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Key points 

 

 Wave-dominated and mixed-energy barriers are extremely dynamic landforms, responding to warm-core tropical and 

cold-core extratropical cyclones.  

 Barrier storm response is primarily governed by maximum storm runup and barrier morphology, as conceptualised in 

Abby Sallenger’s Storm Impact Scale model, which defines four storm-impact regimes: swash regime, collision regime 

overwash regime and inundation regime. 

 Site-specific factors play a key role in moderating the morphological response and include storm characteristics (type, 

duration and track), longshore sediment supply, upwelling-downwelling currents, coastal setting and inner-shelf 

topography.  

 The response of a barrier to a tropical or extratropical cyclone has to be appreciated in a longer temporal context 

involving morphological preconditioning due to antecedent wave and water-level conditions.  

 A useful way to visualise and conceptualise more complex storm behaviours and the longer-term vulnerability of barriers 

is the ‘resilience trajectory’, which maps out the changes in barrier geometry (elevation and width). 

 An increased understanding of barrier response to storms and sequences of storms is required to better quantify long-term 

barrier response to climate change and high-resolution and comprehensive decadal records of barrier response to storms 

are a prerequisite to achieve this ambition. 

 

Abstract 

 

Wave-dominated and mixed-energy barriers are extremely dynamic landforms, responding to processes operating over a spectrum 

of time scales, ranging from daily-to-monthly fluctuations related to storm and post-storm conditions, to century-to-millennium-

scale evolution driven by relative sea-level change. Two types of storm are of particular relevance: warm-core tropical and cold-

core extratropical cyclones. Both are responsible for generating very large waves, highly energetic surf zone dynamics and 

sediment transport, elevated inshore water levels, and extensive morphological responses. All cyclones are affected by climate 

change, which governs their frequency, intensity and tracks. 

 

Barrier storm response is primarily governed by maximum storm runup and barrier morphology, as conceptualised in Abby 

Sallenger’s Storm Impact Scale model. This model defines four storm-impact regimes and includes erosive as well as accretionary 

responses. On the erosion side, the swash regime drives bar and berm flattening; the collision regime is marked by dune scarping 

and beach lowering; the overwash regime leads to dune scouring and channel incision; and the inundation regime may result in 

barrier destruction. On the deposition side, storm berms and beach ridges may form and accrete in the swash and collision regimes; 

localised vertical beach and barrier accretion are associated with the collision and overwash regimes; and washover deposition 

takes place in the overwash and inundation regimes. Site-specific factors play a key role in moderating the morphological 

response and include storm characteristics (type, duration and track), longshore sediment supply, upwelling-downwelling currents, 

coastal setting and inner-shelf topography.  

 

The response of a barrier to a tropical or extratropical cyclone can, however, not be considered in isolation and has to be 

appreciated in a longer temporal context involving morphological preconditioning due to antecedent wave and water-level 

conditions. Additionally, a simple process-response approach of the cause-and-effect type is inappropriate and a more complex 

conceptual framework, involving thresholds, feedbacks, resilience and vulnerability, will need to be adopted. A useful way to 

visualise and conceptualise more complex storm behaviours and the longer-term vulnerability of barriers is the ‘resilience 

trajectory’, which maps out the changes in barrier geometry (elevation and width) over various time scales, from weeks to years or 

even longer, and under varying forcing conditions, including changes in storminess and sea-level rise.  

 

An increased understanding of barrier response to storms and sequences of storms is required to better quantify long-term barrier 

response to climate change. High-resolution and comprehensive decadal records of barrier response to storms are a prerequisite to 

achieve this ambition, linking site-specific coastal settings, hydrodynamic drivers and morphological responses, and allowing the 

recognition of recovery- and impact-dominated phases. The enhanced insights in barrier response to extreme events must then be 

incorporated into improved coastal response models to help predict the impacts of future climate change on wave-dominated and 

mixed-energy barriers around the world. 
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1. Introduction 

 

Wave-dominated and mixed-energy barriers occur in a wide range of settings. Their distribution and types are governed by 

various environmental boundary conditions, including hydrodynamic forcing (wind, waves and tides), sediment characteristics 

(abundance and grain-sise distribution), offshore bathymetry, tectonic setting and (relative) sea-level history (e.g., Roy et al., 1994; 

Figure 1). Constructed out of loose material and located in energetic wave-influenced environments, barriers are extremely 

dynamic landforms. Their seaward and landward margins migrate significantly over a wide spectrum of time scales, ranging from 

wave- and tide-controlled hourly and daily fluctuations to century- or millennium-scale evolution driven by relative sea-level 

change. 

 

 

Figure 1 – Main barrier types. Attached forms include welded barriers, pocket barriers, cuspate barriers, 

double tombolos, baymouth barriers and various spits. Detached forms are mixed-energy and wave-

dominated islands. Strand plains are characterised by a multiple-barrier planform in a progradational 

setting. Arrows denote littoral drift and dark shading represents submerged and low-lying back-barrier 

areas. Source: Van Heteren (2014). 

 

Regardless of the time scale under consideration, storm-induced extreme wave and water-level conditions are key drivers of 

barrier dynamics. They are associated with the largest morphological responses and changes in shoreline position. Single storms 

can result in meters of shoreline change within hours. A sequence of storms, for example during a winter season, may cause a 

seasonal, cumulative shoreline response (Komar, 1998). Over longer time scales, storminess-driven coastal change is marked by 

annual variability (e.g., caused by El Nino / La Nina), by decadal cycles associated with atmospheric teleconnections (e.g., North 

Atlantic Oscillation NAO), and by century-scale periodicity linked to climatic changes (e.g., Little Ice Age). Even in the long term, 

barrier erosion and retrogradation are far from gradual processes. Most barriers are characterised by periods of relative stability 

punctuated by short-lived change. The landward migration of transgressive barrier systems, although governed by rising sea level 

operating over centuries to millennia, is accomplished during individual storms and other, less energetic, wind-driven events. It 

could even be argued that without the elevated wave and water-level conditions associated with these events, barrier systems 

would lack the capability to cope with sea-level rise and would simply drown.  

 

Meteorologically, storms are easy to define by factors such as maximum sustained wind speed, lowest atmospheric pressure or 

largest pressure drop over a certain amount of time. Similarly, from a purely oceanographical point of view, storms can be defined 

as distinct events during which waves exceed a certain height and/or energy threshold for a certain amount of time (e.g., Lemm et 

al., 1999). Storm groups can then be defined as sequences of individual storms separated by maximum time intervals of non-storm 

conditions. However, a storm definition based on a wave-height threshold (e.g., maximum significant wave height Hs) is highly 

site-specific, and depends strongly on the modal wave conditions. For a sheltered barrier, Hs > 2 m might be considered a storm 

(e.g., Houser and Greenwood, 2005), whereas for an exposed barrier, Hs = 5 m might be the lower limit. From a marine geological 

point of view, a more appropriate approach to defining storms, identifying storm thresholds and investigating storm statistics 

might be to consider hydrodynamic forcing (wave conditions and water level) in the context of coastal change. Such approach is 

more useful to coastal managers (e.g., Gervais et al. 2012). It was followed in the EU-funded MICORE project 

(https://www.micore.eu/) and resulted in several site-specific storm definitions applicable to a number of coastal sites in Europe 

(e.g., Almeida et al., 2012; Armaroli et al., 2012; Del Rio et al., 2012; Haerens et al., 2012; Trivonova et al., 2012). Clearly, there 

is a disconnect between the purely meteorological/oceanographical storm forcing and the ensuing coastal response, and they must 

be considered in concert when investigating coastal impacts of storms. 

 

Two types of storm are of particular relevance to barriers: warm-core tropical and cold-core extratropical cyclones (Figure 2); 

both are responsible for generating highly energetic wave conditions and elevated inshore water levels. Tropical cyclones (TC) are 

non-frontal low-pressure systems that develop over tropical or subtropical oceans. Depending on location, the highest-intensity 

TCs are referred to as ‘hurricanes’, ‘typhoons’, ‘(severe) tropical cyclones’ or ‘severe cyclonic storms’. Hurricanes are further 

subdivided into 5 categories on the basis of wind speed (Saffir-Simpson Hurricane Wind Scale SSHWS). Category 5 Hurricanes 

(maximum sustained wind speeds > 69 m s
-1

) represent the most severe TC with the strongest winds, the lowest atmospheric 

pressures, the largest waves and the highest storm surges. Since 1924, 13 of the 35 recorded Category 5 Hurricanes that made 

landfall in the USA did so at maximum strength. 

 

https://www.micore.eu/
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Extratropical or mid-latitude cyclones (ETC) are frontal systems that evolve along the polar front, which is defined as a semi-

continuous boundary in the mid-latitudes that separates cold polar from warm subtropical air masses (Figure 2). The more general 

terms ‘depressions’ and ‘lows’, sometimes with the adjective ‘frontal’ are commonly used. ETCs are generally associated with 

significantly less extreme wave and water-level conditions than TCs. Compare, for example the maximum storm surge of 3.5 m 

during the 1953 North Sea flood, associated with the region’s most devastating storm of the twentieth century (Wolf and Flather, 

2005), with surge values up to 8.5 m during Hurricane Katrina in 2005 (Fritz et al., 2007).  

 

 

Figure 2 – TC tracks observed during the last 150 years 

(http://eoimages.gsfc.nasa.gov/images/imagerecords/7000/7079/tropical_cyclone_map_lrg.gif), 

plotted on a map showing the global frequency of ETCs for the period 1961-1998 

(http://data.giss.nasa.gov/stormtracks/). The TC overlay is based on all storm tracks available from the 

National Hurricane Center and the Joint Typhoon Warning Center through September 2006. The 

accumulation of tracks reveals where the most severe storms form and which large-scale atmospheric 

patterns influence their tracks. TD and TS refer to tropical depressions and tropical storms, 

respectively, and numbers 1 to 5 refer to Category 1 to 5 Hurricanes. The ETC base map is an 

aggregation of year-round data from the NCEP/NCAR Reanalysis Project. The greatest frequency of 

ETCs (reds) occur along the path of warm ocean currents that follow the eastern seaboards of North 

America and Asia. These warm, poleward-moving currents create large temperature contrasts with the 

cold winter-time continents and supply energy that helps generate and strengthen storm systems. Note 

that a similar pattern of storms circumnavigates the cold continent of Antarctica. The scale used for 

the ETC frequency plot represents the percentage of time that a low-pressure centre (i.e., a storm) was 

found over a given location from 1961 to 1998. Note the relatively calm regions in South America and 

the southwest coast of Africa, but also note that large waves generated elsewhere may affect these 

coastlines. 

 

This paper will review progress made in the last decade in our understanding of barrier response to extreme wave and water-level 

conditions caused by TCs and ETCs. An overview of short- and long-term influences as well as key hydrodynamic drivers 

determining storm-related barrier behaviour provides the framework needed to understand various types of destructive and 

constructive barrier response to individual storms. We build on Sallenger’s (2000) impact scale of barrier response to hurricanes, 

placing beach change, dune erosion, overwash, breaching and destruction in a context of pre-storm conditioning and post-storm 

recovery. Understanding barrier response to storms requires fully integrated long-term monitoring series, laboratory experiments 

and numerical modelling of drivers and coastal change. 
 

