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ABSTRACT 

Chloride-induced corrosion of reinforcing steel in concrete is a worldwide problem. In 

order to predict how chlorides penetrate in concrete and how other ionic species in con-

crete pore solution affect the penetration of chlorides, this thesis presents a numerical 

study on multi-phase modelling of ionic transport in concrete dominated by migration 

process.  

There are many advantages in rapid chloride migration test (RCM) method and numeri-

cal approach. However, most of models in the literature predicting chloride diffusivity 

in concrete are diffusion models, which not consider the action of externally applied 

electric field. In view of this, the specific aim of this thesis is to develop a rational nu-

merical migration model to simulate chloride migration tests. By using this model, the 

diffusion coefficient of chlorides in concrete will be efficiently predicted. Furthermore, 

other mechanisms of ionic transportation in composite materials can be scientifically in-

vestigated in the meantime. 

In most existing work, researchers tend to use the assumption of electro-neutrality con-

dition, which ensures that no external charge can be imported (Bockris and Reddy, 

1998), to determine the electrostatic potential within concrete as well as considering a 1-

D problem with only one phase structure and single species (i.e. the chlorides) for pre-

dicting the ionic migration. In contrast, this thesis presents a number of sets of multi-

phase migration models in more than one dimension and uses the Poisson’s equation for 

controlling the multi-species interactions. By solving both mass conservation and Pois-

son’s equations, the distribution profiles of each ionic species and electrostatic potential 
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at any required time are successfully obtained. Some significant factors, i.e. the influ-

ence of dimensions, aggregates, interfacial transition zones (ITZs), cracks and binding 

effect have also been discussed in detail. The results reveal a series of important features 

which may not be seen from existing numerical models. 

For quantitative study, this thesis also provides the prediction method of chloride diffu-

sivity not only by the traditional stationary diffusion models but also by the migration 

models presented in the thesis. The obtained results are compared with three proven 

analytical models, i.e., Maxwell’s model (Dormieux and Lemarchand, 2000), Brug-

geman’s equation (Bruggeman’s, 1935) and the lower bound of the effective diffusion 

coefficient proposed by Li et al. (2012) as well as validated against experimental data 

sets of an accelerated chloride migration test (ACMT) brought by Yang and Su (2002). 

 

KEYWORDS: Corrosion; chloride; migration; diffusion; concrete; cement; ionic 

transport; multi-phase; 2-D modelling; 3-D modelling; multi-species; ionic interaction; 

binding effect; aggregates; ITZs; cracks; chloride diffusivity prediction; 
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1 CHAPTER ONE – INTRODUCTION 

The first chapter of this thesis presents an introduction to the problem of chloride-

induced corrosion of steel in reinforced concrete structures and a brief survey of the re-

search status of the study of chloride transport in concrete. Additionally, the objectives 

of this study and the structure of the thesis are described. 
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1.1 The problem: chloride-induced corrosion of steel in reinforced concrete structures 

Concrete is the most widely used man-made material in modern construction industry. It 

is frequently applied in architectural structures, foundations, roads, pavements, pipe, 

bridges/overpasses, etc. However, the service life of concrete has been seriously short-

ened due to the durability problems. It is widely known that a key source of durability 

problems is the ingress of ions; especially the penetration of chloride ions into concrete 

which will seriously corrode the reinforcing steel within. Thus, the investigation of 

transport of ionic species in concrete is very important and has received great attention 

in past decades. In the literature, the primary concern is predicting the diffusion coeffi-

cient of chlorides in concrete.  

In the past, traditional concrete is produced by solidifying and hardening the mixture 

containing Portland cement, water and aggregates (typically using sand stones or granu-

lar materials). After the chemical process known as hydration, the water reacts with the 

cement, which bonds the other components together, eventually creating a robust stone-

like material. Recently, high-performance concrete (HPC) has emerged as a relatively 

new term used to describe concrete that have higher durability, workability, volume sta-

bility, corrosion resistance, thermal resistance or lifetime. Configuration characteristic 

of HPC is generally with low water-binder ratio, high-quality raw materials and addition 

of efficient admixtures. Furthermore, due to the new regulation on the limitation of 

2CO emission, cement industry also need to use additives to reduce the cement content 

in concrete. Different types of concrete are produced by using different additives. Most 

commonly used additives include fly ash and blast-furnace slag (a non-metallic co-
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product produced in the manufacturing of iron). Numerical speaking, this kind of addi-

tives will form new phases in concrete models.  

It is apparent that the properties of concrete including chloride diffusivity will be differ-

ent when using different additives. However, unfortunately most existing experimental 

data for concrete properties were obtained from traditional concrete.   

To deal with this, from the mechanics point of view, if the properties of each individual 

material involved in the concrete are known then the properties of the concrete mixture 

should be predictable. This means one can treat the concrete as a composite material 

with different phases for simulating the influence of different additives, which give the 

possibility of prediction chloride diffusivity within the entire concrete. 
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1.2 Brief research status of the study of chloride transport in concrete 

There are three main categories of studies aiming to characterise the transport behaviour 

of chlorides in cement and/or concrete materials: analytical, experimental and numerical 

studies. 

In the analytical study, there are a number of publications which have focussed on clari-

fication of the diffusion coefficient on the basis of different scales. At the macroscopic 

level, the analytical method brings some empirical models. It was revealed from these 

models that the diffusion coefficient tends to have a connection with the water to ce-

ment ratio (Atkinson and Nickerson, 1984; Hobbs, 1999). In the work of Van Brakel 

and Heetjes (1974), Garboczi and Bentz (1992; 1997) , Zhang and Bishop (1993), Dor-

mieux and Lemarchand (2000), Xu et al. (1997), Li and Xia (2011), Jiang et al. (2012) 

the relationship between diffusion coefficient and the conception of porosity and tortu-

osity was discussed at a microscopic level. The mesoscopic models consider the com-

ponents of the two or three phases (aggregate and cement matrix; aggregate, bulk ce-

ment paste and interfacial transition zone) and their corresponding diffusive properties 

respectively in these different phases (Hobbs, 1997; 1999; Xi and Bazant, 1999; Caré 

and Hervé, 2002; Yang and Su, 2002; Oh et al., 2004; Zheng and Zhou, 2007; Zheng et 

al., 2009; 2012; Li et al., 2012; Dehghanpoor Abyaneh et al., 2013). However, all of the 

models mentioned above focus only on the ionic transport of a single-species, i.e. the 

chloride ions. 

Great efforts have been made to assess ionic transport by using experimental techniques. 

For ionic diffusion, there are two common test methods which are often used for meas-

uring the chlorides’ penetration in concrete. One is the salt ponding test (AASHTO 
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T259, 1980; ASTM C1543, 2002) and the other is the bulk diffusion test (NordTest 

NTBuild 443, 1995). However, these two diffusion tests are very time-consuming, espe-

cially for high-performance concrete, of which the test duration may last 90 days or even 

longer in order to get a sufficient chloride profile. Hence, recent research tends to adopt 

alternative experiments based on electro-migration of ions, which include the rapid 

chloride permeability test and the rapid migration test.  

The Coulomb Test, also called rapid chloride permeability test (RCPT), undertaken by 

gauging the electrical conductivity or resistance of concrete directly or indirectly, was 

initially presented by Whiting (1981) and then adopted as AASHTO T277 (1983) and 

ASTM C1202 (1994). However, during the last two decades, a number of studies (An-

drade, 1993; Feldman et al., 1994; Pfeifer et al., 1994; Scanlon and Sherman, 1996; Shi 

et al., 1998; Shane et al., 1999; Hooton et al., 2000; Shi, 2004) have raised criticisms of 

the RCPT test method based on a variety of aspects. The main criticism of this method 

is that the results obtained from electrical conductivity or resistance measurement can-

not exactly represent the permeability, since the permeability of concrete attributes to its 

pore structure, whereas the electrical conductivity or resistance depends on not only the 

pore structure but also the chemistry of the pore solution. This deviation will be even 

higher when acting on HPC made with fly ash, siliceous dust and other super-plasticizer 

admixture. In view of the drawbacks of Coulomb Test, two alternative test methods 

were developed based on accelerated electrical field: steady and non-steady state migra-

tion tests. The latter also called rapid chloride migration test (RCM) is the more recent. 

Non-steady state migration test was initially developed by Tang and Nilsson (1992) and 

adopted by Nordtest and AASHTO as NT Build 492 (1999) and provisional Standard 

TP64 (2003). The test is very similar with the rapid chloride permeability test. However, 
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it allows direct measurement by the depth of chloride penetration instead of using the to-

tal passed charge to estimate the permeability. The calculation of chloride diffusion co-

efficient in the rapid migration test requires the concentration of chlorides at the depth 

they penetrated, which is often difficult to obtain. In current practice it usually uses the 

surface chloride concentration, which means that the penetration of chlorides in concrete 

exactly follows the 1-D migration pattern.  

Nevertheless, the experimental data in the literature were mostly obtained by means of 

taking traditional concrete as a specimen while very few were for the new types of con-

crete. Additionally, similar to analytical approach, the migration tests described above 

are mainly used to investigate the transport of chloride ions alone, the transport of other 

ions and their effect on the chloride transport are not addressed. 

Since the analytical and experimental techniques usually take simple cases and there are 

difficulties in reporting interactions between different ionic species and the electrostatic 

coupling of ions in a multi-component electrolyte solution, researchers began to use 

numerical methods to investigate the transport behaviour of multi-species in concrete. 

Methodologically speaking, these works can be divided into four categories. Firstly, a 

series of studies (Samson et al., 1999; Lorente et al., 2003; Khitab et al., 2005; Lizarazo-

Marriaga and Claisse, 2009a; 2009b; Elakneswaran et al., 2010; Yaya et al., 2011) es-

tablished numerical models to simulate the penetration process through a saturated ce-

ment paste under the hypothesis of zero current and electro-neutrality condition. Sec-

ondly, there were also some works other than the above, which added the effect of 

externally applied current density as well as considering the interactions between ionic 

species during the transport of ionic species in cement-based porous materials (Li and 

Page, 1997; 2000; Truc et al., 2000a; 2000b; Wang et al., 2000; Frizon et al., 2003; 
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Toumi et al., 2005; Kubo et al., 2006; Ouyang et al., 2009; Liu and Shi, 2012; Ukrain-

czyk et al., 2013). Also, in these studies, the electrostatic potential throughout the elec-

trochemical process was still controlled by assuming the electro-neutrality condition. 

Similarly, Walton (1990), Sa’id-Shawqi et al. (1998), Zelinsky and Pirogov (2006), 

Narsillo et al. (2007), Krabbenhoft and Krabbenhoft (2008), Friemann et al. (2008) uti-

lised externally applied voltage instead of the external current density as adopted in the 

second category. Here, it should be pointed out that, the electro-neutrality condition, 

which is employed in the work mentioned above to govern the electrostatic potential at 

any point in an electrolyte solution, is not a constitutive law but only a mathematical ap-

proximation in the electrochemistry field and may cause numerical inaccuracy. The real 

constitutive law for governing the electrostatic potential is the Poisson’s equation (will 

be showed in the next chapter). However, some numerical difficulty exists in solving the 

Poisson’s equation because of the large and small numbers involved in the equation. 

More recently, Johannesson et al. (2006; 2009; 2010a; 2010b) conducted a series of 

studies exploring the ionic diffusion in a multi-component solution by using the Pois-

son’s equation instead of the electro-neutrality condition. However, his studies did not 

involve external voltage. Hence, the transport of ions in those cases is actually still dom-

inated by diffusion, whereas the migration occurred only because of the imbalance dif-

fusion between different ionic species.  

1.3 Objectives of this study 

Due to the advantages of both rapid chloride migration test (RCM) method and numeri-

cal approach, the aim of this thesis is to develop a rational numerical model to simulate 

non-steady state migration tests. By using this model, the diffusion coefficient of chlo-
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rides in concrete will be efficiently predicted. Furthermore, other mechanisms of ionic 

transportation in composite materials can be scientifically investigated. More specifical-

ly, the individual objectives are orderly listed as follows: 

1) To simulate multi-species ionic transport in concrete with ionic interactions un-

der externally applied electric field and to obtain the distribution profiles of ionic 

concentration and electrostatic potential. 

2) To adopt the real constitutive law of electrochemistry, Poisson’s equation, in-

stead of the more popular but questionable mathematic approximation, electro-

neutrality condition, to determine the electrostatic potential. Then to demonstrate 

the significance of using Poisson’s equation by comparing the electrostatic po-

tential gradient, concentrations, fluxes and current density distribution profiles of 

two categories of results.  

3) To apply the governing of Poisson’s equation and mass conservation equations, 

to develop a 2-D concrete model with aggregates and mortar/cement two phases 

instead of one-phase models. To study the influence of a second movement di-

mension, the aggregate morphology and the inclusion volume fraction on the 

chloride migration.   

4) To implement a more accurate 2-D two phase model, to examine the influence of 

various forms of ionic binding between solid and liquid phases. Meanwhile, to 

explore whether the binding effect of one species also has impact on the penetra-

tions of other ionic species. 

5) To present a 2-D three phase model which can separately take the extremely thin 

structure in concrete, the ITZ phase, into account during the simulated migration 
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test. By examining the influence of ITZ, to demonstrate two opposing effects on 

ionic migration caused by aggregate particles.  

6) To establish a group of 2-D cracked concrete models to examine the effect of ge-

ometric properties of cracks on the transport of chlorides. 

7) To predict the chloride diffusion coefficient of concrete by the traditional sta-

tionary diffusion models (both in 2-D and 3-D models). To compare the results 

with three proven analytical models and to validate against experimental data of 

an accelerated chloride migration test (ACMT). 

8) To predict the chloride diffusion coefficient of concrete by more improved mi-

gration models presented in Chapter 3-5. To compare the results with three 

proven analytical models and to validate against experimental data of an acceler-

ated chloride migration test (ACMT). Also, to present a quantitative study about 

the influences of a series of significant factors (i.e. the external electrical field, 

ITZ phase, binding effect, etc.) on chloride migration.     
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1.4 Structure of the thesis 

Chapter One presents an introduction to the problem of chloride-induced concrete and a 

brief research status of studying chloride transport in concrete. Additionally, the objec-

tives of this study are highlighted in this chapter. 

Chapter Two outlines the research background relevant to this study: scale definitions, 

theoretical basis, methodology discussions and literature review. Based on this review, 

the knowledge gap of existing work are summarised and the innovations of the present 

study are described. 

Chapter Three presents a series of 1-D numerical models with a single phase to simulate 

the chloride migration test in a saturated cement paste specimen. This simple numerical 

model highlights several fundamental issues, including: the behaviours of multi-species 

transport, effects of non-linear potential, and the influence of initial ionic concentrations 

on the transport of individual ionic species. By comparing the electrostatic potential 

gradient, concentrations, fluxes and current density distribution profiles of two catego-

ries of results, the significance of using Poisson’s equation is demonstrated in this chap-

ter. 

Chapter Four develops a series of 2-D models with two-phase composite to investigate 

the influence of movement dimension. Also, by exploring models with different shapes 

and volume fractions of aggregates, some important interaction transport features be-

tween ionic species have been found, which have not been seen before in the 1-D model 

of single phase. The influence of various forms of ionic binding between solid and liq-

uid phases is also examined in this chapter. 
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Chapter Five includes two parts. In the first part, a series of 2-D concrete models with 

three-phased composite considering the ITZ phase are developed in order to simulate 

the chloride migration test and explore the impacts of ITZs on migration rate. Some im-

portant factors such as the thicknesses of ITZ, diffusion coefficients in ITZ phase and 

the volume fractions of aggregates are discussed in detail. In the second part, a group of 

2-D cracked concrete models are proposed to examine the effect of cracks on the 

transport of chlorides. The investigation of the influence of geometric properties of 

cracks on the transport of chlorides is also detailed in this chapter. 

Chapter Six presents the findings of a quantitative study to check the validity of models 

featured in the preceding chapters. The diffusion coefficient of chloride in concrete is 

evaluated during both diffusion and migration processes. The normalized concrete dif-

fusion coefficients are firstly calculated by using the traditional stationary diffusion 

models in both 2-D and 3-D, then also calculated by using the migration models which 

have been proposed in preceding chapters. All of the obtained results are compared with 

three proven analytical models, i.e., Maxwell’s model (Dormieux and Lemarchand, 

2000), Bruggeman’s equation (Bruggeman’s, 1935) and the lower bound of the effective 

diffusion coefficient proposed by Li et al. (2012) as well as validated against experi-

mental data sets of an accelerated chloride migration test (ACMT) brought by Yang and 

Su (2002). 

The last chapter summarized the main contributions of the thesis. Findings and the limi-

tations of presented models are listed, and several suggestions are given for possible fur-

ther studies. 
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2 CHAPTER TWO – RESEARCH BACKGROUND 

The second chapter of this thesis outlines the research background relevant to this study: 

scale definitions, theoretical basis, methodology discussions and literature review. 

Based on this review, the knowledge gap of existing work are summarised and the inno-

vations of the present study are described. 
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2.1 Schematic structure of concrete at different scale definition 

In concrete research field, the first concept should be given is scale. Since concrete, 

mortar and other cement based materials exhibit distinct behaviours of phase distribu-

tion under different scales, before summarising the methodology of analytical and nu-

merical methods used to investigate structural properties of concrete, some definitions 

on the scales need to be clarified. Among most of the articles cited, there are three cate-

gories of scales being considered by researchers (Caré, S. and Hervé, E., 2004). 

The first category is the macroscopic scale sketched in Fig.2.1 (a), which has the order 

of magnitude of 210  m. At this size, the objects being studied are usually global con-

crete specimens and the determination of various properties is relatively convenient but 

less accurate.  

 

Figure 2.1. Three types of scales: (a) macroscopic, (b) mesoscopic and (c) microscopic (Caré, S. and Her-

vé, E., 2004).  

The second category is called the mesoscopic scale ( 36 1010    m), which is adopted in 

the majority of studies cited herein and also in the present thesis. At this scale, the prop-

erties of concrete are controlled by the features of the aggregates and cement paste. 
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More precisely, concrete here is viewed as a heterogeneous three-phase composite mate-

rial. According to the Fig.2.1 (b), the first phase represents the aggregates, which in-

clude not only the rigid material (siliceous aggregates) but also the porous material (cal-

careous aggregates). The aggregates are usually treated as an impermeable material. The 

second phase is the bulk cement phase, which is also called “matrix”. The matrix is a 

porous medium filled with water, through which ionic transport can take place. The fi-

nal phase is the interfacial transition zone (ITZ), which is an interface between the ag-

gregate and cement paste phases and compounded by anhydrous and hydrated cement 

with certain porosity and volume fractions gradients. Unlike the bulk cement paste, ITZ, 

at the micro level, suffers an extra constraint due to the influence of aggregate surface 

(Garboczi and Bentz, 1997). ITZ can be ignored due to its small volume ratio in some of 

properties. 

The third scale considered is the microscopic (order of magnitude: 910  m), showed in 

Fig.2.1(c). Compared to the mesoscopic scale, microscopic scale normally emphasizes 

the characteristic of the pore structure of the bulk cement paste phase. Among the stud-

ies of microscopic scale, the two major parameters used in describing the pores are po-

rosity and tortuosity, which offer a convenient and qualitative approach to simulate the 

pore solution of mortar by using one phase model. Specifically, as it is illustrated in 

Fig.2.2, the bulk cement paste phase itself also can be divided into two parts; one is sol-

id phase consisting of various hydration products, and the other is the capillary and gel 

pore phase, where the transport can take place. More precisely, the pore network struc-

ture possesses three kinds of characteristic: constrictivity, tortuosity, and conenetivity, 

as illustrated in Fig.2.3 (all white parts stand for pores and the remaining is solid phase). 
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The specific differences between these three scales on the structural properties of con-

crete research will be addressed in detail, later in the analytical method part (Section 

2.3.1). 

 

Figure 2.2. Microscope structure of bulk cement paste. 

 

 

Figure 2.3. Schematic of constrictivity, connectivity and tortuosity of a pore network. 
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2.2 Theoretical basis 

This section aims to explain the purpose of classifying the ionic transport behaviours, 

binding effect isotherms, and the classical equations in electrochemistry. 

2.2.1 Mechanisms of ionic ingress in concrete 

The durability problem of concrete regarded in this work is the penetration of ions. It is 

widely known the ingression of ions; especially the chloride ions in concrete will seri-

ously corrode the reinforcing steel within. Hence the ionic transport behaviours in elec-

trolyte solution should be clarified in the first place. Generally speaking, the mecha-

nisms of ionic transport in a porous material can be classified into three basic categories: 

diffusion, convection and migration.  

For consistency of description, the transport behaviours are expressed as a flux J (the 

moles of an ionic specie crossing per second per unit area of a plane normal to the flow 

direction) in the following sections. 

2.2.1.1 Diffusion 

Diffusion, describes the movement of ions through random motion from regions of 

higher concentration to regions of lower concentration, has been treated as a major driv-

er of ionic transport in this study. The steady-state diffusion can be obtained easily from 

Fick’s first law 

CDJ                                                           (2.1)                                                          

where J, D, C are the flux, diffusion coefficient and concentration respectively of the 

diffusing material. It shows that diffusion flux of ions is proportional to the concentra-

tion gradient.  
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2.2.1.2 Convection  

Convection of ions is caused by the bulk flow of the solution where ions are dissolved. 

Usually the convection term can be expressed as follows, 

uCJ                                                             (2.2)                                                                                                                       

where u stands for the advective velocity. 

Specifically, the convection taken place in concrete or cementitious materials is normal-

ly aroused by pressure gradient, capillary adsorption and electro-osmosis flow. 

a) Pressure flow 

The driven pressure flow is the most common occurrence in the convection of pore solu-

tion within concrete. The essence of this phenomenon is that, the liquid experiences di-

rectional flow when subjected to pressure gradient. The pressure flow process can be 

described by Darcy’s Law, 

p
k

Q 


                                                         (2.3) 

where Q is Darcy flux (discharge per unit area, with units of length per time, m/s), k is 

the conductivity of medium,   is the viscosity of fluid, p  is the pressure gradient. 

b) Capillary adsorption 

In the presence of surface tension of fluid, the bulk fluid flow will occur to maintain the 

pressure equilibrium on both sides of liquid level in capillary. This behaviour is fre-

quently found at the corroded concrete bridge pier above waterline. During the calcula-

tion, the capillary adsorption is equivalent to the pressure flow; therefore the flux of ca-

pillary adsorption can also be expressed in the form of Darcy’s Law, 
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p
sk

Q 


)(
                                                       (2.4) 

where s is the saturation. Because the capillary adsorption generally takes place at the 

unsaturated porous medium, the conductivity k here is a function of pore structure and 

saturation of solution. 

c) Electro-osmosis flow 

Maintenance of the chemical equilibrium between an electrolyte solution and a solid 

surface leads to the interface acquiring a net fixed electrical charge. As a result the hy-

drate of CaO , 2SiO , 32OAl , which contained in the cementing material, typically forms 

a layer of mobile ions, known as an electrical double layer or Debye layer in the region 

near the interface. When the fluid is subjected to an external electric field, the Coulomb 

force induces the net charge in the electrical double layer to move as well as drives the 

pore solution nearby as a resulting convection (Zhang and Gjorv, 1996). This kind of 

convection is termed electro-osmotic flow. 

In terms of relationships between diffusion and convection, in most cases, diffusion and 

convection of ions occur simultaneously. A concept to govern them is the Peclet num-

ber, produced by the ratio of the diffusion time DL /2 to the convection time uL / , i.e; 

D

Lu
Pe


                                                            (2.5)                                                                                                                                   

It is obvious to see that, if the effect of diffusion and convection in ionic transport are 

well-matched, the Peclet number will be approximate unity; while if the diffusion is the 

dominated transport, the Peclet number will be less than 1. 

2.2.1.3 Migration 
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Migration is another major cause of ionic transport in concrete materials. When charged 

ions in a dilute solution are subjected to an electric field, their transport will be influ-

enced by the electrical potential gradients. 

The migration velocity equals to the electrical force per mole of ions divided by the fric-

tional coefficient multiplied by Avogadro’s number )/( Ae NfF . The electrical force act-

ing on a mole of ions is comprised of the electrical potential gradient ( Φ ), the net 

charge of the k-th ionic species kz , and Faraday’s constant F= 96487 C/mol. The flux 

caused by the electric field can be express as (Truskey et al., 2004), 

Φ
Nf

FzC
J

A

kke

k *                                                    (2.6)                                                                                                                          

where kC  is the concentration of the k-th ionic species. The flux and the potential gra-

dient are in the same direction for anions and opposite for cations. 

According to Stockes-Einstein equation (Truskey et al., 2004), the frictional coefficient 

and the diffusion coefficient have the relation of DTkf B / . By using the universal gas 

constant 11 KmolJ314.8  R and the absolute temperature T=298K (273+25K) to 

substitute the Boltzmann constant Bk  as well as to calculate f , the Eq. (2.6) yields 

Φ
RT

FzDC
J kke

k *                                                  (2.7)                                                                                                                

2.2.2 Binding effect  

A kind of binding effect, also called adsorption effect, experiences both physically and 

chemically at the pore surfaces. Since a portion of the free ions in pore solution are be-

lieved to be adsorbed by the cementing material of concrete. Thus, the total concentra-
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tion of an ionic specie contained in concrete can be generally divided into two forms – 

free ions existing in concrete pore solution and the bound ions adsorbed by solid cement 

matrix. Since it can be assumed that the bound ions do not participate in the ionic 

transport process yet will certainly influence the concentration distributions within con-

crete, it is necessary to pay special attention to the binding effect. 

The physical adsorption depends on the Van der Waals force and is very unstable, the 

bound ions adsorbed by the amorphous calcium silicate hydrates are likely be rereleased 

when subjected to exogamic force. Correspondingly, the chemical adsorption combined 

by chemical bond is significantly more stable. Taking the chloride ions as a typical ex-

ample, they react with calcium and aluminates within cement to product Fieldel’s salt 

( O10HCaClOAlCaO3 2232  ) for chemistry reasons (Sahu et al., 2002): 

O10HCaClOAl3CaOO4H2ClCaO6HOAl3CaO 22322

2

232     (2.8) 

As concrete mixtures have higher chloride binding capacities, they have increased capa-

bility to hinder the ingression of chloride ions. Generally, the mineral admixtures (i.e. 

fly ash, furnace slag) raise chloride binding capacity whereas the silica fume reduces it.  

