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ABSTRACT 

Non-linear Model Predictive Control Strategies for Process Plants  

Using Soft Computing Approaches 

OWA, Kayode Olayemi 

The developments of advanced non-linear control strategies have attracted a 

considerable research interests over the past decades especially in process control. 

Rather than an absolute reliance on mathematical models of process plants which often 

brings discrepancies especially owing to design errors and equipment degradation, non-

linear models are however required because they provide improved prediction 

capabilities but they are very difficult to derive. In addition, the derivation of the global 

optimal solution gets more difficult especially when multivariable and non-linear 

systems are involved. 

Hence, this research investigates soft computing techniques for the implementation of a 

novel real time constrained non-linear model predictive controller (NMPC). The time-

frequency localisation characteristics of wavelet neural network (WNN) were utilised 

for the non-linear models design using system identification approach from 

experimental data and improve upon the conventional artificial neural network (ANN) 

which is prone to low convergence rate and the difficulties in locating the global 

minimum point during training process. Salient features of particle swarm optimisation 

and a genetic algorithm (GA) were combined to optimise the network weights. Real 

time optimisation occurring at every sampling instant is achieved using a GA to deliver 

results both in simulations and real time implementation on coupled tank systems with 

further extension to a complex quadruple tank process in simulations. The results show 

the superiority of the novel WNN-NMPC approach in terms of the average controller 

energy and mean squared error over the conventional ANN-NMPC strategies and PID 

control strategy for both SISO and MIMO systems.   



iv 

 

TABLE OF CONTENTS 

 

COPYRIGHT STATEMENT ........................................................................................... 0 

NON-LINEAR MODEL PREDICTIVE CONTROL STRATEGIES FOR PROCESS 

PLANTS USING SOFT COMPUTING APPROACHES ................................................ ii 

ABSTRACT ..................................................................................................................... iii 

TABLE OF CONTENTS ................................................................................................. iv 

LIST OF FIGURES ......................................................................................................... xi 

LIST OF TABLES ......................................................................................................... xvi 

ACKNOWLEDGEMENT ........................................................................................... xviii 

DEDICATION ................................................................................................................ xx 

AUTHOR’S DECLARATION ...................................................................................... xxi 

1. INTRODUCTION .................................................................................................... 1 

1.1 Motivation of the Research ................................................................................ 1 

1.2 The Problems ...................................................................................................... 1 

1.3 Aim of the Research ........................................................................................... 2 

1.3.1 Objectives of the Research .......................................................................... 2 

1.4 Contributions of the Research ............................................................................ 3 

1.5 Thesis Outline ..................................................................................................... 4 

2. OVERVIEW AND RECENT DEVELOPMENTS .................................................. 5 

2.1 Introduction ........................................................................................................ 5 

2.2 Process Plants ..................................................................................................... 9 



v 

 

2.3 Soft Computing Techniques ............................................................................. 13 

2.3.1 Neural Network Architectures .................................................................. 19 

2.3.1.1 Artificial Neural Network (ANN) .......................................................... 22 

2.3.1.2 Wavelet Neural Network (WNN) ......................................................... 24 

2.3.2 Non-linear Weight Optimisation ............................................................... 27 

2.3.2.1 Genetic Algorithm Optimisation .......................................................... 30 

2.3.2.2 Particle Swarm Optimisation .............................................................. 33 

2.4 Control Strategies ............................................................................................. 36 

2.4.1 Model Predictive Control (MPC) Strategy ............................................... 36 

2.5 Discussions ....................................................................................................... 41 

2.5.1 System Identification Approach ................................................................ 41 

2.5.2 Regions of Control .................................................................................... 42 

2.5.3 Robust Model ............................................................................................ 43 

2.5.4 Multivariable Control ................................................................................ 43 

2.5.5 Wavelet Techniques .................................................................................. 44 

2.5.6 Soft Computing Approaches ..................................................................... 45 

2.5.7 Real Time Strategy .................................................................................... 45 

2.6 Summary .......................................................................................................... 47 

3. COUPLED TANK SYSTEM ................................................................................. 48 

3.1 Introduction ...................................................................................................... 48 

3.2 Brief Description of the Coupled Tank System ............................................... 50 

3.2.1 Physical Parameters of the CTS ................................................................ 54 

3.3 Quadruple Tank process ................................................................................... 54 

3.3.1 Brief Description of the Quadruple Tank process .................................... 56 



vi 

 

3.3.1.1 Physical Parameters of the QTP ........................................................ 58 

3.4 Discussion ........................................................................................................ 59 

3.4.1 Modelling Technique and Control Strategy .............................................. 59 

3.4.2 MIMO Two-Tank Configuration .............................................................. 60 

3.4.3 MIMO Four-Tank Configuration .............................................................. 60 

3.4.4 Real Time Implementations on CTS ......................................................... 60 

3.5 Summary .......................................................................................................... 61 

4. SYSTEM IDENTIFICATION AND MODELLING of COUPLED TANK 

SYSTEMS ....................................................................................................................... 62 

4.1 Introduction ...................................................................................................... 62 

4.2 CTS SISO SIMULINK Model ......................................................................... 63 

4.3 SIMULINK Block Properties ........................................................................... 66 

4.4 CTS MIMO SIMULINK Model ...................................................................... 67 

4.5 QTP MIMO SIMULINK Model ...................................................................... 70 

4.6 System Identification of the CTS ..................................................................... 72 

4.6.1 CTS SISO Data Collection ....................................................................... 73 

4.6.2 CTS MIMO Data Collection ..................................................................... 78 

4.6.3 QTP MIMO Data Collection ..................................................................... 83 

4.7 MODELLING OF THE COUPLED TANK SYSTEM ................................... 90 

4.7.1 Neural Networks for Modelling ................................................................ 94 

4.8 ANN Modelling for SISO CTS ........................................................................ 95 

4.8.1 Number of Neurons ................................................................................... 95 

4.8.2 Number of Delays ..................................................................................... 96 



vii 

 

4.8.3 Regressed Input Streams ........................................................................... 97 

4.8.4 ANN Activation Function ....................................................................... 100 

4.8.5 Objective Function or Performance Functions ....................................... 100 

4.8.6 Weights Optimisation ............................................................................. 101 

4.8.6.1 Particle Swarm Optimisation implementation ................................... 105 

4.8.6.2 Genetic Algorithm implementation .................................................... 110 

4.8.7 SISO ANN Model Results ...................................................................... 114 

4.9 ANN Modelling for MIMO CTS ................................................................... 116 

4.9.1 MIMO ANN Model Results.................................................................... 119 

4.10 WNN Modelling for SISO CTS ................................................................. 123 

4.10.1 SISO WNN Model Results ..................................................................... 125 

4.11 WNN Modelling for MIMO CTS ............................................................... 127 

4.11.1 MIMO WNN Model Results ................................................................... 129 

4.12 WNN Modelling for MIMO QTP ............................................................... 134 

4.12.1 MIMO QTP WNN Model Results .......................................................... 136 

4.12.1.1 Non-Minimum Phase (NMP) QTP Model Results ......................... 136 

4.12.1.2 Minimum Phase (MP) QTP Model Results .................................... 141 

4.12.2 QTP Modelling Results Comparisons ..................................................... 144 

4.13 Summary ..................................................................................................... 146 

5. CONTROL STRATEGIES FOR COUPLED TANK SYSTEMs ........................ 149 

5.1 Introduction .................................................................................................... 149 

5.2 PID Controller Strategy .................................................................................. 155 

5.3 Non-linear Advance Control Strategy ............................................................ 158 

5.3.1 Steps in NMPC Strategy ......................................................................... 159 



viii 

 

5.4 Particle Swarm Optimisation in the NMPC strategy ...................................... 163 

5.5 Genetic Algorithm in the NMPC strategy ...................................................... 166 

5.6 Performance Criteria ...................................................................................... 168 

5.7 MATLAB-GUI Software Control Program ................................................... 171 

5.8 NMPC Strategy Preliminary CTS Simulation Results ................................... 172 

5.9 Comparisons of PID and NMPC Strategies ................................................... 181 

5.9.1 Stability of NMPC Strategy .................................................................... 182 

5.9.2 Robustness of NMPC Strategy ............................................................... 186 

5.10 Summary ..................................................................................................... 191 

6. ANALYSIS OF CONTROL STRATEGIES RESULTS ...................................... 193 

6.1 Introduction .................................................................................................... 193 

6.2 NMPC Strategy for CTS in Simulation .......................................................... 194 

6.2.1 SISO ANN Simulation Results ............................................................... 194 

6.2.2 SISO WNN Simulation Results .............................................................. 196 

6.2.3 MIMO ANN Simulation Results ............................................................ 198 

6.2.4 MIMO WNN Simulation Results ........................................................... 199 

6.3 Experimental Work ........................................................................................ 202 

6.3.1 NMPC Strategy for CTS in Real Time ................................................... 208 

6.3.1.1 SISO ANN Real Time Results .......................................................... 209 

6.3.1.2 SISO WNN Real Time Results ......................................................... 210 

6.3.1.3 MIMO ANN Real Time Results ......................................................... 212 

6.3.1.4 MIMO WNN Real Time Results ........................................................ 213 

6.4 WNN-NMPC Strategy QTP Simulation Results ............................................ 215 

6.4.1 QTP Upper Level Control ....................................................................... 215 



ix 

 

6.4.2 QTP Lower Level Control ...................................................................... 217 

6.4.3 QTP Control Strategy Results Comparison ............................................ 219 

6.5 Comparisons of Modelling Performance ....................................................... 220 

6.6 Comparisons of NMPC Performance ............................................................. 221 

6.7 Comparisons of Optimisation Process in NMPC Strategy ............................. 221 

6.8 Summary ........................................................................................................ 222 

7. CONCLUSIONS AND FURTHER WORK ......................................................... 224 

7.1 Concluding Remarks ...................................................................................... 224 

7.2 Recommendation for Future Work ................................................................. 229 

A APPENDIX ........................................................................................................... 230 

A.1 Calibration of the CTS Equipment ................................................................. 230 

A.1.1 Calibration of Height Sensors ................................................................. 235 

B. APPENDIX B ....................................................................................................... 239 

B.1 Determination of the Sampling Frequency..................................................... 239 

B.1.1 Factor affecting Sampling Frequency ..................................................... 239 

B.1.1.1 Nyquist-Shannon Sampling Theorem ............................................... 239 

B.1.1.2 Aliasing ............................................................................................ 239 

B.1.1.3 Undersampling and Oversampling ................................................... 240 

B.1.2 Power Spectral Density ........................................................................... 240 

B.1.3 Experimental Procedures ........................................................................ 242 

C. APPENDIX C ....................................................................................................... 246 

C.1 Determination of Artificial Neural Network (ANN) Parameters ................... 246 

C.2 Initial ANN Training Process ......................................................................... 247 



x 

 

D. APPENDIX D ....................................................................................................... 253 

D.1 Random Population Generator ....................................................................... 253 

D.2 NMPC Cost Function ..................................................................................... 253 

D.3 DAQ Coding ................................................................................................... 255 

D.4 PID Design Codes and Tuning ....................................................................... 256 

D.5 PSO+GA Training MATLAB GUI Codes ..................................................... 261 

D.6 Control Strategies MATLAB GUI Codes ...................................................... 266 

LIST OF ABBREVIATIONS ....................................................................................... 319 

LIST OF REFERENCES .............................................................................................. 321 

LIST OF PUBLICATIONS .......................................................................................... 333 

 

  



xi 

 

LIST OF FIGURES 

Figure  2.1 The block diagram of the SISO/MIMO NMPC strategy ................................. 8 

Figure  2.2 A Typical Petroleum Refinery Plant in Anacortes, Washington, United States 

(Siegmund 2008) ............................................................................................................... 9 

Figure  2.3 The overview of the proposed soft computing approaches used in this 

research study .................................................................................................................. 15 

Figure  2.4  Black box representation of a complex non-linear system ........................... 16 

Figure  2.5 A modified system identification procedures ................................................ 18 

Figure  2.6 The human brain and the computer neural network structure ....................... 20 

Figure  2.7 One layer of neurons after (Beale et al. 2011) ............................................... 21 

Figure  2.8 Neurons of many layers after (Beale et al. 2011) .......................................... 22 

Figure  2.9 The proposed PSO+GA trained wavelet algorithm ....................................... 26 

Figure  2.10 One dimensional error function surface (Seiffert and Michaelis 2000) ...... 29 

Figure  2.11 A flowchart of a simple GA (Al-Duwaish and Naeem 2001) ..................... 33 

Figure  2.12 Overview of steps involved in PSO (Han et al. 2008) ................................. 35 

Figure  2.13 The block diagram of a typical SISO MPC operation (Bemporad et al. 

2011) ............................................................................................................................... 37 

Figure  2.14 MPC predictions and control horizons at every sampling time (Bemporad et 

al. 2011)........................................................................................................................... 40 

Figure  3.1 Coupled Tank System Setup at Plymouth University ................................... 51 

Figure  3.2 Cross sectional diagram of a SISO CTS ........................................................ 52 

Figure  3.3 The cross sectional diagram of a MIMO CTS ............................................... 53 

Figure  3.4 Minimum and Non-minimum–phase regions ................................................ 56 

Figure  3.5 Schematic Diagram of Quadruple Tank Process ........................................... 57 

Figure  4.1 SISO coupled tank system in SIMULINK design ......................................... 66 

Figure  4.2 MIMO coupled tank system in SIMULINK design ...................................... 69 



xii 

 

Figure  4.3 The SIMULINK design of MP and NMP QTP ............................................. 71 

Figure  4.4 SISO CTS input signals ................................................................................. 74 

Figure  4.5 Schematic diagram for a SISO CTS two-tank system ................................... 76 

Figure  4.6 SISO CTS height output responses................................................................ 77 

Figure  4.7 MIMO CTS input signals .............................................................................. 79 

Figure  4.8 The Schematic diagram for a MIMO CTS two-tank system ......................... 81 

Figure  4.9 MIMO CTS height output responses ............................................................. 82 

Figure  4.10 Non-minimum phase input signal generated to excite the plant.................. 84 

Figure  4.11 Minimum phase input signal generated to excite the plant ......................... 85 

Figure  4.12 The Schematic diagram for a QTP / four-tank system ................................ 87 

Figure  4.13 Non-minimum phase open loop response data collected for analysis ......... 88 

Figure  4.14 Minimum phase open loop response data collected for analysis ................. 89 

Figure  4.15 The basic system identification procedure .................................................. 92 

Figure  4.16 Approximation ability of an ANN ............................................................... 94 

Figure  4.17 Structure of a SISO ANN ............................................................................ 99 

Figure  4.18 The proposed two-stage (PSO + GA) modelling approach ....................... 102 

Figure  4.19 GUI screenshot for PSO+GA training algorithm ...................................... 104 

Figure  4.20 SISO CTS ANN modelling results ............................................................ 115 

Figure  4.21 Structure of a MIMO ANN........................................................................ 117 

Figure  4.22 MIMO CTS ANN Model response and prediction error for output 1 ....... 119 

Figure  4.23 MIMO CTS ANN Model response and prediction error for output 2 ....... 120 

Figure  4.24 MIMO CTS ANN Auto-correlation and cross-correlaton coeffcients for 

output 1 ......................................................................................................................... 121 

Figure  4.25 MIMO CTS ANN Auto-correlation and cross-correlaton coeffcients for 

output 2 ......................................................................................................................... 122 

Figure  4.26 Structure of a SISO CTS WNN ................................................................. 124 



xiii 

 

Figure  4.27 SISO CTS WNN modelling results ........................................................... 126 

Figure  4.28 Structure of a MIMO CTS WNN architecture .......................................... 128 

Figure  4.29 MIMO CTS WNN Model response and prediction error for output 1 ...... 130 

Figure  4.30 MIMO CTS WNN Model response and prediction error for output 2 ...... 131 

Figure  4.31 MIMO CTS WNN Autocorrelation and crosscorrelaton coeffcients for 

output 1 ......................................................................................................................... 132 

Figure  4.32 MIMO CTS WNN Autocorrelation and crosscorrelaton coeffcients for 

output 2 ......................................................................................................................... 133 

Figure  4.33 MIMO NMP QTP WNN Model response and prediction error for output 1

 ....................................................................................................................................... 137 

Figure  4.34 MIMO NMP QTP WNN Model response and prediction error for output 2

 ....................................................................................................................................... 138 

Figure  4.35 MIMO NMP QTP WNN correlation coeffcients for both outputs 1 and 2

 ....................................................................................................................................... 139 

Figure  4.36 MIMO MP QTP WNN Model response and prediction error for output 1

 ....................................................................................................................................... 141 

Figure  4.37 MIMO MP QTP WNN Model response and prediction error for output 2

 ....................................................................................................................................... 142 

Figure  4.38 MIMO MP QTP WNN correlation coeffcients for both outputs 1 and 2 .. 143 

Figure  5.1 Block diagram of a PID controller............................................................... 156 

Figure  5.2 The schematic diagram of the NMPC strategy ............................................ 159 

Figure  5.3 Other output system response characteristics criteria (Mathworks 2011, 

Ogata 2010) ................................................................................................................... 169 

Figure  5.4 The graphical use interface of the designed control software ..................... 172 

Figure  5.5 NMPC strategy with prediction and control horizon of 40 and 25.............. 175 

Figure  5.6 NMPC strategy with prediction and control horizon of 25 and 15.............. 176 



xiv 

 

Figure  5.7 NMPC strategy with prediction and control horizon of 15 and 10.............. 177 

Figure  5.8 NMPC strategy with prediction and control horizon of 10 and 5................ 178 

Figure  5.9 NMPC strategy with prediction and control horizon of 5 and 2.................. 179 

Figure  5.10 The same response of Figure  5.9 for a 100 seconds simulation ................ 180 

Figure  5.11 SISO comparison of PID and NMPC strategies responses using random set 

point references ............................................................................................................. 183 

Figure  5.12 MIMO comparison PID and NMPC strategies responses using random set 

point reference ............................................................................................................... 185 

Figure  5.13 SISO comparison PID and NMPC strategies responses for adverse 

condition ........................................................................................................................ 188 

Figure  5.14 MIMO comparison PID and NMPC strategies responses for adverse 

condition ........................................................................................................................ 190 

Figure  6.1 SISO ANN NMPC Strategy Simulation Results (PSO and GA) ................ 195 

Figure  6.2 SISO WNN NMPC Strategy Simulation Results (PSO and GA)................ 196 

Figure  6.3 MIMO ANN NMPC Strategy Simulation Results (PSO and GA) .............. 199 

Figure  6.4 MIMO WNN NMPC Strategy Simulation Results (PSO and GA) ............. 200 

Figure  6.5 Schematic diagram of real time implementation setup................................ 204 

Figure  6.6 Picture of NI 6009 DAQ device .................................................................. 205 

Figure  6.7 TQ CE120 Controller .................................................................................. 206 

Figure  6.8 CE105MV multivariable coupled tank equipment ...................................... 207 

Figure  6.9 SISO CTS ANN NMPC Strategy Real Time Results (PSO and GA) ......... 209 

Figure  6.10 SISO CTS WNN NMPC Strategy Real Time Results (PSO and GA) ...... 210 

Figure  6.11 MIMO CTS ANN NMPC Strategy Real Time Results (PSO and GA) .... 212 

Figure  6.12 MIMO CTS WNN NMPC Strategy Real Time Results (PSO and GA) ... 213 

Figure  6.13 NMPC strategy for MP and NMP for upper level control......................... 216 

Figure  6.14 NMPC strategy for MP and NMP for lower level control ........................ 218 



xv 

 

Figure  A.1 Graph of fluid flow rate against average pump 1 supply voltage ............... 231 

Figure  A.2 Graph of fluid flow rate against average pump 1 supply voltage (Flowmeter 

Output) .......................................................................................................................... 233 

Figure  A.3 Average pump 2 supply versus Average pump 2 sensor output ................. 235 

Figure  A.4 Height of Tank 1 versus Sensor Voltage .................................................... 237 

Figure  A.5 Height of Tank 2 versus Sensor Voltage .................................................... 238 

Figure  B.6 Power spectral density estimate for SISO test data .................................... 241 

Figure  B.7 Power spectral density estimate for MIMO test data .................................. 242 

Figure  C.8 Initial PSO training process ........................................................................ 247 

Figure  C.9 PSO ANN training results ........................................................................... 248 

Figure  C.10 Initial GA training process ........................................................................ 249 

Figure  C.11 Portion of plot in Figure  C.10 ................................................................... 250 

Figure  C.12 GA ANN training results .......................................................................... 251 

  



xvi 

 

LIST OF TABLES 

Table  3.1 Physical Parameters of the Coupled Tank System ......................................... 54 

Table  3.2 Physical parameters of the QTP (Johansson 2000, Srinivasarao and Subbaiah 

2013, Suja Mani Malar and Thyagarajan 2009).............................................................. 58 

Table  3.3 Operating parameters of minimum-phase and non-minimum-phase system 

(Johansson 2000, Srinivasarao and Subbaiah 2013, Suja Mani Malar and Thyagarajan 

2009) ............................................................................................................................... 58 

Table  3.4 Valve positions for the Quadruple Tank Process ............................................ 59 

Table  4.1 The Mean and Variance values of the SISO CTS Input Signals .................... 75 

Table  4.2 The Mean and Variance values of the MIMO CTS Input Signals .................. 80 

Table  4.3 The Mean and Variance values of the Input Signals for MP and NMP of the 

QTP ................................................................................................................................. 86 

Table  4.4 MSEs of initial training trials ........................................................................ 104 

Table  4.5 PSO NN training parameters ........................................................................ 108 

Table  4.6 SISO Training MSE results for both ANN and WNN models ..................... 127 

Table  4.7 MIMO Training MSE Results for both ANN and WNN .............................. 134 

Table  4.8 MIMO WNN Training Parameters for MP and NMP of the QTP. .............. 135 

Table  4.9 MIMO WNN MSE Modelling Results for both MP and NMP QTP ........... 144 

Table  4.10 Modelling results comparison with cited literatures (Suja Mani Malar and 

Thyagarajan 2009) ........................................................................................................ 145 

Table  5.1 PSO NMPC optimisation parameters ........................................................... 163 

Table  5.2 Table showing NMPC SISO WNN strategy preliminary results .................. 173 

Table  5.3 SISO comparison results of PID and NMPC strategies of Figure  5.11 ........ 184 

Table  5.4 MIMO comparison results of PID and NMPC strategies of Figure  5.12 ..... 186 

Table  5.5 SISO comparison results of PID and NMPC strategies of Figure  5.13 ........ 189 

Table  5.6 MIMO comparison results of PID and NMPC strategies of Figure  5.14 ..... 191 



xvii 

 

Table  6.1 Comparisons of SISO CTS Simulation Results ............................................ 197 

Table  6.2 Comparisons of MIMO CTS Simulation Results ......................................... 202 

Table  6.3 Comparisons of SISO CTS Real Time Results ............................................. 211 

Table  6.4 Comparisons of MIMO CTS Real Time Results .......................................... 214 

Table  6.5 Table of NMPC Strategy results for both MP and NMP .............................. 217 

Table  A.1 Pump Calibration Characteristics ................................................................. 230 

Table  A.2 Flowmeter Calibration Characteristics ......................................................... 232 

Table  A.3 Average pump 2 supply versus Average pump 2 sensor output .................. 234 

Table  A.4 Liquid level versus corresponding voltages ................................................. 236 

Table  B.5 Damping Frequency against fluid level in tanks .......................................... 245 

Table  C.6 Determination of ANN parameters .............................................................. 246 

 



xviii 

 

ACKNOWLEDGEMENT 

I would like to express my sincere gratitude and appreciation to all who have 

contributed both directly and indirectly to the success of my PhD programme. 

 

My first big thank you goes to Dr. Sanjay Sharma who is my director of studies and 

Professor Robert Sutton who is my second supervisor. They both gave me invaluable 

guidance and necessary supports throughout period of my research study at the 

Plymouth University. You discovered the big picture, you knew the minor details, and 

you gave me the professional and technical direction that I required. All your priceless 

theoretical insights are very well treasured. Your assistance, supervisions, guidance, and 

encouragement will ever be appreciated. 

 

I will also like to extend my profound gratitude to Professor M. K Ebrahimi who is my 

external examiner and Dr. Ming Dai who is my internal examiner for conducting the 

viva-voce examination for me. Your painstaking and conscientious corrections pointed 

out in the thesis are very well treasured. Moreover, I am so much impressed by the 

tremendous encouragements received from my PhD expert commentator who happens 

to be Dr John Summerscales. Furthermore, the entire team of graduate school will never 

be forgotten for their effective communication and good management during the period 

of my studies 

 

It will amount to my most inappropriate wrongdoing not to recognise and acknowledge 

the immense and financial supports of the petroleum training development fund, 

Nigeria. I cannot quantify the help received from you. Thank you very much for the 

confidence and trust you invested in me.  



xix 

 

 

Finally, I would like to thank my wonderful and amazing wife, Taiwo Owa for her 

supports, endless love, encouragements, speedy assistance, advice, and unending 

understanding.  

 

Most importantly, I would also like to thank my parents, Pastor and Pastor (Mrs) Owa, 

my brothers and sisters, and my in-laws for all their prayers and concerns throughout 

the period of my research study. 

 

May the almighty God bless you all in Jesus name. 

 

 

 

 

 

 

 

 

 

  



xx 

 

DEDICATION 

 

 

 

 

This thesis is dedicated to the loving memory of  

my wonderful father who passed on to glory  

around the time of my Ph.D. completion. 

Daddy I love you and miss you so much.  

Until we meet again. 

 

 

 

 

 

 

 

 

 

 



xxi 

 

AUTHOR’S DECLARATION 

 

At no time during the registration for the degree of Doctor of Philosophy has the author 

been registered for any other University award. 

 

Relevant scientific seminars and conferences were regularly attended at which work 

was often presented. Several papers have been published in referred journals. 

 

 

 

Signed: _________________________________ 

 

Date: ___________________________________ 

 

The characters count for the main body of this thesis amounts to 50814 words. 

 



1 

 

1. INTRODUCTION 

This introductory chapter brings out the reasons and justifications for this research study. It addresses 

the prevalent problems in the field of control as it applies to process plants. The motivations, aims, 

objectives, and the contributions to knowledge are clearly discussed here. 

 

1.1 Motivation of the Research 

The motivation for the research emanated from fact that there is a greater need for 

increased production, better efficiency, and insatiable perpetual demands from most 

process plants. A coupled tank system (CTS) and a quadruple tank process (QTP) are 

miniature of the big picture of various interconnected processes in the many process 

industries (Laubwald 2005, TecQuipment 2013). In addition, the determination of 

having a quality research also triggered venturing into practical implementation of the 

real time control strategy rather than being complacent with just simulation results. 

Furthermore, little work exists in the area of wavelet techniques modelling applications 

to the CTS or QTP. 

Finally, a fast progressing world needs an advance method of process control in which 

non-linear model predictive control strategy is foremost in the process industries (Al-

Gherwi et al. 2011, Macků and Sámek 2010, Manenti 2011, Unger et al. 2012).  

 

1.2 The Problems 

The global energy challenges of the world are increasingly becoming more demanding 

and complex. World’s oil reserves need to be effectively optimised. The petroleum 

industry includes the global processes of exploration, extraction, refining, transportation 

(often by oil vessels on oceans, oil tankers on land and pipelines) and marketing 
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petroleum products. Within the past 30 years, the world crude oil consumption had 

increased from    to    million barrels per day. This is alarming and therefore 

measures must be taken to meet up with these demands. There is a greater need to 

innovate, improve, design, optimise chemical processes, and improve the operations of 

equipment and facilities while making health, safety, and environment as a priority. 

 

1.3 Aim of the Research 

The overall aim of this research work is to design, simulate, and perform a real time 

implementation of a constrained multi-variable non-linear model based wavelet 

predictive control strategy for process plant applications using soft computing 

approaches. The research employs the combined use of both particle swarm 

optimisation (PSO) and a genetic algorithm (GA) for the training of the artificial neural 

network (ANN) architectures. Both a CTS and a QTP are utilised as case studies in this 

research study. 

 

1.3.1 Objectives of the Research 

Broken down as sub modules, the specific objectives of this research work are provided 

as follows: 

 Critically reviews current CTS and QTP techniques. 

 Survey of their existing modelling and control strategies. 

 Generation of open loop measured raw input-output data through real time 

experiments for CTS and simulated data for QTP. 

 Perform a system identification experimental data driven modelling for both 

the CTS and QTP cases. 
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 Perform the training of data sets for both artificial neural network (ANN) 

and wavelet neural network (WNN) structures. 

 Development of SIMULINK designs models for both the CTS and QTP 

systems using the physical parameters and the fundamental non-linear 

dynamics equations. 

 Global search approaches to non-linear training and optimisation of neural 

network structures using soft computing approaches. 

 Design of a constrained non-linear model predictive control (NMPC) 

strategy using a GA for the real time optimisation of the manipulated 

variable. 

 Implementation of other optimisation strategies such as the PSO. 

 Simulations of NMPC strategies using the SIMULINK models as process 

plants for both CTS and QTP cases. 

 Real time practical implementation of NMPC strategies with the aid of data 

acquisition device (DAQ) for the CTS case. 

 All the above are to be carried out for both SISO and MIMO systems. 

 

1.4 Contributions of the Research  

This research is considered to have made the following contributions to the available 

and existing knowledge: 

1 The utilisation of the combinations of salient features of both PSO and a GA for 

the non-linear weight optimisation of SISO and MIMO ANN architectures. 

2 Real time practical implementation of the control strategy for a CTS (SISO and 

MIMO). 
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3 The real time optimisation (RTO) of the above using either a GA or a PSO 

approaches at each sampling instant for the CTS. 

4 The design of a single non-linear WNN model to operate in all regions of 

NMPC control strategy. 

 

 

1.5 Thesis Outline 

The remaining parts of this thesis are divided further into chapters and are summarised 

below. 

Chapter 2 contains the overview of CTS control strategies and recent developments in 

the area of soft computing approaches and model predictive control strategies.  

Chapter 3 focuses on the CTS and QTP, their physical descriptions and properties. 

Chapter 4 discusses about the system identification and modelling techniques for CTS 

and QTP, their reviews, and applications. 

Chapter 5 presents and reviews advanced control strategies for both CTS and QTP, 

which includes both the simulations and real time practical implementation. The chapter 

discusses NMPC and PID strategies, their designs, implementations and comparisons. 

Chapter 6 presents and analyses all the results obtained in this research study.  

Chapter 7 gives the conclusions of the research and further work that could be done in 

this area. 

Finally, the appendix sections contain some of the preliminary results during the course 

of the research study and the MATLAB codes used for the implementation. 

The next section presents the overview and recent developments in modelling and 

control strategies for process plants. 
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2. OVERVIEW AND RECENT DEVELOPMENTS 

This chapter will introduce the general literature reviews and recent developments of CTSs in the process 

industries. It also introduces the soft computing approaches, non-linear model predictive control 

strategies, ANN models, WNN models, and real time practical implementation strategies. 

 

2.1 Introduction 

Over the years common problems in process industries are the modelling, timely 

regulation and control of fluid levels in tanks (Mohideen et al. 2013, Paul et al. 2013). 

Another major problem is the discrepancies in the mathematical model of process and 

the real plants. The model mismatch may be because of design errors, valves 

malfunctions, and equipment degradation over many years of usage. Many new 

challenges encountered in the process industries show strong non-linearities and plant 

uncertainties (Al-qaisy 2012, Tricaud 2008, Zhao 2001). The presence of higher degree 

of non-linearities makes prediction performances becomes much more difficult and 

hence makes the control and safety of such systems a challenging task (Al-qaisy 2012). 

Furthermore, the complexities of these control problems increase when processes 

involved are multi input multi output (MIMO) systems (Ge and Wang 2004) unlike the 

simple case of single input single output (SISO). It is therefore extremely difficult to 

handle non-linear MIMO problems since there exists uncertain parameters and 

unknown non-linear functions in the input-output coupling matrix (Ge and Wang 2004). 

All these issues make the derivation of accurate models of such complex systems a 

challenging task. In addition, Chai et al. (2011) clearly expressed the difficulties often 

encountered in the control strategies of the aforementioned complex systems. Chai et al. 

(2011) further states that the conventional controller designs around their operating 

points are inadequate to handle such complex systems. In addition, conventional 

methods of control have not yielded low cost, analytic and good solution (Macwan and 
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Sajja 2013). Furthermore, simple, conventional, and linear model based controllers are 

used over the years in the control of chemical processes and their performances had not 

been very satisfactory enough. As the field of automation is progressing, safer and 

reliable process systems are highly desirable (Kousar et al. 2012). Therefore, 

researchers are always looking for better ways of designing state of the art controllers 

that can meet process plants complexities and many of the aforementioned challenges. 

Model predictive control (MPC) is such an advance control strategy that can readily 

meet up with these challenges. MPC scheme is based on the explicit use of a process 

model and process measurement. This in turn generates values for process input from 

the solution of an on-line RTO problems to predict future process behaviour (Kumar 

and Ahmad 2012). It is however very difficult to obtain good analytical solution to 

complex non-linear MIMO problems. This is because there are yet no known algorithms 

that can compute an exact solution in polynomial time. Hence, soft computing 

approaches can conveniently handle computationally hard tasks such as the solution of 

non-linear programming (NP). Soft computing approaches refers to a collection of 

computational techniques which study, model and analyse very complex phenomena in 

order to provide better solutions to challenging and very difficult problems (Macwan 

and Sajja 2013). Examples of computing approaches are artificial neural networks 

(ANNs), wavelet neural networks (WNNs), a genetic algorithm (GA), simulated 

annealing (SA), and particle swarm optimisation (PSO).  

Most times, real practical experiments using system identification techniques provide a 

more reliable raw data for modelling and control rather than using simulated data that 

could be prone to errors. The most important aspect of any control scheme is to perform 

a real time practical implementation in order to ascertain the effectiveness of the 

developed control strategy. Therefore, this research aims to develop algorithms that 

implements novel non-linear model predictive control (NMPC) strategies for process 
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plant using soft computing approaches. Figure  2.1 shows the overall overview of the 

scope of the research study. This figure contains some major components parts, which 

function together for the success of the NMPC strategies. These constituents are 

described below, as they are applied in this research study. 

 

I. Simulink model or real process plant block: This is the plant, which is desired 

to be controlled. This block can be represented either by SIMULINK design in 

the simulation case or by the real CTS equipment in the real time 

implementation case. In each of these cases, either the SISO or the MIMO plant 

configuration can utilise this block as it applies to either the CTS or the QTP. 

The optimum signals obtained from the optimisation process are used to drive 

and control this block. The descriptions of the CTS and QTP are the subjects of 

discussions in Chapter 3. 

 

II. The neural network predictor block: This block can be either the ANN or the 

WNN non-linear models that can be used for prediction purposes in the NMPC 

strategy. This block predicts the plant output responses to as many steps ahead 

as desired depending on the prediction horizon in the NMPC strategy. The 

modelling of both ANN and WNN for prediction task is described later in 

Section  4.7.1. 

 

III. The cost function block: This part of the NMPC strategy contains the complex 

and non-convex optimisation problem that needs to be solved at every sampling 

instant in order to determine the optimum manipulated variable that will be 

applied to the plant. The equation for the NMPC cost function is given later in 

Chapter 5 (Equation  5.5). 
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IV. The NMPC block: This part of the NMPC strategy handles the optimisation of 

the earlier mentioned cost function. Here, either the PSO or a GA will be 

employed to solve on-line the non-linear and non-convex optimisation problems 

at every sampling instant. The applications of either a PSO or a GA are 

discussed later in Sections  4.8.6 

 

 

 

Figure 2.1 The block diagram of the SISO/MIMO NMPC strategy 

 

Many industrial processes contain process plants where NMPC strategies applications 

find its usefulness. The next section looks at the general process plants and applications. 
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2.2 Process Plants  

Process industries usually comprise of integrated processes with complex and non-

linear behaviours. Complex processes in process plants, oil and gas production and 

refineries industries are built from the combinations of many smaller components such 

as the level control fragment. The industrial application of fluid level control is 

important in process plants. Here, the process activities mostly include mixing of fluids 

under varying conditions of operations. In addition, some of these processes pump and 

transport these fluids between tanks of different sizes and with different conditions of 

operations. In all these activities, fluid level, flow and reactants rates must be controlled 

and regulated (Grega and Maciejczyk 1994, Owa et al. 2013a). For instance, a 

petroleum refinery as shown Figure  2.2 is an example of an industrial process plant that 

processes and refines crude oil into more useful products such as petroleum, naphtha, 

gasoline, asphalt, diesel fuel, heating oil, kerosene, liquefy petroleum gas and aviation 

fuel. As mentioned earlier, the petroleum oil refinery consists of various combinations 

and interconnections of smaller important complex SISO and MIMO processes. 

 

 

 

Figure 2.2 A Typical Petroleum Refinery Plant in Anacortes, Washington, United States (Siegmund 2008) 
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Petroleum is an example of a product in the process industry that requires level control 

(Owa et al. 2013a) and it is one of the most important commodities in the world. The 

petroleum industries operate wide varieties of chemical processes (Aliyev et al. 2008). 

Therefore, its by-products are very useful commodities throughout the world today. The 

common examples are the asphalt on roads, roofing shingles, roof coatings, insecticides, 

herbicides, antiseptics, rubbers, perfumes, fungicides, solvents, petroleum jelly, plastics, 

fertilisers, electrical insulators, shampoo, detergents, refrigerators, deodorants, gases of 

different kinds, and fuels of different kinds are just few of the numerous lists of 

petroleum products. Since the demand and the consumption of these products are 

always on the increase, a constant supply, availability, and provision of these products 

are very important issues. As a result of the immense economic advantages, there must 

be a concerted effort geared towards higher productivity output, higher efficiency and 

higher product specifications while maintaining tighter environmental and 

governmental regulations such as flaring of gases (Findeisen and Allgower 2002). The 

availability, production, and quality optimisations of these petroleum refineries are parts 

of the ways of making these products abound. In addition, crude oil needs to be 

optimised when the petroleum reservoir underneath the Earth’s crust go into a dormant 

or unproductive state. An increase in the optimisation of crude oil production and an 

optimised removal of unwanted constituent products during production is an important 

factor that results into higher oil production rate (Wu et al. 2012).  

Some of the common process plant applications include the CTSs, QTPs, distillation 

column systems, pH neutralisation processes, evaporators, carbon dioxide     ) capture 

plants and continuous stirred tank reactors. 

In view of this, process control techniques always involve methods and procedures for 

the possibility of increasing the production rates and the products qualities of industrial 

enterprises while keeping the costs as low as possible (Ramli, Ahmad, et al. 2009). 
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There are various methods that can be deployed for control strategies in the process 

industries. Some of these include the classical proportional integral derivative (PID) 

control strategy (Ramli, Ahmad, et al. 2009). The PID is widely applied in industrial 

control such as in temperature control, speed control, and position control (Ramli, 

Taufika, et al. 2009). The wide popularity of PID controllers is as a result of their 

simplicity both from design stage and from the parameter tuning points of view (Teng et 

al. 2003). However, PID control strategy has its own limitations and challenges. Some 

of these include the difficulties in achieving the desired efficiency in the area of high 

speed, short transition time and small overshoot (Ramli, Taufika, et al. 2009). The 

shortcomings of the PID strategy motivated many researchers to explore the more 

advanced ways of implementing control strategies in the process industries. These 

deficiencies and shortcomings had invariably resulted into the designs of advance 

control strategies such as the sliding mode control strategy and non-linear back stepping 

control (Ramli, Ahmad, et al. 2009, Ramli, Taufika, et al. 2009). The aims of this 

continuous search for better control strategies are to ensure robustness, good stability, 

and more efficient control strategies. This is to ensure that they can handle new and 

increasing challenges in the field of control such as systems having complex dynamics, 

strong non-linearities, and strong couplings in MIMO systems. Unfortunately, it was 

however discovered that some of the mentioned control strategies such as the sliding 

mode control strategy is best suited for only SISO systems (Ramli, Ahmad, et al. 2009) 

and this leads further to more approaches to designing of advance control systems. 

Some of these approaches could be visualised as hybrid versions of existing control 

strategies. In this context, many of these control strategies have individual advantages 

that can be explored and disadvantages that can be eliminated. Some researchers have 

seized this as an opportunity to combine the good features in these individual 

approaches in order to develop more effective control strategies. In view of this, a very 
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significant reduction in the computational time could be seen as an immediate resultant 

effect of such hybrid combinations. Hybrid variants could be an amalgamation of 

modelling techniques or control strategies. Examples include the combination of ANN 

controller and a PI controller in the work of (Ramli, Taufika, et al. 2009). Also, the 

combination of the complimentary features of ANN and Fuzzy Logic (Engin et al. 

2004). A hybrid system that combines the advantages in terms of robustness of the 

fractional control and the sliding mode control (SMC) was also proposed by (Delavari 

et al. 2010). Last year, Hsu (2013) proposed an adaptive neural complementary sliding-

mode control (ANCSC) system which is composed of a ANN controller and a robust 

compensator, which was implemented for a chaotic system.  

In order to successfully experiment, implement, and achieve the objective of non-linear 

fluid control strategy, this research uses real time data acquired from non-linear SISO 

and MIMO systems. Both the two-tank (CTS) and four-tank (QTP) systems 

configurations will be used as case studies of typical process plants in this research 

study. Simulations and real-time experiments will be carried out in case of CTS whilst 

only simulation will be considered for QTP case. Moreover, these case studies can also 

be used to perform modelling tasks, control strategies, and fluid optimisation processes. 

Chapter 3 discusses more about the description of these laboratories equipment in more 

details. The next section introduces some soft computing approaches used in this 

research to solve many of the complex NP tasks. 
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2.3 Soft Computing Techniques  

Soft computing is a field of computer science that uses inexact approaches to solve 

computationally hard tasks such as the solution of NP problems, for which there is no 

known algorithm that can compute an exact solution in polynomial time (Chaturvedi 

2008, Yang et al. 2013, Zadeh 1994). The contrast to soft computing techniques is the 

conventional/traditional or the hard computing method. Unlike the conventional 

approach that strives for exact solution and full truth to a typical problem, soft 

computing technique exploits the given tolerance of imprecision, partial truth, and 

uncertainty for a particular problem. In effect, the role model for soft computing is the 

human mind (Zadeh 1994) and soft computing techniques emerged from the studies of 

natural systems (Salgado et al. 2010). 

In a more succinct way, a soft computing technique uses biologically inspired ideas 

more closely than the conventional techniques, which rely heavily on computer-aided 

numerical analysis such as the finite element analysis (FEA) (Chaturvedi 2008, Yang et 

al. 2013, Zadeh 1994). 

The principal aim of soft computing is to achieve tractability, robustness, low cots 

solution and good results through the exploitation of the tolerance for imprecision and 

uncertainty (Zadeh 1994). Soft computing approaches are more of a non-deterministic 

means of solving many complex MIMO non-linear problems without using 

mathematical or analytical methods. This extends to the control of complex systems 

where conventional control approaches are not convenient to solve problems with high 

non-linearities coupled with non-convex computations. 

The admirable qualities of these approaches have not been fully utilised because of the 

computational time involved in the implementation. One of the most important 

applications of soft computing approaches is to solve complex optimisation problems. 

They are also useful for the optimisation of input-hidden-output weights in network 
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training process. Therefore, this research aims to investigate fully into the successful 

implementation of these approaches in a few numbers of ways. Some of which either 

are in the on-line control input optimisation or in the offline training for the adaptation 

of unknown ANN weights. Some of the examples of soft computing approaches used in 

this research include ANN, WNN, GA, and PSO. ANNs are good for functions 

approximations tasks. ANN’s structures are useful in the design of non-linear models 

such as the ANN and WNN whilst the off-line adaption of ANN weights uses the 

combinations of both PSO and a GA, to achieve the optimisation tasks. In addition, 

NMPC strategies utilises either a GA and PSO in the on-line RTO at every sampling 

instant in order to determine the optimum parameters that will be used to control the 

process plant. In addition, both PSO and a GA are good for randomised search for non-

convex problems in a large space to avoid being stuck in local minimum solutions 

unlike other mentioned conventional approaches than are prone to early convergence. 

Figure  2.3 shows the diagrammatic chart of the aforementioned soft computing 

approaches and their applications as applied in this research study.  

The basic underlining principles for the soft computing approach are the approximate 

reasoning, random search, and functional approximations. These are non-deterministic 

and stochastic approaches. As shown in the diagram, before a Black Box model can be 

derived, a NN architecture will need to be trained and optimised using a combination of 

a GA and PSO. Furthermore, before the manipulated variables are obtained for the 

process plant, either a GA or a PSO will be used for the non-linear complex 

optimisation task at every sampling instant for the control strategy. 

All these approaches will be subjects of further discussions in the subsequent sections 

and chapters. 
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Figure 2.3 The overview of the proposed soft computing approaches used in this research study 

 

Modelling is very critical in order to derive a Black box model and a suitable model is 

essential for the success of NMPC. System or process identification is a field that 

designs Black box model of system (processes) from experimental observations with 

measurements of real data. A Black-box model is derived with no a priori information 

available while processing a white-box model requires all necessary information to be 

readily available. In many practical cases, system identification is a practical way to 

obtain models of non-linear dynamical systems. This is mostly applicable when 
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mathematical model equations are difficult to get or are not available. This process is 

achieved by obtaining input-output data directly from experiments recorded from the 

process plant (Coca and Billings 2012). This involves a proper and an appropriate 

excitation of the plant with suitable input signals in order to produce outputs that can 

give the dynamic behaviours of the process plant.  

System identification process is very essential in many practical applications. This is 

because mathematical models of process plants could be sometimes prone to errors. In 

addition, model mismatch could be serious challenges because of equipment 

degradation and valve’s malfunctions. The aim here is to design Black box models from 

data obtained from experiments in situations. Figure  2.4 shows the non-linear Black box 

representation of the desired plant to be controlled. This can be used for prediction 

purposes where the Black box can receive inputs and produces outputs. The inputs are 

U1, U2, U3 ……,Un  whist the outputs are Y1, Y2, Y3 ……,Yn. as described in the figure. 

 

 

 

Figure 2.4  Black box representation of a complex non-linear system 
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Non-linear systems are more complex, and much harder to understand because of their 

lack of simple superposition principles. Most non-linear systems are impossible to solve 

analytically (Strogatz 1999). 

In order to design black box model of plants, there are four major steps in system 

identification approach. They are as follows: 

 Obtain data from experiments 

 Determine model order and structure. 

 Parameters estimation or weight optimisation 

 Model validation process 

 

Figure  2.5 shows the system identification procedures. The figure shows the early stage 

of performing experiment to generate input-output data. In order to train the collected 

data, the numbers of input-output delays are chosen to create the architecture for the 

network structure. Three separate data will be used for training, validation and testing 

purposes. In order to estimate the model, data are trained in a loop with the initialised 

regressed input-output delays and the ANN architecture. The training process stops 

when the validation errors between the model and the target start increasing. Ultimately, 

good models are determined by the correlation performances, which also help to 

determine prediction capabilities. 
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Figure 2.5 A modified system identification procedures 

 

 

Moreover, when deciding the appropriate model to use for representing plant dynamics, 

it is pertinent to note that modelling techniques can either use linear or non-linear model 

to present the plant dynamic. The use of linear models in the study of dynamical 
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systems in the real world is limited by the fact that more often than not the dynamical 

system of interest turns out to be non-linear in nature. However, some research work 

and applications use the combinations of both linear and non-linear models in other to 

have efficient design strategies. Linear models cannot reproduce a wide range of 

dynamical behaviour that results from non-linear interactions and complexities. In such 

situations, it is essential to use non-linear models to represent such behaviour (Coca and 

Billings 2012). Engineers know that most of the real world systems have non-linear 

behaviours and linear models can only approximate solutions for a small range of 

process operations. In order to extend the validity of models and the applicability of 

model based control, some non-linearity needs to be included in the model set (Zhu 

2001) and this however creates more challenges. Despite the challenges in the design of 

non-linear models and control (Mercieca and Fabri 2011), this research focuses on non-

linear modelling approaches so that the important features and advantages of non-linear 

modelling can be exploited. This is to be able to exploit the advantages on non-linear 

models. ANN architectures are good to model and effectively represent non-linear 

dynamics. Next section discusses ANN into details.  

 

2.3.1 Neural Network Architectures 

ANN and WNN are examples of soft computing approaches. Both structures work 

based on the parallel architecture of how the brain processes information. They are 

different paradigm for computing complex processes. Figure  2.6 shows the schematic 

diagram of how the ANN structure mimics the brain’s neural network system.  
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Figure 2.6 The human brain and the computer neural network structure 

 

This gives a little indication of how complex processes in the brain translate into 

computer ANN processing. In implementing ANN, the first step is to create the ANN 

structure, which needs configuration and training. In this case, configuration involves 

arranging the network so that it is compatible with the problem required to be solved, as 

clearly defined by sample input-output data. After the network configuration process, 

the adjustable network parameters need to adaptively tune in order to optimise the 

network performance accordingly. These network parameters are otherwise known as 

weights and biases. The weights and the biases are the network scalar parameters values 

associated with the links that exist between the input and the hidden layers, and also 

between the hidden and the output layers. These links are the arrows whilst the neurons 

are located in the hidden layer as shown in Figure  2.6. The tuning process of these 

network parameters is referred to as training the network. Configuration and training 

require that the network utilise the raw data samples collected during the system 

identification stage. The fundamental building block for an ANN is a simple single 

input neuron which can also be combined to form layers of neurons (Beale et al. 2011). 

Figure  2.7 shows a one-layer network with R input elements and S number of neurons. 

Three distinct functional operations take place in a typical neuron. First, the scalar 



21 

 

inputs    multiplies the scalar weight    to form the product that is also a scalar 

quantity. Second, the weighted inputs are added to the scalar bias to form a net input. 

Finally, the net input passes through the transfer function, which produces a scalar 

output (Beale et al. 2011). The names given to these three processes are the weight 

functions, the net input function, and the transfer function respectively. The transfer 

function also known as activation function in many literatures. 