2. Long-term influences: sea-level change and storminess 

 

Sea-level change is the key driver for longer-term barrier evolution and owing to global warming most barriers are affected by 

relative sea-level rise. The global rate of sea-level rise estimated from (satellite) altimetry data over the 15-year period from 1993 

to 2008 is 3.5 mm yr
-1

 (Nicholls and Cazenave, 2010), but according to most global sea-level data sets the rate of sea-level rise is 

accelerating (Church and White, 2011) and may approach rates experienced during the early and mid-Holocene periods (5–10 

mm yr
-1

; Woodroffe and Murray-Wallace, 2012) by the end of this century. Following their analysis of sea-level rise and its 

possible coastal impacts given a ‘beyond 4
o
C world’, Nicholls et al. (2011) provided a pragmatic estimate of the sea-level rise by 

2100 between 0.5 and 2 m. Sea-level rise due to climate change will induce an upward shift in storm-related maximum water 

levels and will shorten the return intervals of specific record levels (e.g., Fiore et al., 2009). In turn, this will enhance the impact of 

storms on barriers by increasing both the potential for coastal flooding and the severity of barrier erosion (Zhang et al., 2002). 

 

http://eoimages.gsfc.nasa.gov/images/imagerecords/7000/7079/tropical_cyclone_map_lrg.gif
http://data.giss.nasa.gov/stormtracks/
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In addition to its effect on eustatic sea level, global warming is also expected to enhance climate variability, and therefore the 

occurrence of weather extremes, wave conditions and water levels. Clustered extreme storms result in cumulative effects on 

barrier behaviour. When beaches and dunes are unable to fully recover from storm impact, they become increasingly vulnerable. 

Therefore, past storminess variations must be considered to understand long-term barrier stability, and future storminess trends 

need to be forecasted accurately to predict long-term barrier behaviour. Numerous studies have been conducted to quantify 

temporal changes in storminess over the past 50–100 years and to link these to climate change (e.g., Keim et al., 2004; Grossmann 

and Granger Morgan, 2011). As yet, there is no agreement on causes of past storminess trends, however, making it difficult to 

assess and understand the contributions of changing climate or ocean currents. The presumed increasing trend in TC activity 

(Webster et al., 2005; Emanuel, 2007), for example, can largely be ascribed to observation bias due to imperfect sampling in the 

pre-satellite era (Vecchi and Knutson, 2011; Figure 3). Other uncertainty arises from large-amplitude natural variations in the 

frequency and intensity of extreme storm conditions (e.g., TC activity is related to the Atlantic Multi-decadal Oscillation (AMO); 

ETC activity is related to the North Atlantic Oscillation (NAO)). An additional problem in interpreting trends in cyclonic activity 

is that both TC and ETC tracks are not fixed in space. Spatial shifts over time may regionally increase or decrease storminess, as 

demonstrated, for example, by Wu et al. (2005) for the shifting typhoon influence in the South China Sea and by Alexander et al. 

(2005) for opposite changes in storm frequency in Iceland and the UK due to a shift in position of the North Atlantic storm track.  

 

 

Figure 3 – Time series of indices relevant to changing Atlantic tropical cyclone activity. Filled lines 

indicate the normalised 5-yr running means during 1878–2008 with straight dashed lines indicating 

the linear least-squares trends. Green-shaded curves depict global mean temperature, sea-surface 

temperature (SST) in the main development region (MDR) of the cyclones, and the relative SST (MDR 

minus tropical mean); blue-shaded curves represent unadjusted tropical storm and hurricane counts; 

red-shaded curves represent adjusted tropical storm and hurricane counts; and orange-shaded curves 

depict U.S. landfalling tropical storms and hurricanes (no adjustments – not required). Vertical axis 

ticks represent one standard deviation, with all series normalised to unit standard deviation after a 5-

yr running mean was applied. Only the top two temperature series, the unadjusted tropical storms of 

all duration and the unadjusted hurricane frequency series have significant linear trends (p = 0.05). 

Note that the adjusted hurricane count is more strongly connected to the difference between MDR SST 

and tropical-mean SST than with MDR SST in itself. These results do not support the hypothesis that 

the warming of the tropical North Atlantic due to anthropogenic greenhouse gas emissions has caused 

Atlantic hurricane frequency to increase. Source: Vecchi and Knutson (2011). 
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The formation of TCs is strongly related to the ocean water temperature. For example, the 2005 North Atlantic hurricane season 

was the stormiest year on record (e.g., Virmani and Weisberg, 2006), featuring 4 Category 5 as part of 15 total hurricanes 

(Figure 3). During that year, sea-surface temperatures (SSTs) in the tropical North Atlantic region critical for hurricanes (10
o to 

20
o
N) were at record highs in the extended summer (June to October), 0.9

o
C above the 1901–70 normal. This positive temperature 

anomaly was attributed mainly to the global rise in SST and thus to global warming (Trenberth and Shea, 2006). However, the 

link between global warming and TC activity has not been that straightforward and Knutson et al. (2010) have summarised the 

state of the science by concluding that the frequency of the most intense TCs will more likely than not increase due to climate 

change in the future, but the global frequency of all lower-intensity TCs will either decrease or remain essentially unchanged in 

response to global warming (Meehl et al. 2007; Walsh et al., 2012). Changes in storminess due to ETCs are even more difficult to 

model because their generation is less obviously linked to factors such as SSTs, and are more likely influenced by complicated 

atmospheric teleconnections (Woolf et al., 2002; Betts et al., 2004; Osborn, 2004; Tsimplis et al., 2005). Accordingly, consensus 

is lacking for predictions in changes in ETC storminess; for example, Lambert and Fyfe (2006) predict a reduction in the total 

number of storm events, an increase in the number of high-intensity events, and no obvious shift in storm tracks associated with 

global warming for the UK, whereas Lowe et al. (2009) predict a southward movement of the storm tracks and a small decrease in 

wave height to the north of the UK and some slight increases in wave height in most southerly regions, as well as a southward 

shift in the storm tracks. 

 

 

3. Factors influencing the impact of individual storms 

 

Barrier response to individual storms is site-specific and complex. It is controlled by multiple factors related to storm track and 

intensity, tidal phase and amplitude, cross-shore and longshore morphology of the coastal tract (interrelated cross-shore sequence 

of coastal morpho-sedimentary sub-units, as defined by Cowell et al. (2003)), sediment supply, barrier volumes (buffers), 

sediment type, vegetation, and even sea ice and groundwater. 

 

The intensity of individual storms is governed by their energy, size, track, and speed of forward motion (Penland et al., 1989). 

Energy controls maximum wind speeds; storm size and speed are linked to duration; and track relative to coastal orientation 

determines whether, where and under which angle a storm makes landfall. For each coastal section, these four elements are the 

principal drivers of waves, currents and surges that are modified by shoreface and nearshore morphology before impacting 

barriers. Other factors aside, large and slow-moving storms have a greater effect than small, rapidly moving storms (e.g., 

Claudino-Sales et al., 2008), landfall position influences erosion intensity (e.g., Claudino-Sales et al., 2010), and shore-

perpendicular impact causes more damage than oblique impact (Wang et al., 2006; Fritz et al., 2007). Interestingly, the swell of 

some hurricanes that do not make landfall can move large volumes of sand to shore, as illustrated by the accretion of many mid-

Atlantic US beaches during Hurricane Felix in 1996 (Zhang et al., 2002). Water levels associated with storm-driven surge and 

runup are highest when the storms coincide with perigean spring tides. Timing is especially important for areas where surge 

amplitudes are relatively small when compared to tidal range (Anthony, 2013). 

 

Shelf width exerts a substantial morphological control over storm-related barrier behaviour. Wind-driven surges superimposed on 

spring tides are more important on coasts fringing wide shelves, whereas storm-wave height has a tendency to dominate over tidal 

effects on coasts with narrow shelves. Closer to shore, shoreface and nearshore morphology modulates storm impact in different 

ways, as summarised by Anthony (2013). Firstly, ridges and other highs (such as ebb-tidal deltas, longshore bars) reduce the 

shoreward transfer of wave energy by spatially and temporally variable storm-wave refraction and diffraction (e.g., O'Reilly and 

Guza, 1993); and secondly, ridges and bars may weld to shore and thus act as a sediment source. Intricate morphologies result in 

complex coastal storm responses (Regnauld et al., 2004). Accretion is most likely where sediment is plentiful and morphological 

highs are close to shore (Aernouts and Héquette, 2006). Fire Island (New York) is a good example of how inner-shelf geology and 

morphology affect storm-induced barrier response. Here, differences in offshore slope gradients and large-scale bedforms, 

coupled with island orientation, explain measured behavioural differences between the east and west reaches of the barrier island 

(Lentz et al., 2013).  

 

The availability of sediment from offshore and longshore sources cannot be ignored when storm impact is assessed (e.g., Héquette 

and Ruz, 1991), even when recovery is not considered. High sediment supply has a direct bearing on barrier volume and thus on 

short- and long-term resilience. Low sediment supply is a key element in barrier narrowing (Timmons et al., 2010) and may lead 

to beach steepening when storm-generated runup transports mid-beach coarse-grained sediment both toward the beach crest and 

seaward (Orford et al., 2002). Sediment from sources as diverse as coral reefs and ebb-tidal deltas is transported to the subaerial 

barrier not only through the episodic welding of ridges and bars, especially during storms (e.g., Aagaard et al., 2007), but also by 

longshore processes (e.g., Lapinskis, 2005). Temporarily wide intertidal areas become subject to strong winds that further 

redistribute sand-sised material (e.g., Anthony, 2013). During storms, this aeolian reworking process is limited, except when 

associated surges are superimposed on neap tides or spring lows and thus leave part of wide, dissipative beaches dry and exposed 

(Houser, 2009). 

 

Over longer time scales, sediment availability from longshore and cross-shore sources is one of the elements affecting subaerial 

barrier morphology, a key factor when considering storm impact. The most important subaerial morphological aspects are beach 

width and slope, height and continuity of the foredune ridge, width of the primary and secondary dune area, and inlet presence. 

Aside from exposing sand to aeolian transport, wide and gently sloping beaches cause wave dissipation and limit wave runup. 



7 
 

Low-lying barriers are much more vulnerable to overwash and inundation (Dingler and Reiss, 1995) and high, continuous dune 

ridges are the first line of defence for a coastal barrier, especially when vegetated. Even when being eroded by scarping, intact 

frontal dunes or closely spaced primary and secondary dunes prevent overwash and further damage to the barrier (Houser et al., 

2008). Sediment eroded from the dunes will also form a buffer in front of the remaining dunes, providing further protection from 

overtopping and overwash. Barrier resilience and survival during storms is more strongly controlled by dune width than by dune 

height (Claudino-Sales et al., 2010), because wide dunes tend to be more voluminous, requiring more time or higher wave energy 

to erode. Inundation and destruction are, therefore, much more likely along narrow barrier sections, especially when weakly 

rooted incipient dunes dominate. Only the longest-duration storms are capable of lowering and narrowing wide barriers enough to 

be inundated and destroyed (Donnelly, 2007). When frontal dunes of wide barriers are eroded, interior wetlands provide 

accommodation space for perched washover fans flanking secondary dunes, limiting loss of sediment to back-barrier areas 

(Claudino-Sales et al., 2008). In coarse-grained systems, crest accumulation is more likely for wider ridges, which limit erosive 

overwash, than for narrower ones (Donnelly, 2007). Under these conditions, enhanced hydraulic conductivity results in substantial 

swash infiltration, which limits overwash (McCall et al., 2012) and encourages crest deposition. 