Nevertheless, it should be mentioned that the chemical binding process is not irreversi-

ble. There are two primary mechanisms for binding reversal. The first is that due to the 

equilibrium between free and bound concentrations, for which the bound ions will be re-

leased as the concentration in the electrolyte becomes lower (Wang et al., 2001). The 

second is that Fieldel’s salt will be destroyed when subjected to the carbonation process 

and sulphates erosion, which also results in the chloride desorption (Yuan et al., 2009). 

Martin et al. (2000) suggested that the influence generated by binding effect during the 

ionic diffusion process can be described by the following equation, 
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where tC  is the total concentration of an ionic specie contained in concrete pore solu-

tion, fC  is the free ions existing in concrete pore solution, D here is the diffusion coef-

ficient of free chlorides in pore solution, e is volume fraction of vaporizable water.  

Let febt CCC  , Eq. (2.9) can be modified as the form of Fick’s Second Law (Eq. 

(2.10)) , 
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                                             (2.10) 

where bC  is the bound ions adsorbed by solid cement matrix. 

Thus, the term

f

b

e

a

C

C

D
D










1
1

 is defined as apparent diffusion coefficient by Nilsson 

et al. (1994). 

f

b

C

C




 represents the gradient of the concentration ratio between the bound and free 

ions, which indicates the binding capacity of concrete. Different kinds of concrete have 

different corresponding binding capacity. Generally, there are four categories of iso-

therm in defining the relationship between free and bound ions over a range of concen-

trations at a given temperature: 

2.2.2.1 No binding 

0bC                                                             (2.11) 
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DDa                                                             (2.12) 

2.2.2.2 Linear sorption isotherm  

fb CC                                                           (2.13) 

e

a

D
D








1

                                                       (2.14) 

where   is an experimentally determined constant. Due to the simple expression, line-

ar sorption isotherm is the most widely used in previous numerical studies. However, 

Nilsson et al. (1994) pointed out that linear isotherm may underestimate the binding ca-

pacity of concrete at lower ionic concentrations and overestimate that at higher ionic 

concentrations. 

2.2.2.3 Langmuir isotherm  

Langmuir isotherm is a more accurate expression than linear sorption isotherm and has 

been frequently adopted in literature (Sergi et al., 1992; Delagrave et al., 1997; Li and 

Page, 2000; Wang et al., 2001). The expression of Langmuir isotherm is as below, 
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where   and   are experimentally determined constants. From the examples of 

schematic of isotherms shown in Fig. 2.4, it can be found that the curve of Langmuir 

isotherm becomes horizontal at high concentration value of ions, which implicates that 
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the binding capacity of concrete has upper limit. Tang and Nilsson (1993) indicated that 

Langmuir isotherm is only valid when the concentration of chloride ions is lower than 

0.05 mol/L in pore solution. However, later in the experiment of Li and Page (1998), it 

was proved that Langmuir isotherm still work well even if concentration of chloride 

ions is higher. It also should be noticed that, the assumption made in Langmuir isotherm 

that the binding capacity has a limitation is theoretically reasonable. 

2.2.2.4 Freundlich isotherm 

Due to the drawbacks of Langmuir isotherm, researchers tend to use Freundlich iso-

therm in simulating the ionic binding behaviour for high concentration pore solution 

(Truc, 2000; Spiesz et al., 2012). Mathematically, Freundlich isotherm is expressed as 

follows,  

 fb CC                                                           (2.17) 
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It can be seen from Fig. 2.4 that, Langmuir isotherm allows the concrete to continue 

binding free ions even at high concentration, which was confirmed by Tang and Nils-

son’s experiments (1993). Tang and Nilsson also concluded that, when the concentra-

tion of ions in pore solution is higher than 0.01 mol/L , Freundlich isotherm has the best 

fit to the experimental data.  
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Figure 2.4. A comparison between linear, Langmuir, and Freundlich isotherms. 

 

2.2.3 Classic equations employed in electrochemistry 

In order to describe the ionic ingress in concrete as well as explain the relationship be-

tween the flux and the concentration of ionic species, three kinds of equation have been 

employed in literature, namely, Fick’s laws, Nernst-Planck equation, and Nernst-

Einstein equation.       

2.2.3.1 Fick’s laws 

As it was mentioned above when the diffusion behaviour dominates the ionic movement 

process, the relationship between the flux kJ and the concentration kC in a solution fol-

lows the Fick’s first law, i.e., 

kkk CDJ                                                        (2.19) 
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Fick’s first law can empirically fit the steady state conditions of diffusion. However, 

when diffusion occurs in time-dependent circumstances, Fick’s second law needs to be 

used to describe the non-steady state conditions. Suppose that ions are diffusing along 

parallel pipes with a volume xA  (a unit area A and length x ). Let xJ  and xxJ   are 

the fluxes of inflow and outflow respectively, the accumulated mass within the reference 

volume in the time period t  can be obtained, 

tAJAJm xxx   )(                                               (2.20) 

Dividing both sides of Eq. (2.20) by txA  , it yields 
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Obviously, the left hand side of Eq. (2.21) is the concentration change per unit time, and 

the right hand side is the flux gradient, that is,  
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Substituting J with Fick’s first law (Eq. (2.19)), Eq. (2.22).can be transformed into the 

expression of Fick’s second law,  
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2.2.3.2 Nernst-Planck equation 

Fick’s laws are unable to describe the ionic transport other than the diffusion process. 

When a transport process includes concentration gradient, electrical field, pressure flow 

and chemical activity, the flux of ionic species can be expressed by Nernst-Planck equa-

tion (Yang et al., 2002) as follows, 
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where k  is the chemical activity coefficient of the k-th species. For an ideal diluted 

solution, this chemical activity term can be ignored. Also, if the pore solution is fully 

saturated and there is no pressure differences, the convection term ( kkuC ) will vanish 

(Andrade, 1993). Hence, the Nernst-Planck equation can be simplified to a diffusion-

migration form, as is adopted in the majority of the literature, that is,  
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Similarly to Fick’s laws, for time-dependent conditions, Eq. (2.25) can be transformed 

into non-steady state form by using the mass conservation of individual ionic species as 

follows, 
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Sometimes, Eq. (2.25) is also called simplified Nernst-Planck equation in literatures.  

2.2.3.3 Nernst-Einstein equation 

Unlike Fick’s laws and Nernst-Planck equation, which consider only the liquid phase in 

concrete, Nernst-Einstein equation (Lu, 1997) is applied to concrete and use the diffu-

sivity and conductivity of ionic species in concrete. 

Note that the total current carried by ionic transport can be expressed in terms of flux as 

follows, 

zFJAI                                                            (2.27) 
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With the use of Ohm’s Law, if the electric field ( dE ) is linear, dE  can be redefined by 

the resistance rR , 

d
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where d  is the distance between two electrodes of the electric field.  

Meanwhile, the resistance rR can be related with the resistivity (  ) and conductivity 

( ) as follows, 
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Substituting Eq. (2.29) into (2.28), it yields, 



zFJ
Ed                                                           (2.30) 

According to the migration flux given in the Nernst-Planck equation, we have, 
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Substitute Eq. (2.30) into Eq. (2.31), the following proportion relationship between the 

diffusivity and conductivity can be obtained, 
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Eq. (2.32) is frequently utilised in the analytical method and Resistivity Techniques with 

the aim of measuring the diffusion coefficient of ions.  
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Fick’s Laws, Nernst-Planck equation, and Nernst-Einstein equation are the most often 

used approaches in the field of electrochemistry in relation to ionic transport in electro-

lyte in porous media. 
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2.3 Methodology 

This section discusses different methodologies and offers a review of literature in rela-

tion to ionic transport in concrete. The review was carried out in terms of the methods 

used, namely, analytical, numerical, and experimental methods. 

2.3.1 Analytical method  

There is a large body of analytical approaches aiming to predict the diffusion coefficient 

on the basis of different scales. 

2.3.1.1 Macroscopic analysis 

At macroscopic scale, analytical method brings some empirical models. It is revealed 

from the existing data that the diffusion coefficient tends to have a connection with the 

water to cement ratio. Atkinson and Nickerson (1984) indicated that this relationship is 

approximately exponential in cement paste. However, Hobbs (1999) found the relation-

ship between diffusion coefficient and water to cement ratio was weaker in concrete 

than in cement pastes, which shows that the influence made by aggregates cannot be 

negligible. 

2.3.1.2 Microscopic analysis 

Referring to section 2.1, there are two significant parameters of pore system in micro-

scale situation: porosity  and tortuosity . According to Maxwell’s model,  equals 

to )3/(2  . 

Zhang and Bishop (1993) evaluated the influence of porosity and tortuosity on the effec-

tive diffusivity in biofilms. They found that with porosities of 0.84-0.93 in the top layer 

and 0.58-0.67 in the bottom layer, tortuosity increases approximately from 1.15 in the 
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top layer to 1.6 in the bottom layer, while the ratio of biofilm effective diffusivity to the 

bulk solution diffusivity ( be DD / ) decrease from 68-81% in the top layer to 38-45% in 

the bottom layer, when a cylindrical model as used.  

Based on the concepts of porosity and tortuosity, the effective diffusion coefficient of an 

ionic species in porous media is given by 0DDeff  ; see, for example, the work of 

Dormieux and Lemarchand (2000), Garboczi (1990), Van Brakel and Heetjes (1974) , 

where 0D is the diffusion coefficient of the same ions in aqueous solution. 

Garboczi and Bentz (1992) found the relative diffusivity, as a function of porosity and 

distance from the aggregate can be estimated as, 
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0

cricri xxHxx
D

D
                 (2.33) 

where D is the diffusivity of ions in the material of interest and 0D  is the diffusivity in 

bulk water, )(x is the capillary porosity volume fraction at a distance x from an aggre-

gate surface and cri =0.18 is the critical porosity, below which the capillary pore space 

will be disconnected. H is the Heaviside function (i.e., if x>0, H(x)=1, other wise 

H(x)=0). 

Xu et al. (1997) employed the multi-scale percolation system concept to resolve the dif-

fusion coefficient. The model was made of several elementary networks having mesh 

size proportional to the diameter of the real pores. 

Garboczi and Bentz (1997) presented methods for use of a multi-phase microscope ana-

lytical model to solve some problems which previously required supercomputer-

magnitude simulations, such as determination of the total volume of interfacial zones for 
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a given aggregate distribution and/or calculation of the effect of aggregates and ITZ on 

the overall diffusivity of the concrete. 

Li and Xia (2011) proposed the upper and lower bounds of the effective diffusion coef-

ficient of chlorides in concrete, which are expressed as cemeff DD max  and 

)3/()1(min   cemeff DD , were obtained by using 2-D series and parallel models. 

Jiang et al. (2012) addressed further questions relating to the diffusion coefficient of ITZ 

with regard to the porosity distribution. The model considers the influence of water-to-

cement ratio, the thickness of ITZ and the degree of hydration on the porosity distribu-

tion of ITZ. In their study, the relative diffusivity of bulk paste and ITZ proposed by 

Garboczi and Bentz (1992) was adopted and the diffusion coefficient of chloride ions in 

ITZ was given by,  

))()(8.107.0001.0( 22

0 criITZcriITZITZITZ HDD                  (2.34) 

where 0D  is the corresponding diffusion coefficient in a bulk water at room tempera-

ture and ITZ  is the porosity of ITZ. 

2.3.1.3 Mesoscopic analysis 

In mesoscopic scale, analytical models consider the components of the two or three 

phases (aggregate and cement matrix; aggregate, bulk cement paste and ITZ) and their 

corresponding diffusive properties in these different phases. 

Hobbs (1997) determined the lower and upper bounds of the effective diffusion coeffi-

cient in two-phase analytical model. By expressing the volume fraction and diffusion 

coefficient of the aggregates as AC  and AD , respectively, as well as volume fraction 
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and diffusion coefficient of the cement paste as )1( AC and PD , respectively, the es-

timation of the bounds is, 
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If it is assumed that the diffusion only takes place in the cement phase due to its much 

higher diffusivity, i.e., the diffusion coefficient of aggregates vanishes ( 0AD ), 

Eq.(2.35) can be simplified as, 
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Later, Hobbs (1999) proposed the specific relationship between effD , AD and PD  as fol-

lows, 
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Xi and Bazant (1999) developed a more accurate two-phase analytical model, in which 

the effective diffusion coefficient is expressed by 
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Similarly, Eq. (2.38) can be simplified as 
)2(

)1(2

A

A
Peff

C

C
DD




  if the aggregates are 

treated as impermeable. 

Caré and Hervé (2002) brought a three-phase analytical model for evaluating the effec-

tive diffusion coefficient of ions in mortar, which took into account the characteristic of 
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ITZ. The model assumed that each phase obeys the Fick’s first law of ionic diffusion 

with no source or sink of ions. Under the Fick’s law, the effective diffusion coefficient 

is presented as,  

D

N
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where IC  is the volume fraction of ITZ, ID  is the diffusion coefficient of ITZ and 

BD  is the diffusion coefficient of bulk cement matrix. Also, if aggregates are assumed 

to be impermeable ( 0AD ), Eq. (2.39) is simplified as,  
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Yang and Su (2002) considered not only the ITZ phase but also the migration of ions. 

The diffusion coefficient was replaced by the “migration coefficient”, which was used to 

describe the diffusion coefficient during the accelerated chloride migration test 

(ACMT). Based on the experiment results they concluded an empirical formula to calcu-

late the chloride migration coefficient as follows,  
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where 0D  is the migration coefficient of ions in the matrix, fV  is the aggregate vol-

ume fraction. 0D is the migration coefficient of ions in ITZ , and fV  is the volume 

fraction of ITZ. Note that this model assumes that the migration coefficient of the ITZ is 

constant and the chloride flow in the ITZ is locally parallel to the aggregate surface. 

Caré (2003) developed a similar empirical formula, in which the chloride diffusion coef-

ficient was expressed as a function of the volume fraction of aggregate and ITZ phase. 

From the diffusion test result, the effective diffusion coefficient can be estimated as, 
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Oh et al. (2004) combined both mesoscopic and microscopic scale in their analytical 

model to predict the diffusivity of concrete. In their study, the concrete was divided into 

three phases (aggregates, ITZ, and bulk cement paste) at mesoscopic level, then the bulk 

cement paste phase itself was treated as a two-phase porous media consisting of solid 

phase and capillary pore phase. The effective diffusivities of porous media was derived 

from general effective media (GEM) equation (McLachlan et al., 1990), and that of 

three-phase mesoscopic concrete was expressed by utilising the composite spheres as-

semblage (CSA) model (Hashin, 2001). With the help of Nernst–Einstein relation (Eq. 

(2.25)), the effective diffusivity of concrete or mortar can be written as, 

aeff DD  0                                                    (2.43) 
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Thus, the concrete diffusivity is determined by two main variables, i.e., the capillary po-

rosity cap  and the aggregate volume fraction aV . 

Zheng and Zhou (2007) established a similar model with Caré and Hervé ’s (2002). 

Based on the three-phase composite circle model, the chloride diffusion coefficient of 

concrete can be determined as follows 
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where mD  is the diffusion coefficient of cement paste, q is the ratio between diffusion 

coefficient of ITZ and cement paste, aA  and iA  are the volume fraction of aggregate 

and ITZ, respectively. Later, Zheng et al. (2009) further investigated the influence of 

ITZ on the steady-state chloride diffusion in mortars and concretes. 

More recently, Zheng et al. (2012) represented another analytical model which contains 

the diffusivity of aggregate and aggregate shape effect. For the elliptical shaped aggre-

gate, equivalent diffusion coefficient of aggregate is, 
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where   is the ratio of major and minor axes of the elliptical aggregate particles. 

However, it should be mentioned here that, all of the analytical models presented above 

are for the steady state conditions, regardless of diffusion or migration process.  
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2.3.2 Experimental method 

For the sake of protecting the reinforced steel within concrete from corrosion induced by 

chloride ions and improving the understanding of the ionic transport in concrete, great 

efforts have been made on the assessment of ionic transport by using experimental tech-

niques. In this section, the experimental methods used in investigating the chloride pen-

etration in cement related materials are reviewed. 

2.3.2.1 Diffusion tests 

Diffusion test is a traditional way for measuring the chloride penetration in concrete 

based on Fick’s Laws. In early years, two standard test methods have been designed. 

One is the salt ponding test and the other is the bulk diffusion test.  

a) Salt Ponding Tests 

Salt Ponding Test, standardised by American Association of States Highway and Trans-

portation Officials and American Society of Testing and Materials as T259 (AASHTO 

T259, 1980) and C1543 (ASTM C1543, 2002) was developed to investigate the penetra-

tion mechanism of chloride ions into concrete bridge decks. The schematic of Salt 

Ponding Test is shown in Fig. 2.5. Generally speaking, the chlorides in the upstream cell 

will diffuse into the downstream chloride-free cell if the time is sufficient (normally in 

90 days). The test specimen consists of a concrete slab with a dike located around the 

top perimeter to store the ponding solution (Fig.2.6).  
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Figure 2.5. Schematic of Salt Bonding Test (AASHTO T 259, 1980) set up. 

 

Figure 2.6. Schematic of profile ground specimen (Patrick et al., 1999). 

 

b) Bulk Diffusion Test 

An alternative test method, Bulk Diffusion Test, was developed to measure chloride dif-

fusivity during a diffusion progress. In terms of initial moisture condition of the sample, 

the specimen to be tested in a Bulk Diffusion Test is saturated with limewater instead of 

being dried for 28 days in Salt Ponding Test, which can prevent any initial sorption ef-
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fects when the chloride solution is introduced. Besides, the Bulk Diffusion Test makes 

the uncovered face expose to a 2.8 mol/L NaCl solution, unlike Salt Ponding Test leav-

ing one face exposed to air. All these modifications can certainly improve the test accu-

racy and reduce the test duration. 

The Bulk Diffusion method was adopted by Nordic standard as NordTest NTBuild 443 

(1995). Fig.2.7 shows a schematic diagram of the test.  

Note that both Salt Ponding and Bulk Diffusion Tests are time-consuming, especially 

the Salt Ponding Test when applied for high-performance concrete (HPC), of which the 

test duration maybe last 150 days or even longer to get a sufficient chloride profile. 

  

Figure 2.7. Schematic of Bulk Diffusion Test (NordTest NTBuild 443, 1980) set up. 

 

2.3.2.2 Migration tests 

Due to the long duration of diffusion tests, people tend to adopt experiments based on 

migration, which contain the Coulomb test, steady state migration test, Resistivity 

Techniques, and non-steady state migration test to obtain more information about chlo-

ride penetration. 
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Figure 2.8. Rapid chloride permeability test (AASHTO T277, 1983) set up: schematic (above) and actual 

(below). 

a) Coulomb Test  

Coulomb test, initially developed by Whiting in 1981 (Whiting, 1981) and then adopted 

as AASHTO T 277 (1983) and ASTM C1202 (1994), was the first famous approach re-

placing diffusion tests to measure chloride diffusivity. As is illustrated in Fig. 2.8, a wa-

ter-saturated, 50mm thick, 100mm diameter concrete cylinder is located between two 

compartments; one has a 3.0% NaCl solution and the other has a 0.3 mol/L NaOH solu-

tion. Externally, there is a 60V DC voltage applied between the two compartment solu-

tions. After a 6-hour migration test, the total charge passed (coulombs) is measured and 

this is used to rate chloride ions penetrability. This test method is also known as the 
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Rapid Chloride Permeability Test (RCPT) though this name is inaccurate as it is actual-

ly not the permeability that is being measured but coulomb charge movement. 

However, during the last two decades, a number of studies (Andrade, 1993; Feldman et 

al., 1994; Pfeifer et al., 1994; Scanlon and Sherman, 1996; Shi et al., 1998; Shane et al., 

1999; Hooton et al., 2000; Shi, 2004) have raised criticisms of the RCPT test method 

based on a variety of reasons. In general, their opinions can be summarised as this: fac-

tors which normally have much to do with electrical conductivity or resistance of con-

crete make insufficient influence on the transport of chloride. More specifically, the re-

sults obtained from charge passed in the test cannot exactly represent the permeability 

especially when the chemistry of pore solution was taken into account. Andrade (1993) 

employed a migration test and indicated that the function between measured charge 

through the concrete and the moving ions is more suitable for hydroxyls than chlorides. 

A comparison made by Pfeifer et al. (1994) also showed that 6 to 15 times coulomb val-

ue growth only arouse 1 to 2 times increase of actual chloride ingression in the corre-

sponding 90-day ponding test. Shane et al. (1999) confirmed that the deviation between 

permeability and electrical conductivity or resistance will be even higher when acting on 

concrete made with silica fume, fly ash, and other super-plasticizer admixture. Another 

research proposed by Shi (2004) concluded that an increase of volume fraction can de-

crease the electrical conductivity of concrete due to the dilution effect of conductive 

ions in pore solution and the adsorption of alkalis on the surface of aggregates. Briefly 

speaking, unstable scientific bases and rough testing method make the measured diffu-

sion coefficient of chloride quite unreliable. 

Nonetheless, even though Coulomb Test experiences a series of deficiencies, it has been 

treated as a classical technique for bringing accelerated electrical field in chloride in-
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gression measurement. Since it was adopted as a standard test method, during last 30 

years or so, it has gathered a great quantity of experimental data, which is often refer-

enced in literature. Additionally, the apparatus set up of RCPT provided a valuable 

groundwork for developing other migration test methods such as steady and non-steady 

state migration tests. 

b) Steady state migration tests 

In view of the drawbacks of Coulomb Test, an alternative test method was developed 

based on accelerated electrical field – steady state migration test. The theoretical back-

ground of this test method is attributed to the Nernst-Planck equation (Eq. (2.25)). 

When the transport process reaches a steady state, the diffusion term in Eq. (2.25) can 

be removed, which leads, 
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If the potential gradient in Eq. (2.46) is assumed to be a constant, i.e.,  
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U is the externally applied DC voltage, then from Eq. (2.46) one can obtain the diffusion 

coefficient as follows, 
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where lJ  is the flux of chloride at downstream boundary and 1C  is the concentration 

of chloride at upstream boundary. Note that because of the steady state, the flux of chlo-

ride is approximately a constant. By gauging the flux of chlorides at downstream bound-

ary, the chloride diffusion coefficient can be obtained. In some literatures, ClD  calcu-



 42 

lated from Eq. (2.47) is also named as migration coefficient due to the dominant role of 

migration flux in the steady state migration test. 

 

Figure 2.9. Schematic of steady state migration test (NordTest NTBuild 335, 1997) set up. 

This method was carried out in the early 1980’s and revised in 1990’s. In 1997, it was 

recommended by Nordic standard as NordTest NTBuild 335 (1997). The equipment set 

is very similar to Coulomb Test and is shown in Fig. 2.9. 

 

Figure 2.10. Schematic of steady state migration test (JSCE-G571, 2003) set up. 
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Another standard steady state migration test was adopted by the Japan Society of Civil 

Engineers as JSCE-G571 (2003), the purpose of which was the calculation of the effec-

tive diffusion coefficient of chloride ions in concrete from migration, which is depicted 

in Fig. 2.10 Distinctly from RCPT and NTBuild 335, the volume of two cells is not 

strictly specified in JSCE-G571. 

 

Figure 2.11. Schematic of steady state migration test (Mcgrath and Hooton, 1996) set up. 

Mcgrath and Hooton (1996) built another apparatus based on the steady state migration 

test method. As it is demonstrated in Fig. 2.11, the sizes of upstream and downstream 

cells are unsymmetrical there. In the cathode chamber, there are not only NaCl but also 

0.3 mol/L NaOH solution. An Ag/AgCl reference electrode assembly was placed in the 

gap between the specimen face and the stainless steel electrodes to adjust the desired 

driving potential for the test set up. 

Delagrave et al. (1996) ran a 3-week steady state migration test to determine the migra-

tion coefficient of chloride ions in several different concrete mixes. In their experiments, 

the solutions in two cells are the same as those in Mcgrath and Hooton’s work. But dif-

ferently, the compartments of two cells were equipped with an agitating facility for bet-
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ter maintaining the homogeneity of the solutions, and ruthenium-coated titanium elec-

trodes were used. 

 

Figure 2.12. Schematic of ‘concrete cube’ migration test (Prince et al., 1999) set up. 

Prince et al. (1999) presented a novel ‘concrete cube’ migration test, which permits con-

tinuous determination of the main physical parameters during a concrete migration test. 

The schematic diagram of test arrangement is described in Fig. 2.12. The diffusion cell is 

a cylindrical PVC tank covered with a lid. The test tube is a cylindrical core of concrete 

as a concrete sample with 100 mm diameter and 100 mm height, in which a secondary 

drilling produced a central cavity of 40 mm diameter. This tube is fixed firmly in the 

cell by the intermediary of a hollow PVC roll and divides two compartments filled with 

NaCl and NaOH solutions. A stainless steel electrode is inserted in the external chamber 

as a cathode, while a carbon electrode is inserted in the internal chamber as an anode. 

The power is supplied across these two electrodes with values limited to 30V and run 
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over several days. During the treatment time, the amount of chloride migrated through 

the concrete, the conductivity, and the pH are monitored. 

 

Figure 2.13. Schematic of LMDC (Truc et al., 2000) set up. 

Figure 2.13 shows an additional steady state migration test proposed by Truc et al. 

(2000). This test is called LMDC (Laboratoire Metériaux et Durabilité des Construc-

tions) and allows the determination of the effective diffusion coefficient by measuring 

the drop in chloride concentration in the cathode chamber. The upstream cell contains 

0.5 L of chloride salts (NaCl, NaOH and KOH) and the downstream cell contains 2.5 L 

of a hydroxide solution (NaOH and KOH). A 12V DC voltage is applied across the cyl-

inder concrete specimen and the solution in chamber is renewed frequently during the 

test. 

With the aim of eliminating the Joule effect caused by high current density, Yang et al. 

