been used as a metaphor for a strictly decoupled

model, in this oscillatory model the mirror would be an appropriate image. Assuming the “piece”

in Fig. 2.1 to be a mirror, it means that each side can infinitely reflect each other; the piece is just

the frame for an ongoing writing process in which the human composer «. . . or any other agent,

73Marsden, Representing musical time: a temporal-logic approach, p. 17.

59

HANNS HOLGER RUTZ

whether human or machine . . . »74 observes and reacts in time, either coupled or decoupled to a

real-time flow. TK translates into T(P) and vice versa.

The mirror model most closely matches the direction of impact devised by Di Scipio. In

his concept of “audible eco-systems”,75 such a system is characterised by self-observation,

determining «. . . its own internal states based on the available information on the external

conditions – including the traces of its own existence [!] left in the surroundings.» We will

misread the second part as traces of its own existence left observable in the data structure. This

type of system reminds us of the self-regulating aspect of process that has so far been neglected,

and reiterates one of Marsden’s remarks, the unimportance of attributing agency to either human

or machine. Since an event can become—within the performance—a singularity, a new source

of information and transformation, it is a model of generative music pieces or sound installations.

‘Generative’, strictly defined, means that the actual is not just a choice from the virtualities, but

the virtualities themselves are constantly renewed by the actual.76 This topic will reappear in

Sect. 4.4.6 as the differential reproduction of a medium through the succession of forms.

A system unifying both time layers inside a model which provides for their reciprocal translations

will thus make tape composition, algorithmic composition, live electronics, live improvisation,

and generative sound installation become just locations within a common plane.

It is the responsibility of the joint between the two layers, providing the source of these trans-

lations, to keep the different forms liquid, in order to avoid tape pieces turning into monoliths

(flattening the solution space to one path), but also to enrich real-time systems with temporal

controls (a looser coupling) for an emancipation beyond “music instruments”.

2.9 Conclusion

With the contours of the compositional process becoming more and more acuate, its product,

the “piece”, becomes more and more specious. Is the structure the piece? The diaphragm

74Marsden, Representing musical time: a temporal-logic approach, p. 17.
75Agostino Di Scipio (2003), ‘‘Sound is the interface’: from interactive to ecosystemic signal processing’,

Organised Sound 8(3), pp. 269–277.
76cf. Gilles Deleuze and Claire Parnet (1996), ‘L’actuel et le virtuel’, in: Dialogues, Paris: Flammarion, pp. 179–

181

60

CHAPTER 2. TWO LAYERS OF TIME

model provided the triple assurance of the piece: It is process product, a refractor of time, and

a transportable object. But if refraction is changed for reflection, if the performance “writes

back”, is the piece now the sum of structure plus performance(s)?

The second-order, deferred writing is character trait of the algorithm. It may be fully exhausted

on the composer’s desktop, translated to lexicographically fixed data. But it may also be kept in

motion, adding fragility to the transportation; threatening the medial fixation, most obvious in

tape composition. A fixation which is dubious, because it trades the agility of random access,

total recall, the bird’s eye perspective of the composer, for a withering of the solution space.

The reproducibility of the work in the composer’s studio ignites his desire of complete control

over the result, a sort of teleology.

The algorithmic composer might also not be immune to this trap, but he is inevitably and

constantly thrown back to an algorithm’s potentiality, its possibilities and limitations, the struggle

with its implementation in a programming language; that is to say, here the arrow of time takes

a more curvilinear shape, the tools of production are unstable and meld with the actual works of

art. The eigen-motion of the process surfaces.

This does not mean that a distinction between composing and performing might not ever be

useful, nor that one could not speak of “a piece” and that this piece has first been composed,

then performed. But we propose a shift in perspective where these are simply specialised views

of the activity of composing which often obstruct more than they reveal. What is needed is a

deconstruction of the compositional process in order to uncover a new understanding of it.

There are interesting new approaches emerging that are beginning to change the view of what

composing means. An example has been given with the “audible eco-systems” of Di Scipio,

although a mere turnaround of “interactive composing” to “composing interactions” might

not be enough. In order to make the tracing of the compositional process productive for the

unfolding of the process itself, the notion of interaction should be completely dissolved, leaving

only a plain system of traces.

The endeavour is to reattribute time to what is mistakenly called a reasoning “outside-time”.

While several models of the compositional process have been proposed in the literature, this very

61

HANNS HOLGER RUTZ

manifest notion of a compositional time is almost entirely absent.77 This time is depersonalised

and void of psychology, and we will justify this approach in the following chapters through

recourse on Hans-Jörg Rheinberger’s epistemic thing which peels off from the researcher and is

primarily constituted as material trace and not linguistic signification.

77A notable exception is the integration of “cycle time” into Emmerson’s model, although it is put into the context
of psychology and cognition and not interwoven with performance time (Emmerson, ‘The Relation of Language to
Materials’).

62

Chapter 3

Beyond Control and Communication

The purpose of this chapter is to develop an appropriate methodology to research

compositional process. It begins by reviewing some existing models of this process and

questioning its contextualisation as a problem-solving activity. We argue that the idea of

goal-directed behaviour, rooted in cognitive psychology and cybernetics, contributes to

the disappearance or neglect of the traces of the process. Revealing how the definition

of goal-directedness is tautological brings us to the core problem: the requirement

for and limitations of representational forms. Often representations are based on the

postulation of similarities, analogies and imitations. But representations also go beyond

that which is represented. For example, operational closure is an important property

of creative systems. Establishing connectivity in the action repertoire, it allows the

process to be kept in motion. Having an efficient representation of (infinitely) concat-

enated transformations through the notation of “powers” gives us an identity handle of

a process, a symbolic notation for a temporal suspension which can even expose the

uselessness of relating to the origin of a process. An alternative deparadoxification is

the construction of hierarchies, also noticeable in the distinction between the researcher

and what is observed. Here the operational closure is broken, bringing into question

the validity of research which does not feed back into the artistic system. We prepare

instead for a methodology which employs the artistic process and self-observation,

focusing on the material trace instead of the deciphering of a communication chain.

The previous chapter introduced creation time as the domain in which compositional processes

take place. And while musical time has been extensively studied inside and outside of computer

music, only the temporal values eventually heard as performance sequence have been accorded

musical status; the creation time has been studied only peripherally and implicitly without

naming it as such. Possible explanations arise from two related aspects which have been

63

HANNS HOLGER RUTZ

addressed. The “masterwork syndrome” (Emmerson) affords the idea of the perfected work,

with regard to which the different tested paths are external. The iterations of a perfection process

are just incomplete approximations that are superseded by each new cycle. More profanely, a

composer might not realise, give importance to or admit groping and adjustment of rules during

the process.1

This type of work also peels off from the composer, so the composer’s physical or mental motions

might simply be seen as extra-musical. It leads to the other aspect, the reduction of the composer

to a “bringer of structure” (Lewis), whereas any embeddedness in real-time is discounted.

Existing research does not have much empirical evidence of the traces of the compositional

process, relying mostly on interviews with the composers, or snapshots of computer artefacts

such as MIDI files. In an ex-post case study by C. Burns, there are severe gaps in the snapshots

of one of the music programs he looks at, and he notes that:

«Composers are generally more interested in producing work than in documenting it.

Sketches and drafts are often saved only if their continuing availability is necessary

for the completion of a project, and mistakes and false starts are unlikely to be

preserved.»2

We suspect, however, another, further-reaching reason for the negligence. It stems from a sort

of “double bind” embodied in the seemingly opposite sides of goal-directed models of the

composition process. These two sides could be identified as ‘control’ and ‘communication’, and

the aim of this chapter is to study their appearance and context. It will be demonstrated that,

in this context, traces function merely as warrantors of repetition or indicators of originating

goals. Being seen purely as signifiers, they are omissible and therefore have not caught much

1B. Becker and G. Eckel who were investigating the interaction of composers with computer systems conducted
a number of interviews. They found that many composers tend to refuse to explicate or they mystify their practice,
and the accounts they give are strongly formed by the social and cultural discourse in which they are embedded.
Barbara Becker and Gerhard Eckel (1995), Künstlerische Imagination und Neue Medien: Zur Nutzung von Com-
putersystemen in der Zeitgenössischen Musik, tech. rep. Arbeitspapiere der GMD No. 960, St. Augustin: German
National Research Center for Information Technology (GMD); for a short English summary, see Barbara Becker
and Gerhard Eckel (1996), ‘On the Use of Computer Systems in Contemporary Music’, in: Proceedings of the 22nd
International Computer Music Conference (ICMC), Hong Kong, pp. 118–120

2Christopher Burns (2002), ‘Tracing Compositional Process: Software synthesis code as documentary evidence’,
in: Proceedings of the 28th International Computer Music Conference (ICMC), Göteborg, pp. 568–571.

64

CHAPTER 3. BEYOND CONTROL AND COMMUNICATION

attention in previous research. The next step then is to bring the traces out of the shadows, and

reinstate them as the manifestation and condition of a reproductive process driven forward by

connectivity.

3.1 Composers in Control

When B. Eaglestone et al. formulated the requirements for a composition system, they found

two functions:3 Firstly, it must allow the composer to create, manipulate, store and retrieve

musical artefacts—this is what has been discussed under the rubric of ‘access’. This function

they call “service”, and it must be complemented by a second function, which is to «provide

an environment within which those services can be used creatively.» Their hypothesis is that

there is a discrepancy between the advances in general software engineering, reflected in the

development of computer music systems, and the enabling of creativity, which they link to

the idea of “divergent thinking” coined by psychologist J. P. Guilford. Software engineering

accordingly would focus on “convergent” logic, meaning that it tries to implement the single

optimal solution to a given task, whereas the idea behind divergent thinking is that multiple

answers from different areas (thus divergent) can be found and synthesised to complete a given

task.

Their interest in the support for creativity in computer music (in particular electroacoustic

music) led them to study the compositional process, and their paper contains a review of

related work of such studies and possible methodologies. As has been said before, not many

systematic studies have been conducted, and those which exist are limited since they mostly

focused on traditional instrumental composition, took the angle of musicology and education,

or concentrated on a particular composer with the danger of producing results which reflect that

composer’s idiosyncrasies rather than general approaches.

3Barry Eaglestone et al. (2001), ‘Composition Systems Requirements for Creativity: What Research Methodo-
logy’, in: Proceedings of Mosart Workshop on Current Research Directions in Computer Music, Barcelona.

65

HANNS HOLGER RUTZ

ACTION TEST STORE

modify?

accept?

Yes

No

ACTION REPERTOIRE REINFORCE

NEW ACTIONS

?

Yes

No

(a) Elaborated model of the compositional
process (Emmerson)

OPERATE

TEST
(Congruity)

(Incongruity)

(b) TOTE unit (Miller, Galanter and Pribram)

Figure 3.1: Test-cycle based models

Two of the studies they highlight have been mentioned before: the case study of Collins4 and

the theoretical reflections of Emmerson.5 The former is closer to the agenda of Eaglestone et al.,

focusing on creativity and education and using similar research instruments (case studies with a

mix of qualitative and quantitative empirical methods), and the latter is closer to our own agenda,

focusing on the praxis and the development of the language of electroacoustic composition. Yet

both produce diagrammatically represented models of the compositional process which share

some similarities.

3.1.1 Test Operate Test Exit

The discussion will start from Emmerson’s diagram, depicted in Fig. 3.1a, which is an elaborated

version of the simple model that had been shown in Fig. 2.13. It is still built around the core

loop of the simple model which closely reproduces the Test-Operate-Test-Exit (TOTE) cycle

(Fig. 3.1b) postulated by G. A. Miller, E. Galanter and K. H. Pribram (1960) in their outline of

cognitive psychology.6 The TOTE was introduced as an alternative to the previously dominant

Stimulus-Response pattern by the behaviourists, in an attempt to generalise the test mechanism

4At that time they referred to the early 2001 PhD thesis of Collins, while we will refer to the newer article,
David Collins (2005), ‘A synthesis process model of creative thinking in music composition’, Psychology of Music
33(2), pp. 193–216.

5Simon Emmerson (1989), ‘Composing strategies and pedagogy’, Contemporary Music Review 3(1), pp. 133–
144.

6George A. Miller, Eugene Galanter and Karl H. Pribram (1960), Plans and the Structure of Behavior, New York:
Holt, Rinehart and Winston, Inc.

66

CHAPTER 3. BEYOND CONTROL AND COMMUNICATION

internal to an organism and overcome the otherwise plainly reflex (threshold) based concept

of S-R.

The test stage is basically a comparison of an input with a desired output, the TOTE unit thus

becomes a sort of state switch. The organism is previously in state of incongruity,7 and the

operation is performed until the test indicates that a state of congruity is reached. Characteristic

is the mainly mechanical exemplification, such as hammering a nail until it is flush with the

wall.

At first glance then the diagram in Fig. 3.1b is a temporal chart, where time flow corresponds

with motions along the arrows. But what exactly “takes time”? Miller, Galanter and Pribram

distinguish three levels of abstraction with regard to the transport of the arrows. The lowest

level is energy such as in a physiological perspective, a view which neither the authors nor

we are interested in. The other two levels are information and control. This comes as no

surprise, as the authors try to apply the ideas of cybernetics, a young discipline at the time,

to psychology, and cybernetics in turn draws inspiration from C. E. Shannon’s mathematical

theory of communication.8 The three possible interpretations also appear in an introduction to

cybernetics by W. R. Ashby, whereby cybernetics can be defined as «the study of systems that

are open to energy but closed to information and control».9

Control is the most “intangible” force, and Miller, Galanter and Pribram also seem uneasy with

the term, suggesting one should revert to using ‘temporal succession’. The notion of control is

needed for their approach, as one can easily see that a single TOTE unit is of limited descriptive

use. Referring back to Emmerson’s model, it could be said that ACTION is some form of

manipulation of the musical material and structure by the composer, followed by a TEST which

makes judgements over these recent changes. If, according to the judgement, the changes have

contributed positively towards some imagined aesthetic goal, they are kept (STORE), otherwise

they are rejected and a new adjusted ACTION performed. Now this does not account for any

7Miller, Galanter and Pribram use the term in favour of “difference” as it allows the conception of TOTEs where
operations not necessarily require a difference.

8Claude E. Shannon (1948), ‘A Mathematical Theory of Communication’, Bell System Technical Journal 27(3),
pp. 379–423.

9W. Ross Ashby (1956), An introduction to Cybernetics, London: Chapman & Hall.

67

HANNS HOLGER RUTZ

further structure of the compositional process, e.g. the motion from macro to micro structure or

vice versa. And therefore, implicit in the TOTE model is the possibility of concatenating units

or, more prominently, the hierarchical nesting of units. The nesting occurs within the operate

(ACTION) phase, so a more differentiated model of the process could be that one imagines an

outmost TOTE test “Is the composition finished?”, and if the answer is ‘No’ and control returned

to the operate phase, we may find here another test such as “Is the material exhausted?” If the

answer to the subordinate test is ‘No’, operate by developing some material, if the answer is

‘Yes’, operate by arranging or rearranging the existing material, etc.

In this process, essentially driven by feedback, time elapses (and energy might be consumed),

but control is conserved—it is handed over to successive stages and eventually returns after a full

cycle. But what is control exactly? An alternative definition of cybernetics is the study of “con-

trol and communication in the animal and the machine” (the title of N. Wiener’s monograph10),

the word cybernetics deriving from the Greek word for steersman. We shall look closer at this

take on the matter. Here, control is based on regulation within a machine,11 where a regulator’s

function is to shield the machine’s state from disturbances from the machine’s environment.

This is described in detail by Ashby,12 and his diagrammatic arrangement is shown in Fig. 3.2a.

It is important to remember that cybernetic diagrams are based on functional relations and not

in any sense physical parts of a machine. Indeed, depending on the observer or the question at

hand, the functions and relations may change.

Nevertheless, the components are most easily understood with a mechanistic machine, for ex-

ample a thermostatically controlled water-bath. The regulator R is designed to keep the essential

variable E of the system, here the water temperature, within a defined range of permissible

values η . The value of E is threatened by a disturbance D affecting the machine. D is outside

the control of the machine (no arrow points towards it); in the example it could be ambient

temperature changing due to weather conditions, or cold or hot objects entering the bath. Be-

10Norbert Wiener (1948), Cybernetics, or Control and Communication in the Animal and the Machine, New York:
John Wiley & Sons.

11Ashby uses the term machine very inclusively as «all possible machines», which may comprise anything from
living organisms to theoretically postulated machines; Ashby, An introduction to Cybernetics, §1/3

12Ibid., chap. 10–11.

68

CHAPTER 3. BEYOND CONTROL AND COMMUNICATION

D

T

R

E

cause err
or

(a)

D

T

R

E

C

test

operate

(b)

Figure 3.2: Regulation and control (Ashby)

yond the passive shielding of E from D (e.g. by having an insulator), R takes an active role by

inducing counter-measures T which transform the effect that D has on E, such as starting to

heat or cool the water. The regulator can be controlled by pre-embedded knowledge about the

effect of the ambiance (possible disturbances) on E—this is called cause-controlled. But often

the knowledge about D is received by R indirectly as a feedback from the outcome E, in which

case the term error-controlled regulation is used, since R behaves in reaction to the discrepancy

(error) between the observed value of E and the desired subset η .

Based on information theory, Ashby is now able to establish a relation between disturbance,

regulator and outcome of the essential variables, casting it into the ‘law of requisite variety’. He

calls variety V what Shannon calls information entropy—the distinct number of states a variable

can take on and measured logarithmically as bits. The law has the simple form of VE ≥VD−VR.

It states that the variety (uncertainty) transmitted by a disturbance onto the essential variable

is bounded by the variety of the regulator. The more information the regulator has about the

disturbance, the more varied its response and counter-actions are, and the more strongly it can

block the influence of the environment on a system. If for every possible input from the outside,

the regulator has an effective counter-action, the system would be under total control (VE = 0).

How does this relate to the compositional process? We are trying to elucidate what drives the

process and how it can be observed, and we have come to see a model of process informed

by the psychological construct of a TOTE cycle which in turn is animated by the “flow of

control” (control is what takes time). An explanation is required as to how the control loop

69

HANNS HOLGER RUTZ

of the regulator comes into being. Ashby explains the a priori of the desired subset η of the

essential variables that guides the regulator through the addition of a new “input” to the system,

the controller C. It is included in Fig. 3.2b, where also the two phases of TOTE are marked as

the communication from regulator to transformation (operative instruction) and the feedback of

the loop’s outcome for successive comparison (test instruction). The function of the controller

is to decide on a target or goal to set (η , not explicitly shown). The communication from C to R

is the action of setting the target. The curly braces hint at the fact that another feedback cycle

involving the controller may be considered, in which it adjusts the target.

For the moment it can be assumed that the controller is the composer instructing a computer

system to manipulate musical data. The disturbances describe the collection of aspects of the

system not under his control. They are therefore—speaking strictly in functional cybernetic

terms—actually external to the system, which may be defined provisorily as «a list of variables»

under the control of an experimentator/controller.13 Given some preconceived or incrementally

refined ideas about the desired musical output, he would instruct the regulators provided by the

system (e.g. using tools or algorithms in a software) to come as close as possible to the desired

result.

Emmerson is aware of the implications of building the model around the TOTE unit, noting

that it «has an inherently conservative streak» because «a successful group of actions would

be reinforced and a stable repertoire established for endless use . . . »14 If a system’s behaviour

is defined as the trajectory of states (outcomes), the iterative testing would tend towards an

equilibrium. In the case of the system appearing as complete black box (the composer has no

knowledge of how it works and what effects his actions have) an initial strategy would be to

give it random input. But even then, behaviourists have observed that at some point a desirable

outcome will occur and due to the feedback (some form of gratification) that particular behaviour

would be reinforced and appear with increasing frequency.15 This is of course but a specific case,

13Ashby, An introduction to Cybernetics, §3/11.
14Emmerson, ‘Composing strategies and pedagogy’.
15The account of B.F. Skinner’s experiments, as given in Arthur L. Loeb (1991), ‘On Behaviorism, Causality and

Cybernetics’, Leonardo 24(3), pp. 299–302

70

CHAPTER 3. BEYOND CONTROL AND COMMUNICATION

since feedback is interpreted as successive stimulus which strengthens a reflex16, and artists

certainly exhibit more complex behaviour than a collection of reflexes. If a hierarchical TOTE

is assumed, there may be many factors contributing to the test, including social aspects such

as subscribing to a certain movement or aesthetic programme, but also trying to innovate, the

desire of the classical avant-garde to distance itself from the previous programmes. Therefore:

«. . . the TEST procedure is neither absolute nor stable. The model is embedded

within the social psychology of its real time. The term ‘judgement’ has a paradox-

ical component: we must establish sufficient agreement to allow communication,

but build in the ability to evolve to suit changing situations . . . To survive in an

evolving world the variability of TEST demands an input to ACTION REPERTOIRE

called ‘NEW ACTIONS’.»17

Emmerson refuses to explain where the new actions come from, since «it doesn’t matter»; of

greater importance is the fact that the model is kept operationally open to this intrusion from

the environment. There is, however, another remark that needs to be made within the context

of cybernetic modelling. The last quotation using the terms “survive” and “variability” again

strongly alludes to Ashby’s language. It has already been said that the TOTE model allows the

hierarchical nesting of units, and thus it is also possible to turn the table around in Fig. 3.2b,

in which case testing might be an internal function of the regulatory part of the control loop.

Perceptiveness and adaptiveness to an evolving world formulated as artistic goal therefore still

strangely translate to a highly varied regulator, where η becomes the avoidance of “lagging

behind” development in the world.

The functional agility of the cybernetic approach is thus both its weakness—because almost any

hypothesis can be valid, given the right formulation, and its strength—taking a constructivist

approach which emphasises the dependency on the observer. For example, Fig. 3.3, adapted from

F. Heylighen and C. Joslyn,18 is a symmetrically drawn version of a control system. From the

16cf. Miller, Galanter and Pribram, Plans and the Structure of Behavior, p. 30
17Emmerson, ‘Composing strategies and pedagogy’.
18Francis Heylighen and Cliff Joslyn (2001), ‘Cybernetics and Second Order Cybernetics’, in: Encyclopedia of

Physical Science and Technology, ed. by Robert A. Meyers, vol. 4, New York: Academic Press, pp. 155–170.

71

HANNS HOLGER RUTZ

goal

representation decision

affected

variables

disturbances

observed

variables

dynamics

perception action

information processing

SYSTEM

ENVIRONMENT

Figure 3.3: Control system (Heylighen and Joslyn)

system’s perspective, its environment is just a generalised external system for which boundaries

other than to itself have simply not been established yet. What it perceives as disturbances

(uncertainty) might well be the flow of information within this hypothetical externalised system.

In a careful consideration of our setup, there are at least four systems: Composer, composition

software, composition software designer, and computer music researcher. Each is the other’s

mutual environment, theoretically requiring the elaboration of six pairwise relationships between

them.

3.1.2 Goal-Directedness

Another point of interest concerning Fig. 3.3 is that the controller has become implicit, while

the goal set by the controller is explicitly included. This is peculiar because previously the

goal could have been seen as a future state: the controller sets the goal as target, the state to

reach, the controller is the origin of the goal; but now it emphasises the goal as the origin of the

system’s dynamic; it is as if the goal has always been there and seems to indicate the past of the

system. The setting and attaining of the goal essentially appear to annihilate time: they form

an “outside-time” operation. In an early article by A. Rosenblueth, N. Wiener and J. Bigelow,19

predating the coining of the term cybernetics, the authors are implicated in this unclear temporal

orientation. They try to scientifically rehabilitate the term ‘teleology’, defining it as “purpose

controlled by feed-back”. Any Aristotelian connotation is disavowed by the statement that «The

19Arturo Rosenblueth, Norbert Wiener and Julian Bigelow (1943), ‘Behavior, Purpose and Teleology’, Philosophy
of Science 10(1), pp. 18–24.

72

CHAPTER 3. BEYOND CONTROL AND COMMUNICATION

concept of teleology shares only one thing with the concept of causality: a time axis.» This is

however wishful thinking, as they get caught up in tautological definitions. First, the definition

of purposefulness:

«The term purposeful is meant to denote that the act or behavior may be interpreted

as directed to the attainment of a goal – i.e., to a final condition in which the

behaving object reaches a definite correlation in time or in space with respect to

another object or event. Purposeless behavior then is that which is not interpreted

as directed to a goal.»20

It is clearly a restatement of a final cause, although remarkably under the condition that purpose

is an attribution made by an observer. In an attempt to reestablish some form of objectification,

Rosenblueth, Wiener and Bigelow base the concept of purpose on «the awareness of “voluntary

activity”», describing the latter as follows: «When we perform a voluntary action what we select

voluntarily is a specific purpose, not a specific movement.»—unequivocally a circular definition.

Indeed, a review of the goal construct in psychology by A. J. Elliot and J. W. Fryer21 begins

with Aristotle, for whom «the origin of action . . . is choice, and that of choice is desire and

reasoning with a view to an end.»22 There is therefore no human behaviour without purpose. In

psychology itself, the usage of goal (in German: Ziel) can be traced from the beginning of the

19th century, although at that time it was not yet used systematically. The frequent combination

with movement, such as “movement towards an end”, shows an interesting intersection with

the conceptual history of process (cf. Sect. 2.1.1). After the turn of the 20th century, goals

were often seen—e.g. by S. Freud or W. McDougall23—as auxiliary to human instincts which

directed all human behaviour. In the behaviourist perspective of the 1920s, the attempt was

made to objectify goals through the observation of something “persistent”. E. C. Tolman writes:

20Ibid.
21Andrew J. Elliot and James W. Fryer (2008), ‘The Goal Construct in Psychology’, in: Handbook of motivation

science, ed. by James Y. Shah and Wendi L. Gardner, New York: The Guilford Press, pp. 235–250.
22From The Nicomachean Ethics, cited in ibid.
23McDougall is also seen by other authors as the first exponent of 20th-century psychology to create a goal

taxonomy: James T. Austin and Jeffrey B. Vancouver (1996), ‘Goal Constructs in Psychology: Structure, Process,
and Content’, Psychological Bulletin 120(3), pp. 338–375

73

HANNS HOLGER RUTZ

«It is this purely objective fact of persistence until a certain type of goal-object is reached

that we define as a goal-seeking.»24 Tolman furthermore lays the foundation for a hierarchical

conception of goals, by distinguishing ultimate goals (physiological equilibrium of the organism,

e.g. “cease hunger”) from subordinate goals, which can be observed as persistent behaviour

(“find food”).

Elliot and Fryer see the term ‘goal’ fully established in psychology in the 1930s, with additional

conceptualisations then appearing in the 1950s through cybernetics. According to their review,

in the contemporary literature at least three distinct definitions of goal are used, which can be

seen as three degrees of indirection:

(1) Goal as a network of variables which create an orientation towards behaviour (double

indirection)

(2) Goal as the purpose for behaviour (single indirection)

(3) Goal as the aim of behaviour

While Elliot and Fryer try to find a uniform definition of goal, arriving more or less in the

middle while attempting an outright rejection of any cybernetic ideas («Goal-directed behavior

is proactive, not reactive»25), other authors have used this divergence to create a taxonomy of

goals. For example G. Pask defines goal-setting as necessary elements of theory building:26

To be able to make predictions about a model which is used as a prescriptive blueprint for a

system, one implies a purpose for the system. If a theory is built by creating a model from an

existing system, one implies a purpose of the system. Moving from observer to designer,27 goal

in a narrow sense is the purpose in the system. Either this goal is built into it but can only be

indirectly discovered by an observer who equates purpose in and purpose for; or we are dealing
24Cited in Elliot and Fryer, ‘The Goal Construct in Psychology’. Tolman calls this an objective fact, because

the sentence is stated within an experiment of a hungry rat chasing for food in a labyrinth, and the “physiological
condition of hunger” is taken as an additional granted fact. Even if we accept hunger as a physiological condition, it
becomes clear that the transfer to cognitive “behaviour” is far less convincing if no substitution for this objective
physiological fact is postulated.

25Ibid.
26Gordon Pask (1969), ‘The meaning of cybernetics in the behavioural sciences (The cybernetics of behaviour

and cognition; extending the meaning of ‘goal’)’, Progress of Cybernetics 1, pp. 15–44.
27See Fig. 3.5 later in the chapter.

74

CHAPTER 3. BEYOND CONTROL AND COMMUNICATION

Descriptive Model Prescriptive Model Goal-directed System
Purpose of Purpose for Purpose in

Table 3.1: Goal taxonomy of Pask

with a language oriented system which has a general purpose, being able to accept new goals

that the user must state in a programming language. This classification is shown in Table 3.1.

Despite all of this, the ontological status of ‘goal’ remains unsolved—a typical indicator of a

problem of self-reference. J. T. Austin and J. B. Vancouver have conducted another study28

in which they try to tackle this problem by analysing the structure and process of goal con-

cepts. In the review of dimensions used to define goals, they again find divergent positions.

A subject could conceptualise goals along the dimensions of ‘expectancy’, ‘value’, ‘ease’, and

‘clarity’, whereas an external observer might use the dimensions ‘commitment’, ‘origin’ and

‘self-efficacy’. Beyond the idea of “desired state” (which has been shown as tautological above)

they even postulate “virtual goals” for which no internal representation of desired state exists.29

They take as an important indicator of the existence of goals the property of equifinality, which

means that a state of equilibrium may be reached through different strategies or behaviours,

while at the same time stating that equifinality does not require an underlying goal. A discrim-

ination is proposed where goals «must drive some processes in the organism» to be of interest,

which again is circular reasoning—only goals are researched which drive processes, and the

observation of processes that are “driven” (towards some direction) guarantees the existence of

goals.

3.1.3 Problems and Solutions

A possible exit strategy might be to begin at an initial stage where there are no goals (yet). It

seems permissible to assume that there are no predefined goals that cause the desire in a human

being to start a compositional investigation.30 There might be various motivations, but not much

28Austin and Vancouver, ‘Goal Constructs in Psychology: Structure, Process, and Content’.
29The example of a virtual goal is the desire to avoid collision between multiple goals which a system wishes to

attain.
30Intrinsic goals, leaving aside more external goals such as satisfying a client who has commissioned a composi-

tion.

75

HANNS HOLGER RUTZ

General/Functional

Solutions

Sub-Goals

Specific (immediate)

Solutions

Deferred

Solutions

restructuring

Problem

Proliferation reformulating givens

reformulating goals

Germinal

Ideas/Material

Solutions 'Space'

Figure 3.4: Synthesis process model (Collins)

can be said except that the composer aims to create something,31 and that ‘something’ might

initially be largely undefined.

Austin and Vancouver call this perspective “goal processes”, processes in which goals must first

be established, will then be pursued, but may be continuously revised. The domain in which

goal processes are operationalised is problem-solving, and it involves iterations of decision-

making. The sequence of transactions which forms the creational timeline can be seen as

the manifestation of decisions, and thus this perspective at first seems a fair match for the

compositional process. A model based on problem-solving was developed by Collins, and an

adapted diagram is shown in Fig. 3.4.32

Collins describes his model as a synthesis of different approaches to the compositional process

which have been established in psychology and cognition research, namely a linearly progressing

stage model and parallel and recursive problem-solving strategies. The model was constructed

from a case study where a composer was asked to compose an instrumental score. Heterogeneous

methodology is applied, combining interviews with data gained from incrementally saved MIDI

31So again, obviously any social and economic aspects are ignored for the sake of simplicity. For a brief account
of these, see Becker and Eckel, ‘On the Use of Computer Systems in Contemporary Music’, §3.1.3

32Collins, ‘A synthesis process model of creative thinking in music composition’.

76

CHAPTER 3. BEYOND CONTROL AND COMMUNICATION

files and screenshots of the composition software. In particular, it was possible to observe how

the composer developed two initial “themes” and how they moved across time T(P) in time

TK, how variants of the themes were produced and interleaved, yielding what Collins called a

“structural mapping”.33

Four aspects of this model are noteworthy. (1) Although sub-goals play an important role in the

process, there is no explicit overarching goal, and in fact there is no explicit condition which

indicates when a composition is “finished”—although the recursive nature of the process was

accented by the way we redrew the diagram (subsequent stages are vertically distributed in the

original paper). Collins explains the missing overarching goal by musical composition being

an «ill-defined, as opposed to well-structured, problem-solving activity: the initial start and end

states of a musical composition are imprecise.»34 (2) The revision of goals occurs in cycles.

A cycle begins with the proliferation of a problem, meaning that what the composer considers

musical problems results from the currently given materials and structures, and as the materials

and structures are developed, some problems are “solved”, others disappear, yet others shift

their focus, and new ones appear. Thus the cycle is entered by a clarification of what the current

“givens” are. Then, after a working phase—developing the “space” in which solutions directly

derived from the recent problem statement as well as perhaps dormant “deferred” solutions and

solutions coming from the restructuring of the givens emerge—the composer takes a look at

the recent outcomes and reformulates the “goals”. (3) The situation is therefore not necessarily

one where a problem incrementally shrinks, but creating new problems is an essential part

of the creative process, and so Collins proposes to speak of a “solution space” instead of a

“problem space”. (4) Finally, it can be seen that the composer may decide to put a particular

solution (either developed or just hypothesised) aside for later consideration, creating a sort of

reverberation along the creational time axis.

33A diagram is included in David Collins (2007), ‘Real-time tracking of the creative music composition process’,
Digital Creativity 18(4), pp. 239–256

34Ibid.

77

HANNS HOLGER RUTZ

3.2 Models

Next, we wish to formulate a critique of the modelling methodology itself. What is the function

of a model and how did it come into existence? Models share a close relation to systems, and

they too are observer-dependent constructs. A straightforward case is the model of a system

whose components or internal structures are known, for instance a model of the application of a

theory—it associates the constants in the theory with elements in the applied domain, and the

relations defined in the theory with relations between elements of that domain, while preserving

the axioms of the theory (all statements that the theory makes, hold in the domain).35

Such a bijective or isomorphic association is not possible for opaque and observed systems.

The requirement is relaxed, and now models are “only” required to consist of homomorphic

mappings—elements and relations are defined that can then be identified in the observed be-

haviour of the system.36 From the cybernetic perspective, a good model is a good regulator,

because the experimenter as a system in its own right is coupled to the observed system as his

environment (cf. Fig. 3.3), so the attempt to model that externalised system is an attempt to

minimise disturbance (uncertainty) in the behaviour it exhibits.

Models are thus a re-entry of control at the level of the researcher, and the persistence and

stability of a model are a quality measure in a positivist discipline. The establishment of a

model is an important advancement in knowledge: «The creation of a model is proof of the

clarity of the vision. If you understand how a thing works well enough to build your own, then

your understanding must be nearly perfect.»37 But then a composer is a highly complex system,

and the behaviour to be modelled (which due to the complexity of the system must be partial)

becomes even more dependent on the observer.38 The model explains only a certain aspect of

the system and is equally a representation of the system and of the researcher, whose hypotheses

are a necessary element for building the model which must now be called heuristic.

35See Alan Marsden (2000), Representing musical time: a temporal-logic approach, Lisse: Swets & Zeitlinger
Publishers, pp. viii–ix

36Heylighen and Joslyn, ‘Cybernetics and Second Order Cybernetics’.
37Miller, Galanter and Pribram, Plans and the Structure of Behavior, p. 46; a very similar statement is found

in the introduction of Lars Löfgren (1968), ‘An axiomatic explanation of complete self-reproduction’, Bulletin of
Mathematical Biophysics 30, pp. 415–425

38Cf. Ashby, An introduction to Cybernetics, §6/14

78

CHAPTER 3. BEYOND CONTROL AND COMMUNICATION

An example of such a hypothesis in the cognitive research field highlighted so far is given by

Nick Collins: «It is perfectly possible that models devised by humans can capture something

important about human music.»39 It could hardly be more cautious. David Collins changes the

hypothesis for an underlying motivation, speaking with the voice of Otto Laske: «I wish we

could read people’s brains when they are engaged in music-making.»40 It is this motivation

which configures the model-building of the investigation, and as such the model owes as much

to the findings of the case study as to this preconfiguration, within which goal-directedness

serves as an axiom. There is however a slight distortion in this quote, since in the original

context—Laske interviewing M. Minsky41—it served instead as a trigger for Minsky who more

strongly articulates this wish to look directly into the brain.

3.2.1 Simulation and Analogies

A closer look at this interview is beneficial, because it clarifies the aspects of methodology

and research objectives raised so far. The interview moves around the interaction of music

understanding and artificial intelligence, of which Minsky as former director of the MIT’s

artificial intelligence group is an authority. At the heart of AI is problem-solving, and in this

context music-making can be seen as a vehicle for studying human action. Action and decision-

making in turn are linked back to cognitive processes which it primarily aims to study. Minsky

names Freud as the first to introduce a usable theory of thought based on goal-seeking, which

was then operationalised in the 1960s in the form of computer simulations.

The strong emphasis on simulation makes—from today’s standpoint—the argumentation of

Miller, Galanter and Pribram obsolete, since they were contrasting simulation with artificial

intelligence.42 For machines to be useful, they should implement, for example, chess games or

language translations by closely imitating how a human actor would play chess or translate a

text, as opposed to implementing the most efficient solution to playing chess or translating, and

the latter they associated with “artificial intelligence”. The validity of imitation is an implicit

assumption stemming from equating similarity with the homomorphism of the model. The
39Nick Collins (2009), Introduction to Computer Music, Chichester, UK: John Wiley & Sons, p. 298.
40Used as an epigraph in Collins, ‘Real-time tracking of the creative music composition process’
41Marvin L. Minsky and Otto Laske (1992), ‘A Conversation with Marvin Minsky’, AI Magazine 13(3), pp. 31–45.
42Miller, Galanter and Pribram, Plans and the Structure of Behavior, p. 54.

79

HANNS HOLGER RUTZ

validity of similarity is preserved even under duplication—the world is reflected in the mental

image (image and imitation sharing the same etymological root, and both denoting “likeness”43),

a model of the mental image created, translated into a simulation of the operations on the mental

image, the simulation observed and compared with the theory, and thereby knowledge obtained

about how humans act upon the world and make decisions, e.g. how a composer composes.

The fact that a simulation replaces “real” experimentation does not change the epistemological

underpinnings.44 Both are faced with problems of abstraction, inference and artificiality (design),

and try to arrive at the same result—understanding how the brain works. For example, here

Laske himself describes an experiment he conducted where both adults and children were given

a composition task to be completed with the help of computer software that created a protocol

of the actions:

«For the first time in music history, we are able to produce empirical traces of a

musical process; we can then study such a process in terms of the actions it is

composed of. Common sense tells me that a musical form derives from the process

that produced it, and I would think, therefore, that the control structure of that

process is intimately linked to the musical form emerging from it.» [Emphasis

added]45

Minsky simply takes a more radical approach, in which the sketches and physical traces of

composition will be made superfluous, «if, over another few decades, we find ways to more

directly record a composer’s actual brain activities.»46 Neither the composer’s body nor his

emotions would be relevant any more, once «high-resolution brain activity imaging instruments»

are available.

The idea of similarity and image is all pervasive in Minsky’s thinking. Strangely, it is his answer

to tackle inductive reasoning: no actual thing can be abstracted, but «real things can be seen as
43Cf. Jacques Derrida (1981), ‘The Double Session’, in: Dissemination, trans. by Barbara Johnson, London: The

Athlone Press, pp. 173–286, p. 188
44For example, see Roman Frigg and Julian Reiss (2009), ‘The Philosophy of Simulation: Hot New Issues or

Same Old Stew?’, Synthese 169(3), pp. 593–613
45Minsky and Laske, ‘A Conversation with Marvin Minsky’.
46Ibid.

80

CHAPTER 3. BEYOND CONTROL AND COMMUNICATION

related—at least in an observer’s mind—by apparent similarities of structures, effects, or useful

applications.»47 As a result, while Laske uses common sense as a trampoline for developing a

model, Minsky sees it as an end, claiming that to understand music a “common sense database”

must be constructed using analogy (which he links to our mode of experience). The crux of

the analogy becomes clearer when music is likened to language communication based on a

transmission-reception model:

«The idea is that when a speaker explains something to a listener, the goal is to

produce in the listener a structure that resembles a certain semantic network in the

speaker’s brain.» [Emphasis added]48

Although an application of this model to music is not explicitly developed, in other places

he uses “speaker” and “composer” conjointly, and furthermore proposes to apply a model of

(pseudo-) storytelling to composition. The idea of transmittal of patterns and their observed

similarity can be found in K. Krippendorff’s catalogue of metaphors used for communication.49

The model is that of cognitive sharing, where sharing not only means to be part of something,

but «being in some respect the same» or «thinking alike». Metaphors for this are the German

“Mitteilung” and the Greek “Symbolon”. Mitteilung rather inaccurately translates to “message”

or “notification” in English, but literally means “sharing (dividing) with”. The symbolon is

a coin broken in half and shared between two friends with the purpose of reuniting them

eventually. The prevalence of this model is reflected in the term “communication” itself, relating

to “common”.

This model dresses as a «wolf in sheep’s clothing»,50 in that it seemingly is symmetric (“com-

munity”) but ultimately requires the authority of a single observer: the “communicator” who

judges whether the communication was “successful”, i.e. whether a thinking-alike can be ob-

47Ibid.
48Ibid.
49Klaus Krippendorff (1994), ‘Der Verschwundene Bote; Metaphern und Modelle der Kommunikation’, in: Die

Wirklichkeit der Medien; Eine Einführung in die Kommunikationswissenschaft, ed. by Klaus Merten, Siegfried
J. Schmidt and Siegfried Weischenberg, Opladen: Westdeutscher Verlag, pp. 79–113; an English manuscript exists
as Klaus Krippendorff (1990), ‘Models and Metaphors of Communication’, Annenberg School for Communication
Departmental Papers (ASC) (276), URL: http://repository.upenn.edu/asc_papers/276/ (visited on 13/08/2014)

50Krippendorff, ‘Der Verschwundene Bote; Metaphern und Modelle der Kommunikation’.

81

http://repository.upenn.edu/asc_papers/276/

HANNS HOLGER RUTZ

served. The illusion that a single authoritative observer might exist is embodied in the Laplace

demon by which Minsky is chased—in some decades, we will be able to spare a composer’s

disclosures as we have a complete image of the brain and its workings. The brain is the key to

the lost origins of music; evolution does not bear traces of the origin, as animals do not compose,

but when the brain is understood, we will have found the origin.51

3.3 Notes from the Metalevel

A theory of the transmission of patterns from one medium to another is the most widespread

in science, because it enables explanation and the building of generalities. H. von Foerster also

described this desire for explanation as the root of the “cognitive blind spot”, operationalised

through causation and deduction.52 The presumed perspective, a non-interfering observer of

entities interacting with each other, is nonetheless not without an alternative. Krippendorff

contrasts it with the perspective of cognitive autonomy which sees human beings as “becomings”,

as entities who continuously construct and deconstruct their non-shared realities. Instead of

controlling and controlled subjects, these “auto-poets” may change rationality for aesthetics.53

A resulting theory of communicative competence might thus be better suited to dealing with

artists as agents, and also shift the weight from ‘goal’ to ‘becoming’ in the description of

process.

But how can anything be stated without being observed? And how can that statement have

scientific value without a form of objectification? An approach of cybernetics itself to solving

these issues is known as “second-order cybernetics”. Von Foerster characterises it by a change

of perspective from observed systems to observing systems. Since the researcher as observer is

necessarily an active agent within the system that he observes, the situation can be improved by

reflecting the role of observer, asking the researcher to observe himself in the role of the observer,

or to observe other observers. This reflectivity is most palpable in several titles by von Foerster,

e.g. Understanding of Understanding or Cybernetics of Cybernetics or the Control of Control

51Minsky and Laske, ‘A Conversation with Marvin Minsky’.
52Heinz von Foerster (1979), ‘Cybernetics of Cybernetics’, in: Communication and Control in Society, ed. by

Klaus Krippendorff, New York: Gordon and Breach, pp. 5–8.
53Krippendorff, ‘Models and Metaphors of Communication’.

82

CHAPTER 3. BEYOND CONTROL AND COMMUNICATION

Software

S
o
ft
w
a
re

D
e
si
g
n
e
rC

o
m
p
o
se
r

ResearcherPe
rfo
rm
er

Figure 3.5: Observer roles in the thesis project

and the Communication of Communication. Instead of abandoning control and communication,

it is elevated to a meta-level.

The theory of observing systems has been developed beyond cybernetics, the most important

authors in this context being biologists H. Maturana and F. Varela, and sociologist N. Luhmann,

who in turn took on the writings of the former. He describes the approach of second-order cyber-

netics as getting to know the distinctions guiding «the observations of the observed observer

and to find out if any stable objects emerge when these observations are recursively applied to

their own results. Objects are therefore nothing but the eigenbehaviors of observing systems

that result from using and reusing their previous distinctions.»54

It seems that this second-order observation, the climbing of the ladder to the next meta-level,

has not bought anything but breathing time. The problem still persists in “getting to know the

distinctions”. If observation is tentatively equated with making distinctions (“the composer

chose that sound and not another”), this activity is nothing but another distinguishing process

which, to become tangible, must again be observed, and so on. The only way to confine these

coupled observing systems within some boundaries is to include at some stage a self-observation,

which indeed yields Krippendorff’s “auto-poets”.

3.3.1 Self-Observation and Boundaries

Fig. 3.5 shows a possible set of observers involved in our project. The technological manifesta-

tion of observing (or facilitating observing) is the software framework which will be described

54Niklas Luhmann (1993), ‘Deconstruction as Second-Order Observing’, New Literary History 24(4), pp. 763–
782.

83

HANNS HOLGER RUTZ

in detail in Chap. 5. It connects to multiple human actors or perhaps a single actor taking

different roles, such as software developer, composer, performer, researcher. It is clear that the

boundaries between these “sub-systems” are merely an abstraction,55 for instance I as the person

who drew the figure decided that a distinction between composer and performer is significant.

Moreover, different people when faced with deciding whether an observed act is compositional

or performative will define the boundaries differently—or draw a different distinction. And

finally, the boundaries shift over time as the composer/performer changes roles or our perception

of those roles changes. The fact that boundary establishment is a necessarily active ongoing

process within a system is a key element in Luhmann’s theory and indeed closely linked to

self-observation.

It can be said that the difficulties with self-reference are rooted in language, more precisely in

the specific use of language, where an actor operates on or indicates an operand, both of which

collapse in the self-indicating situation.56 A classical example is the liar’s paradox, the statement

“I am lying”. Speaker and subject in the utterance are the same but contradict each other. The

mathematician G. Spencer-Brown has called this situation re-entry in the book Laws of Form57

which led to an elaboration of self-referentiality by Varela and became an important reference

for Luhmann as well. Since re-entry as a concept strongly resonates with our further discussion

of the unfolding and traceability of the compositional process, it is worth reviewing it in greater

detail here.

3.3.2 Re-Entry

Spencer-Brown develops a binary arithmetic and algebra—which might seem rather remote

from our endeavour, however they are embedded in a “narrative” of observation. The narrative

begins with an originary act of distinction, the drawing of a boundary. Spencer-Brown’s notation

system is geometrically informed and often metaphorically interpreted and reveals surprising

connections, which might explain why it has not been successful in the core realm of logic itself,

55cf. Robert L. Flood (1988), ‘Unleashing the “Open System” Metaphor’, Systemic Practice and Action Research
1(3), pp. 313–318

56Francisco J. Varela (1975), ‘A Calculus for Self-Reference’, International Journal of General Systems 2(1),
pp. 5–24.

57George Spencer-Brown (1969/1979), Laws of Form, New York: E.P. Dutton.

84

CHAPTER 3. BEYOND CONTROL AND COMMUNICATION

where it was seen rather as a reinvention of Boolean algebra with an obscure notation.58 Instead

it worked as a generator of ideas in other fields such as biology, systems theory, philosophy and

sociology. The two aspects of interest here are the form of distinction and the paradox of the

re-entry of the form into itself.

The book begins with ‘distinction’ and ‘indication’ as givens (it thus begins with a distinction

itself). Consequently, the act of distinction allows indicating either side of the distinction: that

which has been distinguished, the ‘marked space’, from everything else, the ‘unmarked space’.

Geometrically it can be represented as a circle, whereas for better compatibility of expressions

later formed with the layout of written text, a mark is used, the concave side of which is the

“inside”. It is also called ‘cross’ to emphasise that it is not only the result of a distinction but

the possibility for action (to cross). Two axioms are needed to construct what Spencer-Brown

calls primary arithmetic: The spatial nesting or “order”, with the equivalence of = (void) and

the spatial sequence or “number”, with the equivalence = .59 These equivalences seen as

equations enable them to act as two basic operations by which expressions (arrangements of

crosses and voids) can be rewritten, typically reduced to conduct logical proofs, but also grown.

58cf. John Mingers (1995), Self-Producing Systems: Implications and Applications of Autopoiesis, New York:
Plenum Press, §4.2; on the other hand, Luhmann points out that it is centred around a paradox which goes beyond
logical contradiction, and therefore the core ideas (what he considers the core ideas) cannot really be handled by
a logical discourse; Niklas Luhmann (1999), ‘The Paradox of Form’, in: Problems of Form, ed. by Dirk Baecker,
Stanford: Stanford University Press, pp. 15–26, § VI

59It is beyond the scope of this text to go into more detail. But a somewhat intuitive explanation of the axioms is
to see the nested mark as a double crossing, a going back from image via reflection to the source of the image; the
sequential marks are a “a call made again” (a name called twice), thereby just confirming a value and not changing
it. Luhmann questions the identity of the observer after the double crossing, however, cf. ibid., § III

85

HANNS HOLGER RUTZ

Chapter 11 introduces ‘re-entry’. It begins with an example, where a progressive application of

rules derived from the two axioms leads to growth of a self-similar form after each five steps:

a b

= a b a b (C5)

= a b a b (C1)

= a b a a b b (J2)

= a b a b (C4)

= a b a b (C1)

The annotations on the right-hand side correspond to the Index of Forms in Spencer-Brown’s

book. The presence of variables a and b next to primitive literals indicates that we have

progressed from arithmetics to algebra. If the shown “echelon” structure is endlessly developed,

it grows infinitely in space, and logical proofs can no longer be carried out with the means of

demonstration (transformation of the expressions in a finite number of steps). However, the

self-similarity has become a full re-entry of the form into itself. That is to say, if f is equated

with the echelon:

f = . . . a b a b

it can be said that

f = f a b

86

CHAPTER 3. BEYOND CONTROL AND COMMUNICATION

3.3.3 Power (of) Representation

This is remarkably similar to the state changes described by Ashby.60 Here, a transformation

can be subject to closure, meaning the application of an operator to a set of operands does not

produce any elements which are not already contained in the set of possible input operands.

Under closure, a sequence of transformations may be repeatedly invoked, and the repeated

application of the transformations may be represented in the simplified form of powers, such

as T 2 meaning that transformation T is applied twice. The notation of powers resembles the

substitution of the form for f and its reappearance on the other side of the equation in the Laws

of Form, the difference being that in the former case operators are notated and in the latter case

the operands. With Ashby’s power notation, and using the appropriate transformations applied,

the re-entry could be written (C1(C4(J2(C1(C5)))))∞ or T∞ if the composition of the five

steps was substituted by T .

Having a stable representation, a and b can be tentatively assumed to reduce to either cross or

void, and thus solutions of the second-order equation for f in all four possible combinations can

be sought. Three solutions are determinate, but in one case f has two possible solutions and thus

remains indeterminate: f = f . My own interpretation is as follows: The condensation of an

ever-evolving arrangement (a pure process) into a form of representation may lead to a useless

representation in terms of tracing the origin of this process—it is impossible to know whether f

was originally void or distinction. Nevertheless, it may still be a useful representation in terms

of showing the mode of production, i.e. indicating the possibility of future development.

With this representational form as a tool, on the other hand, it is possible to construct a para-

doxical situation: f = f . Like the liar’s paradox, it seems to have no solution.61 Again, it is

useless in terms of the origin of f . We observe a form, although we “know” that the coming

into being of it is “impossible”. And again, it may be a productive form. Different strategies of

de-paradoxicalisation62 may be applied, all of which make use of the asymmetry63 or directivity

60Ashby, An introduction to Cybernetics, ch. 2.
61Indeed the equation can be read as “ f is equal to an indication of f .”
62This term was used in Niklas Luhmann (1989), ‘Law as a Social System’, Northwestern University Law Review

83(1 & 2), pp. 136–150
63Luhmann, ‘Deconstruction as Second-Order Observing’, § II.

87

HANNS HOLGER RUTZ

of observation: First, a statement is understood as a command, and its form is the decision

whether to obey it or not. Second, different observers are attributed to each side of the equation

without them necessarily sharing intersubjective agreement, leading rather to an interaction of

observers within a social system. Third, distinction as a timeless event which simultaneously

yields both sides of the spatial cleft is distinguished from indication which requires time to cross

the boundary,64 and therefore the equation is rather a state machine or transformation directive.

3.3.4 Oscillation

While we are less interested in the first two possibilities, the last seems to reveal the motion

aspect of process. Indeed, Spencer-Brown himself chooses to resolve the paradox by introducing

imaginary states by way of a temporal “tunnel”. Already in the introduction, the pair distinction-

indication is given self-referentially as a possibility of motion: «There can be no distinction

without motive, and there can be no motive unless contents are seen to differ in value.»65

With a temporal tunnel between inside and outside a cross, instead of growth in space, the

representation (“outside-time”) as given above remains stable, while an observation “in-time”

perceives an oscillatory pattern. It is a rather unusual approach, but complements the spatial

metaphor used previously and may stem from Spencer-Brown’s background as an electronic

engineer.

It is also not new with respect to other disciplines. Where the oscillations in the Laws of Form,

due to its binary conception, are pulse trains, the general systems theory (GST)66 developed

by L. von Bertalanffy in the 1930s is based upon differential equations—also called “motion

equations”67—and oscillations are patterns of continuous cycles. As a major influence in the

foundation of cybernetics, GST introduced the notion of asymptotic equilibrium. According

to von Bertalanffy, systems of differential equations (some of which are “general” in that they

find application in different disciplines such as biology, physics and economics) can lead to
64Luhmann, ‘The Paradox of Form’, § III.
65The contents, e.g. inner and outer space severed by the mark, receive their value through “naming”, i.e.

indication; thus the whole construction is circular. Spencer-Brown, Laws of Form, ch. 1
66Both spellings general system theory and general systems theory appear in the literature and von Bertalanffy’s

work, perhaps due to the translations from German. Since it highlights the similarities across multiple systems, we
keep using the plural here.

67Ludwig von Bertalanffy (1972), ‘The History and Status of General Systems Theory’, The Academy of Manage-
ment Journal 15(4), pp. 407–426.

88

CHAPTER 3. BEYOND CONTROL AND COMMUNICATION

three different types of solutions: (1) Differences become arbitrarily small in the limit, thus like

a damped oscillation settle on a stationary value; (2) the differences grow and no stability is

obtained; or (3) a neutral stability is embodied by imaginary solutions, whereby «the system

contains periodic terms, and there will be oscillations or cycles around the stationary values.»68

The last case, comparable to Spencer-Brown’s re-entry, is characteristic of open systems (such

as living organisms) in steady state. Here, despite material exchange with its environment, the

system remains stable through continuous differentiation (oscillation). This is very similar to the

concept of differential reproduction of H.-J. Rheinberger which will be introduced in Sect. 4.4.7,

and the maintenance of systems in Luhmann’s theory. For him, social systems are autopoietic

as opposed to being controlled via coupled systems, meaning that they are coherent through

self-observation. Self-observation is nothing but a re-entry, it is «the operation of distinguishing

system and environment within the system.»69 The unmarked space along with its possibility to

be distinguished is called medium by Luhmann, conceived as a loose coupling of elements. The

medium that keeps a system together is “meaning”, the paradoxical simultaneity of presentation

(actuality) and potentiality: meaning is the same from the inside and the outside, before the

re-entry “is” and “ is not” after the re-entry. Meaning both distinguishes between what is actual

and what else could be and performs the actualisation (indicates the potential) itself. Operational

closure allows meaning, because actual operations can be potential operations—they can appear

on the horizon from which meaning in-forms and is kept in motion.70

3.3.5 Connectivity

It is important to note that Luhmann sees this “meaning” in opposition to hermeneutics, although

apparently it shares the property of being unstable and needing continual actualisation. The

crucial difference is that hermeneutics retains the idea of a «boundary between the external

and the internal», that an interpretation needs to «penetrate the surface of an object (that is, a

text) or a subject (in other words, a mind)» to reveal a truth.71 With the radical approach of

68Ludwig von Bertalanffy (1950), ‘An outline of General System Theory’, The British Journal for the Philosophy
of Science 1(2), pp. 134–165; also von Bertalanffy, ‘The History and Status of General Systems Theory’

69Luhmann, ‘Deconstruction as Second-Order Observing’, § II.
70Niklas Luhmann (1995), ‘The Paradoxy of Observing Systems’, Cultural Critique 31, pp. 37–55.
71Luhmann, ‘Deconstruction as Second-Order Observing’, § I.

89

HANNS HOLGER RUTZ

autopoiesis, there is no longer any outside other than a distinguished outside on the inside of

the form. The boundary of the “system” is an instable ignorance function of the system itself.72

The system needs to oscillate between the two sides of the distinction in order to preserve «the

undecidability of whether something is inside or outside a form»,73 because otherwise there

would not be any real decisions, based on “free choice”, but everything would just have to be

“calculated”.74

So operational closure, the property that a system’s output may again be subject to its transform-

ations, is a double-edged sword. It allows representation of something basically unrepresentable

(‘becoming’), thereby constructing a false “identity” of process. But it is at the same time the

condition that allows process to be kept in motion. Operational closure in the form of re-entering

“meaning” as boundary establishment resolves the apparent contradiction between closure and

openness of the process. It indeed accommodates Emmerson’s “new actions” entering the pro-

cess (Fig. 3.1a), because the system—of art production in general—is opaque and indeterminate.

And finally, operational closure reappears on the level of individual compositional processes;

here it stimulates new permutations of the material traces of the process, as the transformations

are “uninterested” in the material and may be applied to arbitrary elements, which I have dis-

cussed as ‘random access’.75 Another way to address the general system’s opacity is to describe

the motion from individual process to general process, the establishment of “new actions”, as a

form of emergence or ‘conjuncture’ (Rheinberger).

3.4 Injection

Because the argument has been spun as a long thread, a moment should be taken to recapitulate

and to decide which aspects of it should be injected into the design of the observing software

72This radical system view, which abandons the idea of an outside, will return in Sect. 4.3 as a critique by
J.-F. Lyotard who focuses particularly on that which is ignored or not-indicated, yet “among us”.

73Luhmann, ‘The Paradoxy of Observing Systems’, § III.
74This paradox is developed as a “metaphysical postulate” in Heinz von Foerster (1991/2003), ‘Ethics and Second-

Order Cybernetics’, in: Understanding Understanding: Essays on Cybernetics and Cognition, New York: Springer,
pp. 5–8; cf. Niels Åkerstrøm Andersen (2003), ‘The Undecidability of Decision’, in: Autopoetic Organization
Theory: Drawing on Niklas Luhmann’s Social System Perspective, ed. by Tore Bakken and Tor Hernes, Oslo:
Abstrakt Forlag, pp. 235–258

75Hanns Holger Rutz, Eduardo Miranda and Gerhard Eckel (2011), ‘Reproducibility and Random Access in Sound
Synthesis’, in: Proceedings of the 37th International Computer Music Conference, Huddersfield, pp. 515–522.

90

CHAPTER 3. BEYOND CONTROL AND COMMUNICATION

system. The chapter started by reviewing models of the compositional process and thereby

methodologies to tackle it, and showed how they are based on the assumption of observable

goal-directed behaviour. And the assumption goes across disciplines. I did not decide to talk

about Marvin Minsky, but David Collins did. And Eaglestone likewise chose to talk about

Collins. Did Emmerson pick Miller, Galanter and Pribram? Not explicitly, but the construction

of the model is too perfect a match for the TOTE, the «crux of systemic monism»,76 even when

adjusted by the possibility of “new actions” to counter its conservative streak.

In summary, three main problems can be named: (1) The establishment of causes and effects,

(2) hierarchical nesting as the chosen means of de-paradoxification, and (3) the dismissal of the

material reproduction of a system’s boundaries. These interact with each other, but for the sake

of clarity will be recalled separately.

3.4.1 Arrows

Often arrows are falsely turned around. Closure can appear as stability, but neither does stability

imply closure nor must a system under closure remain stable.77 Likewise, goal-directedness may

result in stable behaviour, but stability may not be caused by goal-setting, nor does perceived

instability imply that a system might not behave stably with respect to another, unobserved

agenda.

Furthermore, it is not only the direction of arrows that is problematic, but the fact that they

embody what Heylighen calls an epistemology of correspondence, where every «. . . conceptual

object (symbol) in the knowing subject’s model is supposed to correspond to one or more

physical objects in the environment.»78 This is presented as the “mainstream” view of Artificial

Intelligence, and we have shown how the terminology of image, reflection, and transmission of

patterns belongs to this theory of knowing. The symbolon as metaphor had been connected by

76Pask, ‘The meaning of cybernetics in the behavioural sciences (The cybernetics of behaviour and cognition;
extending the meaning of ‘goal’)’.

77Operational closure (Luhmann) and organisational closure (Varela) are problematic categories in themselves,
for they are ultimately either axiom or observed constancy, and furthermore do not specify all the other terms in
which a system is not closed. Stability as a particular rendering of closure is stated in Francisco J. Varela (1981),
‘Autonomy and Autopoiesis’, in: Self-organizing Systems: An Interdisciplinary Approach, ed. by Gerhard Roth and
Helmut Schwegler, Frankfurt and New York: Campus Verlag, pp. 14–23

78Francis Heylighen (2001), ‘Bootstrapping knowledge representations: From entailment meshes via semantic
nets to learning webs’, Kybernetes 30(5/6), pp. 691–722.

91

HANNS HOLGER RUTZ

Krippendorff to the idea of cognitive sharing, which in turn assumes a transmission metaphor

of communication, where a «. . . code describes the process of “translation” by establishing a

correspondence between the motions, changes, or choices made in one medium and motions,

changes, or choices subsequently occurring in another», and which is built on an understanding

of ‘information’ in the mathematical terms of Shannon such that it «measures the extent to which

coding processes are reversible and thus preserve a pattern.»79 Information as a third quantifiable

substance besides matter and energy has the paradoxical property of being transmitted and at

the same time remaining with the sender, producing this apparent symmetry (co-respondence)

which is only the sheep’s clothing covering an underlying asymmetry (authority of the sender).

The superficial symmetry was also encountered in the pair goal-setting/goal-attainment. As a

couple, they function outside-time, they constitute (sym)metric time. The arrow seems to spin

around, but actually it is just a diagrammatic trick (how to draw the two sides), like walking

around a compass, and thereby seeing the needle rotate, whereas the process or landscape is

hidden under the surface of the compass. The symmetry layered on top of an asymmetry is

extensively studied by G. Deleuze as two forms of repetition. The surficial or “bare” repetition

lies in the “effect”; it is the symmetrical repetition of the Same, the identical reflection as

«difference between objects represented by the same concept». In contrast, the “deep” repetition

lies in the “cause”, it is asymmetry and origin.80

The constructivist critics of the structuralist correspondence-as-truth propose instead to base an

epistemology on coherence (Heylighen81) or consistency (Varela82). However, as Heylighen

points out, it is quite difficult to exactly define coherence. The constructivists rely on another

metaphor, that of keyhole and key. Those items are processed or “selectively retained” which

“fit”. Another opposition to correspondence would thus be complementarity (key and hole

79Klaus Krippendorff (1993), ‘Major Metaphors of Communication and Some Constructivist Reflections on their
Use’, Cybernetics & Human Knowing 2(1), pp. 3–25.

80Gilles Deleuze (1968/1994), Difference and Repetition, trans. by Paul Patton, New York: Columbia University
Press, p. 23f.

81Heylighen, ‘Bootstrapping knowledge representations: From entailment meshes via semantic nets to learning
webs’.

82He writes that in the observation of an autonomous system, «what we could call a representation is not a
correspondence given an external state of affairs, but rather a consistency with its own ongoing maintenance of
identity.» Varela, ‘Autonomy and Autopoiesis’

92

CHAPTER 3. BEYOND CONTROL AND COMMUNICATION

complement each other).83 If second-order approaches can be described as a change from the

question as to what an observer is (ontological status) to who the observed and the observing are

(functional differentiation),84 we will take another step backward and focus on the materiality of

the written/observed. This is not a simplification, but a protection from the pitfalls of language.

In fact we cannot come closer to understanding process than by beginning with the relations

between graphemes, its material traces.85

Cybernetics has been both obstructive and useful for approaching the nature of process. On

the obstructive side, there is a distraction from the trace due to the interest in «tracing long

chains of cause and effect, so that we can relate a set of possible initial causes to a set of final

machines issuing as consequence»; on the useful side we find the concept of difference and

differentiation, and the functional composition of systems which are re-definable, so that for

example the question of “initial states” (origin) in a system can be dissolved (de-paradoxified)

by factoring them out as noise in the environment.86

3.4.2 Levels

Spencer-Brown has shown that the two basic modes of geometric arrangement are sequence

and “order” (nesting, hierarchy). These are also the two possibilities of combining TOTE units.

Each nesting level is the transgression of a cross, one additional act of distinguishing/observing.

Accordingly, the classic scientific observation is situating the observer on a meta-level with

respect to the level of the observed object. This dissolves the observer paradox as long as

«. . . one does not address the unity of this distinction».87

This view can still be found even in areas which acknowledge the artificiality of system borders,

such as soft systems methodology (SSM), a branch of systems theory formulated by P. Checkland

which questions classical problem-solving strategies because it deals with problems that cannot

83cf. Krippendorff, ‘Der Verschwundene Bote; Metaphern und Modelle der Kommunikation’, § 6.10
84Luhmann, ‘Deconstruction as Second-Order Observing’, § III.
85See Rheinberger’s idea of an epistemic semiosis which is a motion between the material traces of experimentation

in the first place, and before it may become a linguistic process: Hans-Jörg Rheinberger (2nd July 2008), ‘Episte-
mische Dinge—Technische Dinge’, Bochumer Kolloquium Medienwissenschaft, URL: http://vimeo.com/2351486
(visited on 28/08/2012), 48′

86cf. Ashby, An introduction to Cybernetics, § 3/11, § 11/19
87Luhmann, ‘The Paradox of Form’, § VI.

93

http://vimeo.com/2351486

HANNS HOLGER RUTZ

Hand painting

Improving the

appearance of

the property

Painting

the house

Why

Achieving a

higher price

for the property

Observer A

Observer BWhat

How

Why

What

How

Figure 3.6: Observer-defined levels of thinking (Checkland)

be formulated in terms of goals and purposes. Its foundations are emergence and hierarchy taken

from general systems theory and control and communication taken from cybernetics.88 It tries

to address “soft” problems as found in management of organisations.89 Although perspective

is observer-dependent, observers are situated in a common space where they observe different

layers or levels of nested systems. This is illustrated in Fig. 3.6 which was adopted from

Checkland.90

We have chosen this diagram because it shows at least two problems both in the current research

into the compositional process and the possible design of such an observation. First, the

alignment of the observers based on shared “objectives”, with the implicit arrow being a reading

of motivation or motives—observer A can be interpreted as observing observer B for a higher

purpose. If we think of the studies of Eaglestone or Collins, the ‘why’ is something like

“understanding creativity”. The ‘what’ is the “sampled subject” coupled to his objective, that

is B being for instance a composer whose goal is to create a new piece of music (and not to

understand his own creativity, at least not explicitly or assumed in this model). His ‘what’ are

then the actions in Emmerson’s model (Fig. 3.1a) or the development of “solutions” in Collins’s

model (Fig. 3.4), again objectively manifest in order to create the axis with A’s ‘how’.

88P. Checkland, cited in Alex Ryan (2008), ‘What is a Systems Approach?’, Arxiv preprint arXiv:0809.1698
89For an overview see Peter Checkland (2000), ‘Soft Systems Methodology: A Thirty Year Retrospective’, Systems

Research and Behavioral Science 17, S11–S58
90Ibid.

94

CHAPTER 3. BEYOND CONTROL AND COMMUNICATION

Second, the open axes. Again there are two of them: A’s ‘why’ has no connection to B, and

B’s ‘how’ is unobserved by A. The second case is a problem of generalisation in (and possibly

invalidation of) the research, the first case is a problem of relevance (or feedback) of the research.

The generalisation problem can be equated either with the problem of representing process (B’s

‘how’ is lost), but also—if A assumes the role of software designer in Fig. 3.5—with a problem of

prescribing usage of a system (A’s ‘how’ determines ‘what’ B can do, so B’s ‘how’ is irrelevant

or redundant).

For example, a common view in computer-aided composition (CAC) is to see the compositional

process going top-down from conceptualisation to formalisation to eventual sound realisation

(cf. Sect. 2.1 and Sect. 2.2). The following quotation from a framework for OpenMusic by

J. Bresson and C. Agon is a clear instantiation of the researchers and designers speaking about

the imagined composer, standing one step above him on the staircase:

«First we must consider sound as the intentional object of a compositional process,

and therefore as a structure likely to be represented by a program. Through the

general structuring of the programs via the abstractions or hierarchical constructs,

compositional models are created, made of organized [components] and structural

aspects and corresponding to particular situations or compositional approaches. In

this context, sound is therefore not considered only from the acoustic signal produc-

tion point of view, but rather as the product of a compositional process that aims to

create this signal . . . The implementation of these models . . . might therefore allow

for the symbolic access and control of the corresponding sound representations,

whether they concern symbolic or subsymbolic structures. The synthesis processes

are then integrated within a network of structural relations and components, uniting

the low-level sound synthesis aspects and the symbolic layers of composition, and

providing . . . a representation allowing one to formulate compositional intentions.

