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Abstract

The grounding of language in humanoid robots is a fundamental problem, especially
in social scenarios which involve the interaction of robots with human beings. In-
deed, natural language represents the most natural interface for humans to interact
and exchange information about concrete entities like KNIFE, HAMMER and ab-
stract concepts such as MAKE, USE. This research domain is very important not
only for the advances that it can produce in the design of human-robot communic-
ation systems, but also for the implication that it can have on cognitive science.

Abstract words are used in daily conversations among people to describe events and
situations that occur in the environment. Many scholars have suggested that the
distinction between concrete and abstract words is a continuum according to which
all entities can be varied in their level of abstractness.

The work presented herein aimed to ground abstract concepts, similarly to concrete
ones, in perception and action systems. This permitted to investigate how different
behavioural and cognitive capabilities can be integrated in a humanoid robot in
order to bootstrap the development of higher-order skills such as the acquisition of
abstract words. To this end, three neuro-robotics models were implemented.

The first neuro-robotics experiment consisted in training a humanoid robot to per-
form a set of motor primitives (e.g. PUSH, PULL, etc.) that hierarchically com-
bined led to the acquisition of higher-order words (e.g. ACCEPT, REJECT). The
implementation of this model, based on a feed-forward artificial neural networks,
permitted the assessment of the training methodology adopted for the grounding of
language in humanoid robots.

In the second experiment, the architecture used for carrying out the first study
was reimplemented employing recurrent artificial neural networks that enabled the
temporal specification of the action primitives to be executed by the robot. This
permitted to increase the combinations of actions that can be taught to the robot
for the generation of more complex movements.

For the third experiment, a model based on recurrent neural networks that integrated
multi-modal inputs (i.e. language, vision and proprioception) was implemented for
the grounding of abstract action words (e.g. USE, MAKE). Abstract representations
of actions (“one-hot” encoding) used in the other two experiments, were replaced
with the joints values recorded from the iCub robot sensors.

Experimental results showed that motor primitives have different activation patterns
according to the action’s sequence in which they are embedded. Furthermore, the
performed simulations suggested that the acquisition of concepts related to abstract
action words requires the reactivation of similar internal representations activated
during the acquisition of the basic concepts, directly grounded in perceptual and
sensorimotor knowledge, contained in the hierarchical structure of the words used
to ground the abstract action words.
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Chapter 1

Introduction

Amongst the various cognitive capabilities (e.g. memory, attention, perception,

action, problem solving, intuition, mental imagery, etc.) linguistic skills are one

of the most powerful tools available to an agent for understanding situations and

interacting with the environment. Until recently, research studies about concepts

formation have mainly focused on the acquisition of concrete words; hence, very little

is known about the representation of abstract language. On the contrary of concrete

words, that can be perceived through the senses and that can be directly linked to

the physical experience that occurs with them, abstract words refer to things that are

intangible and that are not physically defined nor spatially constrained [Barsalou,

2008, Barsalou and Wiemer-Hastings, 2005, Wiemer-Hastings et al., 2001]. For this

reason finding a semantic representation of abstract words has often appeared as a

problematic and challenging task within developmental neuro-robotics. Indeed, until

recently one of the main focus of developmental neuro-robotics has been the study

of sensorimotor skills and the naming of concrete objects, and only very recently

few developmental neuro-robotics models have started to investigate the acquisition

of abstract words.

This thesis addresses the problem of Grounding Abstract Categories and

Words in Cognitive Robots; within this framework, the implementation of neuro-

robotics models permitted the investigation of the relations between the development
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of abstract symbolic representations (e.g. language) and sensorimotor knowledge

(e.g. action and vision). Semantic representations of abstract words were obtained

through the integration of linguistic, perceptual and sensorimotor experience of a

humanoid robotic platform (i.e. iCub). The implementation of cognitive robotics

models that link sensorimotor experience (e.g. the action of pushing or lifting) to

abstract symbolic knowledge (e.g. abstract symbols related to the concept of using

a tool) enabled the acquisition of semantic representations related to abstract words

in artificial agents [Barsalou, 2008, Glenberg and Kaschak, 2002].

In this thesis three experimental studies on the grounding of abstract categories

in cognitive robots are presented. The first experiment consisted in grounding the

meaning of higher-order words like ACCEPT, REJECT and PICK in the iCub sen-

sorimotor experience. In order to achieve the goal of this experiment, the iCub first

learned to perform a set of concrete motor primitives (e.g. PUSH, PULL, GRASP,

etc.) and then, by combining such primitives together, the robot derived the mean-

ing of higher-order words. This first model, based on a feed-forward artificial neural

network controller, permitted the testing of the training methodology adopted for

the grounding of language in the iCub robot.

In the second experiment, the architecture used for carrying out the first study

was reimplemented employing recurrent artificial neural networks that permitted the

temporal specification of the action primitives to be executed by the robot. This

permitted to increase the combinations of actions that can be taught to the robot

for the generation of more complex movements.

For the third experiment, a model based on recurrent neural networks that integ-

rated multi-modal inputs (i.e. language, vision and proprioception) and that took

into account a more realistic representation of the sensorimotor inputs of the iCub

robot was implemented. More complex actions (e.g. “CUT”, “HIT”, “PAINT”,

etc.) were built by integrating low level motor primitives (e.g. “PUSH - PULL”,

“LIFT - LOWER”, “MOVE LEFT - MOVE RIGHT”) iterated for a certain num-

ber of time steps. Abstract representations of actions (“one-hot” encoding) used in
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the other two experiments, were replaced with the joints values recorded from the

iCub robot sensors. In this model the acquisition of lexical categories was achieved

by integrating three different modality inputs: proprioception (joint values), vision

(object features) and language (sentences consisting of a verb and a noun). Through

the implementation of this model, the hierarchical organization of concepts directly

linked to sensorimotor experience permitted the acquisition of higher-level words

and categories. The robot learned to generalise the meaning of words like USE

and MAKE by performing a set of iterative actions (e.g. CUTTING, HITTING,

DRAWING) for each of which the appropriate tool was employed.

All the experiments were developed using the iCub humanoid platform, a robot

that has the same dimension of a three and a half year old child and that is widely

used for developmental robotics research [Metta et al., 2008]. In order to verify

the validity of the implemented models, experiments were first tested in a simulated

environment for the iCub [Tikhanoff et al., 2008, 2011] and subsequently transferred

to the real robotic architecture. Since the iCub Simulator and the real robot have

the same software interface, the transfer of simulated experiments to the physical

robot did not require any particular modification of the implemented models (though

extra work was required to handle visual input stream and motor performances).

1.1 Timeliness and Impact of Research

In 2006 Bill Gates compared the current robotics industry to the computers in-

dustry of thirty years ago. In thirty years the computer market has become such

that nowadays computers are part of our daily life. The same widespread role

might be played by robots by thirty years. Indeed, the robotics market is currently

widely spreading and many countries are investing on it [IFR, 2012]. Robotics is a

highly multidisciplinary discipline which requires knowledge ranging from electron-

ics, mechanics to computer science and so on. Therefore advances on this discipline

are a good indicator for the identification of the level of technological progress of a
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country. Japan is considered as the country in full expansion for humanoid robot-

ics while the United States of America are leading the military robotics field. The

tremendous investments done by the Defense Advanced Research Projects Agency

(DARPA) can in part explain the development of military robotics in the United

States of America. The growing interest in robotics research in the United States of

America is also witnessed by the recent investments made by Google, which has re-

cently acquired the Boston Dynamics engineering company. The Boston Dynamics

contracts for the US military and developed the world’s fastest-running robot and

other animal-based mobile research machines. In Europe, Germany is the country

with a prominent role in industrial robotics. According to the 2012 Executive Sum-

mary released by the International Federation of Robotics [IFR, 2012], 2011 was the

most successful year for industrial robots since 1961, considering that robot sales

increased by 38% to 166,028 units, by far the highest level ever recorded for one

year. The countries that experienced the biggest growth were China, United States

and Germany (Fig.1.1(a)).

(a) (b)

Figure 1.1: Annual supply of industrial robots and forecast (a), Sales and forecast
for service robots for personal domestic use (b). Source IFR Statistical Department

However, the two biggest markets still remain Japan and the Republic of Korea.

Concerning the European market in 2011, about 43,800 industrial robots were

sold, 43% more than in 2010. About 19,533 new industrial robots were supplied

to Germany and following, in Italy the total sales of industrial robots were up by

13% to 5,091 units. Regarding the worldwide annual supply for service robots, in
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2011 about 2.5 million service robots for personal and domestic use were sold, 15%

more than in 2010 and projections for the period 2012-2015 predict that about 15.6

million units of service robots for personal use to be sold (Fig.1.1(b)). This market

will increase substantially within the next 20 years.

Hence, research in the field of cognitive systems and human-robot interaction is

very timely and of great relevance Nevertheless, before personal domestic robots can

be employed in everyday life, developmental neuro-robotics has to face the challenge

of building robots capable of working independently, which can autonomously react

to dynamic changes that occur in the environment. Providing robots with the cap-

ability to comprehend and produce language in a “human-like” manner represents a

powerful tool for flexible and intelligent interaction between robots and human be-

ings. Robots endowed with linguistic capabilities could better understand situations

and exchange information; through language robots could cooperate and negotiate

with human beings in order to accomplish shared plans.

1.2 Objectives and Motivation

Scientists have the extraordinary opportunity to concur to the production of the

knowledge that can introduce improvements to people daily life. Scientists working

in developmental neuro-robotics can contribute to the achievement of a long-term

goal that this research field establishes; that is, the understanding of aspects of hu-

man intelligence by building autonomous robots. In the short-term period, robotic

platforms provide a useful tool for studying and testing human-robotic interaction

based on mutual understanding achievable by reciprocal verbal communication. The

grounding of language in robots is a fundamental problem especially in social scen-

arios in which a robot, for example, can be a co-worker in housekeeping activities or

a caregiver for aged people: language can facilitate the human-robot “symbiosis”.

Natural language represents the most natural interface for people without expertise

in formal programming syntax to interact with robots. This research domain is very
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important not only for the advances that it can produce in the design of human-

robot communication systems, which can lead to a new generation of interactive

robotic systems, but also for the implication that it can have on cognitive science.

Robots endowed with the capability to understand language and that can adapt

their behaviour according to human request could have an important impact on the

robotics industry in existing and emerging markets.

Language represents a powerful tool to interact with other agents in order to

plan new tasks, make decisions and perform joint activities [Tomasello et al., 2005,

Warneken and Tomasello, 2007]. In this context, language represents a collection of

shared meanings that enable a common ground with other agents. While for human

beings language development is a natural and spontaneous process that occurs over

the entire course of their life, for artificial agents (e.g. humanoid robots) one of the

major challenges that has still to be faced, involves natural language understanding

and processing that can enable agents to derive meaning from natural language

inputs.

The development of linguistic skills requires different cognitive capabilities work-

ing together; hence, the research field related to the grounding of abstract categories

represents a broad domain in which studies ranging from neuroscience to psycho-

logy, robotics and computer science can all contribute in order to get a deeper

understanding of the integration of linguistic and cognitive skills. The aim of this

research studies was to Ground Abstract Categories in Cognitive Robots

through the implementation of neuro-robotic models that permitted to address the

following scientific questions:

• How can cognitive systems (such as robots) use sensorimotor categories to

indirectly ground abstract concepts?

• What kind of embodiment and grounding mechanisms are used to combine

words?

• How can the symbol grounding mechanism be extended to generate and ground
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abstract categories in artificial cognitive systems?

In the novel studies presented in this thesis, the problem of the acquisition of

language in robotic platforms is addressed by following the developmental approach

to robotics. Differently from classical natural language processing methodologies,

developmental robotics considers language embodied in perceptual and sensorimotor

knowledge [Asada et al., 2001, Cangelosi and Schlesinger, 2014].

The achievement of the presented research objectives permitted the endowing of

robots with basic linguistic skills and further the investigation of the mechanisms

underlying language development. Indeed, the analysis of the internal dynamics of

such models permitted the investigation of the relations between the development

of abstract symbolic representations and sensorimotor knowledge, in order to under-

stand the underling mechanisms involved during the acquisition of the meaning of

abstract words through sensorimotor experience.

1.3 Contribution to Knowledge

The contribution to knowledge of this thesis is summarised herein:

• Presentation of general cognitively inspired design mechanisms for the acquis-

ition of abstract language in the iCub humanoid robot. The studies presented

in this thesis represent pioneering work on the grounding of abstract language

in cognitive robots. They attempt to fill-in the gap in this research domain by

making the first step toward understanding the relation between the develop-

ment of abstract symbolic representation and sensorimotor knowledge.

• Presentation of a training methodology for humanoid robots that enabled the

investigation of the sensorimotor bases of abstract concepts. The application of

this methodology permitted to better understand the incremental contribution

of embodied knowledge in the continuum between concrete words (e.g. PUSH,

KNIFE ), which are directly grounded in actions and perceptual experience,
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and abstract words (e.g. USE, MAKE ), for which the sensorimotor grounding

is based on indirect experience.

• Presentation of results which provided new knowledge on how to build robots

that can interact with other agents in the environment simply processing lin-

guistic descriptions provided by users through language. Such experimental

results were presented at the International Joint Conference on Neural Net-

works in 2011 in a paper titled “Towards the Grounding of Abstract Words:

A Neural Network Model for Cognitive Robots” and in a paper titled “The

Grounding of Higher Order Concepts in Action and Language: a Cognitive

Robotics Model” published on the Neural Networks journal. Results related

to the third experiment will be published on a journal paper, which is currently

under preparation.

The performed studies have suggested the hypothesis that the acquisition of

concepts related to abstract action words requires the reactivation of similar in-

ternal representations activated during the acquisition of the basic concepts, directly

grounded in perceptual and sensorimotor knowledge and contained in the hierarch-

ical structure of the words used to ground the abstract action words. Therefore,

in this study the semantic/conceptual representation of abstract action words con-

sists of reusing sensorimotor and perceptual representational capabilities (embodied

understanding of abstract language).

1.4 Structure of the Thesis

The thesis is organized as follows:

• Chapter 2 reviews the literature on the embodied view of cognition applied

to language. The chapter presents an overview of the most relevant theor-

ies of cognition proposed in literature, such as classical and grounded ap-

proaches. The main milestones that occur during language development in
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humans are briefly described. Furthermore, the chapter tries to clarify what

differs between concrete and abstract words and their representation. The

chapter also presents the neural bases of language by describing neurophysiolo-

gical and behavioural studies about action verb processing.

• Chapter 3 introduces some of the most important approaches proposed in the

field of artificial intelligence for knowledge representation and the modelling of

language in cognitive systems. A brief overview on symbolic, sub-symbolic and

statistical models is provided. Further details are given on the developmental

approach to robotics and, grounded and embodied connectionist models that

permitted to better assess the current state of the art on the grounding of

language in cognitive robotics. The chapter also contains a description of the

hardware and software architecture of the iCub robotics platform.

• Chapter 4 provides an introduction on the main methods used in the PhD

research. It covers Artificial Neural Networks and it presents some of the

main models of artificial neurons. This chapter also presents some of the

learning algorithms used in the implementation of the models presented in the

experimental part of this thesis. Further, the chapter contains a description

of the methods employed for analysing the internal dynamics of the models

implemented for carrying out the experimental studies presented in Chapter

5, Chapter 6 and Chapter 7 of this thesis.

• Chapter 5 presents the first robotics experiment on the learning of higher-

order concepts for the iCub robotic platform. The chapter, after introducing

the theoretical background of the proposed experiment, describes the robot

control model, based on feed-forward artificial neural networks, for teaching

the robot the meaning of words that lack of a direct concrete referent such

as “‘ACCEPT” and “REJECT”. The training of this model was effective al-

though some limitations of its implementation were evident.

• Chapter 6 describes an extension of the model presented in Chapter 5. This
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model uses recurrent artificial neural networks which permitted the introduc-

tion of the temporal specification of the input/output patterns used for the

training of the robot. After presenting the architecture of the model and the

adopted training strategy, simulation results and observations are discussed.

• Chapter 7 presents a model based on recurrent neural networks that enabled

the learning of words through the integration of multi-modal inputs (i.e. lan-

guage, vision and proprioception) and permitted to specify new motor encod-

ing (i.e. action primitives). The chapter describes the implemented architec-

ture, including the input and output coding, and the robotic task together with

the related training strategy adopted for the robot. The chapter also describes

the evaluation settings used for the model and the related results obtained by

running simulations with the iCub robot. In particular, experiments were run

in different training and testing conditions. Moreover the ability of the model

to generalize new abstract action words was verified. In order to understand

how the model responded to the variation of the stimuli in input and further

investigating how internal representations of objects were related to action

representations, the performance of the model was evaluated in response to

“incompatible condition” tests during which the provided linguistic input was

either inconsistent with the objects perceived by the robot or with the actions

typically associated to the objects.

• In Chapter 8 the main topics addressed in this thesis are recalled in order

to evaluate the results obtained through the presented experimental studies.

Conclusions, final remarks and the description of future research directions

close this thesis.
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Chapter 2

Grounded Cognition and

Embodied Language

The study of cognition involves interdisciplinary investigations in subjects ranging

from philosophy, psychology, neuroscience, linguistics to artificial intelligence and ro-

botics. The first attempts to understand the mechanisms underlying the functioning

of the human mind can be traced back to the Ancient Greeks when philosophers

such as Plato and Aristotle tried to explain the nature of human knowledge. Many

scholars have claimed that Plato was the first philosopher to define the dichotomy

between the mind and the body. Plato considered the mind as the “prisoner” of the

body and after death, while the body was thought of decomposing into its original

elements, the mind, being immaterial, survived the body. On the other hand Aris-

totle, member of Plato’s Academy, disagreed with his teacher and mentor providing

a closer relationship between the mind and the body claiming that the mind is the

“form” of the body. During the seventeenth century, the most famous philosophical

work of René Descartes, “Meditations on First Philosophy”, dealt with the mind-

body problem, that in philosophy refers to the study of the relation between mental

and physical properties. The investigation of the mind-body problem led to the for-

mulation of the Cartesian Dualism, according to which it is possible to distinguish

between matter (i.e. things with measurable properties and spatially extended) and
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mind (i.e. the non-physical things that can think), the latter assumed to be the

centralised control system of human beings. In contrast to the classical view of cog-

nition (e.g. Cartesian dualism and computationalism) in the twentieth century the

embodied theory of mind, which has its roots in Immanuel Kant, arouse; indeed,

one of the major goals of the “Critique of Pure Reason” of Kant, was to provide

a solution to the mind-body problem. Kant proposed that the mind is no longer

separate from the body, but it is a manifestation of it, viewed from a specifically

human and rational perspective. The modern formulation of the embodied theory

of mind considers intelligent behaviours as emergent processes of the interaction

between mind, body and environment [Pfeifer et al., 2007]; the mind controls bodily

actions, and in turn, the motor system influences our thinking.

Embodied cognition is currently investigated in many disciplines embracing psy-

chology, linguistics, cognitive science, neuroscience, artificial intelligence and robot-

ics. In the framework of cognitive linguistics, George Lakoff proposed conceptual

metaphors and image-schemas as a general mechanism to ground abstract knowledge

(e.g. mental representations) in concrete domains (e.g. body structure) [Lakoff and

Johnson, 1980]. In neuroscience, the relationship between the body structure, some

brain areas (e.g. motor and premotor cortex) and the mind (e.g. emotions) has been

investigated. For example, the “motor theory of speech perception” suggests that the

perception of spoken words is based on the identification of the vocal tract gestures

involved for the production of words, rather than on the identification of the sound

patterns that speech generates [Liberman et al., 1967]. Moreover, in robotics and

artificial intelligence, insights from neurophysiology and psychology have inspired

the design of machine which, endowed with at least some of the desirable properties

of biological organisms, such as adaptivity, robustness, versatility and agility, can

become increasingly capable to interact in non structures scenarios [Pfeifer et al.,

2007]. In turn, advances in cognitive robotics and artificial intelligence can represent

a crucial tool in the scientific research on cognitive science and in the study of the

human behaviour.
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It has been proposed that cognitive theories can be placed on a continuum ran-

ging from a purely disembodied account to a purely embodied one [Wilson, 2002].

This chapter focuses on the embodied view of cognition applied to language for

which different theories, both disembodied and embodied, such as symbolic theories

(based on amodal symbols), statistical approaches (based on statistical representa-

tions), connectionism (based on artificial neural networks), grounded theories (based

on modal symbols), etc., have been proposed in literature. In the next sections an

overview of the most relevant theories of cognition proposed in literature is given;

additional details will be provided on grounded theories of cognition. The chapter

also identifies the major milestones in the development of language in humans. Fur-

ther, this chapter contains a section regarding knowledge representation that tries

to clarify what differs between concrete and abstract concepts and it presents neuro-

physiological and behavioural studies about language processing that support the

embodiment of language. This overview will set the scene for the modelling of

abstract words in humanoid robots.

2.1 The Classical View of Cognition

According to the classical view of cognition, the mind is considered as a symbol

system and cognition relates to symbol manipulation capabilities [Harnad, 1990];

cognition and perception are separate and independent systems that work according

to different principles [Barsalou, 1999]. Hence, conceptual representations are non

perceptual and unrelated to the body. In this framework, concepts are generated

by combining and manipulating abstract, arbitrary and amodal symbols for which

their internal structures are unrelated to the perceptual states and actions that

produced them [Landauer and Dumais, 1997, Fodor, 1998]. Indeed, according to

this approach, the link between the internal symbols and the external referents is

arbitrary; hence, such symbols must be implemented outside the brain’s sensory-

motor system [Gallese and Lakoff, 2005]. Therefore, concepts are represented in
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terms of lists of properties, features and statements. In this framework, Fodor

proposed that concepts are represented in some “language of thought” [Fodor, 1975]

made up of symbols and having the properties of productivity and compositionality

among others [Gallese and Lakoff, 2005]; in other words, mental representation and

thought take place within a mental language which is a representational system that

employs both a combinatorial syntax and a compositional semantic.

In the last decades the symbolic approach to cognition, failing to explain how

cognition is related to perception and action, has been heavily criticised and chal-

lenged. In order to show that the symbolic approach is incorrect, Searle formulated

the “Chinese Room Argument” [Searle, 1980]. According to the symbolic theory

of mind, if a symbol-processing machine (e.g. a computer) could pass the Turing

test [Turing, 1950] in Chinese, then this machine would understands the meaning

of Chinese symbols in the same way that an English-speaking person understands

the meaning of English symbols [Harnad, 1990]. Searle attempted to show that a

symbol-processing machine can never be properly described as “having a mind” or

“understanding”, regardless of how intelligently it may seem to behave. Indeed, in

the traditional computational models (symbolic approach) that deal with language

learning tasks, symbols are self-referential entities that require the interpretation of

an external experimenter to identify the referential meaning of the lexical items. This

is the well known “Symbol Grounding Problem” [Harnad, 1990], which is related

to the matter of “how symbols get their meanings” and “how symbols are connected

to the things they refer to”. The problem, as Harnad said, is analogous to trying

to learn Chinese by using a Chinese/Chinese dictionary alone [Harnad, 1990]; this

attempt would lead to a “merry-go-round”, passing endlessly from one meaningless

symbol to another, without acquiring the meaning of any of such symbols. Har-

nad and colleagues proposed the identification of a “grounding kernel” of concrete

words that are learned earlier, from direct experience; the meanings of the rest of

the words in the dictionary can be learned from definition alone, by combining the

core words into subject/predicate propositions with truth values. In other words,
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higher-order symbols, referring to more abstract knowledge, can be composed of

grounded elementary symbols [Blondin-Massé et al., 2010].

In the last decades, the connectionist approach and artificial neural networks

have received lots of attention as computational learning mechanism for natural lan-

guage processing [Wermter et al., 1996]. According to the connectionist approach,

neural network architectures (e.g. feed-forward and recurrent) permit the modelling

of a number of functionalities related to language learning tasks through training

according to specific learning rules. The connectionist approach of artificial neural

networks, differently from the pure symbolic approaches, models mental phenomena

as an emergent process of interconnected networks. Indeed, according to connection-

ism, cognition is not just symbol manipulation but it requires dynamic patterns of

activity in a multi-layered network of interconnected units [McClelland et al., 1986].

Such dynamic patterns change according to the inputs and the applied learning rule

[Harnad, 1990]. Recently, the combination and integration of connectionist networks

with statistical and symbolic representations has led to an important field in nat-

ural language processing based on neural architectures. Indeed, symbolic approaches

seem more suitable for formal and language-like tasks, while the connectionist ones

at sensorimotor learning tasks [Harnad, 1990]. Most recently, the integration of con-

nectionist networks with symbolic representations embodied in robotics platforms

and combined with robotics methodologies has led to connectionist embodied mod-

els, in which cognitive processes are emergent from the sensorimotor interaction of

an artificial agent with the environment. This approach appears to be promising in

order to overcome the limitations of symbolic and pure connectionist models in the

development of language learning systems.

2.2 Theories of Grounded Cognition

Grounded theories of cognition assume that knowledge, and cognitive processes in

general, are grounded in perception and action systems; knowledge is represented
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with modal symbols related to the perceptual states that produce them. Differently

from symbolic approaches, grounded theories claim that perception and cognition

are not independent systems, but they share a common representational system

[Barsalou, 1999]. Some of the main grounded cognition theories proposed in the

literature, which arose as reaction to standard theories of cognition (i.e. amodal

symbol systems), are presented below:

• Cognitive Linguistic Theories deny the presence of a separate and autonom-

ous module in the brain (“language module”) responsible for language acquis-

ition and refuse the separation of linguistic capabilities from the rest of cog-

nition. A number of cognitive linguists have investigated the ways in which

human beings perceive, categorise and conceptualise the world. The results

of these investigations have suggested that human beings use basic bodily

understanding of places, movement, forces, paths, objects and containers as

“metaphors” (e.g. also known as image-schemas) for life, love, mathematics

and all other abstract concepts [Lakoff and Johnson, 1980, Eynon, 2002]. In

other words, the conceptualization of abstract entities requires the recruitment

of the sensorimotor knowledge involved in the metaphors (or image-schemas)

used for the grounding of such entities; that is, abstract concepts are groun-

ded metaphorically in embodied and situated knowledge. Cognitive linguistics

suggests that, without such “metaphors”, there would be no abstract thought

[Lakoff and Johnson, 1980, Eynon, 2002].

• Cognitive Simulation Theories focus on the role of modal simulation, situ-

ated action and bodily states in the grounding of cognitive processes [Barsalou,

1999]. According to Barsalou’s Perceptual Symbol Systems theory (PSS), sym-

bols are modal, sensorimotor, proprioceptive, and introspective and related to

the perceptual states that produce them [Barsalou, 1999]; that is, symbols ac-

tivate motor and sensory information (e.g. vision, audition, touch, etc.) tightly

linked to the interaction with the world. When the body interacts with the en-

vironment (e.g. sitting on a chair), the brain captures and stores in memory
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the neural activation patterns present during experience with entities (e.g.

how a chair looks like, the action of sitting, etc.). Later, these perceptual sym-

bols, when semantically related, are combined to form a simulator (concept).

When knowledge is needed to represent a category (e.g. chair), these neural

activation patterns are reactivated to simulate the concept [Barsalou, 2008].

The combination of simulators enables the formation of new concepts. In the

framework of the cognitive simulation theories, another important approach

has been proposed by Glenberg and colleagues [Glenberg, 1997]. Glenberg pro-

posed that the meaning of a situation depends on a set of stimuli available for

acting on objects (i.e. affordances) tuned on the individual’s personal experi-

ence and according to the goal to be pursued [Glenberg, 1997]. For example,

if the goal of a person is to change a light bulb, the meaning of the situation

will arise from affordances related to a light bulb (e.g. holding it in the hand)

“meshed” with the affordances of a chair (e.g. it supports for reaching the

bulb) related to the goal to be pursued.

• Social Simulation Theories propose that the understanding of mental states

in other people requires simulations of our own mind (e.g. to understand

how someone else feels when disgusted [Goldman, 2006], we simulate how we

feel when disgusted) and typically it requires the activation of mirror neuron

circuits (i.e. neurons that have the property to fire both when an individual

acts and when the individual observes another individual performing the same

action) [Rizzolatti et al., 1996a]. From this perspective, simulation provides a

general mechanism for establishing empathy (i.e. in a minimal sense empathy

might simply mean the occurrence of a mirroring process) [Barsalou, 2008].

This thesis revolves around the embodied view of cognition applied to language.

Indeed, cognition deals with the understanding of the human mind and the repres-

entation of knowledge and conceptualization. Hence, the embodied view of cognition

affects language, as it makes use of concepts.
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In the framework of the cognitive simulation theories, evidence in support of

the role of simulation in language comprehension has been provided by behavi-

oural and neurophysiological studies [Kaschak and Glenberg, 2000, Glenberg and

Kaschak, 2002, Glenberg et al., 2008]. According to the embodied theory of mean-

ings, known as the “Indexical Hypothesis”, sentences become meaningful through

grounding their interpretation in affordances [Kaschak and Glenberg, 2000]. The

acquisition of the meaning of sentences requires three processes: (i) mapping words

and phrases to their referents (i.e. perceptual symbols); (ii) deriving affordances

from these referents; (iii) meshing these affordances under the guidance of syntax.

Affordances [Gibson, 1977] permit the finding of the causal relation between objects,

actions and effects, while grammar constraints the interpretation of sentences and

directs the combination of affordances. The “Indexical Hypothesis” is supported

by the phenomenon associated to language comprehension, known as the Action-

sentence Compatibility Effect (ACE) presented in Glenberg and Kaschak [2002]. In

the behavioural study that led to the observation of the ACE (i.e. modulation of

the motor system during the comprehension of language), participants were faster in

responding by pressing a button, when the direction of the arm movement and the

action described by the processed word were compatible (e.g. making a movement

with the arm away from the body to press the button and processing the sentence

“close the drawer”). When a sentence implied an action towards the body (e.g.,

“open the drawer”), the participants were slower in responding moving the arm in

the opposite direction. Moreover, the modulation of the motor system has been ob-

served in neuroimaging and neurophysiological studies during the comprehension of

concrete and abstract language [Glenberg et al., 2008]. The results of this neuroima-

ging and neurophysiological experiments support an embodied theory of meanings

that relates the meaning of sentences to human action.

All the presented theories of grounded cognition are based on embodied con-

cepts, which are modal and grounded in sensorimotor experiences. An important

consequence of this embodied view of cognition, concerns language, as it makes use
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of concepts. According to embodied theories of language, concepts are generated by

modal symbols grounded in perception and action [Borghi et al., 2011].

2.3 The Development of Intelligence

In the developmental psychology literature, one of the most influential theories on

the origins of intelligence in children has been proposed in [Piaget and Cook, 1952],

where it has been argued that intelligence is rooted in sensorimotor knowledge. This

is a general and comprehensive view of cognitive development, rather than a theory

on specific cognitive capabilities. Piaget’s theory of cognitive development identi-

fies the cognitive processes that children use to construct their knowledge of the

world in: (i) Schema, (ii) Assimilation, (iii) Accommodation, (iv) Organization and

(v) equilibration. Schemas, which are representations that organize knowledge,

are created in the brain while children seek to construct an understanding of the

world (e.g. classification of objects by size, shape and colour). Schemas constitute

the building blocks of intelligence, and they become more numerous, abstract and

sophisticated during development. Assimilation is the process of integrating new

perceptual and conceptual materials into an existing schema to understand new situ-

ations. Accommodation is the process that enables the creation of new schemas

in case the existing ones are not suitable to capture experiences and situations. Or-

ganization is the process used by children to organize their experiences by grouping

isolated behaviours and thoughts into a higher-order system. Equilibration rep-

resents the state of balance between assimilation and accommodation. Furthermore,

Piaget’s theory identifies four stages of cognitive development, during which chil-

dren develop increasingly powerful and sophisticated cognitive skills, which are: (i)

sensorimotor stage (birth-2 yrs), (ii) preoperational stage (2-7 yrs), (iii) concrete op-

erational stage (7-11 yrs) and (iv) formal operational stage (> 11 yrs). During the

sensorimotor stage infants construct an understanding of the world by coordinating

sensory experience (e.g. seeing, hearing) with motor actions (reaching, touching).
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During this stage infants progress from reflexive and instinctual action present at the

birth, to the beginning of dealing with the problem of symbolic capabilities towards

the end of this stage. During the preoperational stage children develop the ability to

represent objects and events using words and images. At this stage children also de-

velop intuitive thought that allows them to begin using primitive reasoning. During

the concrete operational stage children develop the ability to think logically about

concrete problems and objects. During the formal operational stage, through the

development of abstract and logical thought, children develop the ability to solve

abstract problems.

Piaget’s theory is a general view of cognitive development that remains one of the

most influential hypotheses in child psychology and that can provide useful insights

for the implementation of cognitive processes in artificial systems.

