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Abstract 

This study examines the tectonic evolution of the Mersin ophiolite of the central 
Tauride of Turkey, using palaeomagnetic, structural and geochemical analyses. 
This ophiolite represents one of the best examples of Tethyan-type ophiolites 
formed by supra-subduction zone spreading within the northern Neotethyan 
Ocean basin during the Late Cretaceous. It exposes a 3.0 km section of lower 
crustal, cumulate rocks, and tectonically separated exposures of the underlying 
mantle sequence and metamorphic sole, both of which are cut by basaltic dykes. 

Stepwise thermal and alternating field demagnetization of ultramafic and 
gabbroic cumulates from 18 sites mostly identified single components of 
remanent magnetization characterized by ENE-directed, moderately upwards 
inclined directions in geographic coordinates with high coercivities/high 
unblocking temperatures. The slight increase in scattering in remanence 
directions after tilt correction has been interpreted to be related to local 
variations in orientation of cumulates layering within the magma chamber. Rock 
magnetic investigations showed that magnetite is the main magnetic mineral in 
the majority of ultramafic, gabbro and dyke rock samples, and rock magnetic 
and demagnetization characteristics suggest that the samples carry 
thermoremanent magnetizations acquired during crustal accretion. 

Net tectonic rotation analyses show that all the units of the Mersin ophiolite, 
including lower crustal cumulates, dykes in the mantle sequence and dykes in 
the metamorphic sole have experienced large clockwise rotations around NE- 
trending,  moderately plunging to sub-horizontal axes. Correcting anisotropy of 
magnetic susceptibility data for the effects of these rotations suggests that 
magmatic flow in the cumulates had an initial NNE-SSW orientation, which if 
assumed to relate to seafloor spreading suggests that the Mersin spreading 
axis was oriented WNW-ESE. This is consistent with regional palaeogeographic 
reconstructions. The net tectonic rotation data show that dykes in the 
metamorphic sole are rotated by c. 45°, significantly less than the c. 115° 
rotations seen in the mantle sequence and in the cumulate sequences of the 
overlying thrust sheets. These results therefore document an initial stage of 
intra-oceanic clockwise rotation of the ophiolite that occurred after initial 
detachment but prior to emplacement of dykes cutting the metamorphic sole. 
Subsequent additional clockwise rotation (of all units) may be attributed to 
further intra-oceanic rotation (preferred interpretation) or to later emplacement 
of the ophiolite onto the Tauride continental margin. 

Finally, some new, preliminary data are presented from the Lizard ophiolite of 
Cornwall in Appendix A, forming the results of a training project undertaken 
while awaiting permission for fieldwork in Turkey. 
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Chapter 1 

General Introduction 

1.1 Introduction 

Ophiolites are fragments of oceanic lithosphere that were thrust (obducted) onto 

the continental crust during collisional orogenesis. They represent igneous rock 

complexes that include an upper basaltic unit, a middle gabbroic unit and lower 

peridotite unit (Figure 1.1). Ophiolites provide opportunities to study the 

architecture and evolution of the oceanic crust in three dimensions, including 

the processes responsible for the formation of the lower oceanic crust, and to 

determine regional tectonic development during plate convergence (i.e. 

successive phases of intraoceanic, emplacement-related and post-

emplacement deformation). 

 

 

Figure 1.1. Simplified ophiolite sequence (modified from Monroe and Wicander, 2009). 
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The eastern Mediterranean and Middle Eastern orogenic belt is marked by 

several discontinuous lines of ophiolites that were generated in several narrow 

Neotethyan strands of the Tethys Ocean (e.g. Robertson, 2004). Of these 

ophiolites, two have formed the focus of international research for the last 40 

years: the Semail ophiolite of Oman, which formed at a fast spreading axis, and 

the Troodos ophiolite of Cyprus, which is inferred to have formed at a slow-

intermediate spreading axis. These lie at opposite ends of the so-called “peri-

Arabian ophiolite crescent (Ricou, 1971) (Figure 1.2). Palaeomagnetic research 

within these units (e.g. Moores and Vine, 1971; Luyendyk and Day, 1982; 

Allerton and Vine, 1987; Morris et al., 1990, 1998; Weiler, 2000; Perrin et al., 

2000) has documented substantial tectonic rotations. Other eastern 

Mediterranean ophiolites of the same chain (Hatay; Baer-Bassit) have also 

been studied palaeomagnetically (Morris et al., 2002; Inwood, 2005; Inwood et 

al., 2009), leading to recognition of a regionally significant rotation of oceanic 

crust in the southern Neotethyan ocean (e.g. Morris et al., 2006). However, 

other ophiolites in this region have received less attention from the geological 

community and have not been studied palaeomagnetically. 

This thesis, therefore, describes new palaeomagnetic, structural and 

geochemical data from the Mersin ophiolite of Turkey. This occupies a key 

position in the regional context, since it is believed to have formed in a different 

strand of the Neotethyan ocean located to the north of previously studied 

ophiolites. Given the ubiquitous nature of major rotations documented in other 

ophiolites in this region, an assessment of the rotation history of the Mersin 

ophiolite may shed further light on the regional tectonic evolution of the eastern 

Mediterranean Tethys. 
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Figure 1.2. Outline tectonic map of the eastern Mediterranean showing the location of major 

Tethyan ophiolites (modified from Karaoğlan et al., 2013).  

1.2 Brief historical perspective of the ophiolite concept 

The classification and interpretation of ophiolitic rocks began in the nineteenth 

century, where Brongniart in 1813 interpreted ophiolites as an essential 

combination of rocks “with a matrix of serpentine enveloping iron oxide or other 

disseminated accessory minerals, with compact (as opposed to sheet like) 

structure” (Moores, 1982), but making no distinction between igneous rocks and 

metamorphic rocks. However in 1827, Brongniart started to distinguish between 

these two main groups of rocks, placing ophiolites with igneous rocks in his 

classification, together with ‘granitoids,’ ‘porphyritics,’ and ‘trachyites’ because 

of their mostly unstratified, massive appearance (Moores, 1982). At the 

beginning of the twentieth century, Steinmann expressed several notable ideas 
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about ophiolites that influenced future research. Steinmann (1927) noted the 

presence generally of three types of rocks in a sequence, from bottom to top, 

ultramafic peridotites, gabbro and finally diabase-spilite on the top (Figure 1.1). 

This combination later became known as the 'Steinmann trinity'. After 

Steinmann, almost all workers in this field accepted this interpretation and 

realized its importance, until the end of 1960, when the true significance of 

ophiolite sequences began to be realized (Moores, 1982). 

By the end of 1960, Brunn clarified important issues related to ophiolites, where 

he visualized an ophiolite as a broad influx of magma onto the floor of 

geosynclines, with this magma subsequently producing ophiolites by 

gravitational separation (Robertson, 2004). 

Finally, the Penrose Conference in 1972 (Anonymous, 1972), served as the 

foundation stone for understanding the true development and evolution of 

ophiolites based on plate tectonics, and defined the ideal ophiolite sequence 

used today, i.e. ultramafic complex, gabbroic complex, mafic sheeted dyke 

complex and mafic volcanic complex (Dilek and Furnes, 2011). Since then, 

ophiolites have become the key for understanding the formation and evolution 

of the Earth's oceanic crust and to determine the nature of tectonic processes 

associated with seafloor spreading. 

1.3 General explanation of ophiolite units 

A typical complete ophiolite sequence includes the following units from base to 

top: 

1- Ultramafic tectonite 
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Ultramafic tectonites are rocks that show no cumulate features and were not 

formed by crystallization from a magma. They represent depleted mantle, i.e. 

mantle that has had basaltic melt extracted from it (Moore, 1982). This unit is 

generally comprised of harzburgite (olivine + orthopyroxene), but may also 

include lherzolite (olivine + orthopyroxene + clinopyroxene), dunite (more than 

90% olivine) and chromitite (a rock with high concentrations of chrome spinel). 

The rocks of this unit often show deformed, foliated fabrics resulting from ductile 

deformation during mantle flow. These fabrics can be seen under the 

microscope by presence of a preferred orientation of olivine crystals and by 

pyroxene and spinel laminar concentrations (Moore and Twiss, 1995). Overlying 

these rocks are ultramafic and mafic cumulates, which formed by partial melting 

and fractional crystallization. The boundary between the tectonites and the 

overlying cumulate rocks is known as the petrological Moho, and represents the 

base of the crust. 

2- Ultramafic and mafic cumulates 

These represent stratified plutonic rocks that formed by fractional crystallization 

and accumulation of crystals in a magma chamber, fed from below by the 

delivery of basaltic melts derived from partial melting of the mantle peridotites. 

These rocks display obvious compositional layering and cumulus textures 

(Condie, 2005). The cumulate section starts from the base with ultramafic 

layered cumulates, which are predominantly composed of olivine and pyroxene 

and grade upward into more plagioclase-rich gabbroic layers (Moore and Twiss, 

1995). In the upper part of the gabbroic unit, layering is no longer seen and the 

gabbros become structureless. The upper gabbros have variations in crystal-

size as a result of hydrous fluids in the melt, and these varitextured gabbros are 
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often interpreted as representing a fossil melt lens located at the top of the 

gabbro section (MacLeod et al., 2000).  

3- Sheeted dyke complex 

In a typical ophiolite, the gabbros are overlain by a sheeted dyke complex, 

which generally consists of multiple doleritic dykes. These dykes display 

variable thickness but mostly ranging between 1 to 3 m in width (Kidd, 1977). 

Cross-cutting relationships lead to the majority of dykes displaying one-sided 

chilled margins (Moore, 1982), as successive dykes are intruded into a host 

rock consisting of previously formed dykes. These dykes represent the conduits 

for transport of magma from the underlying (gabbroic) magma chamber up to 

the seafloor, where they feed the overlying extrusive section. 

4- Extrusive section 

The rocks of this section overlie the sheeted dyke complex and represent the 

uppermost unit of the igneous rocks within an ophiolite sequence. This unit 

consists of extrusive volcanic rocks in the form of pillow lavas or massive, sheet 

flows. However, the transition from sheeted dyke complex to extrusive lavas 

generally does not happen suddenly, but it occurs over a depth range of 50 - 

100 m (Moore, 1982; Condie, 2005). 

5- Marine sediments 

In a typical ophiolite, the igneous sequence is commonly overlain by various 

sedimentary rocks reflecting marine depositional environments (i.e. abyssal, 

bathyal or arc-related deposition environments). These sediments generally 

include: metalliferous sediments (umber; Robertson, 1975), radiolarian cherts, 

carbonates and sulphide layers (Moore, 1982). 



7 
 

However, many ophiolite outcrops are missing one or more units of the Penrose 

ophiolite sequence outlined above, because of tectonic deformation during 

emplacement, and the thickness of each unit varies significantly between 

different ophiolites (Clague and Straley, 1977). Figure 1.3 shows the 

comparison of some ophiolite complexes with the idealized ophiolite 

stratigraphy. 

 

 

 

Figure 1.3. Comparison of selected ophiolite complexes with the idealized ophiolite assemblage 

(from Condie, 2005, after Moore, 1982). 
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1.4 Ophiolite types 

There are numerous studies about the classification of ophiolites from different 

geological settings. In general, ophiolites can be divided into two main sets: 

mid-oceanic ridge (MOR) type generated at divergent plate boundaries through 

seafloor spreading, and supra-subduction zone (SSZ) type generated above 

convergent plate boundaries through the closure of ocean basins (Figure 1.4). 

These types are distinguished by geochemical characteristics. For example, 

SSZ-type ophiolites are characterized by island-arc tholeiites, more depleted 

mantle (predominantly harzburgite) sequences, and they may have boninitic 

lavas, whereas MORB-type ophiolites are characterized by mid-oceanic ridge 

basalts, and the mantle sequences are both harzburgites and lherzolites 

(Pearce et al., 1984; Metcalf and Shervais, 2008). 

 

Figure 1.4. Types of ophiolite. (a) Mid-oceanic ridge (MOR) type. (b) Supra-subduction zone 

(SSZ) type. 

In a more recent classification, Dilek and Furnes (2011) divide ophiolites into 

two main subgroups as follows: subduction-related ophiolites (which comprise 

subduction-zone and volcanic-arc types), and subduction-unrelated ophiolites 

(which comprise continental margin, mid-ocean ridge and plume-type ophiolites). 
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1.5 Emplacement of ophiolites 

There is still extensive debate on the mechanisms of ophiolite emplacement 

onto the continental crust. According to Condie (2005), there are three main 

mechanisms in arcs or collisional orogens (Fig 1.5). The first model involves 

emplacement onto a passive continental margin by collision of a continental 

margin with a subduction zone leading to obduction by thrusting. The second 

model involves the separation of the top section of a down-going plate and its 

emplacement as a thrust sheet onto a former arc. The third model involves 

underthrusting of a sheet of oceanic lithosphere within an accretionary prism. 

 

Figure 1.5. Types of mechanisms of ophiolite emplacement (modified from Condie, 2005). (a) 

Obduction onto a passive continental margin. (b) Obduction onto a former arc. (c) Addition of a 

sheet of oceanic lithosphere to an accretionary prism. 

 

On the other hand, Wakabayashi and Dilek (2003) classified the emplacement 

of ophiolites depending on their various emplacement mechanisms; these are: 
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(1) Tethyan ophiolites, (2) Cordilleran ophiolites, (3) ridge-trench intersection 

ophiolites and (4) Macquarie Island-type ophiolite.  

The first and second ophiolite types have been defined since the Penrose 

Conference (1972); also they have been identified by many researchers as the 

two major subgroups (Moores, 1982; Pearce et al., 1984; Wakabayashi and 

Dilek, 2003; Beccaluva et al., 2004). In the case of Tethyan-type ophiolites, they 

are tectonically characterized as located above passive continental margins, 

mostly in the form of intact oceanic sheets within major collision belts, and have 

the entire rock sequence of an ideal ophiolite structure (Wakabayashi and Dilek 

2003; Beccaluva et al., 2004). This type of ophiolite is widely found in the 

eastern Mediterranean area (e.g. Troodos in Cyprus, Semail in Oman, Baër-

Bassit in Syria, Hatay and Mersin in Turkey, etc.). Cordilleran ophiolites were 

structurally emplaced on subduction zone accretionary complexes and this type 

of ophiolite has no relationship with a passive continental margin and is 

commonly characterized by having incomplete ophiolite sections (Wakabayashi 

and Dilek 2003; Beccaluva et al., 2004). Examples of this type are the Coast 

Range ophiolite of California, and the Caribbean ophiolites of Guatemala, Cuba 

and Venezuela (Beccaluva et al., 2004). 

As for the third type (ridge-trench intersection ophiolites), Wakabayashi and 

Dilek (2003) have described these as resulting from the interaction of a 

subduction zone and a spreading ridge (e.g. Resurrection Bay and Knight 

Island ophiolites in Alaska and the Taitao ophiolites in Chile) (Wakabayashi and 

Dilek, 2003). 

Finally, the Macquarie Island ophiolite is located along the transform border 

between the Indo-Australian and Pacific Plates (Varne et al., 1969; 2000) and 
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consists of a complete ophiolite sequence. It is tectonically dissimilar from 

Tethyan and Cordilleran types, as it overlies either in situ oceanic crust or 

suboceanic mantle, instead of a continental margin or an accretionary complex 

(Wakabayashi and Dilek, 2003). 

1.6 Aims and objectives 

The primary aim of this project is to study the Mersin Ophiolite of southern 

Turkey, in order to determine the amount of tectonic rotation experienced during 

its evolution. Therefore, this project uses a combination of palaeomagnetic, 

magnetic fabric, geochemical and structural analyses to investigate the 

following principal topics and to achieve its objectives: 

The nature of fabrics within the layered gabbros of the Mersin ophiolite, using 

petrofabric and geochemical data to provide information on magmatic 

processes during crustal accretion 

The amount of net tectonic rotation of the Mersin ophiolite experienced during 

seafloor spreading and tectonic emplacement 

In addition, some new palaeomagnetic results from the much older Lizard 

ophiolite of SW England are also presented (Appendix A). These data were 

acquired as part of a smaller, discrete study undertaken at the start of the PhD, 

while permission to undertake palaeomagnetic sampling in Turkey was been 

sought. 

1.7 Overview of the thesis 

This thesis consists of six chapters, including this overview of some general 

concepts about ophiolites and the aims of this research project. Chapter Two 
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presents a basic account of the theoretical background of palaeomagnetism 

and magnetic fabric analysis and describes the methodologies and equipment 

used in this study. Chapter Three includes a more detailed overview of the 

genesis of ophiolites in the Turkish area and, more specifically, of the Mersin 

ophiolite and the study area. Chapter Four presents a petrographic study of the 

ultramafic-mafic cumulates and dyke samples of the Mersin ophiolite with a 

geochemical investigation of cross-cutting veins within the cumulate (layered) 

gabbros and their relationship with the host gabbros. Chapter Five presents the 

new data and analyses of produced in this study, including palaeomagnetic and 

rock magnetic results interpreted in the regional context of previous 

palaeomagnetic investigations. Chapter Six presents a summary of the main 

conclusions of the thesis and recommendations for future work. Finally, 

Appendix A presents preliminary palaeomagnetic results from the subsidiary 

study of the Lizard ophiolite.  
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Chapter 2 

Theoretical Background & Methodologies 

2.1 Basic characteristics of the Earth's magnetic field 

Theoretical and experimental studies of the Earth's magnetic field have shown 

that the major portion of the field observed at the Earth's surface is generated 

by electromagnetic dynamo processes in the iron-nickel alloy fluids of the outer 

core (Figure 2.1). This internal source generates more than 90% of the total 

geomagnetic field (Butler, 1992; Tauxe, 2009).  

 

Figure 2.1. Convection currents in the Earth's outer core generate the geomagnetic field (from 

Reeve, 2010). 

Remaining components of the field arise from the crustal field (produced by 

induced currents in ferromagnetic materials in the Earth's crust and the mantle) 

and the external field caused by electric currents in the atmosphere (Knecht, 

1972; Merrill et al., 1996).  
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There are two components for specifying the orientation of the geomagnetic 

field (H): (1) Declination (D): The angle between the geographical north pole 

and the field in the horizontal plane. Declination is always measured clockwise 

from geographical north, ranging from 0° to 360°. (2): Inclination (I): The angle 

measured from the local horizontal surface, ranging between 0° and ±90° 

(Figure 2.2a), with positive/negative inclinations indicating downward/upward 

directed fields respectively (Figure 2.2b). 

 

           

Figure 2.2. (a) The main elements of the Earth’s magnetic field. The declination (D) represents 

the angle between the magnetic field and the true north, measured in the horizontal plane. The 

inclination (I) is the angle between the horizontal and H, where H is the total magnetic field 

vector. (b) The Earth’s magnetic field showing field direction either side of the Earth’s equator. 

The geometry of the majority of the present day field may be modeled by a 

simple dipole placed at the centre of the Earth and tilted about 11.5° from the 

rotation axis of the Earth (i.e. the magnetic poles do not coincide with the 

geographical poles) (Figure 2.3), with a more minor contribution from non-dipole 

field elements. The intensity of the field varies on the Earth's surface, from 
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about 62000 nT at the magnetic poles (where the field lines are dense and 

perpendicular to the Earth's surface) to about 23000 nT at the magnetic equator, 

where the field lines are parallel to the Earth's surface (Gunnarsdóttir, 2012). 

 

Figure 2.3. The Earth showing the deviation of the magnetic north pole about 11.5° from the 

geographic North Pole. 

In general, the intensity of the Earth's field – dipole plus non-dipole (the 

remaining portion of the Earth's magnetic field after removal of the dipole and 

external fields) – has in recent times continuously decreased with time, falling 

by 1.4% during the period from 1970 to 2000 (Humphres, 2002). Furthermore, 

the geomagnetic poles are not constant in location, but instead move slowly 

around the rotation axis of the Earth (the geographical pole). This phenomenon 

is known as secular variation, and results from changes in fluid flow in the outer 

core of the Earth. Secular variations affects the direction (declination, inclination) 

and intensity of the field (Butler, 1998; Lowrie 2007). Palaeosecular variation 

studies by geomagnetists indicate that when the field is averaged over 104 or 

105 years, the geomagnetic field at the Earth's surface can be modelled as that 

created by a geocentric axial dipole (GAD) (Butler, 1998; Tauxe, 2009). In this 
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longer-term model, the magnetic field matches that generated by a single 

magnetic dipole located at the centre of the Earth and coincident with the 

rotation axis (Butler, 1998).  For a GAD field, the declination of the field, D = 0° 

at any point on the Earth's surface and the inclination is related to latitude by 

the simple equation: 

tan I = 2tan λ 

where λ  = geographic latitude, ranging from –90° at the geographic south pole 

to +90° at the geographic north pole (Figure 2.2b).  

Furthermore, the geomagnetic field also switches its polarity over the long 

periods ranging between 104 and 107 yr. The present arrangement of the field in 

which the magnetic North Pole of the Earth is close to the geographic North 

Pole is called a normal polarity field, whereas the opposite arrangement is 

called a reverse polarity field (Butler, 1998) (Figure 2.4). 

 

Figure 2.4. Schematic of the Earth’s magnetic field reversal. (a) Normal polarity. (b) Reverse 

polarity.  
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The study of the history and behavior of the natural remanent magnetization 

(NRM) recorded in rocks which acquired their magnetization in ancient 

geomagnetic fields over geological time is termed palaeomagnetism. As a result 

of the long-term geocentric axial dipolar geometry of the geomagnetic field, 

palaeomagnetists are able to use the direction of magnetization of rocks and 

sediments to establish palaeolatitudes of sampled units and determine whether 

they have been affected by rotations (around vertical, horizontal or inclined 

axes). Thus, palaeomagnetism is a powerful tool for investigating tectonic 

processes. 

 Rocks may acquire different components of magnetization at various times 

during their geological history. A primary objective in all palaeomagnetic 

investigations is to identify and isolate these different components of remanent 

magnetization, using palaeomagnetic analyses and demagnetization techniques. 

The types of NRM are described in the section 2.5.  

2.2 Magnetic behavior of materials 

All materials have magnetic properties at the atomic scale, and this property 

arises through the motion of electrons as they spin on their axes and orbit 

around atomic nuclei (Figure 2.5) (Tarling and Hrouda, 1993). Thus, there are 

various kinds of spin interactions, which give rise to different magnetic effects.  

The magnetic behavior of materials can be classified on the basis of magnetic 

susceptibility (how they respond to an external magnetic field) into three main 

groups: diamagnetism, paramagnetism and ferromagnetism. 

 



18 
 

                             

 

 

Figure 2.5.  Magnetism of an atom. The magnetization arises from the spin of an electron about 

its axis and from the orbital motion of the electron about its nucleus (redrawn after Tarling 1971). 

 

2.2.1 Diamagnetism 

Diamagnetism is a property of all matter. In purely diamagnetic materials all the 

orbital shells are complete (i.e. all the orbital shells are paired in the structure of 

atoms). When a magnetic field is applied to any diamagnetic material, a small 

magnetization is produced with direction opposite to the applied field. This 

induced magnetization relates linearly to the applied field, and vanishes as soon 

as the external applied magnetic field is removed (Butler, 1998) (Figure 2.6a) 

and (Figure 2.7a). The magnetic susceptibility (k) of diamagnetic materials is 

negative and independent of temperature. Examples of this type of material are 

quartz and calcite, which are important constituents of many kinds of rocks. 
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Figure 2.6. The essential groups of magnetic behavior. All three illustrations show the 

magnetization, J, against the magnetizing field, H, for: (a) diamagnetic; (b) paramagnetic; and 

(c). ferromagnetic materials. k represents magnetic susceptibility, which is a negative/positive 

constant for diamagnetic/paramagnetic materials respectively. For ferromagnetic materials, the 

path of magnetization exhibits hysteresis, and the magnetic susceptibility is not a simple 

constant (redrawn after Butler, 1998). 

2.2.2 Paramagnetism 

Paramagnetic materials have incomplete electron shells. Therefore, when a 

magnetic field is applied, they acquire induced magnetization by spinning their 

orbitals and electrons, thus producing a weak magnetization in the same 

direction as the applied field. Like diamagnetic materials, the magnetization 

depends linearly on the applied field and the induced magnetization disappears 

when the external applied magnetic field is removed (Figure 2.6b) and (Figure 

2.7b). Thus, the magnetic susceptibility, k, of paramagnetic materials is low and 

positive, but dependent on temperature, and it can only be observed below the 

Curie temperature for each mineral (Butler, 1998). Examples of paramagnetic 
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materials include many of the iron-containing minerals, such as fayalite, 

pyroxene, biotite and hornblende (Tarling and Hrouda, 1993).  

2.2.3 Ferromagnetism 

Unlike diamagnetic and paramagnetic materials, ferromagnetic materials have 

very strong atomic moment interactions caused by electronic exchange forces. 

Thus these materials possess much stronger magnetic susceptibilities. 

Magnetic moments display either parallel or antiparallel alignment. The 

relationship of magnetization with the applied field is not linear, but forms a 

hysteresis loop and the magnetic susceptibility is not a simple constant (Butler, 

1998) (Figure 2.6c). Like paramagnetic materials, the magnetization is lost at 

temperatures above the Curie temperature for each mineral. The term 

"ferromagnetism" (in some sources "ferromagnetism sensu lato"), is a broad 

expression, but more precisely, this group is divided into three subdivisions 

depending on classes of spin alignment; these are: true ferromagnetism (in 

some sources ferromagnetism sensu stricto), antiferromagnetism and 

ferrimagnetism. 

The true ferromagnetic materials (s.s.) display a parallel alignment of magnetic 

moments in the same direction (i.e. positive exchange interaction) (Figure 2.7c), 

leading to a very strong spontaneous magnetism which can remain even after 

the external field has been removed, causing a remanent magnetization (Tarling 

and Hrouda, 1993; Butler, 1998). Ferromagnetic materials include iron, nickel 

and cobalt, and these materials rarely exist naturally in the Earth's crust (Kearey 

et al., 2002). 
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Figure 2.7. Schematic representations of different forms of magnetization against applied field. 

All the solid arrows on the left-hand side on a pair of diagrams in these illustrations refer to the 

applied field, whereas the hollow arrows represent the acquired magnetization when the applied 

magnetic field exists. Red arrows refer to the remanent magnetization after removal of the 

external magnetization. (a) Diamagnetic materials; showing a small magnetization in the 

opposite direction of the applied field, but the magnetic moment alignments become 

randomized upon removal of the applied field. (b) Paramagnetic materials; showing a small 

magnetization in the same direction of the applied field, but also become randomized upon 

removal of the applied field. c, d and e. Ferromagnetic materials (s.l.) are sub-divided to 

ferromagnetic (s.s.), antiferromagnetic and ferrimagnetic materials depending on the order of 

the magnetic moment alignments after removal of the applied field and all display 

paramagnetism above their Curie temperature (modified from Tarling and Hrouda, 1993). 

In antiferromagnetic materials the exchange interaction occurs within crystal 

sub-lattices. These sub-lattices have equal magnitude of magnetic moments but 

in an anti-parallel spin manner (i.e. negative exchange interaction) (Figure 2.7d). 

However, when all the spins are completely anti-parallel, there will be no net 

magnetization (an example is ilmenite, FeTiO3), whereas if the spins of 

magnetic moments are not perfectly anti-parallel (or canted) the configuration 

yields a weak magnetization as occurs in hematite (Fe2O3) (Tauxe, 2009). 
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Ferrimagnetic materials also possess anti-parallel alignments of the magnetic 

moments, but unlike antiferromagnetic materials, the magnetic moment 

alignments within the sub-lattices are not of the same strength. Therefore, 

ferrimagnetic materials retain a remanent magnetization after removal of the 

applied field. Moreover, ferrimagnetic materials also behave paramagnetically 

above the Curie temperature for each mineral (Tarling and Hrouda, 1993) 

(Figure 2.7e). The most important example is magnetite (Fe3O4).  

2.3 Rock magnetism 

Rock magnetism involves the study of magnetic minerals in rocks and the 

stability of natural remanences. Generally, magnetic minerals represent at most 

a few percent of the rock volume, and usually occur in the form of ferromagnetic 

iron oxides (most commonly magnetite Fe3O4) or iron sulphides. During rock 

formation, the intrinsic magnetization of grains of magnetic minerals become 

statistically aligned with the direction of the ambient magnetic field, providing a 

fossil record of the field direction that may then persist on geological timescales 

(Kearey et al., 2002). 

2.3.1   Magnetic domains 

Domains are small regions inside ferromagnetic minerals in which the 

magnetization is uniform and aligned in a specific direction (Tarling and Hrouda, 

1993). 

Each magnetic particle has a magnetostatic energy that arises from the 

distribution of magnetic charges on its surface (Butler, 1998). For example, in a 

spherical ferromagnetic particle with uniform magnetization, charges of opposite 

polarity occur on opposite hemispheres. As a result, there is energy stored 
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within the distribution of the charges resulting from the work required to keep 

opposite charges apart (Figure 2.8a). This magnetostatic energy decreases with 

the formation of magnetic domains, because in this way the proportion of the 

surface covered by magnetic charge is reduced, and the distance between 

opposite charges is reduced (Butler, 1998). The grain will divide into a number 

of domains of uniform magnetization if this results in an overall reduction in 

magnetostatic energy. 

 

Figure 2.8. Schematic diagram showing domain formation. (a) Spherical grain of ferromagnetic 

mineral showing uniform magnetization, the arrow indicates the direction of magnetization. (b) 

Spherical ferromagnetic grain subdivided into magnetic domains. The arrows indicate the 

domain magnetization direction; the planes between magnetic domains refer to domain walls. (c) 

Gradual changes in magnetization direction within the domain wall (from Butler, 1998). 

The number of the magnetic domains depends on the size of the ferromagnetic 

grain. For example, a small magnetite grain (<1 μm) tends to form one domain, 

and is termed a single domain (SD) grain. Larger grains of magnetite with a 

diameter > 10 μm, consist of many domains and are called multidomain (MD) 

grains (Butler, 1992) (Figure 2.8b). Each domain is separated from its 

neighbours by a narrow boundary called a domain wall. The estimated 

thickness of domain walls ranges from ca. 0.01 to 0.1 μm (Piper, 1987). In 

domain walls, the orientation of the atomic-level magnetizations changes from 

the direction in one domain to that of the adjacent domain (Tarling and Hrouda, 

1993; Butler, 1998) (Figure 2.8c). In fact the transition between a large single 
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domain and small multidomain grain does not occur suddenly. Instead, there is 

a range of grain sizes that exhibit intermediate behaviour of magnetization 

within this interval. These grains of intermediate size are called pseudo-single 

domain (PSD) grains (Butler, 1998). Domain state does not fall in a constant 

range of grain sizes for all ferromagnetic minerals. For example, the interval of 

single domain sizes for equidimensional grains of magnetite falls within ca. 0.03 

to 0.1 μm and reaches ca.1 μm for elongate grains, whereas, in hematite, the 

single domain size ranges between the interval ca. 0.03 to 15 μm (Lowrie, 

2007).     

2.3.2   Hysteresis 

When a demagnetized ferromagnetic specimen is subjected to an external 

magnetized field, the specimen becomes magnetized and follows the 

magnetization curve starting from the origin. As the field increases, the 

specimen eventually reaches a maximum level of magnetization, termed the 

saturation magnetization, where there is no further increases in magnetization 

occur (Figure 2.9). If the applied field reduced to zero, the magnetization does 

not relax back to zero, but instead the specimen will retain some remanent 

magnetism, which is an isothermal remanent magnetization (IRM) (Tarling, 

1971; McElhiny and McFadden, 2000).  

In order to reduce this remanence back to zero, a reverse direction field is 

required. The amount of a reverse magnetic field required to reduce IRM to zero 

is called coercivity or coercivity force (Hc) (Butler, 1998; McElhiny and 

McFadden, 2000). 
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Figure 2.9. Hysteresis loop showing the behavior of magnetization of an unmagnetized 

ferromagnetic mineral. H is applied magnetic field. M is the magnetic intensity (magnetization). 

Msat is the saturation magnetization of the ferromagnetic mineral. MIRM is isothermal remanent 

magnetization (remanence). Hc is coercivity force (modified from Tarling, 1971).     

2.3.3   Curie temperature, blocking temperature & relaxation time 

All ferromagnetic materials lose their intrinsic magnetization at a temperature 

known as the Curie temperature, which varies with mineralogy. Above the Curie 

temperature, thermal energy is too great to allow interactions between adjacent 

atomic magnetic moments, and hence the material is incapable to holding a 

permanent, remanent magnetization and behaves paramagnetically. Of greater 

significance, however, is the blocking temperature of a ferromagnetic grain, 

which is the temperature below which its net magnetic moment becomes 

blocked in and becomes stable. In the interval between the Curie temperature 

(Tc) and blocking temperature (Tb), the ferromagnetic grain behaves 

superparamagnetically and the magnetization relaxes quickly after removal of 

applied field. The blocking temperature is dependent on the timescale or 

relaxation time (τ ) of interest. 
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The essential assessment of the influence of time on magnetization came from 

the studies carried out by Louis Néel, where he defined the relaxation time by 

the following equation: (Tarling and Hrouda, 1993): 

 

 
 
 

 
    (

       

   
) 

Where               τ = relaxation time 

                                  v = volume of the grain 

                                  C = frequency factor ≈1010 s-1 

                                  T = absolute temperature 

                                  k = constant 

                                 Js = spontaneous magnetization of the ferromagnetic mineral 

                                 Bc = coercivity 

The equation demonstrates that the relaxation time has a strong relationship 

with ambient temperature, in addition to the importance of the size and 

composition of the grain in every magnetic process (Tarling and Hrouda, 1993; 

Butler, 1998). This is shown graphically in Figure 2.10 for the example of an 

elongated SD magnetite grain with dimensions of 0.1 μm length and 0.02 μm 

width. 

The figure shows, at a relaxation time of 100 s (typical of the measurement time 

for a remanence determination), this specific grain will change from 

superparamagnetic to stable single domain at 550°C, corresponding to the 

blocking temperature (Tb). However, when the temperature decreases below 

550 °C, the relaxation time increases exponentially accordingly, so that by 

510°C the relaxation time becomes more than the age of the Earth (Butler, 

1998). It is this drastic increase in relaxation time over a narrow temperature 
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interval that produces the great stability of thermally controlled remanences in 

igneous rocks. 

 

Figure 2.10. Relaxation time of a SD magnetite grain as a function of temperature. The grey 

arrow indicates the blocking temperature (Tb), which for this grain is 550 °C when τ = 100 s 

(the typical timescale of a remanence measurement). The grain behaves superparamagnetically 

when the temperature is greater than the blocking temperature (Tb), and becomes stable SD 

when the temperature is less than Tb (after Butler, 1998). 

2.4 Magnetic minerals 

The majority of minerals that contain magnetic elements are not interesting in 

palaeomagnetic studies because of their low Curie temperatures. Even 

desirable ones like free iron and nickel-iron alloys, are very rare within the rocks 

of the Earth's crust, and these materials are only important in the study of 

meteorites or other planet’s rocks (Tarling, 1971). However, the majority of 

ferromagnetic minerals that are important in palaeomagnetism and may carry 

remanence are present in the form of accessory minerals in terrestrial rocks, 

either as iron oxides or iron titanium oxides and may be shown in a ternary 

oxide diagram with rutile (TiO2), wustite (FeO), and hematite (Fe2O3) at the 

apexes (Butler, 1998) (Figure 2.11). These magnetic minerals belong to two 
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solid-solution series. The first group is known as the titanomagnetite (or 

ulvöspinel-magnetite) series, and comprises a continuous series of solid 

solutions that lie between magnetite (Fe3O4) and ulvöspinel (Fe2TiO4). The 

minerals of this series are opaque and cubic, and crystallize in the spinel 

structure (Butler, 1998). Magnetite is an important ferrimagnetic example from 

this group, that has a significant role in carrying the natural remanent 

magnetization for the majority of terrestrial rocks, forming a common constituent 

of igneous rocks and some sedimentary and metamorphic rocks. As shown in 

Figure 2.11, magnetite represents the right corner of this series and it has a 

Curie temperature 580°C. Curie temperature decreases linearly from right to left 

(with increasing amount of titanium), and consequently becomes nearly -150 C° 

for antiferromagnetic ulvöspinel (Merrill et al., 1996). Magnetite sometimes can 

be oxidized at low temperatures to produce another ferrimagnetic mineral called 

maghemite (γFe2O3) (Tarling, 1971). Furthermore, magnetite can be found as a 

primary mineral in igneous rocks, whereas in sediments, it often appears as 

detrital component, or is produced either by bacteria or authigenically during 

diagenesis (Tauxe, 2009).  

