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Abstract

The world of animation has painted an inspiring image of what the robots
of the future could be. Taking the robots R2D2 and C3PO from the Star Wars
films as representative examples, these robots are portrayed as being more than
just machines, rather, they are presented as intelligent and capable social peers,
exhibiting many of the traits that people have also. These robots have the ability
to interact with people, understand us, and even relate to us in very personal
ways through a wide repertoire of social cues.

As robotic technologies continue to make their way into society at large, there
is a growing trend toward making social robots. The field of Human-Robot In-
teraction concerns itself with studying, developing and realising these socially
capable machines, equipping them with a very rich variety of capabilities that
allow them to interact with people in natural and intuitive ways, ranging from
the use of natural language, body language and facial gestures, to more unique
ways such as expression through colours and abstract sounds.

This thesis studies the use of abstract, expressive sounds, like those used icon-
ically by the robot R2D2. These are termed Non-Linguistic Utterances (NLUs)
and are a means of communication which has a rich history in film and anima-
tion. However, very little is understood about how such expressive sounds may
be utilised by social robots, and how people respond to these.

This work presents a series of experiments aimed at understanding how NLUs
can be utilised by a social robot in order to convey affective meaning to people
both young and old, and what factors impact on the production and perception
of NLUs. Firstly, it is shown that not all robots should use NLUs. The mor-
phology of the robot matters. People perceive NLUs differently across different
robots, and not always in a desired manner. Next it is shown that people readily
project affective meaning onto NLUs though not in a coherent manner. Further-
more, people’s affective inferences are not subtle, rather they are drawn to well
established, basic affect prototypes. Moreover, it is shown that the valence of the
situation in which an NLU is made, overrides the initial valence of the NLU itself:
situational context biases how people perceive utterances made by a robot, and
through this, coherence between people in their affective inferences is found to
increase. Finally, it is uncovered that NLUs are best not used as a replacement
to natural language (as they are by R2D2), rather, people show a preference for
them being used alongside natural language where they can play a supportive role
by providing essential social cues.
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Chapter 1

Introduction

Social interaction with others is a capability of humans that comes effortlessly.

From birth until the end of their life, humans are constantly exposed to and en-

gaged in social behaviour and interactions with their parents, peers and offspring.

The ability to interact with groups of other human beings in a seamless and coher-

ent manner is arguably deeply intertwined with our general development, and as

a result, it has been suggested that social interaction and collaboration has also

helped shaped how the human intelligence has evolved and developed over the

centuries. This is known as the Social Intelligence Hypothesis (Holekamp, 2007).

It is through our physical embodiment, and the affordances that it provides,

that social interaction has been facilitated. Over time, these modalities have

become more specialised in their function and capability as has our use of these.

This is particularly the case of the human vocal tract which provides the means

to articulate a range of complex acoustic signals, as well as having the ability to

encode efficiently complex and meaningful information via this single modality

As the technologies around us have developed and become more advanced,

so too as their integration into our daily lives and society in general, through

a large number of different application domains. As a result, and in order to

further harness the impact that they have, modern technologies have have begun

to undergo a transformation where they allow the layman to gain access to, and use

these technologies in a manner that is as natural and intuitive as possible, where

there is minimal requirement for having technology specific skills and no need for
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the user to adapt to the technology in order gain harness the benefits it has to

offer. In essence, the user interfaces are becoming more aligned with how people

naturally interact with objects and other people that share the same environment

as them - these interfaces are becoming more socially capable. The aim is to

provide technology with an interface that allows seamless bridging between how

people interact with each other, and how they interact and use the technologies

around them, such that these technologies fall into the background and become

invisible. Perhaps the most prominent ways in which this is currently being done is

throughout exploitation of advances in computer speech, where technology is being

furnished with natural language capabilities that allow people and technology to

exchange a rich and complex array of information with each other in a fast and

efficient manner.

A prime example of a technology undergoing such a transformation is robotic

technology, where robots are now being designed so that they are able to function

in and negotiate the physical world around them, and are able to engage in a

natural manner with the people that they share this physical world with through

multi-modal interaction laden with social and affective cues. It is this facet of

robotic technology that the thesis presented here is concerned with.

Setting the stage

The nature of the work in this thesis is interdisciplinary, drawing insight and

inspiration from related fields such as psychology and speech synthesis. As such,

themes in these related fields will be brought to the foreground. The remainder of

this chapter serves to do this, and sets the general backdrop to which the related

fields and this thesis itself can be viewed. We shall briefly introduce the field

of Human-Robot Interaction and briefly outline why robots are becoming more

social and emotional, explain what the main topic of the thesis is - Non-Linguistic

Utterances, and outline how related fields such as psychology and speech synthesis

feed into the thesis at hand, that is studying how a social robot is able to use Non-

Linguistic Utterances during social Human-Robot Interaction.
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1.1 Human-Robot Interaction

While there are many robots already in operation in the world around us, the

majority of the general population have not seen, or come into contact with them.

These robots can primarily be found in facilitates such as car factories or storage

warehouses, but also include the depths of the seas, war zones, nuclear power

plants, and outer space. A large part of this segregation between humans and

robots is simply due to the physical, mechanical design of these robots. They

have not been designed to co-inhabit an environment with humans, rather they

have been designed to function in environments that are deemed unsuitable for

people to inhabit safely or with ease. A second, but more potent problem however,

is that that robots have not been designed (with respect to both mechanical

and software design) to be sensitive to humans, which means that they lack the

capabilities to read and comprehend the social cues that people use, nor can they

express their internal state to people using these same modalities and cues. The

problem is simple, people do not understand what a robot thinking, robots do not

understand what a person is thinking, and neither has the ability to communicate

with the other through the same set of social channels. This leads to problems

regarding the safety of both humans and robots, and the best solution has been

to keep them segregated.

However, in the last decade or so, the fundamental attitudes towards the

types of potential applications that robots can have has broadened considerably

and now includes applications that require close contact and interaction with

people. Examples of this are the use of robots in care homes for the elderly (Torta

et al., 2012; Tapus et al., 2007; Mccoll and Nejat, 2013), or as assistive tools for

people with Autism Spectrum Disorder (Robins et al., 2004; Kozima et al., 2009;

Feil-seifer and Skinner, 2007). Through such potential applications, the field of

Human-Robot Interaction (HRI) has emerged, and specifically, social HRI. Social

HRI is concerend with the understanding how humans and robots are able to

interact naturally and fluidly, and how robots can be better designed to do this.

The field draws heavily from the related field of Human-Computer Interaction
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(HCI), where established insights have provided to be very useful when built upon

and tailored toward robots (Breazeal, 2004b). For example, the observation that

people tend to naturally treat inanimate objects, such as computers, in a social

manner and as socially competent (Reeves and Nass, 1996) has opened up many

new possibilities for interactions and applications (Duffy, 2003). Through such

tendencies, it is observed that a robot is more than just a computer in a mobile

shell: it has something special which allows it to elicit natural, multi-modal social

behaviour towards it from people who have never seen or interacted with it before,

and when both the software and hardware geared toward exploiting this, a robot

is able to utilise social channels to engage in multi-modal social interaction with

people, and where people see the robot as a social partner (Breazeal, 2002, 2004a;

Breazeal and Brooks, 2005). Through such social interaction, it is possible for

both humans and people to express their inner states to others, which in the case

of humans inherently includes emotion.

1.1.1 Emotion and Affective Robots

All complex, intelligent animals (including humans) have emotions and display

them to some varying degree, and humans in particular are the most complex,

expressive and sophisticated in this manner, with emotions biasing a great how

we behave and function both as single entities and as a social group also (Darwin,

2009). From an evolutionary perspective, in order to function and survive in

a complex, unpredictable and unstructured environment, people and animals are

faced with a complex problem of how to allocate their limited resources in order to

meet their multiple overall goals in an efficient and flexible manner (Breazeal and

Brooks, 2005), and in the case of social species, this involves social communication

with the rest of the group. Prominent theories state that emotions are used by the

creature not only to evaluate events that occur within the environment and assess

their impact and overall value with respect to the creature, but that they also

influence the cognitive process in humans (Damasio, 1994; Ortony and Turner,

1990) as well as serving as a regulatory tool regarding the use of resources (e.g.
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energy levels, muscles, limbs, perceptual systems, etc.).

In this light, as pointed out by Breazeal and Brooks (2005), it can be argued

that robots, particularly those that are social, face many of the same problems:

they have limited resources (in the form of motors, sensors, computational power,

batteries, etc.), the world around them is also unstructured and unpredictable

and they need to interact with other social creatures that inhabit the same phys-

ical space as them. Furthermore, given the prominent tendency for humans to

treat machines as social and apply human-social models to these in order to un-

derstand their behaviour, and the important role that emotions play in living

creatures, the modelling of affect at both a computational/cognitive levels, as

well as at a behavioural level has been deemed to be vital for establishing effective

and engaging HCI and HRI (Picard, 1997; Breazeal, 2004b). The work in this

thesis is concerned with the latter, with a particular focus on how a robot is able

to meaningfully express its inner affective to others through the medium of sound.

One way of doing this is through the use of natural language and speech synthe-

sis, however, as we shall see later, this approach has a number of short comings

that can hinder HRI in general. However, taking inspiration from the world of

animation, another seemingly fruitful approach is through the use of expressive,

abstract sounds, which in this thesis are referred to as Non-Linguistic Utterances.

1.2 Non-Linguistic Utterances

Non-Linguistic Utterances (NLUs) are utterances that consist of beeps, squeaks

and whirrs, rather than natural language. They have been used almost exclu-

sively, to great effect, in the world of Animation and modern culture (R2D2 and

Wall-E provide vivid examples of this). To take the infamous example of R2D2

from the Star Wars films, this robot does not speak a single world of any real

natural language through any of the six films that have been made so far. It has

in essence, three basic modalities (a single multi-coloured light, motion through

the rotation of its head and body, and through sound) though which it expresses

a rich and vivid variety of different emotions and social cues that bring the char-
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acter to life. Arguably, the acoustic modality is the most expressive out of the

three, as sound is not limited by the physical morphology of the robot and has all

the affordances that the human-voice has also: the potential to dual encode both

semantic information and affective information through a single signal that does

not require line of sight in order to be communicated, as well as increasing the dis-

tance through which communication between two agents can be established and

take place. What is fascinating about this character is that throughout the films,

not only did it not make a single utterance in a real natural language, the audience

did not appear to care about this, they readily attributed very human-like states

to the robot even though the main mode of communication had very little resem-

blance to how people communicate through sound. This is anthropomorphism

and suspended disbelief in action.

Clearly there is also something special about NLUs as there is with the hu-

man voice and natural language, however, as we shall see in this thesis, there has

been very little scientific and documented investigation into this different mode

of expression in general, and the vast amount of potential that it has to offer

the world of real social HRI. For example, little is known whether people indeed

perceive NLUs made by a real robot has having any affective meaning. Further-

more, in the Star Wars films everything that R2D2 said is heavily scaffolded by

the other events occurring around the robot. Is this a trick that fundamentally

underpins the meaning the people project onto these abstract sounds it made, or

is there something about the utterances that naturally elicits particular affective

inferences in people? These are the kinds of questions that this thesis seeks to

address.

Now we have identified the types of utterances that this thesis is concerned

with, we shall take a step back and consider what vocal expression and commu-

nication affords a social agent more generally.
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1.3 Vocal Communication and Expression

Expression through sound is a capability is shared by many difference spices and

has a number of affordances that sets it aside from other modes of communication

and expression, many of which have exploited by intelligent animals, particularly

those that group together (though ants are a notable exception to this). At the

group level, vocalisations are commonly used as a means for a member of the

group to identify, gain the attention of, and communicate with other members

with regard to the state of the environment, such as warnings to announce the

presence of a predatory threat, the availability of food and group herding. At

the individual member level, vocalisations allow an animal to express its inner

state, such as its sexual availability, its dominance over another animal during

confrontations, and its general state of health (whether it is in pain, distress

or is ill). However, not all vocalisations have a communicative role. There are

species that exploit the properties of acoustics to gain an understanding of their

surrounding environment, such as Bats and Dolphins which use sound as a means

to perform echolocation to locate and map the physical surrounding environment

as well as prey.

What sets vocalisations apart from other modes of communication is that

while they are relatively energetically costly, acoustic signals do not require line

of sight which allows communication to occur over large distances and through

a variety of different mediums such as fluids (in the case of marine mammals),

solid materials (in the case of elephants) and through the atmosphere (birds,

chimpanzees and humans are vivid examples). Furthermore, as we shall see with

the human voice, sound provides a rich medium through which both simple and

very complex meaning can be encoded and communicated, and as such has been

subject to many efforts to recreate this in synthetic systems through the fields of

Computer Speech and Speech Synthesis.
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1.3.1 The Human Voice

Arguably, out of all the species that use vocalisations, humans have exploited the

affordances of sound the most through the emergence of natural language that is

in part facilitated via the high degree of control that humans have over their vocal

system. In this regard, humans have developed a sophisticated communication

system in which both a reflection of a persons internal (affective) state and lan-

guage can be encoded (and decoded by others) into the same acoustic signal. This

results in vocalisations that hold a very rich amount of information and social cues

which can be communicated with ease and at speed, making for a highly effective

means of communication and expression (Scherer, 1995, 2003).

Specifically with respect to affective communication, there has been a consid-

erable amount of research over the last five decades that has tried to disentangle

language from emotion in the voice in order to understand the nature of emotional

expression in human vocalisations (see Scherer (1986); Banse and Scherer (1996);

Scherer (2003); Juslin and Laukka (2003) for extensive reviews on this). With

respect to creating NLUs that allow a robot to make vocal displays of affect, this

is useful work to take insights and inspiration from.

1.3.2 Speech Synthesis

An area heavily related to HRI is speech synthesis, which has tasked itself with the

challenge of using technological developments to understand, and artificially re-

synthesise the human voice and create artificial agents that can converse naturally

with people. Such technology has a broad range of applications both in the medial

domain, but also in the field of psychology as a tool to aid the scientific exploration

of the human voice and the acoustic correlates of emotional speech, but also

to the field of computer technology and robotics in general. Like human voice

research, speech synthesis too has a long and rich history and the two fields have

arguably developed in unison in recent years given their shared underlying goal

of fundamentally understanding the human voice. As with the field of psychology

and the study of the human voice, this is a useful field to drawn knowledge from

8



when developing methods that allow a robot to communicate vocally with others.

1.4 The thesis

Within this thesis, the fields of study outlined above come together. Affective dis-

plays are important roles during social interaction and the ability to make affective

displays is an important capability required in order to make socially competent

robots. The world of animation has shown us that robots do not need to speak

in a real natural language, rather it has shown us that the use of abstract sounds

is a rich and fruitful means of animating a robot and bringing it to life through

vibrant, expressive displays. Furthermore, while natural language is identified

as a key ingredient required to make social robots interacting and engaging, the

current state of the art in Natural Language Processing (NLP) technology has

some hindering limitations, not only with respect to an actual interaction, but

also on other research within HRI that has a certain degree of reliance on vocal

interaction and expression. Non-Linguistic Utterances have a number of proper-

ties that make them appealing to HRI and can potentially mitigate some of the

problems accosted with NLP, as well a providing a rich source of expressive vocal

displays. However, it is currently unclear as to whether the rich affordances that

are provided by NLUs in fictitious robotic characters can be achieved and applied

to real world social robots in the same way, and what may influence this.

Now that the backdrop has been presented, and the stage is set, the following

general questions may be formulated:

• Do people perceive robotic NLUs as having different affective meanings, and

if so, are people coherent in meaning that they perceive?

• Can NLUs be generated, and affectively charged in an automated manner to

evoke a desired affective interpretation?

• What factors impact how a robot uses NLUs and how people interpret them?

These questions are addressed as follows through this thesis. Firstly, the term

Non-Linguistic Utterances is given a more formal definition, and a review of the
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previous work in the literature is presented. Also, related work regarding the

expression of emotion through the human voice and through musical pieces is

reviewed as this likely has some useful insights regarding how different acoustic

signals may be characterised and charged to convey different affective meanings

(chapter 2).

Next, a review of the experimental tools that have been used in this research

are presented and detailed. Firstly, using the insights of the human voice and

music, a custom NLU generator is described in detail as this forms the backbone

scientific tool that is used throughout this thesis to systematically study NLUs

(chapter 3). This parameterised approach to NLU generation is vital to the goal

of understating how NLUs should be designed and how different acoustic features

relate to different affective interpretations in people. This is followed by a detailed

description of the Aldebaran Nao humanoid robot and the manner in which it has

been used as the sole platform through which NLUs have been embodied in a

multi-modal social agent. Finally, after a review of issues surrounding the two

main approaches to representing affect (affective categories and affective dimen-

sions) theoretically and in synthetic systems, different tools designed for explicitly

capturing affective ratings from humans, the affective measuring tool of choice -

The AffectButton - is detailed. These are all issues that hold great relevance when

it comes to the study of affect in general, and specifically here, through sounds

and vocalisations.

As the Nao is the sole platform used in this research, it is important to probe

whether it is an appropriate platform (in the eyes of people) through which NLUs

may be studied, whether the use of a different robot may impact how people per-

ceive NLUs, and in turn how this may potentially impact and limit the conclusions

and contributions of this thesis. This is the focus of chapter 4, and the results

provide strong support for embodying NLUs in the Nao platform.

Having developed a means to create and systematically manipulate the various

features of an NLU, it is necessary to perform an exploration into how the different

parameters impact how people perceive the affective meaning of an utterance, and
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into understanding the the nature and dynamics of peoples’ perception of affect

in NLUs. This is done in chapters 5 and 6. These explorations provide data

that reveal the underlying relationships between the different parameters of an

utterance and how these relate to different affective interpretations and provide

the basis for a mapping between these to be determined. This data the then

used to train Artificial Neural Networks to learn these mappings, where a desired

affective meaning is input to the networks and a specification of the utterance

parameters is output (chapter 7). These mappings are compared with the general

findings relating to the human voice and music to check for similarities, followed by

a subject evaluation of the mappings that tests whether people are indeed sensitive

to these mappings and associate utterances with different acoustic features with

different affective meanings.

Having established the impact that a robot’s physical design has upon how

people perceive NLUs, and how the different acoustic features of an utterance

influence the affective meaning that is conveyed, the next major factor to inves-

tigate is how the particular situation and context in which NLUs are used by the

robot influences how the NLUs themselves are perceived and interpreted by people

and whether general coherence between people is increased (chapter 8). Chapter

9 then extends this notion of situational context further, beyond physical inter-

actions with a robot, to contexts that are set through verbal interactions that

include natural language. In this chapter the notion of a robot using NLUs along-

side natural language is explored as natural language is a rich source of defining

the context and mood of an interaction, and presents a large range of potential

research directions.

1.5 Contributions

In light of the description of relevant topics described and thesis above, what the

general research questions are, and how they have been addressed, the original

contributions that have emerged from this are summarised as follows:

• The design and development of a new and novel means of creating and
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characterising NLUs that can be used to generate and systematically explore

the acoustic characteristics of NLUs beyond single tones with either a rising

or falling pitch envelope (a.k.a. “earcons”).

• Not all robotic platforms are compatible with NLUs. There is an alignment

that must be made between the physical design of a robot and the acoustic

behaviour it exhibits for people to deem this combination as acceptable.

• People show little coherence in their perception of affective meaning of ut-

terances when they are presented in a context-free manner.

• NLUs that have similar acoustic features as the human voice and music

do when expressing an emotion do not evoke the same affective interpreta-

tion. The acoustic correlates of the human voice and music in emotional

expression to not have the same effect when applied to NLUs.

• People exhibit Categorical Perception when affectively interpreting NLUs

as their affective interpretations are drawn to particular, basic, emotional

states.

• Coherence in affective interpretations of NLUs emerges from, and is directed

by the situational context which the utterance is used within.

• During an interaction NLUs, people show preference for NLUs being used

along-side language rather than on their own.

1.6 Structure

The structure of this thesis is outlined below, giving a brief description of the

theme and context for each chapter. Also, to accommodate for the hasty reader,

chapters 3 through 9 begin with a list of the main key points and findings.

• In this introductory, chapter 1, the main relevant themes to this thesis have

been introduced and their relation to each other highlighted, and contribu-

tions and structure of the thesis outlined.
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• Chapter 2 provides a deeper and more extensive background regarding Non-

Linguistic Utterances. The similarities and differences between NLUs and

natural lanagueg are discussed with the boundary between the two shown

to be vague at best. Previous work in both NLUs and the related area of

Gibberish Speech is covered in detail, as is the related literature on affective

expression through the human voice and music is also reviewed as this po-

tentially holds useful insights with respect to how NLUs can convey affective

meaning.

• The methods that have been used in this theses are detailed in chapter 3. it

beings with a detailed description of a new algorithm designed and developed

to facilitate real time generation and synthesis of NLUs as well as a high

desire of precision in specifying and manipulating the acoustic properties.

The algorithm described in this chapter serves as the means of producing,

characterising and controlling the acoustic properties and features of the

utterances used in all the experiments presented in the subsequent chapters

of this Thesis (with the exception of chapter 4). A description of the Nao

humanoid robot and the manner in which it has been used in this work

follows this. Finally a discussion regarding the measurement of affect in

humans is presented, and the affective measuring tool of choice and its use

is detailed.

• Throughout the work described in this thesis, the Nao robotic platform has

been used at the platform through which the NLUs have been embodied

in a physical, social agent. Chapter 4 presents an experiment that seeks to

provide an experimental justification for this, and highlights the importance

of the relationship between the physical appearance of an agent, and the

(audible) behaviour that it exhibits, and how this can impact the holistic

perception that people have of the agent, particularly in the case of NLUs.

• In chapter 5, the parameters of the NLU generation algorithm are explored

in a systematic manner through a series of small experiments in order to test
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their impact upon the affective meaning of an utterance. These experiments

are designed in such a way as to also accommodate the collection of training

data to be used in chapter 7.

• Chapter 6 presents two experiments centred around investigating whether

both adults and children exhibit categorical perception when affectively in-

terpreting NLUs. It is well established that people categorise a wide variety

of sensory stimulus, such as colours, facial expressions and emotional speech,

and chapter 5 presents evidence that suggests that the same may be true

for NLUs also. Using the methodologies that have been refined and well

matured in the domain of psychology, this chapter seeks to uncover whether

it is indeed the case that subjects affective interpretations of NLUs are also

subject to a perceptual magnet effect and drawn to particular prototypes.