The musical sound is made explicit by recovering (mentally and/or physically)

95

HANNS HOLGER RUTZ

the object of the model as a formal structure . . . or eventually as a sound signal,

according to a synthesis process.» [Emphasis added]91

While abstraction is a necessary part of using programming languages, and we welcome the

employment of programs, the more problematic hierarchy here is the distinction between sound

and musical sound, where the “plain” sound is referred to as “low-level” or “subsymbolic”, only

contributing to the understanding of the music as a reference whose signified needs recovering,

and the signified being the original intentions of the composer. Consequently, “sound synthesis

processes” are considered an «abstract variable element» in their compositional models92 and

delegated to external programs, thus not observed by the system and given the status of an

uninteresting ‘how’ (craftsmanship). The authors argue that thereby their system gains openness,

and indeed findings by B. Eaglestone et al. support this in the sense that composers’ creativity is

boosted when they are faced with switching between applications.93 However, the approach is

devalued by the additional statement by Bresson and Agon that it allows a stronger concentration

on “compositional issues” as well as by the fact that connectivity is only considered in one

direction and misses the complementary motion from sound to structure.

We shall give only two short antitheses here. The first is the perspective of Di Scipio, for whom

«the array of DSP algorithms, and the methods by which they communicate among themselves,

should be seen as the material implementation of a compositional process or concept».94 The

second comes from the just mentioned study of Eaglestone et al. They find that users work with

«software tools at all levels of abstraction and which stimulate and challenge, rather than reflect,

their perceptions», suggesting that a software should implement a combination of “micro and

macro views” and an interface allowing the user to access data across all levels of abstraction.95

91Jean Bresson and Carlos Agon (2007), ‘Musical Representation of Sound in Computer-Aided Composition: A
Visual Programming Framework’, Journal of New Music Research 36(4), pp. 251–266, § 4.1.

92Ibid., § 5.1.
93Barry Eaglestone et al. (2007), ‘Information systems and creativity: an empirical study’, Journal of Documenta-

tion 63(4), pp. 443–464, § 5.
94Agostino Di Scipio (2003), ‘‘Sound is the interface’: from interactive to ecosystemic signal processing’,

Organised Sound 8(3), pp. 269–277.
95Eaglestone et al., ‘Information systems and creativity: an empirical study’, § 5, §6.

96

CHAPTER 3. BEYOND CONTROL AND COMMUNICATION

Even if one does not impose a specific hierarchy to the process of composition, the problem of

the axes correspondence in the levels view is not resolved. The problem lies in separating form

and content. With the levels, we believe we can observe without interference; the researcher’s

‘what’ (study object) does not influence the composer’s ‘why’ (motivation), the researcher’s

‘how’ (methodology) does not influence the composer’s ‘what’ (working object). To guarantee

such transparency on the part of the observer, researchers advocate “naturalistic settings”.

For example, Collins prefers video-recorded observation and collection of computer artefacts

to «enable the researcher to withdraw from the participant’s ‘space’ allowing a naturalistic,

constraint-free setting in which creative work could take place».96 Likewise, Eaglestone et al.

felt obliged to ensure that the «situation was “pretty natural”» and the composers «didn’t feel

they were taking part in a scientific experiment».97

On the encouraging side of the so-called ‘naturalistic inquiry’, its proponents E. G. Guba and

Y. S. Lincoln do criticise the positivist assumptions such as objectivity, cause and effect, explic-

able hypotheses, and so forth.98 They propose the interesting concept of the inquirer as “smart

instrument”, who operates by «by virtue of his sensitivity, responsiveness, and adaptability».

Yet, Luhmann’s critique of hermeneutics still applies here as the boundary between internal and

external is asserted, i.e. the clear separation of the left and the right side of Fig. 3.6. The inquirer

is instrumental and never becomes a conspirator.

Our solution to the conflict between the experimental approach—which assumes that a situation

is clearly defined and controlled—and the “naturalistic” approach—which asks for unhindered

movement of the observed subject—is to redefine what constitutes experimentality and to assign

the composer the additional role of researcher. This assignment also addresses the problem

of relevance. The result is a situation of self-observation, perfectly possible in Checkland’s

model which indeed states that a single observer should move to different levels, and in line

96Collins, ‘A synthesis process model of creative thinking in music composition’.
97Eaglestone et al., ‘Composition Systems Requirements for Creativity: What Research Methodology’.
98Egon G. Guba and Yvonna S. Lincoln (1982/2002), ‘Epistemological and methodological bases of naturalistic

inquiry’, in: Evaluation Models: Viewpoints on Educational and Human Services Evaluation, ed. by Daniel
L. Stufflebeam, George F. Madaus and T. Kellaghan, Second Edition, New York: Kluwer Academic Publishers,
pp. 363–381.

97

HANNS HOLGER RUTZ

with von Foerster saying that each observation is ultimately self-referential.99 It also follows

from Eaglestone et al.’s assumption «that one must create [a] constructivist, experimental

and individually tailored research situation, in order to investigate a process which is highly

experimental, uncontrollable and personal.»100

What the composer-as-researcher is given is a computer music framework, developed as part

of this thesis, which is his experimental system and serves as a secondary observer. This

constellation can be seen in the topmost part of Fig. 3.7, which was taken from a previous

paper.101 The framework provides abstractions for the representation of sound objects along

with a tracing mechanism for the memorisation of the coming-into-being and evolution of such

objects. An interface is provided by which observers can be attached to this framework and the

production of sound objects. This can be either an algorithmic coupling or a human switching

between the roles of Fig. 3.5.

As an actual software this framework is necessarily one of control and regulation, as this is

the foundation of computer science and all the bits and pieces from which the framework is

constructed. Also inevitably the observation of “process” through control and regulation is

limited by the observation horizon. For example, the framework is implemented in a general

programming language, providing an embedded domain specific subsystem responsible for the

representation and registration of sound objects. The technical boundary between this internal

domain and the general domain of the hosting programming language is permeable, making

it easy for someone programming this framework to include code or actions which escape the

internal horizon.

One strategy could be to extend the tracing system to include the hull that was formerly its

environment: In the second step of Fig. 3.7, the hypothetical observation would extend over

the entire programming language, perhaps by tracing the evolution of a program’s abstract

syntax tree. The composer easily transgresses this boundary, too, as he incorporates artefacts

99In a self-referential situation, «. . . one is encouraged to speak about oneself. What else can one do anyway?»
von Foerster, ‘Ethics and Second-Order Cybernetics’

100Eaglestone et al., ‘Composition Systems Requirements for Creativity: What Research Methodology’.
101Hanns Holger Rutz (2011), ‘Limits of Control’, in: Proceedings of the 8th Sound and Music Computing

Conference (SMC), Padova, 132:1–132:6.

98

CHAPTER 3. BEYOND CONTROL AND COMMUNICATION

Figure 3.7: Computer based tracing of the compositional
process, and the limits of control

99

HANNS HOLGER RUTZ

produced with other software systems. The observation could be extended by using a general

artefact tracking system, such as a file-based revision control system. But then, a major part

of the compositional process takes place outside of the computer, within the composer’s mind,

in his sketchbook, etc. Ultimately, the only possible tracing of this horizon is through the

self-observation of the composer.102

The other strategy would be to try to close the leaks, i.e. to restrict the composer in the

repertoire of actions. While this may work in the first two layers, it does not eliminate the leak

where things are translated between computer and human (third layer). Furthermore, it violates

the requirement formulated by Eaglestone et al. to allow elements of non-control and access

across all levels of abstraction. Essentially, we would create pure technology which cannot be

destabilised to become epistemic. The failure of control is necessary for the emergence of “new

actions” in the corner of one’s eye (cf. Sect. 4.3ff).

3.4.3 Double Bind

Throughout this chapter we have tried to show how the methodological background layer that

is present in all of the prior research reviewed has created what could be called a double bind

situation, to borrow the term from cyberneticist G. Bateson. It was originally used in a research

project on psychotherapy where it signified a situation which Bateson assumed to be a cause of

schizophrenia.103 The patient trapped in a double bind is exposed to a recurrent experience in

which he can only lose, no matter which behaviour he chooses. The double bind is created by

two concurrent instructions in conflict with each other, for example by the parents disagreeing or

by a contradiction between an action such as punishment and a verbal utterance such as “do not

see this as a punishment”. An additional force prevents the victim from escaping this situation,

and eventually he becomes habituated to the ongoing conflict.

I want to use the term double bind here more generally in order to describe the problem that each

of the approaches is exposed to such a conflict between two opposites, but because the concepts

102This idea of the hierarchical nesting of languages and meta-languages up to the «ultimate human observer» can
be found for example in Lars Löfgren (1992), ‘Complementarity in language; toward a general understanding’, in:
Nature, Cognition and System II, ed. by Marc E. Carvallo, Dordrecht: Kluwer, pp. 113–153, §1/3

103Gregory Bateson et al. (1956), ‘Toward a Theory of Schizophrenia’, Behavioral Science 1(4), pp. 251–264.

100

CHAPTER 3. BEYOND CONTROL AND COMMUNICATION

underlying these approaches have been so persistent over decades and still form the mainstream

methodology in many disciplines, one has “learned” to accept and somehow ignore this conflict.

Any attempt to question the premises is fiercely rejected. To give an example, in a peer-reviewed

academic psychology journal, psychologist D. J. Kruger accuses a colleague of his who dared

to propose the inclusion of “postmodern” elements in his discipline of promoting «speculation

for the sake of intellectual discourse rather than the pursuit of truth or knowledge.»104 How he

managed to pass the peer review despite including a comparison with the Dada movement, I do

not know.

In the area of musical research, there is a new trend to establish “cognitive science” as the opinion

leader. A quite aggressive partisan of this movement is M. Pearce. Besides selling the paradigms

established in the 1950s and 1960s as «suggestions for future research»,105 he devotes quite

some energy on dismissing other disciplines as invalid for research on music composition. Oddly

disguised as an “artist’s statement”106—oddly, because in a list of eleven people contributing

their statements, he is the only one who does not have artistic work—he claims that there are

different parties who have different “goals” and «different methodological requirements for

demonstrably achieving those goals»; of these parties, those working on algorithmic composition

are devalued as not having «rigorous criteria for success»; those who design compositional tools

can be divided into worthless engineers and those who base their tools on a music theory so

that their “success” can be measured by comparing computer-composed pieces with «existing

music»; within those modelling existing musical styles, a personal assault is launched against

a researcher who dares to also be a composer; and finally—it is always good to be last in a

list—those who computationally model music cognition (no critique found).

There are alternative pairs of end points between which what we are seeking to trace—the

process—is lost: control/communication is such a double bind. The antagonism is summarised

in Fig. 3.3 and was discussed with respect to the law of requisite variety; minimising versus

maximising the variety of possible expressions of the environment and the system respectively.

104Daniel J. Kruger (2002), ‘The Deconstruction of Constructivism’, American Psychologist 57(6–7), pp. 456–457.
105Marcus Pearce, David Meredith and Geraint Wiggins (2002), ‘Motivations and Methodologies for Automation

of the Compositional Process’, Musicae Scientiae 6(2), pp. 119–147.
106Marcus Pearce (2009), ‘To Beep or Not to Beep’, Contemporary Music Review 28(1), pp. 125–126.

101

HANNS HOLGER RUTZ

Another pair is goal-setting/goal-attainment which we have said constitute an outside-time oper-

ation in the sense that its representation is foldable. A third pair would be music/mind in the

sense that the body and material trace in between are made superfluous. Finally, the pair con-

ceptualisation/perception with “description” in its middle: When a description is produced, it is

«. . . always finitely representable and locally independent of time, whereas what the descriptions

describe, the interpretations (models, computer behaviours, phenotypes), may be infinite of any

order as well as dynamic»107 (my emphasis). The “fragmentation” or partiality in the description

must appear as a failure to contain the “whole” language, yet we still do not see an escape other

than repeating the desperate attempt to reconstruct and assimilate the communication ends, to

complete the symbolon. We thus unfold and unfold the finite representation, but we do not look

at the fragmentation itself.

3.5 Resolution

To resolve the double bind we have to employ a methodology which frees itself from the habitual

expectations of “demonstrably achievable goals”. We do demonstrate and achieve, but by using

a re-entry of the form of the thesis’ object—tracing process. We use writing processes to observe

writing processes. The form of the writing, the way it grows across the different chapters, is

as essential as the apparent end point or conclusions of a “representation of process”. Chap. 4

connects to artistic writing processes—a selection of sound works—by analysing them but at the

same time translating them and revealing through the translation the essential movements and

shifts which characterise process. A number of scholars have also encountered these difficult-to-

observe movements and we show how by gathering them we gain a more acute contour of our

observed.

We also introduce into the artistic writing process a software framework, a piece of technology,

but the text demonstrating the design of this framework, Chap. 5, is itself again a crucial element

which is interlocked with the material manifestation of that framework. It oscillates between a

computer science discourse and (subtly) the poetic texture of algorithmicity as such. It is not just

107Löfgren, ‘Complementarity in language; toward a general understanding’, §1; the conceptualisation or trans-
lation of the what into the finite set of symbols eventually perceived and interpreted, will return as vertical axis
composing/analysing in Fig. 4.35.

102

CHAPTER 3. BEYOND CONTROL AND COMMUNICATION

a product-description, but in its entirety the starting point for further experimentation. Ultimately,

all chapters become a hypertext in which the motion of process can be retraced, the very same

motion that is subject to the analysis in Chap. 4. In order to observe the motion, delimitations

are drawn between philosophical, methodological, artistic and technological discourse—without

them, we would perhaps end up like Pedro Camacho, the scriptwriter in Mario Vargas Llosa’s

La tía Julia y el escribidor, who begins increasingly to mix up the different characters and facts

that had previously been kept neatly separated.

The project was an involved approximation. I am the writing machine, and as practitioner-

researcher108 I am subjecting myself to experimentation which tries to carve out what the role

of tracing in composition is, and to what extent the traces can be observed. Self-observation:

«. . . What else can one do anyway?»109 Eaglestone et al. felt the need to report that the composers

they observed, «. . . didn’t feel they were taking part in a scientific experiment».110 But being

aware of this was my only guarantee of success, which is to produce connectability both with the

scientific research on computer music and the praxis of computer music. This double relation is

what should define artistic research.111

To understand process, we can think of it for a moment as the interface between a system,

a form or actuality—that which has been marked or distinguished—and an environment, a

medium or virtuality. This exchange has been described by Varela as a dance between autonomy

(law-from-the-inside) and control (law-from-the-outside).112 But then I believe what defines this

dance ultimately is not the dancing partners, but something integral to the form of dancing itself.

I have illustrated this idea in Fig. 3.8, combining the metaphor of the bifurcation occurring in a

dynamic generator with J. Derrida’s idea of an irreducible dynamic of writing.113

108Cf. Michael Biggs and Daniela Büchler (2011), ‘Communities, Values, Conventions and Actions’, in: The
Routledge Companion to Research in the Arts, ed. by Michael Biggs and Henrik Karlsson, Abingdon and New York:
Routledge, pp. 82–98

109Von Foerster, ‘Ethics and Second-Order Cybernetics’.
110Eaglestone et al., ‘Composition Systems Requirements for Creativity: What Research Methodology’, § 6.2.
111For the difficulty of this term, see Henk Borgdorff (2011), ‘The Production of Knowledge in Artistic Research’,

in: The Routledge Companion to Research in the Arts, ed. by Michael Biggs and Henrik Karlsson, Abingdon and
New York: Routledge, pp. 44–63

112Varela, ‘Autonomy and Autopoiesis’.
113Jacques Derrida (1972/1988), ‘Signature Event Context’, in: Limited Inc, ed. by Gerald Graff, trans. by

Samuel Weber, Evanston, Illinois: Northwestern University Press, pp. 1–23.

103

HANNS HOLGER RUTZ

the semantic horizon that habitually

governs the notion of communication

is exceeded

or split

by the intervention of writing

CONTROL

COMMUNICATION

Figure 3.8: Bifurcation opening a space for the dance of material traces

To observe process, we need to observe the material traces of composing. The material re-

production must be embedded in our “system design”. This embedding will be the facilitator

of experimentality in the sense that the epistemic thing, that which experimentation tries to

approach, is articulated by the material traces.114 Within a pure technology—based on a solid

foundation of computer science—the system must integrate a critical interface for the generation

of an epistemic surplus value; an interface that allows the material trace of the compositional

process to be subject to itself in a sort of “structural feedback”. To access the «remnants of

older narratives as well as fragments of narratives that have not yet been told» and to allow for

«unprecedented concatenation of the possible(s).»115

We also believe that the analysis of compositions should be primarily based on the descriptions,

translations and rewritings of these traces. We need to bring into computer music a thinking

which still seems rather foreign when looking at the common platforms of dissemination in this

discipline, such as journals and conferences, whereas it is accepted in the general arts discourse

and in philosophy. To quote from the latter field, I want to conclude this chapter with G. Böhme,

mostly noted for his concept of atmospheres as the foundation of aesthetics. A critic of the

dominance of language, communication and semiotics in the aesthetics, he reminds us:

114Cf. Hans-Jörg Rheinberger (1994/2005), ‘Alles, was überhaupt zu einer Inskription führen kann’, in: Iterationen,
Berlin: Merve Verlag, pp. 9–29

115Hans-Jörg Rheinberger (1994), ‘Experimental Systems: Historiality, Narration, and Deconstruction’, Science in
Context 7(1), pp. 65–81.

104

CHAPTER 3. BEYOND CONTROL AND COMMUNICATION

«It is not, however, self-evident that an artist intends to communicate something

to a possible recipient or observer. Neither is it self-evident that a work of art is

a sign, insofar as a sign always refers to something other than itself, that is, its

meaning.»116

116Gernot Böhme (1993), ‘Atmosphere as the fundamental concept of a new aesthetics’, Thesis Eleven 36, pp. 113–
126.

105

HANNS HOLGER RUTZ

106

Chapter 4

Traces

The purpose of this chapter is to understand my compositional process by staking out

a field of various realised works. Three different angles are used to plough through

this field. First, starting with the sound installation Dissemination as an example,

we establish threads which link various aspects of it to preceding and succeeding

works. One method is to name a concept, such as the ‘sound mobile’, and trace its

materialisation beyond the boundary of a piece, showing how the way the configuration

of the concept changes becomes the important indicator of the process rather than a

constancy promised by using the same name. Second, this ‘differential reproduction’

can re-enter the inner discourse of the pieces themselves, something that is shown

using the example of operationalising sound similarity. In this regard, we call sound

similarity—or more broadly ‘signal processing’—an interface, something that mediates

between human and computer in composition without submitting to the position of a

utility that imposes the composer’s intention on the computer system. Instead, the

interface is understood as a crucial suspension of the short circuit implied by ideologies

such control and communication. It is the enabler of a proper material discourse

which informs the compositional process in a substantial way and thus should be the

centre of study. Finally, the third angle looks at pieces which have been composed

with the software framework developed in the thesis, investigating how its use enables

the composer to work with the trace of the process as well as providing a source for

data-based analysis of pieces.

4.1 Introduction

The interest in the works presented in this chapter lies in observing and retracing processes in

which computer-based sound works are created and unfolded. When viewing these processes—

107

HANNS HOLGER RUTZ

"classical"

to read the writing

to write the reading
diaphragm

to read/write

 inscribe

 rewrite

 overwrite

the reading/writing

Figure 4.1: Phase model of relations between writing and reading

including their observation—under a systemic lens, one always finds nested layers of writing.

In the literal sense, writing is the act of composing, beginning with the cliché of the blank

paper which must be filled through invention and intention. This leads to a perspective in

which art is seen as an excessive writing activity, antipole to scientific research which—again,

following the cliché—begins with excessive reading, only eventually adding an arduously

produced contribution.

In the discourse of artistic research, which seeks to combine both artistic and scientific practices,

the relations between the two poles must be found. To begin with, the classical ideal of scientific

research—still very much in effect—after which the observer should avoid influencing the

observed, i.e. reading neatly isolated from writing, henceforth becomes a half-cycle in the phase

diagram of the experimental oscillation (Fig. 4.1). It denotes a point of standstill, in which we

look at our own traces, gathering a picture of how they can lead to something new in the next

step.

The second half-cycle contains writing not as invention but as a reading/writing; inscription,

rewriting, overwriting. This is where observer and observed cease resistance and relinquish their

dissociation, they become one machine, the needle which at once scans the wax cylinder and

incises it. This melded writing is driving and being driven; it is pure motion in the sense that

what counts primarily is the act of writing and not what is being written.

108

CHAPTER 4. TRACES

What these pieces aim to do is resolve the conflict between exposing the processes and creating

a produced “piece” and sensual surface. To work with algorithms so that the computer can carry

on the writing, and also to insert a non-dramatic and non-intellectual layer which permits the

listener or viewer to guard his or her proper time.

All pieces discussed in this chapter are represented on the accompanying DVD with sound

examples and, if applicable, photographic material.

4.2 Dissemination

The first work is an audio-visual installation called Dissemination (2010), a collaboration

between me and my partner, Nayarí Castillo. It was first conceived for an artist-in-residency

programme in a rural area in Portugal, but only realised the following year in the context of

the festival “Sounding Code” in Berlin, and shown again in a modified version in a gallery in

Graz. In roughly the year that lay between the first sketching and the inauguration, part of the

framework described in detail in Chap. 5 was developed and so this was a first testing ground

for it. Some of the findings have been published previously.1

As will be seen, it is arguable where the working process begins and where it ends, but to make

a first indication, connections can be drawn to two or three particular previous works by the

artists. In 2009, Nayarí was working in a residency in Argentina. In Natural Palimpsest, located

on a former forestry station, she created a parcours of twelve interventions, drawing from the

memories of workers who had been employed at the station for more than twenty years. One

of the interventions consisted of a tableau of seeds of different colours and shapes that were

collected from around the station (Fig. 4.2). Seeds were chosen from those plants that did

not originate from the place but were in some way “imported” to the region, as Nayarí’s work

centres around ideas of travelling and migration.

On my part, there are two notable sound installations. In Kalligraphie (2007), shown in a gallery

in Thuringia, glass plates are installed in a window situation, inviting the visitor to sit on the

windowsill in their middle (Fig. 4.2). The headspace is expanded by the plates which are excited

1Hanns Holger Rutz (2011), ‘Limits of Control’, in: Proceedings of the 8th Sound and Music Computing
Conference (SMC), Padova, 132:1–132:6.

109

HANNS HOLGER RUTZ

Figure 4.2: Left: Natural Palimpsest. Right: Kalligraphie

110

CHAPTER 4. TRACES

Figure 4.3: Sound installation Amplifikation, former tram depot Weimar

by small transducers, applied by the mere force of gravity. With their horizontal orientation, the

plates evoke the image of specimen slides, dissecting the sound into vertical layers. The second

installation, Amplifikation (2009), took place in the former tram depot of the electricity works

in Weimar. Again glass plates were used in combination with transducers, but as the large space

was dominated by old window panes, these plates were suspended vertically and in groups of

four, essentially creating a duplicate image of the original windows, but shifted towards the

inside of the hall (Fig. 4.3).

The diffusion of sound from the surface of glass plates creates a very particular effect. On the

one hand, the characteristic resonances of the glass are superimposed on the sound, on the other

hand the sound is emitted rather homogeneously from the whole surface, leaving behind the

almost punctiform shape typical for speakers. These two phenomena provide the sound with a

very physical or “material” presence.

Dissemination uses glass plates—each 90 by 70cm—in a combination of horizontal and vertical

suspension. They function both as membranes of sound diffusion and as specimen holders

for flying seeds, confined to a regular arrangement of petri dishes. Fig. 4.4 shows the model

produced in the planning phase, Fig. 4.5 shows the actual installation in its two exhibition sites.

The space is conditioned by filtering the daylight with yellow gels—a similar approach had

111

HANNS HOLGER RUTZ

Figure 4.4: Model of the installation Dissemination. The vertical plates are excited by trans-
ducers, the horizontal plates carry the petri dishes with seeds.

been tried in Amplifikation, where pink gels produced a dreamlike but at the same time highly

attentive effect in the sun-drenched depot.

Before deciding on the arrangement of the plates, I had imagined different possibilities, as the

sketches in Fig. 4.6 show: Pure vertical or horizontal series, a long triptych format, a grid of

squares suspended from a ceiling or arranged as an ‘X’ on the wall. The triptych format was

used in a different work, and for Dissemination the decisive factor was to provide surfaces for

the petri dishes and to be able to place the glass inside the space, so people could walk around

them.

4.2.1 Sound Mobile

Recognising the “origins” of the ideas that shape the sound composition is difficult, but one

can always trace them back to previous steps. One such idea is the sound mobile, a sounding

structure composed of different elements which are “suspended” in the space; on one hand a set

of givens, on the other hand something in motion that would appear in ever so slightly different

combinations, producing a stream of sound which would never repeat itself.

112

CHAPTER 4. TRACES

Figure 4.5: Dissemination, as exhibited in Berlin (top) and Graz (bottom)

113

HANNS HOLGER RUTZ

Figure 4.6: Sketching out variants for a new glass plate based installation.
Unless specified, sizes are in cm.

114

CHAPTER 4. TRACES

With few exceptions, sounds are always produced based on electroacoustic—concrete—material,

either atmospheres and ambient sound recordings picked up in “nature” or deliberately produced

sound gestures, isolated as a “foreground” which is possible in a soundproof recording booth.

To be able to mould these sounds, strategies must be found to cut them up, transform and

recombine them in an “organic” manner that preserves the impact of the source sound, where

the transformations and recombinations remain “credible” as if they might have occurred in the

original context of these sounds—precisely not to stress the cut as a cut in itself.

In this respect, a sound installation from 2006 is noteworthy. Zelle 148 was an intervention in

cell no. 148 of a former Stasi prison in Erfurt, Germany (Fig. 4.7a). A metal seating surface was

installed on top of the original plank bed, inviting the visitor to sit down and take headphones

off the wall. A sensor would pick up the gesture of putting on the headphones to initiate the

sound piece, which was synchronised with a subtle change in light atmosphere using MIDI

controlled lights below the bed. The piece followed a rather linear development, going through

four successive stages, as shown in Fig. 4.7b, an ex post score.

The simple form is A–A′–B′–B, where situation A takes place within the holding cell and B is

located in a forest outside. The first and last section consist of the plain atmosphere of those two

spaces without additional performative elements, whereas the two middle sections introduce the

sound of a rock.

When the listener puts on the headphones, the atmosphere of the cell itself is faded in. The

recording was done with a binaural technique at exactly the position of the seat, producing a

rather strange effect which is hyperreal—the sound perception is alienated by the fact that an

apparatus, the headphones, is worn, but at the same time everything sounds as if it was coming

directly from the cell and its corridors. You hear the distant city outside the cell, shaped by the

horrific acoustics of the confined space which bears some strong resonances. The beginning

of the second section comes as a surprise. A large rock is heard sliding relentlessly across the

cell floor, moving forward and backward between the short distance from the cell door to the

tiny window. The actual rock used to produce that sound is left as a visible artefact of this

action in one corner of the cell. Also visible are the scratch marks of the rock on the floor. The

115

HANNS HOLGER RUTZ

(a) Installation cell (top) and prison cor-
ridor (bottom)

Zelle Atmo

[25" ... 40"]

09:49" 31"

Zelle Stein

[60" ... 120"]

27:35"

297.7"

Wald Stein

[95" ... 150"]

43:05"

340.6"

Wald Atmo

[inf]

25:07"

209"

(b) Form scheme. The four stages proceed from top to bottom.
Circle diameter corresponds to sound file length, spokes
to markers in the file. Shaded sectors and lines connecting
sections indicate one particular rendering of the piece.

Figure 4.7: Installation Zelle 148, former Stasi prison Erfurt

116

CHAPTER 4. TRACES

third section slowly fades into the outside space, using a sliding frequency filter as transition.

The violent nature of the rock changes its character, as it is heard now sliding across dried

leaves in the forest. Some wind and birdsong is heard, and the contrast of going from closed

to open acoustics is particularly strong. In the final section the rock rests, and the pure outside

atmosphere is heard until the listener decides to leave the cell.

Each section corresponds to a sound file recording, indicated by the four circles in the score,

meaning that these sounds could be conceived as endless loops. Their total durations vary

between 10 and 45 minutes. The computer used to play the sound installation would pick a

duration for each section within given boundaries. For example, the first section lasts between

25 and 40 seconds, the second section lasts between 60 and 120 seconds, etc. In order to make

the “sound mobile” work, there are constraints on the beginning and ending of each section. The

spokes in the score indicate segmentations of the files. The first section may not begin or end in

any of the shaded segments, because some contiguous event would occur, such as a pronounced

car passing by or bells ringing. Section two is constrained by starting and ending exactly in one

iteration of the rock moving. The same goes for section three. For each gesture in section three,

there is a number of possible connecting points in the last section—schematised as a bundle of

rays in the score—which are chosen to provide a seamless transition, e.g. in terms of wind or

birdsong.

The technique of using long sound files as source material, along with lists of markers and

regions, possibly enriched with meta data, became a common element in all the subsequent

sound installations. The interpretation of mobility became more perspicuous in two different

ways. In the sound installations CCC (Sect. 2.3.2) and Kalligraphie, the focus shifted towards

a play of foreground and background with no linear direction. Whereas in electroacoustic

compositions, such as Zeichnung (2005; so actually pre-dating Zelle 148), the focus shifted

towards the idea of difference and repetition.

The translation of the foreground/background concept into actual sound processes forks again.

In CCC, shadowing elements in the background is done on the signal level, using for example

frequency domain filtering or dynamic processors. In Kalligraphie, an implicit timeline is

117

HANNS HOLGER RUTZ

Sensor

P1

P2

P3

P4
P6

A2

A1

A3

transition

tra
ns

iti
on

Wallclock

P5

Figure 4.8: Schematic of Kalligraphie. A hierarchy of two transitions blends between three
algorithms, A1 being “absence” and A2 being “presence” of a visitor, as determined
by a sensor. After a particular wall-clock interval, a distinct intermission A3 is
played.

maintained that tracks “articulated” regions across the sound layers. The layers are observed

and faded out as future “collisions” between different articulations are detected.

Fig. 4.8 shows a schematic view of Kalligraphie. The sound layers P1 to P6 are controlled

by algorithm A2. Each of the layers consists of one particular and contrasting sound colour,

spatial and conceptual connotation: For example, MAUERSEGLER is an open space sound

recorded on a rooftop with groups of swifts (Apus apus) occasionally passing by very close

to the microphone, which picks up their cries. Due to the high speed at which they pass the

roof and their varying distance, the gestures have a strong spatial depth with the feeling of high

velocity. In contrast, APFELESSEN is a recording of someone munching apples, referring to the

body and the head of the listener inside the installation. PLEXISCHLEIFEN is a somewhat ironic

layer which consists of the sound produced by polishing the acrylic glass which holds the glass

plates, referring to the acoustic space and time in which the installation was constructed. And so

forth. The combination of the sound colours is purely driven by preventing the co-appearance of

articulations in these layers, such that at a time predominantly the articulations of only one layer

are heard, whereas the other layers are allowed to persevere in a section in which they produce

background sounds—the birds being distant, the munching paused, etc.

118

CHAPTER 4. TRACES

Meta Plates

 Gen

Ana | Rec

ColorLike

Flt | Gen

(de)activate

WaterLike

…

Flt | Gen

Licht

…

Windspiel

Gen

Gen

Flt

2x 3x

Figure 4.9: Schema of the constituent sound processes in Dissemination. Vertical lines partition
sound layers where lower layers can filter or shadow upper layers. Small squares
indicate spatialisation modes, corresponding to the five-channel diffusion in the
first exhibition, and with the mode for LICHT showing the floor plan in Berlin.
Each process provides different components which can act as sound generators,
filters or analysing and recording stages.

4.2.2 Mobility in ‘Dissemination’

In Dissemination the meta process, the algorithm that controls the different sound layers, uses

these ideas from CCC and Kalligraphie. A schematic view is shown in Fig. 4.9. The layers

are less constrained, only few co-appearances are forbidden, such as the WATERLIKE processes

being mutually exclusive, and each of the COLORLIKE processes is attached to a particular plate,

so they do not overlap in space. There are two motions, one—PLATES—using a generative

and feedback-driven strategy, the second—used by all other processes—having the more non-

directional static form of the mobile as in Kalligraphie.

Fig. 4.10 shows an example evolution in which the processes occur over a time span of ap-

proximately 40 minutes. The compositional form is clearly a “moment form”, with an interplay

of slower and faster rhythms. The sonic complexity is hidden by the fact that motions in the

parametrisation of each process are not visualised, but only the times at which sounds appear

and disappear are shown. This is particularly important for the process depicted on the far left,

PLATES, which is continually changing its sonic material.

The processes are inspired both by the metaphor of ‘dissemination’ as well as the experience

gathered from previous works. In fact, many sounds found in this work had been used previously,

as shown in Fig. 4.11. The sound of munching the apples reappears—it was used before in

119

HANNS HOLGER RUTZ

Plates Wind Light Water Colour

Figure 4.10: Score rendering of Dissemination.
A stretch of c. 40 minutes in TP runs from top to bottom.

120

CHAPTER 4. TRACES

Fourier Wavelet Laguerre Kriech BleachHilbertDSP

06/01 08/01 09/01 06/02 06/03 02/1007/03 04/06 10/0803/08 08/1010/0304/0304/02 05/02 08/09 09/0901/07

Sounds Bridges FTVcd Apfel Heli PhyletRegen

Sprenger

WindspielZeven

Projects Netzhaut Strahlung Kallig AmplifikationUnterwelt

Figure 4.11: Selection of external references for Dissemination and their establishment over
time: special digital signal processing algorithms, sound files, and previous works.
Items with light background do not have a direct link with the piece, arrows
indicate dependencies between these references.

Kalligraphie—but equally undergoes a connotational shift, as it now relates to the display of the

seeds and alludes to the food chain, whereas the body of the listener is decentred and attenuated.

While the sound of a WINDSPIEL is newly recorded, the way it is used, connecting two plates, is

not unlike the use of a repetitive sound taken from radiators in Amplifikation’s depot, where an

invisible line is drawn between the windows and the opposite wall. Indeed, the more I look at

Fig. 4.11, which was created at the beginning of 2011, the less convinced I am that the manifest

links are comprehensive. Although they constitute visible material traces of the compositional

process beyond the limits of individual pieces, the network of connections—still material and

not logical or “semantic”—might actually be aporetic.

The signal processing tools, shown in the top most row of Fig. 4.11, are a good example of

this. It is futile to connect them to particular pieces, because although they often came into

existence during the creation of certain pieces, they can be endlessly combined and parametrised.

I have developed them over a period of twelve years—grouped together as the open source

software FScape—reused them over and over again, so they became highly idiosyncratic, yet

continuously unfolded their potential as I learned to predict their effect and experimented

with their interaction. In other words, they exhibited what H.-J. Rheinberger described as the

paradoxical relationship between experimenter and experimental setup: The more the setup is

tied to and dependent on the skills and experience of the researcher, the more independent it

becomes in his or her hands.2

2Hans-Jörg Rheinberger (1992), Experiment–Differenz–Schrift: zur Geschichte epistemischer Dinge, Marburg:
Basilisken-Presse, p. 21.

121

HANNS HOLGER RUTZ

An instance of this DSP is the WAVELET filter.3 This process applies a spectro-temporal multi-

resolution decomposition to a sound file, whereby a compact finite impulse response filter kernel

is recursively applied, first yielding a high frequency and a low-frequency signal at half of the

original duration, then using the latter in the next iteration (yielding two signals at a quarter of

the duration, and so forth), until the decimation is complete. This is conventionally used as an

analysis tool or to produce compact vector representations for signal compression, but it may

become a creative tool: One can apply transformations to the signal in the wavelet domain and,

like the Fourier transform, go back to the time domain, or one might just use the subsequently

decimated bands as sound signals in their own right, an approach used in the WINDSPIEL process

of Dissemination. Since we begin with the lowest band and proceed to the highest, this results

in interesting accelerandos especially if the source material is rhythmic (in WINDSPIEL, the

strokes of a windspiel are assembled to rhythmical sequences before entering the DSP chain).

Due to the decimation, each band in itself is perceived as having a broadband spectrum.

The horizontal dimension within each column of Fig. 4.10 indicates spatialisation across the

glass plates (7 channels). For WINDSPIEL, the pairing of Fig. 4.10 means that each sequence is

played “stereophonically” on two plates whose position is chosen from an urn.4 There are many

other instances of such DSP uses, and the creative re-appropriation of signal processing is again

the subject of Sect. 4.4.1.

Another example of the reappearance of a technique is LICHT (“light”), which has been used

in Amplifikation: After the setup of the sound installation, impulse responses from each glass

plate are taken, choosing a reference location in the space. Inverting the spectral shape of these

responses and using a minimum phase transformation to lessen temporal smearing, filters are

obtained which “undo” the colourisation that each plate adds to the sound excitation by its

own resonance. Using convolution, these filters are faded in and out, moving across the output

signals of the plates. As a result, the physical presence of the sound emitted by a plate is diluted,

and the sound appears much more translucent, floating independently in the space.

3For details on the ‘Daubechies’ wavelets employed by FScape, see Ingrid Daubechies (1988), ‘Orthonormal
Bases of Compactly Supported Wavelets’, Communications on Pure and Applied Mathematics 41(7), pp. 909–996

4An urn is a collection of items from which one draws without replacement. When the urn is empty, it is
automatically refilled with the initial items.

122

CHAPTER 4. TRACES

4.2.3 Writing ‘Dissemination’5

Dissemination was written with a preliminary version of the SoundProcesses framework presen-

ted in Sect. 5.11. Neither was the persistent database in existence, nor was the representation

of sound processes fully established: Thus, when looking at the programming, an arbitrary line

must be drawn between the preparatory work and the composition in the narrow sense. Since

both the framework and the composition have been managed using a versioning system, we are

able to look at the development over time. The repository containing the actual composition

was opened in August 2010. The lines of code written in the Scala programming language have

been manually categorised as belonging either to the technical infrastructure of the system or

carrying actual musical meaning.

The commit history is visualised in Fig. 4.12. The premiere taking place on 18 September and

the beginning of the second exhibition on 20 October are marked by vertical lines. It can be seen

that in the beginning more time is spent with the programming of the infrastructure than the

actual composition. Since the framework was rather new, various adaptations were required to

realise the ideas for the project. Infrastructure code generation decreases to nearly zero towards

the end of the first composition cycle with another final spike due to preparing the work for

autonomous operation during the exhibition.6

The other distinction made here is between newly written code and code derived from previous

projects or from older stages of the same project. This follows from a recursion model of the

composition process7 which proposes that this process is driven by material injected from outside

the system as well as (re-)transformation of material already inside the system. Encountering

this pattern in manifest condensations—computer artefacts such as the code—could indicate

that something similar is happening in the psychic system of the composer,8 but it is important

5Parts of this section’s text and figures are taken from Rutz, ‘Limits of Control’.
6A bug was found that caused the system to become unstable after a couple of hours running, so several measures

had to be taken to work around it.
7Hanns Holger Rutz, Eduardo Miranda and Gerhard Eckel (2011), ‘Reproducibility and Random Access in Sound

Synthesis’, in: Proceedings of the 37th International Computer Music Conference, Huddersfield, pp. 515–522.
8See for example the study by D. Collins who observes a composer and identifies a combination of both linear

and recursive motions in the development of the piece: David Collins (2005), ‘A synthesis process model of creative
thinking in music composition’, Psychology of Music 33(2), pp. 193–216

123

HANNS HOLGER RUTZ

Aug 27 Aug 28 Aug 29 Aug 30 Aug 31 Sep 01 Sep 02 Sep 03 Sep 06 Sep 07 Sep 08 Sep 09 Sep 11 Sep 15 Sep 16 Sep 17 Sep 21 Oct 17 Oct 19
0

50

100

150

200

250

300

350

400

450

500

550

600

650

L
in

e
s
 o

f
C

o
d
e

Composition / Newly created

Composition / From previous work

Composition / Self referential

Infrastructure / Newly created

Infrastructure / From previous work

Infrastructure / Self referential

Opening
Berlin

Opening
Graz

Figure 4.12: Code commits to the git repositories of the composition of Dissemination and
frameworks it depends on. Line count includes lines created, lines edited and
lines deleted. Multiple commits per day are integrated. Code carrying musical
meaning in the narrow sense is shown in green/flat and contrasted with code used
to build the infrastructure, used for debugging, and so forth, which is shown in
blue/dotted. Bars are split to distinguish newly created parts from parts derived
from previous work.

Figure 4.13: Sketchbook note (2003) about Derrida’s ‘Signature Event Context’

to remember that we do not wish to engage in a hermeneutic discourse: Derrida used the term

‘dissemination’ precisely to denote «disengaging from the concept of polysemics», disengaging

from «a hermeneutic deciphering, the decoding of a meaning or truth».9

It is interesting that back in 2003, while preparing a lecture on “parasitism and music”, I had made a note

(Fig. 4.13) that I should be looking at Derrida’s ‘Signature Event Context’—which I never did. I had

completely forgotten about it until now, and just after reading the text recovered that note.

Infrastructure code copied from previous projects indicates lack of modularisation, but can be

mostly explained by the time pressure factor in the realisation of a work.10 On the other hand,

the adaptation of existing musical code mostly amounts to sound synthesis and transformation

instruments which are reused. In the second half, self-referential composition code—code

9Jacques Derrida (1972/1988), ‘Signature Event Context’, in: Limited Inc, ed. by Gerald Graff, trans. by
Samuel Weber, Evanston, Illinois: Northwestern University Press, pp. 1–23.

10Copying code in the short term is a much faster measure than refactoring into reusable external modules which
pays off in the long term.

124

CHAPTER 4. TRACES

which is derived from code within the same project—begins to increase and finally amounts

to roughly half of the additionally produced code volume. Musically, this can be interpreted

as variation: More sound processes are introduced which share structural similarities with

previously created processes but are then differentiated, for example by using other sound files,

other parametrisation, probabilities, spatialisation etc. Fig. 4.12 therefore seems to support—

although not “prove”—the model of an increasingly recursive behaviour of the composition

process.

4.2.4 Permeable Boundaries

The lack of control over a compositional process driven by an incomplete software, the “defi-

ciency” inherent in any software written specifically for computer based composition, may be

the greatest strength. Creativity is often said to be fostered by constraints one has to deal with,

developing solutions “around” these constraints.

Some limitations are of a technical nature. For example, the sound processes in Fig. 4.9 are

understood as operating in “layers”, so that layers towards the bottom of the diagram may

observe (record) or filter layers towards the top of the diagram. Since the mobile is a dynamic

structure where actual instances of these processes appear and disappear, stable reference points

must be created. The solution was, using the available definition of sound processes within the

framework, to insert “collector” nodes in the signal flow which would be persistent throughout

the piece. Fig. 4.14 is a visualisation of the signal flow; the centre corresponds to the master

bus, from which seven spokes branch off, one for each glass plate. A spoke consists of two

connector nodes, allowing for three connecting points—the horizontal layers in Fig. 4.9. The

LICHT process is located north-northwest of the master node.

Two observations can be made: First of all, one’s knowledge of signal routing in the underlying

DSP framework (SuperCollider) greatly influences the way the composition is thought out.

Even if abstract concepts have informed the composition in the first place, such as the metaphor

of dissemination, the technology initiates its own writing process which is inseparable from

the composition. Secondly, the visualisation technology repeats this rewriting: The diagram

shown in Fig. 4.14 is actually an interface to control sound processes and came into being as a

125

HANNS HOLGER RUTZ

Figure 4.14: Momentary image of sound processes in Dissemination

live improvisation tool named Wolkenpumpe (“cloud-pump”, after a poem by Hans Arp). In a

previous instantiation, shown in Fig. 4.15, it looked more like a traditional patch-chord system.

Wolkenpumpe entered my sound installations through a side door: The Amplifikation project was

embedded in a workshop with choreographers, and a performance was developed in which one

could continuously shift from the structure of the sound installation to a choreographed piece

live controlled by a graphic tablet.

As the visualisation turned out to be useful for monitoring sound installations, an automatic

screen layout needed to be found, moreover the number of processes shown could easily go into

the hundreds. As a result, Wolkenpumpe was rewritten based on the Prefuse graph visualisation

toolkit.11 Prefuse has a zoomable display and includes an animated force-directed layout

algorithm which uses a pseudo-physical model to guide the automatic layout of vertices and

edges. Along with the use of a convex hull based aggregation of visual elements that comprise a

11Jeffrey Heer, Stuart K. Card and James A. Landay (2005), ‘Prefuse: a toolkit for interactive information
visualization’, in: Proceedings of the SIGCHI conference on Human factors in computing systems, ACM, pp. 421–
430.

126

CHAPTER 4. TRACES

Figure 4.15: Version 3 of the Wolkenpumpe live patching environment, as it was used in a
performance during the exhibition of Amplifikation

sound process, the aesthetic quality of the new display is one of biological or organic structures.

While this resonates with the semantic field of Dissemination, it is pure coincidence, and the

computer screen is not part of the installation. Nevertheless, when I showed this visualisation

to different people visiting the exhibition, they clearly perceived it as part of the work. For me,

too, the visualisation has somehow become part of the work, and I will be using a variant of

it—abstracting further from the display of the technical underwriting (signal processing)—in a

future work. Indirectly it led to a visualisation of my work in the piece Dots (Sect. 4.5.1).

Another major “deficiency” was the lack of a database system which was simply not yet

production-ready at the time. Still, I wanted to introduce a mechanism by which a thread

could be spun over the duration of the exhibition. A simple memory element of course is a

sound file, something that can be easily written and read with any computer music system. And

while historic structural data is not available from a database, the real-time (momentary) audio

signal can still be observed and analysed. Dissemination in the biological sense—the scattering

of seed—was used as an inspiration for the algorithm. Many models of this process exists, for

example parameters such as horizontal distance and direction of dispersal, the number of seeds,

127

HANNS HOLGER RUTZ

the falling velocity, the height of the seed release, the total tree height, and so forth, can be

defined to simulate wind dispersal.12 However, instead of using any direct biological formulas,

the idea of an overall balance between production and consumption (death) was adapted.

At the boundary between first and second layer for each plate, loudness and spectral flatness are

monitored. When the signal at a plate becomes too silent over a given duration, new sounds are

chosen from a pool to be played back. Each sound has a lifetime; when it is exceeded the sound

is either modified in speed and pitch or released. The “energy balance” (based on loudness and

spectral flatness) between a plate and its spatial neighbours is monitored. When it becomes

too low, the particular plate goes into “production mode”, where it records the signal currently

played on its channel—formed from the sounds it spawned itself and sometimes the rhythmic

patterns of the WINDSPIEL process which is occasionally inserted in the first layer (cf. Fig. 4.9).

The recording is transformed into the Fourier domain and manipulated by randomly choosing

one out of four transformations (granulation, removal of resonances, “frequency” warping and

“frequency shifting”13). These manipulated recordings are then “injected” into the sound pool

of a neighbouring plate, so a sort of temporal and spatial “echo” or “dispersal’ is achieved.

The sound pools are kept on the hard disk up to a certain size, and therefore sounds can be

memorised over the entire duration of the exhibition. In the left-hand side of Fig. 4.10, the

black elements are the sounds played from a plate’s pool, whereas white rectangles indicate the

production (recording) process.

4.3 That Which Does Not Become Systemic

A careful look at the analysis of Dissemination in the previous section may reveal a fissure in

the tracing of the compositional process: One moment, we were looking at a prescribed writing

process (the algorithms used). The next moment, we unwittingly shifted towards looking at the

process of prescribing. There is a re-entry of concept—tracing a process—but there seems to be

no drawing of the mark which signifies this re-entry. Both sides seem unconnected.

12Ran Nathan, Uriel N. Safriel and Imanuel Noy-Meir (2001), ‘Field validation and sensitivity analysis of a
mechanistic model for tree seed dispersal by wind’, Ecology 82(2), pp. 374–388.

13Since these transformations use the signal’s FFT transform as input, frequency warping and shifting actually
manipulates the temporal features of the signal, while granulation manipulates the spectral features.

128

CHAPTER 4. TRACES

The permeable boundary only seems to exist with respect to delimiting where the composition

process begins and ends, and where its observation begins and ends (what I have called “limits

of control”). In terms of the piece itself, we seem to be thrown back at «. . . the derivative

intentionality of writing (Searle 2004: 20), where the code is predetermined by a human

author who then yields moment to moment autonomy of execution to the machine.»14 Our

utopian imagination might be to create autopoietic pieces, when indeed we can only really

write allopoietic systems—systems where «their primary goals are constructed in them by the

designers . . . their function is to produce something other (“allo”) than themselves.»15

But one can look at it from a different angle. Perhaps we should step back and question such

a goal of “system design”. We must design systems, because that is essentially what software

allows us to do, and not much else. But the aesthetic expression resulting from it has probably

escaped the previous analysis, like the strange “guest” or “oikeion” that J.-F. Lyotard locates at

the centre of artistic machinery:

«We have to imagine an apparatus inhabited by a sort of guest, not a ghost, but an

ignored guest who produces some trouble, and people look to the outside in order to

find out the external cause of the trouble. But probably the cause is not outside, that

is my idea . . . I have connected, and I will connect this topic of the oikeion with

writing that is not a knowledge at all and that has, properly speaking, no function.

Afterward, yes, when the work is written, you can put this work into an existing

function, for example, a cultural function. Works are doomed to that, but while we

are writing, we have no idea about the function, if we are serious.»16

So again, like every motion, if we want to make this productive, we need to keep the two

processes/observations in oscillation. What matters is that looking at the process of prescribing

in some form—even through detour and difference, and perhaps “failure”—is the background

14Nick Collins (2008), ‘The analysis of generative music programs’, Organised Sound 13(3), pp. 237–248; Collins
refers to John Searle’s book Mind: A Brief Introduction.

15Francis Heylighen and Cliff Joslyn (2001), ‘Cybernetics and Second Order Cybernetics’, in: Encyclopedia of
Physical Science and Technology, ed. by Robert A. Meyers, vol. 4, New York: Academic Press, pp. 155–170.

16Jean-François Lyotard (1988/1993), ‘Oikos’, in: Political writings, trans. by Bill Readings, Minneapolis:
University of Minnesota Press, pp. 96–107.

129

HANNS HOLGER RUTZ

against which I did prescribe the algorithms (the act is important, and what it actually produces,

not the intention). And that these paragraphs which describe the process of prescribing will be

the background of a future piece, etc.

4.4 Sound Similarity as Transversal Reading/Writing across Pieces17

Such an attempt to look at the “guest” from the corner of one’s eye was made in a 2012 paper.18

It reads across three different pieces: Inter-Play / Re-Sound is a live-electronic piece, Writing

Machine is a sound installation, and Leere Null is a fixed electro-acoustic composition. The

reading focuses on the way a specific signal processing technology—evaluating the similarity

between sounds—is used as a composition strategy, and how this strategy is actually displaced

from piece to piece, constituting its own motion or “Umwelt”.

4.4.1 Signal Processing

Of the abundant possible acronyms, the term ‘digital signal processing’ (DSP) is chosen pre-

cisely because of its plain technical nature. It rests entirely on a material discourse, as opposed

to the cognitive overloading introduced with ‘Music Information Retrieval’ (MIR)—assuming

that we can establish the boundary between music and sound, and moreover that music contains

“information” which can be unambiguously “retrieved”19—‘Machine Learning’ (ML) or ‘Artifi-

cial Intelligence’ (AI)—these assuming a correspondence between human understanding and

experience and some placeholder in computation. Perhaps signal processing has the same dusty

feel that made me look into databases (which were researched mainly in the 1980s).

It was mentioned that a tool I developed was FScape. It was started in 2000, but largely

grew during the composition of a stereophonic CD album Residual (2001–2002). This was

a major shift in my work, because while I had been “experimenting” with sounds and sound

transformations before, the last album before Residual, titled Stamina, subscribed itself to the

aesthetics of ambient music, using conventional structures such as rhythmic pulse and melodic

17Parts of this section’s text and figures are taken from Hanns Holger Rutz (2012c), ‘Sound Similarity as Interface
between Human and Machine in Electroacoustic Composition’, in: Proceedings of the 38th International Computer
Music Conference, Ljubljana, pp. 212–219

18Ibid.
19See the discourse on metaphors of communication in Sect. 3.2.1

130

CHAPTER 4. TRACES

Figure 4.16: «Who is producing the sound?» Note from September 2002.

and harmonic patterns. I could already work with digital sound files on an Apple desktop

computer, but relied on existing software and “plug-ins” to perform sound transformations.

By writing my own signal processing software, these transformation suddenly became an

inseparable part of the music. I had some basic DSP training from my studies, but essentially I

was self-taught. I remember trying to grasp algorithms published online, such as on the website

of J. O. Smith III or from the DAFx conference, and probably my implementations were full

of mistakes or misunderstandings. I remember my excitement at being able to actually touch

the individual sample values of a digital sound and do whatever I imagined with them. I was

especially fascinated by the possibility of working with arbitrarily long sound files—minutes or

even dozens of minutes—and the idea of “rendering” sounds, i.e. using processes which could

not run in real-time due to their heavy CPU usage or because they were operating in a random

access manner and through multiple iterations on the sound.

There is a note dating from the completion of the Residual series that reads: «Who is producing

the sound (it’s not me)» (Fig. 4.16). While it is impossible to be sure what I meant, it is

interesting because Residual was as much “noise music” as “electro-acoustic music”, and the

promise of tape music is indeed that the composer has full control over the realisation of sounds.

I was barely aware of the acousmatic discourse, and certainly the sentence did not refer to the

absence of the sound source in the Schaefferian sense. I believe it referred to the liberation of

the decision-making process, where I could truly experiment through signal processing, not

knowing the outcomes in advance.

One such experiment was the whole “proto-algorithmic” disposition of Residual: Given a set

of seven distinct sound materials and a series of seven proportions—the Fibonacci numbers

1,2,3,5,8,13,21—so-called “canvases” were produced. Seven groups of seven permutations

131

HANNS HOLGER RUTZ

of the seven numbers—taken as durations in seconds—were formed, as shown in Fig. 4.17.

Where the same sound material appeared more than once in the same proportion, the exact same

sound gesture reappears (indicated by arrows). It can also be seen that an eighth proportion

12 was added as silence, STILLE. It also appears that the materials labelled X1 and X2 are

indeed silence, possibly to decrease the density in the subsequent transformation process. In

this process, the seven sequences of each group were combined into pairs, by transforming them

into the spectral domain using a single Fourier transformation, something I had implemented

in FScape (Fig. 4.18). I could not find specific notes of how the two complex spectra were

combined, but the resulting sound, transformed back into the time domain, bears the features

of both source sequences and was still well articulated and thus not a spectral multiplication

(which is equivalent to a convolution).

A property of the FFT implementation was that it padded the files to a duration that was a

power of two in terms of sample frames, so seven sequences of 65′′ became six sequences

(neighbouring combinations) of 95′′.20 The choice of proportion 12 might come from the fact

that 95′′ × 6× 7 ≈ 66′, which is roughly the sequence sum 65, and indeed early bounces of

the pieces indicate that there were again tracks with Fibonacci based durations of 1′,8′,2′,13′

(others missing) and titles derived from the seven days of the week. These tracks initially were

just cuts of these durations into the overall “canvas” of one hour, that is to say, track 1 had a

seamless transition to track 2, etc.

This whole procedure had the function of a quasi-automatic “primer” of the time canvas, to

produce a situation from which to develop the actual pieces. The notion of the canvas, relating to

the visual arts, was actually inspired by my reading of the essays of Morton Feldman. He often

used the idea of the “time canvas”, a given stretch of time onto which one could paint music,

and he related it to the painting techniques of, for example, Mark Rothko, Philip Guston, and

Piet Mondrian. I found another undated note, probably from the time Residual was composed,

quoting from the German translation of ‘Some Elementary Questions’ (Fig. 4.19): «There is

nothing in music, for example, to compare with certain drawings of Mondrian, where we still

20At a sample rate of 44.1kHz, 95 seconds equals 222 = 4194304 frames.

132

CHAPTER 4. TRACES

Figure 4.17: Construction diagram of the initial canvas of Residual. Colours correspond to
the different source sound materials. Time elapses from left to right and top to
bottom.

133

HANNS HOLGER RUTZ

Figure 4.18: Translating a whole sound file to the Fourier domain in FScape

see the contours and rhythms that have been erased, while another alternative has been drawn

on top of them.»21

Signal processing in Residual was the main methodology of creating the pieces. One of the

elementary tape techniques, acceleration and deceleration without pitch correction—digital

resampling—is extensively used. You can easily generate a variant of a sound that is 8× or

1/8× the original duration by resampling it three octaves up or down. While modern digital

audio workstations refine their algorithms to transpose without time stretching or to stretch

time without transposition, this very basic signal processing algorithm changes two perceptual

qualities at once, and especially with noises which do not exhibit clear melodic elements the

combination of the original sound with the resampled sound produces very interesting mixtures.

Often I would “bounce” the whole current state of a piece and re-introduce it in a resampled

variant, a highly effective recursive procedure.

Other algorithms used include brick wall frequency filters and filter banks, frequency shifter

(Hilbert filter), frequency warp and functions applied to FFT spectra such as “zooming into”

or “out of” a frequency range. There are almost no sketches dating back to December 2001

21Morton Feldman (1967/2004), ‘Some Elementary Questions’, in: Give My Regards to Eighth Street: Collected
Writings of Morton Feldman, ed. by Bernard H. Friedman, Cambridge, MA: Exact Change, pp. 63–66.

134

CHAPTER 4. TRACES

Figure 4.19: A quotation from Feldman I put down in a diary, dreaming of an overwriting
technique in music akin to Mondrian

through September 2002, only some intermediary versions of the pieces, but it seems that the

composition process was very intuitive and, instead of having a prescribed formal plan, based

on observing where the pieces drifted through these recursive applications of signal processing.

Also it seems that towards the end, certain structures were “coloured” or emphasised by liberally

introducing other sound materials not directly evolved from the original canvases. The durations

of the pieces started to shift, and at some point their number decreased to five pieces of 10′44′′,

16′22′′, 7′04′′, 17′50′′, and 9′14′′. A programme text was only formulated when the pieces were

finished in October 2002. A note reads: «Turns out not to be a circle but an excentric spiral».

I remember that with the seamless transition between the pieces, the original idea was that the

last piece directly connects to the first.

The role that was designated to signal processing stems from the post-romantic traces that can

be found in American abstract expressionism as well as in the music of Cage and Feldman.22

22One can debate these traces, of course, but it goes beyond the scope of this section. For example, see Edward
M. Levine (1971), ‘Abstract Expressionism: The Mystical Experience’, Art Journal 31(1), pp. 22–25; or Leonard
B. Meyer (1963), ‘The End of the Renaissance?’, The Hudson Review 16(2), pp. 169–186

135

HANNS HOLGER RUTZ

The submission of long stretches of a continuous sound stream to transformations, the way the

results are scattered across the canvas, strongly resonates with the idea of an all-over technique.

The 2002 programme note mentions the intent of «not pushing the sounds around but trying to

figure out how they would behave autonomously», again a quote from Feldman and his idea

of a natural state of time that exists before human involvement. It also highlights the use of

noise—for which the signal processing is mainly responsible—as a source of polysemy, not

dictating meaning but being open to interpretation and producing «an imaginary landscape»

(a reference to Cage). The more metaphorical and figurative parts of the programme note seem

to use noise as a hallucinogen, an agent which permits the mind to construct these landscapes.

Somewhere between this work and Dissemination, a motion has taken place from polysemy to

dissemination, an abandonment of naturalism.

A testament to this motion is a different programme note from 2003, written in the context of the

Bourges electro-acoustic competition, in which the last piece of the Residual series received an

award. The erosion responsible for ‘residuals’ is less related to the material process of creation—

e.g. rewriting in the sense of Mondrian or blurring the edges in the sense of Rothko—but to the

double nature of time:

«The name [Residual] points to the process of temporal erosion in the mind of

the composer as well as the listener. The strange conflict between elaborating an

atmosphere and the ongoing composition process that covers a time span of several

months and includes vast changes in mood, thought, social contacts etc. The strange

activity of the listener in whose head a piece is kept in flux and changes meaning

over time.»23

This of course is a timid motion: It is still talking about meaning and the psychic state of the

composer, of which an all-over technique is just a medium, but it recognises the fissure in

“meaning” and the strangeness in the relation between composing time and performing time.

23
http://sciss.de/texts/tap_residual.html (visited on 27/07/2013)

136

http://sciss.de/texts/tap_residual.html

CHAPTER 4. TRACES

4.4.2 Delineation

The idea of sonic erosion is also found in the 2005 tape composition Zeichnung. The German

title has multiple meanings in English, including ‘drawing’, ‘outline’ and ‘delineation’. It

connects in several ways to Residual. In the earliest notes I found, dating from January 2005,

the Rothko idea of “bleeding edges” through iterative repainting is mentioned; to begin with an

initial layer of sound which «slowly vanishes as it is repainted in an ‘aligned’ manner». Several

questions were formulated: How to arrive at an initial structure? How do the iterations or layers

relate to each other, are they opaque or transparent? What is the character of ‘delineation’,

e.g. edged, soft, exact or coarse? What does repainting mean technically? Should (temporal)

distortions be allowed? How is spatiality constructed?

The term which is used extensively is the ‘trace’. A trace signifies an action, a movement,

a gesture, a subject. It is not just the frozen past but points into the future—if one encounters

a trace, one can follow it in two directions. Traces decompose over time. The human memory

is a trace: «The head is like a mobile [!] which slowly swings forth and back and may get

into turbulences.» And finally, what is determined by the trace? Rhythm, dynamics, spatiality,

brightness.

The actual disposition then establishes again a primer/canvas, based on some proportions and

series, as shown in Fig. 4.20. Four fields A, B, C, D are defined, corresponding to four basic

sound materials: plastic foil, stone, broken glass and foam chips. The four fields exist sim-

ultaneously with a total duration of twelve minutes. They are divided into a varying number

of sections. The sounding sections of each field are separated by silent sections. The trace

is embodied by a sequence of imitations, beginning in section B1—called “Urszene”—which

is the template for the imitation D7, which in turn is imitated as D5, and so forth following a

random order of the 16 sections.

In order to match the target duration of each section, the imitation is either carried out on

an accelerated or decelerated template, or the imitation drops parts of the template or creates

additional material. Fig. 4.20 shows these operations on the left-hand side. The imitations are

to be carried out by ear, carefully listening to the template and splicing target material so that

137

HANNS HOLGER RUTZ

Figure 4.20: Plan for the construction of Zeichnung

138

CHAPTER 4. TRACES

Figure 4.21: Sketch illustrating the gradual change of form due to imperfect imitations

Figure 4.22: Timeline arrangement of imitation no. 6. The template is shown folded up on the
top, four iterations carried out to construct the imitation below, each split into
four channels.

the perceptual qualities such as gesture and micro rhythms are obtained. The imperfection of

each imitation produces the trace, as indicated in a sketch in Fig. 4.21.

While this approach does not involve specific computer-based algorithms, it can be understood

as a “human signal processing”. It involves a performative element, because each imitation is

very laborious and requires a lot of time, and it plays with paradoxic elements such as the task

to imitate the sound of stones with recordings taken from broken glass. The sections are around

five minutes long and contain several hundreds of cuts, as well as individual volume break-point

curves. Fig. 4.22 shows the timeline editor with four iteratively produced layers of the sixth

imitation. All sound recordings were made quadrophonic in a sound booth, and were split into

four channels due to a limitation of the multitrack editor used (Logic).

139

HANNS HOLGER RUTZ

The result also contained some absurd aspects: In order to create the imitations, I was listening

to template and target simultaneously but spatially separated, mostly via headphones. This led

to a perceived melding of the separate channels as soon as there were some common elements

between them. The ear is willing to accept two sounds as one connected gesture based on some

features, even though the two sounds appear very different when played successively. Pitch and

formants often play a minor role compared to the loudness contour.

Although produced in a sound booth specifically for the piece, the source sound materials were

recorded in long improvisatory sessions independent of the work to which they were subject in

the imitation process. This is also somehow absurd, because it gives them on the one hand the

feel of “field recordings” which have not been “controlled” by the composer, while on the other

hand the sound is totally controlled in the final work as the material is precisely cut and arranged.

What can be witnessed here is a play with the conflicts of the compositional process itself.

However, in retrospect it seems that this play is absurd in a different way: It is barely noticeable

in a performance of the piece itself, but only visible through the meta-text and analysis.

In the final piece, which still lasts twelve minutes, although the sections had been stretched—

resulting in a “zoomed in” version of the initial layout (Fig. 4.23)—there are dedicated moments

which present template and imitation after another, hinting at the process. But the musical

gesture and form are determined by other factors. The hatched portions in Fig. 4.23 mark

transitions between different concurrent imitations. According to a simple typology (Fig. 4.24),

each imitation belongs to one of four classes: It may either initiate a section, terminate one, occur

isolated, or mediate between a preceding and a succeeding section. Each class is associated

with a particular chain of DSP to “merge” or “morph” the overlapping sections.

Finally, there are multiple iterations in which the material is spatialised to four channels, mostly

following the number of concurrent sections which are spread in space. Although it does not

form part of this analysis, I would like to point out that I developed a custom software Meloncillo

for this spatialisation, based on trajectories which are represented as ordinary sound files instead

of break-point functions, allowing any signal processing algorithm to be applied to them.

140

CHAPTER 4. TRACES

Figure 4.23: Form plan showing the timeline of the four materials. Handwriting details the
transitions between the four fields to be carried out in the next step.

Figure 4.24: Typology of transitions derived from the co-occurrences and successions of imi-
tations. The symbols used for the resulting four classes have been copied into
Fig. 4.23.

141

HANNS HOLGER RUTZ

To conclude, in Zeichnung the coordinates of signal processing received notable translations.

The fact that the imitations were carried out manually seems to be less significant than the shift

in the meaning of trace. It moves away from the archeological view of trace as something to be

rediscovered, perhaps underlined by the facts that the original sound sequence in the end was

not included in the piece and that the sound materials have been recorded in an “uninterested”

way. Instead the productive moment of trace is put into the centre. Whereas the final shape of

Residual was a product of many factors and interventions from my side, here rhythm, dynamics,

spatiality and brightness indeed arise from the trace. It has been said that the musical form is

strongly influenced by the co-presence of sections which led to the rendering of the transitions

according to Fig. 4.24, but the quality of these transitions is a consequence of the surface of

the imitations themselves. Despite—or because of?—the formalised and rigorous nature of the

piece, the iterative process played out well as a source of “Anschlußfähigkeit” or connectivity

(cf. Sect. 3.3.5).

4.4.3 Inter-Play / Re-Sound

So far the self-imposed game between me and the computer, as shown in the composition

process of Zeichnung, has not been directly included in the performance structure of the pieces.

While Inter-Play / Re-Sound (2011) is also a pre-written piece, key aspects of it are established

during the live performance.

Its components are an amplified derelict piano, a human performer and a computer. The

performer is equipped with a miniature microphone and is asked to focus on highlighting the

physical structure of the piano and to avoid producing “piano music” sounds. In particular,

the hammer mechanics are removed, leaving “empty keys” and direct access to the strings, for

which a preparation scheme was developed. Fig. 4.25 shows some of the object with which the

strings were prepared.

The sounds get amplified and are projected back onto the corpus of the piano through a number

of transducers (Fig. 4.26), making it a spatially extended and reverberating loudspeaker. The

computer registers the sounds produced in the first improvisatory part of the piece, and extracts

their temporal and spectral features. An interplay begins with the computer using a selection

142

CHAPTER 4. TRACES

Figure 4.25: Different ways of preparing the strings of Inter-Play / Re-Sound

of algorithms which operate on the recorded and analysed material, sooner or later being fully

in charge of the situation and dismissing the performer, who becomes another listener. At this

point, the feedback circle is closed by having the computer turn its observation onto itself:

running the analysis against its own output signal. Although the piece is now in a generative

mode which could go on forever, parameter trajectories chosen within given randomised bounds

allow the piece finally to decay. Fig. 4.27 shows an example of such a ‘tendency mask’.

During the first part, the live signal is continuously written to an audio buffer as well as

a feature buffer holding the evolving Mel Frequency Cepstral Coefficients (MFCC) of the

signal. Furthermore, markers from an onset detector are stored. The piece, like Dissemination,

is realised with a provisional (ephemeral) version of SoundProcesses and the Wolkenpumpe

interface for control purposes. Fig. 4.28 shows a screenshot. In the top part, the MFCC analysis

of the microphone signal is shown, where time elapses from left to right. Beneath the coefficients,

white vertical markers indicate the detected onsets.

The algorithm comprises a “body” of eight concurrent processes—each inspired by one sense,

e.g. hearing, seeing, touching, and so forth. They iterate through three states, idle, “thinking”

(analysing without producing sound) and “playing” (producing sound), based on bounded

random durations or being triggered by observations. Durations and parameter ranges are mostly

143

HANNS HOLGER RUTZ

Figure 4.26: The piano equipped with transducers during the development in the ICCMR lab

Figure 4.27: A tendency mask is a parameter boundary (ordinate)
which dynamically changes over time (abscissa).

144

CHAPTER 4. TRACES

Figure 4.28: Screenshot from Inter-Play / Re-Sound which provides a visualisation of the sound
processes in the centre and of the feature vector evolution in the top part

defined through tendency masks over a logical timeline spanning an assumed approximate

overall duration.