 

 

Figure 2.7 One layer of neurons after (Beale et al. 2011) 

 

 

The next sections discuss ANN and WNN, which are two major network architectural 

types for non-linear modelling approaches used in this research study. One of the major 

differences in these two approaches is in the activation functions of the network 

structures. ANN uses sigmoid function while WNN uses wavelet functions as the 

transfer functions in the hidden layers of the network structures. 
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2.3.1.1 Artificial Neural Network (ANN) 

One of the most common ANN architecture is the multilayer perceptron (MLP) (Hagan 

et al. 2002). Here, hyperbolic tangent activation function is used in the hidden layer as 

is expressed in equation  2.1. 

 

 
        

 

     
 

2.1 

 

where   is the net input for the hyperbolic tangent function and   is the exponential 

function. The activation function in equation  2.1 squashes the output   of the network 

between a maximum value of positive one and a minimum value of negative one. In 

addition, Figure  2.8 further shows the diagram of neurons of many layers network. This 

however shows some levels of complexities that can exist in the implementation of 

ANN. 

 

 

 Figure 2.8 Neurons of many layers after (Beale et al. 2011) 
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In his early work, Hagan et al. (2002) used a MLP ANN for functions approximations. 

The backpropagation algorithm (including its variations) were used to train the 

multilayer perceptrons (Duarte and Suarez 2001, Hagan et al. 2002). Two-layer 

networks, with sigmoid transfer functions in the hidden layer and a linear transfer 

functions in the output layer constituted the universal approximators. ANN are non-

linear universal approximators (César and Oliveira 2008). Computational efficiency is 

enhanced by using ANN especially when modelling and controlling non-linear systems. 

Akesson et al. (2005) worked in this area to reduce computational efficiency on a 

simulated non-linear pH neutralisation process. The on-line computational burden 

associated with the controller calculation was reduced by using an ANN function 

approximators to approximate the optimal model predictive control strategy. The 

accuracy of the NN controller approximation is required to ensure stability and 

performance. In the application, Majstorovic et al. (2008) described two different 

approaches in a two-tank system control problem using NNs. Namely, the non-linear 

autoregressive moving average (NARMA-L2) control and the model reference control. 

Earlier works have been carried out in the course of this research work where 

hyperbolic tangent activated ANNs was used in the implementation of NMPC advanced 

control strategies for MIMO CTS (Owa et al. 2013b) and SISO (Owa et al. 2013a). 

However, the use of wavelets as the activation functions in the hidden layers produces 

better results in terms of learning capabilities than the traditional ANNs (Jahangiri et al. 

2012, Lilong et al. 1990). The next section looks at the wavelet activation functions of 

the ANN to derive WNN and this will be one of the focuses in the implementation of 

ANNs. 
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2.3.1.2 Wavelet Neural Network (WNN) 

In wavelet neural network (WNN), the activation function in the hidden layer of the 

ANN structure is expressed in equation  2.2.  

 

 
       

  

                
2.2 

 

where x is the net input value in the hidden layer and e is the exponential function. 

Equation  2.2 is referred to as the mother wavelet and this particular mother wavelet is 

called the Morlet wavelet. The wavelet function has become a very powerful tool for 

signal analysis. Wavelet analysis is similar to the Fourier transform but a wavelet is 

more useful because it can easily provide not just the frequency properties but also the 

time space information of a complex function which is very useful for many practical 

analysis (Coca and Billings 2012). This time-frequency signal localisation is one its 

major advantages as it helps in the ultimate search for a global minimum solutions. 

Wavelet transform allows exceptional localisation in the time domain via translation (a 

shifting process) and in the frequency domain via dilation (a scaling process) of the 

mother wavelet. One of the effects of the shifting and scaling process is to produce a 

time-frequency representation of the signals. The wavelet basis functions shift in time 

domain to maintain the same number of oscillations and the frequency is also scaled 

appropriately in amplitude to maintain energy. Owing to their capabilities to localise in 

time domain, wavelet transforms readily lend themselves to non-stationary signal 

analysis. The wavelet also have the capabilities of approximating functions that are 

difficult to approximate by other methods (Coca and Billings 2012). 

WNN is a kind of type function joining network constructed by a clan of wavelet bases 

replacing the sigmoid function. It realises the characteristic extraction of the signal 

through assigning weights to the inner product of wavelet base and signal vector (Lu et 
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al. 2005). Fourier transform is good for analysing stationary signal while wavelets are 

excellent for non-stationary signals because frequencies that are dominant at any given 

point in time space are of much particular interest for modelling task. In addition, the 

properties of a wavelet being irregular in shape and compactly supported make them an 

ideal tool for analysing signals of non-stationary nature. Moreover, the irregular shape 

lends them to analysing signals with discontinuities or sharp changes while their 

compactly supported nature enables temporal localisation of signals features. Wavelets 

are considered as a family of parameterised non-linear functions which can be used for 

non-linear regression and their parameters could be estimated through weights training 

(Oussar et al. 1998). The method for the training of WNN is very important in order to 

determine the optimum weight optimisation for the WNN structure.  

Figure  2.9 shows the proposed algorithm for the training of WNN structure in order to 

develop a WNN model. The proposed approach uses a combination of both a PSO and a 

GA technique for the development of the non-linear Black box models for both ANN 

and WNN. The PSO is first used to generate initial starting weights for the GA, which 

then finally optimises the NN weights. The regressed input streams format for the SISO 

and MIMO systems are shown in matrices given in equations  4.9 and  4.19 respectively. 

This proposed training approach explores the advantages of each individual method and 

discards their disadvantages. PSO can conveniently search a very large space and 

converge faster within a short period to obtain a sub-optimal solution. On the other 

hand, GA naturally takes long time to converge eventually to a good solution. However, 

GA performs excellently, converges fast, and obtains good optimal solution when it 

starts with good initial weights (Alejandro et al. 2011). 
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Figure 2.9 The proposed PSO+GA trained wavelet algorithm 

 

 

Today, using wavelet function is one of the most exciting research areas in signal 

processing. Researchers have increasingly seized the opportunity to employ wavelet 

functions with different mother wavelets in various modelling disciplines and tasks 

(Coca and Billings 2012, Huang et al. 2002, Jahangiri et al. 2012, Kuraz 2006, Lilong et 

al. 1990, Lin et al. 2003, Lu et al. 2005, Maalla et al. 2008, Meng and Sun 2008, Oussar 
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et al. 1998). Wavelets tend to learn network faster more than the conventional ANNs 

(Lilong et al. 1990). The wide spread usage of wavelet functions makes it very relevant 

for diverse applications. They are found in diverse disciplines such as weather forecast 

and climatic prediction (Coca and Billings 2012, Huang et al. 2002, Jahangiri et al. 

2012, Kuraz 2006, Lilong et al. 1990, Lin et al. 2003, Lu et al. 2005, Maalla et al. 2008, 

Meng and Sun 2008, Oussar et al. 1998). Morlet wavelets have been used effectively for 

modelling in applications such as peak load forecasting (Lu et al. 2005), short-term load 

forecasting (Meng and Sun 2008), and stock market prediction (Lilong et al. 1990).  

 

Moreover, Jahangiri et al. (2012) based his work on Mexican hat mother wavelet in the 

modelling of SISO twin-tank system and was able to establish that the hidden layer 

neurons activated by wavelet functions in the ANN model is more effective than the 

neurons activated by sigmoid functions. However, their work did not involve the 

implementation of any control strategy. Reviews show that the Morlet mother wavelets 

have not been used in the modelling of the CTS and QTP. Next section discusses the 

non-linear weight optimisation. 

 

2.3.2 Non-linear Weight Optimisation 

As shown and described in Figure  2.3, soft computing technique is also employed for 

non-linear weight optimisation in both the adaptive tuning of NN weight during training 

and non-convex cost function optimisation in the predictive control strategy. The 

optimisation of ANN weights, which can also be referred to as the training of the 

network parameters, is one of the most critical aspects of modelling and it is a serious 

challenge. This is an optimisation process that seeks the best parameter values that 

minimise the error between the process and the model (César and Oliveira 2008). The 

challenge here is the inclusion of the dilation and translation parameters. This invariably 
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increases the optimum numbers weight to be optimised in the training process. 

Moreover, MIMO systems are also more difficult to optimise when compared with 

SISO systems because of the interaction couplings between its variables. 

Backpropagation (BP) algorithm is the standard training procedure for multiple layer 

perceptron (MLP) networks. It is based on the gradient descent to minimise the network 

error (Seiffert and Michaelis 2000). However, using approaches such as Levenberg-

Marquardt Algorithm (LMA), gradient descent, and stochastic conjugate. Gradient 

algorithms often lead to difficulties in convergence during the training process and 

having problem of being stuck in a local minimum solution. Figure  2.10 shows a one 

dimensional error surface of function         . This figure presents challenges of 

obtaining a global minimum solution. 
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Figure 2.10 One dimensional error function surface (Seiffert and Michaelis 2000) 

 

Good global solutions are rare for practical problems (César and Oliveira 2008). As 

clearly shown in Figure  2.10, it can be difficult to obtain a global minimum solution due 

to so many reasons. Apart from being stuck in a local minimum solution, making an 

impossible move (see Figure  2.10) is also part of the many reasons why it is difficult to 

obtain a global minimum solution. This research involves optimising up to a 24 NN 

weights that means having 24-dimensional surfaces in the figure above. The larger 

dimension complexities further reduces the chances of obtaining global minimum 

solutions. In order to achieve the optimum weights, this research work provides a 
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complete substitution of the gradient descent by soft computing methods such as a GA, 

and a PSO. The following sections focus on both a GA and a PSO techniques. 

 

2.3.2.1 Genetic Algorithm Optimisation 

In the field of soft computing, GAs are global stochastic search heuristic and 

optimisation methods that mimics the processes of natural biological evolution 

(Chipperfield and Fleming 1995). A GA operates on a population of potential solutions 

by applying the principle of survival of the fittest to produce successively better 

approximations to a solution (Chipperfield and Fleming 1995). GAs have been used 

since the 1970's on a wide variety of problems such as multi-objective function 

optimisation, parametric optimisation, real time adaptive control, non-linear system 

identification, neural network design, image processing, process identification, 

manufacturing industries, conformational analysis of molecules and pharmacological 

modelling (Doma et al. 1996). The initial inspiration for a GA came from Darwin's 

theory of evolution and the concept of chromosomes as a form of information storage 

devices (Chipperfield and Fleming 1995, Doma et al. 1996). At each generation of a 

GA, a new set of approximations creates a process of selecting individuals according to 

their levels of fitness in the problem domain. These are further reproduced by using 

operators borrowed from natural genetics (Chipperfield and Fleming 1995). This 

process leads to the evolution of populations of individuals that are better suited to their 

environment rather than the individuals from which they were created, just as in natural 

adaptation (Chipperfield and Fleming 1995).  

 

The three basic operators of a GA are called selection, crossover, and mutation 

processes.  
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 Selection: Selection procedure produces the best individuals in the population. 

This process creates the elite children. These are individuals in the current 

generation with the best fitness values. These individuals automatically survive 

to the next generation. 

 

 The schematic diagram below illustrates this. 

 

 

                                           

 

 

 Crossover: Crossover introduces new individuals by mixing couples of selected 

individuals. This combination of the vectors of a pair of parents in the current 

population creates crossover children. The schematic diagram below illustrates 

this process. 

                                         

 

 

 Mutation: Mutation produces new random changes in the individuals. This 

process creates new children into the population by introducing random changes, 

or mutations, to a single parent. The schematic diagram below illustrates this. 

 

 Elite 

 Crossover Child 
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These mentioned operators provide different types of rules at each step to create the 

next generation from the current population. In all of these operators’ processes, a GA 

can successfully generate useful solutions for optimisation and complex search 

problems. In view of these, the advanced genetic operators and other new features were 

introduced to increase the efficiency of the genetic search. A GA based optimisation 

technique is good to solve difficult control problems of non-linear processes (Shin and 

Park 1998). Shin and Park (1998) used this technique to obtain optimal future control 

inputs for the non-linear plant. The GA technique is known to have more chances of 

finding an optimal value than descent-based NP methods for optimisation problems 

(Shin and Park 1998). However, the GA is known to provide sub-optimal solutions in 

reasonable time even with a long prediction horizon (Olaru et al. 2004). Onnen (1997) 

also investigated the use of GAs for the optimisation in non-linear MPC. In order to 

deal with real-time constraints, termination conditions were proposed to abort the 

evolution once a defined level of optimality is reached (Onnen 1997). Olaru et al 

(2004), Onnen (1997), Al-Duwaish and Naeem (2001) and Shin and Park (1998) have 

all worked on the implementation of non-linear MPCs using GAs. This involved 

formulation of MPC as an optimisation problem and a GA was used in the optimisation 

process (Al-Duwaish and Naeem 2001, Olaru et al. 2004, Onnen 1997, Shin and Park 

1998). The procedure for GA can be visualised in the flowchart shown in Figure  2.11.  

 

 

Mutation Child  
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Figure 2.11 A flowchart of a simple GA (Al-Duwaish and Naeem 2001) 

2.3.2.2 Particle Swarm Optimisation 

The movement of birds in the air initially conceived the idea about particle swarm 

optimisation (PSO). The approach emulates the behaviour of birds within their flocks. 

PSO is another form of soft computing approach and it is stochastic in nature just as a 

GA. Here, instead of constant extinction and mutation of GA population, there are sets 

of particles that fly through the expanse of the problem (Birge 2003). PSO is a 

computational method that tries to solve for the global optimal solution by means of 

improving the solution of a particular member of the population referred to as particle. 

In other words, the birds are flown through a multidimensional search space where the 

position of each particle is adjusted according to the solution and that of her neighbours 
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(Mercieca and Fabri 2011). A particle can remember its own past best position and the 

overall best position of an entire flock of birds (swarm) in PSO. Each particle 

representing a potential solution remains within a swarm. This action brings solution to 

a complex optimisation problem. The mathematical velocity calculation of another 

population uses the best position of the particle. PSO algorithm converges faster to a 

sub-optimal solution than a GA. Moreover, the solution is invariably achieved without 

either spending huge computational time. In addition, a PSO accomplishes good 

solution with a reduced number of iterations as compared with a GA. This approach 

uses mathematical formula to change the particle’s position and velocity at every 

iteration. This approach is further described in Section  4.8.6.1. A PSO works on 

optimisation problems that are partially irregular, noisy and probably change over time. 

Figure  2.12 shows the steps involved in PSO implementation process. 
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Figure 2.12 Overview of steps involved in PSO (Han et al. 2008) 
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2.4 Control Strategies 

Many techniques, methods, and strategies have been in use over the years for process 

control tasks. Majority of these approaches deal with the established linear systems 

theory of control (Skogestad and Postlethwaite 2005). H-infinity robust control 

techniques have evolved to handle MIMO systems with interactions cross-couplings 

more than the classical control techniques (Simon 2006). However, the major 

disadvantage of H-infinity control technique is in their degree of mathematical 

optimisation involved (Simon 2006, Skogestad and Postlethwaite 2005). Soft computing 

approaches, which can conveniently solve more complex optimisation problems, can 

easily handle the setback in H-infinity technique. Moreover, mu (μ) synthesis is another 

robust control synthesis technique but its use is also limited by the inability to address 

non-linear black box models (Balas and Doyle 2001). Furthermore, there is a 

fundamental difference between MPC and the conventional controllers such as the PID. 

A MPC controller observes the past, current and the future process variables while a 

conventional controller observes only the past and current process variables (Haber et 

al. 2011). Next section discusses MPC strategy. 

 

2.4.1 Model Predictive Control (MPC) Strategy 

MPC is an advance control strategy that has come a long way since its innovation 

almost five decades ago (Kumar and Ahmad 2012). MPC uses the internal dynamic 

model of the process and a history of past control moves and a combination of many 

different technologies to predict the future plant output. The implementation of MPC 

helps to satisfy constraints and close loop stability while meeting the stipulated 

objectives (Alvarado et al. 2011). The solution of an optimisation cost function over the 

receding prediction horizon is used to calculate the optimum control moves without 

violating constraints (Kumar and Ahmad 2012). MPC is a model based control strategy 
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mostly employed to handle very difficult practical control problems. The diagram 

shown in Figure  2.13 is the block diagram of a typical SISO MPC operation with the 

connections to the process plant. In the more complex MIMO case, the block diagram 

contains more than one inputs and outputs variable. Most implementations of MPC are 

usually much appreciable on MIMO systems. Hence, there is a need for control methods 

and strategies that can handle complexities in the midst of diverse constraints. There is 

always the need to get a better responses and performances in terms of trajectory 

tracking error, controller energy usage, rise time, settling time, overshoots and 

undershoots. 

 

 

 

Figure  2.13 The block diagram of a typical SISO MPC operation (Bemporad et al. 2011) 
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The first generation of MPC started in 1963 by two research groups (Seborg et al. 

1986). One group (Richalet et al. 1978) successfully applied it to a fluid catalytic 

fractionation column while the other group, the dynamic matrix control (DMC) (Cutler 

and Ramaker 1980) used simulated results from a furnace temperature control 

application to demonstrate the improved quality control. Since then, much interest has 

arisen from many directions. Clarke et al. (1987) developed a generalized predictive 

control (GPC) which could be used to either control a simple or complex plant. GPC 

was a novel control method that incorporated robustness into existing self-tuning 

algorithms. Simulation studies also showed that GPC was superior to the accepted 

techniques such as the generalized minimum-variance and pole-placement (Clarke et al. 

1987). Qin and Badgwell (2003) in their paper also gave a genealogy summary of the 

linear MPC algorithm. Their work covered a wide area that included both linear and 

non-linear MPC, reviews of present MPC technology, and next generation MPC 

technology. Rawlings (2000) also gave a tutorial overview paper of MPC and focused 

on industrial process control. The past, present and future trends in MPC have been 

briefly analysed by the work of (Morari and Lee 1999). The report revealed that MPC 

had recorded many successes over the years. In addition, there is now an increase in its 

use in academics and industrial researches. A few useful reviews of journal papers on 

MPC are provided by Al-Gherwi et al. (2011), Garcia et al (1989), Morari and Lee 

(1999) and Qin and Badgwell (2003) whilst the papers produced by Qin and Badgwell 

(2003) and Rawlings (2000) provide useful tutorial material. Al-Gherwi et al. (2011) 

also presented a recent review of distributed model predictive control (DMPC) which 

studied its robustness efficiency and gave a summary of its future challenges. DMPC 

control schemes found its use in large-scale applications, such as power systems, water 

distribution systems, traffic systems, manufacturing systems, and economic systems 
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where local control inputs are computed using local measurements and reduced order 

models of the local dynamics in a decentralized fashion (Camponogara et al. 2002). 

MPC typically uses step response models (Doma et al. 1996). As previously stated, the 

choice of a model could be either linear or non-linear. This is very important as they 

vary in their structural formations. Linear models are much simpler to design and 

implement than its non-linear counterpart. However, linear models often result in 

instability and poor closed loop control performances (Lawrynczuk 2007). Figure  2.14 

shows the MPC operations at every sampling time. This figure shows the past and the 

future input-output values, the reference trajectory set point, the predicted outputs, 

prediction              , and control horizon      . The main task of the NMPC 

strategy is to optimise the control input that goes to the plant at every sampling instant. 

The NMPC controller estimates the current state by using the past and present 

measurements from the sampling instant model prediction in order to determine the 

control move. In this process, the NMPC controller computes CH moves which are the 

solution of a constrained optimisation problem. The NMPC strategy uses the first 

solution value of the CH vector obtained in each sampling instant cycle while it discards 

the rest of the values in the vector. This requires on-line optimisation and hence 

computational complexity became an issue when applying MPC to complex systems 

with fast response times. 

In order to achieve a proper control of many processes, a non-linear dynamic process 

model is preferably used. Ling et al. (2011) also proposed a MPC in which the control 

variables are moved asynchronously. This is however in contrast to most MIMO control 

schemes that assume the simultaneous update of variables. MPC outperformed other 

control strategies through its ability to deal with constraints (Ling et al. 2011). 
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Figure 2.14 MPC predictions and control horizons at every sampling time (Bemporad et al. 2011) 

 

 

MPC is not limited in scope unlike the PID controllers even when correctly tuned they 

could only be applied in the working region for which they were designed (Majstorovic 

et al. 2008). This poses a major disadvantage to PID when compared with NMPC 

controllers. It also was revealed that MPC handled constraints effectively when applied 

to a distillation tower in a petroleum refinery (Doma et al. 1996). MPC technology has 

been used in a wider varieties of application areas which include chemicals engineering 

processes (Bartee et al. 2009, Temengfl et al. 1995). 

Most importantly, the success of MPC also depends on the on-line RTO approach at 

every sampling instant and this becomes more complex in the case of MIMO NMPC. 
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Speed of computation and the accuracies of control strategy results are very crucial 

during the optimisation process. A fundamental difficulty of the MPC approach is the 

requirement to solve non-convex constrained optimisation problems (Mercieca and 

Fabri 2011). Furthermore, the complication of problem tends to be more pronounced for 

the non-minimum phase case of the QTP that has been a challenging control area In 

addition, the complication of optimisation process increases further in its application to 

non-linear systems. As the complexities increases in terms of system structures, non-

linearities, non-convexities, the efficient usage of numerical or analytical solution to 

solve optimisation problems reduces (Mercieca and Fabri 2011). The next sections deal 

with some of the various optimisation approaches that can be utilised NMPC strategies. 

The model designing processes will be the subject of discussion in Chapter 4 

(Section  4.6). 

 

2.5 Discussions 

This section discusses the various aspect of gaps discovered in the literature in relation 

to the choice of control strategy in this research study. This work aims to focus on all 

these areas.  

 

2.5.1 System Identification Approach 

It is not every time that the mathematical model equations for most control strategies 

are readily available. In some cases, it is even more difficult to obtain mathematical 

equations for complex non-linear processes especially when interactions are involved 

between their process variables. In situations like this, the use of mathematical model 

equations often results in an ineffective controller design because of the discrepancy 

error in the model equations and the real plant. Process plants degradation, manufacturer 
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design errors, equipment wear and tear are also part of the reasons for model equation 

mismatches with the real plant dynamics. In addition, in some cases model equations 

are not always available or might be difficult to derive. All these mentioned points make 

it important to use the real plant physical properties and dynamics to derive a more 

accurate model for the design of model based controllers. 

 

2.5.2 Regions of Control 

Linearisation process of non-linear plants results in the design of a controller that can 

operate only in a range close to the region of linearisation. One of the advantages of 

non-linear models is the wider regime of control as compared with linearised models. 

Therefore, the challenge is posed to be able to develop effective non-linear models. It is 

a big challenge to be able to design controllers that can implement control strategy in all 

range of operating regions. Mohideen et al. (2013) designed a controller that could only 

control in the range of less than     of the total height of the tank using a modified 

model reference adaptive controller for a hybrid SISO tank system.  

Moreover, owing to the inability of good linear/non-linear models design engineers 

often result in the combinations of different models in order to achieve an effective 

control strategy. The work of César and Oliveira (2008) disclosed that it is extremely 

difficult to design a single ANN model that can cope with the entire operation range of 

control (Ahmad and Zhang 2006). This leads to the design of models for 

complementary operations. This is however time consuming, not cost effective and 

unprofessional. A more efficient design is for a single non-linear model to be able to 

operate in all regions and to be able to process efficient predictive capabilities. This 

however seems not feasible, unrealistic, and difficult to accomplish. Therefore, this 

research focuses on achieving this task. 
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2.5.3 Robust Model 

In the past, it is very difficult, if not almost impossible, to develop a single ANN for a 

model based advanced control strategy (Ahmad and Zhang 2006). This reason gives rise 

to the use of and combinations of multiple ANN models, which can be used to improve 

the prediction capabilities. However, the success of model based control strategies 

depends largely upon how good is the model that represents the dynamics of the process 

plant. Most models are only efficient for the particular plant dynamics they are 

designed. There is therefore a challenge of designing robust models that can effectively 

predict plants output for abnormal situations such as changes in system dynamics. 

Examples of such abnormal situations include plants depreciation or degradation, wear 

and tear. Others include malfunctioning valves, failed valves or totally worn out valves. 

In all these scenarios, robust models are expected to perform well even when the plant 

conditions deteriorate. 

In view of the above, this research work aims to face the challenge of designing a single 

ANN/WNN model without the use of multiple models. 

 

2.5.4 Multivariable Control 

Many industrial processes are MIMO because they consist of various input and output 

variables. In addition, most chemical processes always have more than one variable to 

control and the interactions between the manipulated and controlled variables are 

usually very strong (Hu et al. 2012). However, the focus of the majority of research 

studies is in the areas of modelling and control strategies as they are applied to SISO 

systems. Hu et al (2012) in his recent work categorically highlighted that most works 

concerning non-linear model based schemes are only applied to SISO systems. Some of 

the notable published papers with applications to SISO systems include the following: 
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(Jadlovská et al. 2008, Ram and Lincoln 2013, Senthilkumar et al. 2011, Zhang et al. 

2011). 

However, the control of MIMO processes are more complicated than SISO processes 

(Senthilkumar and Lincon 2013). Further to this, it is a non-trivial issue to extend SISO 

systems designs applications for MIMO systems adaptation (Hu et al. 2012). The 

predominance of SISO applications could be seen because of the ease of 

implementation as compared to the MIMO counterpart. 

However, the focus of this work is on the novel application of NMPC strategy in 

application to MIMO systems. 

 

2.5.5 Wavelet Techniques 

The use of non-linear model predictive control combined with a wavelet technique is a 

relatively new area. Consequently, there is little study available using this technique in 

the field of industrial process control. Therefore, the implementation of WNN in NMPC 

using both the CTS and QTP as case studies is a novel approach in this research. Few 

applications of WNN have been recorded in the literatures over the years especially in 

application to level control systems. However, some of the few studies had revealed that 

the results of WNN-NMPC strategy is superior to the PID controller (Huang and Jin 

1997) when applied to a simulated bilinear process.  

There are different types of mother wavelet applications in the literature. Jahangiri et al 

(2012) employs a Mexican hat mother wavelet to model a SISO CTS. Huang and Jin 

(1997) used Shannon mother wavelet for control of bilinear process whilst applications 

of Morlet mother wavelet can be found in peak load forecast, climate forecast and stock 

market predictions (Lilong et al. 1990, Lu et al. 2005, Meng and Sun 2008).  

However, past works involving the training of WNN used least squares methods, 

gradient descent algorithms, and backpropagation techniques, which are prone to being 
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stuck in local minimum solutions. Therefore, this research will employ the use of soft 

computing approaches in the training of WNN with Morlet wavelet functions since 

there are no applications yet in the CTS or QTP. 

 

2.5.6 Soft Computing Approaches 

Having mentioned many of the difficulties that are involved in the implementations of 

MIMO configurations, non-linear systems, and non-convex problems, it becomes a very 

serious challenge to handle these complexities. Backpropagation algorithm is a well-

established approach. Unfortunately, it is prone to obtain local minimum solutions. 

Moreover, a main challenge today is providing solutions to non-convex problems. 

Finding the global solution of non-convex problems is very difficult task. Some of these 

problems are even impossible to solve exactly in a reasonable amount of time using the 

analytical approaches. Hence, the ideas of using soft computing approaches such as 

heuristic algorithms, evolutionary algorithm are ways out to obtain good solutions. In 

view of the details mentioned above, this research is devoted to the use of soft 

computing approaches to obtain solutions to non-convex optimisation problems. Some 

of these approaches include the use of ANN, WNN, PSO, and GA. Concisely, the 

combination of both PSO, and a GA will both be used in the training and optimisation 

of the networks architecture weights. Both of these approaches will also be employed 

individually in the RTO and on-line optimisation in the NMPC strategy. 

 

2.5.7 Real Time Strategy 

Majority of the research work cited in this research use mainly simulation approaches 

for their implementation (Delavari et al. 2010, Jajangiri et al. 2010, Khalid and Kadri 

2012, Kumar and Dhiman 2011). However, real time implementation is very important 
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in this research because of the approach of using system identification method. This 

invariably shows the effectiveness of the whole control strategy. In addition, 

implementation in real time strategy will also strengthen the proposed strategy and to 

ascertain the performance evaluation on real plant equipment scenarios.  

The major difference between the simulation and the real time implementation is the 

presence of the real equipment to be controlled in the real time implementation 

equipment set up. 

Real time implementation is normally carried out in control strategies whenever the 

physical equipment is involved in the measurement of real time data (Alipouri and 

Poshtan 2013, Alvarado et al. 2011, Teng et al. 2003). Sensors will be used for the 

measurement of instantaneous height signals before processing it. The control 

algorithms then uses measured data for the calculations. Furthermore, the final control 

element known as the actuator uses the output of the controller to operate the plant. The 

actuator is the pump in this case. 

Moreover, DAQ devices are used for the duplex transfer of real time voltage signals 

between sensors and actuator in the plant equipment and the computer system running 

the software NMPC control program package. However and based on the above 

description, it is not all computer-controlled process tasks that are real time 

implementation. This is because the computer can just be utilised to start and stop the 

plant equipment without using any DAQ equipment for real time data acquisition. 

The experimental work in Section  6.3 describes further details on the real time strategy 

implementation set up whilst Figure  6.5 (on Page 204) shows the schematic diagram of 

the real time implementation setup. 

In view of this above description, there can be many different kinds of controller that 

can be employed in the real time configuration set up. These controllers can therefore be 

referred to as real time controllers.  
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In view of this, the real time strategy will be carried out for the CTS, which will be 

discussed in the next chapter. Only simulation will be considered in the QTP because of 

the unavailability of the equipment. 

 

2.6 Summary 

In order to experiment, implement, and realise this design objective successfully, real 

time data acquired will be used for the training process whilst the non-linear 

SISO/MIMO CTS will be used as case studies. 

Most importantly, little work had been done using WNN model for on-line prediction of 

process outputs in the implementation of advanced NMPC strategy for MIMO CTS. In 

addition, the real time optimisation, which is very challenging for soft computing 

approaches still, needs more investigation. 

Therefore, the focus of this work is to use data driven system identification approach to 

develop a novel WNN model of a CTS. The use of soft computing approaches will help 

in the modelling designs and complex non-convex optimisation tasks. 

The resulting models will be used subsequently for the implementation of NMPC 

strategy that can operate in nearly all regions of operations. These models also aim to be 

robust so that it can still perform well in abnormal scenarios.  

The research study will design WNN NMPC strategies and initially test it in simulation 

and then in a real time practical implementation on both SISO and MIMO systems. 

Moreover, the WNN NMPC strategy will also be tested on both the MP and NMP 

challenging tasks of the QTP in simulations. Next chapter presents the details and 

reviews of the CTS and QTP. 
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3. COUPLED TANK SYSTEM 

This chapter selects and introduces CTS as a miniature of a plant in the process industry.  

Moreover, it gives the brief description of the plant starting with the SISO two tank configurations and 

extends to the more the complex MIMO case. Furthermore, the more advanced case of the QTP with the 

practical challenge of the non-minimum phase zero configurations are also discussed.  

 

3.1 Introduction 

Both the CTS and the QTP are typical examples of process plant applications. They are 

both multi-variable laboratory equipment that can replicate complex behaviours and 

prototypes of some significant aspects of plants in process industries. Researchers use 

their design principles to perform modelling tasks, fluid optimisation, and control of 

fluid level control experiments. The liquid level control task of the CTS is probably the 

most common control problem in practical process systems (Laubwald 2005). Level and 

flow control in tanks form the heart of most chemical engineering systems (Laubwald 

2005). The flow between tanks and fluid levels need to be properly controlled 

(Laubwald 2005). Most of the large and complex industrial processes are naturally 

MIMO systems. Therefore, MIMO systems are more complex to control than the single 

input single output (SISO) systems (Jain et al. 2009). MIMO complexities come as a 

result of the existence of interactions among input and output variables (Jain et al. 

2009). On the practical front, it is worth noting that these systems are intrinsically non-

linear which makes their control strategies further difficult (Jain et al. 2009). As the 

process parameters change with operating points, the use of linear model to describe the 

non-linear processes introduces considerable inaccuracies resulting in suboptimal 

control (Jain et al. 2009). 

Process industries usually have many tanks of various sizes of installation for liquid 

storage and transportation purposes. Specifically, this research relates to liquid level 
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control problems and fluid transport as it occurs in process industries. The 

understanding of the working mechanism of the CTS enhances the full grasp of the 

whole process.  

The functionalities of CTS equipment has provided an immense area of investigation 

for many researchers (Owa et al. 2013a). The CTSs are used to investigate the basic and 

advanced control engineering principles which includes the study of static and dynamic 

systems (TecQuipment 2013). As mentioned earlier, the CTS is highly non-linear due to 

the feature characteristics of the valves, the fundamental dynamic equations and the 

non-linear flow characteristics in the tank system (Diniz et al. 2010, Heckenthaler and 

Engell 1994, Laubwald 2005). Moreover, the CTS is time variant system and the 

parameters of the system are changing constantly (Kumar and Dhiman 2011). The 

purpose of the control strategy in CTS is to change the tank outflow rates smoothly and 

to keep the tank levels stable while set points are being maintained. A typical situation 

is the one that requires fluid to be supplied to a chemical reactor at a constant rate 

(Grega and Maciejczyk 1994). The various applications of CTS can be found in 

chemical blending, petro-chemical industries, paper making industries, water treatment 

industries, temperatures in storage tanks, hot-water inputs, temperature stabilisation and 

reaction vessels (Grega and Maciejczyk 1994, Holic and Vesely 2011, Khalid and Kadri 

2012, Laubwald 2005, Nawi et al. 2011). A significant and challenging control problem 

is the infinitesimal precision control at low level of small amounts of fluid. This low-

level control tends to have a higher degree of non-linearity. This problem is further 

more complicated when operated under tight performance specifications to satisfy a 

number of constraints at the same time. Few examples of the low-level applications 

includes the control of printing quality for drop-on-demand ink-jet printers which 

describe a technology that has been applied to printed circuit boards; organic transistors; 

DNA microarrays; and flat panel, plasma, and light-emitting-diode displays (Braatz 
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2013). Another important use of small level of fluid control can be found in moving 

coaxing fluids into desired spatial positions or acting as a medium for moving the 

positions of solid objects into desired spatial position or orientation (Braatz 2013) which 

also involves tiny amounts of fluid to be controlled. Other examples can be found in 

medical or biological systems which involve cerebrospinal fluid control systems 

(Meyrick and Rekate 1988), and low level control of small flow intensity hydraulic 

fluid that is used to determine the pressure drop in the throttling aperture of a 

piezoelectric stack (Pluta and Sibielak 2012). Another example is the monitoring of the 

parameters of Taylor flow in small channels using optical technique (Long et al. 2012). 

In all these examples, it is important to note that an infinitely small amount of fluid 

needs to be controlled in order to achieve a particular aim and objective in their various 

applications. Many researchers have investigated the CTS for control applications 

(Khalid and Kadri 2012, Laubwald 2005, Mohideen et al. 2013). However, the 

aforementioned research has not explored or demonstrated the use of the CTS to control 

a small amount of liquid that will be achieved by maintaining a small level of liquid in 

either of the second tanks. The brief description of the CTS is given in the next section. 

 

3.2 Brief Description of the Coupled Tank System 

The CTS equipment is called TecQuipment (TQ) CE105MV multi-variable coupled 

tanks apparatus. Figure  3.1 shows the setup at the control laboratory of Plymouth 

University. This equipment comprises of two variable speed pumps, two separate 

vertical tanks connected by a variable flow channel. A rotary valve may be used to vary 

the cross-sectional area of the channel and hence, change the flow characteristics 

between the tanks. The drain valves are connected to a sump located in the base of the 

equipment. The extent of the valve/flow variations possible offers a wide range of 

physical options and flow characteristics to overcome by the controller. There are two 
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calibrated piezo-resistive silicon pressure type depth transducer (level sensors), an 

electronic flow meter, and a variable area gap flow meter to provide visual indication of 

flow rate. CTS could be seen as interconnection of tanks that can easily be configured to 

exhibit the effect of multi-variable control on the system behaviour, as well as the effect 

of non-linear dynamics and constraints. 

 

 

Figure 3.1 Coupled Tank System Setup at Plymouth University 

 

 

CTS is more widely useful because it is multi-purpose and it can be configured for 

varieties of different analysis which could be MIMO, SISO, single input multi output 

(SIMO), and multi input single output  (MISO) systems. These configurations are all 

achievable by the manipulations of the available valves in the CTS with the manipulated 

inputs and controlled outputs (Owa et al. 2013a). The cross sectional diagram of a SISO 

CTS is shown in Figure  3.2. Here, pump 1 supplies fluid into the left tank (Tank 1) with 

valve A fully opened while valve C (Tank 2) is opened in midway position and valve B 

in tank 1 is in fully closed position. The voltage input,       to pump 1 is the 
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manipulated variable while the voltage corresponding to the height or level of the fluid 

in the tank 2 is the controlled variable. At any given time, the height of the fluid,       

in (Tank 2) which is to be controlled relates to the water inlet rate and outlet rate.  

 

 

 

Figure 3.2 Cross sectional diagram of a SISO CTS 

 

Also, the cross sectional diagram of a MIMO CTS is shown in Figure  3.3. In this 

configuration, both pump 1 and pump 2 simultaneously supply fluids into both tanks 1 

and 2. All the valves; valve A (connection between both tanks), valve B (outlet on Tank 

1) and valve C (outlet on Tank 2) are all opened to midway positions. The voltage 

inputs,       applies to pump 1,       applies to pump 2 are the manipulated variables. 

The voltages corresponding to the height or level of the fluids in both tanks 1 and 2 are 

the controlled or output variables       and      . At any given time, the heights of the 

fluids in the tanks,        and       respectively which are to be controlled relate to the 

water inlet rates and outlet rates. 
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Figure 3.3 The cross sectional diagram of a MIMO CTS 

 

 

The front panel of the CTS provides a quick and easy access via 2mm terminals, to both 

the individual transducers and to the pump control circuits. Valves B and C provide 

direct discharge into the reservoir below from the left and right-hand tanks respectively. 

Valve A may be used to vary the couplings between the two tanks. In all cases, the 

scales adjacent to each valve indicate the relative discharge rates -0 being closed and 5 

being fully open. Each valve may be individually rotated manually to achieve any 

desired value within the range. The CTS setup also consists of a CE 120 controller. This 

controller panel has pre-sets control circuits that can be used to design proportional-

integral-derivative (PID) controllers. In this research study, this controller section of the 

equipment is by-passed and substituted with an advanced NMPC as mentioned in 

previous chapters. The experimental setup of the CTS is described in the next section. 
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3.2.1 Physical Parameters of the CTS 

The physical parameters for the CTS described in the previous section are given in 

Table  3.1. The CTS consists of twins tanks with the same cross sectional area. There are 

also three orifice      valves with the same cross sectional areas. The discharge 

coefficients of each of these orifice valves are expressed in terms of ratio. The 

maximum height of the tank is        which corresponds to a maximum of     . 

 

 

Table 3.1 Physical Parameters of the Coupled Tank System 

System Parameter of the Coupled Tank System 

SYMBOL QUANTITY VALUE 

Tank 1 & Tank 2 Tank cross sectional area 9.350x10
-3

 m
2
 

ValvesA(α12),B(α1) 

andC(α2) 

Valve orifice cross sectional area 7.850x10
-5

 m
2
 

     Discharge coefficient of 10mm valve orifice between the 

tanks 

0.25 

        Discharge coefficient of valve C orifice  0.25 

g Gravitational constant 9.80 ms
-2

 

Liquid Level Sensors 0 to 10 V DC Output (0 to 250mm Height) 

Pump Flow Sensors 0 to 10 V DC Output (0 to 4400cm
3
/min) 

 

 

3.3 Quadruple Tank process 

The control of a quadruple tank process (QTP) is a very interesting and challenging 

topic in control engineering. QTP belongs to systems that are complex in nature and 

exhibit non-linearities. QTP also processes a MIMO structure with one or more 

manipulated variables that can affect the interactions of controlled variables in a specific 

loop or all other control loops. The design of such a non-linear MIMO system is an 

extremely arduous task. As a result of this, an advanced MIMO control strategy is very 
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important in systems that have multiple dependencies and multiple interactions between 

different variables such as can be found in a QTP. 

The QTP is important in that it has the flexibility in positioning one of its multi-variable 

zeroes on either half of the ‘s’ plane (Suja Mani Malar and Thyagarajan 2009). 

Therefore, QTP can be configured to exhibit either a minimum phase (MP) or a non-

minimum phase (NMP) system as shown in Figure  3.4. The NMP system is an 

undesired response. This is an inverse-response which occurs with a plant with a short-

term response in one direction, but a longer term response in the opposite direction 

(Bemporad et al. 2011). 

 

Johansson in his work (Johansson 2000) shows that the QTP system always has two 

transmission zeroes as indicated in Figure  3.4. The values γ1 and γ2 are inflow ratio into 

the Tanks 1 and 2 respectively. When (0 < γ1 + γ2 < 1), one of the transmission zeroes 

is located in RHP whereas there are no RHPZ for (1 < γ1 + γ2 < 2) case. Moreover, 

when γ1 + γ2 = 1, the system has a transmission zero at the origin while the quotient 

γ1/γ2 gives the zero direction. 
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Figure 3.4 Minimum and Non-minimum–phase regions 

 

3.3.1 Brief Description of the Quadruple Tank process 

The schematic diagram of a QTP is shown in Figure  3.5. The main aim is to control the 

fluid level in the lower, two tanks with the two pumps. The QTP consists of four 

interconnected water tanks and two pumps. Its manipulated variables or process inputs 

are voltages (u1 and u2) to the pumps and the controlled variables (outputs) are the water 

heights of the fluids in the two lower tanks (Tank 1 and Tank 2). 

With the brief description, it is intuitively clear that the QTP MIMO four-tank system is 

a more complex system than the MIMO two-tank system. This therefore makes it more 

difficult to control because of the complex dynamics involved. 
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Figure 3.5 Schematic Diagram of Quadruple Tank Process 

 

The output of each pump is split into two using a three-way valve as shown in 

Figure  3.5. The flow from pump 1 is split into both Tank 1 and Tank 4 whilst the flow 

from pump 2 is split into both Tank 2 and Tank 3. Here, fluids enter indirectly into the 

lower tanks via the upper tanks. This however makes system harder to control in a NMP 

situation than in the MP case. QTP can be built easily by using two double-tank 

processes.  

Here, the desire is to control the water levels in the two lower tanks. If both flow ratios 

γ1 and γ2 are big (1 < γ1 + γ2 < 2) most of the water is going directly into the lower tanks 

(1 and 2). Secondly, if both flow ratios γ1 and γ2 are small (0 < γ1 + γ2 < 1), water will 
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enter first into the upper tanks (3 and 4) before draining into the lower tanks. In this 

case, pump 1 indirectly fills tank 2 and pump 2 indirectly fills tank 1 as explained 

earlier. This is a complicated control situation. 

 

3.3.1.1 Physical Parameters of the QTP 

The physical parameters (Johansson 2000, Srinivasarao and Subbaiah 2013, Suja Mani 

Malar and Thyagarajan 2009) of the tanks are given in Table  3.2 

 

 

Table 3.2 Physical parameters of the QTP (Johansson 2000, Srinivasarao and Subbaiah 2013, Suja 

Mani Malar and Thyagarajan 2009) 

Symbol Description Value  

Tank 1 & Tank 3 Area of Tanks A1 and A3 2.8*10
-4

m
2
 

Tank 2 & Tank 4 Area of Tanks A2 and A4 3.2*10
-4

m
2
 

Tank 1- 4 Maximum height of the tanks 0.2m 

 Area of valve orifice a1 and a3 7.1*10
-6

m
2
 

 Area of valve orifice a2 and a4 5.7*10
-6

m
2
 

g Gravitational constant 9.80 ms
-2

 

 

The operating parameters of MP and NMP system (Johansson 2000, Srinivasarao and 

Subbaiah 2013, Suja Mani Malar and Thyagarajan 2009) are provided in Table  3.3. 

 

Table 3.3 Operating parameters of minimum-phase and non-minimum-phase system (Johansson 

2000, Srinivasarao and Subbaiah 2013, Suja Mani Malar and Thyagarajan 2009) 

Parameters Minimum Phase Non-minimum Phase 

  
     

  (m) 0.124, 0.127 0.126, 0.13 

  
     

  (m) 0.018, 0.014 0.048, 0.049 

  
     

  (V) 3.00, 3.00 3.15, 3.15 

k1, k2   
         3.33*10

-6
, 3.35*10

-6
 3.14*10

-6
, 3.29*10

-6
 

γ1,γ2 0.70, 0.60 0.43, 0.34 
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The valve positions settings for QTP are provided in Table  3.4 

 

Table 3.4 Valve positions for the Quadruple Tank Process 

Valves settings Zero Location Description 

If1<γ1 +γ2 < 2 Zero in LHP Minimum phase (P-) 

If0<γ1 +γ2< 1 Zero in RHP Non-minimum phase (P+) 

Ifγ1 +γ2 =1 Zero at Origin  

γ1/γ2  gives zero direction 

 

 

3.4 Discussion 

This section focuses on analysing the areas where more attention needs to be put in 

terms of modelling and control strategies for the CTS. In addition, few challenges are 

also mentioned. 

 

3.4.1 Modelling Technique and Control Strategy 

Linearised models of plants have been used to model CTS and QTP. Moreover, 

conventional and classical control strategies have also been used in the level control of 

mentioned equipment. However, the results have not been satisfactory enough owing to 

the fact that the complexities and non-linearity of the systems cannot be addressed 

adequately by such approaches. The introduction of soft computing approaches can 

conveniently address the many of the complex prevailing problems (Salgado et al. 2010, 

Suja Mani Malar and Thyagarajan 2009, Tatjewski and Lawrynczuk 2006). 

Researches have revealed that despite the numerous approaches and ideas that exist in 

the modelling and level control strategy of tank systems, there is little work in the area 

of both ANN and WNN for modelling using soft computing approaches. In addition, the 
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combination of these modelling techniques with NMPC strategy is also an area that 

needs more investigation.  

 

3.4.2 MIMO Two-Tank Configuration 

Most of the research approaches cited in this chapter focused mainly on SISO CTS 

configurations. However, MIMO processes are common in process industries but there 

are serious challenges in the modelling and control strategy approaches for MIMO 

systems owing to many loop interactions and couplings. In addition, there are only few 

MIMO laboratory processes that have been reported in the literature (Johansson 2000) 

and therefore, more investigation needs to be carried out in the areas of MIMO non-

linear advance control strategies for CTS.  

 

3.4.3 MIMO Four-Tank Configuration 

In this same vein, many research works have been carried out in the area of QTP 

(Garcia-Gabin and Camacho 2002, Gatzke et al. 2000, Jadlovská et al. 2008, Johansson 

2000, Patil et al. 2010, Shneiderman and Palmor 2010, Srinivasarao and Subbaiah 2013, 

Suja Mani Malar and Thyagarajan 2009). However, none of these research studies has 

explored the novel approach of using WNN NMPC strategy for the challenging problem 

of non-minimum phase system of the QTP. Moreover, the use of soft computing 

approach will tackle the problems of not obtaining optimum solution when solving non-

convex problems that are often encountered.  

 

3.4.4 Real Time Implementations on CTS 

More work and further investigations are still needed in the area of real time 

implementation strategy. In addition, there is a serious challenge of using soft 
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computing approaches for the real-time optimisation process at every sampling instant. 

This research focuses on facing the challenging and arduous task of implementing the 

real time practical experiment in addition to the simulation. 

 

3.5 Summary 

The CTS and the QTP are typical examples of process plants applications. They both 

possess inherent and strong non-linearities. However, in terms of complexities the QTP 

is more complex than the MIMO CTS in the tank configurations, complex dynamics, 

and the challenging task of controlling the NMP system. In addition, MIMO CTS 

systems are usually more complex in design, difficult to derive and more hard to 

implement than SISO systems. The real time implementation is very important in 

control strategy design and it is a challenging task in practical applications. Most 

research works are preferably carried out in simulation owing to the difficulties of real-

time implementation processes. In view of these mentioned tough tasks, there are few 

works achieved in the implementation of both MIMO and real time implementation of 

MIMO CTS in the area of soft computing approaches. Moreover, a novel approach of 

using WNN as the non-linear model for prediction purposes and the ultimate use in the 

NMPC strategy are very important in this research study. The whole approach and 

strategy further extends to the simulation of QTP.  

After identifying all these details and gaps, next chapter starts the process of designing 

Black box model representation for the SISO and MIMO CTS. Moreover, the 

developments of non-linear models for the challenging cases of the MP and the NMP of 

the QTP will also be fully addressed. 
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4. SYSTEM IDENTIFICATION AND MODELLING 

OF COUPLED TANK SYSTEMS  

The last chapter described the details of both the CTS and QTP. The challenging problem of real time 

implementation of control strategy on the CTS was also mentioned. This chapter contains the outlined 

steps and procedures involved in the system identification and modelling of CTS and QTP.  

Moreover, the literature reviews of the modelling techniques are also included. 

 

4.1  Introduction 

As discussed in the previous chapter, a reliable model of the plant is essential in order to 

design a control strategy. A major source of difficulties in modelling tasks is the 

inability to obtain an accurate model representation of plants. In addition, further 

challenges arise also when the obtained model changes with time (Skogestad and 

Postlethwaite 2005). Many researchers have reiterated the difficulties of obtaining 

accurate models of the plants to be controlled. In reality, there are no perfect linear or 

non-linear models for most practical systems (Alipouri and Poshtan 2013, Li et al. 

1996). This is owing to the lack of detailed a priori information, complex dynamics, 

non-linearities, and time-varying characteristics of the plants (Li et al. 1996). 

Investigation and researches are ongoing on better ways to make further improvements 

of designing models of real plants. 

There are always mathematical equations that describe the dynamics of plants. 

However, it is not always the case in chemical plants. For example and as discussed in 

the previous chapters, these equations could be prone to errors because of mismatch 

between these equations and the real plant. In addition, model mismatch could also be 

because of equipment degradation after a number of years of usage. There are in some 

cases where it is either impossible or impractical to derive mathematical model 



63 

 

equations to represent such plants (Liao et al. 2012, Lu 2011). The derivation of 

mathematical models of non-linear systems is a challenging topic in many engineering 

disciples (Suja Mani Malar and Thyagarajan 2009). 

In real engineering practice, the derivation of a mathematical model for a complex 

system is difficult, time consuming, and limits its applicability (Liao et al. 2012). Many 

a times, it often requires some assumptions to be made such as the defining of an 

operating point and going through linearisation processes about certain points of 

interests and making assumptions for some system parameters. This fact has recently 

led some researchers (Kumar and Dhiman 2011, Mercieca and Fabri 2011, Shahgholian 

and Movahedi 2011) to exploit the use of soft computing techniques such as NN, PSO, 

and a GA as useful tools in the modelling of complex, MIMO, and non-linear systems 

using the system identification approach. 