• Using the data collected from the experiments in chapters 5 and 6, chapter 7

details how this data has been used to train a collection of Artificial Neural

Networks to learn a mapping between an dimensional representation of affect

and the parameters of the generation algorithm outlined in chapter 3. These

networks (and the learnt mappings) are then evaluated with young children.

• In chapter 8, the interaction between the situational context which NLUs are

used within and the subsequent affective interpretation of these utterances

is investigated. More specifically, this chapter queries whether the context

has a biassing effect whereby the nature of the context within which utter-

ances are used directs how they are subsequently interpreted, or conversely,

whether the use of NLUs can bias how the context is interpreted.

• Taking the findings of chapter 8 - that situational context biases affective

interpretation of NLUs - into consideration, chapter 9 explores the potential

use of NLUs along side natural spoken language rather than being used as

an alternative through an online experiment as natural language is another

rich source of situational context.

• Chapter 10 provides a summary overview of the work that has been pre-
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sented in this thesis, and reflects upon the aspects that are related to the

limitations of the thesis, as well as in the broader sense and ends with a

discussion of a collection of topics that are considered as potentially fruitful

future research.
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Chapter 2

Non-Linguistic Utterances

This chapter serves to sketch a theoretical and practical background of Non-

Linguistic Utterances (NLUs). It begins with a brief definition and formalisation

of what NLUs are, and are not, and what distinguishes this, particularly with

respect to natural language, as well as their relation to a similar strand of research

surrounding the use of gibberish speech in social agents. This is followed with some

examples of how NLUs have been used in real robots, as these help provide more

tangible and concrete examples of the type of utterances that are the focus of

this research. Following this, the general motivations and potential applications

of NLUs (and gibberish speech) to social HRI are then outlined.

A review of research on emotional expression though the human voice and

music is then presented, drawing particularly from the fields of psychology and

musicology, as facets of these fields have had great influence upon the the previous

work in NLUs and gibberish. Furthermore, in this review, certain links between

methods developed to facilitate the study of emotional expression through sounds

and the methods used to create NLUs and gibberish speech are highlighted, as

many of these have been overlooked in the previous works.

Following this, a review of the previous work on NLUs and gibberish speech

is presented in tandem, charting the developments that have already been made.

This work is then discussed and important gaps in the research are highlighted,

as these have influenced the manner in which the work informing this thesis has

been conducted.
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Finally, a note on the properties of NLUs that ultimately distinguish them from

language is presented, as this justifies why NLUs and gibberish are not considered

to be an artificial language with respect to this thesis.

2.1 A working definition of Non-Linguistic Ut-

terances

Non-Linguistic Utterances (NLUs) are sounds comprised of beeps, squeaks and

whirrs rather than resembling a real spoken language. They are utterances that

are specifically designed not the resemble the complex acoustic signals that can be

made by the human vocal system, and are not designed to resemble any real natu-

ral language, and thus are inherently unable to convey complex, linguistic seman-

tic information to humans who do speak real natural languages. However, NLUs

are still theoretically able to convey affective information as this is not directly

dependant upon a shared linguistic and semantic vocabulary between two people

or agents, but rather can be encoded and decoded through more general features

and characteristics in both simple and complex acoustic signals. This highlights

an important distinguishing feature between natural language and NLUs: while

the human voice affords the duel encoding of both affect and linguistic informa-

tion via the same acoustic channel (Picard, 1997; Scherer, 2003), NLUs do not as

there is not (intended to be) a defined linguistic vocabulary or encoding/decoding

protocol (at this point in time).

At this stage, a similar, related method of expression should also be introduced,

gibberish speech. As we shall see later, gibberish speech has the same underlying

motivations as NLUs, as well as the same utilities with respect to their application

to HRI. However, there is one fundamental difference, and that is that unlike

NLUs, gibberish speech is indeed designed to resemble the timbre and voice quality

of human speech, without containing any linguistic or semantic content. The

reason for mentioning this seeming different modality is that NLUs and gibberish

speech represent “two sides of the same coin”, so to speak. And as such, it is
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useful to draw upon work relating to both in order to outline the shared underlying

qualities and applications, as well as the motivations for these.

Finally, a note on why this thesis is about affective vocal expression through

NLUs. As we shall see later, NLUs currently do not constitute a language, and

as such, their use in robotic systems is not to try and communicate high level,

complex meaning and information, as this is fundamentally not possible at this

stage in time due the lack of established cultural norms regarding the use of NLUs

during social interaction. However, NLUs do have the capacity to provide rich

paralinguistic cues and convey affect. Setting language aside, affective expres-

sion is well established as being a fundamental ingredient required for facilitating

and regulating engaging and quality social interaction (Breazeal, 2001b,a, 2002,

2003b,a; Belpaeme et al., 2012), hence this is why the body of research presented

in this thesis focuses upon affective expression through the use of NLUs.

2.1.1 Examples of NLUs in Popular Culture

NLUs have been used almost exclusively to great effect within the world of An-

imation as means of bringing inanimate objects, particularly robots, to life and

allowing them to be portrayed as social agents/individuals who can interact with

social peers with ease, and without the need to use a real spoken language1.

Rather, in this respect, NLUs have been portrayed as a fictional language, where

other characters within the films are able to understand what the robots are say-

ing, while the audience in reality do not. Their understanding of what has been

said by the robot is highly scaffolded by the events that occur within the rest of

the scene, and the script of the other characters. As such, it can be viewed that

the actual sounds themselves have little meaning to the audience, when used on

their own, and the meaning is deduced by the other salient cues provided (with

many of these cues being specifically tailored toward helping decode the utterances

made by the robot). However, this is something that needs clarification.

As a result of the success of the Star Wars franchise in particular, NLUs have

1Fictional robots such as R2D2 from the Star Wars films, and WALL-E and Eve from the
Pixar film WALL-E provided vivid examples of this.
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gained a certain iconic status in popular culture and media, in that they are

now synonymous with the fictional robot R2D2 (and similar robots within the

films), and how it expressed a rich variety of socially relevant cues (such as affect,

humour, and logic) through a variety of beeps, squeaks and whirrs, which did not

resemble vocalisations made by the human voice.

Given this status alone, using NLUs in real robotic systems can be seen as a

appealing alternative to having a robot that speaks with a real natural language, as

the popularity and iconic status of robots such as R2D2 (at least in the developed

world) means that people who see a real robot using NLUs are likely to perceive

the utterances as expressive displays. By using the association between NLUs

and social capable robots such as R2D2, a roboticist can increase the likelihood

that a real robot making similar sounds will be perceived as socially capable also,

and that the utterances indeed have a social meaning and utility, or so the theory

goes.

2.1.2 Examples of NLUs in Real Robots

While Animation has been the main beneficiary of NLUs overall, there is also a

growing number of examples of both research and commercial systems that em-

ploy(ed) NLUs as a means of expressive displays. For example, Keepon (Kozima

et al., 2009), and the commercial sister robot, My Keepon, have both used small

database of simple sounds that are used to provide expressive vocalisations both

in response to sensory input, and as a means of attracting attention. Similarly,

WowWee’s RoboQuad (and various other robot toys in their robot product line)

also used a small collection NLUs for reactive behaviours to sensory input, as well

as commands input by the user through an Infra-Red remote control.

There are some stark differences, however, between the use of NLUs in Ani-

mation and in real world robotic systems. Primarily, robots such as R2D2 are not

subject to the same limitations that real robots are. For example, while R2D2

is a robot, it does not have a real computer with limited memory and processing

resources, or a similar target production line cost for that matter. As such, R2D2
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is not limited in the variety of different utterances that it can make, while robots

such as Keepon are, given the computational resources within which a functional

system had to be created. Furthermore, utterances have to be carefully designed

by hand by a sound engineer, which is a time consuming process in itself. This is

why real robots have tended to have a limited repertoire of utterances, something

that this easily spotted by the consumer when interacting with the robot.

2.2 Motivations and Applications in HRI

While it is well established that Natural Language Interaction (NLI) plays a vi-

tal role in modulating and enhancing the quality of social interactions between

robots and people (Belpaeme et al., 2012), the current state-of-the-art of Natu-

ral Language Processing (NLP) still suffers from notable short-comings that can

significantly impact HRI in adverse manners (Mubin et al., 2009). For example,

while Automatic Speech Recognition (ASR) has gradually become a reasonably

robust and common place technology2, facets of NLP such as Natural Language

Understanding, Dialogue Management and Natural Language Generation still re-

main challenging tasks. Furthermore, given the serial “pipeline” nature of NLP,

there is very little room for error, and when errors do occur they quickly propagate

and often lead to breakdowns in NLI, such as incorrect, or worse, no responses

from the system, both of which are uncomfortable for users (Shiwa et al., 2009;

Lee et al., 2010). This makes facilitating natural language in current robots a

challenging and cumbersome task.

Strategies stemming from NLP for coping in situations where NLP might fail

include constraining and scripting interactions and dialogues, narrowing the scope

of user responses (e.g. Lohse et al. (2008b)), or employing a set of general purpose

responses to try and catch the failing interaction (e.g. Lison and Kruiff (2009)).

These strategies do have their limitations and inherent risks however, as incorrect

2Robust and common place, in this case, refers to the fact that ASR technology is now a
common feature on most smart phones and tablets, and in some cases, games consoles. However,
noisy environments, multiple speakers and speaker variation such as accents and age (to name
a few), still pose problems.
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or repetitive linguistic responses are quickly identified by users, often revealing

the limitations of the system (Ros Espinoza et al., 2011). Such revelations tend

to hamper the development of long-term, open-ended HRI, which is a long-term

goal of the field (Belpaeme et al., 2012). In such situations it may be appealing

to be able to disguise the limitations of the system from the user in some way to

mitigate the overall negative effect, and if the problems extend to such a degree

that NLI is no longer possible, perhaps to revert to a replacement modality, such

that interaction can continue, albeit in a limited capacity. NLUs can potentially

provide a solution in both cases. However, as we shall see in chapter 9, this

potential use is built upon some fundamental assumptions regarding the use of

NLUs with natural language, and the validity of these assumptions needs to be

tested and confirmed.

While the short-comings in comparison to natural language are obvious, NLUs

do have qualities that hold promise for HRI however. For example, utterances are

not bound to a particular spoken dialect, thus their use in multi-lingual and cul-

tural settings may be advantageous. Secondly, given that NLUs hold/communicate

little semantic content, there is generally a lower need to process semantic infor-

mation from user speech, thus settings that pose challenges for sensory equipment

and technologies such as microphones and NLP can be considered less problem-

atic3. Furthermore, less parsing and processing of semantic content results in

fewer delays in agent response times, helping bring the interaction closer to real

time and aiding the fluidity of the vocal exchanges which has been shown to be

crucial for HRI (Shiwa et al., 2009). Finally, as NLUs are generally considered to

hold less semantic content (with less need for a robotic system to consider seman-

tic content), the burden of interpretation lies with the user, the intelligent other,

with their inherent understanding of situational context and natural tendency

to anthropomorphise inanimate objects such as robots (Duffy, 2003), and treat

them as socially competent (Reeves and Nass, 1996). Given this, the presence of

an intelligent other may also be exploited to allow utterances to be used in far

3Such settings tend to be in real world environments that are far from the protected and
“safe” laboratory environments.
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less restricted scenarios, widening the range of potential application areas, where

the person may project meaning onto the abstract sounds based upon how the

interaction is unfolding. This notion is explored in chapter 8.

NLUs also have another, subtle, but powerful potential affordance - the ability

to allow robotic designers to subtly manage user expectations. It is a common

observation in HRI that as the sophistication of a robotic system increases, so

too does the user’s expectations of the system, and thus the greater the risk that

they discover the system’s limitations and disengage from the interaction (Ros Es-

pinoza et al., 2011). This however can be circumvented through expectation setting

where both information about a robot’s capabilities (e.g. vision, tactile sensing,

speech recognition, etc.) and observable behaviour (e.g. reactive behaviour to

input stimulus, and expressive displays, etc.) can be used as a tool to set user ex-

pectations (Paepcke and Takayama, 2010). In theory, by employing NLUs rather

than Natural Language, the robot designer is able to help keep the “bar” of ex-

pectation low by producing a robot that does not risk engaging in open-ended

NLI but can remain responsive to external stimuli and make expressive displays

and engage in open-ended HRI. Again, gibberish speech provides a good tangible

example of this through Kismet (Breazeal, 2002), where people were observed to

readily engage in stimulating multi-modal interactions with the robot without the

need to rely on natural language interaction. It is also worth noting that in such

design philosophies, the ability for naive subjects to suspend disbelief (Duffy and

Zawieska, 2012) is also used as a powerful tool, and is a aspect that could make

the use of NLUs particularly useful during Child-Robot Interaction as children

are observed to readily suspend disbelief and are very willing to engage in social

interactions with robots (Robins et al., 2004; Belpaeme et al., 2012, 2013).

There are already a number of robotic systems, both fictional and non-fictional,

that demonstrate how a variety of the qualities of NLUs can be applied to social

robots. Moreover, there are also examples that stem for HRI research showing

that not only are NLUs and gibberish a useful means of facilitating expressive

vocal displays, but they also hold potential as a useful tool that be help advance
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and support research into other areas of HRI in general. These are outlined here.

2.2.1 Utility as a tool in broader HRI research

As is shown later in this chapter, both NLUs and gibberish speech have the

potential to be used beyond a tool for creating and animating expressive robots,

but also as a tool for studying affective expression through sound and speech

more generally. However, this section serves to point out that NLUs and gibberish

speech have properties that make them very appealing as tools to be used in other

areas of HRI also. The Kismet robot (Breazeal, 2002) is prominent example of

how gibberish speech can be used as a means of vocal expression in a robot, but

at the same time is used as a tool to help facilitate research into other areas of

HRI simultaneously, such as evaluating the influence that affective models of the

robot’s internal states can have on the observable behaviour of the robot.

For example, Chao and Thomaz (2013) have used gibberish speech in a similar

manner with their robot, Simon. In this work, the focus of the research was on

evaluating their computational model turn taking during multi-modal HRI. Their

evaluation required subjects to interact with Simon, in a natural manner, and

so they told subjects to teach the robot about a variety of different objects4.

As the focus of the work was on turn taking, the robot was required to engage

in the interaction and make both visual gestures and audible vocalisations. In

order to avoid having to implement an NLP system, which if it failed could have

had adverse consequences on interactions, they implemented a gibberish speech

system in the robot, in the same way as (Breazeal, 2002) and for the same reasons

- to elicit natural behaviour and turn taking from the human, without the need

to cater for increased complexity and risks that come with NLP and the use of

natural language.

In research focused upon the physical, anthropomorphic design of robots and

how this impacts the perception people have of a robot, Walters et al. (2007) used

NLUs to facilitate vocal animation of a robot that was deemed to be “machine-

4In reality, the robot did not do any learning. By asking subjects to teach the robot about
objects, they were subconsciously encouraged to behave and interact in a natural manner.
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like”, as opposed to having a more anthropomorphic design. Again, in this ex-

ample, NLUs have been used as a tool to facilitate vocal animation of a robot, in

order to be able to study aspects of HRI that fall far beyond affective expression

via sound. Another example of this use of NLUs is research in with the robot

Keepon (Kozima et al., 2009), which is a robotic tool designed to be used with

young autistic children, many of which are pre-verbal. In this cases, not only does

the robot’s morphology not lead itself to the use of gibberish speech, but the use

of natural language with pre-verbal infants serves little purpose and runs the risk

of over complicating interactions.

In these examples, the benefits of NLUs and gibberish speech shines through

clearly. The use of natural language in robots is currently cumbersome due to

the limitations that the technology has, and if the research does not strictly re-

quire natural language, but does require some form of vocal expression, NLUs and

gibberish can be seen as attractive options that can be implemented with con-

siderable ease in comparison to NLP. Furthermore, the examples above are only

a select few which have actually not used natural language for vocal expression

when they have not needed to. There are many examples of research experiments

that have adopted the Wizard of Oz (WoZ) experimental method (Kelley, 1984;

Riek, 2012), where there is (unknown to the subject) a human controlling aspects

of the robot. Moreover, in the majority, the reason why WoZ has been used is

to facilitate vocal expression and natural language5, which highlights two points:

firstly that NLP technology is not in a mature enough state where it can be im-

plemented into robotic systems for state-of-the-art research, and secondly, that

there is a growing body of HRI research that is becoming contingent upon vocal

communication and natural language in order to progress, and WoZ is used as

a means to circumvent this contingency. The particular problem with the latter

point is that the robot systems that are ultimately used in this research are not

autonomous systems, but rather are mock-ups. This in itself can be a limiting

factor in the general progress toward creating fully autonomous social robots.

5A recent review by Riek (2012) found that approximately 70% of WoZ studies used this
technique to facilitate vocal and natural language.
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It is in this light that the use of NLUs and gibberish speech in HRI research

can be considered as highly fruitful as it provides a means of creating vocally

expressive robots that are autonomous and thus can be programmed to operate

in a consistent manner, making their use in experimentation particularly useful,

and they remove any bias that natural language may have. Something that is

useful when exploring other modalities in a robot.

2.3 Affective Expression through Sound

As both NLUs and gibberish speech are intended to resemble the function of hu-

man vocalisations during social interaction, in the sense that they can be used

for proto-dialogues and affective displays (while not necessarily resembling human

speech with respect to voice quality or timbre), it makes sense to draw upon the

insights that have been gained regarding emotional expression through sound, and

in particular through the human voice. This section serves to do this and presents

an overview of affective expression through both human speech and through mu-

sic, as both have relation to how affective meaning can be projected though NLUs

and gibberish speech. Furthermore, this section also seeks to highlight the rela-

tionships between the methods used to create stimuli to investigate the acoustic

correlates of human speech, and the methods used to create NLUs and gibberish

speech, and many of these relations and similarities go overlooked.

Finally, the section presents a brief overview of the psychological phenomenon

of sound symbolism, which theoretically may also hold potentially useful insights

with respect to the design and synthesis of NLUs and gibberish speech. However,

much of this particular notion is speculative and thus is not dwelled upon.

2.3.1 Affective Expression via the Human Voice

As mentioned in the introduction, research into the acoustic correlates of the

human voice with different emotional states has received a great deal of attention

for a number of years, and has been spurred on by technological advances such

as the telephones, audio recording technology (Scherer, 2003), and more recently,
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advances in computer speech/speech synthesis (Schröder et al., 2010). Through

these efforts, a vast body of work has accumulated, and as a result a number of

review articles have been published in order to chart and summarise the findings

(e.g. Scherer (1986), Banse and Scherer (1996), and Scherer (2003)). In light of

this, this section will not provide a detailed coverage of the whole field of human

emotional speech research (this is covered in adequate detail in the review articles),

rather it outlines the main important aspects of the field that apply to the study

of NLUs and gibberish speech.

Firstly, it must be pointed out that in comparison to NLUs consisting of beeps

and squeaks, human vocal expressions are very complex acoustic signals, particu-

larly as they exploit the affordances of sound in order to dual encode both affect

and natural language - where what is said and how it is said are transmitted via

the same channel at the same time, in the same signal (Picard, 1997; Scherer,

1986, 2003). This makes the study of the human voice and specifically emotional

speech particularly challenging. The first problem is to try and isolate these two

components of the signal such that the their underlying acoustic characteristics

can be studied. In order to achieve this a number of novel techniques have been

developed in order to address this, varying from methods of masking linguistic

context, to artificially creating signals that have no linguistic context at all. Here,

it is worth pointing out that this sounds familiar: both NLUs and gibberish speech

have a similar underlying goal, and as we shall see later in this chapter, previous

literature has used very similar techniques to create both NLUs and gibberish

speech, while perhaps not being completely aware of this. Using these techniques,

it has been possible to explore the acoustic correlates of emotional expressive via

the human voice and via music. This is presented in section 2.3.1.2.

2.3.1.1 Removing linguistic context from the human voice.

There have generally been two approaches to this problem of removing the dis-

tortion of natural language from expressive speech: cue masking, and cue manip-

ulation by re-synthesis (Banse and Scherer, 1996; Scherer, 2003).
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In cue masking approaches, the verbal cues are masked, distorted/corrupted

or removed from expressive vocalisations that have been captured from humans

(either via eliciting natural emotional expressions in people, or by recording actor

portrayals) to study the influence of the ensuing acoustic features on peoples’

inferred emotional meaning and content (Scherer, 1986). This particular approach

has been used early on in the field, using techniques such as low pass filtering in

order to remove the higher frequency components of a voice sample in order to

suppress the intelligibility of phonemes (e.g. Knoll et al. (2009)), and randomised

splicing, where voice recordings are split up into small segments and reordered in

such a manner that the prosodic features of the utterance are generally retained,

while the verbal cues are distorted and the verbal content corrupted (e,g, Scherer

(1971) and Scherer et al. (1972)). Remez et al. (1981) used Sine Wave Synthesis to

investigate the nature of speech perception. This technique involves analysing the

voice recordings and generating time-varying sinusoidal wave patters that match

the time-varying patters of the vocal formants of the voice.

While the benefits of the cue masking approach are that they are using ac-

tual expressive human speech, which ensures as high degree of voice quality and

accuracy, there are problems surrounding the methods through which the voice

recordings have been captured. In particular when voice actors are employed,

there is a risk that when they are asked to portray an emotion, they exagger-

ate this and thus the voice recording does not necessarily comes and accurate

reflection of genuine emotional speech (Scherer, 2003). Also, it has been reported

that people do still exhibit an ability to recognise and understand to a degree the

verbal context of the speech, which demonstrates the degree to which affective

and verbal content are intertwined in the voice (Remez et al., 1981; Scherer et al.,

1972) .