(2002) modified the device of Coulomb Test (ASTM C1202, 1994) by enlarging the ca-

pacities of two cells from 0.25L to 4.5L (shown in Fig. 2.14). This accelerated chloride 

migration test abbreviated to ACMT was adopted in a series of studies thereafter (Yang 

and Su, 2002; Yang, 2003; Yang and Cho, 2003; Yang and Wang, 2004; Yang, 2005; 



 46 

Yang and Cho, 2005; Yang, 2006; Yang et al., 2007) to explore different parameters and 

features during the migration of ions, such as the diffusion/migration coefficient, charge 

passed, ITZs, pore structure effect, etc. The durations of the test used in most studies are 

more than 3 weeks. 

 

Figure 2.14. Schematic of ACMT (Yang and Su, 2002) set up. 

In summary, though the steady state migration tests achieve more stable scientific bases 

than the Coulomb Test, it still has some disadvantages. The fatal one is that it takes a 

very long time (normally more than 2 weeks) from power on to reaching steady state es-

pecially for the large thickness specimen. If one increases the external voltage to speed 

up the process, it will lead to polarization phenomenon and Joule Heat, just like Cou-

lomb Test does. Additionally, when it reaches steady state, it is still difficult to monitor 

the concentration changes in downstream cells. 

c) Resistivity Techniques 

Resistivity Technique is a special case of steady state migration test. If a vacuum 

equipped concrete specimen saturated in a highly conductive chloride solution, it will 
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reach steady state migration instantly. By then the pore water conductivity of the con-

crete sample equals to that of solution. This conductivity can be easily obtained by ordi-

nary ways just like measuring electric circuit. With the help of Nernst-Einstein equation, 

the chloride diffusion coefficient can be calculated if the conductivities are known.  

Streicher and Alexander (1995) carried out a rapid chloride conduction test based on 

above idea. As it is shown in Fig. 2.15, except for the use of the two traditional cells 

both containing 5 mol/L NaCl solution, two 4Cu/CuSO  half cells are placed to meas-

ure the potential difference across the concrete specimen. All the cylinder concrete sam-

ples will firstly be dried in an oven at 323K for 7 days to remove moisture from the ca-

pillary pores. After that, they will be vacuum saturated in a 5 mol/L NaCl solution for 5 

hours and left to soak for 18 hours. A 10V voltage is applied between two electrodes to 

accelerate the procedure of becoming steady state. 

 

Figure 2.15. Schematic of Resistivity Technique (Streicher and Alexander, 1995) set up 
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Streicher and Alexander’s test method was shortly confirmed by Lu (1997). He also in-

dicated that the problem of temperature can be eliminated when a low voltage is applied 

and the binding effect can be ignored when the concrete was saturated with salt solution. 

Otsuki et al. (1999) modified the Coulomb Test (ASTM C1202, 1994) for another resis-

tivity test. The cylinder specimen in the classical Coulomb Test is replaced by a 30 mm 

thick concrete disk as shown in Fig. 2.16. The concrete disk was adhered to a rubber at-

tachment using epoxy resin. Besides, a saturated 2Ca(OH) solution is added to the an-

ode and a 5% NaCl solution is added to the cathode. Finally, an electrical potential dif-

ference was externally applied to the two titanium electrodes under monitoring. When it 

reaches the specific electric current density, one can employs Nernst-Einstein equation 

to calculate chloride diffusivity within the sample. 

 

Figure 2.16. Schematic of disk-type specimen (Otsuki et al., 1999). 

Generally speaking, Resistivity Techniques can significantly reduce the treatment time 

relative to the normal steady state migration tests as well as the influence caused by oth-

er ion species within pore solution. However, resistivity techniques are still based on 

electrical measurements and have accuracy problems just like the Coulomb Test 

(RCPT). Moreover, theoretically, the high concentrations of ions may affect the valida-
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tion of classical equations such as Nernst-Planck equation and Nernst-Einstein equation. 

It also should be noted here that, the operation of vacuum saturating will cause an irre-

versible damage on the inherent structure of the concrete. 

d) Non-steady state migration tests 

In consideration of the criticisms about Coulomb Test (RCPT) and long treatment dura-

tion of the steady state migration tests, researchers developed the non-steady state mi-

gration test. 

Initially, Tang and Nilsson (1992) proposed a migration test scheme named CTH 

(Chalmers Tekniska Högskola) and provided a mathematical theory for calculating the 

diffusion coefficient of chloride ions, which is expressed as follows, 
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where dx  is the penetration depth of chloride ions at a test duration dt , dC  is the 

chloride concentration at dx , 1erf   is the inverse of error function. Other parameters 

are accordant with Eq. (2.47). 

The essence of CTH apparatus is almost the same as Coulomb Test and can also be tak-

en as steady state migration test; however it allows direct measurement by the depth of 

chloride penetration instead of using the total passed charge to estimate the permeability 

or calculating the chloride flux at downstream boundary. After completion of the 18-

hour test, the specimen is split in half. An exposed surface misted with a silver nitrate 

solution changes colour to off-white because of the chemical reaction between silver 

and chloride ions, therefore indicating penetration depth (Fig. 2.17). The results are ex-
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pressed in hr)mm/(V  by dividing the average chloride penetration depth by the product 

of the applied voltage and the duration of the test (as shown in Eq. (2.48)). 

 

Figure 2.17. Split specimen and penetration depth displayed (Tang and Nilsson, 1992). 

Later, the above method was adopted by Nordtest and AASHTO as NT Build 492 

(1999) and AASHTO provisional Standard TP64 (2003), called as the rapid chloride 

migration test (RCM) or the rapid migration test (RMT). As it is depicted in Fig. 2.18, 

the concrete specimen employed in NT Build 492 is a series of cylinder samples with 

100mm diameter and 50mm thickness. The pre-treatment of the samples before the test 

is very similar with that in RCPT standard; however, the fluid used for soaking the sam-

ples is a saturated 2Ca(OH) solution. Then, the concrete sample is tilted into a 

mm280270370  plastic box. The solutions contained in the cathode and anode cells 

are a 10% NaCl and a 0.3 mol/L NaOH, respectively. The voltage and the time used in 

the test depend on the electrical properties of the concrete sample which is shown in Fig. 

2.19. Firstly, an initial current 0I  is obtained from an initial voltage of 30 V. With this 

current, the voltage to be applied in the test, U, is found from the standard. Finally, once 
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the voltage U is applied, the test duration in hours is obtained from the standard using 

the possible new initial current. 

 

Figure 2.18. Schematic of steady state migration test (NT Build 492, 1999) set up. 

 

Figure 2.19.Determination of the voltage and time (NT Build 492, 1999). 

Castellote et al. (2000) created another non-steady state migration test using an appa-

ratus similar to the Salt Ponding Test (Fig. 2.20). The cathode stainless steel mesh is 

placed on the top of the specimen with a 0.5 mol/L NaCl Solution. A steel plate and a 

damp sponge acting as an anode are placed on the bottom of the specimen. 
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Figure 2.20. Schematic of non-steady state migration test (Castellote et al., 2000) set up. 

The non-steady state migration tests (RCM) support a number of important advantages, 

i.e. simple test procedure, short testing duration and a good repeatability of results; 

therefore this method is widely used in recent years and has been suggested to substitute 

for the traditional Coulomb Test (RCPT).    

To sum up, the experimental data in the literature were mostly obtained by means of 

taking traditional concrete as a specimen while very few were for the new types of con-

crete. Additionally, similar to analytical approach, the migration tests described above 

are mainly used to investigate the transport of chloride ions alone, the transport of other 

ions and their effect on the chloride transport are not addressed. 

2.3.3 Numerical method 

Owing to a series of important advantages against experimental techniques, i.e. the con-

venience of preparation, ease in governing parameters, shorter calculating duration and 
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better view of results, numerical methods have become a favoured method used to ex-

plore the mechanism of ionic transportation in composite materials.  

2.3.3.1 Ionic transport of single-species 

Similar to the analytical and experimental methods, this category of study focuses on 

only one specie (chloride for the most part) during the ionic transport process, neglect-

ing the ion-ion interactions from microscopic point of view. Since this kind of issue is 

not the main concern of this thesis, only recent work is listed here. 

a) Solving the single-species transport by using Fick’s Law 

The aim of studies under this category is usually to investigate chloride diffusion behav-

iour in more complex concrete models. 

Zeng (2007) established a 2-D hetero-structure model and used FEM to simulate the 

chloride diffusion behaviour in a heterogeneous concrete composed of two phases (ag-

gregates and cement paste matrix) with distinct chloride diffusivities. It was found that 

in a heterogeneous concrete, the chloride diffusion is quite different from that in the 

homogeneous medium. Another conclusion is that, the chloride binding effect and time-

reducing effect of diffusion coefficient in cement paste may remarkably slow down the 

chloride diffusion in concretes. 

Zheng and Zhou (2008) proposed a three-phase composite sphere model to represent the 

heterogeneous nature of concrete and derived a closed form expression for chloride dif-

fusion in concrete. Later, Zheng et al. (2009) further investigated the influence of ITZ on 

the steady-state chloride diffusion in mortars and concretes. More recently, Zheng et al. 

(2012) presented a 2-D lattice model which contains the diffusivity of aggregate and ag-
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gregate shape effect. They obtained an expression which includes the ratio of major and 

minor axes of the elliptical aggregate particles.  

To describe the effect of recycled aggregate (RA) on the chloride diffusion in recycled 

aggregate concrete (RAC), Xiao et al. (2012) proposed a five-phase mesoscope sphere 

model to simulate recycled aggregate concrete (RAC). The five-phase composite sphere 

contains the old and new interfacial transition zones (ITZs) as inter phases, and the new 

mortar, old attached mortar and original aggregate, which is illustrated in Fig. 2.21. The 

work also used Fick’s second law and finite element methods. 

 

Figure 2.21. Five-phase composite sphere model. (Xiao et al., 2012). 

Li et al. (2012) used two-phase models in both two and three dimension to predict effec-

tive diffusion coefficient of chlorides in concrete. They found that the shape of aggre-

gate has a small influence during the diffusion process and also gave a lower bounds of 

the effective diffusion coefficient of chlorides in concrete as a function of porosity.  
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More recently, Dehghanpoor Abyaneh et al. (2013) represented a 3-D numerical model 

with three phases to investigate the diffusion coefficient of chlorides in concrete. The ef-

fects of the shape and orientation of ellipse particles on diffusivity was found in this 3-D 

model. 

b) Solving the single-species transport by Nernst-Planck equation 

Adopting the Nernst-Planck equation allows one to simulate the electro-migration pro-

cess such as the processes occurred in the Rapid Chloride Permeability Test and Rapid 

Chloride Migration test. 

Claisse et al. (2010) developed a computer model to simulate the Rapid Chloride Per-

meability Test (ASTM C1202). This study models the changes of the voltage distribu-

tion to hold the charge neutrality and enables the model to predict current-time transi-

ents similar to those recorded in experiments. Then, the basic parameters such as 

diffusion coefficients for tested samples by optimising to the observed data can be ob-

tained. 

Spiesz et al. (2012) set up a new theoretical model for calculating effective chloride dif-

fusion coefficient and concentration profiles for the Rapid Chloride Migration test (NT 

Build 492). This model accounts for the chloride Freundlich isotherm binding and non-

equilibrium conditions between the concentrations of free and bound ions in concrete. 

The results show that this model can offer a better accuracy while the RCMD  calculated 

in the traditional way is overestimate. 

2.3.3.2 Ionic transport of multi-species   

Due to the limitation of single-species transport, extendedly, more work has to do in ex-

ploring the interactions between different ionic species in the pore electrolyte solution 
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on the ionic transport, particularly the diffusion and migration of chloride ions. For cou-

pling the movements run by different ions together, one needs to determine the electro-

static potential in the first place. There are two fundamental kinds of approach in litera-

ture for governing the potential in bulk solution matrix.  

The first approach is called electro-neutrality condition, which ensures that no external 

charge can be imported (Bockris and Reddy, 1998) and determines the electrostatic po-

tential of each point of the electrolyte solution: 
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where Ck is the concentration of the k-th ionic species in the pore solution.  

However, it should be noted that, electro-neutrality condition, which is employed in the 

above studies to govern the electrostatic potential in solution, is not a constitutive law 

but only a mathematical assumption and may cause problems. The real constitutive law 

for governing the electrostatic potential is the Poisson’s equation.  
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where Φ  is the electrostatic potential, F = 9.648×10
-4

 C·mol
-1

 is the Faraday constant, 

εo=8.854×10
-12

 C·V
-1

·m
-1

 is the permittivity of a vacuum, and εr=78.3 is the relative 

permittivity of water at temperature of 298K.  

It is obvious from Eq. (2.50) that, if the electro-neutrality holds then Eq. (2.50) can be 

simplified as 02  Φ . This implies that if the problem is one-dimensional then the 

electric field would be a constant. Numerical examination of Eq. (2.50) shows that, the 
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constant factor in the right-hand-side of Eq. (2.50), 
r

F

0

, is a very large number with 

the order-of-magnitude of 1410 . In order that the left-hand-side of Eq. (2.50) be finite, 

the concentration terms in the right-hand-side of Eq. (2.50) must be very small, i.e. 
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0 . This indicates that the electro-neutrality is not a physical condition but on-

ly a numerical approximation. It should be pointed out here that, 
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0 are qualitatively different, although from a numerical point of view these 

two may be very close. The former implies 02  Φ  while the latter is not.  

However, numerically, directly solving the Poisson’s equation is a difficult job in the 

early years since it involves calculations of large and small numbers.   

a) Solving the multi-species transport by Fick’s Laws 

Under this category, studies look into the diffusion behaviour as the dominant form in 

the ionic transport process by coupling Fick’s Laws and electro-neutrality condition (Eq. 

(2.49)) to model the multi-species diffusion in electrolyte solutions. 

Snyder and Marchand (2001) investigated the effects of ionic species and their initial 

concentrations on the apparent diffusion coefficient of chlorides in cementitious materi-

als. The results showed that concentration made a relatively slight influence while the 

speciation impacted markedly during the short-time period. 

Taking into consideration of dissolved calcium ions, Sugiyama et al. (2003) proposed a 

simultaneous ionic transport model (SiTraM) for chloride penetration into a cement-

based material on the basis of the generalized form of Fick's first law and corresponding 
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chemical reactions. The calculated concentration profiles of calcium within solid phase 

and chloride confirmed the presence of Friedel’s salt generated by the binding of chlo-

ride ions. In 2008, they (Sugiyama et al., 2008) again applied this SiTraM method to 

simulate the profiles of chloride and calcium to pore structures. Meanwhile, effects of 

other parameters like w/c ratio, temperature, time and depth were discussed on ionic 

transport. 

b) Solving the multi-species transport by Nernst-Planck equation 

Obviously, Fick’s laws are insufficient for studying the mechanisms of actual ionic 

transport since plenty of cases or experiments involve externally applied electrical field 

to accelerate the diffusion procedure. In order to find the concentration/flux profiles and 

other transport properties of ions during the diffusion-migration process, a great signifi-

cant body of work has been conducted in the last few decades using the Nernst-Planck 

equation. Methodologically speaking, these works can be divided into four categories as 

described below in detail. 

i) Integration of zero current method with the use of electro-neutrality condition 

In electrolyte solution, if there is no charge at any point, a zero current condition can be 

adopted. As the current density into any point equals the one out of it, the conservation 

equation of current density is given as follows: 
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where I is the current density, zk and Jk are the charge number and the flux of the k-th 

ionic species in the cement paste and N is the total number of the species involved in the 

pore solution. 
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A series of studies investigated the diffusion of chloride ions in the cement pore electro-

lyte solution under the above-mentioned hypothesis of zero current and electro-

neutrality condition. 

In order to explain the interactions between multi-species, Lorente et al. (2003) devel-

oped and proved a new approach based on the Nernst-Planck equation instead of the 

Fick’s laws to describe ionic transfer in cement-based porous media.  

Similarly, Khitab et al. (2005) built another numerical model, a new version of Msdiff 

(Multi-Species Diffusion), to simulate the process of chloride ingression through the 

saturated cement paste. In the work, they accounted for the interactions of ions and solid 

phase in concrete and also employed the Nernst–Planck/current law equations. This 

study pointed that the chloride diffusion coefficient should be evolved with time since 

the constant one caused an over-estimation on the predictions. 

Since the properties of Electrical Double Layer (EDL) generated at solid/liquid interface 

plays a significant role in the transportation of ions through cementitious systems. Elak-

neswaran et al. (2010) presented an integrated thermodynamic model including the sur-

face complex, the phase-equilibrium model, and the multi-component diffusion mode to 

describe the interaction between cement hydrates and electrolyte solution during the ion-

ic penetration process. Thereinto, thermodynamic equilibrium of solid/solution and the 

interaction of different ionic species were managed by the phase-equilibrium model and 

surface complexation model respectively. The simulated results revealed that the rate of 

ingression of ions through the pore solution of cement paste was distinctly affected by 

the physical adsorption ions on cement hydrate surfaces, the size of pores, and the sur-

face site density of calcium silicate hydrate. 
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Based on the finite element method, Yaya et al. (2011) applied Nernst–Planck equation, 

electro-neutrality condition and zero current method to investigate the initiation stage of 

localized corrosion in AISI 316L stainless steel (AISI 316L SS) and commercially pure 

titanium (cpTi). They concluded that both these two alloy systems are highly resistant to 

the initiation of crevice corrosion in 0.9% NaCl solution. A comparative analysis 

showed that the cpTi is more corrosion-resistant than the AISI 316L SS. 

Samson et al. (1999) proposed a slightly different model relative to above researches. 

This method also combined the electro-neutrality condition and zero current method, but 

adopted an extended Nernst–Planck equation with a chemical activity term ( k

k

kC



 ) 

instead of the more commonly used diffusion-migration form of Nernst–Planck equa-

tion, so that it can be taken for clarifying more complex problems. As a result, they 

found the effect of chemical activity on the concentration profiles is only a slight error, 

thus one could be tempted to ignore chemical activity and just use the diffusion-

migration form of Nernst–Planck equation. However, the total membrane potential be-

comes about two times larger when adding the chemical activity term, so the effect of 

chemical activity coefficients cannot be neglected from the potential point of view.  

Lizarazo-Marriaga and Claisse (2009a; 2009b) proposed a special concept, membrane 

potential (produced by the differences in mobility of the species), to solve the multi-

species diffusion-migration problem. Their computer models also use the hypothesis of 

charge neutrality of the different ionic species.  

ii) Integration of externally applied current density with the use of electro-neutrality 

condition 
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There were also studies other than those cited above which added the factor of external-

ly applied current density as well as considering the interactions between ionic species 

during the transport of ionic species in cement-based materials. Besides, in these stud-

ies, the electrostatic potential throughout the electrochemical process was still controlled 

by assuming the electro-neutrality condition. 

Li and Page (1997) proposed a mathematical model based on a semi-empirical expres-

sion of activity coefficients of ions for simulating the transport of different ionic species 

in concrete. They found that the influence of activity coefficients of ionic diffusion and 

migration on the transportation became increasingly considerable along with the rise of 

externally applied current density. At the year of 2000, they established a finite element 

model of the previous Yu and Page’s work (1996), which took into account the influ-

ence of factors including externally applied current density, treatment period, diffusion 

coefficients, ionic binding, boundary conditions and medium porosity on the ionic mass 

transport behaviour. The simulated results exhibited that the amount of chloride re-

moved increased with the externally applied current density, chloride diffusion coeffi-

cient and time. Chloride binding also played a significant role during the process.     

It is widely accepted that the effective diffusion coefficient is one of the most important 

parameter in the ionic transport research. The LMDC test method, which is a recent 

technique in order to obtain the effective diffusion coefficient efficiently, gets distinct 

result from experimental conditions. To explain this discrepancy, Truc et al. (2000a) de-

veloped a new numerical approach and an MsDiff code based on Matlab. This theory al-

lows for simulating the removal of chloride from concrete under an electrical field. They 

not only computed profiles of ionic concentration, flux, and the potential, but also stud-

ied the effect of pore solution composition, chloride binding and the non-ideality of so-
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lutions. A procedure explaining how to cope the effective diffusion coefficient with the 

LMDC test method accurately is also proposed in this article. Meanwhile, Truc et al. 

(2000b) indicated that the membrane potential and the pore solution composition, which 

have usually been neglected in previous work, influenced chloride transport substantial-

ly by using numerical model based on the Nernst-Planck system of equations as well as 

a detailed comparison between the simulations and experiments. This work proved that 

employing Fick’s first law to calculate the effective diffusion coefficient would over-

estimate the rate of chloride transport or/and removal. 

Most of the electrochemical chloride removal (ECR) research discussed above was only 

treated as 1-D problems. Considering on this point, Wang et al. (2000) set up a 2-D nu-

merical model yielding a non-linear convection-diffusion equations based on Galerkin 

finite methods to predict the transport of ions within porous media. A number of factors, 

electrostatic coupling of charged ions, treatment time, position of anode, VIZ, ionic 

binding, porosity and tortuosity of pore material, enrolled in this model as well. The pro-

files highlighted the significance of influence of position of anode on chloride removal, 

as well as exhibited that electrochemical process could also increase the concentration 

of hydroxyl ions next to the steel when decreased the chloride concentration. 

 

Figure 2.22. Decontamination cell (Frizon et al., 2003). 
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For the purpose of nuclear decontamination, Frizon et al. (2003) built a mass transfer 

model on the basis of Nernst-Planck equation, the current density conservation and the 

mass balance equation to simulate a laboratory experiment of cesium decontamination 

in cementitious materials under an external applied electrical field. A sketch of set-up of 

this experiment is shown by Fig. 2.22. The computing results led to a conclusion that, 

though the liquid junction potential was far less than the external electrical field applied, 

it should be taken into account for the accurate prediction. Further attentions should be 

paid to the sensitivity analysis on the initial cesium concentration, the hypothesis of ir-

reversible cesium binding/reversible cesium sorption must be treated as two extreme 

conditions. 

 

Figure 2.23. Electrochemical chloride extraction setup (Toumi et al. 2005).  

Toumi et al. (2005) developed a numerical model based on the Nernst-Planck equations 

to simulate an experiment of Electrochemical Chloride Extraction (ECE) briefly illus-

trated in Fig. 2.23. With the purpose of to reduce binding between chloride and matrix 

as well as to restrict the number of species considered in the computation, they com-

bined cylindrical brick with concrete specimens to produce this desalination programme. 
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By comparison of numerical and experimental results, it was validated that ECE method 

can substantially prevent the chloride ions from reaching central steel while increase the 

positive species amount. They also found binding isotherm affected significantly in the 

estimation. 

 

Figure 2.24. Physical system of transport in hardened cement (Kubo et al., 2006). 

In order to simulate the previous experiment of ionic transport in carbonated hardened 

cement paste employing constant current density with the use of organic base corrosion 

inhibitors (ethanolamine and guanidine), which is shown in Fig. 2.24, Kubo et al. (2006) 

proposed a mathematical model solving Nernst-Planck equations to predict the concen-

tration profiles of injected inhibitors and other major ionic species in pore solution 

phase. The interactions of various ions in solution, acid/base dissociation balance and 

the solubility products of dicalcium were also examined in this work.  

Ouyang et al. (2009) presented a mathematical model coupling Nernst-Planck equation 

and externally applied current density to simulate the process of ECR treatment of ma-

rine cast iron artifacts. Based on linear sorption isotherm, the release of binding chloride 

ions were also taken into account in this model. The result profiles clearly indicate that 

increasing treatment time, current density, chloride diffusion coefficient by a constant 
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factor, together with the rate constant of release of binding chloride ion all results in an 

increase of the chloride removal. 

iii) Integration of externally applied voltage with the use of electro-neutrality condition 

Similar researches with externally applied voltage instead of the current density on the 

transport of ionic species in the pore solution of cement paste have been done.  

The earlier model included Nernst–Planck equation, electro-neutrality condition and ex-

ternally applied voltage can be traced back to Walton’s work (1990). The governing 

equations system was developed for modelling the localized corrosion of iron. In the 

bulk solution, the Laplace’s equation ( 02  Φ ) was utilised for potential. According to 

the statements in Section 2.3.3.2, this equation agrees with the electro-neutrality condi-

tion (



N

k

kkCz
1

0 ). This model was confirmed by the comparison between experimental 

and theoretical results and evidenced that large potential drops can occur in some local-

ized corrosion systems even in the absence of cavity blockage by build-up of corrosion 

products. 

Sa’id-Shawqi et al. (1998) continued to apply the above model to the problem of elec-

trochemical chloride removal (ECR) and obtained the chloride profiles of both removed 

ones (at anode) and the remaining ones in concrete. 

Zelinsky and Pirogov (2006) set up a simple kinetic model utilised Nernst–Planck equa-

tion and electro-neutrality condition to simulate the corrosion in the 

424 SOHCu/CuSO   system based on a two-stage charge transfer mechanism. Conse-

quently, the homogeneous dissociation reactions of cupric sulphate and sulphuric acid, 
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as well as diffusion and migration of the dissolved ions were both solved in this numeri-

cal study. 

Narsillo et al. (2007) proposed an accurate numerical multi-ion transport model coupled 

with the Nernst–Planck equation and electro-neutrality condition for simulating the elec-

tro-migration test and some of factors which can contribute to the discrepancies of the 

results: temperature, intensity of applied electric field, concentration of testing solution, 

electrode types and chemical activity. One of the major conclusions is that, relative to 

diffusion induced by concentration gradients and ionic interactions, the migration due to 

the external voltage different dominated the removal process. They also found that the 

differences of initial chloride concentration caused growing non-linearity in electrical 

potential and simultaneously impacted the prediction in non-steady-state conditions. 

Krabbenhoft and Krabbenhoft (2008) compared the variation between the conventional 

single-species model (SSM) and the more complete Poisson–Nernst–Planck (PNP) 

model and derived a simple closed-form expression of effective chloride diffusivity. As 

the computed results showed, the difference of these two models could amount to 50 to 

100%. They also indicated that SSM model would be reasonable by proper experiment 

set-up, such as adjusting the ratio of sodium chloride and sodium hydroxide. 