 

The grain size and shape of barrier sediment determine how much force is needed to mobilise sediment. They are also linked to 

beach permeability and slope. During storms, the high permeability and bed roughness of coarse-grained beaches contribute 

strongly to wave dissipation, but their steep slopes are conducive to higher ratios between runup R and offshore wave height H 

(typically R/H >1 for gravel) than the gentler slopes of sandy beaches (typically R/H < 1). Generally, the presence of gravel 

constrains barrier-crest elevation and makes it harder for water to overwash and erode the crests (Bradbury and Powell, 1993; 

Orford et al., 2002). The characteristics of material underlying barriers are also important. Erosion of muddy deposits may 

undermine and destabilise overlying beaches and barriers, whereas barriers fronted by coarse sediment are marked by added 

stability (Shaw et al., 1993). Models show that poorly compacted sediment in deltaic areas leads to barrier sinking and may thus 

amplify storm impact (Rosati et al., 2010). 

 

Through its stabilizing effects, vegetation contributes to the resilience of barriers during storms. Both vegetation density and type 

should be considered. Marram grass, for example, reduces erosion and assists in dune recovery (Godfrey et al., 1979; Wolner et al., 

2013), helping to maintain and restore high dunes and limiting overwash to only severe storms. Cordgrass, on the other hand, 

occupies frequently activated overwash channels and flats (Hosier and Cleary, 1977; Godfrey et al., 1979). It is able to regenerate 

through thick washovers (Ehrenfeld, 1990), resulting in stabilization, but deters dune building (Godfrey and Godfrey, 1976; 

Stallins, 2005). Densely wooded dune fields are more resistant to erosion than dunes vegetated with grass (Claudino-Sales et al., 

2008). Behind or in front of barriers, dense mangrove swamps dissipate overwash energy more effectively than salt marshes 

(Wang and Horwitz, 2007). 

 

4. Hydrodynamic processes during storms 

 

The two main elements in barrier response to storms are pre-storm state, as determined by various short- and long-term factors, 

and hydrodynamic processes. The latter include storm surges, wave conditions, and near-coastal currents. Their absolute values do 

not necessarily matter, as these are site-specific, but what counts is the deviation from fair-weather values. 

 

4.1 Storm surge  

 

Storms are characterised by strong winds and low atmospheric pressure, and these generate a positive storm surge, defined as the 

difference between the recorded water level and that predicted by the astronomical tide (the term ‘skew surge’ is used for the 

difference between the maximum water level recorded during a tidal cycle and the high-tide level). Surge-generating forces 

include the static effects of atmospheric pressure acting upon the sea surface, the tractive force of winds setting water in motion, 

and dynamic effects that impinge upon these forces by virtue of the speed of the cyclone system (Betts et al., 2004). Further 

controls on the resulting storm surge are the coastal and shelf configurations. Shoreline indentations, especially funnel-shaped 

bays and basins, amplify open-ocean storm surges, whilst promontories suppress their development (Figure 4). Paradoxically, the 

shelf conditions that favour high storm surges tend to attenuate the contribution of waves, and the shelf conditions that act to 

attenuate storm surges allow a larger contribution of waves (Walsh et al., 2012). Wide and gently sloping continental shelves are 

the most conducive to high storm surges. 

 

4.2 Surf zone hydrodynamics 

 

The principal effect of storm winds is the generation of high waves, commonly with long periods. In the open ocean, significant 

wave heights exceeding 10 m are not uncommon during the most severe storms. Such wave heights may even be experienced 

directly along rocky coastlines, as testified by the existence and regular modification (at least once every few years) of cliff-top 

mega-clast deposits on islands along the exposed Atlantic coastline of Ireland (Hall et al., 2006), Scotland (Hall, 2011) and 

Brittany (Fichaut and Suanez, 2011). Because of friction and refraction, storm waves lose much of their energy traversing the 

inner continental shelf and shoreface (Figure 5). By the time storm waves close in on coastal barriers and break over sandy and 

gravelly substrates, they very rarely exceed 8 m. Storms affect other wave and surf-zone parameters as well. Table 1 lists values 

for a number of these variables, comparing storm-associated, moderately energetic and calm conditions. 
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Figure 4 – Magnitude of a 1-in-50-year storm surge around Great Britain and Ireland. Source: 

Flather (1987). 

 

7  

Figure 5 –Predicted significant wave height Hs for 100-year recurrence interval ETC for coastal North 

Carolina and Virginia (upper panel). Comparison between offshore and nearshore wave conditions off 

the coast of North Carolina over a 2-day period in August 2009, when Hurricane Bill passed the area 

without making landfall (lower panel; for location, see inset in upper panel). Before the storm arrived, 

shoaling resulted in a landward increase in wave height, whereas during the storm, energy dissipation 

by bed friction and refraction caused a landward decrease in wave height. Source: Forte et al. (2012) 

(upper panel); Hanson et al. (2009) (lower panel). Plotted on GoogleEarth map. 
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Table 1 – Typical beach, wave and surf-zone parameters for calm, energetic and extremely energetic wave conditions. 

 

Parameter Calm wave 

conditions 

Energetic wave 

conditions 

Extreme storm 

conditions 

Beach boundary conditions    

Beach gradient tan (-) 0.06 0.04 0.02 

Sediment size D50 (m) 0.004 0.003 0.002 

Sediment-fall velocity ws (m s
-1

) 0.05 0.04 0.03 

Wave-forcing parameters    

Breaking-wave height Hs (m) 0.5 2 8 

Wave period T (s) 6 8 10 

Breaking-wave angle  (
o
) 10 10 10 

Morphodynamic indices    

Wave length (m) 

2

2gT
Lo   

56.18 99.87 156.05 

Surf similarity parameter (-) 

ob

b
LH




tan
  

Battjes (1974) 

0.64 0.28 0.09 

Surf scaling parameter (-) 




2tano

b
b

L

H
  

Guza and Inman (1975) 

7.76 39.30 402.43 

Dimensionless fall velocity (-) 

Tw

H

s

b  

Wright and Short (1984) 

1.67 6.25 26.67 

Wave runup    

Wave setup (m) 

 ooLH tan35.01.1  

Stockdon et al. (2006) 

0.12 0.22 0.27 

Maximum vertical swash excursion (m) 

  
2

004.0tan563.0
1.1

2 


oo LH
S  

Stockdon et al. (2006) 

0.23 0.54 1.26 

Maximum runup (m) 

SR   

Stockdon et al. (2006) 

0.35 0.76 1.54 

Nearshore currents and sediment transport    

Longshore current velocity (m s
-1

) 

bbbl gHv  cossin17.1  

Komar and Inman (1970) 

0.44 0.89 1.77 

Mean bed return flow velocity (m s
-1

) 

bHu 16.0  

Masselink and Black (1995) 

0.11 0.23 0.45 

Littoral drift (kg s
-1

) 

  6.0225.0

50

75.05.1 2sintan82.3 bbpl HDTQ    

Kamphuis (1991) 

3.55 69.42 1021.38 

 

Individual waves will break in water depths 1.2–1.5 times greater than the height at the moment of breaking. Thus, waves higher 

than 8 m will typically start breaking far offshore (> 1 km). Waves may break intermittently over multiple nearshore bars or 

persistently as they propagate across the surf zone. The dissipative characteristics of surf zones can be parameterised by the 



10 
 

Iribarren number , the surf scaling parameter  and the dimensional fall velocity  (Battjes, 1974; Guza and Inman, 1975; Wright 

and Short, 1984; Table 1). By the time the incident waves reach the actual shoreline, almost all of their energy will have been lost 

by breaking. A significant part of the energy will have been transferred to lower-frequency infragravity waves, which have periods 

of 25 to 100 s. In contrast to incident wave energy, infragravity-wave energy increases towards the shore and dominates the water 

motion in the inner surf and swash zones (Guza and Thornton, 1982) (Figure 6). 

 

In addition to oscillatory wave and swash motions, mean nearshore currents (longshore currents and offshore-directed undertow 

currents) are also predicted to be strong under energetic wave conditions, O(1–2 m s
-1

) and O(0.5 m s
-1

), respectively (Table 1). 

The generation and dynamics of these currents are generally well understood (e.g., Garcez Faria et al., 1998, 2000); however, with 

the exception of Senechal et al. (2011a), all previous field measurements of nearshore currents were conducted when wave heights 

were less than 4 m.  

 

 

Figure 6 – Time series (5 minutes) of water depth h and cross-shore current velocity u recorded in the 

inner surf zone of a sandy beach during an extreme storm, with offshore significant wave height Hs of 8 

m and significant wave period Ts of 12 s. The dashed line denotes the original time series and the thick 

solid line represents the lowpass-filtered time series using a 30-s filter. Note that the dominant time 

scale of the wave motion is 1–2 minutes, but that the incident waves are still discernible. Data were 

collected around 08:30 on 11 March 2008 at Truc Vert beach in France. Source: data from Ruessink 

(2010). 

 

Wave runup is a key hydrodynamic parameter affecting coastal flooding and erosion, and is a function of the quasi-steady wave 

setup and the vertical extent of the fluctuating swash motion. The vertical runup excursion R can be predicted with some 

confidence by the equations presented by Stockdon et al. (2006) (Table 1), but the formulations have not been validated for 

extreme wave conditions (Hs > 3 m). A recent field study by Senechal et al. (2011b) found a maximum, infragravity-dominated 

vertical swash motion of 2–2.5 m over a range of offshore wave conditions (Hs = 4–7 m), suggesting that under very energetic 

wave conditions even the infragravity swash motion is saturated (cf. Ruessink et al., 1998) and does not increase with additional 

intensification of wave forcing. Jointly, wave runup, astronomical tide and storm surge determine the maximum water level 

reached during a storm. As storm surges tend to climax on rising tides (Idier et al., 2012), peak water levels will be somewhat 

lower in practice than their maximum theoretical values for spring high tides. Maximum storm runup, so including tide and storm 

surge, can be derived from field observations of storm deposits and storm damage. Longshore variation in maximum wave runup 

shows clear large-scale patterns due to coastal orientation and topography, as illustrated for Hurricanes Camille (1996) and 

Katrina (2003) (Figure 7), and small-scale patterns due to nearshore morphology, as illustrated for a 2009 Northeast storm 

(Figure 8). 
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Figure 7 – Hurricane Katrina (2005; Category 3 at landfall) and Hurricane Camille (1969; Category 

5 at landfall) storm-tide profiles. Hurricane Katrina storm-tide heights were determined from a wide 

variety of high-water marks left by the storm tide, which provide a record of the maximum runup, 

rather than the maximum difference between measured and predicted water level. Source: Fritz et al. 