2.4 Developmental Stages of Language Acquisi-

tion in Humans

The acquisition of word meanings is a central topic in cognitive science. Indeed,

amongst the various cognitive capabilities (e.g. memory, attention, perception, ac-

tion, problem solving, intuition, mental imagery, etc.), language represents one of the

most powerful tools available to human beings for communicating and exchanging

information, ideas, thoughts and feelings with others through speech, signs, text and

so on. A fundamental distinction among languages can be made in terms of the type

of linguistic representation involved (e.g. auditory for speech, motoric gestures for

sing language, tactile for languages such as Braille, etc.). Language through speech is

one of the most characteristic abilities of the human species. The study of language

(e.g. acquisition, comprehension, production, etc.) is central to many disciplines

ranging from psychology and psycholinguistics (i.e. interactions of language with

the human mind) to neuroscience and neurolinguistics (i.e. brain changes during

language use) and sociology and sociolinguistics (i.e. relation between social beha-
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viours and language) [Sternberg, 2009]. Most recently, the study of language has

played a crucial role even in the field of computational linguistics and developmental

robotics for the creation of computational models of natural language acquisition.

Language skills comprise verbal comprehension and production; language com-

prehension involves the ability to understand written and spoken linguistic inputs,

while language production refers to the ability to produce linguistic outputs. Many

scholars have agreed on the definition of some distinctive properties of language

(i.e. communicative, arbitrarily symbolic, regularly structured, structured at mul-

tiple levels, generative and dynamic) [Sternberg, 2009]. Language, being regularly

structured, that is, only particular sequences of words have meaning and different

sequences yield different meanings, can be analysed at different levels: (i) phono-

logy to analyse speech sounds, (ii) morphology and lexicon (i.e. the repertoire of

morphemes in a given language) to study the structure of words, (iii) syntax for

the study of the rules used to put words together and form meaningful sentences,

(iv) semantics to study the meaning in language and (v) pragmatics to go behind

the literal meaning of language. A central question in the study of language is how

these different aspects of linguistic knowledge (also referred as modules) are organ-

ized and processed. Psycholinguistic studies on language modularity have suggested

that there is a close interaction between these modules (e.g. phonology, morphology,

syntax, semantics and pragmatics) during both the acquisition and the processing of

language. Furthermore, language being generative, through the usage of syntactic

rules can enable the creation of an unlimited number of new utterances.

In the research field of language acquisition, different theoretical stances on the

development of language [Barrett, 1999] have been proposed. In particular, it is

possible to distinguish between:

• domain-specific vs domain-general theories: domain-specific theories as-

sume that cognitive processes are specialised for representing knowledge in spe-

cific domains, that is, there are many independent specialised knowledge struc-

tures (i.e. modularity of mind); on the other hand, according to the domain-
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general theories, language development and cognitive processes in general, are

dependent from processes that can handle different knowledge domains, that

is, there is one cohesive knowledge structure.

• nativism vs developmentalism: while for nativists [Chomsky, 1979] some

aspects of the language are innate in humans, according to developmental-

ists [Tomasello, 2003] linguistic capabilities are gradually acquired during the

course of development through the usage of language (Constructivism).

Within the nativists, Chomsky proposed that humans have an innate Language

Acquisition Device (LAD) that facilitates language acquisition. In the “Principles

and Parameters” theory Chomsky [1979] proposed that linguistic knowledge con-

sists of innate universal principles (e.g. grammars common to all languages) and

learnable parameters associated to them (e.g. markers and switches specific for each

language). Furthermore, the nativist stance is supported by the “Poverty of Stim-

ulus” argument which states that the linguistic input does not contain sufficient

information in itself to permit the induction of grammatical categories that thus

must be innate [Barrett, 1999]. Contrary to the assumptions of the nativist lin-

guistic theories, constructivist approaches to child language acquisition support the

view that there is no need to assume the existence of innate language knowledge;

for example, the “usage-based theory” of language acquisition makes the funda-

mental claim that language structure emerges from language use [Tomasello, 2009].

Children are active constructors of their own language system through implicit ob-

servation and learning of statistical regularities and logical relationships between

the meaning of words and the words used.

The acquisition of language is complex because it involves different cognitive

capabilities working together [Bloom, 2002]. Indeed, several cognitive capabilities

can help children to construct a linguistic system from the received inputs. The

ability to speak language develops over time. The most significant events in lan-

guage development are concentrated during the first years of life of a child, when the

brain matures and develops all its functionalities (e.g. creative thought, problem
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solving, attention, abstract thinking, muscle movements, coordinated movements,

smell, visual functions, language, reading, tactile sensation, sensory comprehension,

etc.). The main developmental milestones for language acquisition can be summar-

ized as follow [Cangelosi and Schlesinger, 2014]:

First 6 months Cooing:

Infants start to produce vowel sounds.

6-9 months Canonical babbling:

Infants start to produce phonemes (e.g. “bababa”, “mamama”). This mile-

stone comprises the production of distinct phonemes that characterize the

primary language of the infant.

10-12 months Intentional communication, gestures:

Children start to show pre-linguistic skills (e.g. intentional communication

and cooperation) by producing communicative gestures (e.g. pointing) and

iconic gestures (e.g. a throwing motion to indicate a ball).

12 months Single words (holophrases), Word-gesture combinations:

Children acquire the capability to produce the first single words typically used

to name or request objects, and to indicate their own actions or desired actions

(e.g. the word “milk” can refer to the milk, to the act of spilling it, drinking

it, etc.) [Tomasello and Brooks, 1999]. These kind of expressions are referred

as “holophrases” that are single linguistic symbols functioning as a whole

utterance.

18 months Two-word combinations, 50+ word lexicon size (vocabulary spurt):

After the first words are learned, a rapid increase in the child vocabulary

occurs (i.e. “vocabulary spurt”). The increase in the child lexicon repertoire

leads to the production of two-word utterances; this is when it begins the first

understanding of syntax. However, before the capability to produce two-word

combinations is fully developed, children go through a hybrid word/gesture
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stage when they combine one gesture with a word to express combinations of

meanings.

24 months Increasingly longer multiple-word sentences, Verb islands:

Children start to develop more complex syntactic competences. One of the

most influential constructivist accounts of early grammatical development is

provided by Tomasello’s verb island hypothesis [Tomasello, 1992]; according to

this hypothesis, children learn verb-specific constructions (e.g. verb + noun

and the noun depends on the specific verb) and the level of complexity of

different verb islands are due to usage-based experience. For example, for

some verbs children might be able to use simple syntactic combinations of the

verb with different nouns, while for other verbs children might have a richer

syntactic use.

After 36 months Adult-like grammatical constructions, Narrative skills:

Children gradually develop adult-like syntactic constructions (e.g. Simple

Transitives, Locatives, and Datives) [Tomasello and Brooks, 1999]. The ac-

quisition of new syntactic skills leads to the development of more complex

syntactic-morphologic constructions, more abstract and generalized grammat-

ical categories, up to the formation of formal linguistic categories such as word

classes.

An infant starting to learn a language is subject to the stream of perceptual-

cognitive information about the world around him (i.e. the child starts to perceive

entities through his/her senses) and the stream of spoken language (i.e. the child

hears the sound of words and starts to associates a word to an identified physical

entity) [Gentner, 1982]. In child psychology there are different studies that support

the hypothesis that concrete words precede the acquisition of abstract words [Car-

amelli et al., 2004, Schwanenflugel, 1991]; considering that children learn through

the sensorimotor interaction with the physical world, they first acquire concrete

knowledge related to objects and situations and subsequently they learn more ab-
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stract concepts. Indeed, studies conducted on children’s early vocabulary acquisi-

tion have shown that, when children learn to speak, they first learn concrete nouns

(e.g. object’s names) and then abstract ones (e.g. verbs) [Gentner, 1982]. Gentner,

through the formulation of the “Natural Partitioning Hypothesis” has argued that

the linguistic distinction between nouns and verbs is due to the different perceptual-

conceptual distinction between concrete and more abstract concepts [Gentner, 1982].

While concrete terms (e.g. nouns) refer to tangible entities (i.e. naturally individu-

ated referents) characterized from an evident and direct mapping to the perceptual

world and high imagery, more general and abstract words (e.g verbs) refer to intan-

gible entities characterized from wicker perceptual constraints with the real world

(i.e. verbs are linguistically more variable because they can refer to many events,

situations and bodily states) [Gentner, 1982]. Hence, during the process of learning

word meanings, the mapping of perceptual information into the linguistic domain

is faster for concrete concepts than for abstract ones. Other studies have suggested

that the development of abstract noun definitions follows the development of the

concrete ones [McGhee-Bidlack et al., 1991]. Indeed, it has been shown that, while

preschool children use functional responses (e.g. “a chair is to sit on”) during the

development of noun definitions, older children start to use indefinite place-holders

(e.g. “a chair is something to sit on”) and superordinate classes (e.g. “an apple

is a piece of fruit”) [McGhee-Bidlack et al., 1991]. Nevertheless, there are stud-

ies in which it has been proposed that the development of biological thought (i.e.

distinction between inside animals and machines) might proceed from abstract to

concrete instead [Simons and Keil, 1995]. Studies on children’s expectations for

what could be inside animals (i.e. animates) and machines (i.e. inanimates) have

shown that children’s expectations proceed from abstract to concrete [Simons and

Keil, 1995]; indeed, children might have abstract expectations about the internal

operating mechanisms of animals without concrete knowledge associated to them

(concrete knowledge develops later). A special case of study is that of abstract so-

cial words such as “hi”, “bye”, “no” that have been found in the earliest production
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vocabularies of toddlers [Tardif et al., 2008]. However, the study of such kind of

abstract words is out of the scope of the work proposed in this thesis.

2.5 Abstract Words and Conceptual Knowledge

Herein the major theories proposed on the learning and representation of categor-

ies/concepts are briefly introduced [Kalkan et al.]:

• Rule-based Theory: Members of a category share common (perceptual)

properties (e.g. colour, shape, etc.), and the membership for a category is

based on satisfying established rules that permit to verify the common proper-

ties of the category. Following this approach categories have strict boundaries

(i.e an item is either a member or not a member of a category) [Bruner and

Austin, 1986].

• Prototype-based Theory: Categories are represented by “prototype” stim-

uli, which are used for judging the membership of other items. This approach

assumes a more continuous way of categorization and less strict boundaries

among categories [Rosch, 1973].

• Exemplar-based Theory: Concepts are represented by the exemplars of

the categories stored in the memory. A new item is classified as a member

of a category if it is similar to one of the stored exemplars in that category

[Nosofsky et al., 1992].

As stated in Mervis and Rosch [1981], p.89:

A category exists whenever two or more distinguishable objects or events

are treated equally. This equivalent treatment may take any number of

forms, such as labelling distinct objects or events with the same name,

or performing the same action on different objects.

Abstract words are used in daily conversations among people to describe and

explain events and situations that occur in their social and physical environment.
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Nevertheless, the scientific study of concepts so far, has mainly focused on concrete

concepts; hence very little is known about the development of abstract categories.

Many scholars have suggested that the distinction between concrete and abstract

words is not a dichotomy [Wiemer-Hastings et al., 2001]; that is, it is not possible

to define a “clear cut” between words classified as concrete or abstract. There is

instead a continuum, according to which all entities can be varied in their level of

concreteness. For example, words that refer to a social role (e.g. “physician”) might

be classified more abstract than words that refer to a single object (e.g. “book”) but

less abstract than purely definitional words (e.g. “democracy”) [Wiemer-Hastings

et al., 2001, Borghi et al., 2011]. Furthermore, concrete words such “push” and

“give” can be differentiated in their level of concreteness and motor modality; that

is, a word like “push” is uniquely linked with the action of pushing by using the

hand, while “give” implies multiple motor instances of the process of passing an

object by using one hand, two hands, the mouth etc. [Cangelosi and Schlesinger,

2014]. Moreover, in [Altarriba et al., 1999] it has been proposed that words which

refer to emotions should be categorized in a group of entities distinct from concrete

and abstract words. This proposal was motivated by the fact that concrete, abstract

and emotion words received different ratings in term of concreteness, imageability

and context availability [Kousta et al., 2011]. However, concrete and abstract words

can be differentiated according to the following factors:

• Perceivability: Abstract words, referring to entities that are distant from im-

mediate perception, represent everything that is not physically defined nor spa-

tially constrained (e.g. “truth”, “democracy”, “happiness”, “justice”). These

kind of words, contrary to concrete terms, do not have physical referents that

can be seen or touched and it is not possible to interact with them. When

concepts become more detached from physical entities and more associated

with mental events, they become increasingly abstract [Barsalou, 1999, Paivio

et al., 1968, Wiemer-Hastings et al., 2001].

• Imageability and context availability: According to the dual-coding the-
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ory [Paivio et al., 1968] concrete and abstract concepts representations require

a different involvement of memory; concrete concepts, being represented by

activating a verbal and non-verbal system, require a major involvement of

memory, while in case of abstract concepts, being represented in the verbal

system only, the involvement of memory is inferior [Barsalou et al., 2008]. Fur-

ther, abstract concepts evoke less imagery than concrete concepts [Wiemer-

Hastings and Xu, 2005]. According to the context-availability theory concrete

words activate a broader contextual verbal support than abstract words. This

can be one of the reasons why abstract concepts acquisition is more complex

than concrete concepts acquisition.

• Hierarchical Categorization: Conceptual knowledge can be organized in

categories hierarchically structured. Traditionally, three levels of categoriza-

tion have been proposed, namely the subordinate, the basic and the super-

ordinate levels (e.g. “rocking chair/chair/furniture”). The subordinate level

categories are characterized from a low degree of generality and from clearly

identifiable, detailed and specific features (e.g. “rocking chair”). Subordinate

level categories are included under basic level categories. The most relevant

conceptual information relating to a category is stored at the basic level (e.g.

“chair”). Basic level categories are included under superordinate level categor-

ies (e.g. “furniture”) which are characterized from a high degree of generality

and allow to store general information. As suggested in [Borghi et al., 2005], in

the hierarchical organization of words categories, basic and subordinate con-

cepts (e.g. “chair” and “rocking chair”) refers to single concrete entities and

elicit perceptual information; hence they can be considered more concrete con-

cepts than superordinate concepts (e.g. “furniture”) that can be associated

to different intangible entities and elicit abstract information. In line with

this position, many accounts of concepts formation have suggested that the

first word categories acquired must be instance-based. For example, before a

child can understand the meaning of the superordinate category “furniture”,
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he/she might start to learn the meaning of detailed, image-like representations

of individual items, and then progress to increasingly abstract representations

that embody non-perceptual information.

• Mode of Acquisition (MOA): The difference between concrete and ab-

stract concepts can be related to their mode of acquisition (MOA) which can

be perceptual, linguistic, or by combining perceptual and linguistic informa-

tion [Wauters et al., 2003]. In experiments with elementary school children it

has been shown that MOA ratings gradually change with the school age pro-

gression, shifting from mainly perceptually acquired word meanings to mainly

linguistically acquired concepts.

Abstract concepts pose a classical challenge for both symbolic and grounded

theories of cognition. Scholars working in the field of classical theories of cogni-

tion (i.e. amodal symbol systems) have argued that grounded cognition approaches

for knowledge conceptualization, using only sensorimotor representations of the ex-

ternal world, cannot represent abstract concepts that are not grounded externally.

However, according to grounded cognition approaches, conceptual contents can be

derived from the perception of internal states as well (introspection) [Barsalou, 1999,

Barsalou and Wiemer-Hastings, 2005]. For example, in the study conducted by Bars-

alou and Wiemer-Hastings [2005] participants were asked to generate features for

words varying in concreteness (e.g. truth, freedom, invention, bird, car, sofa, cook-

ing, farming, carpeting). The results of this study have shown that abstract concepts

focus on introspection. According to Glenberg and Kaschak [2002], abstract con-

cepts contain motor information and hence it is possible to treat the problem of

obtaining a representation associated to them by using modal systems. Given the

current debate in the field, and the complexity of the matter, nowadays the task of

representing abstract concepts through sensorimotor experience has been proved to

be an extremely complex task.

Different theories proposed in psychology state that embodiment plays an im-

portant role even in representing abstract concepts. One of the main theories about
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the embodiment of abstract language revolves around the concept of “metaphor”.

According to this approach, there are image-schemas derived from sensorimotor ex-

perience that can be transferred to experience which is not truly sensorimotor in

nature [Lakoff and Johnson, 1980]. Abstract concepts can be grounded in concrete

domains through “metaphors” [Lakoff and Johnson, 1980]. According to this hypo-

thesis, human beings have an extensive knowledge about their bodies (e.g. eating)

and situations (e.g. verticality) and they use such knowledge to metaphorically

ground abstract concepts; for example, love can be understood as eating (e.g. “be-

ing consumed by a lover”) and affective experience can be understood as verticality

(e.g. “happy is up, sad is down”) [Barsalou, 2008]. Hence, abstract concepts are

represented through a metaphoric mapping. However, in order to fully represent ab-

stract concepts, metaphors alone might be not sufficient and more features might be

needed to distinguish among abstract concepts; furthermore the role of metaphors

in the development of abstract words it has not been clarified yet.

Other studies have proposed that some abstract concepts arise from simulation

processes of internal and external states [Barsalou, 1999]. In particular, abstract

concepts require simulation that can capture complex multi-modal simulations of

temporally extended events, with simulation of introspections being central [Bars-

alou, 1999]; introspection permits to access subjective experiences linked to abstract

concepts [Wiemer-Hastings et al., 2001]. Indeed, considering that abstract concepts

contain more information about introspection and events [Wiemer-Hastings et al.,

2001], simulators for abstract words develop to represent categories of internal ex-

perience [Barsalou, 2009]. Hence, according to this approach, abstract concepts,

differently from concrete ones, require the activation of situations and introspec-

tions.

Other scholars have suggested that sentences, including both concrete and ab-

stract words, are understood by creating a simulation of the actions that underlie

them [Glenberg and Kaschak, 2002]. In particular, through behavioural and neuro-

physiological studies it has been shown that even the comprehension of abstract
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words activates the motor system [Glenberg et al., 2008]. Hence, according to this

approach, abstract concepts, similarly to concrete ones, can be grounded in percep-

tion and action.

2.5.1 Situated Conceptualization

Concepts are the elementary units of reason and linguistic meaning [Gallese and

Lakoff, 2005]. Further, it has been proposed that a concept is knowledge about a

particular category; for example, the concept “birds” is represented by the know-

ledge about the category “birds” that represents the bodies, behaviours and origins

of the respective entities [Barsalou et al., 2003]. In case of abstract concepts, such

knowledge is more detached from physical experience [Borghi et al., 2011]. There

are different research studies in which it has been shown that situations and situated

action play an important role in the conceptual representation of both concrete and

abstract language [Barsalou and Wiemer-Hastings, 2005, Schwanenflugel, 1991]. Ac-

cording to these findings, in order to understand the meaning of “chair” for example,

it is necessary to acquire information not only about the physical properties of the

object, but also about the usage of the object in relevant situations. Even abstract

concepts appear to depend heavily on situations and situated action [Schwanenflu-

gel, 1991]. The processing of abstract concepts is facilitated when a background

situation contextualizes it [Barsalou and Wiemer-Hastings, 2005]. Nevertheless,

situations in which abstract concepts occur are retrieved less easily than situations

in which concrete concepts occur, because abstract concepts can be associated with

a larger variety of situations. As a matter of fact, while for conceptual representation

of concrete words there is a circumscribed region in which the situation occurs and

the focus is on situations in which object are presented and used, for abstract con-

cepts the focus is on events and introspection and hence their content is distributed

across several situations. Nevertheless, according to studies reported in [Barsalou,

1999], it seems possible to simulate introspective experience and then there is no

reason for believing that abstract concepts can not be simulated.

37



2.5.2 Multimodal Theories of Knowledge Representation

The traditional symbolic and embodied theories of conceptual representation pro-

posed in literature, rely on a single kind of representations (amodal for symbolic

theories and modal for embodied approaches). Nevertheless, some of the groun-

ded theories of cognition proposed in literature for knowledge representation rely

on multiple systems for perception (e.g vision and audition), action (e.g. movement

and proprioception) and introspection (e.g. mental states) [Barsalou, 2008]. In-

deed, recent findings support the view that conceptual processing rely on multiple

representational systems for which linguistic and sensorimotor information are both

activated [Louwerse and Jeuniaux, 2010]. These results are in line with the most

relevant theories regarding concrete and abstract concepts knowledge representation

that are the “dual-coding” theory [Paivio et al., 1968] and the “context-availability”

theory [Schwanenflugel, 1991]. According to the dual-coding theory, while concrete

words are represented by activating a verbal (i.e. linguistic) and non-verbal system

(i.e. imagistic system), abstract words are represented in the verbal system only

[Paivio et al., 1968]. For the “context-availability” theory, concrete words, differ-

ently from the abstract ones, activate a broader contextual verbal support and they

have stronger semantic relations with the context represented by other words that

make their processing faster than the processing of abstract words. Contrary to the

dual-coding theory, the context-availability theory does not assume the access to a

distinct system (i.e. non-verbal system) and both concrete and abstract concepts

are represented in a single verbal system.

Recently, along the same line of the dual-coding theory (i.e. knowledge repres-

ented by multiple systems), the Language and Situated Simulation (LASS) theory

[Barsalou et al., 2008] and the Words As Tools (WAT) theory [Borghi and Cimatti,

2009] have been proposed. According to the LASS theory, both the sensorimotor

and linguistic system are activated during language processing. Furthermore, for

the processing of abstract concepts it has been proposed that linguistic information

might be more relevant than for concrete concepts [Barsalou et al., 2008]. According
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to the WAT theory [Borghi and Cimatti, 2009], words represent tools that permit

to act in the social world. In facing the challenge of abstract word representation,

the authors of the WAT proposed the existence of two simultaneous cognitive source

for word meanings, one of which is individual and related to embodied individual

experience, and the second one, which is a socially embodied one [Borghi and Ci-

matti, 2009]. While concrete word meanings can be grounded through embodied

individual experience, in case of abstract words the knowledge is embodied in the

use of the social word [Borghi and Cimatti, 2009]. Further, abstract words acquisi-

tion often implies complex linguistic explanations and repetitions; on the contrary,

the acquisition of concrete words appears much easier and often occurs within a

single episode of hearing a word spoken and perceiving the corresponding entity.

Furthermore, while concrete words evoke more sensorimotor information, abstract

words elicit more verbal linguistic information. Most recently, it has been proposed

that concrete and abstract concepts contain different types of information that is,

experiential information (i.e. sensory, motor and affective) and linguistic informa-

tion (i.e. linguistic co-occurrence); sensory-motor information is more preponderant

for concrete concepts, while affective information plays a greater role for abstract

concepts [Kousta et al., 2011]. Following this proposal, abstract words have a pro-

cessing advantage over concrete words, considering that abstract words tend to be

more emotionally loaded [Kousta et al., 2011]. The novelty of this approach is that

emotion is considered to be another type of experiential information playing an

important role in representing abstract words.

Taken together, these studies suggest that the meaning of words is grounded by

activating the multi-modal experience related to the conceptual referent of words

and, linguistic experience plays an important role in shaping such conceptual know-

ledge. In the experimental studies proposed in this dissertation, abstract words,

which are not directly linked to the physical and perceptual world, are grounded

by reusing the sensorimotor knowledge related to the conceptual referent of such

words, which is shaped through language. The endeavour of the proposed studies
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is to ground abstract words in the sensorimotor system in an indirect way. The

arrangement of sensorimotor and perceptual knowledge leads to the grounding of

higher order concepts [Harnad, 1990]. In particular, the idea exploited in these stud-

ies is that some concepts can be grounded via direct sensorimotor experience and

identified through linguistic labels. Such labels can be used to combine perceptual

symbols and form new categories which cannot be learned via direct sensorimo-

tor experience (i.e. symbolic instructions permit to combine perceptual symbols)

[Harnad, 2010]. As argued in [Barsalou, 1999, Glenberg and Kaschak, 2002] concep-

tualization can guide action to produce new knowledge. In the studies proposed in

this dissertation, conceptualization is driven via linguistic instructions.

2.6 The Neural Basis of Language Processing

Many scholars have suggested that the evolution of the neural basis of human lan-

guage and its properties like speech, syntax and lexicon, derived from Darwinian

mechanisms [Lieberman, 2002]. An interesting hypothesis about the role that mir-

ror neurons could have played in language evolution has been formulated by Rizzo-

latti and Arbib [Rizzolatti and Arbib, 1998]. They suggested that the language

evolved from the capability of recognizing actions made by others, that is the action-

recognition system has constituted the basis for language development. The pro-

gressive evolution of the mirror system (responsible for action recognition in others)

from ancestors to humans led to the evolution of language and communication (i.e.

from sign language to speech).

Investigations on language processing in neuroscience are based on several tech-

niques that permit the measurement of brain activity while processing linguistic

stimuli. One of the most common approach consists in measuring event-related po-

tentials (ERP) by using elettroencephalography (EEG) when a stimulus is presented

to subjects. Other techniques used for measuring the brain activity in response to

stimuli are the functional Magnetic Resonance Imaging (fMRI) and the Positron
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Emission Tomography (PET) that analyse images of changing blood flow in the

brain associated with neural activity. Transcranical Magnetic Stimulation (TMS)

is commonly used for stimulating neurons in a specific part of the brain and then

measuring muscles activities.

Traditionally, language processing has been considered to be located in the

Broca’s and Wernicke’s brain areas. Recently, deficiencies of this traditional view

have been noticed through studies with patients affected by aphasia (i.e. deficits

in the comprehension and formulation of language caused by dysfunction in specific

brain regions) and the permanent loss of language. Neuropsychological studies in

brain-lesioned patients and brain imaging studies have shown that language may

involve various cortical areas according on the type of language-related semantic

information being processed [Pulvermüller et al., 2001]. Further, clinical evidence

has shown that the permanent loss of language does not occur even when Broca’s or

Wernicke’s areas have been destroyed [Lieberman, 2002]. The results of these studies

have led to the intuition that the neural basis of human linguistic ability are complex

and they involve other cortical structures, other than Broca’s and Wernicke’s areas

[Lieberman, 2002]. Such structures form part of the neural circuits implicated in

the lexicon, speech, and syntax development [Lieberman, 2002]. Hence, the neural

system for language is widely distributed in the brain.

Moreover, until recently the cortical systems for language and action control

have been considered to be organized in modules independent from each other and

characterized from different cortical bases; that is, the motor and premotor cortex

control action while the Perisylvian network (i.e. Broca’s and Wernicke’s areas) is

responsible for language. This view has been supported by studies on some neuro-

logical disease that affected specific language or action functions while maintaining

normal performances in other cognitive domains and by many brain imaging stud-

ies and connectionists models. Contrary to this view, recent studies support the

hypothesis that information about language and action might interact with each

other. Neurophysiological studies have shown that during action verb processing
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(i.e. verbs that denote actions) different brain areas are activated depending on

the effector (e.g. arm/hand, leg/foot, mouth) involved in the processed action verb

[Pulvermüller et al., 2001]. Indeed, it has been shown that the motor cortex has a

somatotopic organization for legs, arms and mouth articulators [Pulvermüller et al.,

2001]; that is, there are different areas in the motor cortex specifically associated

with the control of the movement of legs, arms and mouth. For action words that are

semantically related to the action described in the word, the neural representation

of the action in the motor cortex has to also include the semantic neurons of the

corresponding word. These findings support the existence of different distributed

networks for words that describe actions relate to legs, arms and mouth articulators

(i.e. semantic somatotopy model). This leads to the important consequence that the

perception of action words, like “pick” for example, activates the same cortical area

involved for the control and the execution of the pick action [Pulvermüller et al.,

2001].

Theories of associative learning (i.e. the process by which an association between

two stimuli or a behaviour and a stimulus is learned) have suggested that the repres-

entations of words, frequently co-presented with non-linguistic stimuli (e.g. vision

or audition) include the co-activation of neurons into their representations so that

whenever such words are perceived, the mental images can be immediately aroused

[Pulvermüller et al., 2001]. For example, when a child learns to perform an action

and simultaneously hears from the caregiver the corresponding word that describes

the action, the link in the cortex between that word and the corresponding motor

area becomes stronger. According to theories of associative learning, the represent-

ation of action words referring to movements with a particular part of the body (e.g.

leg, arm, or face) should include neurons involved in programming the respective ac-

tions. Hence, the neural representations of such words are distributed over language

areas and additional areas related to the word’s meaning [Pulvermüller et al., 2001].

This proposal has received support from several experiments. In [Perani et al., 1999]

it has been found that different word classes (i.e. nouns and verbs) led to widely
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distributed signs of activity. Positron Emission Tomography (PET) studies have

been used to measure cerebral activities during tasks requiring to read nouns and

verbs (concrete and abstract) for lexical decision [Perani et al., 1999]. The results of

these studies have suggested that verbs and nouns processing requires the activation

of different brain areas; the left temporal lobe plays an important role in processing

nouns, while the left frontal lobe is involved during verbs processing. Furthermore,

according to [Perani et al., 1999] concrete and abstract words activate different brain

areas; evidence that the processing of abstract words produces higher activation in

the left hemispheric areas of the brain has been provided by Perani et al. [1999].

Additionally, in [Pulvermüller, 1999] it has been found that the processing in isol-

ation of abstract concepts (i.e. concepts not occurring in situations) is localized in

the left frontal area of the brain (close to the Broca’s area that is responsible for

words generation).

Many studies have supported the existence of a link between the mirror neuron

system and language processing. Indeed, a prediction of embodied theories of lan-

guage learning is that when individuals listen to action-related sentences their mirror

neuron system is activated. Mirror neurons, originally discovered in the premotor

cortex of monkey, the so called F5 area, have the property to fire both when an

individual acts and when the individual observes (i.e. visual stimuli) another in-

dividual performing the same action [Rizzolatti et al., 1996a]. Many researchers

share the idea that the monkey F5 area is the homologue of Broca’s area in the

human brain. Recent studies have shown that mirror neurons, besides having re-

sponse properties to visual stimuli, also have acoustic properties. These audio-visual

mirror neurons discharge not only when the action is executed or observed, but also

when its sound is heard [Buccino et al., 2005]. Transcranial Magnetic Stimulation

(TMS) and behavioural studies for understanding whether listening to action-related

sentences modulates the activity of the motor system have been carried out [Buc-

cino et al., 2005]. In the TMS experiments, motor evoked potentials (MEPs) from

hand and foot muscles have been recorded, while participants were listening to sen-
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tences expressing hand/arm action, foot/leg action, and abstract content. Results

showed that listening to hand/foot action-related sentences induced a decrease of

MEP amplitude recorded from hand/foot muscles. In behavioural studies, parti-

cipants were asked to answer with the hand or the foot while listening to hand/foot

action-related sentences. Coherently with the TMS findings, the behavioural data

showed that reaction times were slower when participants responded with the same

effector involved in the listened action; the processing of language with a motor

content activates the same sectors of the motor system where the involved effector

is represented [Buccino et al., 2005]. These results support the involvement of the

motor system in the processing of action-related sentences.

In addition to the studies proposed in linguistics and psychology, recent studies

in cognitive neuroscience have suggested that conceptual knowledge is embodied and

that the sensory-motor system has the right kind of structure to characterise both

sensory-motor and more abstract concepts [Gallese and Lakoff, 2005]. An increasing

body of evidence has shown that language understanding implies a mental simula-

tion (i.e. imaging) and understanding and imaging use the same neural substrate

[Gallese and Lakoff, 2005]. According to the hypothesis formulated in [Gallese and

Lakoff, 2005], understanding requires the formation of a mental simulation of action

or perception, using many of the same neurons as actually acting or perceiving.

Indeed a major finding in neuroscience has suggested that imagining and acting use

a shared neural substrate. To understand the meaning of the concept “grasp” for

example, one must at least be able to imagine oneself or someone else grasping an

object. Gallese and Lakoff [2005] have argued that the same thing may apply to all

other action concepts, to object concepts, and to abstract concepts with conceptual

content that is metaphorical [Gallese and Lakoff, 2005].
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2.7 Combinatoriality of Language and the Motor

System

In contrast to other forms of communication, language is a discrete combinatorial

system that permits the conveyance of new messages and concepts by combining

simple words together [Pinker, 2010]. Indeed, a finite number of words (i.e. lexicon)

can be combined and permuted, according to specific structural rules (i.e. gram-

mar), in order to convey new meanings. The acquisition of lexicon and grammar

are both necessary to produce new sentences and their related meanings. Neverthe-

less, in the process of language development, lexicon acquisition (with subsequent

generalization and decomposition properties) constitutes an important prerequisite

for higher-order grammar learning. Indeed, the acquisition of lexicon and its related

meanings precedes the emergence of more abstract syntactic structures which can

be obtained through a gradual transition from lexical semantics [Cangelosi et al.,

2010]. According to [Fodor and Lepore, 2002], compositionality in language and

mind is due to the fact that complex symbols inherit their syntactic and semantic

properties from a series of primitive symbols.