With the aim of investigating the limitation of a purely geometrical approach in describ-

ing the transport of ionic species in cementitious materials, Friemann et al. (2008) im-

plemented a comparison between the measured currents obtained from migration tests 

on cement mortars with different w/c ratios and the simulated ones given by a multi-

species model. They concluded that a simulated current evolution got a higher rate than 
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the measured results regardless isotherms existed or not, which derived that a purely ge-

ometrical approach alone was insufficient to represent the ionic transport problem. 

iv) Poisson’s equation 

As it was mentioned in Section 2.3.3.2 that the hypothesis of electro-neutrality condition 

may cause invalidations, more recently, studies were carried for exploring the ionic dif-

fusion in multi-phase materials by using the Poisson’s equation instead of electro-

neutrality condition. Among these works, there is no external voltage setting throughout 

the electrolyte solution; hence, the transport of ions is still dominated by the diffusion 

and the migration is occurred only because the imbalance diffusion of various ionic spe-

cies. 

Johannesson et al. (2006) attempted to use a numerical model based on the Nernst-Plank 

equations for the purpose of quantitative understanding of the basic mechanisms of mul-

ti-species ionic diffusion process and the accurate agreement with the experimental re-

sults. The chemical interaction between different types of ions in solid/liquid phase in 

this model is assumed to be determined by simple ion exchange processes. When the 

comparing with the measured electron probe micro analysis data, one of their main con-

clusions was that, to establish an accurate multi-species model, it was insufficient to on-

ly consider standard solubility calculations. 

The work of Samson and Marchand (2007) explored the effect of temperature on ionic 

transport in cementitious materials. This model including the Extend Nernst-Planck 

equation and Poisson’s equation paying attention to not only the multi-species ionic 

transport and temperature field, but also some other transport properties (i.e. porosity, 

tortuosity, and unsaturated water content field) and chemical reactions (i.e. the for-
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mation of Friedel's salt). As a consequence, they states that considering only an average 

constant temperature can lead to inaccurate estimations due to the nonlinear nature of 

the temperature effects.  

Johannesson et al. (2009) proposed a numerical model employing finite element tech-

niques to investigate a coupled non-linear problem, involving the ionic diffusion and 

moisture transport in the pore solution of porous material. The technique processed a 

linearization procedure on the non-linear systems and coupled set of Nernst-Planck 

equations to produce an iterative scheme and adopted Petrov-Galerkin method to solve 

convective terms directly. Calculations showed that, the two non-standard terms in the 

Nernst-Planck equations led a significant influence on the test simulation. They also 

verified that the application of implicit time integration approach as well as an evolu-

tionary Newton-Raphson iteration scheme could be qualified to the mentioned prob-

lems. In term of chemical reactions among the ionic species, it was not taken into ac-

count in this model in order to of make it suitable to be implemented into existing 

computer codes for chemical equilibrium. 

In view of the constituent forms of the quasi-static versions of Maxwell’s equations and 

mass conservation, Johannesson (2010a) used a simplified version of hybrid mixture 

theory (HMT) to generalise the Poisson-Nernst-Planck (PNP) equations including a set 

of diffusion equations of charged species for cases where the deformation and stresses 

of the porous materials can be neglected. Similar with the previous work, the finite ele-

ment method was used to product the coupled non-linear matrix system. Then, Johan-

nesson (2010b) developed another numerical technique under the zero current condition 

and based on the FEM for calculating a set of Nernst-Planck diffusion equations of mul-

ti-species ionic transport in saturated uncharged porous materials. On the part of the 
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equilibrium of each time step, the author employed a one-step truly implicit time step-

ping scheme as well as an implementation of a modified Newton-Raphson iteration 

scheme. This method was studied numerically together with the more general Gauss’ 

law method. By comparing the results of two distinct physical based approaches, it con-

cluded that the zero current based method had the benefit of calculation speed since one 

less state variable while it was not valid for microscopic configurations existing charge 

separation.  
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2.4 Knowledge gap and innovations 

There have been substantial work and publications done for the exploration of chloride 

transport in concrete. Regarding the most concerned problem, the multi-species transport 

in concrete, due to its short research history, some issues need further investigation, espe-

cially in the following aspects: 

1) Most simulations model for ionic migration used electro-neutrality condition to 

determine the electrostatic potential of each point in solution instead of the real 

constitutive law of electrochemistry, Poisson’s equation, due to its difficulty in 

calculating the large and small terms. Though electro-neutrality condition can be 

tenable in some cases, it is only a mathematic approximation and the validity of 

result is questionable. 

2) The existing numerical concrete models subjected to external electric field for 

predicting the ionic migration were one-phase, only having the liquid section of 

cement phase. The influence of aggregate phase and ITZ phase on chloride mi-

gration has never been addressed in the literature. Apparently, it is defective for 

precise simulation of the ionic removal without considering the aggregate inclu-

sions and ITZs in concrete simulation. 

3) No research has been done to consider the chloride transport under externally ap-

plied electric field in more than 1-D model. How the motion in the second and 

third dimension will affect the result has not been reported in literature. 

4) Most of publications exploring chloride penetration in concrete only taken the 

single-component transport (i.e. the chlorides) into account. The transport of 

other ionic species and their effect on the chloride transport were seldom inves-
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tigated, especially for the literature which utilise analytical and experimental ap-

proach.  

5) Multi-phase numerical concrete models which were carried out for predicting the 

chloride diffusivity in recent years only considered the diffusion process of ions 

and mostly of focused on a stationary problem. It is evident from the Fick’s laws 

and Nernst-Planck equations that, the migration results in a much more complex 

transport behaviour than the diffusion process. Also, similar to analytical and 

experimental approaches, these numerical diffusion models only take a single-

species of ions (i.e. the chlorides) into account during the transport, neglecting 

the effects of ionic interactions.  

In this thesis, a series of multi-phase meso-scale models with 2-D and/or 3-D will be es-

tablished to address the above problems. 
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2.5 Summary 

This chapter outlines the research background relevant to the study of chloride transport 

in concrete. The most important points are highlighted as follows: 

1) The concrete researches are mainly based on three categories of scales: macro-

scopic, mesoscopic and microscopic. The focus of studies will be different when 

consider different scales. 

2) The theoretical basis: three behaviours of ionic transport mechanism, three forms 

of binding effect and three sets of classic equation employed in electrochemistry 

have been demonstrated and discussed.  

3) The methods of exploring chloride transport in concrete are classified. The exist-

ing literatures which utilised analytical, experimental and numerical approaches 

are respectively reviewed.  

4) The knowledge gap of the research background is summarised and the innova-

tions of the present study are also described. 
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3 CHAPTER THREE – 1-D ONE PHASE MIGRATION MODEL 

The third chapter of this thesis presents a series of 1-D models with a single phase to 

simulate the chloride migration test in a cement paste specimen. This simple numerical 

model highlights several fundamental issues, including: the behaviours of multi-species 

transport, effects of non-linear potential, and the influence of initial ionic concentrations 

on the transport of individual ionic species. 

 



 74 

3.1 Introduction 

Due to the long duration of diffusion tests, it appears to be favourable to adopt migra-

tion tests for the investigation of chloride penetration in cement and concrete materials. 

As the transport of ions manifests as a one-way flow between two electrodes when sub-

jected to a large externally applied electric field, it is reasonable to take the simulation 

as a 1-D, one phase problem, which is more effective to examine the transport behaviour 

of ionic species. 

As mentioned in Section 2.3.3.2, in most of the existing literature the electrostatic po-

tential is determined based on the assumption of electro-neutrality (Eq. (2.49)). This as-

sumption is questionable during the eletro-migration process. Numerically, it was diffi-

cult to solve the real constitutive law, Poisson’s equation (Eq. (2.50)), directly in the 

early years since the calculations involve large and small numbers. More recently, Jo-

hannesson et al. (2006, 2009, 2010a, 2010b) adopted Poisson’s equation to investigate 

the multi-species transport problem, however their work did not involve the influence of 

externally applied electrical field. Additionally, a significant cohort of numerical studies 

of the multi-species transport has been lacking detailed concentration distribution pro-

files, which makes the examination of validity of electro-neutrality condition during the 

electro-migration even more difficult.  

In this chapter, a 1-D numerical study on the multi-species transport in a porous medium 

under an externally applied electrical voltage is proposed to simulate migration tests. 

The transport process is performed by solving mass conservation equations for each in-

dividual species of ions under electrostatic ionic coupling. In order to determine the 

electrostatic potential to describe the interactions between ionic species in the multi-
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species ionic system, electro-neutrality condition and Poisson’s equation are used. By 

comparing the electrostatic potential gradient, concentrations, fluxes and current density 

distribution profiles of two categories of results, the significance of using Poisson’s 

equation is demonstrated.  

In the meantime, from the results of using Poisson’s equation, a remarkable behaviour 

driven by different initial concentrations of ions is highlighted. This is usually ignored 

in the reports of migration tests.  
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3.2 Basic equations   

As this Chapter adopts the 1-D model with one phase, we assume that the specimen 

tested in the migration test is a cementitious material (i.e. cement paste) with saturated 

pore medium and there are no chemical reactions between ionic species occurring in the 

material. By employing the conception of porosity to describe the pore structure, the fol-

lowing mass conservation for each individual ionic species involved in the cementitious 

solution can be obtained,  

k

k J
t

C




 )(
    k = 1, …, N                                    (3.1) 

where   is the porosity of the cement paste, Ck is the concentration of the k-th ionic 

species, t is the time, Jk is the flux of the k-th ionic species, and N is the total number of 

the ionic species contained in the concrete. It should be mentioned that the mass conser-

vation here is established in the unit volume of the cement paste rather than that of the 

electrolyte solution. Likewise, the flux here is defined as the mole number of ionic spe-

cies passed through the unit area of the cement paste rather than that of the electrolyte 

solution in unit time, which contradicts the definition of the ionic concentration de-

scribed as the mole number in the unit volume of the electrolyte but not of the cement 

paste. To cope with this contradiction, in Eq. (3.1), the total mass of the ionic species in 

the unit volume of the cement paste is kC rather than kC .  

Since diffusion and migration are treated as the major reason for ionic transport in this 

study, diffusion-migration form (Eq. (2.25)) of Nernst-Planck equation is adopted. As 

the ions are transport in the cement paste, Nernst-Planck equation can be modified as 

follows, 
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where eff

kD  and kz are the effective diffusion coefficient in the cement paste and the 

charge number of the k-th ionic species, respectively, F = 9.648×10
-4

 C mol
-1

 is the 

Faraday constant, R = 8.314 J mol
-1

 K
-1

 is the ideal gas constant, T = 298 K is the abso-

lute temperature, Φ is the electrostatic potential. Substituting Eq. (3.2) into (3.1), 

yields, 
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Meanwhile, the effective diffusion coefficient of ions in the cement past ( eff

kD ) can be 

related with that in the electrolyte solution ( kD ) and the porosity ( ) as follows, 

k

eff

k DD     k = 1, …, N                                           (3.4) 

Substituting Eq. (3.4) into (3.3), it yields,  

 ΦC
RT

FDz
CD

t

C
k

kk

kk

k 



)(    k = 1, …, N                    (3.5) 

As it was mentioned in Section 2.3.3, the electrostatic potential at any point can be de-

termined by using the electro-neutrality condition  
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or Poisson’s equation,  
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It is obvious that, if the electro-neutrality holds, the electrostatic potential can be de-

scribed by Laplace Equation as follows, 

02  Φ                                                            (3.8) 

This implies that if the electro-neutrality is employed in 1-D models, the electrostatic 

potential within the cement paste would be a linear function of the space coordinate. In 

the following section, the Laplace Equation (Eq. (3.8)) on behalf of electro-neutrality 

condition or the Poisson’s equation (Eq. (3.7)) is used respectively with Eq. (3.5) to 

govern the concentrations kC  and electrostatic potential Φ during the migration tests. 
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3.3 The simulation of migration tests by using electro-neutrality condition 

As mentioned in the preceding section, the governing Eqs. (3.5) and (3.8) can be used to 

describe the ionic transport of migration tests with the assumption of electro-neutrality 

condition when the initial and boundary conditions are properly defined. 

3.3.1 Numerical simulation 

 

Figure 3.1. Schematic representation of a migration test (section of a 1-D concrete specimen). 

As shown in Fig. 3.1, a 1-D numerical model is used to simulate an eight-hour migra-

tion test, in which a mm 50L slender 1-D compartment of cement paste specimen is 

located between two compartments, one of which has a 0.52 mole/L NaCl solution, the 

other of which has a 0.30 mole/L NaOH solution (both of sodium solutions are treated 

as individual ions in the simulation). Externally, there is a 24V DC potential difference 

applied between two electrodes inserted into the two compartment solutions. The ce-

ment paste is saturated with a solution of four ionic species (K, Na, Cl and OH) at the 

initial time. Other ionic species (such as calcium and sulphate) may also exist in the 

concrete. However, due to their concentrations that are much lower than the four ionic 
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species, only K, Na, Cl and OH are considered in the present simulations. The porosity 

of the cement paste specimen is assumed to be 11.0 . Since the volume of either 

compartment is much greater than the pore volume of the specimen, it is reasonable to 

assume that the concentration of each ionic species in the two compartments remains 

constant during the migration test. The diffusion coefficients of individual ionic species, 

and the initial and boundary conditions of five variables used in the model are given in 

Table 3.1, in which the diffusion coefficients of ionic species within pore solution are 

given by Xia and Li (2013). 

Table 3.1. Boundary conditions, initial conditions and diffusion coefficients 

Field variables 
Potassium 

(mole/m
3
) 

Sodium 

(mole/m
3
) 

Chloride 

(mole/m
3
) 

Hydroxide 

(mole/m
3
) 

Electrostatic 

potential (V) 

Boundary 

conditions 

x = 0 0 520 520 0  

x = L 0 300 0 300  

Initial conditions 200 100 0 300 0 

Charge number 1 1 -1 -1 N/A 

Diffusion coefficient, 

 ×10
-10

 m
2
/s 

1.957 1.334 2.032 5.260 N/A 

 

3.3.2 Finite element meshing 

Referring to Section 2.2.1, the accuracy of the numerical solution of the convection-

diffusion equation governed by Eqs. (3.5) and (3.8) is highly dependent upon the ele-

ment sizes used. Mathematically, to achieve a reasonably accurate numerical solution, 

one has to make the Peclet number (Eq. (2.5)) less than one. Hence, the larger the con-

vection velocity, the smaller the element size required. In the present problem, the con-

vection velocity is the migration velocity of ionic species. When there is an external 

electric field, the transport of ions in the electrolyte is usually dominated by the migra-

tion, which means that the element size must match with the electrostatic potential gra-

dient. Otherwise, the numerical solution obtained might not be convergent. In this case, 
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the electrostatic potential gradient is linear and equals V/m 480/  LΦ . Thus, the use 

of 2000 1-D equal size elements would be sufficient. 

3.3.3 Simulation results 

Figs. 3.2-3.6 show the distribution profiles of five field variables (the electrostatic po-

tential and the concentrations of four ionic species) in cementitious solution obtained at 

four different times, in which the horizontal coordinate represents the position of the 

variable in 1-D cement paste model and the vertical coordinate is the value of the varia-

ble (electrostatic potential or concentration). Each curve of individual variable repre-

sents one instantaneous moment from the first hour to the fourth hour.  

 

Figure 3.2. Electrostatic potential distribution profile. 
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Figure 3.3. 4-hour concentration distribution profiles of potassium ions. 

 

Figure 3.4. 4-hour concentration distribution profiles of sodium ions. 
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Figure 3.5. 4-hour concentration distribution profiles of chloride ions. 

 

Figure 3.6. 4-hour concentration distribution profiles of hydroxide ions. 

As implied in Eqs. (3.7) and (3.8), if the electro-neutrality condition holds, the electric 

field within the model would be constant, which is in agreement with Fig. 3.2: i.e. elec-
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trostatic potential increases from = 0 at the cathode to = 24 V at the anode and the 

increase is perfectly linear.  

It can be seen from Figs. 3.3-3.6 that, during the electro-migration process the positively 

charged ions (both potassium and sodium) move towards the cathode, while the nega-

tively charged ions (both chloride and hydroxide) move towards the anode. The travel 

speeds of individual ionic species, however, are different. Due to the influence of linear 

electrostatic potential, the concentration distribution curves are very smooth in this 1-D 

model. Note that the isolation of the curve of t = 4 hours in Figs. 3.3 is due to boundary 

effect when the wave reaches to edge. Figs. 3.3-3.6 show that under the action of exter-

nally applied electric field, the transport of ionic species is dominated by migration, 

which is characterised by the waves of parallelogram shapes. Diffusion behaviour only 

experiences near the two electrodes and the region where migration wave front reaches.   

Careful examination of Figs. 3.3-3.6 indicates that the wave speeds of four ionic species 

differ significantly but proportionally match the value of diffusion coefficient listed in 

Table 1. Hydroxide has the largest diffusion coefficient and its migration wave front 

moves fastest, while the ionic species with the smallest diffusion coefficient, sodium, 

has the slowest wave speed. Potassium and chloride have very close diffusion coeffi-

cient values, so that their wave speeds are also very close. This phenomenon implies 

that under the constant externally applied electric field, the migration velocity of each 

ionic species is constant and entirely depends on its diffusion coefficient, which means 

that the ionic electro-coupling cannot be achieved if the electric field is indeed constant. 

In other words, assumption of linear electrostatic potential leads the calculation of indi-

vidual ionic species transport to be independent, which makes the ionic transport act 
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like a one-component system. Therefore, Eq. (2.47) employed in the steady state migra-

tion tests is questionable.   

Figs. 3.7-3.9 illustrate the distribution profiles of the total fluxes, diffusion fluxes and 

migration fluxes of the four ionic species passing through in the cement paste respec-

tively. It is easy to see that except the region near the cathode for positively charged ions 

and the anode for negatively charged ions the diffusion flux shown in Fig. 3.3 is small 

relative to the other two categories of flux shown in Figs. 3.8-3.9. Also, the values of the 

total fluxes and migration fluxes profiles are very similar. This again demonstrates that 

the influence of a high externally applied voltage causes the ionic transport in the model 

to be dominated by migration behaviour. Additionally, by comparison between concen-

trations and fluxes, all flux waves in Figs 3.7-3.9 begin/occur at the exact location that 

the migration waves occur in Fig.3.3-3.6. 

 

Figure 3.7. Distribution profiles of total fluxes of four ionic species 
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Figure 3.8. Distribution profiles of diffusion fluxes of four ionic species. 

 

Figure 3.9. Distribution profiles of migration fluxes of four ionic species. 
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Fig. 3.10 plots the current density carried by four ionic species passing through in the 

cement paste model using the following equation, 





N

k

kk JzFI
1

                                                    (3.9) 

where I is the current density. The current density seems to be fluctuant throughout the 

model at all times. This indicates that the current density is not regionally constant when 

there is a constant electrical field, which will be proved to be incorrect in the next sec-

tion. The average of current density along the x-coordinate is 24.18, 17.94, 25.56 and 

2A/m  7.422 at 1, 2, 3 and 4 hours, respectively, which seems very random. 

 

Figure 3.10. Current density distribution profiles. 
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3.4 The simulation of migration tests by using Poisson’s equation  

The Poisson’s equation is the rigorous law relating the space-variation in the electric to 

the charge distribution. In this section, a numerical investigation which employs Pois-

son’s equation rather than electro-neutrality assumption to control the ionic transport in 

migration tests is conducted, from which a series of simulation results are obtained. 

3.4.1 Numerical simulation 

The simulation is similar to that described in Section 3.3. The only distinction is the use 

of Poisson’s equation instead of the use of Laplace equation in controlling the electrical 

coupling of ionic species in a multi-component solution within a saturated cement paste 

specimen. In addition, to investigate the influence of initial concentrations of ions, the 

initial conditions of ions are divided into three cases, which are given in Table 3.2. 

Table 3.2. Boundary conditions, initial conditions and diffusion coefficients. 

Field variables 
Potassium 

(mole/m
3
) 

Sodium 

(mole/m
3
) 

Chloride 

(mole/m
3
) 

Hydroxide 

(mole/m
3
) 

Electrostatic 

potential (V) 

Boundary 

conditions 

x = 0 0 520 520 0  = 0 

x = L 0 300 0 300 = 24 

Initial 

conditions 

Case 1 200 100 0 300 0 

Case 2 110 55 0 165 0 

Case 3 20 10 0 30 0 

Charge number 1 1 -1 -1 N/A 

Diffusion coefficient,  

×10
-10

 m
2
/s 

1.957 1.334 2.032 5.260 N/A 

 

3.4.2 Simulation results 

Similar to Section 3.3.3, Figs. 3.11-3.16 show the distribution profiles of variables ob-

tained at four different times in Case 1. It can be seen from Fig. 3.11 that, when the 

transport process is controlled by Poisson’s equation, electrostatic potential increases 

from = 0 at the cathode to = 24 V at the anode but not completely linear. It is inter-
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esting to notice from the electrostatic potential plot shown in Fig. 3.11 that, the electro-

static potential curve varies from a convex shape at the first hour to a concave shape

at the later hours. This means that, initially the higher migration speed of ionic species is 

in the region near the cathode, but with the increase of time the higher migration speed 

gradually shifts to the region near the anode. This implies that migration speed will not 

be constant but varies not only in time but also regionally. 

 

Figure 3.11. Electrostatic potential distribution profiles. 
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Figure 3.12. Electrostatic potential gradient distribution profiles. 

 

Figure 3.13. 4-hour concentration distribution profiles of potassium ions. 
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Figure 3.14. 4-hour concentration distribution profiles of sodium ions. 

 

Figure 3.15. 4-hour concentration distribution profiles of chloride ions. 
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Figure 3.16. 4-hour concentration distribution profiles of hydroxide ions. 

For a further investigation, Fig. 3.12 provides a good view on the examination of the 

electrostatic potential gradient. It is observed that the electric field jumps from one re-

gion to another, except near the boundaries where it varies smoothly. From the four dif-

ferent time frame plots, it can be noticed that the regional difference of electric field be-

comes gentler as the time passes. The detailed feature of the electrostatic potential 

gradient again demonstrates the difficulty of using a single migration velocity to repre-

sent the actual transport of chloride ions in the specimen, although it has been widely 

adopted in the reported migration tests. 

Under such a nonlinear electrostatic potential gradient, the transport behaviour found 

from Figs. 3.13-3.16 is totally different from that of Figs. 3.3-3.6. Generally speaking, 

ionic species no longer travels as steadily as they do in the model controlled by the line-

ar electrostatic potential gradient. The more frequency of concentration drop indicates 

that the diffusion behaviour plays a more important role. The transport evolutions of po-
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tassium, sodium and chloride ions all have a very clear diffusion layer near the cathode. 

Nevertheless, although the diffusion becomes more important, the ionic transport is still 

dominated by migration, which is characterised by the waves of parallelogram shape. It 

is also observed that, as time goes on, the amount of sodium and chloride ions rises, 

whereas that of potassium and hydroxyl ions reduces in the concrete specimen. Due to 

the difference in diffusion coefficient values of four ionic species, the rates of the in-

crease of sodium and chloride ions in the specimen are lower than those of the decrease 

of potassium and hydroxide, which makes the total amount of ions in the cement paste 

specimen reduce with time. 

More interesting features are found from the wave speeds of four ionic species. As it 

was described in Section 3.3.3, under the constant externally applied electric field, the 

migration velocity of each ionic species depends on its diffusion coefficient. However, 

in the present model, the ionic electro-coupling phenomenon occurs. Here, the wave 

speeds of positively (or negatively) charged ions are almost the same but are significant-

ly different from those of their opposite charged ions. This again highlights that the elec-

trostatic potential gradient and the migration velocity of ionic species in the pore solu-

tion are not constants but dependent on both time and position.  

The total fluxes, diffusion fluxes and migration fluxes of the four ionic species distrib-

uting in the model are plotted in Figs. 3.17-3.19. The value of the fluxes is also no long-

er constant and varies with the space and time. More specifically, the variation of fluxes 

is more notable during the first two hours. This indicates the interactions between ionic 

species are stronger in the beginning of the electrochemical process. Similar to the result 
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of electro-neutrality, the influence of an externally applied voltage means that the ionic 

transport process is controlled by migration.  

 

Figure 3.17. Distribution profiles of total fluxes of four ionic species. 

 

Figure 3.18. Distribution profiles of diffusion fluxes of four ionic species. 
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Figure 3.19. Distribution profiles of migration fluxes of four ionic species. 

 

Figure 3.20. Current density distribution profiles. 
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The distribution profiles of current density are also quite different from those obtained 

from the preceding model. As depicted in Fig. 3.20, the current density becomes con-

stant at a given time. It also shows that the current density decreases versus the time pe-

riod especially during the first three hours. This is due to the decrease of the total 

amount of ions during the process time period as is mentioned above. 

 

Figure 3.21. Comparison of electric field distribution profiles. 

To examine the influence of initial concentrations, two more initial concentrations for 

potassium, sodium and hydroxyl ions (Cases 2 and 3 listed in Table 3.2) have been uti-

lised. Since the transport of ions in specimen is dominated by migration, the results of 

electrostatic potential term should be illustrated first. For easier observation, Fig. 3.21 

directly plots a comparison of electrostatic potential gradients between the three cases 

with different initial concentrations. It can be seen from the electric field values that, ini-

tial concentrations make an apparent quantitative effect on the electrostatic potential. 

Nonetheless, qualitatively speaking, this kind of effect is limited. This feature is further 

validated by Figs 3.22 and 3.23, which show the concentration profiles of four ionic 



 97 

species; most features (especially the wave speeds of ionic species) are found to be simi-

lar to those of Case 1 shown in Figs. 3.13-3.16.  

 

Figure 3.22. 4-hour concentration distribution profiles of Case 2. 

 

Figure 3.23. 4-hour concentration distribution profiles of Case 3. 

However, if one examines the magnitude of concentrations of ionic species in the spec-

imen, a key difference can be found. A comparison of results obtained from the three 
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cases show that, for the same boundary conditions and an identical applied voltage, if 

the initial concentrations of the specimen are proportionally lower for potassium, sodi-

um and hydroxyl ions, the obtained ionic concentrations not only of these three species 

but also of the chlorides are proportionally lower. This feature is not found in the mod-

els governed by linear electrostatic potential.  