(2007). 

.  

 

Figure 8 – Runup along an 8-km-long stretch of the North Carolina coastline showing small-scale 

variability caused by nearshore morphology. Source: Brodie and McNinch (2009). 
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4.3 Sediment fluxes and budgets 

 

Barrier response to storms involves both internal sediment redistribution and sediment exchange with adjacent environments in 

the coastal tract. Sand and gravel fluxes between barrier and back-barrier areas are mostly cross-shore and unidirectional, 

dominated by overwash of subaerial sediment to various protected intertidal and subaqueous environments. Where eroded 

subaerial sediment is deposited directly landward of the barrier, it remains part of the barrier and total mass is preserved despite an 

overall landward shift. Where overwashed sediment is transported into deeper water, it may be lost either temporarily or 

permanently (Donnelly et al., 2006). Sediment exchange with the nearshore, shoreface and inner shelf is more complicated, with 

bidirectional cross-shore and longshore components. In these subaqueous environments, highly energetic waves and strong 

nearshore currents have considerable sediment-transport capacity (Table 1). 

 

The littoral drift rate under extremely energetic conditions computed using the Kamphuis (1991) equation is 2–3 and 1–2 orders of 

magnitude larger than under calm and moderately energetic conditions, respectively (application of other littoral drift equations 

would yield a similar outcome). This disproportionate increase (in relation to the actual wave height) is the combined result of 

enhanced wave stirring (and sediment resuspension), stronger longshore currents (and sediment advection) and a wider surf zone. 

Such a strong increase in sediment-transport potential also applies to cross-shore sediment fluxes; however, cross-shore sediment 

fluxes in the surf zone are made up of different components acting in opposing directions. For example, Conley and Beach (2003) 

found that while the mean component of storm-driven cross-shore sediment transport throughout the water column and across the 

surf zone was in the offshore direction because of the bed return flow, the incident wave-coherent component was onshore-

directed (cf. Aagaard et al., 2012). The infragravity component, while exhibiting a definite offshore bias, was found to be 

negligible.  

 

During ‘normal’ storms, sediments eroded from sandy beaches and dunes will remain in the nearshore zone and will not move 

much beyond the outer surf zone. In the reverse direction, little sediment is expected to be moved landward from the lower 

shoreface and inner shelf, as steady currents beyond the surf zone are unlikely to play a great part in redistributing all but the 

finest sediments. Shoaling waves, on the other hand, may induce onshore sediment transport; indeed, wave skewness is considered 

an essential process in the generation of nearshore bar morphology (Russell and Huntley, 1999; Marino-Tapia et al., 2007a, b). 

During extreme storms, the sediment budget of the combined beach and surf zone is no longer closed. Owing to an exceptionally 

widened surf zone, the bed return flow is able to transport sediments seaward to great depths, well beyond the ‘normal’ outer surf 

zone. The combination of extremely large waves, commonly with long periods, storm-surge ebb, and strong, wind-driven 

upwelling and downwelling currents creates sediment fluxes that extend well onto the inner continental shelf (e.g., Goff et al., 

2010). Mega-rips are another important cross-shore cause of sediment transport far beyond the surf zone (Loureiro et al., 2012). 

They generate offshore-directed flows that can reach velocities up to 3 m·s
-1

 (Coutts-Smith, 2004) and are capable of transporting 

significant quantities of sediment all the way to the inner shelf (Short, 1985). Strong alongshore currents and sediment transport at 

great depth, finally, may cause lateral sediment exchange between adjacent coastal cells that cannot be reversed under non-storm 

conditions (List et al., 1991; Keen and Slingerland, 1993). The spatial changes in longshore transport cells that partly govern this 

sediment exchange are temporary and last only as long as the storm (Forbes et al., 2004). Permanent sediment loss of barriers is 

thought to occur when sand from dune, beach, nearshore zone and shoreface is transported so far offshore or alongshore that a 

return to the impacted coastal section is precluded or at least prolonged (e.g., Héquette and Hill, 1995). Thin active layers on many 

eroding shorefaces, as well as extensive sediment transport measurements, suggest that net sand loss from beach to shoreface is 

unlikely in many areas (Forbes et al., 2004; Ruggiero et al., 2010). Even the offshore redistribution of US Gulf Coast barrier 

sediments, as evident from extensive storm layers observed on the inner shelf following major storms (e.g., Hayes, 1967), may be 

temporary. 

 

There are indications that onshore sediment transport may dominate during certain extreme storms, owing to upwelling currents. 

The Louisiana chenier plain, for example, is nourished by coarse sediment that is transported to shore during storms (McBride et 

al., 2007). On the Atlantic coast of the US, southwest storms commonly generate onshore-directed sediment transport (Wright et 

al., 1994; Hill et al., 2004) (Figure 9). In storms from other directions, a change from downwelling conditions to onshore sediment 

transport during the waning stage is no exception. Even when storm waves do not transport sediment all the way to the coast, 

deposition in shallow water leaves sand and gravel within reach of fair-weather transport processes (Xhardé et al., 2011).  
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Figure 9 – Influence of different storm types on sediment transport toward and away from the Saco 

Bay barrier system in Maine, USA (Hill et al., 2004). From left to right, Northeast storm, Frontal 

passage and Southwest storm. Depending on storm characteristics, there may be either net onshore or 

net offshore transport. Onshore transport occurs when downwelling abates during the waning stages 

of storms. Dashed and solid lines represent surface- and bottom-current direction, respectively. 

Source: Van Heteren (2014). 

 

5. Barrier response to storm-generated hydrodynamic processes 

 

The multitude of factors and hydrodynamic processes influencing and acting on beaches and barriers results in highly variable 

morphological responses, both spatially and temporally. No single wind, wave or tidal parameter dominates storm-driven beach 

and barrier behaviour at all locations, and not even storm intensity is directly correlated to storm damage. The relative and 

absolute contributions of each process are determined by the local morphological, sedimentological, biological and hydrodynamic 

boundary conditions, and by changes in these conditions during the extreme event. Although erosion is the rule, deposition occurs 

as well, particularly during the waning phase of storms. Whether erosional or depositional, changes brought about by storms affect 

the entire coastal tract. Sediment is entrained on the shoreface, nearshore profiles are adjusted, beaches and barriers erode and 

accrete, inlets change and back-barrier areas deepen or shallow (cf. Forbes et al., 2004). Storm response is generally considered in 

a two-dimensional sense, linked to cross-shore hydrodynamics and sediment transport processes. An along-coast variability in 

these cross-shore processes, and hence in the morphological response, is increasingly acknowledged, however.  

 

5.1 Storm-Impact Scale model and the role of freeboard 

 

A very useful conceptual framework for considering the response of sandy beaches and barriers to storms is the Storm Impact 

Scale (SIS) model proposed by Sallenger (2000). The SIS model defines four storm-impact regimes, and explicitly couples 

hydrodynamic forcing and beach morphology by examining the relationship between the elevation of extreme water levels (Rlow 

and Rhigh) and relevant beach morphology (Dlow and Dhigh) (Figure 10). A similar framework for gravel barriers was presented by 

Orford et al. (2003), who proposed the term ‘freeboard’ to describe the difference in height between the elevation of the barrier 

crest and the maximum runup level. Positive freeboard occurs when the wave runup does not reach the barrier crest, whereas 

negative freeboard occurs when runup exceeds the barrier crest. 

 

 

Figure 10 – Definition sketch of the Storm Impact Scale (SIS) model of Sallenger (2000), illustrating 

Rlow, Rhigh, Dlow and Dhigh. Parameters R2 and <>represent maximum wave runup and setup, 

respectively (see Table 1). Source: Stockdon et al. (2007). 
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In the SIS model, the mean water level during the storm, Rlow, is defined as the sum of storm surge, astronomical tide and wave 

setup (note that this formulation proposed by Stockdon et al. (2007) differs slightly from that of Sallenger (2000), who defined 

Rlow using the elevation of the seaward limit of swash, which is rather difficult to quantify). The highest elevation of the landward 

margin of swash, the runup limit, is denoted by Rhigh. This measure includes the combined effects of astronomical tides, storm 

surge and the 2% exceedance level for vertical wave runup, including both setup and swash. The elevation of the first line of 

defence of a beach against storm waves (i.e., beach berm or dune crest) is denoted by Dhigh, and the elevation of the toe of the 

dune is indicated by Dlow. When a dune is not present, Dlow is not defined. 

 

By considering how Rhigh and Rlow vary with respect to Dhigh and Dlow, four impact regimes are defined (Sallenger, 2000): 

 Rhigh > Dlow – Within the swash regime, wave runup is confined to the foreshore, and sand eroded during storms is 

generally moved offshore.  

 Dhigh > Rhigh > Dlow – The collision regime comes into force when the maximum water level exceeds the base of the dune, 

but is not higher than the top of the dune. Here, runup collides with the dune causing erosion that may be more long-

lasting than foreshore erosion. 

 Rhigh > Dhigh – Overwash occurs when the maximum water level exceeds the height of the dune or the berm. Within this 

regime, sand is transported landward and not readily returned to the seaward side of the island. 

 Rlow >Dhigh – Inundation is the final and most extreme regime and occurs when the beach and dunes are completely and 

continually under water.  

Since its introduction, the SIS model has been widely used in the USA (see http://coastal.er.usgs.gov/hurricanes/impact-scale/) 

and has been found to explain along-coast variability in barrier response to hurricanes very well (e.g., Stockdon et al., 2007). 

Coupled to hydrodynamic predictors and LiDAR-derived barrier morphology, the SIS model is also a powerful tool for predicting 

hurricane impacts (Stockdon et al., 2009).  

 

In further elaborations on the various types of barrier response, a distinction is made between the short-term impact of single 

storms under various impact regimes and the long-term effect of multiple storms and fair-weather periods on overall barrier 

development. 

 

5.2 Swash regime 

 

Subaerial beach erosion, berm destruction, nearshore bar formation and offshore bar migration are well-established consequences 

of high-energy wave action (e.g., Komar, 1998). The response of a beach to storm-wave conditions is not simply a function of 

wave energy; rather, it very much depends on the degree of disequilibrium that is represented by the storm-related hydrodynamic 

conditions. For example, beaches that are attuned to high-energy wave conditions may be relatively insensitive to all but the most 

extreme storm waves (Cooper et al., 2004). Therefore, antecedent wave conditions are highly significant, and the beach response 

to the first storm of the season is likely to be more pronounced than changes caused by subsequent events (e.g., Coco et al., 

submitted). There are exceptions to this rule and Castelle et al. (2007) documented offshore migration of the outer bar during a 

first major storm, leaving the beach relatively unprotected and causing disproportional beach erosion during subsequent storms of 

less intensity. The actual beach morphology is important as well. Qi et al. (2010) convincingly demonstrated that beach-gradient 

change decreases with beach gradient (Figure 11) (cf. Rangel-Buitrago and Anfuso, 2011), supporting the long-held notion that 

flatter beach types are more stable than steep beach types (Wright and Short, 1984). A similar result was obtained by Aagaard et al. 