Of these processes, four transform, filter and inject material without a dedicated analysis stage.

The other four use features extracted from the material: Process HEARING measures averaged

loudness and replays short transient sounds between onset markers when the loudness falls

below a time varying threshold. Process EQUILIBRIOCEPTION searches for steady portions of

flat (noisy) spectra in the developing live audio buffer, and plays them back as short concurrent

loops. Resonant sounds from striking or stroking piano strings, hitting on the corpus etc.,

are thus ignored, while the background of the human actions, formed by the small sounds

and reverberations behind the foreground, is amplified and intensified, essentially creating an

additional space through varying loop durations across channels. Later in the piece, the playback

speed is modified as well, resulting in timbre variations.

The two remaining processes TOUCH and SIGHT are based on sound similarity. TOUCH uses a set

of given sound profiles, previously stored MFCC evolutions of short duration (0.5 . . .1.0′′), taken

145

HANNS HOLGER RUTZ

from prototypical sounds like flageolets on the strings, the empty keys and objects requested as

preparation of the strings, such as a piece of paper clamped between adjacent strings (Fig. 4.25).

The process then searches through the available live buffer for the best matches according to a

similarity measure, cuts out small portions from the buffer at the matching positions, applies a

spectral whitening filter to make the sound distinguishable from the live signal and appear more

remote. Fig. 4.29 shows an example search result across a fully filled buffer.

In contrast, SIGHT looks at a sub-tree of the current DSP graph and picks up its sum signal,

measuring its short term spectral evolution and using this as template. Instead of finding best

matches, it generates a continuous similarity signal across the whole available live buffer. It

then applies a threshold in order to obtain a condensed version of this buffer: Only those sounds

showing a minimum similarity remain, and those sounds are moved together to form a new

homogeneous gesture, with a duration ranging from a few to dozens of seconds.

The overarching thought is to create semi-autonomous structures, for example by amplifying

the background and creating space. This space is the space between human and computer, not

as an alienation effect, but to allow both to breathe and coexist without submitting to stimulus–

response patterns often found in live electronic pieces. It aims at presenting the inexhaustible

possibilities lying in the material left behind by the performer, while maintaining a strong sense

of coherence and avoiding the feeling of the computer exerting an arbitrary power over the

situation.

4.4.4 Writing Machine

In Writing Machine (2011), the performer is gone and we are left with a sound installation

which runs fully independent of human interaction. As in Dissemination, we encounter again

the discrepancy between the prescription process and the process prescribed. This installation

bases its notion of ‘writing’ on the broad meaning as formulated by Derrida: The grapheme

is the manifestation of the process of writing-as-trace, an infinite chain of signification and an

absence of “presence” or re-presence of an original signified.24 Signification, if one wants to

24Jacques Derrida (1967/1997), Of grammatology, trans. by Gayatri Chakravorty Spivak, Baltimore: Johns
Hopkins University Press, chap. 1 and 2.

146

CHAPTER 4. TRACES

Fi
gu

re
4.

29
:

E
xa

m
pl

e
se

le
ct

io
n

in
pr

oc
es

s
T

O
U

C
H

:T
he

up
pe

rs
on

og
ra

m
sh

ow
s

a
co

m
pl

et
e

3′
liv

e
bu

ff
er

.T
he

ta
rg

et
te

m
pl

at
e

is
sh

ow
n

in
th

e
bo

tto
m

le
ft

.T
he

al
go

ri
th

m
w

as
in

st
ru

ct
ed

to
fin

d
th

e
tw

en
ty

be
st

m
at

ch
es

,t
he

re
su

lts
sh

ow
as

di
am

on
ds

.M
at

ch
es

du
e

to
lo

w
vo

lu
m

e
ar

e
in

di
ca

te
d

in
gr

ey
,m

at
ch

es
co

m
in

g
fr

om
th

e
sa

m
e

ty
pe

of
ge

st
ur

e
(s

tr
in

gs
hi

tti
ng

cl
am

pe
d

pa
pe

r)
ar

e
sh

ow
n

in
gr

ee
n,

an
d

ot
he

rg
es

tu
re

s
w

ith
si

m
ila

r
sp

ec
tr

al
en

ve
lo

pe
in

ye
llo

w
.C

en
tr

e
an

d
ri

gh
tb

ot
to

m
sh

ow
m

ag
ni

fic
at

io
ns

of
tw

o
m

at
ch

ed
re

gi
on

s
at

th
e

sa
m

e
pl

ot
tin

g
sc

al
e

as
th

e
ta

rg
et

so
un

d.

147

HANNS HOLGER RUTZ

Figure 4.30: Photo of the sound installation, size approx. 2×2 m.
Festival SONICA, Ljubljana 10/2011.

keep the term, lies entirely in the transitions. Writing Machine takes these ideas quite literally,

using an algorithm which re-writes a sound phrase over and over again, focusing the attention

on the changes introduced in each iteration.

At first glance, the work resembles Zeichnung, although the feedback chain does not include

the human composer. But because the chain runs with indefinite duration, the imitative aspect

of each iteration with respect to its immediate predecessor becomes a subordinate one. The

chain is reflected in the visual presentation (Fig. 4.30) by using the geometric shape of the circle.

A poriferous circle, however, which acts as a system of consumption: The machine “eats” a live

signal, preferably one with conventional signification, such as from a television channel. This

signal is fed into a sort of database or pool from which all audible material is constructed.

The arrangement is that of a laboratory experiment—a tableau of petri dishes, put into vibration

by piezo electric elements, and displaying heaps of graphite powder, the disintegrated mineral

which borrows its name from graphein (to write). There are two iterations: The first describes

the algorithmic cycle which departs from the previous situation or phrase, chooses parts of

148

CHAPTER 4. TRACES

select parts to overwrite,
to shorten or to expand

for each of these parts,
traverse sound database

perform replacements,
i.e. generate new phrase

add to phrase trace

remove inserted material
from database

construct temporal series
from phrase trace

project series incrementally
onto full circle

fill up database with new
material from live signal

rotate spatial projection

project current phrase

oscillate

Figure 4.31: Diagram of the Writing Machine algorithm

the phrase to be overwritten, then looks for “suitable” materials in the database and overwrites

those parts, in other words re-writes the phrase. These steps are shown in Fig. 4.31. Multiple

piezo elements are grouped together to form channels, and the phrase, whenever it is restated,

advances to an adjacent sector of the physical tableau, performing thus the second type of

iteration, a spatial rotation over the course of a few minutes.

Everything is controlled by motions which are basically ultra-low frequency stepwise oscillators

or random walks. There is a motion for the duration of the fragments overwritten, for the position

of the fragments within the current phrase, for the cross-correlation length when looking for

similar sounds in the database, and so forth. The procedure is quite similar to the approach

taken in concatenative sound synthesis. As an interchangeable example, C. Frisson, C. Picard

and D. Tardieu write: «This method involve[s] four steps: segment the target, extract feature[s]

from the target segments and the grains, choose the grains that will replace each target segment

149

HANNS HOLGER RUTZ

and finally concatenate the chosen grains to create the final sound»,25 and part of the diagram is

akin to the one outlined by D. Schwarz.26

The difference is that we do not seek a final sound, and the interesting moments originate exactly

from the imperfection of the reconstruction. The imperfection is, so to say, the contrast agent for

the spatial and temporal unfolding of the recursion. For example, in the area of automatic sound

design and texture generation, repetition in the choice of matching sounds might be seen as a

problem,27 but we found that they are one of the most recognisable peculiarities of our system,

as the repeatedly chosen sounds are layered slightly off the target sound’s position, adding to the

palimpsest’s clarity. On the other hand, a notable characteristic of the Writing Machine is that

the database is constantly drained, so each sound chosen has a certain chance of being removed

from the database, making space for refilling—and with the live signal, the material is never

exhausted.

With the joy in seeing the constantly new combinations emerge, comes another side which lies

in the dark: A system was built which registers acts of writing, revealing the computer as a better

prosthesis of the human memory—more calculable, more durable, but also external memory as

more prone to manipulation: «Everything faded into mist. The past was erased, the erasure was

forgotten, the lie became truth.» (George Orwell, 1984)28.

4.4.5 Leere Null

The last example employing signal processing as a strategy is the fixed media composition

Leere Null. It was composed in two parts. The first part, written in 2011, is a five-minute stereo

tape, somewhat pedantic and focused on the process. The second part, composed in 2012, is a

25Christian Frisson, Cécile Picard and Damien Tardieu (June 2010), ‘AudioGarden: towards a Usable Tool for
Composite Audio Creation’, in: Quarterly Progress Scientific Reports of the numediart research program, vol. 3, 2,
pp. 33–36.

26Diemo Schwarz (2006), ‘Concatenative sound synthesis: The early years’, Journal of New Music Research
35(1), pp. 3–22.

27cf. Marc Cardle (2004), Automated Sound Editing, tech. rep., Cambridge, UK: Computer Laboratory, University
of Cambridge, §4.1.3

28This is not as far-fetched as it may seem. Demaine, Iacono and Langerman indeed had the same association
when developing their concept of retroactive data structures, cf. Erik D. Demaine, John Iacono and Stefan Langerman
(2007), ‘Retroactive Data Structures’, ACM Transactions on Algorithms (TALG) 3(2), 13:1–13:20

150

CHAPTER 4. TRACES

four-channel tape of around eight minutes, a restatement of the first part, but using a different

methodology and yielding a perceptually very distinguished result.

The point of departure arises from utopian ideas about composing. Some are very tenacious: The

composer as the originator—faced with a blank sheet, He creates ex nihilo. This is one way to

explain the title which is taken from the novel Roadside Picnic by the brothers Strugatsky. While

the term “Empties” is used in the English translation, the German version is peculiar in that it

uses a pleonasm: “Leere Null” means empty (or void) zero. In the book it is used to describe

objects allegedly left behind by aliens: two copper plates spaced apart with “nothing” in between

them, and no force can tear the two apart. The Empty fascinates due to a paradox: It is fully

permeable for the senses—you can put your hand inside—yet its meaning is completely opaque.

Like the blank sheet, the object could be seen as a container—the contour of the zero—which is

susceptible to being filled with our imagination (rewriting the opaque meaning).29

The genre of “tape” music imposes another paradox or obstacle: During the writing of the piece,

the composer can hear the sounds and gestures it is made of in arbitrary succession, indeed

they can be moved around on the “time canvas”, looking down onto them with the comfortable

vision of the bird’s eye (cf. Fig. 2.9). However, when the piece is presented, only one path in

the decision space is left to be presented. This problem is not unique to electroacoustic music,

but the composer’s capability of “double listening” greatly emphasises it.

The first part of the piece is a play with these two elements: To create ex nihilo (despite the

impossibility), and to reverse the arrow of time. The solution I chose interrelates these two. The

approach lies again in the use of sound similarity search and in the rewriting of phrases with

the help of this search. For this it was necessary to create a multitrack timeline editor which

could be programmatically controlled, and this tool was published as an open source project30.

It allows the construction of timelines both manually via a graphical user interface, as well as

29Only just now, while I was finishing writing this text, I came across an interesting connection with J. Lacan,
who presented similar thoughts on “creation ex nihilo”, using the example of the potter’s vase which is something
signifying an emptiness and the potentiality of filling it: Jacques Lacan (1992), The Ethics of Psychoanalysis,
1959–1960, ed. by Marc E. Carvallo, trans. by Dennis Porter, vol. VII, The Seminar of Jacques Lacan, London:
Routledge, ch. IX

30
http://github.com/Sciss/Kontur This is an ephemeral system which has been replaced by Mellite in newer

works, allowing the traces of the compositional process to be recorded; see Sect. 4.6.

151

http://github.com/Sciss/Kontur

HANNS HOLGER RUTZ

through programs written in the Scala language. Audio regions are shown as sonograms and can

be manipulated in the typical manner, i.e. adjusting volume and fade curves, as well as cutting

and splicing. The combination with easily accessible programming interface is quite unique, as

most similar systems are either tailored towards symbolic manipulation instead of manipulation

of electroacoustic material, or their graphical interface is more in the state of a visualisation and

not a fully operable editor in its own right. This multitracker is complemented by the similarity

algorithms which have been extracted into a separate library also published as an open source

project31. It makes use of the feature extraction algorithms found in the SuperCollider system.

While the correlation of MFCC vectors alone proved useful in the live electronic piece, I was

seeking better temporal synchronisation between target and match, as both are to be superim-

posed. For example, if there is a percussive sound, the algorithm should not only find a sound

similar in terms of the spectral evolution, but also in terms of its temporal envelope. Furthermore,

in part 2 which is constructed to great length by the computer alone, we need a way to adjust the

volume of the matched sound particles. The program thus includes the loudness contour of the

sounds, and for each search we may specify a weight which balances the cost between spectral

and temporal features.

The use of a sliding MFCC matrix cross- or auto-correlation has been described in previous

literature,32 and I wish simply to add that I have achieved the most convincing results when

using normalisation of the coefficients with respect to their occurrence in the corpus. I first

created feature files from my database, comprising several gigabytes of sound recordings which

had been made over the last years, and calculated the 1st and 99th percentile for each MFCC

coefficient and the loudness contours. In the actual search, cross-correlation is performed using

sliding windows, each of which is normalised according to their mean value and standard

deviation. Matches are ranked by highest normalised cross-correlation and a Euclidean distance

is used to balance spectral and temporal features.

31
http://github.com/Sciss/Strugatzki

32cf. Cardle, Automated Sound Editing, §3.5.1

152

http://github.com/Sciss/Strugatzki

CHAPTER 4. TRACES

Part 1

As the Empties are found objects, the first part begins with a fifteen-second quotation from

Mikhail Belikov’s Raspad, a film about Chernobyl which for me is, through Andrei Tarkovsky’s

interpretation of the Roadside Picnic, linked to the novel. The protagonist is crying for the

loss of his friend. The first half of this part is constructed as shown in Fig. 4.32. The initial

gesture is gradually extended and overwritten in a dialogue between composer and computer.

A suitable sub-region to be overwritten is selected along with a cutting point. The algorithm

is given further parameters for the similarity search, such as the balance between spectral and

temporal features, a minimum and maximum duration to insert between the left and right part of

the sub-region which will be split as part of the iteration, as well as constraints for the database

such as limiting the amount of gain that can be applied to the found material. The interface for

this is shown in Fig. 4.33. When the search is completed, the matches are ranked by correlation,

and the composer can listen to the effect each choice of sound would have after insertion in the

timeline. For this part of the process it was crucial not to stick to the “best” matches as seen by

the algorithm, but often the musically surprising ideas were found further down the list.

This strategy combines coherence and change in an interesting way: while there are always good

matches in the beginning and ending of the found sounds, due to the dilation they are completely

unconstrained in their middle part (other than being subject to the composer’s selection). The

algorithm is further refined by gradually introducing transformations to the material injected.

This is a creative method already noticed by Cardle in the field of texture synthesis.33 I have

used FScape again, which contains a series of transformations which are (quasi-)invertible.

Resampling and frequency shifting are two of them which are applied here.34 The invertible

nature—a sound can be accelerated with resampling, and then slowed down again by using

another instance of resampling with an appropriate factor—can be exploited so that the database

does not need to be re-analysed, which is crucial as it contains several gigabytes of audio files.

Instead, the inverse transformation is applied to the target sound which is only a few seconds

33Ibid., §2.1.1.
34If frequency shifting is used with anti-aliasing filters, shifting up and then down again leaves a frequency band

at the upper end of the spectrum empty (for example 20 kHz to 22 kHz), therefore I call this quasi-invertible.

153

HANNS HOLGER RUTZ

1.2.3.4.

5.

Figure
4.32:

Iteration
in

constructing
the

firsthalfofthe
firstpartin

Leere
N

ull:(1.)
Initialsound

gesture.(2.)
D

issected
into

tw
o

sm
allersub-regions.

(3.)
T

he
previous

phrase
is

extended
by

specifying
a

m
inim

um
and

m
axim

um
dilation.(4.)

T
he

actualspacing
is

a
resultofthe

sim
ilarity

search.Itfinds
the

m
atches

w
hich

produce
a

bestcorrelation
both

w
ith

the
leftregion

and
the

rightregion
w

ithin
the

specified
dilation

bounds.(5.)
M

ultiple
sounds

have
been

layered
attim

e
0 ′48 ′′.

154

CHAPTER 4. TRACES

Figure 4.33: Screenshot with the user interface for Leere Null. The background shows the
main timeline, the window in front shows the current selection to be subject to
similarity search. A result table for an example iteration is superimposed on the
bottom left.

long. For example, if we wish to inject material lowered by two semitones, corresponding to a

resampling factor of 112.25%, we apply a resampling with factor 89.09% to the target sound,

proceed with the search, and apply the desired resampling after a sound has been selected from

the matches.

To address the time arrow paradox, the second half of part 1 is constructed from reverse:

I begin with the result of the last iteration of the first half, and then proceed in a similar way,

however selecting two sub-regions as search targets which are already spaced apart, resulting in

a contraction of the phrase length in each iteration. Also the phrases are assembled from back

to front. As a result, the second half, as it is perceived in the concert, starts with a very dense

texture as it corresponds to the last stage in the layering process. This impression is intensified

by ultimately having applied the process separately for the left and right channel. The texture

then gradually becomes clearer and slows down again like the first part. Although one seemingly

departed from very different situations, both sections end in the same gesture, thus questioning

cause and effect.

155

HANNS HOLGER RUTZ

Part 2

For the second part of the piece, strategies were chosen which I hoped would yield a more

organic and acousmatic unfolding of the materials. Re-writing should be used again, but on a

different scale and in the form of what could be called “Hidden Strugatsky Chain”—the target

sound is in fact the entire first part in itself, although it is never heard as such. This hidden target

is approached by splitting it up into many small segments. At the same time, the algorithm

should gain more autonomy and process entire sound layers on its own without further human

intervention. As the second part was planned to have up to twice the duration of the first part,

the first part (the hidden background layer) was incrementally stretched.

No bouncing had been involved in the construction of the first part, and it was thus possible

to automatically part the overall time canvas into layers, reducing the “polyphony” or density

in each layer to allow for more clarity in each search iteration. Six layers were constructed,

three of which spread over the whole duration, while only material from the densest parts was

left over for the other three layers. Each of the six layers was then processed by two different

strategies. The layers were mixed to mono signals, while the searching process constructed

quadrophonic outputs.

Both strategies operated by finding sounds similar to the target layer, but the channels were

treated in opposite ways, achieving either congruency or complementarity between them

(Fig. 4.34): The first strategy was called IMITATION. The cost function for matching not

only considered similarity between database sound and target layer, but also in between the four

channels it was asked to generate. The reuse of the same match for more than one channel was

disallowed. Furthermore, the instruction was to keep coherence between its own successive

choices. This is illustrated in Table 4.1. The overall cost function had therefore to consider

fourteen components, where a tendency mask was given to balance between source/target simi-

larity, diachronous channel similarity and synchronous inter-channel similarity. Brute force

search kept several computers busy for a week and led to a simplification in the inter-channel

measurement by only requiring adjacent channels to maximise cross-correlation.

156

CHAPTER 4. TRACES

Figure 4.34: Original concept of the two strategies in Leere Null: Kohäsion (cohesion/imitation)
and Ökologie (ecology). This assumed that each iteration follows along the
horizontal arrows and uses the recursion based on the previous phrase. With
the adaptation of using a pre-existing hidden target layer, a weighted similarity
between the previous phrase and this target layer is used.

Ta
rg

et
L

ay
er Synchronous Diachronous

C
ha

nn
el

1

C
ha

nn
el

2

C
ha

nn
el

3

C
ha

nn
el

4

C
ha

nn
el

1

C
ha

nn
el

2

C
ha

nn
el

3

C
ha

nn
el

4

Channel 1 + ∗ ∗ ∗ +
Channel 2 + ∗ ∗ ∗ +
Channel 3 + ∗ ∗ ∗ +
Channel 4 + ∗ ∗ ∗ +

Table 4.1: Cross-correlations included in the matching cost function. + means larger correla-
tions are better (similarity), − means smaller correlations are better (dissimilarity).
Cells marked ∗ are treated as + in the IMITATION strategy, and − in the ECOLOGY
strategy. Entries are commutative, i.e. the correlation between chan. 1 and 2 is the
same as the correlation between chan. 2 and 1.

157

HANNS HOLGER RUTZ

The choice of database was also significant. For the IMITATION, I recorded more than an

hour of new sounds which were improvisations with metal objects in a sound booth while

listening to the target layers on headphones, in the hope that I would generate gestural material

rediscovered in the search. The aural profile of the target layers was also partly transformed

through moving short time convolutions. The database was split between the six layers in

order to generate more distinguished output layers. The outcome was highly satisfying: The

quadrophonic experience was indeed as intended perceivable as a “cubistic” sculptural space in

which the listener is immersed. The inter-channel correlation produced a feeling that uniform

gestalts were projected into the space, while at the same time giving them dimensionality. Also

the diachronous coherence parameter had a strong positive effect on the perceived musicality.

The second strategy was called ECOLOGY and based on the idea of stratifying the sounds

between the channels: The cost function of the inter-channel correlation was inverted—the more

dissimilar two sounds were, the higher was their rating, yielding contrasting spectra as well as

contrasting temporal envelopes. The database was equipped in a way similar to the first part,

using a very large selection of different recordings from my archive, although no sounds were

present which had been used in the first part. I would like to note that “ecology” is thus meant

merely as a measure of sounds being able to coexist without disturbing each other. It neither

denotes ecology in the sense of soundscape composition, nor in the sense of engagement with the

performance space (as in Di Scipio’s work). Instead, it resembles the model that A. Eigenfeldt

and P. Pasquier used in their algorithmic realtime soundscape composition Coming Together:

Freesound,35 in which multiple agents select sounds based on disjunctive spectra. The results

of this strategy are equally interesting as the imitative approach, yet very distinct in their airy

transparency.

Another crucial aspect for the success of this process was the ability to automatically perform

segmentation, since I am no longer required to do this by hand. Segmentation is also considered

the most decisive part of concatenative sound synthesis,36 however in the CSS case, the database

35Arne Eigenfeldt and Philippe Pasquier (2011), ‘Negotiated Content: Generative Soundscape Composition by
Autonomous Musical Agents in Coming Together: Freesound’, in: Proceedings of the 2nd International Conference
on Computational Creativity, Mexico City, pp. 27–32.

36Schwarz, ‘Concatenative sound synthesis: The early years’.

158

CHAPTER 4. TRACES

is already pre-segmented, whereas in our case segmentation is a dynamic process and regards

“grains” with often several seconds of duration. Again I applied the idea of ecology, such that

segmentation is based on maximising dissimilarity between the left and right half of a sliding

matrix. A similar approach is described by J. Foote.37

In the final construction of part 2, although not using strict section boundaries as suggested

by Fig. 4.34, the ECOLOGY material enters the time canvas later than the IMITATION material,

creating sensitivity for their respective qualities. The finalisation was guided by constraining

human intervention to an almost purely subtractive role, using two stages: First the density

in each layer was reduced, and some annoying sounds removed. Then larger chunks of each

bounced layer were cut out in the mix between the eighteen layers, taking care only to emphasise

motions which were already formulated in the generated layers, and to give the piece an overall

envelope.

4.4.6 Pervasive Space

In the first part of the discussion, it was signal processing in the broad sense, in the second

part it was the operationalisation of sound similarity which constitutes the space pervading the

individual pieces. I have chosen the formulation of the “pervasive space” to allude to Spencer-

Brown’s Laws of Form (cf. Sect. 3.3.1f). Like Lyotard’s “inhabiting” guest, the “pervading”

space is some troublemaker that is difficult or impossible to observe. It seems to me more than

a coincidence that both use a variant of “dwelling” to describe this oikeion or space. More

than an actual, delimited space, the pervasive space of Spencer-Brown is a virtual one. Space

is an axiom he uses to allow the operation of distinction to make a first severance—in the

space—producing a form which indicates the inside of the severed space, and yet again space

on its outside. Through the re-entry of the form in successive distinctions, one can speak of

different levels of spaces which are numbered s0, s1, s2 etc. The virtuality lies in the fact that s0

is just the sense we have of where we stand:

37Jonathan Foote (2000), ‘Automatic Audio Segmentation Using A Measure Of Audio Novelty’, in: Proceedings
of the IEEE International Conference on Multimedia and Expo (ICME), vol. 1, New York, NY, pp. 452–455.

159

HANNS HOLGER RUTZ

«In evaluating [an expression] e we imagine ourselves in [the shallowest space] s0

with e and thus surrounded by the unwritten cross which is the boundary to s−1.»

[Emphasis added]38

The imagination of the space is tied to the unwritten mark which would situate that space inside

another containing space. In the second chapter, Spencer-Brown succinctly defines “knowledge”

as those states that have been marked. What we can “know” about processes is only what

we have distinguished as forms produced by the processes. We were looking at the particular

selection of pieces (forms) in the previous sections in order to catch a glimpse of the underlying

process or “guest” from the corner of our eye. Each new sketch or piece is the materialisation of

the inexhaustible reservoir of unwritten crosses.

The space as form reservoir is called a ‘medium’ by Luhmann, who makes some important

remarks on how to understand “it”. First, avoiding any kind of transport metaphors of com-

munication,39 the possibilities of the medium are not exhausted by producing forms, but on

the contrary the possibilities are regenerated. The medium needs the forms, as accidental as

they may seem, to persist over time through such regeneration. Using physical metaphors,

Luhmann describes a medium as an ensemble of «“loosely coupled” elements», which offers

no «resistance» to the forms—very similar indeed to the airy pervasiveness of Spencer-Brown’s

space which does not inhibit the placing of crosses. Forms then are a «tighter» coupling of

elements within a medium. A medium can only be observed through the forms it produces,

again in accordance with Spencer-Brown’s definition of knowledge.40

While Luhmann’s distinction scheme of medium and form is useful here, the effort he undertakes

to apply this to the “art system” and to “explain art” is maybe less so. However, it is worth

mentioning the observation with regard to the stability and closure of the artwork. For a

sociologist, of course, it is essential that multiple observers generate “sense”, the shortcut of

which is to say that observations can be re-actualised. The reference or “identity” of an artwork

38George Spencer-Brown (1969/1979), Laws of Form, New York: E.P. Dutton, p. 42
39See the discussion of Krippendorff in Sect. 3.2.1f.
40Niklas Luhmann (1997), Die Kunst der Gesellschaft, Frankfurt a.M.: Suhrkamp Verlag, ch. 3; an English

translation is available as Niklas Luhmann (2000), Art as a Social System, trans. by Eva M. Knock, Stanford:
Stanford University Press

160

CHAPTER 4. TRACES

Jean-François Lyotard oikos, writing function
George Spencer-Brown space form
Niklas Luhmann medium form
Jacques Derrida pure trace, différance grapheme
Hans-Jörg Rheinberger epistemic thing technical object

Table 4.2: Conceptual pairs of “condensation”

that warrants such re-actualisation is given by its material manifestation.41 This manifestation

he says is «art-external . . . anchorage» which requires the separation of individual artworks, the

breaking of the chain of signification in order to allow one to return to the same.42

From my perspective, I feel both reinforced and misled by this observation. Reinforced, because

it confirms the idea that any such thing as “an artwork” or “a piece of music” is a partition

which at best serves as a bookmark, but otherwise obscures the underlying motions which—

like the pervasive space—are only indicated by the changing forms. The misleading part is

a metaphysical contamination of the argumentation which differentiates between the material

substrate and the artwork. And this is where I want to bring in H.-J. Rheinberger and my

understanding of ‘interface’.

Rheinberger’s two opposing notions involved with processuality are ‘epistemic thing’ and

‘technical object’. By now it should become apparent that each of the authors introduced in

this whole discourse is trying to tackle similar problems: How to observe the unobservable and

how to talk about something like ‘process’ which cannot be or refuses to be represented. I have

brought them together in Table 4.2. It goes without saying that no term replaces another term in

the same column. There is a shift from row to row, but in the overall picture, we can understand

process as this ensemble of terms, or more precisely by the ensemble of relations that invisibly

connect left and right column.

41One can already see that Luhmann will have to go through hoops to address performance art which is time-
specific and installation art which is site-specific, and consequently he restricts himself, whenever possible, to more
traditional forms such as painting, music and poetry. . .

42Luhmann, Die Kunst der Gesellschaft, ch. 3.

161

HANNS HOLGER RUTZ

4.4.7 Playing out Intrinsic Capacities

Where the relation in Lyotard’s row is unidirectional—uninterested writing becomes functional—

the operations of Spencer-Brown and Luhmann are reciprocal but characterised by an asym-

metry; the marked space can be further differentiated, the mark is always copied into the inner

side; forms are ephemeral, yet “stronger” and “assertive”, the medium is transparent or pene-

trable, yet persistent. Rheinberger’s two notions are also complementary to each other, but—at

least in my reading—neither of them is “stronger” or includes the other. The motion by which

epistemic things and technical objects are translated into each other appears to be a sort of

oscillation between two partners at eye level, and this seems to have to do with the material

substrate dismissed by Luhmann.

Rheinberger has formed his ideas through the study of the history of science and in particular

the establishment of experimental systems in molecular biology, a field in which he himself had

previously worked. Using the concept of ‘experimental systems’, he aims to understand the

circumstances that permit scientific “break throughs” to occur, and how these are informed by

the embedding of the researcher in his laboratory and research environment. An experiment of

course, if taken seriously, is an endeavour of which the outcome is not foreseeable. Since the

“object” under consideration is underdetermined and barely tangible, it is even impossible to

formulate a clear a priori hypothesis. In that respect, Rheinberger clearly distances himself from

the positivism of a Karl Popper. One could say, a true experiment generates questions instead of

answers. I believe we can compare the scientific process of generating “new knowledge” and the

artistic process of generating “new experiences”. Rheinberger himself hints at this possibility

when referring to the art historian George Kubler who says that artists work “in the dark” in

order to explore the unknown.43

Rheinberger builds his ideas on many things, referring for example to the work of Thomas Kuhn

and Bruno Latour, including system theory and post-structuralism, in particular the work of

Derrida, whose Grammatology he translated into German. Like Derrida, he views ‘writing’

as a fundamental process beyond the literal meaning of written language. The idea of the

43Hans-Jörg Rheinberger (5th May 2007), ‘Man weiss nicht genau, was man nicht weiss: Über die Kunst, das
Unbekannte zu erforschen’, Neue Züricher Zeitung.

162

CHAPTER 4. TRACES

‘grapheme’ as the material condensation of writing is also found in Rheinberger’s work. The

important aspect from system theory is recursion, which appears in the form of differential

reproduction: This reproduction denotes the «material process of generating, transmitting,

accumulating, and changing information»,44 a process of repetition which aims at variation,

rather than a process of replication which aims at identity, again opposing the classical concept

of a reproducible “reliable” scientific experiment. This does not mean that there are no constants

in an experiment. On the contrary, in each iteration of a scientific experiment a form of cohesion

must be established that allows it to be compared to the previous experiment, but at the same

time the system must be open to disturbances from the environment so that unforeseen things can

happen. This dynamic reminds one of Luhmann’s medium/form distinction which essentially is

a play of constancy and variation.

Rheinberger focuses on what he calls the material culture of science, the individual laboratory

conditions and apparatus. It is often their constraints, such as dealing only with a very specialised

and limited aspect of the research, which becomes an enabler for new knowledge. The novelties

arise not primarily from the scientific reasoning (the scientist’s mind), but from situations directly

related to the apparatus.45 The interaction between apparatus and researcher is summarised in

the following peculiarity:

«the more [the scientist] learns to handle his or her own experimental system,

the more it plays out its own intrinsic capacities. In a certain sense, it becomes

independent of the researcher’s wishes just because he or she has shaped it with all

possible skill.»46

In the text from which this quotation is taken there follows a quote from Jacques Lacan who

names this seeming contradiction “intimate exteriority”, which resonates with the description

of Lyotard’s guest and Derrida’s imperative that deconstruction be performed from inside the

44Hans-Jörg Rheinberger (1997), Toward a History of Epistemic Things: Synthesizing Proteins in the Test Tube,
Palo Alto: Stanford University Press, ch. 5; the chapter is titled “Reproduction and Difference”, and to elucidate its
relation to Deleuze’s dissertation “Difference and Reproduction” would be a very interesting future project.

45Rheinberger, ‘Man weiss nicht genau, was man nicht weiss: Über die Kunst, das Unbekannte zu erforschen’.
46Rheinberger, Toward a History of Epistemic Things: Synthesizing Proteins in the Test Tube, p. 24.

163

HANNS HOLGER RUTZ

system. The title of my 2012 paper ‘Sound Similarity as Interface between Human and Machine

in Electroacoustic Composition’ was chosen to highlight this “extimacy”. We must use a

machinery such as signal feature extraction and correlation repeatedly in an experimental setting,

thereby getting hold of it, developing this skill to handle it. But we must be careful to transgress

its prescribed purpose and control structures.47 In the second part of Leere Null, the algorithms

played out their intrinsic capacities much better—in my judgement—than in Writing Machine,

because while my concept of the application of sound similarity was quite clear in both cases,

only in the former case had my skills of preparing the experimental system been developed

enough to bring out an unforeseen interplay of variables.

Instead of interface we could also say indirection. The intrinsic capacities of the machinery—i.e.

not imposed by the programmer’s mind—present the composer with a situation which he could

not have established without the indirection of involving the computer algorithm; without the

de-coupling from pre-meditated intentions. Interface and indirection mean a crucial deferral

or suspension. The interface is the thin line which Varela describes as the “dance” between

autonomy as law-from-the-inside versus control as law-from-the-outside.48 A completely con-

trolled object is the technical object, defined by rigidity and specificity: a software, an algorithm

must be defined, it must be correctly stated in the object language and well formed. On the

other hand, an epistemic thing is characterised by an inherent blurriness. Rheinberger calls it

the «whole commitment» («der ganze Einsatz»49) involved in a research project, it embodies

that what cannot yet be denoted. The rigidity of the technical objects as «stable subroutines»50

is responsible for keeping the vagueness of the epistemic things “hypocritical”. In other words,

the algorithms provide guidance in the epistemic exploration and artistic research, they act as

facilitators, they give coherence so that a previous experiment can be connected to the successive

one.

47See the discussion of goal-directness in Sect. 3.1.2.
48Francisco J. Varela (1981), ‘Autonomy and Autopoiesis’, in: Self-organizing Systems: An Interdisciplinary

Approach, ed. by Gerhard Roth and Helmut Schwegler, Frankfurt and New York: Campus Verlag, pp. 14–23.
49Hans-Jörg Rheinberger (2nd July 2008), ‘Epistemische Dinge—Technische Dinge’, Bochumer Kolloquium

Medienwissenschaft, URL: http://vimeo.com/2351486 (visited on 28/08/2012), 13′.
50Rheinberger, Toward a History of Epistemic Things: Synthesizing Proteins in the Test Tube, p. 80.

164

http://vimeo.com/2351486

CHAPTER 4. TRACES

The experimental system is productive when in motion, meaning that technical objects and

epistemic things are transformed into each other. A formerly experimental algorithm—which

perhaps yielded unexpected results—can be used as a known function in a new experiment

or piece. On the other hand, the focus might now be turned to one particular aspect of the

algorithm which had previously been unimportant, promoting it to epistemic rank. The motion

in between the two is the differential reproduction, and I have tried to show how the perspective

has shifted in the creation of the presented pieces without implying a cause and effect, but rather

exemplifying how each piece gained its contours through the act of differentiation from the

others. Again, similarity is interesting not inasmuch as an imitation is evaluated with respect to

identity (cf. Sect. 3.2.1), but in the way it diverges from the template.

4.5 Exploiting Graphemes

Taking the preceding thoughts into consideration, the main motivation behind the development

of my own computer composition system becomes clear. Tracing the process of composing a

piece is not primarily intended as an objectification of what the composer does with the aim of

triangulating this data in a (musicological, cognitive, . . .) analysis, the “loop” in the upper half

of Fig. 4.35. That is not to say that our system is not useful in that respect—and I hope to show

with the plots in Sect. 4.6 that it is highly useful. But more than adding another layer to the

toolbox for observing a composer by an external researcher, the idea is to enable the material

trace of the process, the grapheme, to become something the composer can recursively work

with, corresponding to the lower half of Fig. 4.35.

The recursive operations on the grapheme can take many different forms. In the remainder of

this section I will give a few examples, as well as show how the analysis can benefit from the

system’s database.

4.5.1 Dots

The first example involves multiple works which were shown together in an exhibition titled

Writing Machines.51 One of them is the room and sound installation Voice Trap, a collaboration

51Gallery ESC im Labor, Graz, October–November 2012.

165

HANNS HOLGER RUTZ

K2
K3

K4

K5 T

Korpus Analysing

Composing
• Direct human action

• Algorithmically deferred

T
T

T
T

World

Figure 4.35: Two possibilities of exploring a grapheme. The corpus, shown as the ensemble
of snapshots K1,K2, . . ., dynamically grows through the incorporation of elements
from the “world” through transactions T carried out by the human composer or
algorithm. This material trace both informs the composition process as well as an
independent analysis which draws conclusions about the former.

between me and Nayarí Castillo. Nayarí has been working with story fragments which combine

factual and fictional elements, typically shown as a combination of written text and collected

objects. Voice Trap, shown in Fig. 4.36, is spun around the story of a girl who is haunted by

voices. The story is written across four large mirrors on the floor of the room. Inspired by some

strange bottles we saw in the Museum of Witchcraft in Boscastle, apparently used to trap ghosts,

large jars filled with different materials are placed on the mirrors. The jars are tagged with the

written description of a particular voice and their contents relate to the sound qualities of the

imaginary voices. The sound installation is diffused from 96 piezo speakers grouped into twelve

channels which are placed on a metal grid suspended below the ceiling. They are covered by

wax paper discs to produce an amplification and a slight characteristic distortion of the sound.

The sound composition runs in real-time from a computer, using for the first time the newly

developed composition system which is detailed in Chap. 5.

The algorithm is a variation of the one used in Writing Machine (Sect. 4.4.4): A live signal,

this time taken from a microphone picking up the noises from the street in front of the gallery,

is fed into a database from which individual phrases are constructed. Instead of iterating over

the channels, the twelve groups are using individual transactions. When searching for new

sound fragments for a group in the database, a mixture between the currently heard phrase of

the group and a hidden file is used to guide the similarity matches. These hidden files contain

166

CHAPTER 4. TRACES

Figure 4.36: Wide shot and details of Voice Trap

different voice recordings with the hypothesis that from the outside sounds those fragments will

be preferred which contain speech.

Since the evolution of each group/channel is captured by the persistent framework, the algorithm

can make references to this evolution. This installation was more conceived as a general

validation of the framework which was still at a young stage, so a rather rudimentary aspect was

chosen—branching in the transactional time. For this, a concept of keeping track of the current

movement in the version graph had to be found. A position would be a path from the root of the

graph to the current version. It appeared paradoxical to define how these positions themselves

would be traced, a requirement given by the fact that it should be possible to stop and relaunch

the installation so that it picks up exactly where it left.

Prior to the exhibition I had been staying in Graz as an artist-in-residence at “Atelier RONDO”,

working both on the pieces and the software, and one day came up with the idea of defining

these “cursors” in terms of regular variables containing the current paths, S#Var[S#Acc]. In

order to access and update these paths, a “master cursor” must be provided as an a priori of the

system.52 Fig. 4.37 shows an example version graph from the installation. The master cursor is

not shown, just the twelve individual channel cursors. Each horizontal stretch is the succession

52In the later multitrack front-end Mellite, I simplified this idea by managing the cursors of a “document” using
the ephemeral sub-system of the confluent document, i.e. D#Var[S#Acc] where D is the ephemeral system.

167

HANNS HOLGER RUTZ

Figure 4.37: Excerpt from the version graph of Voice Trap. The transactions on the twelve
individual cursors develop from left to right, amounting to c. 3700 individual
steps and a time span of 40 minutes.

of transactions which produce a certain number of iterations over the sound phrase lengths, after

which a jump into the “past” is performed, going halfway back between the current transaction

and the last branching point.53 So after a jump back in time, the sound phrase from that past

moment in time is heard again, but the successive evolution (overwriting of fragments with new

sounds) diverges from the previous path, because the sound database itself is ephemeral and not

reverted to a previous state in the jump back.

Although the jumping back is highlighted by playing a particular sound when it occurs, it is

difficult to perceive these jumps otherwise as repetitions, perhaps due to the locality of the jump—

no synchronisation between the channels—or due to the fact that these specific environmental

sounds are more difficult to distinguish than traditional musical gestures made from pitches. In

that respect, although the experience of the sound space above one’s head is very enjoyable, the

conceptual part of the sound installation remains intangible.

On the other hand, this piece was an important step for me. First of all, it demonstrated that

the framework is functional and can handle a continuously growing database even after tens

of thousands of transactions and several hundred megabytes file size. Secondly, the process of

writing the framework and the sheer amount of work that went into this writing formed the basis

for another work in the exhibition, Dots, shown in Fig. 4.38. This piece consists of fan-fold

53There are no branches visible in channel 8. This might have been a bug that caused that group to end unexpectedly,
or it is a mistake in reading the version tree in the ex post analysis which took place a year after the database traces
were recorded. Also note that although it seems as if no more branching occurs in the last third of the transactions,
this is just a coincidence, and if the plot is extended to longer periods, branching continues at the same initial rate.

168

CHAPTER 4. TRACES

Figure 4.38: Paper installation Dots

paper with a print out of the framework’s source code. I found an old dot matrix printer which

was used to produce the print.

I wanted to show the pro-gram, the writing before the writing, and this worked surprisingly

well due to two distinct effects or visual qualities. The first quality is the appearance of varied

rhythmic structures (middle photo in Fig. 4.38). Through the translation into a visual installation,

this aspect which is neither apparent nor “functional” when writing the source code obtains an

aesthetic quality of its own. It vibrates with a poetic quality which arises from the fact that

the writing process which precedes the sound installation Voice Trap peels off from the latter.

Somewhere in these rhythmic patterns lies the code that is sounding the next room, while at the

same time these patterns also reflect the entirety of future sound pieces not yet written, their

blueprint.

The second quality is the appearance of the particular material process of the translation itself.

It was not possible to find the driver for the exact printer model, and I only managed to operate

the printer from a very old PC which still had the necessary hardware interface. Especially in the

beginning of the printing process, the printer exhibited all sorts of uncontrolled behaviour, such

as at times printing random symbols, repeating lines, forgetting line feed so that multiple text

lines were superimposed, or suddenly feeding an almost empty page. Some of these artefacts are

169

HANNS HOLGER RUTZ

seen on the right hand side of Fig. 4.38. The process of using this particular printing technique

overlays the rhythmic patterns of the code with its own rhythm of silence (gaps) and blackness

(erroneous line feeds) caused by the glitches of the printer driver. It also adds another sound

layer, the reminiscence of the needles hitting the paper. It was almost sad that the longer the

printing process took (many hours), the less these artefacts appeared, as if the interface between

PC and printer cleaned itself.

This independent aesthetic quality of the writing or translating process was echoed in another

work of the exhibition, Unvorhergesehen–Real–Farblos (unforeseen, real, achromatic). It is a

technically simple sound piece with three headphones mounted above a couch, each accompan-

ied by a computer print of 32×32cm in rose and purple tones (Fig. 4.3954). On each headphone

you can hear a different sound diary entry which was recorded during my stay at RONDO.

The recordings were taken “live” so that I would improvise around a core idea—unforeseen,

real, achromatic—connected to my compositional process. That is to say, I made an analogue

translation between TK and TP. For the computer prints I wrote a program which produces a

self-similarity matrix of the sound file of each recording. Time elapses from the bottom left to

the top right, and each pixel found by horizontally or vertically moving away from the diagonal

is coloured according to the similarity of those two moments in time. As in Dots, two types

of rhythms interfere with each other: The rhythm between the soliloquies and the background

noises, since the recordings were made in front of an open window to the city and the voice being

suspended by many pauses, and the rhythm of the autocorrelation matrix which individuates the

three prints.

These translations have always taken place. For example, in Amplifikation I had originally

planned to print handwritten diaries onto the glass plates, but ended up translating them in the

opposite direction: the texts were digitally scanned and interpreted as waveforms, producing a

very characteristic rhythmical pattern. What is new, especially in Dots but also more subtly in

Unvorhergesehen. . . , is that the compositional process itself is what is being translated.

54The chosen photos are from a successive viewing at “RONDO–Framed”, Graz 12/2012, because I prefer this
piece to be shown in daylight.

170

CHAPTER 4. TRACES

Figure 4.39: Sound piece Unvorhergesehen–Real–Farblos

4.6 Indeterminus

Although I was able to run the framework in Voice Trap, there was not any specific development

environment for it which allowed the composition of the algorithms to be employed in a traceable

way. Speaking in terms of Fig. 3.7, I was still faced with the observation being limited to a

specific domain inside the object language in which the installation was written (Scala). What

was easily captured were the traces the algorithm produced inside the observed domain once

it was written in the object language. Constructing a whole meta language was an effort

undoubtedly beyond the scope of this thesis, so another path had to be taken to validate the

approach in a more constrained setting.

While it was never my intention to specifically touch on the topic of graphical user interfaces in

this thesis, a GUI is an excellent vehicle for such a constrained environment, as it is straightfor-

ward to encode the repertoire of actions within the observed domain. I had been offered a studio

residency at the ZKM in Karlsruhe in May 2013 to work on an electroacoustic experiment,

and so I defined this experiment in terms of another validation run for the framework. The

working title (Inde)terminus refers to Gottfried Michael Koenig’s tape piece Terminus I from

1961 which is based on a scheme for deriving sounds from previous sounds by applying a set of

transformations. In his description of the piece’s form I found a lot of connecting points to my

work:

171

HANNS HOLGER RUTZ

«. . . each derivation (such as filtering, modulation, chopping up or adding reverbera-

tion) was used as the source material for one of the successive derivations . . . There

are no prespecified relationships between sounds, but they emerge in the moment

in which the derived materials are presented next to each other—or simultaneously.

Thus, the problem of form appears in a very mediated way; the possible form parts

. . . are closely tied together based on the history of their production, yet devoid of

a teleological relationship between them.»55

The idea to iteratively take the previous output and subject it to a defined process in the next

step is also the foundation for the study titled (Inde)terminus. Mellite, a graphical front-end for

SoundProcesses, is at first sight very similar to my previous tape composition software Kontur,

however now using the persistent database to store the trace of actions performed. An example

screenshot from (Inde)terminus is shown in Fig. 4.40. On the left side, a timeline view can be

seen with several audio file regions placed on the canvas. The tool palette shows the possible

operations: selecting, moving, resizing, adjusting gain, adjusting fade curves, and muting or

un-muting a region. To add a region, a selection is made in an audio file view (shown behind

other windows on the right hand side) and dragged and dropped onto the canvas. Cutting and

deleting regions is possible through additional keyboard shortcuts.

At the front on the right-hand side, the “elements” window is shown. This is a generic tree

structure in which objects can be created and organised. The opened popup menu shows the

types of elements supported: folders, process groups (timelines), artefact stores (hard-disk

locations), audio files, text strings, integer and decimal numbers, and code fragments.

The code fragment elements were an essential part of the experiment. It begins with an initial

hand-constructed canvas of three minutes duration, sparsely placing sounds on an 8-channel

layout. In the next step a bounce is carried out which is fed through a signal processing stage,

to become blueprint for the next iteration. Here, a new canvas is built around this blueprint,

possibly cutting it up, removing some parts of it and adding new sounds. Then again a bounce

55Gottfried Michael Koenig (1986/1993a), ‘Genesis der Form unter technischen Bedingungen’, in: Ästhetische
Praxis, vol. 3, Texte zur Musik, Saarbrücken: PFAU Verlag, pp. 277–288; my translation

172

CHAPTER 4. TRACES

Figure 4.40: Screenshot of the (Inde)terminus session in Mellite

Figure 4.41: Iteration and recursion scheme of (Inde)teminus. The edge labels indicate the
sequence in TK. Even and odd iterations share some similarity due to double re-
versals in T(P). The fifth iteration replaces the first iteration in the first recursion—
second row—which rewrites iterations 2 to 4.

and a transformation is carried out, and so forth. The duration of each version grew slightly,

leading to a 4 1/2-minute stretch in the fourth iteration. This is illustrated in the top part of

Fig. 4.41.

The transformation is specified in terms of an FScape module which is invoked from Mellite. The

module used for the inter-iteration step is STEPBACK which performs an automatic segmentation

of a file and reverses the ordering of these segments. The code in the Mellite session is very

short and looks as follows:

val job = fscape.StepBack(

in = in.path, out = out.path, corrStep = 32, maxSpacing = "8.0s"

)

job.perform()

173

HANNS HOLGER RUTZ

(a) Code fragment editor with
FScape transformations

(b) Bounce dialog with transformation
and re-import settings

(c) Recursive transformation dialog

Figure 4.42: Detail screenshots of Mellite

This is entered in an integrated code editor—shown in Fig. 4.42a—and compiled when needed

using an integrated Scala compiler (“interpreter”). The code is wrapped in an auxiliary envir-

onment with bindings for the file input in and the transformed file output out. job.perform()

launches an asynchronous rendering process which is reflected in the Mellite GUI using a

progress bar dialog.

When bouncing, these code objects can be selected for application—shown in Fig. 4.42b—and

when the output file is re-imported into the session, the creation procedure of this sound file

is memorised as well. I bounced and transformed each channel separately, leading to different

segmentations so that not just a diachronous reversal occurs, but also a synchronous scattering.

The transformed bounces were placed on a new timeline, and cut again into chunks to remove

the silent parts. I then reacted to the new temporal structure by adjusting it to my liking,

possibly thinning out the material further or introducing new elements. Since the next iteration

would again reverse the temporal succession, a specific similarity arises within the group of

even-numbered iterations and within the group of odd-numbered iterations.

174

CHAPTER 4. TRACES

So again an interplay between me and the computer was established with a simple set of rules,

this time keeping a trace of the actions I performed. The trace of the re-imported bounces

allowed me to create a closed recursive setting, whereby after a certain number of iterations,

the input to the initial bounce would be exchanged for the result of this last (fifth) iteration,

retroactively re-triggering the bounce and transformation, so that I would have to re-work the

iterations, theoretically ad infinitum, thus indeterminate. Practically, I carried out this re-working

for the second (sixth), third (seventh) and fourth (eighth) iteration, as shown in the bottom row

of Fig. 4.41.

The “flattening operation” of the bounce establishes the crucial deferral or suspension which I

identified with the idea of interface in Sect. 4.4.7: I can manipulate a time canvas whose product

was used in another canvas, and the propagation of the changes from the former to the latter

is suspended. Furthermore, the flattening bounce provides the closure of the material which

again makes it possible to subject it to general transformations such as the FScape modules

(cf. Sect. 3.3.3).

The suspension is operationalised in the recursion dialog, shown in Fig. 4.42c. The “deployed

artefact” is the currently imported bounce. A match operator allows the recreation of the bounce

and successive transformation using the original canvas selection, however viewing it from the

current point in TK. If the updated artefact is different from the deployed artefact, one may

choose to replace the latter with the former. This works by updating an expression variable

holding the deployed artefact value.56

Before employing the recursion in my experimental setup for this piece, I did some isolated

experiments in which short recursion cycles were created within the same canvas—a particular

selection in the canvas was bounced, transformed, re-imported to overlap with the selection,

thus changing the bounce input. By repeating the recursion steps a few times, very interesting

“echoing structures” were produced. There is an infinite number of possibilities for introducing

56The expression system is described in Sect. 5.9. Basically the audio regions contain a reference similar to an
Expr[S, Artifact] and the exchange of the bounce artefact propagates to all regions which used an expression of
that artefact.

175

HANNS HOLGER RUTZ

shifts from iteration to iteration, using the performance time, using the spatial positions of the

sounds, using cutting and rearrangement, etc.

Another interesting aspect of using Mellite in this project was to compare it with my usage

of the ephemeral predecessor Kontur. The latter existed for longer and was more mature, for

example it has a standard undo/redo procedure which is missing in Mellite. In the beginning,

this resulted in me working quite cautiously on the canvas, as an accidentally moved region

could not be instantly reverted. As time passed, I both enjoyed this “destructive” aspect of the

new interface, but also became more confident that a serious accident could be undone by going

back to a previous point in TK. The cursor interface is still in its infancy and such a step is still a

bit tedious, as the current view needs to be closed and reopened. This is a point which should

receive more focus in future versions of the software.

4.6.1 Ex-Post Analysis

In the last section of this chapter, I will change observer position and look at some of the

traces which can be found in the data left behind by the (Inde)terminus project, as well as a

newer tape composition Machinae Coelestis. This second piece was produced with a slightly

newer version of Mellite, however not in the context of artistic experimentation, but with the

aim of creating an electroacoustic or soundscape composition to be played in the planetarium

of Judenburg (Austria) during my stay there with another residency programme in summer

2013. The planetarium (Fig. 4.43) is located in the town tower of Judenburg with a rather

small auditorium of 65 seats and a Zeiss ZKP4 projector, a beautiful piece of analogue optics.

The projector is programmed via a special authoring system which provides its own timeline.

Commands which can be placed on the timeline include choosing an observer location on the

Earth and an astronomical date, controlling intensities of different types of lights, adding or

removing elements such as the projection of planets, moon and sun, the Milky Way etc.

For this piece, lasting 16 minutes, I worked mainly with field recordings, but also processed and

more abstract sounds and atmospheres. The field recordings connect to the place of Judenburg

and various other sites I have visited. A subtle narrative is created by integrating two occurrences

of spoken text. One could produce a timeline of sound registrations, as had been done for

176

CHAPTER 4. TRACES

Figure 4.43: Planetarium Sternenturm Judenburg

Dissemination (Fig. 4.11), and one would find again that it is difficult to delimit the “beginning”

of the composition. In fact, the time and place of some of the recordings are reflected by the

visual composition, whereby the projector would move the sky to that time and place. I want to

focus on the specific time window, however, in which the 16 minute arrangement has been done.

A playful illustration of my work shifts is Fig. 4.44a, a “punch card” plot similar to the ones

given by popular open source platform GitHub, showing at which times of the week someone

has worked on a piece of software. Fig. 4.44b has the same plot for (Inde)terminus. While

composing is hardly a regulated office job, plots like these, especially when more data is

available, could reveal different profiles of composers or it could be used to highlight different

types of activities.

Returning to the audio recordings used, Fig. 4.45 gives an overview when particular sound files

have been added to the session. The first two sounds were “DreamSternenkarte. . . ”—one of the

two spoken text pieces, the recollection of a dream in which some sort of star chart appears—and

“OrdingBuhne. . . ”—a very long field recording from a walk across an icy wooden groyne by the

North Sea. They appear towards the end and in the middle of the piece, respectively. A recording

of sheep wearing bells, “Sheep. . . ”, is added the following day. They make up the initial scene

of the piece. The cryptically named “Drm13'Ich. . . ” is already a heavily transformed sound file,

177

HANNS HOLGER RUTZ

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
hour

Sun

Mon

Tue

Wed

Thu

Fri

Sat

(a) Machinae Coelestis

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
hour

Sun

Mon

Tue

Wed

Thu

Fri

Sat

(b) (Inde)terminus

Figure 4.44: “Punch cards” of weekly times at which work on the compositions was done

178

CHAPTER 4. TRACES

17-Aug 18-Aug 19-Aug 20-Aug 21-Aug 22-Aug 23-Aug 24-Aug 25-Aug 26-Aug 27-Aug

D
re
am

St
er
ne
nk
ar
te
Se
le
ni
um

13
05
19
_0
85
44
0

O
rd
in
gB
uh
ne
_0
81
23
0_
06
24
07

Sh
ee
p1
30
80
2_
19
13
37
_C
ut
18
07
H
PF
Ed
Se
lfx
H
PF

Sh
ee
p1
30
80
2_
19
13
37
_C
ut
18
07
H
PF
Ed
Se
lfx
C
ol
or
R
sm
p

Sh
ee
p1
30
80
2_
19
13
37
_C
ut
18
07
H
PF
Ed
Se
lf

Sh
ee
p1
30
80
2_
19
13
37
_C
ut
03
0

Sh
ee
p1
30
80
2_
18
45
46
C
ut
53
2

In
se
ct
13
08
02
_1
EQ

In
se
ct
13
08
02
_2
EQ

Ju
de
nb
ur
gS
ire
ne
13
08
03
_k
ur
zV
or
12

D
rm
13
'Ic
hW

TC
on
D
rm
13
'F
rB
ck
W
hi
te

D
rm
13
'Ic
hW

TC
on
D
rm
13
'O
nF
re
W
hi
te

D
re
am

13
05
10
_0
64
00
2_
C
ut
12
09
_P
la
ne
O
nF
ire
W
hi
te
2

G
oo
dL
uc
kM

yL
ov
e0
81
23
0

G
iv
eM

eA
Ki
ss
_0
81
23
0H
PF

G
ee
vo
rT
in
M
in
eB
ird
s1
00
80
8a

Fo
ur
X2

O
rd
in
gB
uh
ne
Ta
ub
en
08
12
30
H
PF
C
ut

G
ee
vo
rT
in
M
in
eB
ird
s1
00
80
8b

G
ee
vo
rT
in
M
in
eB
ird
s1
00
80
8c

08
03
09
_2
22
01
0_
Pa
ra
gu
an
aP
os
ad
aA
TC
ut
R
sm
pE
Q

08
03
09
_2
22
01
0_
Pa
ra
gu
an
aP
os
ad
aA
TC
ut
R
sm
pE
Q

Pe
rif
er
ic
oF
ro
gs
_0
90
31
9_
21
48
04

Pe
rif
er
ic
oE
pi
te
lio
D
em

o_
09
03
19
_1
72
24
1

08
03
06
_1
25
50
8_
M
er
id
aN
eb
el
w
al
dO

KM
_F
eu
ch
tT
1

_F
eu
ch
tT
1C
ut

_F
eu
ch
tT
2C
ut

_F
eu
ch
tT
3C
ut

Sh
ee
p1
30
80
2_
18
45
46
C
ut
11
m
in

G
ru
on
G
en
e_
E3
C
on
Fc
ht
T'
M
W
ht
e

G
ru
on
G
en
e_
E5
C
on
Fc
ht
T'
M
W
ht
e

D
rm
13
'Ic
hW

TC
on
D
rm
13
'F
rB
ck
W
hi
te
Ex
c

D
rm
13
'Ic
hW

TC
on
D
rm
13
'O
nF
re
W
hi
te
Ex
c

Sh
ee
p1
30
80
2_
19
13
37
C
ut
15
45
H
PF

Sh
ee
p1
30
80
2_
18
45
46
C
ut
93
6

Sh
ee
p1
30
80
2_
19
13
37
C
ut
17
17
H
PF

G
ee
vo
rT
in
M
in
eW

at
er
Ta
bl
e1
00
80
8

Se
le
ni
um

Bl
ue
pr
in
t

Se
le
ni
um

D
ub
13
08
26
_0
14
93
4

Se
le
ni
um

D
ub
Ed
itW

hi
te
W
hi
te
H
PF

Se
le
ni
um

D
ub
Ed
itC
ol
rW
hi
te
H
PF
Sc
hi
zo

Figure 4.45: Sequence in TK showing when sound files were introduced to Machinae Coelestis

Figure 4.46: Notes regarding specific parts of the field recordings used. The times on the
left side refer to the sheep recordings. On the right side, some sounds appear
which were not used at all, such as “Toenning Eis” which was captured nearby the
“Ording” recording. 30.12.2008 6:24 am refers to the time of the Ording recording
and was used as one date for the sky projection.

based on the speech fragment, used as an atmospheric drone in the second scene of the piece.

In the evening of 19 August the file “GoodLuckMyLove. . . ” was added, tested, and removed

again (shown in grey) in favour of a similar file “GiveMeAKiss. . . ”. And so the appearance of

the material can be retraced.

On the other hand, the major work of recording the sounds is unobserved; only the dates included

in the file names give an indication. Also for the long files, there are additional sketches on

paper which review the different elements contained in the recordings, an example of which is

shown in Fig. 4.46.

179

HANNS HOLGER RUTZ

Tool Usage

What happens after a sound has been imported to a session? The available tools have been

enumerated in the previous section. One possibility is to look at their relative use. This was

done in Fig. 4.47. Extracting the specific actions from the database was laborious, because the

transactions were not specifically tagged by the software, so they needed to be reconstructed by

analysing the structural differences between each two successive points in TK. Future versions

should provide a more straightforward tracking mechanism, especially for collections, where for

example finding out when elements were added or removed from the canvas requires iteration

over the whole data structure for each possible version step.

In order to see if and how the proportions change over time, two charts were generated by

splitting the set of transactions into two equal sized parts. In the first chart (Fig. 4.47a) which

shows the earlier transactions, half of them deal with moving or resizing audio regions, while

adding regions only accounts for 11%, removing regions for as little as 2%, and splitting regions

into two for 3% of the transactions. When looking at the second chart (Fig. 4.47b) comprised

of the later transactions, a few changes can be seen: The number of additions and splittings

goes slightly down, while the number of removals slightly increases. The proportion between

moving and resizing shifted from 1:1 to 1:2. A tentative and plausible explanation is that as

the work on the piece progresses, less new material needs to be added, and more material has

found “its spots” on the canvas, giving priority to adjusting existing material in place. Also the

adjustment of the fading in and out curves becomes much more prominent, rising from 20%

to 30% between the first and second half of the compositional work. Adjusting the volume of

regions occupies 10% in both halves. A more complex composition with a larger number of

transactions may allow for a finer grained resolution, perhaps looking at more than two time

spans to see how the usage of a certain action is distributed.

The remaining charts of Fig. 4.47 show the distribution among different iterations of (Inde)ter-

minus. Fig. 4.47c covers only the first iteration or box 1 in Fig. 4.41. Fig. 4.47d covers the

iterations 2 to 5 before entering the recursion, items 2 to 5 on the first row of Fig. 4.41. Finally,

Fig. 4.47e covers the re-workings done after replacing the original input in the recursion, the

180

CHAPTER 4. TRACES

31× Mute

131× Fade

64× Gain

157× Resize

71× Add

14× Remove

20× Split

169× Move

(a) Machinae Coelestis 1st half

38× Mute

200× Fade

68× Gain

52× Add

18× Remove

8× Split

97× Move

176× Resize

(b) Machinae Coelestis 2nd half

5× Mute

38× Fade

44× Resize

20× Add

1× Remove

4× Split

30× Move

(c) (Inde)terminus 1st iteration

107× Mute

159× Fade

253× Resize

1× File

135× Add

14× Remove

46× Split

104× Move

(d) (Inde)terminus 2.–5. iteration

66× Mute

175× Fade

65× File

51× Add

4× Remove

33× Split

50× Move

207× Resize

(e) (Inde)terminus recursion of 2.–4. iteration

Figure 4.47: Frequencies of Mellite tool actions

181

HANNS HOLGER RUTZ

second row of Fig. 4.41. The gain tool is not shown, because in the old version of Mellite, gain

changes were differently encoded and we did not bother to write a special extraction algorithm

to recover that information.

In general, the pattern is not unlike the one exhibited by Machinae Coelestis. The amount of

additions is larger, as the study used a more liberal approach to introducing materials. Since

the idea was to let the signal processing transformation create a temporally reversed structure

by itself and then to accept that structure as a basis of each new iteration, naturally there are

fewer movements of regions in T(P)—apart from the initial iteration of course. Instead, the

number of splittings increases, since each iteration begins with the transformed bounces being

cut up to remove silent parts. After the recursion begins, the black pie segment labelled “File”

indicates the actions of replacing the previously deployed artefacts with the updated artefacts.

In this last chart, we see again an increase in adjusting fade curves and a decrease in actually

moving around regions. Notable in all but the first iteration is the relatively larger amount of

mute and un-mute actions. This could reflect the better studio monitoring options and the larger

number of independent channels compared to Machinae Coelestis. Some of the muting is also

used as an alternative to removing regions, amounting to c. 25% of mute/unmute actions before

the recursion and 50% after the recursion.

The next possibility is to look at the parametrisation within the groups of actions. Fig. 4.48

shows the distribution of varieties among the resize actions, and Fig. 4.49 looks at the region

movements. The histogram bins use a logarithmic time scale and labels give the lower interval

margin. Intervals of less than 60 milliseconds are grouped into the central bin. For the resize

charts, the vertical line in the centre distinguishes contractions on the left and expansions on the

right. For the motion charts, the centre line distinguishes movements backward in T(P) on the

left and forward in T(P) on the right.

An interesting “left-leaning” tendency can be observed both in resizing and moving objects.

Regions tend to be shortened rather than elongated, but also material seems to move backward

in time more often than forward, perhaps due to an editing style which initially gives each region

some isolated space before condensing the structure left-to-right. Also there seems to be an

182

CHAPTER 4. TRACES

–3
93

.6
6

–1
31

.2
2

–4
3.

74

–1
4.

58

–4
.8

6

–1
.6

2

–0
.5

4

–0
.1

8

–0
.0

6

0.
00

+
0.

06

+
0.

18

+
0.

54

+
1.

62

+
4.

86

+
14

.5
8

+
43

.7
4

+
13

1.
22

+
39

3.
66

amount [s]

0

5

10

15

20

25

30

35

40

45

50

55

fr
eq

u
en

cy

(a) Machinae Coelestis

–3
93

.6
6

–1
31

.2
2

–4
3.

74

–1
4.

58

–4
.8

6

–1
.6

2

–0
.5

4

–0
.1

8

–0
.0

6

0.
00

+
0.

06

+
0.

18

+
0.

54

+
1.

62

+
4.

86

+
14

.5
8

+
43

.7
4

+
13

1.
22

+
39

3.
66

amount [s]

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

fr
eq

u
en

cy

(b) (Inde)terminus (total)

–3
93

.6
6

–1
31

.2
2

–4
3.

74

–1
4.

58

–4
.8

6

–1
.6

2

–0
.5

4

–0
.1

8

–0
.0

6

0.
00

+
0.

06

+
0.

18

+
0.

54

+
1.

62

+
4.

86

+
14

.5
8

+
43

.7
4

+
13

1.
22

+
39

3.
66

amount [s]

0

1

2

3

4

5

6

7

8

9

10

11

fr
eq

u
en

cy

(c) (Inde)terminus 1st iteration

–3
93

.6
6

–1
31

.2
2

–4
3.

74

–1
4.

58

–4
.8

6

–1
.6

2

–0
.5

4

–0
.1

8

–0
.0

6

0.
00

+
0.

06

+
0.

18

+
0.

54

+
1.

62

+
4.

86

+
14

.5
8

+
43

.7
4

+
13

1.
22

+
39

3.
66

amount [s]

0

5

10

15

20

25

30

35

40

45

50

fr
eq

u
en

cy

(d) (Inde)terminus 2.–5. iteration

–3
93

.6
6

–1
31

.2
2

–4
3.

74

–1
4.

58

–4
.8

6

–1
.6

2

–0
.5

4

–0
.1

8

–0
.0

6

0.
00

+
0.

06

+
0.

18

+
0.

54

+
1.

62

+
4.

86

+
14

.5
8

+
43

.7
4

+
13

1.
22

+
39

3.
66

amount [s]

0

5

10

15

20

25

30

35

fr
eq

u
en

cy

(e) (Inde)terminus recursion of 2.–4. iteration

Figure 4.48: Distribution of the amount of contraction and expansion in resize actions

183

HANNS HOLGER RUTZ

–3
93

.6
6

–1
31

.2
2

–4
3.

74

–1
4.

58

–4
.8

6

–1
.6

2

–0
.5

4

–0
.1

8

–0
.0

6

0.
00

+
0.

06

+
0.

18

+
0.

54

+
1.

62

+
4.

86

+
14

.5
8

+
43

.7
4

+
13

1.
22

+
39

3.
66

amount [s]

0

5

10

15

20

25

30

35

40

fr
eq

u
en

cy

(a) Machinae Coelestis
–3

93
.6

6

–1
31

.2
2

–4
3.

74

–1
4.

58

–4
.8

6

–1
.6

2

–0
.5

4

–0
.1

8

–0
.0

6

0.
00

+
0.

06

+
0.

18

+
0.

54

+
1.

62

+
4.

86

+
14

.5
8

+
43

.7
4

+
13

1.
22

+
39

3.
66

amount [s]

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

fr
eq

u
en

cy

(b) (Inde)terminus (total)

–3
93

.6
6

–1
31

.2
2

–4
3.

74

–1
4.

58

–4
.8

6

–1
.6

2

–0
.5

4

–0
.1

8

–0
.0

6

0.
00

+
0.

06

+
0.

18

+
0.

54

+
1.

62

+
4.

86

+
14

.5
8

+
43

.7
4

+
13

1.
22

+
39

3.
66

amount [s]

0

1

2

3

4

5

6

7

8

9

fr
eq

u
en

cy

(c) (Inde)terminus 1st iteration

–3
93

.6
6

–1
31

.2
2

–4
3.

74

–1
4.

58

–4
.8

6

–1
.6

2

–0
.5

4

–0
.1

8

–0
.0

6

0.
00

+
0.

06

+
0.

18

+
0.

54

+
1.

62

+
4.

86

+
14

.5
8

+
43

.7
4

+
13

1.
22

+
39

3.
66

amount [s]

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

fr
eq

u
en

cy

(d) (Inde)terminus 2.–5. iteration

–3
93

.6
6

–1
31

.2
2

–4
3.

74

–1
4.

58

–4
.8

6

–1
.6

2

–0
.5

4

–0
.1

8

–0
.0

6

0.
00

+
0.

06

+
0.

18

+
0.

54

+
1.

62

+
4.