Accompanied by the lower concentrations in Cases 2 and 3, the fluxes of the ions are al-

so proportionally lower, which is reflected in the results of current density plotted to-

gether in Fig. 3.24. As it was expected, the current density curves of the three cases all 

decrease versus process time and these downward trends become gentle after the fourth 

hour. Between the three cases themselves, Case 1 has the highest current density and 

Case 3 has the lowest, which is proportionally in accord with the input initial concentra-

tions. 

 

Figure 3.24. Comparison of current density distribution profiles versus time. 

To give an overall view of the 1-D models, Fig. 3.25 combines the results obtained from 

the models based on electro-neutrality and those with different initial concentrations us-

ing Poisson’s equation. As the most attention is being paid on the chloride penetration, 
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only the concentration profiles of chlorides are displayed there. The figure shows that 

among the three different cases with Poisson’s equation, the transport behaviours are 

very close (i.e. the shape of concentration curves and the speeds of migration wave 

front) except for the peak values at the wave fronts. From the comparison between the 

models with electro-neutrality and Poisson’s equation, however, both wave speeds and 

the peak values at the wave fronts are quite different. This clearly shows that, when the 

electro-neutrality condition was used, there would be no electro-static potential coupling 

and therefore the transport of individual ionic species would be independent of each 

other.  

 

Figure 3.25. Comparisons of chloride concentration distribution profiles. 
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3.5 Summary 

This Chapter has proposed two 1-D numerical models to investigate the transport of 

ions in a saturated cement paste specimen considering porosity. The first determines the 

electrostatic potential based on the assumption of electro-neutrality while the other ap-

plies the rigorous Poisson’s equation. From the present numerical investigation the fol-

lowing conclusions can be drawn: 

1) The profile results obtained from the two distinct models are significantly differ-

ent. If the electro-neutrality condition is employed, the electrostatic potential 

gradient within the cement paste would be constant, which makes the multi-

species transport act like a one-component system. When the electro-neutrality 

assumption is replaced by the rigorous Poisson’s equation, the ionic electro-

coupling can be realised. 

2) Electro-migration is the dominant transport process in both models due to the in-

fluence of an externally applied electric field. However, local diffusion behav-

iour occurs more frequently in the model using Poisson’s equation, which may 

have significant influence on the development of migration speed.  

3) Under the influence of electro-neutrality condition and constant electrostatic po-

tential gradient, the migration velocity of each ionic species is also constant, 

which entirely depends on its diffusion coefficient and the electro-static poten-

tial. 

4) Under the influence of Poisson’s equation, the migration speed of each ionic spe-

cies varies with time and also with space. The migration speeds of positively (or 

negatively) charged ions are almost the same but are significantly different from 
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those of their opposite charged ions. This evidently shows interactions between 

different ionic species. 

5) Under the influence of Poisson’s equation, the distribution of electrostatic poten-

tial between the cathode and anode shows the results are likely to form a curve 

that varies from a convex shape at the first hour to a concave shape at the fourth 

hour, rather than a straight line in the model adopting electro-neutrality condi-

tion.  

6) The change of initial concentrations of potassium, sodium and hydroxyl ions will 

affect not only their own concentration profiles, but also the chloride concentra-

tion profiles in the specimen during the process. 

7) For the models with constant electrostatic potential gradient, the current density 

generated by ionic fluxes varies with both time and position, whereas for the 

models with Poisson’s equation, it only varies with time and remains constant 

with spatial variation. Furthermore, current density is proportionally in accord 

with the input initial concentrations. 
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4 CHAPTER FOUR– 2-D TWO PHASE MIGRATION MODEL 

In the fourth chapter of this thesis, a series of 2-D models with two-phase composite are 

developed to simulate the chloride migration test. By exploring models with different 

shapes and volume fractions of aggregates, some important interaction transport features 

between ionic species have been found, which have not been seen before in the 1-D 

model of single phase. The influence of various forms of ionic binding between solid 

and liquid phases is also examined. 
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4.1 Introduction 

In the recent decades, great efforts have been made on the assessment of ionic transport 

by using experimental and numerical techniques. Due to the new regulation on the limi-

tation of carbon dioxide emission, cement industry has used additives in reducing the 

cement content in concrete. Different types of concrete are produced by using different 

additives. Obviously, properties of concrete will be different when using different addi-

tives. To deal with this, from the mechanics point of view, if the properties of each indi-

vidual material involved in the concrete are known then the properties of the concrete 

mixture should be predictable. In view of this, experimental data obtained from new 

types of concrete (involving various kinds of additives) and multi-phase models for 

simulation are needed.  

Note that most experimental data existing in the literature were mostly obtained from 

traditional concrete. Few experimental data have been published for the new type con-

crete. Also, most existing numerical models investigating the chloride transport under 

externally applied electric field are one-dimensional and considering only one phase. 

For concrete, it is believed that the models involving multi-phase composite material 

would be more rational and accurate, particularly for the influence of tortuosity caused 

by aggregates.   

In this chapter, a series of numerical models are developed for concrete, which treat the 

concrete as a composite material with mortar and aggregates two phases for simulating 

the ionic transport process. Since the Poisson’s equation is more appropriate and accu-

rate when taking the multi-component ionic transport into account, the present study uti-
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lises this rigorous equation to govern the electrostatic potential in the pore electrolyte 

solution. 

By solving both mass conservation and Poisson’s equations, the distribution profiles of 

four involved ionic species (potassium, sodium, chloride, and hydroxide) and some oth-

er valuable variables (i.e. electrostatic potential and fluxes) at any required time are suc-

cessfully obtained. Through the use of two-dimensional and two-phase numerical mod-

el, we have found some important interaction transport features between ionic species 

which have not been seen before in the 1-D model of single phase. A further investiga-

tion about packed inclusions is discussed based on the contribution of the models with 

different shapes and volume fractions of aggregates. Additionally, in the latter part of 

this chapter, the influence of various forms of ionic binding is also examined.  
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4.2 Basic equations   

The concrete specimen simulated here is treated as a two-phase composite material. The 

aggregate is one phase and the cement paste is the other. Note that in meso-scale multi-

phase model, one can let (1-ϕc) be the volume fraction of the aggregate phase. Since the 

aggregates are assumed to be impermeable the transport equation is established only in 

the cement phase. Thus, the common form of mass conservation and Nernst-Planck 

equation is adopted as follows, 
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where  is the porosity of two-phase concrete, Ck is the concentration of the k-th ionic 

species in the pore solution, t is the time, kJ  is the flux of the k-th ionic species (in 2-

D problem, kJ is a vector), and N is the total number of the ionic species contained in the 

pore solution, kD  and zk are the diffusion coefficient and the charge number of the k-th 

ionic species, respectively, F = 9.648×10
-4

 C mol
-1

 is the Faraday constant, R = 8.314 J 

mol
-1

 K
-1

 is the ideal gas constant, T = 298 K is the absolute temperature,   is the 

electrostatic potential. Substituting Eq. (4.2) into (4.1), yields, 

 



k

kk
kk

k C
RT

FDz
CD

t

C
)(       k = 1, …, N                 (4.3) 

Eq. (4.3) plus the Poisson’s equation (3.7) can be used to determine the concentrations 

kC  and electrostatic potential   if the initial and boundary conditions are properly 

defined. 
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4.3 The simulation of migration tests by using two-phase model with circular 

aggregates 

4.3.1 Geometry 

Fig. 4.1 shows one of the 2-D concrete numerical models developed to simulate the mi-

gration tests of ionic species in concrete specimens. The volume fraction of aggregates 

is (1-ϕc) = 0.5. In the figure all circular areas represent the coarse aggregates (the radii of 

aggregates vary from 1.5 to 10 mm randomly in this geometry) and the rest is the ce-

ment or mortar. The size of the plain concrete is 5050 mm. The location of the aggre-

gates was randomly generated using a MATLAB program. It should be mentioned that, 

the shape of aggregates may not be perfectly circular in reality, so that in the subsequent 

studies, the influence of particle shapes on the transport properties of concrete will be 

examined.  

 

Figure 4.1. Two-dimensional model: section of concrete, (1-ϕc) = 0.5. 
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4.3.2 Numerical simulation 

Similar to the model presented in the previous Chapter, the numerical model is used to 

simulate an eight-hour migration test, in which the plain concrete specimen of 

5050 mm is located between two compartments, one of which has a 0.52 mole/L NaCl 

solution, the other of which has a 0.30 mole/L NaOH solution (both of sodium solutions 

are treated as individual ions in the simulation). Externally, there is a 24 V DC voltage 

applied between two electrodes inserted into the two compartment solutions. The con-

crete specimen is saturated with a solution of four ionic species (K, Na, Cl and OH) at 

the initial time. Since the external compartments here act like two reservoirs as shown in 

the set-up schematic (Fig. 4.2), during the present simulation, it is assumed that the con-

centration of each ionic species in the two compartments remains constant. The diffu-

sion coefficients of individual ionic species, and the initial and boundary conditions of 

variables used in the model are given in Table 4.1, in which the diffusion coefficients of 

ionic species within pore solution are given by Xia and Li (2013).  

 

Figure 4.2. Schematic representation of a migration test (section of a concrete speciemen). 
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Table 4.1. Boundary conditions, initial conditions and diffusion coefficients. 

Field variables 
Potassium 

(mole/m
3
) 

Sodium 

(mole/m
3
) 

Chloride 

(mole/m
3
) 

Hydroxide 

(mole/m
3
) 

Electrostatic 

potential (V) 

Boundary 

conditions 

x = 0 0 520 520 0 Φ = 0 

x = L 0 300 0 300 Φ= 24 

y = 0 J = 0 J = 0 J = 0 J = 0 әΦәy=0 

y = L J = 0 J = 0 J = 0 J = 0 әΦәy=0 

Initial conditions 200 100 0 300 0 

Charge number 1 1 -1 -1 N/A 

Diffusion coefficient,  

×10
-10

 m
2
/s 

1.957 1.334 2.032 5.260 N/A 

 

4.3.3 Finite element meshing 

Figure 4.3 shows the finite element mesh employed in the model. The mesh is applied 

only to the cement or mortar since the aggregates are impermeable and therefore they 

are not included in the model. As it was mentioned earlier, the larger the migration ve-

locity, the smaller the element size required. Since there is 24 V potential difference ap-

plied in this case, the element size must be very small. Otherwise, the numerical solu-

tion will be oscillatory. Due to the nature of the geometry, the generation of the mesh 

was controlled by the size of the largest element, which is calculated based on an aver-

age value of electrostatic potential gradient (i.e. 480/  L V/m). 



 109 

 

Figure 4.3. Finite element mesh (white circles represent aggregates with a volume fraction (1-ϕc) = 0.5). 

 

4.3.4 Simulation results 

For given initial and boundary conditions, Eqs. (3.7) and (4.3) can be solved numerical-

ly. Figs. 4.4-4.8 show the distribution profiles of five field variables (the concentrations 

of four ionic species and the electrostatic potential) obtained at four different times, in 

which the two plane coordinates represent the position of the variable in the 2-D con-

crete model and the vertical coordinate is the value of the variable (concentration or 

electrostatic potential). Each frame of individual variable represents one instantaneous 

moment from the first hour to the fourth hour. Note that there are small raises of con-

centration front due to the boundary derivation of FEA in the low right figure of Fig. 

4.6.    
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Figure 4.4. Concentration distribution profiles of potassium ions at four different times.. 

 

Figure 4.5. Concentration distribution profiles of sodium ions at four different times. 
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Figure 4.6. Concentration distribution profiles of chloride ions at four different times. 

 

Figure 4.7. Concentration distribution profiles of hydroxide ions at four different times. 
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Figure 4.8. Electrostatic potential distribution profiles at four different times. 

Qualitatively speaking, the electro-process results obtained from the present model is 

similar with that from the 1-D model utilised in Section 3.4. This is likely attributed to 

the identical influence of Poisson’s equation. The 3-D plots provide a good overall view 

on the evolution of transport of four ionic species in the specimen due to the influence 

of an externally applied electric field. It can be observed from the figures that the ionic 

transport takes place mainly in the x-axis direction due to the influence of the externally 

applied electric field. In contrast, the ionic transport in the y-axis direction occurs only 

locally and it is mainly attributed to the tortuosity influence owing to the existence of 

aggregates.  

In order to make a quantitative plot for each ionic species at a given time, one may still 

prefer to use the traditional 2-D plot as is usually used in 1-D models. Fig 4.9 shows the 

variation of chloride concentration distributing along the y-axis in sections with given x 

values at four different times. Note that due to the existence of aggregates the concentra-
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tion is not continuous. Also due to the local influence of the size and position of aggre-

gates the concentration varies irregularly. Nevertheless, in overall, this kind of variation 

seems not very significant, particularly when compared to its variation along the x-axis, 

as is shown in Figs. 4.4-4.8. The reason for this is likely due to the ‘sealed’ boundary 

conditions employed at y = 0 and y = L boundaries as shown in Table 4.1, which make 

the transport of ions take place almost in one direction. Similar features were found for 

the other four field variables and thus they are not presented here.  

 

Figure 4.9. Section plot of chloride concentration distribution profiles at four different times. 

Since the variations of ionic concentrations and electrostatic potential along the y-axis 

are very small, one can use their average values in the y-direction, i.e. 



L

o

dyyxz
L

xz ),(
1

)(  to represent z(x,y) for each field variable. In this case one can re-

plot Figs. 4.4-4.8 in a 2-D format, which are shown in Figs. 4.10-4.14. 
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Figure 4.10. 4-hour concentration distribution profiles of potassium ions. 

 

Figure 4.11. 4-hour concentration distribution profiles of sodium ions. 
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Figure 4.12. 4-hour concentration distribution profiles of chloride ions. 

 

 

Figure 4.13. 4-hour concentration distribution profiles of hydroxide ions. 
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Figure 4.14. 4-hour electrostatic potential distribution profiles. 

As is to be expected, due to the effect of aggregates, the distribution curve of ionic con-

centration or electrostatic potential in the 2-D plot shown in Figs. 4.10-4.14 is not very 

smooth in some places. Also, it can be seen from Figs.4.10-4.13 that, the transport be-

haviour of potassium, sodium and chloride ions is quite different from that of hydroxyl 

ions. The former has a clear diffusion layer in the region near the cathode and a clear 

migration wave front. The latter has only the migration wave front. For hydroxyl ions, 

migration is dominant for most of the time. For the other three ionic species, however, 

diffusion is also very important. This is demonstrated by the migration wave front line 

that is not very steep (particularly after two hours). The steepness of the migration wave 

front is found to be different for different ionic species, and also for different times. The 

hydroxyl ions are found to have the steepest wave front, whereas the sodium ions have 

the gentlest wave front. The decrease of steepness with time in the concentration pro-

files reflects the combined influence of diffusion and local tortuosity. This feature of 

steep degree was not found in the single phase model and it is likely due to the inclusion 

of aggregates in the two-phase model, which provides a direct influence of tortuosity on 

ionic diffusion and migration. 
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In terms of the migration wave speeds of ionic species, the status illustrated in Figs. 

4.10-13 is in accordance with that of Figs. 3.12-3.15. The wave speeds of positively (or 

negatively) charged ions are almost the same but are significantly different from those of 

their opposite charged ions. This demonstrates that the electrostatic potential gradient 

here is also not constant but regionally dependent. It can be seen from Figs. 4.10-4.13 

that, as time goes on, the amount of sodium and chloride ions rises, whereas the amount 

of potassium and hydroxyl ions reduces in the concrete specimen. The former is due to 

the boundary conditions, which supply sodium ions and chloride ions from the anode 

and cathode, respectively. The latter is due to that, in contrast, the supply of potassium 

ions from the cathode and hydroxyl ions from the anode does not affect the internal 

transport of these ions. It is also observed from Figs. 4.10-4.13 that, the rate of the in-

crease of sodium and chloride ions in the specimen is lower than that of the decrease of 

potassium and hydroxyl ions. The reason for this is probably due to the lower diffusion 

coefficients of the sodium and chloride ions than those of potassium and hydroxyl ions. 

Table 4.2 shows a quantitative comparison of the total mole numbers of each ionic spe-

cies remaining in the specimen at different times. It is evident from the table that, while 

the sum of negatively charged ions is balanced by that of positively charged ions, the to-

tal quantity of all ions in the specimen is indeed decreasing with time. 

Table 4.2. Total amount of ions in the specimen (unit thickness). 

Time of the test 
Initial 

(mole/m) 

1st hour 

(mole/m) 

2nd hour 

(mole/m) 

3rd hour 

(mole/m) 

4th hour 

(mole/m) 

Potassium 0.500 0.385 0.301 0.233 0.181 

Sodium 0.250 0.294 0.323 0.342 0.366 

Chloride 0 0.215 0.345 0.468 0.537 

Hydroxide 0.750 0.463 0.275 0.106 0.010 

Total Amount 1.500 1.358 1.247 1.150 1.094 
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The feature of convex and concave shape existing in the electrostatic potential distribu-

tion is more obviously in Figs. 4.8 and 4.14 than in Fig. 3.10. Regardless of the local 

fluctuation along y-axis caused by the tortuosity of aggregates, these figures further 

demonstrate that migration speed is not constant but varies with time and region in the 

2-D model. 

To further demonstrate the variation of migration speed, Fig.4.15 shows the migration 

fluxes of each ionic species at various different times. It is evident from the figure that 

the migration fluxes of ionic species vary not only with space but also with time, and 

most importantly they do not follow a single pattern. A comparison between Figs. 4.15 

and 3.18 indicates that, for the two-phase model, the curves of migration fluxes fluctu-

ate more dramatically versus space whereas spread more gentle verses time. The former 

is due to the local heterogeneous distribution of aggregates. The latter is due to the tor-

tuosity effect, which is also caused by the aggregate phase.   

 

Figure 4.15. Distribution profiles of migration fluxes of four ionic species. 

Of particular interest is the migration of chloride ions, as the diffusion coefficient in mi-

gration tests is calculated based on the migration profile. Fig. 4.16 shows an overall 
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comparison of chloride concentration profiles at four different times obtained from the 

present 2-D, two-phase, multi-component model, the 1-D, single-phase, multi-

component model (with ionic interactions obtained from Section 3.4) , and the 1-D, sin-

gle-phase, one-component model (without ionic interactions obtained from Section 3.3). 

Interestingly, the two multi-component transport models provide very similar concentra-

tions, but have significantly different travel speeds; the 1-D model produces higher trav-

el speed than the 2-D model does. In contrast, the one-component model provides high-

er concentration than the two multi-component models do. However, in terms of the 

travel speed, the one-component model which employs electro-neutrality assumption 

and the two-phase model which employs Poisson’s equation are closer. This implies that 

the relevance of multi-phases and of electrical interaction between ionic species are 

equally important. 

 

Figure 4.16. Comparisons of chloride concentration profiles between three cases. 

 

To demonstrate the importance of using Poisson’s equation in the present two-phase ge-

ometry, Fig. 4.17 shows a comparison of concentration profiles of chloride ions, ob-
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tained with and without using Poisson’s equation. It can be seen from the figure that, the 

concentration profiles obtained by using an electro-neutrality condition are quite differ-

ent from those using the Poisson’s equation. This again proves that, when the electro-

neutrality condition was used, there would be no electro-static potential coupling and 

therefore the transport of individual ionic species would be independent of each other, 

which is obviously less reasonable. 

 

Figure 4.17. Comparison of chloride concentration distribution profiles obtained with and without using 

Poisson’s equation in the two-phase model. 
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4.4 The simulation of migration tests with different shapes and volume fractions of 

aggregates 

4.4.1 Geometry and finite element meshing 

In order to further investigate the effect caused by aggregate shapes and volume frac-

tions, a set of 2-D concrete numerical models with various shapes and volume fractions 

of coarse aggregates were developed. Figs. 4.18-4.21 show the meshed models with the 

same aggregates volume fraction of (1-ϕc) = 0.5. but different aggregates shapes: ellipse, 

triangle, rectangle, and mixed shapes. The coordinate detail is exactly same as Fig. 4.1. 

Just like the models with circular inclusions (Fig. 4.3), only the mortar or cement phase 

is meshed since the aggregates are assumed to be impermeable. It is noticeable that, the 

distributions of aggregates in the Figs. 4.18-4.20 are almost uniform whereas only that 

in Fig. 4.21 is less uniform. A careful examination of the geometry including mixed 

shape shows that, the smaller sized particles gather more in the region near the cathode 

(from x=0 to x=0.025 m), whereas the larger ones gather more in the region near the an-

ode (from x=0.025 to x=0.05 m). This setting is deliberately arranged for legible explo-

ration of the influence of tortuosity, which will be explained later in discussions.  
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Figure 4.18. Finite element mesh (white ellipses represent aggregates with a volume fraction (1-ϕc) = 0.5). 

 

Figure 4.19. Finite element mesh (white triangles represent aggregates with a volume fraction (1-ϕc) = 

0.5). 
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Figure 4.20. Finite element mesh (white rectangles represent aggregates with a volume fraction (1-ϕc) = 

0.5). 

 

Figure 4.21. Finite element mesh (white holes represent aggregates with a volume fraction (1-ϕc) = 0.5). 
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4.4.2 Simulation results 

For given initial and boundary conditions (Table 4.1), the ionic transport in the simulat-

ed concrete specimens can be numerically calculated by solving the mass conservation 

equation and Poisson’s equation. As particular interest is of the penetration of chloride 

ions, here, only the chloride distribution profiles are displayed in the form of the 3-D 

plot, which are shown in Figs. 4.22-4.25. Generally speaking, with the same aggregates 

volume fraction, the evolutions of ionic transports in the models filled by ellipse, trian-

gle, rectangle, and mixed shaped aggregates closely resemble that in the circular shaped 

model. The negatively charged chlorides steadily move from the cathode towards the 

anode by electro-migration process, which takes place mainly along the x-axis direction. 

It also can be seen from the figures that, the aggregates split the migration wave fronts 

into a number of pieces which makes the wave front act like a ‘waterfall’. Generally, the 

pieces of ‘waterfall’ move at a synchronous velocity throughout the most 3-D figures. 

However, in the triangle shaped aggregate model (Figs. 4.23), it is noticeable that the 

speeds of the ‘waterfall’ pieces are not parallel and ordered. This phenomenon can be 

explained by the effect of tortuosity. The sharp angle of triangle shape will markedly in-

creasing the length of the flow paths as well as generates many areas with larger tortuos-

ity in the electrolyte solution to decrease the transport of ions in corresponding regions. 
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Figure 4.22. Concentration distribution profiles of chloride ions (for aggregates with an ellipse shape). 

 

Figure 4.23. Concentration distribution profiles of chloride ions (for aggregates with a triangle shape). 
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Figure 4.24. Concentration distribution profiles of chloride ions (for aggregates with a rectangle shape). 

 

Figure 4.25. Concentration distribution profiles of chloride ions (for aggregates with mixed shapes). 

For a more quantitative study, Figs. 4.26-4.29 give comparisons of concentration pro-

files of four ionic species between five different shapes when they have the same vol-
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ume fraction of aggregates. It is clearly shown that, there is only a tiny difference in the 

migration velocities between the models with the shapes of circular, ellipse and rectan-

gle, which implies a similar tortuosity between the models with these shapes of inclu-

sion. In contrast, from the overall points of view, the triangle shaped aggregates bring a 

slower velocity than other shaped aggregates due to its largest tortuosity. 

 

Figure 4.26. Comparisons of potassium concentration profiles between different aggregate shapes, (1-ϕc) 

= 0.5. 

 

Figure 4.27. Comparisons of sodium concentration profiles between different aggregate shapes, (1-ϕc) = 

0.5 
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Figure 4.28. Comparisons of chloride concentration profiles between different aggregate shapes, (1-ϕc) = 

0.5. 

 

Figure 4.29. Comparisons of hydroxide concentration profiles between different aggregate shapes, (1-ϕc) 

= 0.5.  

More interesting features are found in the mixed shaped aggregates. As it was men-

tioned above that the distribution of the different sized aggregates are deliberately ar-

ranged to be less uniform (the smaller ones more gathers in the left side of the concrete 

specimen and the larger ones do the opposite), the tortuosity of the model including 
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mixed shaped aggregates is correspondingly less uniform (larger tortuosity in region 

near the cathode and smaller tortuosity in region near the anode). As a consequence, 

when the migration waves of the negatively charged ions (both chloride and hydroxide) 

of the mixed shaped aggregates travel from the section of x=0 to the section of x= 0.025 

m, its speed is slower than the others, even including the triangle ones; when they travel 

from the section of x=0.025 m to the section of x= 0.05 m, the migration waves of the 

mixed shaped aggregates speed up, overtaking the triangle one and finally almost equal-

ling the evolution of other three shaped aggregates at the region near the anode. This 

procedure exactly reverses when it happens to the positively charged ions (both potassi-

um and sodium). The phenomenon described above evidently depicts how the tortuosity 

caused by the aggregate phase affects the ionic transport in concrete. 

The above findings seem to indicate that, under the condition of identical volume frac-

tion and similar tortuosity, the shape of aggregate has little impact on the penetrations of 

ions. To further prove this opinion, more examples are provided here of different shapes 

with different volume fractions. Figs. 4.30 and 4.31 respectively show the comparisons 

of different shapes under the aggregate volume fractions of (1-ϕc) = 0.4 and 0.3. As it 

was expected, both figures again show that the migration velocities of chlorides are ap-

proximately a constant between various shapes, except for the triangle aggregates which 

has significantly larger tortuosity. Note that the aggregates of mixed shapes in this ex-

ample are randomly distributed. Therefore, the special behaviour which occurs in Figs. 

4.26-4.29 disappears in Figs. 4.30 and 4.31, in terms of the special results of triangle 

shaped aggregates. Note that triangle shaped aggregates are the extreme case which is 

very rare in reality. Therefore, it can be concluded that the influence of particle shapes 

on the permeability of concrete is not very significant.   
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Figure 4.30. Comparisons of chloride concentration profiles between different aggregate shapes, (1-ϕc) = 

0.4. 

 

Figure 4.31. Comparisons of chloride concentration profiles between different aggregate shapes, (1-ϕc) = 

0.3. 