(2005) who found that gently sloping shoreline salients (mega-cusps) were highly stable and displayed only minor slope 

adjustments through a storm period, whereas steeply sloping embayments were eroded significantly.  

 

 

Figure 11 – Mean storm-induced profile change MPC (summation of all absolute beach-level changes 

over the entire active profile) as a function of the beach gradient tan for eight different beaches and 

six tropical storms in the South China Sea. Source: Qi et al. (2010). 

http://coastal.er.usgs.gov/hurricanes/impact-scale/
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The behaviour of nearshore bars, characteristic of intermediate beach types (Wright and Short, 1984), under storm-wave 

conditions has been elucidated during the last two decades through the availability of long-term daily video monitoring data that 

uses breaker patterns as proxies for nearshore-bar morphology (Holman and Stanley, 2007). Bars typically move offshore during 

storms and onshore under calm waves (Thornton et al., 1996; Gallagher et al., 1998), in an attempt to move towards a new 

equilibrium position controlled by the wave breakpoint (Sallenger et al., 1985; Plant et al., 2001, 2006; Hoefel and Elgar, 2003; 

Splinter et al., 2011). Larger and smaller bedforms may also contribute sediment to the beach during storms. Anthony (2013) 

reported on the episodic welding of tidal-ridges and large subaqueous dunes to shore. It is important in this context to make a 

distinction between the short-term response of nearshore bars to energetic events (storms) or energetic periods (winter) and the 

long-term bar behaviour (years), which can be characterised by persistent onshore (Aagaard et al., 2007) or offshore (Ruessink et 

al., 2003) migration. Changes in the wave forcing also affect the alongshore rhythmicity of the nearshore bar morphology and it 

has been alleged that bars become increasingly two-dimensional during storm conditions (Short, 1978; Lippmann and Holman, 

1990; Ranasinghe et al., 2004; Armaroli and Ciavola, 2010). An excellent example of this phenomenon is provided in Figure 12, 

which shows the straightening of a highly crescentic bar system next to a sandy beach as a result of a six-week period of high-

energy wave action (Senechal et al., 2011a; Coco et al., submitted). However, Price and Ruessink (2011) demonstrated that, at 

least for their double-barred site on the Australian Gold Coast, increased (decreased) two-dimensionality is not necessarily related 

to increased (decreased) wave energy, but more likely linked to stronger (weaker) longshore currents. Rhythmic bar morphology 

is modified by energetic wave conditions, but can itself modulate the shoreline response through morphodynamic feedback. 

 

 
 

Figure 12 – Response of the inter- and subtidal bar system of Truc Vert beach on the French Atlantic 

coast to a one-month period of persistently high waves (Hs > 3 m), including an extreme storm with 

maximum Hs of 8.1 m. The left two panels show the digital elevation model (DEM) for 11/02/2008 and 

04/04/2008, respectively, and the right panel shows the morphological change over this period. The 

solid black line in the plots represents the MSL contour. During the survey period, the subtidal 

crescentic bar system underwent significant straightening and offshore migration, and the maximum 

bed-level change was 5 m. Remarkably, the upper intertidal and subaerial beach underwent only minor 

morphological change and the dunes were not affected at all. This is attributed to the minimal storm 

surge (< 1 m) and the extreme dissipative surf zone conditions during the height of the storm. Source: 

Coco et al. (submitted). 

 

Beach-ridge construction and storm conditions have most clearly been linked in the rapidly rising and falling Caspian Sea; here, 

only storm surges can mobilise sufficient coarse-grained sediment to create low barriers or move and rework them in a landward 

direction (Kroonenberg et al., 2000). It is thought that ridges are generally the cumulative result of swell-related runup, resulting 

from far-away storms that never made landfall (cf. McBride et al., 2007), ultimately nourished by gradual onshore transport of 
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inner-shelf sediment during storms. Once established, ridges build vertically by crest accretion in a process that increases barrier 

elevation, but not necessarily its volume. Crest elevation is limited by the maximum wave runup (Orford and Carter, 1982). 

Storm-induced foredune accretion is much less common and involves far smaller sediment volumes. It results primarily from 

sediment redistribution within the subaerial barrier and takes place when water levels are low enough to expose part of the beach 

to the wind. Such conditions are most common when surges are either low or coincident with low or neap tides, or during a 

storm’s waning phase. On the one hand, storm winds may transport surface sediment from beach to frontal dune (Łabuz, 2005); 

on the other hand, scarp excavation in the backshore may liberate sediment for aeolian transport (Lindhorst et al., 2010). 

 

5.3 Collision regime 

 

Several processes and parameters contribute to beach lowering and frontal-dune scarping, the main barrier-response types in the 

collision regime. Beach lowering is driven by breaking waves and bed return flow as these surf zone processes temporarily replace 

swash during storm conditions (Masselink and Puleo, 2006). Dune scarping is governed by direct wave impact, most influential at 

the dune foot, and by swash runup (upper panels in Figure 13), which erodes and saturates surficial layers higher up the dune. It 

occurs as long as storm-related runup does not overtop and erode the dune crest. Although scarping is most common on the sea 

side of barriers, it also affects secondary dunes bordering long and wide open-water back-barrier areas, such as Santa Rosa Sound 

in Florida (Pries et al., 2008). 

 

 

Figure 13 – Swash, collision and overwash regimes along the Dutch coast near Bergen aan Zee. The 

upper photos show the swash collision transition, with air escaping from unsaturated beach sand that 

has just become submerged as water reaches the dune foot. The middle photos illustrate how slumping 

takes place as a result of the saturation of basal dune sand as water reaches the dune foot in the 

collision regime, leaving a dry scarp surface (cf. Palmsten and Holman, 2011). The lower photos show 

overwash from longshore (left) and cross-shore (right) perspectives. All photos by Marcel Bakker. 

 

In determining degree and rate of dune scarping, effects of storm-related parameters (wave height, storm-tide level, duration, wind 

variability) are overprinted to varying degrees by foredune profile (including height and dune-foot elevation), beach profile (width 

and steepness), rate of sediment supply, grain-size distribution, sediment consolidation and vegetation (Van de Graaff, 1986; 1994; 

Saye et al., 2005; Esteves et al., 2012). When operating in isolation, hydrodynamic drivers show a direct relationship with the 

extent of scarping, which also increases with steepening beach and dune profiles, diminishing sediment supply, and decreasing 

grain size, consolidation and vegetation density (cf. Pye and Blott, 2008). Because of feedback mechanisms and interaction 

between forcing factors, actual relationships are less clear. Rapid initial scarping of high foredunes, for example, may raise the 

backshore, thus reducing wave impact as a storm progresses (i.e., negative feedback). In governing in-situ pressure and flow 

velocity, wave impact is also more influential on micro- and mesotidal than on macrotidal coasts, where tidal phase is the 

dominant component of storm tide, rather than surge or wave height (Esteves et al., 2012). 

 

Scarping can take place through sliding and flowing, layer separation, or notching and slumping (Nishi and Kraus, 1996). These 

processes occur when the resisting strength of dune sediment is exceeded by destabilising forces along failure planes. Sliding and 

flowing are limited to gently-sloping dune fronts. Modest wave impact and swash force steepen the foredune slope by eroding 
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surficial sediment near the dune base. In layer separation, cracks developing in steep, destabilised dune faces gradually separate an 

up to 0.5-m-thick layer from the dune core. This layer may either collapse or tilt forward. Notching and slumping affect steep 

dune faces held together by roots, soil moisture or interstitial cementation (cf. Carter et al., 1990). As wave-cut notches expand, 

the overlying sand slumps down in blocks that commonly remain partly intact. Sand thus removed from the continuous foredunes 

is commonly stored temporarily on the beach and in the nearshore zone.  

 

Swash water infiltrating the dune face horizontally, either by suction through capillary action or as a result of direct impact, is a 

strong and rapid destabiliser (Palmsten and Holman, 2011). As it saturates the sand, the weight of the water increases the 

overburden and entire blocks of sediment held together by moisture-related cohesion slump down. When storm tides are high 

enough to both undercut and permeate dune sand, infiltration-governed destabilisation may also take place where steep dune 

fronts limit swash (Pye and Blott, 2008) (middle panels in Figure 13). The minimum storm-tide level required for this process 

depends on the seasonally changing elevation of the backshore and the dune foot (Esteves et al., 2012). 

 

5.4 Overwash regime 

 

The same processes and parameters that govern barrier behaviour in the collision regime are also strongly influential in the 

overwash regime, with a prominent role for beach-ridge and foredune profiles. Longshore variability in these profiles is an 

important element in determining the freeboard or overwash potential, which are defined as the difference between wave runup 

and crest elevation (Matias et al., 2012). The transition between the collision and overwash regimes is marked by overtopping. 

Where maximum water levels exceed the lowest crestal sections by only a few decimetres and where crestal width is large, 

overtopping is limited in extent and frequency. At these vulnerable sites, runup-governed accumulation overwash raises the barrier 

crest, steepens the upper beach (Donnelly, 2007; Matias et al., 2012), and at least temporarily reduces the likelihood of further 

overtopping. Dissipative forces, including infiltration, cause the deposition of locally derived sediment (eroded from dune front, 

beach and nearshore) on the crest or directly behind it. In coarse-grained barriers, sediment may even be deposited in an incipient 

or reactivated throat, creating a temporary plug before a further rise in water level allows larger waves to erode it (Carter and 

Orford, 1981). Sediment deposited on the backside of higher ridges may be redistributed by avalanching, particularly where back-

barrier water levels are high (Matias et al., 2012). 

 

Temporary accumulation overwash is most likely during short-lived, moderate storms. Long and severe storms have more time 

and energy to narrow and lower frontal dunes, and are thus more likely to result in full overwash conditions (Donnelly et al., 

2006). Discrete overwash is a moderate-magnitude event set into motion when runup of most waves exceeds the barrier crest by at 

least a few decimetres, resulting in local overflow and a commensurate halt to dune scarping. Once the frequency of overtopping 

increases, incipient barrier-crest erosion and breaching trigger a rapid intensification of the overwash process and an overall 

flattening of the beach. These processes are more strongly correlated to storm duration and surge level than to wave height 

(Donnelly, 2007). When enough storm water exceeds the lowest areas of a beach or foredune ridge backed by a lower interdune or 

back-barrier area, it funnels through these commonly narrow gaps (lower panels in Figure 13). Here, velocities exceed 2 m s
-1

 

(Donnelly et al., 2006), a function of the steep water gradient between the sea and the flooded lows together with the strong flow 

constriction (e.g., Suter et al., 1982). Swash reflection from the dunes next to a gap also contributes to accelerated flow, and to 

turbulence that results in further deepening of the throat (Carter and Orford, 1981). Friction and percolation on the backside of 

throats are instrumental in the deposition of washover fans by sediment-laden water that is no longer constrained. Most of the 

overwashed sediment remains on the barrier, which slows the water before it reaches too far into the back-barrier area. Barrier 

width and vegetation-related friction play a role (Donnelly et al., 2006). 