In order to derive a model without the use of mathematical equations, an important task 

required is to obtain input-output data that represents the dynamics of the system. This 

whole process is known as system identification. The experimental work used in the 

system identification procedure for model derivation is described later in Section  4.6. 

The overall aim in this chapter is to derive Black box models that can represent the CTS 

and the QTP plants without using the already existing mathematical equations. Next 

section discusses the development of dynamic models using SIMULINK designs. These 

designs will be used for the non-linear model for the simulation case. 

 

4.2 CTS SISO SIMULINK Model 

The non-linear dynamic equations of the CTS are determined by relating the flow    

into the tank to the flow    leaving through the valves of the tanks. By applying the 

mass balance flow of equations on any tank, it is possible to write the flow as shown in 

equation  4.1 (Diniz et al. 2010).  
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4.1 

where A is the cross-sectional area of the tank and h is the height of the fluid in the 

tank. The unit of equation  4.1 is expressed in         The flow of the fluid out through 

the small orifice valve can also be expressed as shown in equation  4.2 (Laubwald 2005). 

 

                 4.2 

 

 

where    is the cross sectional area of the orifice and    is the discharge coefficient of 

the valve.    takes into account all fluid characteristics, losses and irregularities in the 

systems such that the two sides of the equation balance.    is the value assigned to the 

valve opening which is expressed as ratio and    is the height of the fluid in the tank. 

The flow of fluid    into the tank from the pump can also be expressed as shown in 

equation  4.3 

 

           4.3 

 

where     is a constant of the pump with the unit of          and    is the 

manipulated voltage. 

The schematic diagram of SISO CTS is shown in Figure  4.5 (Page 76). It can be shown 

in this figure that at any given time the heights of fluids in the tank 1 and tank 2 relate to 

the fluid inlet rates and fluid outlet rates. Therefore, equations ( 4.1,  4.2, and  4.3) can be 
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combined together and apply to tank 1 and tank 2 (Figure  4.5) in order to derive 

equations ( 4.4 and  4.5) respectively.  

 

 
                    

   

  
              (         ) 

4.4 

 

 

 
                

   

  
      √             (         ) 

4.5 

 

where             are the cross sectional areas,              are the water levels of the 

tanks 1 and 2 respectively.    is the pump constant with unit expressed in           

and    is the voltage value from the pump.    is the valve discharge coefficients of tank 

2 while     is the discharge coefficients of the valve between tank 1 and tank 2. 

Section  3.2 on page 50 gives the brief description of the CTS while Table  3.1 shows the 

physical parameters of the CTS. In order to implement the simulation of the NMPC 

strategy successfully, the SISO CTS non-linear equations ( 4.4 and  4.5) are used in 

combination with the CTS physical parameters to design the SIMULINK model that is 

shown in Figure  4.1. 
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Figure 4.1 SISO coupled tank system in SIMULINK design 

 

 

4.3 SIMULINK Block Properties 

Figure  4.1 contains many SIMULINK blocks that are used to design the model. Some 

of the important blocks visible from Figure  4.1 include the following: Summation or 

Add, Gain, Square root, Product, Integrator, Source or Input, Output, and the Sign 

blocks. The details of the functionalities of these blocks are described as follows. The 
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summation block can be used to either add or subtract. The constant value of the Gain is 

multiplied by the input to produce the output. The Square root and the Product handle 

the normal arithmetic as the names imply. The Integrator performs the integration tasks. 

As an example, the Integrator receives an input in the form of  
   

  
 and it produces an 

output as   . Before the commencement of any simulation, the integrator is always 

provided with an initial value, which is referred to as initial condition. The Input and the 

Output ports are the input and output ports respectively for the subsystem or the model.  

Moreover, the Sign block is designed to send an output of 1 for positive input, sends an 

output of -1 for negative input, and sends output 0 for 0 inputs. In similar manner, these 

blocks are also used for the subsequent designs of the MIMO systems for CTS in 

Figure  4.2 (Page 69) and QTP in Figure  4.3 (Page 71). The next section deals with the 

design of the SIMULINK for the MIMO CTS. 

 

4.4 CTS MIMO SIMULINK Model 

The non-linear dynamic equations of the CTS are derived in similar fashion as 

described for the SISO case. The schematic diagram of MIMO CTS is given in 

Figure  4.8 (Page 81). Just as explained in the SISO case, it is possible to write the mass 

balance of flow equations on the two tanks as shown in equations ( 4.6 and  4.7).  

 

 

 
            

   

  
                          (  (           )) 

4.6 

 

 

 
            

   

  
                          (  (           )) 

4.7 
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where             are the cross sectional areas of tanks,             are the fluid levels 

of the tanks.    and     are respective constants of the pumps and the units are 

expressed in           while    and     are manipulated voltages delivered by the 

respective pumps. The subscripts 1 and 2 refer to tanks 1 and 2 respectively. The 

discharge coefficient of the valve takes into account the fluid characteristics, losses and 

irregularities in the system such that the two sides of the equation balance and cancel 

out. The details of SIMULINK block properties described in Section  4.3 are used to 

design the SIMULINK representation of the MIMO coupled tank equations as shown in 

Figure  4.2 where the input 1 is     input 2 is      output 1 is    and output 2 is   .  

In addition, Section  3.2 gives the brief description of the CTS while Table  3.1 contains 

the physical parameters of the CTS. 
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Figure 4.2 MIMO coupled tank system in SIMULINK design 

 

The next section describes the SIMULINK design of the MIMO QTP system. 
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4.5 QTP MIMO SIMULINK Model 

The non-linear dynamic equations of the QTP are derived in similar fashion as 

described for either the SISO or MIMO case. The schematic diagram of MIMO QTP is 

given in Figure  4.12 (Page 87). In this case, four tanks equations are applied using the 

mass balance of flow equation on the four tanks. It is then possible to write the 

dynamics as shown in four lines of equations for the four tanks respectively 

(equation  4.8). 

 

 

 

 

 

 

   

  
  

 

  
 {   √         √               }        Tank 1 

   

  
  

 

  
 {   √         √               }       Tank 2 

   

  
  

 

  
 {   √                  }                   Tank 3 

   

  
  

 

  
 {   √                  }                  Tank 4 

 

4.8 

where, 

Ai is the cross sectional area of the tank (m
2
) 

ai is the cross sectional area of small outlet valve orifice the tanks (m
2
) 

hi is the water level (m) 

γ1 and γ2 are the ratios in which the outputs of the two pumps 1and 2 are split. 

u1 and u2 are the voltages applied to pumps 1 and 2 respectively. 

   and     are respective constants of the two pumps and the units are expressed in 

          

 

The subscripts 1 to 4 refer to tanks 1 to 4 respectively. The rest of the parameters are 

given in Table  3.2. Figure  4.3 shows the SIMULINK representation of the MIMO QTP 
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equations where the input 1 is     input 2 is      output 1 is    and output 2 is   . This 

representation of the plant will be used in simulation to test the NMPC algorithm. 

 

 

Figure 4.3 The SIMULINK design of MP and NMP QTP 

 

The SIMULINK designs of Figure  4.1 (SISO CTS), Figure  4.2 (MIMO CTS), and of 

Figure  4.3 (MIMO QTP) will be used to represent the real process plant in the 

simulation cases in order to test the NMPC strategies.  
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Two soft computing approaches, both a PSO and a GA are used separately in the 

optimisations of the NMPC strategy. Next section starts discussing the process of 

system identification. 

 

4.6 System Identification of the CTS 

In order to proceed with the system identification process, the brief description of the 

CTS was presented in Section  3.2 while the physical parameters of the CTS are given in 

Section  3.2.1. System or process identification is the subject of constructing models for 

certain utilitarian purposes from measured input-output data. System identification is 

needed in order to understand the mathematics of how the CTS behaves and uses 

measured input-output data to build models of dynamical systems. The input-output 

data contains useful information for fitting models of systems. One of the most 

significant aspects of system identification is the data collection. Input-output data are 

collected from practical experiments. These data give the characteristics and the 

dynamic behaviour of the system. Care must be taken in order to capture the salient and 

important features during the data collection procedures. The purpose of the system 

identification is to collect a set of data that describes how the system behaves over its 

entire range of operations over a certain period of time.  

There are many steps are involved in the system identification process and starting with 

the determination of the pumps’ gains and the sampling time      (Irawan et al. 2001). 

Sections  A.1 and  B.1 in the appendix contains the details about the pump gains and 

sampling time respectively. 

Before the data collection takes place, the calibration of the CTS equipment is done and 

described in Appendix  A. In order to collect data for system identification purposes, so 

many approaches can be employed. There are different kinds of input signal that can be 
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used to excite the plant in order to generate the required data that contains the various 

dynamics of the plant. Some of these signals are listed below: 

 

 Pseudo random binary sequence (PRBS) 

 Generalised binary noise (GBN) 

 White noise (examples include uniformly distributed, Gaussian and binary ) 

 Different sum combinations of sinusoids 

 

The input signals used in this research consist of combinations of uniformly distributed 

noise signal and PRBS signals. These signals contain lots of different amplitudes and 

frequencies to excite properly the plant.  

To collect these data, the idea involves varying the input signal in open loop without 

any feedback configuration and then observes the effect on the output.  

 

4.6.1 CTS SISO Data Collection 

The configuration for the SISO system in this case uses the two tanks. The only input 

here is the PRBS voltage signals that excite the plant through via tank 1 whilst the 

output is the height of the fluid measured from tank 2. There are three sets of inputs 

signals. Figure  4.4 shows the graphs of the theses three data sets. The data set in 

Figure  4.4 (a) is for training purposes, Figure  4.4 (b) is for validation whilst Figure  4.4 

(c) is for testing the model after the training is completed. Each of these data sets 

contains a total number of      samples. 
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Figure 4.4 SISO CTS input signals 

 

 

Table  4.1 shows the summary in terms of mean and variance of the three SISO input 

signals. It can be shown from Table  4.1 that the mean values range between 4.9 V and 

5.2 V. This is also an indication that the input data is uniformly distributed. In addition, 

the variance gives the measure of how far the input signals spread out. A small value of 

input variance indicates that data points tend to close to the mean whilst a high value 

such as in the range of tens shows that the data points are very spread out from the mean 

and from one another. A variance of zero indicates that all the input signals are 

identical. 
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Table 4.1 The Mean and Variance values of the SISO CTS Input Signals 

Input Data Properties 

 

Data One 

(Training) 

Data Two 

(Validation ) 

Data Three 

(Testing) 

Mean (V) 5.19 4.94 5.02 

Variance (V) 10.91 10.72 10.36 

 

 

The sampling time of      was used for the data collection. The derivation of the 

sampling time value is given with the preliminary details that can be found in 

Appendix  B.1. These data sets are applied to the CTS with SISO two-tank configuration 

setup as shown in the schematic diagram in Figure  4.5. This gives the varying input 

voltages that drive the pump connected to tank 1. In this configuration, Valve A is fully 

opened, valve B is totally closed and while Valve C is opened in a midway position. In 

this configuration, many samples can be collected from open loop experiment. 
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Figure 4.5 Schematic diagram for a SISO CTS two-tank system 

 

 

The sensor attached to tank 2 begins to measure the height of the fluid in the tank. This 

sensor converts the heights to voltages. The sensor height calibration is also explained 

in Appendix  A.1.1. This procedure is done for      samples and it is carried out for all 

the three data sets in Figure  4.4. The corresponding height of the fluid in the second 

tank is recorded at every sampling interval of       and the results are plotted as shown 

in Figure  4.6.  
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Figure 4.6 SISO CTS height output responses 

 

 

Figure  4.6 consists of three parts: (a) for training, (b) for validation and while (c) is an 

independent data for testing the model after the training process. The combinations of 

the input and output data presented in Figure  4.4 and Figure  4.6 form the regressed 

inputs that will be used for the training as will be discussed later in Section  4.8.3. 

In similar manner, next section discusses the data collection for the more complex 

MIMO case. 
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4.6.2 CTS MIMO Data Collection 

In the MIMO case, the configuration also uses both tanks but this differs from the SISO 

case in the numbers of input and output variables in the whole setup. Here, there are two 

inputs into the plant and there are two outputs otherwise known as two-input two-output 

(TITO) system. The two inputs are the PRBS voltage signals that excite the plant 

through via both tank 1 and tank 2. On the other hand, the two outputs are the heights of 

the fluid in both tanks. These two height levels are measured with the installed sensors 

attached to each tank. There are also three data sets of inputs signals for training, 

validation and testing purposes collected as in the case of SISO. In this case, these data 

sets contain a total number of      samples each. Figure  4.7 shows the graphs of the 

theses three data sets. From this figure, it can be seen that the three data sets consist of 

two inputs each unlike the SISO case. 
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Figure 4.7 MIMO CTS input signals 

 

 

In similar way, the summary in terms of mean and variance of the three MIMO input 

signals are given in Table  4.2. In this case, there are two inputs each for the three data 

sets and the mean values range between 4.08 V and 5.35 V. In addition, the input data 

are also uniformly distributed and the variance values show that the data points are very 

well dispersed from the mean and from one another. 
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Table 4.2 The Mean and Variance values of the MIMO CTS Input Signals 

Input Data  

Properties 

Data One 

(Training) 

Data Two 

(Validation ) 

Data Three 

(Testing) 

INPUTS Input 1 Input 2 Input 1 Input 2 Input 1 Input 2 

Mean (V) 4.08 5.00 4.83 4.95 4.57 5.35 

Variance (V) 9.18 6.91 11.53 14.30 11.04 14.50 

 

 

Using a sampling time of      as earlier stated for the SISO case, these data sets are 

applied to the CTS with MIMO two-tank configuration setup as shown in the schematic 

diagram in Figure  4.8. These signals give the varying input voltages that drive both 

pump 1 and pump 2 attached to tank 1 and tank 2 respectively. In this configuration, all 

the valves (A, B, and C) are all opened in a midway position. 
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Figure 4.8 The Schematic diagram for a MIMO CTS two-tank system 

 

 

Each of the sensors attached to these two tanks begins to measure the heights of the 

fluid in each of the tank. Just as in the SISO case, the sensor converts the heights to 

voltages. The sensor height calibrations are already explained in Appendix  A.1.1. This 

procedure is done for      samples and it is carried out for all the three data sets in 

Figure  4.7. The corresponding heights of the fluids in the two tanks are recorded at 

every sampling interval of     s. The results are plotted as shown in Figure  4.9. 
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Figure 4.9 MIMO CTS height output responses 

 

 

The graph of Figure  4.9 contains the three set of data: (a) training data, (b) validation 

data, and (c) the testing data. As explained earlier the combination of this and the input 

signal will be used for the neural network training process.  

Since data have been collected for the two-tank system in both SISO and MIMO 

configurations, next section looks at a more complicated case of QTP. The previous 

chapter has described the complexities involved in the configurations of QTP. 
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4.6.3 QTP MIMO Data Collection 

The QTP is also a MIMO configuration just as the multi-variable two tanks described in 

section  3.3. The entire tank configuration setup has two inputs into the plant and two 

outputs variables. However, the QTP has a physical combinations of four separate tanks 

connected together as previously shown in Figure  3.5. 

The two inputs are the combination of PRBS voltage and uniformly distributed signals 

that excite the QTP SIMULINK designed model shown earlier in Figure  4.3. This is to 

present varieties of frequencies to excite the plant in the right way. These two generated 

inputs are invariably used to drive both pump 1 and pump 2. During the input signal 

excitation process stage, the heights of the tanks are simulated accordingly. Even 

though there are four tanks with four heights in the configuration setup, only the levels 

of the fluids in the two lower tanks are of concerned interests and the heights are 

referred to as the controlled variables.  

Just as in the previous SISO and MIMO cases, three data sets of inputs signals will be 

generated using the SIMULINK model in Figure  4.3. These data sets contain a total 

number of      samples each but there will be two different sets of data collected 

unlike the previous cases. Here, two different sets of data will be generated for the MP 

and NMP systems. Figure  4.10 shows the input signals generated to excite the NMP 

plant  
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Figure 4.10 Non-minimum phase input signal generated to excite the plant 

 

 

Moreover, Figure  4.11 shows the input signals generated to excite the MP plant. These 

inputs are generated to cover most of the dynamics of the plant. In both figures 

mentioned above, (a) will be used for training, (b) for validation and, (c) for testing 

purposes with each of them having two inputs. 
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Figure 4.11 Minimum phase input signal generated to excite the plant 

 

In similar way, the summary in terms of mean and variance of the three MIMO input 

signals are calculated in Table  4.3. This contains values for both MP and NMP systems. 

For the NMP case, the mean values range between 2.78 V and 2.88 V while the values 

for the MP range between 2.81V and 2.84 V In addition, the input data are also 

uniformly distributed and the variance values show that the data points are spread out 

from the mean and from one another. 
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Table 4.3 The Mean and Variance values of the Input Signals for MP and NMP of the QTP  

Input Data Properties Data One 

(Training) 

Data Two 

(Validation ) 

Data Three 

(Testing) 

 

INPUTS Input 1 Input 2 Input 1 Input 2 Input 1 Input 2 

NMP-Mean (V) 2.86 2.78 2.85 2.86 2.88 2.82 

NMP-Variance (V) 3.38 2.00 3.59 1.88 3.39 2.09 

MP-Mean (V) 2.83 2.83 2.83 2.82 2.84 2.81 

MP-Variance (V) 3.44 1.96 3.42 2.00 3.41 2.02 

 

 

A sampling time of one second is used in this case of QTP. This case of QTP follows 

the sampling time used in (Srinivasarao and Subbaiah 2013). This is unlike either the 

SISO, or the MIMO cases. These input data sets are applied to the pump inputs of the 

QTP Configuration setup as shown in the schematic diagram in Figure  4.12. These 

signals give the varying input voltages that drive both pump 1 and pump 2. The flow 

from pump 1 is split between Tank 1 and Tank 4 while the flow from pump 2 is split 

between Tank 2 and Tank 3.  
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Figure 4.12 The Schematic diagram for a QTP / four-tank system 

 

 

The heights of the fluid in each of the four tanks are measured when the input signals 

excite the plant. This procedure is carried out for the 2000 samples and it is performed 

for all the three data sets for both NMP (Figure  4.10) and MP (Figure  4.11) systems. 

The corresponding heights of the fluids in the two tanks are simulated at every sampling 

interval of one second in open loop response. The response results are plotted as shown 

in Figure  4.13 for the NMP system.  
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Figure 4.13 Non-minimum phase open loop response data collected for analysis 

 

Moreover, Figure  4.14 shows the open loop response for the MP system.  
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Figure 4.14 Minimum phase open loop response data collected for analysis 
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It can be clearly seen from both MP and NMP figures above that the open loop output 

responses aim to span the entire coverage of Tank 1 and Tank 2. Moreover, the levels 

start from zero level initial conditions and do not go beyond the maximum height of the 

tanks, which is 0.2 metres. This is however in contrast to the open loop response of the 

research work reported by (Suja Mani Malar and Thyagarajan 2009). 

 

At this very stage, raw input-output data for the SISO CTS, MIMO CTS have been 

produced. Moreover, the simulated input-output data for the MP and the NMP of the 

QTP systems have also been generated. Three different inputs and outputs data sets 

have been generated from open loop response for the training, validation and the testing 

of the derived models in each of these cases. The preliminary task in the control strategy 

starts with the modelling of the physical plant. The next section provides reviews of the 

modelling techniques of the tank equipment and the non-linear modelling of mentioned 

systems. 

 

4.7 MODELLING OF THE COUPLED TANK SYSTEM 

The model of the CTS/QTP is the representation of the physical plants using a black 

box non-linear model. As discussed in the previous section, good input-output data are 

essential for system identification purposes. This section is concerned with the use of all 

the obtained input-output data to derive reliable models of the plants (CTS and QTP) 

that will be used to implement control strategies. Modelling is important since a good 

model representation is important for the success of any control strategy. However, 

there are difficulties in deriving non-linear models of plants. It was revealed that 

numerous modelling challenges have forced control engineers to use simplified or 

linearised models of plants for design purposes (Li et al. 1996). Many of the modelling 

problems encountered in practical design work could be seen as the lack of a unified 
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theoretical representation of various non-linear behaviours (Zhu 2001). Therefore, this 

research is set to explore the difficulties and challenges in designing the non-linear 

models of both CTS and QTP. 

Modelling is the process of fully understanding and representing the plant dynamics so 

that it can be used instead of the real plant. In this way, it enables its performance to be 

examined and analysed in mathematical forms. The ability to analyse a system is very 

important in establishing the relevant design parameters for the new plant or in 

predicting the performance of existing equipment that is to operate under new 

conditions (Wellstead 2005). Being able to predict the performance of any complex 

engineering system in advance of its construction and operation will both reduce the 

cost and also minimise project development time (Wellstead 2005). 

The training of the data is the beginning of the process of obtaining a reliable model of 

the plant. This training process is one of the most laborious tasks. It has also been 

established that non-linear models give better representation of the plant dynamics. 

Figure  4.15 shows the basic modelling procedure as will be described in later sections. 
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Figure 4.15 The basic system identification procedure 

 

 

CTS has inherent non-linearities (Diniz et al. 2010, Heckenthaler and Engell 1994, 

Kousar et al. 2012, Mohideen et al. 2013). The reasons for the non-linearities are 

because of the non-linear flow behaviours and characteristics of the physical valves in 

the equipment (Laubwald 2005, Owa et al. 2013a). The presence of non-linearities play 

crucial roles as it determines the controllability of systems. This can invariably be a 

hindrance in achieving some specific interesting tasks. It is therefore more difficult to 

control a non-linear system as it poses serious challenging task for research engineers to 

investigate.  

In view of this, a non-linear control strategy and model might be invoked for classes of 

problems where the high degree of non-linearity renders the linear techniques 

insufficient (Kosanovich et al. 1995). However, some recent works still employ the use 
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of linear models in analysing the CTS (Khalid and Kadri 2012) and this brings 

limitations in the scope of the region of control strategy.  

Most industrial systems are difficult to model (Tianyou et al. 2011). This is because 

they involve multi-variable dynamics, complicated non-linearities, strong couplings, 

and unknown structure (Tianyou et al. 2011). Further to this, some research work use 

the combinations of both linear and non-linear models in their applications (Tianyou et 

al. 2011) since developing a good non-linear model is a laborious task. To this end, it is 

essential to use non-linear models to represent such behaviour (Coca and Billings 2012) 

in order to have a good control strategy that will give optimal performance and track set 

point change. In many practical cases, system identification is the one practical way to 

obtain a model of a non-linear dynamical system directly from experimental input-

output data recorded from the system (Coca and Billings 2012). In order to start the 

non-linear modelling process of the CTS, several approaches are explored. Some of 

these are the examples found in using fuzzy models (Heckenthaler and Engell 1994, 

Mohammadzaheri et al. 2011, Tani et al. 1996) or a combination of fuzzy with NN (Li 

et al. 2008, Lian et al. 1998). However, some few researchers have used NN to model 

the CTS (Evans et al. 1994, Nawi et al. 2011, Ramli, Ahmad, et al. 2009, Ramli, 

Taufika, et al. 2009). It is pertinent to note that this research study assumes that the non-

linear mathematical equation is unavailable for prediction purposes.  

As a result of the setbacks of using linear models, non-linear modelling approaches are 

employed in this research work. In support of this, wavelet functions have been used 

effectively in many other disciplines such as weather forecast and climatic prediction 

(Coca and Billings 2012, Huang et al. 2002, Jahangiri et al. 2012, Kuraz 2006, Lilong et 

al. 1990, Lin et al. 2003, Lu et al. 2005, Maalla et al. 2008, Meng and Sun 2008, Oussar 

et al. 1998). However, no work has been carried out yet in the areas of CTS/QTP using 

the WNN as non-linear models for predictions purposes. The modelling challenges 
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encountered often result in the avoidance of the use of non-linear Black box model by 

many researchers to represent complex MIMO dynamic of process plants. The next 

section discusses the modelling of CTS using ANN architectural structure. 

 

4.7.1 Neural Networks for Modelling 

The multilayer perceptron (MLP) is a feedforward type of ANN model that maps sets of 

input data onto a set of appropriate outputs. The MLP types of ANN are important tools 

that can be used to model non-linear plants as a result of their characteristics as 

universal approximators and the capacities to learn (César and Oliveira 2008). The 

procedure for approximating an unknown Black box function is shown in Figure  4.16.  

 

 

Figure 4.16 Approximation ability of an ANN 
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During the training process as shown in Figure  4.16, there is a constant comparison of 

the predicted output of the ANN structure (Black box) model and the actual output of 

the training data (also known as the target). The main aim is to be able to considerably 

reduce the error between the model and the target after each comparison during the 

training process. This is made possible by the optimisation processes that will be 

discussed in later sections. 

 

4.8 ANN Modelling for SISO CTS  

The training of neural network structures requires the use of dynamic data rather than 

static data so that the past input and output data memories can be used to enhance the 

training effectively. Training must also be done to ensure less complexities and less 

computation and as the same time making sure that, the trained model is accurate 

enough for prediction purposes. The choice of the number of hidden neurons and input-

output delays determine the number of weights to be trained and hence decides the 

complexities of the neural network structure. During experiments, noise is undesirable 

and must be removed if there exist so as not to hamper the quality of the data to be 

trained. 

In this research study, in order to train the ANN structure, the following parameters will 

need to be heuristically determined after few trials and simulations.  

  

4.8.1 Number of Neurons 

The numbers of neurons in the hidden layer of ANN structure is very important. It is 

also called the number of nodes in some literatures. One of the most important 

characteristics of a perceptron as explained in Chapter 2 Section  2.3.1.1 network is the 

number of neurons in the hidden layer(s). If an inadequate number of neurons are used, 
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the network will be unable to model complex data, and the resulting fit will be poor. In 

addition, if too many neurons are used, the training time may become excessively long, 

and, worse, the network may over fit the data. When overfitting occurs, the network will 

begin to model random noise in the data. The result is that the model fits the training 

data extremely well, but it generalizes poorly to new and unseen data. Validation 

process must be used to test and ensure that the model will perform well to unseen data. 

The decision to either increase or decrease the number of neurons depends on the 

network training performance. An initial heuristic approach is used to determine the 

numbers of neurons. Several initial trials starting with two neurons up to five were 

tested. The more the numbers of neurons, the more complex the structure becomes the 

better the results accuracies and the more difficult it is to train because of the numbers 

of NN weight parameters to optimise. A final value of two was chosen based on the fact 

that mean squared of errors fail to improve appreciably much by increasing the number 

of neurons. The preliminary results of these trials are given in Appendix  C.1. The 

number of neurons is one of the parameters that determine the networks structure. 

Experts and researchers in model designs have made it clear that complex models are 

not always required in other to achieve a good control strategy (Balas et al. 2011). 

 

4.8.2 Number of Delays 

Just as in the case of the numbers of neurons in the hidden layers, the numbers of input-

output past delays is very critical. In some books or literatures, it is also referred to as 

lag space or sometimes it is also known as the number of delayed signals used as 

regressors. Because of the fact that ANN uses the knowledge and information of past 

inputs and past outputs, how much past information is required for the training process 

also determines the efficiency and accuracies of the training process. In addition, with a 

heuristic approach several delays between two and five were also initially tested with 
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several random combinations of the numbers of neurons. A final value of two was also 

obtained after some few trials. The preliminary results of these trials are given in 

Appendix  C. The numbers of neurons and delays determine the number of total weight 

to be optimised in the network structure. 

 

 

4.8.3 Regressed Input Streams 

The construction order of the regressed input streams is very important. The matrix 

format below gives the construction of a regressed input training stream for the SISO 

(equation  4.9) system with one input and one output.  

 

SISO Input Stream = 

 

 

 

 

4.9 
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The parameters in the matrix are defined as follows:  

u is the input,  

y is the output,  

na is the numbers of output delays,  

nb is the numbers of input delays, and  

N is the total number of samples to be trained.  

In addition, the input stream is a p x q matrix where  

p = N - MaxDelay 

N = total number of samples 

MaxDelay = maximum number of delay that exist either in the input (nb) or the output 

(na) 

q = nb+ na 

 

This vector forms the regressed input streams, which corresponds to the structure shown 

in Figure  4.17. Therefore, a SISO configuration is going to have a total number of four 

regressed input since there are two delays each for a single-input and single-output. 
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Figure 4.17 Structure of a SISO ANN 

 

 

The unknown complex non-linear function      is shown in equation  4.10 

 

                                              4.10 

 

Here,   neurons,   input, and   output delays, which give a total of    unknown 

parameters in the ANN structure.  
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4.8.4 ANN Activation Function 

There are different forms of activation functions that can be used during the ANN 

training process. The activation function used in this research is the hyperbolic tangent 

function. Hyperbolic tangent activation function (equation  2.1) which is already 

described in Section  2.3.1.1 is used in hidden and linear activation function in the output 

layer. The activation function can have any value between plus and minus infinity, and 

squashes the outputs of the hidden layer to values between the range of -1 and +1. 

 

4.8.5 Objective Function or Performance Functions 

The objective function is designed based on the structure of the network to be trained. 

The objective function is calculated by using equation  4.11 below: 

The main output of the objective function is the determination of the performance index 

value. This is given by the mean squared error (MSE) between the final network output 

and the measured output using the expression in equation  4.11. The main aim is to 

minimise the MSE in equation  4.11 
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4.11 

where 

        is the output of the model being trained 

         is the real output of the training data 

  is the number of samples to be trained,  

  is the number of outputs,  

  is the number of regressed inputs in the NN structure, and  

  is error difference between the model and the target.  



101 

 

As the training progresses, random weights are being tested using equation  4.11 in order 

to determine their performances.  

In the first instance, the performance function is first evaluated for all the population 

before proceeding to the weight optimisation algorithms. Next sections describe the 

various steps involved in using a PSO and a GA for the adaptive weight optimisation 

during the network training of the NN architectural structures.  

 

4.8.6 Weights Optimisation 

The basic structure of ANN is shown in Figure  4.17. This consists mainly of the 

regressed inputs and the neurons in the hidden layers. Several methods can be used to 

train and optimise all the ANN weights. These weights are either located between these 

regressed inputs and the neurons or situated between the neurons and the outputs. A 

standard training procedure for MLP of an ANN is the backpropagation (BP) algorithm 

(Seiffert and Michaelis 2000). The BP approach was used in the training of the ANN for 

CTS (Li et al. 2008). The BP algorithm is based on gradient descent algorithm. Apart 

from the BP approach, there are some other training approaches such as the conjugate 

gradient algorithm (Harkouss et al. 2011), quasi-Newton algorithm (Alayon et al. 2004), 

steepest descent algorithm, Levenberg-Marquardt algorithm (Alayon et al. 2004, Garba 

et al. 2007). Unfortunately, all these approaches are prone to having some problems 

with convergence during training process (Seiffert and Michaelis 2000). In addition, one 

of the most significant problems of the gradient descent algorithm is the situation of 

being easily trapped in a local minimum solution, plateau and the influence of the 

learning coefficient as discussed in Chapter 2 Section  2.3.2 (Seiffert and Michaelis 

2000).  

Because of the shortcomings of the mentioned approaches, there are alternative 

approaches such as the intelligent techniques. These techniques are good and are 
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capable to tackle the highlighted problems in Section  2.3.2. Unlike traditional neural 

network weight adaptation using the mentioned gradient descent method approaches, 

intelligent techniques will be utilised here for adaptive tuning of ANN weights 

adjustment in order to obtain optimum parameters. These soft computing approaches 

are employed in order to provide efficient search and to avoid being trapped in local 

minimum solutions.  

As earlier mentioned in Section  2.3.1.2, the modelling process in order to find the 

optimum weight parameters for the ANN is performed in two stages. This two-stage 

training process is depicted in Figure  4.18.  

 

 

Figure 4.18 The proposed two-stage (PSO + GA) modelling approach 
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The first stage is using a PSO algorithm while the second stage involves utilising a GA 

to train the ANN structure. A PSO is first used for initial network training process and 

the weight obtained during this stage will be used to form the starting parameter ranges 

for the next GA training stage. 

This arrangement was decided upon in this research because the following mentioned 

reasons:  

 

(i) The use of PSO alone can search a wider range faster but it converges too 

early to sub-optimal solution. 

(ii) GA can converge to a better sub-optimal solution but it takes a longer period 

to achieve this. This may be as result of not starting with good initial 

weights. 

(iii) The commencement of the GA training process with good initial starting 

random weights and search space derived from initial PSO training. 

 

 

The preliminary results of the initial trials of both the PSO and GA are given in 

Appendix  C.2 while Table  4.4 shows the MSEs and the iterations number of the initial 

individual training of PSO and GA. The convergence results give indication of the 

number of iterations that will be used during the subsequent training process. 

The advantages of using and combining PSO and GA in that order (refer to Table  4.4) 

are as follows: 

 

(i) The total number of iterations will be reduced from 20,000 to 6,000 and 

hence this helps in the training convergence and makes the computation 

much faster. 
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(ii) There is an expected reduction from either 2.20e
-3 

or 1.96e
-4 

in the obtained 

MSE to an appreciable value of 1.13e
-7 

as shown in Table  4.4
 
. 

 

 

Table 4.4 MSEs of initial training trials 

 Numbers of Iterations Mean Squared Errors (m
2
) 

PSO 10,000 2.20e
-3

 

GA 10,000 1.96e
-4

 

PSO+GA  1,000 + 5,000 = 6,000 1.13e
-7

 

 

Figure  4.19 shows the GUI screenshot for the algorithm that combines the PSO and GA 

training process. 

 

 

Figure 4.19 GUI screenshot for PSO+GA training algorithm 



105 

 

The GUI PSO-GA training algorithm can either choose to train a SISO or a MIMO 

system. Moreover, the architectures of either ANN or WNN can be selected from the 

pop up menu. The number of iterations or generations parameters for both the PSO and 

the GA respectively can also be chosen from the pop up menu. In addition, the 

parameters that determine the search space, the population size, and the search factor 

can also be selected from the GUI screen. The search factor decides the size of the new 

search space in relation to the sub-optimal PSO result. The MATLAB codes used for 

the implementation of this are provided in Appendix  D.5. 

The next section discusses the training procedures of the ANN using the PSO. 

 

4.8.6.1 Particle Swarm Optimisation implementation 

PSO is a computational method that optimises a problem by iteratively trying to 

improve a candidate solution with regard to a given measure of quality. The PSO 

algorithm adjusts the trajectories of a population of particles through a problem space 

on the basis of information about each particle’s previous best performance and the best 

previous performances of that of their neighbours (Kennedy and Eberhart 1997, Ramli, 

Taufika, et al. 2009). A basic variant of the PSO algorithm works by having a 

population (called a swarm) of candidate solutions (called particles). These particles are 

moved around in the search-space according to a few simple formulae. 

The training starts by determining the initial population to be trained while the initial 

starting parameters are given as follows: 

 

                                                

                                   

These initial values were determined heuristically after a few trials.  
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In addition, random initial positions and random initial velocities were determined 

based on the chosen number of population. Both of these correspond to the initial 

random weights of the NN structure. The random initial positions and random initial 

velocities are then used to determine the personal best position and global best position 

respectively by using the objective function described earlier in Sections  4.8.5. 

 

The PSO training algorithm consists of velocity and position vector components and it 

is expressed in equations  4.12 

 

                                (         )          (        )   4.12 

 

where 

i particle index 

k discrete time index 

  inertia or weighting function 

v velocity of i
th

 particle 

x position of i
th

 particle 

P best position found by i
th

 particle (personal best) 

G best position found by swarm (global best) 

            are random numbers on the interval [0, 1] applied to i
th

 

particle. These are also known as the weighting factors. 

 

 

In order to create more distinctions in the random numbers creation, both             

are always generated together at every iteration as a single vector and then split into     

and        
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The                                        and it is defined by equation  4.13 

 

 
                    

                 

             
 

4.13 

 

where 

     is the initial weight for the inertia function 

     is the final weight for the inertia function 

 

The current iteration (equation  4.13 and the subsequent equations) as the names implies 

is the current iteration during the training process. In the same equations, the iteration 

max is the maximum number of iteration required to train the network. The iteration 

max value is also determined heuristically after several trials. 

In addition, there are two different acceleration constants            where  

   is the cognitive learning parameter 

   is the social learning parameter 

 

The    acts on the personal best while     acts on the global best positions. The global 

best position is otherwise known as the best of the all the personal bests. These 

acceleration constants are defined by the equations  4.14 and  4.15 below. 

 

 
    (     

      
)  

                 

             
       

 
4.14 

 

 

 
    (     

      
)  

                 

             
        

 
4.15 
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where 

     
 is the maximum value for the cognitive learning parameter for the personal best 

position 

     
 is the minimum value for the cognitive learning parameter for the personal best 

position 

     
 is the maximum value for the social learning parameter for the global best 

position 

     
 is the minimum value for the social learning parameter for the global best 

position 

 

The determination of the learning parameters and the weighting functions are very 

important. After a few trials, their values are determined heuristically and are given in 

Table  4.5. 

 

Table 4.5 PSO NN training parameters 

Parameters      
      

      
      

            

value 4.5 3.4 1.2 2.3 1.9 1.8 

 

 

As the training progresses from one iteration to the next, there are computations that 

need to be taken in each iteration until all the iterations are completed. These steps are 

highlighted as follows: 

 

Step 1:- The values of both velocity and position vectors are confined to the upper and 

lower limits of their earlier initialised weights.  
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Step 2:- In addition, two major updates are carried out in order to bring the solution 

closer to the optimum value. These are velocity vector update and the position vector 

update. 

The velocity vector update is carried out by using equation  4.12 above while the 

position vector update is expressed as shown in equation  4.16. 

 

                             4.16 

 

Step 3:-The updated velocity and position vectors are then applied to use in the 

objective function that was earlier described in Section  4.8.5. 

As discussed earlier, the output of the objective function is the performance function 

value. The personal best particle is then determined. In addition, the performance 

function is also updated at this stage. 

 

Step 4:-The personal best particle is then validated by using the validation data already 

described in the system identification stage. The iteration process leaves the loop 

whenever the validation error starts increasing. 

 

Step 4:-This is the last step. The iteration or training process is terminated at this stage 

either when the MSE is greater that the set goal or when the number of maximum 

iteration is exceeded. 

The personal best particle obtained is then used as the starting parameter for the second 

stage that uses GA to finally optimise the ANN weights. The next section discusses the 

training procedures of the ANN using a GA. 
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4.8.6.2 Genetic Algorithm implementation 

GA is stochastic global search method that operates on a population of potential 

solutions applying the principle of survival of the fittest to evolve a better candidate at 

every generation to a solution. Here, a GA is used to obtain the best population for the 

ANN weights that minimises the objective function earlier described in Section  4.8.5 

above. The flowchart for process involved in genetic algorithm is shown in Figure  2.11 

under Section 2.3.2.1.  

In this research study, real-valued genes are used to represent population chromosomes 

as it provides faster optimisation than the binary coded. This is because real-valued 

genes use less memory and there is no need to convert chromosomes to phenotypes 

before each function evaluation. 

The weight optimisation is also similar to the first stage process but there are major 

differences. Instead of using velocity and position vector updates at every iteration, GA 

uses procedures called selection, crossover, and mutations processes (also described in 

Section 2.3.2.1.). These three procedures are used to update and determine the best 

individual in the population at a particular generation that proceeds to the next stage as 

the training progresses. 

 

The steps involved in the GA training process are highlighted as follows: 

Step 1:-The first step is to decide and determine some initial parameters as given below: 
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These parameters are determined based on expert experience (Pham and Karaboga 

2000) and also derived through some heuristic trials.  

 

Step 2:-This step uses final weight from PSO, which is the best personal particle (initial 

population weight vector for GA). This weight is now used to generate a new 

population having a population size stated in previous step. The population is randomly 

generated in the neighbourhood of the best personal particle. Irrespective of the 

population size, the closeness to the initial population weight vector is determined by 

the population generator factor. A population generator factor of 0.5 means that each 

scalar value in the vector weight is increased in the upper and lower limits by 50%. As 

stated earlier, population generator factor is also determined heuristically after few 

trials.  

 

Step 3:-The whole population is first applied to use in the objective function that was 

earlier described in section  4.8.5 in order to determine the individual performances. 

 

Step 4:- Loop process begins at this stage. The individual performances obtained in the 

previous step are ranked based on the performance of how the errors between the 

population weights and the training data (Target) are reduced. In the case of a 

minimisation problem, the best individuals (most fit) in the population will have the 

lowest numerical value of the associated objective function. Here, individuals are 

assigned fitness according to their rank in the population rather than their raw 

performance. The fitness value is calculated using equation  4.17 
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4.17 

 

where    is the value of the performance in the objective function. 

 

Step 5:- Selection stage is the process of determining the number of times, or trials, a 

particular individual is chosen for reproduction and, thus the number of offspring that 

an individual will produce. In this study, a roulette wheel selection (RWS) mechanism 

is employed. This is a probabilistic way of selecting individuals based on some measure 

of their performance. The more fit individuals get a higher probability to mate and their 

genetic material is exploited. The newly evolved population at this stage now go 

through the crossover process. 

 

Step 6:- Recombination process or otherwise known as crossover. This process 

produces new individuals that have some parts of both parent’s genetic material. 

Crossover process interchanges the genetic structure of two or more chromosomes. 

There could be single point, double, or multi crossover points depending on the 

applications. As the name implies, it is the number of positions where crossover occurs. 

The higher the number of crossover point, the more complex the process becomes and 

the more efficient the search becomes rather than fast convergence to highly fit 

individuals in the early stage of search. The crossover ratio value defined during the 

initialisation stage determines the percentage of the population that go through the 

crossover process. This research employs the double point crossover approach. In 

addition, the new evolved population at this stage now go to the next stage, which is the 

mutation process.  
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Step 7:- Mutation process introduces new genetic material by random changes to 

explore the search space. Mutation brings variations, diversities, and changes in the 

genetic structures of the overall population. In most instances, mutation is considered as 

a background operator. The role of mutation is often seen as providing a guarantee that 

the probability of searching any given string will never be zero and acting as a safety 

measure to recover good genetic material that may be lost through the action of 

selection and crossover (Goldberg 1989). In addition, the best population is preserved 

constantly from one generation to the next. 

 

Step 8:- The new offspring are applied to the objective function to determine the best-fit 

individual. Moreover, the offspring that have the potential to produce the good solutions 

are also subjected to the objective function to determine their fitness capabilities. 

 

Step 9:- In order to proceed to the next generation and also to maintain the population 

size, a re-insertion process must take place. New individuals have to be re-inserted into 

the old population. The strategy involves the replacement of the least fit members 

deterministically. For an individual to survive successive generations, it must be 

sufficiently fit to ensure propagation into the future generations. 

 

Step 10:-The best individual in the new population is then validated by using the 

validation data. The iteration process exits the loop whenever the validation error starts 

increasing. This is to ensure good correlation. 

 

Step 11:-The whole process goes back to step 4 and the loop continues either until the 

number of generation is reached or when the validation error starts increasing. 
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4.8.7 SISO ANN Model Results 

The results of the final optimised weight obtained after the ANN SISO training are 

described in this section. Figure  4.20 (a) is the plot of the response of the obtained 

model and the testing data. It shows that the model is able to fit the testing 

(independent) data. This is a one step ahead prediction generated by both derived 

models. The MSE value (calculated using equation  4.11) with the test data is 1.13e
-7

m
2
. 

Figure  4.20 (b) is the plot of the prediction error, which is the error between the target 

and model. Sometimes it could be pretty easier for model to fit effectively to data 

samples but in order to analyse more modelling results, other characteristics that 

describe the derived model results are the auto correlation and cross correlation. These 

are used to validate the network performance and give the indication of how the 

prediction errors relate in time. Figure  4.20 (c) shows the plot of the auto correlation of 

the prediction error. For a perfect prediction model in autocorrelation, there should only 

be one non-zero value of the autocorrelation function and it should occur at zero lag. 

This would mean that the prediction errors were completely uncorrelated with each 

other. After heuristic trials, a 10% confidence limit interval is decided for this research 

work. This means that it is admissible if the prediction error plot falls between these 

intervals since it is difficult to obtain a perfect model. However, in this case, the plot 

does not have a non-zero value occurring at the zero lag. Figure  4.20 (d) is the plot of 

the cross correlation of the prediction error and the data for the testing input signal 

describing how the prediction errors are correlated with the input sequence u1. Only 

about 10% of the plot falls between the 10% confidence interval. However, model 

results are expected to be better for training and validation data because these data are 

used in the modelling task. 
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Figure 4.20 SISO CTS ANN modelling results 

 

SISO configuration has been investigated so far; however, MIMO non-linear uncertain 

system is a more challenging configuration because of the interactions and couplings 

that exist in the multiple outputs. This complex configuration needs to be investigated 

properly and the next section deals with the modelling of ANN MIMO CTS. 
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4.9 ANN Modelling for MIMO CTS  

The training of MIMO structure is similar to SISO but there are still a lot of differences 

that will be highlighted. They are discussed as follows: 

An initial trial and error study was conducted to ascertain the optimal number of 

parameters of the ANN, which is represented in a non-linear autoregressive with 

eXogeneous; inputs (NARX) form equation  4.18. 

 

                                                                       4.18 

 

where      is an unknown complex non-linear function. Here,   neurons   input and 

  output delays, which give a total of    unknown parameters in the ANN structure. 

The same number of neurons and number of delays are used. These were also decided 

after heuristic trials. The number of regressed input in the case of MIMO is different 

because of the two-input two-output structure. Figure  4.21 shows the structure of a 

MIMO ANN configuration. There are eight inputs in this case. 
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Figure 4.21 Structure of a MIMO ANN 

 

 

Based on the structure of Figure  4.21, the input training streams for the MIMO system 

with two inputs, two-outputs is constructed. The constructed matrix in equation  4.19 

below gives the format for the regressed input for the training of the MIMO ANN. 
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MIMO Input streams = 

 

 

 

 

 

 

 

 

4.19 

 

 

Apart from the highlighted difference, the rest of the training is similar to the already 

described approach for the SISO case. The activation function and the objective 

function are still the same. The objective function is designed to accommodate both 

SISO and MIMO structures. In addition, the weight optimisation process described 

earlier is designed to be compatible in structure to accept both SISO and MIMO 

weights. 

Finally, all the steps highlighted in both PSO (Section  4.8.6.1) and GA (Section  4.8.6.2) 

optimisation processes are also applicable for the MIMO case. 
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4.9.1 MIMO ANN Model Results 

The results of the final optimised weight obtained after the MIMO training is described 

in this section. Figure  4.22 (a) is the plot of both real plant output and the model output 

for first output using the test (independent) data. This shows that the Black box model is 

able to fit the test data. Also, Figure  4.22 (b) shows the prediction error for the same 

output 1.  

 

 

Figure 4.22 MIMO CTS ANN Model response and prediction error for output 1 

 

Moreover, Figure  4.23 is the plot for output 2 and the similar result explanation given 

for Figure  4.22 applies here. In this case, it is clear that from Figure  4.23 (a) that the 

data fitting is not as good as for output 1 (see Figure  4.22 (a)). The combined MSE for 

both output 1 and output 2 is 2.85e
-5

m
2
. 
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Figure 4.23 MIMO CTS ANN Model response and prediction error for output 2 

 

Further results analysis is shown in Figure  4.24 (a) the autocorrelation coefficient of the 

prediction errors for outputs 1 and it does not have any value close to zero and within 10% 

confidence interval. For a perfect prediction model, there should only be one non-zero 

value of the autocorrelation function, and it should occur at the zero lag. This would 

mean that the prediction errors were completely uncorrelated with each other. 

Figure  4.24 (b) and Figure  4.24 (c) are the plots of the autocorrelation coefficients of the 
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validation of the network performance and they give the indication of how the 

prediction errors relate in time. 

 

 

Figure 4.24 MIMO CTS ANN Auto-correlation and cross-correlaton coeffcients for output 1 
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the range performed well in NMPC strategy. For a perfect prediction model, all of the 

correlations should be zero.  

 

 

 

Figure 4.25 MIMO CTS ANN Auto-correlation and cross-correlaton coeffcients for output 2 
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one of the new areas that are yet to be explored in the modelling of the CTS. Next 

section features the modelling of the SISO CTS using wavelet functions.  

 

4.10 WNN Modelling for SISO CTS  

ANNs are widely known to exhibit good approximating properties. However, 

researches have revealed that the use of WNNs can converge quickly than the 

traditional ANN already analysed (Coca and Billings 2012). Moreover, WNN can also 

give a high precision result owing to the time and frequency localisation properties of 

wavelets (Yilmaz and Oysal 2010). Moreover, the localisation properties of wavelets 

together with learning abilities of ANN can result in efficient networks (Jahangiri et al. 

2012).  

There are different types of wavelet functions that can be used in the hidden layer of an 

ANN structure. In view of this, no work is carried out yet in the area of non-linear 

modelling of CTS with the use of Morlet wavelet as the activation function in the 

hidden layer of the ANN structure. The structure of NN in this sense is otherwise 

known as WNN. The mother wavelet activation function in the hidden layer of the ANN 

adopted in the research is the Morlet wavelet. The Morlet equation and wavelet details 

are described previously in details in Chapter 2 section  2.3.1.2. The complete training 

procedures for SISO ANN are already described in Section  4.8 while the training 

procedures for SISO WNN will also be carried out in similar fashion except for the 

replacement of the hyperbolic tangent activation function (equation  2.1) with a Morlet 

wavelet function (equation  2.2) in the hidden layer of the WNN structure. 

There are a total number of 14 weights including the biases for 2 delays and 2 neurons 

structure as shown in Figure  4.26. 
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Figure 4.26 Structure of a SISO CTS WNN 
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4.10.1 SISO WNN Model Results 

In a similar manner to the ANN results, the results of the final optimised weight 

obtained after the WNN SISO training are presented here. Moreover, the comparisons 

with ANN model are also described in this section. Figure  4.27 (a) is the plot of the 

response of the obtained model and the testing data. It also shows that the model is able 

to fit the testing (independent) data. This is a one step ahead prediction generated by 

both derived models. In comparison with the previous ANN model, the MSE of WNN 

model using the test data is 1.58e
-8

m
2
 while the ANN model of Figure  4.20 (a) on page 

115 has a MSE of 1.13e
-7

m
2
. WNN model produces a smaller MSE value than the 

traditional ANN model. This is an indication of a more effective training of the WNN 

model. 