In order to examine the influence of the volume fraction of aggregates on the ionic 

transport, particularly that of chloride ions, Fig. 4.32 shows the concentration distribu-

tion profiles of chloride ions at four different times for three different aggregate volume 

fractions. It can be seen from the figure that, the influence caused by various volume 

fractions is much more remarkable than that caused by various shapes. Specifically, the 
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smaller the aggregate volume fraction, the quicker the chloride ions can travel. The rea-

son for this is still likely due to the effect of tortuosity, as the higher the aggregate vol-

ume fraction, the larger the tortuosity; therefore, the slower the ionic transport. This is 

also consistent with what was shown in Fig. 4.16. Here it should be pointed out that, the 

increase in quantity of aggregates will also increase the volume of interfacial transition 

zone (ITZ) in the mortar, which can increase the diffusivity of the concrete. However, 

since the present model does not include the ITZ this kind of effect was not reflected in 

the results.  

 

Figure 4.32. Comparisons of chloride concentration profiles between different volume fractions (circular 

aggregates) 
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4.5 The simulation of migration tests considering the binding effect 

As it was mentioned in Section 2.2.2, ionic binding, both physically and chemically may 

take place at the pore surfaces, which allows part of free ions in pore solution to be ad-

sorbed by the cementing material of concrete and thus has a great impact on the ionic 

transport process. The aim of this section is to further add the binding effect into our 

model and to examine the influence of ionic binding on the transport of ionic species.  

It has been demonstrated in the preceding section that the influence of particle shapes on 

the permeability of concrete is not very significant. Therefore, for simplicity, only the 

concrete model with circular aggregate inclusion is examined during the following sim-

ulation. 

4.5.1 Numerical simulation 

Due to binding, the total concentration of ionic species contained in concrete is divided 

into two forms – free ions existing in concrete pore solution and the bound ions ad-

sorbed by solid cement matrix. The latter do not participate in the ionic transport pro-

cess but will affect the concentration distribution results. Hence, Eq. (4.3) needs to be 

modified as follows: 
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where kS is the concentration of bound ions or the adsorption due to chemical reactions 

of species k. 

Considering the equilibrium between free and bound concentrations, the binding process 

is not irreversible since the chlorides will be released again if the concentration in the 
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electrolyte becomes lower. Experimental data (Li and Page, 1998) suggests that the rela-

tionship between the bound and free chloride concentrations is almost independent of 

the transport rates and approximately satisfy the Langmuir isotherm as follows: 
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where ClS  and ClC  respectively stand for the concentrations of bound and free chlo-

rides, w is the content of the water in which diffusion occurs, expressed per unit weight 

of cement, 42.0  and lmol 8.0 -1  are the constants which were determined 

based on the experimental data for the cement of 3.0w . Hence, it is convenient to 

use a parameter 
2
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  to express the proportionality between the concen-

tration rates of free and bound ions, so that Eq. (4.4) for chlorides can be re-expressed 

as: 
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If only the chloride binding is considered, the other three ionic species (i.e. potassium, 

sodium and hydroxide) obey the normal form of mass conservation equation. 
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By combining the mass conservation equation (Eqs. (4.6) , (4.7)) and the Poisson’s 

equation (Eq. (3.7)), the electro-transport process considering the chloride binding can 

be described. 
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The above describes the case most often used in considering binding effect numerically 

reported in the literature. In terms of the bindings of other ionic species, there is no ex-

perimental data available in the literature. Furthermore, in the existing numerical models 

exploring the multi-species transport, they only used the electro-neutrality condition to 

couple the binding of other ionic-species, which is demonstrated as a defective condi-

tion in the preceding chapter. Note that in the present study, since the more reasonable 

Poisson’s equation is utilised, the governing equations of Eqs. (4.6), (4.7), (3.7) should 

be sufficient for modelling multi-species transport with binding effect. But for further 

studies, we again use the charge balance in binding term of other three ionic species, i.e. 

K, Na and OH, even though Poisson’s equation has been coupled between all of these 

and chloride. 

In order to maintain the charge balance between both free and bound ions, the adsorp-

tion of the chlorides is assumed to be equilibrated by the adsorption/desorption of the 

other three ionic species in the pore solution. In view of this, the binding form of mass 

conservation of four species considering in the present study can be expressed as fol-

lows, 
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It should be mentioned that, from the Eqs. (4.8)-(4.11), K, Na and Cl get the term of 

( 3/1  ) or ( 1 ), whereas OH gets the term of ( 3/1  ). The former three may 

amount to ‘adsorption’ while the latter one implies ‘desorption’. The Fluxes are also de-

scribed by Nernst-Planck equation as follows,   
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If one combines the mass conservation equation (Eqs. (4.8)-(4.12)) and the Poisson’s 

equation (Eq. (3.7)), the simulation of the electro-transport process considering the ad-

sorption/desorption of all four ionic species can be performed.   

The geometry, meshing method, boundary conditions and initial conditions are com-

pletely consistent with those used in Section 4.3. 

4.5.2 Simulation results 

By solving the equations of mass conservation of individual ionic species with both 

binding term and electrostatic coupling of ions in the concrete specimen, two categories 

of binding results can be obtained. One considers only the chloride binding, whereas the 

other considers the bindings of all ionic species. Since the binding effect has no impact 

on electrostatic potential, only the distribution profiles of concentrations during an eight 

hour electro-process are demonstrated and shown in Figs 4.33-4.36. 

The first concern to be examined from the figures is the migration velocity. It can be 

seen that the electro-coupling features found in the previous models also exist in the re-

sults obtained from two sets of binding effect. For each series of curves with the same 

legend, the migration velocities of positively (or negatively) charged ions are almost the 

same but are significantly different from those of their opposite charged ions. However, 
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the wave speeds are significantly different between various examples. The migration ve-

locity obtained from the models without binding effect is much faster than that from 

other two models throughout Figs. 4.33-4.36, which implies that the binding effect of 

ions will greatly decelerate the speed of migration.  

The two migration velocities considering binding effect, more specifically, for the pro-

files of negatively charged ions (shown in Figs. 4.35 and 4.36) are generally close. Note 

that the curve only considering chloride binding has relatively slower migration rate, 

which means the adsorption of positively charged ions will slightly speed up the migra-

tion of chloride and hydroxide. For the profiles of positively charged ions (shown in 

Figs. 4.33 and 4.34), the gap between two migration velocities becomes much larger 

whereas this time the curve considering the binding of entire four species obtains far 

slower migration rate due to the adsorption of more species. This again shows the retar-

dation effect caused by ionic binding during the electro-migration process. 

The second concern to be examined from the figures is the concentration value near the 

migration front. It is apparent from Figs 4.33-4.36 that, except for the hydroxides, the 

other three ionic species which performance ‘adsorption’ in the governing equations, the 

concentrations obtained from the models with binding effect become much lower than 

that from the binding free model. The reason is likely because, a part of ions are ad-

sorbed by solid cement matrix and therefore they do not participate during the migra-

tion.  

To sum up, the adsorption of ions will decelerate the migration speed of this species and 

reduce its concentration during the electro-migration process. This phenomenon is in 
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agreement with the conclusion in Chapter Three that - the higher the concentrations of 

the electrolyte pore solution, the more the ions can be transported.  
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Figure 4.33. Comparison of potassium concentration distribution profiles obtained with and without binding effect. 
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Figure 4.34. Comparison of sodium concentration distribution profiles obtained with and without binding effect. 
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Figure 4.35. Comparison of chloride concentration distribution profiles obtained with and without binding effect. 
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Figure 4.36. Comparison of hydroxide concentration distribution profiles obtained with and without binding effect.
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4.6 Summary  

This chapter has presented a set of numerical investigations on the transport of ionic 

species based on 2-D models with two phases. The two-phase numerical model has been 

used to simulate an eight-hour ionic migration test as well as to examine the interaction 

transport features, the influences of aggregate phase and the impacts of binding effect. 

From the present study the following conclusions can be drawn. 

1) The variation of the ionic distribution profiles and the electrostatic potential pro-

files along the y-axis are insignificant. The concentration distribution profiles 

obtained from the present two-phase multi-component transport model are quali-

tatively similar to those obtained from the single-phase multi-component 

transport model, although quantitative difference in results may exist between 

these two kinds of models, particularly in the travel speed. 

2) The hydroxyl ions are found to have the steepest migration wave front, whereas 

the sodium ions have the gentlest migration wave front. The steepness of each 

species decreases with time. This feature of steep degree reflects the combined 

influence of diffusion and local tortuosity, which cannot be found in the single 

phase model. 

3)  During the electro-process, the total amount of ions within the specimen will 

vary with time. For the migration test case employed in the present studies the 

amount of ions in the specimen is found to decrease with time. 

4) Under the condition of identical volume fraction and similar tortuosity, the influ-

ence of particle shapes on the migration of concrete is fairly insignificant. Rela-
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tively, the influence of volume fraction is much more significant than that of ag-

gregate morphology, due to the more notable influence on tortuosity.   

5) The inclusion of aggregates in the model can provide a more accurate influence 

of tortuosity on both the diffusion and migration of ions. 

6) The adsorption of ion will significantly decelerate the migration speed of this 

species and meanwhile reduce its concentration during the electro-migration 

process. Because of the ionic interactions caused by Poisson’s equation, the 

binding effect of one species also has impact on the penetrations of other ionic 

species. 
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5 CHAPTER FIVE– 2-D THREE PHASE MIGRATION MODEL AND CRACKED 

CONCRETE MODEL 

This chapter includes two parts. In the first part, a series of 2-D concrete models with 

three-phased composite considering the ITZ phase are developed in order to simulate 

the chloride migration test and explore the impacts of ITZs on migration rate. Some im-

portant factors such as the thicknesses of ITZ, diffusion coefficients in ITZ phase and 

the volume fractions of aggregates are discussed in detail. In the second part, a group of 

2-D cracked concrete models are proposed to examine the effect of cracks on the 

transport of chlorides. The study involves the investigation of the influence of geometric 

properties of cracks (i.e. width, depth, volume fraction, pattern and angle of arrangement 

etc.) on the transport of chlorides.  
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5.1  2-D three-phased modelling of migration tests 

5.1.1 Introduction 

It is generally believed in concrete technology that a phase of interfacial transition zone 

(ITZ) exists around sand and coarse aggregates in concrete. Generally speaking, ITZ is a 

μm 5030 thickness (depending upon the water to cement ratio) interface between the 

aggregate and bulk mortar phases and compounded by anhydrous and hydrated cement 

with certain porosity and volume fractions gradients (Aitcin and Mehta, 1990). The ITZ 

is a region extending μm 5030 from the aggregate, which is deficient in content of 

cement particles due to the wall effect. Therefore, it has a substantially higher porosity 

than the bulk mortar (Escadeillas and Maso, 1991), which results in a significant influ-

ence on the transport of ions within concrete.  

The 2-D numerical models demonstrated in Chapter Four treated the concrete as a com-

posite material with two phases. One is the aggregate which is assumed to be imperme-

able. The other is the bulk composite of cement or mortar and ITZ. The diffusion coeffi-

cients of ionic species adopted are neither for the mortar matrix nor for ITZ but for the 

composite. This treatment does not give the specific effects associated with ITZ. Obvi-

ously, there would be greater accuracy if ITZ was considered separately. However, in 

the past, due to the limitation of computers and corresponding computations, it was dif-

ficult for researches to consider a separate ITZ phase in the numerical simulation of 

chloride migration tests. 

In this section, the concrete is simulated using a series of 2-D models with three phases: 

the aggregate, the cement and the ITZ. The ITZs here are assumed as uniform aureole 

shells wrapping the coarse aggregate particles. These models are used to simulate the 
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migration test described in the previous two chapters. It was proven by Chapter Four 

that, ionic binding plays a significant role in the transport process and the binding equa-

tions considering the charge balance of ionic species in solid phase lead more rational 

results. Hence, in the present three-phase models this kind of binding isotherms is con-

tinuously employed. 

As indicated in the previous chapters, by solving both mass conservation and Poisson’s 

equations, the distribution profiles of ionic concentrations at any required time are ob-

tained. Through the three-phased numerical model, we have found some important fea-

tures about ITZ, which would not been seen in the one- or two-phase models. 

5.1.2 Modelling 

Figures 5.1-5.3 show the 2-D, three-phase concrete models with three different aggre-

gate volume fractions (i.e. (1-ϕc) = 0.5, 0.35 and 0.2). The specimen modelled is in the 

size of 5050 mm. It can be seen clearly from the zoomed-in Fig. 5.4 that, between the 

aggregate and bulk mortar phases, there is an aureole shell wrapping each coarse aggre-

gate particle. These regions extending from the aggregates consist of the third phase in 

concrete – the ITZ phase. For simplification, the porosity gradients distributed within 

ITZ are ignored and the structure of ITZ phase itself is assumed to be uniform. There-

fore, each ionic species in the concrete mixture has two distinct diffusion coefficients, 

one is the diffusion coefficient in bulk mortar paste and the other is that in ITZ. This is 

significantly different from the 2-D two-phase model which assuming a unique diffusion 

coefficient for the composite of bulk mortar matrix and ITZ. 
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Figure 5.1. Three-phased concrete model: geometry ((1-ϕc) = 0.5, 150 µm thick ITZ).   

 

Figure 5.2. Three-phased concrete model: geometry ((1-ϕc) = 0.35, 100 µm thick ITZ).   
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Figure 5.3. Three-phased concrete model: geometry ((1-ϕc) = 0.2, 150 µm thick ITZ).   

 

Figure 5.4. Zoomed-in schematic for ITZ phase (the region of deep blue). 

It should be mentioned that, the real thickness of ITZ is believed to be about 

μm 5030 . This size however is too small for mesoscale modelling. To overcome this 
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problem, artificial, thicker thickness ITZs are used herein. In the present numerical 

models, we use three thicknesses of ITZ, which are μm 200 and 150 ,100 , respectively. 

Fig. 5.5 shows the mesh of one of the models used. Alike to Chapter 4, aggregates are 

assumed to be impermeable. Therefore, ionic transport takes place only in the mortar 

and ITZ phases although the diffusion coefficients are different in these two phases. The 

continuous conditions are assumed for both concentration and flux at the interface be-

tween mortar and ITZ phases. 

 

Figure 5.5 Finite element meshed model ((1-ϕc) = 0.35, 100 µm thick ITZ).   

The boundary and initial conditions of the five variables (i.e. concentrations of K, Na 

Cl, and OH and electrostatic potential) are similar to those used in the preceding mod-

els. It is believed that the ITZ phase has higher porosity and therefore a larger diffusion 

coefficient than bulk mortar (Escadeillas and Maso, 1991). Previous studies show that 

the ratio of diffusion coefficient of ITZ ( ITZD ) to that of bulk mortar ( BD ) is approxi-

mately 4-18 times (Care and Herve, 2004; Zheng and Zhou, 2007; Jiang et al., 2012), 
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depending on the porosity and w/c ratio of individual specimens. In the present model, 

three cases of BITZ / DD , which are 5/ BITZ DD , 10/ BITZ DD  and 15/ BITZ DD  

(Table 5.1) are used.  

Table 5.1. Boundary conditions, initial conditions and diffusion coefficients. 

Field variables 
Potassium 

(mole/m
3
) 

Sodium 

(mole/m
3
) 

Chloride 

(mole/m
3
) 

Hydroxide 

(mole/m
3
) 

Electrostatic 

potential (V) 

Boundary 

conditions 

x = 0 0 520 520 0 0 

x = L 0 300 0 300 24 

y = 0 J = 0 J = 0 J = 0 J = 0 әΦәy=0 

y = L J = 0 J = 0 J = 0 J = 0 әΦәy=0 

Initial conditions 200 100 0 300 0 

Charge number 1 1 -1 -1 N/A 

Diffusion coefficient of bulk 

mortar (DB), 

×10-10 m2/s 

1.957 1.334 2.032 5.260 N/A 

Diffusion coef-

ficient of ITZ 

(D0), 

×10
-9

 m
2
/s 

Case 1 0.979 0.667 1.016 2.630 

N/A Case 2 1.957 1.334 2.032 5.260 

Case 3 2.936 2.001 3.048 7.890 

 

5.1.3 Simulation results 

Similar to the previous chapters, by solving both Poisson’s equation and the mass con-

servation equations attached adsorption/desorption term (Eqs (4.6) and (4.8)-(4.10)), the 

distribution profiles of three-phased concrete models subject to given initial and bound-

ary conditions (Table 5.1) are obtained. Figs. 5.6-5.10 display the distribution profiles of 

the four ionic species concentrations and the electrostatic potential at four different 

times (from the first hour until the fourth hour) calculated from one example 

( 5.0)1(  , 10/ BITZ DD , μm 150  thick ITZ). When compared to the 3-D plots 

obtained from the two-phased concrete model (i.e. Figs. 4.4-4.8), it is found that a series 

of basic features of the two categories of results are similar. The migration speed be-

tween like charged ions, the approximate 1-D flow of ions, the tortuosity effect caused 
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by aggregates and the steep behaviour of migration wave fronts are found to be qualita-

tively similar. The only differences seem to be the concentration values at migration 

wave fronts and their travel speed. The difference of the peak values of wave fronts is 

due to the ionic binding considered in the present model. In terms of the migration travel 

speed, it can be seen that, the ionic species within the model including the ITZ phase 

still has a much faster penetration rate even though the ionic binding is enclosed. 

Additional results, calculated from three examples with the same thickness ( μm 150 ) 

and diffusion coefficient ( 10/ BITZ DD ) of ITZ but different aggregate volume frac-

tions (i.e. (1-ϕc) = 0.5., (1-ϕc) = 0.35. and (1-ϕc) = 0.2.), are presented for further discus-

sion. For the convenience of comparison, endeavours are made to equally distribute the 

aggregates in the examples as shown in Figs. 5.1-5.3. The “equal distribution” of aggre-

gates affects not only the location, but also the size gradients.  

 

Figure 5.6. Concentration distribution profiles of potassium ions. 
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Figure 5.7. Concentration distribution profiles of sodium ions. 

 

Figure 5.8. Concentration distribution profiles of chloride ions. 



 153 

 

Figure 5.9. Concentration distribution profiles of hydroxide ions. 

 

Figure 5.10. Electrostatic potential distribution profiles. 

As the variation of ionic concentrations along the y-axis is less significant, the 3-D fig-

ures are re-plotted in 2-D form by using their average values. By comparing the curves 
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of chloride concentrations obtained from three-phased models with three different ag-

gregate volume fractions (Fig. 5.11), it is observed, unexpectedly, that the existence of 

ITZ phase reverses the pattern of the influence of the aggregates volume fraction during 

the two-phased model. The largest aggregate volume fraction, (1-ϕc) = 0.5., has the 

quickest travel speed; whereas the smallest aggregate volume fraction, (1-ϕc) = 0.2. , has 

the slowest travel speed. Fig. 5.12 plots the chloride concentration distributions obtained 

from the corresponding models, which hold exactly the same aggregate distribution but 

no ITZs. Comparing Figs. 5.11 and 5.12, it is evident that the two groups of results are 

completely opposed. This is because in the two-phased models, the impact on travel 

speed of chlorides is dominated by tortuosity under the same electrical voltage. Howev-

er, in the three-phased models, the chlorides penetrates much more quickly in ITZ phas-

es and the volume fraction of ITZ is non-ignorable (i.e. the volume fraction of ITZ 

comes to 0.056 in the model with the aggregate volume fraction of 0.35 shown as Fig. 

5.2). Thus the dominant effect of the volume fraction of ITZ takes over that of the tortu-

osity in the three-phased models and the volume fraction of ITZ becomes the key factor 

in controlling the chloride migration rate. The increase in quantity of aggregates will al-

so increase the ITZ volume, which finally increases the chloride diffusivity of the con-

crete. Similar features are found for the other three ionic species and thus they are not 

presented here. 

It should be pointed out that the ITZ thickness adopted in this study is considerably 

large ( μm 200100 ), whereas in reality, it would be much smaller. Therefore, caution 

should be taken when applying the results obtained here to any real cases.  

A more simple and direct way to explore the influence on migration velocity of chloride 

ions caused by ITZ phase is to perform a sensitivity analysis on ITZ thickness. For this a 
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series of three-phased models with various thicknesses of ITZs from μm 200100  

were generated, while the diffusion coefficient of ITZ and the distribution of aggregates 

remain unchanged ( 10/ BITZ DD , (1-ϕc) = 0.35). The results of chloride distribution 

are shown in Fig. 5.13.  By examining the migration wave fronts from the chloride dis-

tribution curves with three different ITZ thicknesses, it is indicated that the migration 

velocity can approximately scale as the volume of ITZ increases. This view also agrees 

with Fig. 5.11.       

As it was mentioned above, ITZ phase has larger diffusion coefficient than bulk mortar 

and the ratio of BITZ / DD  depends on different types of concrete specimen. This opin-

ion is only experimental observations. It is at this stage insufficient to measure the exact 

diffusion coefficient in ITZ during the tests, which however can be quantified from our 

three-phased model. Fig. 5.14 shows how the evolution of chloride transport varies with 

BITZ / DD  ratio. Note that each curve is obtained from the same geometry, including ag-

gregates ((1-ϕc) = 0.35) and ITZs ( μm 150 thick). It is observed that the migration pro-

cess is markedly affected by the diffusion coefficient of ITZ. The larger BITZ / DD  ra-

tio, the faster chloride moves. By comparing Fig. 5.13-14, one can also find that, at this 

level of ITZ volume fraction, the definitions of ITZ thickness and BITZ / DD  ratio are 

equally significant during the simulation of chloride migration process. 

By considering the real potential gradient distributions, separate aggregate and ITZ 

phases, and taking into account the ionic binding, a more rational numerical model can 

be achieved to simulate both steady and non-steady state migration tests. 
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Figure 5.11. Comparison of chloride concentration distribution profiles between different volume fractions. 
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Figure 5.12. Comparison of chloride concentration distribution profiles between different volume fractions (without ITZ phase). 



 158 

 

Figure 5.13. Comparison of chloride concentration distribution profiles between different thicknesses of ITZ. 
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Figure 5.14. Comparison of chloride concentration distribution profiles between different diffusion coefficients of ITZ
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5.2 2-D modelling of chloride migration in cracked concrete  

5.2.1 Introduction 

Geometrically speaking, besides the three phases (aggregates, bulk mortar and ITZ) in 

concrete structures discussed above, the deterioration caused by chloride-induced corro-

sion is also greatly influenced by the presence of cracks. In recent decades, the effect of 

concrete cracking has been taken into account by a number of studies (Djerbi et al., 

2008; Gérard and Marchand, 2000; Ismail et al., 2008; Jacobsen et al., 1996; Jang et al., 

2011; Şahmaran, 2007; Win et al., 2004). A few of numerical models were developed to 

include cracks to simulate chloride penetration in cracked concrete. For example, Mar-

savina et al. (2009) developed a 3-D model to investigate the influence of cracks on 

chloride transport by means of non-steady state migration tests (NT Build 492, 1999). 

More recently, Bentz et al. (2013) explored a variety of 2-D models for estimating the 

local concentration as a function of crack width and depth. However, both of the above 

studies utilised Fick’s second law to estimate the concentration of chloride ions, and 

their numerical models did not take the multi-species coupling and migration process in-

to account.    

Cracks can be generated due to various reasons (e.g. plastic and restrained shrinkage, 

thermal and mechanical loading, expansive degradation reactions, improper design) and 

have a complicated pore structure at the microscopic scale in real concrete (Park et al., 

2012). The micro pore prosperities such as constrictivity, tortuosity and connectivity 

make the cracks display a complex 3-D geometry. However, in general, one can still 

simplify the problem from a 3-D to a 2-D case with suitable definitions on crack width 

and depth. Due to the geometric difficulty in modelling micro-cracks, Bentz et al. 
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(2013) proposed an imaginary zone consisting of ‘damaged mortar’, which surrounds 

each crack. This kind of zone is about 1-4 mm width, in which the diffusion coefficient 

value is smaller than that in cracks but larger than that in bulk mortar. The width of a 

‘damaged zone’ depends on the widths of the central crack itself.  

In this section, a series of 2-D models to monitor the effect of concrete cracking on the 

chloride migration was developed. The concrete specimen used in this study is treated as 

a two-phase composite: one phase is the bulk mortar and the other phase represents the 

‘damaged zone’. Each ionic species has distinct diffusion coefficients in these two phas-

es. For simplicity of calculations, no aggregate is involved and ionic binding is ignored 

in the models. By solving both mass conservation and Poisson’s equations, the distribu-

tion profiles of ionic concentrations in cracked concrete can be obtained. 

5.2.2 Modelling 

In order to model the cracked concrete, two hypotheses are made here. Firstly, due to the 

small width of central crack, the multi-phase structure of damage zone in the present 

model is ignored. That is the damage zone including the central crack is simplified as a 

single phase and assumed to be uniform. The ionic diffusion coefficient in the damaged 

zone, DD , is twenty times higher than that in the bulk mortar ( BD ). The larger value of 

DD  is probably because, in microscope scale, the cracks increase the connectivity be-

tween capillary pores and ITZs within the damaged zone. Secondly, all damage zones in 

2-D geometry are assumed to be rectangular in shape and can be characterized by their 

individual width and depth, which is similar to the treatment of the study of Bentz et al. 

(2013).  
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Figure 5.15. Geometry of cracked concrete model with the same width (1 mm) and volume fraction (AD = 

0.08) but different depths of damage zone ((a) 10 mm. (b) 20 mm. (c) 40 mm). 

 

Figure 5.16. Finite element mesh (20 mm depth, 1 mm width, AD = 0.08). 

Figure 5.15 shows the three cracked concrete models used, which have the same width 

(1 mm) and volume fraction ( 08.0D A ) but different depths of damage zone. All of 

damaged zones are located in a single column. For the convenience of examination and 

observation, the rectangular shaped damage zones are deliberately arranged in the mid-

dle of the concrete as well as to be parallel with the direction of ionic penetration. One 

may claim that the cracks normally start on the surface and their shape is more like a tri-
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angle shape (wider at surface and narrower inside of concrete). For the statement of 

shape, due to the assumption and treatment of damage zones mentioned above, the par-

ticular shape effect of central cracks can be ignored. In term of the location problem, to 

suit the realistic situation, we can geometrically treat the current cracked concrete model 

as a crack-repaired concrete: the damages close to the surfaces have been removed, leav-

ing the damage zones in the middle of concrete. In fact, neither the location nor the 

shape effect of damage zones has qualitative influence on the migration result, which is 

shown in the following section. Fig. 5.16 shows the FEM mesh for one of three models 

generated by COMSOL (Svante Littmarck and Saeidi, 1986). The boundary conditions 

and initial conditions for the three cases studied are given in Table 5.2.  