Cue manipulation via re-synthesis is a more modern approach has been proven

to be a remarkably useful tool (Cowie and Cornelius, 2003), particularly given the

developments in general speech synthesis technology. Through this technology, the

human voice can be explicitly parameterised which allows for systematic manip-
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ulation of the vocal patters and parameters and how peoples’ affective inferences

change as a result (Scherer, 2003). An early example of this, before the large scale

developments of speech synthesisers, comes from Scherer and Oshinsky (1977),

who used a MOOG synthesiser to create concatenated tones of sounds that were

designed to resemble both sentence-like utterances as well as musical melodies, by

specifically manipulating the pitch, rhythm, contour, timbre and tempo of tones.

More recently, the use of speech synthesisers has become popular as reflected

by the large number of publications on the subject (e.g. Cahn (1990), Murray

and Arnott (1993), Murray and Arnott (1996), Burkhardt and Sendlmeier (2000),

Laukka (2005), Schröder (2001), Schröder (2003a) and Schröder et al. (2010)),

partly due to the direct application that findings have for speech technology ap-

plications, of which there are many.

The purpose of highlighting these two methods of creating stimulus with af-

fective content for psychological studies is that there are a very many number of

parallels between both NLUs and gibberish speech, with respect to the underlying

goals, but also the techniques that are used to actually produce utterances and

stimuli. This is something that the related literature in both NLUs and gibberish

speech has failed to observe6. Furthermore, this emphasises the strong relation-

ship and relevance between the human voice, speech synthesis and NLUs/gibberish

speech, and highlights that the use of NLUs and gibberish speech does not only

need to be geared toward the application in social HRI, but the methods used to

create utterances can also have utility as scientific tools that can be used to help

further address research questions regarding emotional expression in the human

voice.

2.3.1.2 Acoustic Correlates of Emotional Speech

Work investigating the acoustic correlates of emotional speech have tended to

focus on a relatively small number of vocal cues given the complexity of the

6It can be argued that the true roots of NLUs and gibberish speech lay in psychology, and the
only the area of application, HRI, is now different and new. It may be due to the difference in age
of the respective fields of psychology (old) and HRI (young) that authors have not observed the
strong links between the two fields with respect to the methods used to create stimuli/utterances.
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human voice as an acoustic signal, and who they change across different basic

emotional categories (Juslin and Scherer, 2005). Moreover, as there is a very large

body of research that addresses this, much of which reports different findings that

sometimes conflict, it is difficult to consolidate the results of these studies into

a coherent overview of how these different parameters vary across the different

emotional states. This is where invaluable review efforts come into their own (e.g.

Scherer (1986), Banse and Scherer (1996), Scherer (2003), Juslin and Laukka

(2003)). Drawing upon these review articles, this section serves to provide an

overview of the different vocal cues that have been studied, and how they vary.

These parameters are taken into consideration in the next chapter which outlines

a custom method for characterising sentence-like NLUs.

Table 2.1 lists the main vocal cues that have been studied in the human voice,

broadly speaking, providing a brief description of each. It can be seen that these

different parameters are all commonly associated with different general properties

of the voice, namely the pitch, intensity, temporal aspects and voice quality. It

is the changes in both the the properties of pitch and the temporal aspects that

translate to changes in prosody which is an general umbrella term for referring

to the dynamics of the acoustic signal over time. With respect to NLUs and

gibberish speech, all of these parameters hold relevance as they provide high level

ways of characterising utterances, and as we shall see later in this chapter, many

of these vocal cues are been used when creating affectively charged utterances.
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Table 2.1: Description of the Acoustic Cues in Vocal Expression. Table adapted from Juslin and Laukka (2003).

Acoustic Cues Perceived Corre-
late

Description

Pitch Fundamental Fre-
quency (F0)

Pitch F0 represents the rate at which the vocal chords oscillate. Acoustically, the
F0 is the lowest periodic cycle component of the waveform

F0 Contour Intonation contour The F0 contour is the sequence of F0 values across an utterance over time.
Besides changes in pitch, the F0 contour also contains temporal information,
and as such is difficult to operationalise.

Jitter Pitch Perturbations Jitter is the small scale perturbations in the F0 related to random vibrations
of the vocal chords.

Intensity Intensity Loudness of speech Intensity id the measure of acoustic energy in the acoustic signal, and reflects
the amount of effort required to produce an utterance. It is usually measured
as the amplitude of the acoustic signal.

Attack Rapidity of voice on-
sets

The arrack of a signal refers to the rate of the rise in the amplitude of the
voiced segments of an utterance.

Temporal As-
pects

Speech Rate Velocity of speech The rate can be measured as the overall duration of an utterances, or as
units per duration. It can either include only the voiced segments of speech,
or the the entire utterance as a whole.

Pauses Amount of silence in
speech

Pauses as usually measured as the number or duration of silences in the
acoustic waveform.

Voice Quality High Frequency
Energy

Voice quality High frequency energy refers to the relative proportion of total acoustic
energy above a certain threshold. As the energy in the spectrum increases,
the voice sounds more shape and less soft.

Formant Frequen-
cies

Voice quality These are the frequency regions in which the amplitude of acoustic energy
is high, reflecting the natural resonances in the vocal tract. The first tow
or three formants large determine the quality of vowel pronunciation, while
higher formats are usually speaker dependant.
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With respect to how these voice cues change across the expression of different

emotions, Scherer (2003) has attempted to provide a rough characterisation for

the main vocal cues across the basic emotions as based upon the general findings

reported in the literature. These are shown in table 2.2. It can be seen from the

table that not all the voice cues have a characterisation for the different emotions.

This is because not all studies focus on the same emotions, and many studies

report contradictory and conflicting results (Scherer, 2003). Generally, it can be

seen that high arousal states such as angry, fear, and joy are commonly associated

with an increase in the F0 frequency, as well as the variability and range of this.

In these states it is also commonly found that the speech and articulation rate

are higher than lower arousal states such as sadness and boredom, as is the high

frequency energy.

While this table is generally rather vague, it does serve as a good basic guideline

for how different acoustic signals might be designed to convey different affective

states, and particularly how the features of the signals covary. What the main

drawback is that these are very general, while when it comes to implementing such

insights into a system for creating synthetic utterances, many of the parameters

characterising and utterance are system specific and so transfer of these broad

characteristics of vocal cues to system specific parameters can be limited, partic-

ularly in the case of NLUs, which are designed to be abstract sounds rather than

resembling human speech. Also, these characteristics identified by Scherer (2003)

do not provide exact specifications for each of the voice cues with respect to their

measured values. The reason for this is that each human voice is different, and so

the exact parameter values differ greatly from person to person, and so also from

experiment to experiment in the literature. However there appears to be more

consistency in the dynamics of the human voice across the different emotional

states than there is in raw parameter values, so this serves as a good initial start

point by which to design and compare the dynamics of NLUs with, but it makes

gauging the initial cue values (such as speech rate, pauses, F0 range, etc) difficult.
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Table 2.2: Summary of the acoustic patterning of the human voice for the basic
emotions. Table adapted from Scherer (2003).

Voice Property
Basic Emotion

Stress Anger/rage Fear/panic Sadness Joy/elation Boredom

Intensity ↗ ↗ ↗ ↘ ↗
F0 floor/mean ↗ ↗ ↗ ↘ ↗
F0 variability ↗ ↘ ↗ ↘
F0 range ↗ ↗ (↘) ↘ ↗ ↘
Sentence contours ↘ ↘
High frequency energy ↗ ↗ ↘ ↗
Speech and articulation rate ↗ ↗ ↘ ↗ ↘

2.3.2 Affective Expression via Music

It has been theorised that affective expression in the human voice and through

music share a common origin from an evolutionary perspective (Scherer, 1995),

mainly with respect to the use of the voice (i.e. singing), but this can also be

extend to the use of musical instruments (Juslin and Laukka, 2003). As such, it

makes sense to touch upon the expression of affect through music also. As with

expressive human speech, musical expression has also been explored for a number

of years and as a result a large body of research has also accumulated. This

work will also not be reviewed in detail as it draws away from the focus of this

chapter, but readers are pointed to the extensive review by Juslin and Laukka

(2003) which covers in detail affective displays in human speech and music the

the similarities/differences that have been identified.

However, to provide a brief overview of their findings, after reviewing a sub-

stantial volume of studies on both the human voice and music they found that

there are indeed a great number of similarities between the acoustic cues in music

and in the human voice when it comes to conveying a particular affective state.

For example, when conveying anger, characteristics of a musical piece are found

to have a fast rate, have a high intensity with a great deal of variability in this

intensity, a high overall pitch with a high variability and fast onsets of notes. Sim-

ilar characteristics are also found for the expression of happiness, while sadness

was associated with a slow overall tempo, a lower pitch with less variability and

less overall intensity in the acoustic signal and with less aggressive onset of notes.

This is generally consistent with the findings in the human voice also.

With regard to the notion of whether the human voice and music share a
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common origin with respect to emotional expression, they conclude with the view

that expression of affect through music is likely based round the manner through

which this is done in the human voice. As such, when considering the potential

use of insights grain from both the fields as the application to creating NLUs and

gibberish, it seems more rational to focus on the insights regarding the human

voice, as the human voice is more similar to the type of utterances (i.e. sentence-

like) that NLUs and gibberish are aspiring to replicate, though NLUs are not

intended to have the same overall voice quality to timbre.

Perhaps a final comment that should be made does not actually regard how

musical pieces should be affectively charged, but rather, how the pieces themselves

are synthesised. More specifically, the technologies that have been developed in

the domain of computer music as these can potentially provide a broad range

of tools through which NLUs, rather than gibberish speech, can be created and

synthesised.

2.3.3 Sound Symbolism

While affective expression through the voice is a well established phenomenon,

there is also another curious aspect of the human voice that may hold a relevance

to NLUs and gibberish speech, and so shall be briefly discussed. This is the

controversial phenomenon of Sound Symbolism (Nuckolls, 1999). In essence, the

basic notion is that people exhibit an almost universal tendency to make certain

associations between sounds and some from of meaning, where the meaning is

not culturally defined. One of the most classic cases is the association between a

verbal label and a visual referent, which in language is assumed to be arbitrary.

However this is not always the case as is shown by the “bouba/kiki” phenomonon

(Maurer et al., 2006).

In this phenomena, it have been extensively found that people, both adults

and children (Ozturk et al., 2013), from different cultures all appear to exhibit a

strong association between the verbal label “bouba” and a variety of shapes that

have the common feature of smooth edges, while the label “kiki” is associated
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with shapes that have sharp, jagged edges. The notion being suggested is that

there are some naturally biased mappings between objects and sounds, and that

these mappings are not culturally determined, but rather may have an actual

innateness in the brain.

This phenomena is unusual and still is the case of debate and continued empir-

ical study in the field of psychology as it draws out certain questions regarding the

innateness of mappings between visual and auditory perception (Nuckolls, 1999).

What makes this phenomenon related to NLUs and gibberish speech, though only

very loosely, is the notion that certain types of acoustic features of an utterance

may have a naturally biased mapping to having certain interpretations. For exam-

ple, it may be that a NLU created using a saw-tooth carrier signal has a natural

bias toward a particular affective interpretation in comparison to an NLU with a

sine wave carrier signal. If such biased mappings do exist, than it is potentially

very exploitable when it comes to trying to identify whether there are any NLUs

or gibberish speech utterances that could evoke a particular affective interpreta-

tion in a universal manner. While this sounds appealing, it should be noted that

this notion is somewhat unfounded as there does not seem to be any empirical

evidence stemming from the field of psychology that supports the notion of sound

symbolism and affect.

2.4 Communicating Affect through NLUs and

gibberish speech: reviewing previous work

Previous work on NLUs as we shall now see, has been sparse, with only a few

groups of authors seeking to explore and leverage the potential utility of this

modality as applied to HCI and HRI. Work on gibberish speech, on the other

hand, has received marginally more attention but ask remains a niche area of

research also. This section serves to provide an overview of the research that has

been conducted on both NLUs and gibberish speech and seeks to highlight the

overall undeveloped state and knowledge gaps of this general area of research.
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This section begins with the limited amount of previous work on NLUs and then

addresses the work in gibberish speech. The different approaches that have been

used and developed to create utterances are described in from a high level, as is

the general focus and direction of the experiments that have been conducted prior

to the research presented in this thesis.

2.4.1 NLUs

Given the abstract nature of robotic NLUs as communicative sounds, there have

both been approaches to creating and affectively charging NLUs taking inspiration

from research into the human voice, as well as more musically inspired approaches.

For example, Jee et al. (2007, 2009) have adopted an approach to generating and

affectively charging NLUs informed by the findings on affective expression through

music (e.g. Juslin and Laukka (2003)). They used musical notation, theory and

synthesisers to hand create a small collection of utterances that were designed to

have a particular affective charge (Happy, Sad, Fear and Dislike), by varying the

acoustic features of the tempo, key, pitch, melody, harmony, rhythm and volume.

Subjects were then asked to perform three tasks. Firstly, listen to each of the

utterances and rate how intensely the intended emotion was conveyed. Second,

subjects were shown a cartoon face with an expression matching each of the labels,

and again were asked to rate how well the face conveyed the desired emotion.

Finally, Subjects were presented with both the face and utterance for a given

label and were asked to rate the intensity of the conveyed emotion. Their results

showed that both the utterances and facial expressions alone produced affective

labels recognition rates between 60 - 70%, while when combined together, the

recognition rates increased to approximately 85%. This shows that by combining

the two modalities subjects see a more intense emotion than when the face and

utterances were presented individually.

Jee et al. (2010) furthered this work by hand creating five sounds that were

designed to convey particular intensions (Affirmation, Denial, Encouragement,

Introduction, Question), and three emotions (Happy, Sad, Shyness), again using
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musical theory and synthesisers to change the intonation, pitch range and timbre

of the utterances. Subjects were then presented with each of the utterances and

again asked to rate how intensely the utterances conveyed the desired emotion.

Their results showed that generally, subjects did agree that the utterances said

indeed convey the indented intension/emotion. While these efforts have employed

a novel way of viewing NLUs, as musical pieces, the evaluations that have been

performed provide limited insights and generalisation as only a small number of

utterances were hand crafted basic upon very specific observations NLUs made by

robots in animation (namely, R2D2). Furthermore, only a single utterance was

created for portraying each emotion and so the insights gained specifically apply

to their unique NLUs alone. That said, what these examples do demonstrate is

that using this music inspected approach also has potential for future research.

In a rare example of NLUs being studied and used outside of HRI to provide

social cues, Tuuri et al. (2011) explored the of NLUs in a sports watch as a means

of providing feedback (telling them to slow down, urge them on, tell them that

their performance was on par, and to provide a rewarding sound for good progress)

to the wearer on their current performance. NLUs were create by taking human

recordings of people making vocalisations to convey these four types of feedback

and extracting the fundamental frequency of the voice, and mapping the prosody

of these to MIDI notes in a music synthesiser. The results of their evaluations show

that again people were able to accurately decode the meanings of the utterances

presented to them. However, the shortcoming of this work are the same as that

of Jee et al. (2010) in that only four NLUs were created, and so generalisation

is limited. Rather, this serves as another example of how music technology does

indeed have potential with regard to creating expressive NLUs for interactive

agents and objects.

The largest overall body of work into NLUs with robotic systems has been

conducted by Komatsu (2005); Komatsu and Yamada (2007, 2008); Komatsu

et al. (2010, 2011); Komatsu and Kobayashi (2012). This body of work has had

multiple, specific focuses but in general has sought to investigate how NLUs are
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able to influence how people perceive and attribute states to the agents the make

the utterances, and whether the agents using their utterances are able to change

the way in which a person behaves when performing a task. In their body of work,

utterances consisted of single, short and simple sine waves with either a rising,

flat, or falling frequency modulation. Initial work focused on identifying how

utterances should be designed in order to convey a notion of a positive or negative

attitude, and agreement and disagreement (Komatsu, 2005). It was found that

utterances with rising frequency modulations were commonly rated as positive or

expressing agreement, while utterances with a falling frequency modulation were

conveyed a negative attitude. These can be considered as very iconic sounds (e.g.

earcons) as similar types of sound are commonly used in everyday technologies

such as mobile phones, computer programs and even computer games, as a means

to provide feedback on whether something positive or negative has happened. The

drawback with these kinds of sounds is that they are very short a brief, something

that could potentially limit their use during an interaction, where richer utterances

with more variety may have more overall application and utility.

Komatsu and Yamada (2007, 2008); Komatsu et al. (2011) then investigated

how different agent embodiments would impact how the same utterances were

interpreted, recognising that embodiment and morphology may have a influence

over how people infer agents’ attitudes through NLUs. Utterances were embodied

in a PC, an Aibo robot, and a mobile robot made of Lego. Subjects were presented

with each of the three robots, and asked to rate how positive or negative they

thought the utterances were. Their results showed that the when the utterances

were made by the PC, people showed a high agree of accuracy in interpreting the

utterances, while this was not the case when the utterances were made by the

Aibo and Lego robots. More specifically, they found that subjects struggled to

correctly identify the positive utterances as positive, while their identification of

the negative utterances remained high.

In later work, Komatsu et al. (2010) then investigated whether these same

utterances would be used by a robot to bias how a person performed a task. More
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specifically, the setup involved having a subject play a treasure hunting game on

a computer. The game showed a strait road, with hills appearing along the way.

Under one of the hills a golden coin was hidden, and subjects had to guess under

which one. Sitting next to the subjects was a Lego robot that was told subjects

which hill the coin was under, and then made an utterance with either a flat

pitch contour or a falling pitch contour as a means of indicating how confident the

robot was in it’s predication. Their results show that when the robot’s predication

was accompanied by a utterances with a falling pitch contour, they rejected the

predication significantly more than when an utterance with a flat pitch contour

was used. In essence, the pitch modulation had a direct impact over the perception

of how confidence the robot was about the information that it gave.

Extending this work into communicating the level of confidence that an agent

has about information that it presents to people, Komatsu and Kobayashi (2012)

conducted a further experiment to see whether the use of NLUs can mitigate

the potential adverse effects that the presentation of incorrect information may

have. Comparing NLUs and natural language, their results show that when the

computer provided completely correct information, natural language was preferred

over the use of NLUs. However, in situations where the agent’s confidence in the

information that is was providing was mis-judged, and thus the agent was shown

to be confidence about information that was ultimately incorrect, NLUs were the

preferred method of expression regarding the agents confidence. Their argument

in this work is that currently computers and robots are not perfect - they make

mistakes, and that when agents use natural language to communicate, this sets

a high expectation level, and when this expectation is violated, this evokes an

adverse reaction in people. This is a tangible example of how NLUs may be used

to manage the expectations that people have of robots.

2.4.2 Gibberish speech

In comparison to NLUs, the volume of research that has been conducted is

marginally larger, however while this is the case, both areas of research are rather
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niche when compared to a field of research such as Speech Synthesis. This sec-

tion provides an overview of the research that has been conducted into gibberish

speech and the findings that have been obtained. As outlined earlier in this chap-

ter, gibberish speech is a complementary approach to NLUs in general, but is also

a reflection regarding the general pre-occupation that the field of robots has with

robots that speak like humans.

Perhaps the most famous and earliest examples of gibberish speech in a robot

comes from the work by Breazeal (2001b, 2002) for the expressive vocal system on

the robot Kismet. The work extended that of Cahn (1990), who had investigated

how to produce expressive and affect laden speech using the commercial DECtalk

synthesiser. This system worked by creating a pseudo-random text string using

a custom algorithm and using this as the input to the DECtalk system. A map-

ping between the acoustic correlates of emotion in human speech (particularly

drawing on the work of Fernald (1989)) and the synthesiser parameters was also

developed, and thus when used together, the robot was able to make expressive

gibberish utterances and as a result engage in proto-dialogues. Human listener

evaluations were performed where they listened to eighteen different utterances

made by Kismet, and designed to cover six expressive qualities (anger, fear, dis-

gust, happiness, surprise and sorrow) and asked to select an emotion from the

list of six labels. Her results found that while subjects tended to perform well,

and were able to correctly interpret the utterances with respect to their affective

colouring, subjects did confuse some labels, namely fear was confused with sur-

prise, and disgust was confused with anger and surprise also. While all the work

on the Kismet presents a mile-stone with respect to the field of HRI, there is one

primary problem with the work on the vocal system. This is that DECtalk was

a closed system, and thus much of the system remains undocumented making it

difficult to reproduce in other systems.

Oudeyer (2003) has developed a similar system to that of Breazeal, however

using the freely available MBROLA synthesiser, seeking to remedy the problem

of replication. The general aim of this was to produce, at low computational
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cost, expressive and emotional, cartoon like speech for both robotic and virtual

agents7. As with Kismet, an algorithm was developed to generate pseudo-random

text strings of phonemes that were then fed into the TTS engine along with a

specification of the synthesiser settings in order to provide an affective colouring.

Five different emotional states were modelled using this method: Happiness, Sad-

ness, Anger, Comfort and Calmness. Subject evaluations consisted of presenting

subjects with 30 different utterances, each representing one of the five emotional

states but with different input text strings, and subjects asked to say which of the

five labels the utterances corresponded to. These evaluations revealed that with

this system, subjects had overall high recognition accuracies (> 65%), though

were found to confuse utterances conveying Calm and Comfort.

Following this, the work on gibberish speech lay dormant for a few years, until

efforts were again undertaken by Yilmazyildiz et al. (2006), who were keen to pick

up he field and investigate the possibilities that gibberish speech may have during

Child-Robot Interaction with their robot, Probo. In this work they also moved

away from the approach of feeding gibberish input into TTS engines. Rather,

they developed a concatenative speech synthesis engine that used a database of

both natural and expressive speech from a voice actor. Gibberish expressions

were created by selecting a random expressive speech sample and using this as

a prosodic template, and then concatenating syllabic samples from the natural

speech database to create a gibberish sentence, and copying the pitch and timing

structure of the template to the carrier signal. Unfortunately while utterances

could be created to represent four basic emotions (anger, joy, sadness and fear),

no human decoding evaluations were performed, only the method of utterance

creation was detailed.

Revisiting the approach of creating gibberish test string that are fed into a TTS

engine, Yilmazyildiz et al. (2010) presented a novel method for creating the text

input string. They present a simple algorithm which takes a string of real natural

language text as an input, and replaces all of the vowels with another (based

7This particular research effort had a longer term goal in that it was intended to be used
as a base expressive vocal system through which language acquisition in a real robot could be
studied.
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upon the frequency of use of a given vowel in the language of the input string).