Figure  4.27 (b) is the plot of the prediction error, which is the error between the target 

and model already shown in Figure  4.27 (a). Hence, WNN model has a lesser prediction 

error than the ANN model because of its smaller MSE value.  

Other important model characteristics results are also analysed. Figure  4.27 (c) shows 

the plot of the auto correlation of the prediction error. The expectation is to have a one 

non-zero value of the autocorrelation function at zero lag. This is an indication that 

prediction errors were completely uncorrelated with each other. This figure reveals that 

WNN model is more than 50% closer to the zero lag more than the results of ANN 

model. 

Furthermore, Figure  4.27 (d) is the plot of the cross correlation of the prediction error 

and the data for the testing input signal describing how the prediction errors are 

correlated with the input sequence u1. This result also reveals that WNN model is able to 

fit more than 50% of the plot into the CI more than the ANN model of Figure  4.20 (d). 

In summary, WNN model shows a more reliable model in behaviour and properties that 
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are promising in giving more dependable prediction of the CTS than the ANN model. 

Therefore, the WNN model is better in comparison to the ANN model. 

 

 

Figure 4.27 SISO CTS WNN modelling results 
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Table  4.6 shows the SISO training results for both ANN and WNN models. The table 

shows the MSE results between the target and the model output when the derived Black 

box model was utilised. The training, validation and testing data sets of the SISO CTS 

were all used with the derived model. Table  4.6 gives the summary and comparison of 

the obtained MSEs for both ANN and WNN SISO models using all the three data 

samples. It further shows that WNN model is able to reduce consistently the MSE for 

all the data samples than the ANN model. 

 

 

Table 4.6 SISO Training MSE results for both ANN and WNN models 

Performance Function 
(Outputs) -MSE 

Data One 
(Training) 

Data Two 
(Validation ) 

Data Three 
(Testing) 

 

ANN [Traditional] (m
2
) 1.68*10

-7
 1.73*10

-7
 1.13*10

-7 

 

WNN [Proposed] (m
2
) 1.44*10

-8
 1.50*10

-8
 1.58*10

-8 

 

 

 

4.11 WNN Modelling for MIMO CTS  

The training for the MIMO WNN is carried out in a similar fashion. The training 

process follows the same procedures as described in MIMO ANN (Section  4.9) and 

SISO WNN (Section  4.10) by applying the Morlet wavelet as the activation function in 

the hidden layer of the NN. 

The structure for the MIMO WNN is shown in Figure  4.28. As stated previously, the 

structure contains 2 neurons, 2 input delays, 2 output delays which amount to a total of 

24 weights. 
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Figure 4.28 Structure of a MIMO CTS WNN architecture 

 

 

All the steps highlighted in Section  4.8.6.1 and Section  4.8.6.2 are followed in the 

training process. Several initial different starting weights were heuristically were 

explored until a satisfactory model is obtained. The derived models contain all the input 
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to hidden weights and hidden to output weights. These are the optimised weights using 

the combination of both PSO and a GA. The optimised weights now form the Black 

Box non-linear model of the plant that will be used for prediction purposes. 

 

 

4.11.1 MIMO WNN Model Results  

This section gives the results of the final optimised weight obtained after the training of 

MIMO WNN model of the CTS and its comparisons with the previously designed ANN 

model. 

Figure  4.29 (a) is the plot of both real plant output and the model output for first output 

using the test (independent) data while Figure  4.29 (b) shows the prediction error for the 

same output. In similar manner, the model response for the second output is shown in 

Figure  4.30. The combined MSE for both output 1 and output 2 is 1.00e
-7

m
2
.  
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Figure 4.29 MIMO CTS WNN Model response and prediction error for output 1 

 

 

Apart from the lower MSE produced by the WNN model compared to the ANN model, 

the two outputs of WNN Black box model have better visual line fittings that the ANN 

model. 
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Figure 4.30 MIMO CTS WNN Model response and prediction error for output 2 
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Figure 4.31 MIMO CTS WNN Autocorrelation and crosscorrelaton coeffcients for output 1 
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In addition, Figure  4.32 (a) is the autocorrelation coefficient of the prediction errors for 

output 2. It shows that the MIMO WNN autocorrelation coefficient has about 45% non–

zero value close to the zero lag than the MIMO ANN already shown in Figure  4.25 (a) 

in Section  4.9.1 (Page 122). In the case of output 2, Figure  4.32 (b) and Figure  4.32 (c) 

show that WNN model is closer to the CI by about 25% more than the ANN model. 

 

 

 

Figure 4.32 MIMO CTS WNN Autocorrelation and crosscorrelaton coeffcients for output 2 
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addition, it further shows that superiority of WNN model over the ANN model to be 

able to reduce consistently the MSEs values for all the data samples. 

 

 

Table 4.7 MIMO Training MSE Results for both ANN and WNN 

Performance 

Function 

(Outputs)-MSE 

Data One 

(Training) 

Data Two 

(Validation ) 

Data Three 

(Testing) 

 

ANN 

[Conventional] 

(m
2
) 

1.63*10
-6

 7.01*10
-6

 2.85*10
-5

 

WNN 

[Proposed] 

(m
2
) 

9.33*10
-8

 1.05*10
-7

 1.00*10
-7

 

 

 

At this stage, both the SISO and MIMO models have been developed. The proposed 

wavelet models of the CTS have been more superior to the traditional ANN model. As 

explained earlier, the QTP has a more complex dynamic than the MIMO two-tank 

system (see the brief description in Section  3.3.1). The proposed WNN model will now 

be used to further design non-linear models for the MP and NMP of QTP. Next section 

describes the training process of the QTP. Since the WNN model performs better than 

the ANN model, only the WNN will be considered for the training of both the MP and 

NMP QTP. 

 

4.12 WNN Modelling for MIMO QTP  

The training for the MIMO QTP WNN is carried out in a similar fashion to the MIMO 

two tanks system. The same structure of MIMO WNN shown in Figure  4.28 will be 

used also for this case. MIMO procedures has been described in Section  4.9 while using 

Morlet wavelet as the activation function in the hidden layer of the NN as described in 
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Section  4.10. Moreover, the same structure of 2 neurons, 2 input delays, and 2 output 

delays that amount to a total of 24 weights will also be adopted for the same reasons. 

In the case of QTP, two different models will be designed each for the MP and the NMP 

system. Since separate data were collected as explained in Section  4.6.3, both MP and 

NMP will be trained separately. 

In order to proceed with the training, all the steps highlighted for PSO in Section  4.8.6.1 

and for GA in Section  4.8.6.2 will be duly followed in the training process. Several 

initial different starting weights were heuristically were explored until a satisfactory 

model is obtained. In addition to the training parameters specified for PSO and GA in 

Sections  4.8.6.1 and  4.8.6.2 respectively, Table  4.8 further shows the comparison 

parameters cited in the published literature and the proposed WNN training. 

 

 

Table 4.8 MIMO WNN Training Parameters for MP and NMP of the QTP.  

Parameter Description Parameter Values 

 Cited Literature (Suja Mani 

Malar and Thyagarajan 2009) 

Research Study 

 (Proposed) 

Crossover Ratio Value n/a 0.65 

Mutation Ratio Value n/a 0.05 

Population size n/a 200 

Number of generations 10,000 6,000 

Training Algorithm for WNN Levenberg-Marquardt PSO + GA  

Activation Function for NN Sigmoidal Morlet Wavelet 

Number of Input Nodes 6 8 (Figure  4.28) 

Number of Output Nodes 2 2 (Figure  4.28) 

Number of Hidden layers 1 1 (Figure  4.28) 

Number of Hidden layers 

nodes 

7 2 (Figure  4.28) 

Input delay, Output delay  2, 2 (Figure  4.28) 

Architecture  Multi-Layer Perceptron (MLP) 

 

 

The derived models contain all the input to hidden weights and hidden to output 

weights. These are the optimised weights using both PSO and a GA. The optimised 
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weights now form the Black box non-linear model of the QTP plant that will be used for 

prediction purposes in the control strategy. The results of the NN training will be 

presented in the next section. 

 

4.12.1 MIMO QTP WNN Model Results 

This section gives the results of the final optimised weight obtained after the training of 

MIMO WNN model of the QTP. Moreover, the comparisons of both the MP and NMP 

are also analysed. 

The modelling results will be presented using the third data set, which is the test data. 

 

4.12.1.1 Non-Minimum Phase (NMP) QTP Model Results 

The modelling results of the NMP QTP system are given in this section. Figure  4.33 (a) 

is the plot of both real plant output and the model output for first output using the test 

(independent) data while Figure  4.33 (b) shows the prediction error for the same output 

1. In similar manner, the model response for the second output is shown in Figure  4.34. 

The combined MSE (using equation  4.11) for both output 1 and output 2 is 5.8186e
-7

 m
2
. 

The low MSE value shows that the WNN is effective in the modelling of the NMP QTP. 

It can be seen also from both figures that the WNN weights which constitutes the model 

is able to successfully predict plant responses with the independent test data. 
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Figure 4.33 MIMO NMP QTP WNN Model response and prediction error for output 1 
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Figure 4.34 MIMO NMP QTP WNN Model response and prediction error for output 2 
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the plot of the auto-correlation coefficient of the prediction errors for output 2 for the 

NMP case.  

 

 

Figure 4.35 MIMO NMP QTP WNN correlation coeffcients for both outputs 1 and 2 
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In order for a perfect prediction to occur in the auto correlation coefficient, there should 

be a non-zero value. This value should always occur exactly at the zero lag. This means 

that there would be a vertical line from one to zero and a horizontal line passing through 

zero. In the NMP case, output 1 is about 50% closer to the CI than output 2 does. The 

CI of 10% is admissible in the research work. This CI value is arrived at after some 

heuristic trials. 

The next result description is the correlation result between the input and the prediction 

errors (PE). This is otherwise referred to as the cross correlation coefficient. In this case, 

a perfect prediction in the cross correlation will fall within the CI as shown in the plots. 

Figure  4.35 (c) is the cross correlation plot of input 1 and PE 1, Figure  4.35 (d) is the 

cross correlation plot of input 1 and PE 2, Figure  4.35 (e) is the cross correlation plot of 

input 2 and PE 1 while Figure  4.35 (f) is the cross correlation plot of input 2 and PE 2. 

In all these plots, it can be seen that output 1 is closer to the CI than output 2. The better 

performance of output 1 over output 2 could easily be attributed to the nature of the data 

trained. It can be seen from Table  4.3 in Section  4.6.3 (on Page 86), which contains the 

mean and variance values for both MP and NMP system. The variance of output 1 is 

3.39 V while that of output 2 is 2.09 V. This shows that output 1 disperses more from 

the mean value than output 2 does. This would also mean that data that spread 

throughout will contains more vital plant feature and it will be able to perform better for 

prediction purposes. 

 

The derived Black box model is made up of the 24 NN optimised weights. The training, 

validation and the test data are used as inputs into the Black box model and the MSEs 

are calculated for each of these data sets and then compared with the target data.  
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4.12.1.2 Minimum Phase (MP) QTP Model Results 

The modelling results of the MP QTP system can also be explained in similar manner to 

the NMP system in the section above. Figure  4.36 (a) is the plot of both real plant 

output and the model output response for the first output using the test (independent) 

data while Figure  4.36 (b) shows the PE for the same output 1.  

 

 

Figure 4.36 MIMO MP QTP WNN Model response and prediction error for output 1 
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2
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Figure 4.37 MIMO MP QTP WNN Model response and prediction error for output 2 
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Figure 4.38 MIMO MP QTP WNN correlation coeffcients for both outputs 1 and 2 

 

Here, both (a and b) plots of Figure  4.38 (MP) are closer to the CI than the (a and b) 

plots of Figure  4.35 (NMP). The non-zero values are more pronounced in the MP than 

in the NMP. Therefore, MP system is closer to perfect prediction than the NMP system. 
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For the MP system, Figure  4.38 (c) is the cross correlation plot of input 1 and PE 1, 

Figure  4.38 (d) is the cross correlation plot of input 1 and PE 2. Figure  4.38 (e) is the 

cross correlation plot of input 2 and PE 1 while Figure  4.38 (f) is the cross correlation 

plot of input 2 and PE 2. The correlations plots of Figure  4.38 (c and f) are more than 

80% within the 10% CI while the correlations plots of Figure  4.38 (d and e) are almost 

within 100% CI. With these results, the model prediction performance is better in the 

MP than in the NMP. 

The summary results of the WNN MSE modelling results for the both the MP and NMP 

QTP are provided in Table  4.9. 

 

 

Table 4.9 MIMO WNN MSE Modelling Results for both MP and NMP QTP 

Performance 

Function 

(Outputs)-MSE 

Data One 

(Training) 

Data Two 

(Validation ) 

Data Three 

(Testing) 

 

NMP - MSE (m
2
) 5.56*10

-7
 5.25*10

-7
 5.81*10

-7
 

MP - MSE (m
2
) 1.32*10

-6
 1.36*10

-6
 1.26*10

-6
 

 

 

Table  4.9 also shows that the NMP has lower MSEs than the MP for all the three data 

sets. This is also in conformance to the best results of the cited literature (Suja Mani 

Malar and Thyagarajan 2009). This means that this training approach is able to reduce 

the training errors of the challenging NMP problem effectively. 

 

4.12.2 QTP Modelling Results Comparisons 

Furthermore, the results of WNN modelling is compared with the three other cited 

literature results (NN, Fuzzy and Neuro-Fuzzy modelling techniques) from (Suja Mani 

Malar and Thyagarajan 2009) as provided in Table  4.10. The work of (Suja Mani Malar 
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and Thyagarajan 2009) deals mainly on modelling of the QTP using soft computing 

approach and there was no control strategy implemented. However, the work of 

(Johansson 2000) uses both linearised model and physical equation for the PI control 

strategy. The results of the PI control strategy for QTP (Johansson 2000) will be 

compared against the WNN-NMPC strategy results. The comparison results are 

provided later in Section  6.4.3 on Page 219. It is concluded from the table that WNN 

has the least MSE values with more than 50% reduced error in the modelling results. 

The best result (Neuro-Fuzzy Model) from (Suja Mani Malar and Thyagarajan 2009) 

also shows that the NMP has a lower MSE values than the MP results for their trained 

models. It is therefore a better modelling approach than all the other listed soft 

computing modelling techniques in (Suja Mani Malar and Thyagarajan 2009). Both the 

non-linear WNN models for MP and NMP of the QTP will now be used in the NMPC 

strategy in next chapter. 

 

Table 4.10 Modelling results comparison with cited literatures (Suja Mani Malar and Thyagarajan 2009) 

Modelling 

Approach 

Method of 

Acquisition 

MSE (Training data) 

(m
2
) 

MSE (Validation data) 

(m
2
) 

  MP NMP MP NMP 

ANN modelling 

(Suja Mani 

Malar and 

Thyagarajan 

2009) 

Optimisation 

learning 

2.0*10
-3

 2.3*10
-3

 8.6*10
-3

 9.0*10
-3

 

Fuzzy modelling 

(Suja Mani 

Malar and 

Thyagarajan 

2009) 

Knowledge based 2.8*10
-3

 3.3*10
-3

 7.3*10
-3

 7.7*10
-3

 

Neuro-Fuzzy 

Modelling (Suja 

Mani Malar and 

Thyagarajan 

2009) 

Knowledge based 

+ learning 

1.2*10
-3

 1.1*10
-3

 2.3*10
-3

 5.5*10
-3

 

WNN Modelling 

[Proposed] 

PSO + GA  1.32*10
-6

 5.56*10
-7

 1.36*10
-6

 5.25*10
-7
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4.13 Summary 

The sampling time for the CTS equipment can be as big as          but this research 

has decided to use a much lower sampling period of        as this is a more challenging 

task especially in the NMPC strategy operations. Most especially, some typical coupled 

tank systems cited in the literatures use much larger sampling time. 

The use of a sampling time of         allows the system identification process to capture 

many more and diverse important CTS plant dynamics better than using a much bigger 

sampling time. A smaller sampling time will be very effective for the NMPC strategies. 

Moreover, a sampling time of one second was used for the QTP, which is a tank system 

with more complex coupled tank dynamics with four tanks configuration. Non-linear 

dynamic models (SISO/MIMO) are designed using SIMULINK to represent the real 

plant in simulation case while the real coupled tank equipment is used for the real 

practical implementation. 

The data collection process covers both the filling up and the draining of the tanks. This 

also ensures that the data covers the different regions and operations that will be carried 

out later in the NMPC strategies. 

In order to proceed with the non-linear modelling, uniformly distributed PRBS signals 

for SISO (Figure  4.4), MIMO (Figure  4.7), MIMO NMP (Figure  4.10), and MIMO MP 

(Figure  4.11) are used to generate the height output responses for the SISO (Figure  4.6), 

MIMO (Figure  4.9), MIMO NMP (Figure  4.13) and MIMO MP (Figure  4.14) 

respectively. The summary of the input signals in terms of the mean and the variance 

values are also given in Table  4.1 (for SISO case), Table  4.2 (for MIMO two tanks 

case), and Table  4.3 (for MIMO four tanks case).  

Both the input and the output data generated are used to form the regressed inputs in the 

NN structure for their respective training. The modelling of SISO CTS, MIMO CTS, 

NMP QTP, and MP QTP were carried out successfully. 
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Moreover, this study decides to use three different data sets rather than the splitting of 

the lager set into three different parts. This creates more data variations, enables a more 

efficient training process, and brings more generalisations into the derived models. 

The training of ANN and WNN structures for the CTS plant are carried out for both 

SISO and MIMO systems. Furthermore, WNN proved more superior to the ANN 

models for both SISO and MIMO systems and WNN produces much more efficient 

model with better prediction capabilities than that of the conventional ANN. Therefore, 

the WNN structure was now used for the training of both the MP and NMP of the QTP 

because of its better performance. 

 

The training process of determining the optimal weights WNN is a more challenging 

task and very effective. This is because of the presence of the dilation and translation 

process in the hidden layer during the training process. Moreover, one of the major 

advantages of using a wavelet function is the inherent capabilities of time and frequency 

localisation of the WNN helps in achieving global minimum solution. This ultimately 

assists in determination of the optimal network training weights. Conventional 

approaches of training the NN structures such as the back propagation methods have 

been utilised extensively. However, there is a problem of having the solution being 

trapped in a local minimum point and thereby making the model results very inaccurate. 

For this reason, a combination of both PSO and a GA are employed for the training of 

the WNN structure instead of approaches such as the gradient descent. In all the plants 

configurations, PSO was first used to train and obtain an initial weight for the for the 

NN structures before a GA was used to finally optimise the weights. This was proved 

with some initial results to be more effective than using either of them separately. 
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Many researchers have worked in the area of CTS and have used several techniques to 

represent the model of the plant. However, the use of wavelet functions is relatively a 

new area and a new approach to modelling of the coupled tanks with Morlet mother 

wavelet function. 

This chapter presents a novel approach in using the Morlet wavelet function technique 

to model the both the SISO and MIMO system of the CTS plant. WNN was also used to 

design and develop non-linear models the more challenging QTP for both MP and NMP 

system. 

This novel approach proves more efficient that the traditional ANN for prediction 

purposes. The derived models will now be used in the advanced control strategies, 

which will be discussed in the next chapter.  
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5. CONTROL STRATEGIES FOR COUPLED TANK 

SYSTEMS 

The last chapter focused on the reviews, design, and development of suitable non-linear models for both 

the CTS and the more complex QTP system. This chapter involves the utilisation of the models designed 

in the previous chapter for the development of the NMPC strategies and separately using both  

PSO and a GA for the real time and on-line non-convex complex optimisation approaches for  

SISO CTS, MIMO CTS, and MIMO QTP systems.  

 

5.1  Introduction 

The general idea in control system is the theory that deals with influencing the 

behaviours of dynamical systems in order to conform, adjust, or adapt to certain desired 

actions. A control system is a dynamical system that can be acted upon by applying 

suitable control methods in order to function in a desired manner. In other words, the 

concept of controlling a system is to make the physical plant behave according while 

given some certain stipulated constraints and specifications. Control of processes is 

therefore a very significant aspect of what goes on in process industries.  

In this chapter, non-linear control strategies will be developed by using the non-linear 

(SISO and MIMO) models of the CTS and the (MP and NMP) of the QTP designed in 

the previous chapter. Since most chemical processes such as the CTS and QTP are 

highly non-linear, uncertain, complex, and complicated, therefore it is difficult to design 

traditional classical controllers that can cope with such processes (Alipouri and Poshtan 

2013). As mentioned earlier in the previous chapter, the design of model-based 

controllers is a very challenging task. This is owing to the fact that there are no feasible 

perfect models (Alipouri and Poshtan 2013).  

Over many years classical control strategies such as the PID controller have been well 

established (César and Oliveira 2008, Holic and Vesely 2011, Kosanovich et al. 1995, 
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Kumar and Dhiman 2011, Majstorovic et al. 2008, Mohideen et al. 2013, Rahmat and 

Rozali 2008). However, PID controllers are not always able to provide good and 

acceptable results (Huang and Jin 1997) and simple PID controllers predominately do 

not yield satisfactory results (Huang and Jin 1997, Kubalcik and Bobal 2008). In 

addition, PID problems aggravate further especially when the systems exhibit non-

linearities. As stated earlier, multi-variable or MIMO systems have configurations that 

are more challenging. This is especially because of the interactions and couplings 

between their process variables. MIMO systems are the most difficult to design as it 

integrates multiple sensor data to coordinate multiple actuators. MIMO controllers are 

more complex, and as such, designers often try to avoid them. In this context, the 

control of MIMO processes are more complex and complicated than SISO processes 

(Jain et al. 2009, Senthilkumar and Lincon 2013). In view of this, the deficiency of PID 

controllers is more visible when MIMO systems are involved (Owa et al. 2013b). The 

lack of an efficient PID controller had drastically reduced its wide utilisation in process 

industries. In addition, SISO CTS ANN-MPC strategy had superior performance of over 

PID control strategy (Owa et al. 2013a) in a recent work. 

Nevertheless, there have been further advancements in technology and many 

researchers continue to look for new methods and approaches for greater and increased 

efficiency (Owa et al. 2013a). Kumar and Dhiman (2011) employed the use of soft 

computing techniques such as a GA and PSO to overcome the weakness of traditional 

PID tuning techniques. Another control methods for CTS control include the NN 

controller (César and Oliveira 2008). 

In order to overcome the non-linearity and MIMO difficulties, an efficient and an 

advance control strategy is required to overcome these challenges in order to measure 

up with higher control efficiency and an ultimate increased productivity in the process 

control industries. Owing to the complexities and the various challenges encountered, 
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classical, traditional, or conventional control strategies are incapable of delivering good 

control strategies. For this reason, the utilisation of model predictive controllers for 

challenging industrial process and control tasks becomes more popular. 

MPC is an advanced control strategy that has capabilities to handle all these mentioned 

challenges (Brown et al. 2001, Jadlovská et al. 2008, Owa et al. 2013a). MPC rely on 

the dynamic models of the process and therefore can either use a linear or non-linear 

model representation of the plant for prediction purposes. A non-linear model gives a 

much more accurate prediction in a wider operating range of control. Many recent 

works on CTSs such as controller design are all focused on SISO configurations 

(Ahmadi and Soheilirad 2013, Holic and Vesely 2011, Kumar and Dhiman 2011, Liang 

2011, Mohideen et al. 2013, Ram and Lincoln 2013). The little work done in the area of 

MIMO was achieved using linear model (Khalid and Kadri 2012) whilst Nawi et al. 

(2011) employed a PID controller to control the CTS owing to its simplicity and despite 

all its deficiencies. 

Today, many research works employ the use of MPC (Alamdari et al. 2010, Khalid and 

Kadri 2012, Mohammadzaheri et al. 2011, Zong et al. 2010) for many design purposes. 

The uses of MPC have been very effective in the process industries and the rationale 

behind its usage cannot be over-emphasised. Models are generally responsible for the 

forecasting and prediction of process behaviours (Rawlings 2000). Most of the control 

design cases use linear models in the MPC for prediction purposes in spite of the fact 

that essentially all industrial processes exhibit some degree of non-linear behaviour. 

This is due to the significant increase in complexity of the predictive control problem 

resulting from the use of a non-linear model (Al-Duwaish and Naeem 2001). The higher 

the degree of non-linearity, however, the greater the level of mismatch between actual 

process and the designed representative model, hence resulting in a deterioration of 

controller performance (Al-Duwaish and Naeem 2001). Therefore, the ineffectiveness 
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of linear models prompted the use of non-linear models in MPC so that the control 

strategy can be efficient by improving the quality of model prediction (Rawlings 2000). 

However, the use of non-linear models in MPC is an area that is presently less explored 

due to the non-convexities, computational difficulties, and optimisation of control 

problems (Rawlings 2000). There are some difficulties in the implementation of MPC. 

For instance, as the size of the non-linear system grows, computational speed becomes 

more of an issue, especially for systems with fast sampling time requirement (Kumar 

and Ahmad 2012). Moreover, the computation load of MPC control is high and when 

models are used in MPC, the sampling time should be long enough to complete control 

computations (Zhu 2001). The above scenarios are more complex for the non-linear 

models in the MPC. In view of these challenges, this research focusses on the use of 

non-linear models in MPC strategies. The previous chapter had revealed that WNN 

model is a more superior model to the ANN for predictions purposes. These non-linear 

models will be used later in this chapter in NMPC strategy.  

Furthermore, the NMPC strategy will be implemented on a more complex QTP that is 

also an example of a process plant. The increased complexities is essentially as a result 

of the complex loop interactions of four tank configurations which invariably causes 

difficulties in feedback control design (Owa et al. 2013b, Srinivasarao and Subbaiah 

2013). The QTP has been widely used in the literature to illustrate the concept of 

problems associated with the multi-variable control. The problems include internal 

instabilities, high sensitivity, time delay in the system (Shneiderman and Palmor 2010). 

Moreover, the imposition of a maximum bandwidth restrictions, phase drop in the 

frequency response and the performance limitations owing to the presence of right hand 

plane zeroes (RHPZ) (Gatzke et al. 2000, Johansson 2000, Shneiderman and Palmor 

2010, Srinivasarao and Subbaiah 2013, Suja Mani Malar and Thyagarajan 2009) are 

also part of the difficulties experienced in NMP of the QTP.  



153 

 

One method for designing and analysing a MIMO control strategy for a process in 

steady state is with a Relative Gain Array (RGA). RGA is useful for MIMO systems 

that can be decoupled. However, in RGA the use of steady state gain alone often results 

in an incorrect interaction measures and consequently incorrect loop pairing decisions 

since no dynamic information for the process is taken into consideration (Liao et al. 

2012). In view of this limitation factor, RGA is not suitable and cannot handle more 

complex, non-linear systems that cannot be decoupled.  

However, the presence of the NMP system poses a major challenge in the control field. 

as there are difficulties to achieve required control performances (Shneiderman and 

Palmor 2010). Because of the difficulties of the NMP system (Johansson 2000), some 

researches (Kirubakaran et al. 2014, Patil et al. 2010) use the linear models of the QTP 

for the control analysis. Further to the NMP complexities, Patil et al (2010) in their 

work considered only the MP system in the analysis. In NMP system, the response of 

the system to a step input has an initial undershoot. This means, if the output was 

initially zero and the steady state output is positive, the output first becomes negative 

before changing direction and converging to its positive steady state value. This is 

however troublesome from a control engineer’s point of view. For instance, consider an 

action to change the temperature of the water in a shower because it is too cold. 

Astonishingly enough before becoming warmer, the water becomes even colder. In this 

situation, one may be well compelled to think in the first moment to turn the knob in the 

wrong direction before turning it back. The actions would have been a wrong decision 

because this will make the water even colder in the end. Moreover, the NMP 

characteristics of a system impose limitations for linear feedback designs (Johansson 

2000). 

Most efficient process operations today require operating systems closer to the 

boundary of the admissible operating region (Findeisen and Allgower 2002, Imsland et 
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al. 2003) and therefore linear models are mostly insufficient to represent adequately the 

non-linear dynamics of the plant (Imsland et al. 2003, Tricaud 2008). As a result of this, 

most researchers employ the use of intelligent techniques such as ANN, WNN, PSO, 

and a GA as tools in modelling of complex systems by utilising input-output data sets 

collected from experiments (Suja Mani Malar and Thyagarajan 2009).  

In view of this, not much work has been done using soft computing techniques with 

NMPC strategy and with the use of Morlet mother wavelet as the activation function in 

the ANN architectures to model the CTS and the QTP.  

This research employs the use of a soft computing approach to develop better and more 

efficient non-linear models of the aforementioned plants. This is because of the 

inaccuracies and various assumptions in mathematical models of the plant, which leads 

to a degraded performance of the control strategy. The analysis of the QTP will be 

carried out only in simulation since the real QTP laboratory equipment is not available 

for the real time application strategy. The results of analysis of QTP will be 

benchmarked against the cited literatures in this thesis.  

Moreover, in order to implement fully the NMPC strategy, this research had represented 

the process plant in two main ways. The first representation is the SIMULINK model as 

described in the previous chapter and this will be used to produce the simulations 

results. The second is the use of the actual real plant itself. This is the challenging real 

time implementation strategy as will be seen later in this chapter.  

Only the WNN NMPC strategy will be used for the QTP. The next section is concerned 

with the development of PID control strategy. 
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5.2 PID Controller Strategy 

It is a known fact that the old conventional and traditional PID controllers are still 

employed to control most industrial processes. They are very simple and easy to design 

(Teng et al. 2003). The general classical PID controller can be depicted as shown in 

Figure  5.1. This shows the input-output relation of the PID controller as show in 

equation  5.1 (Teng et al. 2003). 
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5.1 

 

 

where 

u is the control signal or manipulated variable 

   is the initial control signal 

e is the error signal 

   is the proportional gain parameter 

   is the integral gain parameter 

   is the derivative gain parameter 
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Figure 5.1 Block diagram of a PID controller 

 

 

The basic equation of a PID controller in discrete domain form is given by (Teng et al. 

2003) as 
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5.2 

 

Where n is the n
th

 sampling instant, T is the sampling time. Also, at the (n-1)
th

 sampling 

instant, therefore the equation  5.2 is modified as  
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and by subtracting the equation  5.3 from equation  5.2, the velocity form algorithm of 

the PID controller can be shown in equation  5.4 
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Over the years, many methods are used for the tuning of the PID controllers. These 

include integral of time-weighted absolute value of the error, Cohen-Coon and Ziegler-

Nichols (Z-N) (Teng et al. 2003). However, despite the wide spread use of the PID 

controller, a well know problem is the inability to properly tune them correctly (Teng et 

al. 2003). GAs are expected to overcome the weakness of traditional PID tuning 

approaches in order to be more useful for many industrial purposes (Teng et al. 2003). 

In this work, GA is employed to tune the parameters of the PID controller in order to 

provide an effective control strategy. The MATLAB codes for the design and tuning of 

PID controller are given in Appendix  D.4.  

Next section explores the non-linear model based advance control strategy. The results 

of the comparisons between the PID and the NMPC control strategies are analysed later 

in Section  5.9. 
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5.3 Non-linear Advance Control Strategy 

The non-linear control approach adopted in this research is the NMPC strategy. In this 

approach, a finite prediction horizon open-loop optimal control problem is solved by 

obtaining a real time solution on-line at each sampling instant using a non-linear model 

for the real time prediction in the advanced control strategy. The real time optimisation 

process yields an optimal control sequence and the first control (current manipulated 

control input) in the sequence is applied to the plant. A model predictive control 

strategy was implemented in this research by using a real time optimisation approach 

whilst the plant predictors are the non-linear ANN/WNN models already derived in the 

previous chapter. The schematic picture of the whole control strategy is shown in 

Figure  5.2.  

As a result of the complexities and seldom use of non-convex optimisation, this 

research has adopted the use of soft computing approaches for the real time optimisation 

of the manipulated variable while the graph showing what happens at every sampling 

instant in the NMPC strategy is already shown and explained in Figure  2.14 of Chapter 

2. 
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Figure 5.2 The schematic diagram of the NMPC strategy 

 

 

5.3.1 Steps in NMPC Strategy 

In order to implement the NMPC strategy, the following steps are required:  

 

Step 1: This is the initialisation stage. This stage is very critical to the successful 

implementation of the NMPC strategy. Any mistake at this stage will affect the 
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subsequent results of the NMPC strategy. Therefore, the following parameters are 

initialised: 

 

(i) All the weights of the Black box model (ANN/WNN) of the CTS. 

(ii) The weights of the Black box model (WNN) of the QTP. 

(iii) The number of input delays=2 and output delays=2 

(iv) The number of neurons in the hidden layers=2 

(v) Sampling time is 0.2s for CTS and 1.0s for QTP. 

(vi) Number of input-output of the system (SISO/MIMO) 

(vii) The cost function weight values for both output and input 

(viii) Prediction horizon=5 

(ix) Control horizon=2 

(x) The reference signals-the heights to be controlled 

(xi) The starting time for the NMPC strategy 

(xii) The total time duration for the NMPC strategy 

 

Note that the values for the prediction horizon and control horizon were determined 

after some heuristic trials as earlier explained. 

 

In addition, the following parameters are initialised if the NMPC strategy is for 

simulation case. 

 

(i) All the physical parameters (areas of the two tanks, areas of the small outlet 

orifices in the tanks, area of the small orifice linking the two tanks, pump 

constants for the two tanks, initial heights of the two tanks, all valves 

discharge coefficient values) of the CTS which are given in Table  3.1. 
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(ii) The initialisation of the type of ordinary differential equation (ode) 

integrator solver to be used. Examples include the ode45, ode23, and 

ode113. Solver ode45 is used in this research study. 

(iii) The designed SIMULINK models (SISO/MIMO/QTP) described in 

Section  4.2, Section  4.4 and Section  4.5 will have to also be initialised. 

 

Step 2: The generated initial population is arranged in the regressed form earlier 

described during the training process.  

 

Step 3: In this stage, each individual in the population goes through the plant output 

prediction process using the SISO/MIMO/ANN/WNN designed model. The prediction 

process is based on the numbers of prediction and control horizons. 

The predictor’s task is to predict the plant’s outputs based on the regressed inputs at 

every instant. This is done for different control moves within a prediction range. The 

value of the control horizon should always be less than the prediction horizon.  

 

Step 4: The results of the procedures in step 2 is subjected to the cost function 

equation  5.5 in order to determine the best individual in the whole population. The cost 

function is therefore used to determine the best optimum control inputs that give the 

least error between the predicted output and the trajectories reference signals and 

minimise the controller efforts while the predictor is the non-linear ANN/WNN model. 

 

Step 5: The algorithm calls either the PSO (Section  5.4) or the GA (Section  5.5) for the 

optimisation process. This step is an iterative one as described earlier. It solves the 

complex RTO process in real time and this is done at every sampling instant.  
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Step 6: The NMPC strategy is designed in such a way to deal with real-time 

implementation constraints. Termination measures were implemented to abort the 

optimisation (exit the loop in step 5) once a defined sampling time is reached. This 

invariably might leads to convergence to some sub-optimal/optimal solution within the 

sampling time period. This is to enable the NMPC strategy to apply the best-optimised 

value at that instant to the plant. 

 

Step 7: The first element of the vectors (optimised populations or the sequence of 

optimal manipulated variable control signals that operate the plant) and the 

corresponding plant output are then stored and updated in order to proceed to the next 

sampling instant. 

 

Step 8: The whole process goes back to step 5 and continues until the set time of 

duration specified during the initialisation stage is reached. 

 

Step 9: The last step is the graph plotting of the responses of the output of the plant and 

the efforts of the controller for the period of duration in the NMPC strategy. 

 

Next sections describe the steps involved in using a PSO and a GA for the real time 

optimisation and on-line optimisation approaches as it will be used during the 

implementation of the NMPC strategies. 
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5.4 Particle Swarm Optimisation in the NMPC strategy 

The various steps involved in using a PSO in the NMPC strategy is also similar to the 

steps used for weight optimisation in the training of NN structures as already described 

in Section  4.8.6.1 of Chapter 4. Here, the usage of a PSO for the on-line real time 

optimisation in NMPC strategy will be described in details. The equations for the 

implementation of PSO section are already given in equations ( 4.12,  4.13,  4.14,  4.15 

and  4.16). The steps followed here are given as follows: 

 

Step 1: This is the initialisation stage. It involves the determination of initial parameters 

to use in the strategy. These parameters are given in Table  5.1. These parameters are 

determined using trials and errors approach. 

The details of the minimum and maximum parameters values of         ) in Table  5.1 

are already explained in Section  4.8.6.1. 

 

 

Table 5.1 PSO NMPC optimisation parameters 

Parameters & 

Values 

     
      

      
      

            

SISO  2.0 5.0 2.0 5.0 2.0 5.0 

MIMO  5.0 4.0 1.5 4.0 1.8 1.6 

 

 

                                              

                                

 

These values are determined using some heuristic approaches after many trials. The 

computational speed is always an issue of concern in NMPC strategy. The concern is 
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more serious in this research since a fast sampling rate of 0.2 s is used. Therefore, 

parameters such as number of populations and the maximum number of iterations are 

carefully chosen in order to achieve optimum efficiency within the confined sampling 

time period. 

 

Step 2: A special population generation algorithm (function) is written to generate the 

initial random positions and velocities vectors, which was based on the actual number 

of population. This function makes sure that these vectors are created at once and hence 

they are unique. In addition, this function takes into consideration both the prediction 

and control horizons so that the difference from one random number in one sampling 

time to the next does not vary more than a prescribed value of between 1 and 1.5 volts. 

The maximum voltage is 10 V as PSO is performing a constrained optimisation during 

this process, which is different from when it was used in Section  4.8.6.1 for NN 

training. The PSO training process in Section  4.8.6.1 was an unconstrained 

optimisation. The implication of this is that there is little or no knowledge about the 

weights of NN to be optimised. Therefore, the random populations generated are 

stochastic. Nevertheless, in the case of using PSO in NMPC strategy, the manipulated 

variables have been designed beforehand to be between 0 V and 10 V.  

The structure of the population vector to be generated depends on whether the 

optimisation process is to be performed on either a SISO or MIMO system. The 

algorithm used in implementing the population generation is provided in Appendix  D.1. 
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Step 3: The computation of the cost function and it is given in equation  5.5. 
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5.5 

 

 

The first terms in the RHS of equation  5.5 represents the error in prediction value and 

the reference set point value while the second term denotes the change in the previous 

and the present control effort.    and    stand for reference value and plant output 

respectively while       
 

         
    are the weights assigned respectively to the set point 

tracking and penalty to the change in the inputs. The algorithm used in implementing 

the NMPC cost function is given in Appendix  D.2.  

 

Step 4: Follow the instructions specified in step 1 up to step 4 of the procedures 

described in Chapter 4 Section  4.8.6.1. 

 

Step 5: This is the last step. The iteration or optimisation process continues but it is 

terminated either as soon as sampling time of 0.2 s is about to elapse or when the 

maximum iteration is exceeded. Therefore, the personal best particle obtained is the 

optimum manipulated variable obtained as at the time it is applied to the real plant. 

 

The next section describes the implementation of NMPC strategy using a GA. It is to be 

noted that the NMPC strategy is designed to use either PSO or a GA rather than the 

combination of both as is in the previous case of NN training process. 
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5.5 Genetic Algorithm in the NMPC strategy 

Just as in the case of PSO, the various steps involved in using a GA in the NMPC 

strategy is also similar to the steps used for weight optimisation in the training of NN 

structures is already described in Section  4.8.6.2 of Chapter 4. This section describes the 

details of how a GA is used for the on-line real time optimisation in the NMPC strategy. 

 

The steps involved in the GA training process are highlighted as follows: 

 

Step 1:-The first step is to decide and determine some initial parameters as given below: 

 

                                

                          

                         

                   

 

These parameters are determined based on expert experience (Pham and Karaboga 

2000) and also derived through some heuristic trials.  

In this research study, real-valued genes are used to represent population chromosomes 

as it provides faster optimisation as real-valued genes use less memory and there is no 

need to convert chromosomes to phenotypes before each function evaluation. 

 

Step 2: The population generation algorithm is also employed here with the same reason 

explained as in the case for the PSO algorithm.  

 

Here, the first summation on the RHS of equation  5.5 represents the error in prediction 

value and the reference set point value while the second summation terms denote the 
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change in the controller actions, which are the previous and current manipulated 

variables            . These values are then calculated from the GA optimised 

manipulated variables. These parameters are the bounded random generated population 

in the GA. The values    and    stand for reference value and plant output respectively 

while    stands for the weight value. The parameters in equation  5.5 that represent the 

random generated population in the GA are the manipulated variables in vector form, 

which represents the controller actions from pump 1, and pump 2 respectively 

 

Initial populations are generated randomly between the range of 0 V and 10 V. The 

voltage range here constitutes the input constraints In addition; this population is 

created so that the difference between consecutive control horizons is not more than a 

prescribed value of 1.5 V. This prescribed voltage represents the change in the input 

voltage constraints. These are constraints limiting the range of control signal whereas 

the difference between each control input into the plant limits the gradient of the control 

signal. In the case of a minimisation problem, the best individual will have the lowest 

numerical value of the associated objective function. Individuals are assigned fitness 

values according to their rank in the population in each generation before the selections 

are made.  

 

Step 3: Follow all the procedures from step 3 to step 9 in Section  4.8.6.2 of Chapter 4 

and carry out these processes as described. 

 

Step 4:- The whole process goes back to step 3 and the iteration or optimisation process 

is terminated either as soon as sampling time of 0.2 s is to elapse or when the maximum 

iteration is exceeded. Therefore, the best individual in the new population obtained is 

the optimum manipulated variable that will be applied to the real plant. 



168 

 

5.6 Performance Criteria 

Analytical performance indexes are considered here to evaluate the performance of the 

control strategies. The first is the mean squared error (MSE) defined in equation  5.6 and 

the average controller energy (ACE) defined in equation  5.7. The MSE is the addition 

of all the squares of the error differences between the reference and the plant output for 

the two outputs divided by the total number of samples.  
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5.6 

 

 

In equation  5.6 superscripts r and p stand for reference value and plant outputs 

respectively while N stands for the total number of samples. The ACE is defined as the 

addition of all the squares of all the manipulated variables input to the plant divided by 

the total number of samples. This is therefore expressed as: 
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5.7 

 

Equations  5.6 and  5.7 are for the MIMO case but the equations are also applicable to the 

SISO case since the    (output 1) in equation  5.6 and    (input 2) in equation  5.7 are 

both set to values of zero. 

The ACE determines the performance of the controller effort while MSE determines the 

performance of the plant output responses. Other performance criteria that are utilised to 

evaluate the performances of plant output response include rise time, settling time, 
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percentage overshoot, percentage undershoot and steady state error (Mathworks 2011, 

Ogata 2010). Graphical responses also should not be neglected nor ignored. This is 

because visual displays will show vividly many situations such as the steady state errors 

that will not be captured by either ACE or MSE. These criteria are shown in Figure  5.3.  

 

 

 

Figure 5.3 Other output system response characteristics criteria (Mathworks 2011, Ogata 2010) 
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These criteria are subsequently described below as follows: 

 

Rise Time:-In this research study, the rise time is the time required from the starting 

point (initial value) for the system plant response signal to arrive at the stipulated set 

point reference value (final value). 

 

Settling Time:- This is the time involved until the plant response signal settles within 

the 5% region around the final value.  

 

Percentage Overshoot:- This is the percentage amount by which the plant response 

signal can exceed the final value. 

 

Percentage Undershoot:- This is the percentage amount by which the plant response 

signal can undershoot the initial value. 

 

Therefore the performance of the NMPC strategy are analysed first in simulation using 

the SIMULINK models (described in Section  4.2 and Section  4.4) representing the plant 

while the second analysis is the real time implementation using the real CTS laboratory 

equipment. The CTS equipment is already in Section  3.2. The experimental work is 

later described in Section  6.3. 

 

Next section describes briefly the designed MATLAB graphical user interface (GUI) 

software program for the implementation of the control strategy. 
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5.7 MATLAB-GUI Software Control Program 

This section contains the scope of the MATLAB GUI designed software for the 

advanced control strategies in this research study. The software combines and 

incorporates all the soft computing programs fragments approaches already discussed in 

this research study. Firstly, from the GUI screen either a QTP or a CTS plant can be 

invoked. Moreover, either a SISO or a MIMO system can be selected. In addition, it 

also has the capability of picking the type of optimisation algorithm (either GA or PSO) 

to use at every sampling time in the NMPC strategy. Moreover, either an ANN or a 

WNN model architectural structure can be implemented. The software package program 

also has the features to execute the codes either in simulation or in real time control 

strategy. The simulation is achieved with the SIMULINK models (SISO CTS - 

Figure  4.1, MIMO CTS- Figure  4.2, and MIMO QTP - Figure  4.3) representing the real 

plants. The real time implementation control strategy can only be achieved when the 

machine running the computer software is physically connected to the real equipment. 

In this real time implementation control strategy, the sensors, actuators, and data 

acquisition equipment are attached to the equipment for the feedback live real time 

measurement to take place. Moreover, the software contains both the PID and NMPC 

control strategies and either of these can be implemented. For the QTP system, the GUI 

can be used to implement either the MP or the NMP system. The desired height level of 

the tank to be controlled can be directly specified from the GUI screen for all the cases. 

Different combinations of these mentioned features can be selected for the control 

strategies. The graphical responses of both the plant output and controller manipulated 

variables can be displayed on the screen of the GUI. Furthermore, the GUI can also 

display MSE and ACE performance criteria results for all the cases. The GUI screen is 

shown in Figure  5.4. The MATLAB codes used to implement this are provided in 

Appendix  D.6. 
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Figure 5.4 The graphical use interface of the designed control software 

 

Next section will now use the designed GUI software to generate the results of the 

control strategies.  

 

5.8 NMPC Strategy Preliminary CTS Simulation Results 

This section contains the preliminary and intermediate results for the NMPC strategy. 

Before the commencement of the implementation of NMPC strategies, this sections 

aims to calculate the optimum parameters to be used for the NMPC strategies. The main 
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parameters to be determined here are the prediction and control horizons as the NMPC 

strategy is temporarily set up just for this purpose. 

The SISO WNN NMPC strategy involves set point tracking of an arbitrarily 6.75 cm 

water level for Tank 2 and having an initial water level of 6.5 cm level in both Tank 1 

and Tank 2. The WNN NMPC strategy is implemented for 30 seconds in simulations. 

This is equivalent to a number of 150 sampling instants. 

Table  5.2 provides the summary results of the different values of the prediction and 

control horizons for a GA optimisation. The results are obtained for a population size of 

20 and a generation of 50. The population size of 20 was chosen after a few trials but 

the focus is on the determinations of optimum prediction and control horizon values. 

The results can be used to generalise the parameters that will be used for the 

implementation of subsequent NMPC strategies in this research study. 

 

 

Table 5.2 Table showing NMPC SISO WNN strategy preliminary results 

 

Results for a population size of 20 and a generation of 50 

 

Figures 

Label 

Prediction 

Horizon 

Control 

Horizon 

Mean 

Squared 

Error (m
2
) 

Average 

controller 

Energy (v
2
) 

Time (s) Number of 

Generations 

Figure 5.5 40 25 2.60*10
-6

 14.48 37.2 5 

Figure 5.6 25 15 1.23*10
-6

 14.20 36.9 7 

Figure 5.7 15 10 3.87*10
-7

 13.37 35.8 11 

Figure 5.8 10 5 3.38*10
-7

 12.84 35.2 17 

Figure 5.9 5 2 2.99*10
-7

 11.74 34.7 32 
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The results provided in Table  5.2 show that the MSEs and ACEs values increase as the 

prediction and control horizon values increase. This can be attributed to the numbers of 

generation that is carried out in the NMPC strategy. In addition, a higher number of 

spent generations within a particular sampling instant imply an effective optimisation 

would have taken place in the NMPC strategy. 

 

Moreover, all the figures right from Figure  5.5 up to Figure  5.9 show these preliminary 

graphical plots of plants responses and their corresponding controller actions. 

 

Figure  5.5 (a) is the plot of Tank 2 output plant response while Figure  5.5 (b) is the plot 

of the respective controller actions using a prediction and control horizon of 40 and 25 

respectively. In this case, only 5 generations could be achieved in the NMPC strategy 

optimisation process. This is poor, inefficient, and can be attributed to the high number 

of computations associated with the high prediction and control horizon values 

involved. The MSE obtained is 2.60e
-6 

m
2
 whilst the ACE value is 14.48 V

2
. The results 

here revealed that the MSE and ACE are higher than the rest of the results as provided 

in Table  5.2. The implication of this is that the set point tracking of 6.75 cm level is 

very ineffective, as it will be compared with the rest of the subsequent figures. 

Moreover, the ACE shows that very high controller energy required for tracking the set 

point. In addition, the controller actions show many fluctuations, which are not 

desirable. 
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Figure 5.5 NMPC strategy with prediction and control horizon of 40 and 25. 

 

 

Figure  5.6 (a) is the plot of Tank 2 output plant response while Figure  5.6 (b) is the plot 

of the respective controller actions using a prediction and control horizon of 25 and 15 

respectively. Here, two additional generations are achieved in the NMPC strategy 

optimisation process more than in Figure  5.5. The MSE obtained is 1.23e
-6 

m
2
 while 

ACE value is 14.20 V
2
. The MSE and ACE values obtained here and the figures 

revealed that the results are slightly getting better than the previous strategy results. 
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Figure 5.6 NMPC strategy with prediction and control horizon of 25 and 15. 

 

 

Moreover, Figure  5.7 (a) is the plot of Tank 2 output plant response while Figure  5.7 (b) 

is the plot of the respective controller actions using a prediction and control horizon of 

15 and 10 respectively. 

The results are slightly getting better as there are about 11 generations achieved in the 

NMPC strategy optimisation process within the confined sampling instant. The results 

here revealed that the MSE and ACE have improved (see Table  5.2). The MSE obtained 

is 3.87e
-7 

m
2
 whilst the ACE value is 13.37 V

2
. Improvements are visibly seen in the 

controller actions, as there are few fluctuations shown in Figure  5.7 (b). 
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Figure 5.7 NMPC strategy with prediction and control horizon of 15 and 10. 