86

+
14

.5
8

+
43

.7
4

+
13

1.
22

+
39

3.
66

amount [s]

0

1

2

3

4

5

6

7

8

9

10

11

fr
eq

u
en

cy

(e) (Inde)terminus recursion of 2.–4. iteration

Figure 4.49: Distribution of the relative time shift in move actions

184

CHAPTER 4. TRACES

overall bell shape in the distribution of both action types, which may be inherent to the type of

sound material used or dominated by the typical zoom levels used in the graphical interface.

Looking at the total amount of transactions, the resize behaviour is similar between the two

music pieces, whereas larger movements are carried out in Machinae Coelestis. This might be

due to (Inde)terminus having a shorter total duration, but also due to the approach of overwriting

existing structures. Other explanations would be a stronger perceived freedom of manipulation

or more experience with the tool in the later piece.

Within the different stages of (Inde)terminus some changes can also be seen. For example,

the initial iteration shows only subtle resizing, while in the subsequent iterations some strong

shortening occurs and only few expansions. After the recursion took place, contractions and

expansions are quite balanced, although having pronounced magnitudes. In contrast, the pattern

of moving regions around is not significantly different before and after the recursion.

Evolution of the Temporal Form

After looking at the action repertoire, we shall now return to the sound material itself, still in

its characteristic manifestation as cut audio file regions, disregarding the “content” of the files.

Fig. 4.50 shows the statistical moments of the regions’ durations. In each chart, we look at ten

“snapshots” of the pieces, from the initial stages on the left towards the final stages on the right.

For (Inde)terminus, a vertical line shows the transition to the recursive re-workings. The bars

indicate the interquartile ranges of the durations with median shown as a line and mean shown

as a circle. The whiskers indicate the 2nd percentile and the 98th percentile.

Fitting with the resize profiles, in Machinae Coelestis the durations seem to oscillate around

a mean of 30 seconds, twice as much as in (Inde)terminus; however, towards the final stage,

the median goes down to around 20 seconds. A value around 16 seconds is also approached in

all individual iterations of (Inde)terminus.57 Towards the end, very long regions of up to four

minutes are still found in Machinae Coelestis, compared to less than two minutes for (Inde)ter-

minus. In the former case, the overall variability is greater. In both cases, after around half of

57The 4th iteration is not shown, as it looks like a mixture between the second and the third.

185

HANNS HOLGER RUTZ

0

1

2

4

8

16

32

64

128

256

re
g

io
n

 d
u

ra
ti

o
n

s
[s

]

(a) Machinae Coelestis

0

1

2

4

8

16

32

64

128

256

re
g

io
n

 d
u

ra
ti

o
n

s
[s

]

(b) (Inde)terminus (total)

0

1

2

4

8

16

32

64

128

256

re
g

io
n

 d
u

ra
ti

o
n

s
[s

]

(c) (Inde)terminus 1st iteration

0

1

2

4

8

16

32

64

128

256

re
g

io
n

 d
u

ra
ti

o
n

s
[s

]

(d) (Inde)terminus 2nd iteration

0

1

2

4

8

16

32

64

128

256

re
g

io
n

 d
u

ra
ti

o
n

s
[s

]

(e) (Inde)terminus 3rd iteration

0

1

2

4

8

16

32

64

128

256

re
g

io
n

 d
u

ra
ti

o
n

s
[s

]

(f) (Inde)terminus 5th iteration

Figure 4.50: Evolution of the distribution of audio region durations

186

CHAPTER 4. TRACES

the transactions, the statistical values remain quite stable. For (Inde)terminus, this coincides

with the post recursion re-working phase.

When looking at the different iterations of (Inde)terminus, the first iteration is characterised by

a narrow variability in region durations in the beginning, which shrinks further as it evolves,

and only in the last third do more extreme values arise. Naturally, by beginning with the long

bounce files in the second iteration, the initial situation here is one of rather long regions. In

the end, most regions last between 7 and 27 seconds. The third iteration is much more diverse,

although the average duration remains around 16 seconds. Within the recursion re-work extreme

values remain the same while the IQR decreases. The fifth iteration shows the longest regions,

the extremes of which remain in place throughout the development, although the average in the

end is again 16 seconds.

These are just some of the possible ways of extracting information from the database. One can

compare composer with composer, piece with piece, sections within a piece, sections within

the creational timeline; one might use such information to test or support hypotheses about the

working process, the musical material or the human-computer interaction. The beauty of this

approach lies in the fact that the situation is not a priori contaminated with “musical meaning” or

“musical interrogation”, the short circuit of intention–product, but indeed accentuates motions

which underlie the compositional process and which may otherwise remain tacit.

Finally, the suspension inherent in an ex post analysis (its temporal distance) may become

again an interface for the production of new artworks, in a sense similar to the transcription

processes found in Amplifikation—written text to scanned waveform—Dots—source code to

spatial rhythm—or Unvorhergesehen. . . —visual interpretation of sound features. I can already

discern a sensual quality in the box plots of Fig. 4.50, and it is not hard to imagine how they can

be put to work by themselves, stripped from their empirical representational vestment. An even

stronger instance of such transcription are the “motiongrams”, the final figure of this chapter,

intentionally shown without axes or labels. They bring together TK and T(P). Fig. 4.51 is drawn

for (Inde)terminus. The blackening corresponds horizontally with the span in T(P) affected by

an action at a given vertical point in TK.

187

HANNS HOLGER RUTZ

Figure
4.51:

M
otiongram

for(Inde)term
inus.T

he
iterations

are
show

n
from

leftto
right,transactions

advancing
from

top
to

bottom
.In

each
diagram

,
the

horizontalextentcovers
the

canvas
duration

ofthe
particulariteration.D

otted
lines

indicate
the

beginning
ofthe

recursive
re-w

orkings.
Ifan

invisible
grid

is
superim

posed,the
m

atrix
ofFig.4.41

can
be

seen.

188

CHAPTER 4. TRACES

One could interpret that diagram again. One would find the “carriage returns” in scanning

through the timelines. One would discern the initial phase of each iteration from the subsequent

refinement. One would see moments of obstinate distillation at a particular spot; see at which

point in TK a certain part of the piece is more or less finished. . . The interpretations in this

section were deliberately kept vague, as I wanted to show the potential lying in the recorded

data rather than focusing on a specific trait of these two pieces.

4.7 Summary

This chapter has presented three different ways to trace the compositional process within my

work. There are pieces whose disposition is procedural, such as the Residual series or Zeichnung,

but there is no explicit incorporation of the compositional time within the pieces themselves.

This process can be retraced in a classical musicological analysis, for example by looking at

the construction schemes as some sketches were preserved. But it can also be retraced on a

different level, by taking specific concepts which are tangent to several pieces—the idea of

a sound mobile, of foreground and background, etc.—and observing how their configuration

changes.

The second set of pieces exhibits a stronger reflectivity on the creation time. For example,

Zelle 148 included a manifest anchor to this time by showing the rock and the scratch marks

which produced the sound. Another strategy was the composition of writing processes which

aimed at dissolving the diaphragm between composing and performing. For example, Dissemin-

ation maintained a pool of sound files evolving over the duration of the exhibition. Leere Null

yielded autonomy to the machine as well, and although it was a composition fixed at the moment

of its performance, it tried to play with this fact by exploiting the decoupling of TK and TP.

Finally, we were able to use a software framework to manifestly capture the decisions involved

in a composition and inject these traces into the further development of the pieces themselves.

Data was available from two pieces, (Inde)terminus and Machinae Coelestis, but only the former

(which in fact was not a “piece” but a study) made use of a structural re-entry of that data by

referring to the bounce of a timeline stretch and later recursively exchanging the referent.

189

HANNS HOLGER RUTZ

It is important to remember that, as the first “stable” rendering of the framework stood nearly

at the end of the thesis project, we have only just scratched the surface of its possibilities; the

next chapter in turn will show how this framework came into being. It is equally important to

understand that the machine-based tracing, while introducing a novel quality, does not replace

the manual deconstructivist approach but complements it.

190

Chapter 5

Design and Implementation

of a Tracing System

The purpose of this chapter is to discuss the development of a novel tracing framework

for computer music. It is based on the idea of a common transactional system layer

which encapsulates different possibilities of representing the creation time: Ephemeral

in-memory, ephemeral durable, and confluently persistent and durable. We show how

to understand a mutable entity and have a handle on its identity. We develop a set of

data structures, such as deterministic skip lists and octrees, based on such mutable

cells which can be persisted with a key-value store. They become the building blocks

for the implementation of the confluent system itself. We exploit the version graph rep-

resentation to add quasi-retroactive modifications, before moving on to a reactive event

system and dataflow-like expression graphs to build scalable and interactive elements.

With bi-temporal expressions we introduce the possibility of ascribing performance time

to objects. We then define the basic unit of a sound process which is embodied by a

synthesis graph function, an attribute map and a signal map to link different processes

and maintain rendered artefacts. Finally, real-time sound synthesis is coupled via a

model-view-controller separation.

5.1 The Programming Language

G. Loy and C. Abbott in 1985 distinguished three approaches to computer music programming.

Either a program is written entirely in a general purpose language—as example Koenig’s

Project 1 was given—or it will be written in a general purpose language but with the help of

specialised libraries for musical tasks—newer examples might be Lisp based systems Common

191

HANNS HOLGER RUTZ

Music (symbolic composition)1 or Common Lisp Music (sound synthesis)2—or a new domain

specific language (DSL) is created as «embodiment of a musical paradigm».3 Examples of the

last category are CSound, Pure Data, and SuperCollider.

What is needed to embody musical paradigms that goes beyond the abstractions found in general

purpose languages? James McCartney, in arguing for his language SuperCollider, said that it

must be possible to express compositional and signal processing ideas as easily and directly as

possible. These ideas can be very diverse according to the approach of the composer or the piece

at hand, but what he imagined with SuperCollider was to «realize sound processes that were

different every time they are played, to write pieces in a way that describes a range of possibilities

rather than a fixed entity, and to facilitate live improvisation by a composer/performer.»4 This is

very similar to our own intention, namely to be able to capture the process character of music,

to keep musical structures in flux, and to blur the boundary between composing and performing.

It is thus no surprise that SuperCollider was used in preliminary sketches and remains the

engine for real-time sound synthesis, albeit changing the object language in which structures

are formulated for a general purpose language, Scala.

As we develop the data structures and conceptual abstractions of our computer music frame-

work, the reader will encounter many small examples of Scala code. It is thus advisable to

familiarise oneself with the basic elements of Scala and especially its sophisticated type sys-

tem. The elements we consider important and which are used in this chapter are reviewed in

Appendix B. Scala is a blend of object-oriented and functional programming concepts. Its name

is a portmanteau of ‘scalable language’, which means that it aims to be a good choice both for

small scale scripting purposes as well as building large modular code bases. It has an expressive

syntax which makes it also good candidate for internal DSLs or language extensions. Scala runs

on the Java Virtual Machine (JVM) which manages garbage collection, and the framework is

1Heinrich Taube (1991), ‘Common Music: A Music Composition Language in Common Lisp and CLOS’,
Computer Music Journal 15(2), pp. 21–32.

2Bill Schottstaedt (1994), ‘Machine Tongues XVII: CLM: Music V Meets Common Lisp’, Computer Music
Journal 18(2), pp. 30–37.

3Gareth Loy and Curtis Abbott (1985), ‘Programming Languages for Computer Music Synthesis, Performance,
and Composition’, ACM Computing Surveys (CSUR) 17(2), pp. 235–265.

4James McCartney (2002), ‘Rethinking the Computer Music Language: SuperCollider’, Computer Music Journal
26(4), pp. 61–68.

192

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

platform independent and can use existing libraries and frameworks from the Java world. The

language is statically typed and provides integration with major development environments such

as Eclipse and IntelliJ IDEA.

The choice of Scala as the implementation language also allowed us to use it as a single language

both for building the framework and for the code fragments a composer would eventually write

with it. Other systems have used a split, for example SuperCollider itself is written in C

and requires C for writing DSP unit generators and language primitives which require high

performance, whereas user libraries are written in the dedicated SuperCollider language and

runtime scripting is done in a subset of that language (among other things disallowing class

definitions). Another example is the graphics composition software Field,5 written in Java but

with the user/composer writing code fragments in Python.

5.2 Framework Overview

This introductory section describes our computer music system in a compact form, functioning

as a signpost into the subsequent sections which will then detail the development of the partial

solutions and algorithms. The overview is again divided into a conceptual part, explaining the

overall form of the system, and a part which breaks the form elements into technological pieces

which constitute the framework’s architecture.

5.2.1 Conceptual Summary

First, let us recollect from Sect. 2.4 that we are primarily interested in providing a trace of the

creation time TK, whereas prospective performance time T(P) will be a function of the former.

While not all materials produced by a composer need to be eventually projected in a heard

musical time, the opposite holds—everything that happens in the process or the performance

has been written in time.

Second, the number of musical paradigms is too large to be implemented in one monolithic

system. Indeed, it is unbounded, and as B. Eaglestone et al. have observed, «a creativity support

5Marc Downie (2008), ‘Field—a New Environment for Making Digital Art’, Computers in Entertainment (CIE)
6(4), 54:1–54:34.

193

HANNS HOLGER RUTZ

system should aggregate rather than integrate»,6 meaning that it needs to be open in the sense

of being accessible for unforeseen extension instead of trying to prescribe its future use, no

matter how wide the boundaries are drawn. Naturally, a programming language provides this

connectivity, where a finite set of provided abstractions can be used to create an unbounded

amount of programs. For the system to scale—grow with the needs of the user—it must be

modular. For example, the user may decide facultatively whether the observation of a particular

musical structure should be memorising or oblivious, therefore the graphematicity of TK must

be adaptable.

Third, being open to multiple musical paradigms does not mean that we have no responsibility

to provide support for these. The symbolic nature of programming languages naturally produces

a bias towards supporting symbolically represented structures, as can be observed by the amount

of software based on computer-aided composition as a formal process abstracted from sound

production and sound processing. To counteract this bias, we will explicitly devise abstractions

for the handling of electro-acoustic material and real-time sound synthesis, even though those

abstractions form leaves in our architecture dependency tree and may thus be replaced for other

abstractions.

What a classification of programming paradigms such as declarative, procedural, functional,

object-oriented etc.7 omits is that they are just at the surface of a system which is fundamentally

delimited by its choice of data structures. Before it is even decided which musical relations

are represented, these structures preconfigure the mechanisms by which musical objects are

instantiated and manipulated, in other words how the process of composition itself is enabled.

The design of the system then naturally evolves bottom-up, providing a common ground on

which the temporal trajectories of the process can be preserved. It begins by defining an

abstract model of transactions and how these may be preserved on a hard disk. It will then

instantiate this model with ephemeral and persistent variants of TK’s trajectory, then proceed

to define interactions of elements, and finally—only after all this—suggest a way to represent

6Barry Eaglestone et al. (2007), ‘Information systems and creativity: an empirical study’, Journal of Documenta-
tion 63(4), pp. 443–464.

7cf. Henkjan Honing (1993), ‘Issues on the representation of time and structure in music’, Contemporary Music
Review 9(1), pp. 221–238

194

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

System Facade

• Order Maintenance

• Skip List

• Skip Octree

Ephemeral

In-Memory Durable

Scala-STM KV Database

CCSTM BerkeleyDB JE

Tx Structures

Confluent

Events

Expressions

SoundProcesses

ScalaCollider

abstracts transaction time semantics
(ephemeral vs. persistent) and
durability (in-memory vs. hard-disk)

provides an aural
presentation
(‘audible view’ in
MVC pattern); uses
SuperCollider server

Figure 5.1: Architectural diagram of the framework

performative time and how to embody performative temporal evolution as a real-time sound

synthesis process.

5.2.2 Architectural Summary

This stratification of the system design is reflected in Fig. 5.1.8 Rectangles show the modules

we developed for the framework. Rounded rectangles denote existing modules which were

incorporated. Higher modules either depend on lower modules or encapsulate (abstract) them.

For example, the event layer is built on top of the system façade, whereas the system façade

is an abstraction of the ephemeral and the confluent layer, and the ephemeral layer in turn is

implemented either by an in-memory or a durable layer. Lines indicate coupling: The system

façade manages the transactional (Tx) structures, the confluent layer is coupled to a synchronised

durable layer, the database is coupled to the software transactional memory.

At the level of the system façade, the framework introduces the concept of mutable entities. Any

number of mutations, such as creating an object, adding an object to a collection of objects, or

changing the parameter of an object, can be grouped together in one transaction. The transaction

8The figure is adapted from Hanns Holger Rutz (2012a), ‘A Reactive, Confluently Persistent Framework for the
Design of Computer Music Systems’, in: Proceedings of the 9th Sound and Music Computing Conference (SMC),
Copenhagen, pp. 121–129; that paper also gives a condensed version of the implementation of the framework.

195

HANNS HOLGER RUTZ

ensures that the user data structures remain coherent and any errors occurring within the trans-

action can be safely undone. When the selected system is durable, successful transactions result

in the mutations being written to the secondary storage (hard disk). Furthermore, the confluent

system associates an incremental version with each transaction which corresponds to the next

point in TK.

The problem with a “plain” data structure is that it assumes one actor manipulating the structure.

Naturally that one actors “knows” about the changes to the structure because it issues them.

In a modular system there are independent components whose knowledge must be updated if

any elements they depend on are mutated. A paradigm such as dataflow (briefly explained in

Sect. B.5) provides such an active connectedness between elements. In our implementation,

the event layer plays a similar role, although it is more general in allowing various kinds of

messages to be propagated.

The next layer, expressions, narrows the event layer to dataflow variables. Other than the

dataflow variables shown in Sect. B.5 which are initially unknown and will be assigned only one

value eventually, expressions always have an initial value and may be updated multiple times.

Thus they closer resemble the (non-audio) objects in a PD or Max patch.

The topmost layer, SoundProcesses, introduces a model of T(P) and connects to the real-time

sound synthesis layer ScalaCollider. Expressions may now be bi-temporal by having an associ-

ated temporal expression for the performance time. Expressions and other bi-temporal objects

can be organised in bi-temporal groups, which in the manner of “timelines” may be scanned

in real-time by a transport mechanism. The core object here is a sound process Proc which

is understood as signal processing function placed in T(P) and associated with a number of

time-dependent parameters or other sound processes.

5.3 System Façade and Transactional Encapsulation

By a system S here we understand an object which manages transactions and provides a model

for mutable data. In order to be able to use the same data structures with multiple systems—for

example an ephemeral system which does not preserve the historic trace of the structure versus

196

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

a confluent system which does preserve this trace on hard disk—all systems must implement a

common façade. This façade must provide a functionality that is both minimal but expressive

enough to account for the different types of systems.

Our data model is based on mutable cells similar to the reference cells approach employed by

some software transactional memories. To understand this approach, we first review STM.

5.3.1 Software Transactional Memory

Transactional memory,9 while its historic origin is in database systems,10 is nowadays mainly

used as a mechanism to allow concurrent processes to safely used shared memory. Yet, our

own use case has more to do with the versioning of the database updates and failure safety—

something that is seen in literature as a «a side benefit».11 But first the basic mechanism of

transactional memory needs explanation.

There are two flavours, software and hardware transactional memory. The latter concerns special

chip architectures, so only the former—purely implemented as software—is of interest here.

STM is often contrasted with lower level concurrency control such as locking. There are two

main advantages of STM. First, it provides a higher level abstraction of dealing with concurrency,

while direct manipulation of locks requires to shift the focus away from an actual algorithm to

implementation details and opens possibilities for introducing programming errors. Second, it

is an “optimistic” approach, while locking is “pessimistic”.

To understand these, one must look at the problems occurring with shared memory concurrency.

When a mutable datum is shared between two threads A and B which run in parallel, a situation

can arise where a mutable cell M is first read by thread A and then overwritten by thread B. If B

completes before A then A at a later point in time operates on an invalid knowledge of M (having

read a value which can no longer be observed). In a pessimistic setting, one assumes that this

kind of conflict is the norm and establishes strong constraints for example by using a mutually

exclusive lock which forbids B to access M during the whole time that A signalised its usage.

9Tim Harris et al. (2007), ‘Transactional Memory: An Overview’, IEEE Micro 27(3), pp. 8–29.
10See for example George Copeland and David Maier (1984), ‘Making Smalltalk a Database System’, ACM

SIGMOD Record 14(2), pp. 316–325
11Harris et al., ‘Transactional Memory: An Overview’.

197

HANNS HOLGER RUTZ

STM on the other hand optimises the case where no conflict occurs, and multi-threaded code is

not thwarted by locking mechanisms. Only in the less expected case of a contention between

threads, the STM is penalised by spending more time resolving the conflict.

Transactions

In our scenario, we are less interested in the properties of running concurrent code than in the

semantics of transactional encapsulation. T. Harris et al. offer the following definition of a

transaction:

«A transaction is a sequence of instructions, including reads and writes to memory,

that either executes completely (commits) or has no effect (aborts). When a trans-

action commits, all its writes become visible, and other transactions can use those

values. When a transaction aborts, the system discards all its speculative writes.»12

This quote describes two major properties of transactions, atomicity and isolation. Another

property related to atomicity is consistency, the three forming the acronym ACI. J. Gray derives

the transaction notion from contract making:13 Atomicity then signifies that no element of the

contract can be separated, the contract is valid in its entirety, and either all parties agree to it

or it is not effective. Consistency means the transformations under the contract maintain the

“correctness” of the object they operate on. Isolation makes transactions function in a concurrent

setting, where a transaction made by thread A hides its mutations from another thread B up until

the moment that the contract is “fulfilled” and all mutations become visible at once.

Therefore, consistency and isolation could be seen as technological requirements which guar-

antee the semantics of atomicity. From a user’s perspective, what matters is atomicity. If one

decides in the middle of the transaction that an assumed condition does not hold, or if the system

detects a conflict between threads—for example the composer is trying to modify an object

while a reaction from an autonomous algorithm interferes—the transaction is aborted as if noth-

ing had happened and perhaps tried anew. If a transaction is considered to be decision-making,

12Harris et al., ‘Transactional Memory: An Overview’.
13Jim Gray (1981), ‘The Transaction Concept: Virtues and Limitations’, in: Proceedings of the 7th international

conference on Very Large Databases, IEEE, Cannes, pp. 144–154.

198

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

atomicity means that a series of operations implied in the decision must be thought as one

compound operation, and logically there is no temporal gap between the constituting operations,

temporality is only attached to the decision as one instant.

As a simple example, a sound process is started which is synchronised with another process.

The operative steps of the transaction might involve connecting the process to a sound diffusion

mechanism, and preparing the signal processing components of both synchronised processes

to start playing at the same time. All must become audible at once and not successively, even

though the program implementation needs to prepare these individual elements sequentially.

Also, if an error occurs, we do not want either of the two sound processes to play alone, so all

the operative steps must be undone. Finally, transactions also permit the user or an algorithm

to be speculative. One could begin traversing a data structure, issuing transformations on the

hypothesis of an eventual condition—for example that a solution to a constraint will be found—

and once the condition is decidable and the hypothesis does not hold, the transaction may be

actively aborted without side effects.

We believe there is a confusion with respect to the usefulness of transactional semantics in

creative software, as demonstrated by the following statement of Eaglestone et al.:

«Within this context [supporting creative activity], conventional requirements for

transaction correctness, i.e. the ACID (atomicity, consistency, independence and

durability) test, may not be valid, since these are concerned with completeness

and semantic isolation of transactions such that they do not interfere with each

other, whereas, in seeking an artistically valid result the interaction and interference

between activities may be of value. An extreme example is where failure can

provide unexpected results that have artistic value.»14

There are two aspects of confusion. Firstly, a linguistic one. Transaction as a software concept

does not need to align with transactions in terms of the artistic process, where in fact an artistic

“transaction” might be decomposed into a number of software transactions, and only part of the

14Eaglestone et al., ‘Information systems and creativity: an empirical study’.

199

HANNS HOLGER RUTZ

artistic process may be observed. Secondly, and more importantly, the confusion is between the

technological and the epistemological layer in Rheinberger’s taxonomy. We are dealing here

with the foundation of the system and therefore seek a “stable subroutine”. The bottom system

must «prevent a breakdown of its reproductive coherence»,15 which is the consistency of the

transaction permitting connectivity (operational closure). Because the “goals” of the software

designer and the composer/user will never correspond with each other, a “good” software

design has never deterred a composer from “abusing” the system. The speculative feature of

transactions indeed supports the upper epistemic layers by opening space for exploration.

Piggybacking an STM

There are different approaches to implementing an STM. A survey by D. Goodman et al. looks

at different systems that specifically support the Scala language.16 They focus on the front-end

interface—how the STM is accessed by the user—and less on the back-end engines which is

also what we are interested in. They identify three types of interfaces:

(1) Library calls: A transaction is typically wrapped in a call to a library function atomic, and

mutable cells must be explicitly declared transactional by using a special reference cell

type provided by the library. The advantage is the fine-grained control over which parts

of a program use transactional semantics and which not. Disadvantages are the need to

change to a different and more verbose syntax when using transactional variables, and

that existing code cannot be retroactively instrumented.

(2) Byte code rewriting: The STM transparently lifts the variable mutations to transactional

equivalents at runtime. This can either happen globally, or be restricted to particular

classes or methods which have been specially annotated. The advantage is a more concise

code, and some systems will implicitly extend the transactional context to methods called

from within annotated methods, making this approach suitable for retrofitting existing

code. On the downside, a special runtime agent is required that detects and processes

15Hans-Jörg Rheinberger (1997), Toward a History of Epistemic Things: Synthesizing Proteins in the Test Tube,
Palo Alto: Stanford University Press, p. 80.

16Daniel Goodman et al. (2013), ‘Software transactional memories for Scala’, Journal of Parallel and Distributed
Computing 73(2), pp. 150–163.

200

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

the annotations and does the byte code rewriting, possibly interfering with the virtual

machine or other observing systems such as runtime debuggers.

(3) Compiler modification: The most radical approach is to build STM support directly into

the language, by introducing for example a new atomic keyword which will make the

compiler treat the code following this keyword differently. The authors of the survey were

not aware of any Scala-based system going this route.

The authors of the survey are ultimately biased towards the second approach, since they em-

ployed it in their own project Manchester University Transactions for Scala (MUTS).17 They

notably distinguish library-based and byte code rewriting techniques by their ability to account

for side effects in existing code. But under further examination, the only side effect they

considered was mutating variables in memory. A far greater problem in STM usage is the

management of irreversable side effects such as printing out text, sending out network messages

or writing to files on disk, all which can be summarised as input/output (I/O). To the best of

our knowledge, none of these STM systems automatically handles I/O in a transactionally safe

manner, so it remains the responsibility of the programmer to correctly perform I/O.

On the other hand the explicitness of reference cells in the library approach makes the first

interface type—despite the added verbosity—particular advantageous in our case. It allows us

to piggyback on the existing STM library and enrich it with the necessary information of the

confluent tracer. The library we build on is Scala-STM whose design is overseen by an expert

group that aims to create a common application programming interface (API) for different

back-ends. For example, the Akka framework mentioned earlier also implements this API for a

back-end called Multiverse. It even offers transactions spanning multiple threads, combining

actors and transactions into ‘transactors’, something which is beyond the scope of this thesis.

Instead we rely on the lightweight Scala-STM reference implementation which evolved from

N. G. Bronson’s CCSTM.18

17Daniel Goodman et al. (2011), ‘MUTS: Native Scala Constructs for Software Transactional Memory’, in:
Proceedings of the Second Scala Workshop, Stanford.

18Nathan G. Bronson, Hassan Chafi and Kunle Olukotun (2010), ‘CCSTM: A library-based STM for Scala’, in:
Proceedings of the First Scala Workshop, Lausanne.

201

HANNS HOLGER RUTZ

The following example illustrates the basic interface used in Scala-STM. We first show the

non-transactional plain version:

var a = 0 // mutable integer variable initially holding value 0

var b = 2 // mutable integer variable initially holding value 2

a = b * b // update ‘a‘ to hold the squared value of ‘b‘

println("Now ‘a‘ is " + a)

Using STM, it becomes:

val a = Ref(0) // integer reference cell initially holding value 0

val b = Ref(2) // integer reference cell initially holding value 2

atomic { implicit tx⇒
a() = b() * b() // update ‘a‘ to hold the squared value of ‘b‘

Txn afterCommit { _⇒
println("At the end of the txn, ‘a‘ is " + a.single())

}

}

The atomic block encapsulates all manipulations which form a transaction. It executes the

function passed to it as argument with an instance of the transactional context tx. Reading a

reference cell via a(), or updating it via a() = . . . requires such a transactional context in a

second argument list. It is therefore not possible to accidentally access reference cells outside

of a transaction. The second argument list is marked implicit, freeing us from the need to

explicitly pass the tx value to each and every call to reference cells:19

trait Ref[A] {

def apply () (implicit tx: InTxn): A

def update(v: A)(implicit tx: InTxn): Unit

}

A syntactic sugar allows to express the reading of the cell’s value a.apply() as a(), and the

writing of the cell’s value a.update(1) as a() = 1.20

Printing the value of a to the console is an I/O operation and should be only performed when

the transaction successfully completes. Often we do not care about the extra effort and place

the println call directly inside the atomic block at the price of having it potentially executed

19There is a pitfall, though. When using nested methods, an implicit transaction context from an outer scope is
visible in any inner method. If that method is called outside the outer transaction and the programmer forgets to ask
for a fresh transactional context argument, a runtime error will occur, since one is trying to use an already completed
transaction. This pitfall is very real and has been the source of many bugs in our code base. The best prevention is to
avoid using nested methods with transactions wherever possible.

20Note the similarity to the examples of Sink and Source in section B.4.3.

202

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

created and accessed through initiates

Ref

S#Var

InTxn

S#Tx

TxnExecutor

Cursor[S]

Scala-STM:

LucreSTM:

Figure 5.2: Encapsulating variables, transaction context and executor in our own API

multiple times if the transaction is aborted and retried. Obviously, the shortcut cannot be taken

when writing to files, such as saving the mutable cell values in a database. The Txn.afterCommit

call was used to demonstrate how functions are correctly scheduled to be executed only when

the transaction succeeds. The value of a still must be transactionally read, but Scala-STM offers

micro-transactions in the form of the .single method which can be thought of as an atomic

block just to allow for the apply() call with minimal overhead.

Our Payload

As long as the data structures are kept in memory, we can simply encapsulate the existing

Scala-STM library in our own abstractions. These delegate calls, such as reading or writing

cells, to the underlying peer in the Scala-STM perspective. The three main abstractions are

shown in Fig. 5.2. The peer layer shows the reference cell and transactional context type from

the previous examples. TxnExecutor is the instance which provides the atomic method. Our

extension named LucreSTM21 provides base types for cells and transactions as well, but they

are mostly seen as type projections Var and Tx of a system S.

The Cursor type is to be understood as a moving position in TK, orthogonal to the traditional

timeline cursor which describes a position in T(P). Naturally, there can be multiple cursors

in a system, representing different branches in the version graph. The transactional context

S#Tx—which for brevity will simply be called ‘transaction’ in the following—can now carry

further payload such as a reference to the cursor (knowing where in TK we are) and the system

(database connection and event bus, which will be described later). It also extends the interface

with methods for creating and serialising mutable data (serialisation is reading and writing data

21For the curious reader, I was looking for a short and unique name. In the durable variant, we use BerkeleyDB JE
which was originally written by a company called Sleepycat Software. I also own a sleepy cat whose name is
Lucrecia, or Lucre in short.

203

HANNS HOLGER RUTZ

from and to disk). Systems can refine the type S#Tx based on their needs. Mostly they add

functions for the abstractions to interact with each other but which do not have to be exposed to

the user.

5.3.2 Identifying Entities

A mutable cell needs an identity which allows us to talk about that cell, to establish a coherence

between the different values it takes on over time, and to use the cell as a placeholder independent

from its current value. In natural language, we typically name things to establish identity. For

example, we may say a sound process is parametrised by a frequency f . A sound-producing

function can then be defined by using the abstract cell f independent from the values it may

take at a later point.

In a pure in-memory system, the host language Scala automatically gives us identities in the

form of object references. The statement var a = 0 creates a virtual object reference known by

the symbol a which establishes permanence of an otherwise instable object (the value of a may

change over time). Likewise, in the STM equivalent val a = Ref(0), the object reference of the

mutable cell is known by the symbol a.

It gets more complicated when mutable cells are written to and read from disk. If for example

two entities X and Y both make reference to another entity Z, this reference must be expressible

in a form which can be written to disk. If the application is quit and restarted, reading X and Y

must again reconstruct the reference to Z, so that both references are again the same and so that

subsequently the value of Z can be found on disk. The memory independent reference shall be

called identifier of the object Z. In the creation of objects, each identifier to a new object must

be different from all previously known identifiers, because otherwise a confusion between the

new and an old object will happen.

In LucreSTM, identifiers are represented by the type projection S#ID and their creation and

serialisation is managed by the transaction context. For an ephemeral system the identifier can

simply be an integer number which is incremented for each new identifier. In the confluent case

where entities can re-enter a data structure, the identifier must be able to distinguish “original”

and “copy”. This is done analogously to the fat node technique by A. Fiat and H. Kaplan which

204

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

Abstraction Ephemeral systems Confluent systems
S#ID opaque Int opaque tuple (Acc, Int)

S#Acc Unit opaque randomised compressed path

Table 5.1: System independent abstraction for object identifiers and access, and the concrete
forms for ephemeral and confluent systems

uses a tuple (p,s(f)) to identify versions of entities, with p being the access path from the

seminal version of a fat node s(f).22 In our system, the seminal node would again be identified

by a unique integer number. The access path is represented by the type projection S#Acc. To the

user, this type is—like S#ID—opaque and only appears as a parameter used in deserialisation.

Table 5.1 summarises the identification types for the two types of systems.

5.3.3 Concept of Associated Types

In their survey on generic programming abstractions, R. Garcia et al. introduce the term ‘concept’

as a formalisation of abstractions. According to them, a concept usually «. . . consists of associ-

ated types, valid expressions, semantic invariants, and complexity guarantees. The associated

types of a concept are opaque types that are required by the concept (e.g., used in valid expres-

sions) and must be defined by any model of the concept.»23

Although we only learned about this survey after implementation, our layout quite closely

matches the idea of associated types as defined above. The core system declaration is shown in

Listing 5.1. Opacity means that most of the details of these types are only known and meaningful

to the models of the concept—the concrete implementing systems. For example, the path access

Acc is completely abstract, and the identifier ID has a very weak requirement of being subtype of

Identifier which only states that an identifier can be serialised and disposed of.

The example in Listing 5.2 demonstrates how the types interoperate in this mostly opaque

manner. Only one type S is required to parametrise this hypothetical structure with any given

system. When the disturb method is called inside a transaction within that system, S#Tx, it is

22Amos Fiat and Haim Kaplan (2003), ‘Making data structures confluently persistent’, Journal of Algorithms
48(1), pp. 16–58, §4.1. This is discussed in detail in Sect. 5.5.3.

23Ronald Garcia et al. (2007), ‘An Extended Comparative Study of Language Support for Generic Programming’,
Journal of Functional Programming 17(2), pp. 145–205, §2 [Emphasis in original]

205

HANNS HOLGER RUTZ

trait Sys[S <: Sys[S]] {

type Tx <: stm.Txn[S]

type Var[A] <: stm.Var[S#Tx, A]

type ID <: stm.Identifier[S#Tx]

type Acc

...

}

Listing 5.1: Type members of the system abstraction

trait Foo[S <: Sys[S]] {

protected def freq: S#Var[Double]

def disturb()(implicit tx: S#Tx): Unit = {

val factor = math.random.linexp(0, 1, 0.5, 2.0)

freq() = freq() * factor

}

}

Listing 5.2: Parametrising an object with a system and interaction of its type members

capable of accessing and updating variables defined within the system, S#Var (the apply and

update methods take the transaction as implicit argument which is thus not printed).

The type parameter S is peculiar in that it appears as part of its own constraint, the right-hand

side upper bound in S <: Sys[S]. The form of type recursion is a powerful mechanism known

as ‘F-bounded quantification’—a type is bound by a function F of itself.24 The crucial point of

recursion is in the declaration of Sys itself. It allows the associated types to be stitched together.

We believe that our approach of defining associated types with a combination of F-bounded

quantification and type projections is original. F-bounded types in Scala are a well known

feature of its type system, but the use case we have seen before was merely in allowing type

refinements to appear in super type interfaces without the interaction between a set of types.

For example, Listing 5.3 containing part of the declaration from stm.Txn shows how the system

parameter is used to provide the matching identifiers and variables. A transaction is thereby

guaranteed to create the specific identifier and variable types of the underlying system.

24P. Canning et al. (1989), ‘F-Bounded Polymorphism for Object-Oriented Programming’, in: Proceedings of the
fourth international conference on Functional programming languages and computer architecture, ACM, pp. 273–
280.

206

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

trait Txn[S <: Sys[S]] {

def newID(): S#ID

def newVar[A](id: S#ID, init: A)(implicit ser: Serializer[S#Tx, S#Acc, A]): S#Var[A]

...

}

Listing 5.3: The transaction context provides newID and newVar to instantiate S#ID and S#Var.

trait Sink[-Tx, -A] {

def update(v: A)(implicit tx: Tx): Unit

}

trait Source[-Tx, +A] {

def apply()(implicit tx: Tx): A

}

trait Var[-Tx, A] extends Source[Tx, A] with Sink[Tx, A]

Listing 5.4: Variable (mutable cell)

If the variable base type stm.Var is defined as in Listing 5.4, we can see how the types are

properly aligned in the example of Listing 5.2. Frequency cell freq is of type S#Var[Double]

which would have been produced by a call to newID and newVar from a transaction conforming

to S#Tx. Its upper bound is stm.Var[S#Tx, Double] allowing the update to be performed with

another instance of S#Tx.

The type recursion in the definition of S reminds us of the discussion of operational closure with

regard to the works of Ashby and Spencer-Brown in Sect. 3.3.3. If we remove the recursion

from Fig. 5.3a, the types become disassociated, as shown in Fig. 5.3b. The alternative approach

of using path-dependent types is shown in Fig. 5.3c. It requires the presence of a value of the

system to witness its type, and this value would have to be passed around to any mutable object,

complicating the matter especially when serialisation is added.

5.4 Durability

Harris et al. see the relationship between I/O and transactions as a major research challenge, and

outline three possible ways to combine them:25

25Harris et al., ‘Transactional Memory: An Overview’.

207

HANNS HOLGER RUTZ

trait Sys[S <: Sys[S]] {

type ID <: Ident[S#Tx]

type Tx

}

trait Muta[S <: Sys[S]] {

def id: S#ID

// well defined:

def dispose(tx: S#Tx) =

id.dispose(tx)

}

trait Ident[Tx] {

def dispose(tx: Tx): Unit

}

(a) Recursive

trait Sys {

type ID <: Ident[Tx]

type Tx

}

trait Muta[S <: Sys] {

def id: S#ID

// incompatible type:

def dispose(tx: S#Tx) =

id.dispose(tx)

}

(b) Non-recursive
(dysfunctional)

trait Sys {

type ID <: Ident[Tx]

type Tx

}

trait Muta[S <: Sys] {

// evidence required:

val s: S

def id: s.ID

// well defined:

def dispose(tx: s.Tx) =

id.dispose(tx)

}

(c) Path-dependent

Figure 5.3: Different attempts to describe associated types

(1) Execute I/O immediately within the transaction. The difficulty lies in undoing these

actions when the transaction is rolled back (aborted). I/O might be categorised into

undoable and non-undoable actions, and only undoable actions are allowed inside a

transaction.

(2) Delay the execution until the transaction commits. This may be problematic in terms of

latency if some real-time guarantees are made for the I/O.

(3) Restrict I/O to forms that «can themselves become transactional, such as access to a

transactional database or file system».

For the durability layer, where the state of the mutable cells is stored on and retrieved from disk,

we have chosen a combination of (2) and (3). In the ephemeral case, data can be immediately

read and written to the database, given that the chosen database provides transactional safety

by itself. In the confluent case, because we do not know until the transaction is closing if a

new sub-tree in the version graph is entered or not, writes are buffered and flushed when the

transaction is committed.

The number of database options is very large, but it is narrowed down by the requirements of the

data model. A good overview is given by R. Cattell who compares traditional relational (table

208

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

based) databases which are typically accessed through the Structured Query Language (SQL)

with newer approaches which are subsumed under a “NoSQL” label.26 The latter are also called

data stores to better distinguish them from the traditional database. The three main features

of these new types of stores are scalability, availability and the abolition of fixed schemas (the

layout of a data entry). Horizontal scalability means the system grows by being distributed

across multiple computers in a network, whereas increased availability means that through

replication in a network the store is made less prone to outages.

The feature that matters to us is “schemalessness”: Since we need to store arbitrary data

structures, the table model of ordinary relational database management systems (RDBMS) is

unsuitable. The simplest and most flexible access structure for us is the Key-Value store. It can

be thought of as a durable version of a normal associative array (dictionary, map). Values are

inserted at a given key. To retrieve a value, the key must be known. The data store typically

allows any form of and size of keys and values, as long as they can be represented as a series

of bytes. This is the origin of the term ‘serialisation’: Before a datum is inserted into the data

store, its key and its value must be converted to an agreed upon series of bytes. When a datum is

retrieved, the store returns the serialised form, and the client must reconstruct the original object

by interpreting the series of bytes.

5.4.1 Serialisation

As a simple example, consider keys and values which are 32-bit integers. A straightforward

serial representation of a 32-bit integer is a series of four bytes corresponding to bits 24–31, bits

16–23, bits 8–15, and bits 0–7. A boolean value could be represented by a single byte which is

either 0 (for false) or 1 (for true). A string could be represented by the byte series of its UTF-8

character encoding, etc. The abstract interface we use for this kind of data store is shown in

Listing 5.5. Instead of directly taking and returning arrays of bytes, it uses function arguments

which operate on objects of type DataInput and DataOutput. These objects provide convenient

methods to serialise standard types as the ones mentioned above. The put method—storage—

26Rick Cattell (2010), ‘Scalable SQL and NoSQL Data Stores’, ACM SIGMOD Record 39(4), pp. 12–27.

209

HANNS HOLGER RUTZ

trait DataStore {

def put (k: DataOutput⇒ Unit)(v: DataOutput⇒ Unit)(implicit tx: TxnLike): Unit

def get[A] (k: DataOutput⇒ Unit)(v: DataInput ⇒ A)(implicit tx: TxnLike): Option[A]

def contains(k: DataOutput⇒ Unit) (implicit tx: TxnLike): Boolean

def remove (k: DataOutput⇒ Unit) (implicit tx: TxnLike): Boolean

}

Listing 5.5: Abstract interface of a key-value store for serialised data

trait DurableIntVarImpl {

protected def store: DataStore

protected def id: Int // (S#ID)

def apply()(implicit tx: Tx): Int = {

val opt = store.get(_.writeInt(id))(_.readInt())

opt getOrElse sys.error("Key not found " + id))

}

def update(v: Int)(implicit tx: Tx): Unit =

store.put(_.writeInt(id))(_.writeInt(v)

}

Listing 5.6: Implementation of a durable integer cell

takes a key-writing function and a value-writing function, and the get method—retrieval—takes

a key-writing and a value-reading function to handle requests.

The reference cells as defined in Listing 5.4 can now be simply connected to the DataStore

interface, assuming the variable has an identifier S#ID (see Listing 5.1) which is used as the

storage key. Listing 5.6 shows an implementation for integer variables.

A mutable structure by definition contains variable cells, so elements of type S#Var[A]. In order

to serialise the mutable structure, all that needs to be done is write the S#ID for each constituent

variable. Fig. 5.4a is such a structure, a singly linked list. Each element of the list with type A

is wrapped in a cell which apart from the element value contains a variable pointer next to the

next cell in the list. We use an Option[Cell] here, so the last element in the list will store the

value None in the next variable. The list itself contains a reference head to the first element in the

list (a None would indicate an empty list here).

To understand how this structure is stored and retrieved, consider the case where a list of three

integers 3,5,8 is given and the task is to traverse the list and print these elements. The algorithm

210

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

trait LinkedList[S <: Sys[S], A] {

def head: S#Var[Option[Cell]]

trait Cell {

def next: S#Var[Option[Cell]]

def value: A

}

}

(a)

def traverse[S <: Sys[S]](l: LinkedList[S, _])

(implicit tx: S#Tx) = {

def loop(opt: Option[l.Cell]) = opt match {

case Some(cell)⇒
println(cell.value)

loop(cell.next())

case None⇒
}

loop(l.head())

}

(b)

Figure 5.4: Linked list data structure, and example of its traversal

idhead cookieSome

idnext1

value1 = 3

cookieSome

idnext2

value2 = 5

cookieSome

idnext3

value3 = 8

cookieNone

store.get store.get store.get store.get

Figure 5.5: Subsequent key-value access in the data store for the traversal of list 3,5,8

is shown in Fig. 5.4b, whereas Fig. 5.5 depicts the corresponding entries in the data store. When

the head element is accessed via l.head(), the value stored at the key idhead is looked up via

store.get and deserialised to a LinkedList[S, Int]#Cell. To distinguish whether the optional

content is Some or a None, a “cookie” byte is used. The cell itself would then follow as the

identifier of its next variable, and the cell’s actual integer value.

This approach to serialisation could be called top-down because the data store reader is re-

quired to know how to deserialise the entries. This knowledge is formalised in the type

Serializer[Tx, Acc, A] which provides the encoding and decoding functions for an object

of type A. As a result, some degree of ‘transparency’ is lost, since such serialisers must be passed

around as soon as a structure should be capable of being made durable.27 We try to keep this

change as unobtrusive as possible on the user side by requiring serializer arguments only when

creating a new reference cell via tx.newVar (cf. Listing 5.3), making them implicit and providing

a set of standard serialisers which include parametrised types such as Option[A]. For example,

to create a new instance of a linked list of integers, the serialiser for Int is automatically found.

27See the discussion of transparency and orthogonality (generality) in J. Eliot B. Moss and Antony L. Hosking
(1996), ‘Approaches to Adding Persistence to Java’, in: Proceedings of the First International Workshop on
Persistence and Java, Drymen, Scotland.

211

HANNS HOLGER RUTZ

On the implementation side, the serialisation code for Cell and LinkedList must be written,

however Option[Cell] is automatically composed with the cookie preamble shown in Fig. 5.5.

The balance between transparency and flexibility or granularity is similar to what has been

discussed with respect to library calls versus byte code rewriting in STM implementations.

Again the explicit library solution is required here in order to make the serialisation interlink

with confluent persistence. While there are completely transparent approaches, such as the

standard Java Serialization API,28 this is not only inflexible, but can be fragile and pose space

and time penalties:

› An automatic encoding of a class and its state means that as soon as an implementation

detail of the linked list is changed, an already stored data entry might become unreadable,

because the new implicit schema of its serial representation has changed. A simple

software update could mean that we cannot access a musical piece stored with a previous

version any more. With an explicit schema, the serialised data is less tightly linked to

the in-memory representation, and with careful design, multiple schema versions can be

supported.

› Storing the example list with three elements using Java Serialization requires around 1200

bytes of space, compared to 36 bytes with our scheme. Since the database can easily grow

to hundreds of megabytes in a generative sound installation which continually creates

objects, this improvement of factor 30 is crucial.

› The slowdown is much worse than a factor 30 in disk I/O, because the bottom-up serial-

isation means that the JVM needs reflection to look up the serialised classes in its class

loader and performs schema verifications.

There are of course more performative options, and we have evaluated some of them, such as

Hibernate29 and DataNucleus,30 however they are also more complex than necessary—including

28Cf. Lukasz Opyrchal and Atul Prakash (1999), ‘Efficient Object Serialization in Java’, in: Proceedings of the
19th IEEE International Conference on Distributed Computing Systems, pp. 96–101

29
http://www.hibernate.org (visited on 16/02/2013)

30
http://www.datanucleus.org (visited on 16/02/2013)

212

http://www.hibernate.org
http://www.datanucleus.org

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

unused features such as querying—do not directly compose with our temporal semantics, and

often deal poorly with the specific requirements of the Scala language. Overall, the benefits

of the lightweight pure library solution we chose clearly outweigh the disadvantages, such as

added verbosity and the increased risk of introducing errors in the manually written serialising

functions. With the advent of a macro system, first introduced in Scala 2.10, we hope that future

versions will be able to automatise the verbose and error prone parts of the serialisation.

5.4.2 Key-Value Store

The back-end chosen is BerkeleyDB Java Edition (JE),31 an open source key value store. It is

written purely in Java and runs directly embedded in the client application process. Furthermore,

it offers ACID guarantees based on transaction management.

JE is using a B+Tree32 for storing the key index, where the leaf nodes refer to positions in a

sequentially written log structure which stores the actual values. In the benchmarks published

in the 2006 white paper, it has a read performance comparable to the older (and independently

maintained) C version, and is particularly performative in write operations—something we rely

on heavily.

Benchmarks are a difficult subject, because they depend on many factors, such as file system

and operating system, virtual machine and cache tuning and the access pattern of the database.

Published benchmarks can seldom be reproduced and are often fabricated by the database

vendors to promote their products. The theoretical worst case cost of a B+Tree insertion and

query is O(logn),33 but in practice the dominant factor might be in-memory caching. Running

various unit tests of our framework against both an in-memory system and a durable system with

JE yielded a slowdown factor of approximately 6 to 10, which appears to be almost independent

of the data structure sizes. In a sound installation in which the system was tested (see Sect. 4.4.4),

even when the database grew to several hundred megabytes after hours of running and constantly

producing data, there was no significant impact on the fluidity of the sound production. However,

31Berkeley DB Java Edition Architecture (Sept. 2006), An Oracle White Paper, URL: http : / / www . oracle .

com / technetwork / products / berkeleydb / learnmore / bdb - je - architecture - whitepaper - 366830 . pdf (visited on
09/02/2013).

32Cf. Douglas Comer (1979), ‘The Ubiquitous B-Tree’, ACM Computing Surveys (CSUR) 11(2), pp. 121–137
33See also Sect. 2.6

213

http://www.oracle.com/technetwork/products/berkeleydb/learnmore/bdb-je-architecture-whitepaper-366830.pdf
http://www.oracle.com/technetwork/products/berkeleydb/learnmore/bdb-je-architecture-whitepaper-366830.pdf

HANNS HOLGER RUTZ

it would be advantageous to conduct more detailed profiling of the system’s performance and

perhaps compare the speed of JE with other database solutions.

5.4.3 Transactional Coupling

The integration of JE is straight forward. The DataStore interface translates well to its API, and

the only question concerns the opening and closing of transactions. Scala-STM provides two

elements which are useful. One is a TxnLocal type which is a fusion of a transactional reference

cell and a thread local variable. In each new STM transaction, the value carried by a TxnLocal

is undefined. As soon as it is accessed, it is initialised and then stays valid until the end of the

transaction. Therefore, it can also be understood as a transaction local lazy val. Whenever a

value is read from or written to the store, the database transaction is retrieved via a TxnLocal, so

there is exactly one database transaction matching the STM transaction. The second mechanism

is to register the database’s commit function as an “external decider” with the STM. This hook

will be invoked when the STM has reached its own commit phase and has verified that the

transaction is guaranteed to succeed, given the permission of this “external decider”. If an I/O

error occurs and the database’s transaction is aborted at this point, the STM transaction will

still be able to roll back. On the other hand it is guaranteed that the “external decider” is never

called repeatedly if the STM transaction is otherwise retried. This coupling is illustrated in

Fig. 5.6. It should be noted that the durable system wraps an in-memory system, therefore it is

quite possible that a cursor step is made which does not require database access. In that case the

TxnLocal is never read, and consequently no database transaction opened.

5.5 Confluent Semantics

We will now present the main system which is based on the concept of confluent persistence. The

opposition of ‘ephemeral’ and ‘persistent’ has been used several times before in this chapter, so

the meaning of these terms should be explicated. They relate to the capability of data structures

to preserve the history of their mutations. A concise definition which also includes different

qualities of persistence is given by J. R. Driscoll, D. D. Sleator and R. E. Tarjan:

214

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

step { implicit tx => val old = myVar(); myVar() = old + 1 }

DataStore

open

set

TxnLocal

JE Transaction

External Decider

get

open Scala-STM transaction

Durable

Cursor

resolve

close Scala-STM transaction

invoke

close

(defined)

1

2

apply function body

3

4

put

resolve

5

6

7

Figure 5.6: Coupling in-memory STM and database transaction

«A typical data structure allows two types of operations: queries and updates. A

query merely retrieves information, whereas an update changes the information

represented. Such a data structure is said to be ephemeral if queries and updates

may only be done on the current version. With an ephemeral structure, the sequence

of versions (one for each update done) leading to the current version is lost.

In the partially persistent form of an ephemeral data structure, queries may be

performed on any version that ever existed, while updates may be performed only

on the most recent version. Thus, the collection of versions forms a linear sequence,

each one (except the current one) being the predecessor of exactly one version. In

the fully persistent form of an ephemeral data structure both queries and updates

are allowed on any version of the structure. Therefore, one version may be the

predecessor of several versions (one for each update that was applied to it). The

graph of relations between versions is a tree.

. . . A fully persistent version of an ephemeral data structure that supports an update

in which two different versions are combined is said to be confluently persistent.

The relationship between versions of a confluently persistent data structure is that

of a directed acyclic graph.»34

34James R. Driscoll, Daniel D. Sleator and Robert E Tarjan (1994), ‘Fully Persistent Lists with Catenation’,
Journal of the ACM (JACM) 41(5), pp. 943–959.

215

HANNS HOLGER RUTZ

A major contribution of these authors along with N. Sarnak is the design of a general transform-

ation by which any ephemeral linked data structure can be turned into their partially or fully

persistent equivalent.35 Because their paper is a common reference in the literature and serves

as a basis for further developments and improvements, it is useful to review their main points

and terminology.

5.5.1 Persistent Transformation

To allow the transformation to be universally applied, generalisations must be made on the

shape of a data structure and the operations permissible. The operations have been mentioned

in the quotation: A read only operation which is often called ‘query’ or ‘access’, and a mutating

and re-writing operation called ‘update’ or ‘assignment’. The structure itself is decomposed

into a number of nodes which in turn contain «information fields» and «pointer fields», the

latter being links to other nodes. This structural model closely resembles for example the C

programming language and corresponds with the pointer machine model of computation.36 Even

in a higher level programming language such as Scala which does not have explicit memory

locations accessed via pointers, this view is still useful since nodes can be equated with objects

and pointers can be equated with references to other objects. The linked list is a good example

of a data structure which is decomposed into nodes linked through a next field (see Fig. 5.5).

In this sense, walking through the data structure is a query-only procedure, whereas creating a

node, changing an information field or a pointer field constitute mutating updates. Logically

each persistent modification can be seen as the creation of a new independent version of an

ephemeral data structure which will be incrementally numbered, beginning at version 0 (for

example an empty list). An update or version operation i can also be seen as a transaction,

since repeated steps of modifying a field within one such logical operation bury the intermediate

updates and only the latest change in association with version i will be remembered.

Driscoll et al. propose two different ways to implement persistent transformations, called the fat

node and the node copying—for partial persistence—or node splitting—for full persistence—

35James R. Driscoll et al. (1989), ‘Making data structures persistent’, Journal of Computer and System Sciences
38(1), pp. 86–124.

36Amir M. Ben-Amram (1995), ‘What is a “Pointer Machine”?’, ACM SIGACT News 26(2), pp. 88–95.

216

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

method. In the fat node method, each node is augmented by a version stamp, and each (ephem-

eral) field is exchanged for an ordered list of tuples consisting of the field values and the stamps

of the versions at which that value was assigned. The nodes are “fat” now because they contain

their own history which can grow arbitrarily. With a balanced binary tree used to store the ver-

sioned tuples, it is easy to see that this augmentation introduces a slow down factor of O(logm)

for each access, where m is the number of assignments of a field.

The node copying and node splitting methods are more involved, but provide better performance.

They require pointers (references) to be bi-directional, and nodes cannot grow infinitely fat but

are limited to a fixed size above which the node contents gets copied to a new node or split

between the old and the new node. A major implied limitation of the fixed size is that the

in-degree of nodes—the number of nodes pointing to one particular node—is limited as well.

This along with the burden of maintaining backward links, copy pointers and live versus dead

tags on nodes makes the fat node method much more preferable for representing general data

structures, despite its worse performance.

5.5.2 A Note about Purely Functional Data Structures

An alternative model to persistence has come to prominence in recent years and is embodied by

“purely functional data structures”.37 These are characterised by disallowing pointer updates,

and good amortised performance is often achieved through the use of lazy computation, thus

they are particularly suited for languages such as Haskell. The main update mechanism is

through path copying or “structural sharing”, where a new root of the data structure is created

along with new branches as necessary for including updated elements, up until the point where

branches in the previous structure are encountered which are still valid and need not be further

modified. A simple example is the linked list which in the purely functional variant does not

allow updates of the next pointers other than their initial assignments. Prepending a new head

element to the list means to just allocate a new head cell whose next pointer is initialised to the

head cell of the old list. Removing the head element means using the old head cell’s next value

as the new head cell. A structure which allows removal of elements at arbitrary points or from

37See Chris Okasaki (1998), Purely Functional Data Structures, Cambridge: Cambridge University Press

217

HANNS HOLGER RUTZ

both ends must be typically organised in a search tree fashion so that on average only O(logn)

nodes must be recreated in an update.

Purely functional data structures have the attractive property of being automatically fully

persistent—changing them does not invalidate any references to previous versions of the struc-

ture, and modifications can be carried out given any previous reference.38 These structures are

also beneficial in concurrent and multi threaded environments, because they are automatically

thread safe as no mutable state is shared.

There are however three problems which make them a less ideal candidate for our endeavour.

First, we wish to transactionally encapsulate modifications which requires an eager evaluation.

Second, because we already use an STM, the thread safety argument becomes unimportant

compared to the generally more easy and performative implementation allowing directly mutable

fields. Third, the path copying involves more “garbage” to be collected which is fine for an

in-memory structure, but produces additional overhead and fragmentation when carried out on

disk. This does not prevent us from using purely functional structures when the granularity is

small enough, for example we use immutable finger trees for the path representation (Sect. 5.6.3)

which are serialised and deserialised at a stretch.

The observed trend away from mutable data structures implementing persistence towards purely

functional data structures also has to do with the narrow perspective in which persistence is

considered useful. Often persistence is just seen as a facilitator of efficient algorithms to erect

structures, where the version trace is devoid of any temporal meaning in the sense that we are

interested in. Driscoll, Sleator and Tarjan picture the scenario of «high-level languages» where

persistence is merely the warrantor of immutability and isolation: A function can be called

with a large data structure and is free to mutate that structure as the caller keeps a reference to

its own “version snapshot”.39 The scenario where the transactional temporal dimension allows

navigation into the past and the tracing of the evolution of a structure is obliterated. Furthermore,

38Cf. Haim Kaplan and Robert E. Tarjan (1996), ‘Purely Functional Representations of Catenable Sorted Lists’,
in: Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pp. 202–211

39Driscoll, Sleator and Tarjan, ‘Fully Persistent Lists with Catenation’, §5.

218

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

the main work required for such a navigation is the provision of version stamps, something that

is independent of the computational paradigm.

5.5.3 The Confluent Case

While Driscoll, Sleator and Tarjan’s 1994 paper presented a solution for a singly linked list with

pop operation (a stack), it remained an open question whether a general transformation could

be found for confluent persistence. In particular, the navigating algorithm of the node copying

approach was not suitable for concurrently representing nodes which originate from different

versions. An answer to this question was given by A. Fiat and H. Kaplan in 2003.40

They closely follow the model and terminology of Driscoll et al., namely the idea of nodes

containing data fields (formerly called “information fields”) and pointer fields linking to other

nodes, as well as query and update operations on these nodes. This paper is not only interesting

because it adds support for ‘meld’ operations—the efficient combination of elements originating

from different source versions—but because the authors are aware of the difference between

«. . . a set of derivations involving meld operations» where one only cares «. . . about some final

result» and a situation where indeed navigating in the history is the main goal.

As has been noted, when melding is disallowed—the fully persistent case—the versions form

a tree, whereas in a confluently persistent setting the versions can be organised as a directed

acyclic graph (DAG). In order to make statements about the performance of the transformations,

the notion of the effective depth e(w) of a node w is introduced. This can be best explained with

the example that Fiat and Kaplan use, once more a linked list, the evolution of which is shown

in Fig. 5.7.41 When a node w (in this case a list cell) is created in version i, that node along with

version i is called a ‘seminal node’ s(w), because each future version of that node can be traced

back to this initial version i. Such traces form paths in the version graph, which the authors in

keeping with the genealogy metaphor call node ‘pedigrees’.

In Fig. 5.7, three nodes are created, w0, w1, w2, the first two originating from version v0, the

third being created in version v2. The depth d(w) of a node is the longest among all paths

40Fiat and Kaplan, ‘Making data structures confluently persistent’.
41The figure was adapted to have more consistent node names as well as better distinguishable element values.

219

HANNS HOLGER RUTZ

v0 2 1

w0 w1

v
a
lu
e

n
e
x
t

v1
v2

h
e
a
d

1 2

w1 w0

1 3

w1 w2

v3

v4

1 2

w1 w0

4 6

w1 w2

1 3

w1 w2

1 2

w1 w0

4 6

w1 w2

reverse elements

initial list
consisting of
two nodes
with values
2 and 1

increment elements in v2 by +3
and catenate lists from v1 and v2 delete head element and

append new node with value 3

catenate lists from v3 and v2

Figure 5.7: Directed acyclic version graph describing the evolution of a linked list with meld
in v3 and v4. Fields with bold outline and grey background have been updated in
the respective version.

R(w) from any of its occurrences in the graph to its seminal version. The authors show that if

one can define an effective compressed representation of these paths, an optimal representation

induces a performance and space cost proportional to the logarithm of the number of different

paths coexisting within one version and not bound by d(w). This overhead, log(∣R(w)∣)+1 is

the definition of effective depth. When taking the maximum effective depth across all nodes

of the graph D, the result is called the effective depth of the graph e(D). With the proper

compressed path methods, discussed further down, the space requirement per assignment is

bound by O(e(D)), and a query or update has a time cost of O(e(D)+ logU) where U is the

total number of updates.42

In the figure, the depth of w0 and w1 is 3, whereas the depth of w2 is 1. Looking at the last

version v4, there are three distinct paths of “copies” of node w1, shown in Fig. 5.8: ⟨v0,v1,v3,v4⟩,

having an element value of 1 in version v4; ⟨v0,v2,v3,v4⟩, having a value of 4; and ⟨v0,v2,v4⟩,

having a value of 1.

42An overview of the costs with respect to different implementation methods as well as the “naive” ephemeral
perspective—where each version is a full copy of the structure—and fully persistent methods is given in table 1
of Fiat and Kaplan, ‘Making data structures confluently persistent’. The costs can be further improved through
randomisation, as discussed in section 5.5.6.

220

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

1 2

w1 w0

4 6

w1 w2

1 3

w1 w2

v0

v1

v3

v2

v4

v0

v1

v3

v2

v4

v0

v1

v3

v2

v4
<v0, v1, v3, v4> <v0, v2, v3, v4> <v0, v2, v4>

Figure 5.8: In v4, there are three instances of w1 characterised by distinct paths (shown in
black) from the seminal version v0 to v4.

What has happened in the melded versions v3 and v4 could be described as a re-entry of nodes.

The re-entered nodes initially share their full structure, but may then be individuated by applying

mutations to selected copies of their seminal node. In Fig. 5.8, it can be seen that the versions

of w1 which appear first and last in the final list still share the same element value, whereas the

middle copy has evolved in that respect. Also, all three now have distinct next pointers.

If these nodes were to embody musical entities, the meld operation can thus be understood as

the introduction of variations—copies of elements are introduced which can still be traced back

to the same origin and which are initially identical, but will then be differentiated by their value

and neighbourhood. Another possible interpretation is to consider these copies as alternatives

between which we can switch back and forth. Filaments in the graph would then correspond

for example to different realisations of a random number generator. This is further discussed in

Sect. 5.8.2.

5.5.4 Navigating the Graph

From Fig. 5.8 it is clear that an object is fully identified by a tuple (p,wid) consisting of the

seminal node identifier wid and an access path p. For example, the head element of the final list

is (⟨v0,v1,v3,v4⟩,w1), the fourth element in the final list is (⟨v2,v3,v4⟩,w2), and the last element

is (⟨v2,v4⟩,w2). It remains to show how such an identifier is stored in a pointer node, such as

the list’s head field, how the entry of a field corresponding to a given access path is found and

221

HANNS HOLGER RUTZ

restored. In order to establish this knowledge, we will first describe the abstract algorithm, and

later an efficient implementation is presented.

Continuing with the fat node idea of Driscoll et al., all versions of the mutable fields of a node

are represented by an augmented variant of the node where these fields store the history of their

respective assignments. Let us assume we have already found the example head node and want

to retrieve the list cell’s “current” value with respect to the access path ending in v4. In the

monotonically increasing path ⟨v0,v1,v3,v4⟩ we must find the last version in which the value

field has been updated. Or more formally, with an access path q = ⟨vi0 , . . . ,vik = n⟩, find in the

augmented structure for the field value the assignment path p = ⟨vi0 , . . . ,vi j =m⟩ which has the

largest m which is less than or equal to n. If we ensure that each element in the set of assignment

paths of field A of a fat node f —denoted P(A, f)—begins with the same version vi0 , the node’s

seminal version, and if we ensure that the access path q, too, begins with the node’s seminal

version, then the first step in field retrieval equates to finding the longest common prefix of p

and q. A crucial component of the implementation is thus an efficient algorithm for solving the

so-called “pedigree maximum prefix problem”.

Where Fiat and Kaplan use the distinction between “data” and “pointer” field, we shall now

use instead the notion of immutable and mutable objects. From an object-oriented polymorphic

perspective we will see that this makes more sense, because the difference only becomes

important in deserialisation and the objects remain opaque for the data structure that contains

them. That is to say, a data structure does not need to “know” if it contains an immutable or

mutable object, because otherwise we could not have generic data structures, but would need to

devise a separate container for immutable and mutable objects.

Immutable objects can be deserialised without knowing the context of their access (their identity

cannot be split by branching in the version graph), therefore accessing fields carrying immutable

data is simple—once the maximum prefix is determined, one finds in the augmented field

structure the datum stored at this prefix, and the query is complete. The following table lists the

222

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

entries in this augmented structure—perhaps it is implemented as a Trie where the keys are the

assignments paths43—for node w2:

Assignment path Value

⟨v2⟩ 3

⟨v2,v3⟩ 6

The two occurrences of w2 in the final list have access paths ⟨v2,v3,v4⟩ and ⟨v2,v4⟩. In the first

case, the longest prefix of the access path with the two assignment paths of the preceding table

is ⟨v2,v3⟩, resolving to value 6, in the second case the common prefix is just ⟨v2⟩ and value 3 is

found.

The head field and each cell’s next field store references to mutable objects (other list cells).

They are also represented by fat nodes and require identification with an access path. Upon

storage, their access path ends in the version in which the storage is performed. In the retrieval

which generally happens in an access path q = ⟨vi0 , . . . ,vik = n⟩ extending the most recent storage

(assignment) path p = ⟨vi0 , . . . ,vi j = m⟩, the stored object must be transformed into the current

context. For example, let x be the node containing the mutable field which is queried, and y be

the node which is found in that field at assignment path p, along with y’s own access path r at

the time of storage. In the version of that assignment, m, by definition r must also end in m. In

order to bring r up to date, it must be extended by the remaining path leading from the version

following the assignment path, vi j+1 , to the current version vik which is also the last element of q.

Or put the other way around, the prefix ⟨vi0 , . . . ,vi j⟩ of q must be replaced by the stored path r,

giving rise to the transformation’s name “pedigree prefix substitution”.

It will become clear how this works when traversing the list in version v4. The starting point for

the linked list is the head pointer. In general, there needs to be at least one entry point to the data

structure. These entry points are called access pointers by Fiat and Kaplan. We drop however

their requirement of updating the access pointers in each new version, as can be seen in Fig. 5.7:

the head element is initialised in version v0 and updated in v1 and v2, but not in v3 or v4. This

43In the first iteration of our implementation which stored the full paths, we employed the Splay Tree which
can be used as an elegant and self-balancing Trie structure. See Daniel D. Sleator and Robert E. Tarjan (1985),
‘Self-Adjusting Binary Search Trees’, Journal of the ACM (JACM) 32(3), pp. 652–686

223

HANNS HOLGER RUTZ

head
Assignment path Value
⟨v0⟩ (⟨v0⟩,w0)
⟨v0,v1⟩ (⟨v0,v1⟩,w1)
⟨v0,v2⟩ (⟨v0,v2⟩,w1)

w0 next
Assignment path Value
⟨v0⟩ (⟨v0⟩,w1)
⟨v0,v1⟩ None

⟨v0,v1,v3⟩ (⟨v0,v2,v3⟩,w1)
w1 next
Assignment path Value
⟨v0⟩ None

⟨v0,v1⟩ (⟨v0,v1⟩,w0)
⟨v0,v2⟩ (⟨v2⟩,w2)

w2 next
Assignment path Value
⟨v2⟩ None

⟨v2,v3,v4⟩ (⟨v0,v2,v4⟩,w1)

Table 5.2: Fat field entries for the head and head fields

gives access pointers the same interface as regular fields, although in the retrieval algorithm the

latter are implicitly associated with the path through which they were accessed, whereas the

former are associated with the path of the cursor which is used to navigate through the version

graph. Another advantage of this approach—not requiring maintenance of an a priori known set

of access pointers—is the possibility of generating auxiliary entry points to any part of the data

structure, something needed for modular callbacks, as is shown in Sect. 5.8.2.