What is novel about this approach is that rather than creating an utterance that

has no meaning, their algorithm corrupts the meaning. This results in gibberish

speech that resembles a real language also, though linguistic content remained

unintelligible. Through human evaluations, they found that it is important to

match the language of the original input text string with the language of the

TTS engine as this impacts the voice quality of the synthesis. Furthermore, they

found that subjects were better able to discriminate between positive and negative

utterances when the original input text contained uncorrupted semantic context

that matched the valence of the para-linguistic cues of the utterances.

The work described by Yilmazyildiz et al. (2011) charts the initial steps toward

merging their two previous approaches, in that they used their novel method

of creating gibberish text strings, applying this to various pieces of text, and

asking a voice actor to make expressive recordings of these for a small number

of emotions (neutral, anger, disgust, fear, happiness, sadness and surprise). A

human subject evaluation using a decoding paradigm found impressively high

recognition rates for the different portrayed emotions, however one must be wary of

the issues surrounding a limited number of emotional categories when performing

these evaluations. This particular work as a great deal of potential however:

with this alone they have a database of very high quality expressive, gibberish

speech which they can take samples of and use for affective expression for their

Probo robot. Furthermore, they are able to apply there method for conatentative

speech synthesis in order to extend the repertoire of utterances recorded from

the voice actor, and produce an infinite number of utterances that have a certain

affective charging, this is reported by Yilmazyildiz et al. (2013). Furthermore

in this work, they performed an evaluation where their gibberish speech samples

(conveying Angry, Disgust, Fear, Joy, Sadness and Surprise) were either played

alone, or combined with facial expressions in the Probo robot. It was found that

recognition rates varied for the auditory only conditions (29 % for Joy to 100%

for Sad), and that when combined with facial gestures, there was a significant
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increase in the overall recognition of the emotions expressed by the robot. This is

the same general finding as Jee et al. (2007), where mixing modalities increased

overall decoding accuracy, and is a useful, yet intuitive insight to have.

2.4.3 Discussion

As can be seen from the review of work directly related to HRI, research focusing

NLUs and gibberish speech as been very limited indeed. While on one hand

this is a concern as there is little directly relevant work to relate to, the positive

aspect is that it leaves many open questions that need to be addressed. Some of

these are discussed here, as they have influenced the direction that the work in

this thesis has taken and the methodology that has been adopted. These are the

overall methodology used for evaluation affective meaning in NLUs, the evaluation

settings and subjects used, and the need to go beyond only evaluating different

methods for creating utterances, but rather explore how real world HRI influences

how NLUs should be used and what impacts this.

2.4.3.1 Evaluation Methodology

Generally, throughout both the work on NLUs and gibberish speech there has

been a tendency toward studies using a decoding paradigm (Banse and Scherer,

1996; Scherer, 2003), where a limited number utterances have been created to

represent a limited number of affective categories/labels (e.g. anger, happiness,

ect), and subjects are to decode each utterance and assign one of the labels to the

utterance. Table 2.3 seeks to illustrate this and charts the various studio that have

been referred to in this review, outlying the method of utterance generation, the

acoustic parameters that were varied, and the difference affective states that were

portrayed by the utterances during evaluations and the means of measurement of

subject interpretations. As we can see, most of the studies have employed discrete

affective categories as the measurement method.

These studies often report confusion matrices in their results (e.g. (Breazeal,

2002; Oudeyer, 2003; Tuuri et al., 2011)), indicating which states are confused
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with others. While through this it is possible to identify confusion patterns be-

tween states, leading to potential insights regarding how close different concepts of

affective states are, such information provides limited insights into what features

of each sound were involved in the users decoding process, and to what degree

these utterance features influence affective charging.

This method of evaluation also brings up a larger debate surrounding the use

of categorical measurement as a whole (particularly in the speech synthesis do-

main): how many different categories should be used? Banse and Scherer (1996)

and Scherer (2003) argue that with fewer forced choice categories presented to

subjects, evaluation becomes more a task of recognition rather than discrimina-

tion. They take the view that simple, basic emotion categories (Ekman, 1992;

Ortony and Turner, 1990; Plutchik, 1994) are better broken down into pairs, such

a hot and cold anger, providing higher granularity in affective measurement and

increases the number of labels presented. This is an ongoing debate that has not

be resolved as of yet, and is likely to be very dependent upon the subjects that

are being tested (e.g. adults v.s. children). While such decoding studies are

interesting insights from the perspective of probing emotional representations, a

general drawback is that this approach is less fruitful when one is concerned with

understanding the mechanisms through which utterance features are exploited to

charge an utterance. These are vital insights when one in concerned with under-

standing how utterance features are best exploited to express particular states,

and if one is to introduce variability to this.

There is also a debate surrounding whether categories are the most appro-

priate representation of affect to present to subjects. There are suggestions that

measurement tools based upon dimensional representations of affect are a more

suitable foundation to employ since continuous dimensions are more resolute to

subtle changes in affective states (Cowie and Cornelius, 2003; Schröder, 2004;

Laukka, 2005), changes that are likely to occur during social interactions. Further

more, if one were to use dimensional approaches for measurement, one becomes

well poised to gain insights about how subjects actually perceive the stimuli. Do
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they exhibit coarse differences in affective inference, or are the inferences subtler?

Unfortunately, there is also the question as to the number of dimensions there

should be in such an affect space and what each dimension represents (Fontaine

et al., 2007). This is something that shall be addressed in more detail in the next

chapter.

There appear to have been no inference studies thus far. Rather than be-

ing concerned with a users ability to recognise and decode the affective state of

an agent based upon utterances designed to convey certain emotions, inference

studies are more concerned with uncovering the underlying mechanisms for each

acoustic feature of an utterance that influence affective expression, communication

and interpretation (Scherer, 2003). This somewhat reflects the strategies through

which authors of the previous work have affectively charged their utterances. In

the majority of cases, studies have drawn upon insights from previous work across

various fields to inform the design of stimuli. While this approach is solid in that

it draws from previous results, it also makes the assumption that there is enough

overlap between parameter modelling and configuration of previous work and the

current work. This is more likely the case with gibberish speech that this assump-

tion stands than with NLUs, given the heavy reliance of TTS technology and

the use of human voice recordings. Not all studies have adopted this approach

however. Affective charging has also been achieved via simulating affective states

by recording actor portrayals and using these as templates. However there are

questions over how genuine actor portrayals of emotions actually are (Scherer,

1986; Banse and Scherer, 1996; Scherer, 2003).

2.4.3.2 Subjects and Evaluation Settings

Another notable observation form the previous work is that the general age range

of subjects has also been somewhat constant across all the studies that have been

referred to (see table 2.4). All evaluations have been with adult subjects, and been

conducted within a lab setting, with the exception of the work by Yilmazyildiz

et al. (2013) who performed their evaluation with both adults and young teenagers.
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Table 2.3: Acoustic parameters used to generate utterances in previous work,
the emotions that were portrayed and the means of affective measurement.

Study NLU/Gibberish Acoustic Parameters Emotions Portrayed Measurement

Breazeal (2002) Gibberish

Accent Shape Categories: Categories:
Average Pitch Anger Anger
Contour Slope Fear Fear
Final Lowering Disgust Disgust
Pitch Range Happiness Happiness
Pitch Base Surprise Surprise
Speech Rate Sorrow Sorrow
Stress Frequency Neutral Neutral
Breathiness
Brilliance
Larypngealization
Loudness
Pause Discontinuity
Pitch Discontinuity
Precision of Articulation

Oudeyer (2003) Gibberish

F0 mean Categories: Categories:
F0 variance Happiness Happiness
F0 max Sadness Sadness
F0 contour Anger Anger
Last word contour Comfort Comfort
Last word accent Calm Calm
Accent probability
Mean duration
Duration variance
Volume

Jee et al. (2007) NLU

Tempo Categories: Categories:
Key Happy Happy
Pitch Sad Sad
Melody Fear Fear
Harmony Dislike Dislike
Rhythm
Volume

Jee et al. (2009) NLU

Tempo Categories: Categories:
Key Joy Joy
Pitch Distress Distress
Melody Shyness Shyness
Harmony Irritation Irritation
Rhythm Pride Pride
Volume Dislike Dislike

Expectation Expectation
Anger Anger

Jee et al. (2010) NLU

Intonation Categories: Categories:
Pitch Range Happiness Happiness
Timbre Sadness Sadness

Affirmation Affirmation
Denial Denial
Encouragement Encouragement
Introduction Introduction
Question Question

Komatsu (2005) NLU

Pitch Frequency Categories: Categories
Frequency Envelope/Pitch Slope Disagreement Disagreement
Duration Hesitation Hesitation

Agreement Agreement

Komatsu and Yamada (2007, 2008); Komatsu et al. (2011) NLU

Pitch Frequency Categories: Categories
Frequency Envelope/Pitch Slope Positive Positive
Duration Negative Negative

Undistinguishable Undistinguishable

Komatsu et al. (2010); Komatsu and Kobayashi (2012) NLU

Pitch Frequency Robot’s Confidence: Perception of Confi-
dence:

Frequency Envelope/Pitch Slope Confident Confident
Duration Not Confident Not Confident

Tuuri et al. (2011) NLU

Pitch Contour Categories: Categories:
Utterance Duration Slow Down Slow Down
Voice Intensity Urge Urge

Ok Ok
Reward Reward

Yilmazyildiz et al. (2006) Gibberish
Pitch Categories:

No evaluation took place.Timing Anger, Joy
Sadness, Fear

Yilmazyildiz et al. (2010) Gibberish
Mary TTS parameters Categories: Categories:

Happy, Sad Happy, Sad

Yilmazyildiz et al. (2011) Gibberish

Recorded actor samples were used Categories: Categories:
Neutral Neutral
Anger Anger
Disgust Disgust
Fear Fear
Happiness Happiness
Sadness Sadness
Surprise Surprise

Yilmazyildiz et al. (2013) Gibberish

Recorded actor samples were used Categories: Categories:
Neutral Neutral
Anger Anger
Disgust Disgust
Fear Fear
Joy Joy
Sadness Sadness
Surprise Surprise
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Also, the number of subjects has generally quite low. It appears that there has

been no work probing the interpretation of NLUs by young children (ages less

than 10). Another interesting observation is that there have been no studies that

have addressed subjects with social disorders such as autism, while efforts have

been undertaking into understanding how robots can be used to investigate such

social disorders (e.g. Robins et al. (2004)).

Child-Robot Interaction (cHRI) is an area of HRI that has shown great promise

in recent years and is currently gathering momentum as a subfield of HRI as

evidence through research efforts such as the ALIZ-E project (Belpaeme et al.,

2012). The primary reasons for this are the willingness that children shown to

engage in HRI, and suspect their disbelief (Breazeal, 2003a; Ros Espinoza et al.,

2011; Salter et al., 2008).

Given the increasing number of potential application areas of cHRI, NLUs may

have a particular amount of promise for the the use in this area, however there

have currently been no efforts to explore this as of yet. This is one particular facet

that the work in this thesis seeks to address, if only initially. Furthermore, there

has been no work addressing how adults and children differ in their perception of

NLUs and whether they have the same affective inferences from utterances. This

too is something that this research seeks to address where possible.

2.4.3.3 Going beyond Affective Charging

The vast majority of the previous work has focused upon how NLUs and gibberish

speech can be generated, presenting a variety of different methods and techniques.

A limited number of utterances are then created using these methods, designed

to convey a given affective state. Unfortunately, these studies become evaluations

of specific methods for creating utterances which means that the results have a

limited capacity for generalisation as to the application of NLUs and gibberish

speech more broadly. Furthermore, some of these evaluations were conducted

without the use of a real robot (e.g. Oudeyer (2003), Jee et al. (2007), Yilmazyildiz

et al. (2006), Yilmazyildiz et al. (2010) and Yilmazyildiz et al. (2011)). The
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Table 2.4: Number of subjects and subject age ranges in reviewed previous work.

Study # Subjects Age Range

Breazeal (2002) 9 23-54
Jee et al. (2007) 20 “undergraduates”
Jee et al. (2009) NA NA
Jee et al. (2010) 20 20-25
Komatsu (2005) 23 20-42
Komatsu and Yamada (2007) 9 21-24
Komatsu and Yamada (2008) 20 19-24
Komatsu et al. (2010) 19 22-25
Komatsu et al. (2011) 20 19-24
Komatsu and Kobayashi (2012) 20 21-28
Oudeyer (2003) 8 “adults”
Tuuri et al. (2011) 12 23-29
Yilmazyildiz et al. (2006) NA NA
Yilmazyildiz et al. (2010) 10 24-37
Yilmazyildiz et al. (2011) 11 27 - 32
Yilmazyildiz et al. (2013) 35 10 - 14

problem is that such evaluations focused upon a specific technique for creating

utterances has no real input regarding how NLUs/gibberish speech can be used

during real HRI.

This is something that sets the works by Komatsu et al. aside. Their re-

search has focused upon a very simple set of utterances, but explored how these

utterances are perceived by people when presented through different robots, and

more importantly, how these utterances influence a real interaction that is not

context free. Such knowledge something that the overall field is lacking and is

in desperate need of if both NLUs and gibberish speech are unlock the potential

benefits that they have to offer during real world HRI. The results of obtained

from their simple experiments with simple utterances have been fascinating and

provided initial valuable insights showing that within a interaction, NLUs indeed

can have an important influence over how people behave.

However, the drawback with their work is that they have employed very sim-

plistic utterances that have been hand crafted and have no really addressed af-

fective meaning beyond simple positive or negative valence. The world of vocal

affective displays is far richer than this, and a clear area that requires further

exploration is how more acoustically rich NLUs are capable of conveying more
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complex affective states, how these can be used during HRI, and how these can

influence people during an interaction as well as how the interaction can influence

the utterances. Highlighting and addressing such potent questions is another the

prime goal of the research presented in this Thesis.

2.4.4 Review Summary

The review of previous work presented above serves to highlight a few important

points regarding the field of NLUs and gibberish. Firstly, and perhaps most

importantly, is that the field is young and not very well established, with only a

few research efforts having been active, and in some cases, spread out of over the

last decade or so. The review has covered both NLUs as well as gibberish speech

as it is considered that there two means of expressive vocalisations are very much

related and share a common underlying goal: to allow robotic agents to make

expressive displays through sound without the need to rely on natural language.

In the case of NLUs, methods for creating NLUs have mainly revolved around

the use of music synthesisers, and either drawing upon insights from the field

of musicology to provide an affective charging to utterance, or taken samples of

human expressive vocalisations and extracting a basic prosodic template and map-

ping these to musical MIDI notes and then synthesising utterances, and creating

simples sine wave signals which have either a rising, falling or flat pitch contour.

With respect to gibberish speech, the methods for creating these have all revolved

around borrowing the methods and technologies developed by the world of speech

synthesis and using these to create utterances that resemble human speech, but

do not contain any linguistic content. Where TTS technology has been used, the

developments in synthesising emotional speech have been adopted and directly

utilised, however in some cases authors have decided to create their own syn-

thesisers by recording voice portrayals of expressive speech and reimplementing

methods for using these to re-synthesise new utterances.

All of the previous work has used the decoding paradigm for performing eval-

uations, where utterances were created to portray basic emotions and people had
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to identify which emotion they though the utterances conveyed. As such, all

the evaluations report confusion matrices which generally show good accuracy in

decoding the affective meaning of utterances. Furthermore, the accuracy of the

decoding is increased when NLUs are combined with facial gestures, highlighting

the importance of synchronising and aligning affective displays across multiple

modalities.

However, the main drawback with this is that there are few insights that

inform how the specific parameters of the specific synthesis methods influence af-

fective charing, rather only holistic insights overall different synthesiser parameter

configurations are gained. No evaluations have been performed using a inference

paradigm where specific features of an utterance are manipulated in order to iden-

tify how these different features contribute to different affective interpretations in

the eyes of subjects.

In light of the review of previous work, a number of important observations

have been made with regarding to the types of utterances that have been studied,

the evaluations methodologies have been performed, the types of subjects that

have been used in these evaluations, and the overall exploration of how NLUs and

gibberish can be applied to HRI in a broader sense, rather than just evaluation

different methods for creating utterances. As such, many of these observations

are taken on board in the work described in this thesis. Specifically, this thesis

seeks to address the following gaps:

• NLUs consisting of simple, single sine waves has been covered well in the

literature. However, concatenating such sounds together to from sentence

like structures has not been addressed as of yet (while the majority of work

in gibberish speech has). NLUs in this thesis are designed to consist of

multiple, concatenated single sine waves a they are though to provide a

richer repertoire of utterances.

• Moving beyond creating utterances to convey a small number of basic emo-

tion labels and asking subjects to decode these, this thesis moves toward an

inference study paradigm where utterances are systematically manipulated
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in order to gain deeper insights regarding how the different properties of an

utterance impact the affective interpretation people have of the utterances.

• Furthermore, the work here moves away from the common use of affective

labels and adopts representations of emotions that are continuous in nature

rather than discrete. The method through which this is done is presented

in more detail in the next chapter.

• There has been a lack of focus upon how NLUs and gibberish speech can

be applied to Child-Robot Interaction, with no evaluations performed at

all. The work in this thesis addresses this and where possible has performed

evaluations with both adults and young children in order to gain comparative

insights.

• Some research efforts have gone beyond simple evaluations of the inference

of affective meaning from the utterances, but has sought to explore what

aspects of HRI might impact this, such as the robot morphology and the

contexts within which utterances are used. The work in this thesis seeks to

further explore this also.

2.5 Are NLUs a language?

Finally, a word must be said about NLUs and their potential relation to language.

This thesis has opted to view NLUs as not having two fundamental properties

of a natural spoken language, namely the lack of an established set of social and

cultural conventions regarding a vocabulary of discrete and arbitrary symbols,

and a grammatical structure and rules outlining how the symbols should be used

together to convey meaningful, semantic information. However, it is possible to

argue that NLUs could be used in such a manner as to form an artificial language.

Assuming that there were established conventions on a vocabulary and grammar,

NLUs would have the following fundamental properties of a language, as proposed
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by Hackett (1960)8:

• Semanticity, where the ties between the meaningful elements of a message

and their meaning can be arbitrary or non arbitrary.

• Displacement, allowing agents to communicate about events and objects

that are not present in the environment, across difference tenses (i.e. the

past, present and future).

• Arbitrariness in the vocabulary containing the symbols (and sounds associ-

ated with these) used to denote objects in the world.

• Productivity, in that the potential combination of symbols in the vocabulary

is unique.

• Discreteness, in that the acoustic sounds have their own discrete meaning.

• Duality in that the “words” in an utterance have a discrete meaning, and

each word is made.

• The language may be acquired through cultural transmission, i.e. through

other agents present in the environment.

The rationale for this thesis not considering NLUs as language is that given

that language is a large, complex field of study, adopting the view that does

consider NLUs as a language introduces a level of complexity that would most

likely draw the direction and focus of attention of this body of work away from the

primary goals, as potentially make the achievement of these goals cumbersome to

a degree that is impractical. Furthermore, as stated above, as there is no cultural

agreement regarding a vocabulary of grammar regarding the use of NLUs, not all

the properties of a language currently present. This is of course not to say that

NLUs do not have the potential to become a language. Rather, on the contrary,

8In the original article, Hackett (1960) proposes in total 13 properties that are universal to
language, however the remaining properties (the vocal-auditory channel, broadcast transmission
and directional reception, rapid fading, specialisation and total feedback were the listener can
reproduce what they hear) relate specifically language through vocal expression, and in the light
of artificial languages such as sign language, their value with respect to the broader concept of
language is deemed as limited.
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they indeed do hold this potential, however, given that not all the properties of a

language are currently met, viewing NLUs as an artificial language of their own

is a premature notion at this time.

However, recent work by Mubin et al. (2009, 2010a,b, 2012) has begun to ad-

dress this. Their work seeks to tackle the problems accosted with ASR in a direct

manner, suggesting that the use of artificial languages may provide a means to

increase ASR performance. They have developed the Robot Interaction Language

(ROILA), an artificial language (that greatly resembles gibberish speech) designed

to strike a balance between minimal learning effort for a human, and maximum

performance in speech recognition.

2.6 Summary

This chapter has served to provide a more concrete description of what NLUs are,

and what they are not. It has also introduced a similar modality, gibberish speech,

as describing both these modes of expression together help provide more accessible

and tangible examples of the underlying motivations and potential utility of each

is. The chapter began with a more detailed explanation of the term Non-Linguistic

Utterances, followed by examples of their use in both real and fictional robots. The

motivations for studying these kind of utterances, and the potential utility that

they have in HRI were outlined and discussed.

This was followed by a review of affective displays through sounds, and par-

ticularly in the human voice, but also through music. The commonly overlooked

observation that NLUs and gibberish speech, and more specifically the means

through which they are created, arguably have their roots in the field of psychol-

ogy where similar techniques have been used to create expressive vocalisations

that have masked or distorted semantic/verbal context, was also highlighted. The

acoustic correlates of emotional speech was also reviewed from a high level, given

the large body of research that exists, and the links with emotional expression

through music highlighted as these all have relevance to the study of NLUs and

gibberish speech.
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Having outlined the nature and motivations of NLUs and gibberish, and an

overview of the acoustic correlates of emotional expression through the human

voice provided, the (limited) existing body of literature regarding NLUs and gib-

berish speech has been covered in detail, charting the developments that have

been made, and the general different approaches that have been taken when cre-

ating utterances. This review was then discussed and a number of gaps in the

current research highlighted. Namely, that there have been no studies aimed at

young children, studies have focused on creating utterances to convey simple basic

emotions and performing decoding studies in context-free settings, and that there

have been very few efforts in studying how aspects of HRI impact how people

perceive NLUs and how their potential utility in HRI can indeed be harnessed

and applied. These gaps are ten taken on board and have helped determine the

direction that this research has taken.

Finally, the view that NLUs do not currently constitute a language is justified.

NLUs current lack the fundamental, universal properties that a language has, and

as such this is deemed to be a premature notion, however the potential for NLUs

to indeed become an artificial language of their own in the future is by no means

dismissed.
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Chapter 3

Methods

Summary of the key points:

• A custom method for creating and characterising NLUs is detailed. This

method takes inspiration from related work on NLUs, gibberish speech and

literature on the acoustic correlates of emotional expression in the human

voice and music.