Recent evidence has suggested that the human motor system is also hierarchic-

ally organized [Arbib et al., 1998, Mussa-Ivaldi and Bizzi, 2000]; that is, low level

motor primitives can be integrated and recombined in different sequences in order

to generate a rich “grammar” of motor behaviours that can enable the execution

of novel tasks. Indeed, Mussa-Ivaldi and Bizzi [2000] have suggested that motor

learning consists of tuning the activity of a relatively small group of neurons that

constitute a “module”. The combination of such “modules” may be a mechanism

for producing a vast repertoire of motor behaviours in a simple manner. In other

words, more complex human behaviours can be seen as the result of the integration

of motor primitives organized in hierarchical structures. Furthermore, it has been

proposed that the sensorimotor system has the right kind of structure to characterise

both sensorimotor and more abstract concepts [Gallese and Lakoff, 2005].
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Collectively these studies suggest that language and the biological motor system

are based on hierarchical recursive structures that can be exploited to ground the

meaning of language in sensorimotor experience. Indeed, the modular organization

of the biological motor system has been shown to be based on hierarchical recurs-

ive structures which have linguistic analogues in grammatical/syntactical structures

[Cangelosi et al., 2010]. These observations and insights have inspired the devel-

opment of a similarly organized artificial system that combines low level motor

primitives for grounding the meaning of language in action and perception. More

complex behaviour and their related meanings can be achieved by integrating dif-

ferent motor primitives together. In this framework language and its combinatorial

structure provide a tool for organizing motor primitives and perceptual knowledge

in order to bootstrap more complex cognitive behaviour in artificial agents.
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Chapter 3

Artificial Intelligence and

Language Modelling

Artificial Intelligence (AI) is the branch of computer science, emerged in the mid

twentieth century, which deals with the design and implementation of computational

models that attempt to simulate the mechanisms underlying cognition. One of the

long term goals of AI is to build intelligent machines, up to the human level of

intelligence, that can pass the Turing Test [Turing, 1950]. The Turing Test was

proposed by Alan Turing in 1950 to deal with the question of whether machines can

think. Turing proposed the “Imitation Game”, which involved a person, a machine

and an interrogator located in separated rooms. The interrogator, asking questions

to the person and the machine, at the end of the game according to the received

answers has to distinguish the person from the machine. Nevertheless, at present

artificial intelligent systems are still far from achieving the human level of intelligence

and hence, passing the Turing Test.

AI research can be carried out by employing two different approaches, namely

top-down and bottom-up. The top-down approach, in line with symbolic views

of cognition, considers the intelligence of a machine as a high-level phenomenon

that does not depend on how low-level operations that produce it are implemented.

Indeed, this methodology ignores the neurological interconnections that underlie
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intelligence, and assumes that a machine must be supplied with an internal repres-

entation of the essential features of the world in which it operates. On the contrary,

the bottom-up approach explores the aspects of cognition that can be recreated, by

employing neural networks for example. Indeed this approach focuses on actions

and behaviours that produce intelligence, rather than on representations and func-

tions. Research in AI, especially in the case of the bottom-up methodologies, is

tightly linked to embodied cognitive science, considering that finding in cognitive

science can inspire better artificial simulations of the human mind. In turn, artifi-

cial intelligence can provide more accurate models of the human mind, which can

produce interesting predictions that can be tested through experimental and beha-

vioural studies by cognitive scientists. Indeed, cognitive modelling can provide a

powerful tool for investigating and understanding how motor behaviours and sym-

bols manipulation capabilities can be integrated to bootstrap higher-level language

representations. However, the comparison between results produced by cognitive

modelling and neuroscience research requires that cognitive modelling respects (i)

neurobiological constraints: the model’s neural system should be endowed with

at least some crucial characteristics of the human neural system, (ii) embodiment

constraints: the model should be endowed not only with a brain which is similar

to that of humans, but also with a sensorimotor system similar, at least in some

respects, to a human sensorimotor system and (iii) behavioural constraints: the

model should reproduce and replicate the behaviours produced during empirical ex-

periments [Caligiore et al., 2009]. According to the Tri-Level Hypothesis, cognitive

processes, and hence cognitive models that attempt to reproduce them, can be ana-

lysed at three different levels [Marr, 1982]: (i) computational level to identify the

knowledge computed during the cognitive process, (ii) algorithmic level to analyse

the mechanisms involved during the computational process and (iii) implementa-

tion level to simulate the identified algorithms.

Some of the problems addressed by AI are knowledge representation, reason-

ing, problem solving, planning, learning, natural language processing, motion and

48



manipulation; and this list is by no means exhaustive. In this chapter current re-

search in artificial intelligence for knowledge representation and natural language

processing is described. Some of the approaches proposed in this research field such

as symbolic and subsymbolic models (e.g. connectionism), statistical models, and

embodied connectionism are described in the next sections of this chapter. A de-

scription of the hardware and software architecture of the iCub robotics platform

closes the chapter.

3.1 Symbolic Models

The first attempts to create models of language were influenced by early AI tech-

niques and approaches such as symbolic models of knowledge representation and

logical reasoning (i.e. deduction, adduction and induction) [Alishahi, 2010]. In the

traditional approach to artificial intelligence, informally defined as “Good Old Fash-

ioned AI (GOFAI)”, natural language processing, rooted in linguistic analysis of

semantics, syntax, pragmatics and context, is based on symbolic computation. In

[Russell et al., 1995] it has been proposed that communication via language between

a sender and a receiver requires seven component steps. When a Speaker (S) wants

to inform the Hearer (H) about the proposition (P) using Words (W), the following

seven processes take place:

• Intention: the Speaker (S) decides to communicate a Preposition (P) to the

Hearer (H).

• Generation: the Speaker (S) plans how to translate the proposition (P) into

an utterance that will enable the Hearer (H) to infer the proper meaning of

(P). At the end of this process the Speaker (S) generate the word (W).

• Synthesis: the Speaker (S) produces a string of sounds corresponding to the

word (W).
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• Perception: the Hearer (H) perceives the sounds corresponding to the word

(W) and decodes it into a string (i.e. speech recognition).

• Analysis: the Hearer (H) analyses the input string through three main stages:

– Syntactic Interpretation (or parsing): to analyse the syntactic structure

of the string and build a parse tree for the input string.

– Semantic Interpretation: to extract the literal meaning of the string.

– Pragmatic Interpretation: to give the proper meaning to the string ac-

cording to the context.

• Disambiguation: the Hearer (H) infers that the Speaker (S) wanted to convey

the preposition (P). If the Hearer (H) assigns to (P) the interpretation that

the Speaker (S) intended to convey, than communication is successful.

• Incorporation: the Hearer (H) decides whether to believe or not to the pro-

position (P).

According to the linguistic tradition proposed in Chomsky [1979], a symbolic

model of language is based on an abstract rule-based grammar which specifies the

set of valid sentences. In such models language processing is governed by specific

principles and rules (i.e. grammar), and ambiguities are resolved using parse trees

(i.e. syntax); these are known as symbolic grammar models. Grammar (i.e. finite

set of rules that specifies a language) and syntax (i.e. analysis of grammar) through

the proper ordering of words elicit the meaning of sentences. A symbolic model for

a fragment of English can represent the linguistic knowledge to be acquired through

the following generative grammar:

S → NP V P |S Conjunction S

NP → Pronoun |Name |Noun | · · ·

V P → V erb |V P NP | · · ·
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Grammar permits to combine the words of a specified lexicon into phrases (e.g.

Sentence = Noun Phrase + Verb Phrase). These distinct parts of sentences are hier-

archically related. For example, in the grammar described before, the sentence (S),

located at the highest level of such hierarchical organization, is composed of a Noun

Phrase (NP) and a Verb Phrase (VP). In this example, words which are part of the

lexicon are ungrounded because they require the interpretation of an external user.

Indeed, in the framework of symbolic models, knowledge representation consists of

discrete and disjoint symbols which are organized in a list structure that is gram-

matical and combinatorial. Knowledge is represented by manipulating symbols ac-

cording to specific structural rules (e.g. in the form IF (A is true) THEN (B is true)

where A and B are propositions whose truth or falsity has to be determined), making

use of logical techniques such as deduction, induction, expert systems (that include

deduction and induction) or other forms of reasoning. Following the symbolic ap-

proach, possible ways of representing knowledge are semantic networks, which are

models of data representation that include: (i) nodes representing particular con-

cepts or elements of the world, (ii) arcs representing the relationships between the

concepts or elements, and (iii) scripts where knowledge is organized by attributes

and associated procedures. Symbolic modelling often refers to an explicit formal-

ization of knowledge which is represented in terms of symbols, producing circular

definitions much like those found in a dictionary [Harnad, 1990], and their proposi-

tional relations.

One of the most prominent symbolic theory of acquisition, induction and repres-

entation of knowledge is the Latent Semantic Analysis (LSA). This is a corpus-based

statistical method that represents the meaning of words in high dimensional space

based on word patterns of co-occurrence with other words [Landauer and Dumais,

1997]. This method analyses the relationships between a set of documents and the

terms they contain and it assumes that words that are close in meaning will occur

close together in text. To give a flavour of how LSA represents the meaning of

words, a small example is presented (Fig.3.1); the first step is to represent words in
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a matrix (X) in which each row stands for a unique word and each column stands

for the context in which the word is used (Fig.3.1) [Landauer and Dumais, 1997].

Figure 3.1: Word by context matrix X taken from [Landauer and Dumais, 1997]

During the next step, LSA applies Singular Value Decomposition (SVD) to the

matrixX which is decomposed into the product of three other matrices (X = WSP ).

Next, the original matrix (X) is reconstructed (X̂) based on just two dimensions

[Landauer and Dumais, 1997]. Each cell of the matrix X̂ contains the frequency with

which the word of its row occurs in the context denoted by its column [Landauer

and Dumais, 1997].

Evidence against the predictions made by the LSA theory has been provided

in [Glenberg and Robertson, 2000]; by using sentences with similar LSA values,

authors found that participants distinguished sentences depending on the perceptual

characteristics of the objects. For example, after presenting the context-setting

sentence “Marissa forgot to bring her pillow on her camping trip”, participants

judged more sensible the sentence “As a substitute for her pillow, she filled up an

old sweater with leaves” than “As a substitute for her pillow, she filled up an old
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sweater with water”, although the words “leaves” and “water” are similarly far from

“pillow” in terms of LSA values [Scorolli and Borghi, 2008]. By taking into account

the perceptual characteristics of the objects, a pillow made by a sweater filled up with

leaves for the participants of the experiment seemed not usual but more sensible and

imaginable than a pillow made by a sweater with water. These results contributed

to the formulation of the Indexical Hypothesis, according to which ‘the meaning

of words in sentences is emergent: meaning emerges from the mesh of affordances,

learning history, and goals ’ ([Glenberg and Robertson, 2000], pag. 388).

Indeed, many symbolic models of language make use of sophisticated algorithms and

techniques for representing knowledge, but they mostly ignore the role of experience.

However, symbolic approaches have had notable success in solving some tasks

requiring logical reasoning, like for example playing chess; for example the IBM’s

Deep Blue chess computer in 1997 beat the international grandmaster Gary Kas-

parov. Nevertheless, Deep Blue’s “intelligence” is extremely narrow in scope, con-

sidering that the system wouldn’t be able even to recognise a chess piece or to carry

on a conversation about the game won. Indeed, many other tasks in everyday life

do not necessarily require the application of logical and systematic reasoning but

instead other unconscious pattern recognition such as “intuition” for example.

3.2 Subsymbolic and Hybrid Models

Subsymbolic models emerged as an alternative to symbolic approaches. In sub-

symbolic models, such as artificial neural networks (based on the biological neural

network metaphor), genetic algorithms (based on ideas of Darwinian evolution) and

particle swarm optimisation (based on observations of bird flocking and other social

behaviours), knowledge is represented by continuously valued (i.e. analogical) sym-

bols. Subsymbolic systems, unlike symbolic approaches, do not require to provide to

the system explicit formalization of knowledge through structural rules, but instead

knowledge is represented by numerical patterns, which define the relations between
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inputs and outputs of the system.

The best known subsymbolic systems are based on artificial neural networks (i.e.

connectionism). Connectionist models are networks consisting of interconnected

units, characterized from activation levels, which can transmit signals to other units

along weighted connections [McClelland et al., 1986, Rumelhart et al., 1986]. Each

unit computes its own output signal by: (i) weighting each of its input signals by

the strength of the connection along which the signal is coming in, (ii) summing the

weighted input signals, and (iii) feeding the result into a linear/non-linear output

function, usually a threshold [Pinker and Prince, 1988]. The learning process in

these models consists of adjusting the strengths of connections and the threshold-

values, usually minimizing the distance between the actual output of the model

and the corresponding target output value [Pinker and Prince, 1988]. Following

the connectionist approach, a cognitive process is represented through a large num-

ber of interconnected neurons, which perform parallel computation. Connectionists

models providing distributional representation and parallel processing of knowledge

represent a powerful tool for modelling language acquisition and processing.

Connectionist models based on artificial neural networks have been extensively

used as computational learning mechanisms for natural language processing (con-

sidering that in this approach knowledge associated to language can be learned from

instances of usage), and they have been shown to model successfully a whole vari-

ety of language learning tasks. For example, in [Elman, 1990] a simple recurrent

neural network model employs an additional input layer, so called context layer,

which stores a copy of hidden units from the previous training step. The presence of

recurrent links that feed back hidden units to the context units endows the network

with a dynamic memory. Indeed, through this additional input layer the model has

memory of the activation values of hidden neurons at the previous time step and

it can use this information when processing the next input. In [Elman, 1990], this

ungrounded model based on simple recurrent neural networks is used in a set of

simulations ranging from the temporal version of the XOR problem (i.e. the logical
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operation of “exclusive disjunction” also known as “exclusive or” that outputs true

whenever both inputs differ) to the task for discovering syntactic/semantic features

for words.

The modelling approach based on connectionism has been extensively used for

the grounding of categories and naming tasks. For example in [Harnad et al., 1991]

a three layer neural network model has been proposed for sorting lines into three

categories (i.e. “short”, “middle”, “long”). Other connectionist models, in addition

to the direct grounding of symbols, investigated the symbol grounding transfer,

which refers to the process of transferring the grounding of basic categories to new

symbols acquired via linguistic descriptions. For example, in [Greco et al., 2003]

a connectionist architecture for category learning has been proposed; the network

learns combinations of different shapes and colours, and new categories are learned

via linguistic descriptions that permit to combined the symbols directly grounded

in perception to create higher-order categories. However, connectionist models of

language acquisition cannot easily scale up to larger data and the knowledge acquired

through these models is not always easy to interpret and evaluate.

In connectionist models learning the meaning of a word is a matter of establishing

a connection between a set of stimuli and verbal labels. For example, a feed-forward

neural network can receive perceptual inputs associated to presented entities and

in the hidden units it can learn the conceptual representation of the pattern in

input through the application of the back-propagation algorithm [McClelland et al.,

1986]. Similar concepts are represented by similar activation in the hidden units.

The conceptual representations that develop through the training of the network are

related arbitrarily to the perceptual states that activate them; hence these symbols

that represent knowledge are amodal and arbitrary [Barsalou, 1999]. However, more

recently it has been proposed that neural networks embodied in robotic platforms

can be good candidates for modelling the acquisition of language [Sugita and Tani,

2005, Cangelosi and Riga, 2006, Marocco et al., 2010]. Indeed, associative networks

that represent information in both the perceptual and cognitive domain, grounding
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knowledge in perceptual systems, are not amodal [Pulvermüller, 1999].

Hybrid models, that combine the symbolic and connectionist approaches, have

been proposed for the acquisition of language. Connectionist modules permit to

ground basic symbols into perceptual categories and symbolic modules serve for the

manipulation of such symbols.

3.3 Statistical Models

The statistical approaches to cognition permit to combine the descriptive power

of symbolic models with the experience-based properties of connectionism. Many

probabilistic models of language acquisition can be considered as a more sophistic-

ated version of symbolic models where each rule has associated a probability. In the

framework of statistical models, Bayesian networks can be considered to constitute

a statistical account of the multi-modal information stored in the dynamic systems

that generate simulations and guide situated action [Barsalou, 2008]. A Bayesian

network is a graphical model that encodes probabilistic relationships among a set

of random variables X:

X = {X1, · · · , Xn} (3.1)

More specifically, a Bayesian network is a directed acyclic graph in which nodes

represent random variables and arcs indicate probabilistic dependencies between

nodes. Each node Xi is associated with a conditional probability:

P (Xi|Pa(Xi)) =
P (Xi, Pa(Xi))

P (Pa(Xi))
(3.2)

that represents the probability that Xi occurs when Pa(Xi) has already occurred.

Pa(Xi) represents the parent node of Xi. In equation (3.2), P (Xi, Pa(Xi)) can be

substituted with:

P (Xi, Pa(Xi)) = P (Pa(Xi)|Xi)P (Xi) (3.3)
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and obtain:

P (Xi|Pa(Xi)) =
P (Pa(Xi)|Xi)P (Xi)

P (Pa(Xi))
(3.4)

For computing P (Pa(Xi)|Xi) the Bayes’ rule (also known as inverse probability)

is applied:

P (Pa(Xi)|Xi) =
P (Xi|Pa(Xi))P (Pa(Xi))

P (Xi)
(3.5)

where P (Pa(Xi)|Xi) is the probability of a hypothesis Pa(Xi) given Xi, and

P (Xi|Pa(Xi) is the probability of Xi assuming that the hypothesis Pa(Xi) is valid.

P (Pa(Xi)) and P (Xi) are the prior probabilities of the hypothesis Pa(Xi) and

evidence Xi, respectively. The goal of the Bayesian inference is to find the hypothesis

that maximizes P (Pa(Xi)|Xi). Bayesian networks provide a compact representation

of the joint probability over all the random variables in the network. The joint

probability represents the probability that two or more events occur together or

in succession. Given X = {X1, · · · , Xn} random variables, the joint probability is

defined in the form below:

P (X1, · · · , Xn) =
n∏
i=1

p(Xi|Pa(Xi)) (3.6)

The process of using a Bayesian network to compute probabilities is called

Bayesian inference. Nevertheless, inference in Bayesian networks is feasible in case

of small networks, while it takes very long time in large networks. Bayesian net-

works can be constructed from domain knowledge by applying the following steps:

(i) identify the variables in the interested domain, (ii) determine the direct influence

relationships among variables in the domain, and (iii) determine the conditional

probabilities given the structure of the Bayesian network. When for the construc-

tion of a complete Bayesian network the domain knowledge is not sufficient, the

network can be learned from data.

In Bayesian networks language acquisition can be formulated as an induction
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process. Indeed, inductive inference enables humans to make powerful generaliza-

tions from sparse data when learning about word meanings and many other aspects

of the world [Tenenbaum et al., 2006]. A framework based on Bayesian theory for

modelling inductive learning and reasoning has been proposed in [Tenenbaum et al.,

2006], where one of the implemented tasks consisted in learning words (or category

labels) by applying the Bayes’ rule.

A Bayesian probabilistic model for learning semantic representations of concrete

and abstract words has been proposed by Andrews et al. [2009]. They identified two

statistical data types from which semantic representations of words can be learned

[Andrews et al., 2009]. In particular, they argued that semantic representations of

words can be derived from an optimal statistical combination of experiential data

and distributional data. Experiential (or sensorimotor) data are sensorimotor and

they are collected through the interaction of the body with the physical world; on

the contrary, distributional (or linguistic) data describe the statistical distribution of

words in language. In this framework, experiential and distributional data are both

non-trivial source of information for obtaining semantic representations of words.

Indeed authors have argued that a probabilistic model based on the combination of

sensorimotor and linguistic data is a better predictor of human performance than a

model based on one source of information only.

Cognitive models based on Artificial Neural Networks and Bayesian Networks

have shown that the brain is sensitive to the statistical structure of experience

[Barsalou, 2008]; for both approaches, if the processing occurs in a modular sys-

tem separate from the brain’s modal systems, then they remain ungrounded like

traditional symbolic approaches.

3.4 The Developmental Robotics Approach

In most of the literatures so far, cognitive processes have been mainly investigated

in the context of separate research areas. However, recent studies have shown that
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mental processes are deeply influenced by the structure of the body and its inter-

action with the environment [Barsalou, 2008, Glenberg and Kaschak, 2002]. These

new findings are now altering the relationship between different disciplines, ranging

from computer science to robotics, cognitive science, developmental psychology and

neuroscience, which are now working together to build a new interdisciplinary sci-

ence. Development represents a key factor not only in disciplines like psychology

for the investigation of the physical and cognitive human development that occurs

throughout the entire life to better understand how people change and grow, and for

the evaluation of children to determine if they have a developmental disability, but

nowadays it is also very important in disciplines like robotics to achieve autonomous

and intelligent behaviours.

The first time the word robot appeared was in 1921, in the title of the play

R.U.R. (Rossum’s Universal Robots) of the Czech writer Karel Čapek; in that con-

text the word robot had the literal meaning of “serf labor”. In 1979 the Robot

Institute of America defined a robot as: ‘a reprogrammable, multifunctional manip-

ulator designed to move material, parts, tools, or specialized devices through various

programmed motions for the performance of a variety of tasks.’ (Robot Institute

of America, 1979)

Nowadays such definition of robot is applicable to industrial robots only, which

are machines that can work in a structured environment and that can be employed

for repetitive and precise tasks requiring transportation, manipulation or meas-

urement. Recently new trends in robotics have started to work at the design of

autonomous agents that can be employed in unstructured environments and that

can be reactive to possible dynamic changes. The design of autonomous robots by

pre-programming all the necessary behaviours for interaction is a quite challenging

task, because is not possible to foresee and plan in advance all the possible situations

that can happen.

By following the classical approach to robotics, the design of an autonomous

robot requires the implementation of three independent functional modules (i.e.
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sense-plan-act paradigm): (i) a perceptual system that through the usage of sensors

extracts useful information from the environment, (ii) a planner for scheduling a

sequence of actions that enable to achieve a specific goal and (iii) a motor system

that executes the motor actions for the implementation of the desired behaviour. In

this framework, the best example of the classical approach to autonomous robotics

is represented by the Shakey robot [Nilsson, 1984] developed at Stanford Research

Institute (SRI) for the Defense Advanced Research Projects Agency (DARPA). One

of the main drawbacks of this approach resides in the lack of adaptiveness to unex-

pected modifications of the environment, due to the modular structure of the system

and the independence of the layers responsible for sensing, planning and acting.

An alternative approach to robotics has been proposed by Rodney Brooks in

1991, when he introduced the behaviour-based robotics, arguing that the sense-plan-

act paradigm used in the classical approach was not suitable for the construction

of real working robots. Brooks proposed a new paradigm according to which the

building blocks of an intelligent system must be simple sensorimotor behaviours

that incorporate their own perceptual, modelling and planning requirements, on the

top of which more sophisticated behaviours can be built. One of the drawbacks of

this approach concerns the integration of different behaviours in order to obtain the

control strategy of the overall system.

Recently, Cognitive Developmental Robotics (also known as Epigenetic Robotics)

taking inspiration from developmental mechanisms studied in children by psycholo-

gists and cognitive neuroscientists, has started to focus on the modelling of different

brain and behavioural processes in humanoid robots. In contrast to purely com-

putational modelling methods, cognitive robotics focuses on the design of artificial

architectures which integrate perception and action, capable of autonomous learn-

ing, decision-making and communication. This is an innovative approach to robotics

that presents a strong interdisciplinary character and aims to overcome current lim-

itations in robots design. Indeed, according to the developmental paradigm, instead

of building robots that construct and maintain complex internal representations,
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artificial agents are endowed with some basic perceptual and motor skills that can

be subsequently re-arranged and integrated to interact in new scenarios. In other

words, simple perceptual and motor skills can be reused to bootstrap the learning

of more complex behaviours and robots can be flexible in the face of changing con-

ditions in the environment. Indeed, cognitive abilities in humans develop over time

layering over previous stages of development that may be a necessary way to manage

complexity [Metta et al., 2001]. In line with this view, the aim of developmental

robotics is not to model the end product of intelligence, which would be akin to

adult level of intelligence, but the developmental process itself. The field of cognit-

ive developmental robotics, still has to establish its definition, design principle, and

methodology; however according to Asada et al. [2001] cognitive developmental ro-

botics: ‘aims to understand the cognitive developmental processes that an intelligent

robot would require and how to realize them in a physical entity ’ (Robotics and

Autonomous Systems, 2001.). A more recent analysis of developmental robotics

models and architectures has been proposed by Cangelosi and Schlesinger [2014].

Emerging theories on artificial cognitive systems can contribute to the current

knowledge in neuroscience and psychology, and in turn, scientific and technological

advances in cognitive robotics can have an important impact in developmental psy-

chology and cognitive neuroscience, where humanoids can be used to formulate and

test new hypotheses on cognitive functions in the study of human behaviour [Sandini

et al., 2007].

3.4.1 Grounded and Embodied Connectionist Models

In the last decades, grounded models of language acquisition arose as reaction to

purely symbolic approaches. The major novelty introduced by grounded models

is the attempt to ground the meaning of words in referents in the real world; for

example, the meaning of the word “round” is grounded in the visual features of

entities, “push” in motor control structures, “heavy” in haptic features, and so

on [Roy, 2005a]. Connectionist models embodied in robotics platforms represent a
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powerful tool to study communication and language in artificial systems through a

grounded approach. Indeed, connectionist architectures can be employed as control

systems (i.e. “artificial brain”) of robotics platforms; by following this approach,

taking different kinds of sensory information as inputs, the network architecture ac-

tivates the robot’s motor joints according to the elaborated output. In such models,

the external world plays an essential role in shaping the language used by cognitive

systems. Indeed, linguistic abilities, which develop through the direct interaction of

artificial agents with the environment, are grounded in the perceptual and sensor-

imotor knowledge of agents. This guarantees that symbols related to language are

linked to perceptual internal representations.

For example, a framework for grounding nouns through the integration of ac-

tion and perception (i.e. motor and sensor primitives) has been presented in [Roy,

2005a,b]. This framework has been used in a series of conversational robots that

were able to translate spoken commands such as “hand me the blue one on your

right” into situated action. These robots were endowed with a three-dimensional

“mental model” of the physical environment updated according to the linguistic,

visual or haptic inputs. According to this framework proposed for the grounding of

language, words that refer to actions (e.g. verbs like “push”) are grounded in sen-

sorimotor control structures, while words that refer to perceptual properties (e.g.

adjectives like “red”) are grounded in sensory expectations associated with specific

actions (e.g. “red” is a colour category linked to the motor program for directing

active gaze towards an object). Furthermore, in this framework object names (e.g.

nouns like “ball”) are grounded in the perceptual properties of objects and in all

the motor affordances that may affect objects. This model is consistent with the

notion of schemas proposed by Piaget [Piaget and Cook, 1952], according to which

the meaning of words is grounded in both perceptual features and motor programs.

Other robotics models have focus on the acquisition of language through the

interaction with human users. For example in [Dominey et al., 2009] robotic tech-

nology including vision and motion planning were integrated together with aspects
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of cooperative behaviour and language-based communication, in order to provide

a coherent system for adaptive human-robot interaction. A user through spoken

language can interact with a humanoid robot to command in real-time sequences of

behaviours. The robot can either receive action commands (e.g. “Left open”, “Give

it to me”, “Right close”, etc.) or control commands (e.g. “Learn”, “OK”, “Macro”,

etc.). Through this system the robot can react to language commands and learn in

real-time new behaviours by combining pre-existing motor skills.

Models to study the emergence of shared lexicons through biological and cultural

evolution mechanisms have been proposed in [Cangelosi, 2001, Cangelosi and Parisi,

2002]. In these models, a population of artificial agents, initialized to use random

languages, after an iterative process of communication and “language games”, con-

verges towards the usage of a shared lexicon. The paradigm of “language games”

for language acquisition has been used extensively by Luc Steels and collaborators

according to whom [Steels, 2001]:

A language game is a sequence of verbal interactions between two agents

situated in a specific environment. Language games both integrate the

various activities required for dialogue and ground unknown words or

phrases in a specific context, which helps constrain possible meanings

(Intelligent Systems, 2001)

In [Steels, 2001] language games are proposed as a parading to solve the chal-

lenge of integration and grounding for human-robot dialogue. To implement the

language games idea, Steels and colleagues employed different experimental plat-

forms including different generations of Sony robots. For example, in the “Talking

Heads” experiment [Steels et al., 2002], agents look at a white-board containing col-

oured geometric figures, which the robots use as subjects of a language game; this

experiment has demonstrated that a shared lexicon gradually emerges to describe

a world made of coloured shapes. Such model has been extended in [Steels and

Kaplan, 2002] to study the emergence of communication between humans and the

Sony AIBO robot; it has been shown that any kind of concept acquisition can be
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used (e.g. a single object, or an action or property of the situation). One peculiar

aspect of the approach proposed by Steels and collaborators is the importance of

social mechanisms in the grounding and emergence of language.

Other studies have focused on developmental aspects (like “intrinsic motivation”)

as factors that favour the acquisition of language. Architectures based on intrinsic

motivation make use of particular types of reinforcement learning in which rewards

are provided not from external means but through internal evaluation [Oudeyer and

Kaplan, 2006]. For example, in [Oudeyer and Kaplan, 2006] a computational model

and a robotic experiment have tested the hypothesis that children discover com-

munication by exploring and playing within their environment. The experiment,

that focused on the role of intrinsic motivation and active exploratory behaviour,

has shown that “intrinsic motivation” toward the experience of novel situations,

which increase the chance of an agent to learn new environmental and communic-

ational features, leads the agent to autonomously focus the attention toward vocal

communication and language features.

Other models have focused on the learning of semantic combinatoriality from

the interaction between linguistic and behavioural processes. For example, in [Can-

gelosi and Riga, 2006] a simulated robot learns to perform via imitation a set of

basic actions, which can be recalled by their names. The combination of words

associated to such basic actions leads to the acquisition of higher-order concepts.

The results of this experiment have shown that the simulated robot is capable to

perform concrete actions and understand each action’s name. Another example of

semantic combinatoriality is given in [Sugita and Tani, 2005]; experiments on a real

wheeled robot equipped with a two degree of freedom arm and a vision system

have been presented. In this experiment the robot learns a set of behaviours by

interacting with objects that are associated with two-words sentences consisting of

a verb to refer to the behaviours and a noun to refer to the objects. The robot,

controlled by a recurrent neural network with parametric bias nodes (RNNPB),

is trained through learning via demonstration. The RNNPB model is based on a

64



Jordan simple recurrent neural network [Jordan, 1986] with parametric bias nodes

(PB) in the network’s input layer for modulating its own dynamic function. The

RNNPB controller consists of two modules which are responsible for behavioural

and linguistic tasks, respectively. The PB nodes containing some shared neurons

between the two modules enable the interaction of the two modules. The learning

of the model is supervised and performed through back-propagation through time

(BPTT); two different mechanisms are used for the connection weights modification

and PB vector modification. The robot interacts with three coloured objects (i.e.

“red”, “blue” and “green”) on each of which it can perform three different behaviours

(i.e. “pointing at”, “pushing” and “hitting”). The robot is also trained to learn and

recognize language commands. After the training, the robot has exhibited the abil-

ity to translate linguistic commands into the correspondent situated action and to

produce the appropriate language output associated to the performed behaviour.

In this model the robot represents the meaning of words and the corresponding be-

haviours in a compositional manner. Furthermore, in [Yamashita and Tani, 2008]

the emergence of functional hierarchy in a multiple time-scale neural network model

has been presented; a humanoid robot stands in front of a workbench, where a goal

object of cubic shape is placed. The task for the robot consists of autonomously

learning five basic behaviours. The results of this experiment have shown that the

humanoid robot can learn to generate object manipulation behaviours in a com-

positional way; basic behaviours, such as touch/lift/move objects are sequentially

combined by utilizing inherent time constant differences (i.e. slow and fast units) in

the employed neural network model. The results of this experiment have suggested

that multiple time-scales (i.e. primitives are represented by fast context units whose

activity changes quickly, while sequences of primitives are represented by slow con-

text units whose activity changes slowly) are an essential factor for the emergence

of functional hierarchy in neural systems. In [Morse et al., 2010] a robotic model

based on the embodiment of language acquisition has been presented; such robotic

model supports the hypothesis presented by [Smith and Samuelson, 2010] that con-
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siders the body posture central to the linking of linguistic and visual information.

The model proposed by Morse et al. [2010] has been used to replicate the Smith

and Samuelson [2010] child psychology experiments. Indeed, the participation of a

humanoid robot in a psychology experiment permitted highlighting the role of body

posture and spatial location while learning object names. The results of the robotic

experiments have confirmed that body posture affects the linking of linguistic and

visual information. Additionally, it has been shown that changing posture from

sitting to standing can disrupt such ability [Morse et al., 2010].