To follow the traversal, it is useful to look at the values stored in the augmented fields of head and

next, shown in Table 5.2. The longest prefix of q = ⟨v0,v1,v3,v4⟩ and P(head) is ⟨v0,v1⟩, where

(⟨v0,v1⟩,w1) is stored, which is expanded to (⟨v0,v1,v3,v4⟩,w1) in the prefix substitution.44

Looking up next in this node yields longest prefix ⟨v0,v1⟩ where (⟨v0,v1⟩,w0) is stored, which

is expanded to (⟨v0,v1,v3,v4⟩,w0). Looking up next in this node yields longest prefix ⟨v0,v1,v3⟩

where (⟨v0,v2,v3⟩,w1) is stored, which is expanded to (⟨v0,v2,v3,v4⟩,w1). Looking up next

in this node yields longest prefix ⟨v0,v2⟩ where (⟨v2⟩,w2) is stored, which is expanded to

(⟨v2,v3,v4⟩,w2). And so forth, until the entire sequence of Fig. 5.8 is produced.

5.5.5 Compressing Paths

The direct implementation of the paths and operations presented in the previous section does not

scale for obvious reasons: With each operation performed on the system, the access paths and

any newly added assignment paths grow steadily. The system would slow down linearly with its

44The first two items of q are dropped here and replaced by the stored path. It so happens that the prefix ⟨v0,v1⟩ is
replaced by that same prefix. The lookup of w2 is an example where indeed a different prefix is substituted.

224

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

v0

v1 v2

v3

* *

l1

l2

Figure 5.9: Illustration of path compression: The path between v0 and v1 and the path between
v0 and v2 is unique, whereas there are two possibilities to get from v0 to v3.

usage; even more than linearly if we consider the durability layer. Fiat and Kaplan address this

by applying a compression mechanism to the paths which is particularly efficient when no meld

operations are performed—the fully persistent case—and compressed paths have constant size,

corresponding with the effective graph depth e(D) = 1.

The underlying idea is to reduce the path information to the minimum required to distinguish

two copies of a seminal node. For example, if there is no melding, it suffices to remember the

seminal version of a node and the most current version, as both form end points of a unique path

in the version graph. Fig. 5.9 illustrates this: If one looks at node w1 of the previous example

and imagines that v1 and v2 were not direct successors of v0 but separated from it by a path of

intermittent versions, then v0 can be seen as the root of two sub-trees, one of which contains

v1 as a leaf, and one of which contains v2 as a leaf. We assume that the element value of w1

has been modified along either path from v0, which is marked by an asterisk in the figure. It

is easy to see now that given the information that ⟨v0, . . .v1⟩ is an access path and ⟨v0, . . .v2⟩

another access path, leaving out the steps in between, this compressed path is sufficient to find

the current element value of w1 in either of the versions. The retrieval reduces to the question:

“Find the nearest marked ancestor of v1 and v2 respectively towards their parent v0.”

This is the formulation of a general problem in graph theory. A survey about ‘Marked Ancestor

Problems’ shows the previous research done in this area and the multitude of application areas.

225

HANNS HOLGER RUTZ

The problem is known under various names, for example in the “tree colour problem”, the nodes

of a tree may be associated with a set of colours, and the problem is, given a node v, to «find the

first ancestor of v with colour c».45 In our case, the set of colours is the set of mutable fields in

a node, and a “mark” means that a value has been assigned to a field.

In a meld situation, version v3 in Fig. 5.9, an ambiguity arises: The re-entry of w1 means

that ⟨v0, . . .v3⟩ is no longer a unique path in the version graph. A solution is to introduce the

last parent version of v3 as additional information to the compressed path. As a result, the

compressed path can be seen as the representation of the version graph decomposed into disjoint

(sub-)trees. Any path in the version graph can enter each sub-tree at most once, this follows from

the acyclic nature of the graph. The sufficient information per sub-tree Ti is the version vertex

ei at which the tree is entered, and the version vertex ti at which the sub-path in Ti terminates,

before moving on to another sub-tree.

The compressed path c(p) is thus formally a list of paired components ⟨e0,t0,e1,t1, . . .e j,t j⟩

which correspond to a subset of the versions of the full path p = ⟨vi0 = e0,vi1 . . .vik = t j⟩, with

2k ≥ j. The compressed path always has an even number of elements, where the entering and

terminating vertices are possibly identical, a case that can happen when melding in successive

versions or when the path ends with a melded version. For example, traversing the list in v4 of

Fig. 5.7 would find the following accessed nodes given in compressed form (c(p),w):

(⟨v0,v1,v3,v4⟩,w1)→ (⟨v0,v1,v3,v4⟩,w0)→ (⟨v0,v2,v3,v4⟩,w1)→

(⟨v2,v2,v3,v4⟩,w2)→ (⟨v0,v2,v4,v4⟩,w1)→ (⟨v2,v2,v4,v4⟩,w2)

In particular it must be noted that not every meld operation introduces a new sub-tree. The

partitioning of sub-trees is best understood with the level function `(T) which assigns an integer

to each sub-tree. The root of the version graph is at level `0. For every new version vertex, we

look at the set of incoming version vertices and determine the highest level `max among the trees

to which they belong. If there is more than one vertex leaving from that highest level, the new

vertex lies on a tree with increased level `max+1. Therefore, the creation of v3 requires a new

45Stephen Alstrup, Thore Husfeldt and Theis Rauhe (1998), ‘Marked Ancestor Problems’, in: Proceedings of the
39th Annual Symposium on Foundations of Computer Science, IEEE, pp. 534–543.

226

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

level, but not the creation of v4 because the input versions v3 and v2 do not share the same level.

The introduction of the new tree level in v3 is shown as a dotted line in Fig. 5.9.

The retrieval algorithm is similar to the full path scenario. First the longest prefix of the

compressed access path’s so-called index c̃(q) = ⟨e0,t0, . . . ,ek = n⟩ with the set of compressed

assignment path indices C̃(p) is determined. The result is an index c̃(p) = ⟨e0,t0, . . . ,e j = m⟩

leading to the sub-tree associated with m. For this sub-tree, a search structure is maintained

that can answer the nearest marked ancestor question with respect to the terminating version t j

which follows the prefix c̃(p) in the access path. If the retrieved value is a mutable entity, again

a prefix substitution is performed upon deserialisation, this time taking care of the pairing of the

compressed representation.46

To give at least the simple example here of retrieving an immutable value, let us reconsider the

element value for node w2 as in section 5.5.4, but this time with the compressed path method.

The assignment table looks as follows:

Assignment path Value

⟨v2,v2⟩ 3

⟨v2,v2,v3,v3⟩ 6

The two occurrences of w2 in the final list have compressed access paths ⟨v2,v2,v3,v4⟩ and

⟨v2,v2,v4,v4⟩. In the first case, the longest prefix of the access path index with the two assign-

ment path indices of the preceding table is ⟨v2,v2,v3⟩. In the search structure for the value field

in the sub-tree containing v3, the nearest marked ancestor is vertex v3, resolving to value 6, in

the second case the common prefix is just ⟨v2⟩ and value 3 is found.

5.5.6 Adding Randomisation

The final suggestion regarding the original algorithm is a further compacting of paths through

a randomisation of version identifiers. The idea is to associate each version with a random

integer number such that with high probability the sum of all these numbers is unique for each

individual (full or compressed) path. For example, looking back again at the three occurrences

of node w1 in version v4, if we use 32-bit signed integers (Scala’s standard type Int) for the

46The details can be found in §5.1 and Fig. 8 of Fiat and Kaplan, ‘Making data structures confluently persistent’

227

HANNS HOLGER RUTZ

random numbers, the following table shows the equivalence between the normal compressed

paths and the randomised reductions:47

Access path Randomised Sum

⟨v0,v1,v3,v4⟩ ⟨0x18598416,0x37297A3D,0x2828C850,0x60DEC3BC⟩ 0xD88A8A5F

⟨v0,v2,v3,v4⟩ ⟨0x18598416,0x0AE59378,0x2828C850,0x60DEC3BC⟩ 0xAC46A39A

⟨v0,v2,v4,v4⟩ ⟨0x18598416,0x0AE59378,0x60DEC3BC,0x60DEC3BC⟩ 0xE4FC9F06

The sum of the randomised path components can be seen as a hashing function.48 Given a well

distributed pseudo random generator and a sufficient number of bits, the probability of hash

collisions becomes extremely small. For example, if we allocate log2 R bits for the random

numbers, and the number of (compressed!) access paths along with all of their prefixes occurring

in a structure is ∣P ∣, then the probability of a collision of at least two hash values is O(∣P ∣2R). In

other words, when using 32-bit random numbers, in a structure which contains a set of 10,000

unique access paths and prefixes, a hash collision has a probability of roughly 1 : 1,000,000.

This hashing is only useful inasmuch as it aids the pedigree prefix search. The methods assume

an efficient representation of the sequence of randomised versions π . Such a representation can

report the sum of the elements in O(1), as well as split and concatenate sequences in O(log∣π ∣).

Fiat and Kaplan use a clever technique for the prefix search based on the binary representation of

the sequence length ∣π ∣. A hash table H is maintained so that when a value associated with path

π is added—the randomised assignment path—multiple keys point to that value: These keys

are the sums of the set of prefixes of π defined as π̂ = {pi1(π), pi2(π), . . . pim(π)(π) = π}, where

m(π) is the number of 1’s in the binary representation of ∣π ∣. The prefix lengths are obtained

by successively replacing 1’s with 0’s in m(π). For example if the assignment path had length

∣π ∣ = 298 = 1001010102, there are m(π) = 4 bits of 1 which will be successively removed, so

there are prefixes of lengths i4 = 298 = 1001010102 (the complete path), i3 = 296 = 1001010002,

i2 = 288 = 1001000002, and i1 = 256 = 1000000002. According to the assumption of sufficiently

47When calculating the sums, to avoid overflow we would extend to standard 64-bit integers; in the example table,
w.l.o.g. we deliberately choose only positive random numbers below 231 to keep the sums small.

48For an overview of hashing, see Donald E. Knuth (1973/1998), The Art of Computer Programming, 2nd Edition,
vol. 3, Reading, MA: Addison-Wesley, §6.4

228

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

small probability of hash collisions, the sums of these four prefixes, which are the keys into H,

are unique.

The longest prefix search in H is then a very similar procedure: The access path is truncated

stepwise as above, by taking prefixes of sizes obtained by removing bits from the binary

representation of the access path length, until H contains an entry for the sum (hash value) of a

prefix. As in the normal compressed path method, this way a search structure for a sub-tree of

the version graph is found, and a successive nearest marked ancestor query yields the current

value of the field for the given access path.

The randomisation of the compressed path method for in-memory data structures produces a

speed increase of access time cost from O(e(D)+ logU) to O(log3 e(D) ⋅ logT
logU + logU), where

T is the total number of field retrievals. In our case, the path components forming a mutable

object’s identifier still must be stored on disk. As shown in Sect. 5.6.3, we limit the granularity

of the data store accesses by conceiving the paths as immutable entities which are always stored

completely with the mutable state, so reading or writing a path still involves O(e(D)) words,

apparently undoing the advantage of the exponential speedup promised by the randomisation

method. However, using the prefix sums as keys to the data store significantly simplifies our

interface, as now the keys have constant size and are not broken up as in a Trie structure. And

so the data store remains an interchangable black box: the advantage of the key value store is

indeed that it is indistinguishable from a hash table.

5.6 Building a Confluent System

As others have noted,49 there is often a gap between theoretically conceived algorithms and

data structures and their actual implementation and practical usability. Often the constraints

required by the theoretical research do not align with the constraints of the actual systems on

which these algorithms are to be implemented. For the theoretical researcher it is sufficient to

proof the theorems which guarantee the correctness and performance bounds of the algorithms.

A software developer, on the other hand, has only limited resources for engaging with the

49Frédéric Pluquet (2012), ‘Efficient Object Versioning for Object-Oriented Languages from Model to Language
Integration’, PhD thesis, Brussels: Université Libre de Bruxelles, pp. 1–4.

229

HANNS HOLGER RUTZ

theoretical discourse and often resorts to sub optimal or even brute force implementations in

order to solve a problem.

From the previous discourse of this thesis it has become clear that algorithms need a mater-

ial embodiment if they are to be made productive for creative use. No implementation is

straightforward, and there is no unique mapping between algorithm and implementation. The

implementation is itself a true process which produces traces and differences which shift the

discourse into directions previously unforeseen, and may trigger new interesting questions.

Even before we engage with our own extensions of the confluently persistent approach, the

incorporation of quasi-retroactive elements, the integration with a reactive even system, the

augmentation with bi-temporal semantics or the coupling with realtime sound synthesis, we

wish to emphasise that the core implementation of the confluent persistence, backed by a durable

data store, is already a major contribution of this thesis.

5.6.1 Related Work

To the best of our knowledge, there existed no general implementation prior to our own. Of

course, software versioning systems are ubiquitous now, and they all—Subversion, Git etc.—

provide some mechanisms of merging different branches in the code base. In that respect, they

can be called confluent systems. On the other hand, they operate on the file system level with

the assumption of text files which are observed, so the granularity of these systems is on a

completely different scale than what we are doing in our system: The augmentation of any

program data structure with a tracing mechanism, an automatic online algorithm with selectable

temporal semantics which allows effective querying and combination of the history of each

mutable state.

The closest approach we found is a library called HistOOry which provides persistence for

the Smalltalk language.50 One of the use case scenarios of this system is the observation of

legacy systems in order to understand their workings. With HistOOry, objects and fields in

the object language can be selectively augmented to record a trace of their modification. The

50Frédéric Pluquet, Stefan Langerman and Roel Wuyts (2009), ‘Executing code in the past: efficient in-memory
object graph versioning’, in: ACM SIGPLAN Notices, vol. 44, 10, pp. 391–408.

230

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

system restricts itself to partial persistence and generally seems to aim at system analysis, such

as debugging a program and reviewing the past states of a mutable entity, although cases are

also presented which use persistence purely for the design of particular algorithms such as

the geometric problem of planar point location.51 In the more recent thesis of the author, it

seems that “branched versioning” (full persistence) has been added to the library, although it is

unclear in what sense branching is actually used in the presented case studies.52 More than the

missing melding capabilities, the restriction to in-memory recording only makes this approach

unsuitable for a composition framework which must operate across long time spans where the

data is stored on hard disk and structure may grow beyond the available RAM.

5.6.2 Transaction Cycle

The transaction cycle is slightly more involved than in the ephemeral durable case which was

shown in Fig. 5.6, because we want transactions to compose nicely and transparently. It implies

that we do not know at the beginning of a transaction whether it will contain updates or version

melds, and with the compressed path method it cannot be determined until the commit phase

whether a new sub-tree in the version graph must be created or not. The solution is to buffer the

write operations for an ongoing transaction in an in-memory cache. Furthermore, the ongoing

transaction can only operate based on its input access path, and mutable objects retrieved

in a transaction are actualised (using the pedigree prefix substitution) with this input access

path—precisely because it is not known whether the transaction will constitute a new version

node or not. When the buffered write operations are flushed at the end of the transaction, the

transaction’s write version is known and will be part of the data store’s key, but not the opaque

values. Special care must therefore be taken to correctly append the missing information in

deserialisation.

This is best illustrated by going through a brief example. Using the linked list structure previ-

ously introduced (Fig. 5.4a), let us assume that there is a given factory to create a new empty

51Cf. Neil Sarnak and Robert E. Tarjan (1986), ‘Planar Point Location Using Persistent Search Trees’, Communi-
cations of the ACM 29(7), pp. 669–679

52Pluquet, ‘Efficient Object Versioning for Object-Oriented Languages from Model to Language Integration’;
although the author says the implementation is “inspired” by Driscoll et al., it seems that no automatic persistent
evolution is used, but instead an explicit “snapshot” taking performed when a new branch in time is created, cf. §3.6.3
and §4.3.11.

231

HANNS HOLGER RUTZ

object LinkedList {

def apply[S <: Sys[S], A]()(implicit tx: S#Tx): LinkedList[S, A] = ...

}

trait LinkedList[S <: Sys[S], A] {

def cell(init: A)(implicit tx: S#Tx): Cell

...

}

Listing 5.7: Factory methods for instantiating a list and its cells

val store = BerkeleyDB.tmp()

val s = Confluent(store)

val (access, cursor) = s.cursorRoot { implicit tx⇒
val list = LinkedList[Confluent, Int]()

val w0 = list.cell(init = 2)

val w1 = list.cell(init = 1)

list.head() = Some(w0) // (1)

w0.next() = Some(w1) // (2)

list

} { implicit tx⇒ _⇒ tx.newCursor() }

Listing 5.8: Creating a confluently persistent system initialised with a list of two cells

linked list, and the list itself has an extra method for creating new cells, as shown in Listing 5.7.53

Creating the the first version of Fig. 5.7 looks like Listing 5.8. A store is opened in a temporary

directory, the confluent system is selected and the data structure initialised. The cursorRoot

method takes two functions: the first creates the initial access point to the data structure and

is only executed if the database is empty (otherwise, the previous state is read). The second

function is used to initialise a cursor to navigate the version graph.

53This is slightly simplified by leaving out the implicit serialiser for the list element type A

Main Cache : Map[Int, Map[Long, (S#Acc, Any)]]

Seminal Object Cache

idhead
Path Hash Value
∑(πhead = ⟨⟩) (πhead,Some(⟨⟩,w0))

idw0 next
Path Hash Value
∑(πw0 next = ⟨⟩) (πw0 next,Some(⟨⟩,w1))

Table 5.3: Transaction local cache for ongoing write operations

232

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

When the new linked list instance list is created, its access path is empty ⟨⟩—this follows from

the above explanation—and so is the the access path of both cells w0 and w1. The assignments

of the list head and of the next field of node w0
54 are write operations which are buffered, so that

the paths can be completed upon transaction commit. The two lines marked (1) and (2) produce

the cache entries of Table 5.3.

The cache is a nested map. The outer map, the main cache, uses the seminal identifiers of

mutable entities (variables) as keys, and the values are the inner cache maps which use the hash

code (sum) of the assignment paths as keys and the values correspond to the assigned values. In

a field retrieval, we can simply check the main cache for the field’s identifier and if it exists in

the cache, the sum of the field’s access path is directly used as key into the inner map. No prefix

search is necessary, because the cache per definition only contains values updated in the current

transaction. If the key is not found, the regular retrieval with longest prefix search is performed

on the durable store.

In the example of Table 5.3 the keys of the inner maps are zero because they are sums of empty

access paths. When the transaction is closed, the flushing algorithm traverses the cache and

appends the write version to these keys. In this case, they would become ⟨v0,v0⟩. In general the

paths are not empty, and then a write version which does not begin a new version graph sub-tree

replaces the last terminating version. For example, considering the evolution of Fig. 5.7, in

version v1 which reverses the list, the input access path is ⟨v0,v0⟩, so this path will be found

in the cache for the updates to the list head pointer and the next pointers of both nodes. Upon

commit, as we stay on the same sub-tree, “appending” the new write version v1 yields an updated

access path of ⟨v0,v1⟩. In the case of entering a new sub-tree, the new write version is appended

twice (as entering and terminating vertex). For example, in v3 the first cell has input access

⟨v0,v1⟩. The flush algorithm will determine that a new sub-tree is needed as result of the meld,

and this path will be updated to ⟨v0,v1,v3,v3⟩.

As said, no object in value position is updated in the flush phase. So the fat node for w1 will

contain in its next field an entry pointing from ⟨v0,v1,v3,v3⟩ to (⟨v0,v1⟩,w0). When retrieving

54As well as the implied initial assignments such as the cell’s element values which are not taken into account here

233

HANNS HOLGER RUTZ

trait Measure[-A, V] {

def zero: V

def |+|(a:V,b:V): V

def apply(e: A): V

}

(a)

object Index

extends Measure[Any, Int] {

def zero = 0

def |+|(a:Int,b:Int) = a+b

def apply(e: Any) = 1

}

(b)

object Sum

extends Measure[Int, Int] {

def zero = 0

def |+|(a:Int,b:Int) = a+b

def apply(e: Int) = e

}

(c)

Figure 5.10: Measure type class for Finger Trees, and two example implementations

this value, the access path of w0 must be updated first to match the suffix of the write path (key),

before applying the pedigree prefix substitution.

5.6.3 Path Encoding

The data structure used to represent paths must be efficient with respect to splitting, concatena-

tion, and summing any prefix of the path. A purely functional data structure which performs well

in all these cases is the Finger Tree.55 Recalling Sect. 5.5.2, this means that update operations

leave the input structure unmodified, and instead of directly mutating the cells, a new object

is produced which shares part of the former structure in order to minimise the cost of such

operations. The Finger Tree provides amortised constant costs for prepending and appending

elements, while splitting and concatenation take O(logn), n being the smaller of the two paths

concatenated or the two paths resulting from a split.

What makes the Finger Tree interesting is that it equips a sequence with an annotation which

“measures” the elements of the sequence. The measurement of type V is taken by a monoid and

a function which gives a single measure when applied to one element of type A in the sequence

of the tree, as shown in Fig. 5.10a.

The monoid’s identity value ∅ (in code written as zero) provides a meaningful measurement

of an empty sequence, whereas the ∣∣ ⋅ ∣∣ function (in code written as apply) is the starting point

for a non-empty sequence. Any other measurement is then derived by successively combining

measurements with the monoid’s binary operation (⊕) (in code |+|). In order to efficiently

combine measurements, this binary operation must be associative (but need not be commutative).

55Ralf Hinze and Ross Paterson (2006), ‘Finger trees: a simple general-purpose data structure’, Journal of
Functional Programming 16(2), pp. 197–217.

234

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

R. Hinze and R. Paterson show the versatility of this approach by providing measurements that

produce a random access sequence—measuring the indices of elements—a priority queue—

measuring the maximum element value—an ordered sequence—tracing the right most element

in a subsequence—and even a spatial data structure: an interval tree which allows spatial

intersection queries. Another strong point of the Finger Tree is the possibility of maintaining

multiple independent measurements.

The solution of having both random access and efficient computation of partial sums is based

on this possibility of combining measurements. We use the indexing scheme from Hinze

and Paterson, the implementation of which is shown in Fig. 5.10b, and add a summation

scheme, shown in Fig. 5.10c. The first counts the number of elements, where an empty sequence

obviously has a measurement of 0, and the measurement of one element gives size 1, independent

of the element type. The second operates on the elements themselves, by summing them up.

Again an empty sequence has sum 0, whereas the sum of a single element e is equal to the

element itself.

To avoid overflow, we would use a 64-bit Long for the summation. Then, to combine indexing

and summation, the measurement type V is a tuple (Int, Long), and ∅, (⊕) and ∣∣ ⋅ ∣∣ simply

treat the two tuple elements independently. In order to have a convenient user representation of

paths and also in order to quickly determine the temporal order of versions, the elements of the

path are themselves tuples (vi,πi) combining the non-randomised and the randomised version

indices.

Examples for the compressed path ⟨v0,v1,v3,v4⟩ (cf. Fig. 5.8) and its hypothetical meld into

extended compressed path ⟨v0,v1,v3,v4,v5,v5⟩ are shown in Fig. 5.11. A Finger Tree is an

instance of either Empty, Single, or Deep. The deep tree consists of three parts: a prefix, a pointer

to a sub-tree in the middle, and a suffix. Prefix and suffix are represented by the Digit type

which is a container for up to four elements—these containers are called One, Two, Three, and

Four. When a fourth element is to be added to a full prefix or suffix, the digit is split and part

moved into the middle sub-tree. In the example expansion, the first addition of (v5,π5) changes

the suffix Three (Fig. 5.11a) to a Four, the second addition causes the split into the new suffix

235

HANNS HOLGER RUTZ

Deep

m pre tr suf

*(0,4)

m a1

*(0,1) (v0,π0)

One Three

m a1

*(1,4) (v1,π1)

a2

(v3,π3)

a3

(v4,π4)

(a)

Deep

m pre tr suf

*(0,6)

Two

m a1

*(4,6) (v5,π5)

a2

(v5,π5)

m a1

*(0,1) (v0,π0)

One

m a1

*(0,1) (v0,π0)

One

Three

m a1

*(1,4) (v1,π1)

a2

(v3,π3)

a3

(v4,π4)

Single

m

*(0,1)

m

*(1,4)

a

(b)

Figure 5.11: Finger Trees representing compressed paths

Two and a preceding Three which is stored in the root tree’s middle field, which is promoted from

Empty to Single (Fig. 5.11b).

The measurements are cached in each digit and sub-tree which makes the look up fast. They are

notated in the figure using a function ∗ defined as follows:

∗(m,n) = (

index
¬

n−m,

sum

n−1

∑
k=m

πik)

To determine the hash code (sum) of the path’s prefix of length 3, ⟨v0,v1,v3⟩, in Fig. 5.11b one

would look for the digit in which the predicate (init ⊕ m)._1 > 3 becomes true, and combine the

partial measurements init on the way. The root’s prefix m has index count 1 and sum π0, so we

set init ∶= (1,π0) and continue to examine the middle tree. It has an index count of 3 which

gives an accumulated index measurement of 4, satisfying the predicate. We examine the Single’s

only digit by incrementally calculating the measurement to find the exact position at which the

predicate becomes true. The result is the partial sum (init ⊕ ∣∣(v1,π1)∣∣ ⊕ ∣∣(v3,π3)∣∣)._2.

The Finger Tree is a recursively defined structure: While the prefix and suffix of the root tree

have element type A, the sub-tree hanging off the root Deep tree has element type Digit[A]. If

this sub-tree is deep, its own middle sub-tree entry points to a tree of type Digit[Digit[A]], and

so forth, and a tree with n elements will have logn levels. Then a partial sum calculation is

performed in O(logn), too. Using the bit erasure method to calculate the partial prefixes from

236

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

the hash codes, it thus takes O(log2 ∣π ∣) hash table lookups to find the longest prefix of a given

access path at which a value was stored in a fat field.

5.6.4 Nearest Marked Ancestor

Having introduced the path representation based on compression and randomisation, where

sequences of unique sums are stored as Finger Trees, it remains to find a data structure to

efficiently query the nearest marked ancestor in the sub-trees into which the version graph is

partitioned. Remember that with the hashing technique from the last sections, we find the

longest prefix c̃(p) of the access path index c̃(q) pointing to the tree in which a value has been

assigned to a field. In the data store at the key given by the field node’s seminal identifier along

with the hash code of c̃(p), a yet to be defined search structure is found which in some form

must contain the vertices of the sub-tree in which the queried field has been updated. The sought

vertex is the nearest marked ancestor of the terminating vertex which follows in c(q) after prefix

c̃(p).

For example, if the search path c(q) is ⟨e0,t0,e1,t1, . . .ek,tk⟩ and the hash-based search using

c̃(q) yields longest prefix c̃(p) = ⟨e0,t0,e1,t1, . . .e j⟩ where j ≤ k, we need to answer the question:

In the sub-tree corresponding to entering vertex e j, which is the nearest ancestor x of t j in which

the queried field has been modified?56

Two Observations

(1) Driscoll et al. describe the ancestor problem in the context of their full persistence approach.57

Since the version graph in the full persistence case is a tree, this problem can be directly applied

to our problem of searching in the index sub-tree. The idea is to turn the partial ordering of

the versions in the tree into a total ordering based on some criterion. The idea goes back to

P. F. Dietz who designed a data structure for maintaining a linear order.58 The ancestor problem

appears as one application example: If the tree is decomposed into its pre- and post-order

traversals, then to determine whether a vertex x is an ancestor of a vertex y, one merely has

56If this is unclear, go back to Sect. 5.5.5
57Driscoll et al., ‘Making data structures persistent’.
58Paul F. Dietz (1982), ‘Maintaining order in a linked list’, in: Proceedings of the fourteenth annual ACM

symposium on Theory of computing, pp. 122–127.

237

HANNS HOLGER RUTZ

a

u

*

b

c

d

e

f

g

hi

jk
l

m
n

o p

q
r

s
t

v

w

x

*

*

*

Figure 5.12: A sub-tree with entering vertex a and terminating or querying vertex u. Marked
vertices are labelled with an asterisk. The task is to identify n, the nearest marked
ancestor of u.

to determine whether x appears before y in the pre-order traversal and x appears after y in the

post-order traversal.

In pre-order traversal, one visits first a vertex, then its children, whereas in post-order traversal,

one visits first a vertex’ children, then the vertex itself. For example, taking the left hand side of

the sub-tree of Fig. 5.9, and redrawing it in Fig. 5.12, the pre- and post-order sequences are:

pre ∶ a b
⋆

c d h i x e k l m
⋆

w f g
⋆

j n
⋆

o p q r s t u
←Ð

v

post ∶ i x h d l k w m
⋆

e c j g
⋆

q r p o u
Ð→

t v s n
⋆

f b
⋆

a

If the lexicographic order of the vertex labels corresponds to the temporal insertion order (i.e.

increasing version indices), these sequences have been obtained by following down the children

of a vertex in ascending order—for example, from vertex b, first following the branch beginning

with c, then the branch following with f .

It is easy to verify that the ancestor condition holds: Looking from the query vertex u, the

vertices which appear left of it in the pre-order list and right of it in the post-order list are, in

ascending distance, t, s, n, f , b, and a. Of these, the marked ancestors—the versions in which

the hypothetical field has received updates—are n and b. Since n is closer to u than b, this is the

nearest marked ancestor.

238

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

(2) A second observation is seemingly trivial: The relative positions of the marked vertices

remain the same if all unmarked vertices are removed. If we also keep the query vertex u in the

filtered list at its relative position, the traversals become:

pre ∶ b
⋆

m
⋆

g
⋆

n
⋆

u
←Ð

post ∶m
⋆

g
⋆

u
Ð→

n
⋆

b
⋆

To find the nearest marked ancestor, again one would look for the nearest vertex of u to its left

in the filtered pre-order and to its right in the filtered post-order list.

Keeping Order in a List

As Dietz has shown, an order maintenance structure strikes a compromise between the speed at

which comparisons between two elements can be made, and the costs of inserting new elements

into the list. The basic idea to allow fast comparisons is to assign number labels to the elements

which represent their relative order. For example, in the lists above, if we tagged each element

with their position in the list, e.g. apre→ 0, apost→ 23, npre→ 15, npost→ 20, bpre→ 1, bpost→ 22,

upre→ 22, upost→ 16, then we can immediately compare those numbers to determine the relative

position of two vertices in either the pre- or post-order traversal.

However, if a new leaf is inserted, for example y as child of e, there is a problem: All the elements

after y in either of the two lists change their indices and would need relabelling. A common idea

is thus to try to minimise relabelling by allowing sufficient space between the labels. If a label

was a 32-bit integer number, to represent the initial 24 elements, the labels might be spaced by

(232−1)/24. Since the evolution of the tree is not known in advance, a simple strategy is, when

an entry y is inserted between x and z in the total order, to attach a label lb(y) ∶= (lb(x)+ lb(z))/2.

In the case of lb(z)− lb(x) = 1, only a number of neighbouring entries will be relabelled, until

the label density has become smaller again.

Several people have proposed algorithms for maintaining an order structure at improved costs.

For example, P. F. Dietz and D. D. Sleator proposed a structure which allows insertions and

239

HANNS HOLGER RUTZ

comparisons at the optimum of O(1) worst case.59 However the structure is quite involved—it

requires several types of nodes and different algorithms must be decomposed into piecewise

operation to achieve the bounds—and in reply M. A. Bender et al. developed a simpler struc-

ture.60 While it only guarantees O(logn) insertion costs, unlike Dietz’s original proposal, it

does not require any explicit tree structure, but operates entirely on a plain linked list. The

advantage for us is that if this linked list is made durable similarly to what has been shown in

Fig. 5.5—but with bi-directional links—the space needed per version vertex is rather small: its

own cell identifiers and the identifiers of the successor, predecessor and tag variables, once for

the pre-order and once for the post-order entry.

The dynamic insertion in the order structure follows the proposal by Driscoll et al.: For each

version, two objects representing the pre- and post-order entry are created and inserted into the

same list. For example, for version b there are two entries, bpre and bpost. When creating version

c as child of b, insert cpre after the parent’s pre-order entry, bpre, then insert cpost after cpre.

When one filters the resulting list to contain only the pre-order or only the post-order entries,

the result is as follows:

pre ∶ a b
⋆

f n
⋆

s v t u
←Ð

o p r q g
⋆

j c e m
⋆

w k l d h x i

post ∶ v u
Ð→

t s r q p o n
⋆

j g
⋆

f w m
⋆

l k e x i h d c b
⋆

a

While the previously shown lists were obtained by following the tree in ascending lexicographic

order, this algorithm corresponds to a traversal in descending order. One is the 180º rotated

image of the other, and both are valid. It can be quickly verified that the above lists indeed

correctly represent the ancestor relationships, and n is still the nearest marked ancestor of u.

Ancestor Search as a Geometrical Problem

Unfortunately, being able to query whether one version is an ancestor of another version is not

enough. As B. Salzberg and D. Lomet note, being an ancestor is only a necessary but not a

59Paul F. Dietz and Daniel D. Sleator (1987), ‘Two Algorithms for Maintaining Order in a List’, in: Proceedings
of the nineteenth annual ACM symposium on Theory of computing, pp. 365–372.

60Michael A. Bender et al. (2002), ‘Two Simplified Algorithms for Maintaining Order in a List’, Lecture Notes in
Computer Science 2461, pp. 152–164.

240

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

a

b
c

d

e

f
g

h
i

j

k
l

m

n
o
p

q
r

s
t
u

v

w

pre-order

p
o
s
t-
o
rd
e
r

Figure 5.13: Interpreting ancestor lookup as a two-dimensional nearest neighbour search. Cen-
tring the coordinate axes around the query point u, only points within quadrant II
(shown in grey) are considered.

sufficient criterion for finding the correct assignment path.61 Although they devise their own

algorithm, they acknowledge that it is only suited for the special case where the number of

version branches is small.

Our approach is based on a simple idea: If the pre- and post-order entries are viewed as two

orthogonal axes of a plane, we first locate the point corresponding to the query vertex. The

plane is divided into four quadrants by this point, and the nearest marked ancestor is then found

through a nearest neighbour search in the second of the thus established quadrants (“north-west”).

This is illustrated in Fig. 5.13.

Computational geometry has developed many data structures which allow spatial search in two

or more dimensions. Some of them, like the R-Tree, have already been mentioned in Sect. 2.6.1

because they can be used to represent bi-temporal data. There are, however, two problems which

prohibit a straight forward implementation. Both concern the stability of the points.

First of all, because all spatial data structures, just as a one-dimensional binary search tree,

subsequently divide the space along a path of internal nodes, the relabelling in the order main-

61Betty Salzberg and David Lomet (1995), Branched and Temporal Index Structures, tech. rep. NU-CCS-95-17,
Boston: Northeastern University, §4.1.

241

HANNS HOLGER RUTZ

tenance structure means that the points move inside the plane and invalidate the labels and

organisation of these internal nodes, too. This can be solved by removing the affected points

prior to their relabelling, and reinserting them with their new labels. Assuming that the spatial

insertion just like the relabelling is an O(logn) operation, this is technically feasible at the price

of degrading to O(log2 n) amortised costs for creating a new vertex.

The second problem arises in the relationship between marked and unmarked vertices. Because

we can have any number of mutable fields, in a field query it must be possible to isolate those

vertices which are contained in the set of assignment paths for that field. Looking at Fig. 5.13,

it is not sufficient to find any nearest neighbour of u—that would be t here—but it must be a

nearest neighbour after removing all unmarked points. A naive idea is to add a third dimension

across which the seminal field identifiers are distributed—then we can constrain the search to

the slice which manifests assignments in that field. But this would mean that in the case of

relabelling, the number of points that need reinsertion will depend not just on the total number

of versions in the graph, but also on the number of assignments in each version which needs

relabelling. We would need to store all those points in another structure associated with the

main tree vertex. Also there is no meaning in the extra spatial dimension—for example in terms

of neighbourhood—other than distinguishing unordered elements. Clearly, this is not feasible.

In the regular fat field approach as discussed in the papers about full and confluent persistence,

there is no global structure of modifications, but only the local set of assignments are managed.

If we follow this approach, the problem manifests itself in multiple order maintenance structures

being independently constructed: For a version v, there will be pre- and post-order entries vpre

and vpost in the global version list, but if a field F is mutated in that version, it will add such

entries v′pre and v′post to its local spatial structure to permit the ancestor search. As soon as a

relabelling occurs in either the global version list or any local (marked) version list, these labels

diverge.

Luckily, a solution lies in the second of the two observations made earlier on: The relative

positions within the order maintenance structures still match. The tag list containing the entries

of all vertices within a version graph’s sub-tree is thus isomorphic to the tag list formed by the

242

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

subset of these vertices which filters only those corresponding to assignments for the field F .

What is needed is an extra preparatory step that translates a vertex position from “full tree” to

“marked tree”, before querying or updating F .

Let mi be a mark of field F in version i, given a previously determined sub-tree of the version

graph. The data type Mark implementing m captures the necessary information for this translation.

Besides the value ai corresponding with the assignment of that mark, it contains a reference

both to the full tree vertex position vfull,i and the mark tree vertex position vmark,i. So mi =

(vfull,i,vmark,i,ai). A fat field stores these marks in a binary tree preOrder, sorted by the mark

tree vertex’ pre-order tag vmark,pre,i, and in another binary tree postOrder, sorted by the mark

tree vertex’ post-order tag vmark,post,i. Then to locate the hypothetical mark tree position vmark,q

of any vertex (marked or not) specified as a position in the full tree vfull,q, one traverses preOrder

and postOrder using the following procedure: Since each node of these trees contains a mark m j,

we have access to this mark’s full tree vertex. Thus we compare this vertex’ positions vfull,pre, j

and vfull,post, j with the query position vfull,pre,q and vfull,post,q. Depending on the comparison, we

go down left or right the trees until we find either the query vertex itself or the leaf that is either

the greatest—with respect to ordering positions—marked vertex smaller than the query vertex,

or the smallest marked vertex greater than the query vertex.

The starting point vmark,q for the search in the spatial structure is given as follows:

› For the x-axis corresponding to pre-order traversal, if the mark found in the previous step

lies to the right of the query position in the full tree, start just before that mark, otherwise

start exactly at that mark.

› For the y-axis corresponding to the post-order traversal, if the mark found in the previous

step lies to the left of the query position in the full tree, start right after that mark, otherwise

start exactly at that mark.

The structure for querying or updating field F , given that the correct sub-tree has been found

in the hashed prefix index search, is given in pseudocode in Listing 5.9, and the algorithm for

query and update is given in Listing 5.10. The translation procedure is illustrated in Fig. 5.14.

243

HANNS HOLGER RUTZ

Label:

def compare(that: Label): Cmp

def prepend(): Label

def append(): Label

def tag: Int

Cmp = -1 | 0 | +1

Rel = (Label, Cmp)

Vertex = (lbpre: Label, lbpost: Label)

Index[A]:

Mark = (vfull: Vertex, vmark: Vertex, value: A)

Iso = (relpre: Rel, relpost: Rel)

val listpre : Tree

val listpost: Tree

val spatial: Spatial

Spatial:

def nearest(point: (Int, Int), direction): A

def insert(Mark)

Tree:

def locate(test: Mark ⇒ Cmp): (Mark, Cmp)

def insert(Mark)

def query (vfull: Vertex): A

def update(vfull: Vertex, value: A): Unit

Listing 5.9: Interface for querying and updating in a version tree

244

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

Index[A]:

def query(vfull: Vertex): A =

translate(vfull) match

case m: Mark ⇒ m.value

case iso: Iso ⇒
x = iso.relpre .label.tag + iso.relpre .cmp

y = iso.relpost.label.tag + iso.relpost.cmp

spatial.nearest((x, y), north-west)

def update(vfull: Vertex, value: A) =

m = wrap(vfull, value)

listpre insert m

listpost insert m

spatial insert m

def wrap(vfull: Vertex, value: A): Mark =

iso = translate(vfull)

lbpre = label(iso.relpre)

lbpost = label(iso.relpre)

vmark = (lbpre, lbpost)

(vfull, vmark, value)

def label(rel: Rel): Label =

if rel.cmp == -1 then rel.label.prepend() else rel.label.append()

def translate(vfull: Vertex): Mark | Iso =

(mpre, cmppre) = listpre .locate(m ⇒ vfull.lbpre compare m.vfull.lbpre)

if cmppre == 0 then mpre

else

(mpost, cmppost) = listpost.locate(m ⇒ vfull.lbpost compare m.vfull.lbpost)

relpre = (mpre .vmark.lbpre , cmppre)

relpost = (mpost.vmark.lbpost, cmppost)

(relpre, relpost)

Listing 5.10: Algorithms for querying and updating in a version tree

245

HANNS HOLGER RUTZ

m

g

n

b

a

b

g

m

n

a

c
d

e

f

h
i

j

k
l

o
p

q
r

s
t
u

v

w

pre-order

p
o
s
t-
o
rd
e
r

u

a

b

g

m

u
n

full index tree for ej (vertex orderings) mark tree for �eld F (vertex orderings) mark octree for �eld F

(1) apply isomorphic map to terminal vertex tj = u (2) NN search to the north-west of translate(u)
 yields most recent modi�cation n

Figure 5.14: Querying a field F by locating the query vertex u in the mark tree using an
isomorphic map, followed by the constrained nearest neighbour search

Spatial Structure

We are now looking for a spatial index structure that allows dynamic point insertions, while being

self-balancing and maintaining worst case performance guarantees for insertion and nearest

neighbour (NN) search. There are simple structures like the k-d tree62 which are suitable for

offline (static) generation, but require a big effort to remain balanced under dynamic insertion.

Another simple structure is the R-tree63 which can be used in a dynamic fashion, but also does

not guarantee worst case costs except under complex enhancements.

Another set of related trees is the quadtree (in two dimensions) or octree (for any number of

dimensions).64 In its main variant, it is based on the idea that recursively each internal node

partitions the the space into four (for the quadtree) or 2d (for the d-dimensional octree) equally

sized sub spaces. Without further modification, octrees have multiple problems, too. For

example, their size depends on the locations of the points and not the number of points. This can

be alleviated by compressing paths to include only those nodes which actually contain points,

62Jon Louis Bentley (1975), ‘Multidimensional Binary Search Trees Used for Associative Searching’, Communi-
cations of the ACM 18(9), pp. 509–517.

63Antonin Guttman (1984), ‘R-trees: A dynamic index structure for spatial searching’, in: Proceedings of the
1984 ACM SIGMOD international conference on Management of data, Boston, pp. 47–57.

64Hanan Samet (1988), ‘An overview of quadtrees, octrees, and related hierarchical data structures’, NATO ASI
Series F40, pp. 51–68.

246

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

a

b

g

m

n p0

p1

p2

p0'

b

II. III. IV.

n

I.

p0

p2

II. III. IV.

a

I.

b

p1

II. III. IV.

m

I.

g

II. III. IV.

b

I.

p0'

Figure 5.15: Skip octree consisting of a full and one subsampled tree

producing a structure with O(n) size, which however still has a worst case depth of O(n) as

well.65

D. Eppstein, M. T. Goodrich and J. Z. Sun extended the idea of compressed octrees by maintain-

ing a family of subsampled trees.66 The result are two algorithms, one randomised, the other

deterministic, that allow insertion and retrieval in O(logn) time, which in the randomised ver-

sion is expected and in the deterministic case is worst case cost. More importantly, they outline

an algorithm for nearest neighbour search in O(logn) time as well. We have implemented the

deterministic version, which required some adjustments to the original algorithm proposed.

65Srinivas Aluru and Fatih E. Sevilgen (1999), ‘Dynamic Compressed Hyperoctrees with Application to the
N-body Problem’, Lecture Notes in Computer Science 1738, pp. 21–33.

66David Eppstein, Michael T. Goodrich and Jonathan Z. Sun (2005), ‘The Skip Quadtree: A Simple Dynamic
Data Structure for Multidimensional Data’, in: Proceedings of the twenty-first annual symposium on Computational
geometry, ACM, pp. 296–305; David Eppstein, Michael T. Goodrich and Jonathan Z. Sun (2008), ‘Skip Quadtrees:
Dynamic Data Structures for Multidimensional Point Sets’, International Journal of Computational Geometry &
Applications 18(1 & 2), pp. 131–160.

247

HANNS HOLGER RUTZ

The left side of Fig. 5.15 shows the non-subsampled octree Q0 containing the four marked

vertices b, g, m, n of Fig. 5.13, as well as the root vertex a. The root vertex is always explicitly

marked in any newly created octree—just using the most recent value valid for that version—in

order to ensure that the NN search succeeds even if there has not been any specific assignment

for the sub-tree’s entering vertex.

The upper left part shows the spatial partitioning into the three nodes p0, p1, and p2. The tree

structure is depicted below. Each node contains 2d children, therefore in the 2-dimensional

case there are four slots, sorted by the quadrant indices I, II, III, IV. A slot can be either empty,

occupied by a leaf value, or link to another smaller node.

While the down sampling of the octree in the randomised case is controlled by a pseudo random

number generator, the deterministic version—which we have implemented—uses an auxiliary

data structure for its regulation, a so-called skip list, giving rise to the name skip octree for

the spatial structure. A skip list is itself a successively down sampled structure, however

one-dimensional. If one thinks of a sorted linked list, a skip list can be imagined as a group

of linked lists which were obtained by successively and systematically removing elements

from the original list. Elements in higher level (sparser) lists have additional pointers to their

corresponding cells in the next lower level. A search for an element begins at the head of the

list in the highest level. This list is traversed until either the sought element is detected or an

element is found which is greater than the sought element. In this last case, one moves down to

the next level and repeats the procedure, until one either finds the element or ends at the lowest

level of the hierarchy.

Skip Lists In the original proposal by W. Pugh, these lists were probabilistic themselves and

therefore only provided expected performance bounds.67 Another author, T. Papadakis, has

developed two deterministic versions of skip lists, one based on the linked list approach of the

original structure, the other grouping multiple cells together in horizontal arrays.68 The title of

Pugh’s paper suggests a similarity between skip lists and balanced trees, and Papadakis in fact

67William Pugh (1990), ‘Skip Lists: A Probabilistic Alternative to Balanced Trees’, Communications of the ACM
33(6), pp. 668–676.

68Thomas Papadakis (1993), ‘Skip Lists and Probabilistic Analysis of Algorithms’, PhD thesis, Waterloo, Ontario:
University of Waterloo, ch. 4.

248

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

shows that deterministic skip lists (DSL) using the horizontal array technique are very similar

to B-trees and B+-trees. We have implemented the linked list version in class LLSkipList and

the horizontal array version in class HASkipList. The latter performs better when its nodes are

persisted to disk which is the case in our framework.

Without going into detail, the approach of making a DSL self balancing is to ensure that the

gap between adjacent cells—which results from down sampling the next lower level list—is

never smaller or greater than given bounds. In the most basic linked list version, the gap size

varies between 1 and 3 (this is also known as 1-2-3 or just 1-3 skip list). Therefore the size of

the list at each level is at most half of the size it has on the next lower level, and it can easily

be seen that the “tree” depth is bound by O(logn). Algorithms can be devised which allow

a simple top-down insertion which proactively closes gaps on the way down the hierarchy in

anticipation of the new element being inserted on the leaf level. Removal is also quite simple

with proactively opening additional gaps, the only exception being the removal of elements

which occur on higher levels of the hierarchy, in which case a second pass is required.

A 1-3 skip list in horizontal array form which contains the leaves of the previous octree is shown

in Fig. 5.16. Each array contains up to four elements. Arrays on the leaf level just contain the

stored keys or values themselves, while higher level arrays also contain pointers to lower level

nodes. A lower node always ends with the key from which one descended in the next higher

level. A special key ∞ is used to terminate the sorted sequence. In this example, the order of

the elements is a, b, n, g, m, and elements have been inserted in their lexicographical sequence.

Therefore, the list initially consisted only of one leaf array containing first ⟨a,∞⟩, then ⟨a,b,∞⟩,

then ⟨a,b,g,∞⟩, and then became overfull, resulting in a split and the promotion of b to the next

level. In the second level list, there is now an initial “gap” (a is missing), and a “gap” between b

and ∞ (elements n, g, and m appear between these two in the next lower level).

Down Sampling Eppstein, Goodrich and Sun’s idea of using skip lists for their octrees is very

clever: The lists are not in any way used as search structures in their own right. But instead the

propagation of elements to higher levels is observed. When b was promoted to the next level,

249

HANNS HOLGER RUTZ

∞b

nba ∞g m

Figure 5.16: A skip list storing the marked vertices is used to control octree decimation. The
lowest level corresponds to Q0, the left side of Fig. 5.15, the next higher level
reflects the sub sampled version Q1, the right side of Fig. 5.15.

the first down sampled octree Q1 was created, containing only that element. It is shown on the

right-hand side of Fig. 5.15.

In order to build the skip list of leaves, a total ordering must be imposed on them. Eppstein,

Goodrich and Sun use a binarisation of the tree through the introduction of dummy nodes

between each two orthants, resulting in a depth-first kind of traversal. However, they also note

that a purely lexical ordering of the coordinates could be used. In fact, none of the methods

for searching the octree relies on the ordering of the skip list, and neither does their proof of

worst case performance. Since in our case no two vertices share the same horizontal or vertical

coordinate, a total order is already established through the pre-order positions of the vertices—it

therefore is reflected in Fig. 5.16—and the internal nodes of the octree do not participate at all

in the ordering, simplifying this step.

Searching Since addition and removal follow the algorithms of Eppstein, Goodrich and Sun,

we shall only outline the procedure to find the nearest marked ancestor, given the skip octree

thus set up. In other words, the algorithm for method nearest in type Spatial of Listing 5.10

must be defined.

Eppstein, Goodrich and Sun view the NN search problem as an extension of a range query—

which is simpler—however with the radius being not known in advance. During the search,

a priority queue is maintained which contains possible squares yet to be explored, where the

priority is the minimum distance of a square (i.e. its closest corner or side) from the query point.

The algorithm proceeds in iterations, each of which begins by taking off the priority queue

the square which is closest. Of all the points (marked vertices) encountered during the search,

the closest one is remembered. Given a square p taken from the queue, one first goes to its

250

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

version p′ in the highest level of the sub sampling scheme in which it still exists. As indicated

in Fig. 5.15, there are bi-directional cross links between a square pi and its version in the next

higher level, p′i . If p′ contains at least two children which have the same distance from the query

point, add them to the queue and start the next iteration. Otherwise, a zig-zag movement is

made by either following down a child of p′ which has the same distance to the query point as

p′ itself, or by going back to the next lower sub sampling level. When an iteration is over and

the queue is empty, the search is completed and the remembered nearest point is returned.

This traversal of the subsampled octree family to the right and then returning in zig zag to Q0 is

crucial to binding the performance of the algorithm. The authors state in lemma 9 that one such

traversal which delimits what they call an “equidistant path” takes O(logn) time. Two possible

paths are shown in Fig. 5.17. The paths are defined by successively shrinking squares, while the

minimum distance between the query point and the squares remains the same. Depending on the

distance metric (e.g. Euclidean), only a constant number of squares hanging off this path must

be re-inserted into the priority queue, according to lemma 12, binding the cost of the overall

query to O(logn).

The algorithm has two problems. First, the “bent” path of Fig. 5.17b means that some more

squares hanging off p1 and not included in the equidistant path must be included. The paper

proposes that for this reason, 2d additional directional ancestor pointers be maintained for each

square. It is claimed that these can be updated in constant time, however we found this not to be

true. In a private correspondence with the authors, it was suggested that these pointers are not

needed, but that a direct search for the directional ancestors (e.g., finding the lowest ancestor to

the east of q) in constant time is possible.

The bigger problem seems to be the proof of the algorithm’s running time. We conducted an

empirical verification of the number of steps performed, and found at least one pathological

case, shown in Fig. 5.18, which violates the bound. In this case, the search takes O(√n) steps.

It is unclear what the error in the proof is, but we suspect that it originates in the translation of

the range query algorithm, where the search radius r is constant, to the nearest neighbour search,

which is treated as a range query with an unknown and yet to determine radius. The proof for

251

HANNS HOLGER RUTZ

p1

p2

p3

q

(a) Non-bending

p1

p2

p3

q

(b) Bending

Figure 5.17: Types of equidistant paths

the range query relies on lemma 7 which binds the number of “critical squares” to a constant

based on r. Since in each round of the nearest neighbour search the current radius r may change

(shrink), we think that lemma 7 can no longer be used to bind the performance of the NN search.

While this is an unforeseen and dissatisfying discovery, in all practical scenarios the distribution

of points is more random and the pathological case does not appear. In our empirical tests, the

performance was quite good and indeed showed logarithmic behaviour. We were able to avoid

the directional ancestor search of the first problem altogether by guiding the narrowing of the

search radius by a maximum distance metric instead of the minimum distance metric.

Finally, in order to restrict the search to a given quadrant, one can define the minimum distance

of squares which are outside the quadrant and the maximum distance of squares which extend

beyond the quadrant as ∞. The calculations can be simplified by using either a Chebyshev

metric or a squared Euclidean distance instead of the regular Euclidean distance.

5.7 Extensions and Alternatives to Persistence

The persistence approach deals with data structures as the principle abstraction, assuming only

one implicit observer which is the same instance as the operator on the structure. Time is

reflected by an irreversible and ongoing sedimentation of layers. Actions are only implicit in

these resulting layers.

252

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

Figure 5.18: Pathological configuration violating the NN performance bounds.
Points are evenly arranged on a horizontal line.

To build large systems, on the other hand, requires a modularisation process in which multiple

instances of operators and observers may exist, and it is desirable that actions can be performed

which influence a variety of concurrent objects, perhaps “retro-actively” in the sense that if

two objects X and Y rely on some property Z, we may adjust Z virtually in the past, so that its

change is reflected by all future representations of X and Y . For example, imagine that these are

objects depending on a random seed Z, and one wishes to regenerate a structure by retroactively

changing the value of Z.

These scenarios are somewhat orthogonal to the perspective that the persistence approach

provides. We will briefly review one particular approach that was presented as an alternative

to persistence, ‘retroactivity’, and how a constrained subset of retroactive behaviour can be

realised as a modification of persistence. We will then introduce another perspective shift and

see how changes can be observed through event processing which addresses the situation where

observer and mutating agent are separated.

253

HANNS HOLGER RUTZ

5.7.1 Critique of the Persistence Approach

Retroactivity as a new paradigm is proposed by E. D. Demaine, J. Iacono and S. Langerman

and contrasted with persistence:

«The key difference between persistent and retroactive data structures is that, in

persistent data structures, each version is treated as an unchangeable archive. Each

new version is dependent on the state of existing versions of the structure. However,

because existing versions are never changed, the dependence relationship between

two versions never changes . . . Thus, the persistence paradigm is . . . inappropriate

for when changes must be made directly to the past state of the structure.

In contrast, the retroactive model . . . allows changes to be made directly to previous

versions. Because of the interdependence of versions, such a change can radically

affect the contents of all later versions. In effect we sever the relationship between

time as perceived by a data structure, and time as perceived by the user of a data

structure.»69

Technically, this is not completely correct. While typically persistence indeed grows the structure

by forking off branches from previous states, a direct overwriting of versions would be possible.

Taking the linked list example of Fig. 5.7, one could in a fifth step modify version v3 by removing

the second cell w0, and the sequence seen from v3 would become (1,4,6), and seen from v4 it

would now be (1,4,6,1,3), so retroactive changes do affect future versions.

But Demaine, Iacono and Langerman are right—had we removed the last cell retroactively in v3,

the sequence would become (1,2,4) in v3, but seen from v4 it would become (1,2,4) as well—

and not (1,2,4,1,3)—because the catenation performed in v4 would have effectively become

invisible, as it operates on an element which was already removed from the data structure.

Clearly, while the data structure remains “syntactically” consistent, this is not an expected result.

In the retroactive framework, the “semantics” would be correctly modelled, because instead of

talking about data structures, it talks about «operational history».
69Erik D. Demaine, John Iacono and Stefan Langerman (2007), ‘Retroactive Data Structures’, ACM Transactions

on Algorithms (TALG) 3(2), 13:1–13:20.

254

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

Very much like undo/redo trees, retroactive data structures use representations based on the

vocabulary of allowed operations, such as keeping a history of insertions and removals of

elements from a set. At first glance they seem superior to persistence, but in fact they are

orthogonal. A retroactive operation is ephemeral in the sense that the system forgets how the

structure looked at a certain point in (transactional) time. The claim that data structure time and

“user time” are severed is therefore misleading. We have a random access system with respect to

TP, but TK is not traced.

The strongest limitation of retroactive data structures is that, unlike persistent structures, no

general transform is available that can be applied to any ephemeral structure so that it becomes

retroactive. The general theorems given in the paper only hold for very constrained structures,

such as those solely composed of commutative and invertible operations—e.g. insertion and

deletion of unrelated elements into and from an unordered set—in other words operations which

do not have a relation with each other in time. The linked list example, with an operation such as

insert X after Y , already requires a specially constructed structure and cannot be automatically

generated.

Also, the notion of branching time is completely absent, so the temporal evolution degenerates

again from a tree or graph to a time-line. The example implementations of Demaine, Iacono and

Langerman rely on this single time-line which is represented by segment trees. Other authors

have developed more sophisticated data structures based on retroactivity, such as quadtree based

range and nearest neighbour searching,70 but maintain the idea of the one timeline which does

not permit concurrent versions or the re-entry of elements. The clear sense of distinguishing

valid from transactional time seems to be missing. M. T. Goodrich and J. A. Simons use a video

cutting program as example application, and write:

70Michael T. Goodrich and Joseph A. Simons (2011), ‘Fully Retroactive Approximate Range and Nearest Neighbor
Searching’, Lecture Notes in Computer Science 7074, pp. 292–301.

255

HANNS HOLGER RUTZ

«Queries and updates happen in real time, but are indexed in terms of the timeline.

For instance, one can ask to mark an object to exist for the first time at time index

t0, that is, to be inserted at time t0. Likewise, one may ask to mark an object so it is

identified as removed as of time index t1, that is, to be deleted at time t1.»71

What is presented is a timeline canvas, where the extent and purpose of tracing its evolution

remains in the dark.

While from the implementation point of view, persistence is far superior due to the availability of

a general transform, both approaches should be carefully examined in terms of their metaphorical

and conceptual potential. Persistence is appealing because of its neglect of agents (“who writes”

and “signification”), which better resonates with the philosophical outline of Chap. 3, on the

other hand retroactivity puts the operations in the foreground—manifest as a set of updates

U = [ut1 , . . . ,utm]—so the analysis of the past traces becomes easier; it is explicit which steps

were performed in a transaction, whereas in the persistence model only heuristics can be used

to find out which parts of a data structure were actually affected.

Another interesting extension of retroactivity—despite having the same problems such as lack

of general transforms—is non-oblivious retroactivity, which gives queries the same status as

updates and includes them in the tracing structure, something that resonates well with our

conclusion that writing and observing are essentially the same.72

Overall, the shift from state to behaviour in retroactivity would indicate a better suitability

for representing interactions. In the next sections we will present a limited form of quasi-

retroactivity—a retroactivity which may influence future versions by amending instead of

overwriting the past.

5.7.2 Quasi-Retroactive Transactions

The problem of allowing the propagation of a change to an element “in the past” to all future

version is shown in Fig. 5.19. An element r1, for example a sounding structure that lasts for a

71Goodrich and Simons, ‘Fully Retroactive Approximate Range and Nearest Neighbor Searching’.
72Umut A. Acar, Guy Blelloch and Kanat Tangwongsan (2007), Non-oblivious Retroactive Data Structures,

tech. rep. CMU-CS-07-169, Carnegie Mellon University, School of Computer Science.

256

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

r1v1

v3 r3r1r2r1 v2

r1v4 ...

?

Figure 5.19: Problem of operating retroactively on branched elements

given amount of time, is created in the first version, perhaps with initially undefined duration

(hence the dashed outline). Subsequently, the structure is elaborated in two distinct branches v2

and v3, where other elements refer to the duration of r1. This is possible by using expressions as

explained in Sect. 5.9.

To decide on or update the duration of r1 in version v4 calls for something akin to a retroactive

operation: a correction or amendment of v1. In order to not undermine the preservation of the

structure’s history, we do not wish to just overwrite version v1. We could add two vertices v4a

and v4b as children to v2 and v3, respectively, but the forward linking approach of persistence

does not automatically provide us with a list of all the leaves in the version graph which refer

to r1, so we cannot simply iterate over them and adjust the value. Even if that was possible, it

would mean that we break the one-to-one relation between transaction and access path, as well

as having a cost which is linear in the number of versions which refer to a value.

Since the version sub-tree is implicitly formed by a pre-order and post-order traversal list, it

is possible to define the retroactive insertion of a vertex between a parent and all its children.

It simply requires the addition of a pre-order entry after the parent’s pre-order entry and a

post-order entry right before the parent’s post-order entry. The resulting list which uses the

unification of pre- and post-order as discussed in Sect. 5.6.4 would be ⟨v1pre , v4pre , v3pre , v3post ,

v2pre , v2post , v4post , v1post⟩. The effect is illustrated in Fig. 5.20.

To preserve the history, we add the incremental version identifier to the octree which thus

becomes three-dimensional. The nearest neighbour search is constrained to only the orthants

which contain versions with identifiers less than or equal to the query version, excluding marked

257

HANNS HOLGER RUTZ

v4

v3v2

v1

Figure 5.20: A version v4 is inserted after a parent v1, retroactively becoming the new parent
of the former parent’s children v2 and v3.

points which lie “in the future”.73 This implies that the change made in v4 is not seen in either

v1 or v2, however as soon as one descends to a child of these versions, the change becomes

effective.

Another idea we had explored74 is the use of individual components of the path representation

as variables, so that one can switch between variants of a structure, while still being able to work

on elements which are shared across these variants. This worked by defining a “neutral” version

vertex as a fallback when a value is not found in the currently viewed variant. However, it implies

that the particular path representation—from the compressed path method—is an explicit part

of the user interface of the system and must be specially handled. Instead, we now prefer a

generic container based document, where variants can easily be grouped together, possibly by

melding different versions in which these variants were originally developed. Variables which

should affect all variants are then represented by expression variables which are updated with

the quasi-retroactive insertion of Fig. 5.20.

5.8 Event Processing

Everything is fine as long as we evaluate (“pull”) the data structure from one master access point.

But when there are other observers, such as a user interface which displays values, a transport

which scans a structure in real time or a sound synthesis engine, these instances must be notified

about changes to the underlying data structure, and this notification must be modular for an

application to be scalable. If the user modifies a sound object, in any reasonably sized project

the code that issues the modification cannot keep track of the objects which are affected by that

73Cf. Hanns Holger Rutz, Eduardo Miranda and Gerhard Eckel (2010), ‘On the Traceability of the Compositional
Process’, in: Proceedings of the 7th Sound an Music Computing Conference (SMC), Barcelona, 38:1–38:7

74Ibid.

258

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

modification. A mechanism which inverts the control flow is needed, so that modifications are

“pushed” actively to the dependent objects.

5.8.1 Model-View-Controller and Reactivity

A classical concept of interaction is the Model-View-Controller (MVC) paradigm, which was

established in the context of object-oriented programming and the design of user interfaces for

the Smalltalk language.75

These three components are seen as separate concerns or modules. A model encapsulates a

mutable structure under observation, a view displays certain aspects of a model, and a controller

issues modifications of a model. The separation has several advantages. A model can be shown

in any number of concurrent views, each perhaps focusing on a different aspect of the model. If

the model was a sound object, one view could show its evolution in TK, another view could use

one version snapshot and instead use the screen space to show the development in TP, etc. The

dependency usually is strictly from view and controller to the model, therefore models can be

independently developed and are agnostic of their views. A sound installation could run either

headless—without user interface—or with a GUI attached to it. If the user interface is modified,

the model is not affected.

The pattern for establishing the dependencies between these components is called observer or

publish-subscribe pattern: The model maintains a list of observing or subscribed dependents

which are opaque except for a defined callback mechanism, for example they could be functions

which take an update message as argument. When an aspect of the model is changed, it publishes

this change to the observers. A mutable cell holding an integer value could, when updated,

publish the new integer value, or it could publish the old and the new value as a pair.

Although MVC is still widely used—from Java’s Swing user interface to web frameworks like

Ruby on Rails—there are several shortcomings of the underlying observer pattern. I. Maier and

M. Odersky provide a concise list of these:76

75Glenn E. Krasner and Steven T. Pope (1988), ‘A Cookbook for Using the Model-View-Controller User Interface
Paradigm in Smalltalk-80’, Journal of Object Oriented Programming 1(3), pp. 26–49.

76Ingo Maier and Martin Odersky (2012), ‘Deprecating the Observer Pattern with Scala.React’, Technical Report
EPFL-REPORT-176887. Ecole Polytechnique Fédérale de Lausanne.

259

HANNS HOLGER RUTZ

› Observers are invoked as callbacks, so their reactions must be implemented using side-

effects instead of, e.g. functional composition.

› As a consequence, observers cannot be composed, although reactions often require the

collaboration between multiple observers, e.g. keyboard and mouse handlers participating

in a drag-and-drop operation.

› A great amount of bookkeeping is required, including explicit release when an observing

instance disappears.

› Reactions are often spread across the code base and not clearly separated from the appli-

cation logic.

› Cross observer communication is potentially indeterministic and can cause glitches.

› It is often unclear what an observer’s function is, as opposed to a declarative approach

which better captures the meaning of a reaction.

Two approaches which address these issues to different degree might be called event-based and

dataflow-based or reactive, respectively.77

Event-based Approaches

Event-based systems address the composition and deterministic behaviour and improve on the

declarative aspect. An example of this is EScala,78 which comes in two flavours: A purely

library-based solution for Scala, and a language extension to Scala which adds additional

keywords. An example of the latter is shown in Listing 5.11.79

Events take a type parameter which represents the update associated with the event. Pure

trigger-like events do not carry any additional information and therefore use the Unit type. In the

example, the invalidated event passes the new rectangle of the figure as its update value. Event

dispatch can originate either from an “imperative” event, to which the update value is explicitly
77Cf. Guido Salvaneschi, Gerold Hintz and Mira Mezini (2012), REScala: Bridging Between Object-oriented and

Functional Style in Reactive Applications, tech. rep., Darmstadt: Technische Universität Darmstadt
78Vaidas Gasiunas et al. (2011), ‘EScala: modular event-driven object interactions in Scala’, in: Proceedings of

the tenth international conference on Aspect-oriented software development, ACM, pp. 227–240.
79This example is taken from ibid., and slightly adapted to include imperative events.

260

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

abstract class Figure {

imperative event moved[Unit]

event resized[Unit]

event changed[Unit] = resized || moved || after(setColor)

event invalidated[Rectangle] = changed.map(_⇒ getBounds())

...

def moveBy(dx: Int, dy: Int): Unit = {

position.move(dx, dy)

moved() // imperatively dispatch event

}

def setColor(value: Color): Unit = color = value

def getBounds(): Rectangle

}

Listing 5.11: Event definition and composition in EScala

applied (method moveBy shows this type), or through a before or after hook, an idea the authors

adapted from aspect orient programming (AOP). Furthermore, events can be composed with

operators such as ||, where changed is dispatched if either of resized, moved, or after(setColor)

is observed, and they can be chained with the map function.

To observe an event, a function, which takes the update value as argument, is registered as

follows:

figure.invalidated += { r⇒ println("New rectangle is " + r) }

An important aspect is the propagation of updates when an event is dispatched. EScala uses

a time tag (“id”) which is incremented each time an imperative event is dispatched. The

dependency graph is traversed, and at each node the intermediate events are associated with

that tag. If an event was already seen within the same cycle, it will not be followed, in order

to suppress feedback. Furthermore, dependencies between events are only latent—e.g. in

Listing 5.11, the dependency of changed on resized—they become manifest (“deployed” in their

terminology) when an actual observer is attached as leaf to the dependency graph. That way,

blind paths are not followed unnecessarily. The leaf reactions are first completely collected, and

then executed in a second pass, to avoid glitches such as new reactions being added during the

traversal.80

80The implementation of EScala is presented in more detail in Vaidas Gasiunas et al. (2010), Declarative Events
for Object-Oriented Programming, tech. rep. TUD-CS-2010-0122, Technische Universität Darmstadt

261

HANNS HOLGER RUTZ

Reactive Dataflow Approaches

An example of reactive systems is Scala.React.81 The concept of events is complemented by

a type Signal[A] which is basically a dataflow cell embodying an expression that evaluates to

some value of type A. The correspondence to an imperative event would be a variable cell which

is a signal along with an update method to set the value explicitly. A signal thus has an interface

very similar to the STM Source, and a variable has an interface similar to the combination of

Source and Sink into a reference cell, as introduced in Listing 5.4.

A signal-based version of the Akka dataflow example from Listing B.5 is shown in Listing 5.12.

Apart from the few syntactical variations, the difference is that an Akka dataflow variable can be

initially undefined and can be written only once, whereas signals must have an initial value, so

v2 is set to zero first, and they can change any number of times. Composed signals are created

through the Lazy { } construct. Evaluations or updates must be performed within a specific

context, created via a schedule function. The actual event propagation is only performed when

the runTurn() function is called, allowing for the successive scheduling of different closures to

be executed on the same logical turn.