 

 

Figure 14 –Response of Dauphin Island, Alabama, in the Gulf of Mexico to Hurricane Katrina in 2005. Upper-left 

panel shows post-storm difference grid obtained using LiDAR representing the period September 2004 to September 

2005 and lower-left panel shows vertical photograph of the same region. Right panel shows oblique photograph of 

the west end of the Dauphin Island after Hurricane Katrina. Note the erosion of the front of the beach and the crest 
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of the barrier and the destruction of many houses (red squares), and the deposition of extensive washovers and the 

development of a washover terrace (at the eastern end) at the back of the barrier and in the Gulf of Mexico. Source: 

http://coastal.er.usgs.gov/hurricanes/katrina/lidar/dauphin-island.html. 

 

During the initial storm stages, the constricted, rapidly flowing water may not cause much erosion outside overwash throats. As 

the water level continues to rise, however, and cross-sectional volumes thus increase, breaches are commonly widened (e.g., 

Houser et al., 2008; Pries et al., 2008). Adjacent breaches may create fans that merge to form washover terraces (Figure 14). 

Deceleration of overwash currents, mostly during the waning phase of a storm, results in loss of transporting capacity and 

associated sand deposition in the throat (Fisher et al., 1974). In general, minor lows are more likely to be deepened, whereas more 

prominent lows may grow sideways rather than vertically, which may reduce the overall variability of dune-crest elevation 

(Houser, 2013). 

 

  

http://coastal.er.usgs.gov/hurricanes/katrina/lidar/dauphin-island.html
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5.5 Inundation regime 

 

Sluicing or inundation overwash, the main process associated with the inundation regime, is a high-magnitude event initiated 

when mean water level exceeds the barrier crest over extensive distances, either because of extreme water levels or because the 

impacted beach ridges or barriers are low. Full barrier inundation is more common for sandy barriers than for coarse-grained 

beach ridges and barriers (Orford et al., 2003). When the storm surge is sufficiently high to overtop the entire barrier continuously, 

strong currents may erode most of the sand and transport it so far beyond the subaerial barrier that it is no longer part of the barrier 

lithosome (Sallenger et al., 2007). As the sea and the back-barrier area become fully coupled, the gradient between the two 

determines the flow conditions and thus the transported sediment volumes (Donnelly et al., 2006). 

 

Storm-pass and inlet formation result when gaps deepened and widened by overwash fully connect to open-water back-barrier 

areas, most commonly where barriers are narrow and low. Storm passes become inactive as soon as storm waters recede, whereas 

inlets keep exchanging water at least for some time during subsequent fair-weather ebb and flood. Where storms have shore-

normal and right-oblique tracks in the northern hemisphere, storm passes are initiated from the seaward side. Storms with left-

oblique tracks are more likely to initiate storm passes from the back-barrier side (Penland and Suter, 1984). Storm passes or inlets 

formed during ebb flow are triggered by elevated water levels in back-barrier areas, a mechanism already noticed by Hite (1924) 

almost a century ago, with drainage forced by offshore winds. Once formed, inlets may be widened by strengthening tidal currents 

(Orford et al., 2003), generated in part by tidal-prism increases related to back-barrier widening and deepening (Fritz et al., 2007). 

Barrier erosion by storm-generated temporary and permanent inlets affects more than half of the US East Coast (Zhang et al., 

2002). Shinnecock Inlet on Long Island, formed during the 1938 Hurricane, is an example of a permanent inlet that evolved 

rapidly from an initially small breach (cf. Buynevich and Donnelly, 2006). Nearby, the same storm produced ten other breaches 

along a 50-km-long stretch of microtidal coastline, but none of those became permanent (Canizares and Irish, 2008). Even during 

storms, there is a limit to the number of simultaneously active inlets. In facilitating the drainage of back-barrier surge water during 

the waning stage of storms, the presence of permanent inlets is known to reduce the likelihood of storm-pass formation by ebb 

flow (Leatherman, 1979). Where new inlets do form, existing ones are commonly closed by longshore and onshore sediment 

transport once tidal prism is reduced to fair-weather values (McBride and Robinson, 2003). Closed inlets are likely to be 

reactivated during subsequent storms, however, because their scars are commonly marked by vulnerable foredune gaps (Suter et 

al., 1982). 

 

The ultimate and most severe morphological consequence of storms is complete barrier disintegration. It can take place from the 

seaward as well as the landward side of low-resilience barriers (e.g., Grzegorzewski et al., 2011), and has recently been 

documented at the Chandeleur Islands in Louisiana. During Hurricane Katrina, the islands became fully submerged, and some 85% 

of the sand stripped from their beaches and dunes was deposited where it could no longer nourish the islands as part of post-storm 

recovery (Sallenger et al., 2007). Thus, an originally 40-km-long sandy island chain was transformed into a discontinuous series 

of muddy marsh islets. On the northern end of Assateague Island, disintegration is prevented only by frequent nourishment with 

sand extracted from the adjacent inlet and associated tidal deltas (Gutierrez et al., 2009). Upon storm-triggered disintegration, a 

barrier may re-form farther landward during subsequent fair-weather periods, as part of a process called overstepping (Forbes et 

al., 1991). Such a new barrier can only be formed when a suitable anchor point and sufficient local sediment are available  

 

5.6 Long-term response 

 

In the long term, storms play an integral part in barrier behaviour. Rollover, barrier narrowing and disintegration are common and 

presently observed changes that are driven primarily by storm impact. The main mechanisms driving rollover are overwash and 

inlet formation (Leatherman, 1985; Lentz et al., 2013), which both helping to maintain barrier width and volume (e.g., Godfrey 

and Godfrey, 1973). At Fire Island, New York, overwash vulnerability and profile retreat by rollover are strongly linked, with 

aeolian processes also playing an important role in landward island migration (Lentz et al., 2013). Long-term rates of barrier 

retrogradation are governed in part by overwash frequency and washover extent (e.g., Dolan and Godfrey, 1973). Barrier 

narrowing, which takes place in the absence of rollover, is a result of extended periods during which collision-regime processes 

are dominant. Narrowed barriers are vulnerable to disintegration once overwash and inundation become increasingly frequent. 

 

6 .Spatial and temporal variability and patterns 

 

Because of differences in short- and long-term influences and hydrodynamic drivers, barrier response is marked by high spatial 

variability. Adjacent gravel barriers in different modes of activity are a most extreme example (Orford et al., 2002). Part of this 

variability appears to be random, reflecting effects from a multitude of controlling factors that may or may not be superimposed 

on a general trend. By necessity, differential behaviour without a clear pattern is usually explained by ad hoc reasoning that may 

have little generic value. Pries et al. (2008), for example, explained an unusual, inverse relationship between erosion of Santa 

Rosa Island in Florida on the one hand and distance from hurricane landfall on the other hand by hypothesising an increase in 

back-barrier storm-surge magnitude away from the landfall location, caused by a narrowing sound. Corroboration of this proposed 

site-specific mechanism by evidence from elsewhere will be difficult. 

 

When single variables dominate storm-related barrier behaviour, it is more likely for recognizable patterns to develop, although 

they may differ strongly between erosion indicators. Some behavioural patterns are simple. Three-dimensional surf zone 

morphology, for example, significantly affects wave-breaking processes and nearshore current patterns. Thornton et al. (2007) 
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demonstrated that dune erosion can preferentially occur opposite rip current embayments, thus creating regularly spaced erosion 

hot spots. For barriers in the northern hemisphere, Savage (1985) noted the prevalence of net erosion on the right of the landfall 

location, where onshore winds are strongest, and the prevalence of net accretion to its left, where offshore winds dominate. 

Longshore rhythmicity in overwash positioning varies in scale from tens of meters on gravel barriers (Orford and Carter, 1982) to 

many kilometers on sand barriers (Dolan and Hayden, 1981). Beach and nearshore morphology and their influence on runup 

height are clearly of influence (Orford et al., 2002), as shown by measurements of the Coastal Lidar and Radar Imaging System 

CLARIS (Brodie and McNinch, 2009; Figure 8). Explanations for these rhythmicities include the presence of beach cusps (Orford 

and Carter, 1984), filtering of wave energy by sand bars (Brodie et al., 2012) and entrapment of standing waves between 

promontories (Dolan and Hayden, 1981). For a cuspate barrier along the Gulf of St. Lawrence, rhythmic erosional hotspots spaced 

100–500 m apart were linked to gaps in the longshore-bar system, and larger-scale variability was related to relaxation time in 

response to storm events (Xhardé et al., 2011). At Santa Rosa Island in Florida, multiple periodicities in coastal response, at scales 

of about 750, 1450 and 4550 m, are reflected in dune height and width, supposedly linked to transverse ridges on the inner shelf, 

cuspate promontories on the landward barrier side, and cross-shore washover extent (Houser et al., 2008).  

 

Positive and negative spatial gradients in storm-related longshore sediment-transport rates cause barrier erosion and accretion, 

respectively, and where such gradients are significant, so will be the change induced by this process. In extreme cases, 

cannibalization will occur, with entire barrier sections disintegrating at the cost of others in response either to temporary, storm-

driven littoral drift reversals (Xhardé et al., 2011), or to positive littoral drift gradients. The adjustment of the beach planform as a 

result of longshore transport gradients is referred to as ‘beach rotation’. Beach rotation resulting from changes in the directional 

wave climate has been well documented over decadal and seasonal time scales (e.g., Masselink and Pattiaratchi, 2001; Harley et 

al., 2011; Thomas et al., 2011; Turki et al., 2013), but can also take place in response to a series of storms. Alegria-Arzaburu and 

Masselink (2010), for example, found opposing longshore energy fluxes and differing beach response depending on storm-wave 

direction for a 5-km-long macrotidal gravel beach on the southwest coast of England. They attributed this pattern to alongshore 

gradients in the longshore sediment flux (Figure 15). The northern end of the beach widened by c. 30 m and the central part of the 

beach receded by c. 40 m over a relatively brief period (a few months), owing to a higher frequency of southerly storms and/or a 

lower frequency of easterly storms over this period. The importance of both cross-shore and longshore sediment-transport 

processes in controlling storm response was further highlighted by Galal and Takewaka (2011), who used LiDAR data to study 

the response of a 53-km-long section of beach on the Japanese main island Honshu to high waves and storm surge. Using SWAN 

wave modelling to estimate wave conditions along the coast during an extreme storm, they found that the distribution of energy 

flux explains the observed erosion pattern quite well: alongshore variability in cross-shore energy flux was responsible for the 

large-scale variability in erosion, whereas gradients in the alongshore energy fluxes caused shorter-scale variability. Finally, 

Archetti and Romagloni (2011) monitored the morphological response of artificial embayments along the northeast coast of Italy 

(Lido di Dante) to NE Bora and SE Sirocco storm waves. They demonstrated that northeast and southeast storms produce 

shoreline rotation in anticlockwise and clockwise directions, respectively, reflecting direction reversals of longshore currents in 

the nearshore. 