Table 5.2. Boundary conditions, initial conditions and diffusion coefficients 

Field variables 
Potassium 

(mole/m
3
) 

Sodium 

(mole/m
3
) 

Chloride 

(mole/m
3
) 

Hydroxide 

(mole/m
3
) 

Electrostatic 

potential (V) 

Boundary 

conditions 

x = 0 0 520 520 0 0 

x = L 0 300 0 300 24 

y = 0 J = 0 J = 0 J = 0 J = 0 әΦәy=0 

y = L J = 0 J = 0 J = 0 J = 0 әΦәy=0 

Initial conditions 200 100 0 300 0 

Charge number 1 1 -1 -1 N/A 

Diffusion coefficient of bulk 

mortar (DB), 

×10
-10

 m
2
/s 

1.957 1.334 2.032 5.260 N/A 

Diffusion coefficient of 

damaged zone (DD), 

×10
-9

 m
2
/s 

3.914 2.668 4.064 10.520 N/A 

 

5.2.3 Simulation results 

For given initial and boundary conditions (Table 5.2), the simulated migration test in the 

cracked concrete specimen can be again calculated by solving the mass conservation 

equations and Poisson’s equation. The distribution profiles of five variables (four ionic 

species concentrations and the electrostatic potential) at four different times during the 
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first two hours obtained from one of the models are displayed in Figs. 5.17-5.21. The 

specimen modelled is 5050 mm, in which there are ten damaged zones with 1 mm 

width and 20 mm depth ( 08.0D A ). Compared with the previous results (Figs. 4.4-

4.8), it is clear that the present profiles are significantly different from those obtained 

from the former models that have no cracks. As is to be expected, the migration wave 

fronts travel at two distinct rates. One occurs in the part with no cracks and its speed is 

similar with that observed from the former model; the other occurs in the damage zones 

with a much larger speed than that in the non-damaged bulk mortar, acting like a kind of 

‘pioneers’ which take a shortcut through the damage zones. This phenomenon is in 

agreement with the observation of a greater penetration depth of chlorides spreading 

from the crack than that observed spreading from the uncracked portion of specimens 

(Win et al., 2004).  

 

Figure 5.17. Concentration distribution profiles of potassium ions. 
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Figure 5.18. Concentration distribution profiles of sodium ions. 

 

Figure 5.19. Concentration distribution profiles of chloride ions. 
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Figure 5.20. Concentration distribution profiles of hydroxide ions. 

 

Figure 5.21. Electrostatic potential distribution profiles. 

Some interesting characteristics can be found about the ‘pioneer wave fronts’ and Fig. 

5.22 shows a typical one. From this zoom-in picture, there is an elliptical aggregation of 
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ions around each ‘pioneer wave fronts’ and the size of the short axes of an ellipse ag-

gregation is approximately as 2-4 times long as the width of a damage zone. More fig-

uratively speaking, the concentration distribution along the damage zone presents a 

‘dumbbell shape’, which is vividly demonstrated in Fig. 5.22. The formation of this kind 

of ‘dumbbell shaped distribution’ is likely due to the diffusion coefficient gradient. The 

ion gives priority to travel in the direction which has larger diffusion coefficient: around 

the middle part of a damage zone, since the neighbouring region is still damaged, the 

ions tend to only migrate along the x-axis (along the damage zone), acting like a laser 

beam; whereas around the end of a damage zone, since it has the same diffusion coeffi-

cient (all bulk mortar) in each adjacent direction, the ions are thus dispersed. Therefore, 

the average y-axis concentration in the sections of the end of cracks (e.g. the section of x 

= 0.045 m of the solid line in the upper left figure of Fig. 5.23) becomes larger than 

those in the sections of middle part of cracks (e.g. the section of x = 0.025 m of the solid 

line in the upper left figure of Fig. 5.23) to some extent.  

 

Figure 5.22. Zoomed-in schematic for ‘pioneer wave fronts’. 
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To understand the influence of crack width and depth on chloride migration, a series of 

models with variety widths and depths of damage zones are also carried out. In Figs. 

5.23-5.25, the average y-axis concentration distributions during the first two hours pro-

cess are clarified by three categories: the models reported in Fig. 5.23 have the same 

damage width (1 mm) and fraction ( 08.0D A ), but different damage depths (e.g. 

10mm, 20mm and 40 mm); the models reported in Fig. 5.24 share the same damage 

depth (20 mm) and fraction ( 08.0D A ), but different damage widths (e.g. 2mm, 1mm 

and 0.5 mm); the results shown in Fig. 5.25 calculated from three models which con-

tains the distinct numbers of cracks ( ,04.0D A 0.08 and 0.16) but the same size of an 

individual damage zone (1 mm width and 20 mm depth). By checking the locations of 

migration waves and the peak values of concentration of migration process, it is safe to 

draw a general conclusion that, the damage depth dominates the migration rate whereas 

the damage width has very little impact on the chloride migration. Additionally, in terms 

of the models with the same depth of damage zones, the chlorides will also achieve 

more rapid migration rate in the model which has larger damage fraction, however even 

this effect is not as evident as that of damage depth.  
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Figure 5.23. Comparisons of average y-axis concentration distributions between three models (different 

depths).  

 

Figure 5.24. Comparisons of average y-axis concentration distributions between three models (different 

widths).  
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Figure 5.25. Comparisons of average y-axis concentration distributions between three models (different 

damage fractions).   

One may claim that the average y-axis concentration profiles are hard to monitor the 

quantitative distribution distinction between the areas of the damage zones and the bulk 

concrete. To deal with this, three categories of cross sections traversing the simulated 

specimen were selected. As shown in Fig. 5.26, the first section is the centre line of one 

damage zone. The second section represents the cut line near the damage zones, inter-

secting the elliptical aggregation of ions at the ‘pioneer wave fronts’. The last section is 

located evenly between two damage zones, where is the farthest section from any dam-

age zones.  
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Figure 5.26. Schematic view for three cross sections traversing the simulated specimen. 

Looking at the three specified sections mentioned above, one can re-plot and obtain a 

more visualized view of the sensitivity analysis on the properties of cracked concrete 

than shown in Figs. 5.23-5.25. Figs. 5.27-5.29 show the comparison of chloride concen-

tration distributions during the first two hours process along the three different sections 

in the models with the different damage depths as noted previously. Fig. 5.27 clearly 

demonstrates how the damage depth dramatically accelerates the migration rate: the 

concrete specimen including 40 mm depth damage zone is much more quickly permeat-

ed by the chloride ions. It is apparent from the Fig. 5.28 that the chloride migration rate 

is also markedly influenced by damage depth in the region near the damage zones, due 

to the intersection between the cut line of section 2 and the elliptical aggregation of ions 

around ‘pioneer wave front’. However, when it comes to the third section (non-damaged 

area of concrete), the situation changes greatly: the concentration profiles seem to be ir-
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regular, especially those in the model with 20 mm and 10 mm depth damage zones. 

With regards to this phenomenon, since in this case the three models have the same 

damage width and fraction, the model with 20 mm and 10 mm depth damage zones 

have the larger amount of cracks, which leads the space between two adjacent damage 

zones to be more narrow. As Fig. 5.22 shows, during the migration process, the chloride 

concentrations in the damage zones are higher than that in the neighbouring bulk mortar 

and thus the diffusion behaviour of chlorides occurs. Generally speaking, this kind of 

‘pollution’ caused by local diffusion could produce the disordered concentration distri-

butions profiles, which is illustrated in Fig. 5.29. 

 

Figure 5.27. Comparisons of concentration distributions in Section 1 between three models (different 

depths).  
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Figure 5.28. Comparisons of concentration distributions in Section 2 between three models (different 

depths).  

 

Figure 5.29. Comparisons of concentration distributions in Section 3 between three models (different 

depths).  

Likewise, the chloride concentration distributions focusing on the effect of different 

damage widths are re-plotted in Figs. 5.30-5.32 based on the three sections of interest. 

Comparing Figs. 5.27 and 5.30, it is evident that under the same changing multiplier, the 

influence of damage width is much smaller than that of damage depth. When the dam-

age width is doubled, it only leads to a tiny increase in progress to the chloride penetra-
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tion. This feature is reflected in the profiles in the second section (Fig. 5.31). Approxi-

mately, one may find that both the migration wave fronts taken place in bulk mortar and 

the ‘pioneer wave fronts’ around the end of damage zones have the same travel speed. 

Similarly with the phenomenon displayed in Fig. 5.29, the ‘pollution’ behaviour due to 

local diffusion again disrupts the discipline of concentration distributions profiles along 

the non-damaged area of concrete: the number of damage zones instead of damage 

width dominants the chloride migration in Fig. 5.32. 

 

Figure 5.30. Comparisons of concentration distributions in Section 1 between three models (different 

widths). 
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Figure 5.31. Comparisons of concentration distributions in Section 2 between three models (different 

widths).  

 

Figure 5.32. Comparisons of concentration distributions in Section 3 between three models (different 

widths).  

Figures 5.33-5.35 show the comparison of concentration distribution profiles focusing 

on the effect of different damage fractions (the sizes of individual damage zones in the 

models are uniform). In general, the obtained results in this set of numerical tests are ex-

tremely similar to what is showed in Figs. 5.30-5.33. If the damage depth is fixed, the 

changing of damage fraction does little impact on the chloride migration (Figs. 5.33-
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5.34). In addition, the more damage zones contain, the more chlorides travel (Fig. 5.35). 

Since the damage zones are all centrally located in one column in the simulated concrete 

specimen, the increase of crack number is only along the y-axis which is orthogonal to 

the direction of electric field. Therefore, the effects resulted by damage width and frac-

tion on the chloride migration are close.  

 

Figure 5.33. Comparisons of concentration distributions in Section 1 between three models (different 

damage fractions).  

 

Figure 5.34. Comparisons of concentration distributions in Section 2 between three models (different 

damage fractions).  
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Figure 5.35. Comparisons of concentration distributions in Section 3 between three models (different 

damage fractions).  

As only one column of damage zone is used in the above models, it may hide some sig-

nificant characteristics during the migration process in cracked concrete. Hence, another 

category of the sensitivity analysis has been set up. As shown in Fig. 5.36, three models 

to be analysed are 10 mm depth and double columns of damage zones, 20 mm depth and 

single column of damage zones, and 10 mm depth and single column of damage zones.  

 

Figure 5. 36. Cracked concrete models with different distributions of damage zones. (a) 10 mm depth, 

double columns. (b) 20 mm depth, single column. (c) 10 mm depth, single column. 

As expected, in the section within a damage zone (Fig. 5.37), the model with the short-

est total depth along x-axis (10 mm depth, single column) has the slowest migration 
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rate, while the other two models have closer migration wave fronts. In the upper left of 

Fig. 5.37, it may be noticed that, there is an obvious distinction on the locations of wave 

fronts between solid curve and dot dash curve. However, geometrically speaking, both 

of these two models have the same distribution of damage zone in the region from x = 0 

to x = 0.025 (according to Figs. 5.36 (a) and (c)) thus at least within the left half of the 

simulated specimen, the solid and dot dash curves should be almost coincident. This 

distinction would probably be attributed to the ionic interactions. Since the migration of 

positive charged ions (i.e. potassium and sodium) are speeded up by the column of dam-

age zones in the right half of simulated specimen (the region from x = 0.025 to x = 

0.05), the chlorides in the model with 10 mm depth and double columns of damage 

zones (solid curve) would be drawn a little more than that in the models with single col-

umns of damage zones (dot dash curve) due to the charge balance. This phenomenon 

can also be found in the concentration profiles in the section near the damage zones 

(upper left of Fig. 5.38). The above clearly reveals the importance of considering the 

multi-species ionic transport. Fig. 5.39 gives details of the comparison of concentration 

distributions in the section crossing the non-damaged mortar between the models shown 

in Fig. 5.36. It can be seen that, the profiles become even more irregular when subjected 

to the influences of both the ‘pollution’ behaviour and ionic interactions.  
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Figure 5.37. Comparisons of concentration distributions in Section 1 between three models (different 

damage distributions).  

 

Figure 5.38. Comparisons of concentration distributions in Section 2 between three models (different 

damage distributions).  
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Figure 5.39. Comparisons of concentration distributions in Section 3 between three models (different 

damage distributions).  

To give an overall view of the influence of geometry properties of cracks (i.e. width, 

depth, volume fraction, pattern and angle of arrangement) on chloride migration, a mod-

el which includes a variety of damage zones was rebuilt. The geometry of the model and 

obtained result are shown in Fig. 5.40. By comparing the result of undamaged one-phase 

concrete (Fig. 5.41), the concentration distribution profiles in Fig. 5.40 efficiently sum-

marise the result discussed above, i.e., the domination of the damage depth, the pollu-

tion caused by local diffusion, the influence of multi-phase ionic interactions, etc. 
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Figure 5.40. Overall view about the influence of cracking zones on chloride migration.  

 

Figure 5.41. Chloride distribution profiles of one-phase uncracked concrete.  
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Due to the location and shape effect of cracks mentioned before as well as the above 

cracked models are assumed as a crack-repaired concrete, the normal unrepaired geome-

try has been built and its chloride distribution profile is shown in Fig. 5.42. From the 

comparison of Fig. 5.40-42, qualitatively speaking, it is evident that neither the location 

nor the shape effect of damage zones has much influence on the migration result. 

 

Figure 5.42. Chloride distribution profiles of unrepaired cracked concrete.  
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5.3 Summary 

This chapter has presented a set of numerical investigations on the chloride migration in 

concrete with ITZs or cracked damage zones, in which each ionic species has two dis-

tinct diffusion coefficients, one defined in ITZs or cracked damage zones, the other de-

fined in mortar or no-damaged zone). From the results obtained the following conclu-

sions can be drawn. 

1) Comparing the result obtained from the models with and without ITZ phase, a 

series of basic features such as the migration speed between like charged ions, 

the approximate 1-D flow of ions, the tortuosity effect caused by aggregates and 

the steep behaviour of migration wave fronts are qualitatively similar.  

2) In the present three-phased models, as the chlorides penetrates much more quick-

ly in ITZ phases as well as the volume fraction of ITZ is non-ignorable, the vol-

ume fraction of ITZ plays a significant role in determining the chloride migration 

rate. This is in disagreement with results shown in two-phased models studied in 

Chapter Four: only the tortuosity dominates the impact on the migration rate of 

chlorides. The increase in quantity of aggregates will also increase the ITZ vol-

ume, which increases the chloride diffusivity of the concrete to some extent.  

3) At the present level of ITZ volume fraction, the definitions of ITZ thickness and 

BITZ / DD  ratio are equally significant during the simulation of chloride migra-

tion process.  
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In the second part of this chapter, 2-D cracked concrete models are proposed to examine 

the effect of cracks on the migration of chlorides. From the results obtained the follow-

ing conclusions can be drawn. 

1) Unlike the former models, the migration wave front in the cracked concrete trav-

els at two distinct rates. One occurs in the uncracked part of concrete and its 

speed is similar to that performed in the former models; the other one occurs on-

ly in the damage zones and gets much larger speed than that in the non-damaged 

bulk mortar, acting like a kind of ‘pioneers’ which take a shortcut through the 

damage zones.  

2) Under the action of an externally applied DC voltage, the damage depth, which is 

exactly parallel to the electric field, dominates the migration rate, whereas the 

damage width, the damage fraction and the angle between the damage depth and 

the electrical field has little impact on the chloride migration. Additionally, ac-

cording to the results of sensitive analysis, the effects of different damage width 

and fraction on the chloride migration are very close. 

3) The results of the chloride migration will be disrupted by the influences of the 

‘pollution’ behaviour caused by local diffusion. 

4) Ionic interactions of multi-species transport are significant for the study of chlo-

ride migration in cracked concrete.   

5) Neither the location nor the shape effect of damage zones has qualitative influ-

ence on the migration result 
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6 CHAPTER SIX – PREDICTING CHLORIDE DIFFUSION COEFFICIENT 

DURING MIGRATION PROCESSES  

This chapter presents the findings of a quantitative study to check the validity of models 

featured in the preceding chapters. The diffusion coefficient of chloride in concrete is 

evaluated during both diffusion and migration processes. The normalized concrete dif-

fusion coefficients are firstly calculated by using the traditional stationary diffusion 

models (both in 2-D and 3-D models), then also calculated by using the migration mod-

els (with and without binding effect), which are under the actions of externally applied 

electric field. All of the obtained results are compared with three proven analytical mod-

els, i.e., Maxwell’s model (Dormieux and Lemarchand, 2000), Bruggeman’s equation 

(Bruggeman’s, 1935) and the lower bound of the effective diffusion coefficient pro-

posed by Li et al. (2012) as well as validated against experimental data of an accelerated 

chloride migration test (ACMT) brought by Yang and Su (2002).  
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6.1 Introduction 

The preceding chapters have proposed a series of numerical studies (one, two or three 

phase models with different shape and volume fraction of aggregates) to simulate the 

rapid chloride migration test and presented qualitative analysis of the outputs. A quanti-

tative study which can be used to predict diffusion coefficient of concrete is more attrac-

tive to researchers. During recent decades, considerable efforts have been made to inves-

tigate chloride diffusion coefficient in heterogeneous concrete materials of multiple 

phases at both microscopic and mesoscopic levels.  

The methods of this research field can be generally classified as analytical and numeri-

cal work. The former is based on bringing some empirical models to describe the diffu-

sion coefficient of cement or concrete as reviewed in Chapter two (Section 2.3.1). The 

latter is of more concern to our studies; however, due to its later start in research history, 

the number of examples in the literature is much smaller than analytical studies. Recent-

ly, with the aim of more accurately predicting the diffusion coefficient of chlorides and 

studying the influence of various phases of inner concrete structure, some researchers 

have attempted to establish 2-D and/or 3-D multi-phase concrete models, usually includ-

ing bulk mortar, aggregate particles and ITZ.  

For example, Zeng (2007) established a 2-D hetero-structure model and used FEM to 

simulate the chloride diffusion behaviour in a heterogeneous concrete composed of two 

phases (aggregates and cement paste matrix) with distinct chloride diffusivities. It was 

found that in a heterogeneous concrete, the chloride diffusion lags behind equivalent 

homogeneous concrete chloride diffusions predicted using the effective diffusion coeffi-

cient. Zheng and Zhou (2007) proposed a three-phase composite sphere model to repre-
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sent the heterogeneous nature of concrete and derived a closed form expression for chlo-

ride diffusion in concrete. Later, Zheng et al. (2009) further investigated the influence of 

ITZ on the steady-state chloride diffusion in mortars and concretes. More recently, 

Zheng et al. (2012) represented a 2-D lattice model which contains the diffusivity of ag-

gregate and aggregate shape effect. They obtained an expression which includes the ra-

tio of major and minor axes of the elliptical aggregate particles. Li et al. (2012) used 

two-phase models in both 2-D and 3-D to predict effective diffusion coefficient of chlo-

ride in concrete. They found that the shape of aggregates has a small influence during 

the diffusion process and also gave a lower bounds of the effective diffusion coefficient 

of chlorides in concrete as a function of porosity. Dehghanpoor Abyaneh et al. (2013) 

represented a 3-D numerical model with three phases to investigate the diffusion coeffi-

cient of chloride in concrete. The effects of the shape and orientation of ellipse particles 

have been discussed in this 3-D model. 

However, all above-mentioned models only considered the diffusion process of ions and 

mostly of focused on a stationary problem. It is evident from the differences between 

Fick’s laws and Nernst-Planck equations that, the migration process, which is under the 

action of an externally applied electric field, results in a much more complex transport 

behaviour than the diffusion process. Additionally, these numerical diffusion models on-

ly take a single-species of ions (i.e. the chlorides) into account during the transport, ne-

glecting the effects of ionic interactions. In this chapter, a quantitative study which is 

generally based on the multi-phase migration models demonstrated in the previous part 

of thesis has been conducted. In view of the fact that at present migration tests are more 

popular in experimental study of chloride diffusivity than the diffusion tests, herein the 

diffusion coefficient of chloride in concrete has been numerically calculated during not 
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only diffusion but also migration process. The normalized concrete diffusion coeffi-

cients were firstly calculated by using the traditional stationary diffusion models (both 

2-D and 3-D), as well as being calculated by using the migration models (with and 

without binding effect). All of the obtained results were compared with three proven an-

alytical models, i.e., Maxwell’s model (Dormieux and Lemarchand, 2000), Brug-

geman’s equation (Bruggeman’s, 1935) and the lower bound of the effective diffusion 

coefficient proposed by Li et al. (2012) as well as validated against experimental data 

sets of an accelerated chloride migration test (ACMT) brought by Yang and Su (2002).  
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6.2 Modelling   

6.2.1 2-D diffusion model 

In order to quantitatively evaluate the diffusion coefficient of chlorides in concrete, the 

traditional approach is to obtain the normalized diffusion coefficient against with the in-

crease of aggregate volume fraction ( 1 ) from a diffusion model performed by Fick’s 

laws. The normalized chloride diffusion coefficient is calculated from the ratio of chlo-

ride diffusion coefficient in concrete ( cD ) to that in the cement paste matrix ( 0D ). 

Among the most popular numerical models existing in literature, the volume fraction 

was usually considered only 50% of maximum due to the limitation of random distrib-

uting of aggregates. In the present study, it was managed to extend the range of aggre-

gate volume fraction to 70% in the 2-D model which is utilised in Chapters 4 and 5. Fig 

6.1 shows the schematic of the geometry with 70% volume fraction of aggregates. The 

size of the concrete specimen is still 5050 mm. The finite element mesh used here is 

similar with that used in the preceding chapters and the aggregate phase are assumed to 

be impermeable. As it has been proven in Chapter 4, the effect of aggregate shapes on 

the chloride diffusion in concrete can be ignored. Therefore, only the circular shaped 

aggregates are used in the model.  
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Figure 6.1. Schematic of the geometry: 2-D two phase model.   

In the numerical study considered only the diffusion, the process can be simplified to a 

single-component transport with only chlorides. Chloride diffusion taking place in the 

cement paste matrix with a given water-to-cement ratio can be described by the Fick’s 

second law as follows, 
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                                                  (6.1) 

where C is the concentration of chlorides in the cement paste matrix (moles per unit 

volume of cement paste), t is the time, and  is the Laplace differential operator. For 

simplicity, the initial condition and boundary conditions are assumed as follows, 
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where C1 is the chloride concentration at the line x = 0, l = 50 mm and h = 50 mm are 

the length and height of the plain concrete used in the numerical model, respectively. 

For given values of 0D and 1C  one can solve Eq.(6.1) to obtain the chloride concentra-

tion distribution profile at any time.  

Of particular interest is the x-component of the chloride diffusion flux at the steady 

state. The total chloride flux, tJ , along the right boundary x = l at the steady state is 

given by, 
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The average flux at the right boundary lx  thus is given by, 

h

J
J t

lx



                                                    (6.6) 

By taking the plain concrete as a representative elementary volume in a macroscopic 

structure model, the average flux, lxJ  , thus can be also expressed as, 
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Substituting Eqs. (6.5) and (6.7) into (6.6), it yields, 
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effD  is the effective diffusion coefficient of chlorides. Note that the average flux at the 

right boundary lx   has the following relationship with the average flux of the liquid 

phase of concrete, cJ , due to the porosity existing at the boundary, 
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 /lxc JJ                                                          (6.9) 

Since the relationship between cJ  and cD  also obeys the Fick’s first law at the steady 

state, it can be expressed as,  
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Substituting Eqs. (6.9) and (6.10) into (6.7), it yields, 
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Eq. (6.11) indicates that if the chloride flux in the cement paste matrix is computed from 

the present model shown in Fig 6.1, the average chloride diffusion coefficient in con-

crete, cD , will be obtained. The normalized chloride diffusion coefficient can be finally 

evaluated by the ratio of 0/ DDc . 

6.2.2 3-D diffusion model 

For a more accurate simulation, a 3-D finite element analysis model is developed to fol-

low the deviation used in the 2-D simplification. The concrete cube of 505050   

mm with 55% volume fraction of spherical aggregates is sketched in Fig. 6.2. The ge-

ometries with other value of volume fraction of aggregates are not presented here. With 

respect to the concentration boundary conditions, the front (x = 0) and rear (x = l) sur-

faces are assumed to have specified concentration boundary conditions (similar with Eq. 

(6.3)) and all other four surfaces are assumed to have zero flux boundary conditions. Re-

ferring to derivation process of Eq. (6.11), the chloride diffusion coefficient in the 3-D 

model concrete can be computed by the following equation, 
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where 50 lh mm are the cross-section size and length of the cube, respectively.  

 

Figure 6.2. Schematic of the geometry: 3-D two phase model.. 

6.2.3 2-D migration model 

In recent decades, migration tests become more commonly used in experimental studies 

of chloride diffusivity than diffusion tests. Therefore from numerical points of view, it is 

more reasonable to predict diffusion coefficient of chlorides from simulated migration 

process rather than diffusion process. Comparing the diffusion model performed by 

Fick’s laws, the present migration model has a series of advantages. For instance, it can 

deal with the more complicated non-linear and time-dependent ionic transport behaviour 



 194 

as well as consider the ionic interactions caused by multi-species components, which 

makes the obtained result more rational and reliable against the experiment studies. 