Publish-subscribe, events and signals are not mutual exclusive mechanisms, but rather different

abstraction layers. Event systems are implemented using publish-subscribe patterns, and signal

changes are propagated through an event system. In Listing 5.12, change events are observed

through the observe function. Similarly, in REScala—which combines EScala and Scala.React—

signals are turned into events by means of a method aSignal.changed, and events can become

signals through anEvent.hold, a sample-and-hold operation.82 This duality of signals as functions

of time and events as instants in time follows closely the concept of behaviours and events in

functional reactive programming (FRP) as described by C. Elliott and P. Hudak.83

Event streams and reactive cells each have their advantages and disadvantages. While the latter

may appear generally favourable, one should consider the observation of a simple data structure

81Maier and Odersky, ‘Deprecating the Observer Pattern with Scala.React’.
82Salvaneschi, Hintz and Mezini, REScala: Bridging Between Object-oriented and Functional Style in Reactive

Applications.
83Conal Elliott and Paul Hudak (1997), ‘Functional reactive animation’, ACM SIGPLAN Notices 32(8), pp. 263–

273.

262

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

val v2 = Var(0)

val v1 = Lazy { v2() + 10 }

val f = Lazy { v1() + v2() }

schedule {

new Observing {

observe(f) { p⇒ println("Observed: " + p) }

}

v2() = 5

}

runTurn()

Listing 5.12: Reactive signals with Scala.React

such as a mutable list: In designing what G. Salvaneschi, G. Hintz and M. Mezini call a «signal-

enabled data structure»,84 there are simple elements such as the list’s size, which can be easily

represented as signals; but the other examples they give, inspecting the head element of the list

or having a filtered version of the list, are fairly difficult. What happens when the head element

disappears as the list becomes empty? Implementing a filtered list by rebuilding it each time the

underlying full list changes, can be costly (more so, when the list is persistent). And how can

operations—e.g. insertion—be performed on a filtered list so that they are consistently reflected

by the full list? In REScala, the solution for a filtered list is to simply make it read-only, so it

never needs to mutate the full list it depends on.

An additional case is not discussed at all in these papers, although it will be relevant for us:

When a collection of mutable objects is observed, the observer typically wants to react to

changes in the collected objects. If we want to avoid the scenario that the observer has to iterate

over all elements and keep track of additions and removals, this requires that the collection itself

dispatches events which bundle all events arriving from any of the contained objects.

84Salvaneschi, Hintz and Mezini, REScala: Bridging Between Object-oriented and Functional Style in Reactive
Applications.

263

HANNS HOLGER RUTZ

5.8.2 Implementation of the Event Layer

Our system is based on events in the first place, on top of which, in a second step, expressions

can be built which are similar to signals. We introduce the event layer in this section. The design

was made with the following aspects in mind:85

› Events are transactionally embedded. Events originate from manipulations of mutable

objects within an ongoing transaction. Reactions must be able to access objects within the

same transaction, and it must be possible to encapsulate any number of reaction chains

within a single transaction, so that they are logically coalesced into the same version.

› If realtime sound synthesis is seen as “view” in the MVC pattern, the sound synthesis

must consistently react to sound object mutations. If for example a group of objects is

evenly spatialised across a number of speakers, the action of removing an object from the

group must be followed by a reaction in the sound synthesis view that adjusts the DSP

chain. This might trigger other events within the DSP apparatus, all of which must happen

in the same transaction. If anything goes wrong, the whole transaction must rollback as if

the event was never emitted.

› If several views exist for different branches in TK, events must be isolated to propagate

only to observers in the same temporal branch, leaving other branches unaffected.

› If multiple observers react to a change in an object, their views of the object must be

consistent. This is in conflict to the first two points—we want all reactions to happen

within the same transaction, and observers are free to mutate objects, thus strict isolation

is not possible.

Events are integrated with the persistent layer mainly through additional classes, requiring only

a small new hook in the Sys and Txn types. A mutable object which emits events, maintains a

Node which is able to route messages to events, using a slot identifier which is unique for each

event. The node also contains a Targets object which holds the immediate dependents of the

85Cf. Rutz, ‘A Reactive, Confluently Persistent Framework for the Design of Computer Music Systems’

264

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

node. A mechanism is in place, similar to what was done in EScala, that lazily builds up the

dependency network.

The dependents list in Targets uses a special variable type which differs from a regular S#Var by

having limited durability. Values written to an event variable are integrated into the same system:

for a confluent system, the dependents are stored in a confluent variable, for an ephemeral

system, they are stored in an ephemeral variable. However, they are held in a separate database

file which is reset when an application is started. As a result, we can safely quit an application

anytime and will not have “dangling” or “orphaned” observers. Views are considered ephemeral

and have to be recreated when the application launches.

Since our persistent layer uses a top-down serialisation approach—an instance A holding an

object B knows how to deserialise B, so without the presence of A we are not able to parse

the serialised form of B—a solution must be found that enables a bottom-up (inverted control)

mechanism such as event propagation to operate. The essence of MVC was exactly that from

a model’s perspective its observers are opaque, so it cannot possibly know how to deserialise

them. Moreover, the system cannot be closed over the type of possible observers but must be

able to accommodate any kind of observer, otherwise it would not be modular and scalable.

The solution we propose is to see event propagation as a “tunnel” from a source (model) to an

observer (view). All the intermediate instances where events are composed and chained together

lie in the darkness of the tunnel. The model is always known, because a controller mutates the

model. The leaf observers all correspond to “live” views and may be kept in memory, so they

need not be serialised. Only the things inside the tunnel must be serialised and deserialised

“blindly”.

Network Connection

As an example, and partly forestalling expressions, we will use a random number generator that

can be triggered, along with a mapping of its outcome—adding a number to it—and an observer

reacting to the mapped value. The interfaces are shown in Listing 5.13. Similar to the signals

in Scala.React, an expression can always be evaluated using the value method, and events are

265

HANNS HOLGER RUTZ

trait Expr extends Writable {

def value(implicit tx: S#Tx): Int

def changed: Event[S, Int, Expr]

def +(that: Int)(implicit tx: S#Tx): Expr

}

object Random {

def apply(min: Int, max: Int)(implicit tx: S#Tx): Random = ???

}

trait Random extends Expr {

def update()(implicit tx: S#Tx): Unit

}

def example()(implicit tx: S#Tx): Unit = {

val r = Random(0, 10)

val f = r + 64

f.changed.react { implicit tx⇒
n⇒ println("New value: " + n)

}

r.update() // roll dice.

r.update() // once more.

}

Listing 5.13: Events in an observed expression

obtained through an associated changed method. The Random expression has an additional update

method to trigger the calculation of a new number.

The example shows how an observer is attached to a compound expression f made from a

random expression r to which a binary plus operator is applied. The react method attaches

the observer which is a function from a transaction to a function from the event type to Unit.

Executing the example will successively print two random numbers between 64 and 73.

The tunnels are established by the first react call to an event, and will be torn down with the

removal of the last observer. Internally these methods map to ---> and -/-> which trigger

connect and disconnect messages on the source node for the first added and last removed

selector. Listing 5.14 shows how the implementation of the adding expression may look. When

it is connected, it enables the link to its source expression, and when disconnected, it cuts

that link again. The value method obviously just evaluates the source and applies the binary

operation. Similarly, the pullUpdate method, which resolves an event in the pull phase, pulls

266

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

class AddImpl(val targets: Targets[S], ex: Expr, a: Int)

extends Expr with impl.StandaloneLike[S, Int, Expr] {

...

def connect ()(implicit tx: S#Tx): Unit = ex.changed ---> this

def disconnect()(implicit tx: S#Tx): Unit = ex.changed -/-> this

def pullUpdate(pull: Pull[S])(implicit tx: S#Tx): Option[Int] =

pull(ex.changed).map(_ + a)

def value(implicit tx: S#Tx) = ex.value + a

def changed = this

}

Listing 5.14: Engaging event chains and mapping updates

from the source and then applies the binary operation. pullUpdate returns an optional value, so

that events may be filtered or swallowed, for example if a resulting value does not constitute

a nominal change. Finally, the trait StandaloneLike can be used when a node has exactly

one event, as it conveniently combines and implements the two, hence allowing the aliasing

def changed = this.

Dispatch

Dependents are represented by small proxies called selectors. The observers at the leaves of

the network are embodied by ObserverKey selectors. These carry a unique identifier which

is used as a key to look up the actual observer in an in-memory dictionary. Events, through

which messages pass in the tunnel, are subtypes of VirtualNodeSelector, the form in which they

may be serialised. This type of selector stores a VirtualNode which may be either an opaque

serialised node, Raw, or the fully recovered node. In short, selectors and raw virtual nodes can be

deserialised on the way from model to view without any additional knowledge being required

about the type or shape of the participating nodes.

This first “push” phase of event dispatch is shown in Fig. 5.21a. At the end of this phase, all

observers have been collected. In order to devirtualise the raw nodes and to process the actual

update message, a “pull” phase is issued in the opposite direction, as shown in Fig. 5.21b.

267

HANNS HOLGER RUTZ

Targets1

Reactor1 Event1
Event2

fire

push to dependents

Targets2

VirtualNode
Selector

1

2

Targets3

VirtualNode
Selector

3

Observer
KeyObserver1

gather4

propagate

(a)

Targets1

Reactor1 Event1

Targets3

Observer1

deserialize+pull5

Reactor3
Event1''

Targets2

Reactor2

Event1'

Reaction1

execute6

(b)

Figure 5.21: Push and pull phase in event dispatch

Accessing Models and Mapping Views

Reacting to an immediate model or part of a model is straightforward: The event is dispatched

inside a transaction, and if the event update type includes the model, an observer may immedi-

ately access that model. For example, in the sound processes framework (Sect. 5.11) the Proc

class defines an event changed with the following update type:

case class Update[S <: event.Sys[S]](proc: Proc[S], changes: IndexedSeq[Change[S]])

So any observer reaction has a fresh accessor to the emitting process via the proc field. Two

problems remain: First, a controller may have to access a model due to user interaction such as

clicking a button, not having direct access via an event update. And second, a view may observe

a collection of models and associate each with an auxiliary data structure. When the model is

updated, it must find this auxiliary data structure.

The first problem is solved by creating a handle to the model, which acts as an STM source

(Listing 5.4). For example, a handle for a sound process proc is created via

val hndl = tx.newHandle(proc)

This serialises the process in memory. Within a different transaction—which must be a descend-

ent of the version in which the handle was created—such as the one that transports an event

268

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

update, the process can be freshly accessed (deserialised) through hndl(). One can think of

handles as decentralised access pointers in the Fiat and Kaplan model.

The second problem also concerns the “freshness” of the model. Here, an auxiliary structure V

is created in version vi and associated with a model M which was accessed in that version vi;

an event arrives in version vk, a descendent of vi, and the task is to find V , given M accessed

in vk. Obviously, a regular dictionary will not suffice, as the key identity changes due to the

version progression. The key which was used for storing V is indeed a prefix of the access path

of M, so the maximum prefix search procedure is applicable. The structure we define is an

IdentifierMap, which is either maintained in memory or made durable. Both variants have the

same interface. Here is an example of an in-memory map:

val map = tx.newInMemoryIDMap[Proc[S]] // map using maximum prefix keys

// for each new process in a collection, associate an auxiliary structure (view)

def procAdded(proc: Proc[S])(implicit tx: S#Tx): Unit = {

val view = ...

map.put(proc.id, view)

}

// when the process changes, update the view

def procChanged(proc: Proc[S])(implicit tx: S#Tx): Unit =

map.get(proc.id).foreach { view⇒ ... }

5.9 Composable Expressions

We have implemented a thin layer on top of events which provides a functionality similar to

Scala.React signals. Like an STM source, an Expr[S, A]—an expression of type A in system

S—has an access method to transactionally retrieve a value of type A. This method is called

value instead of apply, because the latter is reserved for the equivalent of a reference cell, an

Expr.Var[S, A]. The important difference is that an expression variable holds another expres-

sion instead of a flat value of type A. Flat values are lifted to expressions in the form of an

Expr.Const[S, A]. These three basic types are shown in Listing 5.15.

Expressions provide an optional event through the changed method. An EventLike can be either

a regular Event or a dummy with an interface compatible to Event. For example, constants do

not actually dispatch events, as they are immutable. When seen as opaque expressions, one may

269

HANNS HOLGER RUTZ

object Expr {

trait Var[S <: Sys[S], A] extends Expr[S, A] with stm.Var[S#Tx, Expr[S, A]] {

def changed: Event[S, Change[A], Expr[S, A]]

}

trait Const[S <: Sys[S], +A] extends Expr[S, A] {

def changed = Dummy[S, Change[A], Expr[S, A]]

protected def constValue: A

def value(implicit tx: S#Tx): A = constValue

def dispose()(implicit tx: S#Tx) = ()

}

...

}

trait Expr[S <: Sys[S], +A] extends Writable with Disposable[S#Tx] {

def changed: EventLike[S, Change[A], Expr[S, A]]

def value(implicit tx: S#Tx): A

}

Listing 5.15: Expressions, and their special forms variable and constant

still attach observers to them, although this is a no-op. The event update type is Changed which

simply wraps the previous and the new value of the expression:

case class Change[+A](before: A, now: A)

Expressions allow the composition of dynamic relationships between objects. This was dis-

cussed in a previous paper86 under the name of a “fluent reference”: for example, one can

specify that the beginning time of an object r2 (with respect to some timeline) is the ending

time of an object r1 plus a certain gap. Whenever the interval of r1 changes, the interval of r2 is

automatically adjusted. A hypothetical code could look like this:

def placeAfter(pred: Expr.Var[S, Span], succ: Expr.Var[S, Span], gap: Expr[S, Long])

(implicit tx: S#Tx): Unit = {

val newStart = pred.stop + gap

val newStop = newStart + succ().length

succ() = Spans(newStart, newStop)

}

86Rutz, Miranda and Eckel, ‘On the Traceability of the Compositional Process’.

270

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

Expr.Var[S, Span]pred:

.stop

Expr[S, Long]

Expr[S, Long]

+

Expr[S, Long]

gap:

succ: Expr.Var[S, Span]

.apply

Expr[S, Long]

+

Expr[S, Long]

Expr.Var[S, Span]

Spans.apply

newStart:

Expr[S, Span]

.length

:newStop

.update

Figure 5.22: Expression chains produced by function placeAfter.
Arrows point in dataflow direction from dependency to dependent.

The intervals of the predecessor region r1 and the successor region r2 are given as expression

variables. We will see in Sect. 5.12 that this is a useful predisposition for editable processes.

The interval type is Span, which is a value consisting of two Long fields start and stop, denoting

the interval start (inclusive) and stop (exclusive) given in sample frames. The length of a span

is thus stop-start. By using integer sample frames, values in T(P) are represented at a high

resolution while operations are not exposed to floating point noise.

No primitive values, only expressions appear in the example: The selection pred.stop yields

an Expr[S, Long], and so does the binary operation for newStart. The content of succ will

be overwritten, but we want to preserve the previous duration of succ. Calling apply on the

expression variable is essential, as the resulting expression is not depending on that variable.

If one looks at a graphical representation of the expression chains in Fig. 5.22, the variable

application is shown dotted, indicating that the dependency is disconnected thereby. The

disconnection prevents an infinite feedback which would otherwise occur with the arrow going

back from the newly formed expression to succ.

As can be seen in the flow diagram, a modification either of the interval of r1 (pred) or of the

gap expression will propagate all the way to the interval expression for r2 (succ).

271

HANNS HOLGER RUTZ

trait BiExpr[S <: Sys[S], A] extends Expr[S, (Long, A)] {

def time: Expr[S, Long]

def mag : Expr[S, A]

def timeValue(implicit tx: S#Tx): Long

def magValue (implicit tx: S#Tx): A

}

Listing 5.16: A bi-temporal expression associates a magnitude with a point in time.

5.10 Performance Time

Using expressions, directional relations between entities can be succinctly specified, breaking

out of the “inanimate” perspective of a pure top-down data structure which forms the basis

of persistence. This goes for relations in performance time as well, as has been shown in the

previous section: Temporal expressions can be arbitrarily complex, but ultimately evaluate to

equally spaced sample frames with respect to a given sample rate—e.g. 44.1 kHz— and a given

anchor (reference to a timeline), a perspective useful for viewing, rendering and real-time sound

synthesis.

One can now associate an expression of any type A with a moment in time, in order to place

them in T(P). For example, if we were to describe the development of a sound’s frequency, one

can think of it as breakpoints across a timeline. We define a type for this paring, BiExpr—for

bi-temporal expression, since TK is already taken care of through system S—whose interface is

shown in Listing 5.16. A BiExpr is itself an expression of the tuple type (Long, A), allowing for

constant, variable and combinatory bi-temporal expressions.

We define two collection types for bi-temporal expressions: BiPin and BiGroup. The former cor-

responds to a one dimensional breakpoint function, where no more than one nominal magnitude

exists at the same time instant. Its interface is shown in Listing 5.17.

The three methods at, floor, and ceil return the elements at a given time or perform a nearest

neighbour search in either direction. Because temporal values are specified as expressions, a

strange situation may occur: Two elements might have a temporal expression which evaluates

to the same point in time. But if this expression changes for either of the two elements, these

272

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

object BiPin {

case class Update[S <: Sys[S], A](pin: BiPin[S, A], changes: IndexedSeq[Change[S, A]])

sealed trait Change[S <: Sys[S], A]

sealed trait Collection[S <: Sys[S], A] extends Change[S, A] {

def value: (Long, A)

def elem: BiExpr[S, A]

}

case class Element[S <: Sys[S], A](elem: BiExpr[S, A],

elemUpdate: event.Change[(Long, A)]) extends Change[S, A]

case class Added [S <: Sys[S], A](value: (Long, A), elem: BiExpr[S, A])

extends Collection[S, A]

case class Removed[S <: Sys[S], A](value: (Long, A), elem: BiExpr[S, A])

extends Collection[S, A]

trait Modifiable[S <: Sys[S], A] extends BiPin[S, A] {

def add (elem: BiExpr[S, A])(implicit tx: S#Tx): Unit

def remove(elem: BiExpr[S, A])(implicit tx: S#Tx): Boolean

}

...

}

trait BiPin[S <: Sys[S], A] extends Writable with Disposable[S#Tx] {

type Elem = BiExpr[S, A]

def modifiableOption: Option[BiPin.Modifiable[S, A]]

def at (time: Long)(implicit tx: S#Tx): Option[Elem]

def floor(time: Long)(implicit tx: S#Tx): Option[Elem]

def ceil (time: Long)(implicit tx: S#Tx): Option[Elem]

def changed: EventLike[S, BiPin.Update[S, A], BiPin[S, A]]

...

}

Listing 5.17: BiPin, a bi-temporal breakpoint function

273

HANNS HOLGER RUTZ

elements move to distinct points in time. Therefore, the underlying data structure must not

discard an element even if another element moves to the same location, as it may well be

“uncovered” at a later point in TK. The querying methods therefore return the nominal element

at a time, which is the element at that time which was most recently updated.

The plain BiPin interface is read-only, providing an optional modifiable interface with methods

for addition and removal of elements through method modifiableOption. The reduced function-

ality of the read-only collection allows it to appear as a transformed or filtered collection, similar

to the «complex inspectors» proposed for REScala.87

In order to answer the queries efficiently, the implementation is backed up by a skip list

(Sect. 5.6.4). This comes with a problem, however: The BiPin must observe those changes in

the elements’ time positions which require a reinsertion for maintaining the ordering, a situation

similar to the relabelling problem with the octree. We have experimented with different solutions.

One can establish the dependency links from element to collection eagerly and permanently,

instead of lazily waiting until the collection itself is observed. Then in a push phase, when

reaching an unobserved collection, it must be either updated—requiring additional knowledge

about deserialising a BiPin—or marked “dirty” so that the collection can refresh its knowledge

of the time position upon the next query or observer registration.

The disadvantage is a more complex maintenance structure, and a single dirty marker flag means

that upon verification, the whole list of elements must be traversed to ensure consistency. We are

therefore sticking to a simple lazy solution, whereby the collection traverses the list of elements

when the first observer is attached, setting up both the dependency links and verifying the time

positions, which is equally expensive. Future work may examine this situation to provide a

solution that performs better.

Finally, we shall look at the event structure of BiPin. Contrary to the fine-grained events

discussed in the EScala paper,88 we prefer to bundle the different types of updates under one

87Salvaneschi, Hintz and Mezini, REScala: Bridging Between Object-oriented and Functional Style in Reactive
Applications.

88Gasiunas et al., ‘EScala: modular event-driven object interactions in Scala’.

274

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

compound event, more akin to event dispatch for example in Scala Swing.89 Because an event

can cause multiple related updates now—e.g. a time expression change may affect multiple

elements—the update type is a sequence of BiPin.Change values. These in turn can be either

collection related changes, such as an element being Added or Removed, or forwarded updates

from an Element itself. This simplifies the observation of a collection, because there is one

central observing function which is notified about any element in the collection, and the views

do not need to add and remove observers on the individual elements as they appear and disappear

in the collection.

The second collection type, BiGroup, sorts elements by intervals. Type SpanLike is a super type

of Span which also includes unbounded intervals. For example, Span.From(10000) is an interval

[10000,∞), a concept that is useful for real-time generation of sound processes which may be

started at some point without knowing yet when they will end. Furthermore, any number of

elements may overlap or coincide in time. The interface of BiGroup, shown in Listing 5.18, is

similar to BiPin, except that the temporal annotation is a span instead of an instant, and queries

return sequences of elements. Again the basic type is read-only, and modifiableOption provides

an extended type with methods for adding and removing elements.

Elements stored are not necessarily expressions—indeed the main application is to collect the

sound process instances Proc—and therefore an explicit element event update type U is required.

The equivalent of BiExpr now is TimedElem. Events again combine collection insertions and

removals with forwarded element updates.

The underlying data structure for efficient queries is a two-dimensional skip octree storing start

and stop values of the spans in their respective axes. The root square spans the entire 64-bit

range of possible locations (minimum and maximum encode the open interval boundaries), and

appropriate rectangular shapes can be constructed for range queries, so as to find all intervals

overlapping with a given other interval, or finding all intervals starting or ending inside a certain

interval.

89Ingo Maier (Nov. 2009), The scala.swing package, Scala Improvement Process (SID) #8, URL: http://www.

scala-lang.org/sid/8 (visited on 29/06/2013).

275

http://www.scala-lang.org/sid/8
http://www.scala-lang.org/sid/8

HANNS HOLGER RUTZ

object BiGroup {

type Leaf[S <: Sys[S], Elem] = (SpanLike, IndexedSeq[TimedElem[S, Elem]])

trait TimedElem[S <: Sys[S], Elem] extends Identifiable[S#ID] {

def span: Expr[S, SpanLike]

def value: Elem

}

trait Modifiable[S <: Sys[S], Elem, U] extends BiGroup[S, Elem, U] {

def add(span: Expr[S, SpanLike], elem: Elem)(implicit tx: S#Tx): TimedElem[S, Elem]

def remove(span: Expr[S, SpanLike], elem: Elem)(implicit tx: S#Tx): Boolean

}

...

}

trait BiGroup[S <: Sys[S], Elem, U] extends event.Node[S] {

import BiGroup.Leaf

def modifiableOption: Option[BiGroup.Modifiable[S, Elem, U]]

def intersect(time: Long)(implicit tx: S#Tx): stm.Iterator[S#Tx, Leaf[S, Elem]]

def intersect(span: SpanLike)(implicit tx: S#Tx): stm.Iterator[S#Tx, Leaf[S, Elem]]

def nearestEventAfter (time: Long)(implicit tx: S#Tx): Option[Long]

def nearestEventBefore(time: Long)(implicit tx: S#Tx): Option[Long]

def eventsAt(time: Long)(implicit tx: S#Tx):

(stm.Iterator[S#Tx, Leaf[S, Elem]], stm.Iterator[S#Tx, Leaf[S, Elem]])

def changed: EventLike[S, BiGroup.Update[S, Elem, U], BiGroup[S, Elem, U]]

...

}

Listing 5.18: BiGroup, a bi-temporal interval tree

276

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

trait Proc[S <: Sys[S]] extends event.Node[S] {

def graph: Expr.Var[S, SynthGraph]

def scans : Scans .Modifiable[S]

def attributes: Attributes.Modifiable[S]

def changed: evt.Event[S, Proc.Update[S], Proc[S]]

}

Listing 5.19: Interface of a sound process

There are two variants of intersect which provide an iterator over all elements that exist at

a given point, as well as elements overlapping a given interval (useful for painting a view

port of a timeline display). The floor and ceil methods of BiPin have been changed for

nearestEventBefore and nearestEventAfter. They only return a point in time, whereas the

actual changes occurring at that moment can be queried using eventsAt. It returns an iterator for

intervals stopping at that point, and an iterator for intervals starting at that point.

5.11 Creating Sound Processes

Using the persistent and the event layer, the notion of expressions and bi-temporal data structures,

we are now ready to define sound processes. As already mentioned: The basic entity representing

such processes is the Proc type, shown in Listing 5.19. With its three members and one event,

this is a noticeable reduction from the first iteration of the SoundProcesses framework—which

was ephemeral—where the interface had more than two dozen members.

Three factors helped to gain this rather minimal appearance. First, we apply the concept of

MVC to “sounding representations” as well. Processes can be defined and manipulated now

independently of a sound synthesis server running. Instead, any number of “aural views” (or

AuralPresentations, as we call them) may be created which provide the actually sounding

surface of a Proc. Second, the structure is more modular, with most functionality encapsulated

by scans and attributes, which will be discussed in the next sections. Third, we reduced the

number of mandatory information fields in favour of a general parameter map attributes, taking

the advice from Eaglestone et al. that the composer should be able to make «free associations

277

HANNS HOLGER RUTZ

val sg = SynthGraph {

val sig = PinkNoise.ar

val bus = graph.attribute("bus").ir(0)

val mute = graph.attribute("mute").ir(0)

val env = graph.FadeInOut("fade-in", "fade-out").ar

val amp = env * (1 - mute)

Out.ar(bus, sig * amp)

}

Listing 5.20: Example SynthGraph generating pink noise

between audio material».90 It also keeps the interface open for inclusion of additional data,

something we have used for the multitrack application Mellite (see Sect. 4.6).

5.11.1 SynthGraph as the Sound Descriptor

At the core of a sound process lies a declaration of a signal processing network, using Scala-

Collider, a Scala-based client for the SuperCollider server. Since it is written in the same

language as the rest of the framework, for the composer there is a seamless transition between

the two, and it allowed us to integrate the APIs of ScalaCollider and SoundProcesses.

ScalaCollider has been described in detail elsewhere,91 so we wish to focus here on the aspects

relevant for the integration with the SoundProcesses framework. A SynthGraph is made from

an anonymous function which declares a group of interconnected DSP building blocks, which

typically constitute a self-contained sound entity. These building blocks, called graph elements

and denoted by type GE, in most cases correspond to non-expanded SuperCollider UGens.

Expansion is the process of unfolding graph elements into other graph elements or producing a

number of UGens, often involving the duplication and variation of structures across multiple

channels—called “multichannel expansion” in SuperCollider. Listing 5.20 shows the definition

of an example SynthGraph.

Each line results in a graph element, sometimes composed of multiple elements, as is the case

for the amplitude statement (two nested binary operator elements). Besides the familiar blocks

from SuperCollider, the PinkNoise generator, the binary operators, and the Out element, we

90Eaglestone et al., ‘Information systems and creativity: an empirical study’.
91Hanns Holger Rutz (2010), ‘Rethinking the SuperCollider Client. . . ’, in: Proceedings of the SuperCollider

Symposium, Berlin.

278

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

def configure(proc: Proc[S])(implicit tx: S#Tx): Unit = {

val bus = Ints .newVar[S](0)

val fadeInLen = Longs.newVar[S](44100)

val fadeIn = FadeSpec.Elem(fadeInLen, Curve.sine, 0.0)

proc.attributes.put("bus" , Attribute.Int (bus))

proc.attributes.put("mute" , Attribute.Boolean (false))

proc.attributes.put("fade-in", Attribute.FadeSpec(fadeIn))

proc.graph() = sg // (as previously defined)

...

bus() = 1 // adjust bus

fadeInLen() = 22050 // adjust fade-in duration

}

Listing 5.21: Configuring parameters of a sound process

introduce a number of new elements in the graph package. The function attribute looks up a

numeric scalar value in the attributes field of a sound process. Most attributes are based on

expressions, so they obey dataflow rules. Listing 5.21 shows how a process is configured with

the SynthGraph of Listing 5.20 and some of the related attributes.

Here bus and fadeInLen are expression variables, while fadeIn is a composed expression, and

the mute attribute is set to a constant expression. Because of the heterogeneous nature of

attributes, retrieval from the map only returns attributes when they match the expected type,

so it is important to establish conventions for the names and types of attributes. The graph

elements always require a meaningful default value. Where graph.attribute has a function

similar to controls in SuperCollider, the FadeInOut element takes attribute names and generates

an envelope spanning the duration of the process in a group (see Sect. 5.11.4). Since the fade-out

attribute is not specified, the envelope will just end abruptly. The same would happen if the key

was present but the value type was not FadeSpec.

5.11.2 Graphemes

Attributes evolve in TK but not T(P). This makes sense for some of them, e.g. how would

a fade-in specification vary while the sound is playing? Others arguably could be conceived

as varying across a performance timeline. Standard harddisk recording applications allow the

automation of a mute flag. They do not allow the automation of the bus routing (other than

279

HANNS HOLGER RUTZ

panorama position or send volume), because it would present some challenges for the graphical

user interface, but technically they could.

For bi-temporal values, this is where graphemes come in. Evidently inspired by Derrida’s ter-

minology, a grapheme is a material trace produced by a writing operation. The type Grapheme is

a specialisation of the BiPin data structure—thus a sort of one-dimensional time function—where

elements are bi-temporal expressions evaluating either to Grapheme.Value.Curve or

Grapheme.Value.Audio. A Curve is a break point magnitude associated with a slope type such as

step function, linear ramp, exponential curve, etc. The magnitude can be a single element or a

vector to produce multichannel expansion. An Audio element is a tuple consisting of an audio

file artefact, an offset into that file and a gain factor. In other words, a grapheme produces a

performance time signal (monophonic or multichannel), composed of segments which are either

break point functions or audio file fragments or combinations thereof.

An audio file Artifact is a reference to a file on harddisk, associated with an Artifact.Location,

relative to which the file is found. This allows a project to be transported to another harddisk.

If subsequently the location is updated, the artefacts should be found again in the new location.

An Audio element also caches information about the artefact, such as duration, sample rate and

number of channels, so the code can still operate on it in the absence of the physical file.

5.11.3 Scans

If graphemes are understood as wax cylinders, it remains to define a needle to carve into the wax

and to scan the wax. This is done by a Scan instance. Scans are situated within the scans field of

a Proc, which—similar to attributes—maps between names and these Scan instances. A scan is

a connecting point, it administrates sinks (the writing action) and sources (the reading action).

A sink or source may be either a grapheme or another scan. A grapheme, since it is a trace, can

be accessed both in real-time and offline. The scan output on the other hand always denotes

a real-time signal. A scan signal is produced either by linking the scan’s source to another

scan’s sink—thus establishing “bus routing” between processes—or a grapheme input, or it is

produced by the process itself, using the special assignment scan("name") := signal inside the

process’ graph function. This is illustrated in Fig. 5.23.

280

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

Scan
source

sinks
in

graph
scans

Proc B

Scan

graph

sc
an

s

Proc A

source

sinks

Grapheme

out

Figure 5.23: Interaction between scans, graphemes and graph functions

In order to turn a real-time signal into a manifest trace, one must link a scan sink with a grapheme.

This functionality is not implemented yet in the current version, but it can be easily worked

around: One allocates a new artefact (file location) and writes the signal directly to it using a

standard DiskOut UGen. Upon finishing the recording, the artefact is added to the grapheme.

This is indicated by the dashed arrow in Fig. 5.23. Future versions will elaborate this interface,

when we have gathered more experience with using SoundProcesses in live improvisation and

installations. For the experiments conducted with the Mellite application, this type of routine

was not necessary.

5.11.4 Transport

Having bi-temporal structures is satisfactory for offline viewing, but a mechanism is still missing

that provides a clock for TP to pass. This is this the responsibility of Transport. Its interface,

shown in Listing 5.22, is straightforward: There are methods to start and stop the transport, to

query and update its current position, a sample-rate reference, and a method react to register

observers. Internally a transport keeps a BiGroup of the elements which are to be transported.

Technically, transports do not define an event, because they cannot be serialised—their time

pointer continually advances—but react has the familiar form. The update value dispatched

can be either of Transport.Play, Transport.Stop, or Transport.Advance, the last carrying a large

amount of information: The current time of the update, whether the advancement was due to a

re-positioning (seek) or a regular scheduler event, the elements added and removed at the update

time, as well as any changes in the bi-temporal data of the elements themselves. For instance,

281

HANNS HOLGER RUTZ

trait Transport[S <: Sys[S], Elem, U] extends Disposable[S#Tx] {

def play()(implicit tx: S#Tx): Unit

def stop()(implicit tx: S#Tx): Unit

def isPlaying(implicit tx: S#Tx): Boolean

def seek(time: Long)(implicit tx: S#Tx): Unit

def time(implicit tx: S#Tx): Long

def sampleRate: Double

def react(fun: S#Tx⇒ Transport.Update[S, Elem, U]⇒ Unit)

(implicit tx: S#Tx): Disposable[S#Tx]

...

}

Listing 5.22: The Transport interface scans a group of processes in TP.

if the transport carries Proc elements, a change might be that a break point in any graphemes

scanned by the sound processes was reached.

A transport maintains a last reported position (LRP), and the list of currently active elements

(CAE), i.e. the elements whose interval contains the LRP. Furthermore, after each advancement

it calculates the next interesting position (NIP) which is the next point in time where any sort of

update event must be emitted.

The seek(t) command may be implemented as follows:

› If t > LRP: In the BiGroup, find the elements which end in the interval (LRP,t] and which

start in the interval (∞,LRP]. Remove these elements from the CAE. Find the elements

which start in the interval (LRP,t] and which end in the interval (t,∞). Add these to the

CAE.

› If t < LRP: In the BiGroup, find the elements which start in the interval (t,LRP] and which

end in the interval (LRP,∞]. Remove these elements from the CAE. Find the elements

which end in the interval (t,LRP] and which start in the interval (∞,t]. Add these to the

CAE.

For the CAE, three structures are maintained:

282

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

(1) An identifier-map (cf. Sect. 5.8.2) from elements to a map from scan keys to grapheme

segments which are the sources of these scans. A grapheme segment is the segment

between the two break points containing the LRP.

(2) A skip list used as priority queue, where keys are time values denoting the NIPs. The

values stored are maps from element identifiers to a map from scan keys to grapheme

segments (as in the previous structure).

(3) An identifier-map from elements to themselves, which is used to get fresh copies of them.

Furthermore, an information structure is updated at each advancement, which stores the system

realtime clock, the current frame position, the state (whether the transport is stopped or playing),

an NIP for processes beginning and ending, and an NIP for grapheme changes.

Based on these structures, the transport can determine at each step what the next stopping point is,

and upon arrival, which kinds of updates are to be performed. Because transactions may change

the transported elements at any point in time—between advancements—a transaction local

logical time variable is maintained. In order to issue transactions, the transport also has access

to a cursor (Sect. 5.6.2). In real-time mode, when the scheduler executes the next advancement,

it issues a cursor step and sets the local time variable to the exact value corresponding with the

reached sample frame. If a BiGroup update is observed, the logical time is interpolated according

to CPU elapsed since last advancement.

Revalidating the information structures, such as NIPs, current grapheme segments, and CAE—

and emitting the corresponding transport update event—is a rather involved and lengthy process,

considering all the possible updates of sound processes. As an indicator, the implementation of

Transport has approx. 800 SLOC92.

Finally, the transport can also be run in offline mode. Here, instead of a realtime clock based

scheduler, the advancement is issued explicitly by the use site. Offline transports can be used for

debugging, but more importantly to “bounce” sound processes to disk, e.g. using SuperCollider’s

non-realtime mode.
92Source lines of code, excluding blank lines and pure comment lines.

283

HANNS HOLGER RUTZ

5.11.5 Aural Presentation

So far, the transport is only a scheduling mechanism that emits updates about which elements

appear and disappear over time, and how their internal structure (graphemes) changes. In order

to make sound processes audible, an instance is needed that observes a transport and builds

sound synthesis representations for the Proc elements. This is the purpose of AuralPresentation.

To construct sound synthesis objects, it uses an API similar to ScalaCollider, but with transac-

tional semantics. When calling play on a Synth, when creating or deleting a Group, a Bus, or a

Buffer, these would have immediate side effects in SuperCollider or ScalaCollider: a node, bus

or buffer identifier would be allocated, OSC messages would be sent to the server (an action

that cannot be revoked). . .

All these objects—synth definitions, nodes, buses, buffers—implement a Resource trait which

tracks their status on the server side, along with a time stamp corresponding to the last logical

update made to the resource (e.g. allocating a buffer, reading contents to a buffer). Instead

of sending OSC messages directly to the server, they are managed by the transaction. In

the SoundProcesses framework, a new system sub type is defined that introduces a method

addMessage to the transaction. Along with the resource and OSC message, a list of dependencies

on other resources is passed to this method.

Playing a Synth will depend on the SynthDef being online, and perhaps a Buffer having been

allocated and filled with content. The transaction will sort the messages—which, since they

occur within the same transaction, belong to the same logical moment in time—according to

their dependencies. Only when the transaction successfully completes, will these messages be

bundled and sent out, taking care to inject synchronisation for asynchronous commands such as

/d_recv, /b_alloc, or /b_read.

The task for AuralPresentation, however, is more difficult. Within a transaction objects may

appear and disappear, and the interdependencies between processes are declarative. For example,

if a process p1 is created and added to a transport, it is observed by the aural presentation which

will try to build the sound synthesis representation of that process. The SynthGraph might be set

284

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

only in the next step—all this happens in the same transaction!—so that will also be observed,

and the view needs to be adjusted. The synth graph may refer to a scan that is not yet initialised,

so in the case of insufficient information the view building procedure needs to be put on hold.

If a scan is connected to another scan—linking an output of one Proc to an input of another

Proc—the scan’s number of channels cannot be determined until the synth graph function of the

dependency is known. If at the end of the transaction some Proc views are left dangling, it must

be ensured that any audio buses allocated for them are released again.

For minimum latency, the processes should ideally be topologically sorted. This was done in an

early version of the framework, while in the current version this sorting is omitted for reasons of

simplicity. Mapping buses to controls via /n_mapa uses a mechanism similar to the InFeedback

UGen, so there is no strict need to have the topological sorting. In fact, other libraries such as

SuperCollider’s JITLib use the same relaxed conditions.

Having AuralPresentation as a separate entity in the sense of a view in MVC offers several

advantages. An application can be run “headless” without any actual sound production, while

the transport is still fully functional, as well as other views attached to the transport, such as

timeline or realtime visual view. The model is also cleanly separated from the sound synthesis

invocation, making the code less cluttered. It is possible to run multiple aural presentations for

the same model—perhaps a live mix versus a headphones mix—and it allows the swapping of

the standard implementation for others without affecting the rest of the code base. To conclude,

the aural presentation can run in offline mode, too, allowing a straight forward “bouncing” of

anything that is carried by a transport.

5.12 Editing Sound Processes

We want to emphasise that SoundProcesses is a framework not a monolithic application. There

are various ways to build computer music applications using this framework. Chap. 4 has shown

how we used it bare-bones in the Voice Trap installation, and we also built and used a graphical

multitrack editor Mellite to compose different tape pieces. Other installations reviewed used

previous versions of the framework and thereby informed the design as it was presented in the

preceding sections.

285

HANNS HOLGER RUTZ

In Mellite, a “document” contains a tree of document elements and a tree of cursors for branch-

ing into TK. The idea of the document element tree is again to allow a free organisation of a

workspace by the composer, and we envision eventually having an interface similar to Open-

Music, where objects can be spatially arranged and associated with other attributes such as

colours and names. In the current version, elements are associated with names and organised in

a tree view.

Elements can be BiGroups (timelines), audio file artefacts, code fragments and simple expressions

such a numbers or strings. See Sect. 4.6 for more details and screenshots. Audio files and

timelines can be opened in visual editors resembling common multitrack applications. Using

the cursors view, multiple versions or branches can be opened at a time, although we have not

experimented yet with graphically dragging and dropping elements across branches.

Audio file regions are represented by instances of Proc associated with a grapheme containing

the file artefact. Process attributes are used to control fade-in and fade-out curves, mute status

and gain. The interface assumes Expr.Var for editing most of these attributes, and this has

proven to be a useful approach, as the expressions propagate automatically to different views

and, although the graphical editing of expressions is currently limited to entering constants

for variables, composed expressions are automatically accommodated. One can for example

define an integer variable in the elements tree view, and drag and drop it to assign it as the

channel parameter of multiple processes. Then changing that variable will be reflected in all

those processes.

Furthermore, there are function regions defined by a custom synth graph written as a code

fragment compiled on the fly by an embedded Scala compiler. Scans can be visually connected

through patch cords. Global processes with an indefinite duration (Span.All) are separately

listed outside the timeline and can be used to implement panning and routing of regions.

5.13 Summary

This chapter has shown how a general computer music framework can be designed which

allows the tracing of the manipulations of objects represented therein. We have designed an

286

CHAPTER 5. DESIGN AND IMPLEMENTATION OF A TRACING SYSTEM

abstraction called system S which provides the minimum necessary interface to accommodate

different modes of observation: in-memory and ephemeral, durable and ephemeral, durable

and confluently persistent. Mutable objects have unique seminal identifiers S#ID and histories

S#Acc and the parts which can mutate are represented by variables S#Var. Furthermore, the

system provides atomic isolation through transactions S#Tx which may accommodate a durable

back-end, here realised with a key-value store.

A number of data structures and algorithms have been implemented, and one should be reminded

of the famous quote from D. E. Knuth: «Beware of bugs in the above code; I have only proved it

correct, not tried it.»93 There is a huge gap between devising such structures and algorithms and

actually making them work, often requiring adjustments or replacements of certain assumptions.

A large part of the chapter describes our solution to implementing a confluently persistent system

which can also be efficiently stored on disk and which behaves transparently from the usage side

of things. One of the most beautiful aspects of this process was to see how the data structures

re-enter the system recursively: For example, the octree, used in our geometric solution to

the marked ancestor problem, is implemented against the system façade, using the mutable

object model described above; we then instantiate the octree using the durable and ephemeral

sub-system in order to build to infrastructure of the confluent super-system. A brief discussion

and visualisation of this development process can be found in Sect. 6.2.1.

Our system was then equipped with a reactive event layer and we experimented with expres-

sions inspired by the dataflow paradigm. Bringing in T(P), we extended these to bi-temporal

expressions, and added collection types BiPin and BiGroup as performance-time indices. While

navigation in TK occurs through a Cursor[S] which initiates transactions, the real-time unrolling

of TP is accomplished through a Transport which couples TK (a cursor) and T(P). Our sug-

gestion for computer music systems was a basic type Proc carrying an open dictionary with

parameters, a set of signal ports called scans, and a DSP function implemented in ScalaCollider.

We further suggested decoupling transport from sound synthesis production by realising the

93Donald E. Knuth (Mar. 1977), ‘Notes on the van Emde Boas construction of priority deques: An instructive use
of recursion’, Classroom notes Stanford University.

287

HANNS HOLGER RUTZ

latter as an “aural view” attached to the model of a BiGroup of Proc instances which is read by a

transport (which in turn could be understood as the controller in MVC).

There are many aspects to develop in a future iteration of the framework. To name a few:

› How can indices such as BiGroup maintain their correct ordering when the indexing

expressions change? Currently, the indices must be observed, i.e. have a view or transport

attached to it.

› How can we devise a general interface for defining and maintaining indices, not just over

T(P) but any parameter?

› How can the expression system be opened and possibly include function parameters, e.g.

as would be required for monadic operations such as map or flatMap?

These and more questions are also found in the final discussion of Sect. 6.4 and Sect. 6.5.

288

Chapter 6

Conclusions

«On ne sait jamais ce qu’on filme»

Twelve minutes into the second part of Le fond de l’air est rouge (1977), Chris Marker goes back

to the 1952 Olympics. During the equestrian sports, he thought he «was filming the winning

rider of the Chilean team», when that rider would actually become, twenty years later, putschist

general César Mendoza under the Pinochet dictatorship.1

You never know what you are filming until later. . . This example, narrated around the date of

my birth, epitomises the situation you are in when you are composing or, in general, writing

something, including this very text. First there is the distinction, then there is the indication,

it is only later that you contextualise and re-contextualise the meaning of a trace. Everything

plays a role eventually, but seldom in the anticipated manner. A “perfect” memory of the

trace reminds me of its circumstances: I noted down the English translation of the above quote

somewhere between Wednesday 25 July 2012, 18:09:08 and Friday 3 August 2012, 18:39:24. . .

it so happens to appear in the version history of the thesis directory.

diff --git a/struct/chap3_freewriting_sketching.rtf b/struct/chap3_freewriting_sketching.rtf

index 0866cc0..284432a 100644

--- a/struct/chap3_freewriting_sketching.rtf

+++ b/struct/chap3_freewriting_sketching.rtf

@@ -121,0 +122,4 @@ the studying of sketches [cf. Kerman] is only supplement for the brain\

+\

+:::::::::::::\

+\

+"You never know what you’re filming until later," Chris Marker\

1Cf. Jonathan Cushing (29th Mar. 2013), ‘Games of a Last Chance: Chris Marker’s Olympics’, Los Angeles
Review of Books, URL: http://lareviewofbooks.org/essay/games-of-a-last-chance-chris-markers-olympics

(visited on 18/11/2013); the time index refers to the edited version of the film from 1993.

289

http://lareviewofbooks.org/essay/games-of-a-last-chance-chris-markers-olympics

HANNS HOLGER RUTZ

In fact, Marker died during the thesis writing process, on 29 July 2012, and I remember reading

his obituary which was published in The Guardian the following day.

6.1 Discussion

The “perfect” memory, of course, is an illusion which has been discussed in two ways. First,

due to the irreducible limits of control. Observation is always partial and leaky (Fig. 3.7), it

equally signifies observed and observer. In cybernetics, memory and control are linked in such

way that building a memory of a system’s observed (partial) past states may compensate for

the inability to observe the whole system as it improves prediction and thus control.2 So to be

precise, what is an illusion is the perfect exploitation of a memory. The idea that there could

be complete control is debunked in the following quote from William S. Burroughs’ essay The

Limits of Control: «All control systems try to make control as tight as possible, but at the same

time, if they succeeded completely, there would be nothing left to control.»3

The control dilemma lies in the fact that if a subject is completely controlled, it does not exhibit

any form of resistance or disobedience, so one can hardly speak of control. In terms of an artistic

endeavour, artists often work precisely with the opposition or friction of the material, they subject

themselves sometimes to artificial constraints, because this opposition functions as a generator

of ideas. The perfect computer music system is not only an illusion, it is also not something

worth pursuing. But paradoxically, designing a non-perfect computer system is a difficult task.

Every computer program essentially is a control machine in terms of the technology it relies

on, such as data structures and algorithms, at least in the discourse of computer science which

embeds these technologies. We can think of a Deleuzian rhizome, but we can only implement

genealogical data structures, trees, directed graphs etc. This is perhaps a choice we made, since

there are other non-hierarchical elements out there, evolutionary algorithms, neural networks

and so on. But they will be encumbered with other double-binds such as goal directedness and

correspondence of patterns.

2cf. W. Ross Ashby (1956), An introduction to Cybernetics, London: Chapman & Hall, §6/21; Ashby is careful
enough to put “memory” in inverted commas.

3William S. Burroughs (1978), ‘The Limits of Control’, Semiotext(e): Schizo-Culture III(2), pp. 38–42.

290

CHAPTER 6. CONCLUSIONS

Burroughs draws an interesting analogy between the fully controlled subject and a tape recorder.

He argues that control ceases, because when the subject loses its will, it is no longer a subject

but merely machine. The machine as a known sub-routine appears as the technical object in

Rheinberger’s dichotomy. In order to produce knowledge, it must be destabilised, so it can

oscillate between this state of technical object and the indeterminate state of epistemic thing.

Therefore it is important that the computer framework we developed, while an achievement in

its own right, is embedded with the other writing processes of this thesis to become a vehicle

for the generation of epistemic value. These writing processes are: The investigation into the

double nature of composition, signified by the interaction between two layers of time, the critical

writing which exposes the methodological implications of ascertaining ‘process’, the writing of

music pieces and sound installations, and their re-writing in terms of the transversal reading of

Chap. 4.

The second illusory aspect of memory is representation. We have a handle, a signifier, which

claims to represent another thing. Re-presenting, bringing back to presence, is often thought of

as a constant, a repetition of the same. This is the tape machine, the mechanical reproduction

Walter Benjamin talks about.4 In electro-acoustic music, we are sound surgeons who can

produce precise cuts. They can be stored in the trim bin, or any digital replacement of this

random access container.5 The trim bin is our illusion of being outside time (Fig. 2.9), detached

from the composition-as-product which makes us forget that we are attached to composition-as-

process. What I tried to show in Chap. 3 is that the models and representations we have of the

compositional process do not challenge this detachment. Even if they might have emancipatory

aspirations, they hardly go beyond the diaphragm model of composition (Fig. 2.1) in the sense

that the diaphragm acts as the gravity centre which attracts all explanation. The only option

for ignoring that model seems to be a cognitive approach, but it in turn ignores the essence of

the compositional process because it identifies it with an immaterial creative process which is

located somewhere in the “mind”. If tracing machines are used, then they appear in the function

4Walter Benjamin (1936/1963), Das Kunstwerk im Zeitalter seiner technischen Reproduzierbarkeit, Frankfurt
a.M.: Suhrkamp.

5Cf. Hanns Holger Rutz, Eduardo Miranda and Gerhard Eckel (2011), ‘Reproducibility and Random Access in
Sound Synthesis’, in: Proceedings of the 37th International Computer Music Conference, Huddersfield, pp. 515–522

291

HANNS HOLGER RUTZ

of tape recorders which are merely surrogates for a “direct” observation which is stained by the

introduction of an “unnaturalness” of the inquiry situation.

Representations are powerful and necessary nevertheless. The handles they provide allow for

a suspension of time, but more than the suspension of the translation procedure of TK into

T(P)—what I have called spatialisation—the crucial suspension is the one purely within TK. In

a first approximation, we can think of delay line memory, an interesting component of early

electronic engineering. Perhaps because Spencer-Brown also had a background in electronic

engineering, this aspect appears in the Laws of Form as some of the paradoxes are resolved by

way of claiming time to pass between the left and right side of an equation. Luhmann, certainly

inspired by Spencer-Brown’s work and that of the cyberneticists, at one point defines memory

as the «capacity to delay the repetitive use of forms.»6 As another example, general systems

theory can be mentioned, where this kind of memory would be the stable oscillation as opposed

to a resonance disaster or a damped oscillation which would “forget” the past.

In (Inde)terminus I tried to exploit the suspension in TK as the potentiality of recursion. The

necessary representation is one which is operationally closed, so that the product of one iteration

can be the input of the next. The other, technologically less manifest suspension is the “interface”

between human composer and computer. Any “derivative intentionality” is baggage that belongs

to the double-bind scenery. Or as Donna J. Harraway put it in her Cyborg Manifesto: «It is not

clear who makes and who is made in the relation between human and machine. It is not clear

what is mind and what body in machines that resolve into coding practices.»7 It is unfortunate

that the mind/body distinction is still used despite being questioned. We want to go further and

only ever speak of the material traces produced by the indirection of having an inter-face. In

the text produced with respect to a series of pieces from my early Residual to Zeichnung and

Dissemination, I tried to observe these traces of process by looking at the eigen-dynamics of

procedures and notions applied such as ‘mobile’ or ‘similarity’. The representation is thus a

6Niklas Luhmann (1993), ‘Deconstruction as Second-Order Observing’, New Literary History 24(4), pp. 763–
782.

7Donna J. Harraway (1991), ‘A Cyborg Manifesto: Science, Technology, and Socialist-Feminism in the Late
Twentieth Century’, in: Simians, Cyborgs and Women: The Reinvention of Nature, New York: Routledge, pp. 149–
181.

292

CHAPTER 6. CONCLUSIONS

translation, and as the observation continues, new diagrams and new translations are produced.

In other words, we employ a differential reproduction which is upheld by temporal coherence—

the continuity of the observation—groping and grasping for differences which produce a contour

of the otherwise unobservable space or medium of ‘process’ which pervades the selected pieces.8

With this I conclude the overarching discussion. The next section will talk about the process of

the thesis itself, as the re-entry of the form is a critical part of its methodology. Sect. 6.3 and

Sect. 6.4 will more narrowly recount the contributions and limitations of my investigation, and

finally Sect. 6.5 convenes a number of junctures from which future research may depart.

6.2 Process of the Thesis

I would like to have this thesis understood as the delineation of something that obviously spans

a larger temporal frame than the last four years of my life. It acts as a formalisation of ideas

which can be traced back to the earliest piece discussed, Residual from 2002. Even though it lies

back more than ten years, and everything has changed and shifted over time, it was founded on

elements which are still relevant today. Foremost, the possibility to compose music and sound

art by building computer programs, but not as a correspondence of a formal plan or intention

we construct in our heads. Instead these programs are our experimental systems, our laboratory

apparatus, part of the “whole commitment”, as Rheinberger calls it.

The apparatus is necessary for experiments to succeed, it is thus false to think of it as a utility

for an activity which could be otherwise carried out with paper, pen and “mind”. Sometimes

the effort put into the apparatus seems disproportionate to the amount of work “realised” with it.

But, to remain with Rheinberger, the maintenance of the apparatus ensures that the epistemic

thing does not «dissipate», and he remarks that for an empirically working scientist the servicing

of the apparatus can easily take up to 90% of his working hours.9

8Cf. Hans-Jörg Rheinberger (1997), Toward a History of Epistemic Things: Synthesizing Proteins in the Test
Tube, Palo Alto: Stanford University Press, ch. 5

9Hans-Jörg Rheinberger (2nd July 2008), ‘Epistemische Dinge—Technische Dinge’, Bochumer Kolloquium
Medienwissenschaft, URL: http://vimeo.com/2351486 (visited on 28/08/2012), 16′.

293

http://vimeo.com/2351486

HANNS HOLGER RUTZ

6.2.1 On the Evolution of the Apparatus

The manifest temporal traces of the development and “servicing” of the software framework are

captured by the git versioning system and illustrated in Fig. 6.1. When I say development and

servicing, I am hinting at the oscillation between technical and epistemic level which happens

in this process. In the beginning of each trajectory, there is still very much the groping and

grasping without knowing exactly how the development will play out and which paths it will

take. A close look at the individual transaction commits can reveal how crystallisation happens,

the arrival of plateaus of relative stability characterised mainly by “bug fixes” or “refactoring”,

and a decrease in the frequency of radical changes.10

The illustration of the git repositories runs into the same problems which have been demonstrated

with the piece Dissemination: Only a selection of components is shown, and therefore the

decision about when a particular (sub-)process begins is ambiguous. The software components

use prior experience gained through the development of earlier components, for example the

programs FScape, Bosque, Wolkenpumpe and Kontur, which have been mentioned in previous

chapters, are not shown. Neither are the repositories of the code for the individual pieces shown

or sketches made before. Likewise the thesis text itself, which is shown in the last row, looks

isolated and as if it takes off only in spring 2012, when in fact it incorporates a number of texts

previously written, most literally the conference papers referenced, but more fundamentally all

the pieces of sound art which were translated. It is thus useful to view these diagrams rather

as representations of selected “form parts” of the overall writing process. Perhaps the most

important part missing are my notations of papers and books I read, which participate in the

upper half-wave of the phase model of writing (Fig. 4.1).

Some general motions can be observed, nevertheless. For example, there is a form of confluence

in the writing of the software. ScalaCollider is the earliest component here, along with the first

version of SoundProcesses. Although the latter is shown to join in July 2010, its first commit

already establishes a large body of classes, so its writing began earlier and I just lost track

of the initial phase. Concurrently I had started work on elaborating a confluent persistence

10Such detailed analysis is beyond the scope of this concluding chapter, and thus we will just highlight a few
examples in a general form.

294

CHAPTER 6. CONCLUSIONS

10

100

1000

10000

S
ca

la
C

o
lli

d
er

10

100

1000

10000

S
o

u
n

d
P

ro
ce

ss
es

_O
L

D

10

100

1000

10000

L
u

cr
eC

o
n

fl
u

en
t

10

100

1000

10000

L
u

cr
eD

at
a

10

100

1000

10000

L
u

cr
eS

T
M

10

100

1000

10000

L
u

cr
eE

ve
n

t

10

100

1000

10000

S
o

u
n

d
P

ro
ce

ss
es

10

100

1000

10000

M
el

lit
e

Jan-2010 Mar-2010 May-2010 Jul-2010 Sep-2010 Nov-2010 Jan-2011 Mar-2011 May-2011 Jul-2011 Sep-2011 Nov-2011 Jan-2012 Mar-2012 May-2012 Jul-2012 Sep-2012 Nov-2012 Jan-2013 Mar-2013 May-2013 Jul-2013 Sep-2013 Nov-2013

10

100

1000

10000

T
h

es
is

Figure 6.1: Work on the software framework over time. The git history of the major com-
ponents is shown with line insertions and deletions aggregated per week. The
development of the thesis’ LATEX source is shown for comparison in the last row.

295

HANNS HOLGER RUTZ

based system (LucreConfluent, the third row). The first big batch of work prepares the SMC

2010 conference paper. At that time, it still had a different name, TemporalObjects. Only

with the modularisation of the separate LucreSTM branch, this component began, in September

2012, to act like a piece in the overall jigsaw puzzle (merged with the new API). Likewise, the

SoundProcesses stream with the instantiation of its new version in May 2012 received its fixed

position in the puzzle.

Another thing to observe is how forms are drawn out of other forms (or functionally differentiated

in terms of Fig. 5.1). LucreData started in May 2011 with the attempt to implement some data

structures described by Alstrup, Husfeldt and Rauhe It goes without saying that there was

an entire process of learning and understanding what data structures are, and how computer

scientists think about and write about them; in sum, how they “approach” and “produce” the idea

of a data structure. In this particular case, there were some unclear parts regarding a partitioning

into micro trees and the main authors could not be reached for specific comments, as they had

abandoned their career in computer science or did not remember the circumstances.

I went on with the new idea—merely keeping the name of the project—of using a spatial data

structure for NN search, implementing the quadtree, then the compressed quadtree, then the

randomised skip quadtree, then the total order, skip list and deterministic skip quadtree. In

June I began elaborating the idea of isomorphic mapping between full trees and marked trees.

I came across the path bending problem and the need to modify the NN search. In October,

the quadtree was generalised to an octree, and the actual marked ancestor search and quasi-

retroactive modification structure appear. In November, work began on using STM cells instead

of mutable fields, taking the skip list as a relatively easy structure first. Then a step is made

which gives birth to the new project and name LucreSTM, abstracting a new interface from

ScalaSTM which will then be used back in the data structures project.

Similarly, writing the event system and dataflow expressions emerge as part of LucreSTM in

December 2011, and only in September 2012 the repository is “forked” into a new project

LucreEvent, filtering the relevant subset of the source code.11

11Thus in the figure, the diagrams for LucreSTM and LucreEvent look almost identical in the beginning, the
differences coming from the way the directories are filtered.

296

CHAPTER 6. CONCLUSIONS

6.2.2 Exceeding the Semantic Horizon

What do I mean when I say the thesis writing produced a re-entry? After all, is not every writing

about writing a re-entry? There are two crucial differences concerning the dissolution of the

meta-level (Sect. 3.3). First, there is a reciprocal exchange between these different layers of

writing, and second there are certain motions in one layer which are reproduced in another, even

though the context changes—writing a scientific document versus experimenting with computer

science and engineering a piece of software versus composing a piece of music.

That these streams ran concurrently over the last few years and not in a strict succession is

obvious from the discussion of Chap. 4 and Fig. 6.1, even if the conference papers, sketches,

pieces etc. are not included in this figure. What is also missing in the figure is the vertical motion

between these streams. The analysis of the pieces of music in Chap. 4 is an evident motion

from those pieces to this text, and there were several occasions where it should have become

clear that the ongoing writing of the framework became effective in the more recent pieces,

too. Some translations were very manifest, such as Dots using the source code as its material,

Unvorhergesehen–Real–Farblos using the purple visualisation technique of self-similarity, and

all of the pieces of the last few years addressing in some form the intrusion of the compositional

time into the performance situation.

There are many more threads which run between the different types of “texts”, too many to

be included in this limited space. One of the strongest observations I was able to make is that

essentially I write this text like I compose and vice versa. Whether this is a psychological or

cognitive condition or rather the intrinsic play of the material and the writing machines may

be debatable. But since these two approaches, the first of which I rejected and the second of

which I embraced, are not to be misunderstood as mutually exclusive, it is perfectly possible to

establish evidence—or to construct narratives!—which support either perspective. We did not

make the effort to develop a motiongram similar to the ones shown in Fig. 4.51 for the thesis

text itself, although this might be an interesting future project,12 but I will exemplarily highlight

this structural reappearance.

12If one wanted to use the existing git history, one would have to develop a LaTeX parser to be able to produce an
approximation of these motiongrams.

297

HANNS HOLGER RUTZ

It begins with the spreading out of materials. Since the “canvas” is just a set of LaTeX files,

these materials usually appear in empty spots towards the end of a respective chapter, and

there is at first no particular ordering except for blocks which are separated by white space

or LaTeX comment lines. Then as I develop parts of continuous text, I repeatedly scan these

blocks of ideas, move or copy the relevant parts into the location at which I am currently writing.

Ultimately there are things left over which are relevant but “do not fit”. They remain back up

for other parts of chapters of the text. If I do not use them for a while, I comment them out,

like I mute a sound region in a tape composition, so that they are still represented in the editor

although not in the product. Most of the misfits are deleted at some point.

The rhythm is a play between periods with constant typing of characters and periods character-

ised by almost infinite interruptions between two or three words or sentences, caused by my

searching for something that I vaguely remember but cannot grasp. I may end up in three or

four nested levels of references, all of which produce tiny material elements, small notations,

which may not go into this insurmountable gap between the two words that triggered the search,

but which end up again in a sketch file or in one of the raw blocks of thoughts at the end of each

chapter file. For example, while I was writing the last sentence, the word “linearisation” entered

my consciousness. I am lost as to where this comes from; using the apparatus of my notations

and a search index, I come to find this reminder of Luhmann from the preface of Art as a Social

System:

«One should not expect a linear order, progressing from important to less important

issues or from prior to subsequent events. I hope that the reader’s understanding

will benefit from the recognition that conceptual or historical materials reappear in

different contexts.»13

I know that this is not the occurrence of text linearisation I was thinking of before, but I have

to go on, and so I take what the interface produced and incorporate it. In the suspended time

13Niklas Luhmann (2000), Art as a Social System, trans. by Eva M. Knock, Stanford: Stanford University Press,
p. 5.

298

CHAPTER 6. CONCLUSIONS

of writing, diverted by searching for the term “linear”, I added the following to the “heap” of

unsorted things at the end of this chapter file:

the incredible sensation that by writing this sentence (on 1 December 17:52h), the

diagram could be reactualised and look different

This sentence will appear probably in Sect. 6.3. I have to stop here, because I am creating

an infinite feedback at this point, so let me advance to the next example. But before I do so,

I will commit the current version of this chapter to its repository. I am developing a sense of

rhythm for the text through the existence of this tracing system (git) which asks me to define

“transactions”. (period. git commit -a)

I will at a later point rescan this chapter’s text until this point, and rewrite certain words or sen-

tences, perhaps extend something. I keep things separated, by using section headings. B. Latour

says about the «new object» that emerges in a scientist’s laboratory—it resists description and

appears to be similar to Rheinberger’s notion of epistemic thing—that it only gets «named after

what it does».14 But I would argue that the reference handle embodied by a name like any other

artefact in a trace points both into the past and the future (cf. Sect. 3.3.3). The name gets “filled”

over time, the signifier assumes its own space. I always found this particularly comprehensible

in the style of writing of Rhizome, the first chapter of A thousand plateaus.15 Deleuze and

Guattari take an existing word, for example ‘machine’ or ‘lines’, and make more and more

connections in which the machine and the lines appear, until they are actual forms from which

new forms can be generated. More so as the text is reduced to a subset of fragments which

appear in ever new permutations as one of the sound layers in the installation Kalligraphie

(Sect. 4.2.1).

Very much the same is true when I introduce a symbol, for example TK, or a term, for example

‘diaphragm model’ or ‘double bind’, some associated with drawn diagrams. Although these

might be linguistic or graphical constructions, they are somehow assuming a materiality as
14Bruno Latour (1987), ‘Laboratories’, in: Science in action: How to follow scientists and engineers through

society, Cambridge, MA: Harvard University Press, pp. 63–100, p. 87.
15Gilles Deleuze and Félix Guattari (1987), ‘Rhizome’, in: A thousand plateaus: Capitalism and schizophrenia,

trans. by Brian Massumi, Minneapolis: University of Minnesota Press, pp. 3–25.

299

HANNS HOLGER RUTZ

soon as they are introduced by their names; they grow contours as the text proceeds—the

total text, including the music pieces, the software etc. The same is true for terms introduced

in the software, for example ‘Strugatzki’ is not just the tool or algorithm but a something

which occupies a larger space. When I compose with concrete sounds, they might also receive

such handles, ‘Schnattertier’ (quacking animal) or ‘Helicopter’,16 which then peel off the

sound they originally denoted to embody a very sensual or material quality, despite remaining

“representant”.17

A second kind of structural reappearance is made by the rhythm of the presented canvas, the

“finished” piece or text. I was listening today to the third recording from Unvorhergesehen–

Real–Farblos. It is interesting in several ways. It begins with a recourse to the other two

previous recordings—which are not “previous” but concurrent in the installation—noting the

change of weather, the disappearance of workers from a particular roof, etc. It describes the

outside atmosphere as perceived during the recording, then goes on to discuss an idea for the

very recording which was ultimately dismissed (or not, depending on your reading, as the

presentation of the dismissal of course does include the idea). Around eight or nine minutes

into the spoken text, the ductus begins to be more fluid, the “theme” is established along with a

number of connecting points, the permutations of which allow for this fluidity, as I am capable

with this setting of improvisation to develop the different threads. Around halfway through

the recording, the topics of control and losing control, embodiment, the conceptual history

of process, the ideas of pure motion, rewriting and reproduction, the problematic concepts of

intention and communication enter the monologue.

Listening to this text, I have the feeling that in this very moment I have reproduced this piece as

the whole written thesis text; and vice versa. Still both are distinct, the piece is constructed in

16Not necessarily must these be nouns.
17This reminds me of a story Robin Minard told me once. He was amused by a composer—whose name I have

forgotten—who titled an electroacoustic music piece Sweet Potatoes, because in the multitrack editor he used, the
waveform for him looked just like that. I think there is more to it than amusement, it probably was an instance of
such a materialisation of representational handles. In the interview with Rheinberger conducted by M. Schwab, a
similar phenomenon is described, whereby in the experimental situation «the material itself somehow comes alive.
It develops an agency. . . »: ‘Forming and Being Informed: Hans-Jörg Rheinberger in conversation with Michael
Schwab’ (2013b), in: Experimental Systems. Future Knowledge in Artistic Research, ed. by Michael Schwab,
Leuven: Leuven University Press, pp. 198–219, p. 198

300

CHAPTER 6. CONCLUSIONS

a poetic way, it will be perceived in a very different setting—within an exhibition, on a couch,

using the in-head localisation of my voice, in my mother tongue. While this text in front of you

obeys the configuration of scientific writing with its way of structuring and referencing. The

rhythm is similar, with the development of a small set of threads, here assigned to chapters 2 to 5,

which are subtly interconnected, giving them “blurry edges” and fibres of cross-references. The

way one adapts, the amount of time it takes until one adapts one’s reading to the kind of writing

appears very similar to the way one adapts one’s hearing to the kind of speaking. Between 43′

and 49′ appears a recapitulation, a contraction of all that had been said before, very similar to

this chapter of conclusion. The speaker also chooses to move to the meta perspective of talking

about the piece’s own text.

The overall theme of Unvorhergesehen. . . is ‘achromaticity’ (Farblosigkeit). At one point (19′),

I find that «colourlessness has to do with the fact that while foreground and background are still

parted (geschieden) they are not disparate (verschieden). That is to say the vagueness (Sche-

menhaftigkeit) is maintained in both cases [visual and aural perception], and the background

guarantees the vagueness of the foreground.» The function of the background perhaps in the

written thesis is occupied by the various diagrams, whereas in the sound piece it is established

by the soundscape behind my voice; it produces the possibility of an achromaticity in the fore-

ground because on the one hand it is indifferent—the “uneventful” and steady sound of the

city traffic—on the other hand it pervades the porous front, giving it the possibility of being

pure and uniform sound instead of text. Later in the piece the vagueness is understood as an

inclination which permits the listener (or reader) to actively isolate shades from the play between

background and foreground. He retains merely the boundary between the two which themselves

continue to be vague.

It is difficult for this text to provide by itself this quality of becoming pure sound and rhythm,

process in the sense of the operation of its inner time.18 If we were capable of reading it several

times, at different speeds and magnification levels, the rhythmic texture would become more

acute and corporeal. Illustrations such as the bifurcation dance of Fig. 3.8 provide some com-

18Cf. Hans-Jörg Rheinberger (1994), ‘Experimental Systems: Historiality, Narration, and Deconstruction’, Science
in Context 7(1), pp. 65–81

301

HANNS HOLGER RUTZ

pensation for this lack of representational forms of the text. This diagram includes a double

recursion; immediately visible for someone that knows the logistic function, the procedure

of evaluating this function unfolds itself from left to right, showing the emergent vascillating

behaviour which opens a space, the aesthetic value of which cannot be captured by the rep-

resentational form of a text equation. The second recursion lies in the fact that I grafted the

diagram onto the text of the surrounding paragraphs, while at the same time including the notion

of grafting in the diagram through the labelling of the horizon with the quotation from Derrida’s

Signature Event Context. Imagine for a moment the paper being penetrated by threads of fabric,

spanning the physical distance between the point where the diagram is printed and the page on

which this sentence is written. Imagine other threads, for example from the bifurcation to the

point where I rediscovered Signature Event Context in my sketch book.