The grounded and embodied connectionist models presented in this section have

shown that cognitive robots can be been successfully employed for learning words

that refer to concrete objects and actions. Although abstract concepts appear to

play a central role not only in human cognition but also for the development of in-

telligent agents that can autonomously create categories and use language, building

intelligent systems that can learn their meaning is still a challenging task for cog-

nitive developmental robotics. The work presented in this thesis aims to propose a

mechanism for the grounding of abstract words in robots through the implementa-

tion of neuro-robotic models, where the meaning of higher-order concepts is obtained

through the hierarchical organization of basic sensorimotor concepts; in this disser-

tation it is proposed that such hierarchical organization of concepts can be a possible

account for the acquisition of abstract words in cognitive robots.

3.5 The iCub Robotic Platform

The principles behind developmental robotics have also inspired the design of hu-

manoid robotics platforms. One of the most prominent example of robots built by

following this approach is the iCub humanoid [Metta et al., 2008]. The iCub, de-

signed by the RobotCub Consortium, is an open-source robotic platform for research

in embodied human cognition, artificial intelligence, and cognitive and brain inspired

robotics research (Fig.3.2(a)). More specifically, the iCub robot, which represents
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the state-of the-art humanoid in Europe, has been designed to support research in

the themes of learning, control, cognition and interaction.

(a) (b)

Figure 3.2: The iCub: real robotic architecture (a) and iCub simulator (b)

3.5.1 Hardware Description

The iCub robot is 104 cm tall and its overall weight is 22 kg; its dimensions are

similar to those of a three and half year old child. The iCub has a PC104 machine

located in the head, which can communicate with actuators and sensors, and small

micro-controller boards located in the torso. The robot is equipped with a body

cover; lines of red LEDs representing mouth and eyebrows are mounted behind the

face panel for making facial expressions. Considering that the robot originally was

not designed for autonomous operation, it was not equipped with on-board batteries

or processors; instead an umbilical cable provides power and a network connection.

The iCub kinematic structure consists of several rigid bodies connected through

joints which allow motion (e.g. rotation, complex motion) between the connected

bodies. Hence, joints determine the Degrees of Freedom (DOF or mobility) of the
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system; DOF correspond to the number of independent parameters that define the

system configuration. Each joint is driven by actuators (i.e. motors) and typically

the number of DOF of the joint identifies the number of actuators needed to define

the system configuration. The iCub actuators were selected according to the torque

requirements for each joint, which were calculated by using the Webots [Michel,

2004] simulator that is based on ODE (Open Dynamic Engine) which is an open

source library for simulating three-dimensional rigid body dynamics. The actuat-

ors adopted for the iCub are based on a combination of brushless Direct Current

(DC) motors with speed reducers; this solution was preferred to other options (con-

ventional DC brushed motors) because of their higher robustness and reliability.

Although brushless motors offer higher performance and efficiency than brushed

motors, they need complex electronic control. However, large joints (as for example

the shoulder) have brushless motors, while small joints (as the hand) have brashed

motors. The iCub has 53 DOF distributed on the head, torso, legs, arms and hands

[Parmiggiani et al., 2012].

DOF and Actuators

• head: 6 DOF (3 neck, 3 eyes). The three DOF of the neck enable a serial

pitch, roll and yaw configuration. The three neck joints are driven by brushed

DC motors. The two cameras are moved by a three DOF eyes mechanism

which allows both tracking and vergence behaviours. The eyes movement is

enabled by three DC brushed motors.

• torso: 3 DOF. Two base motors actuate jointly the pitch and roll axes whereas

a third motor group drives the yaw joint.

• legs: 6 DOF in each leg (3 hip, 1 knee, 2 ankle). The first DOF of the hip

is driven remotely by means of a cable drive actuated by a motor which is

located in the lower torso assembly. The DOF in the knee, is actuated by the

knee exion/extension motor, and a two DOF ankle are actuated by a brushless

motor housed in the lower leg segments and by a smaller motor group placed
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directly on the foot.

• arms: 7 DOF in each arm (3 shoulder, 2 elbow, 2 wrist). The three brushless

motors driving the shoulder are housed in the upper-torso frame. The brushless

motor driving the elbow is housed at the center of the elbow assembly.

• hands: 9 DOF in each hand (3 for the thumb, 2 for the index, 2 for the middle

finger, 1 for the coupled ring and little finger, 1 for the adduction/abduction).

Seven out of the nine motors driving the hand joints are placed in the forearm

assembly. Given the limited amount of space available in the hand, brushed

DC electric motors were employed. These electric motors are coupled to speed

reducers to obtain the desired torques. Two motors, placed directly inside the

hand assembly, are used for adduction/abduction movements of the thumb

and of the index, ring and small fingers.

The iCub has been specifically designed to maximize the number of degrees

of freedom allocated to the hands, with the constraint of the overall small size.

Originally the iCub legs have been designed mainly for crawling; currently, new

foot design is seeking to enable the iCub for bipedal locomotion. Additionally, the

iCub can stand on top of the iKart, a mobile base for the robot which mounts

six wheels, a high performance i7-CPU, wireless connection and high performance

Li-ion batteries, that can be controlled using a standard interface.

A controller can make robotics joints to behave as desired. The control of a single

joint, as shown in figure 3.3, requires several components: (i) a digital microprocessor

that consists of a micro-controller and a processor with special interfaces, (ii) an

amplifier that drives the actuator and turns the control signals into power signals,

(iii) an actuator (e.g. electric motor Direct Current (DC) that can be either brushless

or with brushes), (iv) the mechanical system to be controlled (e.g. the joint of robot)

and (v) the sensor that measures the output produced by the system and feeds it

back to the microprocessor where it is compared with a reference value for the

computation of the new control signal.
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Figure 3.3: Block diagram for the control loop of a single joint

When the iCub robot is switched on, it immediately starts to move. By run-

ning the motor interface the robot perform self-calibration to reach its calibration

position.

Sensors

The iCub is equipped with different types of sensors:

• 2 digital cameras (located in the head)

• 2 microphones (located on the side of the head)

• encoders: for positional control

• inertial sensors (e.g. accelerometers and gyroscopes, located in the head) meas-

ure the three components of linear accelerations and angular velocities

• 4 force/torque sensors (2 in the upper arms and 2 in the legs)

• distributed pressure sensing capacitive skin system based on a modular trian-

gular structure in two forms:

– 108 tactile sensors in the fingertips and palm mainly used for collision

detection

– generic body skin on the forearm (in a new version of the robot, tactile

sensors will be embedded in the fingertips, the palms, the forearms, the

upper arm segments, the torso, the upper leg segments, the knees, the

lower leg segments and the feet). The tactile sensors can be used for

better and safer human-robot interaction

70



3.5.2 Software Architecture

The iCub software architecture, largely written in C++ programming language, is

based on YARP (Yet Another Robot Platform) [Metta et al., 2006], which is an

open-source and multi-platform framework for humanoid robotics, consisting of a

set of libraries, protocols and tools that support distributed computation and that

can be used for inter-process communication on a local network. YARP, adopted by

the RobotCub consortium as the middle-ware for the iCub humanoid robot, permits

to decouple devices from software architecture and to exchange information between

the user code and the robot with its environment. The core components of YARP

are:

• libY ARP OS: for interfacing with the operating system and to provide some

basic services (e.g Thread, Semaphore, etc.). This library also provides easy

network communication using the YARP Port Network

• libY ARP sig: for common signal processing tasks (visual, auditory)

• libY ARP dev: for interfacing with common devices drivers used in robotics

(sensors and actuators)

YARP has a command-line interface that permits to perform several operations

such as give status information, make and break connections between ports, and

send/receive data to/from ports. YARP also provides an image viewer to visualize

image transmitted in standard network format.

The iCub software repository contains many software modules and applications

that can be used for controlling the robot through the YARP interface. The docu-

mentation and low level code developed for the iCub robot is available as open-source

code. More specifically, the iCub software repository contains modules, graphical

user interfaces (e.g. “robotMotorGui” for moving the joints of the iCub robot using

sliders, “iCubSkinGui” to display the output of fingertip/skin tactile sensors, etc.)

and libraries (“iKin” for forward-inverse kinematics, “iDyn” for forward-inverse kin-

ematics and dynamics, “actionPrimitives” for primitive actions like reach, grasp,
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etc.). Furthermore, from the collection of several modules it is possible to obtain

useful applications.

The Action Primitives library, based on the YARP Cartesian Interface has been

used in the first experiment proposed in this dissertation for implementing motor

primitives like reach, grasp, etc, and for combining them to form higher level actions

that permit to execute more complex tasks without considering the motion control

details [Pattacini et al., 2010]. The functions contained in the library permit to:

(i) move the arm of the robot to a specific pose (i.e. position and orientation),

(ii) execute a predefined fingers sequence and (iii) wait for a specific time interval.

For producing an action, the corresponding request item is “pushed” in the actions

queue by using the function pushAction (“params”) that allows to insert in the

action queue a sequence of elementary actions to be executed.

In the second experiment presented in this dissertation, the Cartesian Controller,

available in the iCub software repository, has been used in order to implement the

desired motor primitives by solving the inverse kinematic problem and to control

the robot’s arm. The Cartesian controller consists of two modules [Pattacini et al.,

2010]:

• Solver: through a non-linear optimizer, which takes into account all the im-

posed constraints, determines the arm joints configuration that permits to

achieve the desired pose (i.e. end-effector position and orientation). The

solver uses the IpOpt [Wächter and Biegler, 2006] software package to solve

the following non-linear optimization problem (i.e. inverse kinematic):

q = arg min
q∈R10

(
1

2
‖ αd −Kα(q) ‖2 +w · 1

2
‖ qrest − q ‖2

)
(3.7)

subject to

 ‖ xd −Kx(q) ‖2 < ε

qL < q < qU

where q is the desired joints vector that has 10 components in case the 7 joints

of arm and the 3 joints of torso are controlled. xd and αd represent the desired
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position and orientation, respectively. Kx and Kα are the forward kinematic

maps for the position and orientation, respectively. qrest is used to keep the

torso as close as possible to the vertical position while moving and w is a

positive factor w < 1 that weights qrest. qL and qU represent the physical

bounds of the joints and ε is a small number in the range between [10−5, 10−4].

• Controller: it computes the velocity of the motors that generate a human-like

quasi-straight trajectory of the robot end-effector

3.5.2.1 The iCub Simulator

The iCub Simulator (Fig.3.2(b)) is an open-source multi-platform computer simu-

lator, licensed under General Public License (GPL) [Tikhanoff et al., 2008, 2011].

The simulator is based on the Open Dynamic Engine (ODE) library that simulates

rigid bodies and the collision detection algorithms to compute the physical interac-

tion with objects, and the OpenGL/SDL library that provides a rendering engine

designed to reproduce as accurately as possible the physics and the dynamics of

the real robot. The simulated iCub, constructed collecting data directly from the

robot design specifications in order to achieve an accurate replication (e.g. height,

mass, degrees of freedom) of the iCub prototype developed at the Italian Institute

of Technology in Genoa, is composed of multiple rigid bodies connected via joint

structures. The simulator permits the testing of algorithms in order to verify their

correctness prior to use the physical robot. Considering that the the simulated and

real robot are provided with the same software interfaces, minimal changes to the

code permit to transfer the developed algorithms from the simulated iCub to the

real robot. The iCub simulator has a configuration file that permits to set the de-

sired iCub parts activation before running the simulator. Keyboard and mouse are

used for the manual navigation of the environment. The simulator allows to create

static and dynamic object of different shape in the environment and also to import

3D models on it. Additionally, it is possible to get and set the position of created

objects and to rotate them.
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The iCub Simulator (Fig.3.2(b)) has been used for testing the developed al-

gorithms prior the use the real robotic architecture. Subsequently, experiments

have been run on the real iCub humanoid robot, adopted as robotic platform.
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Chapter 4

Neural Network Algorithms for

Modelling and Analysing

Language

Following the bottom-up approach to artificial intelligence, briefly introduced in

Chapter 3, aspects of cognition and intelligence including language representations

can be reproduced by using artificial neural networks (ANNs). An ANN is a com-

putational model inspired by the organizational structure of the human brain, com-

posed by a large number of units (referred as neurons) and connection weights (or

synaptic links) that decide the strength of connections between units.

The first model introduced for artificial neurons, which is still used in neural net-

work modelling, was proposed in McCulloch and Pitts [1943] and called Threshold

Logic Unit (TLU). Few years later, in 1949 the psychologist Donald Hebb introduced

a rule (later defined as Hebbian Learning) for learning connections between neurons;

the rule implied that connections between two neurons are strengthened when both

neurons are active at the same time [Hebb, 1949]. In 1958 Frank Rosenblatt intro-

duced an algorithm for supervised classification of inputs [Rosenblatt, 1958] known

as perceptron. In 1969, the first artificial neural network model was presented by

Minsky and Papert [1969]. Advances in neural network processing were achieved
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through the introduction of the back-propagation algorithm [Werbos, 1974, Parker,

1985, LeCun, 1986, Rumelhart et al., 2002]. In 1986 thanks to David E. Rumel-

hart and James McClelland the parallel distributed processing, making use of the

back-propagation algorithm, became popular under the name of connectionism [Mc-

Clelland et al., 1986].

In this chapter some of the main artificial neural network models and learning

algorithms, which will be used in this thesis, are presented. Further, the chapter

contains a description of the methods used for the analysis of the internal dynamics

of the models implemented for carrying out the experimental studies presented in

Chapter 5, Chapter 6 and Chapter 7 of this dissertation.

4.1 Artificial Neural Network Models

An artificial neural network, in analogy with the biological neural system, is a non-

linear parallel processing computational model that consists of simple interconnected

units, called neurons, that can exchange information by means of connections that

can be active or inhabited according to the value of their corresponding weights.

Artificial neural network based models are ideally suited when is not possible to

define an algorithm for task completion. Some of the fields in which neural networks

find application to solve different types of problems are:

• Classification: according to a measure of similarity/dissimilarity similar input

patterns are associated together (e.g. Pattern recognition, clustering, feature

extraction, image matching)

• Regression and Prediction: inferring unknown data by relying on historical

data (i.e. extrapolation)

• Optimization: minimize a specific cost function with respect to some con-

straints

• Control: as robotic controller, a neural network by establishing a relation
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between inputs (e.g. sensors) and outputs (e.g. actuators) signals of the

system, can control the behaviour of a robot

The three main classes of network architectures, that is, (i) single-layer feed-

forward, (ii) multi-layer feed-forward and (iii) recurrent architectures are presented

in the next sections of this chapter.

4.1.1 McCulloch-Pitts Model and Perceptron

In 1943 McCulloch and Pitts proposed a computational model which was a neural

network implementation of propositional logic. The McCulloch-Pitts model for an

artificial neuron consists of: (i) one or more input units X = [x1, x2, · · · , xn] where

X ∈ Rn, (ii) an internal activation function f(Σ) and (iii) one output y (Fig.4.1).

Figure 4.1: Model of an artificial neuron proposed by McCulloch and Pitts

Each neuron represents a multiple-input, multiple-output (MIMO) system that

receives n signals from the inputs, produces one output signal and transmits it to all

the other units. In particular, the input signals (xi) traverse weighted connections

(wi) and generate an internal activation signal a, which is a linear weighted sum of

the input signals to which is added the bias value (w0) (Eq.4.1).

a =
n∑
i=1

(wi · xi) + w0 (4.1)

From equation (Eq.4.1) it is possible to notice that the relation between input

and output depends from the variation of the synaptic weights wi that models the
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synaptic efficacies of inter-neuron synapses. Positive weights correspond to excit-

atory synapses, while negative weights model inhibitory synapses. The activation

value a of the neuron is subsequently transformed through the activation function

f(Σ). The activation of the McCulloch-Pitts model is regulated by a step func-

tion (Fig. 4.2), which implies that the output y of a neuron is either activated or

deactivated, depending on whether the threshold value θ is reached or not:

y = f(Σ) =

 1, if a ≥ θ

0, if a < θ

The step activation function in the McCulloch-Pitts model determines a binary

classification of the inputs that are categorised into one of two possible groups (1 or

0).

Figure 4.2: Step activation function profile. Source wikibooks.org

Indeed, such model can be used as a linear separator, considering that produces

two categories in the input space. In 1958 the perceptron neural network model,

consisting of a set of neurons based on the McCulloch-Pitts model and distributed in

the input and output layer (single layer perceptron), was introduced [Rosenblatt,

1958]. The connection weights in a single layer perceptron are learned by applying

the delta rule [Widrow et al., 1960]. Simulations with the single layer perceptron

showed that this model could easily implement the major logic functions (e.g. AND,

OR, NOT). The implementation of the AND function is described; the input pat-

terns consist of two signals (x1, x2) weighted by (w1, w2) equal to 1 and the bias
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value w0 is set to −1.5. The output unit employs a threshold activation function,

which in case the activation value “a” is greater than zero it sends in output one,

while if “a” is less than zero it sends zero. From the activation table associated

to the logic AND implemented by the perceptron model (Tab.4.1) it is possible to

observe that the output of the model is activated in correspondence of the input

(x1 = 1, x2 = 1) only.

x1 x2 activation y
0 0 (0 · 1) + (0 · 1)− 1.5 = −1.5 0
0 1 (0 · 1) + (1 · 1)− 1.5 = −0.5 0
1 0 (1 · 1) + (0 · 1)− 1.5 = −0.5 0
1 1 (1 · 1) + (1 · 1)− 1.5 = 0.5 1

Table 4.1: Activation table for the logic AND implemented by the perceptron model

From a geometrical prospective, the perceptron model that implements the AND

logic function represents a linear operator in the input space that seeks to find a

hyper-plane the separates the input space into two categories (Fig. 4.3).

Figure 4.3: Geometrical representation of the input space for the AND logic function

Indeed, this model separates the point of coordinates (1, 1) from the other three

points (0, 0), (0, 1) and (1, 0). Hence, the perceptron model classifies the input

patterns in one of two possible classes. One of the limitations of the perceptron

network was noticed by Minsky and Papert [1969] that published a mathematical

analysis of the perceptron to point out that such model was not able to classify

input patterns not linearly separable in the input space. To illustrate this limitation,

Minsky and Papert used the XOR (i.e. exclusive or) logic function that is a typical
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example of non-linearly separable function. This function takes two input arguments

with values in [0, 1] and returns one output in [0, 1]. The output is 1, if and only if,

the two inputs have different values (Tab.4.2).

x1 x2 y
0 0 0
0 1 1
1 0 1
1 1 0

Table 4.2: Truth table for the logic XOR function

From the geometrical representation of the input space for the XOR logic function

it is possible to notice that this function is not linearly separable (Fig.4.4) and

therefore the perceptron model cannot separate the point of coordinates (1, 1) and

(0 ,0) from the other two points (0, 1) and (1 ,0).

Figure 4.4: Geometrical representation of the input space for the XOR logic function

For solving non-linear separably problems the multi-layer perceptron (or MLP)

model was introduced. MLP is a more general network architecture, where hidden

layers are added between input and output layers. In parallel, alternative methods

have been proposed for non-linear separably problems. A generalization of the

single layer perceptron topology (SLPT), called recursive deterministic perceptron

(RDP), was introduced in [Tajine and Elizondo, 1998]. To construct a RDP several

growing methods were proposed. These methods consist of incrementally adding

Intermediate Neurons (IN) to the topology; each of these IN represents a SLPT and

they have a similar function to that of the hidden units in the back-propagation
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algorithm. The resulting topology is a feed-forward multilayer neural network that

permits to deal with non-linearly separable problems.

4.1.2 Multi Layer Perceptron and Recurrent Architectures

A multi layer perceptron is an artificial neural network model in which neurons are

arranged in multiple layers (an input and output layer with one or more hidden

layers) to constitute a directed graph, with each layer fully connected to the next

one (Fig.4.6 (a)). Neurons of a multi layer perceptron are of three different types: (i)

input neurons that receive the information to be processed, (ii) output neurons that

contain the results of the computation and (iii) hidden neurons that are in between

input and output neurons and do not directly receive inputs nor send outputs to

the external environment. Except for the input layer, each neuron has a non-linear

activation function which must always be normalizable and differentiable. One of

the most used activation function in MLP is the sigmoid (or logistic function in case

the sigmoid ranges from [0, 1]).

y = f(Σ) =
1

1 + e−β
(4.2)

where β is the slope parameter. The profile of a logistic function is shown in

figure 4.5. The popularity of sigmoid functions in neural networks is also due to the

fact that their derivatives are easy to calculate, which turns out to be very useful

during the computation of the weight updates in certain training algorithms.

Figure 4.5: Sigmoid activation function profile. Source wikibooks.org
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According to their topology, MLPs can be distinguished in different classes.

Feed-forward NNs consist of a set of neurons distributed in the input, hidden and

output layers (Fig.4.6 (a)), for which the information flows in one direction only (i.e.

forward) from the input units to the output ones, without feedback loops. These

networks do not have internal memory and they can learn a static mapping between

input (X) and output (Y ).

Y = f(X) X, Y static patterns

Recurrent NNs are characterized from a bidirectional flow of information, which is

possible through the presence of recurrent connections (feedback) that go backward

from output to input units providing to the network internal memory (Fig.4.6 (b)).

This kind of networks are suitable for modelling dynamic temporal behaviours. They

are dynamical systems that can learn a non-static mapping between the Input (X)

and Output (Y ). This characteristic makes recurrent neural networks particularly

suitable for sequence processing.

Y (t) = f(X(t)) X, Y time− varying patterns

Input Layer

Hidden Layer

Output Layer

(a) (b)

Figure 4.6: Topology of a: feed-forward (a) and fully recurrent neural network (b)

An example of recurrent neural networks is provided by the Hopfield network

[Hopfield, 1982], which is a fully connected feedback network in which symmetric
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inter-neuron synapses guarantee that the network energy function decreases mono-

tonically; this type of network is mainly used as an associative memory or to solve

optimization problems. Hopfield network with asymmetric inter-neuron synapses

are used in networks with periodic and chaotic behaviour.

Recurrent networks in which the feedback signal is only in one of the layers

of the network are called Simple Recurrent Neural Networks (S-RNN); examples

of simple recurrent neural networks are Elman and Jordan architectures (Fig.4.7).

An Elman network [Elman, 1990] is a three-layer perceptron with the addition of

context units in the input layer and recurrent connections, with weights fixed to a

constant value equal to one, from the hidden layer to the context units (Fig.4.7 (a)).

The recurrent connections have the role to keep a copy of the value of the neurons

in the hidden layer at the previous instant time (t− 1). Indeed, the context units at

the time (t) contain a copy of the hidden units at the time (t− 1). This enables the

Elman network to “remember” its previous state which permits the performance of

tasks which require the prediction of time sequences that cannot be obtained with

a conventional feed-forward network.

Input Layer

Hidden Layer

Output Layer

Context Units

Feedback Loop

(a)

Input Layer

Hidden Layer

Output Layer

State Units

Feedback Loop

(b)

Figure 4.7: Topologies of simple recurrent neural networks: Elman (a) and Jordan
networks (b)

Jordan networks [Jordan, 1986] are similar to Elman architectures but instead

of context units they have state units that contain a copy of the output layer

(Fig.4.7 (b)). At each time step, the inputs are propagated in the same way of

feed-forward networks, including the application of the learning algorithm (usually
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back-propagation). Jordan networks (as well as Elman architectures) are Discrete-

Time Recurrent Neural Networks (DT-RNN) in which the processing occurs in dis-

crete steps and each neuron computes its output spontaneously. For DT-RNN the

relation between inputs and outputs is governed by a functional equation f(x) that

can be both linear or non-linear. An interesting learning algorithm that can be ap-

plied to Jordan networks is the “teacher forcing algorithm” that instead of feeding

the state units with the actual output of the network, it feeds the desired target

output value as the network runs; hence, this algorithm forces the output units to

assume the correct states, even as the network runs. This algorithm has advantages

in terms of convergence of the learning [Pearlmutter, 1990].

Contrary to the DT-RNN, in Continuous Time Recurrent Neural Networks (CT-

RNN) inputs and outputs are functions of continuous time variables and the relation

between inputs and outputs is governed by a differential equation in time [Pineda,

1987] rather than a functional equation. Hence, neurons have a temporal response

that relates the state of the network to inputs. A Continuous Time-RNN implements

a feature of biological neurons, namely that the activities of neurons are determined

not only by current synaptic inputs but also by the past history of neural states. Due

to this characteristic according to which activation changes continuously, the CT-

RNN can better model mechanisms for producing continuous sensorimotor sequences

than DT-RNN models.

Another important example of neural network based model is provided by Self

Organizing Maps (SOM, also known as Kohonen maps) that are used for unsuper-

vised learning [Kohonen, 1982]. In SOM neurons are interconnected in a grid and

groups of neurons self organize in specific regions; nearby locations in the map rep-

resent inputs with similar properties. Similarly to other techniques (e.g. Principal

Component Analysis), SOMs permit to reduce the dimensions of data [Fodor, 2002].
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4.2 Supervised Learning

Connectionism, in contrast to some symbolic models used for knowledge represent-

ation, has the advantage to be based on learning methods. Generally speaking,

models based on learning are designed to support automated knowledge acquisition,

fault tolerance, and induction [Wermter et al., 1996]. This is particularly important

in the field of natural language processing, considering that learning enables several

language-related tasks, such as speech recognition, spoken language understanding,

machine translation and information retrieval [Wermter et al., 1996]. Furthermore,

models based on learning permit to design more flexible, scalable, adaptable and

portable natural language systems [Wermter et al., 1996].

In MLP models, a learning algorithm is a mathematical method that computes

the update of the synaptic weights that better approximate a desired function. In-

deed in a neural network based model, synaptic weights represent the most import-

ant factor in determining its function. A learning algorithm can be (i) supervised,

(ii) unsupervised and (iii) reinforcement learning. In supervised algorithms a

neural network, by receiving pairs of inputs and target outputs (i.e. training ex-

amples) that describe the relations between inputs and outputs and represent the

knowledge/experience about the task, through the learning process has to find the

function that permits to match the training examples. In unsupervised learning,

only the input patterns are provided to the network; the learning seeks to find hidden

structures in data and to understand how data are organized. In reinforcement

learning, data are generated by software agents that through interactions with the

environment seek to maximize reward functions.

One of the most common supervised learning method for training neural networks

is the Back-Propagation algorithm (BP) [Rumelhart et al., 2002]. The learning

through BP consists in: (i) providing the input patterns X to the network, (ii)

calculating the corresponding output Y , (iii) and computing the error signal E by

comparing the output Y with the desired target output values Ŷ . Then, the error

of the network is propagated backward and the connection weights of neurons are
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updated. Before the training through back-propagation can start, it is necessary to:

• define the topology of the network (e.g. number of neurons in input and

output, number of hidden layers, activation function, etc.) that depends on the

specific task and set the value of some important parameters for the training

process (e.g. learning rate and momentum)

• collect the training set of the network that describes the relations between

inputs and outputs of the network. The sample of the training set are divided

into two independent sets: the training set used to train the network and the

testing set used to test the performance of the neural network

• initialize the weights to small random values (typically in the interval [-1, +1]

or [-0.5, 0.5])

Given a feed-forward neural network with X ∈ RN neurons in input, Ŷ ∈ RM

target outputs and Y ∈ RM neurons in output:

X = [x1, x2, · · · , xN ]

Ŷ = [ŷ1, ŷ2, · · · , ŷM ]

Y = [y1, y2, · · · , yM ]

the back-propagation algorithm consists of the repeated application of two stages:

forward propagation and backward propagation (Fig.4.8).

• Forward propagation: the network receives the input patterns X and cal-

culates the corresponding outputs Y by using (Eq.4.1) and (Eq.4.2). In the

next algorithm’s step the output signal (Y ) of the network is compared with

the desired output values (Ŷ ) to calculate the error signal (E) (Eq.4.3).

E =
1

2

N∑
i=1

M∑
j=1

(Ŷ i
j − Y i

j )2 (4.3)

The error E is a cost function defined on the observations of the system; the

minimization of the error E leads to the minimization of the difference between
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Figure 4.8: Illustration of the Back-propagation learning method

the output of the network (Y ) and the desired output values (Ŷ ) (i.e. total

Mean Square Error MSE). In order to minimize this cost function, the gradient

descent method is used. The gradient descent algorithm consists in selecting

a starting point (initial guess) in which to calculate the gradient (i.e. partial

derivatives) of the function in order to find a “descent direction” (negative

value of the gradient), and hence move to a new point along the identified

descent direction and calculate the gradient of the function in this new point

(Fig. 4.9). This process is repeated until the algorithm eventually converges

where the gradient is zero. When the error signal for each neuron is computed,

the weights coefficients can be updated.

Figure 4.9: Illustration of the gradient descent method

• Backward propagation: the error of the network is propagated backward
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from the output layer through the other layers. This is done by recursively

computing the gradient of each neuron. The weights wij that connect the

neuron i to the neuron j are updated by using (Eq.4.4):

4wij = η · δi · xi (4.4)

where η is the learning rate and δi is calculated by using (Eq.4.5) for the output

units:

δi = (ŷj − yj) · yj · (1− yj) (4.5)

and (Eq.4.6) for the hidden units:

δi =
M∑
j=1

(δj · wij) · yj · (1− yj) (4.6)

The BP algorithm is considered to have converged whether the absolute rate of

change in the MSE is sufficiently small (e.g in the range [0.1, 0.01]). The successful

learning enables the model to perform properly a desired task and to generalize well,

that is, the model behaves correctly on new instances of the learning task. However,

the system cannot generalize in case of over-training, which can arise when the

training set is too big; to avoid over-training stopping criteria can be added to the

learning algorithm. The lack of generalization in the system can also arise when

there are too many hidden neurons in the network and the capacity for computation

exceeds the dimensionality of the input space. This is analogous to having a system

of equations with more equations than free variables: the system is over specified

and cannot generalize well. On the other hand, in the case where there are not

enough hidden neurons in the network, the system might be unable to properly fit

the input data. In machine learning there are several methods to verify the degree of

generalization of the network; cross-validation is one of this methods and it consists

in dividing the data contained in the training set into two mutually exclusive sets:
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the training set and the test set. The training set is the larger data set used to

train the model, while the test set is the smaller data set used to validate the model.

This process is repeated with different subsets, until each object of the data set

is used once for the test set. Furthermore, the training set might consists of data

of different types that have different ranges of values which can affect the learning

process. Hence, normalization can be used to scale the data either in the interval

[0, 1] (E.q.4.7):

Norm(xi) =
xi −min(xi)

max(xi)−min(xi)
(4.7)

or [−1,+1] (E.q.4.8):

Norm(xi) =

(
xi −min(xi)

max(xi)−min(xi)
− 0.5

)
∗ 2 (4.8)

where xi represents the data to be normalized and min(xi) and max(xi) are the

minimum and maximum values that the data can assume over the training process.

Important parameters to be set during the learning process are the learning rate

η and the momentum µ. The learning rate, that typically can assume values in the

interval [0, 1], represents the step-size used in the gradient descent algorithm that

affects the speed at which the algorithm converges to a minimum solution; if the

learning rate value is too small the convergence of the learning algorithm is extremely

slow, while if it is too large the algorithm might not converge. The momentum, that

can assume values in the interval [0, 1], is used to prevent the learning algorithm to

converge to a local minimum and to speed its convergence.

One of the drawback of the back-propagation algorithm is that it requires a

continuous supervision and it could converge to a local minimum.

4.3 Machine Learning and Data Analysis

The application of machine learning algorithms generates data that can be analysed

quantitatively and qualitatively in order to understand them. The proper analysis
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of collected data is fundamental for discovering patterns that can answer important

research questions. Indeed, when neural networks are designed to model some cog-

nitive functions it is fundamental to understand how networks operate; this requires

to examine the structures of the network’s internal representations. The analysis

of internal representations of a neural network model is a complex task, consider-

ing that the weights learned by the model are usually difficult to be interpreted.

The traditional techniques used in this framework are hierarchical clustering and

principal component analysis [Bullinaria, 1997].

The Hierarchical Cluster Analysis (HCA) of each input patterns permits the

mapping of the activity of the hidden layer by creating a hierarchy of clusters based

on a selected distance measure (e.g. Euclidean distance). In case a neural network

model is operating efficiently, the cluster analysis reveals that related input-output

patterns are closely clustered (i.e. low Euclidean distance between related patterns).

This approach can identify interesting relations between data that might be not so

obvious otherwise.

Considering that the hidden layer of neural network based models usually rep-

resents a multi-dimensional system, the visualization of such points and the analyse

of the trajectories between states by using traditional techniques is difficult to be

performed. To this end it is possible to perform the Principal Component Analysis

(PCA) of the hidden layer that permits to perform dimensional reduction with the

minimum loss of information. This procedure was used by Elman [1993] to reduce

the dimensionality of the hidden units and then to construct the phase state graph

of the principal components.
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EXPERIMENTAL STUDIES

Overview

This section intends to provide an introduction to the performed experimental stud-

ies. The aim of the experiments proposed in the next chapters is to find a general

mechanism that enables the grounding of abstract action words through sensor-

imotor experience in a humanoid robot. To this end, a number of neuro-robotic

models, that permitted the investigation of the relations between symbolic know-

ledge (i.e. language) and sensorimotor experience (i.e. perception and action) were

implemented.