 

  

Figure 15 – Alongshore variation in morphological response of a 5-km-long gravel beach in the southwest of 

England to an easterly storm with peak Hs of 4 m, partly attributed to alongshore gradients in the longshore 

sediment flux. Source: Alegria-Arzaburu and Masselink (2010). Base map from GoogleEarth. 

 

When quantifying spatial patterns, it is important to consider information from multiple indicators of barrier behaviour and to be 

aware of measurement error and limitations. A single indicator may show a pattern that can easily be attributed to one dominant 

parameter, but analysis of secondary indicators and consideration of overall uncertainty may shed additional light on storm-related 

erosional and depositional processes. Analysing four consecutive hurricanes battering Florida in 2004, Sallenger et al. (2006) 

noted that observed net volume changes caused by Hurricane Ivan showed a simple reduction in coastal erosion with increasing 

distance from landfall, as expected when local factors are of minor importance. Comparing longshore patterns of the positive and 

negative volume changes, they noted that beach and dune erosion were in fact higher 80–100 km from landfall than anywhere else 

along the coast. Far from landfall, relatively low barriers were subject to massive overwash: erosion of their ocean sides was 

compensated by deposition on their back-barrier sides (Figure 16). Closer to landfall, frontal dunes were higher and eroded 

sediment was likely stored subtidally, in the nearshore and on the shoreface, rather than transported across the barrier. As these 

subtidal environments had not been monitored, the originally observed trend in net volume change was shown to be flawed. 
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Figure 16 – Volume change V calculated from LiDAR data acquired from a section of barrier coast 

in Alabama and northwest Florida, impacted by Hurricane Ivan and located to the right of its landfall 

location. Negative (positive) values represent inter- and supratidal sediment losses (gains) within 50-

m-wide cross-shore sections of coast (grey lines). The net change in sediment volume (gain minus loss) 

is represented by the solid black line. Volume loss and gain typically go together in the same section, 

for example where sand is eroded from the beach and transported landward of the berm or dune where 

it is deposited in washovers. Source: Sallenger et al. (2006). Base map from GoogleEarth. 

 

Like spatial variability, temporal variability concerns individual storms, storm-to-storm differences, and cumulative effects of 

multiple storms and fair-weather periods. During individual storms, barrier response through time is a function of storm phase and 

of changes caused by the storm so far. Common temporal patterns are a shift from downwelling to upwelling conditions, and 

reduced foredune scarping as eroded sediment forms a protective buffer on the backshore. Between-storm differences may be 

more random. The observed rhythmicity in foredune scarping at Wissant Bay in northwestern France is explained by different 

combinations of wave height, spring tide and storm surge (Sedrati and Anthony, 2007). Along the coast of Fire Island, erosion and 

accretion cells migrate seasonally (Lentz et al., 2013) and storm-beach hotspots reverse as a function of storm type (List et al., 

2006). A clear example of temporal variability in barrier response comes from the Gulf of Mexico. Between 1886 and 1993, 28 

hurricanes affected Santa Rosa Island in Florida, but most associated storm tides were insufficiently high to breach its dunes. No 

breaching occurred from 1927 to 1975. From 1995 onward, however, direct or near-direct hits by strong hurricanes have created 

multiple breaches that have not had the time to heal since, with severe damage to the dunes as a result (Pries et al., 2008). 

 

When looking at barrier response over a period of decades, observed behaviour must be considered in light of the monitoring time 

span (Lentz et al., 2013). Changes over 10- and 30-year periods at Fire Island, New York, are almost mirror images (Figure 17), 

reflecting a recent change from recovery-dominated to storm-dominated conditions. The fact that the most substantial landward 

shoreline movement took place where the greatest seaward advance had occurred earlier, illuminates an interesting relationship 

between storm impact, which tends to disrupt shoreline continuity, and recovery, which causes shorelines to regain their 

continuous longshore profile. Although temporal coverage is insufficient to identify the specific effects of stormy and less stormy 

periods, similar patterns for shorter quiescent (1998–2002) and stormy (2002–2008) periods (Lentz and Hapke, 2011) corroborate 

this relationship. Comparison of different barrier-response indicators shows a direct, but spatially variable long-term correlation 

between dune-crest position and shoreline change, and between beach width and subaerial barrier-volume change. Overwash 

potential and dune-crest position and elevation are inversely correlated (Lentz et al., 2013). 

 

 
 

Figure 17 – Alongshore net shoreline movement at Fire Island, New York, for the 30-year period 

1969–1999 and the 10-year period 1999–2009. Positive values denote accretion. The mirrored pattern 

suggests that, given enough time, areas disrupted the most by storms are also marked by the strongest 

recovery. Source: Lentz et al. (2013). Base map from GoogleEarth. 
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7. Thresholds and feedback mechanisms 

 

Temporal variability in barrier response to successive individual storms is often a function of exceeded thresholds and triggered 

feedback mechanisms, resulting in non-linear behaviour. Along the Gulf of Lions in France, moderate storms cause rapid offshore 

migration of nearshore bars and deposition of large sand volumes on the beach, whereas extreme storms overtop and breach the 

barriers, eroding or destroying the dunes (Gervais et al., 2012). Shingle ridges fail suddenly when increasing negative freeboard 

and strengthening waves create a critical state in which the crest is initially overtopped and subsequently eroded down (Bradbury 

and Powell, 1993). It commonly results from a period of negative feedback in which storm-related crest accumulation reduces the 

likelihood of overwash in the short term, but decreasing crest width and a steepening profile render a ridge more vulnerable in the 

long term (Orford et al., 2003). The sensitivity of coarse-grained barriers to negative freeboard was quantified in BARDEX 

experiments by Matias et al. (2012), who observed that once overwash started and crestal lowering was initiated, positive 

feedback resulted in further lowering and ultimate barrier destruction under constant wave characteristics and water level. In both 

sandy and gravelly barriers, rapid rollover occurs after the subaerial zone has narrowed to some critical cross-shore width, as 

observed on Assateague Island, Maryland (Leatherman, 1979). Even initially high and resilient foredunes may become subject to 

crest lowering and inundation overwash, either when they are thinned by long-duration storms or when they are pervasively 

overtopped by runup from the most extreme storms (Pries et al., 2008). When time for recovery is too short, reinforcement of the 

resulting gaps by overwash activity during successive storms is common (Houser, 2013). Eco-morphodynamic processes play an 

essential role in this feedback mechanism. Dune-building grasses provide resistance to erosion and accelerate recovery following 

overwash events. Renewed overwash before the re-establishment of fully vegetated dunes promotes the preferential survival of 

overwash-adapted ‘maintainer’ species like cordgrass. By helping to maintain low and flat areas, they increase the likelihood of 

renewed overwash, potentially initiating large-scale shifts from erosion-resilient to overwash-prone barrier morphologies 

(Godfrey et al., 1979; Wolner et al., 2013). 

 

The counterforces to barrier breakdown are inertia, related to resistance to movement, and volume-related resilience, which is the 

ability to absorb and recover from storm impact. Inertia is most significant in gravel-dominated barriers, where the resistance of 

coarse clasts to sediment-transport slows overall barrier response to such a degree that extreme storms are commonly past their 

peaks before their full potential impacts can be accommodated (Orford et al., 2003). Inertia is also observed in sandy 

environments, where larger and deeper-water bedforms take much longer to adjust to storm-related changes in conditions than 

smaller bedforms nearshore (cf. Stive and De Vriend, 1995). While small-scale bedforms and bars on the inner shoreface may be 

subject to short-term readjustment to varying morphodynamic forcing, the scale of the large dunes (sand waves) on the lower 

shoreface and inner shelf is such that they are likely to integrate adjustments over long timescales. 

 

Resilience is partly a function of barrier-lithosome volume, which determines the amount of sediment that needs to be eroded 

before a critical state is reached, and thus provides a buffering effect. It changes over time and includes an element of post-storm 

recovery through constructional feedback. Neither crest height nor barrier width is an effective vulnerability predictor; parameters 

based on shore-perpendicular cross-sectional area, such as erosion resistance (Judge et al., 2003) or barrier inertia (Bradbury, 1998; 

Bradbury et al., 2005) are more successful. Clearly, the combined effects of height and cross-shore volume determine barrier 

resilience (Figure 18). A useful way to visualise the changing vulnerability of barriers is the ‘resilience trajectory’. It shows how 

changes in crest elevation and movement take place on various time scales, from weeks to years or longer, and under varying 

conditions (Orford and Anthony, 2011).  

 

Resilience must be considered within the context of overall individual storm impact (upper panel of Figure 18). The pre-storm 

state of a barrier determines its initial resilience (in green) to an impending storm. Upon impact, the storm raises the water level 

and moves the shoreline landward, changing the threshold conditions (the relative height and width of the barrier) even before 

erosion commences. Active barrier lowering and narrowing during the storm move the resilience from its pre- to post-storm state, 

even closer to the storm threshold. For high and narrow barriers, the most likely cause of irreparable barrier destruction is 

narrowing, as lowering with minor volume loss may still leave enough positive freeboard. For low and wide barriers, a more 

likely cause of irreparable barrier destruction is inundation during passive threshold change associated with storm-tide conditions. 

 

The storm-impact regimes defined by Sallenger (2000) result in different resilience trajectories that may jointly determine barrier 

response to a single storm with its waxing and waning phases (lower panel of Figure 18). In the swash regime, crest accretion and 

barrier narrowing are common processes, but bar welding may widen barriers. In the collision regime, barriers and especially their 

foredunes typically lose more width than height. In the overwash regime, height rather than width reductions are predominant, 

particularly if sediment eroded from beach ridges or frontal dunes is deposited on the land side of barriers. In the inundation 

regime, large decreases in height as well as width are likely, potentially moving a barrier into the destruction space.  
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Figure 18 – Concept of resilience and destruction space as a function of barrier width and elevation, 

which jointly determine its volume. A full explanation is provided in the main text. 

 

Even highly resilient and voluminous regressive barriers may reach a critical state after prolonged relative sea-level rise. Initially 

wide and broad barriers may prevent overwash and breaching on their sea sides, exacerbating dune scarping. On their back-barrier 

sides, a long-term lack of newly supplied sediment will ultimately result in permanent back-side erosion. Persistent narrowing and 

lowering will make overwash and breaching increasingly likely. A single storm may result in state transitioning, triggering barrier 

retrogradation as observed in its initial stages on Bogue Banks in North Carolina (Timmons et al., 2010). 

 

8. Synthesis and conclusion 

 

The direct impact of individual storms on barriers is strongly influenced by storm track and intensity, tidal phase and amplitude, 

cross-shore and longshore morphology of the coastal tract, sediment supply, barrier volumes, sediment type, and vegetation. 