The second important series of magnetic minerals is called the titanohematite 

(or ilmenite-hematite) series. The members of this group are also considered to 

be important carriers for remanence in some terrestrial rocks, where hematite 

can represent a dominant ferromagnetic mineral within highly silicic and/or 

highly oxidized igneous rocks. However, generally, in most igneous rocks the 

titanomagnetite minerals (including their oxidation products) comprise a more 

dominant part than titanohematite minerals and their oxidation products (Butler, 

1998). Hematite is the most common antiferromagnetic mineral in this group, 

which is characterized by a black or red color, and it has Néel temperature 
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(analogous to Curie temperature) of approximately 680°C. Hematite is an 

important carrier of remanence in terrestrial rocks, particularly in red bed 

sediments (Tauxe, 2009). Hematite occupies the right corner of this series and 

Curie temperature decreases linearly from right to left (with increasing amount 

of ilmenite) (Figure 2.11), and becomes -223 C° for ilmenite (Merrill et al., 1996). 

Moreover, hematite can originate as a result of oxidation of titanomagnetites or 

by exsolution of ilmeno-hematite. Also it can be found in igneous rocks by 

decomposition processes of other iron-bearing minerals like olivine, pyroxene 

and amphibole (Tarling, 1971). In addition, there are two iron-sulfide minerals 

which are important ferromagnetic minerals in palaeomagnetic studies; these 

are pyrrhotite (Fe7S8) and greigite (Fe3S4), and both these minerals originate in 

reducing environments (Tauxe, 2009). Table 2.1 displays some magnetic 

minerals that exist in rocks and summarises their magnetic properties. 

 

 

Figure 2.11. FeO-TiO2-Fe2O3 ternary compositional system showing the two important solid 

solution series (combined from Butler, 1998 and McElhiny and McFadden, 2000). 
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Table 2.1. Selected magnetic minerals and their magnetic properties (modified from 

Harrison and Feinberg 2009). 

Mineral Formula Magnetic 
structure 

Curie/Néel 
temperature 

(°C) 

Saturation 
magnetization 

(Am2/kg) 

OXIDES 

hematite α-Fe2O3 canted 
antiferromagnetic 

675 0.4 

maghemite γ-Fe2O3 ferrimagnetic ~600 70–80 

ilmenite FeTiO3 antiferromagnetic -233 0 

magnetite Fe3O4 ferrimagnetic 575–585 90–92 

ulvöspinel Fe2TiO4 antiferromagnetic -153 0 

SULPHIDES 

pyrrhotite Fe7S8 ferrimagnetic 320 20 

greigite Fe3S4 ferrimagnetic ~333 ~25 

OXYHYDROXIDES 

goethite α-FeOOH Antiferromagnetic 
weak 

ferromagnetic 

~120 <1 

lepidocrocite γ-FeOOH antiferromagnetic? -196 ? 

tetrataenite FeNi ferromagnetic 550 ? 

 

2.5 Forms of natural magnetization in rocks 

 In general, natural magnetizations may be of two types: induced magnetization, 

which is present in a material exposed to an external ambient field and 

disappears when this external field is removed, and remanent magnetization, 

which remains after removal of the applied field (Tauxe, 2009). 

Palaeomagnetism mainly deals with the measurement of natural remanent 

magnetization (NRM), i.e. the magnetization which was recorded naturally in a 

rock over its history as a fossil magnetism before any laboratory treatment 

(Butler, 1998; Van der Voo, 1993). 

The NRM of a rock generally is composed of several magnetization 

components acquired over its geological history. The NRM component 

produced in a rock by an ancient field at the time of formation of the rock is 
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referred to as the primary NRM component, and is the component desired in 

most palaeomagnetic studies. Components acquired after formation are known 

as secondary components. These may be removed by laboratory 

demagnetization, allowing recovery of primary components.  

Table 2.2 summarizes the various forms of natural remanence in rocks, and 

there follows a brief account of the most significant processes that give rise to 

these remanences. 

Table 2.2.  Some different types of natural remanent magnetizations (NRM) (combined from 

Butler, 1992 and McElhinny and McFadden, 2000). 

Type of 
remanence 

Acronym Magnetization 
process 

Rock types 

Thermoremanent 
magnetization 

TRM Magnetization acquired 
during cooling below the 
Curie temperature in an 
external field 

Igneous and 
metamorphic 
rocks 

Depositional 
remanent 
magnetization 

DRM Magnetization acquired 
during deposition of 
ferromagnetic detrital grains 
in an external field 

Sedimentary 
rocks 

Post-depositional 
remanent 
magnetization 

pDRM Magnetization acquired due 
to realignment of magnetic 
grains in wet sediments in an 
external field 

Sedimentary 
rocks 

Chemical 
remanent 
magnetization  

CRM Magnetization acquired 
through chemical changes 
within a magnetic material at 
low temperature in an 
external field 

All  rock 
types 

Isothermal 
remanent 
magnetization 

IRM Magnetization acquired 
instantaneously due to a 
strong magnetic field (e.g. 
lightning strikes) 

All  rock 
types 

Viscous remanent 
magnetization 

VRM Kind of natural secondary 
magnetization acquired over 
time due to exposure to 
ambient geomagnetic field 

All  rock 
types 
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2.5.1   Thermoremanent magnetization (TRM) 

Thermoremanent magnetization (TRM) is a type of NRM acquired by most 

igneous rocks during cooling down below the Curie and blocking temperatures 

of its constituent ferromagnetic grains in the presence of an Earth magnetic field. 

In the absence of an ambient magnetic field, thermal energy randomises the 

magnetization of grains and no significant net magnetization is produced. 

However, the presence of an ambient magnetic field acts to bias this 

randomization process, resulting in statistically more grains having their 

magnetization blocked in along an easy axis of magnetization that is close to 

the direction of the magnetic field at that time (Butler, 1998; Lowrie, 2007; 

Tauxe, 2009) (Figure 2.12).  

 

 

Figure 2.12. Schematic figure showing the changes in the magnetic status of ferromagnetic 

grains from paramagnetic to ferromagnetic during cooling (from Lowrie, 2007).  

During the cooling process from the Curie Temperature (Tc) of an individual SD 

grain to the blocking temperature (Tb), the grain is ferromagnetic but remanent 

magnetization of the grain is unstable and it behaves paramagnetically. Below 

Tb, the remanent magnetization is effectively blocked, becomes stable and 

remains after removal of the magnetizing field (Butler, 1998). In a rock 



33 
 

containing an assemblage of grains, each with its own Tb (determined 

principally by grain size), TRM acquisition will not occur solely at the Curie point 

but over a distinct blocking temperature interval starting from the Curie 

temperature down to room temperature. The total TRM acquired in this process 

can be considered as the sum of the TRM components that were acquired in 

different temperature intervals, known as partial TRMs (pTRMs). Also, as a rock 

cools, the relaxation times of its ferromagnetic grains increase exponentially, 

eventually potentially exceeding the age of the Earth. Hence, TRM can be 

considered as a very stable magnetization that remains in the rock for a long 

period of geological time. 

2.5.2   Depositional remanent magnetization (DRM) 

Depositional remanent magnetization (DRM) is acquired during deposition of 

detrital sedimentary rocks. During settlement of detrital magnetic grains through 

water, they are affected by the ambient geomagnetic field and tend to align with 

this field. However there are hydromechanical forces related to water currents 

that act to disturb the grains alignment with the field during settlement. In 

addition, as non-spherical grains are deposited, they rotate so that their long 

axes are sub-parallel to the sediment surface giving rise to an inclination error. 

Magnetic grains are also subject to other physical alignment processes after 

deposition caused by organisms, compaction and diagenesis. The 

magnetization which is acquired after deposition but before lithification is called 

post-depositional remanent magnetization (pDRM) (Butler, 1998; Lowrie, 2007; 

Tauxe, 2009). pDRM is usually acquired in the top of accumulated sediments 

within the first 10-20 cm (Butler, 1998). 
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2.5.3 Chemical remanent magnetization (CRM) 

Chemical remanent magnetization (CRM) is acquired during mineralogical 

changes within a rock at low temperatures (below the Curie temperatures of the 

magnetic minerals) in the presence of a magnetizing field. In general, CRM has 

properties similar to TRM, but unlike TRM, during the formation of CRM the 

volume of magnetic grains progressively grows and consequently the 

acquisition process is related to the volume changes of the magnetic grains. 

The smallest grains are superparamagnetic, have short relaxation times, and 

cannot carry a stable remanence. As magnetic grains grow, their volume 

increases and their relaxation time increases until their domain state changes 

from superparamagnetic to stable single domain at a certain critical point called 

the blocking volume (Vb) (Piper, 1987; Butler, 1998; Lowrie, 2007; Tauxe, 2009).  

CRM may form a primary CRM in chemical sediments, but more often 

represents a secondary component in a rock acquired during diagenesis and 

alteration (Butler, 1998).  

2.6   Anisotropy of magnetic susceptibility (AMS) 

Anisotropy of magnetic susceptibility (AMS) is used to infer the alignment of 

elongate magnetic minerals by defining the magnetic fabric of rocks. Hence 

AMS can give information about processes related to different geological 

phenomena, e.g. flow directions in dykes and lava flows or structural features 

related to tectonic forces (Tarling and Hrouda, 1993). As a result of its very high 

magnetic susceptibility, the AMS signal in most rocks is dominated by the 

preferred alignment of magnetite grains. The AMS method depends on 

measuring the variation in low field magnetic susceptibility in different directions 

in a standard volume of rock sample under a weak magnetic field (~ 10-4 T). 
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These variations can be expressed as a symmetric second rank tensor, which 

can be represented by a triaxial ellipsoid. The principal axes of the ellipsoid are 

defined in magnitude and direction by the maximum (K1), intermediate (K2) and 

minimum (K3) susceptibilities. When K1 = K2 = K3, the shape of the anisotropy 

ellipsoid is a sphere and the magnetic susceptibility is described as isotropic. 

When K1 ≈ K2 > K3, the ellipsoid is oblate (disc-shaped). When K1 > K2 ≈ K3, the 

shape is prolate (cigar-shaped). Finally when K1 > K2 > K3 the shape of the 

ellipsoid is triaxial (Tauxe, 1998; Morris, 2003) (Figure 2.13). 

 

Figure 2.13. Schematic diagram of magnetic fabric ellipsoids showing the three principal 

susceptibility axes (modified after Winkler et al., 1997). 

The K1 axis normally represents the magnetic lineation, and its alignment 

describes the palaeo-flow direction, both in igneous rocks and in sedimentary 

current deposits (i.e. they show prolate ellipsoids). In oblate ellipsoids the K3 
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axis is usually perpendicular to the magnetic foliation plane which contains both 

the K1 and K2 axes, which is common in foliated rocks (Morris, 2003). 

2.7   Palaeomagnetic methodologies 

2.7.1 Palaeomagnetic sampling 

In all localities of the Mersin and Lizard ophiolites, sampling was carried out 

using a gasoline-powered portable drill with a water-cooled diamond bit, 

following standard palaeomagnetic practice (Butler, 1998; Tauxe, 2009) 

(Figures 2.14 and 2.15). 

 

Figure 2.14. Core sample collection in the field. (a) Field photograph illustrating core drilling. (b) 

Portable gasoline-powered drill with water-cooled diamond bits. (c) A pump used to inject water 

into the drill hole to lubricate the drill. (d) Sun compass as a part of non-magnetic slotted tube 

with an adjustable platform around the sample, used to orient drill cores. 
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Figure 2.15.  Sampling technique used in the field. (a) Collecting drilled samples. (b) In situ 

marking of a permanent arrow on the upper side of the drilled core in the direction of drilling and 

labeling the sample with the sample name. 

 At least eight samples with an average length of 7 cm were taken at each site 

and independently oriented using both magnetic and sun compasses. Heavily 

fractured exposures were avoided during drilling, and weathered surfaces were 

cleared prior to drilling. The right-handed Cartesian coordinate system was 

used to specify the orientation of core samples in situ (Figure 2.16). In addition 

to core samples, some oriented block samples were also collected and 

subsequently drilled in the laboratory (Figure 2.17).   
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Figure 2.16.  Orientation system for core samples. (a) A schematic diagram representing of 

drilled core sample in situ. (b) Diagram showing orientation angles for drilled core sample. The 

measured angles are: hade of the z axis (angle between z axis and vertical) and geographic 

azimuth of the horizontal projection of the +x axis measured clockwise from geographic north 

(modified from Butler, 1998).  

 

Figure 2.17. Laboratory techniques for preparation of the palaeomagnetic specimens. (a) 

Drilling the hand samples. (b) Arrows drawn on the side of the drilled cores. (c) Preparing the 

specimens by cutting the core samples. (d) Numbering the specimens for measuring. 
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2.7.2 Anisotropy of magnetic susceptibility (AMS) measurements 

AMS of all specimens was measured before application of palaeomagnetic 

demagnetization techniques. All AMS measurements were conducted at 

Plymouth University using an AGICO KLY-3 Kappabridge (Figure 2.18a) using 

the control program SUSAR. Each specimen was measured in three positions 

to determine differences in susceptibility in the plane of measurement, with a 

fourth measurement used to determine the bulk susceptibility. The program 

SUSAR then automatically combined these measurements and calculated a 

best-fit anisotropy ellipsoid for each specimen described by a second-order 

tensor, with principal axes corresponding to the maximum (K1), intermediate (K2) 

and minimum (K3) susceptibilities. In addition to the direction and magnitude of 

each of these axes, the principal susceptibilities were used to calculate two 

standard AMS statistics (using the AGICO program ANISOFT v. 4.2). The 

corrected anisotropy degree PJ, (Jelinek, 1981) describes the strength of the 

anisotropy, with a PJ value of 1.00 indicating zero anisotropy (isotropic), and, for 

example, PJ = 1.05 indicating 5% anisotropy. The shape parameter, T, (Jelinek, 

1981) describes the shape of the anisotropy ellipsoid, with T values ranging 

from +1 to –1, where positive values indicate oblate magnetic fabric shapes 

(disks) and negative values indicate prolate magnetic fabric shapes (rods or 

cigars) (Figure 2.19).  These parameters are calculated from the principal 

susceptibilities using the following equations (Tarling and Hrouda, 1993):  

Pj = exp 2 [(η1 - ηm) 2 + (η2 - ηm) 2 + (η3 - ηm) 2] 

where η1 = ln K1, η2 = ln K2, η3 = ln K3 and η1 = (η1 + η2 + η3)/3 

T= [2ln (K2 / K3) / ln (K1 / K3)] - 1 
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2.7.3 Anisotropy of anhysteretic remanent magnetization (AARM) 

AMS includes contributions from all minerals in a specimen (e.g. silicates and 

oxides in gabbroic rocks). In order to determine the anisotropy of just the oxides 

(principally magnetite), a different form of magnetic anisotropy is used. 

Anisotropy of anhysteretic remanent magnetization (AARM) yields the preferred 

fabric of ferromagnetic minerals sensu lato only, as only these phases are 

capable of retaining a remanent magnetization after removal of a magnetic field. 

The concept of AARM measurement is similar to AMS measurement, and 

produces a second rank tensor represented by the AARM ellipsoid. An 

uncertainty in AMS studies is introduced by a domain-state effect that can give 

rise to inverse fabrics in rocks dominated by SD magnetite. This is because the 

K1 axes of SD grains are perpendicular to their long axes whereas K1 of larger 

MD grains is aligned with grain long axes. This is not the case for remanence 

anisotropy, however, and theoretically both SD and MD magnetite grains 

preferentially will have a maximum intensity of remanence parallel to their long 

axes, thus eliminating the problem of inverse fabrics inherent in AMS studies 

(Jackson, 1991). Therefore, it is useful to compare AMS results with AARM 

results from the same samples in order to test for the presence of inverse AMS 

fabrics (Rochette et al., 1999) and allow unambiguous interpretation of AMS 

data in terms of preferred orientations of crystals.  

The AARM measurement consists of imparting an anhysteretic magnetization to 

a previously demagnetized specimen in several directions. Accordingly, this 

procedure was started by cleaning the specimen using AF demagnetization at a 

peak field of 100 mT. The specimen was then magnetized by applying an 

alternating field of 80 mT in the presence of a direct (bias) field of the 50 T. 
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The specimen was then measured for remanent magnetization using the JR-6A 

spinner magnetometer and the ARM6 program. For each specimen, this 

process was repeated for 12 different positions (i.e. orientation of the applied 

field). The AARM ellipsoids and corresponding principal axes (AARMmax, 

AARMint and AARMmin) were then calculated by using the Jelinek method 

using the AGICO program ANISOFT v. 4.2, (in the same way as for the AMS 

measurements). In order to avoid any problems during the measurements, all 

the specimens that were selected for this analysis were intact and with standard 

sizes (2.5 mm in diameter and 22 mm in height). 

In this study, all AARM measurements were conducted at Plymouth University 

using an AGICO LDA-3 Demagnetizer with an AGICO JR-6 Spinner 

Magnetometer, using an alternating demagnetizing field of 100 mT and a 

biasing field of 50 T (Figure 2.18b). 

 

Figure 2.18. Palaeomagnetic laboratory instruments. (a) AGICO Kappabridge KLY-3 - Magnetic 

susceptibility/anisotropy system. (b) AGICO dual speed spinner magnetometer Model JR6A. (c) 

Molspin fluxgate spinner magnetometer. 
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Figure 2.19.  Degree of anisotropy Pj, versus shape parameter T diagram (Jelinek, 1981). Note: 

positive values of T represent oblate fabric shapes and negative values of T represent prolate 

fabric shapes (after Stefan Schöbel and Helga de Wall, 2011). 

2.7.4 Palaeomagnetic measurement & demagnetization techniques 

The natural remanent magnetization (NRM) of a rock is usually a mixture of a 

primary component acquired at the time of its formation, and secondary 

components acquired at different stages afterwards through its history. In most 

palaeomagnetic investigations, the primary component is the component which 

is required, so the removal of the secondary components by demagnetization 

(magnetic cleaning) is necessary. There are two common techniques used for 

separation of the various components of magnetization. The first one is 

alternating field (AF) demagnetization which is implemented by exposing the 

specimen to a progressively decaying alternating magnetic field in a zero direct 

magnetic field environment, and the second technique is thermal 

demagnetization, which is performed by heating the specimen to high 

temperature and cooling back to room temperature in zero magnetic field, 

progressively increasing the temperature between measuring steps. There is a 

difference in the efficiency of thermal and AF techniques due to the difference in 

the composition of the remanence-carrying grains, whereby AF 
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demagnetization is often ineffective in removing secondary components carried 

by hematite, which usually has coercivities more than the peak demagnetizing 

field (Butler, 1998; Morris, 2003). Thermal demagnetization can effectively 

demagnetize all hematite grains, but some problems may appear due to the 

mineralogical alteration in the specimen by increasing the temperature. 

Therefore, in order to monitor such alteration, it is necessary to measure the 

magnetic susceptibility of the specimen after each temperature step (Tarling, 

1983; Morris, 2003). 

In this study, both thermal and AF demagnetization were used and both 

techniques were carried out at Plymouth University. AF demagnetization was 

performed using an AGICO LDA-3 AF-demagnetizer with a maximum peak field 

of 100 mT, whereas thermal demagnetization was performed using a Magnetic 

Measurements Ltd Thermal Demagnetizer – MMTD oven with a maximum 

temperature of 580 °C. At each heating step the specimens were held at the 

specified temperature for 40 minutes before cooling.  

All remanent magnetization measurements were carried out using an AGICO 

JR-6 spinner magnetometer or a Molspin fluxgate spinner magnetometer inside 

a low field environment produced by a set of Helmholtz coils (Figure 2.18). 

There are two principal ways for presenting the stepwise magnetization data: 

orthogonal diagrams (also called Zijderveld diagrams, or vector component 

diagrams), and equal area stereographic projections (Butler, 1998; Tauxe, 2009) 

(Figures 2.20 and 2.21). Orthogonal plots allow both the direction and intensity 

of the three-dimensional magnetization vector to be present on the two-

dimensional diagram. On these two-dimensional diagrams, the remanence at 

each demagnetization step is projected on to both the horizontal plane and 
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either the N-S or E-W vertical plane, allowing depiction of the declination and 

apparent inclination simultaneously. The distance from the origin to any point is 

then proportional to the intensity in that projection plane. 

 

 

Figure 2.20. Illustration of the principle of orthogonal (vector component) projections. (a) 

Projection of the NRM vector produced during progressive demagnetization onto the horizontal 

plane. The light red arrow represents the horizontal projection of the low-stability component of 

NRM removed in the interval 0-3; the light green arrow represents the horizontal projection of 

the stable characteristic component of magnetization (ChRM) remaining at step 3. (b) Projection 

of the NRM components onto a vertical plane. The light red arrow represents the vertical 

projection of the low-stability component of NRM removed in the interval 0-3; the light green 

arrow is the vertical projection of the ChRM remaining at step 3. (c) Combination of horizontal 

and vertical projections of NRM vectors in one single diagram (modified from Butler, 1998)  

Equal-area projections also display the direction of an NRM, but the intensity of 

NRM needs to be presented separately (Butler, 1998; Figure 2.21). Figure 2.20 

is an example, and also illustrates the usual procedure for isolating the primary 

component from the data from progressive demagnetization experiments. 

Directions of NRM components can be determined numerically using principal 
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component analysis (Kirschvink, 1980). Directions of magnetization determined 

in this way may then be combined using vector averaging to yield the mean 

direction of each component at the site-level, together with the associated 

Fisher statistics. 

 

Figure 2.21. Equal-area stereographic projection of the same data shown in Figure 2.20, with 

NRM intensity diagram displaying stepwise demagnetization at levels 0 through 6 (from Butler, 

1998). 

Fisher (1953) derived a probability density function for vectors considered as 

points on a sphere, known as the Fisher distribution, which is used to 

statistically define the dispersion of a set of magnetization vectors around the 

mean direction and to perform statistical tests. The theoretical precision 

parameter, k, for the Fisher distribution varies from zero if all vectors in the total 

population are randomly distributed to infinity if they are all identical to the mean. 

The best estimate, k, of this precision parameter (based on the finite number of 

samples drawn from the total population) is simply given by: 

k =
N -1

N -R
 

for N > 7 and k > 3: 

where R is the length of the resultant vector of the N individual magnetization 
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vectors. Values of k > 10 indicate that the observed mean direction is close to 

the true mean of the total population. 

The Fisherian confidence limit associated with a calculated mean direction of 

magnetization is usually quoted for the 0.95 probability level and is given by: 

 

which, if k > 7, can be approximated by: 

 

There is a 95% probability that the true mean direction of the total population of 

magnetic vectors (from which the sampled population of magnetic vectors was 

drawn) will lie within this cone. A well-defined mean direction of magnetization 

will have a high value of k (>10) and a small 95 angle (< 15°). 

2.7.5 Rock magnetic experiments  

2.7.5.1 Isothermal remanent magnetization (IRM) analyses 

Isothermal remanent magnetization (IRM) acquisition is a useful technique for 

identification of ferromagnetic minerals, which are responsible for carrying 

remanence and recording an ancient magnetic field in a rock (Butler, 1998; 

Morris, 2003; Tauxe, 2009). The standard procedure involves exposing a 

previously demagnetized specimen in the laboratory to incrementally increasing 

direct magnetic field pulses along its z axis, followed by measurement of the 

resulting IRM after each field application (Figure 2.22). IRM intensity is then 

plotted against applied field to produce an IRM acquisition curve for each 

specimen.  The shape of the IRM curve is controlled by the ferromagnetic 
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mineralogy. For example, magnetite, titanomagnetite or maghemite show rapid 

IRM acquisition, followed by flattening of the curve as a result of saturation by 

applied fields of up to 300 mT. In contrast, the IRM curve of a sample containing 

hematite does not saturate until applied fields of 1.5 - 5.0 T (Morris, 2003). 

 

Figure 2.22. Schematic diagram illustrating the process of isothermal remanent magnetization 

acquisition. (a) Steps in the process. (b) Exposing the specimen to a magnetic field along the +z 

axis. (c) Exposing the specimen to a back field along the -z axis.  

After applying the maximum field of 800 mT for the final step of this experiment, 

the procedure was then repeated using back-fields (i.e. field applied along   -z 

axis of the specimen as shown in Figure 2.22). Application of progressively 

higher back-fields gradually reduces the IRM from its saturation value in the 

forward (+z) direction to saturation in the reverse (-z) direction. The back-field 

that reduces the IRM to zero is called the coercivity or remanence, which is 
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controlled by magnetic grain-size. Hence, determining the coercivity of 

remanence provides additional information that complements that obtained from 

the initial IRM acquisition experiment (Dunlop and Özdemeir 1997). 

All IRM measurements were conducted at Plymouth University using a Molspin 

pulse magnetizer (with a maximum peak field of 800 mT) and an AGICO JR-6 

spinner magnetometer.   

2.7.5.2 Curie temperature determinations 

The Curie temperature is the temperature at which a magnetic substance loses 

its ferromagnetic properties and behaves paramagnetically. During heating, the 

interatomic distances will increase and the strength of interaction between 

magnetic moments will decrease. When a ferromagnetic material reaches its 

Curie temperature, the magnetic coupling between adjacent atomic moments 

breaks down due to thermal vibrations and the material becomes paramagnetic 

(Butler, 1998; Morris, 2003). 

Curie temperature is directly controlled by magnetic mineralogy; therefore, the 

determination of this value in thermomagnetic experiments provides a useful 

indicator for identifying different kinds of ferromagnetic minerals. Table 2.1 

shows the typical values of Curie temperature for selected magnetic minerals. 

In order to determine the Curie temperature of samples in this study, the rocks 

were crushed to a powder suitable for use in the furnace attachment to the 

AGICO KLY-3S Kappabridge. This device is used to heat the powder to a 

maximum temperature of 700°C followed by cooling to room temperature while 

simultaneously measuring temperature and magnetic susceptibility. In addition, 

to prevent the oxidation of the sample, powders were heated in an argon 
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atmosphere. To determine the Curie point, we used the program Cureval 8 from 

Agico Inc. using the method of Petrovský and Kapička (2006). 

2.7.6 Structural correction of palaeomagnetic data 

2.7.6.1 Standard tilt corrections  

In palaeomagnetic studies, standard corrections for tectonic tilting involve 

rotating palaeohorizontal/vertical planes of sampled units back to 

horizontal/vertical about a strike-parallel axis. This procedure decomposes the 

total deformation at a site into components of tilting around a horizontal axis and 

a vertical axis rotation. In simple geological terrains this approach may give 

interpretable results, but in complicated orogenic zones, where in general most 

fold axes are not horizontal, this procedure may result in extreme declination 

anomalies (MacDonald, 1980). In such cases, it is more appropriate to describe 

the total deformation at a site by a single rotation about an inclined axis, which 

returns both the palaeohorizontal/vertical to its original orientation and the site 

magnetization vector to an appropriate palaeomagnetic reference direction 

(Allerton and Vine, 1987; Morris et al., 1998). This alternative net tectonic 

rotation approach has been used extensively in this study. 

2.7.6.2 Net tectonic rotation (NRT) analysis method 

Net tectonic rotation analysis represents an important technique for structural 

correction in ophiolitic terranes, as it avoids arbitrarily dividing the total 

deformation at a site into components of rotation around horizontal and vertical 

axes. Moreover, a net tectonic rotation approach is the only way of assessing 

components of rotation of dykes around axes perpendicular to their margins 

(Allerton and Vine, 1987; Borradaile, 2001; Morris and Anderson, 2002). 
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The net tectonic rotation approach involves finding the single rotation (generally 

around an inclined axis) that simultaneous restores an observed magnetization 

direction back to an expected (reference) direction and a geological structure 

(e.g. bedding, dyke margin etc) back to its original orientation. The specific 

methodology employed in this thesis is that first proposed by Allerton and Vine 

(1987) and subsequently modified to incorporate uncertainties by Morris et al., 

(1998). This is based on the assumption that the angle between the initial 

magnetization direction and the pole to the dyke/layering has not been changed. 

The deformation at a site in this case is interpreted in terms of a single rotation 

about an inclined axis; accordingly, this method provides an appropriate way to 

restore both the present dyke/layering pole to its initial orientation and the site 

magnetization vector (SMV) to the proper palaeomagnetic reference direction 

(Allerton and Vine 1987; Morris et al., 1998). The palaeomagnetic reference 

direction used is usually found from an appropriate apparent polar wander path 

(e.g. Besse and Courtillot, 2002). 

According to Allerton and Vine (1987), there are four fundamental assumptions 

inherent in this method: 

1) The observed stable magnetization was acquired prior to occurrence of any 

structural deformation. 

2) A reference magnetization direction can be found that represents the Earth's 

magnetic field direction at the time of magnetization was acquired. 

3) Dykes/layers are restored as close to vertical/horizontal as possible. 
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RMV: Reference Magnetization Vector (reference 

direction = 351/34) 

SMV: Sample Magnetization Vector (in situ 

remanence = 062/-34) 

PPL: Present Pole to Layering (352/-08) 

IPL: Initial Pole to Layering 

β: Angle between SMV and PPL (69°) 

RP: Pole of net tectonic rotation (058/24) 

 
Plot RMV, SMV, and PPL. Determine the angle β. 
 

 

 
 
 
Construct a circle of radius β centred on the 
RMV. This gives the position of all possible initial 
poles to layering. The chosen initial pole (IPL) is 
that which is nearest to the centre of the 
stereonet, corresponding to the shallowest 
possible initial dip of the layering.  
 

 

 
 
Construct the great circle bisectrix of the SMV 
and RMV. This gives the locus of all possible 
rotation poles that can restore the SMV to the 
RMV. Likewise, construct the great circle bisectrix 
of the PPL and IPL. The intersection of both great 
circle bisectrixes gives the position of the net 
tectonic rotation pole (RP). The angle of rotation 
is then easily found using an auxiliary rotation 
method. 
 

 

Figure 2.23.  An example of the palaeohorizontal case of the method of Allerton and Vine (1987) 

using data from site MC04. 
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4) There is no internal deformation of the sampled rock body and thus the angle 

β between the pole to the dyke/layering and the magnetization vector remains 

constant throughout deformation. 

Figure 2.23 illustrates the net tectonic analysis method used for the layered 

cumulates in this study.  

The modification to this method proposed by Morris et al. (1998) involves 

performing multiple calculations of the net tectonic rotation parameters using 

input vectors distributed around their respective 95 cones of confidence. An 

envelope surrounding the resulting distribution of rotation poles then represents 

the best estimate of the 95% confidence limit on possible rotation axes, and the 

associated rotation angles can be represented using a histogram (see Figure 5 

of Morris et al. (1998) for an example). 

2.8 Other methods employed 

2.8.1 Thin section preparation for AMS & petrographic analysis 

To determine the relationship between AMS principal axes and preferred 

mineral alignment (i.e. grain shape preferred orientation for the minerals within 

the rocks), thin sections were prepared that were cut along the plane defined by 

K1 and K3 axes (Figure 2.24). In addition, these thin sections also were used to 

examine the mineralogy of sampled lithologies, such as ultramafic cumulates, 

gabbros, dykes, basaltic lavas and carbonate sedimentary rock,  using both 

optical microscopy microscope and SEM analyses. A suite of 30 polished thin 

sections was prepared in this way. 
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. 

 

Figure 2.24.  Photos illustrating the method of thin section preparation 
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2.8.2 Analytical techniques for geochemistry & X-ray fluorescence (XRF) 

analysis 

X-Ray fluorescence analysis is a powerful analytical method used in a wide 

spectrum of studies, and in most situations is non-destructive. The relative ease 

and stability of use of X-ray spectrometers, low cost of sample preparation and 

the little amount of the sample required for analysis make this one of the most 

common methods to determine the major and trace (ppm-level) element content 

of rocks minerals, sediment and liquids. The XRF method depends on the 

interaction of X-rays with a material to determine its elemental composition. 

There are two main XRF methodologies: (i) by preparing pressed pellets; and (ii) 

by preparing fused beads, with the former generally used for determination of 

trace elements, and the latter used for determination of major elements.  

 

Figure 2.25.  Rock powder preparation using the teamer mill. 
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2.8.2.1 Sample preparation 

Firstly, fresh chips of the samples were dried in the open air and then pulverized 

using a tungsten carbide crusher machine, T 100/G (Tema machinery Ltd / 

Germany). Each sample was milled to a powder for two minutes (each 

approximately 50 g), and between samples the device was cleaned thoroughly, 

starting by cleaning with alcohol and then grinding with clean glass followed by 

cleaning with acetone. After that, the milled samples were saved inside plastic 

bags, ready for analysis at the University of Southampton (Figure 2.25). 

 

Figure 2.26. Pressed pellet preparation in the laboratory. (a) Aluminum cups. (B) Pressed 

pellets. (c) Hydraulic press machine. (d) Oven.    
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2.8.2.2 Producing pressed powder pellets for trace element measurements 

Approximately 12 g of sample powder was weighed into a small plastic mixing 

jar with 14 drops of PVA glue (polyvinyl alcohol 8% in water), and mixed very 

well for 5 minutes. The mixed powders are emptied into aluminium cups of 40 

mm diameter. The filled cups were then pressed using a 250 kilo-Newton 

hydraulic press, type: Herzog / SIMATIC C7-621 / SIMENS. Finally, before 

measurement, the pressed cups were placed inside an oven at 75°C for 12 

hours for drying (Figure 2.26). Pressed pellets were then loaded into the XRF 

spectrometer type MAGIX-PRO / Philips for measurement. 

2.8.2.3 Producing fused beads for major element measurements 

For major element measurement, 3 g of sample powder was weighed into small 

glass bottles and dried at 100°C for 24 hours in an oven. To prevent absorption 

of the moisture after heating, glass bottles were then immediately transferred to 

a desiccator until the temperature of the samples dropped to room temperature 

(Figure 2.27a). After cooling, exactly 0.5 g of each sample powder was weighed 

(using a high sensitivity balance; Figure 2.27b) into platinum crucibles and 

mixed with exactly 5.0 g of pure Di-lithium Tetraborate flux. In order to get a 

good and homogeneous mixture for fusion, a small vibrator was used, type IKA 

VORTEX / GENIUS 3 (Figure 2.27c).  

The mixture was then fused in a platinum crucible at 1100˚C using a Raddic 

fusion machine / HD Elektronic und Elektrotechnik GmbH (Figure 2.28)  This 

device works automatically so that after the completion of melting the device 

starts casting the fluid in a platinum mould with a flat base and then squirts with 

air to cool and solidify. The cooled beads were then labeled with a marker on 
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their top surface (Figure 2.29). The fused beads were then loaded into the XRF 

spectrometer type MAGIX-PRO / Philips for measurement. 

 

Figure 2.27.  Laboratory equipment used for preparing fused beads. (a) Desiccator. (b) 

Sensitive balance. (c) Mini vibrator.  