Reinforcing this first thread, the word ‘excess’ can be simultaneously seen as the graft in the

diagram (in the graft of the diagram) and the cruft in this text document, as witnessed by

Fig. 6.2. Derrida used the idea of excess in disputing J. L. Austin’s speech act theory, in which

anything that is not supporting the author’s intention is accidental or gets degraded to a form of

citation, such as declamations of actors on a stage which are given a context which prevents the

performative aspect of their speech to be conflated with “serious” utterances. Derrida in contrast

embraces all forms of “parasitism” which produces a cleft in the horizon. The word ‘excess’

was found in the heap of this chapter’s materials because Rheinberger refers to it. In his reading

it is chiefly an intrusion:19 The contour between background and foreground which I wanted

to emphasise in the diagram as well as the narrative of Unvorhergesehen. . . , it is produced

by the transgression from the outside to the inside. We have seen this motion in Luhmann’s

actualisation of the form within the medium or in Spencer-Brown’s indication of the inside

of the spatial cleft. Whether I compose a piece or I write this text, the process reveals itself

as the intrusion of graft/cruft, some of which I permit to remain as the material condensation

(“residual”), some of which I suppress.

19Rheinberger, ‘Experimental Systems: Historiality, Narration, and Deconstruction’.

302

CHAPTER 6. CONCLUSIONS

Figure 6.2: Excess of context towards the end of Chap. 4 and dumped in the notes for Chap. 6
(screenshot with thesis preview and LaTeX “source code” editor)

6.3 Contributions

This thesis advances the field of computer music through two major contributions; first, it

deepens and shifts the knowledge of what is to be understood by the compositional process;

second it shows ways in which this process can be traced and produces a novel computer music

framework to support tracing in such a way that it becomes accessible not only for ex-post

analysis but for the incorporation into the compositional process itself, thereby providing for

new ways of aesthetic expression.

To clarify the notion of process we have first surveyed different voices. The topic has always

been in the air, but never assumed more than a marginal position. We used Koenig’s essay of

the same title to show that there is a double nature of the word “composition”, but that it comes

with an asymmetry because composition the activity is seen as an argument of the function

yielding composition the “piece”, and the description of processes in composition is reduced

to a procedure to follow. Likewise, Xenakis was aware of the dedicated locus from which the

composer can operate on his musical material “outside time”.

What process means has shifted over centuries, and both composers and researchers have

used particular renderings of this word. A tentative definition of process clarifies that it is a

coherent temporal pattern driven by an inner dynamic, and engaging with this dynamic demands

what could be called an “experimental spirit”: the immersion of an experimenter into the

play of material traces, generating an epistemic semiosis which is not primarily linguistic or

303

HANNS HOLGER RUTZ

cognitive.20 While many models and representations for “musical time” in the narrow sense

have been proposed, the time in which a composition is created is denied musical status, not

thoroughly analysed and not represented in computer music systems.

We introduce the notion of creation time TK, the time in which compositional decisions are

made, which is either linked to performance time TP in a real-time situation or—generally—

orthogonal to it, allowing for a situation which can be described as a random access model of

musical data. We propose to formalise TK in the framework of atomic transactions, a notion

imported from database research. Synthesising ideas from temporal databases and versioning

systems, we can model the relationship between TK and TP. The embedding of transactions in a

computer systems allows us to remove the agency in composition from the question of whether

a human composer or an algorithm issues these transactions, an “ignorance” which will become

productive in the theoretical underpinning of understanding process.

Toward this understanding, we first contribute a critique of previous attempts to define and

observe it. While these attempts are useful in their respective domains, such as modelling

“creativity” or “music cognition”, they are limited by their subscription, implicit or explicit, to

methodological frameworks which according to our argumentation fail in two regards. These

thought systems can be characterised by the axiom of control and communication, deriving

from mid-20th-century psychology and cybernetics. The compositional “process” is reduced

to a signification chain suspended between intention and goal attainment (or more carefully

expressed, problem solving), violating the process’ property of being irreducible. The second

failure is the assumption of a naturalistic enquiry which attempts to separate the researcher

as an uninterested observer. As a result, there is a lacking relevance of this research for the

advancement of the arts.

There is a new field timidly establishing itself which is sometimes called “artistic research”

or “research in the arts”.21 While I think that it has great potential in the future landscape of

computer music and the digital arts, its relevance is currently rather limited, which I believe has

20Cf. Schwab, ‘Forming and Being Informed: Hans-Jörg Rheinberger in conversation with Michael Schwab’,
p. 198; and Rheinberger, ‘Epistemische Dinge—Technische Dinge’, 48′

21For an overview, see Michael Biggs and Henrik Karlsson, eds. (2011), The Routledge Companion to Research
in the Arts, Abingdon and New York: Routledge

304

CHAPTER 6. CONCLUSIONS

to do with a lack of consensus as to what defines artistic research. What I propose with this

thesis is explicitly not the acceptance of existing modes of artistic production as “equivalents to

scientific research”. Instead I believe we need an area of artistic/scientific research which uses

a new methodology where the subjects assume multiple roles between which they may switch

(Fig. 3.5). In this respect, I have elaborated the idea of the re-entering of observations of the

compositional process into the continuation of this very process.

To facilitate this recursive mode of engagement or “complicity” between researcher and artist—

whether they are the same person or not—I investigated the interaction between forms of

representation and operations on representations and the material traces which grant an indirect

way of observing the unobservable (process as becoming). A point of departure which proved

fruitful was the early work of Jacques Derrida, particularly Of Grammatology in which we

find an acute concept of writing and tracing, capable of accommodating our endeavour. It

might appear for some an affront to propose what goes under the unfortunate name of “post-

structuralism” as a methodological replacement in an area, computer music, which is dominated

by solid engineering on one side and positivist empiricism on the other. Having gone a long

way to the end of this text, I am convinced that “clearing the air” was the right approach.

I started from a position that disregards artistic intention (and the rediscovery thereof) altogether,

I also did not look at the social system that art forms, neither did I have any musicological or

psychological ambitions. When I was analysing a selection of pieces in Chap. 4, neither did I

make these pieces superfluous—as happened in the empirical studies of compositional processes

conducted before—nor did I dwell on an individual exegesis.

At the centre of this text is a bricolage which brings together a number of people who in some

way or another have overlapping ideas which I pieced together to illuminate the nature of the

“guest” (Lyotard) or “pervading space” (Spencer-Brown), the “otherness” in the apparatus which

suspends composer and composition and which as inter-face continually displaces what we are

doing, inscribing into the process a crucial element which establishes computer-based sound

art as something that is irreducible to any compensatory forms of actions outside the computer.

305

HANNS HOLGER RUTZ

As a bricolage, the text exhibits the same kind of “excess” that characterises any experimental

writing process, a writing which aims at creating future.

I specifically do not advocate a single form of writing, but a multiplicity in which the elements

of one layer are differentially reproduced in another. In this sense the whole thesis can be

seen as an experiment of applying the concept of the experimental system as developed by

Hans-Jörg Rheinberger. The methodology I proposed and implemented instead of being a text

or an artwork or a software development is a texture which interweaves these three layers.

If there is going to be a real collaboration between arts and sciences, having conducted this

interweaving I am more convinced than ever that, instead of forming interdisciplinary teams

in which everyone assumes their predefined role, the only substantial solution is to tarnish the

boundaries between these roles and put into the centre of attention the translation processes

which happen between these roles and their material manifestations.

Lastly, a solid and quantifiable work of computer science research and engineering is contributed.

We presented a novel computer music framework which allows one to encode sound objects and

their manipulations in a manner that permits their storage and retrieval from a database system.

This system, which combines software transactional memory and a transparent key-value store

with a model of confluent persistence, extended by quasi-retroactive modifications and a reactive

event layer, contains data structures which have been for the first time implemented and used

in practice as well as a number of novel concepts such as: a system façade API which allows

the development of structures and algorithms independent of the choice of tracing backend;

an efficient search structure for the solution of the nearest marked ancestor problem; a push-

pull event bus system which can operate on structures persisted to disk; the translation of

the model-view-controller concept to “aural views”, the loose coupling of realtime sound

synthesis to declarative sound process objects; a model of musical objects embodied by signal

processing functions, embedded in TP through dataflow time span expressions which allow both

the representation on timeline editors, as shown with the graphical Mellite front-end, as well as

their algorithmic control and update and usage in a realtime generative process; both scenarios

have been demonstrated on actual composed pieces.

306

CHAPTER 6. CONCLUSIONS

6.4 Limitations

It lies in the nature of all processes that for them to be presented as a volume, one has to

interrupt them at some point and define the “product”. Not all questions could be answered, not

all answers were satisfactory or exhaustive, new questions arose during the work which had to

be deferred. Although I do not personally see this as a limitation, all that has been observed

and interacted with did not directly involve any other composer than myself. Having both a

theoretical and technological framework at hand now, it would be interesting to see in another

iteration if similar observations can be made in collaboration with other composers.

The software framework developed has in its current form only been tested in fixed media

composition and sound installation. In particular, my live improvisation interface Wolkenpumpe

has not yet been ported to the new infra structure. While the theoretical underpinnings apply to

live improvisation just as any other form of interaction of TK and TP, it is a limitation that the

system could not yet be explored in practice in this configuration.

It should have become obvious from the discourse that this interface is all but a neutral instance.

While I believe that the possibilities it plays out are not so much an expression of my personal

aesthetics, but rather the workings of the system itself—the interplay of its components, the

peculiarities of its application programming interface, but also its own “inertia” and perhaps

clumsiness and “bugs”—it is undeniable that these possibilities may resonate better or worse

with each individual composer. It is likely that the system would need to grow and be adapted

when put into interaction with different composers.

While the old version of SoundProcesses, as it was used in Dissemination, had a rudimentary

concept of reactions, whereby the algorithm could be triggered by sonic events happening in

the signal processing, a corresponding interface in the new, confluent version is still missing.

As a result, the possibilities for composing generative sound installations are greatly restricted

when it comes to their traceability. Of course, any imaginable structure can still be programmed

in the host language, but this will go unobserved by the tracing structure, while the ultimate

vision was to model the construction of the individual algorithmic components in the object

307

HANNS HOLGER RUTZ

language, something that is currently only supported in the limited form of expressions of

primitive dataflow values, leaving a lot of room for improvement.

There are various questions in the framework that need to be studied better to fully comprehend

them. The interaction of quasi-retroactive manipulations and the event system has not been

studied. In general, the experiments conducted with the melding capability of the confluent

persistence were limited to a few examples which made it into the conference papers, but

which have not been studied thoroughly enough in all their practical consequences. If melding

was to be employed heavily, the impact on the database performance needs to be assessed, as

the path representations (finger trees) are currently written to and read from disk as complete

entities. A number of questions elaborated theoretically in the random access paper22 have not

been answered in the form of actual implementations. For example, the distinction between

genuine signals originating outside the tracing system and those from inside the system is not

yet managed by the system, something that will be especially important in live improvisation

and live electronic pieces.

6.5 Recommendations for Future Work

The limitations thus outlined can be directly read as recommendations for follow up work. In

terms of the experimental configuration, I imagine that collaboration between two or even three

researchers/composers could produce a shift of dynamics still coherent enough to function as a

reproduction for the overall experiment here carried out and forceful enough to produce many

new questions and correctives. One would observe the difference between self-pollination and

cross-pollination.

The interaction of a composer/performer in real-time with the developed framework should in

particular be thoroughly studied. This will on the one hand open up the question of the human

computer interface in the narrow sense, and I would find the question of graphical display in

this scenario most challenging. On the other hand it would lead to more complex and elaborate

models for the representation of sound objects and their interconnections within the framework.

22Rutz, Miranda and Eckel, ‘Reproducibility and Random Access in Sound Synthesis’.

308

CHAPTER 6. CONCLUSIONS

In general the most interesting aspect of the framework is its ability to produce structural

feedback in the sense that the musical material may react to or incorporate its own history.

Since the technology developed during the thesis has finally arrived at a point where it could be

considered stable enough to be “sub-routine” of future work, I imagine that a systematic and

concentrated development of a sequence of pieces may illuminate the space thus created in the

compositional action repertoire, a space which was only insufficiently lit by the later pieces of

the thesis process.

In terms of the tracing system I would recommend any future research project to try to subject

as many additional artefacts and as much data as possible to the automatic database registration.

That is, all forms of documentation which happen electronically during a project should ideally

be incorporated into this database, so as to synchronise the disparate elements but also to allow

their reuse in the artistic work. This in turn requires that the interface for querying and managing

the version history, which now is very rudimentary, should be improved. I imagine that a

promising approach would be the definition of a general indexing API so that different indexes

could be built on demand, subsuming the bi-temporal orderings of BiGroup and BiPin as special

cases. Also: What happens if multiple composers work, perhaps concurrently, on a composition

or use the system to improvise together; can we associate transactions/cursors with different

users? What is the nature of distributed transactions or do we need to constantly merge multiple

distributed transactions?

There are many further paths, of course, to explore from the perspective of music informatics.

I have already mentioned the graphical user interfaces. In that respect the question of how

interconnected dataflow expressions should be represented and edited seems an interesting one.

How do we convey links and dependencies between different elements across the user interface,

without resorting to a banal Pure Data type of canvas? How continuous are the transitions

between a live improvisation view and a tape editing view? What is the relation between code

fragments and graphical, symbolic or iconic elements? Etc.

Regarding the programming language, the overall question is how far the observation can go

and if the distinction between an embedded domain specific language and the host language can

309

HANNS HOLGER RUTZ

be upheld if we allow the fine-grained representation of syntax elements. What can we learn or

incorporate from ‘live programming’,23 a term coined to denote the development of programs

in an environment which has a reactive compiler adjusting the current code representation as

elements of the syntax tree change? The Scala language is also constantly evolving. Macro

programming24 and language virtualisation25 could help alleviate the ceremony and error-

proneness of writing manual serialisation and event code, something that became quite annoying

during development, and keep the user facing side of the API simpler.

In terms of programming paradigms, a generalisation of the dataflow model with logical vari-

ables modelling constraint satisfaction problems (CSP)26 seems an interesting direction. These

types of variables are initially only known by their bounds or the domain of values they can pos-

sibly take on. Comparable to the way in which we construct expression chains with single valued

variables, these logical variables can be composed. Furthermore, special operators establish

constraints between them. For example, instead of saying that a sound object starts this much

time after another sound object, something covered by the currently implemented expressions,

we can just generally say that it starts after that sound, or we could say it starts at most this

and this much time after that sound. CSP on the other hand always assume a perspective that

goes from undetermined to determined, following the ideology of problem solving. It could be

interesting to explore how this approach can be opened to randomisation, and it is a challenge

to develop constraints solvers operating in an online fashion, especially if constraints may be

dynamically removed from the store.

Expanding on the idea of CSP, I imagine a research project which would investigate working with

classical algorithmic composition approaches, such as generative and evolutionary algorithms,

cellular automata etc., in an environment that brings two crucial changes: First, translating

these algorithms into a form suitable for the tracing framework, so that we can observe how one

23Sean McDirmid (2007), ‘Living it up with a Live Programming Language’, in: ACM SIGPLAN Notices, vol. 42,
10, pp. 623–638.

24Eugene Burmako (2013), ‘Scala Macros: Let Our Powers Combine!’, in: Proceedings of the 4th Annual Scala
Workshop, New York.

25Tiark Rompf and Martin Odersky (2010), ‘Lightweight Modular Staging: A Pragmatic Approach to Runtime
Code Generation and Compiled DSLs’, in: ACM SIGPLAN Notices, vol. 46, 2, pp. 127–136.

26See for example Edward Tsang (1993), Foundations of Constraint Satisfaction, London: Academic Press

310

CHAPTER 6. CONCLUSIONS

approaches these algorithms, puts them together and composes with them. Second, looking for

the possible scenarios in which these algorithms work on electroacoustic music and sound art

instead of the symbolic notation of instrumental music. This unification could create a broader

notion of ‘signal processing’, especially when the structural feedback of the tracing system is

made productive.

Looking at the theoretical foundation, there is much literature that had to remain uninspected due

to its sheer volume. In particular, I regret not having had sufficient time to adequately include

the work of Gilles Deleuze. I have spent some time (although not enough) on his early work

Difference and Repetition, which closely touches upon the topic of differential reproduction.

For another project which tries to tighten the different threads found in this thesis to “excess”,

I believe that his work is an important if not central piece.

At last, considering the discourse on artistic research, it must be possible to bring this discourse

into the communities which are less rooted in artistic practice and philosophical discourse, i.e.

the academic computer music communities. The current interest in Rheinberger’s work from an

artistic research perspective27 is an encouraging signal that a theory-building process is on its

way. What I have seen so far, for example during the Research Festival I attended at the Orpheus

Institute Ghent in October 2013, has however been rather restricted to a narrow definition

of artistic research as a specific type of practice carried out by musicians and performers or

by visual artists in their studios. The amount of engagement with Rheinberger’s theories on

experimentation often does not go far beyond a «homology between scientific and artistic

activity» that he is critical of himself.28 On the other hand, his own scepticism regarding a wider

applicability of his theory in the arts I consider a strong point for future directions in two ways.

First, the gap between “his” discourse and the artistic research discourse, also the gap between

time scales—the lifetime of a scientist as experimenter versus the timeframe within which an

artist realises a particular set of works—may play out its intrinsic capabilities as a “crucial

suspension”, only by which the translation from one domain to the other succeeds. Second,

27See the recent publication Michael Schwab, ed. (2013a), Experimental Systems. Future Knowledge in Artistic
Research, Leuven: Leuven University Press

28Schwab, ‘Forming and Being Informed: Hans-Jörg Rheinberger in conversation with Michael Schwab’, p. 206.

311

HANNS HOLGER RUTZ

it emphasises that indeed we need to depart from our current notion of artistic practice and

develop new forms in which art is truly grafted onto science and vice versa, producing thus «a

fundamental complicity».29

29Rheinberger, ‘Experimental Systems: Historiality, Narration, and Deconstruction’.

312

Chapter 7

Afterword

The question that never fails to confuse me is the one of my audience: How do you imagine

the “recipient” of your music piece or sound installation? What type of reader do you target

with this text? As one of the examiners remarked, the word ‘audience’ is virtually absent in

this thesis. It may appear hermetic in the sense of being occupied with its own making, and

thus I would like to use this opportunity to clarify who this text addresses and to invite potential

readers to engage with it.

The field of study is computer music and sound art, specifically the emerging (and therefore not

yet delimited) subject of artistic research within this field. I argue that by definition computer

music should be transdisciplinary, bringing together computer science, engineering and signal

processing, and the theory and praxis of music and sound art. To understand transdisciplinarity,

we may look at the account given by Jürgen Mittelstraß:1 He describes it as a domain where

problems «do not do us the favour of defining themselves in the terms of a particular discipline

or subfield», their solutions cannot arise from the sum of particularities. With respect to the re-

searcher, «[c]ompetencies acquired in individual disciplines remain a fundamental precondition

for tasks defined transdisciplinarily, but they no longer suffice to successfully tackle research

projects which extend beyond the established fields.» The disciplines must undergo changes

themselves.

Mittelstraß lists four requirements for true transdisciplinary work. First, one must have an

«unconditional will to learn» outside one’s own discipline. One must then “productively immerse”

in the other disciplines and, consequently, be ready to reconsider one’s previous approaches.

1Jürgen Mittelstraß (2011), ‘On transdisciplinarity’, Trames: A Journal of the Humanities and Social Sciences
15(4), pp. 329–338.

313

HANNS HOLGER RUTZ

Finally, a «common text» must be produced that unifies the different disciplines. I tried to follow

these steps to a certain degree. As a result, if one points the finger into the list of references, one

finds such heterogeneous entries as a review of Chris Marker’s film work (J. Cushing), signal

processing using wavelets (I. Daubechies), philosophy (G. Deleuze), and computer science

(E. Demaine et al.) in immediate vicinity. To dispel the impression of eclecticism, I want to

explain the strategy behind this breadth of sources.

Let us remain with these four references. Chris Marker seems the most unconnected at first.

He appears in the epigraph of the concluding chapter: «On ne sait jamais ce qu’on filme.»

As unmotivated as it sounds, it brings us right to the centre of Chap. 2, the strange double nature

of composition signified by the confusion between composition the activity and composition the

product. The self-perception of the composer composing or the film-maker filming is detached

from the perception of the audience hearing the composition or seeing the film. A process has

come to an end.

But it is also a statement about knowledge—or a lack thereof. It supports the critique of the

cognitive modelling approach to creativity that is central to Chap. 3. Neither is observing the

compositional process about the reconstruction of an original intention, nor does it suffice to

look at the conceptualisation of the composer. Instead, we must focus on the intrinsic play of

the material traces produced in the process. This focus on “materiality” is not yet widely spread

among the computer music research community, and we thus build on the experience of artists

and philosophers. At one point, we referred to Hans-Jörg Rheinberger’s acknowledgment of an

agency of the material in an experimental system. It is precisely reflected in another statement

by Marker regarding the making of La Jetée (1962):

«. . . I photographed a story I didn’t completely understand. It was in the editing that

the pieces of the puzzle came together, and it wasn’t me who designed the puzzle.

I’d have a hard time taking credit for it. It just happened, that’s all.»2

2Samuel Douhaire and Annick Rivoir (2003), ‘Marker Direct: an interview with Chris Marker’, trans. by
Antoine de Baecque, Filmcomment (3), pp. 38–41, URL: http://www.filmcomment.com/article/marker-direct-an-
interview-with-chris-marker (visited on 31/07/2014).

314

http://www.filmcomment.com/article/marker-direct-an-interview-with-chris-marker
http://www.filmcomment.com/article/marker-direct-an-interview-with-chris-marker

CHAPTER 7. AFTERWORD

One could go on now with La Jetée, perhaps noting its usage of a paradoxical re-entry, the

protagonist meeting himself in the past, a situation only resolvable through death. Problems

and paradoxes of time are another important aspect in the thesis which ultimately proposes

a compositional approach that introduces its own history into the ongoing making of a piece.

Clearly, the situation would escalate if I were to follow each of these threads to their exhaustion,

and therefore I decided to produce the texture of the thesis in an open-ended way; explicit

enough to understand its form, but compact enough to get the ideas across within a limited

space. The texture I aimed at should be both transparent and dense at the same time. For

example, going back to the quote from Le fond de l’air est rouge: It allowed me to talk about

my activity of note taking; to anchor it in time; to anchor it to the end of one thread, Marker’s

death, and to the beginning of another, my birth. This is what interests me: the appearance of

the compositional time within a performance. And since the thesis text should be produced in

the same manner, we have here an example of such recursions.

But also the choice of the film medium is not arbitrary. Apart from an overlap with electroacous-

tic music with respect to methods in material treatment, it is essential to stop relying solely

on a musicological discourse and music as the only art form. Having recently worked on a

different research project that included several composers and theoreticians of New Music,

I observed a strong tendency to exclude anything from the discourse that is not traditionally

accepted as a “musical question”, leading to a rather self-asserting situation. This closedness can

become a problem of relevance of an already marginalised community. Far beyond my personal

perception, this problem was for example highlighted in Diedrich Diedrichsen’s keynote The

Re-Materialization of the Music-Object at the 2012 ICMC.

The reader I imagine has an integral concept of the arts. She or he may be primarily a theoretician

(computer music researcher, musicologist, computer scientist. . .) or a practitioner (composer,

sound or media artist); ideally a mixture of both. I would like to appeal to the aesthetic sense,

to a reflection on how we define materials and arrive at forms. These are questions that apply

to various art forms and “genres”, even if most examples are taken from the domain I work

in, electroacoustic music and sound art. What this text and the accompanying pieces offer is

315

HANNS HOLGER RUTZ

the elaboration of aesthetic strategies based on a materially rooted self-reflection, an attempt to

overcome the antagonism between a “pure sound cosmos” and a non-material conceptualism.

The second reference in the list is ‘Retroactive Data Structures’. Back in 1976 Barry Truax

posited that data structures are essential for computer music systems, because these systems

necessarily embody a model of the musical activity that affects the composer.3 The choice and

design of data structures determines the representations, atomicity, level of detail and relations

that one can work with. With the inscription into data structures, the compositional process

becomes manifest and observable. However, Truax does not assume the full potential of this

insight:

«. . . the importance of the theorist as observer needs to be discussed since the

machine system itself is presumably not designed for observability, i.e. for the

theorist. Ideally, the benefits should go both ways. On the one hand, theoretical

insight into the effectiveness of a given system should assist in the design of new

systems, and insight into the implications of a given system should assist the

composer in choosing tools wisely, knowing both their limitations and potential.»4

Here, a clear distinction is drawn between theorist/designer and composer. Observation of

the compositional process is not a design goal in itself, and it is reserved for the theorist.

The composer can merely “choose” a tool but is not considered to be part of its design and

observation. We take an opposite stance in the thesis. The relegation of the composer to a “user”

of a prestructured software can be unmasked as an ideology dressed under labels such as “user-

centered design” or “human-computer-interaction”.5 But viewing the compositional activity

as an experimental system, the engineering of representations, data structures, algorithms etc.

becomes a major part of it.

By dedicating, in turn, a major part of this thesis to the review, understanding and development

of data structures and algorithms that operate on them, not only do we contribute to the field
3Barry Truax (1976), ‘A Communicational Approach to Computer Sound Programs’, Journal of Music Theory

20(2), pp. 227–300.
4Ibid., p. 230.
5Michael Hamman (2002), ‘From Technical to Technological: The Imperative of Technology in Experimental

Music Composition’, Perspectives of New Music 40(1), pp. 92–120.

316

CHAPTER 7. AFTERWORD

of computer science, but we exercise what M. Hamman calls «foregrounding of representation

and interaction».6 In the HCI perspective, an interface should be culturally rooted so that the

user does not have to think about it but can engage with it based on an implicit knowledge.

The foregrounding, in contrast, means that the materials and the «epistemological frame» of

the interface receive an «explicit problematisation».7 I want to go even further and show an

aesthetic quality of the data structures and algorithms beyond the constitution of an observation

framework for computer music. This quality reveals itself both in diagrammatic representations

and in their composability.

The reader I imagine is someone who is interested in the study of the agency genuinely produced

by the data structures and algorithms inserted into the composition process; interested in the

critical, innovatory and aesthetical role they play. The level to which she or he wants to immerse

in Chap. 5 may vary. The formalisms presented in that chapter are naturally limited by my own

lack of academic education in computer science. Nevertheless, I believe that readers in the field

of computer science will be interested to learn how I approached the difficult task of designing

a general online tracing system for the manipulation of objects. Computer musicians conversant

with programming languages will have no problem to follow the argumentation in that chapter

and will hopefully share the inspiration in understanding data structures as “mouldable material”.

Even a reader without any training in computer science or programming languages should sense

the aesthetic quality of these structures and grasp the idea of a hybrid artistic endeavour that

bridges the seemingly cold “objectivity” of algorithms, their “uninterested” forms, and the

materially rooted electroacoustic sound discourse. In this reading perspective, chapters 4 and 5

close ranks.

If we extend the notion of algorithmic composition beyond the generation and manipulation of

symbolic scores to include the electroacoustic substrate, we must understand signal processing

as a specific category of algorithms. Indeed, many algorithms can operate on a continuum of

data, from sets of nominal symbols to the evenly sampled stream of numbers typical of signal

6Michael Hamman (1999), ‘From Symbol to Semiotic: Representation, Signification, and the Composition of
Music Interaction’, Journal of New Music Research 28(2), pp. 90–104.

7Ibid.

317

HANNS HOLGER RUTZ

processing. The same problem of the designated use of an algorithm versus an experimental

foregrounding applies. In order to “engineer a breakdown” (Hamman), in order to reappropriate

an algorithm for artistic exploration, one first has to understand its canonical use. But similar to

the transdisciplinary requirement, this precondition must be exceeded to address the new aes-

thetic questions. When I referred to the wavelet transformation of I. Daubechies,8 it concerned

precisely the material implications, such as the way the timbre and rhythm is altered in the

repeated signal decimations as well as the new form obtained from concatenating the individual

decimations coming out of the so-called “pyramid” algorithm.

The reader I imagine orients her or his understanding of algorithmicity not towards a reasoning

by logic, but towards a mode of experimentation embodied by an ‘interface’ between human

and computer. Whether familiar with the framework of signal processing or not, she or he is

interested in the transformative aspect of representations, their capability of re-writing a trace,

a capability exploited in Chap. 4 to observe the motion of the compositional process across

different pieces.

Questions of representation run through the entire text. The concept of ‘process’ seems irre-

concilable with representationality. How can a pure form of ‘becoming’ be observed from an

outside, how can it be disembedded from and re-embedded in time? An apparent solution lies

in techniques of ‘modelling’, i.e. the reduction of process to a generality, a stable concept

with individual processes only being instances thereof. This way, the compositional process

becomes a problem-solving activity, the negotiation of and convergence towards ‘goals’. We

learn something about non-material and non-temporal objects such as ‘creativity’ or the ‘mind’.

But is there no alternative to this fallacy—pretending to talk about process when we really don’t?

The crisis of representation is a central topic in post-structuralist philosophies that attempt to

replace concepts of identity with those of difference, most evidently in the work of Deleuze

(whom I refer to only peripherally) and Derrida (whom I refer more to frequently, since his

idea of graphematicity appears suitable for application in art production and is well reflected in

the experimental systems of Rheinberger). It is important to incorporate these philosophies for

8Ingrid Daubechies (1988), ‘Orthonormal Bases of Compactly Supported Wavelets’, Communications on Pure
and Applied Mathematics 41(7), pp. 909–996.

318

CHAPTER 7. AFTERWORD

several reasons. First, the computer music discourse is still under the hegemony of cognitive

science and linguistics. While these areas are certainly important and without doubt contribute

to the field, it is dangerous to assume a monopoly on the episteme of computer music and

computer sound art.

The reader I imagine is both of a sceptical and of a speculative temper. I believe this to be the

case of all good artists and theoreticians. Neither must we become too comfortable with what

appear to be the established truths of a field, nor must we reject a thought just because it is not

based on empirical “fact”. Instead we should probe that thought for its connectivity, the way it

can be unfolded and the way it interacts with and perhaps rewrites other thoughts. This is how I

understand Derrida’s deconstructivism and the “dice throw” in Deleuze’s method.9

Another reason lies in a new interpretation of agency in the compositional process. Instead

of being tied to the human composer, motions and dynamics may now indicate a non-human

agency, examples of which were already given before. Furthermore, these philosophies not only

stress the irreducibility of processes, they also pave the way for a new thinking that is sometimes

called “new materialism”.10 Finally, we obtain ideas and methods for deparadoxifying the

observation problem of processes, e.g. localisation in the “corner of one’s eye”, embracing

“extimacy”, transformation of an epistemic thing into a technical object.

In short, what should become clear is that “false” representations can be powerful tools. An

example is the power series: It is enabled by an operational closure such as presented to us by

Luhmann or Ashby. In studying it using Spencer-Brown’s Laws of Form, we come to see how

it can illustrate the consumption of time of a process as well as the illusion of an origin. The

re-entry occurs in the making of pieces in the form of general transformations that can operate

recursively on their own results. In the design of the tracing system, it occurs in the F-bounded

quantification that surprisingly ties the type system together. . .

9James Williams (2003), Gilles Deleuze’s Difference and Repetition: a Critical Introduction and Guide, Edin-
burgh: Edinburgh University Press, pp. 13–22.

10In this text it is mainly represented through Rheinberger’s work, but further study could look at other proponents
such as Karen Barad.

319

HANNS HOLGER RUTZ

The reader I wish for is not necessarily an expert in every single aspect explored in this thesis, but

rather someone who is interested in observing how these underlying concepts—transformative

representations and the re-entry being two examples—keep appearing within the various con-

texts, thereby incrementally obtaining their shapes.

320

Appendix A

Contents of the DVD

The DVD accompanying the thesis contains sound excerpts from the pieces discussed in Chap. 4,

and photographic material where appropriate (sound installations). The purpose is on the one

hand to give evidence of the practical works realised for this thesis, and on the other hand

to complement the textual discussion and enhance the understanding with examples of the

otherwise irreducible sound works.

Furthermore, the DVD contains the source code of the software framework developed in this

thesis. As with the sound works, to be complete, it also contains software developed prior to the

thesis project, but which was relevant in the discussion. All software is released as open source

under GNU GPL or LGPL license terms, as indicated on the disk.

Sound Works

The following is a list of the sound works in the chronological order of their “creation”, and

given with reference to the main section of the thesis which discusses them. Sound works which

were composed during the thesis period (after 2009) but did not find their way into the text are

not included, but are listed in Appendix C.

321

HANNS HOLGER RUTZ

Title Year Section Page

Residual 2002 4.4.1 130

Zeichnung 2005 4.4.2 137

Zelle 148 2006 4.2.1 115

Kalligraphie 2007 4.2 109

Command Control Communications 2007 2.3.2, 4.2.1 31, 117

Amplifikation 2009 4.2 111

Dissemination 2010 4.2 109

Inter-Play / Re-Sound 2011 4.4.3 142

Writing Machine 2011 4.4.4 146

Leere Null (2) 2012 4.4.5 150

Voice Trap 2012 4.5.1 165

Dots 2012 4.5.1 168

Unvorhergesehen–Real–Farblos 2012 4.5.1 170

(Inde)terminus 2013 4.6 171

Machinae Coelestis 2013 4.6.1 176

Software

The software included comprises of Sound Processes and the components of Fig. 5.1, the

graphical front-end Mellite, as well as older applications FScape, Wolkenpumpe, and Kontur.

322

Appendix B

Survey of the Scala Programming Language

The Scala programming language1 was created by Martin Odersky and his team at the École

Polytechnique Fédérale de Lausanne (EPFL). It is a blend of object-oriented and functional

constructs and compiles to byte-code executed on the Java Virtual Machine (JVM). Its design

began in 2001 with the first version released in 2003.2 Version 2 was released in 2006, where

the compiler became self hosting (it was written in Scala itself). Version 2.6 in 2007 introduced

existential types, structural types, and lazy values. The next big step was version 2.8, released in

2010, which among other things brought an extensive and redesigned collections library (data

structures) and introduced named and default method arguments. Version 2.10 is the latest as of

this writing, which brought many improvements on the library level as well as streamlining of

the language, the details of which are not of interest at this point.3

We assume that the reader is superficially familiar with basic concepts of programming lan-

guages—such as state, encapsulation, concurrency, polymorphism, composition and inherit-

ance—and is otherwise referred to the overview given by P. Van Roy.4 Van Roy also identifies

a multitude of programming paradigms, and says: «One approach that works surprisingly

well is the dual-paradigm language: a language that supports one paradigm for programming

in the small and another for programming in the large.»5 Scala falls into this sweet spot of

1Martin Odersky et al. (2006), An Overview of the Scala Programming Language, tech. rep. LAMP-REPORT-
2006-001, École Polytechnique Fédérale de Lausanne (EPFL).

2Martin Odersky (9th June 2006), A Brief History of Scala, URL: http://www.artima.com/weblogs/viewpost.jsp?
thread=163733 (visited on 04/01/2013).

3The version history of Scala can be found at http://www.scala-lang.org/node/43 (visited on 07/01/2013)
4Peter Van Roy (2009), ‘Programming Paradigms for Dummies: What Every Programmer Should Know’, in:

New Computational Paradigms for Computer Music, ed. by Gérard Assayag and Andrew Gerzso, Paris/Sampzon:
IRCAM/Éditions Delatour France, pp. 9–47.

5Ibid., p. 11.

323

http://www.artima.com/weblogs/viewpost.jsp?thread=163733
http://www.artima.com/weblogs/viewpost.jsp?thread=163733
http://www.scala-lang.org/node/43

HANNS HOLGER RUTZ

dual-paradigm languages, combining object-orientation and functional programming. We will

compare it here with SuperCollider, because the latter is a language commonly used in computer

music and sound synthesis. Both share many similarities, owing partly to a common inspiration

in the Smalltalk language.

When McCartney introduced the SuperCollider language, he identified a number of abstrac-

tions which he considered important. Scala shares most of these, including named symbols,

control structures such as conditional branching and iteration, single message dispatch and

lexical scoping. Examples for argument passing, object-oriented and functional constructs in

both languages are shown in Table B.1. Scala however goes way beyond these abstractions,

bringing a more powerful object model and functional toolkit to the table. These will be briefly

introduced so that the reader can become familiar with the language, along with the main trait

that distinguishes Scala from SuperCollider: Its strong static type system.

B.1 Basic Syntax and Types

Scala deliberately uses a syntax akin to Java in order to ease the transition from this mainstream

language (and C++ which served as blueprint for Java). It uses curly braces { } to group

statements into blocks, and method are called via object.method(arg1, arg2, arg3). It shares

the same primitive data types, although they are not treated differently than any other user

defined types and therefore their names are written capitalised: Byte (8-bit signed integer), Short

(16-bit signed integer), Int (32-bit signed integer), Long (64-bit signed integer, a literal can be

written as 1234L), Float (32-bit floating point, a literal can be written as 1234.5f), Double (64-bit

floating point, a literal can be written as 1234.5), Boolean (with values true and false), and

String (a literal is written with double marks "abcde"). Arbitrary precision integer and decimal

numbers are expressed as instances of BigInt and BigDecimal, while rational and complex

numbers, vectors and matrices are not provided by default, but can be added through libraries.

SuperCollider, on the other hand, only supports 32-bit integers and 64-bit floating point numbers,

and provides a class for complex numbers.

A function or method definition in Scala is written using the def keyword, followed by the

function’s name and zero or more argument lists followed by the result type and the function’s

324

APPENDIX B. SURVEY OF THE SCALA PROGRAMMING LANGUAGE

Ta
bl

e
B

.1
:

C
om

m
on

ab
st

ra
ct

io
ns

in
th

e
Su

pe
rC

ol
lid

er
la

ng
ua

ge
an

d
Sc

al
a.

E
nt

ri
es

m
ar

ke
d
∗

ar
e

no
ta

va
ila

bl
e

in
th

e
Su

pe
rC

ol
lid

er
in

te
rp

re
te

r.

A
bs

tr
ac

tio
n

Su
pe

rC
ol

lid
er

Sc
al

a
A

rg
um

en
tp

as
si

ng
N

am
ed

an
d

de
fa

ul
ta

rg
.

~
q
u
a
n
t
i
z
e

=
{

a
r
g

i
n
,

q
=

1
.
0
,

t
o
l

=
0
.
0
5
;

.
.
.

}
d
e
f

q
u
a
n
t
i
z
e
(
i
n
:

D
o
u
b
l
e
,

q
:

D
o
u
b
l
e

=
1
.
0
,

t
o
l
:

D
o
u
b
l
e

=
0
.
0
5
)

=
.
.
.

~
q
u
a
n
t
i
z
e
.
(
3
.
1
4
1
5
9
2
6
,

q
:

0
.
1
)

q
u
a
n
t
i
z
e
(
3
.
1
4
1
5
9
2
6
,

q
=

0
.
1
)

V
ar

ia
bl

e
le

ng
th

ar
g.

~
p
o
s
t
A
l
l

=
{

a
r
g

.
.
.

x
;

x
.
p
o
s
t
l
n

}
d
e
f

p
o
s
t
A
l
l
(
x
:

A
n
y
*
)

=
p
r
i
n
t
l
n
(
x
)

~
p
o
s
t
A
l
l
.
(
1
,

2
,

3
)

p
o
s
t
A
l
l
(
1
,

2
,

3
)

O
bj

ec
t-

or
ie

nt
at

io
n

In
he

ri
ta

nc
e

Si
ng

le
*

Si
ng

le

S
i
n
O
s
c

:
U
G
e
n

{
.
.
.

}
c
l
a
s
s

S
i
n
O
s
c

e
x
t
e
n
d
s

U
G
e
n

{
.
.
.

}

M
ul

tip
le

M
ix

in
C

om
po

si
tio

n
c
l
a
s
s

L
i
n
R
a
n
d

e
x
t
e
n
d
s

U
G
e
n

w
i
t
h

S
c
a
l
a
r
R
a
t
e
d

w
i
t
h

U
s
e
s
R
a
n
d
S
e
e
d

E
ve

ry
th

in
g

is
an

ob
je

ct
✓

e.
g.

-
4
.
a
b
s

✓
e.

g.
-
4
.
a
b
s

E
xt

en
si

on
m

et
ho

ds
✓

*
T

hr
ou

gh
im

pl
ic

it
co

nv
er

si
on

+
N
u
m
b
e
r

{
i
m
p
l
i
c
i
t

c
l
a
s
s

e
x
t
D
o
u
b
l
e
(
d
:

D
o
u
b
l
e
)

{

h
a
l
f

{
^
t
h
i
s
*

0
.
5

}
d
e
f

h
a
l
f

=
d

*
0
.
5

}
}

Fu
nc

tio
na

lc
on

st
ru

ct
s

C
lo

su
re

s
i
m
p
l
i
c
i
t

c
l
a
s
s

C
a
n
L
o
o
p
(
n
:

I
n
t
)

{

d
e
f

l
o
o
p
(
b
o
d
y
:

=
>

U
n
i
t
)

=
f
o
r
(
j

<
-

1
t
o

n
)

b
o
d
y

}

x
=

"
h
e
l
l
o
"
;

1
0
.
d
o

{
x
.
p
o
s
t
l
n

}
v
a
l

x
=

"
h
e
l
l
o
"
;

1
0
.
l
o
o
p

{
p
r
i
n
t
l
n
(
x
)

}

Fi
rs

t-
cl

as
s

fu
nc

tio
ns

(
1
.
.
1
0
0
)

s
e
l
e
c
t
:

{
a
r
g

i
;

i
%

7
=
=

0
}

(
1

t
o

1
0
0
)

f
i
l
t
e
r

{
_

%
7

=
=

0
}

f
=

{
a
r
g

i
;

i
%

7
=
=

0
}

d
e
f

f
(
i
:

I
n
t
)

=
i

%
7

=
=

0

(
1
.
.
1
0
0
)

s
e
l
e
c
t
:

f
(
1

t
o

1
0
0
)

f
i
l
t
e
r

f

325

HANNS HOLGER RUTZ

body of expressions. There is no clear distinction between functions and methods, stemming

from the fusion of object-oriented and functional concepts in Scala. We prefer to use the word

‘function’ but will say ‘method’ when we refer to a function as a member of an enclosing

class type.6 An argument list is a pair of parentheses enclosing a number of comma separated

arguments each of which is a name followed by a colon and its required type. The function’s

return type follows the argument lists separated by another colon. The function body then

follows after an equals sign =. The following illustrates this by defining a function to return the

maximum of two integers:

/* This is a multi line comment.

* The following method takes two arguments ‘x‘ and ‘y‘

* and returns the greater of the two.

*/

def max(x: Int, y: Int): Int = {

if (x > y) x // single line comment. ‘x‘ is greater than ‘y‘, so return ‘x‘

else y // otherwise return ‘y‘

}

Scala makes extensive use of type inference, meaning that in many cases the compiler can

automatically determine the type and thus type annotations can be omitted. For the above

function this holds for the return type. Also the function body here only consists of one

expression (if-then-else), allowing to omit the curly braces. A shorter version is thus:7

def max(x: Int, y: Int) = if (x > y) x else y

A semicolon ; to end a statement is optional and therefore usually dropped. It is only needed

when multiple statements are written on the same line. Likewise, a return keyword is not

needed at the end of a block. Recall that within SuperCollider class methods a return must be

explicitly signalised by a caret character ^result, whereas a function just as in Scala evaluates

automatically to the last expression of its body: ~max = { arg x, y; if (x > y, x, y) }.

Numeric operators and operator precedence follows Java conventions, with arithmetic and logic

operators +, -, *, /, <, <= (less-than-or-equal), >, >= (greater-than-or-equal), == (equal), =! (not

6Technically, a function value is an instance of class Function, and such a value is automatically constructed from
a method member when calling a higher-order function (a function which takes another function as argument).

7Example taken from Martin Odersky, Lex Spoon and Bill Venners (2008), Programming in Scala: a compre-
hensive step-by-step guide, Mountain View, CA: Artima Inc, 62f

326

APPENDIX B. SURVEY OF THE SCALA PROGRAMMING LANGUAGE

equal), ! (boolean NOT), ~ (bitwise NOT), & (boolean or bitwise AND), | (boolean or bitwise

OR), and ^ (boolean or bitwise XOR). 3 + 4 * 5 evaluates to 23, whereas in SuperCollider evalu-

ation proceeds strictly from left to right, yielding 35, requiring explicit parentheses 3 + (4 * 5)

if multiplication should take precedence.

B.2 Scoping and Nesting

Scala tries to be a very “regular” language in that almost all constructs can appear in any position.

For instance, functions and classes can be nested. The following example is adapted from the

slides of the online course Functional Programming Principles in Scala by Martin Odersky:8

// Newton’s method to calculate the square root of a number

def sqrt(x: Double): Double = {

def improve(guess: Double) = (guess + x / guess) / 2

def isGoodEnough(guess: Double) = math.abs(guess * guess - x) < 0.001

def sqrtIter(guess: Double): Double =

if (isGoodEnough(guess)) guess else sqrtIter(improve(guess))

sqrtIter(1.0) // start recursive search

}

The inner functions improve, isGoodEnough and sqrtIter are encapsulated within the outer func-

tion sqrt and invisible from the outside. Equally important for controlling name space in large

projects is the possibility to nest symbols within modules:

object a {

object b {

val c = 7

}

}

println(a.b.c) // descend into the inner objects (name spaces)

import a.b.c // alternative: import a symbol from a name space...

println(c) // ...so that afterward it can be directly referred to

import a.b.{c⇒ alias} // to avoid name clashes, symbols can be renamed

println(alias) // ...during an import

Here, object defines a module, also known as singleton object. One can think of it as an instance

of a traditional class in object-oriented programming, but apart from this one unique instance no

further instances may be created. Singleton objects therefore serve also as containers for static

symbols (corresponding to Java’s static modifier or class methods and fields in SuperCollider).
8Slides and video lectures available with login at https://class.coursera.org/progfun-2012-001 (visited on

04/01/2013)

327

https://class.coursera.org/progfun-2012-001

HANNS HOLGER RUTZ

A value definition with keyword val is similar to a function definition with keyword def, but

evaluates the right-hand side only once (see Sect. B.3.2).

Using a package statement, symbols can be repeatedly defined within a name space across

different files. Packages are similar to modules, however do not allow to directly define functions

but only classes within them:

package de.sciss.synth

class Buffer

which is shorthand for

package de {

package sciss {

package synth {

class Buffer

}

}

}

The Buffer class thus defined can be referred to with a package prefix as de.sciss.synth.Buffer.

For convenience, all symbols within a namespace can be imported at once using the wildcard

character _:

import de.sciss.synth._ // import all symbols within package ‘de.sciss.synth‘

new Buffer // symbol ‘Buffer‘ is now known and does not need namespace qualification

Visibility of symbols can be further controlled with modifiers private, private[<package>] and

protected. In contrast, namespace in SuperCollider is flat, leading to awkward prefix schemes

to avoid clashes, e.g. JSC for the SwingOSC extension classes or Q for the Qt graphical user

interface toolkit.

B.3 Functional Aspects

On the functional side, apart from support of closures, function values and higher order functions,

it is worth introducing pattern matching, lazy evaluation, and type classes via implicit conversion.

B.3.1 Pattern Matching

Pattern matching can be seen as a more powerful switch statement to branch according to the

type or value of an object, and also as the functional alternative to object-oriented polymorphic

328

APPENDIX B. SURVEY OF THE SCALA PROGRAMMING LANGUAGE

dispatch. The matching expression begins with a receiver followed by the keyword match

followed by a block of case statements which are checked from top to bottom until a match is

found:

def shapeID(name: String) = name match {

case "step" ⇒ 0

case "linear" ⇒ 1

case "exponential"⇒ 2

case _ ⇒ sys.error("Shape not supported: " + name)

}

This function returns an integer suitable for SuperCollider’s EnvGen unit generator, according to

the name of a shape provided as a string argument. The wildcard character _ can be used as a

final “catch all” branch, similar to a default: in Java. If left out and no case matches, a runtime

exception is thrown. The Scala compiler is capable to detect missing cases when the matched

type is sealed, meaning that no further subtypes may be defined at a later point:

sealed trait Shape // sealed: all subtypes of Shape must be defined below

case object Step extends Shape

case object Linear extends Shape

case object Exponential extends Shape

case object Sine extends Shape

def shapeID(s: Shape) = s match {

case Step ⇒ 0

case Linear ⇒ 1

case Exponential⇒ 2

}

Here the compiler will warn that the case of Sine is not handled. Note that the subtypes of Shape

were defined using a case modifier. This indicates that we want to use these types in pattern

matching. It is particularly useful when dealing with classes instead of singleton objects, as

pattern matching can now be used to destructure these classes. For example, imagine a class to

define Open Sound Control messages:

case class Message(name: String, args: Any*)

Any is the root type in the Scala type hierarchy, thus arguments could be integers, floating

pointing numbers, strings, etc. The asterisk in Any* indicates a variable length argument: zero or

329

HANNS HOLGER RUTZ

more arguments may occur in this position. Now a responder could look for particular messages

using pattern matching, e.g. react to trigger messages from the SuperCollider server:

def handle(m: Message): Unit =

m match {

case Message("/tr", nodeID: Int, trigID: Int, trigValue: Float)⇒
println("Received trigger from node " + nodeID)

case _⇒ // ignore other messages

}

The first case destructures the message. It only matches when the message name is "/tr", and

the messages contains two integer arguments followed by one floating point argument. These

arguments are automatically bound to symbols nodeID, trigID, and trigValue, so they can be

used in the case body. If the responder wanted to make sure that the trigger comes from the

node with identifier value 1000, the match could be:

def handle(m: Message): Unit =

m match {

case Message("/tr", 1000, _, trigValue: Float)⇒
println("Received trigger value " + trigValue)

case _⇒ // ignore other messages

}

A wildcard _ can be used to emphasise that a particular message argument (the trigger identifier)

is unused in the case body.

B.3.2 Eager, Lazy and Repeated Evaluation

Like the functional programming language ML but unlike Haskell, Scala uses eager or strict

evaluation by default. An eager value assignment happens when using the val statement,

however adding the lazy modifier makes that assignment lazy. Only when the lazy symbol is

used for the first time, the right-hand side is evaluated (‘call-by-need’). In contrast, a function

def always evaluates the right-hand side, whenever the function is used:

330

APPENDIX B. SURVEY OF THE SCALA PROGRAMMING LANGUAGE

class Evaluation {

val a = { println("Evaluating a"); 1 }

lazy val b = { println("Evaluating b"); 2 }

def c = { println("Evaluating c"); 3 }

}

val e = new Evaluation

println("Calling a: " + e.a)

println("Calling b: " + e.b)

println("Calling b: " + e.b)

println("Calling c: " + e.c)

println("Calling c: " + e.c)

The output of this program will thus be:

Evaluating a // immediately when the class is instantiated

Calling a: 1 // a is not evaluated again

Evaluating b // b is used for the first time, forcing the lazy value to be calculated

Calling b: 2

Calling b: 2 // b is used again, and the value is not re-evaluated

Evaluating c // a function call will aways evaluate the function body

Calling c: 3

Evaluating c // ...even when repeated

Calling c: 3

In order to allow for deferred evaluation of function arguments, Scala allows call-by-name

parameters, where the type is preceded by a double-right arrow ⇒ . The type of such an

argument is essentially a parameterless function, also known as a ‘thunk’. The interplay of lazy

values and call-by-name can be observed when using Scala’s collection type Stream—a lazy

sequence—to create infinite generators. Similar to lists in Lisp, a stream is constructed from a

(strict) head and a (lazy) tail element. Listing B.1 shows a simplified factory and interface for

streams.

This definition contains four new elements. First, there is a seeming duplication of a type Stream

which appears both as object Stream and as abstract class Stream. In such a constellation, the

singleton object is called companion object of the class; as in the above case, companion objects

often carry constructor methods. Here cons uses call-by-name for the tail argument which will

only be evaluated once when the lazy val tail is resolved.

331

HANNS HOLGER RUTZ

object Stream {

def cons[A](hd: A, tl:⇒ Stream[A]) = new Stream[A] {

def head = hd

lazy val tail = tl

...

}

}

abstract class Stream[A] {

def head: A

def tail: Stream[A]

def take(n: Int): Stream[A]

def foreach(fun: A⇒ Unit): Unit

}

Listing B.1: Skeleton of a purely functional lazy stream

Second, there are type parameters which are written in brackets []. The Stream class has a type

constructor parameter A which represents the type of the elements in the stream. Consequently

the head method returns a value of the virtual type ‘A’. Type parameters are discussed in Sect. B.4.

Third, there is type Unit. This is a type which only has one value, (), and is used for functions

which do not wish to return a particular result—they will have side effects such as printing to the

console. It is equivalent to Java’s void, but in contrast is a real type with a real value (albeit only

one). There is a shortcut for defining a function that has a unit result, although it is considered

bad style by many:

def fun1: Unit = { println("hello") }

def fun2 { println("hello") } // short version of ‘fun1‘

Fourth, the type A⇒ B is the type of a function that takes one argument of type A and returns a

value of type B. The stream’s foreach method thus takes a function which is applied with each

element in the stream. This can be used to iterate over the stream, similar to SuperCollider’s do

method:

// SuperCollider: aStream.do { arg elem; elem.postln }

aStream.foreach { elem⇒ println(elem) }

aStream.foreach(println) // shorter version

With this interface, for example the sequence of Fibonacci numbers can be defined:

332

APPENDIX B. SURVEY OF THE SCALA PROGRAMMING LANGUAGE

val fib = {

def loop(h: Int, n: Int): Stream[Int] = Stream.cons(h, loop(n, h + n))

loop(0, 1)

}

Because the sequence does not terminate, we need to be careful not to iterate over it directly, as

this would produce an infinite loop. The take method truncates the stream after a given number

of elements, similar to SuperCollider’s keep although being lazy. Stream like the other standard

data structures in Scala is immutable (purely functional) which means that operations such as

take do not alter the original stream, but instead produce a new stream which terminates after

the given number of elements. Consistent provision of immutable structures is an important

advantage over SuperCollider in which mutable structures dominate.

To print the first ten Fibonacci numbers:

fib.take(10).foreach(println)

B.3.3 Implicits for Type Classes, Context and Extension Methods

Type classes are a mechanism for ad-hoc polymorphism, originally developed for the Haskell

language.9 This sort of polymorphism occurs when a function should accept heterogenous types

of arguments but requires them to respond to a common mechanism. As an example, the types

should be comparable, perhaps allowing them to be ordered:

def max[A](x: A, y: A): A = if (x > y) x else y

This does not compile because the greater than operator > is not defined for any type A. The

object-oriented solution would be to require the argument type to conform to some interface (in

Scala called ‘trait’) that permits the comparison:

trait Ordered[A] {

def >(that: A): Boolean

}

def max[A <: Ordered[A]](x: A, y: A): A = if (x > y) x else y

Here A <: Ordered[A] means that type parameter A must be a subtype of (conform to) Ordered[A].

We could now implement that trait say for a type Duration:

9Philip Wadler and Stephen Blott (1989), ‘How to make ad-hoc polymorphism less ad hoc’, in: Proceedings of
the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Austin, TX, pp. 60–76.

333

HANNS HOLGER RUTZ

case class Duration(seconds: Double) extends Ordered[Duration] {

def >(that: Duration) = this.seconds > that.seconds

}

max(Duration(3), Duration(4)) // result: Duration(4)

There are three problems in this approach. First, we must have access to all the types that should

conform to being ordered. It cannot be applied to existing types, such as the Int or String,

instead we would need to subclass these types (which is impossible for sealed or final classes).

Second, we might consider different orderings in different applications, for example strings

could be ordered alphabetically ascending, or descending, distinguish or not distinguish between

upper and lower case characters, and so forth. Third, the behaviour might not just depend on

one receiver, but multiple objects:

def max[A, B](x: A, y: B): Either[A, B] = ???

Clearly, the ordered behaviour should be detached from the type it operates on. The idea of the

type class is to define a behavioural interface and then add implementations of the behaviour

for each required type. In Scala, the behavioural concept will be represented by a trait, and the

implementations by ordinary classes. Type class resolution is achieved by implicit conversions.10

First the trait and the redefined maximum function:

trait Ordering[A] {

def >(x: A, y: A): Boolean // is ‘x‘ greater than ‘y‘?

}

def max[A](x: A, y: A)(ord: Ordering[A]): A = if(ord.>(x, y)) x else y

The new max function uses two parameter lists which is allowed in Scala. Usually multiple

parameter lists are used to allow for partial function application and to aid the type inference,

but here it is merely a visual aid and serves to prepare for the next step of the refinement.

Now it is possible to define an instance for case insensitive alphabetically ascending string

ordering:

10For a full discussion see Bruno C. d. S. Oliveira, Adriaan Moors and Martin Odersky (2010), ‘Type Classes as
Objects and Implicits’, in: ACM Sigplan Notices – OOPSLA ’10, vol. 45, 10, pp. 341–360

334

APPENDIX B. SURVEY OF THE SCALA PROGRAMMING LANGUAGE

object CaseInsensitiveStringOrdering extends Ordering[String] {

def >(x: String, y: String) = (x.toUpperCase compare y.toUpperCase) > 0

}

max("hello", "World")(CaseInsensitiveStringOrdering) // result: "World"

Because it is cumbersome to explicitly pass in the ordering parameter, Scala introduces the

concept of implicit values and implicit parameters. If the last parameter list begins with the

modifier implicit, one does not need to explicitly state the arguments of this list. Instead, the

compiler searches the current name scope for values of the required type which are also marked

as implicit:

object StringOrderings {

implicit object CaseSensitive extends Ordering[String] {

def >(x: String, y: String) = (x compare y) > 0

}

implicit object CaseInsensitive extends Ordering[String] {

def >(x: String, y: String) = (x.toUpperCase compare y.toUpperCase) > 0

}

}

def max[A](x: A, y: A)(implicit ord: Ordering[A]): A = if(ord.>(x, y)) x else y

To bring the desired implicit into scope:

import StringOrderings.CaseSensitive

max("hello", "World") // result: "hello"

In practical applications, standard implicits may be pre-defined in certain places such as the

companion objects of the applied types, making the import statements superfluous:11

11Again, for the full details of implicit scope: ibid.

335

HANNS HOLGER RUTZ

trait Txn // the context type -- a currently open transaction

trait Transport {

def play()(implicit tx: Txn): Unit

def stop()(implicit tx: Txn): Unit

}

trait Cursor {

def atomic[A](fun: Txn⇒ A): A

}

class Example(c: Cursor, t: Transport) {

c.atomic { implicit tx⇒
t.play()

t.stop()

}

}

Listing B.2: Using an implicit argument list for the transaction context

object Rate {

// when requiring an implicit Ordering[Rate], the compiler

// will look for a suitable value in the companion objects of

// Ordering and Rate, and finds the following:

implicit object RateOrdering extends Ordering[Rate] {

def >(a: Rate, b: Rate) = a.id > b.id

}

}

trait Rate { def id: Int }

object AudioRate extends Rate { def id = 2 }

object ControlRate extends Rate { def id = 1 }

object ScalarRate extends Rate { def id = 0 }

max(AudioRate, ControlRate) // result: AudioRate

A second application for implicits is to require a certain context for methods while freeing the

user from explicitly stating it. Listing B.2 gives an example, using the transactional context of

the software transactional memory discussed in Sect. 5.3.1.

Here the cursor’s atomic method takes a function which is invoked with a fresh transaction. If the

function body is written with modifier implicit in front of its argument—here the transaction

tx—it is marked so that the compiler will find it when resolving implicit arguments within

the function body, which happens here when calling the methods play and stop. Having to

336

APPENDIX B. SURVEY OF THE SCALA PROGRAMMING LANGUAGE

explicitly pass the transaction context argument to every transactional (state mutating) method

would clutter the code enormously.

A third case is the use of implicits to convert between types. Given a receiver having a method

with an argument of type A, and a caller invoking this method with an argument of type B which

does not conform to the required argument type A. Before the compiler aborts with an error, it

searches for an implicitly declared function B⇒ A. For example, in SuperCollider UGen graph

building, one could define a type for allowed UGen inputs, UGenIn. Similar to type classes, one

could define the behaviour “act as a UGen input” for heterogenous types, but this time through

conversions. A floating point number could be a constant (scalar) UGen input, a string could be

interpreted as a named control UGen, etc.:

object UGenIn {

implicit def numberAsInput(value: Double) = Constant(value)

implicit def stringAsInput(name: String) = NamedControl(name)

}

trait UGenIn

trait UGen extends UGenIn // a UGen can be plugged into another UGen

case class Out(bus: UGenIn, signal: UGenIn) extends UGen

case class SinOsc(freq: UGenIn) extends UGen

case class NamedControl(name: String) extends UGenIn

case class Constant(value: Double) extends UGenIn

// in the following, "bus" will be converted using ‘stringAsInput‘,

// and 441 will be converted using ‘numberAsInput‘:

Out("bus", SinOsc(441))

// result: Out(NamedControl(bus),SinOsc(Constant(441.0)))

Finally, a fourth case for implicits is to provide extension methods to existing types. This has

already been shown in Table B.1. Unlike the third case, the type to which a value is converted is

an ephemeral wrapper which does not appear anywhere explicitly. The wrapper is a short-lived

stateless class whose methods return other types (such as the type thus extended):

implicit class RichDouble(val d: Double) {

def ampdb: Double = math.log10(d) * 20

def dbamp: Double = math.pow(10, d / 20)

}

0.25.ampdb // result: -12.04 ; equivalent to new RichDouble(0.25).ampdb

12.dbamp // result: 3.98

337

HANNS HOLGER RUTZ

B.4 Type System

The type system is perhaps Scala’s strongest and most elaborated part, and this short overview

can only scratch the surface. A good outline is also given by M. Odersky and M. Zenger.12

Here, the aim is again to provide sufficient information to read and understand code and follow

the design decisions for our implementation.

Types have occurred in the previous text multiple times: Defining an object or a class declares

a corresponding type. Types are required annotations to function arguments. Functions and

classes may also take types themselves as parameters. Like value arguments these are separated

by commas, but appear within square brackets [] right after the function or class name.

B.4.1 Type Inference

Types tend to make a statically typed language more verbose than a dynamically typed language

such as SuperCollider which neither uses type annotations nor has the concept of type param-

eters. On the other hand, statically typed languages often use type inference, which means that

type annotations can be omitted when the compiler can infer them from other knowledge. The

strongest type inference is associated with the Hindley–Milner method found in Haskell and ML.

Because Scala also deals with object-oriented sub-typing, it cannot use Hindley–Milner and has

a weaker inference algorithm. Designers of libraries are still required to declare types, but as a

pure user of a library, explicitly written types are often not needed, making Scala feel almost

like a dynamically typed language and making it suitable to embed domain specific languages:

// note that ‘List‘ is defined as ‘List[+A]‘, but type parameter ‘A‘ is inferred

// both for the constructor call and the assignment of the value

val verbose: List[Int] = List[Int](1, 2, 3)

val less: List[Int] = List(1, 2, 3)

val lesser = List(1, 2, 3)

B.4.2 Type Hierarchy

Types are organised in a hierarchical graph specifying which type is sub- or super-type of another

type. Fig. B.1 shows the periphery of this graph. At the top is Any, therefore any type is subtype

12Martin Odersky and Matthias Zenger (2005), ‘Scalable Component Abstractions’, in: ACM SIGPLAN Notices,
vol. 40, 10, pp. 41–57.

338

APPENDIX B. SURVEY OF THE SCALA PROGRAMMING LANGUAGE

Any

AnyVal AnyRef

Double

Float

Long

Int

Boolean

Unit

String

Nothing

any other

user defined

classes

…

any other

predefined

classes

implicit numeric widening

is subtype of

Figure B.1: Type hierarchy of Scala

of Any. Below Any, there are AnyVal and AnyRef. AnyVal gathers the primitive types of the JVM,

along with the unit type (Unit has been mentioned in Sect. B.3.2). These types are final and

cannot be extended.13 All user defined classes instead inherit from AnyRef, corresponding to

java.lang.Object in Java. The Null type again is a legacy from Java and will not be discussed.

An interesting type is the bottom type Nothing which is the subtype of every other type. It does

not have any embodying values, but corresponds to an exception being thrown. This will be

discussed further below.

Creating a subtype of a type A simply involves extending that type:

class B extends A

// or

trait B extends A

The difference between class and trait is that the former may take constructor arguments, such

as class B(name: String) extends A, while the latter may participate in mixin composition. In

a mixin composition a subtype extends more than one type and therefore has multiple super

types:

class D extends A with B with C // where ‘B‘ and ‘C‘ must be traits

Such an intersection of types may be stated as type annotation:

13A special exception are so-called value classes introduced in Scala 2.10, a concept which is not of concern here.

339

HANNS HOLGER RUTZ

def play(ugen: UGen with HasOutput): Unit

Here play can only be called with an argument that satisfies both types UGen and HasOutput (it

must be a subtype of both). Consequently, the body of the play function may treat the ugen

argument as if it was either of the two types, for example it can invoke a method defined on UGen

or a method defined on HasOutput.

On the other hand, union types are currently not supported. If a function should accept disjunct

types, a common super type for these must be defined and mixed into the accepted types:

def contains(value: A, tree: Leaf | Branch): Boolean // hypothetical, not allowed

trait LeafOrBranch

trait Leaf extends LeafOrBranch

trait Branch extends LeafOrBranch

def contains(value: A, tree: LeafOrBranch): Boolean

Where such common super types can not be retrofitted, method overloading or a type class

approach can be used.

B.4.3 Variance

Variance describes the treatment of type parameters under subtyping. Types can occur either in

covariant or contravariant position. In a function definition, the types of the arguments are in

contravariant and the function result type is in covariant position. This is easy to understand

when thinking about what one can do with or expect from a type:

trait Sink[A] { def update(value: A): Unit }

trait Source[A] { def apply(): A }

To test the constraints on type parameter A, one can assume three related concrete types:

trait Top { def name: String }

trait Middle extends Top { def age: Int }

trait Bottom extends Middle { def location: String }

If one had a Sink[Middle], its update method could be called with an instance of Middle obviously.

The body of that method can assume that the argument responds at least to all methods on Middle,

for example the age method. Then it should be allowed to pass an argument of type Bottom as

well, since as a subtype of Middle it will also respond to age. On the other hand, passing in Top

340

APPENDIX B. SURVEY OF THE SCALA PROGRAMMING LANGUAGE

cannot be legal, because it would not be possible to call age on it. The same goes for the return

type in Source. If one had a Source[Middle] the method may legally return a more specific type

such as Bottom but not a less specific type such as Top. So actual arguments and return values

may always have a subtype of the specified type.

Variance comes into play when asking about the sub- or super-type relationship between

Sink[Middle] and Sink[Bottom] or Source[Middle] and Source[Bottom]. If any of these occur in

a function signature, which are legal subtypes? For example:

trait Handler[A]

def store(value: A, sink: Sink[A]): Unit

def retrieve(source: Source[A]): A

}

Assuming that we have a Handler[Middle] and we call the store method, according to the above

reasoning the value argument could be either a Middle or a Bottom. If Sink[Bottom] were a

subtype of Sink[Middle], it could also be used as argument sink. It is easy to see that this cannot

be the case, because if value was Middle and the store method’s body called the sink’s update

method with that value, the sink could assume the existence of Bottom’s method location. But

on the other hand, it would be fine to pass a Sink[Top] as the sink argument, because that sink

would only assume the existence of method name in Top. Therefore, Sink[Top] can be treated

as a subtype of Sink[Middle] and Sink[Bottom], and Sink[Middle] can be treated as subtype

of Sink[Bottom], but not the other way around. Type parameter A would then be treated as

contravariant (as the outer type gets more specific, the inner type becomes less specific and vice

versa).

By default, type parameters are invariant, so a when a Sink[Middle] is requested, it is not legal

to use a Sink[Top]. To allow this, the type parameter must be marked as contravariant with a

preceding minus - symbol:

trait Sink[-A] { def update(value: A): Unit }

In a similar manner, one can show that for types occurring only as method return types, such

as type A in Source, these may be treated as covariant. In other words, a Source[Middle] can

be treated as a subtype of Source[Top], and a Source[Bottom] may be treated as a subtype of

341

HANNS HOLGER RUTZ

Source[Middle]. To do so, the type parameter must be marked as covariant with a preceding

plus + symbol:

trait Source[+A] { def apply(): A }

If both traits are combined as trait Ref[A] extends Sink[A] with Source[A], both a covariant

and a contravariant annotation of type parameter A would cause a conflict, therefore in cases

where a type is used both in contravariant (method input argument type) and covariant position

(method return type), it can only be invariant, so a Ref[Middle] would neither be a sub- or

super-type of Ref[Top] or Ref[Bottom].