In contrast to purely computational modelling methods and classical natural

language processing methodologies, in the approach adopted for carrying out these

studies language is considered to be embodied in perceptual and sensorimotor know-

ledge. Hence, cognitive humanoid robots provide a powerful platform for testing the

design of artificial cognitive architectures that integrate perception and action, cap-

able of autonomous learning, decision-making and communication.

In the performed experiments two different sets of words were taught to a hu-

manoid robot; in the first two experiments presented in this thesis, the robot is

trained to learn words related to general actions (e.g. “ACCEPT” and “REJECT”).

In the third experiment, in addition to the name of general actions (e.g. “USE” and

“MAKE”), the name of objects/tools (e.g. “KNIFE”, “HAMMER”, “BRUSH”,

etc.) used during interaction in the environment, were taught to the robot. In-

deed, the linguistic instructions provided to the robot consisted of action and object
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names.

In the next chapters three experiments will be presented:

• Chapter 5 presents a feed-forward model for the encoding of higher-order words

(e.g. “ACCEPT” and“REJECT”) as integration of motor primitives. The

training of this model was effective for teaching a humanoid robot the meaning

of words that lack of a direct concrete referent, although some limitations of the

model were evident. Considering that this model was based on a feed-forward

architecture, the activation of the action primitives could not be temporally

specified. A temporal specification of actions implemented in the second model

presented in Chapter 6 permitted the increase of the combinations of actions

for the generation of more complex movements. Furthermore, in this model

simplified representations of actions were used as input/output to the neural

controller. The activation of a one-hot node resulted in the robot’s execution

of pre-determined actions.

• Chapter 6 presents a recurrent model that extends the feed-forward architec-

ture for the encoding of higher-order words presented in Chapter 5. In this

model the sequences of linguistic inputs, temporally specified and consisting of

verbs only, led to the acquisition of higher-order concepts (e.g. “ACCEPT”,

“REJECT”) grounded on basic motor primitives (e.g. “PUSH”, “PULL”).

Higher-order symbolic representations were indirectly grounded in action prim-

itives directly grounded in sensorimotor experience.

• Chapter 7 presents a recurrent model that integrates multi-modal inputs (i.e.

language, vision and proprioception) and that takes into account a more real-

istic representation of the sensorimotor knowledge associated to the iCub ro-

bot. More complex actions (e.g. “CUT”, “HIT”, “PAINT”, etc.) were built

by integrating low level motor primitives (e.g. “PUSH - PULL”, “LIFT -

LOWER”, “MOVE LEFT - MOVE RIGHT”) iterated for a certain number

of time steps. The simplified representations of actions (“one-hot” encoding)
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used in the other two experiments were replaced with the joints values recor-

ded from the iCub robot right arm. Furthermore, the new model was scaled

up to handle a larger action repertoire resulting from different combinations of

joint activations, and the visual input captured from the robot’s cameras has

been included as an input unit of the model. Indeed, in this model the acquis-

ition of lexical categories is achieved by integrating three different modality

inputs: proprioceptive input (joint values), visual input (object features) and

linguistic instructions (sentences consisting of a verb and a noun). Through

the implementation of this model, the hierarchical organization of concepts

directly linked to sensorimotor experience permitted the acquisition of higher-

level words and categories.
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Chapter 5

A Study on the Learning of

Higher-order Concepts

Cognitive robots have been successfully used for the learning of concrete concepts

and lexicons [Cangelosi and Riga, 2006, Cangelosi et al., 2006, Sugita and Tani,

2005, Yamashita and Tani, 2008, Dominey et al., 2009]. For instance, in Cangelosi

and Riga [2006] it has been shown that cognitive robots are capable of perform-

ing concrete actions and understanding each action’s name. Nevertheless, building

intelligent systems that can understand the meaning of abstract words is still a

challenging task for cognitive developmental robotics. Abstract concepts such as

“truth”, “democracy”, “happiness”, “justice”, etc. refer to intangible entities not

physically defined and/or spatially constrained (e.g. mental states), which cannot be

perceived through the senses [Wiemer-Hastings and Xu, 2005]. This is why ground-

ing abstract words is still a highly challenging and problematic task in cognitive

robotics.

One important property of human language, which inspired the proposed studies,

is “combinatoriality” [Pinker and Prince, 1988], that is the possibility of producing

new concepts from the combination of simple words. The process of transferring

the meaning of words directly grounded in sensorimotor experience, to words gen-

erated via linguistic combinations, is called “symbol grounding transfer” [Cangelosi
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and Riga, 2006], and follows the mental simulation model of concept combination

[Barsalou, 1999, Cangelosi and Schlesinger, 2014].

This chapter presents the first model on the learning of higher-order abstract

concepts in a robotic platform and the related results [Stramandinoli et al.]. The

model, based on Artificial Neural Networks (ANNs), grounds abstract language in

the iCub sensorimotor experience. The mechanism of the “symbol grounding trans-

fer” is adopted as a training strategy of the model implemented for the acquisition of

higher-order concepts. Such neuro-robotics model, exploiting the “combinatorial”

property of language, enables the learning of higher-order concepts by combining

words directly grounded in sensorimotor experience. The target of this study is

the acquisition of the meaning of words like “ACCEPT”, “REJECT”, “PICK”,

which describe general actions. The acquisition of such higher-order concepts de-

velops trough an incremental training mechanism. A set of basic motor primitives

(e.g. “MOVE ARM AWAY”, “MOVE ARM TOWARD”, “OPEN HAND”, “CLOSE

HAND”, etc.) are initially taught to the iCub through the “direct grounding mech-

anism”; then, new symbols related to more abstract words like “KEEP”, “GIVE”,

“RECEIVE”, are learned through the combination of the words directly grounded

in motor primitives.

An extension of the proposed model, which will allows the investigation of the

relations between abstract symbolic representations (i.e. language) and sensorimotor

knowledge (i.e. actions), is be presented in Chapter 6.

5.1 Theoretical Background

A broad range of social psychology studies, which demonstrated embodiment ef-

fects and the tight coupling between the cognitive and motor systems, have been

described in [Barsalou et al., 2003]. Some studies have demonstrated that social

stimuli induce bodily states (e.g. postures, arm movements and facial expressions);

in other studies it has been shown that bodily states produce emotions (e.g. a push-
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ing movement associated with avoidance produces a negative affect) [Barsalou et al.,

2003]. In further work it has been shown that when bodily states are compatible

with cognitive states, processing is optimal; that is, processing a positive stimulus is

faster when performing an approaching arm movement (e.g. pulling) than an avoid-

ance movement (e.g. pushing) [Barsalou et al., 2003]. Embodiment effects which

reflect a “pattern-completion inference mechanism” that supports situated action

have been proposed in [Barsalou, 2003]. A pattern completion inference mechanism

uses perception to activate situated conceptualizations that produce predictions of

associated embodiment effects. According to this view, representations of familiar

situations that contain embodiments become established in memory (e.g. receiving

a gift, feeling positive affect, and smiling). When part of this situation occurs (e.g.

receiving a gift), it activates the remainder of the situational pattern, producing

associated embodiments (e.g. smiling). Similarly, if smiling is engaged, repres-

entations of situations that contain it are activated, producing associated pattern

components (e.g. positive affect, generosity); thus, an agent draws inferences from

the simulation that go beyond the given information [Barsalou, 2009].

Different neurophysiological studies have shown that motor simulations generate

prediction about the meaning of words [Pulvermüller, 2005, Buccino et al., 2005,

Pulvermüller et al., 2005, Barsalou, 2008, 2009]. Furthermore, behavioural studies

have also supported the effect of physical actions in comprehension [Glenberg and

Kaschak, 2002, Zwaan and Taylor, 2006, Richardson et al., 2003].

5.2 Overview of the Experiment

A model based on ANNs for grounding the meaning of abstract words in the sen-

sorimotor experience of a cognitive robotic platform is presented. This preliminary

study has been developed on a software environment for the iCub robot [Tikhanoff

et al., 2011]. Words like “ACCEPT”, “REJECT”, “PICK”, that express general ac-

tions and characterized from an evident sensorimotor component have been taught
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to the robot. The meaning of such words is grounded through an incremental train-

ing mechanism; in particular, the iCub is first trained to learn a set of basic motor

primitives through the mechanism of direct grounding; subsequently, the grounding

is transferred from basic symbols to new ones, the latter obtained as combina-

tion of elementary words. Specifically, at the beginning of the training the simu-

lated robot learns to perform a series of action primitives (e.g. “PUSH”, “PULL”,

“GRASP”, “RELEASE”, etc.) and then, through the process of the grounding

transfer, by combining action primitives, the robot acquires more abstract concepts

(e.g. “KEEP”, “GIVE”, “RECEIVE”). The goal of this study is to show that the

grounding of higher-order categories can be obtained as a combination of categories

directly grounded in sensorimotor experiences.

5.2.1 Model Description

According to the embodied connectionist approach, linguistic abilities develop through

the direct interaction between cognitive agents and the physical world they interact

with. This study takes inspiration from the model proposed by Cangelosi and Riga

[2006] in which two simulated robots, a teacher and a learner, were trained to learn

a set of basic action primitives. The teacher was preprogrammed to show to the

learner how to perform a set of action primitives. The training of the learner re-

quired two mechanisms; the first is the direct grounding of basic words, during which

the agent, by observing the teacher, learns a set of basic action primitives and their

corresponding name via direct sensorimotor experience. The second mechanism is

the grounding transfer process when the grounding of basic words is transferred to

higher-order words via linguistic description [Cangelosi, 2005]. In particular, the

training of the robot consisted of three incremental stages:

(i) Basic Grounding (BG): the robot learns by imitation to perform basic ac-

tion primitives and their corresponding names (e.g. CLOSE LEFT ARM,

CLOSE RIGHT ARM, MOVE FORWARD)

97



(ii) Higher-order Grounding 1 (HG1): combining basic action primitives (e.g.

GRAB [is] CLOSE LEFT ARM [and] CLOSE RIGHT ARM ) via linguistic

description the robot acquires new words

(iii) Higher-order Grounding 2 (HG2): the robot learns high-order words through

the combination of action primitives and higher-order action words (e.g. CARRY

[is] GRAB [and] MOVE FORWARD)

In the proposed study the robot first learns a series of motor primitives (e.g.

PUSH, PULL, GRASP, RELEASE) that subsequently are combined to acquire

higher-order action words (e.g. KEEP, GIVE, RECEIVE). Finally, the robot ac-

quires new higher-order concepts (e.g. PICK, ACCEPT, REJECT) by combining

motor primitives and the higher-order action words previously learned. At the end of

the experiment, the robot is capable to categorise abstract symbols by experiencing

sensorimotor actions.

In Section 5.3 a feed-forward neural network model that implements the learning

of higher-order words in the iCub robot is presented. The linguistic input provided

by an experimenter guides the autonomous organization of the robot’s sensorimotor

knowledge; sequences of linguistic inputs lead to the development of higher-order

concepts grounded on basic concepts and actions.

5.3 Feed-forward Network for the Acquisition of

Higher-order Concepts

The robot’s neural network controller is a three layers feed-forward network fully

connected, with a sigmoid activation function with unity slope λ = 1 (Eq.5.1).

f(x) =
1

(1 + e−λx)
(5.1)

The network has 14 input units that encode the name of the motor and action

primitives taught to the robot (Fig.5.1). The hidden units consist of 8 neurons that
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are fully connected with both the input and output layer (Fig.5.1). The number of

neurons in the hidden layer was selected training several networks and estimating

the generalization error of each of them. The output units consist of 8 neurons that

encode an abstract representation of motor primitives. According to the activated

linguistic input, the network selects in output which motor primitive (or a sequence

of them) has to be activated in order to obtain the desired behaviour. The output

of the network is the input for an iCub module that implements the execution of

motor primitives.
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Figure 5.1: Feed-forward architecture for learning words associated to action prim-
itives. c©2011 IEEE

The name of the motor and action primitives taught to the robot were encoded

as binary vectors for which the “one-hot” encoding was adopted (See Table 6.1 for

an example of such encoding).

Indeed the neural network model, developed in C++ programming language, was

linked to the iCub simulator. The execution of motor primitives was implemented

by using the Action Primitives library available in the iCub software repository

[Pattacini et al., 2010]; this library provides a set of primitives that can be easily

combined in order to obtain more complex behaviour (more details regarding the
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Action Primitives library are provided in Section 3.5.2).

5.3.1 Neural Network Training

Inspired by the model presented in [Cangelosi and Riga, 2006], the training of the

presented model is incremental and it consists of three steps: (i) the Basic Grounding

(BG), (ii) the Higher-order Grounding 1 (HG1) and (iii) the Higher-order Ground-

ing 2 (HG2). During the BG training stage, the robot learns the names associ-

ated to the motor primitives in input to the neural network, which are “PUSH”,

“PULL”, “GRASP”, “RELEASE”, “STOP”, “SMILE”, “FROWN”, “NEUTRAL”.

The “STOP” word is used to make the robot understand the end of a command.

The words “SMILE”, “FROWN”, “NEUTRAL” are intended as bodily states rather

than emotional.

The network was trained by using the back-propagation supervised learning al-

gorithm. The weights of the network were initialized to random values in the range

[±0.5] and the back-propagation algorithm run for 10000 iterations, with learning

rate (α) equals to 0.2 and momentum (β) equals to 0.9. The learning rate and

momentum, in general, can assume values between the range [0, 1]. In the proposed

simulation, a small value of α slows the convergence rate of the algorithm but helps

to ensure that the global minimum is not missed. To control the convergence rate

of the algorithm a small learning rate value was coupled with a bigger value of

momentum; in particular, a big value of β increased the convergence speed of the

algorithm. The back-propagation algorithm calculates the weight corrections that

permit to reduce the distance of the actual outputs from the target outputs.

As performance function for the artificial neural network model, the Root Mean

Square Error (RMSE) - the square root of the Mean Square Error (MSE) - was

selected. The RMSE is defined as follows:

RMSE =
√
MSE =

√√√√ 1

N

N∑
i=1

(ei)2 =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2
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where ŷi is the target output and yi is the network output.

The simulation parameters used for the training of the feed-forward network and

the Root Mean Square Error value (RMSE) calculated at the end of each training

stage are shown in Table 5.1.

Training Stage No. Iterations Learn Rate Momentum RMSE

BG 10000 0.2 0.9 0.005840
HG1 10000 0.2 0.9 0.005620
HG2 10000 0.2 0.9 0.005042

Table 5.1: Simulation parameters for the training of the feed-forward neural network
and RMSE values. c©2011 IEEE

The BG training stage runs for 10000 iterations and, as shown in figure 5.2, after

5000 runs the value of the error is smaller than 0.02.
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Figure 5.2: Root Mean Square Error after the BG training stage. c©2011 IEEE

The HG1 and HG2 training phases implement the grounding transfer process.

During these two training stages the grounding of basic words, acquired via direct

sensorimotor experience, is transferred to higher-order words via linguistic descrip-

tion that, in the neural controller implementation, is simplified as providing a binary

vector (one-hot encoding) to the network. The grounding transfer consists of mul-

tiple steps, depending on the number of motor primitives that are combined to obtain

a more complex behaviour. For example, in order to transfer the grounding from the

basic actions GRASP and STOP to the higher-order word KEEP (i.e. KEEP [is]

GRASP [and] STOP) two steps are required, one for each motor primitive involved
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in the linguistic description. Each of these steps consists of two phases (Fig.5.3):

• the network receives as input the action primitives words contained in the

linguistic description of the higher-order word and computes the correspond-

ing output without applying back-propagation algorithm (feed-forward phase

without learning).

• the network receives as input the name of the higher-order word and as target

the output of the network calculated during the feed-forward phase (back-

propagation learning).

Input: "GRASP"

Output: "GRASP"
Target: "GRASP"

Input: "STOP"

Output: "STOP"
Target: "STOP"

BASIC GROUNDING

Backpropagation Learning

Input: "KEEP"

Output: "KEEP"
Target: "GRASP" [and] "STOP"

Backpropagation Learning

Input: "GRASP"

Output: "GRASP"
No Target

Input: "STOP"

Output: "STOP"
No Target

GROUNDING TRANSFER

No Learning

Figure 5.3: Representation of the grounding transfer mechanism. c©2011 IEEE

This described mechanism is adopted during both HG1 and HG2 training stages.

In the HG1 stage the robot learns three new higher-order action words (GIVE, RE-

CEIVE, KEEP) by combining only basic action primitives. In order to obtain the

transfer of grounding from basic actions to higher-order words, the network calcu-

lates separately the output corresponding to the words contained in the linguistic

description (GRASP, STOP) and stores it. Then, the network receives as input the

higher-order word KEEP and as target the outputs previously stored.

The HG1 and HG2 training stages run for 10000 iterations each and, as shown

in figure 5.4(a) and 5.4(b), after 5000 runs the value of the error is smaller then
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0.02. During the HG2 stage, the robot learns higher-order behaviour (ACCEPT,

REJECT, PICK ) consisting of the combination of motor primitives and higher-order

action words (e.g. ACCEPT [is] KEEP [and] SMILE [and] STOP).
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Figure 5.4: Root Mean Square Error after the HG1 (a) and HG2 (b) training stages.
c©2011 IEEE

At the end of the training all the motor primitives, higher-order words and higher-

order behaviour were successfully learned. Indeed, simulation results have shown

that the network performs correctly the mapping between inputs and outputs.

5.3.2 Robot Simulation

The proposed neural network model, depending on the linguistic input received, it

outputs a combination of the name of the motor and action primitives to be executed.

Indeed, the output of the neural network model triggers the action primitives to be

executed; such primitives were implemented by using the Action Primitives Library

[Pattacini et al., 2010] available in the iCub software repository. The library provides

a set of functions for the execution of actions that can be combined to perform more

sophisticated tasks; it relies on the YARP Cartesian Interface [Metta et al., 2006]

that allows the user to control the upper limbs of the robot by defining a specific

pose (position and orientation in axis-angle representation) for the end-effector. In

order to determine the joints configuration that allows to move the robot arm to

a desired position (inverse kinematics), the library uses a non-linear optimization
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technique implemented by the IpOpt software package [Wächter and Biegler, 2006].

A software module that relies on the YARP middle-ware and the Action Prim-

itives library has been developed in order to execute action primitives associated to

words. The output of the neural network module selects which action primitive has

to be executed in order to perform the desired higher-order behaviour (Fig.5.5).

Figure 5.5: Software architecture for the learning of words: Neural Network con-
troller, YARP interface and iCub Simulator

Some of the action primitives implemented are shown in figure 5.6; for example,

figure 5.6(b) shows the PUSH primitive. Considering that the simulated iCub and

the real one have the same software interface, the reproduction of the experiments

with the physical robot does not require any particular modification of the code

linking the neural network with the real robot (though extra work is required to

handle with visual input stream and motor performance).

For the implementation of the iCub facial expression (i.e. SMILE, FROWN and

NEUTRAL), the Face Expressions application available in the iCub software repos-

itory was used. The iCub head has an expression system that consists of LEDs

for the display of facial features (LEB - the Left Eyebrow subsystem, REB - the

Right Eyebrow subsystem and M - the Mouth subsystem) and a servomotor (EL

subsystem) for the activation of the eyelid movements. To send commands to the
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(a) (b) (c)

(d) (e)

Figure 5.6: Execution of basic action primitives on the iCub: home position (a),
PUSH (b), GRASP (c), RELEASE (d) and PULL (e). c©2011 IEEE

iCub head expressions system a low-level interface can been used. Such interface

receives commands in the format of ASCII characters, sent over a serial connection,

which define the state of the individual subsystems. The interface can be operated

at the low-level through a YARP write console that permits to set a specific face

expression by sending a string of the ASCII characters in the following format:

S30 (‘S’ for the eyelids - servo)

L02 (‘L’ for the left eyebrows)

R02 (‘R’ for the right eyebrows)

M64 (‘M’ for the mouth)

The numbers that follow the letters S, L, R and M indicate the led ports to be
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turned on to display the desired face expression.

5.4 Discussion

In this chapter one of the first attempt to model the grounding of higher-order

words in the iCub humanoid robot was presented. The higher-order words used in

this study have a general meaning; they refer to the way in which objects can be

manipulated and describe their motion (e.g. grasp, receive, etc.). A model based

on feed-forward artificial neural networks was used for the grounding of higher-level

concepts obtained as a combination of simple motor primitives directly grounded

in sensorimotor experience. Such model produced effective results in teaching a

humanoid robot the meaning of higher-order words, although some limitations of

the model were also evident; in particular, the activation of the action primitives

could not be temporally specified. A temporal specification for action executions

is not only important for the control of the robot; it also permits to increase the

combinations of actions in order to generate more complex movements. This in turn

directly affects on the number of meanings that can be specified for different words.

For example, in this model is not possible to distinguish between the sequences

KEEP [is] GRASP [and] STOP and KEEP [is] STOP [and] GRASP, as it would

be impossible to distinguish the two sentences on the basis of the output activations.

Indeed, in both cases the output units corresponding to GRASP and STOP would

be activated simultaneously.

As an extension of this preliminary study, in Chapter 6 the implementation

of a recurrent model enabled the temporal specification for action executions that

permitted to increase the combinations of actions in order to generate more complex

movements. Furthermore, words characterized by a major level of abstractness are

grounded in the experiments presented in Chapter 7. In the current study the neural

network controller receives linguistic inputs and outputs a combination of the name

of action primitives to be executed. In Chapter 7 this model is extended in order
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to include in the neural network controller the encoding of motor outputs and to

control the motor behaviour of the robot.
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Chapter 6

Learning Higher-order Concepts

through Temporal Sequences of

Motor Primitives

In this chapter a neuro-robotics model based on artificial neural networks that invest-

igates the relations between the development of symbol manipulation capabilities

and sensorimotor knowledge in the iCub humanoid robot is presented. To overcome

the limitations of the feed-forward model in terms of time specification and com-

binatorial ambiguity proposed in Chapter 5, a new model based on recurrent neural

networks was implemented. Recurrent neural networks have been used since the

beginning of the connectionist era for addressing language related research [Hinton

and Shallice, 1991, Elman, 1990]; they offer a useful framework for understanding

the underlying mechanism in the process of language acquisition and concepts form-

ation, which is strongly related to the problem of modelling short term memory

in artificial systems. In this framework, the use of recurrent neural networks per-

mits the learning of higher-order concepts based on temporal sequences of motor

primitives.
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6.1 Neural Network Architecture

The proposed neural network model (Fig.6.1) takes inspiration from the architecture

discussed in [Botvinick and Plaut, 2006]. In preliminary tests, this architecture

produced more stable and reliable learning results than other network topologies

based on standard simple recurrent networks. The inputs and output encoding of

the network layers, as well as the training methodology, are the same as the ones

adopted in the feed-forward model presented in Chapter 5.

Figure 6.1: Recurrent architecture for the learning of higher-order concepts.

The input of the network is a localistic encoding of 13 words (13 input units);

each word is represented as a binary vector for which the “one-hot” encoding was

adopted. The output of the network is a localistic encoding of 7 motor primit-

ives (7 output units); each action is represented as a binary vector for which the

“one-hot” encoding was adopted. Similarly to the feed-forward model presented in

Chapter 5, a simplified representation of motor primitives was adopted(See Table

6.1 for an example of such encoding). The actual execution of the actions was del-

egated to the Action Primitives Library [Pattacini et al., 2010] according to which

action primitives were formed executing motor primitives in sequence; for example

the “GIVE” action consists in executing the motor primitives “GRASP”, “PUSH”

and “RELEASE” in sequence. In Chapter 7 the simplified representations of ac-
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tions (“one-hot” encoding) were replaced with the joints values recorded from the

iCub robot right arm. The hidden layer of the proposed architecture consists of 27

units. The number of neurons in the hidden layer has been selected training several

networks and estimating the generalization error of each of them. The input layer is

connected to the hidden layer, which in turn is connected to the output. Recurrent

connections link the output units to the hidden layer and from units in the hidden

layer to all other units in the same layer.

6.2 Training of the Model

The training set of the network, differently from the feed-forward architecture presen-

ted in Chapter 5, consists of sequences of temporal patterns that encode the abstract

representation of actions. The words that directly refer to motor primitives activate

a single output pattern that represents the action to be performed by the robot

in response to a verbal command. Higher-order words activate sequences of motor

primitives (Tab.6.1).

Similarly to the feed-forward model, the training of the recurrent neural net-

work is performed by means of the back-propagation algorithm described in Section

4.2. The back-propagation algorithm used for the training of the recurrent artificial

neural network-based model was extended from the incremental to the batch mode.

Through the training in batch mode, all the inputs in the training set were applied

to the network before the weights were updated; hence, all weight updates were

summed over the presentation of the whole training sequences and subsequently,

the accumulated weight updates were performed.

The formation of higher-order concepts, which refer to words whose meaning is

obtained as a combination of motor primitives, is obtained by using the training

methodology presented in Section 5.3.1. After the neural network learns the asso-

ciations between basic grounding words and motor action primitives, the following

stages that lead to the acquisition of combinatorial meaning are performed on the
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model:

• the network receives as input the action primitive words that form the lin-

guistic description of the higher-order word that the robot has to learn (e.g.,

GIVE [is] GRASP [and] PUSH [and] RELEASE ).

• the motor outputs corresponding to the action primitive words are computed

by the network, one by one, and stored one after the other according to the

position of the corresponding word within the linguistic description in order

to form a sequence of primitive actions (note that the sequence, GRASP [and]

PUSH is different from the sequence PUSH [and] GRASP, since the temporal

sequences of motor activations are different).

• the network receives as input the unknown higher-order word and as target

output the sequence of motor outputs calculated during the previous activation

phase; hence back-propagation is applied to minimize the distance of the input

from the output target.

Following this approach, the meaning of words relies on complex sequences of

actions that can be formed iteratively, every time a new linguistic description is

provided to the network. Therefore, the activations of the hidden units are expected

to create different temporal patterns according to the different motor actions that

define the “meaning” of a given word. In Table 6.1 the encoding of some of the

words in input to the model and the abstract representation of motor outputs are

shown.
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BG INPUTS OUTPUTS
PUSH 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
PULL 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
GRASP 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
RELEASE 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
SMILE 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
FROWN 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
NEUTRAL 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
HG1 INPUTS OUTPUTS
GIVE 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

HG2 INPUTS OUTPUTS
REJECT 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Table 6.1: Training set sample corresponding to the higher-order word REJECT for
the recurrent neural network model

The words associated to motor primitives, learned during the basic grounding

stage, and the linguistic descriptions used during the higher-order HG1 and HG2

training stages for grounding the meaning of higher-order words are shown below:

1. Basic Grounding words (BG):

PUSH, PULL, GRASP, RELEASE, SMILE, FROWN, NEUTRAL

2. Higher-order Grounding 1 (HG1):

GIVE [is] GRASP [and] PUSH [and] RELEASE

RECEIVE [is] PUSH [and] GRASP [and] PULL

PICK [is] GRASP [and] PULL [and] RELEASE

3. Higher-order Grounding 2 (HG2):

ACCEPT [is] RECEIVE [and] SMILE

REJECT [is] GIVE [and] FROWN

KEEP [is] PICK [and] NEUTRAL

This training methodology is extremely flexible and permits to freely add novel

words to the known vocabulary of the robot, or to completely rearrange the word-

meaning associations.
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6.3 Simulation Results and Observations

As described in Sections 5.3.1 and 6.2, the training mechanism of the network con-

sists of three incremental stages. Figures 6.2(a),(b),(c) show the Root Mean Square

Error (RMSE) calculated at the end of each of these training stages.
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Figure 6.2: Root Mean Square Error: BG stage (a), HG1 stage (b), HG2 stage(c)

The BG training stage is a simple association between input and output patterns;

hence, as it can be observed from figure 6.2(a), the network is able to learn this

mapping in few iterations (i.e. 200). The HG1 and HG2 training stages require more

training cycles, considering that in these stages the task is much more complex than

the mapping learned during the BG stage. Indeed during the HG1 and HG2 stages,

the network has to learn the mapping of single input patterns corresponding to the

higher-order words that have to be learned, with the entire sequences of temporal
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motor primitives, which are arbitrary and, in most cases, of different lengths. The

greater complexity of the task is also testified by the irregular shapes of the error

curves in figure 6.2(b),(c).

After the training, tests performed on the simulated iCub robot showed that

the neural controller is able to correctly select and activate the proper sequence of

motor primitives in relation to a word given in input. In the current model, the

implementation of the mechanism for words meaning acquisition takes inspiration

from the Perceptual Symbol Systems (PSS) theory proposed in [Barsalou, 1999].

Indeed, during the HG1 and HG2 stages the robot constructs higher-order concepts

(e.g. GIVE ) by reactivating the model internal representations of the basic concepts

contained in the corresponding linguistic description (GIVE [is] GRASP [and] PUSH

[and] RELEASE ). Moreover, this procedure allows the model to be unaffected by

the symbol grounding problem, since higher-order concepts are directly grounded on

the basic motor primitives that constitute the meaning of the basic words [Cangelosi

and Riga, 2006].

In order to better understand the internal organisation of the network and its

dynamics, the activation of internal units in time of the model have been analysed.

Since the neural network creates a hierarchical structure of meanings based on the

combinations of basic concepts, the expectation was that similar internal represent-

ations would have been activated whenever a basic concept was recalled.

The analysis of a recurrent network with a sufficiently large number of hidden

units poses a number of challenges and it is often difficult to understand and clarify

certain dynamics. For the proposed model, in order to show that similar hidden units

patterns where activated according to similar primitive actions (a kind of pre-motor

activation), a cluster analysis on the internal activations was performed (Fig.6.3).

The results of such analysis, as shown in figure 6.3, were ineffective and showed

complex internal dynamics, with very sparse clusters.
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Figure 6.3: Cluster analysis of the internal activations of the model

For the formation of clusters, as measure of dissimilarity between pairs of ob-

servations, the Euclidean distance was used. Figure 6.4 shows the colormap of the

cluster similarities, which is a symmetric matrix in which each element represents

the dissimilarity between pairs of observations.

Figure 6.4: Matrix of similarities between pairs of observations
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To reduce the dimensionality of the space defined by the 27 hidden units, the

Principal Components Analysis (PCA) was performed on the hidden activation val-

ues in time. This used the activation patterns of elements of each sequence. Figure

6.5 shows the trajectories of the various patterns in time within the phase space of

the first two principal components (those two components represents the 68% of the

data set).
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Figure 6.5: Trajectories of various patterns in time within the phase space of the
first two principal components. Circles represent the starting point of a sequence
while squares and triangles represent the end point of a time sequence of HG1 and
HG2 levels respectively

Figure 6.5 shows that the trajectories of hidden activations are similar according

to the meaning of the words (black lines indicate HG1 and grey HG2). For example,

ACCEPT, represented as a grey dashed line on the graph, shares part of its tra-

jectory with RECEIVE (black dashed line), as ACCEPT is defined as RECEIVE

[and] SMILE. Similarly, REJECT and GIVE (continuous grey and black lines), as
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well as KEEP and PICK (dotted grey and black lines) show the same temporal

activation patterns. This result indicates, in contrast with the expectation, that

internal representations for a given action are similar when motor patterns have

similar outcomes, but different for different motor sequences.

Interestingly, such result appears to be consistent with some recent neurophysiolo-

gical experiments which have shown that motor neurons that encode a specific motor

act, like grasping or reaching, present different activation patterns according the final

goal of the action sequence in which that particular motor act is embedded [Fogassi

et al., 2005]. Therefore, a neuron that is highly active during the grasping phase in

a “grasping to eat” sequence may show a very little activation during a “grasping

to place” sequence [Fogassi et al., 2005]. In particular, Fogassi et al. [2005] stud-

ied neurons active in association with grasping movements of two monkeys. They

tested two main conditions in which the monkey performed: (i) REACH, GRASP,

BRING THE FOOD TO THE MOUTH sequence (the monkey ate the food) and (ii)

REACH, GRASP, PLACE THE FOOD IN A CONTAINER sequence. During the

second condition, the monkey was rewarded with food after accomplishing the task.

The results of this test showed that the same neurons discharged differently during

the “grasping for eating” and the “grasping for placing” conditions. Analysing the

activation of neurons in the inferior parietal lobule (IPL) Fogassi and colleagues

found that:

• IPL neurons coding a specific motor act (e.g. “grasping”) had different activ-

ations patterns according to the action in which the motor act was embedded

(“grasping for eating”, had a different activations pattern than “grasping for

placing”)

• IPL neurons discharged when monkeys observed an experimenter performing

the action. Neurons responded differently when the same act was embedded

in different actions

• IPL neurons fired during the observation of an act and before the execution
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of the subsequent action. These neurons allowed the observer to understand

the agent’s intention

Results of this study showed that the main factor that determines the discharge

intensity of neurons is the goal of the action. Most IPL neurons code the grasping

act differently according to the final goal of the action in which the grasping act

is embedded. Authors carried out control experiments to check that this difference

in the discharge intensity of neurons is not due to other factors like for example

the force used to grasp an object or the difference in movements kinematics, or

motivation.