 

Figure 2.28.  Fusion machine used in melting the powder mixtures for preparing fused beads. 
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Figure 2.29.  Fusion Steps. (a) Melting the mixture. (b) Casting. (c) Cooling. (d) Bead retrieval 

and labeling. 
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Chapter 3 

The Mersin Ophiolite 

3.1 Introduction 

The ophiolites of Turkey represent a part of the Tethyan ophiolite belt, which is 

considered one of the longest ophiolite belts in the world, extending from Spain 

to the Himalayas (Figure 3.1). The tectonic setting of the Turkish ophiolite belt is 

a direct result of the closure of the Tethyan Sea. The Tethyan suture zones in 

the Turkish area are characterised by numerous oceanic lithologies such as 

ophiolite bodies, ophiolitic melanges, other oceanic magmatic rocks (i.e. 

seamounts) and pelagic deposits, in addition to active and passive continental 

margins with intensely deformed structures in some places, resulting from 

collisional episodes. 

 

Figure 3.1.  Simplified map showing the distribution of main Tethyan ophiolites together with 

suture zones within the Alpine-Himalayan orogeny system (modified from Dilek and Flower, 

2003). Key numbers (from west to east): 1- Lycian ophiolite, 2- Antalya ophiolite, 3- Mersin 

ophiolite, 4- Troodos ophiolite, 5- Kizildağ (Hatay) ophiolite, 6- Baër-Bassit ophiolite, 7- Semail 

(Oman) ophiolite. 
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This chapter introduces the general distribution of the Turkish ophiolites, their 

origin and root zones, and provides a description of the geology of the Mersin 

ophiolite. This review helps to explain the structural and the geological 

development of the studied area, providing the context for the results that have 

been obtained from palaeomagnetic and structural analyses. 

3.2 Outline of Turkish terranes and sutures 

Turkey (Anatolia or Asia Minor) represents an east-west bridge that links Asia 

with Europe, lies within the Alpine-Himalayan mountain belt, and forms the 

geological boundary between Gondwana and Eurasia. During most of the 

Phanerozoic period, Turkey was not a single continent, but was composed of 

several continental fragments that were separated by oceans (Figure 3.2). They 

assembled to form a single landmass during the Late Cretaceous-Tertiary 

period through a complex series of geological events which led to the collision 

of Gondwana in the south with Eurasia in the north and the closure of different 

Tethyan oceanic basins that now mark the sutures between these continental 

fragments (Robertson, 1998; Bozkurt and Mittwede, 2001; Moix et al., 2008; 

Okay and Whitney, 2010; Robertson et al., 2012; Robertson et al., 2013 b).  

According to Yılmaz and Yılmaz (2013), the collision of these continental 

fragments initially started from the north and then gradually moved to the south 

and down towards south-eastern Anatolia, where the final amalgamation of 

these continental fragments into a single land mass occurred during the Tertiary 

period through continental collision between the Arabian and Anatolian plates 

(Bozkurt and Mittwede, 2001). Turkey is therefore characterized by a very 

complex geology and can be geologically divided into six major segments 
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Figure 3.2.   A view of the Mediterranean palaeogeography showing the Northern Neotethyan, 

Southern Neotethyan and the main Turkish continental fragments during the Early Cretaceous (100 

Ma) (after Okay, 2008).     

 

Figure 3.3. Tectonic map of Turkey and surrounding regions showing the main sutures and 

continental fragments (from Okay and Whitney, 2010). 
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(Şengӧr and Yılmaz, 1981; Okay and Tüysüz, 1999). These are: (1) The 

Strandja Zone, (2) The Istanbul Zone, (3) The Sakarya Zone, (4) The Central 

Anatolian Crystalline Complex (Kırşehir Massif), (5) The Anatolide-Tauride 

Block, and (6) the Arabian Platform (Figure 3.3).  

The first three zones are collectively called the Pontides, which show Eurasian 

affinities (Okay, 2008; Bozkurt and Mittwede, 2001) and retain indications of 

Variscan (Carboniferous) and Cimmeride (Triassic) orogenies with little sign of 

the effects of the Alpine orogeny, which led to folding and faulting but without 

metamorphism (Okay, 2008). These Pontic zones are separated from the 

Kirşehir Massif and the Anatolide-Tauride Block by the c. 2000 km long east–

west trending Izmir-Ankara-Erzincan suture, which is believed to be the main 

geological boundary between Eurasia and Gondwana in the Turkish region 

during the Carboniferous to Paleocene (Okay and Tüysüz, 1999). This suture 

zone comprises ophiolitic rocks along with accretionary mélange rocks, and the 

ophiolites generally display incomplete ophiolitic sequences and are mostly 

peridotite massifs (Moix et al., 2008).  The Kırşehir Massif is a zone of 

metamorphic and massive granitic rocks of Cretaceous ages (Okay and Tüysüz, 

1999; Whitney and Hamilton, 2004). This zone is located in central Turkey 

between the Pontides to the north and the Anatolide-Tauride Block. It is 

believed to have rifted from the Anatolide-Tauride Block and then moved to the 

north (Robertson et al., 2013b). The Anatolide-Tauride Block represents the 

bulk of southern Turkey and is considered as a continental platform located 

between the Neotethyan Izmir-Ankara-Erzincan Ocean to the north and the 

southern section of the Neotethys Ocean. The Anatolide-Tauride Block in fact, 

consists of two platforms, the Anatolides, which includes the Bornova flysch 

zone (BFZ), Tavşanli zone and Afyon zone (Figure 3.3), and the Taurides, 
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which represent the eastern part of the block (Bozkurt and Mittwede, 2001). 

However, they are treated together as a single block because there are some 

common elements of stratigraphy in all zones within the Anatolide-Tauride 

Block. These are a Pan-African crystalline basement, a discontinuous Cambrian 

to Devonian succession dominated by siliciclastic rocks, a Permian-

Carboniferous sequence of intercalated limestones, shales and quartzites, and 

a thick Late Triassic to Late Cretaceous carbonate sequence (Okay and 

Whitney, 2010). The Anatolide-Tauride zone shows Gondwanan affinities, and 

in contrast to the Pontides was extremely deformed and partially 

metamorphosed during the Alpine Orogeny because it was in a footwall position 

during continental collision events in the Late Cretaceous-Palaeocene (Okay 

and Tüysüz, 1999; Okay, 2008; Okay and Whitney, 2010). During obduction 

and subduction episodes in the Senonian (the early part of the Late 

Cretaceous), thrust sheets and large bodies of ophiolite and accretionary 

complexes were emplaced from north to the south over the Anatolide-Tauride 

Block. Therefore the northern margin of this block has experienced high 

pressure-low temperature (HP/LT) metamorphism at depths of more than 70 km 

(Okay and Tüysüz, 1999; Okay and Whitney, 2010; Robertson et al., 2013a). 

The Arabian platform is located to the south east of Anatolia and represents the 

northern Gondwanan passive margin. Throughout the period from the Mesozoic 

to the Tertiary, the Arabian platform was separated from the Anatolide-Tauride 

Block by the southern branch of the Neotethys ocean (Şengör and Yılmaz, 1981) 

(Figure 3.3). The Arabian platform consists mainly of rocks deposited during the 

Palaeozoic to Mesozoic on a craton assembled during the Pan-African orogeny 

(Bozkurt and Mittwede, 2001).  
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3.3 The distribution of Turkish ophiolites 

Ophiolitic rocks in Turkey are classified according to their genesis and 

characteristics into three belts or groups (Juteau, 1980; Billor and Gibb, 2002) 

(Figure 3.4). These are: (1) the Northern ophiolite belt, which comprises a 

series of E-W trending ophiolite bodies in northern Turkey, such as Orhaneli 

(Bursa) Ophiolite and Izmir- Ankara- Erzincan zone ophiolites; (2) the Tauride 

belt. This includes numerous ophiolitic thrust sheets emplaced onto

 

the Tauride carbonate platforms during the Late Cretaceous, such as Posanti-

Karsanti ophiolite, Mersin ophiolite, Alihoca ophiolite, Beyşehir ophiolite and 

Lycian ophiolite (Robertson, 2002); (3) the Southern (peri- Arabic) ophiolite belt. 

This includes the largest eastern Mediterranean ophiolites and extends for over 

1000 km long, from the Semail ophiolite of Oman in the east to the Troodos 

ophiolite in the west, including the Hatay ophiolite in Turkey and Baër-Bassit 

 

Figure 3.4. Distribution of ophiolite complexes in Turkey (modified from Billor and Gibb 

2002). Key numbers (from west to east): 1- Orhaneli (Bursa) Ophiolite, 2- Lycian ophiolitic 

nappe, 3- Antalya ophiolite complex, 4- Beyşehir ophiolite nappe, 5- Mersin ophiolite, 6- 

Alihoca ophiolite, 7- Posantı- Karsantı ophiolite, 8- Hatay ophiolite.   
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ophiolite in Syria (Robertson, 2002) (Figure 3.1). The north Anatolian and 

Tauride ophiolites (except the Antalya ophiolite which is believed to be formed 

from the Southern Neotethyan basin emplaced as a result of a strike-slip 

faulting) are interpreted to have formed from the northern section of the 

Mesozoic Neotethys, whilst the Peri-Arabic belt ophiolites were derived from the 

southern section of the Neotethyan ocean basin (Robertson and Dixon, 1984; 

Dilek and Moores, 1990). 

3.4 Overview of the genesis and root zones of ophiolites in the 

Turkish area 

In constructing a tectonic model for the Turkish area, a number of questions 

have been raised about the number and location of the root zones in the region. 

For example, Ricou et al. (1984) and Stampfli et al. (1991) proposed derivation 

of all Turkish and eastern Mediterranean ophiolites, including the Troodos and 

Hatay/Baër-Bassit units, from a single basin in North Anatolia. In contrast, 

Şengӧr et al. (1984) and Robertson and Dixon (1984) suggested that the 

ophiolites were derived from separate oceanic basins through variable tectonic 

processes. The Ricou et al. (1984) interpretation contradicts reconstructions 

that suggest the existence of at least a separate southern strand of the 

Neotethys (e.g. Robertson and Woodcock, 1980) and those that propose the 

existence of multiple micro-continental slivers and basins within a complex 

palaeogeography (Şengӧr and Yilmaz 1981). Ricou et al.’s (1984) model is 

based on the similarity between marginal sedimentary units that exist in the 

ophiolite bodies which led them to interpret all of the allochthonous ophiolite 

bodies as being derived from a single root zone in North Anatolia. This model 

shows the progressive northwards subduction of the passive northern margin of 

Gondwana (Tauride-Anatolide Platform) under the Pontides (Eurasia) from the 
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middle Cretaceous onwards, followed by southward ophiolite nappe 

emplacement on the top of the Tauride-Anatolide Platform in stages starting 

from the Late Cretaceous to the Miocene (Figure 3.5).   

 

Figure 3.5. Ophiolite single root-zone interpretation for Turkey. (a) The major ophiolite belts. (b) 

Schematic cross-section illustrating the main characteristics of the single-northern-root-zone 

model and the major ophiolite nappe emplacement (from Robertson and Dixon, 1984). 

The alternative tectonic model of Şengӧr et al. (1984) suggests formation of the 

ophiolites in multiple small basins and prefers southward subduction of the 

Palaeotethyan oceanic crust with opening of the Neotethys in the south (Figure 

3.6a), whereas, Robertson and Dixon (1984) revised this model to incorporate a 

northward-dipping subduction zone. 

On the other hand, Stampfli et al. (1991) proposed a model involving derivation 

of all the eastern Mediterranean ophiolites from a single root zone (northerly 

suture) adjacent to Eurasia, similar to the Ricou et al. (1984) model (Figure 

3.6b). 
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Figure  3.6. Alternative tectonic models for the genesis of Turkish ophiolitic suture zones during 

Late Palaeozoic to Early Mesozoic time (from Robertson, 2004). (a) Model of southward 

subduction (Şengӧr et al., 1984). (b) Model of northward subduction (Stampfli et al., 1991). (c) 

Model of a variable subduction polarity (Robertson et al., 1999).   

Robertson (2002) and Robertson et al. (2013b) suggest that some of the 

Cretaceous ophiolites from the eastern region of Turkey (e.g. Hatay, Kocali, 

Guleman, Ispendere and Kӧmürhan), including Troodos and Baer-Basit, were 

derived from a separate southern Neotethyan basin (Figure 3.7). This basin 

opened in the Triassic-Jurassic and started to close during the Late Cretaceous, 

but remained partly open until the Middle Miocene (Robertson et al., 2013b). 

The derivation of the ophiolites of southeastern Turkey from a separate basin is 

more compatible with different lines of geological evidence that cannot be easily 

reconciled with models involving formation of ophiolites in a single northerly 

Tethys and subsequently thrust for hundreds of kilometers over the Tauride-

Anatolide platform to their present positions. For example, the sedimentary units 

in the central Tauride platforms (e.g. Isparta Angle region) show unbroken 
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successions from late Mesozoic to Early Tertiary time, and show no trace of 

ophiolite emplacement (Şengör and Yilmaz, 1981). Additionally, the ophiolites 

and related marginal sections within the Isparta Angle region through the SW 

margin of the Bey Dağlari platform show westward emplacement and therefore, 

cannot be correlated with the large-scale Lycian nappes which show southward 

emplacement (Robertson, 2004). 

 

Figure  3.7.  Palaeogeographic sketch map showing the genesis of the Latest Cretaceous 

ophiolites in the eastern Mediterranean region, where some of ophiolites were derived from the 

İzmir-Ankara-Erzincan ocean (equivalent to the Northern Neotethyan basin), whereas some 

others generated in separate basin of the southern branch of the Neotethys. Note that all the 

ophiolites are southward obduction of supra-subduction zone type (after Robertson et al., 

2013b).   
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In general, there is growing acceptance of a diverse Mesozoic Tethyan 

palaeogeography of microcontinents isolated by oceanic strands that increases 

the probability that ophiolites were generated from numerous oceanic basins by 

different tectonic processes (Robertson, 2004). 

3.5 Geological setting of the Mersin ophiolite 

3.5.1 General description 

The Mersin ophiolite complex of the southern Turkey is bounded by the sinistral 

Ecemiş fault to the east, the Bolkardağ metamorphic rocks to the north, and is 

covered by Miocene carbonates to the west and the south (Figure 3.8). It 

outcrops over a 60 km long, 25 km wide area and represents an approximately 

6 km thick oceanic crustal sequence (Parlak et al., 1995). 

 

Figure 3.8.  Simplified geological map of the Mersin ophiolite (modified from Parlak and 

Delaloye, 1999). 
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The Mersin ophiolite complex includes three distinct nappe sheets. From bottom 

to top, these are: the Mersin ophiolitic mélange, the metamorphic sole rocks 

and the Mersin ophiolite (Figure 3.9) (Juteau, 1980; Parlak and Delaloye, 1999 

and Parlak et al., 1995, 1996a). 

 

Figure 3.9.  Tectonostratigraphic setting of the Mersin ophiolite (from Parlak and Robertson, 

2004) 

3.5.2 Origin and development 

The Mersin ophiolite represents one of the best exposures in the central 

Taurides of Turkey, potentially providing insights into the formation and 

emplacement characteristics of Tethyan-type ophiolites during intra-oceanic 

subduction. Following the formation of the Cretaceous ophiolites inside the 

northern Neotethyan ocean basin, they were emplaced over the 

Tauride/Bolkardag Mesozoic carbonates in the Campanian-Maastrichtian period 

(Robertson, 2002). However, there are various points of view regarding the 
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intra-oceanic subduction/obduction processes responsible for the creation of the 

Tauride Belt ophiolites and their metamorphic sole rocks (Çelik, 2008). Lytwyn 

and Casey, (1995); Dilek et al. (1999) proposed that the development of the 

Tauride Belt ophiolites happened along a mid-ocean ridge in the Neotethyan 

ocean, while others (e.g., Pearce et al., 1984; Parlak et al., 1996c, 2000, 2002, 

and 2006; Robertson, 2002; Bağcı et al., 2006; Çelik et al., 2006; Robertson et 

al., 2013b) suggested that the development of the ophiolites took place in a 

supra-subduction zone setting. 

Parlak et al. (1995) proposed that during Albian-Cenomanian time, intraoceanic 

subduction along the southern section of the Neotethyan Ocean was started, 

leading to formation of the Mersin ophiolite in a supra-subduction environment. 

By the Late Cretaceous the obduction of the oceanic crust onto the Tauride belt 

had occurred, whereas through the Late Paleocene period the ophiolites were 

unconformably covered by detritus, derived from the underlying ophiolites. 

3.5.3 Description of main units and lithologies in the Mersin study area 

3.5.3.1 Ophiolitic units 

The limited extrusive rocks of the Mersin ophiolite are seen within the 

Fındıkpınarı valley area near the village Zeybekler, located down-slope to the 

south of the dyke localities discussed later. These extrusive basalt rocks are 

exposed in two localities and are represented by pillow lavas and dolerites with 

columnar jointing (Figures 3.10 and 3.11), and are thought to be Late 

Cretaceous in age. Both cover a limited area on the side of the road leading to 

the village of Zeybekler. The pillows show clearly overturned structures with 

radii of nearly 50 cm (Figure 3.11). In the field, some secondary minerals within 
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these pillows have been observed, such as pyrite and few crystals of calcite that 

fills the vesicles of the pillow basalts.  

 

Figure 3.10.  Field photograph showing the locations of columnar basalt together with the pillow 

lava along Fındıkpınarı valley section. 

 

Figure 3.11. (a) Field photographs of pillow lava at Fındıkpınarı; (b) field photograph illustrating 

the overturned pillow lava at Fındıkpınarı.  
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The majority of the ophiolite is exposed further to the west along the Sorgun 

valley, one of several deep valleys cutting through the Miocene sedimentary 

cover of the Adana Basin, in the area between the villages of Sorgun and 

Arsalanlı. Here mantle rocks and overlying ultramafic and mafic cumulates 

occupy an area of approximately 15 km², with a total thickness over 3 km 

(Parlak, 1996). This unit starts with over 800 m of ultramafic rocks at the bottom 

and continues into nearly 2500 m of gabbroic rocks (Parlak et al., 1996b). The 

ultramafic rocks of the Mersin ophiolite are composed mainly of clinopyroxenite, 

wehrlite and dunite (Parlak et al., 1996c). Igneous lamination and in some 

places grain-size grading has been seen in the ultramafic cumulates in the form 

of successive accumulation of large crystals (Figure 3.12b). In the field, the 

rocks generally show greenish colour when they are fresh, but in some places, 

the colour is yellowish brown due to alteration (Figure 3.12c).  

The mafic cumulates consist essentially of gabbro, leucogabbro, olivine gabbro 

and anorthosite (Parlak et al., 1996c). The age of these rocks is 82.8 ± 4.0 Ma 

based on crystallization age of the cumulate gabbros of the Mersin ophiolite 

(Parlak et al., 2013). The orientation of the cumulate layering in the gabbros 

along the Sorgun Valley was observed to vary, with dip directions mainly to the 

south but with some sections dipping to the north. In all cases the layering is 

moderately to steeply dipping. Careful examination of the section identified a 

number of way-up criteria, including scouring at the base of layers and 

mineralogical grading within layers (see Figure 3.13). These prove that the 

north-dipping sections are overturned relative to the south-dipping sections. 
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In places, the cumulate layers are cross-cut by thin (<1cm) fine-grained basaltic 

veins. Samples were collected from these veins to attempt to use geochemistry 

to relate them to the cumulate host. For example, have these formed by 

compaction of a crystal mush and upwards migration of melt? In this case, the 

geochemical compositions of the veins and inter-cumulus phases should be 

similar. Figure 3.14 shows an example of these cross-cutting veins. 

 

Figure 3.12.  Field photographs of (a) Ultramafic rocks along main Sorgun valley section, (b) 

brownish colour due to alteration with lamination within the ultramafic layers and (c) grain-

size grading in ultramafic cumulates. 
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Figure 3.13. (a) Rhythmic layering in cumulate gabbros along the Sorgun Valley, indicating 

overturned layering; (b) grain-size grading in cumulates along the Sorgun Valley, again 

indicating overturning of the section. 

 

Figure 3.14. Cumulate layering along the main Sorgun Valley section, cross-cut by thin basaltic 

veins (visible as dark grey patches to the left of the image). 
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The second major section of the Mersin ophiolite occurs in the Fındıkpınarı 

valley area (Figure 3.15), which lies nearly 20 km NE from the mafic and 

ultramafic cumulates section (Sorgun valley). This provides a large section of 

the mantle sequence of the ophiolite, consisting predominantly of tectonized 

harzburgites and dunites. This section also exposes the metamorphic sole of 

the ophiolite and two generations of dykes that cut the mantle sequence and 

sole rocks (that were targeted for palaeomagnetic sampling). 

 

 

Figure 3.15.  Google image showing the localities of the exposed dykes at the Fındıkpınarı 

valley area. 

3.5.3.2 Subophiolitic metamorphic rocks 

The well-developed metamorphic sole rocks of the Mersin ophiolite complex are 

located beneath the ophiolite unit and have a thickness of about 50-70 m 

(Parlak et al., 1995), and up to 100 m at the base of the mantle tectonites (Çelik, 

2008). The sole rocks are intensively deformed (with fold and imbricate 

structures), and are exposed together with intact dolerite dykes in the 

Fındıkpınarı area (Figure 3.16). They are also exposed at other localities within  
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the Fındıkpınarı area, such as along the Şahna valley and along the road 

between Gözne and Aslanköy (Parlak et al., 1996a; Çelik, 2008). 

Field observations and published studies (e.g. Parlak et al., 1995; Moix et al., 

2007) suggest that these metamorphic sole rocks were folded and thrust-

imbricated prior to being intruded by microgabbroic-doleritic dykes. The 

metamorphic sole rocks are predominantly made of amphibolites, amphibolitic 

schists, epidote-amphibolite schists, mica schists, calcschists, marble and 

quartzite (Paralak et al., 1995, 1996a; Çelik, 2008). K-Ar and 40Ar / 39Ar dates of 

 

Figure  3.16.  Field photographs of (a) Metamorphic sole rocks intruded by thin dolerite dyke 

at Fındıkpınarı and (b) Metamorphic sole rocks with deformation structures at Fındıkpınarı. 
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the metamorphic sole yield ages ranging from ~ 91 Ma to 93 Ma (Parlak et al., 

1995; Parlak et al., 1996a; Parlak and Delaloye, 1999; Çelik, 2008), which are 

interpreted to date the initial detachment of Mersin ophiolite during closure of 

the Neotethys in the eastern Mediterranean (Parlak et al., 1995).  

3.5.3.3 Dykes cutting the mantle sequence and the metamorphic sole 

In the eastern part of the Fındıkpınarı valley area, thick dykes (each up to 5m 

thick or more) are hosted by tectonized harzburgite (mantle), whereas in the 

western part of the study area dykes are hosted by the metamorphic sole and 

are characteristically thinner (less than 1 m) (Figure 3.17). However, in both 

sub-areas the doleritic and micro-gabbroic dykes have a common NE-SW trend. 

Dykes cutting the mantle sequence are believed to have been generated during 

seafloor spreading (Parlak, 1996) and are inferred to be older than those cutting 

the metamorphic sole. There are different estimates of the age of the dolerite 

dykes that cut the metamorphic sole rocks, ranging from 84.4 ± 3 Ma (Çelik, 

2008) based on K-Ar method to 63.8 ± 0.9 to 89.6 ± 0.7 Ma (Parlak and 

Delaloye, 1996), to 91.0 ± 0.6 Ma (Dilek et al., 1999) based on the 40Ar / 39Ar 

method, with differences probably reflecting the different dating methods (with 

the 40Ar / 39Ar ages considered to be the most reliable). They exhibit the 

geochemical signatures of island arc tholeiites (Parlak and Delaloye, 1996; 

Çelik, 2007, 2008), suggesting a subduction influence during the generation of 

the mafic dykes. They do not show any structural folding or metamorphism, so 

this indicates that the injection of the dykes occurred in an oceanic setting 

before the final obduction of the ophiolite but after the structural deformation of 

the metamorphic sole rocks (Parlak and Delaloye, 1999; Dilek et al., 1999; Çelik 

and Delaloye, 2003). In general, the dykes exhibit subophitic and microgranular 
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textures, and are composed essentially of plagioclase, clinopyroxene and 

amphibole (see Chapter Four). Some of the dykes underwent considerable 

hydrothermal alteration, whereas others are fresher. Predominantly, the dolerite 

dykes show weak chilled margins suggesting that at the time of dyke intrusion 

the main ophiolite body was still hot. This suggestion is supported by the limited 

time interval between the formation of the ophiolite (based on K-Ar ages from 

the underlying metamorphic sole) and inception of dyke emplacement (Parlak, 

1996). 

 

Figure 3.17.  Field photographs of (a) Massive doleritic dyke cross-cutting harzburgite at 

Findipinari and (b) Thin dolerite dyke intruding the metamorphic sole at Fındıkpınarı. 
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3.5.3.4 Mersin mélange 

The Mersin mélange underlies the Mersin ophiolitic unit and its metamorphic 

sole. It is located to the south of the Mesozoic carbonate platform of the 

southern flank of the Bolkardağ and is exposed over an area about 40 km long 

by 15 km wide (Parlak and Robertson, 2004). The boundary between the 

metamorphic sole and melange, which is dipping to SE, is well seen at the 

Fındıkpınarı section, together with the Miocene sedimentary cover on the road 

NW of the dyke localities (Figure 3.18). According to Parlak and Robertson 

(2004), the mélange consists of four distinctive lithological assemblages. These 

are: (1) shallow-water carbonate assemblage mostly of Late Palaeozoic-Early 

Cretaceous age; (2) rift-associated volcanogenic-terrigenous-pelagic 

assemblage; (3) basalt-radiolarite-pelagic limestone assemblage of Late 

Jurassic-Early Cretaceous age with pelagic carbonates of Late Cretaceous age; 

(4) ophiolite-originated assemblage, which includes parts of the Upper 

Cretaceous Mersin ophiolite and pieces from the metamorphic sole. K-Ar 

analyses on granites from the ophiolitic mélange yielded an age of 375.7 ± 10.5 

Ma (Late Devonian) (Parlak and Robertson, 2004). 

3.5.4 Ophiolite emplacement 

The Mersin ophiolite of southern Turkey represents just one of the Late 

Cretaceous ophiolites exposed along the northern margin of Tauride-Anatolide 

carbonate platform, which also includes the Lycian, Beyşehir and Posantı- 

Karsantı ophiolites. These have similar chemical characteristics and kinematic 

histories (Roberson, 2004), and have all generally experienced south-directed 

emplacement onto the Tauride platform (Dilek et al., 1999; Robertson et al., 

2013b). Although the consensus is that these ophiolites were emplaced in the 
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Late Cretaceous (e.g. Parlak and Robertson, 2004), new biostratigraphic 

evidence from the Mersin mélange reported by Koç et al. (2013) suggests that 

emplacement was post-Danian. This led Koç et al. (2013) to propose two 

hypotheses for the final emplacement of the ophiolite: (1) the emplacement 

happened during latest Palaeocene time, directly after formation of the mélange, 

or (2) it happened in Late Eocene time prior the deposition of the Miocene 

sedimentary cover.   

The emplacement direction of the ophiolite remains controversial, in part 

because of a lack of sufficient field structural data reported in the literature. 

Parlak et al. (1996a) reported that the Mersin ophiolite was emplaced to the NW 

from a southerly Neotethyan basin and obducted over the passive platform 

margin of the central Taurides, based on fold vergence in the metamorphic sole. 

 

Figure 3.18.  Field photograph showing the boundary between metamorphic sole and the 

mélange at Fındıkpınarı together with the Miocene sedimentary cover on the top. 

 

 



82 
 

Parlak and Robertson (2004) then revised this interpretation using field data 

from some of the same localities. Stretching lineations in the amphibolites of the 

metamorphic sole were reported to plunge moderately to the east on average 

(Figure 3.19), but have substantial scatter with trends ranging from NNE to ESE. 

Data from folds within the amphibolites were reported graphically as poles to 

axial planes (Figure 3.19), suggesting axial planes dipping moderately to the NE 

or E, but were inferred to have mainly northward vergence. This apparent 

discrepancy is difficult to resolve without further structural analyses. Overall, 

however, Parlak and Robertson (2004) favour an E-W or W-E sense of 

emplacement in current geographic coordinates (based on the lineation data), 

but they note that structures in the sole may have experienced later 

intraoceanic or emplacement related tectonic rotation.  

3.5.5 Post-emplacement tectonic structures 

The central Taurus mountains have been subjected to several geological events 

during post-Eocene time, and these events can be assigned to four 

compressional episodes (Akay and Uysal, 1988): 

1) Late Eocene – Early Oligocene compressional period. During this period the 

first major movements of the Ecemiş and Beyşehir faults occurred as a result of 

N - S compression.   

2) Langhian compressional period. In this period, the Lycian nappes were 

emplaced from NW to SE over the Beydaglari, and this tectonic event weakly 

affected the Antalya and Adana basins. 
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3) Late Tortonian compressional period. During this period, the entire area was 

subject  to severe compression forming several significant structural features 

such as the Aksu thrust, Kirkkavak oblique-slip reverse fault, Koprucay syncline, 

Beskonak anticline, etc. (Akay and Uysal, 1988). These structural features were 

covered by Antalya basin deposits of the post-compressional stage through the 

Messinian-Pliocene period.  

4) Late Pliocene to recent compressional period. This period is characterized by 

development of some mesoscopic faults in the central Taurus region as a whole.   

The Ecemiş fault zone of the central Taurides follows a nearly 90 km long, 

NNE-trending valley, and is bounded to the east by the Posantı-Karsantı 

 

Figure 3.19. Stereographic projections (equal area, lower hemisphere) of structural data from early 
ductile fabrics in the metamorphic sole of the Mersin Ophiolite (from Parlak and Robertson, 2004). 
(a) Data from amphibolites exposed in the stream below Sahna village; (b) road section, 2 km N of 
Zeybekler village (between Fındıkpınarı and Sahna); (c) road section between Fındıkpınarı and 
Tepekoy villages (5 km N of Fındıkpınarı). 
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ophiolite, the Alihoca ophiolite to the west and the Mersin ophiolite to the SW 

(Figure 3.20). The Ecemiş fault is a sinistral strike-slip fault system with total 

displacement about 60 km (Jaffey and Robertson, 2001). 

 

Figure 3.20.  Simplified geological map of the southern Turkey showing the locations of 

Cretaceous Tauride ophiolites and the Ecemiş fault (from Robertson, 2002). 

There are various arguments about the timing of initiation of the Ecemiş fault 

ranging from Mid-Miocene or slightly earlier (Jaffey and Robertson, 2001), 

based on subsidence analysis, to the pre-Lutetian (i.e. during the Early Eocene) 

(Yetiş, 1984), based on the difference in the stratigraphy of the age of the pre-

Eocene from both sides of the Ecemiş fault zone compared with younger 

sediments and the obvious demise of displacement in the deposits of Middle 

Eocene and younger ages within the same area. Jaffey and Robertson (2001) 

indicate that the major strike-slip displacement of the Ecemiş fault zone 

occurred during pre-Pliocene time and was followed by east-west extension 
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with minor displacement during the Pliocene and Quaternary. In terms of the 

effectiveness of the Ecemiş fault zone at the present time, Westaway (2002) 

argues that the Ecemiş fault zone is currently inactive, whereas Akay and Uysal 

(1988) found that the Ecemiş fault zone is still active based on field evidence for 

an active fault within the fault zone lying in the fault trend direction for 10 km.  

3.6 Previous palaeomagnetic research on eastern 

Mediterranean Tethyan ophiolites 

The main focus of this thesis is the first palaeomagnetic analysis of the Mersin 

ophiolite, representing also the first such analysis of any of the ophiolites 

formed in the northern strand of the Neotethys Ocean. In order to place the new 

results into the regional context of tectonic rotations in the evolving Neotethyan 

system, however, it is necessary to provide an overview of previous 

palaeomagnetic studies that have been conducted on ophiolites of the southern 

Neotethyan Ocean. The key overarching result of these studies (see below) is 

that these ophiolites have all rotated anticlockwise during their tectonic 

evolution. 

3.6.1 Troodos ophiolite 

The Troodos ophiolite complex on the island of Cyprus is the most extensively 

studied ophiolite in the world (e.g., Gass, 1968; Moores and Vine, 1971; Allerton 

and Vine, 1987, 1991; Morris et al., 1990; Robertson and Xenophontos, 1993; 

MacLeod and Murton, 1995; Morris et al., 1998; Robertson, 2000). The ophiolite 

represents a fragment of oceanic lithosphere which formed in a supra-

subduction zone (SSZ) environment (Robertson, 2000) within the Southern 

Neotethyan basin (Robertson and Dixon, 1984; Robertson, 1998, 2002) during 

the Late Cretaceous (Cenomanian–Turonian) around 90-92 Ma, based on U - 
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Pb isotopic dating of plagiogranites (Mukasa and Ludden 1987). The ophiolite 

includes an entire Penrose (Anonymous, 1972) pseudostratigraphy appearing in 

the form of a dome structure formed as a result of Late Pliocene-Recent uplift, 

which led to a broadly concentric outcrop pattern, with upper mantle and lower 

crustal units exposed around the central topographic high (Figure 3.21). The 

ophiolite has not experienced major thrusting and uplift has preserved original 

seafloor relationships and structures. 

 

Figure 3.21. Outline geological map of Cyprus showing the Troodos ophiolite and Arakapas 

Fault Belt (combined from Morris et al., 1998 and Morris, 2003). 

The plutonic section comprises gabbros and layered cumulates that are cut by 

gabbroic intrusions, providing evidence for the existence of multiple small 

magma chambers under the Troodos spreading axis (Robinson and Malpas, 

1990). The upper massive gabbros are locally covered by small plagiogranite 

masses which in some places penetrate into the sheeted dyke complex (Gillis, 
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2002). The sheeted dyke complex crops out in an area over 80 km wide and 

generally has nearly N-S striking dykes (current coordinates) (Robertson and 

Xenophontos, 1993). In places these dykes are rotated to low angles and 

intruded by later dykes (Dietrich and Spencer, 1993). The sheeted dyke 

complex passes up into a superbly exposed sequence of extrusive igneous 

rocks (pillow lavas and sheet flows), containing massive sulphide bodies formed 

by hydrothermal alteration at the spreading axis. The southern margin of the 

ophiolite is characterized by the E-W trending Arakapas Fault Belt, that 

represents the northern boundary of a zone formed within a fossil oceanic 

transform fault (Moores and Vine, 1971; Simonian and Gass, 1978; Allerton and 

Vine, 1991; MacLeod and Murton, 1995).  The ophiolite is covered by a 

continuous sequence of Late Cretaceous-Recent sedimentary rocks (Robertson 

and Xenophontos, 1993). 

Palaeomagnetic research on the Troodos ophiolite began with the pioneering 

work of Vine and Moores (1969), who demonstrated that the remanent 

magnetization of lavas in the extrusive series is directed to the present-day west, 

providing evidence for large-scale anticlockwise rotation of the so-called 

“Troodos microplate”. Since then, numerous palaeomagnetic studies have been 

conducted (see Morris, 1996, for a review), aimed either at establishing the 

timing of this microplate rotation or seafloor deformational processes during 

crustal formation. The most accepted model for microplate rotation mechanism 

is that of Clube and Robertson (1986), who suggested that rotation occurred as 

a result of combination of continental margin-trench collision and anticlockwise 

torque produced by northward subduction beneath Troodos.  The timing of this 

rotation has been constrained by palaeomagnetic studies on the sedimentary 

cover through Late Cretaceous to Recent (Clube, 1985; Clube and Robertson, 
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1986; Morris et al., 1990). Clube (1985) observed that there are 

indistinguishable westward-directed remanence directions within hydrothermal 

sediments (umbers) and underlying extrusives of the ophiolite, indicating that 

the rotation of the ophiolite complex started after the deposition of the earliest 

sedimentary rocks. Morris et al. (1990) established that 30° of rotation was 

complete by the time of deposition of radiolarites overlying the umbers. 