 

 

Figure  5.8 (a) is the plot of Tank 2 output plant response while Figure  5.8 (b) is the plot 

of the respective controller actions using a prediction and control horizon of 10 and 5 

respectively. A number of 17 generations could be carried out within the confined 

NMPC strategy optimisation process. The MSE obtained is 3.38e
-7 

m
2
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value is 12.84 V
2
. The set point tracking of 6.75 cm level is very much improved in this 

case than the previous results. 

 

 

 

Figure 5.8 NMPC strategy with prediction and control horizon of 10 and 5 

 

 

Figure  5.9 (a) is the plot of Tank 2 output plant response while Figure  5.9 (b) is the plot 

of the respective controller actions using a prediction and control horizon of 5 and 2 

respectively. 
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Here, there are 32 generations that could be achieved within the confined NMPC 

strategy optimisation sampling instant. The numbers of generations in this case are 

almost twice the number obtained in the previous case. This result proves to be the best 

result and it is very efficient as there are few numbers of computations associated with 

the small values of prediction and control horizon involved. The MSE obtained is 2.99e
-

7 
m

2
 whilst the ACE value is 11.74 V

2
. The results here also revealed that the MSE and 

ACE are the least obtained in all the cases as provided in Table  5.2. The implication of 

this is that the set point tracking of 6.75 cm level is better than the rest of the earlier 

cases presented. Moreover, the ACE value shows that very low controller energy is 

required in tracking the set point. In addition, the controller actions show little or no 

fluctuations, which is desirable unlike the four earlier cases shown (from Figure  5.5 to 

Figure  5.8). 

 

 

Figure 5.9 NMPC strategy with prediction and control horizon of 5 and 2 
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Furthermore, the same parameters used for the graph responses shown in Figure  5.9 are 

re-plotted and shown in Figure  5.10 for a period of 100 seconds instead of 30 seconds. 

Figure  5.10 (a) is the plant response for Tank 2 and it shows that there are completely 

no steady state errors. Moreover, Figure  5.10(b) is the controller action (manipulated 

variable) response and this further shows that the fluctuations are fully eliminated. The 

initial fluctuations in the first 50 seconds are a result of the controller anticipation for 

efficient error control in the moving horizon window. 

 

 

 

Figure 5.10 The same response of Figure 5.9 for a 100 seconds simulation 
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The values of the prediction and control horizon used in Figure  5.9 (see Table  5.2) will 

be adopted for the rest of the NMPC strategy for all the implementation involving SISO, 

MIMO, MP, and NMP systems. Moreover, these parameters will be much more 

appreciable during the real time implementation (See Section  6.3), which is more 

challenging than the simulation cases because of the experimental work involved. 

In order to critically determine the performance and the effectiveness of the proposed 

NMPC strategy, the stability and the robustness will be analysed in the following 

sections. 

 

 

5.9 Comparisons of PID and NMPC Strategies 

In this section, the stability and the robustness of the NMPC strategies are analysed, 

evaluated, and compared with the classical PID controller. Control techniques such H-

infinity or mu-synthesis can be utilised to design controllers that can maximise robust 

stability and performance (Balas et al. 2011). However, these concepts are mostly 

employed in uncertain linear time invariant (LTI) systems (Balas et al. 2011). Unlike 

the linear systems, this research deals with non-linear systems where the output 

characteristics of the plant depend explicitly on time and they are very difficult to 

examine in analytically terms. For any system to be robustly stable, the stability and 

performance requirements for all possible values of uncertain parameters must be met 

(Balas et al. 2011). These evaluations are performed for both SISO and MIMO CTS 

systems. 
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5.9.1 Stability of NMPC Strategy 

Stability is one of the crucial factors in the determination of the success of control 

strategy implementation. Model prediction capabilities are very important in NPMC 

strategy. Therefore, it is essential that the system identification stage must sometimes 

ensure that the model is stable even though it is not the most significant factor in the 

stability of NMPC strategy (Norgaard et al. 2012). 

Therefore, it is imperative that a necessary condition for the operability of the control 

strategy that the closed-loop system, which consist of the controller, and the system to 

be controlled must be stable (Norgaard et al. 2012). 

In this research study, the stability is analysed to show that the plant can function in 

random operating point regions in a stochastic manner without running off course and 

without being unstable. Controller instability in this context may render the plant to run 

dry, spill or overflow excessively. In order to demonstrate the stability of the proposed 

controller, random set points are provided for a period of 4500 sampling instants (900 

seconds). 

Figure  5.11 shows the comparison of SISO second tank plant responses for both the PID 

(Figure  5.11 (a)) and NMPC (Figure  5.11 (b)) control strategies for the random set point 

trajectory reference tracking. These results show the stability of both the PID and the 

NMPC SISO controller for tracking the trajectories of the random set points and being 

able to stabilise and control the plant. However, the NMPC control strategy is able to 

provide a more precise trajectory tracking that the PID control strategy.  

 

 



183 

 

  

Figure 5.11 SISO comparison of PID and NMPC strategies responses using random set point references 
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-3 

m
2
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-3 
m

2
 in the 

case of PID control strategy. The lesser MSE value obtained for the NMPC strategy 

demonstrates that the approach is able to carry out a more accurate trajectory tracking 

than the PID strategy. However, the PID strategy gives a reduced ACE by about 14 V
2
 

when compared with the NMPC strategy. The simple explanation to the good result is 

that PID control strategy expended a lesser controller energy in carrying out an inexact 
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counterpart. The response time of NMPC strategy was able to settle earlier by 35 

seconds than the PID strategy. The PID strategy overshot the set point boundaries by 

8% more than the NMPC strategy while there were no undershoots in both strategies. 

This research employs both PSO and GA separately as soft computing techniques in 

order to optimise the manipulated variable at every sampling instant. The use of soft 

computing approach for online optimisation is a serious challenge owing to the heavy 

computations involved.  

 

Table 5.3 SISO comparison results of PID and NMPC strategies of Figure 5.11 

 MSE 

(m
2
) 

ACE 

(V
2
) 

Rise Time 

(Sec) 

Settling 

Time (Sec) 

Percentage 

Overshoot 

Percentage 

Undershoot 

PID 5.1*10
-3

 30.33 65 100 10 0 

NMPC 2.3*10
-3

 44.86 35 65 2 0 

 

 

For the more complex MIMO case, a similar control simulation is carried out with 

random trajectories set point for a period of 2400 sampling instants (480 seconds). The 

comparison results for both PID and NMPC strategies are shown as well in Figure  5.12. 

These results show the stability capabilities of both the PID and the NMPC MIMO 

controllers to be able to track the trajectories of the random set points and being able to 

control and stabilise the plant without going off course. Figure  5.12 (a) shows the PID 

responses while Figure  5.12 (b) shows the NMPC strategy responses for the MIMO 

system. Similar to the SISO system results, a much lower MSE, and a more efficient 

tracking was achieved using the NMPC when compared with the PID strategy.  
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Figure 5.12 MIMO comparison PID and NMPC strategies responses using random set point reference 

 

 

The MIMO comparison results are given in Table  5.4. Here, the ACE values obtained 
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below the set point. NMPC strategy has zero overshoot as it tracks and maintains the set 

point tracking throughout the random set points. Moreover, there are similar results in 
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Table 5.4 MIMO comparison results of PID and NMPC strategies of Figure 5.12 

Control 

Strategy 

MSE 

(m
2
) 

ACE 

(v
2
) 

Rise Time 

(Sec) 

Settling 

Time (Sec) 

Percentage 

Overshoot 

Percentage 

Undershoot 

PID 7.1*10
-3

 35.19 22 80 45 15 

NMPC 6.8*10
-3

 33.41 20 20 0 0 

 

 

5.9.2 Robustness of NMPC Strategy 

A robust control system exists when there is no sensitivity to the differences between 

the actual real plant and model representation of the system. This is sometimes referred 

to as uncertainties in the model or plant/model mismatch (Skogestad and Postlethwaite 

2005). Whenever a controller is designed, the abilities to perform very well under 

adverse conditions are of a paramount importance. These abilities in turn determine the 

effectiveness and efficiencies of the designed control strategy. The results presented in 

the previous chapter (see Sections  4.8.7,  4.9.1,  4.10.1,  4.11.1,  4.12.1.1, and  4.12.1.2) 

show that the developed non-linear designed models performed well for prediction 

purposes especially for unseen or independent data sets. The model performance could 

not only be ascertained with the MSE results but also with the auto-correlation and 

cross-correlation results. However, Black-box modelling approaches such as ANN and 

WNN are known to suffer from performance degradation especially when plant 

parameter operating conditions change (Zabiri and Mazuki 2010). Since the model is 

used for the prediction task in the NMPC control strategy, it is therefore important to 

investigate the overall robustness of such control strategy under varying or ultimately 

the worst-case scenarios conditions. In this section, the robust performance of the 

developed NMPC strategy can be verified against varying valves openings conditions. 

Therefore, varying the values of the valves A, B, and C (see Figure  3.3) changes the 
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dynamics of the plants and therefore puts the plant in an adverse and uncertain 

condition. The abnormal situations of the plant are in contrary conditions and do not 

represent the model designed from the input-output data collected for the training. The 

robust performance of the NMPC strategy is implemented for both the SISO and MIMO 

cases. In order to test the robustness this research employs the extreme valves position, 

which is a ratio that has a maximum value of 1. For the SISO case, valve C is operated 

with the valve ratio value set to 0.5 and was used for the initial data training. This value 

was determined and validated after some preliminary experiments using a GA. 

However, the maximum value of 1 means that the valve is fully opened with the 

maximum amount of fluid gushing out. This creates the worst abnormal condition for 

the opening of the valve. The simulation is carried out with the valve C in closed 

position (valve ratio of value 0) for the first 50 seconds in order to maintain a height 

level of 0.2 metres. After this, the valve ratio value changes from zero to one with the 

aim to maintain a height level of 0.02 metres for a further period of 150 seconds. The 

simulation is performed for both PID and NMPC strategies and the results are shown in 

Figure  5.13 (a) and Figure  5.13 (b) respectively. The results show that both PID and 

NMPC strategies were robust in performance.  
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Figure 5.13 SISO comparison PID and NMPC strategies responses for adverse condition 

 

 

However, there are few differences in the results for both strategies. There is a better 

performance in the obtained results of NMPC over the PID strategy. The PID controller 
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PID strategy by 67 seconds. Both strategies have zero percentage overshoots and 

percentage undershoots. The MSE obtained for both strategies are similar while the PID 

produces a much lower ACE value than the NMPC strategy. The lower ACE value 

obtained is because the PID controller carried out a less effective work which resulted in 

a higher settling time for the PID strategy. In order word, this means that a less work is 

done to maintain the same set point than the NMPC strategy. The results of both 

strategies are shown in Table  5.5. 
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Table 5.5 SISO comparison results of PID and NMPC strategies of Figure 5.13 

 MSE 

(m
2
) 

ACE 

(V
2
) 

Settling 

Time (Sec) 

Percentage 

Overshoot 

Percentage 

Undershoot 

PID 1.2*10
-3

 5.91 155 0 0 

NMPC 1.1*10
-3

 13.53 88 0 0 

 

 

 

For the MIMO case, both valves B and C are operated with their valve ratio values 

approximately set to 0.3 and used for the initial data training. However, the maximum 

value of 1 for both valves B and C means that the valves are fully opened with the 

maximum amount of fluid leaving both tanks. This creates the worst abnormal condition 

for the opening of the valves. The simulation is carried out with both valves B and C in 

closed positions (valve ratio of values set to 0) for the first 44 seconds in order to 

maintain a height levels of 0.25 and 0.2 metres for tank 1 and tank 2 respectively. After 

this, the valve ratio value changes from zero to one with the aim to maintain height 

levels of 0.025 and 0.02 metres for tank 1 and tank 2 respectively for a further period of 

156 seconds. The simulation is performed for both PID and NMPC strategies and the 

results are shown in Figure  5.14 (a) and Figure  5.14 (b) respectively. Just as in the case 

of SISO, the results show that the PID and NMPC strategies were both robust in 

performance.  
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Figure 5.14 MIMO comparison PID and NMPC strategies responses for adverse condition 

 

 

For the first 44 seconds, the NMPC strategy was able to maintain the heights with little 

or no overshoots and undershoots. However, PID strategy experiences overshoots and 
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undershoots. The results of both strategies are provided in Table  5.6 
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Table 5.6 MIMO comparison results of PID and NMPC strategies of Figure 5.14 

 MSE 

(m
2
) 

ACE 

(V
2
) 

Settling 

Time (Sec) 

Percentage 

Overshoot 

Percentage 

Undershoot 

PID 2.1*10
-3

 20.52 100 10 10 

NMPC 2.0*10
-3

 20.37 75 0 0 

 

 

 

5.10 Summary 

In this chapter, PID control strategies were designed. In addition, the various steps in 

the design and implementation of the NMPC control strategy were enumerated and 

discussed. Moreover, details of the implementation of the PSO and GA for the NMPC 

non-convex optimisation of the controlled variables are also discussed.  

Apart from the MSE and ACE, other different performance criteria were also discussed 

and these include rise time, settling time, overshoot, and undershoot.  

The designed MATLAB GUI software program was discussed. This is the GUI that 

executes all the codes that have been discussed so far in this research. From the GUI 

screen, the many items can be selected from the Pop-up menu for codes execution. 

These include the control strategies (PID or NMPC), optimisation methods (PSO or 

GA), the system (SISO or MIMO), the plant (CTS or QTP), the neural network model 

(ANN or WNN), and either the MP or the NMP configuration can be selected for the 

QTP system case. Moreover, the height levels (for either SISO or MIMO) and the 

number of samples to execute can also be chosen from the GUI screen. After the GUI 

implementation, the graphical responses of the plant output and the controller actions 

can be plotted on the GUI window with the MSE and ACE results also displayed 

accordingly. In addition, the GUI software also has the capabilities to save the results 
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parameters from the GUI screen. Finally, the GUI has the functionality to execute either 

in simulation or real time control strategy.  

This chapter also presented the preliminary steps in the determination of the choice of 

prediction and control horizon to use for this research study. The stability and the 

robustness of both control strategies were discussed and analysed. Comparisons and 

contrasts were made between the performances of both PID and NMPC control 

strategies in terms of stability and robustness performances.  

Next chapter is concerned with the analysis and discussion of all the results produced in 

this research study. 
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6. ANALYSIS OF CONTROL STRATEGIES 

RESULTS 

Both NMPC and PID control strategies have been developed and implemented in the last chapter for both 

SISO and MIMO systems. Their stability and robust performance capabilities were also analysed in order 

to establish the effectiveness of the strategies. This chapter will present and analyse further results of 

outcomes of this research with a goal of identifying the best choice of control strategy for the level 

control of the coupled tank system and quadruple tank process. 

 

6.1 Introduction 

In Chapter 4, both ANN and WNN approaches of NN were used to model the CTS 

using raw data from experiment applying system identification method. These models 

were derived by training the NN structures using a two-stage approach. PSO was used 

for initial training before a GA finally optimises the NN weights. The non-linear 

modelling task was carried out for both SISO and MIMO configurations. The non-linear 

WNN modelling of the CTS is a novel approach and its prediction utilisation in the 

NMPC strategy. A NMPC strategy was developed in chapter 5 also for both SISO and 

MIMO systems. PSO and a GA were used for the optimisation at every sampling 

instant. The optimisations were executed in real time within the sampling period of 0.2s. 

In addition, PID control strategies were designed for both SISO and MIMO systems. 

They were used as a benchmark for comparison with the NMPC strategy. Furthermore, 

the results of both simulation and real time implementation for CTS are reported in this 

chapter. This gives the total of 128 results (from Table  6.1 to Table  6.4). Moreover, an 

additional eight results were analysed for the MP and NMP of the QTP as provided in 

Table  6.5. 

Both non-linear models and their optimisation performances in the NMPC strategies 

will be compared and analysed. Each of them possesses distinct benefits and 
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weaknesses in their implementations. This chapter aims to analyse the modelling 

performance, the NMPC simulation and the real time strategy results presented in this 

thesis, as it will be seen from the next section. 

 

6.2 NMPC Strategy for CTS in Simulation 

The results of the NMPC strategy are presented in this section. The results show the 

robustness of the controller to be able to operate in varying regions. 

 

6.2.1 SISO ANN Simulation Results 

Figure  6.1 shows the ANN-NMPC strategy simulation results. In the figure, low-level 

(reference level is 1 mm) control using PSO is shown in Figure  6.1 (a) while Figure  6.1 

(b) shows the low-level control using a GA. Also in the same figure, mid-level 

(reference level is 10 cm) control using PSO is shown in Figure  6.1 (c) while Figure  6.1 

(d) shows the mid-level control using a GA. High level (reference level is 20 cm) 

control using PSO is shown in Figure  6.1 (e) while Figure  6.1 (f) shows the high-level 

control using a GA. Finally, in the figure, all regions of level control using PSO are 

shown in Figure  6.1 (g) while Figure  6.1 (h) shows the same using a GA. 
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Figure 6.1 SISO ANN NMPC Strategy Simulation Results (PSO and GA) 
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6.2.2 SISO WNN Simulation Results 

Moreover, just as described and explained for the ANN-NMPC graph in Figure  6.1, 

Figure  6.2 shows the simulation results for WNN-NMPC strategy, which also shows the 

optimisation results for both PSO and GA.  

 

 

Figure 6.2 SISO WNN NMPC Strategy Simulation Results (PSO and GA) 
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Furthermore, Table  6.1 shows the SISO results comparisons of all the MSEs and ACEs 

obtained for all the regions of control using both PSO and GA optimisation approaches. 

 

Table 6.1 Comparisons of SISO CTS Simulation Results 

SISO 

SIMULATION 

ANN WNN 

PSO GA PSO GA 

(1 mm) 

LOW 

MSE (m
2
) 1.61*10

-5
 1.17*10

-6
 1.16*10

-7
 1.47*10

-7
 

ACE (V
2
) 8.73 6.82 2.53 1.62 

(10 cm) 

MIDDLE 

MSE (m
2
) 1.1*10

-3
 1.1*10

-3
 1.1*10

-3
 9.01*10

-4
 

ACE (V
2
) 44.50 38.83 42.64 36.75 

(20 cm) 

HIGH 

MSE (m
2
) 0.0059 0.0057 0.0057 0.0054 

ACE (V
2
) 65.04 56.76 60.81 54.69 

ALL 

REGION 

MSE (m
2
) 0.0019 0.0017 0.0017 0.0016 

ACE (V
2
) 24.00 19.18 21.88 17.85 

 

 

Figure  6.1, Figure  6.2, and Table  6.1 are critically analysed and the following 

statements given below can then be derived. 

(i) The optimisation of GA is more effective than PSO owing to the fact that 

lower MSEs and ACEs were obtained in most of the results.  

(ii) In Figure  6.2 (b), WNN is more effective than the ANN counterpart 

(Figure  6.1 (b)) is in low-level NMPC strategy where non-linearities tend to 

be higher. This is also confirmed from the MSE and ACE values in 

Table  6.1.  

(iii) There are consistent steady state errors experienced in ANN unlike the WNN 

case. In addition, it requires a high amount of controller energy to maintain 
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these errors. Therefore, the results of WNN (MSE - 1.47*10
-7 

m
2
 and ACE - 

1.62 V
2
) are superior to ANN (MSE - 1.17*10

-6 
m

2
 and ACE - 6.82 V

2
).  

(iv) There is not much difference in the results of the other regions of control but 

the MSEs and ACEs of WNN still outperform that of the ANN. There are 

still also steady state errors in ANN strategies but at reduced level. 

 

 

6.2.3 MIMO ANN Simulation Results 

This section shows the results in Figure  6.3 of MIMO NMPC strategy using ANN 

model. It follows a similar pattern to the SISO case with the results of both the PSO and 

the GA provided for all the regions of control. The control strategy is also performed 

first for three separate regions of control before implementing all regions of control. 

In the low-level control region, input 1 reference level is 1.0 cm while input 2 reference 

level is 5 mm. In the mid-level control region, input 1 reference level is 15 cm while 

input 2 reference level is 10 mm. The input 1 reference level is 25cm for the high-level 

control region while input 2-reference level is 20 cm.  
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Figure 6.3 MIMO ANN NMPC Strategy Simulation Results (PSO and GA) 

 

 

6.2.4 MIMO WNN Simulation Results 

This section shows the results in Figure  6.4 of the MIMO NMPC strategy using the 

WNN model. The same procedures that was implemented for the MIMO ANN in 

Section  6.2.3 also applies here. 
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Figure 6.4 MIMO WNN NMPC Strategy Simulation Results (PSO and GA) 
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Furthermore, Table  6.2 shows the MIMO results comparisons of all the MSEs and 

ACEs obtained for all the regions of control using both PSO and GA optimisation 

approaches. 

Figure  6.3, Figure  6.4, and Table  6.2, are critically analysed and the following 

statements given below can then be inferred. 

(i) The optimisation of GA is more effective than PSO owing to the fact that 

lower MSEs and ACEs were obtained in summary for most of the results.  

(ii) Even though the GA is slightly better than PSO, the results of PSO are better 

in MIMO than in the SISO case. This can be seen in the low-level control as 

shown in Table  6.2. 

(iii) In Figure  6.4 (b), WNN is more effective than the ANN counterpart 

(Figure  6.3 (b)) is in low-level NMPC strategy where non-linearities tend to 

be higher. This is also confirmed from the MSEs and ACEs in Table  6.2. 

(iv) As the system becomes more complex from SISO to MIMO plant, WNN-

NMPC strategy becomes more robust and capable in dealing with the plant 

complexities. The steady state errors are more pronounced in the ANN-

NMPC strategy as can be seen in the results of almost all the regions of 

control as shown in Figure  6.3 (a-h). The physical effect of the ANN-NMPC 

strategy can be likened to a spillage or a tank overflow problem. 

(v) The effect of (iv) above can be seen in the high amount of controller energy 

to maintain these steady state errors. Therefore, the results of WNN (MSE - 

1.74*10
-6 

m
2
 and ACE – 8.65 V

2
) are superior to the ANN results (MSE - 

1.39*10
-4 

m
2
 and ACE – 27.51 V

2
). ANN requires almost four times the 

amount of controller energy than WNN to carry out the tasks in Figure  6.3 

(a-b). 
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Table 6.2 Comparisons of MIMO CTS Simulation Results 

MIMO 

SIMULATION 

ANN WNN 

PSO GA PSO GA 

 

LOW 

MSE (m
2
) 3.45*10

-5
 1.39*10

-4
 2.27*10

-6
 1.74*10

-6
 

ACE (V
2
) 32.58 27.51 11.01 8.65 

 

MIDDLE 

MSE (m
2
) 0.0051 0.0047 0.0047 0.0045 

ACE (V
2
) 110.82 95.54 102.42 92.28 

 

HIGH 

MSE (m
2
) 0.0184 0.0185 0.0183 0.0183 

ACE (V
2
) 146.74 132.96 138.80 129.95 

ALL 

REGION 

MSE (m
2
) 0.0061 0.0062 0.0059 0.0059 

ACE (V
2
) 52.19 42.44 48.81 42.42 

 

 

6.3 Experimental Work 

The experimental work starts with the data collections process described earlier in 

Section  4.6. This section is concerned with the real time implementation part of the 

research study. The components for the real time strategy and real time controller have 

been described in Section  2.5.7.  

In order to perform the real time implementation, a DAQ device (NI      ) from 

National Instrument must be made available. For an effective communication between 

the DAQ device, the CTS equipment, and the computer running the GUI control 

software, the LabView software driver is installed and properly configured. Moreover, 

MATLAB data acquisition toolbox must also be available on the computer system. This 
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toolbox is needed in order to write and read data to and from a USB-NI 6009 DAQ 

device from NI. These software drivers will ensure and establish communication link 

between the computer and the CTS equipment.  

The Data Acquisition Toolbox supports two interfaces: 

 

i. Legacy Interface: The 32-bit version of DAQ Toolbox supports National 

Instruments devices that can be used with this interface. However, the 32-bit 

versions of DAQ Toolbox and MATLAB can be installed on a 64-bit Windows 

operating system. For more precise results, the 64-bit version is used. 

 

ii. The new Session Based Interface: The 64-bit version of DAQ Toolbox supports 

National Instruments devices that can be used with this interface. 

 

The session based interface gives more accurate results in the implementation in all the 

cases analysed. 

In general, data acquisition programming with DAQmx involves the following steps: 

 

1 Create a Task and Virtual Channels 

2 Start the Task 

3 Perform a Read operation from the DAQ 

4 Perform a Write operation to the DAQ 

5 Stop and Clear the Task. 

 

A simple schematic diagram for the real time implementation completely combined 

setup is shown in Figure  6.5. 
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Figure 6.5 Schematic diagram of real time implementation setup 

 

The picture of the NI 6009 DAQ device is clearly shown in Figure  6.6. This device is 

designed to only handle and manipulate maximum signals of 5.0 V. It therefore receives 

signals from the sensors that measure the heights of the tanks. The output of the sensor 

is in voltage and it is calibrated with a maximum value of 10 volts that represents the 

maximum height (250 mm) of the tanks. The DAQ device has both digital input and 

output ports for both analogue and digital connections of the device. In this work, the 

sensor voltages from the tanks enter into the analogue inputs 0 and 1 while the 

manipulated voltages to control the plant are obtained from the analogue output 0 and 1 

of the DAQ device. The 0 and 1 ports of the DAQ device correspond to the Tank 1 and 
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Tank 2 of the CTS equipment respectively. This gives a total of four voltage signal 

wires and the Figure  6.6 shows eight voltage signal wires because each of them is 

connected to the ground of the CTS equipment. 

 

 

Figure 6.6 Picture of NI 6009 DAQ device 

 

The signal goes through TQ equipment called CE120 controller shown in Figure  6.7. 

The CE120 controller is used in this research as a simple voltage doubler and voltage 

divider circuit. Therefore, the voltage sensor signals from the tanks are divided into two 

by the CE120 controller before it gets to the DAQ device. Moreover, the manipulated 

voltages from the computer through the analogue outputs are amplified by a gain of two 

before it is sent to the pump so that it can send the required voltages to control the fluid 

levels in the tanks. 
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Figure 6.7 TQ CE120 Controller  

 

The pumps input voltages range between 0 and 12 volts whereas in this research work, a 

maximum of 10 volts is used for safety of the CTS equipment (Figure  6.8). Moreover, 

an Intel® core          computer with central processing unit (CPU) of 2.30 GHz 

and 6.0 GB of random-access memory (RAM) was used for testing in real time 

implementation. 
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The actual picture of the real time implementation setup is shown earlier in Figure  3.1 

on Page 51 while the double tank is shown in Figure  6.8. 

 

 

Figure 6.8 CE105MV multivariable coupled tank equipment 
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The real time implementation is only achieved when the DAQ receives and sends real 

time duplex signals between the CTS equipment and the computer software program, all 

within the sampling interval specified in the control algorithm. In this research study, 

the real time implementation is activated by the selecting the REAL TIME option from 

the popup menu in the GUI software described in Section  5.7. The algorithm starts by 

first initialising all pre-set parameters in the programs and then follows the control 

strategy earlier described in chapter 5.  

Next section presents the SISO and MIMO real time implementation results. 

 

 

6.3.1 NMPC Strategy for CTS in Real Time 

The ANN/WNN NMPC strategies real time results are obtained by replacing the 

SISO/MIMO SIMULINK design models described in Section  4.2 and Section  4.4 with 

the real coupled tank equipment already described in Section  6.3. The CTS equipment is 

connected to the computer running the developed NMPC MATLAB algorithm. A NI 

6009 USB DAQ device is used to for transfer between the computer and the CTS. The 

details of NI 6009 USB DAQ codes are given in Appendix  D.3. 
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6.3.1.1 SISO ANN Real Time Results 

Just as in the simulation results presented in Section  6.2.1, here Figure  6.9 shows the 

results of the real time NMPC strategies and this can be used to corroborate and further 

substantiate the practicality of the control strategies. 

 

 

Figure 6.9 SISO CTS ANN NMPC Strategy Real Time Results (PSO and GA) 
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6.3.1.2 SISO WNN Real Time Results 

Just as in the simulation result presented in Section  6.2.2, Figure  6.10 shows the results 

of the real time NMPC strategies that can be used to corroborate and further substantiate 

the practicality of the strategies. 

 

 

Figure 6.10 SISO CTS WNN NMPC Strategy Real Time Results (PSO and GA) 
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Furthermore, Table  6.3 shows the SISO real time results comparisons of all the MSEs 

and ACEs obtained for all the regions of control using both PSO and GA optimisation 

approaches. In addition, the summary of the real time results Figure  6.9, Figure  6.10 and 

Table  6.3 show that all the analysed results of the simulation cases are rightly 

confirmed. Results also show improved optimisation in the real time strategy by the 

PSO than in the simulation case. 

 

 

Table 6.3 Comparisons of SISO CTS Real Time Results 

SISO 

REAL TIME 

ANN WNN 

PSO GA PSO GA 

(1 mm) 

LOW 

MSE (m
2
) 3.05*10

-5
 2.20*10

-5
 2.17*10

-6
 1.95*10

-6
 

ACE (V
2
) 18.34 16.11 2.00 2.30 

(10 cm) 

MIDDLE 

MSE (m
2
) 0.0012 0.0012 0.0012 0.0012 

ACE (V
2
) 57.34 57.45 57.35 56.41 

(20 cm) 

HIGH 

MSE (m
2
) 0.0064 0.0062 0.0062 0.0062 

ACE (V
2
) 73.15 71.32 71.54 71.12 

ALL 

REGION 

MSE (m
2
) 0.0018 0.0018 0.0017 0.0016 

ACE (V
2
) 37.41 37.12 36.09 35.71 

 

 

Moreover, Figure  6.11, and Figure  6.12 are the NMPC real time results and they overtly 

show the confirmation of the MIMO simulation results. The steady state errors are also 

confirmed in the real time case.  
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6.3.1.3 MIMO ANN Real Time Results 

Moreover, Figure  6.11 is the corresponding MIMO ANN NMPC real time strategy 

results using PSO and a GA for the RTO. 

 

 

Figure 6.11 MIMO CTS ANN NMPC Strategy Real Time Results (PSO and GA) 
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6.3.1.4 MIMO WNN Real Time Results 

The MIMO WNN NMPC real tine results strategy for both PSO and a GA is shown in 

Figure  6.12. 

 

 

Figure 6.12 MIMO CTS WNN NMPC Strategy Real Time Results (PSO and GA) 
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Table  6.4 shows the summary of real time results that also contains the comparison of 

the ANN and WNN with both PSO and GA optimisation techniques. In addition, the 

summary of the simulation results have been earlier presented in Table  6.2. The results 

in Table  6.4 is a confirmation of the NMPC simulation strategy. Both results in the 

tables and the corresponding graphs show agreement in terms of MSEs and ACEs. The 

results also confirm that PSO and GA were able to handle the challenging problem of 

using soft computing approach for RTO in real time implementation. 

 

 

Table 6.4 Comparisons of MIMO CTS Real Time Results 

MIMO 

REAL TIME 

ANN WNN 

PSO GA PSO GA 

 

LOW 

MSE (m
2
) 6.10*10

-5
 1.08*10

-4
 7.16*10

-6
 1.02*10

-5
 

ACE (V
2
) 16.42 16.80 12.79 12.57 

 

MIDDLE 

MSE (m
2
) 0.0025 0.0026 0.0025 0.0025 

ACE (V
2
) 105.78 101.16 106.35 99.48 

 

HIGH 

MSE (m
2
) 0.0086 0.0092 0.0090 0.0083 

ACE (V
2
) 133.75 137.58 125.64 120.31 

ALL REGION MSE (m
2
) 0.0025 0.0028 0.0028 0.0023 

ACE (V
2
) 82.08 79.15 79.89 73.71 

 

 

Therefore, the NMPC results show that SISO NMPC strategy for WNN is superior to 

ANN. The more complex MIMO was also implemented and the results proved further 

that the WNN NMPC strategy is more effective in set point tracking level control for all 

regions both in simulations and in real time implementation.  

All the real time results are used to validate and confirm the entire simulation tasks that 

were previously carried out. 
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As a result of the excellent performance of the proposed WNN NMPC strategy, it was 

then used for the implementation of the challenging control problem of both the MP and 

NMP of the QTP. Next section presents the results of the NMPC strategies for the MP 

and NMP systems. 

 

 

6.4 WNN-NMPC Strategy QTP Simulation Results 

The performance of the NMPC strategy are analysed only in simulation by utilising the 

MIMO QTP SIMULINK model shown in Figure  4.3. This figure represents the real 

plant in this QTP case. Here, two different scenarios are considered. They are the upper 

and lower levels NMPC control strategies. These scenarios will be implemented for 

both the MP and NMP systems. 

 

Next sections describe the upper and the lower WNN-NMPC strategies. 

 

6.4.1 QTP Upper Level Control 

This is the first case scenario for the QTP. Figure  6.13 shows that the WNN-NMPC 

strategy for both MP and NMP systems tracking the upper levels of Tank 1 and Tank 2. 

Here, Tank 1 is set to track the 20 cm level whilst Tank 2 tracks the 15 cm level. The 

figure shows that the NMPC strategy is able to track the specified set points effectively. 
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Figure 6.13 NMPC strategy for MP and NMP for upper level control 

 

 

Figure  6.13 (a) are the plants responses for the NMP, Figure  6.13 (b) are the plants 

responses for the MP, Figure  6.13 (c) are the controller actions for the NMP while 

Figure  6.13 (d) shows the controller action for the MP. 

The results show that the MP has lower MSEs and ACEs (refer to Table  6.5.) in 

tracking the upper levels. The MSE of the MP system is lower by 0.0028 m
2
 than the 

NMP systems. This result is expected because it is harder to control the NMP systems 
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(Johansson 2000). This is one of the challenges that this research addresses using the 

novel approach of WNN-NMPC strategy. In addition, the MP is about 25 seconds faster 

in tracking set point than the NMP case as it can be visualised from figures (a and b). 

Moreover, figures (c and d) reveal that the NMP shows less aggressive controller 

actions than the actions of the MP system. However, the ACE of the MP is about 11 V
2
 

less than that of the NMP as shown in Table  6.5. This is an indication that the MP 

system uses about 10% lesser controller energy than the NMP system. 

 

Table  6.5 shows the results summary of the NPMC strategies for both the MP and NMP 

system. The table also shows the results for the upper and lower level scenarios. The 

results show that the WNN-NMPC strategies are able to effectively track the specified 

set points for both the MP and NMP systems 

 

 

Table 6.5 Table of NMPC Strategy results for both MP and NMP 

 Minimum Phase (MP) Non-minimum Phase (NMP) 

Scenarios MSE (m
2
) ACE (V

2
) MSE (m

2
) ACE (V

2
) 

Upper Heights 0.0051 81.1069 0.0079 92.1674 

Lower Heights 0.0019 62.4904 0.0030 75.8172 

 

 

6.4.2 QTP Lower Level Control 

This is the second case scenario considered for the QTP. Figure  6.14 shows that the 

WNN-NMPC strategy for both the MP and NMP systems tracking the lower levels of 

Tank 1 and Tank 2. 
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In this case, Tank 1 is set to track the 15 cm level whilst Tank 2 tracks the 10 cm level. 

Similarly, Figure  6.14 shows that the NMPC strategy is able to track the specified set 

points effectively. 

 

 

Figure 6.14 NMPC strategy for MP and NMP for lower level control 
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Figure  6.14 (a) are the plants responses for the NMP, Figure  6.14 (b) are the plants 

responses for the MP system, Figure  6.14 (c) are the controller actions for the NMP 

system while Figure  6.14 (d) shows the controller action for the MP system. 

The results of the lower level control are also in agreement with the upper level control. 

The results show that the MP has lower MSEs and ACEs (refer to Table  6.5.) in 

tracking the upper levels. The MSE of MP is lower by 0.0011m
2
 than the NMP systems. 

The MP system is about 27 seconds faster in tracking set point than the NMP case. 

These results can also be visualised from figures (a and b). Moreover, figures (c and d) 

reveal that the NMP shows less aggressive controller actions than the action of the MP 

system. However, the ACE of the MP is about 13 V
2
 less than that of the NMP as 

shown in Table  6.5. This is an indication that the MP system uses about 12.5% lesser 

controller energy than the NMP system. 

 

 

6.4.3 QTP Control Strategy Results Comparison 

The results obtained in this research is compared with the results obtained in the cited 

published work of (Johansson 2000). However, MSEs were not calculated for the 

published work. 

The results of the proposed WNN NMPC strategy show that it is more efficient than the 

proportional Integral (PI) control strategy results for both MP and NMP cases 

(Johansson 2000). For the MP system, the proposed approach has zero overshoots while 

(Johansson 2000) have overshoots of 10% each in both outputs. Moreover, (Johansson 

2000) have twice the settling time than the proposed. 

In the NMP case, the proposed also have zero percent overshoot for both outputs while 

the second output of (Johansson 2000) have more than 50% overshoot. Here, the 
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settling time of (Johansson 2000) is more than ten times longer than the proposed for 

both outputs of the QTP. 

The proposed approach is also able to cover wider region of control operations than the 

PI control strategy reported by Johansson (2000). 

 

 

6.5 Comparisons of Modelling Performance 

Within this thesis in Chapter 4, four different non-linear NN models were designed to 

represent the dynamics of the CTS. These are the ANN and WNN models for both 

SISO and MIMO CTS configurations. In addition, two different non-linear WNN 

models were designed to represent the dynamics of the MP and the NMP of the QTP. 

For the SISO case, the MSEs of the derived model and the targets for the three different 

data samples are given in Table  4.6. The results show that all the three samples 

(training, validation, and test data samples) have respective lower MSEs with WNN 

than with the traditional ANN model. Moreover, both models were able to obtain low 

and good MSEs for the independent data (Test data). These results also show that the 

problem of overtraining is avoided since independent data samples can give significant 

low MSEs with the non-linear Black box models. The lowest MSE value for WNN is 

1.44*10
-8 

while the value of 1.13*10
-7 

is obtained for ANN model. In the QTP case, 

NMP system has 5.25*10
-7 

as the lowest MSE value while a value of 1.26*10
-6 

is 

obtained for the MP system. 

In addition, the autocorrelation and cross correlation of prediction errors and the inputs 

were the tools used to support the fact that WNN has the capabilities of producing a 

more precise and stable prediction than the ANN model. 

For the more complex MIMO system, the MSEs of the derived model and the targets 

for the three different data samples were given in Table  4.7. The difference in the MSEs 
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between the WNN and ANN results increases further with WNN producing far lower 

MSE values. The results in this case show that WNN can be used to model more 

complex, more difficult, and highly non-linear systems than the traditional ANN model. 

Therefore, WNN model is more reliable than the ANN model. This better result of 

WNN is more pronounced in the MIMO case than the SISO case. 

 

 

6.6 Comparisons of NMPC Performance 

Furthermore, the four derived models were used in the NMPC strategy. Both ANN and 

WNN models could operate in all regions of control when the NMPC strategy was 

applied. However, WNN was discovered to give better performance in terms of MSE 

and ACE especially in low regions of control. This could be attributed to the fact that 

high non-linearities exist more in the very low region than other areas. More 

importantly, WNN have lower ACEs than the traditional ANN models in all the cases. 

This is an additional advantage, as it requires a lesser average controller effort to be able 

to carry out the same task. The better performance of WNN over ANN is experienced 

both in SISO and in MIMO cases. 

 

 

6.7 Comparisons of Optimisation Process in NMPC Strategy 

As this research investigates soft computing approaches, either a PSO and a GA were 

used separately for the real time optimisation in the NMPC strategy. Both methods have 

advantages and disadvantages associated with them. 

Naturally, the implementation of PSO produces faster optimisation than GA but this is 

not noticed since the optimised input to the plant is applied at the same sampling 
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instant. However, the algorithm is designed so that each approach can produce the 

optimum value at each sampling instant. Furthermore, the performance of PSO tends to 

improve as the system becomes more complex. Therefore, PSO produces better results 

in MIMO than in the SISO implementation. 

Ultimately, the performance of GA is better than that of PSO based on the results 

obtained in this thesis. 

 

6.8 Summary 

This chapter analyses the modelling and control strategies results. Both the designed 

ANN and WNN were utilised as the predictive non-linear Black box models and are 

subsequently used for predictions at every sampling instant in the NMPC strategy. The 

NMPC strategies were employed for the control of SISO and MIMO CTS systems. The 

designs also employ the individual utilisation of PSO and GA optimisation techniques 

within the NMPC strategy. The optimisation capabilities of the PSO and a GA were 

carried out in real time at every sampling instant. The results were also compared and 

GA is more favourable than PSO in this research study. GA results are better and are 

more consistent in all the cases examined from the result analysis. However, the results 

of PSO improved better as the complexity increases from SISO to MIMO system.  

Furthermore, this work has demonstrated the implementation of NMPC both in 

simulation and in real time implementation strategies. The real time results show and 

confirm the effectiveness of the strategies with the real life cases. The real time 

implementation results were used to also corroborate the earlier obtained simulation 

results in the research study. This further strengthens and shows the effectiveness of the 

strategies. The results of both these approaches:-ANN versus WNN and PSO versus GA 

were analysed and compared. The results are summarised in tables and using MSE and 

ACE as the performance criteria. The results of both the simulation and the real time 
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were also presented. In all these, the results of WNN-NMPC strategies proved superior 

in both SISO and MIMO configurations with the GA optimisation approach. In 

addition, the performance of WNN-NMPC strategy is more pronounced in the low-level 

control strategies. WNN-NMPC strategy use lower controller energy in the 

implementation of control strategy that the traditional ANN. 

 

Further to this, the WNN-NMPC strategy was also employed in order to handle the 

more complex cases of MP and NMP QTP. The results also showed that the proposed 

novel WNN NMPC strategy performed effectively in both MP and NMP system 

configurations. Moreover, both the MP and NMP QTP with the WNN NMPC also 

proved superior when further compared with the cited published work. 
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7. CONCLUSIONS AND FURTHER WORK 

The previous chapter had analysed in this research the various modelling and NMPC control strategies 

results obtained for ANN and WNN for both SISO and MIMO systems. The results for the MP and the 

NMP of the QTP were also presented. This chapter presents the conclusions drawn from  

this study and recommendations for further work. 

 

7.1 Concluding Remarks 

The stated aim of this research was to develop a novel real time wavelet based Multi-

variable NMPC strategies for CTS. Firstly, SISO systems were initially modelled using 

both ANN and WNN non-linear models. System identification approach was adopted in 

this research study. This involved the use of raw input and output data obtained from 

experiment performed on the physical real plant equipment. A system identification 

technique employed in this research work is preferred in order to derive the non-linear 

Black box model rather than the use the available non-linear dynamic equations. This is 

because of the model mismatch between the real equipment and the dynamic equations. 

In addition, the physical equipment designs are often prone to production errors; 

equipment also degrades after some years of usage. 

Both non-linear models (ANN and WNN) were then developed for the more complex 

MIMO systems where there are multiple inputs and outputs variables combined with the 

increased challenges of coupling interactions between the process variables. Because of 

the performance of WNN modelling technique, the approach was further extended in 

order to model the challenging QTP in the literature. This model consists of both the 

MP and the problematic NMP system. Furthermore, advanced model based NMPC 

strategies were designed to be able to handle the non-linearities and MIMO interaction 

couplings and complexities, which are challenges for the optimal control strategies such 

as the PID controller. Many advantages arise from implementation of NMPC strategy. 
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NMPC performs well in the presence of good non-linear model; constraints can be 

specified in the optimisation cost function and therefore are respected. Moreover, 

NMPC starts adjusting the control signals ahead of the reference set point changes. 

These qualities of NMPC strategy do not exist in the conventional or classical 

controllers such as the PID. In addition, NMPC gives a significant reduced control error 

during operations. 

Even though linear models are easier to implement, this research avoided its utilisation 

because of the limitations involved. Non-linear models are capable of a wider range of 

predictions and more efficient than the linear models. This leads to the use of non-linear 

models of both ANN and WNN for prediction purposes in the NMPC strategies. 

Similarly, NMPC strategies are developed for both SISO and MIMO systems. The 

NMPC strategies are developed in a way that is capable of performing RTO processes 

at every sampling instant. The NMPC strategies were designed, tested, and verified first 

in simulation case. Moreover, a real time practical implementation is also carried out to 

corroborate the whole strategy. In spite of the small sampling time of 0.2 seconds used 

in the CTS, the RTO implementation is efficient during this process. The small 

sampling time is a challenge because of the various computations that is processed 

within the sampling period. Moreover, the sampling time is still small as compared to 

other approaches already published in the literatures. 

As earlier stated, the research uses soft computing approaches for the solution of non-

convex optimisation problems, which is very crucial to the success of the NMPC 

strategies. Non-convex optimisation problems may have many multiple locally and 

globally optimal solutions, which invariably takes a lot of time to obtain good solutions. 

Convex problems are usually much easier to deal with in comparison unlike the non-

convex problems, which take lot of time and it might still lead to a dead end. 

Approaches such as a PSO or a GA are used for the RTO to avoid been stuck in a local 
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minimum solutions. These two approaches are compared and contrasted in order to 

determine the more efficient strategy. 

The NMPC strategies are able to operate in all levels and regions of control. The 

performances are tested using MSE and ACE. This research is primarily designed so 

that many complex non-linear MIMO processes peradventure with no known dynamic 

equations can be modelled using system identification approach in order to apply 

advance control NMPC strategy. 

 

As presented in each chapter, the following goals, and contributions have been made, 

 

Chapter 2 presented an extensive review of the available, advancing trends in the 

development of NMPC strategy for CTS. It was identified at this stage the use of WNN 

as a novel approach for the modelling of the CTS using system identification approach 

and then subsequently for NMPC strategy. Moreover, the use of soft computing 

approach for the modelling and NMPC optimisation has not been fully explored. The 

more complex QTP was also highlighted as a challenging problem in the literature that 

needs to be addressed with the proposed novel approach of WNN NMPC strategy. 

 

Chapter 3 presented the use of both CTS and QTP as case studies in this research study. 

In addition, the real time practical implementation was highlighted as a challenging task 

for most design engineers as it applies to the CTS. Further to the aforementioned, 

MIMO systems have posed as a serious challenging area where few works are achieved 

using soft computing approaches.  
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Chapter 4 detailed the system identification and modelling design approaches for the 

traditional ANN and the alternative proposed novel design using WNN model for both 

SISO and MIMO configurations of the CTS. The WNN model was also used for the 

design of the QTP for both the MP and NMP systems. The training design process was 

based on a two-stage intelligent technique approach using combinations of PSO and a 

GA for the training of the NN structure. The NN non-linear Black box models are the 

replacement for the non-linear dynamic equations for the CTS and QTP. 

 

Chapter 5 described the NMPC strategies using non-linear NN models as the prediction 

models at every sampling instant in the control strategy. PID control strategy was also 

designed and the results of both PID and NMPC strategies were analysed in terms of the 

stability and robustness of the control strategies. Moreover, the NMPC strategy was 

designed in a way to carry out real time optimisation task at every sampling instant 

using either a PSO or a GA.  

 

Chapter 6 provided an assessment of the six designed models and the NMPC strategies 

featured in this thesis with a view to determine the efficiency of the proposed strategy. 

Moreover, both simulation and real time NMPC strategy were carried to affirm the 

effectiveness of the research work for both SISO and MIMO CTS. The results of both 

optimisation approaches are also analysed and compared. However, only simulations 

were implemented in the QTP because the QTP equipment is not presently available.  

Findings demonstrated the superiority of the proposed WNN NMPC strategy over the 

traditional ANN-NMPC strategy. This is confirmed in both SISO and MIMO CTS 

cases. 
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Further to these contributions towards the stated aim during the course of this research 

study, the following contributions to knowledge have been made which it believed may 

be of wider interest. 

A Morlet function WNN non-linear model of CTS was developed which allows plant 

prediction that covers the whole range of control of operations.  

A MIMO WNN-NMPC strategy was also designed with real time optimisation using a 

GA/PSO at every sampling instant. This is thought to be of wider interest to the advance 

robust control community for further multi-variable industrial process control 

applications. Furthermore, the strategy and GA optimisation is efficient in real-time set 

point tracking. 

The implementation of the MIMO WNN-NMPC strategy of the CTS equipment shows 

to a large extent the practicability and effectiveness of the strategy. This is carried out 

using a sampling time of 0.2s, which is extremely small, compared to the time used in 

many cited literatures in this thesis. 

Compared with the traditional NMPC controller, this approach has much lower 

computational burden, which makes it practical to operate in systems with a small 

sampling time in real time implementation. 

The implementation of the MP and NMP is carried out in simulation for the QTP using 

the same WNN NMPC strategy just as in the case of the CTS. This gives the indications 

that it the approach can successfully be performed on the real QTP equipment. 
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7.2 Recommendation for Future Work 

A very well trained and good correlation coefficient non-linear NN model is a very 

important factor in determining the success of NMPC advance control strategy. Soft 

computing approaches use stochastic methods, which are not deterministic approaches. 

In view of this, future work could be in the area of using intelligent techniques to 

localise the search area in order to obtain a global optimum solution. 

In addition, the design of an adaptive non-linear WNN Black Box model that changes at 

every sampling instant while maintaining the stability of the whole strategy. 
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A APPENDIX 

A.1 Calibration of the CTS Equipment 

In order to determine the gains of the pumps, a series of experiments were performed. 

The main aim is to first calibrate the input actuator, which is the pump and the output 

sensors. The output sensors are the flow rate and the liquid level sensors. All valves (A, 

B, and C) (Figure  3.1) are all fully opened. Sufficient water is allowed to always be in 

tank in all of these experiments. The flow rates are set to different voltage values by 

adjusting the CE120 potentiometer. The corresponding value of the pump supply 

voltage as indicated on the CE120 voltmeter is then recorded. This experiment is 

performed in both ascending and descending order of voltage so that the average values 

can be used. Table  A.1 gives the records of the fluid flow rate against pump supply 

voltages. 

The close agreement between the increasing and decreasing data shows that hysteresis 

in the pump circuit is minimal. 