Furthermore, neuro-computational studies have supported the results presented

in [Fogassi et al., 2005]. In [Chersi et al., 2006, 2010] a computational model of

neurons in the IPL area of the brain has been presented; this computational model

is based on the following hypothesis:

• IPL neurons are organized in chains of simple motor acts (e.g. “reaching”,

“grasping”, “eating”, “placing”) that encode a specific action with a particular

goal (e.g. bringing food to the mouth, placing an object in a container)

• Chains can be constituted on motor neurons, mirror neurons, or both

• The same chain can be used for executing an action but also, by exploiting the

properties of mirror neurons, for understanding an action executed by other

agents

Motor acts are connected in motor chains with a specific final goal and the

initial input for activating one of the motor chains is provided by the Pre-Frontal

Cortex (PFC) that is believed to play an important role in action planning; the

PFC contains the representation of the final goals of actions (“eating” or “placing”).

The appropriate chain is selected by evaluating contextual information (e.g. visual

information like the presence of a container). Starting from the evidence that the

language processing of sentences that express a motor content modulates the activity
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of the motor system [Pulvermüller et al., 2001], Chersi and colleagues hypothesised

that the processing of action-related sentences involves the activation of the chain

(i.e. motor sequence) of motor neurons directly involved in the sentence. Additional

evidence suggests that groups of neurons that represent similar actions are, at least in

part, different depending on the overall movement that contains a given action. That

is, pool of neurons representing a motor act embedded in several specific movements

are only partially similar. Only a fraction of a given pool, specific to a given goal,

is activated when the same motor act is embedded in different movements.

In order to investigate whether the model presented in this chapter shows the

same dynamics of the chain model, an additional analysis has been conducted. Un-

derstanding differences and similarities of the hidden units’ activation across differ-

ent patterns on a quantitative basis is not obvious. Therefore, to visually highlight

differences and similarities between different patterns, the activation values for each

hidden unit were plotted as a raster matrix of 9× 3 elements (Fig.6.6). Each cell of

the raster matrices shown in (Fig.6.6) represents the activation value of the corres-

ponding hidden neuron (a black cell corresponds to a neuron with activation value

equals to 1, while white cells correspond to neurons with activation value equals to

0). Results of such visual elaboration, highlighting the relation between the internal

representation of hidden units recorded during the Basic Grounding (e.g., PULL)

and the internal representation of the same concept embedded in high-level words

(such as RECEIVE, ACCEPT, PICK and REJECT ) are shown in (Fig.6.6(a)) from

which it is possible to observe that, by visually comparing the representations re-

corded during the BG and HGs stages, the former are very often quite different

from the others, and only a small fraction of neurons is activated similarly in all

the cases. This is different in case of words that share part of their meaning, as

they share many of the internal representations. This fact was primarily indicated

by the previous PCA. Moreover, by comparing the patterns in the other cases, for

example the representation of PUSH within RECEIVE and PICK, it is possible to

notice that, although some of the activations are in common, the two representations

119



appear quite different.

(a) (b)

(c) (d)

Figure 6.6: Visual elaboration of activation values of the hidden units as a matrix
of 9× 3 elements

These observations provide indication that the hypothesis formulated by Chersi

et al. [2006] can be a general mechanism that explains the way in which recurrent

neural networks represent and reuse hierarchical concepts.

6.4 Discussion

In this chapter a neural network controller for investigating the relations between

higher-order symbolic representations and sensorimotor knowledge in the iCub robot

has been presented. The neural network controller, based on recurrent networks,

enabled the learning of higher-order concepts based on sequences of low-level prim-

itives. Indeed, differently from the model presented in Chapter 5 based on a neural

network architecture corresponding to a simple feed-forward multi-layer perceptron

(MLP) that did not consider temporal feedbacks and with a hidden layer and sig-
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moid activation, in this chapter in order to capture temporal dependencies among

sequential data recurrent neural networks were used.

Simulation results showed that higher-order symbolic representations can be in-

directly grounded in action primitives, which are themselves directly grounded in

sensorimotor experience. Through the analysis of the network dynamics for the

proposed recurrent architecture it has been observed that motor primitives show

different activation patterns according to the action’s sequence in which they are

embedded; that is, for example the motor primitive “PUSH” has different activation

patterns according to the action sequences that has to ground. These simulation

results are consistent with empirical neuroscience and computational neuroscience

studies on action representation that showed that the goal of an action changes the

substrate of neurons involved in the action processing [Fogassi et al., 2005, Chersi

et al., 2006, 2010].

In Chapter 7 a more realistic representations of the perceptual and sensorimotor

knowledge is included in the proposed model. Instead of using abstract represent-

ations of actions, the output of the new model directly controls individual joints of

the robot degrees of freedom. Hence, the model can be easily scaled up to handle a

large action repertoire, resulting from various combinations of joint activations.

The proposed neuro-robotic modelling approach, which enables the learning

of hierarchical higher-order representations based on combination of sensorimotor

primitives, can be used to investigate the sensorimotor bases of abstract concepts.

This can support the understanding of the incremental contribution of embodied

knowledge in the continuum between concrete words (e.g. push, pull), which are

directly grounded in actions and perceptual experience, and abstract words (e.g.

use, make), for which the sensorimotor grounding is based on an indirect grounding

mechanism.

121



Chapter 7

Grounding Abstract Action Words

through the Hierarchical

Organization of Action Primitives

Building on the premise that the brain contains modal symbols and representations,

which are directly related to the perceptual states that produce them and which work

together to create cognition, this chapter presents an embodied multi-modal robotics

model that enables the grounding of abstract action word meanings. In particular,

the focus of the presented study is on the modelling of the grounding of words as

“USE” and “MAKE” in perceptual and sensorimotor experience developed during

the interaction of a humanoid robot (i.e. iCub) in the real world. The scope of the

presented study is twofold; on the one hand, the carried out study enables the iCub

to ground the meaning of abstract action words and scaffold more complex behaviour

through the sensorimotor interaction in the environment. On the other hand, the

proposed model permits the investigation of the relation between the development

of conceptual knowledge (i.e. language) and perceptual and sensorimotor categories

(i.e. perceived objects and execution of actions) acquired by the iCub humanoid

robot. Indeed, the implementation of an embodied computational model enables the

first grade of language development (lexicon acquisition) in the iCub robot and the
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investigation of the relations between embodied sensorimotor categories (continuous

domain) and the representation of lexicon (discrete/logical domain).

Among the different lexical categories (i.e. noun, verb, adjective, adverb and

preposition), abstract action words represent a class of terms distant from immedi-

ate perception that describe actions (i.e. verbs) with a general meaning and which

can be referred to several events and situations [Barsalou, 1999, Paivio et al., 1968,

Wiemer-Hastings et al., 2001]. As described in Chapter 2, according to the clas-

sic theory of categorisation, conceptual knowledge can be organized in categories

hierarchically structured [Gallese and Lakoff, 2005]. For example, in the hierarchy

“furniture/chair/rocking chair”, “furniture” is a superordinate word (e.g. general-

ization) while “rocking chair” is subordinate to the basic word “chair”. Basic and

subordinate words (e.g. “chair”, “rocking chair”), refer to “single” entities and they

can be seen as more concrete words than the superordinate ones (e.g. “furniture”),

which refer to sets of entities that differ in shape and other perceptual characteristics

[Borghi et al., 2011]. Further, categories like “furniture” that do not have corres-

ponding motor programmes for interacting with them, represent more general and

abstract concepts. According to such hierarchical organization of lexical categories,

abstract action words refer to higher-order and general concepts. Indeed, abstract

action words, which do not have corresponding physical referents, cannot be directly

linked to sensorimotor experience through a one-to-one mapping with their physical

referents in the world.

The meaning of words like “USE” and “MAKE” is general and it depends on

the context in which such words are used. Indeed, language is situated in the con-

text in which it occurs [Barsalou et al., 2003]. For example, in a scenario in which

a person is interacting with a set of tools, the meaning of “USE” is specified by

the particular tool employed during the interaction (e.g. “USE [a] KNIFE”, “USE

[a] BRUSH”), while the meaning of “MAKE” depends on the outcome of interac-

tions (e.g. “MAKE [a] SLICE”, “MAKE [a] HOLE”). Furthermore, as described in

Chapter 2, conceptualization is embodied [Barsalou et al., 2003, Gallese and Lakoff,
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2005]; that is, concepts are formed via sensorimotor experience and through the

integration of multi-modal inputs. Indeed, in the proposed study, the iCub is en-

abled to ground abstract action words (like “USE” and “MAKE”) in perception

(e.g. object categories like “KNIFE”, “HAMMER”, “PENCIL”, etc.) and actions

(e.g. sensorimotor categories like “CUTTING”, “HITTING”, “DRAWING”, etc.)

through object-body interactions in the physical environment. Linguistic instruc-

tions provided by a human tutor can guide the iCub to organize the knowledge

directly grounded in perception and sensorimotor experience to derive the meaning

of more abstract concepts. Hence, the acquisition of concepts that refer to abstract

action words can be driven by the integration of proprioceptive and visual inform-

ation. The integration of low-level capabilities (e.g. perceptual and sensorimotor

skills) with multi-modal symbols, enables the hierarchical organization of concepts

that leads to the grounding of abstract action words. The implementation of an

embodied computational model, that accounts for the acquisition of abstract ac-

tion words in the iCub, can contribute to the investigation of the relations between

perception, action and language representations.

7.1 Background of the Experiment

During the process of language development, the acquisition of lexicon and of its re-

lated meanings precedes the emergence of more abstract syntactic structures which

can be obtained through a gradual transition from lexical semantics [Tomasello,

2009]. Indeed, lexicon acquisition constitutes an important prerequisite for learning

the syntactic structures that govern language. In contrast to other forms of com-

munication, language is a combinatorial system that permits the conveyance of new

messages and concepts by integrating simpler words together. A finite number of

terms (i.e. lexicon) can be combined and permuted, according to specific structural

rules (i.e. grammar) in order to convey new meanings [Pinker, 2010]. Recent evid-

ence has suggested that the human motor system is also hierarchically organized;
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that is, low level motor primitives can be integrated and recombined in different

action sequences in order to perform novel tasks [Mussa-Ivaldi and Bizzi, 2000].

Collectively, these studies suggest that language and the biological motor system

are based on hierarchical recursive structures that can serve to ground the meaning

of language in sensorimotor experience [Cangelosi et al., 2010].

By exploiting the combinatorial organization of language and the motor sys-

tem, the architecture proposed in this chapter integrates simple motor primitives

and words in order to create the semantic referents of terms that do not have a

direct mapping to the perceptual world [Stramandinoli et al., 2012]. The semantic

referents of these words are formed by recalling and reusing the sensorimotor and

perceptual knowledge grounded during previous experience and interactions in the

physical environment. A “grounding kernel” of words directly linked to sensorimo-

tor experience [Harnad, 2010], combined in hierarchical structures through language,

permits to indirectly ground the meaning of abstract action words. New concepts

are formed through linguistic definition alone by involving a form of higher-order

concepts that are based upon the combination of simpler word representations. Such

a hierarchical organization of concepts can be a possible account for the acquisition

of more abstract and general words in cognitive robots.

Studies presented in neuroscience [Pulvermüller et al., 2001, Hauk et al., 2004,

Tettamanti et al., 2005, Buccino et al., 2005] and the behavioural sciences [Buccino

et al., 2005, Scorolli and Borghi, 2007] have demonstrated that language is embodied

in perceptual and sensorimotor knowledge. According to this embodied perspect-

ive, language skills develop together with other cognitive capabilities and through

the sensorimotor interaction of an agent with the environment. In the investiga-

tion and studies related to the embodiment of language in sensorimotor experience,

particular attention has been given to action words (i.e. verbs referring to actions).

Indeed, through electroencephalography (EEG) recordings it has been shown that

action words processing causes differential activation along the motor strip in the

brain, with strongest in-going activity occurring close to the cortical representation
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of the body parts (e.g. hands, legs, lips) primarily used for carrying out the actions

described by the processed verbs [Pulvermüller et al., 2001]. Further studies have

shown that action word meanings have correlates in the somatotopic activation of

the motor and premotor cortex [Hauk et al., 2004]. Moreover, transcranical mag-

netic stimulation (TMS) studies and behavioural experiments have shown that the

processing of action-related sentences modulates the activity of the motor system

and, according to the effector used in the action described by the processed action

word, different sectors of the motor system are activated [Buccino et al., 2005]. More

recently, a review on the sensorimotor grounding of language has been presented in

Pulvermüller and Fadiga [2010]. Neuroimaging investigations have found specific

motor activations when subjects understand speech sounds, word meanings and

sentence structures. Furthermore, studies involving TMS and patients with lesions

affecting inferior frontal regions of the brain, have shown the contributions of mo-

tor circuits to the comprehension of phonemes, semantic categories and grammar.

Additionally, in Pulvermüller [2003] it has been shown that lexical and grammatical

structures of language are processed by distributed neuronal assemblies with cortical

topographies that reflect lexical semantics.

Psychological studies and theories along the same line of research have been

proposed. According to the perceptual symbol systems (PSSs) theory, conceptualiz-

ation requires the sensorimotor simulation of past experience [Barsalou, 1999]. For

example, when a person thinks about an object, the neural patterns in the brain that

have been formed during earlier experiences done with the object, are reactivated.

The neural underpinnings of this simulation could be found in wide neural circuits

that involve canonical and mirror neurons [Rizzolatti et al., 1996b]. Furthermore,

the embodied theory of meanings known as the Indexical Hypothesis, holds that

sentences become meaningful through grounding their interpretation in affordances

[Kaschak and Glenberg, 2000]; that is, the meaning of words in sentences is emergent

from the mesh of affordances, learning history, and goals [Glenberg and Robertson,

2000]. More specifically, in language comprehension studies [Glenberg and Kaschak,
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2002], it has been observed that sentences are understood by creating a simulation

of the actions that underlie them (Action-sentence Compatibility Effect).

Taken together, these studies suggest that conceptualization and language rep-

resentations are formed through sensorimotor experience; that is, language repres-

entations are not related to abstract amodal symbols but they are grounded in per-

ception and sensorimotor knowledge (i.e. perceptual multi-modal symbols). Despite

all the aforementioned multidisciplinary studies, the interaction between language

comprehension and action is not yet fully understood. The aim of this study is to

create a cognitive architecture that enables the iCub humanoid robot to acquire the

meaning of abstract action words, and further, that can contribute to the elabora-

tion of a theory on the relations between perception, motor behaviours and language

representations.

7.1.1 Lexicon Development and Embodied Conceptualiza-

tion

Studies conducted on children’s early vocabulary acquisition have shown that, when

children learn to speak, they first learn concrete nouns (e.g. object’s name) and

then the abstract ones (e.g. verbs) [McGhee-Bidlack et al., 1991]. While concrete

language refers to tangible entities characterized by a direct mapping to the percep-

tual world, more general and abstract terms are only indirectly related to perceptual

inputs [Barsalou, 1999, Wiemer-Hastings and Xu, 2005]. This is why the problem

of abstract concept acquisition cannot be simply resolved by directly linking words

to the entities and concepts to which they refer. Nevertheless, the transition from

highly concrete concepts to the abstract ones is gradual. That is, the categorization

of concrete and abstract terms cannot be simply regarded as a dichotomy [Wiemer-

Hastings et al., 2001] but there is instead a continuum in the level of abstractness

according to which all words can be categorized.

Recent studies have provided evidence for supporting the idea that the concep-

tualization is embodied. Categorization is not just related to objective properties
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of objects but also to the sensorimotor interaction with the physical environment

[Gallese and Lakoff, 2005]; this means that an object is categorized not only in terms

of its perceptual and visual properties, but also according to the motor programs

(i.e. affordances) that can be performed on/with it. In a hierarchical organization

of categories, like for example “furniture/chair/rocking chair”, the category in the

middle of this hierarchy, called “basic-level” category [Rosch, 1999], tends to be

learned earlier and to be remembered more easily than other words in the hierarchy.

The reason why this happens, as remarked in [Gallese and Lakoff, 2005, Arbib et al.,

2008], is that the basic-level categories have corresponding mental images and hu-

man beings have motor programs to interact with them (while it is not the case

for categories like “furniture” for example). Further support to the embodiment of

concepts has been provided. As exposed in [Arbib et al., 2008], many concepts can

be defined as “sit” and “chair” via the multi-modal integration of different input

signals (e.g. vision, proprioception, language, etc.). Words must link to non-verbal

experience, which is both perceptual (vision) and behavioural (action) [Arbib et al.,

2008]. Along the same line of research, different studies ranging from behavioural

experiments and neuroscience to computational modelling, have investigated the

integration of vision, action and language through an embodied approach. In par-

ticular, in [Caligiore and Fischer, 2013], it has been suggested that vision, action

and language form an integrated and dynamic system that is attuned to the con-

straints of its bodily implementation. Furthermore, the embodiment of cognition is

supported by different behavioural studies, which have shown that seeing objects

automatically activate plans for actions directed toward it [Tucker et al., 1998]; that

is, the observation of an object can activate the motor activity related with it (i.e.

object’s affordances) [Tucker et al., 1998]. Analogous results have been observed in

case of linguistic stimuli; that is, object names induce similar action planning effects

as seeing the objects themselves [Tucker and Ellis, 2004, Borghi et al., 2004].

In the study proposed in this chapter, a cognitive architecture is implemented to

enable the iCub humanoid to ground the meaning of abstract action words in per-

128



ception and sensorimotor experience. This permits to analyse the relations between

objects, actions and language representations. In the experiment, the robot inter-

acts in the environment with tools that permit the performance of goal-oriented

actions. As proposed in [Gibson, 1977], for human beings tools are detached objects

that afford manipulation: an elongated object of moderate size, graspable at one

end and weighted at the other, if used to hit or strike, it is a hammer; a rigid object

with a sharp dihedral angle and a blade that affords cutting and scraping, it is a

knife; a writing tool that leaves traces when applied to surfaces and thus affords

trace-making, it is a pencil [Gibson, 1977]. The affordances for object manipulation

include the visual cues indicating that an object or a portion of it constitutes a

suitable target for a stable grasp [Oztop et al., 2004]. Recent studies with human

participants have suggested that the internal representation for a new tool used by

the brain might be encoded in terms of specific past experiences which consist of

brief feed-forward movement segments used in the initial exploration of the tool

[Mah and Mussa-Ivaldi, 2003]. Subsequently, a tool task is solved by dynamically

combining these sequences [Mah and Mussa-Ivaldi, 2003].

The studies presented in this section provided useful insights for the development

of the experiment presented in this chapter.

7.2 Related Computational Models

Recently, cognitive robotics models have started to investigate some of the issues

related to language development. However, attempts to model the acquisition of

abstract categories in robots are in fact non-existent. Different models have focused

on the acquisition of words related to objects and actions but they did not address

the problem of grounding abstract categories. For example, Sugita and Tani [2005]

propose a model for the acquisition of the meaning of simple linguistic commands.

A mobile robot acquires the meaning of two-words sentences through the transla-

tion of linguistic commands into context-dependent behaviours. In [Yamashita and
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Tani, 2008] a humanoid robot learns to generate object manipulation behaviours

by a functional hierarchy which self-organizes through multiple time-scales in the

neural activity of the neural network based model. In [Dominey et al., 2009] a model

for the learning of a cooperative assembly task has been presented; a user can guide

the robot through an arbitrary, task relevant, motor sequence via spoken commands

and the robot can acquire on the fly the meaning of novel linguistic instructions

and new behavioural skills by grounding the new commands in combinations of pre-

existing motor primitives. In [Farkaš et al., 2012] a model for the learning of actions

oriented toward objects in the iCub robot peripersonal space has been proposed;

the model can generalize novel action-target combinations with randomized initial

arm position and it can adapt its behaviour in case the action-target changes during

motor execution. In [Kalkan et al.] the interactions of a robot with its environment

have been used to create concepts typically represented by verbs in language. Au-

thors have argued that verbs typically refer to the generation of a specific type of

effect rather than a specific type of action. In the model they propose, behaviours

are represented in terms of the produced effects. In [Yürüten et al., 2012] a model

for the learning of adjectives and nouns from affordances has been presented; the

iCub humanoid robot is enabled to learn nouns and adjectives from sensorimotor

interactions and to predict the effects of the interaction with objects (e.g. labelled

as verbs). The categorization of objects in the model proposed in [Yürüten et al.,

2012], is done in terms of the functional view of the object rather than in terms of

objects appearance. All the presented models focused on the learning of different

lexical categories (e.g. adjectives, nouns and verbs) which can be directly mapped

into physical referents in the real world (i.e. concrete concepts).

This chapter presents a novel embodied cognitive robotic model for the ground-

ing of abstract action words through the multi-modal integration of different input

signals (i.e. vision, proprioception and language). In particular, a concept like

“USE” has been defined in terms of the actions that can be performed with selected

tools (e.g. “CUT” and “KNIFE” or “PAINT” and “’BRUSH”, etc.). Therefore, the
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grounding of abstract action words has been achieved by linking non-verbal know-

ledge, both perceptual (vision) and behavioural (action), to words [Arbib et al.,

2008]. The proposed model represents the first attempt in grounding the meaning

of general words in perceptual and sensorimotor experience.

By exploiting the hierarchical recursive structures, observed in both language

and the biological motor system, the implementation of an embodied computational

model permitted to ground the meaning of abstract action words through the hier-

archical organization of motor primitives and perceptual knowledge. The study aims

the investigation of how compositional actions and symbol manipulation capabilit-

ies can be integrated to bootstrap higher-level language representations. In the

proposed model motor primitives, integrated and hierarchically organized, enable

the execution of more complex behaviour and therefore scaffold the emergence of

higher-level capabilities. In such scenario, sequences of linguistic inputs, provided by

an external experimenter to guide the organization of the robot’s knowledge, can be

interpreted in terms of the robot internal language and motor repertoire. This leads

to the development of higher-order concepts grounded on simple words and action

primitives. In the proposed framework, the learning and representation of composi-

tional lexicon and its integration with embodied sensorimotor categories, developed

during object-body interactions, is fundamental for bootstrapping the process of

language acquisition. Novel lexical terms can be continually acquired throughout

the course of the robot’s development, during new sensorimotor interactions with

the environment, through linguistic descriptions.

As an extension of the model presented in Chapter 6, a neural network model that

takes into account the sensorimotor features of the iCub robot was implemented. In

the model presented in Chapter 6 sequences of linguistic inputs, consisting of verbs

only, led to the development of higher-order concepts (e.g. “ACCEPT”, “REJECT”)

grounded on basic motor primitives (e.g. “PUSH”, “PULL”). Higher-order symbolic

representations were indirectly grounded in action primitives directly grounded in

sensorimotor experience. Simulation results have shown that motor primitives have
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different activation patterns according to the action’s sequence in which they are

contained. By exploiting the results presented in Chapter 6, for the implementa-

tion of the new model more complex actions (e.g. “CUT”, “HIT”, “PAINT”, etc.)

were built by integrating low level motor primitives (e.g. “PUSH - PULL”, “LIFT -

LOWER”, “MOVE LEFT - MOVE RIGHT”) iterated for a certain number of time

steps. Additionally, in the architecture proposed in this chapter, more realistic rep-

resentations of the sensorimotor inputs were included. Abstract representations of

actions (“one-hot” encoding binary vectors) used in Chapter 6, were replaced with

the joints values recorded from the iCub robot right arm. Furthermore, the new

model has been scaled up to handle a large action repertoire resulting from different

combinations of joint activations, and the visual input captured from the robot’s

cameras has been included as an input unit of the model. Differently from the

previous architecture, in this experiment the execution of actions required the inter-

actions with a number of objects/tools (e.g. “KNIFE”, “HAMMER”, “BRUSH”,

etc.) and the linguistic instructions provided to the robot consisted of action and ob-

ject names. Indeed, in the model proposed in this chapter the acquisition of lexical

categories is achieved by integrating three different modality inputs: proprioceptive

input (joint values), visual input (object features) and linguistic instructions (sen-

tences consisting of a verb and a noun). Through the development of this study,

the hierarchical organization of concepts directly linked to sensorimotor experience

permitted the acquisition of higher-level words and categories.

7.3 Model Description

According to embodiment, intelligence and mental processes are deeply influenced

by the structure of the body and by motor abilities. Therefore the integration of

a neural network model into a robotic platform can be beneficial for enabling the

process of the grounding of language. In this study, partial recurrent neural net-

works (RNNs) were used to model the mechanisms underlying motor and linguistic
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sequence processing in the iCub robot. The use of RNN enabled the learning of

higher-order concepts based on temporal sequences of motor primitives. Indeed, the

network was trained with dynamical sequences of I/O patterns which allow the robot

to learn actions that develop in time (temporal sequences) through the tuning of the

neural network parameters (connection weights). The proposed architecture, based

on a 3-layer Jordan simple recurrent neural network [Jordan, 1986], is presented in

figure 7.1.

Figure 7.1: Illustration of the implemented multi-modal neural network model

A Jordan network, which has feedback connections from the output to the input

units, is a discrete-time RNN in which the processing occurs in discrete steps and

the relation between input/output units is governed by a functional equation that

can be either linear or non-linear. In a Jordan network, activations of the output

units of the network at time t− 1 are available to the input units at time t (through

the state units), via connections which may be modified during the training. The

feedback of the output neurons allows the network’s input units to see the previous
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output, and hence the subsequent behaviour can be shaped by previous responses.

Considering that language is inherently multi-modal, in the sense that it uses

many input modalities linked together (e.g. sight, hearing, touch, motor actions,

etc.), it follows that in the brain there is no single “module” for language [Gallese and

Lakoff, 2005]. For example, according to this proposal, the concept “grasp” gets its

meaning through the ability to imagine, perform, and perceive “grasping” [Gallese

and Lakoff, 2005]. Therefore, the artificial system proposed for the acquisition of ab-

stract action words is multi-modal and the achievement of conceptualization requires

the activation of multi-modal information. The actions used to ground language are

multi-modal themselves [Gallese and Lakoff, 2005]; for example, the action of “CUT-

TING” has both a motor component (what you do in “CUTTING”) and various

perceptual components (what it looks like for someone to “CUT” and what it looks

like an object used to “CUT”) [Gallese and Lakoff, 2005]. The proposed architecture

has been conceived to receive the linguistic, visual and proprioceptive input mod-

alities and to output words, motor responses and object representations (Fig.7.1).

The visual and sensorimotor inputs have been recorded from the iCub sensors while

the linguistic inputs are binary vectors for which the “one-hot” encoding has been

adopted. Vision, actions and language are integrated in order to ground abstract

action words (e.g. “USE”, “MAKE”) in perceptual and sensorimotor knowledge.

The general overview of the implemented software architecture is presented in fig-

ure 7.2. The iCub robot is connected with the rest of the software architecture

through the “iCub Module” that sends the proprioceptive input read from the

iCub encoders to the “Neural Network Controller” and transmits the control

signal in output from the “Neural Network Controller” to the real robot. The

exchange of information between the robot and all the other software modules is

done through the YARP middle-ware [Metta et al., 2006] which, supplying ports

for reading/writing information, provides a useful interface between the user code

and the iCub robot. The “Object Detector” module reads a visual stream from

the iCub cameras and, classifying objects according to their features, produces the
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visual input for the “Neural Network Controller”. Additionally, the “Object

Detector” module extracts the position of the segmented objects and send this

information to the “Head Tracker” module that moves the head of the iCub robot

to the position received on-line from the “Object Detector” module.

Head Tracker Object Detector

iCub Module Neural Network 
Model

yarpview
 H

ea
d 

P o
si

tio
n

Object
Position

Visual Sig n al

Next Joint Value

Proprioceptive 
Signal

Visual
Stream

Object Segmentation Image

yarpview
right_camera

yarpview 
left_camera

Values from
Sensors

Values for
Actuators

Figure 7.2: Illustration of the implemented software architecture

The visual stream read from the iCub cameras and the segmented objects are

displayed through the “yarpview” devices, which are the image viewers provided

by the YARP middle-ware [Metta et al., 2006].

7.3.1 Input and Output Coding

The input layer of the neural network model presented in this chapter (Fig.7.1)

consists of five units: action’s words (14 neurons), proprioceptive input (7 neur-

ons), object’s words (12 neurons), visual input (16 neurons) and the state units (7

neurons). Further details about the input layer of the network are provided below

(Fig.7.1):
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• Language: The linguistic input consists of sequences of words (i.e. verbs

and nouns). The network has two units for the linguistic input; one is related

to action words encoding, while the second one is for the naming of objects

[Cangelosi and Parisi, 2004]. Experiments on the neural processing of verbs

and nouns have shown that the left temporal neocortex plays a crucial role for

nouns processing, while action’s words processing involves additional regions

of the left dorsolateral prefrontal cortex [Perani et al., 1999]. This is why the

model was conceived with different input units for the two different word’s

categories (a-priori knowledge of word’s classes).

• Proprioception: The proprioceptive signal was recorded from the iCub hu-

manoid robot while performing the desired action primitives. The joint angles

of the robot right arm were recorded and used during the sensorimotor training

of the model. Additional details about the sensorimotor encoding are provided

in Section 7.3.1.1.

• Vision: From the visual stream captured by the robot’s cameras, object’s

features (i.e. dimension, colour and shape) were extracted. Additional details

about the visual encoding are described in Section 7.3.1.1.

• State Units: The state units contain the activation values of the proprio-

ceptive output units of the network at time t − 1 that become available to

the input units at time t via connections which can be modified during the

training. The feedback of the proprioceptive output neurons allows the net-

work’s input units to see its own previous output, and hence the subsequent

behaviour can be shaped by previous responses.

The hidden units of the model, by integrating perceptual, sensorimotor and

linguistic knowledge, encode the meanings of words. The number of neurons in

the hidden layer has been tuned according to the specific training stage of the

network. The selected number of hidden neurons was large enough to ensure a

sufficient number of degrees of freedom for the network function and small enough
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to minimize the risk of loss of generalization of the network. The output layer of

the network produces words associated to actions and objects, motor responses and

the representation of object features.

7.3.1.1 Proprioceptive and Visual Data Set

The hierarchical structure of motor primitives is explicit and defined a-priori in

order to train the robot to perform specific action sequences and acquire the de-

sired words and action categories. The learning process in which an experimenter

teaches to the robot different word categories through the physical interaction with

the environment is targeted. The network is trained through a supervised learning

algorithm (i.e. back-propagation); therefore, before the training can be performed,

it is necessary to collect the data set for the input/output mapping. For the sen-

sorimotor training of the iCub humanoid robot, motor primitives were planned by

determining the desired end effector position in the 3D Cartesian space and then

finding the joint configuration that can produce the required movements [Oztop and

Arbib, 2002]. The desired task space behaviour was mapped into the appropriate

joint trajectories by solving the inverse kinematics problem. The seven joint values

of the iCub right arm (Shoulder Pitch, Shoulder Roll, Shoulder Yaw, Elbow, Wrist

pronosupination, Wrist Pitch and Wrist Yaw) were taken into account. The inverse

kinematics problem was solved using the Cartesian interface available in the iCub

software repository [Pattacini et al., 2010]. The Cartesian interface determines the

joint’s vector q ∈ R7 of the iCub right arm in order to perform the desired move-

ments described in terms of position xd ∈ R3 and orientation αd ∈ R4 of the end

effector. Positions and orientation refer to the root frame attached to the waist of

the iCub; the orientation αd, is represented in axis/angle notation (three compon-

ents for the rotation axis and a fourth component for the rotation angle expressed

in radians).

Given the position xd ∈ R3 and orientation αd ∈ R4 of the iCub end effector:
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xd =

[
x y z

]T
∈ R3

αd =

([
αx αy αz

]T
, θ

)
∈ R4

(7.1)

the joint space vector q ∈ R7 for different motor primitives is determined:

q =

[
θsp θsr θsy θe θwpr θwp θwy

]T
∈ R7 (7.2)

By using the Cartesian interface, the encoders values of the seven joints of the

iCub arm, which permitted to perform twelve different actions, were recorded. For

each action, the robot’s task started and ended from the same home position. Six

of the twelve action primitives were iterative, while the remaining ones were non-

iterative. The six iterative actions served to ground the meaning of the word “USE”,

while the non-iterative actions were employed to ground the meaning of “MAKE”.

Poses (position and orientation) associated to the twelve actions, from which the

iCub arm joint values were recorded, are shown in (Tab.7.1 and Tab.7.2).