Remanence directions within the chalks of the overlying Lefkara Formation and 

shallow water facies of the Pakhna Formation (Clube et al. 1985; Clube and 

Robertson, 1986; Morris et al., 1990) indicated that the rotation of the 

microplate was completed by the end of the Early Eocene. Overall, these 

studies clearly show that the Troodos Complex has experienced a prolonged 

rotation through the period from Campanian to Eocene (Figure 3.22), at a rate 

of approximately 2°/Ma (Morris et al., 2006). 

Within the Troodos microplate, localised tectonic rotations have been 

documented that result from seafloor spreading processes (e.g. Allerton and 

Vine, 1987; Morris et al., 1990). The most significant studies have concerned a 

controversy over the sense of displacement along the fossil Southern Troodos 

transform zone (STTFZ), preserved in the Arakapas and Limassol Forest areas. 

Here, the Troodos sheeted dyke complex shows a progressive change in dyke 

trend as the northern boundary of the transform zone is approached. These 

changes were believed to have occurred either due to dyke injection into a 

sigmoidal stress field, which means these dykes are in their initial orientations 

relative to a sinistrally slipping transform or as a result of vertical axis clockwise 

rotations of fault blocks caused by dextral slip (Figure 3.23).  
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Figure 3.22. Palaeomagnetic results from the sedimentary cover of the Troodos ophiolite 

showing the progressive anticlockwise rotation of the underlying ophiolite during the Late 

Cretaceous and Palaeogene. (a) Lower hemisphere stereographic projection of tilt-corrected 

site-level palaeomagnetic data obtained from the in situ sedimentary cover of the Troodos 

ophiolite, showing the timing of rotation of the Troodos ophiolite. (b) Variation of rotation angle 

through time (from Morris et al., 2006).   

 

Figure 3.23. Possible alternative mechanisms to account for the deviation in dyke trend near 

the Southern Troodos Transform Fault (from Morris et al., 1990).        

 



90 
 

Several attempts were made to resolve this controversy, but the first attempt 

was conducted by Clube, (1985), Clube and Robertson, (1986). Their studies 

focused on the samples from pillow lava and interlava sediments along the 

Arakapas fault. In contrast to the westerly Troodos directed remanences, the 

majority of these sites showed NW directed magnetizations, and these findings 

were considered as support for the block rotation model. After that, Bonhommet 

et al. (1988) provided additional evidence for clockwise rotation of dykes within 

the sheeted dyke complex itself. Further support for clockwise localised 

rotations due to dextral shear along the transform zone was provided by 

Allerton and Vine (1990), MacLeod et al. (1990) and Morris et al. (1990). 

Importantly, these authors were able to apply the net tectonic rotation technique 

of Allerton and Vine (1987) to sets of cross-cutting units to prove that rotations 

associated with the transform occurred during magmatic activity, rather than 

relating to later reactivation of the fault zone.   

3.6.2 Kizildağ (Hatay) ophiolite 

The NE–SW trending Kizildağ (Hatay) ophiolite is one of the best preserved 

remnants of the Late Cretaceous SSZ oceanic lithosphere of the southern 

Neotethys. It is located in the southern Amanos mountains of south-east Turkey 

(Figure 3.24) and represents a part of the same Peri-Arabian ophiolite belt that 

includes the Troodos ophiolite (to the west) and the Baër-Bassit ophiolite (to the 

south). The Kizildağ (Hatay) ophiolite is 25 km wide, 45 km long, up to 7 km 

thick and covers an area of approximately 950 km2 (Tekeli and Erendil, 1986). It 

represents a thrust sheet emplaced tectonically onto the Arabian carbonate 

platform in the Maastrichtian (Dilek et al., 1999; Yılmaz, 1993). The ophiolite is 

structurally split into two distinct massifs by high angle NW-striking Tahtaköpru 
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Fault (Figure 3.24) (Tekeli and Erendil, 1986; Dilek et al., 1999; Dilek and Thy, 

1998, 2009). The ophiolite is structurally split into two distinct massifs by the 

high angle NW-striking Tahtaköpru Fault. The main southwestern massif to the 

south of the Tahtaköpru Fault is separated from the underlying Arabian platform 

by a limited mélange zone without a metamorphic sole (Robertson, 2002). In 

general the ophiolite displays a nearly complete Penrose assemblage 

comprising, from bottom to top, serpentinised peridotite, ultramafic to mafic 

cumulates, isotropic and layered gabbros, a sheeted dyke complex that consists 

of diabase dykes, and extrusive rocks of pillowed and massive basalt lava flows 

(Delaloye and Wagner, 1984; Tekeli and Erendil, 1986; Dilek et al., 1991; Bağcı 

et al., 2005, 2008). The gabbroic rocks in this part are separated from the 

underlain peridotites by a shear zone of 50-100 m thick (Dilek and Thy, 1998). 

The second massif of the ophiolite is located northeast of the Tahtaköpru Fault 

and includes faulted blocks of extrusive rocks, gabbros and sheeted dykes. This 

part of ophiolite does not show consistent internal structure, and the plutonic 

rocks in this part directly overlie the serpentinised peridotite (Dilek and Thy, 

2009). 

The oldest sedimentary rocks covering the volcanic rocks of the ophiolite are 

clastic rocks of the upper Maastrichtian age and include conglomerate and 

sandstone which pass upwards into carbonate rocks (Boulton et al., 2006; Dilek 

and Thy, 2009; Inwood et al., 2009a). 

A palaeomagnetic investigation conducted on the Kizildağ ophiolite and its 

sedimentary cover by Inwood et al. (2009) has shown that this ophiolite also 

rotated in an anticlockwise sense subsequent to its formation by sea floor 

spreading, and the largest component of this rotation (c. 62°) happened in an 
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intra-oceanic setting and/or during emplacement. Site mean remanence 

directions and results of net tectonic analyses from Hatay ophiolite are given in 

Figure 3.25, 3.26 and 3.27.  

 

 

Figure 3.24.  Simplified geological map of the Kizildağ (Hatay) ophiolite showing the main 

outcrops of the ophiolite and the location of Tahtaköpru Fault (modified from Dilek and Thy, 

2009). 
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Figure 3.25. Stereonets of site mean remanence directions from sites in sheeted dykes, layered 

sequences and extrusives of the Hatay ophiolite with associated α95 cones of confidence around 

site mean remanences. Note that all these units show anticlockwise rotation (from Inwood et al., 

2009). 

 

Figure 3.26. Results of net tectonic analyses of palaeomagnetic data from sites in sheeted dyke 

complex of the main massif of the Hatay ophiolite, demonstrating application of a net tectonic 

rotation method (Allerton and Vine, 1987; Morris et al., 1998). Enclosed areas represent a first-

order approximation of the α95 cones of confidence of true rotation pole obtained from 125 

estimates of the net tectonic rotation pole for each preferred solution. The inset histograms 

illustrate the associated distribution of net tectonic rotation angles (from Inwood et al., 2009). 



94 
 

 

Figure 3.27. Results of net tectonic analyses of palaeomagnetic data. (a) Results from sites in 

the lower crustal layered sequence (ultramafic and gabbroic cumulates) of the main massif of 

the Hatay ophiolite; (b) Results from sites in the extrusive sequences of the northeastern massif 

of the Hatay ophiolite, demonstrating application of a net tectonic rotation method (Allerton and 

Vine, 1987; Morris et al., 1998). Enclosed areas represent a first-order approximation of the α95 

cones of confidence of true rotation pole obtained from 125 estimates of the net tectonic rotation 

pole for each preferred solution. The inset histograms illustrate the associated distribution of net 

tectonic rotation angles (from Inwood et al., 2009). 

3.6.3 Baër-Bassit ophiolite 

The dismembered Baër-Bassit ophiolite of Late Cretaceous age is located in the 

NW of Syria, less than 50 km south of the Kizildağ ophiolite (Figure 1.2 and 4.1). 

It contains a complete Penrose sequence, but, unlike Kizildağ, is underlain by 

the "Baër-Bassit Mélange" (Al-Riyami and Robertson, 2002), which comprises 

deformed Mesozoic rocks of continental margin and oceanic affinities. The 

ophiolitic outcrop includes two main groups: The Baër massif in the NE (inland) 

and the Bassit massif in the NW (near the coast), with smaller outcrops of highly 
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dismembered ophiolitic bodies to the SE (Figure 3.28). The Baër massif is 

almost structurally intact and comprises harzburgites, overlain by cumulate 

ultramafic rocks, layered gabbros and dolerite dykes (Parrot, 1977). The Bassit 

massif includes a lower sequence of depleted mantle peridotites and gabbros, 

which are overthrust by a slice of mélange, which consists of a Late Triassic to 

mid-Cretaceous deep-water passive margin succession (Robertson, 2002), and 

then by thin (˂ 100 m thick) imbricate thrust sheets of gabbro, sheeted dykes 

and pillow lavas (Morris et al., 2002).  

 

Figure 3.28.  Simplified geological map of the Baër-Bassit ophiolite, NW of Syria, showing the 

distribution of the ophiolitic units, Baër-Bassit mélange and metamorphic sole (modified from 

Morris, 2003).    
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The ophiolite represents the leading edge of the Kizildağ ophiolite thrust sheet 

and was overthrust onto the Arabian carbonate platform during the middle 

Maastrichtian (c. 70 Ma), together with the metamorphic sole and Baër–Bassit 

Mélange. The timing of emplacement is constrained by the ages of the 

youngest sequences of the Arabian platform carbonate beneath the allochthon 

and the oldest post-emplacement sedimentary cover rocks. The emplacement 

has been proposed to be related to the inception of the palaeorotation of the 

Troodos microplate to the west (Clube and Robertson, 1986).  

Post-emplacement late Miocene sedimentary rocks are cut by a generally ENE-

WSW trending sinistral strike-slip fault. This fault system forms part of the 

extension of the current plate boundary zone between the African plate and the 

Turkish microplate, which extends offshore, eastwards from south of Cyprus as 

a zone of deformation and then continues to pass from Baër–Bassit region until 

converges with the Dead sea Transform Fault system to the east (Robertson, 

1998; Al-Riyami et al., 2002). 

Palaeomagnetic research on Baër-Bassit ophiolite and its sedimentary cover 

(Morris et al., 2002; Morris and Anderson, 2002) have shown that this ophiolite 

has experienced extreme anticlockwise rotations on a kilometric scale during its 

development by intra-oceanic detachment and emplacement, in addition to 

more localised rotations caused by later neotectonic deformation (Morris et al., 

2002). 

 

 

 



97 
 

Chapter 4 

Petrography and Geochemistry 

4.1 Petrography 

As discussed in Chapter Three, petrographic characteristics of some lithologies 

in the studied area such as the cumulates and the Mersin melange have been 

reported elsewhere (Parlak, 1996; Parlak et al., 1996b; Parlak and Robertson, 

2004). However the current study aims to examine the mineralogy of the 

samples from both gabbros and dykes in thin section, primarily to identify 

alteration that may influence the interpretation of the palaeomagnetic or 

geochemical characteristics of these rocks. 

To achieve this, one oriented sample from each site in the different types of 

lithology was chosen for thin section analysis, with extra samples taken from 

selected sites. This analysis supplements field observations which were 

recorded during the sampling. 

4.1.1 Ultramafic cumulates 

Ultramafic rocks of the Mersin ophiolite are composed mainly of clinopyroxenite 

and dunite with grain sizes up to 15mm (Figure 4.1a). In thin section, 

ultramafics generally display an adcumulate texture represented by large 

crystals of clinopyroxene with small amounts of orthopyroxene, amphibole and 

olivine, but with no plagioclase (Figure 4.1b). In some samples, olivine 

underwent variable degrees of serpentinisation and produced secondary 

magnetite (Figure 5.9 and 5.10; Section 5.4.3).  
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Figure 4.1. Ultramafic cumulate sample from the Mersin ophiolite showing phenocrysts of 

clinopyroxene (a) Field view. (b) Microscopic view (under crossed polars), showing adcumulate 

texture; Scale bar: 0.5 mm; Cpx = clinopyroxene. 

 

As described in Section 3.5.3, field observations indicate that these ultramafic 

rocks in some places show grain-size grading, suggesting a gravitational control 

to the accumulation of minerals during crystallisation within the magma 

chamber (Parlak et al., 1996b). 

4.1.2 Gabbroic cumulates 

Cumulate gabbroic rocks within the study area display a very well-defined 

rhythmic and graded layering; therefore, they also indicate some gravitational 

control on the deposition of these cumulates (Figure 3.13; Section 3.5.3.1).  

Generally, the gabbros show sub-ophitic to granular textures and are 

represented by subhedral clinopyroxene, orthopyroxene and plagioclase, 

ranging from 0.2 to 1 mm in size, with lesser/or no olivine crystals (Figure 4.2), 

and some samples showed abundant opaque minerals (Figure 5.11; Section 

5.4.3).  
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Many plagioclase crystals in these samples contain fresh clinopyroxene 

inclusions, suggesting the crystallization order olivine →  clinopyroxene → 

plagioclase, which indicates a suprasubduction zone (SSZ) origin, where olivine 

comes in first in both SSZ and MORB crystallization orders (Pearce et al. 1984). 

The delay in the crystallization of the plagioclase is often taken to indicate 

hydrous characteristics of the magma (Garcia et al., 2003; Yanagi, 2011). In 

MORB ophiolites, a crystallization order with pyroxene crystallizing after 

plagioclase is more typical (Pearce et al. 1984; Burns, 1985). In SSZ ophiolites 

this crystallization sequence also indicates accumulation towards the base of 

the magma chamber under relatively high pressures (Burns, 1985; Coleman, 

1986). However, Yanagi (2011) indicates that an increase of water in the 

magma tends to cause simultaneous crystallisation of plagioclase and 

magnetite. It is possible, therefore, that some of the magnetite identified in 

these rocks may be primary rather than secondary, with important 

consequences for interpretation of palaeomagnetic results (Section 5.6).   

In general, all samples showed limited evidence of alteration, although one 

sample (at site MC18) showed a high degree of clinopyroxene alteration to 

chlorite and talc, which is typical of hydrothermal alteration (Figure 4.2 e and f). 
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Figure 4.2. Photomicrographs (under crossed polars and in plane polarized light) of selected 

gabbro samples from the Mersin ophiolite. (a-d) Large plagioclase crystals enclose the 

clinopyroxene and orthpyroxene. (e-f) Gabbroic rock displaying alteration of the clinopyroxene 

to chlorite. Length of scale bar is 0.5 mm. (Mt =  magnetite; Ol =  olivine; Opx =  orthopyroxene; 

Cpx =  clinopyroxene; Pl = plagioclase). 
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4.1.3 Mafic dykes 

A suite of discrete dykes is observed in the Fındıkpınarı valley section of the 

Mersin ophiolite. In thin section these dykes display subophitic or intergranular 

textures and mainly consist of subhedral clinopyroxene, plagioclase, amphibole 

and opaque minerals (mostly magnetite), ranging from very fine-grained crystals 

to 0.5 mm in size. Some dyke samples showed variable degrees of 

hydrothermal alteration, in which the clinopyroxene crystals have been replaced 

by chlorite (Figure 4.3a and b). 

 

      

Figure 4.3.  Photomicrographs (under crossed polars and in plane polarized light) of selected 

dolerite dyke samples from the Mersin ophiolite. (a and b) Doleritic dyke sample displaying 

intergranular texture and hydrothermal alteration. (c and d)  Clinopyroxene-phyric dyke sample 

indicating a boninitic origin of the magma. Scale bar: 0.5 mm. (Mt = magnetite; Cpx = 

clinopyroxene; Pl = plagioclase). 
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In thin section, some samples showed porphyritic texture and consist mainly of 

clinopyroxene phenocrysts (approximately 0.05–0.5 mm in size) with fine-

grained groundmass that is predominantly fine-grained pyroxene and also 

contains opaques (mostly magnetite), suggesting a boninitic magma origin (Gill, 

2011) (Figure 4.3). This observation is in agreement with geochemical analyses, 

which are described in the following section. Large clinopyroxene grains also 

show concentric zoning under cross-polars (Figure 4.3c), indicative of changes 

in magma composition (Zhu and Ogasawara, 2001), with simple twinning in the 

upper-right corner. 

4.2 Whole rock geochemistry 

4.2.1 Aims of the study 

In this section, geochemical analyses of the studied area were restricted to the 

cross-cutting basaltic veins (dyke-like veins; site MC10) and the host gabbros 

(adjacent to the basaltic veins), which have been described in Section 3.5.3.1; 

(Figure 3.14). This is because the geochemistry of all lithological units of the 

Mersin ophiolite have generally been reported comprehensively elsewhere 

(Parlak et al., 1995; Parlak, 1996; Parlak et al., 1996 b, c; Parlak and Robertson, 

2004; Çelik, 2008). Thus, the aim of this chapter is primarily to determine the 

relationship of the dyke-like veins to the host gabbros, compare these with the 

geochemical characteristics of other dykes found elsewhere in the Mersin 

complex, and set these in the wider geochemical context of the ophiolite as a 

whole. 
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4.2.2 General description and field relations of the basaltic veins  

The dyke-like veins observed at site MC10 are located at a distance of about 15 

metres from site MC09, and extend about 20 metres long the section. The rocks 

at this site are dipping 52° to the south and contain a millimetre to centimetre 

scale, fine-grained basaltic material which clearly cross-cuts layering in the 

gabbro (Figure 4.4). 

4.2.3 Geochemical results 

Twenty five samples (whole rock and core samples) from both basaltic veins 

(14 samples) and host gabbros (11 samples) were collected (Figure 4.4), and 

then were analysed using X-ray fluorescence at the University of Southampton 

for oxides (SiO2, TiO2, Al2O3, Fe2O3, MnO, MgO, CaO, K2O, Na2O and P2O5) 

and trace elements (Cr, V, Ni, Sc, Cu, Zn, Pb, Ba, Rb, Sr, Y, Zr, Nb, Th, U, Hf, 

La, Ce and Ga). Details of the operating conditions and sample preparation 

methods are presented in Section 2.8.2. 

The results of the geochemical analyses of the samples, including 14 basaltic 

vein samples and 11 gabbro samples, are presented in Tables 4.1 and 4.2 

respectively. Where measured trace elements are below detection limit these 

are indicated by the symbol ˂. Both basaltic vein and gabbro samples showed 

low loss-on-ignition (LOI) values (most samples 0.05–0.7 wt %), suggesting that 

alteration of the minerals were negligible, as LOI > 2 wt% is generally 

considered to characterise altered rocks (e.g. Harrise et al., 2001; Burianek et 

al., 2008; Charkwu and Obiora, 2014). 
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Figure 4.4. Field photographs of site MC10. (a) Cumulate layering, cross-cut by thin basaltic 

vein. (b) Oriented hand sample collected from the site. (c) Location of drilled core sample 

collected from the site. 



105 
 

Table 4.1.  Whole rock major oxide (wt%) and trace element (ppm) data of basaltic veins analysed from the Mersin ophiolite. 

  
              Lithology Basaltic vein samples   

Sample MC1001 MC1002 MC1003 MC1004 MC1005 MC1006 MC1007 MC1008 MC10H1D MC10H2D MC10H3D MC10H4D MC10H5D MC10H6D 

(wt %)               

SiO2 49.52 47.50 48.55 48.96 48.44 48.08 47.62 48.17 47.45 47.50 47.36 49.07 47.11 48.74 

TiO2 0.14 0.15 0.14 0.17 0.12 0.10 0.09 0.09 0.38 0.36 0.26 0.18 0.26 0.07 

Al2O3 15.96 17.25 18.03 15.48 14.68 17.66 19.82 19.52 16.18 16.63 17.93 18.37 20.39 24.35 

Fe2O3 7.24 7.03 6.95 7.86 8.13 7.83 6.61 6.35 11.46 11.04 9.82 7.65 8.57 5.12 

MnO 0.11 0.11 0.11 0.13 0.15 0.14 0.12 0.12 0.16 0.17 0.14 0.14 0.13 0.09 

MgO 11.25 10.26 10.25 11.15 12.59 11.22 9.94 9.84 10.26 10.09 9.61 9.47 8.55 6.72 

CaO 14.97 14.69 15.01 15.53 15.10 14.11 15.11 15.20 12.77 12.75 13.95 14.18 13.94 16.57 

K2O 0.010 0.005 0.01 0.007 0.002 < < 0.002 0.078 0.087 0.028 0.05 0.041 0.01 

Na2O 0.570 0.553 0.621 0.407 0.314 0.347 0.382 0.379 0.782 0.833 0.668 0.566 0.65 0.59 

P2O5 0.001 0.002 0.002 0.001 0.001 0.001 0 0.002 0.001 0 0.002 0.001 0.001 0.001 

S 0.007 0.01 0.008 0.009 0.008 0.008 0.01 0.012 0.008 0.008 0.012 0.007 0.008 0.007 

Cl < < < < < < < < < < < < < < 

LOI 0.2184 2.4783 0.3234 0.2993 0.4759 0.4904 0.3074 0.328 0.458 0.5225 0.2141 0.3252 0.3399 0.00 

Total 100.00 100.02 100.00 100.00 99.99 100.00 100.00 100.00 99.99 99.99 100.01 100.00 100.00 102.27 

Mg# 77.4 76.2 76.5 75.7 77.3 75.9 76.8 77.3 66.3 66.8 68.3 73.1 68.7 74.3 

 

 

 

 

 



106 
 

Table 4.1. (Continued) 

(ppm) 
              Cr 328 282 278 292 466 339 286 324 212 193 233 190 157 147 

V 192 212 202 223 176 156 138 138 481 441 340 227 321 113 

Ni 101 96 91 89 108 109 98 108 103 95 94 79 79 51 

Sc 47 42 44 54 51 50 42 43 44 46 44 38 37 30 

Cu 20 50 58 210 80 102 125 212 101 136 152 105 205 17 

Zn 20 20 19 24 31 29 27 29 41 40 35 27 32 16 

Pb 2 3 2 2 2 2 2 2 3 3 2 2 2 2 

Ba < < < < < < < 18 < 8 < 8 < 11 

Rb < < < < < < < < < < < < < < 

Sr 85 92 85 70 54 64 74 77 81 83 81 106 98 113 

Y 3 2 3 3 3 3 2 2 3 2 3 2 2 < 

Zr 11 11 12 12 12 12 12 12 12 12 12 11 11 11 

Nb < < < < < < < < < < < < < < 

Th < < < < < < < < < < < < < < 

U < < < < < < < < < < < < < < 

Hf < < < < < < < < < < < < < < 

La < < < < < < < < < < < < < < 

Ce < 19 < < 10 11 < < < < 14 8 17 < 

Ga 11 12 12 11 10 12 12 12 13 13 13 12 14 15 

                              

< = Below detection limit. LOI = Loss in ignition. Mg# = Mg/(Mg + Fe*), Fe*means total Fe as FeO.  
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Table 4.2. Whole rock major oxide (wt%) and trace element (ppm) data for gabbros of  the 

Mersin ophiolite. 

            Lithology Mafic gabbros   

Sample 
MC10 
H1G 

MC10 
H2G 

MC10 
H3G 

MC10 
H4G 

MC10 
H5G 

MC09 
H1G 

MC09 
H2G 

MC09 
H3G 

MC09 
H4G 

MC09 
H5G 

MC09 
H6G 

(wt %)            

SiO2 48.20 47.07 48.44 48.83 47.97 48.11 48.20 47.48 48.44 48.75 47.30 

TiO2 0.07 0.07 0.13 0.08 0.07 0.09 0.10 0.08 0.13 0.11 0.07 

Al2O3 19.51 20.35 17.97 18.48 20.53 21.76 19.74 22.90 18.68 17.03 25.96 

Fe2O3 7.26 7.67 7.56 7.57 7.13 5.99 7.29 5.27 6.48 8.50 4.28 

MnO 0.14 0.13 0.13 0.14 0.13 0.11 0.14 0.09 0.13 0.16 0.08 

MgO 9.69 10.33 9.99 10.49 9.27 6.97 8.29 6.75 8.08 10.18 4.63 

CaO 13.97 13.08 14.99 13.89 13.88 16.20 15.60 16.46 17.24 14.72 16.82 

K2O 0.038 0.063 0.006 0.022 0.08 0.007 0.001 0.01 0.005 0 0.008 

Na2O 0.635 0.546 0.487 0.451 0.48 0.64 0.538 0.587 0.574 0.475 0.711 

P2O5 0.001 0 0.001 0.001 0 < 0 0 0.002 0.003 0.003 

S 0.007 0.007 0.015 0.007 0.01 0.007 0.007 0.007 0.007 0.007 0.007 

Cl < < < < < < < < < < < 

LOI 0.461 0.669 0.288 0.049 0.47 0.118 0.107 0.371 0.24 0.07 0.152 

Total 99.99 99.98 100.01 100.01 99.99 100.01 100.01 100.00 100.00 100.01 100.00 

Mg# 74.6 74.8 74.4 75.3 74.1 71.9 71.5 73.8 73.3 72.5 70.4 

(ppm) 
           Cr 150 116 226 174 117 249 233 231 384 223 183 

V 126 110 206 138 118 136 148 112 164 168 88 

Ni 62 62 75 80 58 50 59 51 77 77 37 

Sc 40 32 48 37 29 39 41 30 43 49 27 

Cu 30 18 230 71 28 15 23 18 122 29 15 

Zn 38 33 33 34 34 24 39 25 32 51 18 

Pb 4 2 3 3 3 2 3 3 3 3 2 

Ba < 16 < < < < 15 < < < < 

Rb < < < < < < < < < < < 

Sr 88 76 74 80 98 98 81 113 79 73 105 

Y < < 3 < < 3 3 2 4 3 2 

Zr 11 11 12 11 11 11 12 10 12 12 11 

Nb < < < < < < < < < < < 

Th < < < < < < < < < < < 

U < < < < < < < < < < < 

Hf < < < < < < < < < < < 

La < < < < < < < < < < < 

Ce 8 < < 12 8 9 < < 14 9 8 

Ga 13 13 12 12 13 15 14 14 13 12 17 

                        

< = Below detection limit. LOI = Loss in ignition. Mg# = Mg/(Mg + Fe*), Fe*means total Fe as FeO.  
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According to Wilson (1989), primary magmas in equilibrium with upper mantle 

mineralogy usually have high values of Mg# (> 70.0), Cr (> 1000 ppm), Ni (> 

400-500 ppm) and SiO2 not exceeding 50%. In the current study, overall, the 

samples from dyke-like veins display high values of Mg#  (66.3–77.4), moderate 

SiO2 content (47.11–49.5%). Concentrations of Cr and Ni are 147-466 ppm and 

51-109 ppm, respectively, with extreme depletion in incompatible elements (e.g. 

Y, Nb, Hf, Th, La and Rb). This indicates their cumulate origin and primitive 

magma signature (Barth and Gluhak, 2008), but suggests some changes of the 

magma by fractional crystallization which can be identified using variation 

diagrams (Hari et al., 2011). 

In general, all data from both basaltic vein and gabbros are consistent with the 

gabbro data reported by Parlak et al. (1996c), but they differ from the both the 

dyke data of Parlak et al. (1995) and Çelik (2008) and the ultramafic data values 

of Parlak et al. (1996c).  

However, in this chapter, published data from Parlak et al. (1995, 1996c) and 

Çelik (2008) were used in order to compare with data obtained from the dyke-

like veins, and to find the fractional crystallization trend of magma, as data from 

the current study are not sufficient to display fractional crystallization processes. 

Selected major oxides and Sr content are plotted versus MgO (which is 

considered as an indicator of differentiation (e.g. Wright, 1971) for the different 

lithology units. 

MgO contents revealed that there is a clear inverse correlation with the majority 

of these oxides and Sr content which is considered to be incompatible element 

(Wilson, 1989), indicating the fractional crystallization trend of the magma 

(Figures 4.5 and 4.6). This fractional crystallization trend has also been 
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confirmed by plotting major oxides against Zr contents of different lithological 

units (Figure 4.7). Zr is considered an incompatible element and remains 

unaffected in most secondary processes (Cann, 1989). Thus, these plots have 

revealed high correlations between Zr and many oxides. For example, TiO2 and 

Na2O concentrations show a positive correlation with Zr values, whereas CaO 

and MgO concentrations show a negative (inverse) correlation with Zr values. 

All these variations in fractional crystallization trends reflect compositional 

changes with progressive crystallization processes within the magma chamber.  

 

 

                                                                                                 

 

Figure 4.5. MgO vs Sr diagram for the basaltic veins and gabbroic rocks from the Mersin 

ophiolite (including the data from Paralk et al., 1995, 1996c and Çelik, 2008), showing fractional 

crystallization processes. 
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Figure 4.6. Selected major element variations for the basaltic veins and gabbroic rocks from the 

Mersin ophiolite (including the data from Parlak et al., 1995, 1996c and Çelik, 2008), showing 

fractional crystallization processes. 
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Figure 4.7. Variation of selected major oxides with Zr for the basaltic veins and gabbroic rocks 

from the Mersin ophiolite (including the data from Parlak et al., 1995, 1996c and Çelik, 2008), 

showing fractional crystallization processes. 
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Both the MgO and Zr variation diagrams suggest a possible link between the 

samples analysed in this study and the published data of Parlak et al. (1995) 

and Çelik (2008). The plots suggest possible primary fractional crystallization 

trends from the ultramafics to the more evolved dykes. However, in all cases, 

results from samples of the basaltic veins sampled in this study are clustered 

with those from gabbro samples and with the gabbro analyses reported by 

Parlak et al. (1996c), rather than the dykes reported by Çelik (2008). It seems 

likely, therefore, that these veins reflect minor internal variations of melt within 

the gabbros rather than late stage fractionation products represented by dykes 

found elsewhere in the ophiolite. This is discussed further later in this chapter. 

According to Le Maitre (2002), boninite type rocks have SiO2 > 52%, MgO > 8% 

and TiO2 < 0.5. In the present study, the analyses showed that both basaltic 

vein and gabbro samples exhibit low TiO2 wt% (0.07- 0.4%), but their SiO2 wt% 

and MgO wt% values are 47.07- 49.5% and 4.63 – 12.6%, respectively, 

suggesting that their sources are closer to boninitic magma (Crawford et al., 

1981). 

In the TiO2-MnO-P2O5 diagram of Mullen (1983), both basalt vein and gabbro 

samples from this study, together with gabbro and ultramafic cumulate samples 

from Parlak et al. (1996c), showed boninitic affinity, whereas, all the dykes from 

Parlak et al. (1995) and Çelik (2008) are clustered in the IAT field (Figure 4.8). 
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Figure 4.8. TiO2–MnO–P2O5 discrimination diagram (Mullen, 1983) for basaltic vein rocks and 

gabbros from the Mersin ophiolite, compared with data from Parlak et al., 1995, 1996c; Çelik, 

2008. 

 

Figure 4.9. Ti vs V diagram (after Shervais, 1982) for basaltic vein rocks and gabbros from the 

Mersin ophiolite, compared with data from Parlak et al., 1995, 1996c; Çelik, 2008. 
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The TiO2 vs V diagram (Figure 4.9; Shervais, 1982), confirms that all basaltic 

vein and gabbro rocks have depleted (possibly boninitic) character through the 

low Ti/V ratio < 10 (Crawford et al., 1981). These results are also consistent 

with petrographic observations of some samples, which were described in 

Section 4.1.1. 

Thus, petrographic and geochemical results of the current study indicate for the 

first time that the Mersin ophiolite not only contain IAT magmas, but may also 

contain boninitic magmas, suggesting its formation at early stage of island arcs 

in a SSZ tectonic setting (Sarıfakıoğlu et al., 2009; Dilek and Furnes, 2011). 

Therefore, the Mersin ophiolite displays a similar tectonic setting to nearby L. 

Cretaceous Ali Hoca ophiolite, which was also suggested to have formed in the 

inner Tauride Ocean (Sarıfakıoğlu et al., 2012). 

In the AFM diagram (Figure 4.10; Beard, 1986), all basaltic and gabbroic 

samples from the current study, together with gabbro samples from Parlak et al. 

(1996c), fall in the same area, within the arc related mafic field. 
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Figure 4.10. AFM composition of the samples of the current study (basaltic veins and gabbros) 

and gabbros with ultramafic cumulates from Parlak et al. (1996c). Fields of cumulate and non-

cumulate rocks are from Beard (1986). 

4.3 Discussion of the origin of the basaltic veins within the 

layered gabbros 

Geochemical analysis of basaltic vein rocks reveals that these rocks have more 

affinity to the host gabbroic rocks than other late stage dykes reported 

elsewhere in the Mersin ophiolite. Nearly all the major oxides and trace 

elements values from the basaltic veins are in agreement with gabbro values 

from the current study and with gabbro data reported by Parlak et al. (1996c) 

(Table 4.3). 
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Table 4.3. Average values of the major oxides and trace elements of rock samples from the 

current study compared to the previous studies on the Mersin ophiolite. 

Type of 
rocks 

Basaltic 
vein 

Gabbros 
 (current study) 

Gabbros  
(Parlak et al., 1996) 

Dykes 
 (Çelik, 2008) 

Dykes  
(Parlak et al., 1995) 

(wt %) 
     SiO2 48.1 48.1 47.5 52.5 52.1 

TiO2 0.2 0.1 0.1 0.9 0.8 

Al2O3 18.0 20.3 20.5 15.7 15.7 

Fe2O3 7.2 6.1 5.5 10.6 9.7 

MnO 0.1 0.1 0.1 0.2 0.2 

MgO 10.1 8.6 8.3 5.9 6.7 

CaO 14.6 15.2 15.7 8.7 9.8 

K2O 0.0 0.0 0.0 1.2 1.0 

Na2O 0.5 0.6 0.5 2.3 1.8 

P2O5 0.0 0.0 0.0 0.1 0.1 

LOI      0.5            0.27                                1.2                             1.76               2.1 
 
 
(ppm) 

     
Cr 266.2 207.8 129.3 92.3 151.8 

V 240.0 137.6 119.3 331.2 288.0 

Ni 92.9 62.5 52.5 48.3 52.6 

Zn 27.9 32.8 — 78.8 — 

Sr 83.1 87.7 74.0 132.7 122.6 

Zr 11.6 11.3 10.0 53.2 49.0 

 

Petrographic analyses have shown that these basaltic vein rocks consist mainly 

of plagioclase and pyroxene, similar to the host gabbros, but that the fine grain 

nature of the veins compared with the gabbros may be the result of extreme 

grain-size reduction during deformation (Figure 4.11a-d) rather than primary 

grain-size variation (Passchier and Trouw, 2005). This observation introduces 

the intriguing possibility that the veins in fact represent shear zones, which have 

partitioned strain within the gabbros. In thin section, the majority of the 

“phenocrysts” within the basaltic veins have distinguishable tails on each side of 

the host grain. Although masked by subsequent alteration, several of the host 

crystals display evidence of intracrystalline plasticity and are, most likely, 

porphyroclasts in a recrystallized matrix (Fig 4.12a-d). Asymmetry of the 
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porphyroclast system is consistent throughout the samples studied and is 

considered to be a reliable kinematic indicator for the shear zones (Simpson 

and Schmid, 1983; Hatcher, 1990; Twiss and Moores, 1992; Passchier and 

Trouw, 2005). Moreover, petrographic analyses reveals further shear sense 

indicators, such as fractured porphyroclast s (Figure 4.12e and f). These grains 

can be used together with the porphyroclast system to deduce the overall sense 

of movement (Simpson and Schmid, 1983; Twiss and Moores, 1992; Fossen, 

2010) (Figure 4.12g and h and Figure 4.13). Detailed examination of 

porphyroclast tails under microscope has shown that the mineralogy is 

dominated by aggregates of fine-grained hydrated silicate phases such as 

chlorite and actinolite. The identified assemblage is indicative of growth under 

greenschist facies conditions, with temperatures below approximately 500°C 

and likely to be in the P-T range T = 350-500°C and P = 2-8 kbar as suggested 

by Hefferan & OʼBrien (2010). It is interesting to note that coarse grained, 

relatively undeformed gabbro immediately adjacent to the veins is also 

extensively altered to a similar assemblage and that the crystals are 

increasingly deformed towards areas of intense grain size reduction and 

foliation development. Chlorite and actinolite crystals are commonly kinked and 

rotated into alignment sub-parallel to the localised shear zones. This suggests 

that hydration and alteration of the host gabbros occurred either before or was 

coeval with deformation. It seems possible, therefore, that the partitioning of 

deformation may alternatively be a function of focusing of volatiles within the 

gabbros after cooling below 500°C. 
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Figure 4.11. Photomicrographs (under crossed polars and in plane polarized light) of a cross-

cutting basaltic vein within the host gabbro of the Mersin ophiolite showing the alteration of the 

clinopyroxene and plagioclase in the host gabbro with reduction of the grain sizes in the basaltic 

vein. Scale bar: 0.5 mm for Figure 4.11 (a,b) and 0.2 mm for Figure 4.11 (c,d). (Cpx = 

clinopyroxene; Pl = plagioclase). 
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Figure 4.12.  Microstructural shear sense indicators in cross-cutting vein samples from Mersin 

ophiolite. (a, b, c and d) Optical micrographs (under crossed polars and in plane polarized light) 

showing porphyroclasts with recrystallized tails. (e and f) Optical micrographs (under crossed 

polars and in plane polarized light) showing synthetic fractures in porphyroclasts within the 

basaltic vein. (g and h) Schematic diagrams illustrating the shear sense criteria in shear zones 

(modified from Fossen, 2010). Scale bar 0.5 mm for Figures (a-d), and 1 mm for Figures (e-f). 
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Figure 4.13. Hand specimen from the cross-cutting vein of Mersin ophiolite showing a sigmoidal 

fabric in the host gabbro. 