A set of 2-D models including different volume fractions of aggregates (with the varia-

tion from 0% to 70%) have been used to investigate the normalized chloride diffusion 

coefficient. The geometry and boundary settings are similar with those used in the pre-

ceding chapters. Both the two-phased and three-phased models proposed previously are 

examined here. As reviewed in Chapter 2, the diffusion coefficient of chlorides can be 

directly calculated from both the steady and non-steady state migration tests by using 

two empirical equations (Eqs. (2.47) and (2.48)). However, Xia and Li (2013) argued 

that Eq.(2.47) based on the flux of chloride ions, which is utilised in steady state migra-

tion tests (RCPT) would be less reliable in the multi-species transport simulations under 

variable initial concentration conditions. Hence, in this chapter Eq. (2.48) based on pen-

etration depth to predict the chloride diffusion coefficient in concrete ( cD ) was adopted 

as follows, 
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where dx  is the penetration depth of chloride ions at a test duration dt , dC  is the 

chloride concentration at dx , 1erf   is the inverse of error function, 1C  is the concen-

tration of chloride at upstream boundary. F= 96487 C/mol, 11 KmolJ314.8  R and 

T=298K (273+25K)  are the Faraday’s constant, the universal gas constant and the ab-

solute temperature, respectively. 
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6.3 Results and discussions 

6.3.1 Analytical models and experimental data 

With the aim of comparison, three proved analytical models and a set of experiment re-

sults have been quoted. In terms of the theoretical predictions, Maxwell’s model (Dor-

mieux and Lemarchand, 2000), Bruggeman’s equation (Bruggeman’s, 1935) and the 

lower bound of the effective diffusion coefficient proposed by Li et al. (2012) are re-

spectively divided by the porosity (  ) at first due to the relationship between 

effc DD  and  (Eq. (6.11)). Then the three adjusted models are plotted in Fig. 6.3. Ac-

cording to Li et al. (2012), the physical meaning of the differences among the three 

models is the tortuosity, which are equal to )3/(2  , 5.0 , and )3/()1(    in the 

Maxwell’s model, Bruggeman’s equation and the lower bound, respectively. It can be 

seen from the figure that all the three analytical models decrease with the increase of the 

aggregate volume fraction ( )1(  ). For the most cases, Maxwell’s model has the high-

est value, whereas the lower bound has the lowest, as well as the gap between them in-

creases with the aggregate volume fraction. More interesting characteristic is found at 

Bruggeman’s equation: initially its value is very close to Maxwell’s model but as the in-

crease of aggregate volume fraction it becomes closer to the lower bound. For 

 82.8%)1(  , Bruggeman’s equation owns the lowest value among the three analyti-

cal models.  
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 Figure 6.3. Comparisons of three analytical prediction models and experimental data. 

In terms of the experimental data, an accelerated chloride migration test (ACMT) 

brought by Yang and Su (2002) is employed as a reference. The experiment consists of 

mortars made with ASTM Type I Portland cement at 0.4 w/c ratio and fine aggregates 

selected at 0%, 10%, 20%, 30% and 40% volume fractions. 50 mm thick samples were 

cast and cured in water (23 C ) for 12 months and prepared following the specification 

in ASTM C1202-97. The upstream cell was filled with 0.3 % NaCl solution and the 

downstream cell was filled with 0.3 N NaOH solution. The chloride concentration in the 

downstream compartment was monitored and the migration coefficient was obtained at 

steady-state according to the Nernst–Plank equation. The experiment results of the nor-

malized diffusion coefficient ( 0/ DDc ) are superimposed Fig. 6.3. It is observed that the 

average values of experimental data perfectly agree with the lower bound proposed by 

Li et al. (2012).  
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6.3.2 Diffusion models 

For given initial and boundary conditions, the partial differential equation defined by 

Eq. (6.1) can be solved numerically. Using Eqs. (6.11) and (6.12), two categories of re-

sults respectively are obtained from 2-D and 3-D numerical diffusion models. Fig. 6.4 

compares the normalized diffusion coefficient ( 0/ DDc ) calculated with the analytical 

models and the experimental results mentioned in Section 6.3.1. Note that the 3-D re-

sults are only offered up to 55% due to the limitation of random distribution of aggre-

gates. It can be found from the figure that, the normalized diffusion coefficient 

( 0/ DDc ) computed from the 3-D model agrees well with the prediction given by Max-

well’s model. Meanwhile, 0/ DDc  computed from the 2-D model is very close to the 

lower bound from 0% to 50% of )1(  , whereas becomes closer to Bruggeman’s 

equation when )1(   fall within the range of 50%-70%.  

 

 Figure 6.4. Comparison among the analytical models, the experimental data and the numerical diffusion 

models. 
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Compared with the experimental results, the experiment data unexpectedly agrees more 

with the result calculated from the 2-D model rather than with the more realistic 3-D 

model. Obviously, the 2-D model has one dimension short for the ionic transport and its 

result should be underestimate and less realistic. The reason of this unexpected phenom-

enon is probably because that, the aggregates are separate from each other in this numer-

ical model and all of the pores (equivalent to bulk cement paste phase in this case) are 

connective. In reality, there should be a lot of aggregates locating closely between each 

other and therefore increasing the penetration length of ions greatly in concrete. In other 

words, the geometries of models containing randomly generated aggregates reduce the 

tortuosity of the real concrete to some extent. But interestingly, from the tiny deviation 

between the results of 2-D model and experiment data (less than 7%), it is revealed that 

the effect caused by the reduction of tortuosity almost offsets that caused by lack of 

movement dimension during the ionic transport process. Therefore, it is safe to say that 

the presented 2-D model is able to simulate the penetration of chlorides in concrete ef-

fectively. In view of this, in the following sections, one can also safely continue utilising 

2-D migration models to quantitatively monitor the simulated migration tests. This point 

is very significant since at the moment, it is too difficult for us to present a 3-D migra-

tion model to simulate the migration process subjected to an externally applied electric 

field. 

6.3.3 Two-phase migration model  

The details of solving 2-D two phase migration model have been specifically described 

in Chapter 4. For the migration models, the normalized diffusion coefficient ( 0/ DDc ) is 

calculated by Eq. (6.13) in this study. Apparently, the key variable in this equation is the 
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penetration depth of chloride ions ( dx ) at a selected test duration. Fig. 6.5 shows the dis-

tribution profiles of chloride concentration at the first hour in the models with different 

volume fractions of aggregates. The position of migration wave front is the penetration 

depth of chlorides which is needed. Note that the migration wave fronts in most of the 

cases in Fig. 6.5 are not as steep as in the model with the aggregate volume fraction of 

0%, which brings difficulties to identify the migration depth of each model. To deter-

mine a unified standard, one trace the lines of the migration fronts in parallel, meeting 

up with the horizontal line of peak value of concentration during migration in the model 

with 0% volume fraction. As Fig. 6.6 shows, the x-axis and y-axis coordinate values of 

each intersection point are chosen to be dx  and dC , respectively. By using Eq. (6.13), 

the normalized diffusion coefficient can be finally calculated. The results are listed in 

Table 6.1 and plotted in Fig. 6.7.  

 

Figure 6.5. Comparisons of chloride concentration distribution profiles between different aggregate vol-

ume fractions.  
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Figure 6.6. Schematic of the migration depth of migration models. 

 

Table 6.1. Normalized diffusion coefficients for the two-phase migration models. 

Aggregate volume 

fraction, (1-ϕ) 
0% 10% 20% 30% 40% 50% 60% 70% 

Time of the test, td, s 3600 3600 3600 3600 3600 3600 3600 3600 

Depth of penetration, 

xd , m 
0.0250 0.0232 0.0211 0.0190 0.0180 0.0173 0.0155 0.0145 

Chloride concentra-

tion, Cd , mol/m
3
 

214.4 214.4 214.4 214.4 214.4 214.4 214.4 214.4 

Diffusion coefficient in 

concrete, Dc ,×10
-10

 m
2
/s 

3.6624 3.3968 3.0871 2.7774 2.6300 2.5269 2.2617 2.1144 

Normalized diffusion 

coefficient, Dc/D0 
1.0000 0.9275 0.8429 0.7584 0.7181 0.6900 0.6175 0.5773 

 

For the purpose of comparison, the curves of analytical predictions, the points of exper-

imental data and the result of 2-D diffusion models in Fig. 6.7 are kept. A good agree-

ment between the present results and those obtained from 2-D diffusion models is ob-

served, especially at the volume fractions of 0%-40%. As the volume fraction increases, 

the gaps between the two categories of numerical models become larger. At the volume 

fraction of 70%, the value of 0/ DDc  in two-phase migration is even above Brug-
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geman’s equation. It is revealed that, in diffusion models the normalized diffusion coef-

ficient has a steady downward trend against the aggregate volume fraction, whereas in 

migration models this downward trend becomes gentle at the higher volume fractions. 

Despite this, the result is generally validated by the known experiment data. The maxi-

mum of deviation is only 9.12% when 4.0)1(  . 

 

Figure 6.7. Comparison between diffusion models and migration models. 

 

6.3.4 Three-phase migration models 

As mentioned in Chapter 5, ITZ thickness is μm 5030 in reality however this size level 

is too small for meshing and beyond our computing ability at present. In the current 

study, the minimum size of ITZ is μm 100 to balance both the calculation efficiency and 

the reference significance. In order to give a better quantitative examination on the 

three-phased models, the ratio of diffusion coefficient of ITZ ( ITZD ) to that of matrix 

( 0D ) have been correspondingly reduced to about 3 times, which can partly eliminate 

the effect of larger sized ITZ. Due to the limitation of random distributing of aggregates 
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wrapped by ITZ, only the models with 0%-50% volume fractions of aggregates are ex-

amined here. 

Table 6.2. Normalized diffusion coefficients for the three-phase migration models, DITZ/D0=2. 

Aggregate volume 

fraction, (1-ϕ) 
0% 10% 20% 30% 40% 50% 

Time of the test, td, s 3600 3600 3600 3600 3600 3600 

Depth of penetration, 

xd , m 
0.0250 0.0235 0.0217 0.0200 0.0190 0.0182 

Chloride concentra-

tion, Cd , mol/m
3
 

214.4 214.4 214.4 214.4 214.4 214.4 

Diffusion coefficient in 

concrete, Dc ,×10
-10

 m
2
/s 

3.6624 3.4411 3.1756 2.9249 2.7774 2.6595 

Normalized diffusion 

coefficient, Dc/D0 
1.0000 0.9396 0.8671 0.7986 0.7584 0.7262 

 

Table 6.3. Normalized diffusion coefficients for the three-phase migration models, DITZ/D0=3 

Aggregate volume 

fraction, (1-ϕ) 
0% 10% 20% 30% 40% 50% 

Time of the test, td, s 3600 3600 3600 3600 3600 3600 

Depth of penetration, 

xd , m 
0.0250 0.0238 0.0225 0.0213 0.0200 0.0190 

Chloride concentra-

tion, Cd , mol/m
3
 

214.4 214.4 214.4 214.4 214.4 214.4 

Diffusion coefficient in 

concrete, Dc ,×10
-10

 m
2
/s 

3.6624 3.4854 3.2936 3.1166 2.9249 2.7774 

Normalized diffusion 

coefficient, Dc/D0 
1.0000 0.9517 0.8993 0.8510 0.7986 0.7584 

 

The simulations were carried out at 0ITZ / DD  ratios of 1, 2 and 3 times (where 

1/ 0ITZ DD  means there is no ITZ in the geometry and the result is equivalent to the 

two-phase model shown in the preceding section). The results are shown in Tables 6.2-

6.3 and compared with the former references in Fig. 6.8. As expected, the normalized 

diffusion coefficient ( 0/ DDc ) decreases with an increase in aggregate volume fraction 
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and a decrease in 0ITZ / DD . The result of 3/ 0ITZ DD  is found between the two ana-

lytical predictions of Maxwell’s model and Bruggeman’s equation. It may be noticed 

that the presence of ITZ phase further reduces the downward trend of the decrease of 

0/ DDc throughout the entire cases of aggregate volume fraction. It is evident that the 

increase of aggregate volume fraction causes two opposing effects on ionic transport. 

On one hand it slows down transport by increasing the tortuosity of concrete structures. 

On the other hand it speeds up transport by increasing the porous ITZ wrapping the ag-

gregates, which has much larger diffusivity than cement paste. It also can be found in 

Fig. 6.8 that, the 0/ DDc  results in the model with 2/ 0ITZ DD  mainly located in 

the middle between the models with 0ITZ / DD  ratios of 1 and 3. This indicates that the 

rise of chloride diffusivity with the increase of 0ITZ / DD  during the sensitivity analysis 

is approximately linear. 

 

Figure 6.8. Comparison between the migration models with different DITZ/D0 values. 
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6.3.5 Three-phase migration models with binding effect 

Another point in this chapter is examining the influence of binding effect on the normal-

ized diffusion coefficient ( 0/ DDc ). However, it should be noted that the modelling of 

binding effect in this study is dependent on the assumption of Langmuir isotherm. In Eq. 

(4.5), the two constant,   and  , are also determined based on the experimental data, 

which brings difficulties to the quantitative study. In this section, for a general qualita-

tive comparison, the same values adopted in Chapter 4 (firstly developed by Li and Page 

(2000)) are used.  

Table 6.4. Normalized diffusion coefficients for the three-phase migration models with binding effect. 

Aggregate volume 

fraction, (1-ϕ) 
0% 10% 20% 30% 40% 50% 

Time of the test, td, s 3600 3600 3600 3600 3600 3600 

Depth of penetration, 

xd , m 
0.0250 0.0219 0.0203 0.0192 0.0182 0.0173 

Chloride concentra-

tion, Cd , mol/m
3
 

214.4 146.0 146.0 146.0 146.0 146.0 

Diffusion coefficient in 

concrete, Dc ,×10
-10

 m
2
/s 

3.6624 3.1234 2.8904 2.7304 2.5850 2.4543 

Normalized diffusion 

coefficient, Dc/D0 
1.0000 0.8528 0.7892 0.7455 0.7058 0.6701 

 

Table 6.4 gives the calculated 0/ DDc  by using Eq. (6.13). The ITZ phase employed 

here is μm 100 thick with the diffusivity of 3/ 0ITZ DD . Comparing the results be-

tween the models with and without binding effect shown in Fig. 6.9, it can be seen that 

the binding effect markedly reduces the value of 0/ DDc . The degree of this reduction 

is approximately the same as that of the increase caused by ITZ. As a consequence, it 

brings a good agreement between the two-phase models without binding and the three-

phase models with binding. The latter therefore can also be validated by the experiment 
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work done by Yang and Su (2002). The maximum deviation is only 7.25% when 

4.0)1(  . That is to say, the full-form numerical model developed in this thesis 

which includes real potential gradient distributions, separate aggregate and ITZ phases 

and the binding effect is reliable for simulating the multi-species migration tests. 

 

Figure 6.9. Comparison between the migration models with and without binding effect. 
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6.4 Summary 

This chapter has reported on a quantitative study carried out to evaluate and validate the 

migration models demonstrated in the previous part of the thesis. From the results and 

discussions of the normalized concrete diffusion coefficients calculated by a series of 

numerical models, the following conclusions can be drawn. 

1) In diffusion models, the results of the normalized diffusion coefficient obtained 

from 2-D models is closer to the experiment data than that from 3-D models. 

The effect caused by the reduction of tortuosity almost offsets that caused by 

lack of movement dimension during the ionic transport process; therefore, the 2-

D model is able to simulate the penetration of chlorides in concrete effectively. 

2) In two-phase migration models, the results agree well with those obtained from 

2-D diffusion models especially at the lower fractions. The difference between 

them is that, in diffusion models the chloride diffusivity in concrete has a steady 

downward trend against the aggregates volume fraction, whereas in migration 

models this downward trend becomes gentle at the higher volume fractions. De-

spite this, the above result is generally validated by the known experiment data.  

3) Three-phase migration models obviously demonstrate two opposing effects on 

ionic transport caused by aggregate particles. The presence of ITZ phase further 

reduces the downward trend of the decrease of the chloride diffusivity through-

out the entire cases of aggregate volume fractions. Additionally, the rise of chlo-

ride diffusivity as the increase of 0ITZ / DD  during the sensitivity analysis is ap-

proximately linear. 



 207 

4) The binding effect will markedly reduce the chloride diffusivity in concrete. The 

degree of this reduction is approximately the same as that of the increase caused 

by ITZ. Through comparison with the experiment data, it is concluded that the 

full-form numerical model developed in this thesis which includes real potential 

gradient distributions, separate aggregate and ITZ phases and the binding effect 

is rational and reliable for simulating the multi-species migration tests. 
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7 CHAPTER SEVEN– CONCLUSIONS AND FUTRUE WORK 

This last chapter summarizes the main contributions of this thesis based on the numeri-

cal models proposed in the preceding chapters. Findings and the limitations of presented 

models are listed, and several suggestions are given for possible further studies. 
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7.1 1-D one phase model  

Two sets of 1-D numerical models have been proposed to study the transport of ions in a 

saturated cement paste specimen subjected to an externally applied electrical field. One 

determines the electrostatic potential based on the assumption of electro-neutrality, 

which is used in the majority of the literature. The other applies the rigorous Poisson’s 

equation, which leads a non-linear electrical potential distribution. Through comparison 

of the two model types, the following conclusions can be drawn: 

1) Electro-migration is the dominant transport process in both models due to the in-

fluence of an externally applied electric field. However, local diffusion behav-

iour occurs more frequently in the model using Poisson’s equation, which may 

have significant influence on the development of migration speed.  

2) The profile results obtained from the two distinct models are significantly differ-

ent. If the electro-neutrality condition is employed, the electrostatic potential 

gradient within the cement paste would be constant, which makes the multi-

species transport act like a one-component system. The migration velocity of 

each ionic species here is also constant, which entirely depends on its diffusion 

coefficient and the electro-static potential. However, when the electro-neutrality 

assumption is replaced by the rigorous Poisson’s equation, the ionic electro-

coupling can be realised. The migration speed of each ionic species varies with 

time and also with space. Interestingly, the migration speeds of positively (or 

negatively) charged ions are almost the same but are significantly different from 

those of their opposite charged ions. This evidently shows interactions between 

different ionic species achieved in the second set of models. 
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3) Under the influence of Poisson’s equation, the distribution of electrostatic poten-

tial between the cathode and anode shows the results are likely to form a curve 

that varies from a convex shape at the first hour to a concave shape at the fourth 

hour, rather than a straight line in the model adopting electro-neutrality condi-

tion.  

4) For the models with constant electrostatic potential gradient, the current density 

generated by ionic fluxes varies with both time and position, whereas for the 

models with Poisson’s equation, it only varies with time and remains constant 

with spatial variation. Furthermore, current density is proportionally in accord 

with the input initial concentrations. 

5) A further study on the second set of model shows that the migration amounts of 

ions in a specimen is heavily dependent on its initial concentrations. The higher 

the initial concentrations in the specimen, the more the ions can be transported. 

Moreover, the change of initial concentrations of potassium, sodium and hy-

droxyl ions will affect not only their own concentration profiles, but also the 

chloride concentration profiles in the specimen during the process. 
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7.2 2-D two phase model 

To further examine the interaction transport features, the influences of aggregate phase 

and the impacts of binding effect, a series of 2-D models with two phases (aggregates 

and bulk mortar) have been developed to simulate the ionic migration tests. A qualita-

tive investigation based on the ionic concentration distribution profiles lead to the fol-

lowing conclusions:  

1) The variation of the ionic distribution profiles and the electrostatic potential pro-

files along the y-axis are insignificant. The concentration distribution profiles 

obtained from the present two-phase multi-component transport model are quali-

tatively similar to those obtained from the single-phase multi-component 

transport model, although quantitative difference in results may exist between 

these two kinds of models, particularly in the travel speed. 

2) The hydroxyl ions are found to have the steepest migration wave front, whereas 

the sodium ions have the gentlest migration wave front. The steepness of each 

species decreases with time. This feature of steep degree reflects the combined 

influence of diffusion and local tortuosity, which cannot be found in the single 

phase model. The inclusion of aggregates in the model can provide a more accu-

rate influence of tortuosity on both the diffusion and migration of ions. 

3) Under the condition of identical volume fraction and similar tortuosity, the influ-

ence of particle shapes on the permeability of concrete is fairly insignificant. 

Relatively, the influence of volume fraction is much more significant than that of 

aggregate morphology, due to the more notable influence on tortuosity. 
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4) The adsorption of ions will significantly decelerate the migration speed of this 

species and meanwhile reduce its concentration during the electro-migration 

process. Because of the ionic interactions caused by Poisson’s equation, the 

binding effect of one species also has impact on the penetrations of other ionic 

species. 
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7.3 2-D three phase model 

A series of 2-D concrete models with three-phased composite (aggregate, bulk mortar 

and ITZ) is presented for study of the impact of the separate ITZ phase. The following 

conclusions were drawn from the investigation. 

1) Comparing the result obtained from the models with and without ITZ phase, a 

series of basic features such as the migration speed between like charged ions, 

the approximate 1-D flow of ions, the tortuosity effect caused by aggregates and 

the steep behaviour of migration wave fronts are qualitatively similar.  

2) In the present three-phased models, as the chlorides penetrates much more quick-

ly in ITZ phases as well as the volume fraction of ITZ is non-ignorable, the vol-

ume fraction of ITZ plays a significant role in determining the chloride migration 

rate. This is in disagreement with results shown in two-phased models studied in 

Chapter Four: only the tortuosity dominates the impact on the migration rate of 

chlorides. The increase in quantity of aggregates will also increase the ITZ vol-

ume, which increases the chloride diffusivity of the concrete to some extent.  

3) At present level of ITZ volume fraction, the definitions of ITZ thickness and 

BITZ / DD  ratio are equally significant during the simulation of chloride migra-

tion process.  
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7.4 Cracked concrete models 

2-D cracked concrete models are proposed to estimate the effect of cracks during the 

migration test. From the present investigation of the influence caused by a variety of ge-

ometry properties of cracks, the following conclusions were drawn. 

1) Unlike the former models, the migration wave front in the cracked concrete trav-

els at two distinct rates. One occurs in the uncracked part of concrete and its 

speed is similar with that performed in the former models; the other one occurs 

only in the damage zones and gets much larger speed than that in the non-

damaged bulk mortar, acting like a kind of ‘pioneers’ which take a shortcut 

through the damage zones.  

2) Under the action of an externally applied DC voltage, the damage depth, which is 

exactly parallel to the electric field, dominates the migration rate, whereas the 

damage width, the damage fraction and the angle between the damage depth and 

the electrical field has little impact on the chloride migration. Additionally, ac-

cording to the results of sensitive analysis, the effects of different damage width 

and fraction on the chloride migration are very close. 

3) The results of the chloride migration will be disrupted by the influences of the 

‘pollution’ behaviour caused by local diffusion. 

4) Ionic interactions of multi-species transport are significant for the study of chlo-

ride migration in cracked concrete.   

5) Neither the location nor the shape effect of damage zones has qualitative influ-

ence on the migration result 
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7.5 Predicting chloride diffusion coefficient during migration processes  

A quantitative study carried out to evaluate and validate the migration models demon-

strated in this thesis was reported. From the results and discussions of the normalized 

concrete diffusion coefficients calculated by a series of numerical models, the following 

conclusions were drawn. 

1) In diffusion models, the results of the normalized diffusion coefficient obtained 

from 2-D models is closer to the experiment data than that from 3-D models. 

The effect caused by the reduction of tortuosity almost offsets that caused by 

lack of movement dimension during the ionic transport process; therefore, the 2-

D model is able to simulate the penetration of chlorides in concrete effectively. 

2) In two-phase migration models, the results agree well with those obtained from 

2-D diffusion models especially at the lower fractions. The difference between 

them is that, in diffusion models the chloride diffusivity in concrete has a steady 

downward trend against the aggregates volume fraction, whereas in migration 

models this downward trend becomes gentle at the higher volume fractions. De-

spite this, the above result is generally validated by the known experiment data.  

3) Three-phase migration models obviously demonstrate two opposing effects on 

ionic transport caused by aggregate particles. The presence of ITZ phase further 

reduces the downward trend of the decrease of the chloride diffusivity through-

out the entire cases of aggregate volume fractions. Additionally, the rise of chlo-

ride diffusivity as the increase of 0ITZ / DD  during the sensitivity analysis is ap-

proximately linear. 
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4) The binding effect will markedly reduce the chloride diffusivity in concrete. The 

degree of this reduction is approximately the same as that of the increase caused 

by ITZ. Through comparison with the experiment data, it is concluded that the 

full-form numerical model developed in this thesis which includes real potential 

gradient distributions, separate aggregate and ITZ phases and the binding effect 

is rational and reliable for simulating the multi-species migration tests. 
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7.6 Suggestions for future work 

The work conducted in this thesis has identified several aspects where future investiga-

tions may be required. 

1) Time-dependent concentrations of external cells  

In the present numerical models, the size of the external cells was assumed to be 

like a reservoir and thus the concentration of boundary conditions is constant 

during modelling and calculation. Further study is recommended to monitor the 

concentration profiles during the simulated test with the limited size of external 

cells.    

2) Real sized ITZs 

The ITZ thickness adopted in Chapter Six had to be μm 100 due to the computa-

tional limitation, whereas in reality, the thickness is only μm 5030 . Though in 

the present quantitative study the ratio of diffusion coefficient of ITZ to that of 

matrix have been correspondingly reduced to eliminate the effect of oversized 

ITZ, real sized ITZs can improve the accuracy of the present model. 

3) 3-D model for calculating Nernst-Planck equation 

One significant finding driven by the 3-D diffusion models proposed in Chapter 

Six was that the relationship between the effects of reduction of tortuosity and 

the lack of movement dimension. However, this conclusion is only obtained 

from the diffusion model rather than more interested migration model. To make 

a more reasonable evaluation on the influences of dimension, 3-D models need 

to be utilised to solve the ionic migration problem.   
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4) Convection behaviour  

The mortar matrix phase of the present models is assumed to be saturated and 

thus the convection behaviour would not take place during the ionic transport. 

Unsaturated mortar matrix may be the objective of future study.  

5) Chemical activity  

As mentioned in Chapter Two that the full form of Nernst-Planck equation in-

cludes not only the diffusion, the convection and the migration term but also the 

chemical activity term. This term was ignored in the present study due to the as-

sumption of ideal diluted matrix. Therefore, further modelling can be carried out 

by adding the chemical activity term in Nernst-Planck equation.   

6) Experimental work on monitoring other species 

The present study focused on not only the chloride ions but also other three pop-

ular ionic species in chloride migration tests. However, most existing experi-

mental data is for chlorides (including the accelerated chloride migration test cit-

ed for validation of the present numerical results), neglecting the report of other 

species. Therefore, it is advised that an experimental work which monitors more 

ionic species should be carried out.    
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