Action Name
Position Orientation

Objectx y z αx αy αz θ
HOME −0.29 0.16 0.0 0.12 0.76 −0.64 3.0 Name

A
ct

io
n
s

re
la

te
d

to
U

S
E

IT
E

R
A

T
IV

E
A

C
T

IO
N

S

CHOP
−0.24 0.16 0.0 0.12 0.76 −0.64 3.0

KNIFE−0.29 0.16 0.0 0.12 0.76 −0.64 3.0

CUT
−0.21 0.16 0.0 0.12 0.76 −0.64 3.0

SAW−0.29 0.16 0.0 0.12 0.76 −0.64 3.0

HIT
−0.29 0.16 0.05 0.12 0.76 −0.64 3.0

HAMMER−0.29 0.16 0.0 0.12 0.76 −0.64 3.0

POUND
−0.29 0.16 0.08 0.12 0.76 −0.64 3.0

STONE−0.29 0.16 0.0 0.12 0.76 −0.64 3.0

DRAW
−0.29 0.21 0.0 0.12 0.76 −0.64 3.0

PENCIL−0.29 0.16 0.0 0.12 0.76 −0.64 3.0

PAINT
−0.29 0.24 0.0 0.12 0.76 −0.64 3.0

BRUSH−0.29 0.16 0.0 0.12 0.76 −0.64 3.0

Table 7.1: Poses associated to the six iterative actions from which the iCub arm
joint values were recorded. The last column of the table contains the name of objects
used to perform actions
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Action Name
Position Orientation

Objectx y z αx αy αz θ
HOME −0.29 0.16 0.0 0.12 0.76 −0.64 3.0 Name

A
ct

io
n
s

re
la

te
d

to
M

A
K

E

N
O

N
-I

T
E

R
A

T
IV

E
A

C
T

IO
N

S

SLICE
−0.24 0.13 0.0 0.12 0.76 −0.64 3.0

SLICER−0.29 0.16 0.0 0.12 0.76 −0.64 3.0

SLIT
−0.21 0.11 0.0 0.12 0.76 −0.64 3.0

BLADE−0.29 0.16 0.0 0.12 0.76 −0.64 3.0

HOLE
−0.29 0.1 0.05 0.12 0.76 −0.64 3.0

NAIL−0.29 0.16 0.0 0.12 0.76 −0.64 3.0

HOLLOW
−0.29 0.22 0.08 0.12 0.76 −0.64 3.0

PIN−0.29 0.16 0.0 0.12 0.76 −0.64 3.0

SCRIBBLE
−0.22 0.21 0.05 0.12 0.76 −0.64 3.0

PEN−0.29 0.16 0.0 0.12 0.76 −0.64 3.0

SCRAWL
−0.24 0.24 0.02 0.12 0.76 −0.64 3.0

CRAYON−0.29 0.16 0.0 0.12 0.76 −0.64 3.0

Table 7.2: Poses associated to the six non-iterative actions from which the iCub
arm joint values were recorded. The last column of the table contains the name of
objects used to perform actions

In determining the robot’s sensorimotor trajectories and to improve the learning

capacity of the model, overlapping between sensorimotor sequences was avoided.

The robot could perform each of the actions with different hand configurations

(e.g. precision or power grasp) which were pre-programmed. The selected hand

configuration depended on the dimension of the tool employed during each task.

Objects of big dimensions required a power grasp, while for small objects a precision

grasp was used.

Each action was performed by changing the joint angle values from the initial

configuration to the target configuration. By solving the inverse kinematics problem,

joint values expressed in degrees were recorded. Before using the joint values as the

training set of the network, the recorded values were scaled in the interval [0, 1]

using the following formula:

norm(ji) =
ji − Jmin

Jmax − Jmin
(7.3)

where Jmin and Jmax represent the minimum and maximum values for the joint

ji to be normalized. The recorded sensorimotor trajectories, after the normalization
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in the interval [0, 1], were used as teaching sequences of the model.

(a) HOME (b) PUSH - PULL

(c) LIFT - LOWER (d) MOVE LEFT - RIGHT

Figure 7.3: Illustration of some of the motor primitives taught to the iCub robot:
HOME POSITION (a), PUSH - PULL (b), LIFT - LOWER (c), MOVE LEFT -
MOVE RIGHT (d))

Each training sequence consisted of six elements which corresponded to three

iterations of the same action. Each element of the action’s sequences is a motor

primitive (Fig.7.3). The control flow for the proprioceptive input is shown in figure

7.4 from which it is possible to observe that, after the initialization of the robot’s

encoders to the desired home position, the neural network model computes the new

values for encoders to be sent to the robot (Algorithm 7.3.1).
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Read Encoder's Home Values from File

Denormalize Encoder's Home Values

Set Encoder's to Home Values 

Normalize Encoder's Initial Values

Send Encoder's Initial Values to NN 

Read Encoder's Initial Values from the Robot

Set Encoder's Value as Input of the NN

Calculate Output of the NN

Send New Encoder's Values to the Robot

Read New  Encoder's Values from NN

Denormalize Encoder's Values

Set Encoders to New Values

Read New Encoder's Values

Normalize Encoder's Values

Send New Encoder's Values to NN

ROBOT NN MODEL

Figure 7.4: Illustration of the control flow for the proprioceptive input

The control of the proprioceptive input is described in (Algorithm 7.3.1).

Algorithm 7.3.1: Control Flow Proprioceptive Input(AN, JV )

GIV EN : The encoding of actionwords and joint values{AN, JV}

OUTPUT : The appropriate lexical and action categories{VC, AC}

−Load encoding of words fromfile

−Read proprioceptive input from iCub encoders

−According to the current state of sensors, the linguistic input

triggers the production of the appropriate output signal

−Calculate error (throughBP )

−Send the output of the network (control signal) to the iCub

return ({AN, JV})

Before sending the new encoder values to the iCub robot, the joint values were
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denormalized in the original interval according to the following formula:

denorm(ji) = Jmin + norm(ji)× (Jmax − Jmin) (7.4)

Actions were executed in presence of different objects classified using simple

visual routines. The iCub robot categorized the presented objects not only according

to visual features, but also in terms of the possible actions that can be carried out

upon them (e.g. “CUTTING”, “HITTING”, etc.). In the field of neural processing

of vision, according to the two-streams hypothesis [Goodale and Milner, 1992] the

neural substrates of visual perception (ventral pathway) are distinct from those

underlying the visual control of actions (dorsal pathway). In the proposed model

the visual input is intended in terms of neural processing of vision involved with

objects identification and recognition, and form representations (ventral stream).

Figure 7.5 and 7.6 show the visual representations of features extracted from the

objects used to perform the desired actions.

Figure 7.5: Binary matrices representing the six objects used to perform the iterative
actions

Objects features are represented in a 4 × 4 matrix in which each value can be

ether 0 or 1. The features extracted from the perceived objects were dimension,

colour and shape. The first element of the matrix is related to the dimension of the

object (0 for small, 1 for big objects). The second, third and forth elements of the
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matrix encode the colour of the object in RGB values, while the remaining twelve

elements are related to the shape of the object.

Figure 7.6: Binary matrices representing the six objects used to perform the non-
iterative actions

For example, the first binary matrix in figure 7.5 corresponds to a “KNIFE”

with the following features: its dimension is small (encoded as 0), its colour is red

(encoded as 100) and its shape is similar to the predefined shape category 1 (encoded

as 100000000000).

7.4 Robotic Task and Training Strategy

The iCub humanoid robot has been adopted as the robotic platform for this study

[Metta et al., 2008]. The proposed neural network model is used to control the

robot’s behaviour by following commands organized in linguistic sequences. More

specifically, the experiment enabled the robot to learn a set of behaviours by act-

ing with specific tools and the associated two-words sentences consisting of a verb

and a noun (Fig.7.7). Indeed, as formulated in [Arbib, 2002] the “verb-argument

structure” expressing an action-object frame is a basic component of modern hu-

man languages. Additionally, according to the “Verb Island hypothesis” the child’s

earliest grammatical organization is verb-item specific [Tomasello, 1992]. Initially

children use grammatical constructions centred on separated, individual verb items
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reflecting specific core meanings. Gradually, children acquire a general construct

of verb through the merging of verb islands with similar meanings and syntactic

constructs [Cangelosi, 2010].

The task for the iCub robot consisted of learning to recognize a set of tools

characterized by different colour, size and shape (e.g. “KNIFE”, “HAMMER”,

“BRUSH”, etc.) presented to it and perform object related actions (e.g. “CUT”,

“HIT”, “PAINT”, etc.). Subsequently the robot learned to name the objects and

actions. Finally, the robot was trained to learn abstract action words guided by new

linguistic sequences that the robot interpreted in terms of its own internal motor

and language repertoire (Fig.7.7).

Recognizing Objects

Learning Actions

Naming Objects

Naming Actions

Learning Abstract Action Words

DEVELOPMENT

Recognizing Objects

KNIFE

USE
KNIFE

1. Pre-Linguistic
Learning

2. Linguistic-Perceptual
Learning

(Concrete Words)

3. Linguistic-Abstract
Learning

(Abstract Action Words)

CHOPPUSH

Figure 7.7: The task for the robot consists of: 1. recognizing tools and learning
object related actions, 2. naming of objects and actions, 3. learning abstract action
words by hierarchically organizing the knowledge directly grounded in perception
and sensorimotor experience during the stages 1. and 2.

The implemented training strategy takes inspiration from developmental learn-

ing. Studies conducted in developmental psychology and neurophysiology have
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revealed that perception and sensorimotor learning are pre-linguistic [Jeannerod,

1997]. That is, children acquire some motor behaviour and the capability to perceive

objects before they learn to name them. Taking inspiration from these studies, the

training of the architecture has been organized in three incremental stages (Fig.7.7):

1. Pre-Linguistic Learning: The model is trained to recognize a set of tools

(e.g. “KNIFE”, “HAMMER”, “BRUSH”, etc.) and learn object-related ac-

tions (e.g. “CUT”, “HIT”, “PAINT”, etc.), both iterative and non-iterative,

obtained by the integration of motor primitives (e.g. “PUSH”, “PULL”, etc.).

The behaviours learned by acting with objects permit to ground the meaning of

symbols in perceptual and sensorimotor experience (perceptual/sensorimotor

stage). During this training stage, the neural network model learns to control

the iCub arm in the joint space. The robot receives the proprioceptive input

in form of target joint angles, which act as motor commands for the iCub in

generating movements and interacting with the environment. Through the

training process, the model learns to predict the next element in the joint

sequence that permits to perform the desired behaviour.

2. Linguistic-Perceptual Learning: The model is trained to acquire some

lexical terms through the naming of objects and actions directly grounded

in perception and sensorimotor experience. This is the first stage of lexicon

acquisition, when it is possible to directly link lexical terms to perceptual and

sensorimotor experience. The first two stages of the training enabled the direct

grounding of words into perceptual and sensorimotor inputs.

3. Linguistic-Abstract Learning: New words, which refer to abstract action

concepts, are grounded by integrating and recalling the visual and sensorimo-

tor knowledge that has previously been directly linked to basic concepts. In

response to linguistic inputs, the model computes the corresponding behavi-

oural patterns. Indeed, the robot learns abstract action words by receiving

linguistic commands that are interpreted in terms of the robot internal motor
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and linguistic repertoire. This phase of the training represents the abstract

stage of language acquisition when new concepts are formed by integrating the

meaning of lexical terms acquired at the previous stage of the training. At

this stage the robot, guided by linguistic instructions, can organize the know-

ledge directly grounded in perception and sensorimotor knowledge to derive

more abstract concepts. The symbol manipulation capabilities acquired by

the robot permit to drive action and perceptual knowledge in order to form

new concepts.

At the end of the training, semantic meanings can be gathered via lexicon organ-

ization that recalls the perceptual knowledge and motor sequences in which lexicon

is grounded. In particular, the successful training of the model enables the ro-

bot to ground the meaning of words like “USE” and “MAKE” in the perceptual

(e.g. “KNIFE”, “HAMMER”, “BRUSH”, etc.) and sensorimotor experience (e.g.

“CUT”, “HIT”, “DRAW”) previously grounded. Words like “KNIFE”, “HAM-

MER”, “CUT”, “HIT”, etc., in the proposed hierarchical organization of lexical

categories, representing basic words, are directly grounded in perceptual and sensor-

imotor experience through a one-to-one mapping. Words like “USE” and “MAKE”,

being superordinate words and referring to different events and situations, are char-

acterized by a one-to-many mapping, that is, a single linguistic label is associated to

different basic and subordinate words [Borghi et al., 2011]. Through the described

training strategy the iCub robot is enabled to interpret new linguistic instructions

in terms of its own internal motor and language repertoire. The hierarchical organ-

ization of concepts that the model creates can represent a useful mechanism for the

acquisition and the comprehension of higher-level concepts.

The training of the neural network model has to produce an efficient classifica-

tion of the inputs into different categories (Algorithm 7.4.1). Through the tuning of

the neural network parameters (connection weights) the model learns to correctly

classify the input signals into lexical, sensorimotor and perceptual categories. After

collecting the input/target pattern sets, before proceeding with the training of the
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model, it is necessary to define the topology of the network, the number of neurons

in the input, hidden and output layers, the training parameters (i.e. learning rate

and momentum) and to select the activation function. The training of the model was

performed through back-propagation and the network performance was analysed in

terms of its mean-squared error (MSE), which is the square of the average differ-

ence between the actual and the desirable output. By finding the optimal values of

the network weights that minimize the difference between teaching sequences and

the actual outputs, through the back-propagation algorithm, the network learned

the mapping between input and output values that permitted to perform the de-

sired tasks. In the proposed study, the back-propagation algorithm is not used for

mimicking the learning process of biological neural systems, but rather as a gen-

eral learning rule. Results obtained reflect characteristic features of the proposed

network architecture, rather than the learning algorithm. Similar results could be

obtained using other biologically more plausible learning algorithm [Yamashita and

Tani, 2008]. The maximum number of iterations of the learning algorithm is 10000.

In order to avoid over-training of the network, the back-propagation algorithm was

terminated as soon as the error reached the threshold value of 0.001 (stopping cri-

terion of the learning algorithm). Indeed, the back-propagation learning as possible

stopping criteria includes that the total error of the network falls below a prede-

termined threshold value or that a certain number of epochs are completed; here a

combination of the two (i.e. whichever of the two occurs first) is used. The threshold

value of 0.001 was predetermined training several networks and testing the perform-

ance of each network trained. The activation function of neurons in the hidden

and output layers is a logistic function defined in the interval [0, 1] that permits to

introduce non-linearity to the training in order to improve the convergence of the

back-propagation algorithm.

The implemented model has a simulation mode that permits to run the algorithm

either in training or testing mode. In case of training, the network’s initial weights

were drawn randomly from a uniform distribution [−0.1, 0.1]. The training of an
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artificial neural network can be implemented in incremental mode or batch mode.

When the incremental mode is selected, the gradient descent is computed and the

weights are updated after each input is applied to the network. Through the training

in batch mode, all the inputs in the training set are applied to the network before

the weights are updated. For the task addressed in this Chapter, batch training

demonstrated to be significantly faster and produces smaller errors than incremental

training. Indeed, through the back-propagation batch learning algorithm, all weight

updates were summed over the presentation of the whole training sequences and

subsequently, the accumulated weight updates were performed. During each itera-

tion of the algorithm, the accumulation of the variation of the weights were reset

to zero and for each pattern set the inputs were set to zero and the state units

initialised to 0.5. Hence, the new weight updates for the whole pattern set were

computed until all sequences were correctly classified or the stopping criterion was

satisfied (threshold on the error value). A description of the learning algorithm is

given in (Algorithm 7.4.1). Given the linguistic, proprioceptive and visual inputs,

the training of the model produces the categorization of the inputs into different

categories (i.e. lexical, sensorimotor, and object categories).

Carrying out different simulations, it has been possible to find the network’s

parameters that ensured an expected training and test error as small as possible

and hence a network that performed best the robotic task described in Section 7.4.

Results of the performed simulations are presented in the next sections.
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Algorithm 7.4.1: Classification of Inputs(AN, JV,ON,OF )

GIV EN : The input pattern set {AN, JV, ON, OF}

OUTPUT : The lexical, action, and object categories{(VC,NC), AC, OC}

−Load network topology, training parameters and dataset

−Generate randomseed

if simulationmode is training

then Randomize network′s initial weights [-0.1, 0.1]

for i← 0 to maxCycles

do



Reset delta accumulation

for p← 0 to patternSetSequenceSize

do


Reset all inputs of the network to 0

Initialize state units to 0.5

Learn the I/Omapping (connectionweights)

Update network′sweights

ComputeMSE

if MSE ≤ threshold

then Terminate the algorithm

return ({AN, JV, ON, OF})

7.5 Simulation Results

In order to evaluate the performance of the neural network model described in

Section 7.3, different experimental scenarios were devised. Before presenting the

performance and results of the implemented neural network model in the different

experimental conditions, the evaluation settings are presented.
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7.5.1 Evaluation Setting

The experiment was run in different training and testing conditions. Through the

performance of all the training stages, the model learned the associations between

words and the corresponding behavioural sensorimotor sequences and visual know-

ledge. During the performance of the devised tests, the capacity of the model to

output the appropriate behaviours corresponding to the given linguistic instructions

was verified. The implemented training strategy consisted of three incremental

stages, each of which corresponded to training the model in response to different

configurations of the input signals. At the end of the second stage of the training

(i.e. direct naming of objects and actions), the ability of the model to generalize

abstract action words was verified. Furthermore, in order to understand how the

model responded to the variation of the stimuli in input and further investigate how

internal representations of objects are related to action representations, the perform-

ance of the model was evaluated in response to an “incompatible condition” test.

During this test condition, the provided linguistic input was either inconsistent with

the objects perceived by the robot or with the actions typically associated to the

objects. Through this experimental condition it was possible to verify how the robot

reacted when the received linguistic command was in contrast with the perceived

context. The results of this test can be helpful in understanding the mechanisms

underlying positive as well as negative compatibility effects observed in behavioural

experiments [Borghi et al., 2004, Tucker and Ellis, 2004]. The “incompatible condi-

tion” test was performed at the end of the second stage of the training as well as at

the end of the third stage.

The collected dataset consisted of 24 sequences, half of which served for the direct

grounding of basic concepts, while the rest twelve sequences were used to ground

abstract action word meanings. In order to assess the performance of the model

in response to different conditions, the obtained dataset was divided as described

below:

• Perceptual and Sensorimotor Mapping. The 24 sequences were split
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in two groups: 12 sequences were used for the perceptual and sensorimotor

training of the model and the remaining 12 sequences were silent.

• Direct Naming of Objects and Actions. The 24 sequences were split in

two groups: 12 sequences were used for the training (direct naming of objects

and actions) and the remaining 12 sequences were used for the test of the

model in order to assess the generalization capabilities of the network.

• Abstract Action Words Learning. The whole data set was used for the

training of the model, and the performance of the network were assessed in

response to the perturbation of the inputs of the model.

The performance of the generalization test at the end of the second stage of the

training aimed to verify the capacity of the model to generalize superordinate words

from basic words directly grounded in perception and sensorimotor experience.

7.6 Training Phase I

The first training stage of the model aimed to endow the robot with basic perceptual

and sensorimotor skills necessary for scaffolding higher-order capabilities. During

this phase of the training the robot acquired the knowledge related to visual prop-

erties of objects and learned to perform some motor behaviours. In particular, the

model was trained in order to recognize twelve tools and perform twelve actions

obtained by the integration of low level motor primitives. The model was trained

with the perceptual features of all the twelve object categories and with the sensor-

imotor sequences of all the twelve behavioural categories in a supervised manner.

In this stage, the network hidden layer consisted of 13 neurons and the training was

performed for 25 random seeds by activating the visual and proprioceptive inputs

only, while the linguistic inputs were silent. The network received in input twelve

sequences of six elements each. The training was successfully completed and objects

and actions were correctly categorized. The Mean Square Error (MSE) calculated
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at the end of this training stage is shown in figure 7.8(a), while figure 7.8(b) presents

the output and target joint values for one of the actions taught to the iCub.

(a) (b)

Figure 7.8: Training stage I. Mean Square Error (MSE) (a). Output and target
joint values for one of the actions taught to the iCub (b)

The successful performance of the Training Phase I permitted to acquire the basic

perceptual and sensorimotor knowledge to be used in the next stages of training for

the grounding of basic and abstract action words.

7.7 Training Phase II

The second stage of the training enabled the model to acquire linguistic capabilities

through the naming of objects and actions. During this stage of the training the

network created the connections between the sensorimotor/proprioceptive inputs

and the linguistic labels. Therefore, the four inputs of the model were all activated.

The network received in input twelve sequences of six elements each. The training

of the network has been performed for 25 random seeds. This stage of the training

has been performed on a network consisting of 13 neurons in the hidden layer;

nevertheless, the performance of the model as a function of the neurons in the

hidden layer were evaluated. In figure 7.9 the training error as a function of the

neurons in the hidden layer is shown.
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(a) (b)

Figure 7.9: Training stage II. (a) Mean Square Error (MSE) as a function of the
hidden layer size. (b) RMSE at iteration 2000

In particular, in figure 7.9(a) the MSE is compared for the hidden layer consisting

of 12, 13 and 14 hidden neurons. In figure 7.9(b) the MSE values recorded at the

iteration 2000 are shown. The network with 13 neurons in the hidden layer, having

the lowest MSE value, was selected to perform further analysis and tests. As it

is possible to observe from figure 7.10 the mean square error value of the network

with 13 neurons in the hidden layer for all the twelve input sequences, after 2000

iterations only, is smaller than 0.001 (stopping criterion of the learning algorithm).

Figure 7.10: Training stage II. Mean Square Error (MSE) for the model with 13
hidden neurons

In figure 7.11 activation values of hidden units show that during the time steps

[0, 36], the hidden units were alternatively activated, while during the time steps
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[37, 72] activation values followed a more stable and continuous pattern.

Figure 7.11: Training stage II. Raster plot of hidden units activation values

The different activation patterns of hidden units recorded during the time steps

[0, 36] and [37, 72] are due to the differences in the structure of the training sequences.

Indeed, half of the sequences are related to the learning of iterative actions, while the

remaining half of the training set is related to the learning of non-iterative actions.

The selected network successfully learned the input/output mappings for joint

values (Fig.7.12). In figure 7.12(a) the output and target values for one of the seven

joints of the iCub arm controlled by the network is shown. As it is possible to observe

from figure 7.12(a), the network after the training can output the appropriate joint

values for the iCub arm. During the time steps [0, 36] the plot shows the trend of the

joint values during the execution of iterative actions, while the time steps [37, 72] are

related to the joint values associated to the non-iterative actions. In figure 7.12(b)

output and target joint values for one of the twelve actions taught to the iCub are

shown. During the time steps [0, 13], [14, 27] and [28, 42] the trend of the plot is

154



repeated. These repetitions correspond to the three iterations of the same action.

(a) (b)

Figure 7.12: Training Stage II. Output and target values for one of the seven joints
of the iCub arm controlled by the network (a). Output and target joint values for
one of the actions taught to the iCub (b)

In order to have a quantitative measure of the similarity between the output and

target joint values over time, the Dynamic Time Warping (DTW) [Sakoe and Chiba,

1978] on joint sequences was computed. The DTW, differently from the Euclidean

distance (or warping) that cannot compensate for small distortions in time axis,

permits to calculate the similarity between behaviour (classification of behaviour)

over time. Indeed, the DTW is a time series alignment algorithm developed origin-

ally for speech recognition [Sakoe and Chiba, 1978]. The aim of DTW is to align

two sequences by warping the time axis iteratively until an optimal match between

the two sequences is found. Herein a formal definition of the DTW is provided. Let

X(x1, x2, . . . , xn) and Y (y1, y2, . . . , ym) be two series of length n and m, respectively

[Li et al., 2010]. The point-to-point correspondence relationship between X and

Y can be defined in a matrix M of dimension n × m; each element Mij indicates

the distance d(xi, yj) between xi and yj. Then the point-to-point alignment and

matching relationship between X and Y can be represented by a time warping path

W (w1, w2, . . . , wK), max(m,n) ≤ K < m + n − 1, where the element wk = (i, j)

indicates the alignment and matching relationship between xi and yj. Hence, the

dynamic time warping distance between the two series X and Y is defined as:
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DTW (X, Y ) = min
W

{
K∑
k=1

dk,W = 〈w1, w2, . . . , wK〉

}

where dk = d(xi, yj) indicates the distance represented as wk = (i, j) on the path

W .

The result of DTW confirmed that the output joint values over time are very

similar to the target values (DTW = 1.5286 un-normalized distance between se-

quences). Learning error and DTW for the 25 simulations, performed for different

random seeds and initial synaptic weights, are shown in figure 7.13 from which it is

possible to observe that the best results in terms of MSE and DTW are given by

the network trained during the simulation 14 which was used as a controller of the

iCub robot during the performance of the tests presented in Section 7.7.1.

(a) (b)

Figure 7.13: Training stage II. Comparison of MSE (a) and cumulative DTW (b)
computed during the 25 simulations performed for different random seeds and initial
synaptic weights

7.7.1 Robot Performance

After the off-line training, the model with the best performance has been used to

control the iCub robot. In order to enable the model to better adjust its internal

dynamics for reaching a specific target, each action was performed for twelve time

steps (instead of six as for the training of the model). The joint values recorded after

the performance of each action, were compared to the corresponding target values
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by performing the DTW (Fig.7.14). To better understand the capacity of the model

to categorize the proprioceptive input, the DTW of the actual joint values related

to each action reproduced by the model has been computed with respect to the

target joint values related to all the possible actions taught to the robot. Results of

the DTW are presented in the gray-maps in figure 7.14. Each row of the gray-map

represents the actual joint values produced by the model, while columns represent

the target joint values related to the different actions. By displaying the results of

the DTW in the proposed gray-map layout, it is easier to visualise the capacity of

the model to categorize the proprioceptive inputs and analyse the performance of

the robot in executing the desired behaviour.

(a) (b)

Figure 7.14: Training Stage II. Gray-map of the results of the Dynamic Time Warp-
ing performed on joint values: iterative actions (a), non-iterative actions (b)

From figure 7.14(a) it is possible to observe that five out of the six iterative

actions (i.e. “CHOP”, “CUT”, “HIT”, “POUND”, “DRAW”) have the lowest DTW

values (corresponding to cell of the gray-map of darker gray) when compared to their

corresponding target values, while in case of the “PAINT” action, the lowest DTW

value is obtained when compared to the target joint values related to “CUT”. In

other words, this means that the robot when asked to “PAINT” it performs an

action that, in terms of joint values, is closer to “CUT” than “PAINT”. From figure

7.14(b) it is possible to notice that all the six non-iterative actions were very well

performed and classified. Given the similarity among the six non-iterative actions,
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the DTW has low values in correspondence of more than one target. Nevertheless

the lowest DTW for the non-iterative actions is registered in correspondence of the

comparison with the appropriate targets.

A visual representation of the similarity of joint sequences in output from the

model is presented in the star plots in figure 7.16. Each action consisted of twelve

observations of seven variables (12-by-7 matrix). In each star plot observations are

represented as stars whose i-th spoke is proportional in length to the i-th coordinate

of the particular observation. Before creating the star plot, the matrix associated

to joint values was standardized (centred and scaled). For example, the start plot

in figure 7.15 represents joint values recorded during the “CHOP” action. Given

that the execution of each action requires the update of joint values from the home

to the target position, the matrix representing joint values (12× 7) was rearranged

(6 × 14) in order to show the variation of joint values during two consecutive time

steps (necessary to update joint values from the home to the target position). From

the figure 7.15 it is possible to observe that from the centre of the star depart 14

spokes, each of which corresponds to one of the 14 observed variables.

Figure 7.15: Training stage II. Star plot for joint values recorded during the CHOP
action

In figure 7.16(a) each row contains six star plots, each of which corresponds to

the joint values recorded during two consecutive time steps (necessary to perform
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one action and to update the joint values of the robot from the home to the target

position). For example, the star plots from 1 to 6 correspond to joint values related

to the “CHOP” action. The star plots of the iterative actions in figure 7.16(a)

provide a qualitative measure that confirms results obtained performing the DTW.

(a) (b)

Figure 7.16: Training stage II. Star plots for joint values: iterative actions (a),
non-iterative actions (b)

Indeed, as shown in figure 7.14(a), for the iterative actions the highest values

of the DTW are related to “PAINT” and “CHOP” (corresponding to cells of the

gray-map of lighter gray), that in case of the star plots (Fig.7.16(a)) correspond to

stars with different shapes along the six repetitions of the same action (stars in the

first and sixth rows). The start plots for the non-iterative actions are shown in figure

7.16(b). The high similarity among the star plots during the six repetitions of each

action shown in figure 7.16(b), confirms that all the six non-iterative actions are

very well categorized. Considering that each action is represented by twelve obser-

vations of seven variables (12-by-7 matrix), to visualize these multivariate data and

analyse the relationship between variables, it is necessary to simplify the problem

by replacing correlated variables with a single new variable. Principal Component

Analysis (PCA) is a quantitatively rigorous method for achieving this simplification.

The method generates a new set of variables, called principal components each of
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which is a linear combination of the original variables. All the principal components

are orthogonal to each other, so that there is no redundant information. On the

matrix associated to the joint values recorded during the execution of the twelve

actions, the PCA was performed. The PCA was first executed on the matrix of the

joint values related to the iterative actions (matrix 72-by-7). From figure 7.17(a) it

is possible to observe that the percent variance explained by the first three principal

components is roughly equal to 93%, while the plot in figure 7.17(b) shows the data

projected into the space defined by the first three principal components.

(a) (b)

Figure 7.17: Training Stage II. Principal Components Analysis of joint values re-
corded during the iterative actions: percent variability explained by each principal
component (a). Data projected onto the first three principal components (b)

The points in the 3-D plot in figure 7.17(b) represent the observations of the

seven joints values, with coordinates indicating the score of each observation for the

three principal components. Markers of different colours and shapes correspond to

the observations related to different actions. From figure 7.17(b) it is possible to

observe that the joint values related to the six iterative actions form twelve clusters

corresponding to the joint values of each action recorded during two consecutive

time steps. The observations displayed with the black cross markers correspond to

the joint values recorded during the execution of the “PAINT” action which, as it

has been shown in the gray-map of the DTW in figure 7.14(a) and in the start plots

in figure 7.16(a), is the action that has not been correctly categorized (i.e. highest
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DTW value) by the model. The PCA was then performed on the matrix of the joint

values related to the non-iterative actions (matrix 72-by-7). From figure 7.18(a) it

is possible to observe that the percent variance explained by the first three principal

components is around 91%. The plot in figure 7.18(b) shows the data projected

onto the first three principal components.

(a) (b)

Figure 7.18: Training Stage II. Principal Components Analysis of joint values recor-
ded during the non-iterative actions: percent variability explained by each principal
component (a). Data projected onto the first three principal components (b)

The points in the 3-D plot in figure 7.18(b) represent the observations of the

seven joint values, with coordinates indicating the score of each observation for the

three principal components. Markers of different colours and shapes correspond to

the observations related to different actions. From figure 7.18(b) it is possible to

observe that the joint values related to the six non-iterative actions form six clusters,

each of which corresponds to the joint values recorded during the execution of each

non-iterative action. Hence, the PCA confirms that the performance of the robot in

terms of action execution for the non-iterative actions is better than the performance

during the iterative ones. Indeed, the joint values related to the six non-iterative

actions are very well clustered. However, the mapping of the joint values associated

to the non-iterative actions was easier than learning the mapping of the joint values

associated to the iterative ones, which required to repetitively alternate the values

of the robot’s encoders from the home to the target values.
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The robot’s performance in terms of action’s execution has been evaluated in dif-

ferent conditions. In figure 7.19(a) the cumulative DTW (for all the twelve actions)

of the joint values is compared in different experimental conditions: with language

(LA), without language (NL), with verb only (VO) and with noun only (NO) in

input to the model. From figure 7.19(a) it is possible to observe that the robot

performance deteriorates when the linguistic input is not provided (NL condition).

(a) (b)

Figure 7.19: Cumulative DTW of the joint values compared in different experimental
conditions: with language (LA), without language (NL), with verb only (VO) and
with noun only (NO) (a). Cumulative DTW of the joint values compared in presence
(VI) and absence of the visual input (NV) (b)

Furthermore, the robot’s performance has been evaluated in absence of the visual

input. The cumulative DTW (for all the twelve actions) of the joint values is com-

pared in presence (VI) and absence of the visual input (NV) (Fig.7.19(b)). From

figure 7.19(b) it is possible to observe that the robot performance, when the visual

input is not provided, is even worst than in absence of linguistic input (Fig.7.19(a)).

Furthermore, when the perceptual input is deactivated, the hidden units of the

model follow a less structured and more chaotic pattern.