The presence of all the evidence (i.e. reduction of the grain size, porphyroclasts 

and disrupted grains) gives an important indicator of shear zone processes 

(Passchier and Trouw, 2005), and gives evidence for solid state shearing that is 

not seen in the host gabbro, suggesting that the dyke-like veins have taken up 

strain in the section preferentially (strain partitioning) (Lee et al., 2012). 

Kinematic indicators within these rocks (e.g. lineations), are not clearly visible in 

the field. However, analyses of thin sections cut parallel to strike show a 

component of sinistral movement for this vein. The shear sense determined 

from thin section analyses equates to shearing along the basaltic vein with a top 

to the west sense of displacement in present coordinates.  

Samples from site MC10 have also been analysed for anisotropy of low field 

magnetic susceptibility. They have a prolate (elongate) magnetic fabric with an 

average Jelinek (1981) shape parameter, T = -0.474. For prolate anisotropies, 

the k1 principal susceptibility axis usually represents the preferred orientation of 

elongate grains. The mean k1 axis at site MC10 has an azimuth/plunge of 

263°/10° (see Table 5.2), which is sub-parallel to the strike of the sampled vein 

(which dips at 52° to 183°, striking 273°), supporting an E-W displacement 
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along the basaltic shear zone and consistent with the top-to-W shear sense 

inferred from the thin section analysis. Both AMS and structural fabrics 

observed in the dyke-like veins are unrelated to magnetic anisotropy lineations 

in the host gabbros, which at site MC09 have k1 axes plunging 14° towards 035° 

(interpreted to reflect magmatic deformation/flow; see Chapter 5). 

Palaeomagnetic data from the site MC10 dyke-like veins and the host gabbros 

(site MC09) indicate that both units share the same remanence direction (Table 

5.4). This suggests that deformation occurred above the magnetite Curie 

temperature (580°C), consist with the mineral assemblages that have been 

observed through petrographic analyses.  Back-stripping the overall net tectonic 

rotation determined for the cumulate section along the Sorgun Valley (axis = 

051°/27°, rotation = 117 clockwise; Chapter 5), results in a restored k1 axis with 

an orientation of 005°/06° and an orientation for the dyke-like vein that strikes 

N-S, dipping to the W. However, this is not likely to be the original orientation at 

the time of shearing but instead the best estimate of the orientation of the shear 

zone at the time of blocking in of remanence (i.e. below 580°C). 

4.4 Summary 

Based on the results of geochemical investigations and petrographic 

observations a new category of basaltic vein has been identified within the 

lower crustal section of the Mersin ophiolite. It is clear that these rocks do not 

have characteristics typical of other late stage dykes found within the ophiolite 

but rather represent shear zones where intense strain localisation has occurred 

within the layered gabbros (Passchier and Trouw, 2005). The kinematics of the 

shear zones discussed above suggests development of these structures 

oblique to the NNW-SSE orientation of the spreading axis inferred from the 

magnetic fabric data, suggesting a spreading related origin. Furthermore, the 
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very rapid transition from undeformed layered gabbro, to intensely recrystallized 

gabbros within the shear zones suggests that strain localisation may have been 

facilitated by primary variations within the crystallising gabbro body whilst it was 

still hot. Possible causes of strain localisation of this nature could be enhanced 

volatile content and/or local melt pockets within a crystal mush, although the 

secondary mineralogy associated with the deformation suggests that the 

gabbros had cooled below 500°C. High volatile content could also be indicated 

by the generally increased values for LOI within the vein samples compared to 

the host gabbros. Moreover, microstructural textures of both primary and 

secondary mineral assemblages in close proximity to the shear zones all 

support solid state deformation (Vernon, 2000; Passchier and Trouw, 2005). 
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Chapter 5 

Palaeomagnetic study of the Mersin Ophiolite 

5.1 Introduction 

In this chapter, palaeomagnetic and structural analyses are used to quantify 

and analyse the amount and style of tectonic rotation that has occurred during 

the evolution of the Mersin ophiolite of the central Taurides of Turkey, and a 

comparison made with rotations previously documented in ophiolites formed in 

the southern Neotethyan ocean basin (Troodos and Hatay/Baër-Bassit). The 

Mersin ophiolite has never been sampled for palaeomagnetic analyses, yet 

represents one of the best examples of Tethyan-type ophiolites, providing a 3 

km long continuous lower oceanic crustal section, consisting predominantly of 

layered gabbros, that formed by supra-subduction zone spreading within the 

northern Neotethyan ocean basin during the Late Cretaceous (Parlak et al., 

1995; Chapter 3). To achieve the project aims, sampling was conducted mainly 

along the Sorgun Valley section, where layered gabbros are well exposed. In 

addition, samples were collected from discrete dykes cutting the mantle 

sequence and metamorphic sole within the Findikpinari valley area and also 

from the post-emplacement Miocene sedimentary cover. 

5.2 Recap of the context of previous palaeomagnetic results 

from ophiolites in this region 

The Troodos, Hatay and Baer-Bassit ophiolites formed in the southern 

Neotethyan ocean basin at the same time that the Mersin ophiolite was being 

formed in the Intra-Tauride ocean basin to the north. Previous palaeomagnetic 
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analyses in these ophiolites have shown that a large area of southern 

Neotethyan oceanic lithosphere underwent up to 90° of anticlockwise rotation 

subsequent to its formation by seafloor spreading (Moores and Vine, 1971; 

Clube et al., 1985; Clube and Robertson, 1986). The timing of this rotation has 

been constrained by palaeomagnetic analyses of the sedimentary cover of the 

Troodos ophiolite (Clube 1985; Clube and Robertson, 1986; Morris et al., 1990) 

to have begun in the Late Cretaceous and ended by the Eocene. Subsequent 

palaeomagnetic investigations of the Hatay and Baer-Bassit ophiolites, located 

further to the east and emplaced onto the Arabian continental margin, showed 

that these units were also variably rotated in an anticlockwise sense (Morris et 

al., 2002; Inwood et al., 2009) (Figure 5.1). This suggests that the size of 

rotated unit is larger than the present day Troodos ophiolite. The data from 

these ophiolites are best explained by: (i) approximately 60° rotation of an 

intraoceanic microplate; (ii) subsequent emplacement of part of this microplate 

onto the Arabian margin, to form the Hatay and Baer-Bassit ophiolite while the 

Troodos section continued to rotate; and (iii) variable emplacement and post-

emplacement-related tectonic rotations. 

In addition to these broad, regional-scale results, detailed palaeomagnetic 

analysis of the Troodos ophiolite has documented tectonic rotations that took 

place during seafloor spreading, either as tilting of crustal blocks during 

extensional faulting (Allerton, 1989; Hurst et al., 1992), or as vertical and 

inclined axis rotations associated with shearing along an oceanic transform fault 

zone (Allerton, 1989a, b; MacLeod et al., 1990; Morris et al., 1998). 

Hence, previous palaeomagnetic research on the Late Cretaceous ophiolites of 

the Eastern Mediterranean region shows that they have experienced a diverse, 
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complex history of rotational deformation, including successive phases of 

spreading-related, emplacement-related and post-emplacement deformation. 

Until the present study, however, no comparable palaeomagnetic constraints on 

rotations in the Mersin ophiolite were available or indeed for any ophiolites 

formed in the northern Neotethyan ocean basin. 

 

Figure 5.1. Stereographic projections of mean remanence directions from other Late 

Cretaceous ophiolites (Troodos and Hatay/Baër-Bassit ophiolites) 

 

 

5.3 Fieldwork and palaeomagnetic sampling localities 

Field sampling was conducted in the Mersin ophiolite during September 2011, 

mainly along the Sorgun Valley (in the area between the villages of Sorgun and 

Arslanlı) where layered gabbros and ultramafic cumulates are well-exposed 

(Figure 5.2 and 5.4). Sampling was carried out using a portable, hand-held rock 

drill using methods previously described in the section 2.7.1, in addition to block 

sampling. Fieldwork also included collection of structural data on the orientation 
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of cumulate layering and cross-cutting basaltic veins and dykes. The Sorgun 

Valley section was sampled at 18 sites; the first three sites sampled ultramafic 

rocks, whereas the rest sampled gabbroic rocks. In addition to the main 

cumulate gabbro sequence, samples were collected from discrete dykes cross-

cutting both the metamorphic sole of the ophiolite and tectonized harzburgite, 

and from basaltic lavas which are located in the Fındıkpınarı valley area 

approximately 20 km NE of the Sorgun valley (Figure 5.3), in addition to a single 

site in Miocene carbonate sediments to test for recent neotectonic rotation. 

Examples of general field photographs are given in Figures 5.5 and 5.6. Thirty 

one sites were sampled overall, yielding a total of 289 oriented samples, 

including hand samples (Table 5.1). 

 

Figure 5.2. Google Earth images of studied area showing the sampling sites of the northern 

and southern sections of the Sorgun Valley. (a) Northern section of the Sorgun valley. (B) 

Southern section of the Sorgun Valley.  
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Figure 5.2. (Continued) 
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Figure 5.3.  Google Earth image of the Fındıkpınarı valley area showing the localities of the 

dykes. 
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Figure 5.4. Simplified geological map of the western part of Mersin ophiolite showing the 

studied area and cumulate and dyke sampling localities (modified from Parlak and Delaloye, 

2001). 
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Table 5.1. Summary of the number of samples collected during fieldwork. 

 

Geological 

unit 
No. of Sites No. of cores 

No. of hand 

samples 

No. of 

specimens 

Ultramafic 

cumulates 

& Layered 

gabbros 

18 168 12 405 

Dykes 11 98 15 215 

Basalt 

lavas 
1 15 3 27 

Carbonate 

sediments 
1 8 — 16 

 Total 31 289 30 663 
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Figure 5.5. Fieldwork in the Sorgun valley. (a) Drilling into cumulate gabbro. (b) Taking 

structural measurements of cumulate layering. 
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Figure 5.6. (a) Massive lava flow sampled at Fındıkpınarı, with columnar jointing visible on the 

left hand side of the image; (b) sub-horizontally bedded Miocene carbonates exposed at Arslanlı. 
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5.4 Rock magnetic analyses and microscopy 

Quantitative rock magnetic investigations on samples of different lithologies 

from the study area were performed to find out the carriers of natural 

remanence. 

In addition to the rock magnetic analyses, polished thin section analyses were 

performed on 28 representative samples from different lithologies of Mersin 

ophiolite in order to identify the magnetic minerals within these rocks and to 

determine the preferred alignment of the minerals which are responsible for 

carrying magnetic anisotropy and remanent magnetization. In addition, these 

thin sections have been used in petrographic studies, which are described in 

the sections below and in Chapter 4. All thin section analyses were performed 

at Plymouth University using an Alphaphot-2 YS2 Polarizing Microscope 

produced by Nikon, and a JEOL JSM-6610LV Scanning Electron Microscope. 

Results of these studies are presented in the following sections. 

5.4.1 Isothermal remanent magnetization (IRM) analyses 

The isothermal remanent magnetization (IRM) technique represents one of the 

easiest methods to obtain useful information about the magnetic mineralogy of 

rocks (see section 2.7.5), because each magnetic mineral has its own 

distinctive IRM curve when the acquired magnetization data are plotted versus 

the applied field.   

In this study, IRM acquisition experiments were performed on samples from 

ultramafic and gabbroic cumulates, dykes, basaltic lavas and Miocene 

carbonates.  
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All IRM acquisition curves from the various lithologies are shown in Figure 5.7. 

In general, all samples from all lithologies showed a sharp increase in 

magnetization in fields less than 200 mT, reaching saturation of remanence at 

fields mainly below 400 mT. Backfield demagnetization of IRM for all samples 

yielded coercivity of remanence values that ranged from 24 to 53 mT. Together, 

these data suggest that low to medium coercivity fine-grained magnetic carriers 

are dominant in these rocks, most likely single-domain (SD) or pseudo-single 

domain (PSD) magnetite and/ or titanomagnetite, with no indication of 

haematite or goethite. These results are entirely compatible with those obtained 

in other Neotethyan ophiolites (e.g. Troodos, Hatay and Baer-Bassit; Morris et 

al., 1998, 2002; Inwood, 2005), which also show a dominance of low coercivity 

magnetite. 

5.4.2 Thermomagnetic analysis 

High-temperature susceptibility experiments were performed on 20 

representative samples from different lithologies and all the measurements 

were carried out using argon gas to reduce the oxidation of the samples during 

heating. Results from representative samples are shown in Figure 5.8. The 

majority of samples showed a clear decrease in susceptibility upon heating to 

around 580°C, suggesting the presence of magnetite as a dominant magnetic 

mineral in these rocks (Butler, 1998). Numerous samples showed a good 

correlation between heating and cooling curves and are reversible, indicating 

that  no new magnetic minerals have been created during the heating (e.g. 

MC0103; Figure 5.8). A few samples (e.g. MC1804; Figure 5.8) show a bump in 

the heating curve between 150 °C and 400 °C. The increasing limb of this bump 

is reversible until 300°C, but the curve becomes irreversible after further 
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heating, suggesting the presence of titanomagnetite/titanomaghemite (Morris et 

al., 2002). This observation is supported by SEM analyses described below. In 

the heating curve of sample MD0708 (Figure 5.8), a distinct decrease in 

susceptibility is observed up to c. 400°C that suggests that the initial 

susceptibility in this sample is predominantly carried by paramagnetic minerals. 

This is followed by a rapid increase of susceptibility after 400°C and subsequent 

decrease to reach a Curie temperature at 580°C. This suggests the production 

of significant fine-grained magnetite during heating to high temperatures, 

leading to higher susceptibility during the cooling cycle. A few samples (e.g. 

MD4H301) showed relatively low susceptibilities and parabolic heating curves, 

indicating that these rocks are dominated by paramagnetic minerals. Sample 

MS0106 (from Miocene sediment) showed a very low susceptibility and a noisy 

signal, suggesting very low concentrations of magnetite in these carbonate 

rocks. 

5.4.3 Petrographic and SEM analyses 

The rock magnetic observations suggesting a dominance of magnetite in most 

sampled lithologies are in agreement with petrographic and SEM analyses, 

where nearly all the samples from gabbroic cumulates and dykes again were 

seen to have magnetite and titanomagnetite as the dominant opaque 

constituents. Optical and SEM analyses show that opaque minerals in the 

ultramafic rocks are mostly in the form of secondary magnetite, probably 

produced by serpentinization of the olivine in these rocks (Figures 5.9 and 

5.10).    
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Figure 5.7.  Isothermal remanent magnetization (IRM) curves and backfield demagnetization 

curves for representative samples of the Mersin Ophiolite Complex and Miocen sedimentary 

cover. 
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Figure 5.7. (Continued) 
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Figure 5.7. (Continued)     
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Figure 5.8.  Curie temperature results from representative samples of Mersin Ophiolite 

Complex and its Miocene sedimentary cover. Note: the red curve illustrates the heating from 

room temperature to 700˚C, and the blue curve illustrates the cooling from 700˚C to room 

temperature. 
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Figure 5.8. (Continued) 
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Figure 5.8. (Continued) 
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SEM observations of polished thin sections for some samples from gabbros 

showed numerous Fe-Ti oxide crystals with a few crystals of iron sulphide (i.e. 

pyrrhotite) as the important types of ferromagnetic minerals present. These are 

considered to be the important remanence carriers in these rocks (Butler, 

1998). In some samples, these Fe-Ti oxide crystals appear in the form of a 

large number of coarse-grained opaque minerals (≥ 1 mm), generally with little 

alteration (Figures 5.11, to 5.13). This observation is consistent with the 

thermomagnetic analyses described above. Primary Fe-Ti oxides are often 

common constituents in mafic rocks which form during magmatic differentiation 

processes at nearly 1300°C. However, Ti-poor titanomagnetite usually exsolves 

from plagioclase or pyroxene within plutonic rocks (Butler, 1998). 

Dykes generally displayed a range of paramagnetic/diamagnetic minerals (e.g. 

pyroxene, amphibole and plagioclase) and opaque minerals, where magnetite 

and titanomagnetite are the dominant ferromagnetic minerals. Occasionally, 

some samples showed pyrrhotite (e.g. Figures 5.14 and 5.15), which has been 

also observed through thermal demagnetization analysis (Figure 5.34).  

 

Figure 5.9. Photomicrographs of an ultramafic cumulate sample (MC0203B) from the Mersin 

ophiolite showing secondary magnetite produced by serpentinization of olivine. (a) Under 

crossed polars. (b) Under plane-polarized light. Scale bar: 0.5 mm. (Cpx = clinopyroxene; Ol = 

olivine; Mt = magnetite). 
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Figure 5.10. SEM photograph and energy-dispersive X-ray (EDX) spectral analysis of sample 

MC0203B, confirming presence of secondary magnetite within olivine grains. 

 

Figure 5.11. Optical photomicrographs of a gabbro sample (MC1505C) from the Mersin 

ophiolite showing the Fe-Ti oxide minerals along with clinopyroxene and plagioclase. (a) Under 

crossed polars. (b) Under plane-polarized light. Scale bar: 0.5 mm. (Cpx = clinopyroxene; Pl = 

plagioclase; Fe-Ti = Fe-Ti Oxide). 
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Figure 5.12. SEM photograph and EDX spectral analysis of gabbro sample MC1505C, showing 

variations in Ti content within a titanomagnetite grain. 

 

Figure 5.13. SEM images of a gabbro sample (MC1505C) from the Mersin ophiolite showing 

the concentrations of the Fe, Ti, S and Si. (a) Concentration of the titanium (Ti) in red colour. (b) 

Concentration of the iron (Fe) in brown colour. (c) Concentration of the Sulfur (S) in yellow 

colour. (d) Concentration of the silicon (Si) in blue colour.  
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Figures 5.14 (above) and 5.15 (below). SEM photograph and EDX spectral analysis of gabbro 

sample MC1804B and dyke sample MD0708B, showing presence of magnetite and subordinate 

pyrrhotite. 
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5.5 Magnetic fabric analyses and petrofabric observations 

5.5.1 Anisotropy of magnetic susceptibility results 

The anisotropy of low-field magnetic susceptibility (AMS) technique was used to 

identify the orientation and degree of development of magnetic fabrics of Fe-

bearing grains in the sampled rocks. AMS of 663 specimens from 31 sites of 

ultramafic and gabbroic cumulates, dykes and Miocene carbonate sediments 

were determined using a KLY-3 Kappabridge (AGICO, Brno, Czech Republic) 

at Plymouth University (Figure 2.18a). All AMS measurements were carried out 

before the specimens were subjected to demagnetization during 

palaeomagnetic analysis. Many anisotropy factors are conventionally used to 

describe the AMS fabric of rocks. In this study the Jelinek Pj and T parameters 

are used to describe the degree of magnetic anisotropy and the shape of the 

AMS ellipsoid, respectively (Tarling and Hrouda, 1993). These parameters are 

normally plotted against each other in the form of a Jelinek plot. Values of T 

range from +1 to -1, where positive values refer to oblate magnetic fabric 

shapes (disks) and negative values refer to prolate magnetic fabric shape (rods 

or cigars) (Tarling and Hrouda, 1993). 

5.5.1.1 Bulk susceptibility and anisotropy parameters  

All samples from the ultramafic and gabbroic cumulates show intermediate to 

high bulk susceptibilities, ranging from 4 x 10-4 to 5.6 x 10-3 SI and 1.8 x 10-4 to 

2.5 x 10-2 SI respectively, indicative of a ferrimagnetic mineralogy (e.g. 

magnetite). These observations are consistent with results of rock magnetic 

analyses that demonstrate the presence of magnetite. Dyke and lava samples 

also show intermediate to high bulk susceptibility, ranging 4.9 x 10-4 to 1.3 x10-2 

SI and 3.9 x 10-2 to 9.1 x 10-2 SI respectively, indicative of a ferrimagnetic 
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mineralogy, and again these observations are consistent with presence of 

magnetite inferred from rock magnetic data. In contrast, results from Miocene 

carbonates have low bulk susceptibilities, ranging from 2.6 x 10-6 to 1.4 x 10-5 

SI, indicative of a mixture of diamagnetic and paramagnetic minerals in these 

rocks. 

Both gabbros and dykes showed a mixture of oblate and prolate magnetic fabric 

shapes, and the corrected anisotropy degree, Pj, at all gabbro and dyke sites 

ranges from 1.003 – 1.431 and 1.004 – 1.109 respectively. Both basaltic lavas 

and Miocene carbonates showed only oblate magnetic fabric shapes, with 

corrected anisotropy degrees of 1.011 – 1.061 and 1.023 – 1.141 respectively 

(Figure 5.16 and Tables 5.2 and 5.3). 

 

Figure 5.16. Degree of anisotropy Pj, versus shape parameter T diagram (Jelinek, 1981) for 

rocks from the Mersin ophiolite. (a) Ultramafic and gabbroic cumulates. (b) Discrete dykes. (c) 

Lava flow samples. (d) Miocene sediments.  



148 
 

Table 5.2. Magnetic fabric results for ultramafic and gabbroic cumulates of the Mersin ophiolite. 

   

    
Mean orientation of the axis 

    

  

  

  K1 K2 K3 

  

Site Unit n Susceptibility Dec Inc 

Conf. 

angles Susceptibility Dec Inc 

Conf. 

angles Susceptibility Dec Inc 

Conf. 

angles Pj T 

Sorgun Valley 
section 

 
  

   
  

   
  

   
  

  
MC01 

Ultramafic 
cumulate 16 3.72E-03 262.4 36.3 23.3/14.4 3.58E-03 148 29.3 78.3/15.7 3.56E-03 30.1 39.7 78.3/18.7 1.048 -0.824 

MC02 
Ultramafic 
cumulate 16 3.43E-03 71 19.4 8.4/3.3 3.24E-03 268.2 69.7 16.8/7.8 2.94E-03 163 5.5 16.8/4.1 1.168 0.258 

MC03 
Ultramafic 
cumulate 16 1.12E-03 107.9 51 57/16.4 1.12E-03 257.8 35 57.4/24.3 1.09E-03 358.6 15 29.9/12 1.036 0.776 

MC04 Gabbro 19 3.65E-04 279.9 23 12.5/7.2 3.59E-04 19.4 21.3 27.7/9.4 3.57E-04 147.6 57.8 27/6.4 1.024 -0.554 

MC05 Gabbro 19 1.13E-03 51.9 5.2 15.6/3.3 1.10E-03 146 38.6 15.2/3.9 1.03E-03 315.4 51 4.9/3.8 1.101 0.452 

MC06 Gabbro 36 5.93E-04 242.9 1.1 16.8/5.6 5.70E-04 333 6.2 54.2/4.4 5.61E-04 143 83.7 54.3/10 1.059 -0.407 

MC07 Gabbro 24 5.26E-04 249.4 39.7 4.9/1.3 5.12E-04 358.1 21.1 5.2/4.3 5.10E-04 109.1 42.9 4.7/1.3 1.036 -0.714 

MC08 Gabbro 23 4.40E-03 55.3 9.6 8.3/4.4 4.10E-03 153.4 39.7 8.3/6.3 3.67E-03 314.3 48.7 6.8/3.7 1.197 0.195 

MC09 Gabbro 22 1.80E-03 35.3 14.1 16.6/3.8 1.69E-03 136.4 37.5 17.9/6.3 1.52E-03 288.5 49.1 11.1/4.2 1.185 0.295 

MC10 Gabbro 23 9.91E-04 263 10 24.4/17.5 9.51E-04 155.2 60 40.1/17.5 9.38E-04 358.4 27.9 42.3/16.1 1.058 -0.474 

MC11 Gabbro 44 1.83E-02 219.1 9.4 5.2/2.7 1.63E-02 122.4 35.2 12.4/3.9 1.51E-02 321.8 53.2 12.4/3 1.214 -0.182 

MC12 Gabbro 23 1.73E-02 217.1 18 5.6/2.5 1.61E-02 105 49.2 5.6/1.6 1.37E-02 320.4 35.1 2.6/1.5 1.273 0.373 

MC13 Gabbro 19 1.69E-03 80.8 16.1 12.4/3.3 1.63E-03 171.2 1.4 16/4.8 1.42E-03 265.9 73.9 11.6/3.5 1.198 0.566 

MC14 Gabbro 22 1.43E-03 79.4 8.9 11.2/3.3 1.40E-03 169.4 0.1 11.2/4 1.23E-03 259.9 81.1 4.4/2.8 1.18 0.67 

MC15 Gabbro 23 2.10E-01 295.8 26.2 6.5/3.4 1.88E-01 200.6 10.4 6.4/2.4 1.55E-01 90.8 61.5 4.0/2.0 1.332 0.371 

MC16 Gabbro 17 6.38E-04 63.6 7.6 36.9/5.7 6.33E-04 331.2 17.1 40.2/24.5 6.21E-04 176.6 71.2 31.2/3.4 1.029 0.41 

MC17 Gabbro 19 7.38E-03 123.4 7.3 14.3/6.9 7.27E-03 25.6 46.7 14.4 6.42E-03 220.1 42.4 8.0/3.3 1.164 0.782 

MC18 Gabbro 24 5.64E-03 277.7 11 40.4/16.4 5.50E-03 38.9 69.4 38.2/15 5.29E-03 184.3 17.2 34.7/15.6 1.067 0.185 

n = number of specimens; Pj = corrected anisotropy degree; T = shape parameter; Dec = declination; Inc = inclination. 
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Table 5.3. Magnetic fabric results for dykes of the Mersin ophiolite. 

   

    
Mean orientation of the axis 

    

  

  

  K1 K2 K3 

  

Site Unit n Susceptibility Dec Inc 

Conf. 

angles Susceptibility Dec Inc 

Conf. 

angles Susceptibility Dec Inc 

Conf. 

angles Pj T 

Fındıkpınarı 
Valley section 

 
  

   
  

   
  

   
  

  
MD01 

D
y
k
e
s
 h

o
s
te

d
 b

y
 M

a
n
tl
e

 21 7.86E-04 55 15.3 8.1/6.9 7.80E-04 230.7 74.6 13.4/6.2 7.75E-04 324.7 1.1 14/5.9 1.015 -0.078 

MD02 16 1.64E-03 320.2 22.3 15.7/7.3 1.59E-03 137 67.7 49.2/7.7 1.58E-03 229.7 1.1 49.4/8 1.038 -0.681 

MD03 17 6.67E-04 109.6 29.2 12.9/4.0 6.64E-04 216.6 27.6 13.0/4.7 6.58E-04 314.7 47.7 5.2/4.2 1.014 0.526 

MD04 19 6.83E-04 117 44.9 28.1/6.6 6.82E-04 26.2 0.9 27.9/5.7 6.75E-04 295.3 45.1 8.9/3.4 1.014 0.664 

MD05 22 7.47E-04 206.4 0.2 4.2/2.3 7.37E-04 116.3 23.3 9.2/3.7 7.27E-04 296.9 66.7 9.1/2.7 1.028 0.034 

MD10 18 6.28E-04 64.3 28.4 20.1/9.7 6.27E-04 196.4 51.1 19.9/12.0 6.23E-04 320.3 24.2 15.1/3.8 1.008 0.489 

MD11 20 9.04E-04 78 73.9 20.0/9.7 8.96E-04 347 0.3 25.0/11.7 8.91E-04 256.9 16.1 26.3/12.8 1.015 -0.199 

  
  

   
  

   
  

   
  

  
MD06 

D
y
k
e
s
 h

o
s
te

d
 b

y
 

M
e
ta

m
o
rp

h
ic

 r
o
c
k
s
 

18 4.35E-03 212.6 36.9 65.3/14.5 4.34E-03 109.1 17.2 65.3/19.8 4.30E-03 359 48 23.0/12.0 1.012 0.516 

MD07 20 5.34E-04 276.9 14.9 9.5/5.7 5.32E-04 186.1 3 42.1/5.3 5.31E-04 85.1 74.8 41.8/5.6 1.005 -0.395 

MD08 20 1.40E-03 259.4 15 12.7/6.4 1.39E-03 158.4 35.6 21.8/10.5 1.38E-03 8.4 50.4 21.5/6.1 1.018 -0.284 

MD09 24 6.98E-04 252.5 18.1 5.3/4.5 6.95E-04 147.2 38.8 77.6/4.8 6.95E-04 2 45.6 77.6/5.0 1.006 -0.915 

  
  

   
  

   
  

   
  

  
Lava flow 

 
  

   
  

   
  

   
  

  
MS01 Basalt 27 6.39E-02 215.2 63.7 19.5/5.8 6.34E-02 40.3 26.2 37.1/8.7 6.26E-02 309.3 2 35.9/9.1 1.021 0.326 

Miocene cover 
 

  
   

  
   

  
   

  
  

ML01 Carbonates 16 9.14E-06 317.8 2 32.8/10.5 9.03E-06 47.9 3.9 34.5/12.1 8.76E-06 200.2 85.6 18.2/9.6 1.045 0.44 

  
  

   
  

   
  

   
  

  n = number of specimens; Pj = corrected anisotropy degree; T = shape parameter; Dec = declination; Inc = inclination. 
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5.5.1.2 Distribution of AMS principal axes in the Mersin cumulate sequence 

In general, ultramafic cumulates (sites MC01-03) showed scattering in AMS 

principal axes with no clear relationship to the orientation of cumulate layering 

(Figure 5.17). This probably reflects the very coarse crystal size of these rocks, 

such that the fabric of each specimen is dominated by the crystallographic 

orientation of just a few crystals. Within the gabbroic cumulate section, 

significant variations in fabrics defined on the basis of the orientation 

distributions of AMS principal axes are seen. Excluding one gabbroic site 

(MC16) where generally scattered AMS axes are observed, these can be 

classified into three fabric types: 

(i) Triaxial fabrics: these are marked by presence of three distinct clusters of 

principal axes. At some sites, two of these clusters lie within or close to the 

measured plane of cumulate layering (sites MC02, 05, 08 and 14). At others 

(sites MC07, 12 and 15), only the cluster of k1 axes is within or close to the 

plane of cumulate layering, or all three axes lie off of this plane. 

(ii) Clustered k1 axes with a girdle distribution of k2 and k3 axes (sites MC04, 06, 

09-11 and 13): in these cases, k1 axes lie within or close to the plane of 

cumulate layering, but k2 and k3 axes form a girdle distribution that is discordant 

to the layering. 

(iii) Clustered k3 axes with a girdle distribution of k1 and k2 axes (sites MC17 

and 18): at these sites, k3 axes lie within or close to the plane of cumulate 

layering with k1 and k2 axes forming a girdle distribution that is discordant to the 

layering. 
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Figure 5.17. (a) Stereoplots of AMS ellipsoid principal axes, together with planes of the layering 

of ultramafic and gabbroic cumulates from the Mersin ophiolite; (b) diagrammatic cross-section 

showing the status and the dip direction of the layering for the sites within the Sorgun Valley. 
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Figure 5.17. (Continued) 
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Figure 5.17. (Continued) 
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However, in all three types of fabrics, k1 axes generally have shallow plunges 

with azimuths on or close to the strike of the cumulate layering and trending 

generally ENE-WSW. This consistency across the majority of sites is 

inconsistent with simple models for the development of cumulate layering via 

crystal settling in a magma chamber, which should result in a dominance of 

oblate fabrics where k3 axes cluster around the pole to the layering. Instead, 

these data suggest that some other geological process has resulted in a 

preferred orientation of k1 axes within or close to the plane of cumulate layering 

with a broadly similar azimuth between different sites. Three potential scenarios 

capable of generating this preferred orientation are: (a) consistent direction of 

magmatic flow during the formation of the cumulates; (b) shearing of the 

cumulate crystal mush, for example due to mantle drag; or (c) development of a 

post-magmatic tectonic fabric, for example via superposition of magmatic and 

structural fabrics to produce an intersection magnetic lineation. The origin and 

potential significance of this consistency in AMS k1 axes is discussed further 

below (Section 5.8.1). 

5.5.1.3 Distribution of AMS principal axes in discrete dykes  

In general, AMS principal axes in dykes are generally found to lie within or close 

to the dyke plane in the majority of cases reported in the literature (e.g. 

Borradaile and Gauthier, 2006). This is because magma-flow alignment of 

accessory magnetite dominates the magnetic fabric, with a subordinate 

contribution from paramagnetic silicate minerals that also preferentially align 

with the flow. Under certain circumstances, the direction of magma flow may be 

determined from AMS data (e.g. Staudigel et al., 1992), but this requires 

collection of multiple samples from opposing dykes margins that was not 

possible in the case of the Mersin discrete dykes. 
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Various forms of relationship were found in the Mersin dykes between AMS 

fabrics and dyke margin orientations, ranging from very good to poor agreement 

with dyke orientations determined in the field, suggesting that the controls of 

AMS may vary between dykes (Figure 5.18).  

In the eastern area (sites MD01-05, MD10 and 11), thick dykes hosted by the 

mantle sequence have magnetic fabrics broadly consistent with measured dyke 

margins. For example, sites MD04 and MD10 showed a very good relationship 

between AMS fabrics and dyke orientations. In these cases, maximum and 

intermediate principal axes of AMS (k1 and k2) form a girdle distribution that 

broadly corresponds to the measured plane of the dykes, with minimum axes 

(k3) forming clusters corresponding to the poles to the dykes. This suggests a 

normal magnetic fabric. A similar arrangement of AMS principal axes is 

observed at site MD03, but with a mismatch with the overall dyke orientation. In 

this case there is likely a fabric developed that is related to the local dyke 

orientation at the point of sampling that is different to the overall average 

orientation of the dyke. Sites MD01 and MD05 exhibit generally triaxial 

magnetic fabrics, i.e. with distinct clustering of each of the principal axes, but 

again have k3 axes close to the corresponding dyke poles.  