• The Nao humanoid robot is described. This is the robot that has been solely

used as the platform in which NLUs have been embodied and studied in this

thesis.

• Categorical and dimensional representations of affect are described and dis-

cussed, as is their relation to their use in synthetic systems with an affective

component, and tools designed for measuring affect from humans.

• The affective measuring tool of choice, the AffectButton is described in

detail, as is the application to this thesis.
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This chapter serves to outline the tools that have been used in this body of

research with respect to how NLUs have been created, the robotic platform in

which they have been embodied, and the means through which peoples’ affective

interpretations of these have been captured. Specifically, the custom method that

has been developed for characterising and synthesising NLUs is presented first.

Then the Nao humanoid robotic platform is described. Finally, the tool used to

capture affective ratings is described, as well as a brief overview and discussion of

the issues surrounding its use in this thesis.

3.1 Creating NLUs

The previous chapter highlighted that currently no method exists for creating,

specifying and systematically manipulating NLUs, while this is the case for gib-

berish speech. In order to investigate the use of NLUs beyond single tones, and

into the realm of multiple, concatenated tones, a method was developed to gen-

erate and synthesise utterances in order to produce the acoustic stimuli used in

experiments. This section serves to provide a detailed description and overview of

the design and implementation of this method, covering the conceptual design and

parameterisation of NLUs. A pseudo-code algorithm is outlined in Appendix A

to allow others to reimplement this into a programming language of their choice.

As we shall see, this method allows for a rich variety of NLUs to be created

and manipulated, however, in this research, this full potential is not exploited and

only a limited number of parameters are systemically manipulated. This is done

in order to maintain a manageable handle upon the exploration of the NLUs.

3.1.1 NLU Anatomy and Parameterisation

In this work, the notion of using single tones of sine waves with modulated fre-

quency as used by Komatsu and Yamada (2011) and Komatsu et al. (2011) is used

as an initial foundation for conceptual design of utterances, and is extended to

include and cater for multiple, concatenated sine waves. Doing this has required

a formalisation of parameters that are used to characterise utterances such that
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Figure 3.1: Utterance with 5 concatenated sound units, each with a different
pitch contour and pause ratio, and a rhythm rhythm value that is less than 1.

acoustic features may be modulated and specified in a controlled and systematic

manner.

Fundamental to the utterance anatomy is the pairing of a carrier signal (or

acoustic tone) with a duration of silence, which are referred to as Sound Units,

and are concatenated to form sentence-like Utterances (see figure 3.1). Sound

units, have two basic components: a spoken component and a silent component,

each with a specified temporal duration. The spoken component is essentially a

container for a carrier signal, that is modulated using a frequency and amplitude

envelope. Each envelope consists of a temporally ordered array of n Nodes sequen-

tially connected by n − 1 Edges. These nodes and edges lay in a 2 dimensional

(bi-) normalised space, where the dimensions represent time (covering the range

[0 1]), and frequency (covering the range [−1 1]) or amplitude (covering the range

[0 1]) for the respectively envelopes. In the case of the frequency envelope, it is

the shape of this array of nodes with respect to time that is referred to as the

pitch contour.

While this representation of an envelope caters for a wide variety of custom

specifications, this can be considered a hinderance as it can produce an overwhelm-

ing number of variables which may be difficult to account for during experiments.

As such, in this work, both the frequency and amplitude envelope shapes have

been limited in order to allow for a systematic characterisation and manipulation.

The shape of the frequency envelopes have been limited to 5 characterisations:
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Figure 3.2: Schematic of a common Attack Decay Sustain Release (ADSR)
amplitude envelope with linear transitions.

Table 3.1: Values of the five nodes for the amplitude envelope located in the
bi-normalised space for each carrier signal in each sound unit (see figure 3.2).
These values have been held constant throughout the work described in this

thesis.

Node Time value Amplitude value

n1 0 0.05
n2 0.1 1
n3 0.2 0.7
n4 0.9 0.7
n5 1 0.05

flat, rising, falling, rising-falling and falling-rising (as shown in figure 3.1). These

characterisations however do not limit the size of the node array used to create the

pitch contour. With respect to the amplitude envelope, this has been kept con-

stant, following the classic linear Attack Decay Sustain Release (ADSR) format

(figure 3.2) used in many commercial music synthesisers. As a result, the envelope

consists of five nodes and four edges, where the nodes represent the transitions

between the components of the envelope, and the edges represent the components

themselves. These values are shown in table 3.1, with the values being relative to

the normalised space of each envelope in a sound unit.

This representation has the primary benefit in that it is easy to scale the values

of the nodes from their (bi-)normalised values to real world values of frequency

and (mili-)seconds, without the need to alter the specification of the envelope

themselves.

The transform of this normalised representation of an utterance to real world

units is facilitated via a variety of parameters, some of which may be applied
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(a) Tremolo = 0
radians

(b) Tremolo = 0.21
radians

(c) Tremolo = 0.39
radians

Figure 3.3: Example of how the Tremolo parameter applies to the frequency
envelope of a carrier signal in a sound unit.

locally to individual sound units, and others that are applied globally to all sound

units within an utterance. These are summarised in table 3.2. An example of an

exclusive global parameter is the sound unit count which specifies the number of

sound units that are to be concatenated to form an utterance while the wave count

parameter controls how many different carrier signals1 are to be contained within

each sound unit and is an example of a parameter that may be specified uniformly

for all sound units, or have a unique value for each sound unit individually.

The frequency envelope has 14 parameters associated with it. The wave type

is the type of carrier signal (sine, saw, square, etc) that is to be modulated by

the envelope, allowing for a variety of timbres to be used for each sound unit.

The node count is the number of nodes that are to be used to create each pitch

contour, with the minimum number of nodes required to create all of the five

specified pitch contours being 3. As well as being able to alter the type of carrier

signal, a tremolo effect may also be applied. This is done by modulating the

frequency value of a node by the tangent of the tremolo angle (see figure 3.3).

Given the five classifications of pitch contour, there are an additional two

parameters that key be defined, and which only apply to the rising-falling and

falling-contours. These are the Node Ratio and the Skew Ratio. The Node Ratio

is used to specify how many nodes (of the number specified by the Node Count) are

to be placed before the maximum/minimum value of the contour, and how many

after this point (see figure 3.4). The Skew Ratio is used to control the location of

this maximum/minimum point in the sound unit along the time dimension (see

figure 3.5).

1Each sound unit can have a number of different carrier signals that can all be unique.
However, for this the work in this thesis, each sound unit only has a single carrier wave.
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(a) Node Ratio = 0.9 (b) Node Ratio = 0.5 (c) Node Ratio = 0.1

Figure 3.4: Example of how the Node Ratio parameter applies to the frequency
envelope of a carrier signal in a sound unit.

(a) Ratio = 0.25 (b) Ratio = 0.5 (c) Ratio = 0.75

Figure 3.5: Example of how the Skew Ratio parameter applies to the frequency
envelope of a carrier signal in a sound unit.

The Base Frequency and Frequency Range parameters are used to specify the

frequency and range through which the nodes in the pitch contour are to be

scaled to transform them to real world values (in Hz ). In a similar fashion, the

Volume Intensity parameter is uniformly applied as a scalar to all nodes within

an amplitude envelope to either increase or decrease the final acoustic volume of

the sound unit. All three parameters may be applied both at the global, utterance

level, or may be applied to locally each sound unit individually.

With respect to the temporal dimension of an utterance, there are three param-

eters; rhythm, pause ratio and speech rate. The duration of the spoken component

is pseudo randomly determined using the rhythm parameter which controls the

range of values from a set value of 1 (rhythm ≤ 1) in which a duration value is

randomly selected (equation 3.1). Once the duration of the spoken component

has been determined, this value is multiplied by the pause ratio to calculate the

duration of the silent component (equation 3.2). At this stage, there are no real

world units (ms) associated with these values, rather these values serve to outline

the proportional durations of sound units with respect to each other. The speech

rate is used to specify how quickly all the sound units in an utterance should

be articulated, and thus provides a means through which the abstract duration

values may be scales to real world values. Practically, the speech rate is used in
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conjunction with the sound unit count to calculate a scalar constant, k (equation

3.3), that is applied to duration values of both the spoken and silent components

of each of the sound units (equations 3.4 and 3.5).

durspoken = rhythm+ [(1− rhythm) · rand()] (3.1)

dursilent = durspoken · pauseRatio (3.2)

k = [
soundUnitCount

speechRate
] · 1

durtotal
(3.3)

durspoken = durspoken · k (3.4)

dursilent = dursilent · k (3.5)

Here dspoken is the duration of the spoken component, dsilent is the silent dura-

tion of the sound unit, and rand() is a pseudo random number generator where

0 ≤ rand() ≤ 1. With this arrangement, when rhythm = 1, all sound units

within an utterance will have a spoken duration with the value 1, while if the

rhythm = 0.5, the spoken duration is randomly assigned from the range where

0.5 ≤ durspoken ≤ 1. An important point to highlight here is that the rhythm

parameter is the only parameter that when not equal to 1 introduces a random

element to an utterance - two utterances with identical parameter values and

where rhythm < 1 are not guaranteed to be identical. When this has been done,

the Base Frequency and Frequency Range are then used to scale the nodes in the

frequency envelope to their real world values.
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Table 3.2: Summary of the parameters for characterising NLUs in this work.

Parameter Name
Level

Values (x) Description
Utterance Sound Unit

Wave Type 4 4 [sine, saw] The type of carrier signal wave form.
Pitch Contour 4 4 [flat, rising, falling,

falling-rising, rising-
falling]

The shape of the frequency envelope of a given sound
unit.

Base Frequency (Hz) 4 4 x ∈ <|500 ≤ x ≤ 1500 Frequency around which the Pitch Contour of a sound
unit is shaped.

Frequency Range (Hz) 4 4 x ∈ <|500 ≤ x ≤ 1500 Frequency range either side of the Base Frequency
that determines the minimum and maximum fre-
quency values of the Pitch Contour.

Speech Rate 4 - x ∈ <|1 ≤ x ≤ 6 The number of sound units synthesized per second.
Sound Unit Count 4 - x ∈ Z|1 ≤ x ≤ 5 The number of sound units within an utterance.
Pause Ratio 4 - x ∈ <|0.05 ≤ x ≤ 1.5 The ratio of the duration of the spoken component

to the silent component in a sound uint.
Rhythm 4 - x ∈ R|0 ≤ x ≤ 1 The amount of random variance allowed in the dura-

tion of a sound unit.
Volume Intensity 4 - x ∈ R|0.5 ≤ x ≤ 5 Scalar value applied to all sound units within an ut-

terance to increase or decrease the overall acoustic
volume.

Node Count 4 4 x ∈ Z|3 ≤ x ≤ 15 The number of nodes that are used to construct the
frequency envelope of a sound unit.

Tremolo (rad) 4 4 x ∈ <|2π/16 ≤ x ≤
2π/16

The angle at which the nodes are offset from a lin-
ear line intersection the first and last nodes, this is
perceived as a tremolo on the utterance.

Skew Ratio 4 4 x ∈ <|0 ≤ x ≤ 1 Proportional location of a Pitch Contour max-
ima/minima in a given sound unit.

Node Ratio 4 4 x ∈ <|0 ≤ x ≤ 1 Proportion of Nodes either side of the a Pitch Con-
tour maxima/minima in a given sound unit.

Envelope Count 4 4 x ∈ Z|1 ≤ x ≤ 5 The number of frequency/amplitude envelope pairs
within a given sound unit.

Utterance Duration - - - Total temporal duration of an utterance.
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3.1.2 Utterance Generation

In this work, NLU are synthesised using SuperCollider (McCartney, 2002), a

software tool/synthesiser initially developed the for computer music audience.

The SuperCollider system allows users to dynamically code sounds and synthesise

them in realtime, across multiple computers on a network, which has an appealing

trait in that it does not need to run locally on a robot, but rather the synthesiser

can steam audio to the robot via a network connection.

While SuperCollider has been used in this work, it is only a technical solution,

and as such a protocol for converting the “blueprints” (i.e. the characterisation

of an NLU as specified by the method detailed above) of NLUs that has been

described about into a format that SuperCollider can use to synthesise utterances

is a specific solution. As a result, this particular protocol is not presented. The

reason for this is that there are many other musical synthesisers that are com-

mercial available and this work does not wish to limit the synthesisers that this

particular method for creating and describing utterances in an abstract manner

can be applied to.

3.1.3 Remarks on the design of NLUs

From a broad, global perspective, utterances take inspiration from natural lan-

guage in that they consist of a concatenation of multiple acoustic sounds in fashion

that is loosely analogous to how phonemes may be concatenated to form words,

and how words maybe concatenated together in order to form sentences. One note

worthily comment here is that unlike natural spoken language, NLUs in this work

are not subject to any constraining rules such as the phonological or grammatical

rules that are found in spoken language. This is of course something that can

be introduced, but given the obvious lack of culturally established rules for this,

doing this at this stage serves no productive purpose for this research.

The NLU design decried above provides a versatile solution for utterance spec-

ification that is capable of catering for a very wide variety of utterances. While

this is an attractive trait of the design with respect to variety and versatility, from
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a scientific perspective, it would be unwise to immediately utilise the full potential

of this design as the number of variables to control and account for would be very

large and cumbersome to manage. As such, all parameters, aside from the pitch

contour, have been applied at the global level, uniformly to all sound units within

an utterance.

As should be evident, this method for describing and characterising NLUs

serves to have a number of analogies with the manner in which the human voice

is characterised in both speech synthesis and in psychological literature. For

example, the Base Frequency and Frequency range parameters are analogous to

the F0 Mean and F0 variability/range values that the reported in the psychological

literature, as the the Speech Rate and Pause Ratio parameters, which outline

how speech of utterance articulation, and the proportion of silence to sound in an

utterance (see Scherer (2003)). The tremolo value is intended to be analogous to

the “jitter” or tremolo effect that has been referred to in both human speech and

music (see Juslin and Laukka (2003)).

There are also a number of parameters that are specific to this method of

describing NLUs, and their purpose is to provide an extensive range of parameters

that can be explored to create rich and vibrance sounding NLUs, and is it hoped

that this particular method will be adopted by others in the field in order to

further study robotic sounding NLUs in a similar, systematic and parameterised

approach.

3.2 The Nao robot

The Nao robot (figure 3.6), produced by the French company Aldebaran Robotics,

is a versatile 60cm tall humanoid robot designed primarily for, and currently

marketed to, researchers investigating social HRI, as well as areas of science that

are impacted by this (such as Cognitive/Developmental robotics). This has been

the sole platform used throughout this body of research, as not only is it a cost

effective platform to use, but as chapter 4 shows, it is also has been deemed by

subjects’ to be an appropriate platform through which to embody NLUs. There
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Figure 3.6: The Aldbaran Nao robotic platform used throughout this body of
research.

is also an added benefit in that much of the research presented in this thesis has

been utilised as part of the EU FP7 funded ALIZ-E2 project (see Belpaeme et al.

(2012)), which also uses the Nao as the sole research platform, and which this

research contributes to, and is a part of.

The robot has 25 degrees of freedom, and boasts a wide variety of sensors and

actuators that allow it to both sense its surrounding environment as well as ma-

nipulate this environment, and are all housed within a plastic external shell. The

sensory arsenal includes two sonar sensors, four microphones, two high definition

cameras and touch sensors located on top of the head. The actuators are magnetic

absolute encoders that actuate the joints and limbs of the robot. The robot also

has two built in audio speakers located in the head and an array of RGB Light

Emitting Diodes (LEDs) that serve to represent and animate two eyes. There

is an onboard embedded computer that runs a custom Linux distribution which

plays host to NaoQi, a pseudo operating system used to provide both a high and

low level interface to the onboard resources. Also included in NaoQi is a built in

Speech Recognition engine, Text-To-Speech engine and Computer Vision libraries

(which provide onboard face detection and recognition, and object recognition).

2www.aliz-e.org
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3.2.1 Programming Nao

Aldebaran provide a number of computational solutions for the Nao platform.

Firstly, as the onboard computer runs a Linux based operating system, it may be

programmed using both the popular Python and C++ langauges, for which an

Software Development Kit (SDK) is provided. Secondly, a graphical Integrated

Development Environment (IDE) called Choreograph is also provided allowing less

experienced programmers to harness the onboard resources and create behaviours

for the robot with relative ease.

Aldebaran also support and develop (in house, having acquired the french

robotics company, Gostai, in 2012) a custom programming solution in the form

of the Universal Real-Time Behaviour (Urbi) middleware that is specialised for

real-time behaviour orchestration and remote computation, with gearing toward

Cloud Computing solutions for robotics This comes in the form of the cross-

platform Urbi Software Platform3. The package is comprised of two components:

Urbi middle-ware, which resides predominantly on the computer on-board the Nao

(interfacing with NaoQi), but also on remote computational resources (i.e. a lap-

top computer). The second component is the UrbiScript4 programming/scripting

language. In essence this provides the interface between the Urbi Middle-ware

and the programmer. UrbiScript also introduces remote computational processes

that are known as UObjects. Written in C++, these shared objects can be run

either on the on-board processor, or be run remotely via a Wi-Fi network, al-

lowing processed that are computationally demanding to be perfumed remotely

on a remote computer with more computational resource, thus not allowing this

process to become burden on the robots onboard computation resources. Finally,

UrbiScript provides a new paradigm for programming in which parallel and serial

processes can be run both in a synchronous, or an asynchronous manner, at the

choice of the programmer, and is a feature that makes Urbi particularly promis-

ing for programming multi-modal interactive robots where behaviours need to be

executed in a asynchronous manner.

3Urbi Software Platform: http://www.urbiforge.org
4UrbiScript is best described as a variation on Python, with the syntax of C++.
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3.2.2 How Nao has been used

In this body of work informing this thesis, the Nao robot has been used as the

social agent through which NLUs have been embodied.

With respect to the onboard resources, Nao was programmed using the Urbi

solution which provides an interface to the NaoQi SDK. All the experiments pre-

sented (with the exception of the experiment in chapter 4) the Nao robot was

either physically present in the room with subjects when playing NLUs (chapters

5, 6 and 7), or was video recorded with these videos being presented via internet

based experiments (chapters 8 and 9).

In all of these experiments, the robot was programmed to behave in a manner

where it exhibited natural-like behaviours. For example, the LED eyes blinked,

the robot’s weight was shifted from foot to foot, the robot gazed around the room

and looked in the direction of the subjects when it was touched on the head (to

play an NLU). The reason for doing this was to minimise the chance that the

robot was perceived as being a static entity. Rather, it was desired that subjects

perceived the robot as being socially competent by exhibiting lifelike, natural and

basic social behaviour through its movement when idle and reacting both visually

and audibly to physical interactions and external events in the environment (see

chapters 8 and 9). Furthermore, all NLUs were generated and pre-recorded using

the method detailed above, and played back through the onboard speakers, again

reinforcing the notion that the NLUs were indeed embodied in, and made by the

robot as it wanted to express something.

3.3 Measuring Affect

Much of this body of work is concerned with identifying how NLUs are able

to convey affect to people, and particularly with respect to the NLU generation

algorithm described in section 3.1, how the different parameters of NLUs generated

using this impact the affective interpretation that is elicited by the utterances.

As such, it is important to outline the approach that has been adopted here to
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facilitate the capture subjects’ affective interpretations, as there are many ways

through which this can be done. This section does just that. It begins with a brief

overview of the two schools of thought that surround how emotions and affect may

be represented, as there a many different tools that have been developed, with

their design being influenced by these schools of though. This is followed by an

overview of a collection of measuring tools that were considered for use in this

research, with a discussion regarding their pros and cons. Finally, the measuring

tool that has been adopted - the AffectButton - is described in relative detail, as

the underlying design of the tool has impacts upon how the results of experiments

conducted the subsequent chapters have been performed and presented.

3.3.1 Representations of Affect

When it comes to representing emotions or affective states in synthetic sys-

tems/agents, there are generally two schools of thought that have been informed

by the various theories on emotions: discrete categorical labels, and continuous

dimensional affect spaces. For the interested audience, there are a number of

detailed and rich reviews of the issues surrounding the world of emotional rep-

resentation and measurements (e.g. Plutchik (1994) and Cowie and Cornelius

(2003)).

3.3.1.1 Categorical Labels

Categorical labels (e.g. “happy”, “sad”, “angry”, “scared”, etc.) are the most

familiar way in which people are able to relate and refer to different affective states

due to their common everyday use in natural language. Given this, these labels are

self-evidently, assumed to have a coherent understudying between people and are

thus the easiest ways in which to describe different emotions and states (Cowie

and Cornelius, 2003), and reflects the natural tendency for people to discretise

their sensory input froth surrounding world into manageable chunks as outlined

by James (1890). In the majority, focus of affective labels has been around what

has been termed the “basic six” emotions (Schröder, 2001; Plutchik, 1994; Scherer,
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1986; Banse and Scherer, 1996; Cowie and Cornelius, 2003), which has primarily

been due to the prominent theories surrounding the notion of basic emotions :

happiness, sadness, surprise, fear, anger and disgust (e.g. Ekman (1992) and

Izard (2007)).

With respect to measuring emotion from humans and representing emotions in

affective systems, there are a number of drawbacks. Firstly, given the links with

natural language, the use of linguistic labels of measurement requires caution

as, specifically in cases dealing with emotional human speech, these can serve

as a considerable bias as the stimulus can carry semantic linguistic information

regarding the emotional labels (Plutchik, 1994).

There is also an issue of resolution: emotional labels inherently do not provide

a granular measure or indication how intense an emotion is. They are not able

to capture subtle, but important differences between affective states. In natural

language, a listener is able to utilise a variety of different cues regarding this

through the nature of multi-modal interaction.

Finally, there is the issue of the number of labels that is to be used during

measurement. In the case where the are only a few labels, which has been a

common practice in a number of fields, the rating of stimuli is more akin to

a discrimination task rather than an identification task (i.e. subjects are more

likely to provide ratings based upon what the stimulus is not, rather than focusing

upon what it is), as Banse and Scherer (1996) and Scherer (1986) have highlighted.