 

Table A.1 Pump Calibration Characteristics 

Flow rate 

(cm
3
/Min) 

Increasing Pump 1 

Supply (V) 

Decreasing Pump 1 

Supply (V) 

Average Pump 1 

Supply (V) 

400 2.13 2.00 2.065 

1000 3.00 2.90 2.95 

1500 3.93 3.92 3.925 

2000 4.90 4.82 4.86 

2500 6.02 5.87 5.945 

3000 6.90 6.84 6.87 

3500 7.80 7.95 7.875 

4000 9.00 9.04 9.02 

4400 10.00 10.00 10.00 
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Figure  A.1 shows the graph of flow rate against average pump supply voltage 

(Table  A.1). This is a near linear graph. This represents a relationship between actual 

flow rate and the voltage supplied to the pump circuit. From the graph, the slope can be 

taken to give the sensitivity of the pump circuit.  

Hence, 

 

                      
              

                       
                      

 

 

Figure A.1 Graph of fluid flow rate against average pump 1 supply voltage 
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Moreover, a similar experiment as above is performed but in this case, the variation in 

the Flowmeter output against the increasing and decreasing actual voltage values. The 

main difference here is that the CE120 meter is connected to the output from the 

Flowmeter and not to the pump supply voltage. Table  A.2 gives the record of the 

experiment. 

 

 

Table A.2 Flowmeter Calibration Characteristics 

Flow rate 

(cm
3
/Min) 

Increasing Pump 1 

Supply Flowmeter  

Output(V) 

Decreasing Pump 1 

Supply Flowmeter  

Output (V) 

Average Pump 1 

Supply Flowmeter 

 Output (V) 

400 0.58 0.40 0.49 

1000 2.15 2.22 2.185 

1500 3.54 3.51 3.525 

2000 4.83 4.90 4.865 

2500 6.15 6.16 6.155 

3000 7.25 7.25 7.25 

3500 8.35 8.54 8.445 

4000 9.65 9.76 9.705 

4400 10.15 10.15 10.15 

  

 

 

This also shows that the near linear graph of the flow transducer to have minimal 

hysteresis. Figure  A.2 shows the graph of flow rate against average pump supply 

voltage (Flowmeter output), which is a near linear graph. 
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Figure A.2 Graph of fluid flow rate against average pump 1 supply voltage (Flowmeter Output)  

 

From Figure  A.2, the slope of the near linear line is the flow transducer sensitivity.  

 

                            
                       

                  
                     

 

This sensitivity constant is valid for predicting system performance over the whole 

range of flow rates. This may be used to monitor flow rates without referring to the 

Rotameter. For the overall pump 1 flow circuit, 6V supplied to the pump circuit gives a 

flow rate of              and this in turn produces an output from the Flowmeter of 

       . 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

2

4

6

8

10

12

Flowmeter
   Output
      (v)

Flowrate (m3/s)



234 

 

Therefore, the gain of pump 1 is given by 

 

                                                                     

         
   

      
            

          

   
         

 

In similar manner, the experiment for the calculation of the gain of the second pump 

(pump 2) involves using only volume in the second tank in terms of the voltage 

equivalent since there is no Rotameter attached to this tank. 

 

Table A.3 Average pump 2 supply versus Average pump 2 sensor output 

Increasing 

Pump 2 

Supply  

(V) 

Decreasing 

Pump 2 

Supply  

(V) 

Average 

Pump 2 

Supply  

(V) 

Increasing 

Pump 2 

Sensor 

Output  

(V) 

Decreasing 

Pump 2 Sensor 

Output 

(V) 

Average Pump 

2 Sensor 

Output 

(V) 

2.46 2.46 2.46 1.50 1.50 1.50 

3.1 3.06 3.08 2.50 2.50 2.50 

3.86 3.78 3.82 3.50 3.50 3.50 

4.65 4.58 4.615 4.50 4.50 4.50 

5.46 5.38 5.42 5.50 5.50 5.50 

6.26 6.04 6.15 6.50 6.50 6.50 

7.01 6.87 6.94 7.50 7.50 7.50 

7.8 7.77 7.78 8.50 8.50 8.50 

8.3 8.19 8.245 9.0 9.0 9.0 

9.21 9.16 9.1850 10.0 10.0 10.0 

10.0 10.0 10.0 10.18 10.18 10.18 
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Figure A.3 Average pump 2 supply versus Average pump 2 sensor output 

 

 

                                                   

 

A.1.1 Calibration of Height Sensors 

In order to carry out the real time implementation successfully, the sensors that measure 

the height of both tanks need to be properly calibrated. The voltage values of both tanks 

for different height levels were taken. This is recorded in Table  A.4.  
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Table A.4 Liquid level versus corresponding voltages 

Liquid Level (mm) Tank 1 voltage (V) Tank 2 voltage (V) 

0 -0.52 -0.74 

5 -0.35 -0.56 

10 -0.16 -0.37 

14 -0.02 -0.2 

20 0.24 0.02 

30 0.59 0.43 

40 0.97 0.77 

50 1.34 1.19 

60 1.72 1.59 

70 2.13 1.90 

80 2.48 2.31 

90 2.88 2.68 

100 3.24 3.08 

110 3.62 3.45 

120 6.15 3.84 

130 4.00 4.22 

140 4.37 4.64 

150 4.72 5.00 

160 5.10 5.39 

170 5.87 5.78 

180 6.23 6.17 

190 8.20 6.57 

200 6.59 6.93 

210 6.95 7.33 

220 7.76 7.71 

230 8.12 8.10 

240 8.50 8.53 

250 8.83 9.05 

 

 

Following the general equation of a straight line, the heights of the tanks are expressed 

as in equation  A.1 

 

                                                             A.1 
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Figure  A.4 and Figure  A.5 give the graph of the liquid level plotted against the voltage 

values for both tank 1 and tank 2 respectively. The slopes of the graphs and the y- axis 

intercept of Figure  A.4 and Figure  A.5 can be used in the equation  A.1 in order to 

calculate the real measured heights of the tanks during real time experiments. 

 

 

 

Figure A.4 Height of Tank 1 versus Sensor Voltage 
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Figure A.5 Height of Tank 2 versus Sensor Voltage 
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B. APPENDIX B 

B.1 Determination of the Sampling Frequency 

In a computer-controlled system, incorrect sampling of continuous signals often leads to 

information losses and thus it is important to select appropriate sampling frequency. A 

sampling time (  ) or sampling interval is the time between successive data samples 

during experiments and this is usually a scalar value. Sampling is the process of 

converting a continuous signal into a numeric discrete time sequence. The next section 

discusses the factors that affect the determination of sampling frequency. 

 

B.1.1 Factor affecting Sampling Frequency 

Some factors need to be considered in order to achieve a successful sampling and these 

are discussed in the sections below. 

 

B.1.1.1 Nyquist-Shannon Sampling Theorem 

The sampling theorem restrictions placed by (Shannon 1948) on the frequency content 

of the time function signal and can simply be stated as follows:  

“In order to recover the signal function exactly, it is necessary to sample at a rate 

greater than twice its highest frequency component.” 

 

This is also known as Nyquist–Shannon sampling theorem and it can also be expressed 

in mathematical terms in equation  B.2 

 

         B.2 

 

B.1.1.2 Aliasing 

Apart from the sampling theorem, aliasing is another problem that could cause an 

erroneous sampling during experiment. Aliasing is a potential problem whenever an 



240 

 

analogue signal is sampled to convert into a digital signal. Aliasing arises when a signal 

is discretely sampled at a rate that is insufficient to capture the changes in the signal. In 

other words, aliasing happens whenever an analogue signal is not sampled at a high 

enough frequency. 

One of the simplest ways to avoid aliasing is to always have enough samples to capture 

the variations in the signal.  

 

B.1.1.3 Undersampling and Oversampling 

Undersampling is essentially sampling too slowly, or sampling at a rate below the 

Nyquist frequency for a particular signal of interest. Undersampling leads to aliasing 

and the original signal cannot be properly reconstructed. However, undersamplings also 

require less memory, so it may be useful in certain applications.  

Oversampling on the other hand is sampling at a rate beyond twice the highest 

frequency component of interest in the signal and is usually desired. The real-world 

signals are not perfectly filtered and often contain frequency components greater than 

the Nyquist frequency, oversampling can be used to increase the fold-over frequency 

(one-half the sampling rate) so that these unwanted components of the signal do not 

alias into the pass-band. Oversampling is also necessary when trying to capture fast 

edges, transients, and one-time events. 

The power spectral density (PSD) can be used to describe the nature of the random 

signal and next section discusses about this. 

 

 

B.1.2 Power Spectral Density 

Power Spectral Density (PSD) is normally used to characterise random signals in the 

frequency domain. PSD for any signal is very helpful since, the integral of the PSD over 
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a given frequency band computes the average power in the signal over that frequency 

band. PSD is a very useful tool for the identification of oscillatory signals in time series 

data and helps to know their amplitude. Power spectral density tells us at which 

frequency ranges variations are strong and that might be quite useful for further 

analysis. 

Figure  B.6 shows the power spectral density estimate for SISO test data while 

Figure  B.7 the power spectral density estimate for MIMO test data. 

 

 

Figure B.6 Power spectral density estimate for SISO test data 
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Figure B.7 Power spectral density estimate for MIMO test data 

 

 

B.1.3 Experimental Procedures 

The experimental procedure involves calculating the operating frequencies at the 

different heights. Ten different heights are chosen that span the total range of the tank. 
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are first determined. This can be calculated by using the sequence of equations below 
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therefore, the transfer function can be expressed as 
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B.6 

 

This is similar to the characteristics equation of a standard second order system as 

expressed in equation  B.7.  

 

 
      

 

                
  

B.7 

 

where  

              

                                       

                               

 

Therefore, from equation  B.6 and equation  B.7 , the natural frequency can be calculated 

as expressed in equation  B.8 
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Table B.5 Damping Frequency against fluid level in tanks 

Tank 1 height (m) 

   

Tank 2 height (m)  

    

Natural Frequency (rad s
-1

) 

0.001 0.00075 0.5738 

0.005 0.00475 0.3617 

0.0125 0.01 0.1689 

0.0525 0.05 0.1129 

0.0825 0.08 0.1004 

0.0875 0.0847 0.0962 

0.125 0.1 0.0534 

0.155 0.135 0.0524 

0.225 0.2 0.0449 

0.240 0.215 0.0441 

 

 

The highest frequency is 0.5738 Hz and this happens to be the frequency at the extreme 

low level. 

Therefore, twice this frequency gives 1.1476 Hz. Since the period is the reciprocal of 

frequency (equation  B.9) 

 

 
        

 

         
 

B.9 

 

Therefore,  

        
 

         
  

 

      
          

In view of this, this research uses a period of       which is approximately 4 times less 

than          
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C. APPENDIX C 

C.1 Determination of Artificial Neural Network (ANN) 

Parameters 

Table  C.6 shows the results of the initial trials of different numbers of neurons and 

input-output delays and their mean squared errors (MSE). These trials were initially 

conducted to ascertain and decide the parameters to use for the ANN training process. 

 

 

Table C.6 Determination of ANN parameters 

Number of 

Weights 

Number of 

Neurons 

Input delays Output delays MSE 

(m
2
) 

13 2 2 2 0.0019 

22 2 2 3 0.0021 

22 2 3 2 0.0021 

25 3 3 3 0.0020 

41 4 4 4 0.0022 

61 5 5 5 0.0028 

85 6 6 6 0.0032 

 

 

From Table  C.6, the MSEs of increasing the number of neurons and input-output delays 

do not decrease in a way that will worth using higher numbers of these parameters. This 

research uses 2 neurons, 2 input delay2, and 2 output delays since it has the lowest 

MSE. Furthermore, the chosen parameters will have a less number of overall 

computations especially when it comes to the control strategy. A less number of 

computations are more appropriate when a low sampling time (0.2s) is selected. 
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C.2  Initial ANN Training Process 

The training process starts with an initial training of the of the ANN model using 

particle swarm optimisation (PSO) algorithm. The range of randomly initialised number 

varies from -1000 to 1000. The initial numbers of iterations was 10,000 but the initial 

results in Figure  C.8 shows the error reduction during the training process with only 200 

iterations. This number of iteration is plotted for clarity as it converges to a sub-optimal 

solution at an early stage. The MSE is 2.2e
-3

m
2
 when the test data is used for the testing. 

 

 

Figure C.8 Initial PSO training process 
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Figure  C.9 (a) shows the response of the plant output and model output .Figure  C.9 (b) 

shows the prediction error, Figure  C.9 (c) auto-correlation of prediction error while 

Figure  C.9 (d) shows the cross correlation of the input and the prediction error. 

 

 

Figure C.9 PSO ANN training results 
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A genetic algorithm (GA) is also used for the training for the same number of iterations 

(10,000) and the same initial range. GA converges to a better values 1.96* 10
-4 

m
2
 using 

the test data Figure  C.10 shows the but with a higher number of iterations (400) before 

convergence. Figure  C.11 shows the plot of only between 200 and 400 of Figure  C.10. 

 

 

 

Figure C.10 Initial GA training process 
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Figure C.11 Portion of plot in Figure C.10 
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prediction error while Figure  C.12 (d) shows the cross correlation of the input and the 

prediction error using GA. 
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Figure C.12 GA ANN training results 
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The training using PSO brings early convergence, but since it can search a wide range 

and bring results fast. GA on the other hand produces a better MSE but has the potential 

to be better if there is a good initial starting point. Because of this, the output of the PSO 

training is used as the initial starting weight for the GA for this research study. 
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D. APPENDIX D 

D.1 Random Population Generator 

function 

[teemmp1,teemmp2]=FuntionGeneratePopulation(p1,p2,division,pop_size,Nu

,ww,uimin,uimax) 

  
num1=p2/division; 
num2=pop_size/division; 
x=p1;y=p1+num1; 

  

  
for j=1:division   
population1(:,j) = crtrp(num2,rep([x;y],[1,1])); 
x=x+num1;y=y+num1; 
end 

  

  

  
for i=1:Nu 
teemmp1(:,i) = (2*ww*(crtrp(pop_size,[0.1;1.5]))- ww) + population1(:); 
teemmp2(:,i) = (2*ww*(crtrp(pop_size,[0.1;1.5]))- ww) + population1(:); 
end 

  

  
 for   k=1:pop_size 
 for   j=1:Nu 

      
    if teemmp1(k,j)<uimin, teemmp1(k,j)=uimin; end 
    if teemmp1(k,j)>uimax, teemmp1(k,j)=uimax; end 

     
    if teemmp2(k,j)<uimin, teemmp2(k,j)=uimin; end 
    if teemmp2(k,j)>uimax, teemmp2(k,j)=uimax; end        

   
end 
end 

 

D.2 NMPC Cost Function 

function 

[fitness,loc,last]=FuntionMimoPSOSAAnnTraining0001(pop1,pop2,Nu,N2,N3,

R1,Q1,R2,Q2,subpop,pop_size,N1,nb,y1hat_vec,y2hat_vec,tiyh,na,... 
    

y1_vec,y2_vec,tiy,tiu,d,ref1_data,ref2_data,times,W1,W2,inputs,H_hidde

n,L_hidden,hidden,generations,zz) 

  

  
  J_new =zeros(pop_size*1,generations); 
  temp = 1; 

   
  pop1=pop1(:,1:Nu); 
  pop2=pop2(:,1:Nu); 
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     for q = Nu+1 : N2 
                  pop1(:,q) = pop1(:,Nu); 
                  pop2(:,q) = pop2(:,Nu); 
      end    

       
      for k3 = 1 : N2          
        voltage_inputs1(:,k3+zz) = pop1(:,temp); 
        voltage_inputs2(:,k3+zz) = pop2(:,temp); 

         

                   
   for k2=1:subpop*pop_size 
     u1_vec = repmat(voltage_inputs1(k2,k3+zz),1*N3,1); %note 
     u2_vec = repmat(voltage_inputs2(k2,k3+zz),1*N3,1); %note 

      

                      
              phi1=[y1hat_vec(tiyh+k3-1   :  -1  :     tiyh+k3-

min(k3,na)) ; ... 
                            y1_vec(tiy-1  :  -1  :     tiy-max(na-

k3,0)) ; ... 
    ...  u1_vec(tiu-d+k3  :  -1  :     tiu-d+1-nb+k3)];  

                     
              phi2=[y2hat_vec(tiyh+k3-1   :  -1  :     tiyh+k3-

min(k3,na)) ; ... 
                            y2_vec(tiy-1  :  -1  :     tiy-max(na-

k3,0)) ; ... 
     .      u2_vec(tiu-d+k3  :  -1  :     tiu-d+1-nb+k3)];       

                     

       

       
   phi=[ phi1(1:na)'    phi1(nb+1:nb*2)'     phi2(nb+1:nb*2)'    

phi2(1:na)' ];   %option 11 

       

    

      

       
   yhat_vec(tiyh+k3,:) = 

MimoModelFunction2(W1,W2,inputs,phi,H_hidden,L_hidden,hidden,tiyh,k3,N

1); 

      

  
      y1hat_vec(tiyh+k3)= yhat_vec(tiyh+k3,1); y2hat_vec(tiyh+k3)= 

yhat_vec(tiyh+k3,2);       
      pred_out(k2,k3+zz,:)=yhat_vec(tiyh+k3,:);  

           

     
   end 

  

    
       Jout(:,k3) = Q1 *(pred_out(:,k3+zz,1) - ref1_data(times)).^2  +   

Q2 *(pred_out(:,k3+zz,2) - ref2_data(times)).^2;  % change 
       Jin = R1 * (voltage_inputs1(:,k3+zz) - 

voltage_inputs1(:,k3+(zz-1))).^2  +  R2 * (voltage_inputs2(:,k3+zz) - 

voltage_inputs2(:,k3+(zz-1))).^2; 
       J_new(:,1) = J_new(:,1) + Jout(:,k3) + Jin; 
      plot(min(J1_View(:,1:gen,1))') 
       temp = temp + 1;  

           
      end 
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      [fitness,loc]         =      min(J_new(:,1)); 
      [fitnessnotused,last] =      max(J_new(:,1)); 

 
function yhat = 

MimoModelFunction2(W1,W2,inputs,phi,H_hidden,L_hidden,hidden,tiyh,k1,N

1) 

                            

  
      h1                    = W1(:,1:inputs)*phi' + W1(:,inputs+1);   
      y1(H_hidden,k1-N1+1)  = pmntanh(h1(H_hidden));  
      y1(L_hidden,k1-N1+1)  = h1(L_hidden); 
      yhat_vec(tiyh+k1,:)   = W2(:,1:hidden)*y1(:,k1-N1+1) + 

W2(:,hidden+1);  
      yhat= yhat_vec(tiyh+k1,:); 

 

 

D.3 DAQ Coding 

 

READ FROM DAQ 

function [ai_value] = FunctionSBReadDaq32(Channel) 

  
mydaq = daq.createSession('ni');  

  
if Channel==0; 
    mydaq.addAnalogInputChannel('dev1', 'ai0', 'Voltage'); 
    ai_value = mydaq.inputSingleScan; 
    ai_value = ai_value*2*0.025; 

  
elseif Channel==1; 
    mydaq.addAnalogInputChannel('dev1', 'ai1', 'Voltage'); 
    ai_value = mydaq.inputSingleScan; 
    ai_value = ai_value*2*0.025; 

  
end 

 

WRITING TO DAQ 

function [ao_value]=FunctionSBWriteDaq32(Channel,ao_value) 

  
mydaq = daq.createSession('ni'); % could  be    nidaq' 

  
if Channel==0; 
    mydaq.addAnalogOutputChannel('dev1','ao0', 'Voltage') ; 
    ao_value = ao_value/2; 
    mydaq.outputSingleScan(ao_value); 

  
elseif Channel==1; 
    mydaq.addAnalogOutputChannel('dev1','ao1', 'Voltage') ; 
    ao_value = ao_value/2; 
    mydaq.outputSingleScan(ao_value); 

     
end 
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D.4 PID Design Codes and Tuning 

GA TUNNING 

clear 
clc 
tic 

  

  
u_0     = 0;            % Initial control input 
y_0     = 0 ;           % Initial output 

  
y=y_0; 

  
% --  System to be Controlled (SIMULINK) -- 
integrator= 'ode45';         % Name of dif. eq. solver (f. ex. ode45 

or ode15s) 
sim_model = 'spm111';          % Name of SIMULINK model 

  
 kkp=0;kki=0;kkd=0;e=0;zzz=0;x02=0; 

  

  
% ------ SIMULINK SISO TANK PARAMETERS  ------- 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
A1=0.00935;             %AREA OF TANK 1 
A2=0.00935;             %AREA OF TANK 2 
a1=0.0000785;           %AREA OF SMALL ORIFICE 1 
a2=0.0000785;            %AREA OF SMALL ORIFICE 2 
a12=0.0000785;            %AREA OF SMALL ORIFICE LINK BETWEEN 1 & 2 
ho1=0.0;               %INITIAL HEIGHT OF TANK 1 
ho2=0.0;               %INITIAL HEIGHT OF TANK 2 
B12=1;                  % VALVE OPENING BETWEEN 1 & 2 
B2=.5;              % VALVE 2 OPENING  NEEDED 
g=9.81;                 % GRAVITATIONAL CONSTANT 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
pgaink1=4500e-6/(60*7); % PUMPGAIN 1 

  

  
% ------ GENETIC ALGORITHM OPTIMISATION PARAMETERS  ------- 
samples  = 350;             % Number of samples in simulation 
MAXGEN=1000; 
subpop=1; 
FIT(1)=0; n=1; 
CountMajor=1; 
crossover=1; 
mutation=1; 
Pop_Size=100; 

  
um=0;u=0;u_old=0;Ts=0.2; 

    

  
e_old=0;     
y=0;  

  
aaa=200; 
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weights  =  [rep([0;aaa],[1,1]) rep([0;aaa],[1,1])  rep([0;aaa],[1,1])  

rep([0;aaa],[1,1])]; 

  
% weights   =FuntionMimoGetStartPoint0001(bestchrom3,1); 

  
population1 = crtrp(Pop_Size,weights); 
ref=repmat(0.125,1,samples);  

  
u = 0*zeros(1,2); 

  

   
u_old     = repmat(u_0,0,1); 
u_old     = u_0; 
Ts=0.2;  

  

  

  
%% Miscellaneous Initializations 
u = u_0;                % The controls up to time t<=0 
t = -Ts; 
 fighandle=progress; 
%% Initialization of Simulink system 

  

  
  simoptions = simset('Solver',integrator,'MaxRows',0); % Set 

integrator opt. 
  eval(['[sizes,x0] = ' sim_model '([],[],[],0);']);    % Get initial 

states 

  

  
ref_data    = ref(1:samples); 
u_data      = zeros(samples,1); 
y_data      = zeros(samples,1); 
yhat_data   = zeros(samples,1); 

  
times=1; 

  

  
for i=1:Pop_Size    
  [ObjV(i,1)]= PIDnnvalidGA1(samples,population1(i,:),ref);    
end 

  

  
 gen=0; 
INITIAL=ObjV; 
[ikk1,ijjR]=min(ObjV); 
[ikk2,ijjM]=max(ObjV); 
bestO=population1(ijjR,:); 

  

                                                                     
while gen<MAXGEN, 

     
      ObjVSel(:,gen+1) = 0;  
      FitnV = ranking(ObjV(:,gen+1));    

  

                             
      sel_parent = select('rws',population1,FitnV) ;   %OR sus/rws%          
      sel_parent = recombin('xovdp',sel_parent,crossover,subpop); % or 

xovdp/xovsp%      
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      sel_parent = mutate('mutbga',sel_parent,weights,mutation,subpop); 
      sel_parent(ijjM,:)=bestO;   

  

       
      for i=1:Pop_Size 
       [ObjVSel(i,1)]= PIDnnvalidGA1(samples,sel_parent(i,:),ref); 
      end 

       
          [err0,ijjR] = min(ObjVSel(:,1)); 
          [err1,ijjM] = max(ObjVSel(:,1)); 
           bestO      = sel_parent(ijjR,:);  

            

       
     [population1,ObjV(:,gen+2)] = 

reins(population1,sel_parent,subpop,1,ObjV(:,gen+1),ObjVSel(:,gen+1));  

      
      J1_View(:,gen+1)=ObjVSel(:,gen+1);                

                                               
     gen=gen+1 

          
     bestchrom1=bestO;   error1=min(ObjVSel(:,1)); 
     BestFitValVEC(:,gen)=error1; 

      

  
FIT(gen)=error1; 

  
if gen==1; 
      MSEE=FIT(gen); 
save('ResultPITunning001','MSEE','bestchrom1'); 

       
end 

  
if gen>1; 
    if FIT(gen)<MSEE; 
       MSEE=FIT(gen); 
save('ResultPITunning001','MSEE','bestchrom1'); 
    else 
end  
end 

  
MSEE 
end 
toc 

  

 
function TotalMSE = PIDnnvalidGA1(samples,bestchrom2,ref) 

  
K=bestchrom2(1);  Td=bestchrom2(2); alf=bestchrom2(3);  

Wi=bestchrom2(4); 

  

  
times=1;TotalMSE=0; 
y=0;zzz=0;x0=[0,0];x02=[0,0];Ts=0.2;  
t = -Ts; 

  
  B1 = K*(1+Ts*Wi/2); 
  A1 = Ts*Wi; 
  B2 = (2*Td+Ts)/(2*alf*Td+Ts); 
  A2 = 2*Ts/(2*alf*Td+Ts); 
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  I1 = 0; 
  I2 = 0; 
  Id = 0; 
  uimin = 0; uimax = 10; 

   

   
integrator= 'ode45'; 
sim_model = 'spm111';          % Name of SIMULINK model 

  

  

  
  while times<samples+1      

     
  COUNTER=times; 

   
  t = t + Ts; 

   
  e = ref(times) - y ;  

  

  
    ui = B1*e + I1; 
    um = ui; 

     
    if ui<uimin, um=uimin; end 
    if ui>uimax, um=uimax; end 

     
    u = (um-I2)*B2 + I2; 
    I1 = I1 + (K*e - (ui - um))*A1; 
    I2 = I2 + (um - I2)*A2;  

          
     utmp=[t-Ts  um; t    um]; 
    simoptions.InitialState=x0; 
    [time,x0,y] = sim(sim_model,[t-Ts t],simoptions,utmp); 
    x0 = x0(size(x0,1),:)'; 
    y  = y(size(y,1),:)'; 
    yyy1=y(1,1)';yyy2=y(2,1)'; 
    tank1(times,:)=yyy1; 
    yyy2=yyy2+(yyy2*0.025); 
    y=yyy2;     

    
  y_data(times)   = y;                

    
  TotalMSE=TotalMSE + (ref(times) - y).^2;  
  times = times + 1 ; 
  end  

  
TotalMSE=TotalMSE./samples; 
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MIMO 

Ts=0.2; 

  

  
K1=100;  Td1=5;   alf1=1;    Wi1=0.5;         % USE THESIS   

  

 
%  
K2=K1;                       %  
Td2=Td1;                       %  
alf2=alf1;                     %  

Wi2=Wi1;                      %  

  
  B1a = K1*(1+Ts*Wi1/2); 
  A1a = Ts*Wi1; 
  B2a = (2*Td1+Ts)/(2*alf1*Td1+Ts); 
  A2a = 2*Ts/(2*alf1*Td1+Ts); 
  I1a = 0; 
  I2a = 0; 
  uimina = 0; uimaxa = 10; 

   
  B1b = K2*(1+Ts*Wi2/2); 
  A1b = Ts*Wi2; 
  B2b = (2*Td2+Ts)/(2*alf2*Td2+Ts); 
  A2b = 2*Ts/(2*alf2*Td2+Ts); 
  I1b = 0; 
  I2b = 0; 
  uiminb = 0; uimaxb = 10; 

 

  % PID controller 

      

        

        
    ui1 = B1a*e1 + I1a; 
    ui2 = B1b*e2 + I1b; 
    um1 = ui1;  
    um2 = ui2; 

     
    if ui1<uimina, um1=uimina; end 
    if ui1>uimaxa, um1=uimaxa; end 
    if ui2<uiminb, um2=uiminb; end  
    if ui2>uimaxb, um2=uimaxb; end 

     

     
     u1(1) = (um1-I2a)*B2a + I2a; 
     u2(1) = (um2-I2b)*B2b + I2b; 

     
    I1a = I1a + (K1*e1 - (ui1 - um1))*A1a; 
    I1b = I1b + (K2*e2 - (ui2 - um2))*A1b; 

     
    I2a = I2a + (um1 - I2a)*A2a; 
    I2b = I2b + (um2 - I2b)*A2b;  

     
    utmp=[t-Ts,um1 um2 ; t,  um1 um2 ]; 
    simoptions.InitialState=x0; 
    [time,x0,y] = sim(sim_model,[t-Ts t],simoptions,utmp); 
    x0 = x0(size(x0,1),:)'; 
    y  = y(size(y,1),:)';  
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    yyy1=y(1,1)';   yyy2=y(2,1)'; 
%     yyy1=yyy1+(yyy1*0.025);yyy2=yyy2+(yyy2*0.025); 
    yyy1=yyy1+(yyy1*0.0274);yyy2=yyy2+(yyy2*0.0264); 
%     u1_old    = shift(u1_old,u1);    u2_old    = shift(u2_old,u2); 
     end 
    % STORE DATA IN DATA VECTORS     
  u1_data(times)       = um1;             %BLUE     -CONTROLLER 

ACTION%% 
  u2_data(times)       = um2;             %BLUE     -CONTROLLER 

ACTION%% 
  y1_data(times)       = yyy1;               %GREEN    -PLANT OUTPUT%% 
  y2_data(times)       = yyy2;               %GREEN    -PLANT OUTPUT%% 

 

 

D.5 PSO+GA Training MATLAB GUI Codes 

 

function varargout = PSO_GA_GUI_Training(varargin) 

  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', 

@PSO_GA_GUI_Training_OpeningFcn, ... 
                   'gui_OutputFcn',  

@PSO_GA_GUI_Training_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 

  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 

  

  
% --- Executes just before PSO_GA_GUI_Training is made visible. 
function PSO_GA_GUI_Training_OpeningFcn(hObject, eventdata, handles, 

varargin) 

  

  
  handles.WNN_ANN                           = 'WNN'; 
  handles.SISO_MIMO                          = 'MIMO'; 

  
temp = get(handles.Population_Size_popupmenu,'String'); 
ind = find(strcmp(temp,'5')); 
set(handles.Population_Size_popupmenu,'Value',ind); 

  
temp = get(handles.Search_space_popupmenu,'String'); 
ind = find(strcmp(temp,'5')); 
set(handles.Search_space_popupmenu,'Value',ind); 
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temp = get(handles.Search_factor_popupmenu,'String'); 
ind = find(strcmp(temp,'0.5')); 
set(handles.Search_factor_popupmenu,'Value',ind); 

  

  
temp = get(handles.pso_iteration_popupmenu3,'String'); 
ind = find(strcmp(temp,'5')); 
set(handles.pso_iteration_popupmenu3,'Value',ind); 

  
temp = get(handles.ga_iteration_popupmenu4,'String'); 
ind = find(strcmp(temp,'5')); 
set(handles.ga_iteration_popupmenu4,'Value',ind); 

  
temp = get(handles.WNN_ANN_popup,'String'); 
ind = find(strcmp(temp,handles.WNN_ANN)); 
set(handles.WNN_ANN_popup,'Value',ind); 

  
temp = get(handles.SISO_MIMO_popup,'String'); 
ind = find(strcmp(temp,handles.SISO_MIMO)); 
set(handles.SISO_MIMO_popup,'Value',ind); 

  

  

  

  
handles.output = hObject; 

  
% Update handles structure 
guidata(hObject, handles); 

  
% UIWAIT makes PSO_GA_GUI_Training wait for user response (see 

UIRESUME) 
% uiwait(handles.figure1); 

  

  
% --- Outputs from this function are returned to the command line. 
function varargout = PSO_GA_GUI_Training_OutputFcn(hObject, eventdata, 

handles)  

  
varargout{1} = handles.output; 

  

  
% --- Executes on button press in Execute_pushbutton. 
function Execute_pushbutton_Callback(hObject, eventdata, handles) 

  
MimoPSOGAWnnTraining01(handles); 

  

  
% --- Executes on button press in Close_pushbutton. 
function Close_pushbutton_Callback(hObject, eventdata, handles) 

  
close(gcf) 

  

  
% --- Executes on selection change in Population_Size_popupmenu. 
function Population_Size_popupmenu_Callback(hObject, eventdata, 

handles) 
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% --- Executes during object creation, after setting all properties. 
function Population_Size_popupmenu_CreateFcn(hObject, eventdata, 

handles) 

  

  
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
% --- Executes on selection change in GA_Population_popupmenu. 
function GA_Population_popupmenu_Callback(hObject, eventdata, handles) 

  

  

  
% --- Executes during object creation, after setting all properties. 
function GA_Population_popupmenu_CreateFcn(hObject, eventdata, handles) 

  
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
% --- Executes on selection change in pso_iteration_popupmenu3. 
function pso_iteration_popupmenu3_Callback(hObject, eventdata, handles) 

  

  
% --- Executes during object creation, after setting all properties. 
function pso_iteration_popupmenu3_CreateFcn(hObject, eventdata, 

handles) 

  
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
% --- Executes on selection change in ga_iteration_popupmenu4. 
function ga_iteration_popupmenu4_Callback(hObject, eventdata, handles) 

  

  

  
% --- Executes during object creation, after setting all properties. 
function ga_iteration_popupmenu4_CreateFcn(hObject, eventdata, handles) 

  
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  



264 

 

  

  
function pso_iterations_edit1_Callback(hObject, eventdata, handles) 
% hObject    handle to pso_iterations_edit1 (see GCBO) 

  

  

  
% --- Executes during object creation, after setting all properties. 
function pso_iterations_edit1_CreateFcn(hObject, eventdata, handles) 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function ga_iterations_edit3_Callback(hObject, eventdata, handles) 

  
% --- Executes during object creation, after setting all properties. 
function ga_iterations_edit3_CreateFcn(hObject, eventdata, handles) 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
% --- Executes on selection change in WNN_ANN_popup. 
function WNN_ANN_popup_Callback(hObject, eventdata, handles) 
%        contents{get(hObject,'Value')} returns selected item from 

WNN_ANN_popup 
str = get(hObject, 'String'); 
val = get(hObject,'Value'); 

  
handles.WNN_ANN = str{val}; 

  
guidata(hObject,handles) 

  
% --- Executes during object creation, after setting all properties. 
function WNN_ANN_popup_CreateFcn(hObject, eventdata, handles) 

  
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
% --- Executes on selection change in SISO_MIMO_popup. 
function SISO_MIMO_popup_Callback(hObject, eventdata, handles) 
%        contents{get(hObject,'Value')} returns selected item from 

SISO_MIMO_popup 
str = get(hObject, 'String'); 
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val = get(hObject,'Value'); 

  
handles.SISO_MIMO = str{val}; 

  
guidata(hObject,handles) 

  
% --- Executes during object creation, after setting all properties. 
function SISO_MIMO_popup_CreateFcn(hObject, eventdata, handles) 

  
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
% --- Executes on selection change in Search_space_popupmenu. 
function Search_space_popupmenu_Callback(hObject, eventdata, handles) 

  
% --- Executes during object creation, after setting all properties. 
function Search_space_popupmenu_CreateFcn(hObject, eventdata, handles) 

  
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
% --- Executes on selection change in Search_factor_popupmenu. 
function Search_factor_popupmenu_Callback(hObject, eventdata, handles) 

  

  
% --- Executes during object creation, after setting all properties. 
function Search_factor_popupmenu_CreateFcn(hObject, eventdata, handles) 

  
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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D.6 Control Strategies MATLAB GUI Codes 

function varargout = ControlStrategy_Gui(varargin) 

  
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', 

@ControlStrategy_Gui_OpeningFcn, ... 
                   'gui_OutputFcn',  

@ControlStrategy_Gui_OutputFcn, ... 
                   'gui_LayoutFcn',  [], ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
   gui_State.gui_Callback = str2func(varargin{1}); 
end 

  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 

  

  
function ControlStrategy_Gui_OpeningFcn(hObject, eventdata, handles, 

varargin) 

  
handles.MIMO_SISO = 'SISO'; 
handles.PSO_GA = 'GA'; 
handles.WNN_ANN = 'WNN'; 
handles.REALTIME_SIMULATION = 'SIMULATION'; 
handles.NMPC_PID = 'NMPC'; 

  
temp = get(handles.first_popup,'String'); 
ind = find(strcmp(temp,handles.MIMO_SISO)); 
set(handles.first_popup,'Value',ind); 

  
temp = get(handles.second_popup,'String'); 
ind = find(strcmp(temp,handles.PSO_GA)); 
set(handles.second_popup,'Value',ind); 

  
temp = get(handles.third_popup,'String'); 
ind = find(strcmp(temp,handles.WNN_ANN)); 
set(handles.third_popup,'Value',ind); 

  
temp = get(handles.fourth_popup,'String'); 
ind = find(strcmp(temp,handles.REALTIME_SIMULATION)); 
set(handles.fourth_popup,'Value',ind); 

  
temp = get(handles.popup_fifth,'String'); 
ind = find(strcmp(temp,handles.NMPC_PID)); 
set(handles.popup_fifth,'Value',ind); 

  
temp = get(handles.popupmenu7,'String'); 
ind = find(strcmp(temp,'10')); 
set(handles.popupmenu7,'Value',ind); 

  

  
x  = 0:0.01:20; 
y1 = 200*exp(-0.05*x).*sin(x); 
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y2 = 0.8*exp(-0.5*x).*sin(10*x); 

  
plotyy(handles.axes1, x, y1, x, y2, 'plot'); 

  
% Choose default command line output for ControlStrategy_Gui 
handles.output = hObject; 

  
% Update handles structure 
guidata(hObject, handles); 

  
% --- Outputs from this function are returned to the command line. 
function varargout = ControlStrategy_Gui_OutputFcn(hObject, eventdata, 

handles) 

  
varargout{1} = handles.output; 

  
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
TheGUI(handles); 

  
% --- Executes on selection change in first_popup. 
function first_popup_Callback(hObject, eventdata, handles) 

  
str = get(hObject, 'String'); 
val = get(hObject,'Value'); 

  
handles.MIMO_SISO = str{val}; 

  
guidata(hObject,handles) 

  

  
% --- Executes during object creation, after setting all properties. 
function first_popup_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
% --- Executes on selection change in second_popup. 
function second_popup_Callback(hObject, eventdata, handles) 

  
str = get(hObject, 'String'); 
val = get(hObject,'Value'); 

  

  
handles.PSO_GA = str{val}; 
guidata(hObject,handles) 

  
% --- Executes during object creation, after setting all properties. 
function second_popup_CreateFcn(hObject, eventdata, handles) 

  
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
% --- Executes on selection change in third_popup. 
function third_popup_Callback(hObject, eventdata, handles) 
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str = get(hObject, 'String'); 
val = get(hObject,'Value'); 

  
handles.WNN_ANN = str{val}; 
guidata(hObject,handles) 

  
% --- Executes during object creation, after setting all properties. 
function third_popup_CreateFcn(hObject, eventdata, handles) 

  
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
% --- Executes on selection change in fourth_popup. 
function fourth_popup_Callback(hObject, eventdata, handles) 

  
str = get(hObject, 'String'); 
val = get(hObject,'Value'); 

  
handles.REALTIME_SIMULATION = str{val}; 
guidata(hObject,handles) 

  
% --- Executes during object creation, after setting all properties. 
function fourth_popup_CreateFcn(hObject, eventdata, handles) 

  
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
% --- Executes on selection change in popup_fifth. 
function popup_fifth_Callback(hObject, eventdata, handles) 

  
str = get(hObject, 'String'); 
val = get(hObject,'Value'); 

  
handles.NMPC_PID = str{val}; 
guidata(hObject,handles) 

  
% --- Executes during object creation, after setting all properties. 
function popup_fifth_CreateFcn(hObject, eventdata, handles) 

  
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
% --- Executes on button press in pushbutton5. 
function pushbutton5_Callback(hObject, eventdata, handles) 

  
close(gcf) 

  

  
function edit2_Callback(hObject, eventdata, handles) 
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% --- Executes during object creation, after setting all properties. 
function edit2_CreateFcn(hObject, eventdata, handles) 

  
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
function edit3_Callback(hObject, eventdata, handles) 

  
% --- Executes during object creation, after setting all properties. 
function edit3_CreateFcn(hObject, eventdata, handles) 

  
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function edit4_Callback(hObject, eventdata, handles) 

  
% --- Executes during object creation, after setting all properties. 
function edit4_CreateFcn(hObject, eventdata, handles) 

  
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
% --- Executes on selection change in popupmenu7. 
function popupmenu7_Callback(hObject, eventdata, handles) 

  
% --- Executes during object creation, after setting all properties. 
function popupmenu7_CreateFcn(hObject, eventdata, handles) 

  
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
% --- Executes on button press in pushbutton6. 
function pushbutton6_Callback(hObject, eventdata, handles) 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function TheGUI(handles) 

  

  
sistem          = handles.MIMO_SISO; 
optimisasion    = handles.PSO_GA; 
modell          = handles.WNN_ANN; 
Implementation  = handles.REALTIME_SIMULATION; 
regty           = handles.NMPC_PID; 
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ReferenceLevel_SISO_GA   =0.1; 
ReferenceLevel_SISO_PSO  =0.1; 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
if strcmp(sistem,'SISO') && strcmp(optimisasion,'GA') 

     

   
evalin('base','siso_initialize_script'); 

  
% clear 
% clc 
warning off; 

  
 tbegin = tic; 
tic 

  

  
if strcmp(Implementation,'real_time_Legacy')  
FunctionWriteDaq32(0,0);   % LEGACY Interface        - 32bit MATLAB 
end 

  
if strcmp(Implementation,'REALTIME')  
FunctionSBWriteDaq32(0,0);    % Session based Interface - 64bit MATLAB 
end 

  

  
Prediction ='plant'; 

  
simul      ='simulink';  

  
if strcmp(modell,'WNN') 
    nnfile='siso_wnn_model_parameters';% ****% THESIS_USE******** 
elseif strcmp(modell,'ANN') 
    nnfile='siso_ann_model_parameters';%THESIS     
end  

  

  
% ----------   Initializations   ----------- 
if strcmp(Prediction,'model') 
  % plot_a = {'Reference','PlantOutput','PlantPrediction'}; 
plot_a = {'Reference','PlantPrediction'}; 
plot_b = {'ManipulatedVariable'}; 
 elseif strcmp(Prediction,'plant') 
plot_a = {'Reference','PlantOutput'}; 
plot_b = {'ManipulatedVariable'}; 
end    

  
u_0      = 0;            % Initial control input 
y_0      = 0 ;           % Initial output 
y=y_0     ;         % Initial output 

  

  

  
% --  System to be Controlled (SIMULINK) -- 
integrator= 'ode45';         % Name of dif. eq. solver (f. ex. ode45 

or ode15s) 
sim_model = 'spm111';          % Name of SIMULINK model 
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kkp=0;kki=0;kkd=0;e=0;zzz=0;x02=0; 

  
% ---------- MPC initializations ----------- 
N1 = 1;                      % Min. prediction horizon (must equal 

time delay!) 
N2 = 5;                      % Max. prediction horizon (>= nb) 
Nu = 2;                      % Control horizon 

  
% ------ SIMULINK SISO TANK PARAMETERS  ------- 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
A1=0.00935;             %AREA OF TANK 1 
A2=0.00935;             %AREA OF TANK 2 
a1=0.0000785;           %AREA OF SMALL ORIFICE 1 
a2=0.0000785;            %AREA OF SMALL ORIFICE 2 
a12=0.0000785;            %AREA OF SMALL ORIFICE LINK BETWEEN 1 & 2 
ho1=0.0;               %INITIAL HEIGHT OF TANK 1 
ho2=0.0;               %INITIAL HEIGHT OF TANK 2 
B12=1;                  % VALVE OPENING BETWEEN 1 & 2 
B2=.5;              % VALVE 2 OPENING  NEEDED 
g=9.81;                 % GRAVITATIONAL CONSTANT 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
pgaink1=4500e-6/(60*7); % PUMPGAIN 1 

  
% ------ GENETIC ALGORITHM OPTIMISATION PARAMETERS  ------- 
str = get(handles.popupmenu7, 'String'); 
val = get(handles.popupmenu7,'Value'); 
samples = str2num(str{val}); 

  
pop_size = 20; 
generations =50; 
subpop = 1; 

  
xover_ratio=.5;   % Crossover fraction Probability 
mut_ratio=.1;  % Mutation Probability 

  

  
  ref=repmat(ReferenceLevel_SISO_GA,1,samples); 

  
u = 0*zeros(1,2); 
P = 1;         C = 0; 

  
ww=10; 
subpopulation=10; 
uimin = 0; uimax = 10; 
inp_range1 = [uimin;uimax];  
fielddr1 = rep(inp_range1,[1,Nu]); 

  
[population,nd1] = 

FuntionGeneratePopulation(uimin,uimax,subpopulation,pop_size,Nu,ww,uim

in,uimax)   ;      

  

  
eval(['load ' nnfile]);                % Load neural network 

  
%    [Wij,Wjk,a,b]   = 

FuntionMimoRowToMatrix(bestchrom1,hiddennum,inputnum,outputnum); 
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%%   DETERMINE REGRESSOR STRUCTURE     
na      = NNsizeCal(1);                       % # of past y's to be 

used in TDL 
nb      = NNsizeCal(2);                       % # of past u's to be 

used in TDL 
nk      = NNsizeCal(3);                       % Time delay in system 
d       = NNsizeCal(3);                       % Time delay in addition 

to the usual 1  
N1      = d;                           % N1<>d not fully implemented 

yet.  
inputs  = na+sum(nb);                  % Total number of inputs to 

network 
% outputs = size(tempo,1);             % # of outputs is 1 (SISO 

system) y1 is taken from spmtankdata3(nnfile  = 'forward_test3';) 
outputs = 1; 
% phi     = zeros(inputs,outputs);       % Initialize regression 

vector (NOTE IN CASE OF MIMO) 
%%  DETERMINE STRUCTURE OF (ANN) NETWORK MODEL IN MPC     
hidden   = length(NetDef(1,:));        % Number of hidden neurons # of 

Hs 
No_L_Output = find(NetDef(2,:)=='L')'; % Number of linear output of Ls 
% L_hidden = find(NetDef(1,:)=='L')';    % Location of linear hidden 

neurons 
L_hidden = ones(0,1); 
H_hidden = find(NetDef(1,:)=='H')';    % Location of tanh hidden 

neurons 
y1       = zeros(hidden,N2-N1+1);      % Hidden layer outputs 
yhat     = zeros(outputs,1);           % Network output 
%% INITIALIZE VARIABLES FOR reference filter polynomials 

  
u_old     = repmat(u_0,nb,1); 

  

  
%% Initialization of constant gain PID parameters 
if strcmp(regty,'PID'),  %% PID CONTROLLER %% 
     um=0; 
u_old     = repmat(u,nb,1);  

  

  
K=500;   Td=50;  alf=4 ;   Wi=.25 ;%  

  

  
e_old=0;     
y=0;  

  
  B1 = K*(1+Ts*Wi/2); 
  A1 = Ts*Wi; 
  B2 = (2*Td+Ts)/(2*alf*Td+Ts); 
  A2 = 2*Ts/(2*alf*Td+Ts); 
  I1 = 0; 
  I2 = 0; 
  Id = 0; 
  uimin = 0; uimax = 10; 
end 
%% Miscellaneous Initializations 
u = u_0;                % The controls up to time t<=0 
t = -Ts; 

  

  
if strcmp(simul,'simulink') 
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    simoptions = simset('Solver',integrator,'MaxRows',0); % Set 

integrator opt. 
    [sizes x0] = evalin('caller',[sim_model '([],[],[],0);']);    % 

Get initial states 
end 

  

  
ref_data    = ref(1:samples); 
u_data      = zeros(samples,1); 
y_data      = zeros(samples,1); 
yhat_data   = zeros(samples,1); 

  

  
N3=N2-N1+nb; 
tiu   = d-N1+nb; 
u_vec = repmat(u,N3,1); % nb is input delay% column 21x1 
y_vec = repmat(y_0,na,1); % 2x1 initial conditions 
tiy   = na+1; 

  
yhat_vec = repmat(y_0,N2+1,1);    % column 21x1 
tiyh = 1; 

  

  
Original_population=population; 
 J        = zeros(pop_size*1,N2); 
 J_new    = zeros(pop_size*1,N2); 

  

  

  
%% PREDICT OUTPUT FROM PLANT MPC   MAIN LOOP  START START START-------

---------------------------------------------- 

   
 gen=0; 

    
  for q = Nu + 1 : N2 
   population(:,q)  = population(:,Nu); 
  end 

   
  temp = 1; 

  
  for k1 = 1:N2 
  voltage_inputs(:,k1+2)     = population(:,temp); 

   
  for k2=1:subpop*pop_size 
   u_vec = repmat(voltage_inputs(k2,k1+2),subpop*(N2-N1+nb),1); 

    

                                    
                      phi=[yhat_vec(tiyh+k1-1   :  -1  :     tiyh+k1-

min(k1,na)) ; ... 
                                   y_vec(tiy-1  :  -1  :     tiy-

max(na-k1,0)) ; ... 
                                u_vec(tiu-d+k1  :  -1  :     tiu-d+1-

nb+k1)];      
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%   
   if strcmp(modell,'ANN')        
   yhat_vect(tiyh+k1) = 

SisoAnnModelFunction2(W1,W2,inputs,phi,H_hidden,L_hidden,hidden,tiyh,k

1,N1); 
   elseif strcmp(modell,'WNN') 
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   yhat_vect(tiyh+k1) = 

SisoWnnModelFunction2(Wij,Wjk,a',b',phi',inputnum,H_hidden,L_hidden,hi

dden,tiyh,k1,N1); 
   end      
   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%       

       
      yhat_vec(tiyh+k1)=yhat_vect(tiyh+k1); 
      pred_out(k2,k1+2)=yhat_vect(tiyh+k1);       
   end 

    
   J1(:,1)    = (pred_out(:,k1+2) - ref(1)).^2; 
   J(:,gen+1) =  J(:,gen+1) + J1(:,1); 

    
   temp = temp + 1;  
  end 

  
%   JJ=J(:,1); 

   
  times=1; 

   
  while times<samples+1      

        
  tstartSamples   = tic; 
  tstartGen       = clock;      

    
  Time_Initial = clock; 
  COUNTER=times 
  t = t + Ts; 

   

   
  if strcmp(regty,'NMPC'),     

  