Dykes cutting the metamorphic sole of the ophiolite show well-defined magnetic 

fabrics at three sites (MD07-09), with girdle distributions of k2 and k3 axes that 

dip steeply to the E or ENE and clustered k1 axes plunging shallowly to the W or 

WSW (with fabric at the remaining site (MD06) being poorly defined). In each 

case, k1 axes are close to lying within the measured planes of the sampled 

dykes, but the girdle distributions of k2 and k3 axes are discordant to the dyke 

planes.  
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Figure 5.18. Stereoplots of AMS ellipsoid principal axes together with dyke orientations from 

the Mersin ophiolite.  
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Figure 5.18. (Continued) 
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5.5.1.4 Distribution of AMS principal axes in lavas 

The limited number of samples available from the site in the lava flow showed a 

complex fabric with no obvious relationship to the orientation of the flow inferred 

from the orientation of well-developed columnar jointing (Figure 5.19a).  

5.5.1.5 Distribution of AMS principal axes in Miocene sediments 

The results from Miocene sediments show a well-defined magnetic fabric that is 

consistent with measured bedding, where maximum and intermediate principal 

axes of AMS (k1 and k2) form a girdle distribution that corresponds to the 

measured bedding plane (which is close to the primitive circle because it 

represents a sub-horizontal layer), and minimum axes (k3) form a cluster 

corresponding to the pole to the bedding. This suggests a normal, deposition-

related fabric unaffected by tectonism (Figure 5.19b). 

 

 

Figure 5.19. Stereoplots of AMS ellipsoid principal axes from: (a) lava flow samples from site 

ML01, together with plane perpendicular to columnar jointing (that provides the best estimate of 

the orientation of the flow). (b) Miocene sediments, together with subhorizontal bedding plane. 
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5.5.2 Thin section observations of petrofabrics 

Optical microscope analyses of the rock samples revealed that both 

paramagnetic and ferromagnetic minerals contribute to the AMS, and the 

amount of these minerals varies between different rock types. In ultramafic 

samples, olivine is highly serpentinized, resulting in production of secondary 

magnetite. Opaque grains are distributed along fractures within the 

serpentinized olivine and are clearly observable both with the naked eye and 

under the microscope in the form of greenish colour banding that shows a 

strong correspondence with k1 (Figure 5.20). In most of the gabbroic cumulate 

samples, both opaque and paramagnetic minerals within the rock show a good 

agreement of alignment with k1 axes, which is clearly observed both with the 

naked eye and under the microscope (Figure 5.21 and Figure 5.22). One 

sample (MC1206C; Figure 5.23) in particular showed distinctive oriented 

inclusions of magnetite in clinopyroxene phenocrysts which are thought to be of 

exsolution origin, together with intergrowths of composite lamellae of 

orthopyroxene (Fleet et al., 1980; Butler, 1998; Rajesh et al., 1998; Renne et al., 

2002). Similar observations have been reported in many studies, as early as 

that of Judd (1885). In the current study, such inclusions of magnetite with a 

preferred orientation are frequently observed, and in a number of samples (such 

as MC1206C) show a good agreement with k1 axes (Figure 5.23). In addition, 

such inclusions may be an important source of stable remanent magnetization 

(Renne et al., 2002; Gee and Kent, 2007). SEM analyses (Figure 5.24) 

indicated that magnetite is only ferromagnetic mineral in this sample (in 

agreement with rock magnetic analyses), and the presence of oriented 

exsolution lamellae of low-Ca orthopyroxene within high-Ca clinopyroxene. 

Exsolution usually occurs by the growth of lamellae within the host mineral in a 
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slow manner. Thus this provides evidence for slow cooling of these plutonic 

rocks (Butler, 1998). 

 

 

 

 

Figure 5.20. Images of ultramafic cumulate sample MC0203B showing a banding caused by 

serpentinization. (a) Direct image of the slide under normal light. (b) Under crossed polars. (c) 

Under plane-polarized light. Scale bar: 0.5 cm for Figure 5.20(a) and 0.5 mm for Figure 

5.20(b,c). (Cpx = clinopyroxene; Ol = olivine; Mt = magnetite). 

 

 



161 

 

 

 

Figure 5.21.  Images of cumulate gabbro sample MC1505C showing a good agreement of both 

magnetite and plagioclase crystal alignments with k1. (a) Direct image of the slide under normal 

light. (b) Under crossed polars. (c) Under plane-polarized light. Scale bar: 0.5 cm for Figure 

5.21(a) and 0.5 mm for Figure 5.21(b,c). (Cpx = clinopyroxene; Pl = plagioclase; Fe-Ti = Fe-Ti 

Oxide). 
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Figure 5.22.  Images of gabbroic cumulate sample MC0703C showing a good agreement of 

both pyroxene and plagioclase crystal alignments with k1. (a) Direct image of the slide under 

normal light. (b) Under crossed polars. (c) Under plane-polarized light. Scale bar: 0.5 cm for 

Figure 5.22(a) and 0.5 mm for Figure 5.22(b,c). (Cpx = clinopyroxene; Pl = plagioclase). 
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Figure 5.23. Images of gabbroic cumulate sample MC1206C illustrating both exsolved 

inclusions of oriented magnetite and intergrowths of composite lamellae of orthopyroxene in 

clinopyroxene phenocrysts. (a) Direct image of the slide under normal light. (b) Under crossed 

polars. (c) Under plane-polarized light. Scale bar: 0.5 cm for Figure 5.23(a) and 0.2 mm for 

Figure 5.23(b,c). (Cpx =  clinopyroxene; Pl = plagioclase). 
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Figure 5.24.  SEM photograph and EDX spectral analysis of sample MC1206C, indicating the 

presence of exsolved magnetite. 

5.5.3 Anisotropy of anhysteretic remanent magnetization (AARM) results 

Anisotropy of anhysteretic remanent magnetization (AARM) measurements 

were performed on a limited number of representative samples to allow 

comparison with AMS results from the same samples in order to check for 

presence of inverse or intermediate magnetic fabrics. In this study, one 

specimen from each site in the ultramafic and gabbroic cumulate section was 

analysed after specimens were subjected to a demagnetizing field of 100 mT to 

remove any natural remanence present. 

Four diverse relationships between AMS and AARM fabrics were found in the 

selected samples. The first set of the fabric relationships is a normal case 

where all three principal axes of the AMS coincide with the AARM axes and 
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generally showed oblate fabric in both AMS and AARM ellipsoids (Figure 5.25a 

and Fig 5.26a). The second set showed coincidence of k1 with AARM1 axes in 

both fabrics, but with an interchanging of the k2 and k3 axes of the AMS fabrics 

with the AARM2 and AARM3 axes, and generally showed prolate fabric in both 

AMS and AARM ellipsoids (Figure 5.25b and Figure 5.26b). The third kind of 

relationship is the case in which the k3 axis of the AMS fabric coincides with the 

AARM3 axis, but there is an interchange of the k1 and k2 axes of the AMS 

fabrics with the AARM1 and AARM2 axes. This kind of relationship was 

observed only in one sample, and it showed triaxial and oblate magnetic shapes 

in the AMS and AARM fabrics respectively (Figure 5.25c and Figure 5.26c). The 

fourth set of samples showed no obvious relationship between AMS and AARM 

fabrics.  The first fabric relationship type is interpreted as a normal fabric, while 

the second and third kinds of relationship may be classified as intermediate 

fabrics, that along with reverse fabrics represent types of abnormal fabrics 

(Rochette et al., 1992). These abnormal fabrics might be of primary and 

secondary origin (Borradaile and Gauthier, 2003; Raposo et al., 2007).  
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Figure 5.25. Comparison of AMS and AARM results for ultramafic and mafic cumulates from 

Mersin ophiolite.  (a) All three principal axes of the AMS coincide with the AARM axes in these 

samples. (b) The samples show a coincidence of k1 with AARM1 axes in  both fabrics, but there 

is an interchanging of the axes k2 and k3 of the AMS fabrics with the AARM2 and AARM3 axes of 

the AARM fabrics. (c) This sample shows a coincidence between the k3 axis of the AMS fabric 

and the AARM3 axis, but there is an interchange of the k1 and k2 axes of the AMS fabric with the 

AARM1 and AARM2 axes of the AARM fabrics. 
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Figure 5.25. (Continued) 
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Figure 5.26. Degree of anisotropy Pj, versus shape parameter T diagrams (Jelinek, 1981) of 

AARM and AMS ellipsoids for ultramafic and mafic cumulates from Mersin ophiolite. (a) 

Samples display oblate fabric in both AMS and AARM ellipsoids. (b) Samples display prolate 

fabric in both AMS and AARM ellipsoids. (c) Sample shows triaxial and oblate magnetic shapes 

in the AMS and AARM fabrics respectively.  

5.6 Remanent magnetizations and demagnetization 

characteristics 

5.6.1 Demagnetization of NRM 

The natural remanent magnetization (NRM) of a rock is usually the vector sum 

of a mixture of magnetization components acquired at a range of times during 

its geologic history. Each rock acquires a “primary” magnetization component 

during its formation. Igneous rocks formed by crystallization from magma 

acquire a stable NRM called thermoremanent magnetization (TRM) during 

solidification and cooling in the Earth’s magnetic field. Subsequent exposure to 
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alteration or weathering may lead to the acquisition of several secondary 

components. 

To examine the nature of the remanent magnetization from all the sites, 

selected specimens were progressively AF or thermally demagnetized and all 

remanences measured as described in Section 2.7.4. Progressive 

demagnetization isolates various remanence components on the basis of 

different coercivities of the ferromagnetic mineral grains or on the basis of 

different unblocking temperatures of the mineral grains (Butler, 1992). Usually, 

the grain size of ferromagnetic minerals controls the ability of a rock to acquire 

and retain an ancient remanence. Small particles occur as single domain or 

pseudo single domain (SD/PSD) grains which can hold remanence more 

efficiently than larger multi-domain (MD) grains, which are more likely to acquire 

unwanted secondary remanences (Butler, 1992). 

Prior to the application of stepwise demagnetization techniques, the natural 

remanent magnetization (NRM) intensities were measured for all specimens. 

The measurements showed a clear difference in the intensities between the 

various types of the lithologies ranging between 2.12 x 10-5 A/m to 8 A/m. The 

average NRM intensities of all lithologies are listed in Table 5.4. 

The palaeomagnetic results from both alternating field and thermal 

demagnetization techniques on all samples show that both techniques are 

equally effective in determining the characteristic remanent magnetization 

(ChRM). The maximum angular deviation (MAD) for identifying acceptable 

ChRM directions was set to 10°, and data from individual samples with MAD > 

10° were excluded from subsequent palaeomagnetic analyses. All 

palaeomagnetic sampling sites (except site MC15) have mean directions with 
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α95 cones of confidence less than 9°, whereas the Fisher precision parameter 

(kappa) values for all sites (except site MC15), are greater than 30, and more 

than a half of sites yielded kappa values more than 100. These results indicate 

that the demagnetization data obtained from all samples of the different 

lithologies are highly reliable. Typical examples of demagnetization behavior 

from various lithologies are shown in Figures 5.33 to 5.36, and site level data 

from all lithologies are listed in Tables 5.5 and 5.6.  

5.6.2 Demagnetization characteristics 

Both AF and thermal demagnetization curves were collated for all the samples 

of the lithologies of Mersin ophiolite in order to determine dominant coercivities 

(Figures 5.28, 5.30, 5.32) and unblocking temperatures (Figures 5.29, 5.31). AF 

demagnetization curves for samples with high coercivities are marked by high 

median destructive fields (MDF; the alternating field required to reduce the 

intensity to 50% of its initial NRM value), which in turn reflect finer magnetite 

Table 5.4.  Average intensities of natural remanent magnetization (NRM) for sampled lithologies. 

Lithology Number of specimens Average NRM intensity (A/m) 

Ultramafic cumulates 36 0.132 

Gabbroic cumulates 180 1.116 

Dykes  132 0.08 

Basaltic lava 12 2.085 

Carbonate sediments 16 3.30 x 10-5 
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grain sizes. The average grain size can be inferred indirectly by comparing 

curves with those obtained from sized magnetite grains provided by Argyle et al. 

(1994) (Figure 5.27). 

 

Figure 5.27. Shapes of AF demagnetization curves of a 0.1 mT TRM in magnetite over a broad 

range of grain sizes, extending from SD to large MD (from Dunlop and Özdemir, 1997, after 

Argyle et al., 1994). 

By comparison with the standard curves of Argyle et al. (1994), ultramafic 

samples of sites MC01 and MC02 have MDFs of c. 23 mT (Figure 5.28a) and 

are dominated by magnetite of approximately 1m in size, i.e. at the 

approximate upper size limit for elongate SD grains (Morris, 2003). Samples 

from site MC03 have MDFs of c. 48 mT (Figure 5.28b) and are characterized by 

very fine SD magnetite grains (~0.03 m). Thermal demagnetization of the 

ultramafic rocks yields curves with maximum unblocking temperatures of 580°C 
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(close to the magnetite Curie temperature), and the demagnetization trends 

show distributed unblocking temperature spectra (Figure 5.29a), probably 

reflecting a range* of grain sizes of magnetite within these rocks possibly 

formed as a result of serpentinization, as described in Section 5.5.2 (Figure 

5.20).  [*note that unblocking temperature is highly sensitive to very small 

variations in grain size, varying by several 100’s °C across changes in grain 

size of tenths of microns; Tarling, 1983]. 

Overall, AF demagnetization also identifies two types of curves in gabbroic 

samples. The first type, which includes sites MC06, MC08-12 and MC17-18, 

has MDFs of c. 25 mT indicative of SD grain sizes of < 1 m (Figure 5.28c), 

while the second type includes sites MC04-05, MC07, MC13-14 and MC16, has 

MDFs of c. 60 mT,  characteristic of very fine (< 0.03 m) SD grains (Figure 

5.28d). Thermal demagnetization of the gabbroic samples shows very discrete 

unblocking just below 580°C, suggesting presence of a limited range of grain 

sizes of magnetite in these rocks (Figure 5.29b). Unblocking spectra with these 

characteristics are often taken as evidence of thermoremanent magnetizations 

in intrusive igneous rocks (e.g. Gee and Kent, 2007; Morris et al., 2009). 

AF demagnetization of the samples from discrete dykes has shown three types 

of characteristic curves. The first type, which includes sites MD02, MD04, MD08 

and MD10, is dominated by a very fine (< 0.03 m) SD magnetite with MDFs of 

c. 70 mT (Figure 5.30a). The second type, which includes sites MD01, MD03, 

MD05, MD07, MD09 and MD11, is also dominated by fine SD grains (~0.03 

m), but with MDFs of c. 45 mT (Figure 5.30b). The third type only includes 

samples from site MD06, and is dominated by MD magnetite with MDFs of c. 8 

mT (Figure 5.30c).   
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Figure 5.28. Normalized intensity against applied field diagrams illustrating the different types of 

magnetic behavior obtained during AF demagnetization of the samples. (a and b) ultramafic 

cumulate samples of the Mersin ophiolite. (c and d) gabbroic samples of the Mersin ophiolite. 

Red dashed lines indicate approximate average values of median destructive fields. 
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Figure 5.29. Normalized intensity against temperature diagrams illustrating the different types 

of magnetic behavior obtained during thermal demagnetization of the samples. (a) ultramafic 

cumulate samples of the Mersin ophiolite. (b) gabbroic samples of the Mersin ophiolite. 
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Figure 5.30. Normalized intensity against applied field diagrams illustrating the different types of 

magnetic behavior obtained during AF demagnetization of dyke samples from the Mersin 

ophiolite. Red dashed lines indicate approximate average values of median destructive fields. 

Thermal demagnetization of the dyke samples has identified three types of 

characteristic curves. The first type, including sites MD01-05 and MD11, 

demonstrates very discrete unblocking close to the magnetite Curie 

temperature of 580°C, again suggesting a very limited range of grain sizes of 

magnetite in these rocks (Figure 5.31a). The second type only includes site 

MD10, and shows a maximum unblocking temperature of 580°C with 

demagnetization characterized by distributed unblocking above temperatures of 

300°C (Figure 5. 31b). By contrast, the third type which includes the 

metamorphic sole hosted dykes (sites MD06-09), shows more complex 

unblocking, suggesting that there are two different magnetic minerals with Curie 

temperatures of c. 320°C and c. 580°C, indicating the presence of 

ferromagnetic pyrrhotite and magnetite respectively (Figure 5.31c).  
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Figure 5.31. Normalized intensity against temperature diagrams illustrating the different types 

of magnetic behavior obtained during thermal demagnetization of the dyke samples from the 

Mersin ophiolite. 

AF demagnetization curves from lava flow samples have MDFs of c. 7 mT, 

suggesting a dominance of MD grain sizes (Figure 5.32a), whereas thermal 

demagnetization of these samples has yielded characteristic curves which have 

distributed unblocking temperatures, indicative of a range of magnetite grain 

sizes in these samples (Figure 5.32b).   
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Figure 5.32. Normalized intensity against demagnetization level diagrams illustrating the 

magnetic behavior obtained during AF and thermal demagnetization of the lava flow samples 

from the Mersin ophiolite. 

5.6.3 Stepwise demagnetization and palaeomagnetic directions 

Stepwise thermal and alternating field demagnetization of ultramafic and 

gabbroic cumulates mostly identified single components of remanent 

magnetization characterized by ENE directed, moderately upwards inclined 

directions in in situ (geographic) coordinates with high coercivities/high 

unblocking temperatures (Figure 5.33). These components become directed 

downwards (positive inclinations) when a simple tilt correction is applied based 

on the orientation of the cumulate layering, although it is shown below that 

these surfaces do not represent perfect palaeohorizontal markers. The simple 
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nature of the remanences and discrete, high unblocking temperatures are 

consistent with a thermoremanent origin. The gabbroic rocks are exceptionally 

fresh with little or no significant alteration, which also supports the inference that 

remanences in these rocks are primary thermoremanent magnetizations. 

Positive inclinations after removing the present day tilt of the cumulate layering 

together with formation of these rocks in the northern hemisphere are consistent 

with normal polarity remanences acquired close to the time of formation of the 

cumulates by seafloor spreading in the Late Cretaceous during the Cretaceous 

long normal polarity interval (chron C34N; Cande and Kent, 1992, 1995). 

As mentioned before in Section 3.5.3, the dykes at Fındıkpınarı area are divided 

into two groups; the first group which is hosted by the mantle sequence includes 

sites MD01, MD02, MD03, MD04, MD05, MD10 and MD11, and the second 

group is hosted by the metamorphic sole and includes sites MD06, MD07 MD08 

and MD09. During AF and thermal demagnetization of the dyke samples, these 

groups are revealed to have significantly different in situ directions of 

magnetization. Dykes in the mantle sequence generally show ENE directions 

with moderate negative inclinations, whereas dykes in the metamorphic sole 

show ENE directed components with positive inclinations. Examples of 

demagnetization behavior from both groups are shown in Fig 5.34. 

For both AF and thermal demagnetization techniques, the majority of dyke 

samples show single components of magnetization. For the majority of the 

samples, a relatively stable component was isolated by fields up to 100 mT or 

by thermal demagnetization to 580°C. Some individual samples show evidence 

for having two remanence carriers with unblocking temperatures of c. 320°C 

and c. 580°C, indicative of pyrrhotite and magnetite respectively (e.g., samples 

MD0708A and MD0801A; Figure 5.34). All of these observations are consistent 



179 

with results of the magnetic mineralogy experiments, described in Section 5.4. 

Viscous overprints were only occasionally observed, but these could easily be 

removed at demagnetization steps up to 200° and 30 mT (see Figure 5.35). 

AF and thermal demagnetization of basalt samples from the lava flow, also 

identified single components of magnetization characterized by intermediate 

coercivity/unblocking temperature components, with a mean in situ direction of 

Dec = 351.5°, Inc = 50.5°, (k = 37 and α95 = 7.6°). 

In contrast to the igneous samples, Miocene sediments subjected to both 

demagnetization techniques generally became noisy at high treatment steps 

(Figure 5.36), due to the very weak remanences in these rocks. Despite this, 

almost all samples from the Miocene carbonate sediments have interpretable 

components of remanent magnetization, characterized by WNW-directed, low to 

intermediate coercivity/unblocking temperature components with a mean in situ 

direction of Dec = 349.6°, Inc = 58.1°, (k = 48; α95 = 8.1°). A tilt correction is not 

required for these rocks due to the almost horizontal (<5°) dip of the 

carbonates.  
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Figure 5.33.  Zijderveld and intensity decay plots of AF and thermal demagnetization data from 

gabbroic and ultramafic samples of the Mersin ophiolite.  
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Figure 5.33.  (Continued) 
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Figure 5.34.  Zijderveld and intensity decay plots of AF and thermal demagnetization data from 

dyke samples of the Mersin ophiolite. 
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Figure 5.34.  (Continued) 
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Figure 5.35. Zijderveld and intensity decay plots of AF and thermal demagnetization data for 

selected samples showing viscous overprints. 
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Figure 5.36. Zijderveld and intensity decay plots of AF and thermal demagnetization data from 

Miocene sediments. 
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Table 5.5.  Palaeomagnetic data from the ultramafic and gabbroic cumulates of the Mersin ophiolite. 

        
Mean remanence 

  

  
Location 

  

In situ Tilt corrected 

Site Lithology Northing Easting DD/D n Dec Inc α95 k Dec Inc α95 k 

  
36 S 

          MC01 Ultra mafic cumulates 4074624 604410 177/69 10 50.7 -21.6 8.8 31.3 51.2 22.5 8.8 31.4 

MC02 Ultra mafic cumulates 4074571 604356 175/67 12 44.7 2.5 4.9 80.7 69.4 37.7 4.9 80.7 

MC03 Ultra mafic cumulates 4074388 604343 136/59 10 44.3 -22.5 7.2 46.4 25.6 -10 7.2 46.2 

MC04 Layered gabbro 4074168 604955 352/82 12 61.8 -34.3 4.4 98.5 48.2 21.1 4.4 98.4 

MC05 Layered gabbro 4074117 605012 332/50 12 56 -34 5 75.7 37.7 25.2 5 75.5 

MC06 Layered gabbro 4073994 605531 332/63 12 63.7 -26.1 3.4 168 37.9 10.1 3.4 168 

MC07 Layered gabbro 4073970 605536 350/70 12 62.5 -37.9 1.8 596.2 46.6 25.7 1.8 595.3 

MC08 Layered gabbro 4073746 605656 318/60 12 63.3 -20.9 3.1 202.2 22.3 -2 3.1 202.7 

MC09 Layered gabbro 4073626 605650 318/60 12 60.8 -25.9 4.4 99.2 19.4 2.6 4.4 99.5 

MC10 Fine grained gabbro 4073618 605670 183/52 12 53.7 -27 3.9 124.6 47.4 9.5 3.9 124.1 

MC11 Layered gabbro 4073606 605701 318/60 12 52.4 -26.6 3.4 167.3 22.7 9.5 3.4 166.6 

MC12 Layered gabbro 4073597 605735 320/68 12 60.8 -24.7 2.5 291 23.2 -0.1 2.5 290.9 

MC13 Layered gabbro 4073587 605833 177/87 12 76.2 -23 2.5 297 63.1 8.7 2.5 297.8 

MC14 Layered gabbro 4073490 605945 185/64 12 37.7 -32.4 4.3 104 34.9 23.8 4.3 104.5 

MC15 Folded layered gabbro 4071026 606078 024/28 8 53.3 -16.5 20.4 8.3 61.9 -40 20.4 8.3 

MC16 Layered gabbro 4068859 606861 006/82 12 67.4 -43.7 4 120.5 51 26 4 120.5 

MC17 Layered gabbro 4068489 606992 160/62 12 13 -10 7.7 33 24.8 40.3 7.7 33 

MC18 Layered gabbro 4068403 606955 132/52 12 48 -11.6 3.7 125.8 36.3 -11.8 3.7 125.9 

              

     
The mean of sites excluding the sites MC10 & MC15  

      
In situ Tilt corrected 

     
N Dec Inc α95 k Dec Inc α95 k 

        16 53.7 -25.4 8.1 21.7 37.9 14.7 10.1 14.3 

N=number of sites; n=number of specimens; Dec=declination; Inc=inclination; α95=semi-angle of 95% cone of confidence; K=Fisher precision parameter; 
DD/D=dip direction and dip. . Sites MC10 and MC15 are excluded from the overall locality mean calculation as MC10 is a fine-grained vein cutting the 
culmulate sequence and gabbros at MC15 exhibited small-scale local folding. 
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Table 5.6 Palaeomagnetic data from the dykes of the Mersin ophiolite. 

      
Mean remanence 

  

  
Location 

  

In situ Tilt corrected 

Site 
 

Northing Easting DD/D n Dec Inc α95 k Dec Inc α95 k 

  
36 S 

          Mantle-hosted dykes 

MD01 

 

4084068 621261 160/70 12 330.8 34.0 7.2 36.9 332.2 14.2 7.2 36.9 

MD02 4083961 621215 185/44 12 3.2 -73.9 3.7 141.7 186.0 -60.1 3.7 141.7 

MD03 4083928 621212 104/28 12 24.7 -55.4 2.6 282.0 68.3 -17.1 2.6 282.4 

MD04 4083916 621217 108/24 12 14.3 -64.6 3.0 210.3 80.2 -23.1 3.0 209.8 

MD05 4083859 621272 152/40 12 34.9 -48.5 2.8 247.0 94.8 -45.5 2.8 248.3 

MD10 4083373 619291 144/75 12 354.2 -3.9 3.7 139.9 355.6 -16.8 3.7 140.4 

MD11 4083127 620091 081/44 12 14.6 -50.0 3.0 210.6 15.8 14.0 3.0 211.2 

 

 

            Metamorphic sole-hosted dykes 

MD06 

 

4083739 618843 307/38 12 6.0 12.2 7.1 37.8 27.3 31.7 7.2 37.8 

MD07 4083766 618832 328/64 12 9.8 16.1 2.7 263.3 18.8 34.3 2.7 263.6 

MD08 4083788 618824 330/50 12 1.6 13.6 4.2 105.9 16.6 45.4 4.2 105.7 

MD09 4083809 618829 322/66 12 9.4 28.7 3.0 209.4 23.8 42.8 3.0 208.1 

n=number of specimens; Dec = declination; Inc = inclination; α95 = semi-angle of 95% cone of confidence; K = Fisher precision parameter; DD/D = dip 
direction and dip. 
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5.7 Tectonic analysis of palaeomagnetic data 

5.7.1 Expected palaeomagnetic reference direction 

An expected reference direction for the Late Cretaceous igneous rocks sampled 

in this study was obtained using the 80 Ma African palaeomagnetic pole of 

Besse and Courtillot (2002), since the ophiolite is dated at 82.8 ± 4.0 Ma (Parlak 

et al., 2013) This pole (latitude = 70.3°N, longitude = 241.6°E) yields a 

reference direction of Dec/Inc = 350.6/34.4 for sampling sites at the present day 

location of the Mersin ophiolite (latitude = 36.8°N, longitude = 34.2°E). This 

direction is then used to quantify tectonic rotations that have affected the 

sampled units. Use of alternative apparent polar wander paths leads to 

insignificant differences in inferred rotation angles, as does use of Eurasian 

poles. 

5.7.2 Discussion of structural corrections and timing of magnetization 

The classical method to identify the timing of magnetization is by applying the 

fold test (or bedding-tilt test). In this test, relative timing of remanence 

acquisition and tilting can be identified (Butler, 1998). The fold test involves 

comparing magnetization directions before and after removing tilting by rotating 

sampled units around a structural line of strike back to the horizontal. Directions 

and palaeomagnetic statistics are then compared in in situ (or geographic) and 

tilt corrected (or stratigraphic) coordinates. If directions are clustered better in tilt 

corrected coordinates, this means the magnetization was acquired prior to 

folding; in contrast, increased scattering of directions after a tilt correction 

indicates that remanence acquisition was after tilting (Figure 5.37). 



189 

 In the current study, the cumulate sites showed an overall mean in situ 

direction of Dec = 53.7, Inc = -25.4, (95 = 8.1°, k = 21.7; N = 16; Table 5.5). 

Application of individual site-level tilt corrections to these sites yields an overall 

mean tilt corrected direction of Dec = 37.9, Inc = 14.7, (95 = 10.1°; k = 14.3). 

This slight increase in scattering in remanence directions after tilt correction 

might be taken at face value to indicate that the section was magnetized after 

tectonic disruption of the cumulate layering, in contrast to the rock magnetic, 

palaeomagnetic and petrographic data that support presence of a primary 

thermoremanence. However, unlike sedimentary bedding, cumulate layering in 

a magma chamber may have significant local variations in orientation. In 

addition, slow-cooled lower crustal cumulates might have acquired remanences 

some time after more rapidly cooled upper crustal units, with potential for 

seafloor spreading-related tilting of a section before remanence is blocked in 

(e.g. see Johnson et al., 1987; Gee and Kent, 2007). This is supported by a 

more sophisticated net tectonic rotation approach to the structural correction of 

the palaeomagnetic data (applied below; Allerton and Vine, 1987; Morris et al., 

1998) that shows that the cumulates may have had several 10’s of degrees of 

dip at the time of remanence blocking. Unfortunately, this means that the 

remanence inclination data from the cumulate section cannot be used to 

calculate the palaeolatitude of the Mersin spreading axis, and so this study 

cannot provide constraints that might inform regional palaeogeographical 

reconstructions. In addition, the simple tilt correction approach, as mentioned in 

Section 2.7.6, may introduce significant declination errors if the actual rotation 

history of a site was not strictly around a strike-parallel horizontal axis 

(MacDonald, 1980).  Hence: (i) the slight increase in dispersion of site-level 

data after standard tilt correction is not considered to be significant; (ii) 
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remanences are assumed to represent primary magnetizations acquired during 

cooling of the cumulates below the blocking temperature of the remanence 

carriers; and (iii) the net tectonic rotation approach is considered to be the best 

way of quantifying and analyzing rotations in this case, for both the cumulates 

and dykes. 

 

Figure 5.37.  Schematic diagrams with stereoplots illustrating the classical palaeomagnetic fold 

test. (a) Before tilt correction. (b) After tilt correction. In the lower left stereoplot, the remanence 

directions are more clustered after tilt correction, indicating that the remanence was acquired 

prior to folding. In the lower right stereoplot, the remanence directions are more scattered after 

tilt correction, indicating that the remanence was acquired after folding. 

5.7.3 Net Tectonic Rotation Analysis 

The fundamentals of net tectonic analysis have been described in Chapter Two. 

It involves determining the pole(s) of rotation which allow restoration of both the 

site magnetization vector (SMV) back to the appropriate palaeomagnetic 

reference direction and the present day pole to a dyke or layering to as close to 
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its initial orientation (vertical for layering and horizontal for dykes) as possible. A 

net tectonic rotation is described by three parameters, i.e. the azimuth and 

plunge of the pole of rotation and the angle of rotation, where a positive angle 

represents an anticlockwise net rotation (Allerton and Vine, 1987). 

In this study, a modification to the original net tectonic rotation algorithm of 

Allerton and Vine (1987) has been used, as proposed by Morris et al. (1998), 

which allows the confidence region associated with the calculated rotation axis 

to be assessed. This modification applies the Allerton and Vine (1987) 

technique to all combinations of each of five orientations for the three vectors 

input into the analysis (i.e. reference direction, site magnetization vector and 

pole to dyke or layering). These orientations are distributed around the α95 

circles for each vector (n.b. an α95 of 5° was assigned to the structural data as a 

best estimate of uncertainties in measuring structures in the field). Thus, this 

provides 125 combinations of input vectors, and an output that contains either 

125 or 250 determinations of the net tectonic rotation pole and rotation angle for 

each site (depending on whether two solutions are found in dyke cases). The 

envelope on a stereonet that surrounds the set of permissible rotation axes 

provides a first-order approximation of the associated 95% confidence region, 

and the associated permissible rotation angles are displayed on histograms. 

The net tectonic rotation results from both cumulates and dykes are given in 

Tables 5.7 and 5.8, whereas Figures 5.38 and 5.39 illustrate stereonets with 

envelopes of potential rotation poles and histograms of rotation angles for each 

of the sampled sites.   

In each case, the results of this analysis indicate that the cumulate sites have 

been tectonically rotated in a clockwise sense around NE plunging axes by 

approximately 100-140°. Results also show that it is impossible to restore both 
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the remanence to the expected direction and the pole to cumulate layering to 

the vertical, indicating that the cumulate layering was not horizontal at the time 

that remanences became blocked in (Table 5.7). As noted previously, this 

means that the remanence data cannot be used to provide palaeolatitudinal 

constraints on the N-S position of the Mersin spreading axis within Neotethys. 

An alternative approach to applying the net tectonic rotation method to 

individual sites in the cumulate section is to use the overall mean in situ 

direction calculated from these sites together with the mean orientation of 

cumulate layering to calculate net tectonic rotation parameters at the locality-

level. The overall in situ mean direction of magnetization of the section is Dec = 

53.7°, Inc = -25.4°, and the mean orientation of the cumulate layering has a 

strike = 68.8° and dip = 90.8° (slightly overturned). These input parameters yield 

a net tectonic rotation solution (Table 5.7) indicating a 117° clockwise rotation of 

the section around a pole plunging at 27° towards 051° (Figure 5.39). 
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Table 5.7.  Net tectonic rotation parameters for ultramafic and gabbroic cumulates of the Mersin ophiolite. 

        
Net Tectonic Rotation Parameters 

  

Reference 
direction 

In situ 
magnetization 

Cumulate 
layering Rotation axis 

   

Site Status Dec Inc Dec Inc Strike Dip Azimuth Plunge 
Angle of 
rotation 

Beta 
Residual 
initial dip 

             MC01 N 350.6 34.4 50.7 -21.6 87 69 63.1 35.3 98.3 CW 67.5 11.8 

MC02 N 350.6 34.4 44.7 2.5 85 67 43.1 43.6 97.8 CW 52.3 3.4 

MC03 N 350.6 34.4 44.3 -22.5 46 59 56.8 31.0 98.2 CW 100 44.3 

MC04 O/T 350.6 34.4 61.8 -34.3 82 98 57.7 24.0 120.7 CW 68.8 13.1 

MC05 O/T 350.6 34.4 56.0 -34.0 62 130 40.4 13.3 141.1 CW 64.8 9.1 

MC06 O/T 350.6 34.4 63.7 -26.1 62 117 44.9 20.1 140.7 CW 79.9 24.2 

MC07 O/T 350.6 34.4 62.5 -37.9 80 110 54.5 19.5 126.4 CW 64.3 8.6 

MC08 O/T 350.6 34.4 63.3 -20.9 48 120 41.1 20.2 147.7 CW 92.0 36.3 

MC09 O/T 350.6 34.4 60.8 -25.9 48 120 41.2 17.9 144.5 CW 87.4 31.7 

MC11 O/T 350.6 34.4 52.4 -26.6 48 120 38.2 17.0 139.6 CW 80.5 24.8 

MC12 O/T 350.6 34.4 60.8 -24.7 50 112 43.4 20.5 139.6 CW 90.1 34.4 

MC13 N 350.6 34.4 76.2 -23.0 87 87 62.0 33.4 128.1 CW 81.3 25.6 

MC14 N 350.6 34.4 37.7 -32.4 95 64 76.6 28.6 85.5 CW 66.2 10.5 

MC16 O/T 350.6 34.4 67.4 -43.7 96 98 68.3 23.5 118.3 CW 64.0 8.3 

MC17 N 350.6 34.4 13.0 -10.0 70 62 49.1 26.3 65.2 CW 49.6 6.1 

MC18 N 350.6 34.4 48.0 -11.6 42 52 57.8 40.1 94.3 CW 101.8 46.1 

             Mean 
(all) 

 
350.6 34.4 53.7 -25.4 68.8 90.75 51.2 26.6 117.2 76.1 20.5 
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Figure 5.38.  Results of the net tectonic analysis at each site in the gabbroic and ultramafic 

cumulate section of the Mersin ophiolite (continued on next two pages) 
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Figure 5.38.  (Continued) 
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Figure 5.38.  (Continued) 
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Figure 5.39. Overall net tectonic analysis for the ultramafic and gabbroic cumulate section in 

the Sorgun Valley section of Mersin ophiolite, using the mean magnetization vector of the 

section and the mean orientation of cumulate layering. Red symbols and surrounding envelope 

show the 125 solutions found using this approach, with permissible rotation angles shown in the 

inset histogram. Other envelopes on the stereonet show the results of applying the net tectonic 

rotation method to individual sampling sites (i.e. the results shown in Figure 5.38). 
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Table 5.8.  Net tectonic rotation parameters for dykes of the Mersin ophiolite. 