This can be overcome by introducing many more affective labels (Schröder, 2001),

however this can make the experimental process notably longer, but has had

the benefit of allowing assessment of the how many different affective labels can

be broken down into more fundamental underlying components such as affective

dimensions, as demonstrated by Russell (1980) with the Circumplex model of

emotions.

With respect to their representation in synthetic systems, emotional labels

have the benefit in that each affective state that is modelled can have an acti-

vation level, which allows multiple affective categories to be active at the same
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time, something that has been shown to be useful in the design of systems that

recognises and represent multiple complex mental states from the human face for

example (Kaliouby and Robinson, 2004). However, the inherent lack of granu-

larity is also a problem in that it means that in the eyes of recognition systems,

people can “jump” from state to state, which is not representative of the how the

behaviour or mental state of a person changes as an interaction unfolds. Further-

more, in systems that are designed to express affect or just act upon it, categorical

representations of affect with respect to the modelling of an input, or the inter-

nal state of the system itself can lead to large changes in behaviour due to the

tendency to also jump between affective states, which is also generally undesired

(Schröder, 2003b).

3.3.1.2 Dimensional Affect Spaces

Dimensional representations seek to identify ways in which emotional/affective

states may be represented in continuous manner in spaces that have a small num-

ber of dimensions. There are multiple facets that make this approach appealing

not only to the field of psychology, but also to fields concerned with creating syn-

thetic systems that deal with affect (for example, the field of Affective Computing

(Picard, 1997), and HRI (Breazeal, 2002)). For example, one of the main attrac-

tions is that dimensions provide a way in which affective states can be described

in a more tractable manner, but can also be translated into and out of common

verbal descriptions commonly used by people (Fontaine et al., 2007). This trans-

lation is possible as emotion related words can be mapped to different affective

dimensions (e.g. Russell (1980)), and thus referred to specific locations within

these dimensions (Cowie and Cornelius, 2003). Thus, dimensions are able to not

only capture subtle differences in affect to a high resolution, but it is also possible

to interpret the dimensions into more coarse regions which can form the basis

of a categorical representation also (Schröder, 2004), making them useful when

investigating what effects subtle changes to a stimulus (e.g. an emotional face,

or a vocal utterance) has upon how people affectively interpret these (Cowie and
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Cornelius, 2003). Furthermore, given that dimensions provide a numeric repre-

sentation, they lend themselves to world of machine learning, which exploits a

variety of mathematical tools used to manipulate numeric data.

This approach however is not without problems and shortcomings. Firstly,

and perhaps more importantly, is that as with the basic emotion theories, there

are disagreements with respect to both the number of dimensions an affect space

should consist of, but also what the different dimensions represent. This is a prac-

tical problem in that in situations where there are only two dimensions, certain

states such as Fear and Anger, and Excitement and Surprise are difficult to dif-

ferentiate (Fontaine et al., 2007; Zeng et al., 2009). As such, this has resulted in a

large number of different affect spaces, with ongoing debate as to which spaces are

most optimal. An issue that still remains very much open (Cowie and Cornelius,

2003).

A further drawback is that in dimensional spaces, only a single affective state

can be modelled at a given moment in time, whereas with categories, the number

of states is determined by the number of categories, each of which can have a self

contained level of activation. This means that if any co-occurring affective states

arise simultaneously, only one of these may be represented in the affect space.

3.3.2 Capturing Affect from People

Capturing affect from human subjects comes in two flavours: implicit and explicit

methods (Broekens et al., 2010; Isomursu et al., 2007). Implicit methods measure

behavioural characteristics of a person (heart rate, respiration rate, skin resistance,

etc, see Picard (1997) and Zeng et al. (2009) for overviews), while explicit methods

require that subjects self report and input data directly (suggesting or choosing

emotional labels or adjectives, selecting an emotional face, etc.). The body of work

presented in this thesis has solely employed the latter, as not only would the use of

implicit measures introduce a cumbersome aspect to the experimental process due

to the requirement for placing many sensors in various locations on the body5,

5This has some very sensitive ethical issues associated with it when experimentation with
children is conducted.
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particularly with young children, but also it limits the amount of comparison

that may be made the the related literature on both NLUs and gibberish speech

in social agents (none of the previous work has used physiological measures of

affect), but also work in affective expression via the human voice and music.

The previous section outlined the two main approaches that have been estab-

lished with respect to how emotions can be represented in synthetic systems that

have an affective component: categorical labels and affective dimensions, and dis-

cussed their respective benefits and drawbacks. These representations affect have

also fed into the design of methods for how affect can be measured and captured

from people.

A final noteworthy point to highlight is that while affective dimensions have a

number of properties that make them appealing, particularly with respect to the

goal of addressing the research questions outlined in chapters 1 and 2, measuring

tools based around emotional categories are easy to explain to naive subjects

both young and old, and tools based around affective dimensions are not. This is

a weightily point to consider as some of the experiments undertaken in this thesis

have been performed with children. As a result, time and care has been taken to

familiarise the subjects with the measuring tools used, and to confirm that they

indeed were able to the measuring tools in an appropriate manner.

There are a number of different tools that have been developed for affec-

tive measurement based around affect dimensions, namely the Self Assessment

Manikin (SAM), (Lang and Bradley, 1994), FEELTRACE (Cowie et al., 2000),

EMuJoy (Nagel et al., 2007) and the AffectButton (Broekens and Brinkman, 2009;

Broekens et al., 2010; Broekens and Brinkman, 2013).

The SAM is a tool is a picture orientated tool that is designed to assess the

Pleasure, Arousal and Dominance dimensions independently. Graphical images

are shown to depict major points along each dimension. For the pleasure dimen-

sion, the images shown an agent with differing facial gestures ranging from a large

happy smile to an unhappy frown. Arousal is depicted with a figure with a wide-

eyed excited face to a sleepily and relaxed face. Dominance is shown with the
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figure with varying physical size, which relate to the amount of control that the

figure has with respect to the surrounding environment (the surrounding box in

this case): a large figure translates to high control and thus dominance, while a

small figure translates to the figure having little control.

FEELTRACE is a tool that was specifically designed for capturing peoples’

affective ratings of emotional speech. It shows a two dimensional Activation-

Valence space, with a number of different affective labels located in the space,

to help guide the users understanding of the dimensions and how they relate to

the affective labels that they are familiar with through the use of their natural

language vocabulary. A coloured circular icon is controlled by a computer mouse

and dynamically changes colour as it is targeted around the space following a

specification of colour/affect mappings as proposed by Plutchik (1994). This

tool also has a functionality that allows previous inputs to be stored and shown

graphically so as to capture a history of affective measurements for a subject. This

is partially useful when presenting subjects with stimuli that span across different

time scales and that require more than just a snapshot in time measure.

EMuJoy is a tool that has been developed for capping peoples’ affective ratings

of musical pieces rather than speech. Though compared to FEELTRACE, that

was designed for the measurement of affective speech, these two tools actually

have a very similar end solution. With EMuJoy, again two dimensions are shown

on screen, Arousal and Valence, with a cursor that shows the current position

the two-dimensional affect space. The cursor takes the form of a small expressive

face that dynamically changes as the cursor is moved around the input space,

to represent the general affect of the current location. This tool also facilitates

a history of affective measurements in the form of a worm tail which shows the

previous inputs by the user in their chronological order.

The AffectButton is a tool that shows only an expressive face that changes dy-

namically as the mouse cursor is moved around the input space. Each face is also

encoded into a three-dimensional coordinate where the dimensions correspond to

Pleasure, Arousal and Dominance. What is unique about this tool compared to
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Figure 3.7: The AffectButton prototype facial expressions with PAD values.
From left, clockwise: Neutral (0,-1,0), Angry (-1,1,1), Excited (1,1,1), Scared

(-1,1,-1), Surprised (1,1,-1), Annoyed (-0.5,-1,0.5), Happy (0.5,-1,0.5), Sad
(-0.5,-1,-0.5), Content (0.5,-1,-0.5). Adapted from Broekens et al. (2010).

the others outlined above is that the underlying affective dimensions are com-

pletely hidden from the subject, and thus there is no need to even mention the

notion of affective dimensions to users. This is a key benefit (as discussed in the

next section), and is why this tool was selected as the affective measuring tool of

choice during the experiments presented in this thesis.

3.3.3 The AffectButton

The AffectButton (Broekens and Brinkman, 2009; Broekens et al., 2010; Broekens

and Brinkman, 2013), figure 3.7, is an open-source facial gesture tool designed

to facilitate the capture of affective interpretations from people, using explicit

methods (i.e. people are directly asked to provide feedback).

To provide a high level description, the AffectButton is a tool that displays a

simplistic cartoon like face on a laptop screen within a box with a mouse cursor.

As the location of the mouse cursor changes, so too does the facial expression of

the cartoon like face. Furthermore, co-ordinates of the mouse are also mapped

to a single point co-ordinate within a three-dimensional affect space (PAD value),

where the dimensions represent Pleasure, Arousal and Dominance. Pleasure re-

lates to the positiveness verses negativeness of an affect, Arousal to the level of

activation and Dominance to the degree that the environment is imposing influ-

ence. When a subject has selected their desired facial gesture, they can click the

mouse and the PAD value is captured and stored.

The resulting numbers obtained from this mapping fall into the range [−1 1]
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for each dimension respectively. These affect space triplets are represented by the

dynamically changing expression on the face, allowing the user to select from a

wide variety of different facial expressions and affect spaces values by moving the

mouse within the box. The facial gestures are rendered in real time and therefore

the user does not need to interpreted the underlying affective dimensions, but

rather provides an affective rating by selecting a facial expression that they feel

matching their interpretation of a given stimulus.

There are 9 prototype facial gestures located within this affect space (figure

3.7), each corresponding to an affective label: happy, excited, annoyed, angry, sad,

scared, content, surprised and relaxed (these labels are exemplary), as the affect

triplet changes, the facial expression displayed interpolates linearly between these

nine prototype expressions. This is done via a mechanism that is comparable to

that used in the robot Kismet (Breazeal, 2002; Broekens and Brinkman, 2013).

3.3.3.1 Mapping 2D Input to 3D Output

As outlined above, the AffectButton essentially provides a mapping between a two

dimensional input space (the laptop screen) and a three-dimensional affect space,

which in turn is used to determine the facial expression that is displayed on the

screen. The purpose of this section is to detail this internal mechanisms and rules

that determine this 2D to 3D mapping. The reason for this is that this has an

impact upon how the results in the aforementioned chapters have been analysed

(i.e. the statistical tests that have been employed) and presented graphically.

The button consists of two parts: an outer border and an inner border, both

of which are square in shape. The outer border defines the working range of

the mouse cursor. The inner border spans from −0.55 to 0.55 along both the

horizontal and vertical components of the input space. The horizontal (x-axis)

and vertical (y-axis) components of the cursor location within the outer border

are directly mapped to the Pleasure and Dominance dimensions of the affect space

respectively, and thus are controlled independently of each other. These values

are then scaled such that they fall within the range [−1 1].
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Pleasure (P)

Dominance (D)

Arousal (A)

Outer Border
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(P,A,D)

A = +1.0

A = -1.0

Figure 3.8: Example of how the Arousal value is calculated from the Pleasure
and Dominance values in the AffectButton. Image adapted from Broekens and

Brinkman (2013).

The Arousal value is a derived form the Pleasure and Dominance values, and

is in essence the radial distance from the centre of the input space to the location

of the mouse cursor. While the cursor location lies within the inner border, the

Arousal value is held constant at −1. When the cursor is located outside the inner

border, the Arousal is lineally interpolated between −1 (the start of the inner

boarder) and 1 (the start of the outer border), based upon the distance to the

outer border (Broekens and Brinkman, 2013). More formally, it is characterised

as the hypotenuse of the triangle that is formed from the edge of the inner border,

the x co-ordinate of the cursor, and the y co-ordinate of the cursor. This is

shown in figure 3.8, and the algorithm used to calculate the PAD values from the

mouse coordinates and check the PAD values are outlined in algorithms 8 and 9

in Appendix A.

Given this description, there needs to be a clarification regarding the exact

nature of the affect space, and the different PAD values that can be located in

this space. While the Pleasure and Dominance dimensions are independent of each

other, the Arousal is not an independent dimension - it is derived from the other

two dimensions. As a result, the PAD values cannot be located anywhere within

the cubic space defined by the working range of the three dimensions. Rather,
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The mapping of these values to a
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Figure 3.9: Front and Side plots of the possible PAD values in the AffectButton
PAD space.

PAD values that can be obtained via this mapping fall onto a trapezoid surface

within this space, as shown in figure 3.9.

3.3.3.2 How the AffectButton has been used

Within the context of this work, the AffectButton has been used with both child

and adult subjects to capture affective interpretations of NLUs, both in formal lab

settings, and in more “wild” settings such as primary school classrooms. Specifi-

cally, the experiments presented in chapters 5, 6 and 7. It has also been reimple-

mented from the source Python code into C++ such that it could be integrated

into the various pieces of software that were developed to conduct the various

experiments in the aforementioned chapters.

The rationale for using this tool over the others is three-fold. Firstly, the

tool provides an intuitive manner through which subjects are able to express

their affective interpretations: via facial expressions. Secondly, as the Nao robot

does not afford an expressive face and only acoustic stimuli have been used in this

research, the use of facial gestures does not present a conflict between the modality

through which the robot is expressing itself, and the modality through which the

ratings of this expression are captured. Finally, from a practical perspective, given

that the affective dimensions underlying the button are hidden from the subject,
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one does not need to be concerned with the cumbersome task of describing the

nature of these dimensions, and thus the experimental process is made easier.

This latter point is particularly appealing as describing how affective dimensions

relate to the subjects’ affective interpretation of a stimulus is a tricky business and

can be the source of considerable confusion, even for adults, let alone children.

However, while the AffectButton has been validated in a number of different

ways, as described by Broekens and Brinkman (2013), this validation does not

include young children. Thus, it cannot be assumed that they understand how

to use the tool in the same way that teenagers and adults do. To address this,

during experiments in which the AffectButton has been used in this thesis, care

has been taken to allow subjects (both young and old) to become familiarised

with how the tool works (i.e. how to move the button to produce different facial

expressions) and the variety of different facial gestures that can be produced. This

has been done via two methods (after subjects have been given time to explore the

button). Either by asking subjects to assign facial gestures for different affective

labels (chapters 6 and 7), or by presenting subjects with each of the prototype

facial expressions, and asking subjects to move the mouse cursor the location

in the button such that the AffectButton matched the prototype that has been

presented (chapter 7).

Finally, a note on how the results obtained from experiments using the Af-

fectButton are presented. Given that the Pleasure and Dominance dimension are

the only two independent dimensions, with the Arousal values being derived from

these, graphical plots of the PAD values are shown as two dimensional plots with

Pleasure being represented as the horizontal dimension, and Dominance as the

vertical dimension (see figure 3.9a). This is the same representation as is used

in the button, and thus makes it easy to identify exactly where on the screen

a subject clicked to capture an affective rating, and has the aim of making the

graphs more intuitive to understand in this respect.
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3.4 Summary

This chapter has served to provide details regarding methodological tools that

have been employed in during the work informing this thesis. Firstly, a custom

method for describing and characterising NLUs was presented. This makes it pos-

sible to create NLUs that have a sentence-like structure and is characterised using

parameters that are analogous to those that are used to describe the acoustic

correlates of affective expression in both the human voice and in music. Next, the

Nao humanoid robotic platform was described as was its use in this work as the

sole platform through which NLUs were embodied and studied. Finally, follow-

ing a brief description and discussion regarding the two main schools of thought

regarding representations of affect categories and affective dimensions, issues sur-

rounding the measurement of affect and tools developed to do this were presented.

This chapter ended with a detailed description of the affective measuring tool of

choice, the AffectButton, and how it has been used in this work.
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Chapter 4

Alignment of NLUs with Agent

Morphology

Summary of the key points:

• An online experiment is conducted to examine whether the morphology of a

robot biases how people interpret the affective meaning, intentional meaning

and appropriateness of utterances that the robot makes.

• People were shown an image of a Nao humanoid robot and an Aibo dog

robot, and heard either a human-like utterance, animal-like sound or an

NLU and were asked to rate these with respect to affect, intention and

appropriateness.

• People are not coherent in the interpretations the affective or intentional

meaning of utterances, and the morphology does not matter in this regard.

• There does need to be an alignment between the type of vocalisation a robot

makes and the physical morphology of the embodiment in order for people

to deem the combination as appropriate.

• People deem it acceptable for the Nao robot to make NLUs. This serves

as a justification for the use of the Nao as the robot in which NLUs are

embodied and studied in this thesis.
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As this work has proposed the use of a Nao humanoid robot as the platform in

which NLUs are to be embodied, it is important to confirm that users deem this

combination of the embodiment and NLUs as appropriate. This issue holds weight

as research has revealed that a miss alignment between a robot’s morphology

and its behaviour can lead to adverse reactions to the robot (MacDorman and

Ishiguro, 2006). This alignment is the focus of the Uncanny Valley hypothesis

(figure 4.1) proposed by Mori (1970) which states that as the anthropomorphism

of an agent converges to that of a human being, the reaction of users will tend

toward an affinity with the agent (Moore, 2012), until a point where the physical

resemblance of the agent is such that it begins to evoke an adverse response,

due to aspects of the appearance and behaviour differing from the human norm

provoking a sensation of strangeness (MacDorman and Ishiguro, 2006). As such,

Mori proposed that robot designers use the hypothesis as a guideline for when

designing robots, encouraging the design of robots to reside on the left side of

the valley, rather than striving to create robots with a high degree of human

resemblance.

While this hypothesis, in it’s more famous manifestation, applies primarily to

physical morphology and movement of an agent, research from the field of com-

muter animation has shown that there are also cross-modal effects in which vocal-

isations also have influence (Tinwell et al., 2011). Similarly Mitchell et al. (2011)

created videos with combinations of visual/audio pairs with robot and human

faces, and human and synthesised speech, finding that cross-modality mismatches

resulted in a greater sense of eeriness, concluding that the physical and acoustic

aspects of the robot should “match”. While the Uncanny Valley is not universally

accepted in the current form (Tinwell et al., 2011; Bartneck et al., 2009), the

basic premise that there is a relation between the degree of anthropomorphism,

behaviour and user perception remains a relevant issue in HRI. Komatsu and

Yamada (2011) provide a tangible example of this work, having found that sub-

jects have significant differences in their interpretations of their artificial sounds

depending on the physical appearance of an agent. The findings supporting the
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Figure 4.1: Graph of relationship between human likeness and perceived
familiarity, as proposed by Mori (1970): familiarity increases with human
likeness until a point is reached where subtle deviations from the human

appearance evoke an adverse response. This is known as the Uncanny Valley.
Figure adapted from MacDorman and Ishiguro (2006).

Uncanny Valley hypothesis strengthen the need to test the perception of the mor-

phology/NLU alignment as applied to the Nao platform in order validate the use

of the platform. Furthermore, the findings that a different embodiment may evoke

a different interpretation of the same utterance (Komatsu and Yamada, 2011), and

that the morphology of the embodiment alone can evoke substantially different

reactions from subjects (Hwang et al., 2013) highlights to need to retain the same

robot throughout the body of this research.

To this end, this chapter presents an experiment aimed at probing how the mor-

phology of a robot influences the perception of appropriateness and the affective

interpretation of NLUs, in comparison to more characteristic forms of utterance

that may be associated with the particular morphology.

4.1 Experiment Setup

This experiment set out to test the following hypotheses:

H1: Users are coherent in their affective interpretations of utterances made by a

robot.

H2: The physical appearance of a robot has an influence upon the interpretations.
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H3: The physical appearance of a robot has an influence upon the perception of

appropriateness of utterances made by the robot.

These hypotheses were tested through an online experiment, where subjects

were asked to rate image and utterance stimulus pairs in terms of their emotional

and intentional interpretations of utterances as well as provide a rating of the

appropriateness of each stimulus pairing. In total, 20 utterances were collected

together - 5 utterances recorded from a human source, 6 utterances from an animal

source, and 9 sounds recorded from technology sources (e.g. analogue computers,

mobile phones, etc.). Each acoustic stimulus was presented to subjects twice,

once paired with an image of a Nao robot and once with an image of a Sony Aibo

robot (figure 4.2), thus in total, 40 stimulus pairs were presented to subjects. For

each utterance pair, subjects were asked to select from a list of which emotion

they felt that the robot had conveyed through the utterance. They were also

asked to guess the communicative intent, and to judge the appropriateness of the

utterance and robot image pairing. All responses were forced choice. To conclude

the experiment, subjects were asked whether they were pet-owners and if they

came into contact with robots on a regular basis.

Two versions of the experiment were created with counterbalanced robot-

utterance stimulus presentation, and subjects were directed to a URL that for-

warded them to one of the two experiments.

4.1.1 Utterance Stimuli

The 20 utterances were grouped into three broad categories: human (6), animal

(5) and technological (9). Audio samples were collected from a variety of sources

including the FreeSound1 online data base, and self recordings. No pre-testing of

the sounds in order to ascertain rough affective interpretations was performed.

Human utterances consisted of recordings of utterances such as “hmm”, “ahhh”,

and other recordings of sounds that can be produced using the human vocal tract.

Animal utterances consisted of sounds such as a cat’s purr, or a small dog growl-

1www.freesound.org
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ing, and were selected to cover a small range of sounds that one might expect to

hear from such animals. Technological utterances (which are essentially NLUs)

came from a broad range of sources, such as mobile phones and unusual daily

sounds such as windows being wiped clean.

The motivation behind this selections of utterances was to capture a broad va-

riety of stimuli with respect to sound source and acoustic parameters (intonation,

pitch, speed, ect.), rather than providing systematic and controlled differences in

acoustic profile. Understanding correlates in acoustic features in utterances and

their interpretations was not the focus of this experiment. Rather, the focus was

to query the impact of varying agent morphologies and validate that the Nao is

indeed an appropriate platform on which to conduce NLU research. As such the

selected utterances were not intended to portray any particular affective states or

have any particular meaning.

The 40 stimuli were presented in a pseudo-random order, with the constraint

that the repetition of each utterance was to be separated by at least 14 others,

all of which were to be different. Doing this avoided the sequential repetition of

an utterance, with the aim to minimize the chance that subjects would not only

recognize the acoustic stimulus, but also recall the response that they provided

with the first presentation.