A useful property of having variance is the possibility to define a single value serving the

purposes of “empty structure”, “default”, or “value absent”. Functions wishing to signalise that

a certain operation may or may not succeed, can wrap their return value in the Option type:

trait Option[+A]

case class Some[A](value: A) extends Option[A]

case object None extends Option[Nothing]

For example, Scala’s associative array Map when queried with a get(key), returns an optional

value. If a value associated with the key was present in the dictionary, Some(value) is returned,

otherwise None:

// (a Map is constructed with pairs in the form of ‘key -> value‘,

// a syntactic sugar for tuples of arity 2)

val m = Map("scalar" -> 0, "control" -> 1, "audio" -> 2)

val scalarID = m.get("scalar") // result: Some(0)

val demandID = m.get("demand") // result: None

Since Option is covariant in A, a single value None suffices to represent any inexistent value. It

does not matter what type A is, since Option[Nothing] is subtype of any other Option[A].

In fact, Option[A] has a method get which unwraps the value. In the case of Some[A], this is the

plain value of type A, in the case of None this must be “nothing”. It has been said before that

Nothing does not have a value embodying it, instead it corresponds to an exception being thrown.

Thus, None.get will result in an exception while still being properly typed. Scala uses the same

exception handling system as Java, but does not adopt the idea of checked exceptions—methods

342

APPENDIX B. SURVEY OF THE SCALA PROGRAMMING LANGUAGE

do not formally declare which exceptions they throw, and callers are not required to (but may)

wrap methods in a try . . . catch block.

B.4.4 Type Bounds

Type parameters may be constrained by an upper or lower bound. The upper bound is more

common, specifying that the parameter must be equal to the upper bound or more specific

(a subtype of it). The declaration of a type A with an upper bound is given as A <: Upper, and a

lower bound as A >: Lower. An upper bound was used in one example introducing implicits in

Sect. B.3.3:

def max[A <: Ordered[A]](x: A, y: A): A = if (x > y) x else y

The type parameter A is constrained to be a subtype of Ordered[A], so that the function can use

the > method of the arguments. An example for lower bounds is prepending to Scala’s List type,

an immutable singly linked list. Prepending is done with method :: (equivalent to cons in Lisp

languages):

abstract class List[+A] {

def ::[B >: A](x: B): List[B]

..

}

The list’s type parameter A is the least upper bound across all the contained elements. It is

therefore possible to prepend an element of a less specific type B, resulting in a List[B]. Since

the tail contains elements which are subtypes of A, they still satisfy the property of having all

subtypes of B. For instance:

val m = new Middle { val name = "Niklaus"; val age = 78 }

val t = new Top { val name = "Martin" }

val a = m :: Nil // List[Middle]

val b = t :: a // List[Top]

Reminiscent of Option’s None, here Nil is a special value signifying the empty List[Nothing].

In infix notation Scala treats method names ending in a colon specially, such that the receiver

is found on the right side and the argument on the left side. The third line is thus equivalent to

val a = Nil.::(m). This reversal of receiver and argument spatially reflects that m is prepended

343

HANNS HOLGER RUTZ

to Nil. It is more obvious in longer lists such as 1 :: 2 :: 3 :: Nil, whose Lisp correspondence

is (cons 1 (cons 2 (cons 3 nil))).

Since Nothing is the bottom type, Middle is indeed a super type of it, [Middle >: Nothing]. The

last line prepends again an element of the less specific type [Top >: Middle], resulting in a

List[Top].

B.4.5 Abstract Type Members

Similar to values which can be either passed as arguments or be defined as concrete or abstract

members of a type, this duality exists for types as well. Type parameters, which have been shown

above, closely correspond to Java’s generics. The second form in which type declarations may

appear is as members of another type. At first sight, the following two definitions are equivalent:

// type constructor parameter

trait Ordered[A] {

def >(that: A): Boolean

}

// abstract type member

trait Ordered {

type A

def >(that: A): Boolean

}

The second form is as powerful as the first, except lacking the possibility of variance annotation.

It appears to be more verbose when requiring the proper type:14

def max[A1 <: Ordered { type A = A1 }](x: A1, y: A1): A1 = if (x > y) x else y

On the other hand, type members are useful when there are plenty of them and when the client

side does not require knowledge about the applied types:15

14We use the term ‘proper type’ to indicate either plain parameterless types or higher kinded types where all type
parameters have been applied, following Adriaan Moors, Frank Piessens and Martin Odersky (2008), ‘Generics of a
Higher Kind’, in: ACM SIGPLAN Notices, vol. 43, 10, pp. 423–438

15In a survey of generic programming abstractions, the authors stress the clutter produced by type parameters in
the OCaml language: «Associated types expressed in this manner [i.e. as type parameters] contribute to cluttered
syntax because every associated type must be named in every context where the concept is used, regardless of
the associated type’s relevance» (my emphasis) Ronald Garcia et al. (2007), ‘An Extended Comparative Study of
Language Support for Generic Programming’, Journal of Functional Programming 17(2), pp. 145–205; a similar
argument is made later in this article regarding the capabilities of Eiffel, C# and Java.

344

APPENDIX B. SURVEY OF THE SCALA PROGRAMMING LANGUAGE

trait Sys[ID, Tx, Var]

def apply[A, B, C](s: Sys[A, B, C]) = ... // need to carry around all parameters

def apply(s: Sys[_, _, _]) // ...unless wildcards are used

// versus:

trait Sys {

type ID

type Tx

type Var

}

def apply(s: Sys) = ... // function does not expect actual types

A frequently asked question is when to use which form.16 We will choose type parameters

when the use site of the object carrying that type can only meaningfully deal with the object

by knowing the actual parameters, or when variance is desired. This holds for data structures.

Also helper structures will use type parameters if their number is small. On the other hand, we

will build our main system abstraction with four principal abstract type members. There will be

different types of systems (such as ephemeral versus persistent) which must be thus modular

and relating to each other, and at the same type the principal types must be associated with each

other. The next sections introduce the mechanisms through which this achieved.

B.4.6 Path-Dependent Types and Type Projections

Reference to types which are parameters of other types happens indirectly. Type parameters ba-

sically need to be repeated in function calls such as def max[A <: Ordered[A]](x: A, y: A): A—

here the type parameter of Ordered is repeated as type parameter A to the max function.17 The

advantage of type members is that these can be directly addressed. The first way of addressing is

to use an instance (value) of the outer type as a receiver and a period to select the type member.

The resulting type is called a path-dependent type, and shown in Listing B.3.

Path-dependent types constitute very strong constraints. In the example, the transaction opened

from v1.sys.open() has the same type as the transaction required to update the sink v1, but

since it cannot be determined that the second sink v2 is based on the same system, its type

16Cf. Bill Venners (7th Oct. 2009), Abstract Type Members versus Generic Type Parameters in Scala, URL:
http://www.artima.com/weblogs/viewpost.jsp?thread=270195 (visited on 08/01/2013)

17See again Garcia et al., ‘An Extended Comparative Study of Language Support for Generic Programming’,
§12.2f

345

http://www.artima.com/weblogs/viewpost.jsp?thread=270195

HANNS HOLGER RUTZ

trait Sys {

type Tx

def open(): Tx

}

trait Sink[A] {

val sys: Sys // having a value allows to use type sys.Tx

def update(a: A)(implicit tx: sys.Tx): Unit

}

def test(v1: Sink[Int], v2: Sink[Int]): Unit = {

val s = v1.sys

implicit val tx: s.Tx = s.open()

v1() = 2 // ok. note: syntax shortcut for v1.update(2)

v2() = 3 // does not compile -- ‘v1.sys‘ is a different value than ‘v2.sys‘

}

Listing B.3: Path-dependent types

v2.sys.Tx is incompatible with v1.sys.Tx. In practise, path-dependent types can be useful for

hiding implementation details, as the update of v1 works perfectly, although the transaction type

remains completely opaque. On the other hand, building modular systems becomes arduous, as

a lot of bookkeeping is needed to ensure compatibility between objects, and more importantly,

all participating objects must hold an instance of the system (it must be a value val sys to

guarantee a stable type).

A more relaxed form of addressing type members is known as type projection. It uses the outer

type (not an instance of it) as receiver and a hash character # to select the type member, as shown

in Listing B.4.

Of course, for the sink to be capable to actually use the transaction, type member Tx in Sys must

be fixed or have an upper bound. This can be done in subtyping, where type members allow

refinement:

trait DurableTx {

def write[A](id: Int, value:A): Unit

}

trait DurableSys extends Sys {

type Tx <: DurableTx // refined with an upper bound

}

346

APPENDIX B. SURVEY OF THE SCALA PROGRAMMING LANGUAGE

trait Sys {

type Tx

def open(): Tx

}

trait Sink[A] {

def update(a: A)(implicit tx: Sys#Tx): Unit

}

def test(s: Sys, v1: Sink[Int], v2: Sink[Int]): Unit = {

implicit val tx: Sys#Tx = s.open()

v1() = 2 // ok

v2() = 3 // ok

}

Listing B.4: Type projections

Abstraction Examples
Mixin / intersection trait A extends B with C

type t = A with B with C

Variance trait A[+B, -C]

Bounds type t = A <: Upper

type t = A >: Lower

F-bounded quantification type A <: F[A]

Parameters vs. members trait A[B]

trait A { type B }

Path dependent type a.B

Type projection A#B

Self-type trait A { this: B⇒ }

Table B.2: Type system abstractions in Scala

The question then is how a group of related structures such as transactions, sinks and sources

can be associated with each other to build a coherent system. What we use is a construct called

F-bounded type quantification. It is discussed in Sect. 5.3.3 when actually showing our system

layout.

The abstractions of the type system are summarised in Table B.2.

B.5 Concurrency Abstractions

While Van Roy neglects type system abstractions, a substantial part of his survey reviews

concurrency abstractions. This corresponds with the focus of the language Oz to which he has

347

HANNS HOLGER RUTZ

contributed. This language is dynamically typed and based on multiple paradigms including

functional, OO, and logic programming, and supports multiple concurrency abstractions. In Oz

these are built into the language, corresponding with Van Roy’s opinion that it «is not enough

that libraries have been written in the language to support the paradigm. The language’s kernel

language should support the paradigm».18

Scala takes the opposite approach. While functional and OO constructs are the backbone of the

language, it tries to be minimal with respect to other features built directly into the language.

Because of its powerful and flexible syntax and type system, it allows concurrency models

to be provided as pure library solutions written in ordinary Scala. These include low-level

mechanisms such as Java’s fork-join framework,19 and higher-level approaches such as actors,

software transactional memory, futures and promises and dataflow programming. Furthermore,

although Scala inherits the JVM’s thread model, it is possible to build for example co-routine

based cooperative multitasking—as known from SuperCollider—with the help of a compiler

plug-in for continuations.20

Traditionally, Scala was associated with the actors model of concurrency,21 since a library

based implementation scala-actors22 was part of the standard library. Actors are lightweight

processes which communicate with each other by sending immutable messages and thereby

avoid mutations in shared memory. In version 2.10, scala-actors were deprecated in favour of

another actors framework called Akka.23 Clearly, exchanging one implementation for another

would have been much more difficult if the actors paradigm had been built into the language

18Van Roy, ‘Programming Paradigms for Dummies: What Every Programmer Should Know’.
19Doug Lea (2000), ‘A Java Fork/Join Framework’, in: Proceedings of the ACM 2000 conference on Java Grande,

pp. 36–43.
20Tiark Rompf, Ingo Maier and Martin Odersky (2009), ‘Implementing First-Class Polymorphic Delimited

Continuations by a Type-Directed Selective CPS-Transform’, in: ACM SIGPLAN Notices, vol. 44, 9, pp. 317–328.
21Gul A. Agha (1985), Actors: A Model Of Concurrent Computation In Distributed Systems, tech. rep. AITR-844,

MIT Artificial Intelligence Laboratory.
22Philipp Haller and Martin Odersky (2009), ‘Scala Actors: Unifying thread-based and event-based programming’,

Theoretical Computer Science 410, pp. 202–220.
23Akka Documentation (8th Mar. 2012), Release 2.1.0, Typesafe Inc, URL: http://doc.akka.io/docs/akka/2.1.0/

Akka.pdf (visited on 14/01/2013).

348

http://doc.akka.io/docs/akka/2.1.0/Akka.pdf
http://doc.akka.io/docs/akka/2.1.0/Akka.pdf

APPENDIX B. SURVEY OF THE SCALA PROGRAMMING LANGUAGE

directly. On the downside, Scala cannot prevent the user from actually sending mutable data

across actors, so it requires the user to explicitly take care of this issue.24

Software transactional memory (STM), which is described in more detail in Sect. 5.3.1, takes

a kind of opposite approach. It promotes the use of mutable cells, but supervises their access

and update through transactions. Typically transactions are local to a thread, and when multiple

threads access cells through their respective transactions, the system automatically detects

conflicts and retries the transactions until they succeed.

Futures and promises can be seen as building blocks for a dataflow system. In general, a future

is a placeholder for a value that is yet to be determined. As a placeholder is allows to work with

the virtual value through function compositions. It is a lazy technique in terms of a call-by-need

because the program can do meaningful concurrent things up until the moment that the future’s

value is actually needed. The terms ‘future’ and ‘promise’ are related and have been used

slightly differently across the literature. For example B. Liskov and L. Shrira take futures as

untyped values running on a single machine, whereas promises are strongly typed, may run

distributed in a network, and are capable of propagating errors.25 In Scala’s implementation, all

this holds for the Future type, while a Promise simply provides a write-once access to the value

of a future, needed for particular implementations.

The Akka framework mentioned earlier provides a futures and promises based dataflow imple-

mentation similar to the Oz language, shown in Listing B.5.26

B.6 Summary

We have introduced the Scala programming language. Its advantages are a sophisticated static

type system, broad access to existing technologies and libraries, platform independence by run-

ning on the JVM, availability of industry strength development tools, expressiveness, scalability

24There is ongoing research by the authors of scala-actors to equip the language with safety against accidental
sharing of mutable state.

25Barbara Liskov and Liuba Shrira (1988), ‘Promises: Linguistic Support for Efficient Asynchronous Procedure
Calls in Distributed Systems’, in: ACM SIGPLAN Notices, vol. 23, 7, pp. 260–267.

26The example is taken from the Akka online documentation at http://doc.akka.io/docs/akka/2.2.3/scala/
dataflow.html (visited on 17/11/2013). It uses the continuations compiler plugin to allow the interruption and
resuming of the control flow.

349

http://doc.akka.io/docs/akka/2.2.3/scala/dataflow.html
http://doc.akka.io/docs/akka/2.2.3/scala/dataflow.html

HANNS HOLGER RUTZ

val v1, v2 = Promise[Int]() // promises represent dataflow variables

val f = flow { // access and updates involving these must be wrapped in ‘flow‘.

// ‘<<‘ assigns and ‘()‘ evaluates a dataflow variable.

v1 << v2() + 10 // v1 will evaluate to the sum of v2’s value + 10

v1() + v2() // the ‘flow‘ block’s result is the evaluated sum

}

// ‘flow‘ returns a future. When the result is available, print it:

f onComplete println

// now (later) a value is assigned to v2, making it possible

// to complete the future ‘f‘ with the result of ‘v1() + v2()‘ (prints 20)

flow { v2 << 5 }

Listing B.5: Dataflow programming with Akka

and high performance. Born out of an academic context, the programming methods laboratory

of the EPFL, there is inspiring and ongoing research being carried out around the language,

while commercial support was recently added through the company Typesafe Inc. The language

is more than ten years old now and adoption is steadily growing,27 so it is reasonable to assume

that it will still be relevant and supported in the next decade or two.

In comparison, SuperCollider is specialised for computer music. While we have shown that

there are essentially no abstractions which cannot be also found in Scala, the latter does not

(yet) have a dedicated interest group for computer music. At first, SuperCollider might be

more accessible to composers because there is a community which can answer music relevant

questions, and being dynamically typed, the cognitive load of understanding the type system

is much smaller. Furthermore, the concurrency model of SuperCollider is simpler, because it

is strictly deterministic and only supports coroutines. On the other hand, SuperCollider is not

suited for building larger applications, because the combination of dynamic typing and lack of a

proper development environment renders debugging extremely tedious, and performance critical

code must be written in C. Every functionality that is not supported by the standard library must

be written from scratch, whereas Scala can make instant use of the large amount of high quality

Java libraries and an increasing amount of native Scala libraries.

27Language adoption and popularity has the same problems as performance benchmarks—the results are highly
dependent on the metric chosen. The Wikipedia article on Scala lists a number of sources, according to which it is
currently the second most used language on the JVM after Java itself.

350

Appendix C

Record of Activities

Publications

› Hanns Holger Rutz (2010), ‘Rethinking the SuperCollider Client. . . ’, in: Proceedings of the

SuperCollider Symposium, Berlin

› Hanns Holger Rutz, Eduardo Miranda and Gerhard Eckel (2010), ‘On the Traceability of the

Compositional Process’, in: Proceedings of the 7th Sound an Music Computing Conference

(SMC), Barcelona, 38:1–38:7

› Hanns Holger Rutz (2011), ‘SwingOSC’, in: The SuperCollider Book, ed. by Scott Wilson,

David Cottle and Nick Collins, Cambridge, MA: MIT Press, pp. 305–338

› Hanns Holger Rutz (2011), ‘Limits of Control’, in: Proceedings of the 8th Sound and Music

Computing Conference (SMC), Padova, 132:1–132:6

› Hanns Holger Rutz, Eduardo Miranda and Gerhard Eckel (2011), ‘Reproducibility and Ran-

dom Access in Sound Synthesis’, in: Proceedings of the 37th International Computer Music

Conference, Huddersfield, pp. 515–522

› Hanns Holger Rutz (2012a), ‘A Reactive, Confluently Persistent Framework for the Design

of Computer Music Systems’, in: Proceedings of the 9th Sound and Music Computing

Conference (SMC), Copenhagen, pp. 121–129

› Hanns Holger Rutz (2012b), ‘Composing Alongside Paradoxes’, Explore Dream Discover:

Journal of the Peninsula Contemporary Music Festival, p. 5

› Hanns Holger Rutz (2012c), ‘Sound Similarity as Interface between Human and Machine

in Electroacoustic Composition’, in: Proceedings of the 38th International Computer Music

Conference, Ljubljana, pp. 212–219

Conference Presentations

The following presentations were given in addition to the conference papers listed in the previous

section:

351

HANNS HOLGER RUTZ

› Hanns Holger Rutz and Nayarí Castillo (24th Sept. 2010), Dissemination and Temporality,

SuperCollider Symposium, Berlin

› Hanns Holger Rutz (18th Apr. 2012), ScalaCollider = Scala + Sound Art, Scala Days, London

Seminar Presentations

› University of Plymouth, ICCMR computer music seminar with Eduardo Miranda: 02 Dec 2010

‘Tracing the Compositional Process’; 27 Jan 2011 ‘Rethinking the SuperCollider Client’;

03 Nov 2011 ‘Writing Machine’.

› University of Music and Performing Arts Graz, IEM doctoral candidates computer music

workshop with Gerhard Eckel: 3/4 Dec 2009, 17/18 Jun 2010, 16/17 Dec 2010

› MARE 500: 06 May 2010 work-in-progress presentation ‘Towards a fusion of different time

layers in electroacoustic composition’.

› IEM Graz computer music jour fixe: 15 Oct 2013 ‘Requirements for Computer Music Sys-

tems’.

› University of Plymouth Festival of Research: 14 Mar 2011 ‘Computer Music Programming

Tutorial’.

› LISZT SCHOOL of Music Weimar, SeaM, seminar ‘Klangräume’ (sound spaces): 04 May 2011

spatialisation with Meloncillo.

› University of Media, Arts and Design Karlsruhe, seminar ‘Raum–Klang–Bild–Bewegung‘

(space–sound–image-motion): 22 May 2013 ‘Raum als Differenz- und Wiederholungsmaschine’

(space as a machine of difference and repetition).

› University of Music and Performing Arts Graz, Institute for Music Aesthetics, seminar ‘Musik

und Raum’ (music and space), 12 Dec 2012.

Artistic Work

Compositions

Exhibition ‘Reverberations’, Hanns Holger Rutz & Nayarí Castillo. Gallery ESC im Labor

Graz, 20–30 Oct 2010:

› Dissemination. Sound and room installation. Glass plates, transducers, petri dishes, plant

seeds, colour gels.

› Feuchtigkeit. Sound and video installation. Glass plates, transducers, video projection.

352

APPENDIX C. RECORD OF ACTIVITIES

Dissemination was also exhibited at ‘{ Sounding Code }’, SuperCollider Symposium, .HBC Berlin,

18–26 Sep 2010.

Exhibition ‘Writing Machines’, Hanns Holger Rutz & Nayarí Castillo. Gallery ESC im Labor

Graz, 24 Oct–17 Nov 2012:

› Unvorhergesehen–Real–Farblos. Sound installation. Couch, headphones, computer

prints.

› Dots. Installation. Matrix print on fanfold paper.

› Voice Trap. Sound and room installation. Piezo speakers, microphone, metal wire, mirrors,

glass domes, text, objects.

Unvorhergesehen. . . and Dots were also exhibited at ‘Framed’, RONDO Graz, 3 Dec 2012 and Gallery

G69 Graz, 14–20 Dec 2012.

› Fäden Ziehen (2010). 6-channels tape composition 7′54′′. Performed: Peninsula Art Contem-

porary Music Festival, at Crosspoint Plymouth, 27 Feb 2010.

› Durchführung (2010). Stereo tape composition 1′32′′, created on 18 Nov 2010 for the BBC

Radio 3 Mozart Mash-up project.

› Inter-Play / Re-Sound (2011). Live electronic piece for amplified piano. Performed: (a) Penin-

sula Contemporary Music Festival, at Crosspoint Plymouth, 11 Feb 2011. (b) ‘Making Sense

of Sounds’, SCANDLE workshop, at Crosspoint Plymouth, 21 Feb 2012.

› Lighthouse (2011). Stereo tape composition 3′01′′. Performed: Folkestone Fringe Festival,

‘Smeaton’s Tower: International Lighthouse Relay’, 26 Sep 2011.

› Writing Machine (2011). Sound installation. Piezos, petri dishes, graphite powder. Exhibited:

‘SONICA’ festival, at Kino Šiška Ljubljana, 11–15 Oct 2011.

› Leere Null (2) (2012). 4-channels tape composition 14′. Part 1 (2011, 5′01′′, stereo) re-

leased on DEGEM CD 10 ‘Replace’, curated by Marc Behrens. The quadrophonic part 2

was composed in 2012. Performed: (a) Peninsula Contemporary Music Festival, at RLB

Theatre 1 Plymouth, 10 Feb 2012. (b) International Computer Music Conference, Španski

Borci Ljubljana, 11 Sep 2012.

› Stranded Boat (2012). Field recording, stereo 15′12′′. Contribution to the Electronic Music

Foundation project ‘100x John: A Global Salute to John Cage’, Jun 2012.

› Sliding (2013). Sound installation. Exhibited: ‘RONDO@ORF’, building of the Austrian

public broadcasting service, Graz, 28 Feb–20 Mar 2013.

353

HANNS HOLGER RUTZ

› (Inde)terminus (2013). Electroacoustic studies, 8-channels. Presented at the ZKM Kubus

Karlsruhe, 23 May 2013.

› Machinae Coelestis (2013). 5-channels tape composition and star projection 16′16′′. Exhibi-

tion: Planetarium ‘Sternenturm’ Judenburg, 27–30 Aug 2013.

Concerts

Concerts of mostly live improvisation, excluding pieces already listed in the previous section:

› 22 Oct 2009 ‘Nocturne 26’, Academy of Media Arts Cologne. Quartet HMSS.

› 06 Dec 2009 Former Stasi Prison Suhl, Thuringia. Sciss, Ludger Hennig, Blazej Dowlasz.

› 22 Jul 2010 ‘Freesound Concert’, SMC Conference, Barcelona. Piece “Agua (Cero) 2”. Sciss,

Nayarí Castillo.

› 02 Oct 2010 ‘Experimental Music Series’, L129 Leipzig. Sciss, Ludger Hennig, Robert

Rehnig.

› 29 Nov 2010 ‘Café Concrete’, Plymouth. Sciss, Ludger Hennig.

› 10 Dec 2010 ‘Krachzehn’, MEX festival, Domicil Dortmund. Quartet HMSS.

› 23 Dec 2010 ‘Living Room Concert’, K283 Bremen. HKM+ VB Schulze, Hammerschmidt,

Sciss.

› 07 May 2011 ‘Experimental Music Series’, L129 Leipzig. D’Incise, Ludger Hennig, Jonas

Kocher, Sciss. Released on INSUB.records net label.

› 27 Jun 2011 ‘Café Concrete’, Plymouth. Sciss solo.

› 21 Dec 2011 Mariannenstr. 89 Leipzig. Ludger Hennig, Björn Lindig, Constantin Popp,

Robert Rehnig, Daniel Schulz, Sciss.

› 03 Dec 2012 ‘Framed’, RONDO Graz. David Pirrò, Peter Venus, Marian Weger, Matthias

Kronlachner, Sciss.

› 16 Apr 2013 ‘Staircase’, Open Cube, IEM Graz. Tape composition.

Artist Talks

› ‘SONICA’ festival, at MoTA Museum of Transitory Art Ljubljana, 12 Oct 2011.

› RONDO Graz, 18 Oct 2012.

› IMA Workshop Talk, ZKM Kubus Karlsruhe, 23 May 2013.

354

APPENDIX C. RECORD OF ACTIVITIES

Further Training Received

At Plymouth University:

› Research Dialogue Workshop with Prof. Malcolm Miles, 04 May 2010.

› Leadership and Management, Feb–May 2011.

› LaTeX Introduction, 17 Mar 2011. Thanks to Martin Coath for the template of this text.

› An Introduction to Applying for Research Funding, 29 Mar 2011.

› The Job Interview Workshop for postgraduate researchers, 29 Mar 2011.

› Introduction to R, 12 Jan 2012.

› General Teaching Associates (GTA) Course, Jan–Mar 2012.

› Preparing for the Viva, 28 Feb 2012.

› Careers in Academia, 16 May 2012.

› Writing up and Completing the Thesis, 13 Jun 2012.

The following external symposia have been attended:

› ‘On the Choreography of Sound’, compositional practice as research, University of Music

and Performing Arts Graz, MUMUTH, 7–8 Sep 2012.

› ‘Mind the Gap’, symposium on artistic research, University of Music and Performing

Arts Graz, MUMUTH, 7–8 Mar 2013.

› ‘Paths to Artistic Identity: Artistic Experimentation, from Hades to Heaven’, ORCiM

Research Festival, Orpheus Institute Ghent, 2–4 Oct 2013.

Furthermore, I completed the open online course ‘Functional Programming Principles in Scala’

by Prof. Martin Odersky, 18 Sep–08 Nov 2012, via coursera.org.

355

HANNS HOLGER RUTZ

356

List of References

Acar, Umut A., Guy Blelloch and Kanat Tangwongsan (2007), Non-oblivious Retroactive Data

Structures, tech. rep. CMU-CS-07-169, Carnegie Mellon University, School of Computer

Science.

Agha, Gul A. (1985), Actors: A Model Of Concurrent Computation In Distributed Systems,

tech. rep. AITR-844, MIT Artificial Intelligence Laboratory.

Akka Documentation (8th Mar. 2012), Release 2.1.0, Typesafe Inc, URL: http://doc.akka.io/

docs/akka/2.1.0/Akka.pdf (visited on 14/01/2013).

Allen, James F. (1983), ‘Maintaining Knowledge about Temporal Intervals’, Communications

of the ACM 26(11), pp. 832–843.

— (1984), ‘Towards a General Theory of Action and Time’, Artificial Intelligence 23(2),

pp. 123–154.

Allombert, Antoine et al. (2006), ‘Concurrent constraints models for interactive scores’, in:

Proceedings of the 3rd Sound and Music Computing Conference (SMC), Marseille, 14:1–

14:8.

Allombert, Antoine et al. (2008), ‘A System of interactive scores based on qualitative and

quantitative temporal constraints’, in: Proceedings of the 4th International Conference on

Digital Arts (ARTECH), Porto, pp. 1–8.

Allombert, Antoine et al. (2010), ‘Virage: Designing an interactive intermedia sequencer from

users requirements and theoretical background’, in: Proceedings of the 36th International

Computer Music Conference (ICMC), New York.

Alstrup, Stephen, Thore Husfeldt and Theis Rauhe (1998), ‘Marked Ancestor Problems’, in:

Proceedings of the 39th Annual Symposium on Foundations of Computer Science, IEEE,

pp. 534–543.

Aluru, Srinivas and Fatih E. Sevilgen (1999), ‘Dynamic Compressed Hyperoctrees with Appli-

cation to the N-body Problem’, Lecture Notes in Computer Science 1738, pp. 21–33.

Amelunxen, Hubertus, Dieter Appelt and Peter Weibel, eds. (2008), Notation: Kalkül und Form

in den Künsten (Catalog), Berlin: Akademie der Künste.

Ames, Charles (1987), ‘Automated Composition in Retrospect: 1956–1986’, Leonardo 20(2),

pp. 169–185.

Anders, Torsten (2007), ‘Composing Music by Composing Rules: Design and Usage of a

Generic Music Constraint System’, PhD thesis, Belfast: School of Music & Sonic Arts,

Queen’s University.

357

http://doc.akka.io/docs/akka/2.1.0/Akka.pdf
http://doc.akka.io/docs/akka/2.1.0/Akka.pdf

HANNS HOLGER RUTZ

Andersen, Niels Åkerstrøm (2003), ‘The Undecidability of Decision’, in: Autopoetic Organiza-

tion Theory: Drawing on Niklas Luhmann’s Social System Perspective, ed. by Tore Bakken

and Tor Hernes, Oslo: Abstrakt Forlag, pp. 235–258.

Ashby, W. Ross (1956), An introduction to Cybernetics, London: Chapman & Hall.

Austin, James T. and Jeffrey B. Vancouver (1996), ‘Goal Constructs in Psychology: Structure,

Process, and Content’, Psychological Bulletin 120(3), pp. 338–375.

Bateson, Gregory et al. (1956), ‘Toward a Theory of Schizophrenia’, Behavioral Science 1(4),

pp. 251–264.

Becker, Barbara and Gerhard Eckel (1995), Künstlerische Imagination und Neue Medien: Zur

Nutzung von Computersystemen in der Zeitgenössischen Musik, tech. rep. Arbeitspapiere der

GMD No. 960, St. Augustin: German National Research Center for Information Technology

(GMD).

— (1996), ‘On the Use of Computer Systems in Contemporary Music’, in: Proceedings of the

22nd International Computer Music Conference (ICMC), Hong Kong, pp. 118–120.

Ben-Amram, Amir M. (1995), ‘What is a “Pointer Machine”?’, ACM SIGACT News 26(2),

pp. 88–95.

Bender, Michael A., Erik D. Demaine and Martin Farach-Colton (2000), ‘Cache-Oblivious B-

Trees’, in: Proceedings of the 41st Annual Symposium on Foundations of Computer Science,

IEEE, Redondo Beach, pp. 399–409.

Bender, Michael A. et al. (2002), ‘Two Simplified Algorithms for Maintaining Order in a List’,

Lecture Notes in Computer Science 2461, pp. 152–164.

Benjamin, Walter (1936/1963), Das Kunstwerk im Zeitalter seiner technischen Reproduzierbar-

keit, Frankfurt a.M.: Suhrkamp.

Bentley, Jon Louis (1975), ‘Multidimensional Binary Search Trees Used for Associative Search-

ing’, Communications of the ACM 18(9), pp. 509–517.

Bergson, Henri (1910), Time and Free Will, An essay on the Immediate Data of Consciousness,

trans. by Frank Lubecki Pogson, London: George Allen & Unwin.

Berkeley DB Java Edition Architecture (Sept. 2006), An Oracle White Paper, URL: http://

www . oracle . com / technetwork / products / berkeleydb / learnmore / bdb - je - architecture -

whitepaper-366830.pdf (visited on 09/02/2013).

Biggs, Michael and Daniela Büchler (2011), ‘Communities, Values, Conventions and Actions’,

in: The Routledge Companion to Research in the Arts, ed. by Michael Biggs and Hen-

rik Karlsson, Abingdon and New York: Routledge, pp. 82–98.

Biggs, Michael and Henrik Karlsson, eds. (2011), The Routledge Companion to Research in the

Arts, Abingdon and New York: Routledge.

Böhme, Gernot (1993), ‘Atmosphere as the fundamental concept of a new aesthetics’, Thesis

Eleven 36, pp. 113–126.

358

http://www.oracle.com/technetwork/products/berkeleydb/learnmore/bdb-je-architecture-whitepaper-366830.pdf
http://www.oracle.com/technetwork/products/berkeleydb/learnmore/bdb-je-architecture-whitepaper-366830.pdf
http://www.oracle.com/technetwork/products/berkeleydb/learnmore/bdb-je-architecture-whitepaper-366830.pdf

LIST OF REFERENCES

Borgdorff, Henk (2011), ‘The Production of Knowledge in Artistic Research’, in: The Routledge

Companion to Research in the Arts, ed. by Michael Biggs and Henrik Karlsson, Abingdon

and New York: Routledge, pp. 44–63.

Bresson, Jean and Carlos Agon (2006), ‘Temporal control over sound synthesis processes’, in:

Proceedings of the 3rd Sound and Music Computing Conference (SMC), Marseille, 9:1–

9:10.

— (2007), ‘Musical Representation of Sound in Computer-Aided Composition: A Visual Pro-

gramming Framework’, Journal of New Music Research 36(4), pp. 251–266.

Brodal, Gerth Stølting et al. (2012), ‘Fully Persistent B-Trees’, in: Proceedings of the 23rd

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Kyoto, pp. 602–614.

Bronson, Nathan G., Hassan Chafi and Kunle Olukotun (2010), ‘CCSTM: A library-based STM

for Scala’, in: Proceedings of the First Scala Workshop, Lausanne.

Burmako, Eugene (2013), ‘Scala Macros: Let Our Powers Combine!’, in: Proceedings of the

4th Annual Scala Workshop, New York.

Burns, Christopher (2002), ‘Tracing Compositional Process: Software synthesis code as docu-

mentary evidence’, in: Proceedings of the 28th International Computer Music Conference

(ICMC), Göteborg, pp. 568–571.

Burroughs, William S. (1978), ‘The Limits of Control’, Semiotext(e): Schizo-Culture III(2),

pp. 38–42.

Canning, P. et al. (1989), ‘F-Bounded Polymorphism for Object-Oriented Programming’, in:

Proceedings of the fourth international conference on Functional programming languages

and computer architecture, ACM, pp. 273–280.

Cardle, Marc (2004), Automated Sound Editing, tech. rep., Cambridge, UK: Computer Laborat-

ory, University of Cambridge.

Cattell, Rick (2010), ‘Scalable SQL and NoSQL Data Stores’, ACM SIGMOD Record 39(4),

pp. 12–27.

Chadabe, Joel (1984), ‘Interactive Composing: An Overview’, Computer Music Journal 8(1),

pp. 22–27.

Charles, Daniel (1965), ‘Entr’acte: “Formal” or “Informal” Music?’, The Musical Quarterly

51(1), pp. 144–165.

Checkland, Peter (2000), ‘Soft Systems Methodology: A Thirty Year Retrospective’, Systems

Research and Behavioral Science 17, S11–S58.

Coduys, Thierry and Guillaume Ferry (2004), ‘IanniX: Aesthetical/Symbolic visualisations

for hypermedia composition’, in: Proceedings of the 1st Sound and Music Computing

Conference (SMC), Paris, 18:1–18:6.

Collins, David (2005), ‘A synthesis process model of creative thinking in music composition’,

Psychology of Music 33(2), pp. 193–216.

359

HANNS HOLGER RUTZ

Collins, David (2007), ‘Real-time tracking of the creative music composition process’, Digital

Creativity 18(4), pp. 239–256.

Collins, Nick (2008), ‘The analysis of generative music programs’, Organised Sound 13(3),

pp. 237–248.

— (2009), Introduction to Computer Music, Chichester, UK: John Wiley & Sons.

Comer, Douglas (1979), ‘The Ubiquitous B-Tree’, ACM Computing Surveys (CSUR) 11(2),

pp. 121–137.

Copeland, George and David Maier (1984), ‘Making Smalltalk a Database System’, ACM

SIGMOD Record 14(2), pp. 316–325.

Cormen, Thomas H., Charles E. Leiserson and Ronald L. Rivest (1990), Introduction to Al-

gorithms, Cambridge, MA: The MIT Press.

(CSAB), Computing Sciences Accreditation Board (1986), Computer Science as a Profession,

URL: http://web.archive.org/web/20090117183438/http://www.csab.org/comp_sci_

profession.html (visited on 25/05/2012).

Cushing, Jonathan (29th Mar. 2013), ‘Games of a Last Chance: Chris Marker’s Olympics’,

Los Angeles Review of Books, URL: http://lareviewofbooks.org/essay/games-of-a-last-

chance-chris-markers-olympics (visited on 18/11/2013).

Daubechies, Ingrid (1988), ‘Orthonormal Bases of Compactly Supported Wavelets’, Communi-

cations on Pure and Applied Mathematics 41(7), pp. 909–996.

Deleuze, Gilles (1968/1994), Difference and Repetition, trans. by Paul Patton, New York:

Columbia University Press.

Deleuze, Gilles and Félix Guattari (1987), ‘Rhizome’, in: A thousand plateaus: Capitalism

and schizophrenia, trans. by Brian Massumi, Minneapolis: University of Minnesota Press,

pp. 3–25.

Deleuze, Gilles and Claire Parnet (1996), ‘L’actuel et le virtuel’, in: Dialogues, Paris: Flam-

marion, pp. 179–181.

Demaine, Erik D., John Iacono and Stefan Langerman (2007), ‘Retroactive Data Structures’,

ACM Transactions on Algorithms (TALG) 3(2), 13:1–13:20.

Derrida, Jacques (1981), ‘The Double Session’, in: Dissemination, trans. by Barbara Johnson,

London: The Athlone Press, pp. 173–286.

— (1972/1988), ‘Signature Event Context’, in: Limited Inc, ed. by Gerald Graff, trans. by

Samuel Weber, Evanston, Illinois: Northwestern University Press, pp. 1–23.

— (1967/1997), Of grammatology, trans. by Gayatri Chakravorty Spivak, Baltimore: Johns

Hopkins University Press.

Di Scipio, Agostino (1998), ‘Compositional Models in Xenakis’s Electroacoustic Music’, Per-

spectives of New Music 36(2), pp. 201–243.

— (2003), ‘‘Sound is the interface’: from interactive to ecosystemic signal processing’, Organ-

ised Sound 8(3), pp. 269–277.

360

http://web.archive.org/web/20090117183438/http://www.csab.org/comp_sci_profession.html
http://web.archive.org/web/20090117183438/http://www.csab.org/comp_sci_profession.html
http://lareviewofbooks.org/essay/games-of-a-last-chance-chris-markers-olympics
http://lareviewofbooks.org/essay/games-of-a-last-chance-chris-markers-olympics

LIST OF REFERENCES

Dietz, Paul F. (1982), ‘Maintaining order in a linked list’, in: Proceedings of the fourteenth

annual ACM symposium on Theory of computing, pp. 122–127.

Dietz, Paul F. and Daniel D. Sleator (1987), ‘Two Algorithms for Maintaining Order in a List’,

in: Proceedings of the nineteenth annual ACM symposium on Theory of computing, pp. 365–

372.

Douhaire, Samuel and Annick Rivoir (2003), ‘Marker Direct: an interview with Chris Marker’,

trans. by Antoine de Baecque, Filmcomment (3), pp. 38–41, URL: http://www.filmcomment.

com/article/marker-direct-an-interview-with-chris-marker (visited on 31/07/2014).

Downie, Marc (2008), ‘Field—a New Environment for Making Digital Art’, Computers in

Entertainment (CIE) 6(4), 54:1–54:34.

Driscoll, James R., Daniel D. Sleator and Robert E Tarjan (1994), ‘Fully Persistent Lists with

Catenation’, Journal of the ACM (JACM) 41(5), pp. 943–959.

Driscoll, James R. et al. (1989), ‘Making data structures persistent’, Journal of Computer and

System Sciences 38(1), pp. 86–124.

Eaglestone, Barry et al. (2001), ‘Composition Systems Requirements for Creativity: What Re-

search Methodology’, in: Proceedings of Mosart Workshop on Current Research Directions

in Computer Music, Barcelona.

Eaglestone, Barry et al. (2007), ‘Information systems and creativity: an empirical study’, Journal

of Documentation 63(4), pp. 443–464.

Eddington, Arthur S. (1929), The Nature of the Physical World, Cambridge: Cambridge Univer-

sity Press.

Edelsbrunner, Herbert (1983), ‘A New Approach to Rectangle Intersections (Part I+II)’, Inter-

national Journal of Computer Mathematics 13(3-4), pp. 209–229.

Eigenfeldt, Arne and Philippe Pasquier (2011), ‘Negotiated Content: Generative Soundscape

Composition by Autonomous Musical Agents in Coming Together: Freesound’, in: Pro-

ceedings of the 2nd International Conference on Computational Creativity, Mexico City,

pp. 27–32.

Elliot, Andrew J. and James W. Fryer (2008), ‘The Goal Construct in Psychology’, in: Handbook

of motivation science, ed. by James Y. Shah and Wendi L. Gardner, New York: The Guilford

Press, pp. 235–250.

Elliott, Conal and Paul Hudak (1997), ‘Functional reactive animation’, ACM SIGPLAN Notices

32(8), pp. 263–273.

Emmerson, Simon (1986), ‘The Relation of Language to Materials’, in: The Language of

Electroacoustic Music, ed. by Simon Emmerson, London: Macmillan, pp. 17–39.

— (1989), ‘Composing strategies and pedagogy’, Contemporary Music Review 3(1), pp. 133–

144.

361

http://www.filmcomment.com/article/marker-direct-an-interview-with-chris-marker
http://www.filmcomment.com/article/marker-direct-an-interview-with-chris-marker

HANNS HOLGER RUTZ

Eppstein, David, Michael T. Goodrich and Jonathan Z. Sun (2005), ‘The Skip Quadtree: A

Simple Dynamic Data Structure for Multidimensional Data’, in: Proceedings of the twenty-

first annual symposium on Computational geometry, ACM, pp. 296–305.

— (2008), ‘Skip Quadtrees: Dynamic Data Structures for Multidimensional Point Sets’, Inter-

national Journal of Computational Geometry & Applications 18(1 & 2), pp. 131–160.

Feldman, Morton (1988), ‘Between categories’, Contemporary Music Review 2(2), pp. 1–5.

— (1967/2004), ‘Some Elementary Questions’, in: Give My Regards to Eighth Street: Collected

Writings of Morton Feldman, ed. by Bernard H. Friedman, Cambridge, MA: Exact Change,

pp. 63–66.

Fiat, Amos and Haim Kaplan (2003), ‘Making data structures confluently persistent’, Journal

of Algorithms 48(1), pp. 16–58.

Flood, Robert L. (1988), ‘Unleashing the “Open System” Metaphor’, Systemic Practice and

Action Research 1(3), pp. 313–318.

Foote, Jonathan (2000), ‘Automatic Audio Segmentation Using A Measure Of Audio Novelty’,

in: Proceedings of the IEEE International Conference on Multimedia and Expo (ICME),

vol. 1, New York, NY, pp. 452–455.

Foster, Caxton C. (1965), ‘Information retrieval: information storage and retrieval using AVL

trees’, in: Proceedings of the ACM 20th National Conference, Cleveland, OH, pp. 192–205.

Frigg, Roman and Julian Reiss (2009), ‘The Philosophy of Simulation: Hot New Issues or Same

Old Stew?’, Synthese 169(3), pp. 593–613.

Frisson, Christian, Cécile Picard and Damien Tardieu (June 2010), ‘AudioGarden: towards a

Usable Tool for Composite Audio Creation’, in: Quarterly Progress Scientific Reports of

the numediart research program, vol. 3, 2, pp. 33–36.

Garcia, Ronald et al. (2007), ‘An Extended Comparative Study of Language Support for Generic

Programming’, Journal of Functional Programming 17(2), pp. 145–205.

Gasiunas, Vaidas et al. (2010), Declarative Events for Object-Oriented Programming, tech. rep.

TUD-CS-2010-0122, Technische Universität Darmstadt.

— (2011), ‘EScala: modular event-driven object interactions in Scala’, in: Proceedings of the

tenth international conference on Aspect-oriented software development, ACM, pp. 227–

240.

Goodman, Daniel et al. (2011), ‘MUTS: Native Scala Constructs for Software Transactional

Memory’, in: Proceedings of the Second Scala Workshop, Stanford.

Goodman, Daniel et al. (2013), ‘Software transactional memories for Scala’, Journal of Parallel

and Distributed Computing 73(2), pp. 150–163.

Goodrich, Michael T. and Joseph A. Simons (2011), ‘Fully Retroactive Approximate Range and

Nearest Neighbor Searching’, Lecture Notes in Computer Science 7074, pp. 292–301.

Gray, Jim (1981), ‘The Transaction Concept: Virtues and Limitations’, in: Proceedings of the

7th international conference on Very Large Databases, IEEE, Cannes, pp. 144–154.

362

LIST OF REFERENCES

Guba, Egon G. and Yvonna S. Lincoln (1982/2002), ‘Epistemological and methodological bases

of naturalistic inquiry’, in: Evaluation Models: Viewpoints on Educational and Human

Services Evaluation, ed. by Daniel L. Stufflebeam, George F. Madaus and T. Kellaghan,

Second Edition, New York: Kluwer Academic Publishers, pp. 363–381.

Guibas, Leo J. and Robert Sedgewick (1978), ‘A dichromatic framework for balanced trees’, in:

19th Annual Symposium on Foundations of Computer Science (FOCS), IEEE, Ann Arbor,

pp. 8–21.

Guilford, Joy P. (1967), The nature of human intelligence, New York: McGraw-Hill.

Guttman, Antonin (1984), ‘R-trees: A dynamic index structure for spatial searching’, in: Pro-

ceedings of the 1984 ACM SIGMOD international conference on Management of data,

Boston, pp. 47–57.

Haller, Philipp and Martin Odersky (2009), ‘Scala Actors: Unifying thread-based and event-

based programming’, Theoretical Computer Science 410, pp. 202–220.

Hamman, Michael (1999), ‘From Symbol to Semiotic: Representation, Signification, and the

Composition of Music Interaction’, Journal of New Music Research 28(2), pp. 90–104.

— (2002), ‘From Technical to Technological: The Imperative of Technology in Experimental

Music Composition’, Perspectives of New Music 40(1), pp. 92–120.

Harel, David (2008), ‘Can Programming Be Liberated, Period?’, Computer (IEEE) 41(1), pp. 28–

37.

Harraway, Donna J. (1991), ‘A Cyborg Manifesto: Science, Technology, and Socialist-Feminism

in the Late Twentieth Century’, in: Simians, Cyborgs and Women: The Reinvention of Nature,

New York: Routledge, pp. 149–181.

Harris, Tim et al. (2007), ‘Transactional Memory: An Overview’, IEEE Micro 27(3), pp. 8–29.

Heer, Jeffrey, Stuart K. Card and James A. Landay (2005), ‘Prefuse: a toolkit for interactive

information visualization’, in: Proceedings of the SIGCHI conference on Human factors in

computing systems, ACM, pp. 421–430.

Heylighen, Francis (2001), ‘Bootstrapping knowledge representations: From entailment meshes

via semantic nets to learning webs’, Kybernetes 30(5/6), pp. 691–722.

Heylighen, Francis and Cliff Joslyn (2001), ‘Cybernetics and Second Order Cybernetics’, in:

Encyclopedia of Physical Science and Technology, ed. by Robert A. Meyers, vol. 4, New

York: Academic Press, pp. 155–170.

Hinze, Ralf and Ross Paterson (2006), ‘Finger trees: a simple general-purpose data structure’,

Journal of Functional Programming 16(2), pp. 197–217.

Honing, Henkjan (1993), ‘Issues on the representation of time and structure in music’, Contem-

porary Music Review 9(1), pp. 221–238.

Jensen, Christian S. et al. (1992), ‘A Glossary of Temporal Database Concepts’, ACM Special

Interest Group on Management of Data (SIGMOD) Record 21(3), pp. 35–43.

363

HANNS HOLGER RUTZ

Jiang, Linan et al. (2000), ‘The BT-Tree: A Branched and Temporal Access Method’, in: Pro-

ceedings of the 26th International Conference on Very Large Data Bases (VLDB), Cairo,

pp. 451–460.

Kane, Brian (2007), ‘L’Objet Sonore Maintenant: Pierre Schaeffer, sound objects and the

phenomenological reduction’, Organised Sound 12(1), pp. 15–24.

Kaplan, Haim and Robert E. Tarjan (1996), ‘Purely Functional Representations of Catenable

Sorted Lists’, in: Proceedings of the twenty-eighth annual ACM symposium on Theory of

computing, pp. 202–211.

Knuth, Donald E. (Mar. 1977), ‘Notes on the van Emde Boas construction of priority deques:

An instructive use of recursion’, Classroom notes Stanford University.

— (1973/1998), The Art of Computer Programming, 2nd Edition, vol. 3, Reading, MA: Addison-

Wesley.

Koenig, Gottfried Michael (1986/1993a), ‘Genesis der Form unter technischen Bedingungen’,

in: Ästhetische Praxis, vol. 3, Texte zur Musik, Saarbrücken: PFAU Verlag, pp. 277–288.

— (1978/1993b), ‘Kompositionsprozesse’, in: Ästhetische Praxis, vol. 3, Texte zur Musik,

Saarbrücken: PFAU Verlag, pp. 191–210.

Krasner, Glenn E. and Steven T. Pope (1988), ‘A Cookbook for Using the Model-View-

Controller User Interface Paradigm in Smalltalk-80’, Journal of Object Oriented Program-

ming 1(3), pp. 26–49.

Krippendorff, Klaus (1990), ‘Models and Metaphors of Communication’, Annenberg School

for Communication Departmental Papers (ASC) (276), URL: http://repository.upenn.edu/

asc_papers/276/ (visited on 13/08/2014).

— (1993), ‘Major Metaphors of Communication and Some Constructivist Reflections on their

Use’, Cybernetics & Human Knowing 2(1), pp. 3–25.

— (1994), ‘Der Verschwundene Bote; Metaphern und Modelle der Kommunikation’, in: Die

Wirklichkeit der Medien; Eine Einführung in die Kommunikationswissenschaft, ed. by

Klaus Merten, Siegfried J. Schmidt and Siegfried Weischenberg, Opladen: Westdeutscher

Verlag, pp. 79–113.

Kruger, Daniel J. (2002), ‘The Deconstruction of Constructivism’, American Psychologist 57(6–

7), pp. 456–457.

Kumar, Anil, Vassilis J. Tsotras and Christos Faloutsos (1998), ‘Designing Access Methods

for Bitemporal Databases’, IEEE Transactions on Knowledge and Data Engineering 10(1),

pp. 1–20.

Lacan, Jacques (1992), The Ethics of Psychoanalysis, 1959–1960, ed. by Marc E. Carvallo,

trans. by Dennis Porter, vol. VII, The Seminar of Jacques Lacan, London: Routledge.

Latour, Bruno (1987), ‘Laboratories’, in: Science in action: How to follow scientists and engin-

eers through society, Cambridge, MA: Harvard University Press, pp. 63–100.

364

http://repository.upenn.edu/asc_papers/276/
http://repository.upenn.edu/asc_papers/276/

LIST OF REFERENCES

Lea, Doug (2000), ‘A Java Fork/Join Framework’, in: Proceedings of the ACM 2000 conference

on Java Grande, pp. 36–43.

Levine, Edward M. (1971), ‘Abstract Expressionism: The Mystical Experience’, Art Journal

31(1), pp. 22–25.

Lewis, George E. (2000), ‘Too Many Notes: Computers, Complexity and Culture in “Voyager”’,

Leonardo Music Journal 10, pp. 33–39.

Liljedahl, Jonatan (12th Nov. 2008), AlgoScore user guide, URL: http://download.gna.org/

algoscore/Help/algoscore-manual.pdf (visited on 10/05/2012).

Liskov, Barbara and Liuba Shrira (1988), ‘Promises: Linguistic Support for Efficient Asyn-

chronous Procedure Calls in Distributed Systems’, in: ACM SIGPLAN Notices, vol. 23, 7,

pp. 260–267.

Loeb, Arthur L. (1991), ‘On Behaviorism, Causality and Cybernetics’, Leonardo 24(3), pp. 299–

302.

Löfgren, Lars (1968), ‘An axiomatic explanation of complete self-reproduction’, Bulletin of

Mathematical Biophysics 30, pp. 415–425.

— (1992), ‘Complementarity in language; toward a general understanding’, in: Nature, Cogni-

tion and System II, ed. by Marc E. Carvallo, Dordrecht: Kluwer, pp. 113–153.

Loy, Gareth and Curtis Abbott (1985), ‘Programming Languages for Computer Music Synthesis,

Performance, and Composition’, ACM Computing Surveys (CSUR) 17(2), pp. 235–265.

Luhmann, Niklas (1989), ‘Law as a Social System’, Northwestern University Law Review 83(1

& 2), pp. 136–150.

— (1993), ‘Deconstruction as Second-Order Observing’, New Literary History 24(4), pp. 763–

782.

— (1995), ‘The Paradoxy of Observing Systems’, Cultural Critique 31, pp. 37–55.

— (1997), Die Kunst der Gesellschaft, Frankfurt a.M.: Suhrkamp Verlag.

— (1999), ‘The Paradox of Form’, in: Problems of Form, ed. by Dirk Baecker, Stanford:

Stanford University Press, pp. 15–26.

— (2000), Art as a Social System, trans. by Eva M. Knock, Stanford: Stanford University Press.

Lyotard, Jean-François (1988/1993), ‘Oikos’, in: Political writings, trans. by Bill Readings,

Minneapolis: University of Minnesota Press, pp. 96–107.

Maier, Ingo (Nov. 2009), The scala.swing package, Scala Improvement Process (SID) #8, URL:

http://www.scala-lang.org/sid/8 (visited on 29/06/2013).

Maier, Ingo and Martin Odersky (2012), ‘Deprecating the Observer Pattern with Scala.React’,

Technical Report EPFL-REPORT-176887. Ecole Polytechnique Fédérale de Lausanne.

Marsden, Alan (2000), Representing musical time: a temporal-logic approach, Lisse: Swets &

Zeitlinger Publishers.

McCartney, James (2002), ‘Rethinking the Computer Music Language: SuperCollider’, Com-

puter Music Journal 26(4), pp. 61–68.

365

http://download.gna.org/algoscore/Help/algoscore-manual.pdf
http://download.gna.org/algoscore/Help/algoscore-manual.pdf
http://www.scala-lang.org/sid/8

HANNS HOLGER RUTZ

McDirmid, Sean (2007), ‘Living it up with a Live Programming Language’, in: ACM SIGPLAN

Notices, vol. 42, 10, pp. 623–638.

Meyer, Leonard B. (1963), ‘The End of the Renaissance?’, The Hudson Review 16(2), pp. 169–

186.

Miller, George A., Eugene Galanter and Karl H. Pribram (1960), Plans and the Structure of

Behavior, New York: Holt, Rinehart and Winston, Inc.

Mingers, John (1995), Self-Producing Systems: Implications and Applications of Autopoiesis,

New York: Plenum Press.

Minsky, Marvin L. and Otto Laske (1992), ‘A Conversation with Marvin Minsky’, AI Magazine

13(3), pp. 31–45.

Miranda, Eduardo R. (2009), ‘Lovely Algorithms, Hot Weather and Uninspiring Solfeggio’,

Contemporary Music Review 28(1), pp. 120–121.

Mittelstraß, Jürgen (2011), ‘On transdisciplinarity’, Trames: A Journal of the Humanities and

Social Sciences 15(4), pp. 329–338.

Moors, Adriaan, Frank Piessens and Martin Odersky (2008), ‘Generics of a Higher Kind’, in:

ACM SIGPLAN Notices, vol. 43, 10, pp. 423–438.

Moss, J. Eliot B. and Antony L. Hosking (1996), ‘Approaches to Adding Persistence to Java’, in:

Proceedings of the First International Workshop on Persistence and Java, Drymen, Scotland.

Nathan, Ran, Uriel N. Safriel and Imanuel Noy-Meir (2001), ‘Field validation and sensitivity

analysis of a mechanistic model for tree seed dispersal by wind’, Ecology 82(2), pp. 374–

388.

Odersky, Martin (9th June 2006), A Brief History of Scala, URL: http://www.artima.com/

weblogs/viewpost.jsp?thread=163733 (visited on 04/01/2013).

Odersky, Martin, Lex Spoon and Bill Venners (2008), Programming in Scala: a comprehensive

step-by-step guide, Mountain View, CA: Artima Inc.

Odersky, Martin and Matthias Zenger (2005), ‘Scalable Component Abstractions’, in: ACM

SIGPLAN Notices, vol. 40, 10, pp. 41–57.

Odersky, Martin et al. (2006), An Overview of the Scala Programming Language, tech. rep.

LAMP-REPORT-2006-001, École Polytechnique Fédérale de Lausanne (EPFL).

Okasaki, Chris (1998), Purely Functional Data Structures, Cambridge: Cambridge University

Press.

Oliveira, Bruno C. d. S., Adriaan Moors and Martin Odersky (2010), ‘Type Classes as Objects

and Implicits’, in: ACM Sigplan Notices – OOPSLA ’10, vol. 45, 10, pp. 341–360.

Opyrchal, Lukasz and Atul Prakash (1999), ‘Efficient Object Serialization in Java’, in: Pro-

ceedings of the 19th IEEE International Conference on Distributed Computing Systems,

pp. 96–101.

Palamidessi, Catuscia and Frank D. Valencia (2001), A Temporal Concurrent Constraint Pro-

gramming Calculus, tech. rep. RS-01-20, BRICS Basic Research in Computer Science.

366

http://www.artima.com/weblogs/viewpost.jsp?thread=163733
http://www.artima.com/weblogs/viewpost.jsp?thread=163733

LIST OF REFERENCES

Papadakis, Thomas (1993), ‘Skip Lists and Probabilistic Analysis of Algorithms’, PhD thesis,

Waterloo, Ontario: University of Waterloo.

Pask, Gordon (1969), ‘The meaning of cybernetics in the behavioural sciences (The cybernetics

of behaviour and cognition; extending the meaning of ‘goal’)’, Progress of Cybernetics 1,

pp. 15–44.

Pearce, Marcus (2009), ‘To Beep or Not to Beep’, Contemporary Music Review 28(1), pp. 125–

126.

Pearce, Marcus, David Meredith and Geraint Wiggins (2002), ‘Motivations and Methodologies

for Automation of the Compositional Process’, Musicae Scientiae 6(2), pp. 119–147.

Pluquet, Frédéric (2012), ‘Efficient Object Versioning for Object-Oriented Languages from

Model to Language Integration’, PhD thesis, Brussels: Université Libre de Bruxelles.

Pluquet, Frédéric, Stefan Langerman and Roel Wuyts (2009), ‘Executing code in the past:

efficient in-memory object graph versioning’, in: ACM SIGPLAN Notices, vol. 44, 10,

pp. 391–408.

Puckette, Miller (1998), ‘The Patcher’, in: Proceedings of the 24th International Computer

Music Conference (ICMC), Cologne, pp. 420–429.

Pugh, William (1990), ‘Skip Lists: A Probabilistic Alternative to Balanced Trees’, Communica-

tions of the ACM 33(6), pp. 668–676.

Rescher, Nicholas (2006), Process Philosophical Deliberations, Heusenstamm: ontos verlag.

Rheinberger, Hans-Jörg (1992), Experiment–Differenz–Schrift: zur Geschichte epistemischer

Dinge, Marburg: Basilisken-Presse.

— (1994), ‘Experimental Systems: Historiality, Narration, and Deconstruction’, Science in

Context 7(1), pp. 65–81.

— (1997), Toward a History of Epistemic Things: Synthesizing Proteins in the Test Tube, Palo

Alto: Stanford University Press.

— (1994/2005), ‘Alles, was überhaupt zu einer Inskription führen kann’, in: Iterationen, Berlin:

Merve Verlag, pp. 9–29.

— (5th May 2007), ‘Man weiss nicht genau, was man nicht weiss: Über die Kunst, das Un-

bekannte zu erforschen’, Neue Züricher Zeitung.

— (2nd July 2008), ‘Epistemische Dinge—Technische Dinge’, Bochumer Kolloquium Medien-

wissenschaft, URL: http://vimeo.com/2351486 (visited on 28/08/2012).

Rompf, Tiark, Ingo Maier and Martin Odersky (2009), ‘Implementing First-Class Polymorphic

Delimited Continuations by a Type-Directed Selective CPS-Transform’, in: ACM SIGPLAN

Notices, vol. 44, 9, pp. 317–328.

Rompf, Tiark and Martin Odersky (2010), ‘Lightweight Modular Staging: A Pragmatic Ap-

proach to Runtime Code Generation and Compiled DSLs’, in: ACM SIGPLAN Notices,

vol. 46, 2, pp. 127–136.

367

http://vimeo.com/2351486

HANNS HOLGER RUTZ

Rosenberg, Daniel and Anthony Grafton (2010), Cartographies of Time: A History of the

Timeline, New York: Princeton Architectural Press.

Rosenblueth, Arturo, Norbert Wiener and Julian Bigelow (1943), ‘Behavior, Purpose and Tele-

ology’, Philosophy of Science 10(1), pp. 18–24.

Röttgers, Kurt (1983), ‘Der Ursprung der Prozessidee aus dem Geiste der Chemie’, Archiv für

Begriffsgeschichte 27, pp. 93–157.

Rutz, Hanns Holger (2010), ‘Rethinking the SuperCollider Client. . . ’, in: Proceedings of the

SuperCollider Symposium, Berlin.

— (2011), ‘Limits of Control’, in: Proceedings of the 8th Sound and Music Computing Confer-

ence (SMC), Padova, 132:1–132:6.

— (2012a), ‘A Reactive, Confluently Persistent Framework for the Design of Computer Music

Systems’, in: Proceedings of the 9th Sound and Music Computing Conference (SMC),

Copenhagen, pp. 121–129.

— (2012b), ‘Composing Alongside Paradoxes’, Explore Dream Discover: Journal of the Pen-

insula Contemporary Music Festival, p. 5.

— (2012c), ‘Sound Similarity as Interface between Human and Machine in Electroacous-

tic Composition’, in: Proceedings of the 38th International Computer Music Conference,

Ljubljana, pp. 212–219.

Rutz, Hanns Holger, Eduardo Miranda and Gerhard Eckel (2010), ‘On the Traceability of the

Compositional Process’, in: Proceedings of the 7th Sound an Music Computing Conference

(SMC), Barcelona, 38:1–38:7.

— (2011), ‘Reproducibility and Random Access in Sound Synthesis’, in: Proceedings of the

37th International Computer Music Conference, Huddersfield, pp. 515–522.

Ryan, Alex (2008), ‘What is a Systems Approach?’, Arxiv preprint arXiv:0809.1698.

Salvaneschi, Guido, Gerold Hintz and Mira Mezini (2012), REScala: Bridging Between Object-

oriented and Functional Style in Reactive Applications, tech. rep., Darmstadt: Technische

Universität Darmstadt.

Salzberg, Betty and David Lomet (1995), Branched and Temporal Index Structures, tech. rep.

NU-CCS-95-17, Boston: Northeastern University.

Salzberg, Betty and Vassilis J. Tsotras (1999), ‘Comparison of Access Methods for Time-

Evolving Data’, ACM Computing Surveys 31(2), pp. 158–221.

Samet, Hanan (1988), ‘An overview of quadtrees, octrees, and related hierarchical data struc-

tures’, NATO ASI Series F40, pp. 51–68.

— (1995), ‘Spatial Data Structures’, in: Modern Database Systems: The Object Model, Inter-

operability and Beyond, ed. by Won Kim, New York: ACM Press and Addison-Wesley,

pp. 361–385.

Sarnak, Neil and Robert E. Tarjan (1986), ‘Planar Point Location Using Persistent Search Trees’,

Communications of the ACM 29(7), pp. 669–679.

368

LIST OF REFERENCES

Schaeffer, Pierre (1966/1977), Traité des objets musicaux, essai interdisciplines, Paris: Editions

du Seuil.

Schottstaedt, Bill (1994), ‘Machine Tongues XVII: CLM: Music V Meets Common Lisp’,

Computer Music Journal 18(2), pp. 30–37.

Schwab, Michael, ed. (2013a), Experimental Systems. Future Knowledge in Artistic Research,

Leuven: Leuven University Press.

‘Forming and Being Informed: Hans-Jörg Rheinberger in conversation with Michael Schwab’

(2013b), in: Experimental Systems. Future Knowledge in Artistic Research, ed. by Mi-

chael Schwab, Leuven: Leuven University Press, pp. 198–219.

Schwarz, Diemo (2006), ‘Concatenative sound synthesis: The early years’, Journal of New

Music Research 35(1), pp. 3–22.

Shannon, Claude E. (1948), ‘A Mathematical Theory of Communication’, Bell System Technical

Journal 27(3), pp. 379–423.

Sleator, Daniel D. and Robert E. Tarjan (1985), ‘Self-Adjusting Binary Search Trees’, Journal

of the ACM (JACM) 32(3), pp. 652–686.

Snodgrass, Richard T. and Ilsoo Ahn (1985), ‘A Taxonomy of Time in Databases’, ACM Special

Interest Group on Management of Data (SIGMOD) Record 14(4), pp. 236–246.

Spencer-Brown, George (1969/1979), Laws of Form, New York: E.P. Dutton.

Taube, Heinrich (1991), ‘Common Music: A Music Composition Language in Common Lisp

and CLOS’, Computer Music Journal 15(2), pp. 21–32.

Tichy, Walter F. (1982), ‘Design, Implementation, and Evaluation of a Revision Control System’,

in: Proceedings of the 6th international conference on Software engineering ICSE, IEEE,

Tokyo, pp. 58–67.

Truax, Barry (1976), ‘A Communicational Approach to Computer Sound Programs’, Journal of

Music Theory 20(2), pp. 227–300.

Tsang, Edward (1993), Foundations of Constraint Satisfaction, London: Academic Press.

Van Roy, Peter (2009), ‘Programming Paradigms for Dummies: What Every Programmer Should

Know’, in: New Computational Paradigms for Computer Music, ed. by Gérard Assayag and

Andrew Gerzso, Paris/Sampzon: IRCAM/Éditions Delatour France, pp. 9–47.

Varela, Francisco J. (1975), ‘A Calculus for Self-Reference’, International Journal of General

Systems 2(1), pp. 5–24.

— (1981), ‘Autonomy and Autopoiesis’, in: Self-organizing Systems: An Interdisciplinary

Approach, ed. by Gerhard Roth and Helmut Schwegler, Frankfurt and New York: Campus

Verlag, pp. 14–23.

Venners, Bill (7th Oct. 2009), Abstract Type Members versus Generic Type Parameters in

Scala, URL: http://www.artima.com/weblogs/viewpost.jsp?thread=270195 (visited on

08/01/2013).

369

http://www.artima.com/weblogs/viewpost.jsp?thread=270195

HANNS HOLGER RUTZ

Von Bertalanffy, Ludwig (1950), ‘An outline of General System Theory’, The British Journal

for the Philosophy of Science 1(2), pp. 134–165.

— (1972), ‘The History and Status of General Systems Theory’, The Academy of Management

Journal 15(4), pp. 407–426.

Von Foerster, Heinz (1979), ‘Cybernetics of Cybernetics’, in: Communication and Control in

Society, ed. by Klaus Krippendorff, New York: Gordon and Breach, pp. 5–8.

— (1991/2003), ‘Ethics and Second-Order Cybernetics’, in: Understanding Understanding:

Essays on Cybernetics and Cognition, New York: Springer, pp. 5–8.

Wadler, Philip and Stephen Blott (1989), ‘How to make ad-hoc polymorphism less ad hoc’, in:

Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, Austin, TX, pp. 60–76.

Wiener, Norbert (1948), Cybernetics, or Control and Communication in the Animal and the

Machine, New York: John Wiley & Sons.

Williams, James (2003), Gilles Deleuze’s Difference and Repetition: a Critical Introduction

and Guide, Edinburgh: Edinburgh University Press.

Xenakis, Iannis (1992), Formalized Music, Thought and mathematics in composition, Revised

Edition, Stuyvesant, NY: Pendragon Press.

370

	Abstract
	Contents
	Acknowledgements
	Author's Declaration
	Typographic Conventions
	Introduction
	Background Story
	Motivation
	Objective
	Thesis Overview

	Two Layers of Time
	The Double Nature of the Compositional Process
	Outside of Time?
	The Separating Diaphragm
	Creation Time
	Accessing Time
	Access Methods
	Branching and Multiplicities
	A Comprehensive Model of the Compositional Process
	Conclusion

	Beyond Control and Communication
	Composers in Control
	Models
	Notes from the Metalevel
	Injection
	Resolution

	Traces
	Introduction
	Dissemination
	That Which Does Not Become Systemic
	Sound Similarity as Transversal Reading/Writing across Pieces
	Exploiting Graphemes
	Indeterminus
	Summary

	Design and Implementation of a Tracing System
	The Programming Language
	Framework Overview
	System Façade and Transactional Encapsulation
	Durability
	Confluent Semantics
	Building a Confluent System
	Extensions and Alternatives to Persistence
	Event Processing
	Composable Expressions
	Performance Time
	Creating Sound Processes
	Editing Sound Processes
	Summary

	Conclusions
	Discussion
	Process of the Thesis
	Contributions
	Limitations
	Recommendations for Future Work

	Afterword
	Contents of the DVD
	Survey of the Scala Programming Language
	Basic Syntax and Types
	Scoping and Nesting
	Functional Aspects
	Type System
	Concurrency Abstractions
	Summary

	Record of Activities
	List of References