         
Net Tectonic Rotation Parameters 

  

Reference direction 
In situ 

magnetization 
Dyke margin 

 
Rotation axis 

Angle of 
rotation 

 
Initial dyke 
orientation 

Site Unit Dec Inc Dec Inc Strike Dip   Azimuth Plunge Beta Strike Dip 

MD01 

D
y
k
e
s
 h

o
s
te

d
 b

y
 M

a
n
tl
e

 

350.6 34.4 330.8 34 70 70 Single 161.5 2.4 26.9 CCW 16.2 80.6 71.8 

              

MD02 350.6 34.4 3.0 -73.9 95 44 
Alternative 125.1 15.8 125.1 CW 60.1 133.4 90 

Preferred 230.2 8.5 118.7 CCW 60.1 27.8 90 

              

MD03 350.6 34.4 24.7 -55.4 14 28 
Alternative 87.6 14.5 94.5 CW 39.1 100.4 90 

Preferred 48.4 3.3 112.6 CW 39.1 60.8 90 

              

MD04 350.6 34.4 14.3 -64.6 18 24 
Alternative 74.9 5.0 101.9 CW 35.5 90.0 90 

Preferred 235.8 1.0 109.7 CCW 35.5 71.2 90 

              

MD05 350.6 34.4 34.9 -48.5 62 40 
Alternative 128.4 23.5 99.3 CW 67.7 143.2 90 

Preferred 37 4.1 129.4 CW 67.7 18.0 90 

              

MD10 350.6 34.4 354 -4.0 54 75 
Alternative 345 14.5 139.8 CCW 35.4 89.5 90 

Preferred 338.4 13.6 111.2 CCW 35.4 71.7 90 

              

MD11 350.6 34.4 15.0 -50 351 44 
Alternative 74.1 9.9 89.1 CW 43.1 108.4 90 

Preferred 207.3 1.5 129 CCW 43.1 52.8 90 

               

MD06 

D
y
k
e
s
 h

o
s
te

d
 b

y
 M

e
ta

m
o

rp
h
ic

 S
o
le

 

350.6 34.4 6.0 12.2 217 38 
Alternative 350.9 18.5 112.4 CCW 81.8 160.6 90 

Preferred 21.5 33.5 63.5 CW 81.8 0.6 90 

              

MD07 350.6 34.4 10.0 16.1 238 64 
Alternative 353.2 18.5 103.7 CCW 58.5 131.3 90 

Preferred 44.3 46.5 38.2 CW 58.5 29.9 90 

              

MD08 350.6 34.4 2.0 13.6 240 50 
Alternative 345.9 18.9 92.8 CCW 61.1 134.8 90 

Preferred 24.3 32.5 50.4 CW 61.1 26.4 90 

              

MD09 350.6 34.4 9.0 28.7 232 66 
Alternative 358.1 26.4 112.1 CCW 69.7 145.7 90 

Preferred 12.5 52.5 42.8 CW 69.7 15.5 90 
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The results of net tectonic analyses for each dyke (excluding site MD01) yielded 

two solutions. Dykes hosted by the mantle sequence (sites MD02, MD03, MD04, 

MD05 and MD11) give preferred solutions (Figure 5.40) with sub-horizontal, 

NE-SW-directed rotation poles and clockwise rotations (when looking towards 

the NE along the rotation axis) ranging from 110°-130°. The alternative solution 

in each case is characterised by shallowly-plunging rotation axes with widely 

variable NE-SW-directed azimuths and clockwise rotations of 95°-125° (when 

looking towards the NE along the rotation axis). These alternative solutions are 

discounted because of the lack of consistency of the orientation of rotation axes 

between different sites, compared to the very consistent orientations of the 

preferred solutions. Results from site MD01 are discounted as they yield only 

single solutions that have a very broad scatter of permissible rotation axes 

when uncertainties in input vectors are incorporated. Site MD10 is also 

discounted as this has a very different orientation to the suite of other dykes 

cutting the mantle and gives therefore only a single result that may not be 

representative of the whole section. 

The dykes hosted by the metamorphic sole (sites MD06, M07, MD08 and MD09) 

also yielded two solutions. The preferred solutions (Figure 5.41) show 

moderately plunging, NE-directed rotation axes and 40°-60° clockwise rotation. 

The alternative solutions yield shallowly plunging, N-to-NW-directed rotation 

poles, with large anticlockwise rotations of 90°-110°. These solutions are 

rejected on the basis of lack of consistency of sense of rotation compared to all 

other results (from both dykes in the mantle sequence and the cumulate 

section). Examples of these inconsistent alternative solutions are provided in 

Figure 5.42. 
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A summary of all preferred solutions for the sampled dykes is shown in Figure 

5.43. 

               

        

 

Figure 5.40.  Results of net tectonic analyses for each site within the discrete dykes cutting the 

mantle sequence of the Mersin ophiolite (preferred solutions only). 



201 
 

 

          

 

              

Figure 5.41.  Results of net tectonic analyses for each site within the discrete dykes cutting the 

metamorphic sole of the Mersin ophiolite (preferred solutions only).  
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Figure 5.42. Examples of alternative net tectonic rotation solutions from dykes of the Mersin 

ophiolite. (a) Site MD04 (hosted by mantle). (b) Site MDO8 (hosted by metamorphic sole).   

 

 

 

Figure 5.43. Summary of net tectonic analysis results for both groups of dykes from 

Fındıkpınarı section of Mersin ophiolite, combining all preferred solutions. Group 1 = dykes in 

the mantle sequence; Group 2 = dykes in the metamorphic sole. 
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5.8 Discussion 

5.8.1 Significance of the magnetic fabric data 

Although AMS fabrics vary significantly between sampling sites in the Mersin 

cumulate section in terms of the distribution of k2 (intermediate) and k3 

(minimum) principal axes, there is a marked consistency in the orientation of k1 

(maximum) principal anisotropy axes, which tend to lie on or close to the plane 

of cumulate layering at each site and share a broad ENE-WSW trend between 

sites. As noted in Section 5.5.1.2 above, such a consistency in k1 axes may 

result from either magmatic or tectonic processes. 

In thin section, the majority of the samples from these sites show no obvious 

evidence for crystal plastic deformation that might be indicative of shearing or 

tectonism. Any strain in the gabbroic sequence appears to be partitioned into 

minor, very thin mylonitic zones (see Chapter 4). These observations suggest, 

therefore, that the preferred orientation of k1 axes is related to magmatic flow or 

deformation in the magmatic state during the formation of the lower crustal 

cumulates.  

Mineral lineations of magmatic origin have been reported previously in ophiolitic 

gabbros (e.g. Thayer, 1963; Jackson et al., 1975; Girardeau and Nicolas, 1981; 

Benn and Allard, 1989; Yaouancq and MacLeod, 2000; Morales et al., 2011) 

and have been inferred from AMS data in Ocean Drilling Program drill core 

samples of in situ lower crustal gabbros recovered at Hess Deep in the Pacific 

(MacLeod et al., 1996). In the Oman ophiolite, Nicolas et al. (1988) have 

described magmatic mineral foliations and lineations within lower crustal 

gabbros, and interpreted these as resulting from large-scale viscous 
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deformation within unsolidified magma chambers. Subsequently, Benn and 

Allard (1989) used data on shape and lattice preferred orientations in Oman 

gabbros to suggest that large-scale laminar magmatic flow had occurred, 

resulting in strong preferred orientations of minerals. They suggested that the 

azimuth, and in some cases the shear sense, of magmatic flow could be 

inferred from the lineation data (Benn and Allard, 1989), providing insights into 

the structure and dynamics of magmatic bodies at oceanic spreading centres.  

In the case of the magnetic lineation (k1 axes) documented in this study in the 

Mersin gabbros, thin section analyses demonstrate that this reflects a preferred 

orientation of opaque magnetite grains that is itself controlled by a preferred 

orientation of silicate crystals. At the simplest level, if these preferred 

orientations are considered to result from magmatic flow/deformation away from 

the Mersin spreading axis (as is inferred in the case of some fabrics observed in 

Oman; e.g. Benn and Allard, 1989), then the E-W to NE-SW oriented k1 axes 

(mean orientation: azimuth = 249.1, plunge = 0.5°; Figure 5.44) must be 

corrected for net tectonic rotation in order to estimate the orientation of the 

Mersin spreading axis. This is best achieved by back-stripping the net tectonic 

rotation calculated using data from the whole cumulate section. This rotation is 

around an axis of azimuth = 051.2°, plunge = 26.6° (Section 5.7.3 above), with 

a clockwise rotation of 117.2°, requiring an anticlockwise rotation of this 

magnitude around the same axis to restore k1 axes to their pre-rotation 

orientation. This yields a restored k1 mean orientation of azimuth = 017.6°, 

plunge = 18.2°, implying a WNW-ESE oriented spreading Mersin spreading axis 

(Figure 5.44). 
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This estimate is compatible with reconstructions of the eastern Mediterranean in 

the Late Cretaceous that indicate a broad E-W orientation of both the northern 

and southern strands of the Neotethyan Ocean (e.g. Robertson et al., 2013b; 

Figure 5.45). It is also consistent with previous palaeomagnetic research in the 

Troodos ophiolite (Moores and Vine, 1971; Clube and Robertson, 1986; Allerton 

and Vine, 1987, 1991) that indicates that the Troodos Sheeted Dyke Complex 

formed at a WSW-ENE oriented spreading axis (once the effects of Troodos 

microplate rotation are removed).  

As a corollary, this broad agreement between the orientation of spreading axes 

inferred from palaeomagnetically corrected k1 axes in lower crustal cumulates of 

the Mersin ophiolite and those inferred from regional geological evidence and 

from restored orientations of sheeted dykes suggests that magnetic fabric 

analysis may form a useful tool in reconstructing spreading directions when 

direct determinations from sheeted dyke complexes are not possible. However, 

it must be noted that at slow-spreading axes there may be significant ridge-

parallel migration of melt away from discontinuous zones of magma supply, e.g. 

from spreading segment centres towards transforms at segment ends (e.g. 

Dunn et al., 2005). Such along axis melt migration has been documented in 

both the upper crustal Sheeted Dyke Complex (Staudigel et al., 1992) and lower 

crustal gabbros (Granot et al., 2011) in the Troodos ophiolite using AMS data. 

In detail, Granot et al. (2011) used AMS to establish presence of two major 

domains of fabrics associated with the Solea spreading axis in the Troodos 

ophiolite. The first domain, found at the inferred spreading segment edge, was 

marked by vertical magnetic lineations that are inferred to result from uniform 

mantle upwelling and melt supply (blue data in Figure 5.46). In contrast 

subhorizontal, N-S oriented magnetic lineations in an adjacent domain (red data 
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in Figure 5.46) are consistent with focused mantle upwelling and melting near 

the segment midpoint with lateral magma flow in the lower crust towards the 

sampled region at the fossil segment-edge. 

 

Figure  5.44.  Restoration of anisotropy of magnetic susceptibility (AMS) k1 axes using the 

overall net tectonic rotation determined for lower crustal cumulates of the Sorgun Valley, Mersin 

ophiolite. Left: Stereonet showing the distribution of site mean k1 axes (black squares), the 

overall mean k1 axis (red square), and the axis of net tectonic rotation (green circle). Right: 

Back-rotating the AMS data by 117.2° in an anticlockwise sense (green arrow in left-hand 

stereonet) around the net tectonic rotation axis restores the k1 data to a NNE-SSW orientation, 

implying a WNW-ESE-oriented spreading axis (assuming that magmatic flow was on average 

parallel to the spreading direction during crustal accretion). 
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Figure  5.45.  Palaeogeographic reconstruction of the eastern Mediterranean region in the 

latest Cretaceous (from Robertson et al., 2013b). Note that the WNW-ESE orientation of the 

Mersin spreading axis inferred from net tectonic rotation restoration of AMS data is consistent 

with the broad orientation of the Neotethyan ocean basins.   

 

Figure  5.46.  AMS data from the gabbros of the Troodos ophiolite, from Granot et al. (2011), 

showing presence of two contrasting fabric domains. Left: Subvertical maximum AMS axes in 

one domain indicate focused upwards flow during a period of plentiful magma supply; Right: 

Subhorizontal N-S oriented maximum axes in an adjacent domain indicate lateral lower crustal 

magma flow towards the segment end (represented by the intersection of the Solea spreading 

axis and the South Troodos Transform Fault Zone.  
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5.8.2 Tectonic interpretation of the palaeomagnetic data and net tectonic 

rotation analyses 

The net tectonic rotation analyses demonstrate that all levels of the Mersin 

ophiolite (lower crustal cumulates; mantle sequence; metamorphic sole) have 

experienced large clockwise rotations around NE-trending moderately plunging 

to sub-horizontal axes. These net rotations could be potentially decomposed 

into components of tilting and vertical axis rotation. Evidence of the effects of a 

major component of rotation around a shallowly-plunging or horizontal axis may 

be seen directly in the field, as cumulate layering is presently sub-vertical to 

overturned along the Sorgun Valley. Subtraction of this tilt from the net tectonic 

rotation results leaves a residual component of moderate clockwise rotation 

around a steeply-plunging or vertical axis in order to explain the palaeomagnetic 

data. However, geologically meaningful decomposition of the net rotation would 

require independent structural constraints on the orientation and kinematics of 

faults that potentially accommodated the rotation components, as well as 

information on the precise sequence of rotations. Hence, it is more appropriate 

and informative to interpret the net tectonic rotation parameters directly, but 

remembering that this assigns all rotation to a single deformation event.  

Palaeomagnetic data collected in this study from Miocene carbonates that form 

part of the post-emplacement, unconformable sedimentary cover of the Mersin 

ophiolite, give a direction of Dec = 349.6°, Inc = 58.1° (k = 48; α95 = 8.1°). This 

indicates a small, anticlockwise rotation that, although based on limited 

sampling at a single site, is consistent with the regional pattern of 

palaeodeclinations and rotations that has been established by many workers 
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who have analysed Neogene and younger rocks in the broad Anatolian region. 

The available “neotectonic” palaeomagnetic data were  

 

Figure 5.47. Schematic tectonic map of Turkey and adjoining region (from Piper et al., 2010) 

showing the pattern of declinations of mean palaeomagnetic vectors affected by Neotectonic 

rotations (with arcs embracing 95% confidence limits and converted to a common reversed 

polarity). The red circle marks the position of the Mersin ophiolite. Note that only very minor 

anticlockwise rotation of the Anatolian microplate is documented by palaeomagnetic data 

closest to Mersin. 

recently collated and analysed by Piper et al. (2010; Figure 5.47). This 

compilation, and the single site mean direction from carbonates reported here, 

demonstrate that only a small (c. 10°) regional anticlockwise rotation of Anatolia 

has affected the Mersin area since the Miocene. Hence the large, clockwise 

rotations documented in the ophiolite are demonstrably not of neotectonic origin. 

Strictly speaking, the small, regional Anatolian anticlockwise rotation should be 

back-stripped from the ophiolite palaeomagnetic data prior to subsequent 

tectonic analysis. However, given the small magnitude of this rotation compared 

to inherent uncertainties in the net tectonic rotation parameters (propagating 
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through from the statistics of the palaeomagnetic and structural data), and the 

lack of adequate Neogene data directly from the Mersin area, it was not 

deemed necessary to incorporate neotectonic rotation into the analysis. 

Figure 5.48 provides a graphical summary of the net tectonic rotation 

parameters for each of the main ophiolitic units sampled (the single site in a 

basaltic lava flow is not considered further as it is located in an isolated 

exposure). Results for the cumulate sequence and the dykes in the mantle 

sequence are remarkably similar, considering that they are geographically 

separated by c. 20 km and their structural relationship cannot be determined 

directly in the field. Both have experienced c. 115° clockwise rotation. This 

implies that little or no significant relative rotation of these units occurred 

between crustal accretion and emplacement of dykes into the underlying 

lithospheric mantle (although the order of these magmatic events cannot be 

 

Figure 5.48. Comparison of net tectonic rotation parameters for the Mersin cumulate section (left), 

dykes cutting the mantle sequence (middle) and dykes cutting the metamorphic sole (right). In all 

cases, rotation is around NE-trending axes and is clockwise in sense. The cumulates and mantle-

hosted dykes have experienced similar rotation magnitudes (see inset histograms), whereas the 

dykes in the metamorphic sole have experienced c. 70° less rotation. See captions of Figures 5.39 

and 5.42 for further explanation. 
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determined). The possibility that these different sections represent different 

ophiolite thrust slices that coincidentally experienced similar rotations around 

similar axes cannot be discounted, but it seems more likely that the cumulates 

and mantle sequence are part of a single coherent unit that has experienced a 

consistent rotation history. In contrast, dykes in the metamorphic sole have 

experienced c. 45° of clockwise rotation, again around NE-trending axes, i.e. c. 

70° less rotation that the structurally higher mantle and cumulate sections. 

There is a possibility that this differential rotation of the lowermost and 

uppermost parts of the Mersin ophiolite pseudostratigraphy occurred during 

tectonic emplacement on to the Taurides. Such relative rotation could result 

from pinning of the metamorphic sole during thrust emplacement, but this would 

likely result in significantly different orientations of rotation axes between lower 

and upper sheets. Instead, it is more probable that this differential rotation 

occurred in an intraoceanic setting, prior to final emplacement, and is more 

likely to result from progressive rotation of a coherent section of the ophiolite 

during initial oceanic detachment, with emplacement of dykes into the 

metamorphic sole occurring synchronously with tectonic rotation. 

It must be noted that the large net tectonic rotations documented here in the 

Mersin ophiolite are very different in style from those documented in the 

southern Neotethyan, Troodos, Hatay and Baer-Bassit ophiolites (Morris et al., 

1998, 2002; Inwood, 2005; Inwood et al., 2008). In these ophiolites, net 

rotations occurred around steeply plunging axes. These may be associated with 

regional microplate rotation within the southern Neotethys (driven  by 

convergence of the Arabian promontory with a subduction zone to the south of 

the supra-subduction zone crust now represented by these ophiolites), and also 
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(on a more local scale) to shear associated with earlier phases of intraoceanic 

transform fault tectonism. In contrast, the Mersin net tectonic rotations are 

dominated by a major component of rotation (tilt) around sub-horizontal axes 

(Figure 5.48), with a residual moderate clockwise rotation required once tilting is 

accounted for.  Hence there is no need to infer major regional scale 

intraoceanic microplate rotation within the northern Neotethys in order to 

account for the large net rotations documented in this thesis. At present no 

palaeomagnetic data exist for other northern Neotethyan ophiolites in Turkey 

(e.g. the Pozantı–Karsantı units) that would potentially allow testing of whether 

large-scale intraoceanic microplate rotation had occurred in this ocean. 

The preferred interpretation of the palaeomagnetic data and net tectonic 

rotation analyses is therefore as follows (as illustrated in Figure 5.49): 

1. Convergence between the Afro-Arabian and Eurasia plates in the Late 

Cretaceous led to the development of a northward-dipping subduction zone in 

the northern branch of the Neotethyan ocean (Intra-Tauride ocean). This in turn 

led to supra-subduction zone spreading and formation of the oceanic 

lithosphere of the future Mersin ophiolite (Figure 5.49a).  

2. Seafloor spreading-related magmatism led to formation of ultramafic and 

gabbroic cumulates in the lower oceanic crust (Figure 5.49a), which crystallized 

and acquired a normal polarity thermoremanence as they cooled through the 

blocking temperatures of magnetite grains. Cumulate layering in the lower crust 

may have been tilted by up to 20-30° prior to blocking in of remanences as the 

net tectonic rotation analysis cannot restore the layering to a palaeohorizontal 

while simultaneously restoring remanences to the expected reference direction. 
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3. Effectively coeval with acquisition of thermoremanence by the cumulate 

section, basaltic dykes were emplaced into the lithospheric mantle (Figure 

5.49a), which also acquired normal polarity thermoremanent magnetizations. 

4. As a result of continued regional contraction, shortly after the development of 

the oceanic lithosphere, initial intra-oceanic detachment by thrusting occurred 

(Parlak and Delaloye, 1999), due to the weakness of the spreading axis (e.g. 

Hacker, 1991). 

5. Initial intra-oceanic detachment led to rotation of the over-riding plate (Figure 

5.49b) and formation of the Mersin metamorphic sole (Parlak and Delaloye, 

1999) from an ocean island or seamount-type protolith.  

6. Further magmatism above the subduction zone led to emplacement of dykes 

that cross-cut the metamorphic sole and acquired normal polarity remanences 

(Figure 5.49c). According to Parlak et al. (1995), Parlak (1996), Parlak et al. 

(1996a), Dilek et al. (1999), Çelilk and Delaloye (2003) and Çelik (2008), the 

intrusion of these dykes occurred in an oceanic environment after ductile 

deformation of the metamorphic sole, but before the final obduction of the 

ophiolite onto the Tauride carbonate platform. 

7. Continued intra-oceanic thrusting of the detached oceanic lithospheric sheet 

and the under-plated metamorphic sole led to further clockwise rotation (Figure 

5.49d), affecting the lower crust, mantle sequence and metamorphic sole. Note, 

however, that there is also the potential for final emplacement of the ophiolite 

onto the continental margin to contribute to the phase of net rotation that post-

dates intrusion of dykes into the metamorphic sole. 
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In terms of the key geological events inferred from the data presented in this 

study, this rotational history is also consistent with alternative plate tectonic 

models involving development of two subduction zones (e.g. Çelik, 2008). 

 

 

Figure 5.49. Schematic tectonic model illustrating the net tectonic rotation of the Mersin ophiolite. 

(a) Formation of the crust and intrusion of dykes into the lithospheric mantle during supra-

subduction zone seafloor spreading. (b) Initial detachment led to intra-oceanic rotation of the first 

group of dykes (hosted by mantle) and the lower crustal cumulates, and triggered formation of the 

metamorphic sole by under-thrusting. (c) Further magmatism led to emplacement of dykes into the 

metamorphic sole, which (d) then experienced intra-oceanic rotation along with the overlying mantle 

and crustal sequences. 
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Chapter 6 

Conclusions 

6.1 Summary 

The Mersin ophiolite of Turkey represents one of the best examples of Tethyan-

type ophiolites formed by supra-subduction zone spreading within the northern 

Neotethyan Ocean basin during the Late Cretaceous (e.g. Parlak and Delaloye, 

1996), but has not been analysed palaeomagnetically prior to this study. Such 

analyses in other ophiolites of the region (e.g. Allerton and Vine, 1987; Morris et 

al., 1998, 2002, 2006; Inwood et al., 2009) have shown that tectonic rotations of 

a variety of styles have occurred during their evolution, but it was unknown 

whether the Mersin ophiolite has been rotated or, indeed, shared a common 

rotation history with ophiolites to the south, as predicted by some regional scale 

models (e.g. Ricou et al., 1984). 

In this study 663 samples were collected from lower crustal ultramafic and 

gabbroic cumulates in the ophiolite, from dykes intruded into the underlying 

mantle sequence and metamorphic sole, and from overlying Miocene 

sedimentary rocks. These samples allow the amount and style of tectonic 

rotation during the evolution of the Mersin ophiolite to be quantified for the first 

time, and facilitate comparison with rotations previously documented in 

ophiolites which formed in the southern Neotethyan ocean basin (Troodos and 

Hatay/Baër-Bassit). 

Anisotropy of low field magnetic susceptibility was measured on all samples. 

Data from the single site in the sedimentary cover have a standard depositional 

magnetic fabric, but more complex fabrics are seen in the igneous units. 
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Although fabrics in the cumulate section are variable at the site level, they show 

a reasonably consistent orientation of maximum susceptibility axes that is 

shown by thin section analysis to reflect a magmatic fabric arising from 

alignment of silicate and oxide grains. These fabric data can therefore provide 

useful information on magmatic accretion if corrected for the effects of later 

tectonic rotation using associated palaeomagnetic data. Magnetic fabrics in the 

sampled dykes are not as consistent, but in many cases principal susceptibility 

axes lie within the planes of the dykes, again suggesting a magmatic control. 

Palaeomagnetic data from the single site in the Miocene sedimentary cover 

show a small anticlockwise rotation that is entirely consistent with the far more 

numerous data reported in the literature (e.g. Piper et al., 2010), that suggest 

minor anticlockwise neotectonic rotation of the Anatolian block. Data from the 

underlying igneous rocks of the ophiolite, in contrast, have NE-directed 

declinations, suggesting major clockwise rotation of these units occurred prior to 

the neotectonic period. Within the cumulates, applying a standard 

palaeomagnetic tilt correction about the present day line of strike of the 

cumulate layering produces a slight increase in dispersion after tilt correction. 

This is not considered significant, as variations in the primary orientation of 

cumulate layering might be present on a local scale. Rock magnetic and 

remanence characteristics, especially very discrete unblocking of remanence 

during thermal demagnetization just below the magnetite Curie temperature, 

and a lack of alteration in the gabbros support the assumption that the 

magnetization of these rocks represent thermoremanences acquired during 

crustal accretion. The directions of magnetization may therefore be used as 

markers to determine the rotation history, or at least the amount of rotation 

since the crust cooled through the Curie temperature. 
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Since there is potential for significant declination errors to be introduced by 

using a standard tilt correction (MacDonald, 1980; Tarling, 1983), especially 

when palaeohorizontal surfaces have steep present day dips, a more 

sophisticated net tectonic rotation approach (Allerton and Vine, 1987; Morris et 

al., 1998) has been applied to the ophiolite palaeomagnetic data. This approach 

has the advantage of being able to cope with analysis of dykes, whereas 

standard tilt corrections cannot resolve components of rotation around dyke-

normal axes (Morris and Anderson, 2002). In the case of inferred 

palaeohorizontal markers like cumulate layering, this technique also does not 

force the observed layering to horizontal like standard structural corrections but 

restores layering to as close to horizontal as geometry of the rotation allows. 

This avoids over-correcting the data and can give an indication of the dip of the 

layering at the time that magnetization was locked in. 

The net tectonic analyses show that all lithologies of the Mersin ophiolite (i.e. 

cumulates, dykes in the mantle sequence and the dykes in the metamorphic 

sole) underwent large clockwise rotations about NE-trending, moderately 

plunging to sub-horizontal axes. Dykes hosted by the metamorphic sole have 

experienced c. 45° clockwise rotation, whereas a consistent larger clockwise 

rotation of c. 115° is documented for dykes cutting the overlying mantle 

sequence and for the cumulate section. This difference, and the similarity of 

rotation parameters between the mantle and lower crust, suggests that rotation 

of the ophiolitic thrust sheets occurred in at least two phases. The first stage (c. 

70°) occurred after initial detachment of the ophiolite at the Mersin spreading 

axis but prior to intrusion of dykes into the metamorphic sole. The second stage 

of rotation (affecting all units) occurred as a result of further intra-oceanic 

rotation (preferred interpretation) or potentially during final emplacement of the 
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ophiolite onto the Tauride carbonate platform. Note that these are not vertical 

axis rotations, but rather reflect the net rotation of the sampled units around 

inclined axes that also describe the significant tilting that these rocks have 

experienced. Applying these net tectonic rotation parameters to the anisotropy 

of magnetic susceptibility data provides a first-order estimate of the orientation 

of magmatic flow/deformation during accretion of the cumulate sequence. This 

restores maximum principal susceptibility axes to a NNE azimuth. If magmatic 

flow is assumed to result from simple spreading, then this suggests that the 

Mersin spreading axis had an original WNW-ESE orientation. Although this can 

only be considered as a tentative reconstruction, this would be consistent with 

the orientation of the spreading axis inferred from regional geological 

considerations. However, a caveat to this interpretation is that magmatic flow 

inferred using similar magnetic fabric data in the Troodos ophiolite (in both 

sheeted dykes and gabbros; Staudigel et al., 1992; Granot et al., 2011) has 

been shown to be directed along the spreading axis. 

Finally, this study highlights that the Mersin ophiolite experienced a completely 

different rotation history to the ophiolites that formed in the southern Neotethys 

ocean. The clockwise intraoceanic rotations quantified here contrast completely 

with the dominant anticlockwise rotations previously documented in Troodos, 

Hatay and Baër-Bassit. This should be considered as definitive proof that these 

ophiolites did not originate as part of a single emplaced thrust sheet, as 

envisaged in early models (e.g. Ricou et al., 1984). 

 

 

 



219 
 

6.2 Recommendations for further work 

There is very limited scope for any further palaeomagnetic analysis in the 

Mersin ophiolite, beyond possible additional sampling of the sedimentary cover 

sequences, as all ophiolitic units suitable for such analyses have been sampled 

for this study. However, a number of additional investigations could be 

undertaken to add value to the data and analyses presented here, to allow 

additional or tighter constraints on the tectonic evolution of the ophiolite to be 

obtained. 

Only limited structural data have been collected from the metamorphic sole of 

the ophiolite and reported in the literature (Parlak et al., 1995; Parlak and 

Robertson, 2004). As a result, the kinematics of structures in the sole rocks 

remain unclear. Further detailed structural analyses, both in the field and using 

thin sections, would allow a more robust interpretation of the emplacement 

direction of the ophiolite. Since high quality palaeomagnetic data have been 

acquired in this study from dykes that cut the metamorphic sole, these data 

could be used to restore such kinematic constraints into their origin 

palaeotectonic reference frame, as noted by Parlak and Robertson (2004). In 

addition, precise age constraints on the mafic dykes in both mantle sequence 

and in the metamorphic sole of Mersin ophiolite would clarify the timing of the 

stages of rotation documented in this study. 

Only a provisional structural analysis of the “dyke-like veins” (site MC10) that 

cut the cumulate sequence (at site MC09) has been possible here, as the main 

focus of the project was the palaeomagnetic analyses. However, the tentative 

results of combining microstructural, magnetic fabric and palaeomagnetic data 

from these rocks suggests that a better understanding of these enigmatic 
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features might be possible to achieve by a more detailed study of this road 

section. This could also include electron back-scatter diffraction analysis to 

more fully understand the deformation mechanism in these sheared rocks. 

Finally, there is now clear scope for extending integrated palaeomagnetic 

studies into other well-exposed ophiolites of the eastern Mediterranean area. 

For example, the Alihoca ophiolite located about 35 km NE of Mersin ophiolite, 

on the eastern side of Ecemis fault, provides good exposures of sheeted dykes. 

Palaeomagnetic data from these units would provide additional evidence about 

the geometry of Neotethyan spreading systems. 
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Appendix A 

A pilot palaeomagnetic study of the Lizard ophiolite 

A1. Introduction 

This appendix presents results of a preliminary palaeomagnetic investigation of 

dykes and gabbros within the Lizard ophiolite of Cornwall. It reviews the 

geological history of the Lizard ophiolite and its relation with the tectonic 

evolution of the Rheic Ocean, and provides a general overview of geology of 

the ophiolite. The aim of the palaeomagnetic study was to evaluate the original 

orientation of various dykes within the gabbro sequence, and to compare the 

new palaeomagnetic results with previous studies. To achieve this aim, 

sampling was conducted along the east-coast section of the Lizard Complex 

(Coverack village - Godrevy cove), where the dykes and gabbroic rocks are well 

exposed.   

A2. Overview of the tectonic evolution of the Rheic Ocean  

The Rheic ocean, which developed between the major continents of Gondwana 

and Laurasia (Laurentia, Baltica, Avalonia) following closure of Iapetus ocean, 

was one of the main oceans of the Palaeozoic Era. The Rheic Ocean expanded 

at the expense of Iapetus making both Avalonia and Carolinia move northward 

toward Baltica and Laurentia (Figure A1). Subsequent closure of the Rheic 

Ocean resulted in a 10,000 km long suture and formation of the major section of 

Pangea (Nance and Linnemann, 2008; Nance et al., 2012). 
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Figure A1. Palaeozoic reconstruction showing the evolution of the Iapetus and Rheic Oceans 

and location of Laurentia - Baltica - Avalonia–Carolinia, and their detachment from Gondwana 

with the development of the Rheic Ocean at the ages 540 Ma, 460 Ma, 370 Ma and 280 Ma 

(from Nance et al., 2012). 

A2.1 Initial Rifting and Ocean Opening 

The primary opening of the Rheic Ocean began in the mid to Late Cambrian by 

rifting along the northern (African - South American) margin of Gondwana 

(Nance and Linnemann, 2008; Nance et al., 2012) (Figure A1). In Late 

Cambrian - Early Ordovician times, after a long period of rifting, the Rheic 

Ocean began to open along the southern flank of Iapetus causing drift of 
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several peri-Gondwanan micro-continental terranes (e.g., Avalonia and 

Carolinia) away from the northern margin of Gondwana (Nance et al., 2012). 

Thus, the Rheic Ocean originated along the northern egde of Gondwana 

(mainly Amazonia and West Africa) (Cocks and Torsvik, 2002; Stampfi and 

Borel, 2002). During closure of the Iapetus Ocean, the micro-continent of 

Avalonia including the southern part of British Isles progressively moved 

northwards and approached Laurentia (Hunter and Easterbrook, 2004). 

The Rheic Ocean reached its maximum width (ca. 4000 km) after the demise of 

the sea that existed between Avalonia and Baltica in the Late Ordovician and 

after closure of Iapetus Ocean in the Silurian (Figure A1) (Nance et al., 2012). 

A2.2 Collision and Ocean Closure 

Closure of the Rheic Ocean started in the Devonian and was mostly complete 

by the Early Carboniferous (Mississippian) as Pangea formed by suturing of 

Gondwana and Laurussia. During this process in the Devono-Carboniferous (ca. 

370 – 330 Ma), collision occurred between North Africa and southern Europe, 

leading to the Variscan orogeny (Figure A1 and Figure A2). The suture that 

formed by this closure runs westward from the Mid - German Crystalline zone 

and the Lizard ophiolite in southern Britain to the Pulo do Lobo unit of southern 

Iberia (Figure A.3). During the Carboniferous, Britain drifted northwards across 

the equator, into a location within subtropical latitudes (Hunter and Easterbrook, 

2004). Suturing of West Africa and South America with North America in the 

Permo-Carboniferous formed the Alleghanian and Ouachita Orogens, 

respectively (Nance and Linnemann, 2008).  
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Figure A2. Palaeogeographic maps showing the position of the UK in the southern hemisphere 

during the Devonian (380 Ma – 400 Ma) (from Stampfli et al., 2002).   
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Figure A3. Simplified map showing the location of Rheic suture (dashed red line) in western 

and central Europe, and Lizard ophiolite in the south west of Britain (modified from Nance and 

Linnemann, 2008). 