4.1.2 Visual Stimuli

The two robots to be presented were carefully considered due to the wide variety

of robots currently available, both in the commercial and research domains. The

primary concern was to make a comparison between two robots that have the

same design theme, and avoid introducing unnecessary noise to the results by

comparing two robots with differing underlying aesthetic design themes. Robots

such as the Paro (Wada and Shibata, 2006) or MIT’s Leonardo (Coradeschi et al.,

2006) are designed to resemble living creatures (evident through their soft, furry

exteriors), while robots such as the Nao or Aibo have a more prominent industrial

design theme and resemble technological artefacts (evident through their rigid,
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(a) Sony’s Aibo dog
robot.

(b) Aldebaran’s Nao
humanoid robot.

Figure 4.2: Images of the two robots used in the experiment.

plastic exteriors). If comparison were made between the Nao and Paro platforms

for example, this would not only be testing morphology, but life-like aesthetic

also, and thus would be a less fair comparison and may have confounded results.

Making a comparison between the Nao and the Aibo was deemed suitable

on three rationale. Firstly, both the robots have similar aesthetic characteristics

providing a fairer comparison. They are both very clearly robots, evident through

the plastic exterior2. Furthermore, they both facilitate capabilities for displaying

affect through an array of LED’s that represent eyes, reinforcing the technological

theme of the design. Secondly, both platforms are or have been commercially

available (though the Aibo has been discontinued for some time, they can be

purchased from various second hand sources), thus are likely to be known to a

wider audience, however, this was not assumed. Finally, since the two robots

represent what may be considered technological artefacts, it was deemed likely

that users would be open to the interpretation of a broad range of utterances

exhibited due to milder preconceived expectations3 (Komatsu and Yamada, 2007).

2Robots with a soft fur exterior may cause confusion with cuddly toys in static images.
3Though there may be an influence due to popular Culture and media.
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4.1.3 Emotional States

Subjects were presented with a forced choice of 9 affective labels: happiness,

sadness, relaxation, anger, affection, fear, interest, boredom and disgust. This

selection differs from the affective labels that are commonly used in the literature

for studies addressing the recognition of emotional content in acoustic cues and

speech, from both robots and humans. Most studies employ the “basic emotions”

(Plutchik, 1994): joy, sadness, fear, anger, disgust and calmness (c.f. Breazeal

(2002); Bryant and Barrett (2008); Oudeyer (2003)). While these basic labels pro-

vide subjects with a short and intuitive list to choose from, there are drawbacks.

Scherer (1986) highlights that using a small number of labels studies discrimina-

tion rather than recognition between the options. There is also the concern of

familiarity and alignment of the labels understanding between the subjects - are

all the subjects familiar with the various labels presented, and do the labels have

the same meaning to each of the subjects?

Each of the states may also be loosely paired with another so that one falls

into a “positive” classification and the other into a “negative” classification (table

4.1). This has been done in an attempt to maintain an even balance between

“positive” and “negative” options. In the case of disgust, at the time of the study

design, no basic affective state could be readily identified that would produce a

suitable counterpart to make a pairing.

Table 4.1: Pairing of Emotion/State Classifications.

Pair Positive Negative

1 Happiness Sadness
2 Relaxation Anger
3 Affection Fear
4 Interest Boredom
5 - Disgust

4.1.4 Communicative Intents

Aside from querying affective interpretation, subjects were also asked to provide

an intentional interpretation. Five intentional categories were selected for this and
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presented in a forced choice paradigm: approval, attention, prohibition, comfort

and neutral. These are the basic communicative intents that have been employed

in adult and infant-directed speech in both HRI studies (Breazeal, 2002) and

psychological studies (Bryant and Barrett, 2007; Fernald, 1989).

4.2 Results

In total, 61 participants responded to the study, 27 males (mean age = 26.66, std

= 8.3) and 34 females (mean age = 35.65, std = 12.03). There were 32 pet owners

(13 male, 19 female). 12 participants (11 male, 1 female) reported that they used

robots on a regular basis. 55 participants reported that they lived in the United

Kingdom, 46 of whom were British natives.

Due to the use of forced choice nature of this experiment, there are limits as

to the statistical methods that may be employed. Krippendorff’s α (Hayes and

Krippendorff, 2007) was used as a measure for Inter-Rater Reliability (IRR) as

this metric caters for nominal data. The α holds a value between −1 (for com-

plete disagreement between subjects) and +1 (for complete agreement between

subjects). One-way χ2 tests were performed to determine whether individual rat-

ings (e.g. the appropriateness ratings for the Human Utterance/Nao robot pairs)

were statistically above chance levels. Two-way χ2 tests were used to check for

differences between subject sub-groups (gender, and pet ownership) while Stewart-

Maxwell tests were employed to test for differences between the different robot

morphologies (as all subjects provided ratings for both conditions).

This section will present an overview of the results focusing on the affective,

intentional and appropriateness ratings individually, providing an overview of the

overall ratings, comparisons between subject groups and the robot images, and

the subject agreement based on Krippendorff’s α values.

4.2.1 Affective Ratings

Figures 4.3a, 4.3b and 4.3c show the overall percentage of affective ratings for

each of the different affective categories, for each of the utterances classes respec-
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Table 4.2: Krippendorff’s α values showing the agreement between subjects in
their affective (Happiness, Sadness, Relaxation, Anger, Affection, Fear, Interest,

Boredom and Disgust) ratings of the different classes of utterances.

Robot Subjects
Utterance Class

Human Animal Tech

Nao

Overall 0.2922 0.0948 0.1271
Females 0.3250 0.1101 0.1369
Males 0.2529 0.0964 0.1169
Non-Pet Owners 0.2878 0.1204 0.1033
Pet Owners 0.2591 0.0910 0.1419

Aibo

Overall 0.3196 0.0955 0.1243
Females 0.3370 0.0882 0.1341
Males 0.3035 0.1218 0.1192
Non-Pet Owners 0.2911 0.0914 0.1034
Pet Owners 0.3458 0.0945 0.1381

tively (these results are also summarised in table B.1), indicating the frequency of

different rating categories for class of utterance. The graphs also indicate whether

each of the ratings were statistically above chance levels (50%), and if so, to what

degree of statistical significance.

It can be seen that in the majority of cases, the distribution of ratings are

not statistically above chance level (see table B.1). The graphs also reveal that

the distributions of ratings between each of the utterance classes are different,

however this is to be expected as the stimuli were not intended to portray any

particular affect.

Krippendorff’s α values were calculated for the affective ratings, for all the

subjects as a whole, and for the subgroups (males, females, pet owners and non-pet

owners), for each robot individually. The calculated values (table 4.2) reveal that

overall, there is little agreement between subjects in their affective interpretation

of the utterances. This corresponds with the general trend for ratings to be at

chance level also. It is also interesting to see the general trend that the Human

class of utterances has the highest α values, and that the Animal class of utterances

has the lowest. However, all values are indeed low.
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Figure 4.3: Overall Percentage of Affective Ratings across both Robots and
Utterance Categories (within bar makings indicate statistical significance that is

above chance).
* : p < 0.05, ** : p < 0.025, *** : p < 0.01, **** : p < 0.005. See table B.1.
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4.2.2 Intentional Ratings

Similar to the affective ratings, the intentional ratings were also generally at

chance level. Figures 4.4a, 4.4b and 4.4c show the distributions of ratings spread

across the 5 intentional labels from all the subjects for both the Nao and Aibo

robots, for each of the utterance classes respectively (these plots are summarised

in table B.4).

It can be clearly seen from the graph that overall the utterances were predom-

inately rated as having an “Attention” intention at levels that are above chance

for all the utterance classes, while there are also labels that received low percent-

ages at levels that are also above chance indicating that subjects did not feel that

the stimuli conveyed these intentions, namely the “Prohibition”, “Comfort’” and

“Approval” labels (see table B.4 for χ2 and p values).

Stewart-Maxwell tests were performed to check for differences in the overall

distributions across the labels due to the robot image that was presented with the

utterances, revealing that there were no significant differences due to the robot

image for any of the utterance classes. These tests revealed no differences between

the ratings due to the different images that were presented with the utterances,

with this being true for all the utterance classes (see table B.4).

The Krippendorff’s α values (table 4.3) are again low, indicating that there

was little agreement between subjects in their ratings. Similarly to the Affective

ratings, this is reflected in the general chance level ratings that have been found.

4.2.3 Appropriateness Ratings

Figure 4.5 plots the percentage of “Yes” responses to the appropriateness of each

stimulus pair. An initial visual inspection shows that in the case for the Human

and Animal utterance classes, subjects showed higher approval ratings for the

utterance class that matched the morphology of the robot - human utterances

were deemed as more appropriate when presented with the Nao (74.5%) robot

than the Aibo (57.9%), and animal utterances were deemed more appropriate

when presented with the Aibo (68.2%) robot than the Nao (46.2%). In the case
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Figure 4.4: Overall Percentage of Intention Ratings across both Robots and
Utterance Categories (within bar makings indicate statistical significance that is

above chance).
* : p < 0.005. See table B.4.
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Table 4.3: Krippendorff’s α values showing the agreement between subjects in
their interpretation ratings (Approval, Attention, Prohibition, Comfort and

Neutral) of the different classes of utterances.

Robot Subjects
Utterance Class

Human Animal Tech

Nao

Overall 0.0875 0.0612 0.0834
Females 0.0675 0.0590 0.0833
Males 0.1229 0.0585 0.0702
Non-Pet Owners 0.0977 0.0507 0.0818
Pet Owners 0.0776 0.0671 0.0796

Aibo

Overall 0.0735 0.0567 0.0622
Females 0.0801 0.0397 0.0545
Males 0.0722 0.0968 0.0787
Non-Pet Owners 0.0440 0.0649 0.0392
Pet Owners 0.0964 0.0683 0.0756

of technological utterances, as in the subjects rated these are more appropriate

for the Nao (59.7%) than the Aibo (54.8%) also, but with a far smaller margin

of difference. As some of the percentages lay near 50%, one-way χ2 squared tests

were performed to test the likelihood that any of the results were due to chance.

The ratings for the Animal utterances presented with the Nao robot and the

Technological utterances presented with the Aibo robot were both found to be

due to chance, while all other ratings were found to be above chance (see table

B.7, Chi Squares Test column).

McNemar4 tests were used to test for statistical significance in the differences

between the appropriateness ratings between the robot type. It was found that

there were significant differences in the ratings due to the robot morphology of

the Human utterances (χ2(1, N = 61) = 27.480, p ≤ 0.005), Animal utterances

(χ2(1, N = 61) = 34.299, p ≤ 0.005) and Technological utterances (χ2(1, N =

61) = 4.198, p ≤ 0.05). These are summarised in table B.7.

4.2.3.1 Gender Differences

From figure 4.6 and table B.8 it can be seen that both genders rated Human-

Nao pairs as appropriate (males = 73%, females = 75%) to a degree that was

above chance, and that there was no significant difference between the genders

4The McNemar test is similar to a Stewart-Maxwell test, but only caters for two factors with
two conditions, while Stewart-Maxwell tests cater for two factors with multiple conditions.
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Figure 4.5: Percentage of Appropriate Responses for the Robot Types Across
the Utterance Classes.

* : p < 0.05, ** : p < 0.001
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(χ2(1, N = 61) = 0.197, p > 0.05). Human-Aibo pair ratings (males = 56%,

females = 58%) were found to be at chance level for males (χ2(1, N = 27) = 1.494,

p > 0.05) and females (χ2(1, N = 34) = 2.526, p > 0.05) with no significant

differences (χ2(1, N = 61) = 0.153, p > 0.05).

Animal-Nao pairs were rated as less appropriate by males than females (males

= 39%, females = 53%) and this difference was found to be significant (χ2(1, N =

61) = 6.361, p < 0.05). However, the male ratings were found to be above

chance (χ2(1, N = 27) = 3.316, p < 0.05) while the female ratings were not

(χ2(1, N = 34) = 2.172, p > 0.05). Similarly to the Human-Nao pairs, Animal-

Aibo pairs were rated as appropriate (males = 67%, females 68%) with no signif-

icant difference between the ratings (χ2(1, N = 61) = 0.070, p > 0.05), with the

ratings being above chance for both the males (χ2(1, N = 27) = 8.182, p < 0.05)

and females (χ2(1, N = 34) = 10.552, p < 0.05).

In the case of Techno-Nao pairs, it was found that the females rated these

pairs as more appropriate than males (males = 55%, females = 63%) and that

this difference was statistically significant (χ2(1, N = 61) = 3.847), however, the

male ratings were at chance level (χ2(1, N = 27) = 1.286, p > 0.05) while the

female ratings were above chance (χ2(1, N = 34) = 7.235, p < 0.05). A similar

trend was also found for the Techno-Aibo pairs where a significant difference

(χ2(1, N = 61) = 9.907, p < 0.05) between the genders was observed (males
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Figure 4.6: Percentage of “Yes” Responses for the male and female subjects
across the robot types and utterance classes. Plot also shows whether results are

due to chance (marked within each bar), and whether there are significant
differences between the genders (marked between two bars).

* : p < 0.05, ** : p < 0.01, *** : p < 0.005
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= 47%, females = 60%). However the male ratings were again found to be at

chance level (χ2(1, N = 27) = 0.348, p > 0.05) while the female ratings were not

(χ2(1, N = 34) = 4.449, p < 0.05).

4.2.3.2 Pet Ownership Differences

Form figure 4.7 and table B.9 it can be see that overall, there was little difference

in how the pet and non-pet owners rated the appropriateness of the utterance

classes across the different robot morphologies. In the case of the Human-Nao

pairs, both pet (rating = 55%, χ2(1, N = 32) = 24.00, p < 0.025) and non-pet

owners (rating = 60%, χ2(1, N = 29) = 22.321, p < 0.025) gave similar ratings

that were both found to be above chance and were not significantly different.

The ratings for the Human-Aibo pairs were notably lower also with no significant

differences, but were not above chance level.

In the case of the Animal-Nao pairs, pet owners rating these are less appropri-

ate than non-pet owners, to a statistically significant degree, however, both the

ratings were not found to be above chance, casting doubt upon the significance of
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Figure 4.7: Percentage of “Yes” Responses for the pet owners and non-pet
owners subjects across the robot types and utterance classes. Plot also shows

whether results are due to chance (marked within each bar), and whether there
are significant differences between the subjects groups (marked between two

bars).
* : p < 0.025, ** : p < 0.005
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the difference found (χ2(1, N = 61) = 6.361, p < 0.025). Animal-Aibo pair ratings

followed the same trend as the gender difference, both groups ratings were above

chance and were not significantly different (χ2(1, N = 61) = 2.266, p > 0.05).

Techno-Nao pairs were rated as appropriate at above chance levels by both

pet (rating = 59%, χ2(1, N = 32) = 5.444, p < 0.025) and non-pet owners (rating

= 59%, χ2(1, N = 29) = 5.236, p < 0.025), with no significant differences between

the groups (χ2(1, N = 61) = 0.000, p > 0.05). Techno-Aibo pairs were found to

be at chance level for both pet (rating = 54%, χ2(1, N = 32) = 1.174, p > 0.05)

and non-pet owners (rating = 55%, χ2(1, N = 29) = 1.274, p > 0.05), with no

significant differences (χ2(1, N = 61) = 0.024, p > 0.05).

4.2.3.3 Inter-Rater Agreement

Table 4.4 shows the Krippendorff’s α values for the appropriateness ratings for the

different utterances classes, robot images and subject groups. All the values are

low and near a 0 value, and thus indicate that there was a low overall agreement

between subjects in which individual utterances they found to be appropriate for
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Table 4.4: Krippendorff’s α values showing the agreement between subjects in
their judgement of the appropriateness of different classes of utterances with the

robot image.

Robot Subjects
Utterance Class

Human Animal Tech

Nao

Overall 0.0469 -0.0066 0.0825
Females 0.0413 -0.0120 0.1220
Males 0.0343 0.0181 0.0250
Non-Pet Owners 0.0187 -0.0175 0.0692
Pet Owners 0.0533 -0.0214 0.0748

Aibo

Overall 0.0065 0.0673 0.0880
Females 0.0053 0.0610 0.0658
Males 0.0096 0.0938 0.1072
Non-Pet Owners -0.0046 0.0865 0.0829
Pet Owners -0.0046 0.0346 0.0804

a given robot image, regardless of the subject group.

4.2.4 Summary of Results

The results have shown that overall, subjects were not coherent in their ratings

regarding the affective meaning of utterances, or the intentional meaning of ut-

terances, and while the distributions of the ratings were different across the three

utterance classes, the majority of ratings were not above chance levels (thus they

can be said to be random). Furthermore, there were no significant differences

found in ratings due to the different robot morphologies, nor were there significant

differences found between the two genders in their ratings, or between subjects

who did or did not have a pet.

With respect to the appropriateness ratings, it was found that when the ut-

terance class was aligned with the morphology of the robot (Human utterances

presented with the image of the Nao robot, and Animal utterances presented with

the image of the Aibo), the ratings were significantly higher than when the mor-

phology and utterance class were misaligned. In the case of the Technological

utterances, subjects rated the combination with the Nao robot as more appropri-

ate than the combination with the Aibo robot. The results also show that females

tended to have a higher appropriateness rating than male subjects.
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4.3 Discussion

It was unexpected to find little coherence between subjects in their responses.

These results falsify the hypothesis (H1) that users are coherent in their interpre-

tations of utterances. Explanations for this are that the lack of context throughout

the experiment made it difficult for subjects to assign affective states to what may

be considered rather abstract sounds. If this is the case, it highlights the impor-

tant role that context may play in helping narrow the scope of interpreting social

cues emitted by robots. An alternate explanation may be that the stimuli them-

selves did not convey the affective states that were in the forced choice list, or any

affective states at all.

The second hypothesis, that the morphology of the robot impacts the users’

interpretation, was also found to be dismissible as no significant differences were

found between the ratings for utterances when presented with the two different

robot images. This is likely due to the lack of coherence between subjects and

majority of chance level results also. In this light, H2 is dependant upon H1

- if subjects are not coherent in general, then it is unlikely to find significant

differences between specific sub sets of data.

Addressing the significant results that were obtained, arguably the most impor-

tant result from this experiment is the finding that subjects do have a sensitivity

and preferences for the alignment between the morphology of a robot (which sup-

ports H3 - that the morphology impacts the perception of the appropriate of an

utterance), and the type of utterance that is made, a notion that falls somewhat

in line with the basic premise of the Uncanny Valley whereby a mismatch between

two or more facets of an agent results in an adverse response from people. While

it is rather intuitive that the subjects showed preference for human type utter-

ances made by the Nao humanoid and animal like utterance made by the Aibo

dog robot, it is interesting to see that there is a weak, but statistically signifi-

cant preference for the technological class of utterances made by the Nao robot.

While it is difficult to isolate the exact cause of this result, this result does build

confidence in the notion of using the Nao platform as the means through which
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utterances in subsequent experiments will be embodied.

More broadly, these results also suggest that there are limits as to how NLUs

may be used in robotic agents, and that some of these limits, at least, are mani-

fested through the physical morphology of the embodiment. Thus, this highlights

the need for designers of (social) robots to be aware of the impacts that their

physical designs have upon how other aspects of the system, such as the use of

NLUs, and visa-versa. Furthermore, it is clear that the designers should also be

aware of the potential limitations the physical design of a robot has upon the

other parts of the system with respect to the types of behaviours that are likely

expected and deemed as acceptable from an end users perspective.

A prominent gender difference was also found for the appropriateness ratings

for both the Animal and Technological utterance classes, and not the Human

class. This may be in part due to the imbalance of male and female subjects, but

also that 12 of the male subjects self reported to have frequent contact with real

robots. This may be the source of significant bias as a result. In the case of the

Technological utterances, the results show that the female subjects found the use

of NLUs more acceptable than males, while the results from the male subjects

were not above chance. An implication of this for the use of NLUs in robots is

that, if the robot is both aware of the gender of a user (say through the use of a

User Model) and able to select from a variety of means of acoustic expression, it

may be beneficial to know that the use of NLUs may be more appropriate with

female users than male users. However, due to the limitations of this study with

respect to ecological validity, the weight behind such implications should be kept

in consideration.

4.3.1 Methodological Remarks

There are some shortcomings with regard to the methodology within this experi-

ment. Firstly there was a small number of total utterance stimuli used, with these

being unevenly spread across the three classes of utterance. The lack of specifica-

tion and variation in acoustic properties does not allow for insights to be gained
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with respect to how certain aspects of an utterances impacted the interpretation.

However, this was not the main focus of the study.

Due to the online nature of the experiment, there is the issue of ecological

validity in that not only were images of robots used, there was also no situational

context presented. It may be that the inclusion of situational context can help

narrow down the potential scope of interpretations of a given utterance (this is

addressed in chapter 8). The lack of situational context however was a deliberate

choice. The rational for this was to remove all possible sources of biasing that

may impact the subject responses, as it is possible that factors such as situational

context may colour, or possibly override completely, any information or content

carried by the utterances alone. With respect to the use of images over videos or

real robots, images also provide a neutral context due to their static nature. This

too was done in an effort to avoid confounding any raw effects of the utterances.

Though, this approach comes with the risk of reducing ecological validity. While

some authors argue that online studies that employ videos do retain ecological

validity (e.g. Lohse et al. (2008a); Woods et al. (2006a,b); Walters et al. (2011)),

it is unlikely that this same argument extends to the use of static images.

4.4 Summary

This chapter has presented an experiment aimed at confirming that the Nao

robotic platform is indeed an appropriate platform through which the research

into Non-Linguistic Utterances may be embodied into a real world social agent.

This issue stems from the Uncanny Valley hypothesis which has the basic premise

that the physical morphology and behaviour of an agent has an impact upon the

overall empathic response of a person to that agent. As such, this chapter has

sought to confirm that people do not have an adverse response to the Nao robotic

platform when it employs the NLU modality, in comparison to a similar type of

robot, the Sony Aibo. This experiment also allowed testing of three hypothe-

ses: that subjects are coherent in their interpretations of utterances, that the

robots physical morphology has an impact upon this interpretation, and that the
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morphology also impacts whether subjects deem the given morphology/utterance

combination as appropriate.