Together, these factors govern the magnitude and variability of storm-related hydrodynamic processes and parameters, and 

determine the pre-storm state on which these hydrodynamic drivers act (Figure 19). Maximum storm runup and barrier 

morphology are the key determinants of storm impact, as conceptualised in the Storm Impact Scale model developed by Sallenger 

(2000). On the erosion side, the swash regime drives bar and berm flattening, the collision regime is marked by dune scarping and 

beach lowering, the overwash regime leads to dune scouring and channel incision, and the inundation regime may result in barrier 

destruction. On the deposition side, storm berms and beach ridges may form and accrete in the swash and collision regimes, 

localised vertical beach and barrier accretion are associated with the collision and overwash regimes, and washover deposition 

takes place in the overwash and inundation regimes. 
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Figure 19 – Synthesis of the response of wave-dominated and mixed-energy barriers to storms. Blue 

boxes: storm characteristics; purple boxes: Storm Impact Scale model; pink boxes: local factors; black 

boxes: erosive response; green boxes: accretionary response; orange boxes: long-term trends in 

coastal evolution. 

 

There is an increasing awareness, however, that barrier response to individual storms is not merely the change from pre- to post-

storm state as governed by overall coastal setting and hydrodynamic processes. The direct response should always be considered 

in light of preconditioning, which defines the pre-storm state of the beach and barrier systems as created by previous fair-weather 

periods and storm events (antecedent conditions), and of post-storm after-effects and recovery (Figure 20).  

 

The pre-storm state, as determined by short- and long-term preconditioning, can be characterised in terms of vulnerability and 

resilience. Both storms and fair-weather processes play a role and, although the strongest effects are to be expected from recent 

extreme events, even millennial-scale changes still have an effect. Partly healed breaches may be reactivated (Wright et al., 1979; 

Morton, 2002) and low post-storm dunes covered by burial-tolerant vegetation are easily overwashed (Houser, 2009). Well-

developed foredunes and gravel barriers matured during extended fair-weather periods offer resilience to overwash and breaching. 

In the literature, much of the focus is on earlier storms lowering coastal resilience, commonly used to explain seemingly 

disproportional impacts of moderate storms. The influence of pre-storm fair-weather preconditioning was discussed by Regnauld 

and Louboutin (2002) for the sediment-starved coast of Brittany, France. They linked net accumulation on small barriers during 

onshore storms to long preceding periods of offshore winds producing calm seas and thus facilitating sedimentation in the 

nearshore and shoreface zones. Storms following fair-weather periods marked by onshore winds resulted in coastal erosion 

because they struck a depleted underwater environment. On a more generic level, background energy conditions have a direct 

bearing on barrier susceptibility, with low-energy coasts being more vulnerable than their high-energy counterparts. 
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Figure 20 – Elements to be considered in the analysis of barrier response to storms. The upper 

diagram shows the waxing and waning of a 1:20-year storm within the context of preconditioning, 

after-effects and recovery, using flood levels measured at the entrance of Rotterdam harbour 

(Netherlands) between October 1 and December 31, 2007 (data from www.waterbase.nl). Levels for 

1:10-, 1:100- and 1:1000-year recurrence intervals are shown for reference. Storm coincidence with 

diurnal higher high waters and spring high tides adds to its impact. The middle panel visualises types 

of long-term preconditioning, using water level measured at the same station between January 1, 1978 

and December 31, 2007. The black curve on the right corresponds to the curve of the top diagram. 

Aside from consistent seasonal patterns with autumn and winter storms, periods of higher and lower 

water-level extremes can be identified, with lower extremes providing better opportunities for barrier 

recovery and maturation. The lower diagram conceptualises climate-related variability in storm 

frequency and intensity, showing the effects of relative sea-level rise and NOA variability. The green 

curve on the right corresponds to the curve of the middle panel; the bold isolated peaks on the right-

hand side represent historical water-levels exceeding the 1978-2007 range; and the thin peaks to their 

left form a hypothesised long-term storminess pattern. 

 

Following the preconditioning phase, the storm itself consists of a waxing and a waning phase (e.g., Wang et al., 2006) that jointly 

determine the post-storm state. The waxing phase is dominated by erosion, particularly in the subaerial environment. Increasingly 

powerful waves and rising water levels impact a coastal zone that is out of equilibrium with these extreme conditions. Although 

dominated by erosion as well, the waning phase may include substantial depositional elements. Significant sedimentation may 

take place nearshore and on the shoreface (Hayes, 1967). Decreasing and increasingly dissipated wave energy and falling water 

levels also provide an opportunity for early subaerial recovery. These depositional aspects (e.g., Keen and Stone, 2000) have 

received relatively little attention, but opposite behaviour of different coastal indicators create an increasing awareness of the 

importance to monitor shoreline positions as well as profile-volume increases and decreases. 

 

For weeks after a storm has ended, after-effects influence sedimentary processes on beaches and barriers. At Heemskerk in the 

Netherlands, a 2007 storm surge left steeply scarped dunes vulnerable to post-storm slumping. On broad barriers, long-term 

ponding of flood waters from overwash in interior lows prevents aeolian reworking of sediment and may stimulate the growth of 

salt-tolerant maintainer species that inhibit subsequent morphological recovery. On narrower barriers, storm passes may remain 

active for extended periods of time. Offshore, storm-generated mega-cusps and mega-rip channels in embayed settings may persist 

for several months and continue to act as conduits for offshore sediment transport under non-storm conditions, considerably 

postponing beach recovery until the rip-neck and feeder channels are infilled (Loureiro et al., 2012). 

 

Recovery from any storm is a key component of preconditioning for the next storm. It has a strong effect on pre-storm beach and 

barrier state as can be illustrated using the four categories of post-storm barrier response defined by Morton et al. (1994): 

continued erosion, partial recovery, complete recovery and over-recovery (Figure 21). Increased resilience by over-recovery 

http://www.waterbase.nl/
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lessens the danger of critical thresholds, whereas decreased resilience by continued erosion or partial recovery makes exceedance 

of thresholds during subsequent storms more likely. When systems become so depleted that they disintegrate, there may never be 

enough time between later storms for recovery, even with large-scale human intervention. A typical recovery phase is marked by 

large-scale transport of sediment during fair-weather conditions. Upon termination of a storm, onshore reworking of temporary 

nearshore and shoreface storm deposits results in onshore bar migration, followed by bar welding and foreshore accretion, which 

sets into motion backshore aggradation, dune formation and colonization of barren sediment by vegetation (Morton et al., 1994). 

Recovery depends in part on the local availability of sediment (Forbes et al., 2004). It is greatest where pre-storm profile volumes 

were largest (Houser and Hamilton, 2009) and hampered where moisture and lag deposits create temporary or permanent supply-

limited conditions (e.g., Davidson-Arnott et al., 2005). If sediment is not sufficiently available, surviving beach and barrier parts 

may become subject to accelerated erosion (Houser et al., 2009). 

 

 

Figure 21 – Influence of recovery on barrier response to storm cycles. Continued erosion (upper left) 

and incomplete recovery (upper right), either related to limited sediment availability or a result of 

closely spaced storms, increase the likelihood of threshold exceedance. Complete recovery (lower left) 

and over-recovery (lower right) maintain or strengthen barrier integrity. Next to the simplified 

representations in the green resilience triangles, the curvy lines give more realistic resilience 

trajectories. The graph in the right-hand corner of each panel gives the corresponding barrier width 

and crest elevation time series. 

 

Generally, beaches recover more quickly than dunes, and beach recovery begins immediately after a storm. It may be complete 

within days to months (Cazes-Duvat, 2005; Wang et al., 2006; Bramato et al., 2012), but can last years to more than a decade 

following some extreme storm (e.g., Thom and Hall, 1991; Morton et al., 1994; Zhang et al., 2002). Dune recovery may take 

decades, especially where storm passes and overwash breaches need to be healed (Forbes et al., 2004). There are exceptions to this 

rule, with Stone et al. (2004) observing dune recovery outpacing foreshore at Santa Rosa Island in Florida following Hurricane 

Opal. Dune recovery may be accelerated when offshore winds rework washovers (Leatherman, 1976). It is also strongly aided by 

vegetation where specialised pioneering species colonise, and thus stabilise, storm-damaged areas (Pries et al., 2008). The higher 

the density and the more extensive the plant coverage, the more efficient sediment can be trapped (e.g., Snyder and Boss, 2002), 

although entrapment capabilities and effects on recovery are strongly dependent on plant species (Wolner et al., 2013). The time 

needed for recovery may be longer than the intervals between consecutive storms and in that case severe cumulative effects on 

beaches and barriers are likely. Houser and Hamilton (2009), for example, contrasted the response of a Florida barrier to 

Hurricane Opal in 1995, following seven decades of fair-weather-dominated development, with its subsequent behaviour. The 

clustered Hurricanes Ivan, Dennis and Katrina in 2004 and 2005 destroyed incipient dunes that were still vulnerable following 

Opal. The extent of recovery, therefore, depends in part on storm frequency (Christiansen and Davidson-Arnott, 2004). When 

given enough time, beaches and dunes are re-established at positions consistent with their long-term migration trend (Zhang et al., 

2002), as long as no critical erosion threshold has been exceeded. 

 

To assess barrier health and predict long-term resilience trajectories, multi-decadal barrier behaviour must be analysed in light of 

critical thresholds and non-linearity. Such analyses are in short supply, complicated by observational records that usually 

characterise storm impact by means of simple before-and-after comparisons for the most spectacular events. Short monitoring 

periods and low temporal resolutions do not match with the time frame of barrier change, and bias toward developed North 

American, western European and Australian barriers with great socio-economical value carries the risk of overlooking mobility-

related resilience in more natural barriers. Although the many excellent studies of barrier response to storms have provided us 

with some strong and convincing controls on generic processes, site-specific factors have mostly been ignored. Regional sediment 

availability and longshore sediment transport, which play key roles in recovery and preconditioning, are least understood. 
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A fundamental task of future research is the quantification of long-term barrier response to climate change. Observed sea-level 

rise and potentially increasing storm intensity reduce recovery times and increase the likelihood of thresholds being exceeded 

(Figure 22). Expected changes in storm frequency will also not be without effect. At the crossroads between climate-related 

research and barrier studies, keys to success are in-situ measurements during extreme storms, needed to enhance process-response 

understanding (waxing and waning phases, thresholds and feedbacks), long and high-resolution time series that include storm and 

fair-weather conditions, and a new generation of behavioural and numerical models that link short- and long-term barrier 

behaviour. In recent years, models fore- and hindcasting drivers of the difference storm-response regimes and quantifying actual 

barrier response to individual events have been improved and coupled. Upgrading and integrating models of barrier response to 

sea-level change is a next challenge. Once tackled successfully, accurate forecasting of 21
st
-century barrier change will be within 

reach. 

 

 

Figure 21– Changing barrier resilience in response to relative sea-level rise or increasing maximum 

water levels related to growing storm intensity. The threshold shifts created by these processes trigger 

various modes of barrier response that may or may not be sufficient for long-term survival. For the 

scenario of sea-level rise, a natural barrier marked by volume constancy will tend to migrate landward 

(upper left). Under the same volume constancy, a barrier that is fixed in position, either because of 

coastal setting or as a result of human measures (e.g., seawall), will ultimately drown and disintegrate 

(lower left). Volume increase (e.g., by beach nourishment) will allow a barrier to remain in position or 

even expand seaward (upper right), whereas a volume decrease is bound to result in barrier 

destruction (lower right). 
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