Closure of the Rheic Ocean was facilitated by two intra-oceanic subduction 

zones: (1) In the Variscan belt, where subduction happened northward beneath 

the southern margin of Baltica and was accompanied by occurrence of 

magmatism on the Avalonian terranes that formed previously by accretion 

(Kroner et al., 2007); (2) In the Appalachian-Ouachita belt, where subduction 

happened southward beneath the northwestern margin of Gondwana. 

In the final stage of the Rheic lifetime, the Rheic basin was trapped and 

compressed between two continents, leading to development of fold structures 

of the Variscan Orogen. This belt comprises a number of structural zones 

separated by main thrusts. These zones, starting from the northern margin, are: 

Rhenohercynian Zone, Saxothuringian Zone, Moldanubian Zone, Central 

Iberian Zone, Ossa-Morena Zone and South Portuguese South Europe Zone. 
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SW England represents part of the Rhenohercynian Zone (Leveridge and 

Hartley, 2006; Floyd et al., 1993) (Figure A4).  

A2.3 Models for initial rifting 

According to Floyd et al., (1993), four different models have been proposed for 

the plate tectonic setting of initial rifting in the Rhenohercynian zone (including 

South Cornwall in England). These models are:  

 

 

Figure A4.  A map of the major tectonic zones of the Variscan Orogen in Europe (after Floyd et 

al., 1993).  
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(1) Back arc basin: This model proposes that the oceanic basin formed in a 

back-arc setting associated with northerly directed subduction of oceanic crust 

to the south of Armorica. 

(2) Intracontinental dextral transform system (Barnes and Andrews, 1986): This 

model suggests that the oceanic crust of the Lizard ophiolite formed within a 

pull-apart basin caused by lithospheric extension. 

(3) A small ocean basin generated as a result of southerly directed subduction 

under an active arc located at the north of Armorica. 

(4) A small ocean basin developed as continental crust was forced to override 

an initial Caledonian spreading centre. 

In any case, the closure of the Rheic Ocean was recorded at ca. 395 - 370 Ma 

by the emplacement of ophiolites in southern Britain (i.e. Lizard ophiolite, Figure 

A5) and in the northwestern and southern Iberia (Murphy et al., 2010; Nance et 

al., 2010). 

 

 

 

Figure A5.  Cross section illustrating the main structures from South Wales to South Cornwall, 

and the locations of the Lizard ophiolite and Rheic Suture (after Nance et al., 2010). 
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A3. Geology of the Lizard Ophiolite 

A3.1 General Overview 

The Lizard ophiolite complex at the present day occupies a peninsula about 15 

km wide and 10 km deep that is bounded to the west, south and east by the sea, 

and is almost separated from the rest of Cornwall by the Helford River (Figure 

A6). 

The Lizard Complex is of Palaeozoic (Late Devonian) age and represents a 

sliver of oceanic lithosphere that was overthrust (obducted) northwards onto 

continental crust during the Variscan orogeny and during closure of the 

Gramscatho Basin (Barnes and Andrews,1986; Holder and Leveridge, 1986; 

Alexander and Shail, 1995; Brenchley and Rawson, 2006; Leveridge and Shail, 

2011). 

 

Figure A6. Simplified map showing the location of the Lizard ophiolite complex, Cornwall. 
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A3.2 Age and formation of the Lizard ophiolite 

Davies (1984) provided a Sm-Nd mineral isochron age for olivine gabbro with 

the Lizard Complex of 375 ± 34 Ma, which they inferred to represent the 

formation age of the crust by seafloor spreading. In contrast, Cook et al. (2002) 

suggested that the ophiolite formed at c. 400-390 Ma within the Gramscatho 

pull-apart basin (Figure A7). This interpretation was based on the presence of 

pre-emplacement structural features such as foliations with NNW-SSE strikes 

and down-dip stretching lineations in mylonitic peridotites, Landewednack 

amphibolites and deformed Trabone cumulates. Furthermore, Barnes and 

Andrews (1986) have described the Lizard ophiolite as oceanic crust that 

formed by extensional processes in the Gramascatho basin that started in the 

upper part of the lower Devonian, at a point when crustal thinning was enough 

to allow dyke intrusion and the generation of new oceanic crust. In this model, 

the orientation of basaltic dykes exposed at, for example, Coverack, could 

indicate a ENE-WSW extension direction within the Gramscatho basin (Barnes 

and Andrews, 1986; Roberts et al., 1993). This implies that the original 

spreading axis had a NNW-SSE trend (Cook et al., 2002).  

A3.3 Obduction of the ophiolite 

In general, the generation and emplacement of ophiolites includes two stages. 

The first stage involves pre-obduction processes within an intra-oceanic 

environment, such as generation of the ophiolite by seafloor-spreading and its 

initial detachment, whereas the second stage involves emplacement of oceanic 

lithosphere onto the continental crust (Jones, 1997). In this context, Cook et al. 

(2002) suggested that the Lizard Complex experienced a two stage 

emplacement (Figure A8): (a) Hot emplacement, which occurred at c. 390-375 
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Ma through stacking of mantle segments, oceanic crust and highly 

dismembered continental crust which represent the floor of the Gramascatho 

basin; (b) Cold emplacement, which occurred during the earliest Carboniferous 

c. 365 Ma, and represents the obduction of Lizard Complex onto Gramscatho 

sedimentary basin. 

 

 

Figure A7.  Schematic block diagram illustrating formation of the Lizard Complex-Gramscatho 

pull-part basin during the Emisian-Eifelian period (from Cook, et al., 2002).   
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Figure A8.  Schematic cross-sections illustrating emplacement steps of the Lizard complex. (a) 

Hot emplacement: occurred during the Eifeian-Famennian. (b) Cold emplacement: occurred 

during the early Carboniferous (Cook et al., 2002). 

Overall, the main tectonic events can be summarized as follows (Edmonds et 

al., 1975; Jones, 1997; Hunter and Easterbrook, 2004) (Figure A9): (1) 

Thrusting started at ~ 375 Ma, after a primary stage of folding and shearing, 

with northerly thrusting of slivers of oceanic crust during oceanic basin closure; 

(2) continued closing of the ocean basin led to the formation of new thrusts at 

the back of the primary thrust, which also experienced inversion in same 

direction; (3) deformation and closure of the ocean basin occurred by ~ 370 Ma, 

refolding the primary thrust and piling up subsequent thrusts upon the 
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continental margin; (4) Initiation of small-scale partial melting due to progressive 

overthrusting with late stage failure of the thrust stack, and finally emplacement 

onto the continental margin. According to Barnes and Andrews (1984), the 

emplacement of the Lizard ophiolite complex occurred via cool thrusting at a 

regional temperature of 250-350 °C and at pressures of a few kilobars, which 

yielded very low grade metamorphism. 

 

Figure A9. Deformation and emplacement history of the Lizard ophiolite (modified from Hunter 

and Easterbrook, 2004). 
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A3.4 Description of lithologies 

The Lizard ophiolite consists of three groups of igneous rocks (Flett and Hill, 

1946; Floyd et al., 1993; Selwood et al., 1998) (Figure A10): mantle units (i.e. 

serpentinized peridotites), which comprises more than half (78 km²) of the 

complex (Edmonds et al., 1975; Ealey and James, 2011); crustal units (i.e. 

cumulate complex, gabbros, MORB–type dykes and amphibolites); and later, 

thrust emplacement-related intrusions concentrated along the tectonic contact 

between the metamorphic basement (i.e. gneisses) and overlying Lizard 

peridotites.     

 

 

Figure A10. Simplified geological map of the Lizard complex, Cornwall (modified from Roberts 

et al., 1993). 

 



234 
 

A3.4.1 Peridotite 

The dominant type of serpentinized peridotite, interpreted as upper mantle 

rocks (Cook et al., 1998), is a coarse-grained, porphyroclastic spinel-lherzolite 

(Cook et al., 2002; Ealey and James, 2011). These pass into regions of 

mylonitic plagioclase and amphibole-bearing peridotites through increasing 

recrystallization and grain-size reduction (Cook et al., 2002). Alteration to 

serpentine and talc is common and is caused by low-temperature hydration 

which probably happened by seawater percolation along fractures within the 

rocks during cooling. The boundary between the peridotite unit and overlying 

gabbroic rock is exposed at Coverack (Figure A10 and A11), and is 

characterized by an interdigitating zone boundary (Flett and Hill, 1946) which 

represents the petrological Moho (Roberts et al., 1993). Therefore, the 

Coverack area provides a transition section from the upper mantle to lower 

oceanic crust. 

 

Figure A11. Geological map of the Coverack area, showing the interdigitation of gabbro and 

peridotite, and NW-SE trending dykes (modified from Floyd et al., 1993). 
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There are also some distinctive rocks exposed at the north section of the 

peridotite, about 50 m north of the harbour (Figure A11); these are troctolites, 

which can be distinguished in the field through the mineral content (white 

plagioclase and red serpentinized olivine; Floyd et al., 1993). 

A3.4.2 Gabbros 

The gabbros represent the lower oceanic crust overlying the mantle peridotites, 

and make up an important portion (18 km²) of the eastern complex with coastal 

exposure extending from Porthoustock 6 km southwards to Coverack (Ealey 

and James, 2011; Figure A10). 

The gabbroic section at Coverack, especially in the lower part, is characterized 

by intrusion of a series of randomly oriented gabbro sheets into the peridotite 

over a wide range of scales. These gabbro sheets can be seen at Lankidden 

Cove and are characterized by coarse grains of chiefly plagioclase and augite 

with brown hornblende and a little ilmenite and magnetite. Olivine can be 

observed only in the southern part of this section (Floyd et al., 1993). Generally 

the rocks of this section appear dark in colour especially when fresh, resulting in 

confusion between fresh gabbro and the ultrabasic rocks. In the numerous 

places, the gabbros have undergone different rates of hydrothermal alteration 

with replacement of clinopyroxene and plagioclase with amphibole and sericite 

(Floyd et al., 1993; Selwood et al., 1998).  

A3.4.3 Dykes 

The section between Dean Point and Porthoustock (i.e. around the Godrevy 

area) provides a rare opportunity to examine sheeted basic dykes, where the 

ratio of dyke to gabbro rises to a maximum of 50 - 70% along the coast, and 

swarms of sheeted dykes intrude into gabbro, sometimes showing chilled 
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margins (Roberts et al., 1993; Selwood et al., 1998). Therefore, this coastal 

location represents a remnant of the feeder dykes section of a spreading sea-

floor centre and provides important geological evidence concerning the building 

of the Lizard ophiolite sequence. According to Roberts et al. (1993) there are 

three sets of dolerite dykes with distinctive orientations that cut the gabbros and 

they are geochemically well-defined with variable dip which increases with 

decreasing age. These three sets are: 

Set 1: This represents the earliest set that cuts the gabbro, and consists of a 

small number of thin, metamorphosed, flat-lying dolerite bodies trending NE-SW, 

with gentle dips to the northwest. This set is exposed north of Coverack, and 

has an absence of chilled margins and are mostly comprised of plagioclase, 

amphibole and abundant opaque minerals (Roberts et al., 1993). The lack of 

chilled margins, and complicated intrusive relationships with the gabbros, 

indicates that intrusion happened soon after the host gabbroic rocks had 

crystallized (Roberts et al., 1993; Selwood et al., 1998). 

Set 2: The second set consists of plagioclase-phyric dolerite dykes, and are 

mostly observed in the direction of Porthoustock. These dykes trend NW-SE 

and dip moderately to steeply to the northeast, with thickness ranging from 0.1 - 

2 m. Although the strikes of these dykes are parallel to shear zones, they dip 

more steeply and they are deformed within the shear zones. Geochemically the 

dykes are tholeiites with MORB properties (Roberts et al., 1993; Selwood et al., 

1998). 

Set 3: This set comprises a sequence of NW - SE trending, nearly-vertical, 

mostly aphyric dolerite dykes. These dykes are 0.1 - 1.5 m thick, variably 

altered, showing chilled margins and they cross-cut the peridotite, gabbros, flat-



237 
 

lying dolerites (set 1) and the plagioclase-phyric dykes (set 2) (Figure A12). The 

dykes are also tholeiites, but geochemically they have more primitive MORB 

characteristics than the set 2 dykes (Kirby, 1984; Roberts et al., 1993; Selwood 

et al., 1998). 

Kirby (1984) concludes that, all the dykes from Lizard complex have basaltic 

and tholeiitic characteristics, and have affinities with mid-oceanic ridge basalts 

(MORB). 

The aim of this palaeomagnetic study was therefore to determine whether 

magnetic remanence data may be used to support the tectonomagmatic model 

of cross-cutting dykes intruded during extension, proposed by Roberts et al. 

(1993) (Figure A12). In practice, the majority of rocks are shown to be 

remagnetized, but results from one locality yield tentative constraints on the 

initial strike of dykes that may be of regional significance. 

 

Figure A12. Schematic cross-section from Coverack to Porthoustock, showing the 

formation stages (a), (b) and (c) of the three sets of dolerite dykes (set 1, 2 and 3) during 

the tectonomagmatic evolution of the east-coast of the Lizard ophiolite (after Roberts et al., 

1993).  
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A4. Previous Palaeomagnetic Studies 

The geology of the Lizard ophiolite has been widely studied for more than 100 

years by many researchers, especially related to the petrology, structural 

geology, geochemistry, etc. However, there is only one palaeomagnetic study 

on the Lizard ophiolite. Hailwood et al. (1984) sampled rocks from the east 

coast section of the Lizard ophiolite complex, focusing on metadoleritic dykes, 

gabbros and peridotites. Laboratory demagnetization of these samples gave 

components with SSW declinations and shallow to intermediate negative 

inclinations. This direction of magnetization is similar to the Permian 

geomagnetic field for SW England, possibly suggesting remagnetization in the 

early Permian (Hailwood et al., 1984). However, Hailwood et al. (1984) 

concluded that these SW-directed magnetizations are primary in origin and 

were acquired during formation of the ophiolite during seafloor spreading. 

A5. Fieldwork in the Lizard ophiolite 

In this study, sampling was restricted to the east-coast section of the Lizard 

complex (northern coast of Coverack village - Leggan cove), where dykes and 

gabbroic rocks are well-exposed (Figures A13 and A14).  

Sampling of both dykes and gabbros was performed over four stages in 

different localities. At all localities, sampling was carried out using a gasoline-

powered portable drill, with some extra oriented block samples collected and 

drilled in the laboratory. 

The first stage of the fieldwork was conducted on 5th July 2010 for the south 

section of Godrevy Cove area. In this locality 23 core samples were collected 

from four sites, including dykes and gabbros. The second stage was on 14th 
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April 2011 for the Coverack coastal area. At this locality 23 core samples were 

collected from three sites, mostly from dykes with some samples from gabbros. 

The third stage of sampling was on 4th July 2011 for the north section of 

Godrevy Cove area. At this locality 19 core samples were collected from four 

sites, including dykes and gabbros. The fourth stage of sampling was on 23rd 

August 2012 in the Leggan Cove area (to the north of Godrevy Cove). At this 

locality 10 block samples were collected from five sites including dykes and 

gabbros (Figure A15).  

 

 

Figure A13. Geological map showing the studied area with indication of sampled dykes and 

gabbros localities. Inset is a simplified geological map of the Lizard peninsula (modified after 

Roberts et al., 1993). 
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Figure A14. Outcrop photograph of site GC05 with location of drilled samples labelled. 
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Figure A15. Photographs of studied localities. (a) Leggan Cove. (b) Coverack Cove. (c) 

Godrevy–north section. (d) Godrevy-south section.  

A6. Results 

A6.1 Petrography 

As described above, petrographic characteristics of rocks in the studied area 

are extensively reported elsewhere (e.g. Kirby, 1984; Roberts et al., 1993; Floyd 

et al., 1993; Selwood et al., 1998). However this study attempted to examine 

the mineralogy of the limited samples from both dykes and gabbros using 

optical microscopy to determine if there is any alteration of these rocks. 

Gabbroic rocks in the study area are mainly composed of plagioclase and 

clinopyroxene with some opaque minerals (i.e. magnetite and hematite) but with 

no olivine, and generally display ophitic to subophitic textures (Figure A16). In 
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some places, the gabbro showed some hydrothermal alteration, in which 

pyroxene is replaced by amphibole. 

 

Figure A16. Photomicrographs (cross-polars) of the gabbro samples from the Lizard ophiolite 

showing clinopyroxene and plagioclase. Scale bar: 1 mm. 

Dolerite dykes mostly consist of subhedral crystals of plagioclase and fine 

grained pyroxene with abundant opaque minerals and exhibit a granular texture 

(Figure A17). However, these dolerite dykes are generally highly hydrothermally 

altered, with clinopyroxene altered to chlorite. 

In some samples, plagioclase phenocrysts occur with subhedral texture, and 

they exhibit distinctive crystal alignments, which indicate the magma flow 

direction (Figure A18). 

A6.2 Rock magnetic results     

Rock magnetic analyses were performed on samples of gabbros and dykes of 

Lizard ophiolite in order to find out the type of ferromagnetic minerals in these 

rocks that are responsible for carrying the natural remanence. 
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Figure A17. Photomicrographs of the dolerite dyke samples from the Lizard ophiolite showing 

plagioclase phenocrysts in a groundmass of mostly clinopyroxene, chlorite and opaque minerals 

and displaying alteration of the clinopyroxene to chlorite (a and b) Cross-polars. (c and d) 

Plane-polarized light. Scale bar: 1 mm. 

 

 

Figure A18. Photomicrographs of the dolerite dyke samples from the Lizard ophiolite showing 

alteration of the clinopyroxene to chlorite and alignments of plagioclase phenocrysts with the 

flow direction. (a) Cross-polars. (b) Plane-polarized light. Scale bar: 1 mm. 
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A6.2.1 Isothermal remanent magnetization (IRM) analyses 

IRM acquisition experiments were performed on 15 representative samples of 

gabbros and dykes from the sites of Coverack Cove, North and South section of 

Codrevy Cove and Leggan Cove, using the same technique and equipment 

which have been described in the section 2.7.5.1. All IRM acquisition curves 

from both gabbro and dyke samples are shown in Figure A19. 

In general, all IRM acquisition curves for gabbro samples showed a rapid 

increase in magnetization in fields less than 200 mT, and nearly all samples 

displayed saturation below 400 mT. Backfield demagnetization of IRM of these 

samples yielded coercivity of remanence values ranging between 38 and 53 mT. 

These results suggest low to medium coercivity fine-grained magnetic minerals 

are dominant in these rocks (e.g. single-domain (SD) or pseudo-single domain 

(PSD) magnetite), with no indication of the presence of haematite or goethite. 

The majority of dyke samples also showed a sharp increase in magnetization in 

fields less 200 mT and reached saturation below 400 mT, suggesting that these 

rocks are dominated by fine-grained low to medium coercivity minerals. 

Backfield demagnetization IRM of these samples yielded coercivity of 

remanence values of 36 to 72 mT. These data demonstrate that the majority of 

remanence carriers were single-domain (SD) or pseudo-single domain (PSD) 

(e.g. magnetite). However, some dyke samples showed continued increase in 

magnetization up to 800 mT. For example, the sample LC04H204 showed a 

more gentle rise in magnetization up to the maximum applied field of 800 mT. 

Backfield demagnetization of IRM of this sample yielded a coercivity of 

remanence of 400 mT, thus indicating the presence of only high coercivity 

minerals in this sample (i.e. haematite). Sample GC03H1IB showed a rapid 
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increase in IRM acquisition up to 100 mT followed by a continuous and gentle 

increase in magnetization up to the maximum applied field of 800 mT, 

suggesting the presence of both low and high coercivity minerals in this sample, 

i.e magnetite and haematite respectively. 

 

 

Figure A19.  Isothermal remanent magnetization (IRM) curves and backfield demagnetization 

curves for representative samples of the Lizard ophiolite.  
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Figure A19. (Continued) 

 

A6.2.2 Thermomagnetic analysis 

High-temperature susceptibility experiments were measured for representative 

samples from both gabbros and dykes, using the same techniques and 

equipment which have been described in section 2.7.5.2 of the main thesis. 

Results are shown in Figure A20. In general, all the samples showed a clear 

decrease of susceptibility upon heating to around 580 °C, suggesting the 
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presence of magnetite as a dominant magnetic mineral in these rocks, which is 

consistent with IRM acquisition experiments. Heating and cooling curves are 

irreversible, indicating that some new magnetic minerals have been created 

during the heating cycle. Sample GC0802 is observed to have a small bump in 

the heating curve between 150 °C and 400 °C, probably indicating the presence 

of subsidiary maghemite. Sample LC01H02 showed a noisy susceptibility curve 

with a shape suggesting that this sample is dominated by paramagnetic 

minerals. 

 

 

Figure A20. Curie temperature experiments on representative samples from the Lizard ophiolite. 

Note: the red curve illustrates the heating from room temperature to 700˚C, and the blue curve 

illustrates the cooling from 700˚C to room temperature. 
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Figure A20. (Continued) 
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Figure A20. (Continued) 

 

A6.3 Anisotropy of magnetic susceptibility (AMS) 

All samples from the dykes have intermediate to high bulk susceptibility, ranging 

from 4.4×10-4 SI to 5.3×10-3 SI, indicative of a ferromagnetic mineralogy (e.g. 

magnetite) which is consistent with rock magnetic analyses of these samples. 

Various fabric relationships were found in the dykes. Sites GC07 and LC03H1 

showed a very good relationship between AMS fabric and dyke orientation, i.e. 

the magnetic foliation (K1 and K2) and the mean dyke wall are in good 

agreement with the mean orientation of the K3 axes perpendicular to the dyke 

wall, suggesting a normal magnetic fabric (Figure A21i-ii). Other dyke sites 

showed various forms of relationships between magnetic fabrics and dyke 

orientations, ranging from good to poor, suggesting that the controls of AMS 

may vary between dykes. For example, site COV3 (Figure A21iii) showed a 

reasonable AMS fabric relationship with dyke orientation but some scatter in 

AMS principal axes between samples, whereas sites GC01 and GC03H1 

showed well defined AMS fabrics with no relationship to dyke orientation (Figure 
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A21iv-v). Sites COV01, GC04 and GC05 showed very poorly defined AMS 

fabrics with no relationship to dyke orientations (Figure A21vi-viii). On the other 

hand results from the gabbro sites showed only random AMS fabrics, which 

reflect the lack of preferred orientation of crystals in the gabbro (Figures A16 

and A22a).  

Using a Jelinek plot to illustrate the shape of the AMS ellipsoids, both dykes and 

gabbros showed a mixture of oblate and prolate magnetic fabric shapes at the 

specimen level. The degree of anisotropy, Pj, at all dyke sites ranges from 

1.006 - 1.153, and from 1.005 - 1.247 at the gabbro sites (Figure A21ix, Figure 

A22b and Table A1). 
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Table A1. Magnetic fabric results. 

   
    Mean orientation of the axis     

  

   
K1 K2 K3 

  

  Lithology n Susceptibility Dec Inc 
Conf. 

angles Susceptibility Dec Inc 
Conf. 

angles Susceptibility Dec Inc 
Conf. 

angles Pj T 

Coverack 

  
  

   
  

   
  

  
  

  COV01 Dyke 19 2.51E-03 323.7 39.3 32.4/11.1 2.47E-03 94.5 38.6 65.1/30.2 2.46E-03 208.8 27.3 65.0/9.7 1.021 -0.503 

COV02 Gabbro 3 Not enough records for Jelinek statistics Not enough records for Jelinek statistics Not enough records for Jelinek statistics 1.09 0.236 

COV03 Dyke 13 8.13E-03 315.9 46.2 30.3/15.0 7.87E-03 190 29.3 24.9/20.7 7.58E-03 81.6 29.2 29.5/13.5 1.073 0.071 

Godrevy 
 

 
  

   
  

   
  

  
  

  GC01 Dyke 10 5.47E-04 104.1 17.8 12.0/5.1 5.43E-04 349.6 52.4 16.1/5.1 5.39E-04 205.6 31.9 18.9/5.9 1.014 -0.103 

GC02 Gabbro 12 1.06E-03 39.3 29 55.1/14.8 1.04E-03 150.4 33 57.5/27.1 9.60E-04 278 43.1 39.4/15.0 1.113 0.512 

GC03 Dyke 14 5.23E-04 275.9 4.8 44.5/23.1 5.21E-04 182.7 33.6 34.1/7.5 5.14E-04 13 55.9 39.9/7.4 1.018 0.503 

GC04 Dyke 6 5.62E-04 342.3 50.2 12.6/6.8 5.50E-04 88.3 12.9 23.1/11.0 5.41E-04 188.1 36.8 22.7/7.9 1.04 -0.145 

GC05 Dyke 10 6.78E-04 319.6 9.2 34.8/3.0 6.67E-04 55.1 30.7 37.2/30.9 6.62E-04 214.8 57.7 34.0/3.8 1.024 -0.33 

GC06 Gabbro 6 7.19E-03 78.8 42.2 69.3/8.5 7.15E-03 268.1 47.5 69.4/58.5 7.11E-03 173.1 4.7 58.9/5.7 1.012 -0.028 

GC07 Dyke 10 5.96E-04 133.6 6.9 15.0/3.4 5.95E-04 39.9 28.2 19.0/7.9 5.92E-04 236.1 60.8 14.6/3.6 1.007 0.515 

GC08 Gabbro 4 Not enough records for Jelinek statistics Not enough records for Jelinek statistics Not enough records for Jelinek statistics 1.01 -0.751 

Leggan 
 

 
  

   
  

   
  

  
  

  LC01 Gabbro 14 4.25E-04 102.7 9.7 74.0/56.2 4.24E-04 203.5 47.5 72.9/64.5 4.23E-04 4.2 40.9 67.3/61.2 1.003 0.063 

LC02 Gabbro 12 4.67E-04 126.4 0.6 36.6/13.8 4.64E-04 218.4 72.8 39.4/36.4 4.61E-04 36.2 17.1 39.3/13.8 1.014 0.014 

LC03 Dyke 15 5.99E-04 314.6 5.5 9.0/3.6 5.97E-04 174.4 82.9 10.2/5.5 5.89E-04 45 4.5 7.3/3.6 1.018 0.523 

LC04 Dyke 14 5.47E-04 45.1 27 76.1/17.1 5.46E-04 144.1 17 76.2/12.4 5.42E-04 262.6 57.3 25.9/18.6 1.011 0.734 

LC05 Gabbro 13 5.97E-04 326.8 22.8 68.0/22.3 5.95E-04 57.6 2.1 68.0/24.7 5.87E-04 152.7 67.1 25.8/24.6 1.018 0.58 

Total   175                             

n = number of specimens; Pj = corrected anisotropy degree; T = shape parameter; Dec = declination; Inc = inclination. 
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Figure A21. Representation of AMS of the dykes from the east coast of the Lizard. (i-viii) 

Stereographic projections of principal anisotropy axes (K1, K2, and K3). (ix) Degree of anisotropy Pj, 

versus shape parameter T diagram (Jelinek, 1981) for all dyke sites. 
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Figure A21. (Continued) 

 

 

Figure A22. Representation of AMS of the gabbros from the east coast of the Lizard. (a) 

Stereographic projections of principal anisotropy axes (K1, K2, and K3). (b) Degree of anisotropy Pj, 

versus shape parameter T diagram (Jelinek, 1981) for all gabbro sites. 
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A6.4 Remanent magnetization results 

The nature of the remanent magnetization of 175 specimens collected at 16 sites 

throughout the Coverack – Leggan region has been determined using laboratory 

demagnetization techniques. Typical examples of demagnetization behavior are 

shown in Figures A23 and A24. In situ and tilt corrected mean directions from all 

sites are listed in Table A2. Both alternating field and thermal techniques were used 

to identify the remanence directions, although alternating field demagnetization data 

are sometimes noisier than the thermal data. During the demagnetization treatments, 

the majority of the samples reveal a stable component, specified by straight paths in 

orthogonal projections trending towards the origin at elevated temperatures and 

alternating fields. During alternating field treatments a relatively stable component is 

isolated using fields up to 100 mT. Thermal demagnetization isolated stable 

components with maximum unblocking temperatures of 580°C, consistent with 

remanence carried by magnetite.  
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Figure A23. Zijderveld diagrams (orthogonal vector plots) of demagnetization data for selected 

samples. Solid/open symbols = projection on to the horizontal/E-W vertical planes, respectively. 
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Figure A23. (Continued) 
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Figure A23. (Continued) 
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Figure A24. Zijderveld plots, stereographic projections and great circle demagnetization trends for 

selected samples.   
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Figure A24. (Continued) 

 

Figure A25. Zijderveld plots, stereographic projections and thermal demagnetization trends for 

sample GC0106B showing both an intermediate-high unblocking temperature overprint with a SSW 

declination and negative inclination and a high blocking temperature (presumably primary) component 

with an ESE declination and positive inclination. 
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Table A2.  Palaeomagnetic results from sites displaying stable magnetizations. 

      
Mean remanence 

  

    

In situ Tilt corrected 

Site Lithology DD/D n Dec Inc α95 k Dec Inc α95 k 

Coverack 
           COV01  * Dyke 062/78 7 197.9 -18 10.4 34.4 194.3 -26.3 10.4 34.5 

COV03  * Dyke 246/34 5 186.2 -16.9 20.6 14.8 187.7 13.7 20.6 14.8 

Godrevy 
           GOC01  * Dyke 051/80 6 198.1 -15.7 8.3 66.1 196.1 -24 8.3 66.1 

GOC02 Gabbro 

 
6 104.2 27.3 5.3 158.6 ― ― ― ― 

GOC04  * Dyke 237/71 1 188.3 -16.3 ― ― 190.8 -3.4 ― ― 

GOC05  * Dyke 232/84 6 179.8 -17.7 5.3 161.4 181.1 -14 5.3 161.4 

GOC06  * Gabbro 
 

3 194.7 -25.2 16.1 59.5 ― ― ― ― 

GOC07  * Dyke 030/20 7 230.6 6.4 7.1 72.4 249.6 -56.8 7.1 72.5 

Legann 
           LC01  * Gabbro 

 
1 225.2 -30.6 ― ― ― ― ― ― 

LC02  * Gabbro 
 

1 241.4 -4.6 ― ― ― ― ― ― 

LC03  * Dyke 
vertical/strike 

335-155 
8 185.8 -10.3 6.3 78.9 185.8 -10.3 6.3 78.9 

LC04  * Gabbro 
 

1 198.6 -11.5 ― ― ― ― ― ― 

LC05  * Gabbro 
 

1 192.6 -6.5 ― ― ― ― ― ― 

            

    The mean of site means with SSW components                  

     

    

 N Dec Inc α95 K 

  

   
  

12 201.3 -14.6 11.7 14.6 
 

 N=number of sites; n=number of specimens; Dec=declination; Inc=inclination; α95=semi-angle of 95% cone of 
confidence; K=Fisher precision parameter. * sites with SSW components  
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A7. Interpretation and discussion 

Dyke sites from Coverack showed stable components of magnetization that 

have SSW declinations and shallow negative inclinations (Table A2). The same 

direction is isolated at the majority of sites from Godrevy and Leggan (Table A2). 

These SSW components of magnetization identified from individual samples 

were subsequently combined at the site level to give an overall mean direction 

of D = 201.3°, I = -14.6° (Table A2). However, at these sites, higher 

demagnetization levels sometimes reveal a drift of remanence directions 

towards the NW quadrant. In these samples, the remanence migrates along 

great circle paths towards the NW but does not reach an endpoint direction 

(Figure A24). This suggests that a higher coercivity/unblocking temperature 

component is also present at these sites, but the direction of this component 

cannot be defined before either the remanence reduces to the noise level of the 

magnetometer or the magnetization becomes unstable. 

In contrast, one of the gabbro sites at Godrevy (site GC02) records a very 

different ESE remanence with a positive inclination (Table A2). Gabbro 

specimens from this site that were demagnetized with thermal demagnetization 

produce clear linear demagnetization trends towards the origin (Figure A23). 

Most of these gabbro samples reach this stable ESE-directed endpoint 

component after removal of a small, lower stability SSW-directed component. 

One sample (GC0106B; Figure A25) in particular is especially informative 

though: during sampling this core was found to have penetrated through a dyke 

margin into the host gabbro. Demagnetization of this core shows the strong 

SSW-directed low stability component observed at Godrevy and a very clear 

ESE-directed high stability component (Figure A25). This implies that the ESE-
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component is the original remanence carried by the gabbros and that the SSW-

component represents a later magnetic overprint. Overall these observations 

suggest that the dykes at Godrevy are almost completely remagnetized but that 

the gabbros occasionally preserve an earlier magnetization. This is further 

supported by the drift of dyke samples towards a direction that is antipodal to 

the stable gabbro direction, suggesting that the original remanence of these 

dykes was of opposite polarity to that of the host gabbros (Figure A26). 

 

 

A26. Schematic summary of remanence data from the Lizard ophiolite. 

 

Hailwood et al. (1984) also observed SSW-directed magnetizations with 

negative inclinations in these rocks, which they interpreted as primary 

magnetizations acquired during formation of the ophiolite. The results from 
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samples in this study suggest that this is a misinterpretation, and that these 

directions represent a remagnetization. The correspondence of this direction 

with the Permian geomagnetic field direction in SW England strongly suggests 

that the dykes were largely remagnetized in the Permian, possibly as a result of 

fluid flow associated with the intrusion of the Cornubian granite batholith. These 

observations are supported by petrographic analyses of collected samples, 

which are discussed in the section A6.1. 

Assuming that the ESE-directed remanence in gabbros at site GC02 is an 

original, primary magnetization, this direction may be used to estimate the 

original orientation of the dykes that cut the host gabbros, using the net tectonic 

rotation method described in the main thesis. In the Devonian, SW England was 

located in the southern hemisphere (Stampfli et al., 2002; Figure A2). In this 

case the positive inclination at the gabbro site would represent a reversed 

polarity that could be assumed to be originally directed southwards (assuming 

an axial geocentric dipole field). 

A reference inclination for this original magnetization may be calculated from 

the 390Ma palaeomagnetic pole from the Laurussia/Laurasia APWP of Torsvik 

et al. (2012). This pole (latitude = 1.4°, longitude = 322.5°) yields a reference 

inclination of 54° for a sampling site at latitude 50°N, longitude -5°W. Using the 

in situ remanence direction from gabbros at site GC02 of Dec/Inc = 104.2/27.3, 

a reference direction of Dec/Inc = 180/54, and the present day orientation of the 

dyke sampled at GC01 yields the net tectonic rotation parameters listed in 

Table A3.  

Two solutions are found that are capable of restoring the site GC01 dyke to the 

vertical. However, the second (alternative) solution requires an unrealistically 
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large rotation of 166°, in contrast to the 90° rotation required by the first 

(preferred) solution (which better fits the angular difference between the 

observed and expected remanence directions). The initial dyke strike 

associated with the preferred solution is 229°. This NE-SW strike is compatible 

with the trend of the Rheic Ocean in palaegeographic reconstructions (e.g. 

Stampfli et al., 2002; Figure A2). This tentative result therefore suggests that 

the dykes at Godrevy Cove were emplaced along a NE-SW striking spreading 

axis, in contrast to some existing tectonic models (e.g. Cook et al., 2002). 

 

Table A3. Net tectonic rotation parameters for restoration of dykes at site GC01 using the 

remanence direction of their host at site GC02. 

Net tectonic rotation analysis of data from 

sites GC01 and GC02 

Solution 1 

(preferred) 

Solution 2 

(alternative) 

Net tectonic rotation pole (azimuth/plunge) 075.2/69.3 129.8/50.5 

Net tectonic rotation angle 89.5 CCW 165.9 CCW 

Original dyke strike (for initially vertical dyke) 229.1 310.9 
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