   
   %% READ OUTPUT FROM PLANT    - ANN 
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%  
   if strcmp(modell,'ANN') 
       phi111                = [y_vec(na:-1:1);  u_old(d:d+nb-1)]; 
       phivector1(times,:)   =phi111'; 
       yhat = 

SisoModelFunction1(W1,W2,inputs,phi111,H_hidden,L_hidden,hidden); 
       yhat_vec(tiyh) = yhat;  

   
   elseif strcmp(modell,'WNN') 

       
        phi112        = [y_vec(d:d+na-1); u_old(d:d+nb-1)]; % best                                  
        phivector1(times,:)=phi112';      
        yhat = 

SisoWnnModelFunction1(Wij,Wjk,a',b',phi112',inputnum,H_hidden,L_hidden

,hidden);  
        yhat_vec(tiyh) = yhat;   

         
   end    

   
    if times == 1 

        
    [ikk1,ijjR]=min(J(:,1)); 
    [ikk2,ijjM]=max(J(:,1)); 
    bestO=population(ijjR,1:Nu); 
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     population=Original_population; 

  
     else 

  
     end 

     

        

  
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% 
   gen = 0; 

   
          while gen<generations+1 && etime(clock,tstartGen) <= (Ts-

0.01) 

  

      
      temp = 1;    
      J_new(:,gen+1) = 0;       
      fit = ranking(J(:,gen+1)); 

       

      
       sel_parent = select('sus',population,fit);     %OR sus% rws 
       sel_parent = recombin('xovsp',sel_parent,xover_ratio,subpop); % 

or xovdp% xovsp%     
       sel_parent = 

mutate('mutbga',sel_parent,fielddr1,mut_ratio,subpop); 
       sel_parent(ijjM,:)=bestO; 

  

       
      for q = Nu+1 : N2 
         sel_parent(:,q) = sel_parent(:,Nu); 
      end    

       
      for k3 = 1 : N2          
        voltage_inputs(:,k3+3) = sel_parent(:,temp); 

                   
   for k2=1:subpop*pop_size 
     u_vec = repmat(voltage_inputs(k2,k3+3),subpop*(N2-

N1+nb),1); %note 

            
              phi=[yhat_vec(tiyh+k3-1   :  -1  :     tiyh+k3-

min(k3,na)) ; ... 
                           y_vec(tiy-1  :  -1  :     tiy-max(na-

k3,0)) ; ... 
                        u_vec(tiu-d+k3  :  -1  :     tiu-d+1-nb+k3)];                         

  
     if strcmp(modell,'ANN')           
     yhat_vect(tiyh+k3) = 

SisoAnnModelFunction2(W1,W2,inputs,phi,H_hidden,L_hidden,hidden,tiyh,k

3,N1); 
     elseif strcmp(modell,'WNN') 
     yhat_vect(tiyh+k3) = 

SisoWnnModelFunction2(Wij,Wjk,a',b',phi',inputnum,H_hidden,L_hidden,hi

dden,tiyh,k1,N1);   
     end    

       
      yhat_vec(tiyh+k3)= yhat_vect(tiyh+k3); 
      pred_out(k2,k3+3)=yhat_vec(tiyh+k3);   
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   end 

   

    

    
           Jout(:,k3) = P *(pred_out(:,k3+3) - ref_data(times)).^2;  % 

change 
           Jin = C * (voltage_inputs(:,k3+3) - 

voltage_inputs(:,k3+2)).^2; 
           J_new(:,gen+1) = J_new(:,gen+1) + Jout(:,k3) + Jin; 
           temp = temp + 1;  

                                             
      end 

       
      sel_parent=sel_parent(:,1:Nu); 
      [population,J(:,gen+2)] = 

reins(population,sel_parent,subpop,1,J(:,gen+1),J_new(:,gen+1));       
      J1_View(:,gen+1,times)=J_new(:,gen+1); 

       

       

       
          [err0,ijjR] = min(J_new(:,gen+1)); 
          [err1,ijjM] = max(J_new(:,gen+1));  
           bestO      = sel_parent(ijjR,:); 

            

            

              
            gen = gen + 1;           
    endgen(gen+1)=toc;                   
   end 
%    selfinal=bs2rv(Chrom,FieldD); 
   [err(times),ijjR] = min(J(:,gen+1),[],1); 
   [ERR(times),ijjM] = max(J(:,gen+1),[],1); 

  

   
   u_old(1) = population(ijjR,1);    
   u=u_old(1); 

           

    

    

     
   if strcmp(Prediction,'model') 

        
       if strcmp(modell,'ANN')           
       u_data(times)       = u;               %BLUE     -CONTROLLER 

ACTION%% 
       yhat_data(times)    = yhat_vec(tiyh);  %RED      -MODEL OUTPUT%% 
       u_old    = shift(u_old,u); 
       y_vec    = [y_vec(2:length(y_vec));yhat]; 
       yhat_vec(1:length(yhat_vec)-1) = yhat_vec(2:length(yhat_vec)); 

      
     elseif strcmp(modell,'WNN') 
      u_data(times)       = u;               %BLUE     -CONTROLLER 

ACTION%% 
      yhat_data(times)    = yhat_vec(tiyh); 
      u_old    = shift(u_old,u); 
      y_vec    = [y_vec(2:length(y_vec)) ; yhat];   
      yhat_vec(1:length(yhat_vec)-1) = yhat_vec(2:length(yhat_vec));  
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       end    

      

                      
elseif strcmp(Prediction,'plant') 

     
      if strcmp(Implementation,'real_time_Legacy')  
          FunctionWriteDaq32(0,u_old(1)); 
          y=FunctionReadDaq32(1);       %TANK 2 
     elseif strcmp(Implementation,'REALTIME') 
        FunctionSBWriteDaq32(0,u_old(1)); 
        y=FunctionSBReadDaq32(1);       %TANK 2 
%%%%%%%%%%%%%%%SIMULINK PLANT%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     elseif strcmp(Implementation,'SIMULATION')  

  
    %%%%%%%%%%%%%%%SIMULINK PLANT%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    utmp=[t-Ts,u_old(1);t,u_old(1)]; 
    simoptions.InitialState=x0; 
    [time,x0,y] = sim(sim_model,[t-Ts t],simoptions,utmp); 
    x0 = x0(size(x0,1),:)'; 
    y  = y(size(y,1),:)';   
    yyy1=y(1,1)';yyy2=y(2,1)'; 
    tank1(times,:)=yyy1; 
     yyy2=yyy2+(yyy2*0.0264); 
    y=yyy2; 

     
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
end  
    u_data(times)       = u;               %BLUE     -CONTROLLER 

ACTION%% 
    y_data(times)       = y;               %GREEN    -PLANT OUTPUT%% 

     

    
     u_old    = shift(u_old,u); 
     y_vec    = [y_vec(2:length(y_vec)) ; y];   
     yhat_vec(1:length(yhat_vec)-1) = yhat_vec(2:length(yhat_vec));   
   end   
     errorvec(times)=ref_data(times)-y ; 

      
%     progress(fighandle,floor(100*i/times)); 
% progress(fighandle,floor(100*1i/times)); 
times = times + 1   ; 

   
  elseif strcmp(regty,'PID'),  %% PID CONTROLLER %% 

          
    %%%%%%%%%%%%%%%SIMULINK PLANT%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
      %PLANT%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
      if strcmp(Implementation,'real_time_Legacy')  

           
             ElapsedTime = toc(tstartSamples); 
% %                   delay(Ts-ElapsedTime) 
                   pause(Ts-ElapsedTime) 

  
          FunctionWriteDaq32(0,u_old(1)); 
          y=FunctionReadDaq32(1);       %TANK 2 
     elseif strcmp(Implementation,'REALTIME') 

          
          ElapsedTime = toc(tstartSamples); 
% %                   delay(Ts-ElapsedTime) 
                   pause(Ts-ElapsedTime) 
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        FunctionSBWriteDaq32(0,u_old(1)); 
        y=FunctionSBReadDaq32(1);       %TANK 2 
%%%%%%%%%%%%%%%SIMULINK PLANT%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     elseif strcmp(Implementation,'SIMULATION')     

              

          
         e = ref(times) - y ;              

  

  

   
    ui = B1*e + I1; 
    um = ui; 

     
    if ui<uimin, um=uimin; end 
    if ui>uimax, um=uimax; end 

     
    u = (um-I2)*B2 + I2; 
    I1 = I1 + (K*e - (ui - um))*A1; 
    I2 = I2 + (um - I2)*A2;  

          
     utmp=[t-Ts  um; t    um]; 
    simoptions.InitialState=x0; 
    [time,x0,y] = sim(sim_model,[t-Ts t],simoptions,utmp); 
    x0 = x0(size(x0,1),:)'; 
    y  = y(size(y,1),:)'; 
    yyy1=y(1,1)';yyy2=y(2,1)'; 
    tank1(times,:)=yyy1; 
    yyy2=yyy2+(yyy2*0.025); 
    y=yyy2;     

          

             
      end 

     
         u_data(times)       = um;               %BLUE    -CONTROLLER 

ACTION%% 
         y_data(times)       = y;               %GREEN    -PLANT 

OUTPUT%%   

   
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
 times = times + 1 ; 

  
end  

   
   end 

    

    
  if strcmp(Prediction,'model') 
  y_datac = yhat_data; 
elseif strcmp(Prediction,'plant') 
  y_datac = y_data;  
 end  

    

  
TotalMSE=0;TotalACE=0; 
for j = 1:samples 
     TotalMSE=TotalMSE + (ref_data(j) - y_datac(j)).^2;     %MSE-MEAN 

SQUARE ERROR% 
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     TotalACE=TotalACE + u_data(j).^2 ;                    %ACE-

AVERAGE CONTROLLER ENERGY% 
end 
TotalMSE=TotalMSE./samples;TotalACE=TotalACE./samples; 

  
Reference=ref_data; 
PlantOutput=y_data; 
PlantPrediction=yhat_data; 
ManipulatedVariable=u_data; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% BEGINNING OF DRAWING PLOTS  

  
set(gcf,'DefaultTextInterpreter','none'); 

  

  
%% Plot A 
  if(exist('plot_a')==1), 
   a_plots=length(plot_a);            % Number of plots in plot A 
   plmat = zeros(samples,a_plots);    % Collect vectors in plmat 
   for nn = 1:a_plots,  
     plmat(:,nn) = eval(plot_a{nn});    
   end 

    

    
   samplesTs=0:Ts:samples*Ts; 
   samplesTs=samplesTs(1:end-1); 
   plot(handles.axes3,[samplesTs],plmat);           % Plot plmat 
%    xlabel(handles.axes3,'Time (Secs)');   
   xlabel(handles.axes3,'(a) Tank 2 Output Response             (Time 

(Secs))');  
   ylabel(handles.axes3,'Height (metres)') 
   set(handles.axes3,'Xlim',[0 (samples*Ts)-Ts]);       % Set x-axis 

  

  

  
if strcmp(regty,'NMPC') 

  
if strcmp(modell,'ANN') && strcmp(Implementation,'SIMULATION')  
      title(handles.axes3,'SISO ANN-NMPC strategy - GA - Simulation');  
   elseif strcmp(modell,'WNN') && strcmp(Implementation,'SIMULATION') 
       title(handles.axes3,'SISO WNN-NMPC strategy - GA - Simulation');        
    elseif strcmp(modell,'ANN') && strcmp(Implementation,'REALTIME')  
      title(handles.axes3,'SISO ANN-NMPC strategy - GA - Real Time');  
   elseif strcmp(modell,'WNN') && strcmp(Implementation,'REALTIME') 
       title(handles.axes3,'SISO WNN-NMPC strategy - GA - Real Time');  
end 
elseif strcmp(regty,'PID')  
     title(handles.axes3,'SISO PID-GA Tunned Controller Strategy  - 

Simulation');  
end 

  
   grid(handles.axes3) 
   legend(handles.axes3,plot_a{:}); 
  end 

   
 %% Plot B 
  if(exist('plot_b')==1), 
   b_plots=length(plot_b);              % Number of plots in plot B 
   plmat = zeros(samples,b_plots);      % Collect vectors in plmat 
   for nn = 1:b_plots,  
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     plmat(:,nn) = eval(plot_b{nn});    
   end 

    

    
   samplesTs=0:Ts:samples*Ts; 
   samplesTs=samplesTs(1:end-1); 
   plot(handles.axes4,[samplesTs],plmat);           % Plot plmat 
%    xlabel(handles.axes4,'Time (Secs)'); 
   xlabel(handles.axes4,'(b) Controller Action (Manipulated Variables)             

(Time (Secs))');  
   ylabel(handles.axes4,'Voltage Input (V)') 
   set(handles.axes4,'Xlim',[0 (samples*Ts)-Ts]);       % Set x-axis 
   grid(handles.axes4) 
   legend(handles.axes4,plot_b{:}); 

    

    
  end 
   set(gcf,'DefaultTextInterpreter','tex'); 

  

  
TotalMSE 
TotalACE 

  
set(handles.edit2,'string',['MSE = ' num2str(TotalMSE) ' and ACE = ' 

num2str(TotalACE)]) 

  
toc 
Elapsed_time=toc; 

  
if strcmp(Implementation,'real_time_Legacy')  
FunctionWriteDaq32(0,0);   % LEGACY Interface        - 32bit MATLAB 
end 

  
if strcmp(Implementation,'REALTIME')  
FunctionSBWriteDaq32(0,0);    % Session based Interface - 64bit MATLAB 
end 

  
elseif strcmp(sistem,'SISO') && strcmp(optimisasion,'PSO') 

     

  
evalin('base','siso_initialize_script'); 

  
warning off; 

  
 tbegin = tic; 

  

  
if strcmp(Implementation,'real_time_Legacy')  
FunctionWriteDaq32(0,0);   % LEGACY Interface        - 32bit MATLAB 
end 

  
if strcmp(Implementation,'REALTIME')  
FunctionSBWriteDaq32(0,0);    % Session based Interface - 64bit MATLAB 
end 

  

  

  
% ---MODEL FOR REAL PLANT--------------------------------------------- 
Prediction ='plant'; 
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simul      ='simulink';  

  
if strcmp(modell,'WNN') 
    nnfile='siso_wnn_model_parameters';% ****% THESIS_USE******** 
elseif strcmp(modell,'ANN') 
    nnfile='siso_ann_model_parameters';%THESIS     
end  

  

  
% ----------   Initializations   ----------- 
if strcmp(Prediction,'model') 
  % plot_a = {'Reference','PlantOutput','PlantPrediction'}; 
plot_a = {'Reference','PlantPrediction'}; 
plot_b = {'ManipulatedVariable'}; 
 elseif strcmp(Prediction,'plant') 
plot_a = {'Reference','PlantOutput'}; 
plot_b = {'ManipulatedVariable'}; 
end    

  
u_0      = 0;            % Initial control input 
y_0      = 0 ;           % Initial output 
u = 0*zeros(1,2); 

  

  
% --  System to be Controlled (SIMULINK) -- 
integrator= 'ode45';         % Name of dif. eq. solver (f. ex. ode45 

or ode15s) 
sim_model = 'spm111';          % Name of SIMULINK model 
% sim_model2 = 'pid_test1';          % Name of SIMULINK model 

  
kkp=0;kki=0;kkd=0;e=0;zzz=0;x02=0; 

  
% ---------- MPC initializations ----------- 
N1 = 1;                      % Min. prediction horizon (must equal 

time delay!) 
N2 = 5;                      % Max. prediction horizon (>= nb) 
Nu = 2;                      % Control horizon 

  

  
% ------ SIMULINK SISO TANK PARAMETERS  ------- 

  
A1=0.00935;             %AREA OF TANK 1 
A2=0.00935;             %AREA OF TANK 2 
a1=0.0000785;           %AREA OF SMALL ORIFICE 1 
a2=.0000785;            %AREA OF SMALL ORIFICE 2 
a12=.0000785;            %AREA OF SMALL ORIFICE LINK BETWEEN 1 & 2 
ho1=0;               %INITIAL HEIGHT OF TANK 1 
ho2=0;               %INITIAL HEIGHT OF TANK 2 
B12=1;                  % VALVE OPENING BETWEEN 1 & 2 
B2=0.5;              % VALVE 2 OPENING 
pgaink1=4500e-6/(60*7); % PUMPGAIN 1 
pgaink2=(8.395/7.815)* 4500e-6/(60*7); % PUMPGAIN 2 
g=9.81;                 % GRAVITATIONAL CONSTANT 

  

  
% ------ PARTICLE SWARM OPTIMISATION PARAMETERS  ------- 
str = get(handles.popupmenu7, 'String'); 
val = get(handles.popupmenu7,'Value'); 
samples = str2num(str{val}); 
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% samples  = 350;             % Number of samples in SIMULATION 
pop_size = 10; 
generations =50; 
subpop = 1; 

  
ref=repmat(ReferenceLevel_SISO_PSO,1,samples); 

  
Q = 1;      R = 0; 

  
ww=3; 
uimin = 0; uimax = 10; 

  
[POS,nd1]=FuntionGeneratePopulation(uimin,uimax,subpop,pop_size,Nu,ww,

uimin,uimax); 

  
[V, 

nd2]=FuntionGeneratePopulation(uimin,uimax,subpop,pop_size,Nu,ww,uimin

,uimax); 

  

  

  
J = zeros(pop_size*1,generations); 
J_new =zeros(pop_size*1,generations); 

  
zz=3; 
zz1=2; 

  

  

  
MaxPos=10*ones(1,Nu); 
MinPos=0*ones(1,Nu); 
MaxV=MaxPos-MinPos; 

  
times1=1; 

  

  
% %good use 
wmax=2;wmin=5;c1s=2;c1e=5;c2s=2;c2e=5;% min 

  
fitness_Pos=zeros(1,pop_size); 
fitness_BestPos=zeros(1,pop_size); 
fitness_BestPos_g=0; 

  

  
BestPos=zeros(pop_size,Nu); 
BestPos_g=zeros(1,Nu); 
goal=1e-50; 
pop_size_single = 1; 

  
% MPCSISO1GS_INIT; 

  
eval(['load ' nnfile]);                % Load neural network 

  
%  [Wij,Wjk,a,b]          = 

FuntionMimoRowToMatrix(bestchrom1,hiddennum,inputnum,outputnum); 

   

    
%%   DETERMINE REGRESSOR STRUCTURE     
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na      = NNsizeCal(1);                       % # of past y's to be 

used in TDL 
nb      = NNsizeCal(2);                       % # of past u's to be 

used in TDL 
nk      = NNsizeCal(3);                       % Time delay in system 
d       = NNsizeCal(3);                       % Time delay in addition 

to the usual 1  
N1      = d;                           % N1<>d not fully implemented 

yet.  
inputs  = na+sum(nb);                  % Total number of inputs to 

network 
outputs = 1; 

  
%%  DETERMINE STRUCTURE OF (ANN) NETWORK MODEL IN MPC     
hidden   = length(NetDef(1,:));        % Number of hidden neurons # of 

Hs 
No_L_Output = find(NetDef(2,:)=='L')'; % Number of linear output of Ls 
% L_hidden = find(NetDef(1,:)=='L')';    % Location of linear hidden 

neurons 
L_hidden = ones(0,1); 
H_hidden = find(NetDef(1,:)=='H')';    % Location of tanh hidden 

neurons 
y1       = zeros(hidden,N2-N1+1);      % Hidden layer outputs 
yhat     = zeros(outputs,1);           % Network output 

  
u_old     = repmat(u_0,nb,1); 

  
% Initialization of constant gain PID parameters 
if strcmp(regty,'PID'),  %% PID CONTROLLER %% 
     um=0; 
u_old     = repmat(u,nb,1);  

  
K=500;   Td=50;  alf=4 ;   Wi=.25 ;% USE THESIS  

  

  
e_old=0;     
y=0;  

  
  B1 = K*(1+Ts*Wi/2); 
  A1 = Ts*Wi; 
  B2 = (2*Td+Ts)/(2*alf*Td+Ts); 
  A2 = 2*Ts/(2*alf*Td+Ts); 
  I1 = 0; 
  I2 = 0; 
  Id = 0; 
  uimin = 0; uimax = 10; 
end 

  
%% Miscellaneous Initializations 
u = u_0;                % The controls up to time t<=0 
t = -Ts; 

  

  
if strcmp(simul,'simulink') 
    simoptions = simset('Solver',integrator,'MaxRows',0); % Set 

integrator opt. 
    [sizes x0] = evalin('caller',[sim_model '([],[],[],0);']);    % 

Get initial states 
end 
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ref_data    = ref(1:samples); 
u_data      = zeros(samples,1); 
y_data      = zeros(samples,1); 
yhat_data   = zeros(samples,1); 

  
N3=N2-N1+nb; 
tiu   = d-N1+nb; 
u_vec = repmat(u,N3,1); % nb is input delay% column 21x1 
y_vec = repmat(y_0,na,1); % 2x1 initial conditions 
tiy   = na+1; 

  
yhat_vec = repmat(y_0,N2+1,1);    % column 21x1 
tiyh = 1; 

  

  

  
% PREDICT OUTPUT FROM PLANT MPC   MAIN LOOP  START START START--------

--------------------------------------------- 

  

  
 if strcmp(modell,'ANN')  

      
 

[fitness_Pos,loc1]=FuntionSisoPSOAnnTraining0001(V,Nu,N2,R,Q,subpop,po

p_size,N1,nb,yhat_vec,tiyh,na,y_vec,tiy,tiu,d,... 
    

ref_data,times1,W1,W2,inputs,H_hidden,L_hidden,hidden,generations,zz1); 

      
      

[fitness_BestPos,loc2,last]=FuntionSisoPSOAnnTraining0001(POS,Nu,N2,R,

Q,subpop,pop_size,N1,nb,yhat_vec,tiyh,na,y_vec,tiy,tiu,d,... 
    

ref_data,times1,W1,W2,inputs,H_hidden,L_hidden,hidden,generations,zz1); 

      
         elseif strcmp(modell,'WNN')              

          
   

[fitness_Pos,loc1]=FuntionSisoPSOSAWnnTraining0001(V,Nu,N2,R,Q,subpop,

pop_size,N1,nb,yhat_vec,tiyh,na,y_vec,tiy,tiu,d,... 
    

ref_data,times1,hiddennum,Wij,Wjk,a,b,inputnum,H_hidden,L_hidden,gener

ations,zz1); 

     
   

[fitness_BestPos,loc2,last]=FuntionSisoPSOSAWnnTraining0001(POS,Nu,N2,

R,Q,subpop,pop_size,N1,nb,yhat_vec,tiyh,na,y_vec,tiy,tiu,d,... 
    

ref_data,times1,hiddennum,Wij,Wjk,a,b,inputnum,H_hidden,L_hidden,gener

ations,zz1); 

     
 end  

  
      if   fitness_Pos<fitness_BestPos 
            BestPos_g          =   V(loc1,:); 
            fitness_BestPos_g  =   fitness_Pos; 
       else 
            BestPos_g          =     POS(loc2,:); 
            fitness_BestPos_g  =     fitness_BestPos; 
       end 
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MSEE=fitness_BestPos_g; 
BestPos_g =  BestPos_g(1:Nu); 

  

  
BestPos=POS; 
BestPos(last,:) = BestPos_g(1:Nu); 

  

  

     
  times=1; 

   
  while times<samples+1 

       
  tstartSamples   = tic; 
  tstartGen       = clock;      

    
  Time_Initial = clock; 
  COUNTER=times 
  t = t + Ts; 

   

       

  
 if times==1 
 BestPos=POS; 
 else 
 

[BestPos,nd3]=FuntionGeneratePopulation(0,10,subpop,pop_size,Nu,ww,uim

in,uimax); 
 end 

   
   BestPos(last,:)  =  BestPos_g(1,1:Nu); 

  
  if fitness_BestPos_g<1e-10     
  BestPos(last,:)  =  BestPos_g(1,1:Nu); 
  end 

    

       
  if strcmp(regty,'NMPC'),     

   
   if strcmp(modell,'ANN') 
       phi111                = [y_vec(na:-1:1);  u_old(d:d+nb-1)]; 
       phivector1(times,:)   =phi111'; 
       yhat = 

SisoModelFunction1(W1,W2,inputs,phi111,H_hidden,L_hidden,hidden); 
       yhat_vec(tiyh) = yhat;  

   
   elseif strcmp(modell,'WNN') 

       
        phi112        = [y_vec(d:d+na-1); u_old(d:d+nb-1)]; % best                                  
        phivector1(times,:)=phi112';      
        yhat = 

SisoWnnModelFunction1(Wij,Wjk,a',b',phi112',inputnum,H_hidden,L_hidden

,hidden);  
        yhat_vec(tiyh) = yhat;   

         
   end    
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 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%   

  

  
 gen = 0; 

   
   while (MSEE>goal)&&(gen<generations) && (etime(clock,Time_Initial) 

< Ts) 

  
      startgen(gen+1)=tic; 

       
      temp = 1;  

       
      gen=gen +1;   

       

       
      w=wmax-(wmax-wmin)*gen/generations; 
      c1=(c1e-c1s)*gen/generations+c1s; 
      c2=(c2e-c2s)*gen/generations+c2s; 

       

  
     for k=1:pop_size 
            V(k,:)= w*V(k,:)+ c1*rand*(BestPos(k,:)- 

POS(k,:))+c2*rand*(BestPos_g-POS(k,:)); 

  
     end 

       

  
     for i=1:pop_size 
     for j=1:Nu 
                   if V(i,j)>MaxV(j) 
                       V(i,j)=MaxV(j); 
                   elseif V(i,j)<-MaxV(j) 
                       V(i,j)=-MaxV(j); 
                   end 
                end 
    end 

        

       
     for i=1:pop_size 
        POS(i,:)=POS(i,:)+ V(i,:); 
    end 

               

        
  for i=1:pop_size 
                for j=1:Nu 
                   if POS(i,j)>MaxPos(j) 
                       POS(i,j)=MaxPos(j); 
                   elseif POS(i,j)<MinPos(j) 
                       POS(i,j)=MinPos(j); 
                   end 
                end 
  end 

     

          

       
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
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 if strcmp(modell,'ANN')  

      
       

[fitness_Pos,loc1]=FuntionSisoPSOAnnTraining0001(POS,Nu,N2,R,Q,subpop,

pop_size,N1,nb,yhat_vec,tiyh,na,y_vec,tiy,tiu,d,... 
    

ref_data,times,W1,W2,inputs,H_hidden,L_hidden,hidden,generations,zz); 

      
      

[fitness_BestPos,loc2,last]=FuntionSisoPSOAnnTraining0001(BestPos,Nu,N

2,R,Q,subpop,pop_size,N1,nb,yhat_vec,tiyh,na,y_vec,tiy,tiu,d,... 
    

ref_data,times,W1,W2,inputs,H_hidden,L_hidden,hidden,generations,zz); 

      
         elseif strcmp(modell,'WNN')  

  
   

[fitness_Pos,loc1]=FuntionSisoPSOSAWnnTraining0001(POS,Nu,N2,R,Q,subpo

p,pop_size,N1,nb,yhat_vec,tiyh,na,y_vec,tiy,tiu,d,... 
    

ref_data,times,hiddennum,Wij,Wjk,a,b,inputnum,H_hidden,L_hidden,genera

tions,zz); 

     
   

[fitness_BestPos,loc2,last]=FuntionSisoPSOSAWnnTraining0001(BestPos,Nu

,N2,R,Q,subpop,pop_size,N1,nb,yhat_vec,tiyh,na,y_vec,tiy,tiu,d,... 
    

ref_data,times,hiddennum,Wij,Wjk,a,b,inputnum,H_hidden,L_hidden,genera

tions,zz); 
 end  

  
  if   fitness_Pos<fitness_BestPos 
            BestPos_g          =   POS(loc1,:); 
            fitness_BestPos_g  =   fitness_Pos; 
       else 
            BestPos_g          =     BestPos(loc2,:); 
            fitness_BestPos_g  =     fitness_BestPos; 
  end 

  

  
    MSEE=fitness_BestPos_g;     
    endgen(gen+1)=toc; 

  
   end     

   
 u_old(1) =  BestPos_g(1,1);    
 u        =  u_old(1);  
    %%%%%%%%%%%%%%%SIMULINK PLANT%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
              ElapsedTime = toc(tstartSamples); 
%                   delay(Ts-ElapsedTime) 
                  pause(Ts-ElapsedTime) 

                   

      

  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
   if strcmp(Prediction,'model') 

        
       if strcmp(modell,'ANN')           
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       u_data(times)       = u;               %BLUE     -CONTROLLER 

ACTION%% 
       yhat_data(times)    = yhat_vec(tiyh);  %RED      -MODEL OUTPUT%% 
       u_old    = shift(u_old,u); 
       y_vec    = [y_vec(2:length(y_vec));yhat]; 
       yhat_vec(1:length(yhat_vec)-1) = yhat_vec(2:length(yhat_vec)); 

      
     elseif strcmp(modell,'WNN') 
      u_data(times)       = u;               %BLUE     -CONTROLLER 

ACTION%% 
      yhat_data(times)    = yhat_vec(tiyh); 
      u_old    = shift(u_old,u); 
      y_vec    = [y_vec(2:length(y_vec)) ; yhat];   
      yhat_vec(1:length(yhat_vec)-1) = yhat_vec(2:length(yhat_vec));  

       
       end    

                           
elseif strcmp(Prediction,'plant') 
    %%%%%%%%%%%%%%%SIMULINK PLANT%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    
    if strcmp(Implementation,'real_time_Legacy')  
      FunctionWriteDaq32(0,u_old(1)); 
      y=FunctionReadDaq32(1); %TANK 2 

       
    elseif strcmp(Implementation,'REALTIME') 
      FunctionSBWriteDaq32(0,u_old(1)); 
      y=FunctionSBReadDaq32(1); %TANK 2 

   
     elseif strcmp(Implementation,'SIMULATION')         

      
    %%%%%%%%%%%%%%%SIMULINK PLANT%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    utmp=[t-Ts,u_old(1);t,u_old(1)]; 
    simoptions.InitialState=x0; 
    [time,x0,y] = sim(sim_model,[t-Ts t],simoptions,utmp); 
    x0 = x0(size(x0,1),:)'; 
    y  = y(size(y,1),:)';   
    yyy1=y(1,1)';yyy2=y(2,1)'; 
    tank1(times,:)=yyy1; 
    yyy2=yyy2+(yyy2*0.0264); 
    y=yyy2; 
    end 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
%    y=FunctionReadDaq32(1); %TANK 2 
%%%%%%%%%%%%%%%SIMULINK PLANT%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
    u_data(times)       = u;               %BLUE     -CONTROLLER 

ACTION%% 
    y_data(times)       = y;               %GREEN    -PLANT OUTPUT%%   
    u_old    = shift(u_old,u); 
    y_vec    = [y_vec(2:length(y_vec)) ; y];   
    yhat_vec(1:length(yhat_vec)-1) = yhat_vec(2:length(yhat_vec));   
   end   

       
times = times + 1    
   end 
   if strcmp(regty,'PID'),  %% PID CONTROLLER %% 

        
 if strcmp(Implementation,'real_time_Legacy')  
      FunctionWriteDaq32(0,u_old(1)); 
      y=FunctionReadDaq32(1); %TANK 2 

       
    elseif strcmp(Implementation,'REALTIME') 
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      FunctionSBWriteDaq32(0,u_old(1)); 
      y=FunctionSBReadDaq32(1); %TANK 2 

   

  
     elseif strcmp(Implementation,'SIMULATION')  

     
         e = ref(times) - y ;      

   
    ui = B1*e + I1; 
    um = ui; 

     
    if ui<uimin, um=uimin; end 
    if ui>uimax, um=uimax; end 

     
    u = (um-I2)*B2 + I2; 
    I1 = I1 + (K*e - (ui - um))*A1; 
    I2 = I2 + (um - I2)*A2;  

          
     utmp=[t-Ts  um; t    um]; 
    simoptions.InitialState=x0; 
    [time,x0,y] = sim(sim_model,[t-Ts t],simoptions,utmp); 
    x0 = x0(size(x0,1),:)'; 
    y  = y(size(y,1),:)'; 
    yyy1=y(1,1)';yyy2=y(2,1)'; 
    tank1(times,:)=yyy1; 
    yyy2=yyy2+(yyy2*0.025); 
    y=yyy2;     

          

             
      end 

     
         u_data(times)       = um;               %BLUE    -CONTROLLER 

ACTION%% 
         y_data(times)       = y;               %GREEN    -PLANT 

OUTPUT%%   

   
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

   
  times = times + 1  

  
end  

   
    end 

    

    
  if strcmp(Prediction,'model') 
  y_datac = yhat_data; 
elseif strcmp(Prediction,'plant') 
  y_datac = y_data;  
 end  

    

  
TotalMSE=0;TotalACE=0; 
for j = 1:samples 
     TotalMSE=TotalMSE + (ref_data(j) - y_datac(j)).^2;     %MSE-MEAN 

SQUARE ERROR% 
     TotalACE=TotalACE + u_data(j).^2 ;                    %ACE-

AVERAGE CONTROLLER ENERGY% 
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end 
TotalMSE=TotalMSE./samples;TotalACE=TotalACE./samples; 

  
Reference=ref_data; 
PlantOutput=y_data; 
PlantPrediction=yhat_data; 
ManipulatedVariable=u_data; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% BEGINNING OF DRAWING PLOTS  

  
set(gcf,'DefaultTextInterpreter','none'); 

  
%% Plot A 
  if(exist('plot_a')==1), 
   a_plots=length(plot_a);            % Number of plots in plot A 
   plmat = zeros(samples,a_plots);    % Collect vectors in plmat 
   for nn = 1:a_plots,  
     plmat(:,nn) = eval(plot_a{nn});    
   end 

    
   samplesTs=0:Ts:samples*Ts; 
   samplesTs=samplesTs(1:end-1); 
   plot(handles.axes3,[samplesTs],plmat);           % Plot plmat 
   xlabel(handles.axes3,'(a) Tank 2 Output Response          (Time 

(Secs))');  
   ylabel(handles.axes3,'Height (metres)') 
   set(handles.axes3,'Xlim',[0 (samples*Ts)-Ts]);       % Set x-axis 

  

  
if strcmp(regty,'NMPC') 
   if strcmp(modell,'ANN') && strcmp(Implementation,'SIMULATION')  
      title(handles.axes3,'SISO ANN-NMPC strategy - PSO - Simulation');  
   elseif strcmp(modell,'WNN') && strcmp(Implementation,'SIMULATION') 
       title(handles.axes3,'SISO WNN-NMPC strategy - PSO - 

Simulation');        
    elseif strcmp(modell,'ANN') && strcmp(Implementation,'REALTIME')  
      title(handles.axes3,'SISO ANN-NMPC strategy - PSO - Real Time');  
   elseif strcmp(modell,'WNN') && strcmp(Implementation,'REALTIME') 
       title(handles.axes3,'SISO WNN-NMPC strategy - PSO - Real Time');  
  end 
elseif strcmp(regty,'PID')  
     title(handles.axes3,'SISO PID-GA Tunned Controller Strategy  - 

Simulation');  
end      
   grid(handles.axes3) 
   legend(handles.axes3,plot_a{:}); 
  end 

   
 %% Plot B 
  if(exist('plot_b')==1), 
   b_plots=length(plot_b);              % Number of plots in plot B 
   plmat = zeros(samples,b_plots);      % Collect vectors in plmat 
   for nn = 1:b_plots,  
     plmat(:,nn) = eval(plot_b{nn});    
   end 

    
   samplesTs=0:Ts:samples*Ts; 
   samplesTs=samplesTs(1:end-1); 
   plot(handles.axes4,[samplesTs],plmat);           % Plot plmat 
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   xlabel(handles.axes4,'(b) Controller Action (Manipulated Variables)            

(Time (Secs))');  
   ylabel(handles.axes4,'Voltage Input (V)') 
   set(handles.axes4,'Xlim',[0 (samples*Ts)-Ts]);       % Set x-axis 
   grid(handles.axes4) 
   legend(handles.axes4,plot_b{:}); 

    

    
  end 
set(gcf,'DefaultTextInterpreter','tex'); 

  

  

  
TotalMSE 
TotalACE 

  
set(handles.edit2,'string',['MSE = ' num2str(TotalMSE) ' and ACE = ' 

num2str(TotalACE)]) 

  
toc 
Elapsed_time=toc; 

  
if strcmp(Implementation,'real_time_Legacy')  
FunctionWriteDaq32(0,0);   % LEGACY Interface        - 32bit MATLAB 
end 

  
if strcmp(Implementation,'REALTIME')  
FunctionSBWriteDaq32(0,0);    % Session based Interface - 64bit MATLAB 
end 

  

  
elseif strcmp(sistem,'MIMO') && strcmp(optimisasion,'GA') 

     
evalin('base','mimo_initialize_script'); 

  
warning off; 

  
 tbegin = tic; 

  
if strcmp(Implementation,'real_time_Legacy')  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
FunctionWriteDaq32(0,0); FunctionWriteDaq32(1,0);     % LEGACY 

Interface        - 32bit MATLAB 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
end 

  
if strcmp(Implementation,'REALTIME')  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
FunctionSBWriteDaq32(0,0); FunctionSBWriteDaq32(1,0);   % Session 

based Interface - 64bit MATLAB 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
end 

  

  
clear plot_a plot_b 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Prediction ='plant'; 
simul      ='simulink';       
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  %% Initialization of constant gain PID parameters 

  
if strcmp(regty,'PID') 
Ts=0.2; 
K1=50;  Td1=5;   alf1=10;    Wi1=1;         % USE THESIS 

  
K2=K1;                       % PID parameters 
Td2=Td1;                       % PID  0.8 
alf2=alf1;                     % PID 
Wi2=Wi1;                      % PID (1/Ti) 

  
  B1a = K1*(1+Ts*Wi1/2); 
  A1a = Ts*Wi1; 
  B2a = (2*Td1+Ts)/(2*alf1*Td1+Ts); 
  A2a = 2*Ts/(2*alf1*Td1+Ts); 
  I1a = 0; 
  I2a = 0; 
  uimina = 0; uimaxa = 10; 

   
  B1b = K2*(1+Ts*Wi2/2); 
  A1b = Ts*Wi2; 
  B2b = (2*Td2+Ts)/(2*alf2*Td2+Ts); 
  A2b = 2*Ts/(2*alf2*Td2+Ts); 
  I1b = 0; 
  I2b = 0; 
  uiminb = 0; uimaxb = 10; 
end 

  

  

  
% ----------   Plotting Graphs Initializations   ----------- 
if strcmp(Prediction,'model') 
plot_a 

={'Reference1','PlantPrediction1','Reference2','PlantPrediction2'};% 

MODEL 
%%%   {'ref_data'-BLUE,'y_data'-GREEN,'yhat_data'-RED}; 
plot_b = {'ManipulatedVariable1','ManipulatedVariable2'}; 
elseif strcmp(Prediction,'plant') 
plot_a = {'Reference1','PlantOutput1','Reference2','PlantOutput2'}; 
%%%   {'ref_data'-BLUE,'y_data'-GREEN,'yhat_data'-RED}; 
plot_b = {'ManipulatedVariable1','ManipulatedVariable2'}; 
end       

  
 u_0      = [0 0];                 % Initial control input 
 y_0      = [0.0 0.0];             % Initial output 
yyy1=0; 
yyy2=0; 

  

  

  
if strcmp(modell,'WNN')        
     nnfile='mimo_wnn_model_parameters'; % THESIS_USE******     
elseif strcmp(modell,'ANN') 
    nnfile = 'mimo_ann_model_parameters';% THESIS_USE****** 
end  

  
% ---------- MPC initializations ----------- 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% 
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N1 = 1;                      % Min. prediction horizon (must equal 

time delay!) 
N2 = 5;                      % Max. prediction horizon (>= nb) 
Nu = 2;                      % Control horizon 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% 

  
% ------ SIMULINK TANK PARAMETERS  ------- 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% 
g   = 9.81; 
A1  = 0.00935;             %AREA OF TANK 1 
A2  = 0.00935;             %AREA OF TANK 2 
a1  = 0.0000785;           %AREA OF SMALL ORIFICE 1 
a2  = 0.0000785;           %AREA OF SMALL ORIFICE 2 
a12 = 0.0000785;          %AREA OF SMALL ORIFICE LINK BETWEEN 1 & 2 

  

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% 
factor=0.8961; 
pgaink1=1.2275e-5;  
pgaink1=8.3423e-6;% PUMPGAIN 1 
pgaink2=pgaink1*factor;                              % PUMPGAIN 2 

  
C1=-498.1836e-6/60; 
C2=C1*factor; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% 

  
ho1=0;                %INITIAL HEIGHT OF TANK 1 
ho2=0;                %INITIAL HEIGHT OF TANK 2 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% 
if strcmp(Prediction,'model')  
y_0      = [ho1 ho2];             % INITIAL HEIGHT OF TANKS 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%  

  
B12  = 0.3;                           % VALVE OPENING BETWEEN 1 & 2 
B1   = 0.3;                            % VALVE 1 OPENING 
B2   = 0.3;                            % VALVE 2 OPENING 
%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%% 

  
% --  System to be  Controlled (SIMULINK) -- 
integrator= 'ode45';         % Name of dif. eq. solver (f. ex. ode45 

or ode15s) 
sim_model = 'spm222';          % Name of SIMULINK model 

  

  
% ------ GENETIC ALGORITHM OPTIMISATION PARAMETERS  ------- 
str = get(handles.popupmenu7, 'String'); 
val = get(handles.popupmenu7,'Value'); 
samples = str2num(str{val}); 

  

  
pop_size = 20; 
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generations =50; 

  
xover_ratio=.65;   % Crossover fraction Probability 
mut_ratio=.1;     % Mutation Probability 

  
uimin=0; 
uimax=10; 

  
subpop = 1; 
ww=1;             
division=1; 
%%%%%%%%%%%%%%%%%%%%%%   REFERENCE 

SIGNALS  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
   ref1=repmat(0.25,1,samples); ref2=repmat(0.2,1,samples); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% 

  
Q1 = 1;    R1 = 0; 
Q2 = 1;    R2 = 0; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% 

  
inp_range   = [uimin;uimax];  
fielddr1    = rep(inp_range,[1,Nu]); 
fielddr2    = rep(inp_range,[1,Nu]); 
fielddr     = [fielddr1 fielddr2]; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% 

  
[population1, 

population2]=FuntionGeneratePopulationTEMP0(uimin,uimax,subpop,pop_siz

e,Nu,ww,uimin,uimax); 

  
Original_population=[population1 population2]; 

  
eval(['load ' nnfile]);                % Load neural network 

  
SYS=2; % FOR MIMO SYSTEM 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%   DETERMINE REGRESSOR STRUCTURE     
na      = NNsizeCal(1,1);                       % # of past y's to be 

used in TDL 
nb      = NNsizeCal(2,1);                       % # of past u's to be 

used in TDL 
nk      = 1;                           % Time delay in system 
d       = 1;                           % Time delay in addition to the 

usual 1  
N1      = 1;                           %  
inputs  = (na+sum(nb))*SYS;            % Total number of inputs to 

network 
outputs = SYS; 
% phi     = zeros(inputs,outputs);       % Initialize regression 

vector (NOTE IN CASE OF MIMO) 
%%  DETERMINE STRUCTURE OF (ANN) NETWORK MODEL IN MPC     
hidden   = length(NetDef(1,:));        % Number of hidden neurons # of 

Hs 
No_L_Output = find(NetDef(2,:)=='L')'; % Number of linear output of Ls 
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% L_hidden = find(NetDef(1,:)=='L')';    % Location of linear hidden 

neurons  
L_hidden = ones(0,1); 
H_hidden = find(NetDef(1,:)=='H')';    % Location of tanh hidden 

neurons 
y1       = zeros(hidden,N2-N1+1);      % Hidden layer outputs 
yhat     = zeros(outputs,1);           % Network output 
%% INITIALIZE VARIABLES  

  
y1_vec     = repmat(y_0(1),na,1);  
y2_vec     = repmat(y_0(2),na,1); 
u1_old     = repmat(u_0(1),nb,1); 
u2_old     = repmat(u_0(2),nb,1); 

  

  
%% Miscellaneous Initializations 
u1          = u_0(1);                % The controls up to time t<=0 
u2          = u_0(2);                % The controls up to time t<=0 
t = -Ts; 

  
% fighandle=progress; 
%% Initialization of Simulink  system 
if strcmp(simul,'simulink') 
  simoptions = simset('Solver',integrator,'MaxRows',0); % Set 

integrator opt. 
    [sizes x0] = evalin('caller',[sim_model '([],[],[],0);']);    % 

Get initial states 
end 

  
ref1_data    = ref1(1:samples);   ref2_data    = ref2(1:samples); 
u1_data      = zeros(samples,1);  u2_data      = zeros(samples,1); 
y1_data      = zeros(samples,1);  y2_data      = zeros(samples,1); 
y1hat_data   = zeros(samples,1);  y2hat_data   = zeros(samples,1); 

  
N3=N2-N1+nb; 
tiu   = d-N1+nb; 
u1_vec = repmat(u1,N3,1);      u2_vec = repmat(u2,N3,1);  
y1_vec = repmat(y_0(1),na,1);  y2_vec = repmat(y_0(2),na,1);  

  
tiy   = na+1; 

  
y1hat_vec = repmat(y_0(1),N2+1,1);  y2hat_vec = repmat(y_0(2),N2+1,1);     
tiyh = 1; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%% 

  
population=[population1 population2]; 

  
Original_population=population; 
J            = zeros(pop_size*1,N2); 
J_new        = zeros(pop_size*1,N2); 

  
%% PREDICT OUTPUT FROM PLANT MPC   MAIN LOOP  START START START-------

---------------------------------------------- 

   
 gen=0; 

    
  for q = Nu + 1 : N2 
   population1(:,q)  = population1(:,Nu); 
   population2(:,q)  = population2(:,Nu); 
  end 
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  temp = 1; 

  
  for k1 = 1:N2 

     
   voltage_inputs1(:,k1+2)     = population1(:,temp); 
   voltage_inputs2(:,k1+2)     = population2(:,temp); 

    
   for k2=1:1*pop_size 
   u1_vec = repmat(voltage_inputs1(k2,k1+2),1*N3,1); 
   u2_vec = repmat(voltage_inputs2(k2,k1+2),1*N3,1); 

    

                                    
                     phi1=[y1hat_vec(tiyh+k1-1   :  -1  :     tiyh+k1-

min(k1,na)) ; ... 
                                   y1_vec(tiy-1  :  -1  :     tiy-

max(na-k1,0)) ; ... 
                                u1_vec(tiu-d+k1  :  -1  :     tiu-d+1-

nb+k1)];  

                             
                     phi2=[y2hat_vec(tiyh+k1-1   :  -1  :     tiyh+k1-

min(k1,na)) ; ... 
                                   y2_vec(tiy-1  :  -1  :     tiy-

max(na-k1,0)) ; ... 
                                u2_vec(tiu-d+k1  :  -1  :     tiu-d+1-

nb+k1)];         

                             
      phi=[ phi1(1:na)'  phi1(na+1:na*2)'  phi2(na+1:na*2)'  

phi2(1:na)'];%option 11CORRECT 

       

          
   if strcmp(modell,'ANN')        
   yhat_vec(tiyh+k1,:) = 

MimoAnnModelFunction2(W1,W2,inputs,phi,H_hidden,L_hidden,hidden,tiyh,k

1,N1); 
   elseif strcmp(modell,'WNN') 
   yhat_vec(tiyh+k1,:) = 

MimoWnnModelFunction2(Wij,Wjk,a',b',phi,inputnum,H_hidden,L_hidden,hid

den,tiyh,k1,N1); 
    end     

  

  

      
      y1hat_vec(tiyh+k1)= yhat_vec(tiyh+k1,1); y2hat_vec(tiyh+k1)= 

yhat_vec(tiyh+k1,2);       
      pred_out(k2,k1+2,:)=yhat_vec(tiyh+k1,:);       

       

  

     
   end 

    
   J1(:,1) = (pred_out(:,k1+2,1) - ref1(1)).^2 + (pred_out(:,k1+2,2) - 

ref2(1)).^2   ; 
   J(:,gen+1) = J(:,gen+1)   + J1(:,1); 

    
   temp = temp + 1;  
  end 
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  times=1; 
%   bestO=[population1(ijjR,1:Nu) population2(ijjR,1:Nu) ] ;  
   while times<samples +1 
   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%      

      
  tstartSamples   = tic; 
  tstartGen       = clock;  

  
  COUNTER=times 
  t = t + Ts; 

   
  if strcmp(regty,'NMPC') 

       
  if strcmp(Prediction,'model') 

     

    
   if strcmp(modell,'ANN') 
  phi1            = [y1_vec(na:-1:1);  u1_old(d:d+nb-1)]; 
  phi2            = [y2_vec(na:-1:1);  u2_old(d:d+nb-1)]; 

   
  phi=[ phi1(1:na)'    phi1(nb+1:nb*2)'     phi2(nb+1:nb*2)'    

phi2(1:na)' ];   %option 11 
   elseif strcmp(modell,'WNN') 
  phi1            = [y1_vec(na:-1:1);  u1_old(d:d+nb-1)]; 
  phi2            = [y2_vec(na:-1:1);  u2_old(d:d+nb-1)]; 

   
  phi=[ phi1(1:na)'    phi1(nb+1:nb*2)'     phi2(nb+1:nb*2)'   

phi2(1:na)' ];   %option 11 
   end   

   

     
  if strcmp(modell,'ANN') 

       
  yhat(:) = 

MimoAnnModelFunction1(W1,W2,inputs,phi,H_hidden,L_hidden,hidden); 
  y1hat_vec(1) = yhat(1); y2hat_vec(1) = yhat(2); 

   
   elseif strcmp(modell,'WNN') 

        
  yhat(:) = 

MimoWnnModelFunction1(Wij,Wjk,a',b',phi,inputnum,H_hidden,L_hidden,hid

den); 
  y1hat_vec(1) = yhat(1); y2hat_vec(1) = yhat(2);  

   
  end   

   
  end 

    
   [ikk1,ijjR]=min(J(:,1)); 
   [ikk2,ijjM]=max(J(:,1)); 

  
   if times==1 
             bestO=[population1(ijjR,1:Nu) population2(ijjR,1:Nu) ] ;  
   else 
             bestO=population(ijjR,1:Nu*2);  
   end 

    
      population=Original_population;  
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  [population1, 

population2]=FuntionGeneratePopulationTEMP0(uimin,uimax,subpop,pop_siz

e,Nu,ww,uimin,uimax);%O 

  
      population  =  [population1 population2]; 