7.7.2 Generalization

After the training phase II, the capability of the model to generalize the meanings of

new words has been tested. In particular, the performance of the model in response

to new linguistic inputs, for which the network has never been trained on before,
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has been analysed. The new linguistic inputs, at these stage, are the abstract action

words that the network will learn during the third stage of training. During this

test, the model reads the visual and proprioceptive inputs related to objects and

actions from the robot’s sensors, while for the linguistic inputs, labels associated to

new words are read from text files. The DTW for joint values in output from the

model has been computed. Results are presented in the gray-maps in figure 7.20(a)

and 7.20(b).

(a) (b)

Figure 7.20: Gray-map for the results of the DTW performed on joint values re-
corded during the generalization test: iterative actions (a), non-iterative actions
(b)

During the generalization test, the robot is still capable of performing the appro-

priate actions, although the DTW has higher values in comparison with the DTW

computed in the previous training stage (Fig.7.14). For the iterative actions, from

the gray-map (Fig.7.20(a)) it is possible to observe that the “HIT” action has the

lowest DTW when compared to the target joint values related to “DRAW”. In case

of non-iterative actions, from the gray-map (Fig.7.20(b)) it is possible to observe

that the “HOLLOW” action has the lowest DTW when compared to target joint

values related to “SLICE”. The start plots in figure 7.21(a) and 7.21(b)) provide a

confirmation for the results obtained calculating the DTW. Indeed, in figure 7.21(a)

the stars in the third row (stars from 13 to 18) have different shapes during the

six repetition of the “HIT” action, while in figure 7.21(b) the stars in the fourth

163



row (stars from 19 to 24) have different shapes during the six repetition of the

“HOLLOW” action.

(a) (b)

Figure 7.21: Star plots for the joint values recorded during the generalization test:
iterative actions (a), non-iterative actions (b)

For the joint values recorded at the end of the generalization test, a PCA has

been applied. From figure 7.22(a) it is possible to observe that for iterative actions

the percentage variance explained by the first three principal components is equal to

91.88%, while for the non-iterative actions the percent variance explained is 90.73%

(Fig.7.23(a)). From figure 7.22(b) and 7.23(b) it is possible to notice that during the

generalization test the joint values associated to iterative and non-iterative actions

form clusters that are less structured with respect to joint values recorded during

the previous experimental scenario (Fig.7.17, Fig.7.18).
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(a) (b)

Figure 7.22: Generalization. Principal Components Analysis of joint values recor-
ded during the iterative actions: percent variability explained by each principal
component (a). Data projected onto the first three principal components (b)

(a) (b)

Figure 7.23: Generalization. Principal Components Analysis of joint values recorded
during the non-iterative actions: percent variability explained by each principal
component (a). Data projected onto the first three principal components (b)

7.7.3 Incompatible Condition Test

Before proceeding with the third stage of the training, the “Incompatible Condition”

test was performed. The test consisted in analysing the response of the model in case

of inconsistency between the linguistic and visual inputs. During this test, objects

and actions that the robot has previously learned to name, were referred using

incompatible linguistic labels. In particular, two different incompatible condition

tests were performed:
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• Incompatible Noun Condition: to analyse the response of the model when

the name of the object is incompatible with the object seen by the robot

• Incompatible Verb Condition: to analyse the response of the model when

the name of the action is incompatible with the behaviour that the robot has

previously performed with the presented object

At the end of the simulations related to these two tests, activation values of

hidden units were analysed. In particular, the temporal hierarchical cluster analysis

on hidden units has been performed in order to compare the hidden activation values

recorded during the compatible and incompatible conditions. The cluster analysis

has been performed on activation values of hidden units recorded at each time step

(matrix of 12 observations by 13 variables for each action). For the formation of

clusters, as measure of dissimilarity between pairs of observations, the Euclidean

distance (‖a − b‖2 =
√∑

i(ai − bi)2) has been used. The results of hierarchical

clustering are presented in the dendrograms in figure 7.24 and 7.25, from which it is

possible to observe that over time the hidden units during the incompatible condition

follow an activation pattern that is similar to the activation values recorded during

the compatible condition.

• Results of the Incompatible Noun Condition Test.

In figure 7.24 the results of the hierarchical clustering of activation values of

hidden units at the time steps T = 0, T = 5 and T = 11 are presented. The

dendrograms in figure 7.24 compare the hidden activation values recorded during

the compatible condition “CHOP [with] KNIFE” to the hidden activation val-

ues recorded during the incompatible condition “CHOP [with] HAMMER”. In

this particular case, the incompatibility is related to the KNIFE/HAMMER nouns.

Despite that the robot sees a KNIFE, the word HAMMER is used to refer to the

object. The dendrograms in figure 7.24 show that the observations are organized

in three main clusters that pair the inputs related to the six iterative actions. The
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presence of clusters in the hidden units suggests the formation of concepts from the

multi-modal data received as input to the model.

(a) (b)

(c)

Figure 7.24: Incompatible Noun Condition (e.g.“CHOP [with] KNIFE” became
“CHOP [with] HAMMER”). Results of the hierarchical clustering of hidden units
activation values at the time steps T = 0 (a), T = 5 (b) and T = 11 (c)

The hidden activation values related to the incompatible condition “CHOP

[with] HAMMER” (that in the dendrograms are labelled “TEST”) are clustered

together with “CHOP”. This means that the activation values of hidden units during

this incompatible condition test are similar to the activation values of hidden units
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recorded during the compatible condition.

• Results of the Incompatible Verb Condition Test.

(a) (b)

(c)

Figure 7.25: Incompatible Verb Condition (e.g. “CHOP [with] KNIFE” became
“DRAW [with] KNIFE”). Results of the hierarchical clustering of hidden units
activation values at the time steps T = 0 (a), T = 5 (b) and T = 11 (c)

In figure 7.25 the results of the hierarchical clustering of hidden units activation

values at the time steps T = 0, T = 5 and T = 11 are presented. The dendrograms

in figure 7.25 compare the hidden activation values recorded during the compat-

ible condition “CHOP [with] KNIFE” to the hidden activation values recorded
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during the incompatible condition “DRAW [with] KNIFE”. In this case, the in-

compatibility is related to the CHOP/DRAW verbs. Despite that the robot sees a

KNIFE, the verb DRAW is used to refer to the action to be performed with the

presented object. The dendrograms in figure 7.25 show that the observations are

organized in three main clusters that pair the inputs related to the six iterative ac-

tions. The hidden activation values related to the incompatible condition “DRAW

[with] KNIFE” (that in the dendrograms are labelled “TEST”) are clustered to-

gether with “CHOP”. This means that the activation values of hidden units during

this incompatible condition test are similar to those recorded during the compatible

condition. Furthermore, the error recorded at the end of each action execution in

the compatible condition has been compared to the error recorded at the end of each

action execution during the incompatible condition (Fig.7.26).

(a) (b) (c)

Figure 7.26: MSE recorded during the execution of the iterative actions: compatible
condition (a), incompatible NOUN condition (b) and incompatible VERB conditions
(c)

In figure 7.26 the MSE recorded during the execution of the six iterative actions in

the compatible condition, is compared to the MSE recorded during the incompatible

noun and verb conditions. The higher error rates in incompatible trials than in

the compatible ones, suggest that referring to objects with the appropriate words

facilitate the perceptual and sensorimotor categorization of the input signals.

Additionally, on the matrices associated to the activation values of hidden units

recorded during the two incompatible conditions tests, the PCA has been performed.

The trajectories of the activation values of hidden units in time, recorded during the
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incompatible condition tests, in the space of the first three principal components,

have been compared to the trajectories of activation values recorded during the com-

patible condition (Fig.7.27, Fig.7.28). From figure 7.27 it is possible to observe that

the trajectories of activation values of hidden units recorded during the incompatible

noun condition “CHOP [with] HAMMER” follow trajectories that are similar to

the trajectories of hidden units recorded during the compatible condition “CHOP

[with] KNIFE”; and this is the case for all the six iterative actions.

Figure 7.27: Trajectories of the activation values of hidden units recorded during
the incompatible NOUN condition test compared to the trajectories of activation
values recorded during the compatible condition

From figure 7.28 it is possible to observe that the trajectories of activation values

of hidden units recorded during the incompatible verb condition “DRAW [with]

KNIFE” follow trajectories similar to the ones recorded during the compatible

condition“CHOP [with] KNIFE”.
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Figure 7.28: Trajectories of the activation values of hidden units recorded during
the incompatible VERB condition test compared to the trajectories of activation
values recorded during the compatible condition

Results obtained in the incompatible condition tests showed that in case of in-

consistency between the perceptual and linguistic input, the robot executed the

actions elicited by the seen object. Recent evidence in neuroscience and behavioural

sciences has shown that visually perceived objects activate motor information [Jean-

nerod, 1994, Arbib, 1997]. That is, seeing objects elicits the actions that tend to

be performed on/with objects [Jeannerod, 1994, Arbib, 1997]. Additionally, studies

conducted on monkeys [Gallese et al., 1996], have suggested that the brain stores a

vocabulary of actions that can be applied to objects and that the fixation of a given

object activates potential motor acts [Cangelosi et al., 2010].

7.8 Training Phase III

The last stage of the training enabled the model to learn abstract action words and

acquire higher-order categories. During this part of the training new concepts are
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formed by integrating the lexical terms acquired during the previous stage of the

training. Since such lexical terms are directly connected to perceptual and sensor-

imotor experience, they recall the grounded perceptual and sensorimotor knowledge

(multi-modal symbols). Through this stage of the training, the model can learn

novel meanings by integrating the perceptual and sensorimotor knowledge previ-

ously grounded. For the third stage of the training, the number of neurons in the

hidden unit was increased from 13 to 17. The training of the network was done

using 50 random seeds. The network received in input 24 sequences of six elements

each. In figure 7.29 the training error as a function of the neurons in the hidden

layer is shown.

(a) (b)

Figure 7.29: Training stage III: Mean Square Error (MSE) as a function of the
hidden layer size

In particular, in figure 7.29(a) the MSE is compared for the hidden layer con-

sisting of 13, 14, 15, 16 and 17 hidden neurons. In figure 7.29(b) the MSE values

recorded at iteration 1000 are shown. After analysing the performed simulations, the

network with 17 neurons in the hidden layer, that exhibited the best performance in

terms of training error, was selected to perform additional tests and analysis. From

figure 7.30 it is possible to observe that the mean square error value for all the 24

sequences in input, after 800 iterations only, is smaller than 0.001.
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Figure 7.30: Training stage III. Mean Square Error (MSE)

The selected network successfully learned the input/output mapping for the joint

values (Fig.7.31). In figure 7.31(a) the output and target values for one of the seven

joints of the iCub arm controlled by the network is shown. As observed in figure

7.31(a), the network is able to output the appropriate joint values for the iCub arm.

(a) (b)

Figure 7.31: Training stage III. Output and target values for one of the seven joints
of the iCub arm controlled by the network (a). Output and target joint values for
one of the actions taught to the iCub (b)

The similarity between the output and target joint values over time has been

calculated by performing the DTW on joint sequences. The result of DTW confirmed

that the output joint values over time are very similar to the target values (DTW
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= 3.2341 un-normalized distance between sequences). The DTW calculated at the

end of the third training stage is higher than the DTW calculated at the end of the

second one; this is due to the fact that the training set during the third stage of the

training is larger. Learning errors and DTW values related to the 50 simulations,

performed for different random seeds and initial synaptic weights, are shown in figure

7.32. From this figure it is possible to observe that the best results in terms of MSE

and DTW is given by the network trained during the simulation 21.

(a) (b)

Figure 7.32: Training stage III. MSE (a) and cumulative DTW (b) computed during
the 50 simulations performed

7.8.1 Robot Performance

After all the three stages of the training were successfully accomplished, the net-

work trained during simulation 21, which exhibited the best performance in terms

of training error and DTW, was selected to control the real iCub robot. The joint

values recorded after the performance of each actions, were compared to the corres-

ponding target values by performing the DTW (Fig.7.33). For both iterative and

non-iterative actions it is possible to observe that the lowest DTW is obtained when

the actual output joint values are compared to their corresponding targets (Fig.

7.33(a), Fig.7.33(b)).
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(a) (b)

Figure 7.33: Training stage III. Gray-map for the results of the DTW performed on
joint values: iterative actions (a), non-iterative actions (b)

The robot performance in terms of action execution, at the end of the second

and third stage of the training, are compared and displayed in Table 7.3.

Training Stage Action Type Robot Performance (%)

Training II
Iterative 83.3

Non-Iterative 83.3

Training III
Iterative 100

Non-Iterative 100

Table 7.3: Comparison of the robot performance, in terms of action execution, at
the end of the second and third stage of the training

After the second stage of training, five out of six actions (for both iterative and

non-iterative) are correctly categorized. The performance of the robot improves

after the third stage of the training when all the six actions (both iterative and

non-iterative) are correctly categorized (Tab. 7.3).

7.8.2 Incompatible Condition Test

The last test performed, consisted in analysing the response of the model in case of

inconsistency between the linguistic and visual inputs. In particular, the incompat-

ible noun condition was tested, in order to analyse the response of the model when

the name of the object is incompatible with the object perceived by the robot (e.g.

“USE [a] KNIFE” became “USE [a] HAMMER”). Activation values of hidden
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units recorded during the compatible and incompatible conditions were analysed by

performing the temporal hierarchical cluster analysis. The results of hierarchical

clustering are presented in the dendrograms in figure 7.34, from which it is possible

to observe that over time the hidden units recorded during the incompatible con-

dition follow an activation pattern that is similar to the activation values recorded

during the compatible condition (Fig.7.34).

(a) (b)

(c)

Figure 7.34: Incompatible Noun Condition (e.g. “USE [a] KNIFE” became “USE
[a] HAMMER”)). Results of the hierarchical clustering of hidden units activation
values at the time steps T = 0 (a), T = 3 (b) and T = 10 (c)

In figure 7.34 results of the hierarchical clustering of activation values of hidden

units at the time steps T = 0, T = 3 and T = 10 are presented. The dendrograms
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in figure 7.34 compare the hidden activation values recorded during the compatible

condition “USE [a] KNIFE” to the hidden activation values recorded during the

incompatible condition “USE [a] HAMMER”. In this particular case, the incom-

patibility is related to the KNIFE/HAMMER nouns. Despite that the robot sees

a KNIFE, the word HAMMER is used to refer to the object. The hidden activ-

ation values related to the incompatible condition “USE [a] HAMMER” (that

in the dendrograms are labelled “TEST”) are clustered together with “USE [a]

KNIFE”. This means that the activation values of hidden units during this incom-

patible condition test are very close to the activation values of hidden units during

the compatible condition.

Additionally, on the matrix associated to the activation values of hidden units

recorded during the incompatible noun condition, the PCA has been performed

(Fig.7.35).

Figure 7.35: Trajectories of the activation values of hidden units recorded during
the incompatible NOUN condition test compared to the trajectories of activation
values recorded during the compatible condition
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The trajectories of the activation values of hidden units in time, recorded during

the incompatible condition test, in the space of the three principal components,

have been compared to the trajectories of the activation values recorded during the

compatible condition. From figure 7.35 it is possible to observe that the trajectories

of activation values of hidden units recorded during the incompatible noun condition

“USE [a] HAMMER” follow trajectories that are very similar to the trajectories

recorded during the compatible condition “USE [a] KNIFE”. The results obtained

in the incompatible noun condition test has confirmed that in case of inconsistency

between the perceptual and linguistic input, the robot executes the actions elicited

by the seen objects. Furthermore, the error recorded at the end of each action

execution in the compatible condition has been compared to the error recorded at

the end of each action execution in the incompatible condition (Fig.7.36).

(a) (b)

Figure 7.36: Training stage III: MSE recorded during the execution of the iterative
actions for: compatible condition (a) and incompatible NOUN condition (b)

In figure 7.36 the MSE recorded during the execution of the iterative actions

for the compatible condition after the third training stage is compared to the MSE

recorded during the incompatible noun condition. The higher error rates in the

incompatible trial than in the compatible ones, suggest the proper naming of objects

and actions support action categorization and that seeing objects automatically

elicits the representations of their affordances.
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7.8.3 Representations of Abstract Action Words

To better understand the internal dynamics of the model, after all the stages of

the training were successfully completed, the activation values of hidden units were

analysed. The Principal Component Analysis was performed on the hidden activ-

ation values. In figure 7.37 the hidden units activation values are represented in

the space of the first three principal components. In particular, in figure 7.37(a)

the observations plotted with the red markers are related to the activation values in

the space of the three principal components recorded during the second and third

stage of the training for the iterative actions (Training II (I-A) and Training III

(I-A)), while the blue markers identify the activation values recorded during the

second and third stage of the training for non-iterative actions (Training II (NI-

A) and Training III (NI-A)). In figure 7.37(b) observations are displayed in four

groups representing respectively the Training II for Iterative-Actions, Training II

for Non-Iterative-Actions, Training III for Iterative-Actions and Training III for

Non-Iterative-Actions.

(a) (b)

Figure 7.37: Hidden units activation values in the space of the three principal com-
ponents. Data displayed in two groups: Training II and Training III Iterative-
Actions, Training II and Training III Non-Iterative-Actions (a). Data displayed in
four groups: Training II Iterative-Actions, Training II Non-IterativeActions, Train-
ing III Iterative-Actions and Training III Non-Iterative-Actions (b)

From figure 7.37(b) it is possible to notice that the observations related to the

iterative actions recorded during the second and third stage of the training almost
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fully overlap (data displayed by red and green markers). The same consideration

can be done for non-iterative actions (data displayed by blue and black markers are

overlapped). Hence, from figure 7.37(b) it is possible to conclude that hidden units

during the second and third stage of the training follow a similar activation pattern.

To better visualize the activation values of hidden units over time in the space of

the three principal components, the hidden units activation values, recorded during

different stages of the training, are shown in separate plots (Fig.7.38, Fig.7.39).

(a) (b)

Figure 7.38: Hidden units activation values in the space of the three principal com-
ponents: Training II Iterative-Actions (a), Training II Non-Iterative-Actions (b)

(a) (b)

Figure 7.39: Hidden units activation values in the space of the three principal com-
ponents: Training III Iterative-Actions (a), Training III Non-Iterative-Actions (b)

In particular, in figure 7.38 the hidden units activation values in the space of

the three principal components, recorded after the second stage of the training, for

180



the Iterative-Actions and Non-Iterative-Actions are shown. In figure 7.39 the hidden

units activation values in the space of the three principal components, recorded after

the third stage of the training, for the Iterative-Actions and Non-Iterative-Actions

are shown. By comparing figure 7.38(a) to figure 7.39(a) and figure 7.38(b) to figure

7.39(b), it is possible to better visualise that the hidden units activation values

during the second and third stage of the training follow a similar activation pattern.

In figure 7.40 the trajectories of hidden units activation values in the space of

the three principal components are shown. Figure 7.40(a) presents the trajectories

of hidden units during the Training II and Training III for Iterative-Actions, while

figure 7.40(b) shows the trajectories of hidden units during the Training II and

Training III for Non-Iterative-Actions.

(a) (b)

Figure 7.40: Trajectories of hidden units activation values in the space of the three
principal components: Training II and Training III Iterative-Actions (a), Training
II and Training III Non-Iterative-Actions (b)

The results presented in figure 7.40 suggest that the acquisition of concepts re-

lated to abstract action words (e.g. “USE” and “MAKE”) requires the reactivation

of similar internal representations activated during the acquisition of the basic con-

cepts contained in the hierarchical structure of words used to ground the abstract

action words. In other words, the hidden units of the model, during the acquisi-

tion of abstract action words, follow similar activation patterns recorded during the

acquisition of the basic concepts that are hierarchically organized to ground a par-
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ticular abstract action word. The processing of abstract action words requires the

same internal activation needed for the processing of basic concepts. This seems to

suggest that even the semantic/conceptual representation of abstract action words

consists of reusing sensorimotor and perceptual representational capabilities [Bars-

alou, 1999].

The start plots in figure 7.41 provide a visual representation of activation values

of hidden units that permits the comparison of the the internal representations

of the model in response to words directly linked to perceptual and sensorimotor

experience to the internal representations of the model in response to abstract action

words. Each plot in figure 7.41 consists of twelve stars arranged in two rows. The

six stars of the first row visualise the hidden activation values recorded during the

direct grounding of words (for different time steps) in perception and sensorimotor

experience, while the six stars of the second row visualize the hidden activation

values recorded during the grounding of abstract action words. The star plots of the

first row compared to the star plots arranged in the second row permit to visually

compare activation values of hidden units during different stages of the training. For

example, the first plot permit to compare activation values of hidden units recorded

for the inputs “CHOP [with] KNIFE” and “USE [a] KNIFE”.

 1  2  3  4  5  6

 7  8  9 10 11 12

Activation Values of Hidden Layer − CHOP [with] KNIFE and USE [a] KNIFE

 1  2  3  4  5  6

 7  8  9 10 11 12

Activation Values of Hidden Layer − CUT [with] SAW and USE [a] SAW
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 1  2  3  4  5  6

 7  8  9 10 11 12

Activation Values of Hidden Layer − HIT [with] HAMMER and USE [a] HAMMER

 1  2  3  4  5  6

 7  8  9 10 11 12

Activation Values of Hidden Layer − POUND [with] STONE and USE [a] STONE

 1  2  3  4  5  6

 7  8  9 10 11 12

Activation Values of Hidden Layer − DRAW [with] PENCIL and USE [a] PENCIL

 1  2  3  4  5  6

 7  8  9 10 11 12

Activation Values of Hidden Layer − PAINT [with] BRUSH and USE [a] BRUSH

Figure 7.41: Star plots to visually compare activation values of hidden units in
response to words directly linked to perceptual and sensorimotor experience and
abstract action words

The visualization of the internal representation of the model in figure 7.41 con-

firms the high similarity between the activation values recorded during the second

and third stage of the training.

7.9 Discussion

The presented study, through the implementation of an embodied multi-modal cog-

nitive architecture, enabled the iCub to ground the meaning of abstract action
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words in perceptual and sensorimotor knowledge and permitted the investigation of

the relation between the development of conceptual knowledge and perceptual and

sensorimotor categories in the iCub humanoid robot. The starting points considered

in the implementation of the proposed cognitive model were the compositionality

and embodiment of language, according to which higher-order concepts (i.e. ab-

stract action words) can be grounded through the hierarchical organization of motor

primitives and perceptual knowledge. The implemented architecture was based on

simple recurrent neural networks which enabled the modelling of the mechanisms

underlying motor and linguistic sequence processing. The training of the model was

incremental and consisted of three stages that permitted to acquire perceptual and

sensorimotor knowledge first, to learn words directly grounded in perceptual and

sensorimotor knowledge then, and to acquire the meaning of abstract action words

through the hierarchical organization of the words directly linked in perceptual and

sensorimotor knowledge at the end. Simulation results showed that, at the end of

the training, the robot was able to correctly categorize the perceptual, propriocept-

ive and linguistic inputs by performing the appropriate behaviour triggered by the

linguistic input and the perceived object. The presence of clusters in the hidden

units of the model suggest the formation of concepts from the multi-modal data

received in input by the network. Additional tests have shown that the performance

of the robot decreased in case the linguistic or visual inputs were not provided to

the model. The robot showed the ability to generalize new concepts by receiving un-

learned sentences and generating the appropriate corresponding behaviour. Results

obtained in the incompatible condition tests showed that in case of inconsistency

between the perceptual and linguistic input, the robot executed the actions elicited

by the seen object. These results are consistent with recent evidence in neuroscience

and behavioural sciences that has shown that visually perceived objects activate mo-

tor information [Jeannerod, 1994, Arbib, 1997]. Hence, the knowledge associated to

objects relies not only on objects perceptual features but also on the actions (i.e.

affordances) that can be performed on them. These results have suggested that
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perceptual and sensorimotor inputs have a central role in reasoning and language

understanding. Indeed, the performed simulations suggested that the acquisition of

concepts related to abstract action words (e.g. “USE” and “MAKE”) requires the

reactivation of similar internal representations activated during the acquisition of the

basic concepts, directly grounded in perceptual and sensorimotor knowledge, con-

tained in the hierarchical structure of the words used to ground the abstract action

words. This finding seems to suggest that the semantic/conceptual representation

of abstract action words consists of reusing sensorimotor and perceptual representa-

tional capabilities [Barsalou, 1999] (embodied understanding of abstract language).

Along this line of research, different theories proposed in psychology have claimed

that embodiment plays an important role even in representing abstract concepts.

These theories are based on “metaphors” [Lakoff and Johnson, 1980], “simulations”

[Barsalou, 1999] and “actions” [Glenberg and Kaschak, 2002]. These different ap-

proaches to the embodiment of abstract language are not mutually exclusive and

they might emphasize different aspects of the same phenomenon [Glenberg et al.,

2008]. Recently, in [Glenberg et al., 2008] neurophysiological evidence for the mod-

ulation of the motor system activity during the comprehension of both concrete and

abstract language has been provided. Results of this neurophysiological study have

shown that the processing of words both concrete and abstract involves the modu-

lation of the motor system. This means that the comprehension of words is likely to

involve or require the simulation of the meaning represented by the corresponding

concept. These results represent an important step forward in providing evidence

for the embodied understanding of abstract language.
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Chapter 8

Conclusion

This thesis addressed the problem of Grounding Abstract Categories in Cog-

nitive Robots; the implementation of developmental neuro-robotics models per-

mitted to investigate the relations between the development of abstract symbolic

representations (e.g. language) and sensorimotor knowledge (e.g. action and vis-

ion). Three experimental studies on the grounding of abstract categories in cognitive

robots were presented.

The first experiment, based on a feed-forward artificial neural network, permitted

to test the training methodology adopted for the grounding of language in humanoid

robots. This model teaches the robot the meaning of words that lack of a direct

concrete referent such as “‘ACCEPT” and “REJECT”. The training of this model

was effective although some limitations of its implementation were evident.

In the second experiment, the architecture adopted for carrying out the first

study was reimplemented by using recurrent artificial neural networks that per-

mitted to specify temporally the action primitives to be executed by the robot.

This permitted to increase the combinations of actions that can be taught to the

robot for the generation of more complex movements. The neural network control-

ler implemented for this study enabled the learning of higher-order concepts based

on sequences of low-level primitives. Simulation results showed that higher-order

symbolic representations can be indirectly grounded in action primitives, which are
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themselves directly grounded in sensorimotor experience. Through the analysis of

the network dynamics, it has been observed that motor primitives show different

activation patterns according to the action’s sequence in which they are embedded.

These simulation results are consistent with empirical neuroscience and computa-

tional neuroscience studies on action representation that showed that the goal of an

action changes the substrate of neurons involved in the action processing.

In the third experiment, an embodied multi-modal cognitive architecture en-

abled the iCub to ground the meaning of abstract action words in perceptual and

sensorimotor knowledge and permitted the investigation of the relation between the

development of conceptual knowledge and perceptual and sensorimotor categories in

the iCub humanoid robot. Simulation results showed that the ability of the robot to

correctly categorize the perceptual, proprioceptive and linguistic inputs by perform-

ing the appropriate behaviour triggered by the linguistic input and the perceived

object decreased in case the linguistic or visual inputs were not provided. The robot

showed the ability to generalize new concepts by receiving un-learned sentences and

generating the appropriate corresponding behaviour. Moreover, results obtained in

the incompatible condition tests showed that in case of inconsistency between the

perceptual and linguistic input, the robot executed the actions elicited by the seen

object. These results are consistent with recent evidence in neuroscience and be-

havioural sciences that has shown that visually perceived objects activate motor

information [Jeannerod, 1994, Arbib, 1997]. Hence, the knowledge associated to

objects relies not only on objects perceptual features but also on the actions (i.e.

affordances) that can be performed on them.

The performed simulations suggested that the acquisition of concepts related to

abstract action words (e.g. “USE” and “MAKE”) requires the reactivation of sim-

ilar internal representations activated during the acquisition of the basic concepts,

directly grounded in perceptual and sensorimotor knowledge, contained in the hier-

archical structure of the words used to ground the abstract action words. This

finding seems to suggest that the semantic/conceptual representation of abstract
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action words consists of reusing sensorimotor and perceptual representational cap-

abilities [Barsalou, 1999] (embodied understanding of abstract language). Indeed, in

[Glenberg et al., 2008] neurophysiological evidence for the modulation of the motor

system activity during the comprehension of both concrete and abstract language

has been provided. Results of this neurophysiological study have shown that the

processing of words both concrete and abstract involves the modulation of the motor

system. This means that the comprehension of words is likely to involve or require

the simulation of the meaning represented by the corresponding concept. These

results represent an important step forward in providing evidence for the embodied

understanding of abstract language.

8.1 Future Work

Future research, following the developmental and neural paradigm applied to ro-

botics, will consider the gradual development observed in human beings as a po-

tential road-map for artificial systems; this will permit the implementation of new

neuro-robotics models that can account for other aspects of cognitive development

observed in humans. Indeed, some aspects of the presented research, that can be

further addressed and investigated, are listed below:

• Developmental and ecological model to ground the meaning of language in

tool affordances discovered via Statistical Inference. Despite it is clear that

language has to be grounded in sensorimotor experience, it is also important

to go beyond simple sensorimotor grounding. To this end, statistical infer-

ence will be adopted as an original and innovative methodology that can serve

in grounded theories of meaning. Embodied theories of meanings in a prob-

abilistic framework can lead to “hybrid models” in which some concepts are

directly grounded in a robot’s sensorimotor experience while, for other con-

cepts, statistical inference will permit to go beyond the available data and

acquire new concepts.
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• Human-Robot Interaction (HRI) study to understand whether the iCub cog-

nitive architecture exhibits a number of brain compatible features and to in-

vestigate if the robot participates in a shared task as a plausible interaction

partner. The study will permit to analyse how people experience interaction

through language with a humanoid robot. In particular, the proposed study

will permit to validate the implemented cognitive architecture on a number

of benchmarks, such as affordance understanding, participation into a shared

task and language to action mapping.

The presented future research directions will aim at finding a general mech-

anism that permits to ground the meaning of action words and simple sentences

(e.g. phrases composed by an action verb and an object name) in tool affordances.

The implementation of this architecture will enable the learning of action words

by discovering new affordances related to objects and the environment. Indeed, in-

spired by the Indexical Hypothesis [Glenberg and Robertson, 2000], the acquisition

of action words in the iCub humanoid robot will be achieved through the follow-

ing steps: (i) direct grounding of object and action names to their referents; (ii)

learning the “stable affordances” [Borghi and Riggio, 2009] for the grounded words

through exploratory behaviour; (iii) discovering new affordances (including “vari-

able affordances” [Borghi and Riggio, 2009]) and word meanings through statistical

inference. The step (i) will permit to gather the representation of object and action

names as perceptual symbols, which will endow the robot with some basic percep-

tual and motor skills to be reused for bootstrapping the learning of more complex

behaviours. The step (ii), through exploratory behaviours, will enable the learn-

ing of stable affordances by performing several trials for each <object, action> pairs

and observing the consequent effects; exploratory behaviours also permit to discover

new more efficient ways of interaction while performing actions (e.g. different grasp

types). Affordances can be modelled by perceiving the effects of actions executed on

objects and then, by categorizing them according to the obtained effect. The effect

of actions can be modelled either in terms of changes produced on the object fea-
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tures (e.g. visual segmentation) after performing the action or in terms of changes

perceived in the state of the robot sensors by creating an association between one

action and the resulting perceptual consequences (e.g. direction of motion, tactile

activation, force applied and felt). After learning affordances, every time a specific

effect is required (i.e. goal), the appropriate action that matches the affordances of

the object present in the environment will be executed. In other words, the learned

effect of actions on objects can be used to drive goal-directed behaviour. During

step (iii), perceptual symbols embedded in a probabilistic framework will produce

new knowledge in response to novel data collected from the environment.

Artificial neural networks (e.g. Recurrent Neural Networks) will serve for the

integration of temporal sequences of linguistic and motor primitives and to model

the underlying mechanisms. Probabilistic graphical models (e.g. Bayesian Net-

works) will serve to model affordances by learning the casual relations between ob-

ject features, actions and effects. As observed in [Barsalou, 2008], Bayesian statistics

provide a powerful tool that can be viewed as statistical accounts of the multi-modal

information stored in the dynamic systems that generate simulations and guide

situated action. Behavioural experiments related to object’s affordances evoked by

linguistic stimuli, can be replicated to generate new predictions. For example, in

[Borghi and Riggio, 2009] the effects of sentences comprehension (i.e. phrases com-

posed by a verb and an object name) on different kind of affordances (i.e. precision

and power grip) have been investigated. Results of the study indicated that sen-

tences comprehension activated a mental simulation that led to the formation of a

“motor prototype” which reflects stable affordances of the object (i.e. the typical

way the object is acted upon) and the “canonical” aspects of variable affordances

(i.e. the canonical object orientation). Moreover, in [Tucker and Ellis, 2004] com-

patibility effects between object size (small and large) and the kind of grip (i.e.

precision and power grip) used to respond whether seen objects were artefacts or

natural objects have been found. The model can be used to formulate and test new

compatibility effects between language processing and object’s affordances.
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