       

       
   gen = 0; 

  
   while gen<generations+1 && etime(clock,tstartGen) <= (Ts-1e-3) 

  
      temp = 1;    
      J_new(:,gen+1) = 0;   

       
      fit = ranking(J(:,gen+1));     

            

       
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
      sel_parent = select('rws',population,fit);       
      sel_parent = recombin('xovsp',sel_parent,xover_ratio,subpop);       
      sel_parent = 

mutate('mutbga',sel_parent,fielddr,mut_ratio,subpop); 
     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

     

       
       sel_parent(ijjM,:) = bestO; 
       sel_parent1 = sel_parent(:,1:Nu); 
       sel_parent2 = sel_parent(:,Nu+1:end);        

                       
      for q = Nu+1 : N2 
         sel_parent1(:,q) = sel_parent1(:,Nu); 
         sel_parent2(:,q) = sel_parent2(:,Nu); 
      end    

       
      for k3 = 1 : N2            
        voltage_inputs1(:,k3+3) = sel_parent1(:,temp); 
        voltage_inputs2(:,k3+3) = sel_parent2(:,temp); 

         

         

                   
   for k2=1:subpop*pop_size 
     u1_vec = repmat(voltage_inputs1(k2,k3+3),subpop*N3,1); %note 
     u2_vec = repmat(voltage_inputs2(k2,k3+3),subpop*N3,1); %note 

      

                      
              phi1=[y1hat_vec(tiyh+k3-1   :  -1  :     tiyh+k3-

min(k3,na)) ; ... 
                            y1_vec(tiy-1  :  -1  :     tiy-max(na-

k3,0)) ; ... 
                         u1_vec(tiu-d+k3  :  -1  :     tiu-d+1-nb+k3)];  

                     
              phi2=[y2hat_vec(tiyh+k3-1   :  -1  :     tiyh+k3-

min(k3,na)) ; ... 
                            y2_vec(tiy-1  :  -1  :     tiy-max(na-

k3,0)) ; ... 
                         u2_vec(tiu-d+k3  :  -1  :     tiu-d+1-nb+k3)];       
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   phi=[ phi1(1:na)'    phi1(nb+1:nb*2)'     phi2(nb+1:nb*2)'    

phi2(1:na)' ];   %option 11 

       

    

      

       
   if strcmp(modell,'ANN')        
   yhat_vec(tiyh+k3,:) = 

MimoAnnModelFunction2(W1,W2,inputs,phi,H_hidden,L_hidden,hidden,tiyh,k

3,N1); 
   elseif strcmp(modell,'WNN') 
   yhat_vec(tiyh+k3,:) = 

MimoWnnModelFunction2(Wij,Wjk,a',b',phi,inputnum,H_hidden,L_hidden,hid

den,tiyh,k3,N1); 
   end   

       

  
      y1hat_vec(tiyh+k3)= yhat_vec(tiyh+k3,1); y2hat_vec(tiyh+k3)= 

yhat_vec(tiyh+k3,2);       
      pred_out(k2,k3+3,:)=yhat_vec(tiyh+k3,:);  

           

     

  
   end 

    
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% 

    
       Jout(:,k3) = Q1 *(pred_out(:,k3+3,1) - ref1_data(times)).^2  +   

Q2 *(pred_out(:,k3+3,2) - ref2_data(times)).^2;  % change 
       Jin = R1 * (voltage_inputs1(:,k3+3) - 

voltage_inputs1(:,k3+2)).^2  +  R2 * (voltage_inputs2(:,k3+3) - 

voltage_inputs2(:,k3+2)).^2; 
       J_new(:,gen+1) = J_new(:,gen+1) + Jout(:,k3) + Jin; 
       temp = temp + 1;  

           
      end 

            

            
      sel_parent=sel_parent(:,1:Nu*2); 
      [population,J(:,gen+2)] = 

reins(population,sel_parent,subpop,1,J(:,gen+1),J_new(:,gen+1));       
      J1_View(:,gen+1,times)= J_new(:,gen+1); 

       
            [err0,ijjR] = min(J_new(:,gen+1)); 
            [err1,ijjM] = max(J_new(:,gen+1)); 
            bestO       = sel_parent(ijjR,:);              

          
    gen = gen + 1; 

     
   end % WHILE END FOR GENERATION 

    

  
   [err(times),ijjR] = min(J(:,gen+1),[],1); 
   [ERR(times),ijjM] = max(J(:,gen+1),[],1); 

  
   u1_old(1) = population(ijjR,1);  u2_old(1) = population(ijjR,Nu+1); 
   u1        = u1_old(1);                      u2       = u2_old(1);  
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   %%%%   INPUTS TO EITHER REAL PLANT OR SIMULINK OR DESIGNED 

MODELS %%%% 

    
           %%%%%%  DELAYS BEFORE SIGNALS GO INTO THE PLANT %%%%%%%% 
                %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                   ElapsedTime = toc(tstartSamples); 
%                  delay(Ts-ElapsedTime) 
                   pause(Ts-ElapsedTime) 
                %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

           

               
     if strcmp(Implementation,'real_time_Legacy')  

          
     FunctionWriteDaq32(0,u1_old(1)); FunctionWriteDaq32(1,u2_old(1));   
     yyy1=FunctionReadDaq32(0);  yyy2=FunctionReadDaq32(1);              

  
     elseif strcmp(Implementation,'REALTIME') 

          
     FunctionSBWriteDaq32(0,u1_old(1)); 

FunctionSBWriteDaq32(1,u2_old(1)); 
     yyy1=FunctionSBReadDaq32(0); yyy2=FunctionSBReadDaq32(1); 

    
     elseif strcmp(Implementation,'SIMULATION')         

            
    utmp=[t-Ts,u1_old(1) u2_old(1) ; t, u1_old(1) u2_old(1)]; 
    simoptions.InitialState=x0; 
    [time,x0,y] = sim(sim_model,[t-Ts t],simoptions,utmp); 
    x0 = x0(size(x0,1),:)'; 
    yy  = y(size(y,1),:)';       
    yyy1=yy(1,1)';yyy2=yy(2,1)'; 
    yyy1=yyy1+(yyy1*0.0274);yyy2=yyy2+(yyy2*0.0264); 

  
     end 
     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

      
   if strcmp(Prediction,'plant') 

  
     %% STORE DATA IN DATA VECTORS  
  u1_data(times)       = u1;               %BLUE     -CONTROLLER 

ACTION%% 
  u2_data(times)       = u2;               %BLUE     -CONTROLLER 

ACTION% 
  y1_data(times)       = yyy1;               %GREEN    -PLANT OUTPUT%% 
  y2_data(times)       = yyy2;               %GREEN    -PLANT OUTPUT%% 

  
  %% TIME UPDATES         
%   y1_old    = shift(y1_old,yyy1); 
%   y2_old    = shift(y2_old,yyy2); 
  u1_old    = shift(u1_old,u1); 
  u2_old    = shift(u2_old,u2); 

   
  y1_vec    = [y1_vec(2:length(y1_vec)) ; yyy1]; 
  y2_vec    = [y2_vec(2:length(y2_vec)) ; yyy2]; 

  
  y1hat_vec(1:length(y1hat_vec)-1) = y1hat_vec(2:length(y1hat_vec)); 
  y2hat_vec(1:length(y2hat_vec)-1) = y2hat_vec(2:length(y2hat_vec));     

      

      
    elseif strcmp(Prediction,'model') 
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        %% STORE DATA IN DATA VECTORS  
  u1_data(times)       = u1;               %BLUE     -CONTROLLER 

ACTION%% 
  u2_data(times)       = u2;               %BLUE     -CONTROLLER 

ACTION% 

   
  y1hat_data(times)    = yhat(1);  %RED      -MODEL OUTPUT%% 
  y2hat_data(times)    = yhat(2);  %RED      -MODEL OUTPUT%%  

   
  %% TIME UPDATES         
%   y1_old    = shift(y1_old,yyy1); 
%   y2_old    = shift(y2_old,yyy2); 
  u1_old    = shift(u1_old,u1); 
  u2_old    = shift(u2_old,u2); 

   

   
   y1_vec    = [y1_vec(2:length(y1_vec)) ; yhat(1)]; 
   y2_vec    = [y2_vec(2:length(y2_vec)) ; yhat(2)]; 

    
    y1hat_vec(1:length(y1hat_vec)-1) = y1hat_vec(2:length(y1hat_vec)); 
    y2hat_vec(1:length(y2hat_vec)-1) = y2hat_vec(2:length(y2hat_vec)); 

    
    end  %PLANT 
%%  WRITE OF SIMULATION COMPLETED      
%     progress(fighandle,floor(100*i/times)); 
 times = times + 1   ; 
%%%%%%%%%   using PID CONTROL STRATEGY   %%%%%%%%%%%%%%%%%% 

  

  
  elseif strcmp(regty,'PID') 

       
  COUNTER=times 
  t = t + Ts;  

                    

                  
     if strcmp(Implementation,'real_time_Legacy')  

          
                  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                  ElapsedTime = toc(tstartSamples); 
%                 delay(Ts-ElapsedTime) 
                  pause(Ts-ElapsedTime) 

          
     FunctionWriteDaq32(0,u1_old(1)); FunctionWriteDaq32(1,u2_old(1));    
     yyy1=FunctionReadDaq32(0);  yyy2=FunctionReadDaq32(1);              

  
     elseif strcmp(Implementation,'REALTIME') 

          
                  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                  ElapsedTime = toc(tstartSamples); 
%                 delay(Ts-ElapsedTime) 
                  pause(Ts-ElapsedTime) 

          
     FunctionSBWriteDaq32(0,u1_old(1)); 

FunctionSBWriteDaq32(1,u2_old(1)); 
     yyy1=FunctionSBReadDaq32(0); yyy2=FunctionSBReadDaq32(1); 

      
    elseif strcmp(Implementation,'SIMULATION')        

                                                             
         e1 = ref1(times) - yyy1; 
         e2 = ref2(times) - yyy2;  
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       %%%%%%%%%%%%%PID controller%%%%%%%%%%%%%%%%%%%%%%%%%% 

            

        
    ui1 = B1a*e1 + I1a; 
    ui2 = B1b*e2 + I1b; 
    um1 = ui1;  
    um2 = ui2; 

     
    if ui1<uimina, um1=uimina; end 
    if ui1>uimaxa, um1=uimaxa; end 
    if ui2<uiminb, um2=uiminb; end  
    if ui2>uimaxb, um2=uimaxb; end 

     

     
     u1(1) = (um1-I2a)*B2a + I2a; 
     u2(1) = (um2-I2b)*B2b + I2b; 

     
    I1a = I1a + (K1*e1 - (ui1 - um1))*A1a; 
    I1b = I1b + (K2*e2 - (ui2 - um2))*A1b; 

     
    I2a = I2a + (um1 - I2a)*A2a; 
    I2b = I2b + (um2 - I2b)*A2b;  

     
    utmp=[t-Ts,um1 um2 ; t,  um1 um2 ]; 
    simoptions.InitialState=x0; 
    [time,x0,y] = sim(sim_model,[t-Ts t],simoptions,utmp); 
    x0 = x0(size(x0,1),:)'; 
    y  = y(size(y,1),:)';  
    yyy1=y(1,1)';   yyy2=y(2,1)'; 
     yyy1=yyy1+(yyy1*0.025);yyy2=yyy2+(yyy2*0.025); 
     end 
    % STORE DATA IN DATA VECTORS     
  u1_data(times)       = um1;             %BLUE     -CONTROLLER 

ACTION%% 
  u2_data(times)       = um2;             %BLUE     -CONTROLLER 

ACTION%% 
  y1_data(times)       = yyy1;               %GREEN    -PLANT OUTPUT%% 
  y2_data(times)       = yyy2;               %GREEN    -PLANT OUTPUT%% 

     

  
  times = times + 1 ; 

  
  end % NMPC STRATEGY 

   
   end % MAIN WHILE STATEMENT 

   

    
 if strcmp(Prediction,'model') 
  y1_datac = y1hat_data; y2_datac = y2hat_data; 
elseif strcmp(Prediction,'plant') 
  y1_datac = y1_data; y2_datac = y2_data; 
end     

   

   
TotalMSE=0;TotalACE=0; 
for j = 1:samples 
     TotalMSE=TotalMSE + (ref1_data(j) - y1_datac(j)).^2 + 

(ref2_data(j) - y2_datac(j)).^2  ;     %MSE-MEAN SQUARE ERROR% 
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     TotalACE=TotalACE + u1_data(j).^2 + 

u2_data(j).^2;                    %ACE-AVERAGE CONTROLLER ENERGY% 
end 
TotalMSE=TotalMSE./samples;TotalACE=TotalACE./samples; 

  
Reference1=ref1_data; 
Reference2=ref2_data; 
PlantOutput1=y1_data; 
PlantOutput2=y2_data; 
PlantPrediction1=y1hat_data; 
PlantPrediction2=y2hat_data; 
ManipulatedVariable1=u1_data; 
ManipulatedVariable2=u2_data; 

  
%% END OF MAIN LOOP --------------------------------------------------

-- 
%% BEGINNING OF DRAWING PLOTS  

  

  
% figure(gcf);clf 
set(gcf,'DefaultTextInterpreter','none'); 

  

  
%% Plot A 
  if(exist('plot_a')==1), 
   a_plots=length(plot_a);            % Number of plots in plot A 
   plmat = zeros(samples,a_plots);    % Collect vectors in plmat 
   for nn = 1:a_plots,  
     plmat(:,nn) = eval(plot_a{nn});    
   end 

    
   samplesTs=0:Ts:samples*Ts; 
   samplesTs=samplesTs(1:end-1); 
   plot(handles.axes3,[samplesTs],plmat);           % Plot plmat 
%    xlabel(handles.axes3,'Time (Secs)');   
   xlabel(handles.axes3,'(a) Tank 1 and Tank 2 Output Responses        

(Time (Secs))');  
   ylabel(handles.axes3,'Height (metres)') 
   set(handles.axes3,'Xlim',[0 (samples*Ts)-Ts]);       % Set x-axis 

    

    

    

    
if strcmp(regty,'NMPC') 
    if strcmp(modell,'ANN') && strcmp(Implementation,'SIMULATION')  
      title(handles.axes3,'MIMO ANN-NMPC strategy - GA - Simulation');  
   elseif strcmp(modell,'WNN') && strcmp(Implementation,'SIMULATION') 
       title(handles.axes3,'MIMO WNN-NMPC strategy - GA - Simulation');        
    elseif strcmp(modell,'ANN') && strcmp(Implementation,'REALTIME')  
      title(handles.axes3,'MIMO ANN-NMPC strategy - GA - Real Time');  
   elseif strcmp(modell,'WNN') && strcmp(Implementation,'REALTIME') 
       title(handles.axes3,'MIMO WNN-NMPC strategy - GA - Real Time');  
    end 
 elseif strcmp(regty,'PID')  
     title(handles.axes3,'MIMO PID-GA Tunned Controller Strategy  - 

Simulation');  
end           

     
   grid(handles.axes3) 
   legend(handles.axes3,plot_a{:}); 
  end 
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 %% Plot B 
  if(exist('plot_b')==1), 
   b_plots=length(plot_b);              % Number of plots in plot B 
   plmat = zeros(samples,b_plots);      % Collect vectors in plmat 
   for nn = 1:b_plots,  
     plmat(:,nn) = eval(plot_b{nn});    
   end 

    
   samplesTs=0:Ts:samples*Ts; 
   samplesTs=samplesTs(1:end-1); 
   plot(handles.axes4,[samplesTs],plmat);           % Plot plmat 
%    xlabel(handles.axes4,'Time (Secs)'); 
   xlabel(handles.axes4,'(b) Controller Actions (Manipulated Variables)      

(Time (Secs))');  
   ylabel(handles.axes4,'Voltage Input (V)') 
   set(handles.axes4,'Xlim',[0 (samples*Ts)-Ts]);       % Set x-axis 
   grid(handles.axes4) 
   legend(handles.axes4,plot_b{:}); 
  end 
set(gcf,'DefaultTextInterpreter','tex'); 

  

  
TotalMSE 
TotalACE 

  
set(handles.edit2,'string',['MSE = ' num2str(TotalMSE) ' and ACE = ' 

num2str(TotalACE)]) 

  
Elapsed_time = toc(tbegin) 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if strcmp(Implementation,'real_time_Legacy')  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
FunctionWriteDaq32(0,0); FunctionWriteDaq32(1,0);     % LEGACY 

Interface        - 32bit MATLAB 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
end 

  
if strcmp(Implementation,'REALTIME')  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
FunctionSBWriteDaq32(0,0); FunctionSBWriteDaq32(1,0);   % Session 

based Interface - 64bit MATLAB 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% 

  
elseif strcmp(sistem,'MIMO') && strcmp(optimisasion,'PSO') 

     
evalin('base','mimo_initialize_script'); 

  
warning off; 

  
 tbegin = tic; 

  
if strcmp(Implementation,'real_time_Legacy')  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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FunctionWriteDaq32(0,0); FunctionWriteDaq32(1,0);     % LEGACY 

Interface        - 32bit MATLAB 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
end 

  
if strcmp(Implementation,'REALTIME')  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
FunctionSBWriteDaq32(0,0); FunctionSBWriteDaq32(1,0);   % Session 

based Interface - 64bit MATLAB 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
end 

  

  
clear plot_a plot_b 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% % Prediction ='model';  
Prediction ='plant'; 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
simul      ='simulink';       
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% ----------   Plotting Graphs Initializations   ----------- 
if strcmp(Prediction,'model') 
plot_a 

={'Reference1','PlantPrediction1','Reference2','PlantPrediction2'};% 

MODEL 
%%%   {'ref_data'-BLUE,'y_data'-GREEN,'yhat_data'-RED}; 
plot_b = {'ManipulatedVariable1','ManipulatedVariable2'}; 
elseif strcmp(Prediction,'plant') 
plot_a = {'Reference1','PlantOutput1','Reference2','PlantOutput2'}; 
%%%   {'ref_data'-BLUE,'y_data'-GREEN,'yhat_data'-RED}; 
plot_b = {'ManipulatedVariable1','ManipulatedVariable2'}; 
end  

      

  
 u_0      = [0 0];                % Initial control input 
 y_0      = [0.0 0.0];             % Initial output 

  
 yyy1=0; 
 yyy2=0; 

  

  

  
if strcmp(modell,'WNN')        
     nnfile='mimo_wnn_model_parameters'; % THESIS_USE****** 
elseif strcmp(modell,'ANN') 
    nnfile = 'mimo_ann_model_parameters';% THESIS_USE****** 
end  

  

  
% ---------- MPC initializations ----------- 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% 
N1 = 1;                      % Min. prediction horizon (must equal 

time delay!) 
N2 = 5;                      % Max. prediction horizon (>= nb) 
Nu = 2;                      % Control horizon 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% 
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% ------ SIMULINK TANK PARAMETERS  ------- 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% 
g   = 9.81; 
A1  = 0.00935;             %AREA OF TANK 1 
A2  = 0.00935;             %AREA OF TANK 2 
a1  = 0.0000785;           %AREA OF SMALL ORIFICE 1 
a2  = 0.0000785;           %AREA OF SMALL ORIFICE 2 
a12 = 0.0000785;          %AREA OF SMALL ORIFICE LINK BETWEEN 1 & 2 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% 
pgaink1=4500e-6/(60*7);                        % PUMPGAIN 1 
pgaink2=(8.395/7.815)* 4500e-6/(60*7);         % PUMPGAIN 2 

  
factor=0.8961; 
pgaink1=1.2275e-5;  
pgaink1=8.3423e-6;% PUMPGAIN 1 
pgaink2=pgaink1*factor;                              % PUMPGAIN 2 

  
C1=-498.1836e-6/60; 
C2=C1*factor; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% 
ho1=0;                %INITIAL HEIGHT OF TANK 1 
ho2=0;                %INITIAL HEIGHT OF TANK 2 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% 
if strcmp(Prediction,'model')  
y_0      = [ho1 ho2];             % INITIAL HEIGHT OF TANKS 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%  
B12  = 0.3;                           % VALVE OPENING BETWEEN 1 & 2 
B1   = 0.3;                            % VALVE 1 OPENING 
B2   = 0.3;                          % VALVE 2 OPENING 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%% 

  
% --  System to be  Controlled (SIMULINK) -- 
integrator= 'ode45';         % Name of dif. eq. solver (f. ex. ode45 

or ode15s) 
sim_model = 'spm222';          % Name of SIMULINK model 

  
% ------ GENETIC ALGORITHM OPTIMISATION PARAMETERS  ------- 
str = get(handles.popupmenu7, 'String'); 
val = get(handles.popupmenu7,'Value'); 
samples = str2num(str{val}); 
% samples     = 50;          % Number of samples in SIMULATION 
pop_size    = 10; 
generations = 50; 
subpop = 1; 
ww=1;             
division=1; 

  
ref1= [ repmat(0.25,1,250) repmat(0.18,1,200)   repmat(0.15,1,150) 

repmat(0.10,1,200)  repmat(0.05,1,250)];  
ref2= [ repmat(0.2,1,250) repmat(0.16,1,200)   repmat(0.13,1,150) 

repmat(0.08,1,200)  repmat(0.03,1,250)];  
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Q1 = 1;    R1 = 0; 
Q2 = 1;    R2 = 0; 

  
uimin = 0; uimax = 10; 

  
[POS1,POS2]=FuntionGeneratePopulation(uimin,uimax,division,pop_size,Nu

,ww,uimin,uimax); 

  
POS        = [POS1 POS2]; 

  
[V1, 

V2]=FuntionGeneratePopulation(uimin,uimax,division,pop_size,Nu,ww,uimi

n,uimax); 

  
V        =  [V1 V2]; 

   

   
J      = zeros(pop_size*1,generations); 
J_new  = zeros(pop_size*1,generations); 

  
MaxPos=10; 
MinPos=0; 
MaxV=MaxPos-MinPos; 

  
times1=1; 
zz=3; 
zz1=2; 

  

  
wmax=1.8; 
wmin=1.6; 
c1s=5;% max 
c1e=4;% min 
c2s=1.5;% max 
c2e=4;% min 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
fitness_Pos=zeros(1,pop_size); 
fitness_BestPos=zeros(1,pop_size); 
fitness_BestPos_g=0; 

  

  
BestPos1=zeros(pop_size,Nu); 
BestPos2=zeros(pop_size,Nu); 

  
BestPos_g=zeros(1,2*Nu); 

  
goal=1e-50; 
pop_size_single = 1; 

  

  

  
eval(['load ' nnfile]);                % Load neural network 

  

  
SYS=2; % FOR MIMO SYSTEM 
%%   DETERMINE REGRESSOR STRUCTURE     
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na      = NNsizeCal(1,1);                       % # of past y's to be 

used in TDL 
nb      = NNsizeCal(2,1);                       % # of past u's to be 

used in TDL 
nk      = 1;                           % Time delay in system 
d       = 1;                           % Time delay in addition to the 

usual 1  
N1      = 1;                           %  
inputs  = (na+sum(nb))*SYS;            % Total number of inputs to 

network 
outputs = SYS; 
% phi     = zeros(inputs,outputs);       % Initialize regression 

vector (NOTE IN CASE OF MIMO) 
%%  DETERMINE STRUCTURE OF (ANN) NETWORK MODEL IN MPC     
hidden   = length(NetDef(1,:));        % Number of hidden neurons # of 

Hs 
No_L_Output = find(NetDef(2,:)=='L')'; % Number of linear output of Ls 
% L_hidden = find(NetDef(1,:)=='L')';    % Location of linear hidden 

neurons  
L_hidden = ones(0,1); 
H_hidden = find(NetDef(1,:)=='H')';    % Location of tanh hidden 

neurons 
y1       = zeros(hidden,N2-N1+1);      % Hidden layer outputs 
yhat     = zeros(outputs,1);           % Network output 
%% INITIALIZE VARIABLES  

  
L_hidden = find(NetDef(1,:)=='L')';     % Location of linear hidden 

neurons 
H_hidden = find(NetDef(1,:)=='H')';     % Location of tanh hidden 

neurons 
L_output = find(NetDef(2,:)=='L')';     % Location of linear output 

neurons 
H_output = find(NetDef(2,:)=='H')';     % Location of tanh output 

neurons 

  

  
y1_vec     = repmat(y_0(1),na,1);  
y2_vec     = repmat(y_0(2),na,1); 
u1_old     = repmat(u_0(1),nb,1); 
u2_old     = repmat(u_0(2),nb,1); 

  
%% Initialization of constant gain PID parameters 
if strcmp(regty,'PID'),  %% PID CONTROLLER %% 

   
Ts=0.2; 

  

  

  
K1=50;  Td1=5;   alf1=10;    Wi1=1;         % USE THESIS 

  
K2=K1;                       % PID parameters 
Td2=Td1;                       % PID  0.8 
alf2=alf1;                     % PID 
Wi2=Wi1;                      % PID (1/Ti) 

  
  B1a = K1*(1+Ts*Wi1/2); 
  A1a = Ts*Wi1; 
  B2a = (2*Td1+Ts)/(2*alf1*Td1+Ts); 
  A2a = 2*Ts/(2*alf1*Td1+Ts); 
  I1a = 0; 
  I2a = 0; 
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  uimina = 0; uimaxa = 10; 

   
  B1b = K2*(1+Ts*Wi2/2); 
  A1b = Ts*Wi2; 
  B2b = (2*Td2+Ts)/(2*alf2*Td2+Ts); 
  A2b = 2*Ts/(2*alf2*Td2+Ts); 
  I1b = 0; 
  I2b = 0; 
  uiminb = 0; uimaxb = 10; 

  
end 
%% Miscellaneous Initializations 
u1          = u_0(1);                % The controls up to time t<=0 
u2          = u_0(2);                % The controls up to time t<=0 
t           = -Ts; 

  
%  fighandle=progress; 
%% Initialization of Simulink  system 

  
if strcmp(simul,'simulink') 
    simoptions = simset('Solver',integrator,'MaxRows',0); % Set 

integrator opt. 
    [sizes x0] = evalin('caller',[sim_model '([],[],[],0);']);    % 

Get initial states 
end 

  

  
ref1_data    = ref1(1:samples);   ref2_data    = ref2(1:samples); 
u1_data      = zeros(samples,1);  u2_data      = zeros(samples,1); 
y1_data      = zeros(samples,1);  y2_data      = zeros(samples,1); 
y1hat_data   = zeros(samples,1);  y2hat_data   = zeros(samples,1); 

  
N3=N2-N1+nb; 
tiu   = d-N1+nb; 
u1_vec = repmat(u1,N3,1);      u2_vec = repmat(u2,N3,1);  
y1_vec = repmat(y_0(1),na,1);  y2_vec = repmat(y_0(2),na,1);  

  
tiy   = na+1; 

  
y1hat_vec = repmat(y_0(1),N2+1,1);  y2hat_vec = repmat(y_0(2),N2+1,1);     
tiyh = 1; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%% 

  

  
% PREDICT OUTPUT FROM PLANT MPC   MAIN LOOP  START START START--------

--------------------------------------------- 

  

  

   
       if strcmp(modell,'ANN')  

         
   [fitness_Pos, 

loc1,last1]=FuntionMimoPSOSAAnnTraining0001(V1,V2,Nu,N2,N3,R1,Q1,R2,Q2

,subpop,pop_size,N1,nb,y1hat_vec,y2hat_vec,tiyh,na,... 
    

y1_vec,y2_vec,tiy,tiu,d,ref1_data,ref2_data,times1,W1,W2,inputs,H_hidd

en,L_hidden,hidden,generations,zz1) ;  
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   [fitness_BestPos,loc2,last2]= 

FuntionMimoPSOSAAnnTraining0001(POS1,POS2,Nu,N2,N3,R1,Q1,R2,Q2,subpop,

pop_size,N1,nb,y1hat_vec,y2hat_vec,tiyh,na,... 
    

y1_vec,y2_vec,tiy,tiu,d,ref1_data,ref2_data,times1,W1,W2,inputs,H_hidd

en,L_hidden,hidden,generations,zz1) ; 

    
   elseif strcmp(modell,'WNN')  

        
[fitness_Pos, loc1,last1]=  

FuntionMimoPSOSAWnnTraining0001(V1,V2,Nu,N2,N3,R1,Q1,R2,Q2,subpop,pop_

size,nb,y1hat_vec,y2hat_vec,tiyh,na,... 
    

y1_vec,y2_vec,tiy,tiu,d,ref1_data,ref2_data,times1,hiddennum,inputnum,

outputnum,Wjk,Wij,a,b,H_hidden,L_hidden,hidden,NNsizeCal,generations,z

z1,N1); 

  
[fitness_BestPos,loc2,last2]=  

FuntionMimoPSOSAWnnTraining0001(POS1,POS2,Nu,N2,N3,R1,Q1,R2,Q2,subpop,

pop_size,nb,y1hat_vec,y2hat_vec,tiyh,na,... 
    

y1_vec,y2_vec,tiy,tiu,d,ref1_data,ref2_data,times1,hiddennum,inputnum,

outputnum,Wjk,Wij,a,b,H_hidden,L_hidden,hidden,NNsizeCal,generations,z

z1,N1); 

  
       end 

        

        
       if   fitness_Pos<fitness_BestPos 
            BestPos_g          =   V(loc1,:); 
            fitness_BestPos_g  =   fitness_Pos; 
            BestPos=V; 
            last=last1; 
       else 
            BestPos_g          =     POS(loc2,:); 
            fitness_BestPos_g  =     fitness_BestPos; 
            BestPos=POS; 
            last=last2; 
       end 

   

    

  
MSEE=fitness_BestPos_g; 

  
BestPos1_g =  BestPos_g(1,1:Nu); 
BestPos2_g =  BestPos_g(1,Nu+1:Nu*2); 

  
% BestPos=POS; 
BestPos(last,:)  =  BestPos_g(1,1:Nu*2); 
FIRSTBestPos=BestPos; 

  
  times=1; 

   
 while times<samples+1 

      
  tstartSamples   = tic; 
  tstartGen       = clock;  

  
  COUNTER=times 
  t = t + Ts; 
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% %    
 [V1, V2]      = 

FuntionGeneratePopulation(uimin,uimax,division,pop_size,Nu,ww,uimin,ui

max); 
  V            = [V1 V2]; 

    
 [POS1, POS2]   = 

FuntionGeneratePopulation(uimin,uimax,division,pop_size,Nu,ww,uimin,ui

max); 
 POS            = [POS1 POS2]; 

  
[BestPos1,BestPos2]=FuntionGeneratePopulation(uimin,uimax,division,pop

_size,Nu,ww,uimin,uimax); 
 BestPos         = [BestPos1 BestPos2]; 

  
BestPos(last,:)  =  BestPos_g(1,1:Nu*2); 

   

   

   
 if strcmp(regty,'NMPC') 

   
  if strcmp(modell,'ANN') 
  phi1            = [y1_vec(na:-1:1);  u1_old(d:d+nb-1)]; 
  phi2            = [y2_vec(na:-1:1);  u2_old(d:d+nb-1)]; 

   
  phi=[ phi1(1:na)'    phi1(nb+1:nb*2)'     phi2(nb+1:nb*2)'    

phi2(1:na)'    ];   %option 11 
   elseif strcmp(modell,'WNN') 
  phi1            = [y1_vec(na:-1:1);  u1_old(d:d+nb-1)]; 
  phi2            = [y2_vec(na:-1:1);  u2_old(d:d+nb-1)]; 

   
  phi=[ phi1(1:na)'    phi1(nb+1:nb*2)'     phi2(nb+1:nb*2)'   

phi2(1:na)' ];   %option 11 
   end   

   

   

   
 if strcmp(modell,'ANN') 

       
  yhat(:) = 

MimoAnnModelFunction1(W1,W2,inputs,phi,H_hidden,L_hidden,hidden); 
  y1hat_vec(1) = yhat(1); y2hat_vec(1) = yhat(2); 

   
   elseif strcmp(modell,'WNN') 

        
  yhat(:) = 

MimoWnnModelFunction1(Wij,Wjk,a',b',phi,inputnum,H_hidden,L_hidden,hid

den); 
  y1hat_vec(1) = yhat(1); y2hat_vec(1) = yhat(2);  

   
  end    

   

    
   gen = 0;      

    

    
    while   gen<generations+1 &&  etime(clock,tstartGen) <= (Ts-1e-1) 

&&  MSEE>goal 
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      gen=gen +1;   

       

       
      

[BestPos1,BestPos2]=FuntionGeneratePopulation(uimin,uimax,division,pop

_size,Nu,ww,uimin,uimax); 
      BestPos  = [BestPos1 BestPos2]; 
      BestPos(last,:)  =  BestPos_g(1,1:Nu*2); 

      

       
      w = wmax -(wmax-wmin)*gen/generations; 
      c1=(c1e-c1s)*gen/generations+c1s; 
      c2=(c2e-c2s)*gen/generations+c2s; 

       

       
       cc  =  crtrp(pop_size*2,[0;1] ) ; 
       cc1 =  cc(1:pop_size); cc2=cc(pop_size+1:2*pop_size); 

        

       
    for i=1:pop_size         
            V(i,:) =   w*V(i,:)+ c1*cc1(i)*(BestPos(i,:)-POS(i,:))+ 

c2*cc2(i)*(BestPos_g-POS(i,:));             
    end 

             

            
        for k=1:pop_size 
        POS(k,:)=POS(k,:)+ V(k,:); 
        end 

         

         
          for k=1:pop_size 
          for j=1:Nu*2 

               
                   if     POS(k,j)>MaxPos; 
                          POS(k,j)=MaxPos ; 

  

                              

  
                   elseif POS(k,j)<MinPos; 
                          POS(k,j)=MinPos ; 

  

                           
                   end 

                    
          end 
          end    

           

        
        POS1=POS(:,1:Nu)  ;         POS2=POS(:,Nu+1:end)  ; 
        BestPos1=BestPos(:,1:Nu)  ; BestPos2=BestPos(:,Nu+1:end); 

           
   if strcmp(modell,'ANN')  

         
    [fitness_Pos, 

loc1,last1]=FuntionMimoPSOSAAnnTraining0001(POS1,POS2,Nu,N2,N3,R1,Q1,R

2,Q2,subpop,pop_size,N1,nb,y1hat_vec,y2hat_vec,tiyh,na,... 
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y1_vec,y2_vec,tiy,tiu,d,ref1_data,ref2_data,times,W1,W2,inputs,H_hidde

n,L_hidden,hidden,generations,zz) ;  

  
   [fitness_BestPos,loc2,last2]= 

FuntionMimoPSOSAAnnTraining0001(BestPos1,BestPos2,Nu,N2,N3,R1,Q1,R2,Q2

,subpop,pop_size,N1,nb,y1hat_vec,y2hat_vec,tiyh,na,... 
    

y1_vec,y2_vec,tiy,tiu,d,ref1_data,ref2_data,times,W1,W2,inputs,H_hidde

n,L_hidden,hidden,generations,zz) ; 

  
   elseif strcmp(modell,'WNN') 

        

        
    [fitness_Pos, loc1,last1]=  

FuntionMimoPSOSAWnnTraining0001(POS1,POS2,Nu,N2,N3,R1,Q1,R2,Q2,subpop,

pop_size,nb,y1hat_vec,y2hat_vec,tiyh,na,... 
    

y1_vec,y2_vec,tiy,tiu,d,ref1_data,ref2_data,times,hiddennum,inputnum,o

utputnum,Wjk,Wij,a,b,H_hidden,L_hidden,hidden,NNsizeCal,generations,zz

,N1); 

  
    [fitness_BestPos,loc2,last2]=  

FuntionMimoPSOSAWnnTraining0001(BestPos1,BestPos2,Nu,N2,N3,R1,Q1,R2,Q2

,subpop,pop_size,nb,y1hat_vec,y2hat_vec,tiyh,na,... 
    

y1_vec,y2_vec,tiy,tiu,d,ref1_data,ref2_data,times,hiddennum,inputnum,o

utputnum,Wjk,Wij,a,b,H_hidden,L_hidden,hidden,NNsizeCal,generations,zz

,N1); 

  

      
      end 

    
       if   fitness_Pos<fitness_BestPos 
            BestPos_g          =   POS(loc1,:); 
            fitness_BestPos_g  =   fitness_Pos; 
            BestPos=POS; 
            last=last1; 
       else 
            BestPos_g          =     BestPos(loc2,:); 
            fitness_BestPos_g  =     fitness_BestPos; 
            BestPos=BestPos; 
            last=last2; 
       end 

  

                    

        
    MSEE=fitness_BestPos_g;     

  
    end      

          
    BestPos1_g =  BestPos_g(1:Nu); 
    BestPos2_g =  BestPos_g(Nu+1:Nu*2); 

     

      
     u1_old(1) = BestPos1_g(1,1);   u2_old(1) = BestPos2_g(1,1);  
     u1        = u1_old(1);          u2       = u2_old(1);  
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   if strcmp(Implementation,'real_time_Legacy') 
                  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                   ElapsedTime = toc(tstartSamples); 
%                  delay(Ts-ElapsedTime) 
                   pause(Ts-ElapsedTime) 
                %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

          
     FunctionWriteDaq32(0,u1_old(1)); 

FunctionWriteDaq32(1,u2_old(1));  % SEND TO PUMP1 & PUMP2 
     yyy1=FunctionReadDaq32(0);  

yyy2=FunctionReadDaq32(1);             % RECEIVE HEIGHT FROM BOTH TANK 

  
     elseif strcmp(Implementation,'REALTIME') 
                    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                   ElapsedTime = toc(tstartSamples); 
%                  delay(Ts-ElapsedTime) 
                   pause(Ts-ElapsedTime) 
                %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

          
     FunctionSBWriteDaq32(0,u1_old(1)); 

FunctionSBWriteDaq32(1,u2_old(1)); 
     yyy1=FunctionSBReadDaq32(0); yyy2=FunctionSBReadDaq32(1); 

    
     elseif strcmp(Implementation,'SIMULATION')         

            
    utmp=[t-Ts,u1_old(1) u2_old(1) ; t, u1_old(1) u2_old(1)]; 
    simoptions.InitialState=x0; 
    [time,x0,y] = sim(sim_model,[t-Ts t],simoptions,utmp); 
    x0 = x0(size(x0,1),:)'; 
    yy  = y(size(y,1),:)';       
    yyy1=yy(1,1)';yyy2=yy(2,1)'; 
    yyy1=yyy1+(yyy1*0.0274);yyy2=yyy2+(yyy2*0.0264); 

  
     end 
     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

     
  if strcmp(Prediction,'plant') 

  
     %% STORE DATA IN DATA VECTORS  
  u1_data(times)       = u1;               %BLUE     -CONTROLLER 

ACTION%% 
  u2_data(times)       = u2;               %BLUE     -CONTROLLER 

ACTION% 
  y1_data(times)       = yyy1;               %GREEN    -PLANT OUTPUT%% 
  y2_data(times)       = yyy2;               %GREEN    -PLANT OUTPUT%% 

  
  %% TIME UPDATES         
%   y1_old    = shift(y1_old,yyy1); 
%   y2_old    = shift(y2_old,yyy2); 
  u1_old    = shift(u1_old,u1); 
  u2_old    = shift(u2_old,u2); 

   
  y1_vec    = [y1_vec(2:length(y1_vec)) ; yyy1]; 
  y2_vec    = [y2_vec(2:length(y2_vec)) ; yyy2]; 

  
  y1hat_vec(1:length(y1hat_vec)-1) = y1hat_vec(2:length(y1hat_vec)); 
  y2hat_vec(1:length(y2hat_vec)-1) = y2hat_vec(2:length(y2hat_vec));     

      

      
    elseif strcmp(Prediction,'model') 
        %% STORE DATA IN DATA VECTORS  
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  u1_data(times)       = u1;               %BLUE     -CONTROLLER 

ACTION%% 
  u2_data(times)       = u2;               %BLUE     -CONTROLLER 

ACTION% 

   
  y1hat_data(times)    = yhat(1);  %RED      -MODEL OUTPUT%% 
  y2hat_data(times)    = yhat(2);  %RED      -MODEL OUTPUT%%  

   
  %% TIME UPDATES         
%   y1_old    = shift(y1_old,yyy1); 
%   y2_old    = shift(y2_old,yyy2); 
  u1_old    = shift(u1_old,u1); 
  u2_old    = shift(u2_old,u2); 

   

   
   y1_vec    = [y1_vec(2:length(y1_vec)) ; yhat(1)]; 
   y2_vec    = [y2_vec(2:length(y2_vec)) ; yhat(2)]; 

    
    y1hat_vec(1:length(y1hat_vec)-1) = y1hat_vec(2:length(y1hat_vec)); 
    y2hat_vec(1:length(y2hat_vec)-1) = y2hat_vec(2:length(y2hat_vec)); 

    
    end  %PLANT 

    
   times = times + 1   ; 

        

      
   elseif strcmp(regty,'PID')               

                 

       
  COUNTER=times 
  t = t + Ts;  

   

                  

                  
     if strcmp(Implementation,'real_time_Legacy')  

          
                           %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                  ElapsedTime = toc(tstartSamples); 
%                 delay(Ts-ElapsedTime) 
                  pause(Ts-ElapsedTime) 
                 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

          
     FunctionWriteDaq32(0,u1_old(1)); 

FunctionWriteDaq32(1,u2_old(1));   %SEND TO PUMP1 & PUMP2 
     yyy1=FunctionReadDaq32(0);  

yyy2=FunctionReadDaq32(1);             %RECEIVE HEIGHT FROM BOTH TANK 

  
     elseif strcmp(Implementation,'REALTIME') 

          
                           %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                  ElapsedTime = toc(tstartSamples); 
%                 delay(Ts-ElapsedTime) 
                  pause(Ts-ElapsedTime) 
                 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

          
     FunctionSBWriteDaq32(0,u1_old(1)); 

FunctionSBWriteDaq32(1,u2_old(1)); 
     yyy1=FunctionSBReadDaq32(0); yyy2=FunctionSBReadDaq32(1); 
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    elseif strcmp(Implementation,'SIMULATION')        

                                                             
         e1 = ref1(times) - yyy1; 
         e2 = ref2(times) - yyy2;  

     

     

    
    %%%%%%PID controller%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%      

        

        
    ui1 = B1a*e1 + I1a; 
    ui2 = B1b*e2 + I1b; 
    um1 = ui1;  
    um2 = ui2; 

     
    if ui1<uimina, um1=uimina; end 
    if ui1>uimaxa, um1=uimaxa; end 
    if ui2<uiminb, um2=uiminb; end  
    if ui2>uimaxb, um2=uimaxb; end 

     

     
     u1(1) = (um1-I2a)*B2a + I2a; 
     u2(1) = (um2-I2b)*B2b + I2b; 

     
    I1a = I1a + (K1*e1 - (ui1 - um1))*A1a; 
    I1b = I1b + (K2*e2 - (ui2 - um2))*A1b; 

     
    I2a = I2a + (um1 - I2a)*A2a; 
    I2b = I2b + (um2 - I2b)*A2b;  

     
    utmp=[t-Ts,um1 um2 ; t,  um1 um2 ]; 
    simoptions.InitialState=x0; 
    [time,x0,y] = sim(sim_model,[t-Ts t],simoptions,utmp); 
    x0 = x0(size(x0,1),:)'; 
    y  = y(size(y,1),:)';  
    yyy1=y(1,1)';   yyy2=y(2,1)'; 
    yyy1=yyy1+(yyy1*0.025);yyy2=yyy2+(yyy2*0.025); 
     end 

      

           
    % STORE DATA IN DATA VECTORS     
  u1_data(times)       = um1;             %BLUE     -CONTROLLER 

ACTION%% 
  u2_data(times)       = um2;             %BLUE     -CONTROLLER 

ACTION%% 
  y1_data(times)       = yyy1;               %GREEN    -PLANT OUTPUT%% 
  y2_data(times)       = yyy2;               %GREEN    -PLANT OUTPUT%% 

     

    
  times = times + 1 ; 
end 

   
 end    

     
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    

  
 if strcmp(Prediction,'model') 
  y1_datac = y1hat_data; y2_datac = y2hat_data; 
elseif strcmp(Prediction,'plant') 
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  y1_datac = y1_data; y2_datac = y2_data; 
end     

   

   
TotalMSE=0;TotalACE=0; 
for j = 1:samples 
     TotalMSE=TotalMSE + (ref1_data(j) - y1_datac(j)).^2 + 

(ref2_data(j) - y2_datac(j)).^2  ;    
     TotalACE=TotalACE + u1_data(j).^2 + u2_data(j).^2;                     
end 
TotalMSE=TotalMSE./samples;TotalACE=TotalACE./samples; 

  
Reference1=ref1_data; 
Reference2=ref2_data; 
PlantOutput1=y1_data; 
PlantOutput2=y2_data; 
PlantPrediction1=y1hat_data; 
PlantPrediction2=y2hat_data; 
ManipulatedVariable1=u1_data; 
ManipulatedVariable2=u2_data; 

  
%% END OF MAIN LOOP --------------------------------------------------

-- 
%% BEGINNING OF DRAWING PLOTS  

  

  

  
set(gcf,'DefaultTextInterpreter','none'); 

  
%% Plot A 
  if(exist('plot_a')==1), 
   a_plots=length(plot_a);            % Number of plots in plot A 
   plmat = zeros(samples,a_plots);    % Collect vectors in plmat 
   for nn = 1:a_plots,  
     plmat(:,nn) = eval(plot_a{nn});    
   end 

  

    
   samplesTs=0:Ts:samples*Ts; 
   samplesTs=samplesTs(1:end-1); 
   plot(handles.axes3,[samplesTs],plmat);           % Plot plmat 
   xlabel(handles.axes3,'(a) Tank 1 and Tank 2 Output Responses        

(Time (Secs))');  
   ylabel(handles.axes3,'Height (metres)') 
   set(handles.axes3,'Xlim',[0 (samples*Ts)-Ts]);       % Set x-axis 

  
  if strcmp(regty,'NMPC')  
    if strcmp(modell,'ANN') && strcmp(Implementation,'SIMULATION')  
      title(handles.axes3,'MIMO ANN-NMPC strategy - PSO - Simulation');  
   elseif strcmp(modell,'WNN') && strcmp(Implementation,'SIMULATION') 
       title(handles.axes3,'MIMO WNN-NMPC strategy - PSO - 

Simulation');        
    elseif strcmp(modell,'ANN') && strcmp(Implementation,'REALTIME')  
      title(handles.axes3,'MIMO ANN-NMPC strategy - PSO - Real Time');  
   elseif strcmp(modell,'WNN') && strcmp(Implementation,'REALTIME') 
       title(handles.axes3,'MIMO WNN-NMPC strategy - PSO - Real Time');  
    end 
  elseif strcmp(regty,'PID') 
         title(handles.axes3,'MIMO PID-GA Tunned Controller Strategy  

- Simulation');  
  end  
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   grid(handles.axes3) 
   legend(handles.axes3,plot_a{:}); 
  end 

   
 %% Plot B 
  if(exist('plot_b')==1), 
   b_plots=length(plot_b);              % Number of plots in plot B 
   plmat = zeros(samples,b_plots);      % Collect vectors in plmat 
   for nn = 1:b_plots,  
     plmat(:,nn) = eval(plot_b{nn});    
   end 

    
   samplesTs=0:Ts:samples*Ts; 
   samplesTs=samplesTs(1:end-1); 
   plot(handles.axes4,[samplesTs],plmat);           % Plot plmat 
%    xlabel(handles.axes4,'Time (Secs)'); 
   xlabel(handles.axes4,'(b) Controller Actions (Manipulated Variables)       

(Time (Secs))');  
   ylabel(handles.axes4,'Voltage Input (V)') 
   set(handles.axes4,'Xlim',[0 (samples*Ts)-Ts]);       % Set x-axis 
   grid(handles.axes4) 
   legend(handles.axes4,plot_b{:}); 
  end 
set(gcf,'DefaultTextInterpreter','tex'); 

  

  
TotalMSE 
TotalACE 

  
set(handles.edit2,'string',['MSE = ' num2str(TotalMSE) ' and ACE = ' 

num2str(TotalACE)]) 

  
Elapsed_time = toc(tbegin) 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if strcmp(Implementation,'real_time_Legacy')  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
FunctionWriteDaq32(0,0); FunctionWriteDaq32(1,0);     % LEGACY 

Interface        - 32bit MATLAB 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
end 

  
if strcmp(Implementation,'REALTIME')  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
FunctionSBWriteDaq32(0,0); FunctionSBWriteDaq32(1,0);   % Session 

based Interface - 64bit MATLAB 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

   

     
end 
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LIST OF ABBREVIATIONS 

 

Throughout this thesis the following convention has been followed for all algebraic 

symbols, unless otherwise all symbols and abbreviations found throughout this thesis 

will follow the below convention. 

a scalar valued identity 

a vector or time series valued identity 

A  matrix valued identity or system identity 

I   identity matrix 

 

 

ACE Average controller energy 

ANN Artificial neural network 

ARMAX Autoregressive moving average with eXternal input 

CSTR Continuous stirred tank reactor 

CTS Coupled tank system 

CH Control horizon 

DAQ Data acquisition device  

DMPC Distributed model predictive control 

DMC-LP Dynamic matrix control linear programming optimiser 

DRNN Differential recurrent neural network 

FEA Finite element analysis 

FMPC Fuzzy model predictive control 

FPE Final prediction error 

FWNN Fuzzy wavelet neural network 

GA Genetic algorithm 

GUI Graphical user interface 

IMC Internal model control 

LHS Left hand side 

LMA Levenberg Marquardt Algorithm  

LTI Linear time invariant 

MIMO Multi inputs multi outputs 

MP Minimum phase 

MPC Model predictive control 

MSE Mean squared error 

NARMA Non-linear autoregressive moving average 

NFCGA Neuro fuzzy-logic controller genetic algorithm 

NI National instrument 

NMP Non minimum phase 

NMPC Non-linear model predictive control 

NP non-linear programming 

PID Proportional integral derivative 

PH Prediction horizon 

PSO Particle swarm optimisation 

QTP Quadruple tank process 

RBF Radial basis function 
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RHP Right hand plane 

RHPZ Right hand plane zero 

RHS Right hand side 

RTO Real time optimisation 

SA simulated annealing  

SISO Single input single output 

TITO Two inputs two outputs 

WNN Wavelet neural network 

Z-N Ziegler-Nichols 
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