The first two hypothesis were not supported as little coherence was found be-

tween subjects in their ratings, as well as no significant differences in the affective

and intentional interpretations of utterances. The results of this experiment are

somewhat in agreement with those of Komatsu and Yamada (2011) in that the

subjects had a different appropriateness rating of an utterance when it was pre-

sented with a different robot, thus the morphology of an utterance indeed had an

affect, which supports H3.

While the experiment in this chapter employed acoustic samples obtained from

an internet based source, in the majority of cases, this is not an approach that is

suitable or sustainable for the rest of this thesis. As such, the rest of this thesis

uses the utterance generation algorithm detailed in chapter 3 to produce the NLU

stimuli used in the experiments.

Finally, with respect to the main aim, the experiment has shown that though

NLUs were not deemed as appropriate to the same level as the Human utterances,

they were deemed as appropriate to a degree that is above chance. This finding

provides the initial confidence in the notion that subjects in subsequent experi-

ments will be accepting of the Nao robot making NLUs, and as such, the Nao has

been used as the sole platform used for the social embodiment in fall experiments

presented in this thesis.

101



102



Chapter 5

Collecting Training Data for

Machine Learning

Summary of the key points:

• An experiment designed to systematically explore the different parameters of

the NLU generation algorithm and their impact upon affective interpretation

is conducted with young children.

• Data collected is intended to be used as training data for Machine Learning

later in this thesis to learn an affective mapping between the different NLU

parameters and affective interpretation.

• Results show that different parameter values do indeed evoke different affec-

tive interpretations of NLUs, but that the relationships between parameters

and affective meaning is complex, subtle and noisy.

• While overall coherence between subjects’ in their affective interpretations

is low, children do readily rate NLUs as having distinct affective meanings.

Furthermore, there are indications that subjects’ interpretations are subject

to a perceptual magnet effect/categorical perception.
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In chapter 3, a custom algorithm for generating NLUs was described, taking in-

spiration from research into the human voice and gibberish speech, with respect

to both the structure of utterances and the parameters that are used to spec-

ify/charge an utterance. While there is an established literature surrounding the

acoustic correlates of conveying affect through the human vocal system as well as

music, it is not wise to assume that the findings and insights from this body of lit-

erature are directly applicable to the generation algorithm in order to affectively

charge or colour utterances in the same manner (i.e. the same basic, acoustic

features of an NLU may not evoke the same affective response as an human ut-

terance). The rationale for this is two-fold. Firstly, with respect to the human

voice, the utterances generated via the algorithm are not only very simplistic in

comparison (i.e. utterances consist of simple single carrier wave modulations with

clear constraints, while the human voice is composed of complex wave signals), the

manner in which the generation parameters interact are only analogous to those

of the human voice and are likely to not have enough overlap to facilitate a direct

mapping. Secondly, with respect to the world of affective expression via music, in

comparison, both NLUs and the human voice operate in a notably shorter time

frame, and while there may be similarities in the underlying characteristics de-

scribing the acoustic signals (e.g. frequency ranges, the rhythm, the melody/pitch

contours, etc.) that are used to encode an affective meaning (Weninger et al.,

2013), how these characteristics are used functionally is different (Scherer, 1995),

though high level comparisons may be made (see Juslin and Laukka (2003) for an

extensive review of this).

As such, in order to be able to use the NLUs from the algorithm to convey the

robot as having a specific and desired affective state, it is necessary to ascertain

how the parameters of the generation algorithm translate to, and impact, different

affective interpretations of the utterances that can be generated by the algorithm.

In essence, a mapping between generation parameters and affective interpreta-

tion is required, making it possible to estimate the parameter configuration of an

utterance in order to evoke a desired interpretation.
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This chapter presents an experiment in which local school children (n = 42)

were asked to affectively rate, using the AffectButton measuring tool, utterances

generated by the NLU generation algorithm, with the aim of collecting data that

could help reveal the relationships between the parameters of the generation al-

gorithm and coordinates within an Pleasure, Arousal, Dominance affect space.

It is important to stress from the offset that the work presented in this chapter

had one primary goal: to collect a broad variety of training data that was used in

chapter 7 to train Artificial Neural Networks in order to learn the aforementioned

mapping. Given that a large amount of data is collected, the opportunity to

perform an analysis checking for any initial insights was also taken, however as

explained below, the experimental arrangement designed to meeting the primary

goal did hamper the raw analysis of the data collected.

5.1 Identifying an Affective Mapping

Searching for such a mapping requires that as many possible combinations of the

different parameters be presented to, and rated by subjects. This is challeng-

ing task for two linked reasons. Firstly, there are a large number of parameters

controlling the NLU generation algorithm, and secondly, the majority of param-

eters are continuous and thus discrete samples must be taken for each utterance,

leading to an issue of sampling resolution. This latter issue holds relevance as it

means that a practical trade off must be made between the number of utterances

required to uniformly sample the high dimensional parameter space, the num-

ber of subjects required to rate these utterances, and the number of utterances

each subject is able to rate as the subjects in this experiment were young school

children with a limited attention span.

In total, the algorithm has 14 controllable parameters, which presents a consid-

erably large, high dimensional space1 in which to identify potential relationships

between parameters and their affective interpretations. To reduce the size of the

1This high dimensional space of the algorithm parameters will be referred to as the parameter
space.
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parameter space, it was decided that a number of parameters providing fine tuned

control of utterances would be held constant. Namely, the Envelope Count, Vol-

ume Intensity, Node Count, Skew Ratio and Node Ratio were kept at constant

values2 as they introduce a degree of complexity that is unmanageable given the

number of subjects available. While this reduced parameter space of nine dimen-

sions (Wave Type, Base Frequency, Frequency Range, Pitch Contour, Sound Unit

Count, Pause Ratio, Speech Rate, Rhythm and Tremolo) is still large, it does

encompass the primary parameters that specify an utterance and are parameters

that are found in the related literature also (allowing room for potential insights

with respect to the relevance of the findings from that body of literature to NLUs).

As such, it was deemed unwise to reduce the space any further as this would ne-

glect the basic features of an NLU. It was decided that sparsely sampling the

parameter space would be an acceptable trade off between sampling resolution

and the number of utterances, provided that the sampling uniformly cover the

full working range of each of nine the continuous parameters.

As it was not assumed that insights from the body of literature on affect in mu-

sic and the human voice may be applied to NLUs, utterances that were generated

for this study were not assumed to have any particular affective interpretation.

Rather, as outlined above, the utterances were generated to provide a board, uni-

form sampling of the parameter space. The rationale for this is three-fold: firstly,

no assumption is made regarding prior understanding of how generation parame-

ters are related and interact with each other as well as counter part representations

of affective ratings (i.e. the AffectButton affect space).

Secondly, the debate of which affective states should be represented by the

stimulus is effectively side-stepped. Recent developments in emotion research have

proposed a variety of theories of emotion (see chapter 3), generally with limited

underlying agreement between theories. For example, a recent theory proposes

families of emotions (Ekman, 1992) in which it is acknowledged that similar classes

of emotion (e.g. “hot” and cold” anger) have notably different acoustic correlates

2These parameters have been kept contract for all other studies presented later in this body
of work also.
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in the human voice (Banse and Scherer, 1996; Juslin and Laukka, 2003; Scherer,

2003). As a result, it becomes important to ensure that the desired emotional state

is indeed represented both in the encoded stimulus as well as in the measuring

tool when subjects are decoding the stimulus. Failure to do so may lead to results

that disagree with others within the literature (Scherer (1986); Banse and Scherer

(1996); Scherer (2003)), making it difficult to compare results. Side stepping this

issue with respect to the affective encoding of an NLU, and using an affective

measuring tool that does not explicitly rely on distinctions such as “hot” and

“cold” anger is able to avoid such issues.

Finally, no assumptions are made about the coverage of the affect space given

the generated stimuli, allowing clear assessment of whether the stimuli provide full

coverage of the affect space, and whether a uniform sampling of the parameter

space equates to a uniform distribution of data points in the affect space.

Given the exploratory nature of this chapter, no hypotheses are presented or

tested.

5.2 Experimental Setup

The study was organised in collaboration with a local primary school, where

subjects were recruited through two school classes - year 2 (6-7 years old) and

year 3 (7-8 years old). As well as recruiting subjects through the school, a school

class room also hosted the study setting, to help promote the notion of a real world

evaluation environment - an environment that was familiar to the subjects. The

study was conducted with pairs/trios of children, with each group being pulled

out of class time and each child taking turns to listen to and rate the stimuli.

The experimental duration for each group was between 20 and 30 minutes, with

each child taking an average of 10 minutes to complete the ratings. The overall

duration of the experiment spanned over two school days, with one class being

completed each day.

Subjects were seated in front of a laptop running the AffectButton measuring

tool, with the Nao stood behind it facing them (Figure 5.1). Utterances were
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Figure 5.1: Image of the experimental setup in the classroom with two children
and the experimenter.

played (by tapping the Nao on the head) and the subjects asked to guess how

the robot was feeling, inputting their response via the AffectButton. Subjects

were presented with 5 practice utterances followed by 30 experimental utterances,

with their affective interpretation being captured after each utterance by select-

ing a facial expression the matched their interpretation using the AffectButton.

Repetition of the current utterance was permitted, while repetition of previous

utterances was not.

The Nao was programmed to operate in an autonomous fashion such that the

control of the experiment was achieved through physical interaction with the robot

itself via the three touch sensors on the head. This presented an opportunity to

invite the other children present to instruct the robot to play the next utterance,

thus integrating them into the interaction scenario and minimising the amount

of influence that they may have over the children rating the utterances. Also, in

an effort to present the robot as an “alive”, reactive agent, rather than a static

object, a neutral behaviour was implemented, where the Nao gazed around the

room randomly, blinking by turning the eye LEDs off and on, shifting weight from

leg to leg and moving its arms, wrists and fingers in controlled and subtle, yet

random manner.

5.2.1 Utterance Specification

In total, 84 utterances were generated using the NLU algorithm, specifically ad-

dressing the variance of each of the nine generation parameters outlined. These 84
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utterances, and the manipulation of the nine different parameters were organised

into five mini experiments, each addressing the systematic manipulation of utter-

ance parameters with intuitive relationships. For example, the speech rate and

pause ratio both relate to temporal aspects of an utterances and thus were studied

in one mini experiment, while the base frequency and frequency were studied to-

gether in another. A further 60 utterances were generated without the systematic

variations to parameters (these were not subject to analysis in this chapter). The

purpose of these 60 utterances was to increase the variety of different parameter

configurations that were rated, helping provide a data set of affective ratings for

utterances that sampled as much of the parameter space as possible.

The 5 mini experiments are described below:

Experiment #1: This experiment was designed to probe the role of the Pitch

Contour and the Tremolo parameters with the aim of gaining insight as to

what effects the first and last sound unit contour shape may have. Utter-

ances consisted of 3 Sound Units only, with the first and last sound unit

each having either a flat, rising or falling contour shape, while the middle

sound unit had a fixed flat contour. All possible combinations of the first

and last sound unit contours were generated (see table 5.1). These contour

profiles were synthesised for utterances with Tremolo values of 0 rad and

0.34 rad, thus resulting in 18 utterances in total.

Experiment #2: Here the role of the Rhythm parameter was investigated. The

Rhythm parameter could have the values of either 0, 0.5 or 1, where a value

of 1 generates sound units that all have exactly the same duration, while a

value of 0 generates sound units that have large differences in duration. The

Sound Unit Count was again set to 3 and 5, and for each value five utterances

were synthesised (resulting in 10 utterances in total). Rhythm values were

set to either 0 (2 utterances), 0.5 (2 utterances) or 1 (1 utterance). The

reason for having two utterances for both the 0 and 0.5 values is that sound

unit duration is set pseudo-randomly and utterances with the same rhythm

value (not set to 0) are likely to be different from each other.
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Experiment #3: Here both the Base Frequency and Frequency Range were var-

ied, each parameter having a value of 500 Hz, 1000 Hz, and 1500 Hz. All

combinations of these parameters were used, and synthesised for both 3 and

5 word utterances, producing a total of 18 utterances.

Experiment #4: In a similar manner to Experiment #3, only the speech rate

(2,4 or 6) and the pause ratio (0.25, 0.5 or 0.75) were varied, again with

the Sound Unit Count being set to both 3 and 5. Thus, 18 utterances were

produced.

Experiment #5: The final experiment probed the role of the contour profile

and sought to clarify whether different parameter configurations, other than

the Pitch Contour could be utilised to sway subject interpretation. This

question stems from an ongoing debate regarding differing opinions over

role of intonation and the contour profile: some authors argue that contour

profile plays a vital role (Fernald, 1989), while others argue that the contour

is likely to be influenced by language (Banziger and Scherer, 2005; Grand-

jean et al., 2006) placing less importance upon this feature. To address this,

two different Parameter Configurations (PC1 and PC2) were specified (Ta-

ble 5.4) and were used to generate utterances with 3 and 5 Sound Units.

These Parameter Configurations had different Base Frequency, Frequency

Range and Speech Rate values. Five different Pitch Contour specifications

for both utterance lengths were also specified. This arrangement addresses

two things: allowing comparison between the different Pitch Contours for a

given Sound Unit Count with the same parameter configuration, and com-

parison be made for the same Pitch Contours across different parameter

configurations.

Overall, all the utterance parameter configurations were selected in such a way

as to maximise the sampling of the entire parameter space. Figure 5.2 shows a

parallel plot of all the different combinations of parameters, with the exception of

the Pitch Contour, to illustrate the sparse, but even sampling of the parameter

space. The Pitch Contour is a more difficult parameter to manage as it not only
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Table 5.1: Overview of the nine different Pitch Contour profiles for the
utterances in experiment #1. Sound unit pitch contours are encoded as follows:

F = flat contour, U = rising contour and D = falling contour.

Combination No Contour Profile

1 F-F-F
2 F-F-U
3 F-F-D
4 U-F-F
5 D-F-F
6 U-F-U
7 U-F-D
8 D-F-U
9 D-F-D

Table 5.2: Specifications of the Utterance Parameter Configurations (PC) for
the five mini experiments.

Parameter
Experiment #

1 2 3 4 5

Sound Unit Count 3 3/5* 3/5 3/5* 3/5
F0 Base (Hz) 1250 750/1000* 500/1000/1500 750/1000* 500/1500

F0 Range (Hz) 1250 1000/750* 500/1000/1500 1000/750* 500/1500
Tremolo (rad) 0/0.34 0 0.17 0.34 0
Speech Rate 4 3 5 2/4/6 2/6
Pause Ratio 0.25 0.75 0.5 0.25/0.5/0.75 0.75

Rhythm 1 0/0.5/1 1 1 1
Wave Type Sine Sine Saw Saw Sine

#Utterances 18 10 18 18 20
* Values in bold text were used for 5 word utterances, while

values in normal text were used for 3 word utterances.

has a large number of different combinations, but this number of combinations

is dependant upon the Sound Unit Count. As such, the Sound Unit Count was

limited to three of five sound units, depending on the mini experiment.

The utterances were randomly divided into five different utterance lists, with

each list containing approximately 30 utterances. Subjects in a given pair/trio

were each presented with a different utterance list, avoiding issues of subjects in

the same group hearing the same stimuli. The presentation order of each utterance

list was randomised to minimise ordering effects.

Table 5.2 provides an overview of the parameter configurations used in each

of the different experimental arrangements while Table 5.3 outlines the Pitch

Contour specifications, illustrating the range of different parameter configurations

and pitch contours that were employed.
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Table 5.3: Pitch Contour specifications for Experiment #2 through to
Experiment #5, across the different sound unit counts. Contours are encoded as

follows: F = Flat, U = Rising, D = Falling, Ud = Rising-Falling, Du =
Falling-Rising.

Experiment
Sound Unit Count

3 5

Exp 2 Ud-U-Du U-F-Du-D-Ud
Exp 3 D-Ud-U D-Du-U-F-Ud
Exp 4 Du-D-U Ud-F-U-D-Du

Exp 5

F-Ud-U F-D-U-Du-Ud
U-F-Ud U-Ud-D-F-Du
D-U-F D-Du-Ud-U-F

Ud-Du-Du Ud-F-Du-U-U
Du-D-D Du-U-F-D-D

Table 5.4: The two Utterance Parameter Configurations for mini experiment #5

Parameter
Parameter Config
PC1 PC2

Sound Unit Count 3/5 3/5
F0 Base 500 1500
F0 Range 500 1500
Tremolo 0 0
Speech Rate 2 6
Pause Ratio 0.75 0.75
Rhythm 1 1
Wave Type Sine Sine
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Parameter space.
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Figure 5.3: Plot of all the Affective Ratings for all the NLUs.

5.3 Results

In total, 54 subjects partook in the experiment, however not all of the data col-

lected was used in the analysis. The data of six participants who were suspected

of not engaging with the study and participant diagnosed with autistic spectrum

disorder were omitted from the results analysis reported in this section. As such,

the data collected from 48 children (26 girls and 22 boys) from the two classes

(Y2 = 25 and Y3 = 23) was included in the results analysis.

Kruskal-Wallis (KW) tests were employed to perform one-way non-parametric

ANOVAs, as the data did not fulfil the assumption of being normally distributed.

These tests did not check for differences between the genders as the number of

subjects in each group was not deemed to have a high enough frequency to hold

any statistical validity and power.

The remainder of this section provides a brief statistical analysis of the five

mini experiments.

5.3.1 Experiment #1

KW tests were performed to investigate the differences between the different Pitch

Contours, along each affective dimension individually. This was done indepen-
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dently for the utterances with the two different Tremolo values, as well as with

all the utterances combined (regardless of the Tremolo values). Subject ratings

were grouped in three different manners: by the unique Pitch Contour (9 groups),

by the contour shape of only the first sound unit (3 groups), and by the contour

shape of only the last sound unit (3 groups).

The tests found that there were no significant differences in the affective rat-

ings due to any of the pitch contour groupings along the Pleasure, Arousal and

Dominance dimensions, with only one exception. It was found that there was a

significant difference in the Dominance ratings in the utterances with a tremolo

value of 0, and grouped by the first contour shape (χ2(2) = 7.57, p = 0.023).

Mann-Whitney’s U post-hoc tests revealed that utterances beginning with a flat

contour were found to be significantly lower (U = 706.5, z = 2.637, p = 0.004)

than the utterances beginning with a rising contour. The same was also true

for utterances beginning with a flat and falling contours (U = 460, z = 1.780,

p = 0.037), while no significant difference (U = 627, z = 1.114, p = 0.133) was

found between utterances beginning with raising and falling contours. These re-

sults are shown graphically in figure 5.4. The results of all these KW tests are

shown in table 5.5.

To test the effect of the Tremolo values, KW tests were again performed, with

the ratings being grouped into the tremolo values (0 rad or 0.34 rad), with all

the pitch contours collapsed together. No significant effects were found due to

the different tremolo values along the Pleasure (χ2(1) = 0.7, p = 0.405), Arousal

(χ2(1) = 0.67, p = 0.412) or Dominance (χ2(1) = 0.5, p = 0.477) dimensions.

These results are summarised in table C.1.

5.3.2 Experiment #2

With regard to the Rhythm parameter, the KW tests found that there were no

significant main effects due to the rhythm parameter value, across any of the

affective dimensions, for either the utterances consisting either of 3 or 5 sound

units. However, when all the utterances (regardless of the sound unit count)
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Figure 5.4: Box plot of the Dominance ratings for the utterances in Experiment
#1with a tremolo value of 0, grouped by the the first contour shape in the

utterance (see table C.2 for a summery of the descriptive statistics).

Table 5.5: Results of Kruskal-Wallis tests for Experiment #1, comparing the
Pitch Contour and Tremolo parameter specifications against the affective

ratings. Pitch Contour has three possible groupings: by the whole pitch contour
combination, by the pitch contour of only the first sound unit, or by the contour

of only the last sound unit.

Contour Grouping Tremolo d.f.
Affect Dimension

Pleasure Arousal Dominance
χ2 p value χ2 p value χ2 p value

All
Any

8 6.12 0.634 5.86 0.663 12.5 0.130
First 2 0.17 0.918 4.36 0.113 5.28 0.071
Last 2 2.19 0.335 0.58 0.748 0.79 0.674
All

0
8 5.18 0.738 8.02 0.431 11.88 0.157

First 2 1.4 0.496 2.3 0.317 7.57 0.023
Last 2 1.14 0.564 1.22 0.543 0.25 0.879
All

18
8 5.87 0.661 3.36 0.910 10.8 0.213

First 2 2.92 0.233 2.19 0.335 3.4 0.183
Last 2 1.38 0.50 0.01 0.997 0.88 0.643
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Table 5.6: Results of the Kruskal-Wallis tests in Experiment #2, testing the
influence of the Rhythm parameter, with the data grouped by the sound unit

count.

Affect Dimension Unit Count d.f. χ2 p value

Pleasure
3

2 0.66 0.718
Arousal 2 1.54 0.463
Dominance 2 4.93 0.085
Pleasure

5
2 0.86 0.651

Arousal 2 5.16 0.076
Dominance 2 0.15 0.927
Pleasure

Both
2 0.24 0.887

Arousal 2 5.93 0.052
Dominance 2 1.86 0.395

collapsed together, the KW gets did identify a significant effect along the Arousal

dimension (χ2(2) = 5.93, p = 0.052). The test results are summarised in table 5.6.

Mann-Whitney U post-hoc tests found the utterances with rhythm value of 0 and

1 received significantly different ratings (U = 742, z = 2.345, p = 0.009), with the

rhythm value of 1 receiving a higher rating with a notably smaller range of ratings

than the utterances with a Rhythm value of 0. No significant differences were

found between the Rhythm values of 0 and 0.5 (U = 1227, z = 1.52, p = 0.064),

and 0.5 and 1(U = 618.5, z = 0.983, p = 0.163). These results are shown

graphically in figure 5.5.

Tests were also performed to check for differences in the ratings due to the two

different sound unit counts (3 and 5), and found that there were no significant

differences, across any of the affective dimensions. The results of these tests are

summarised in table C.3.

5.3.3 Experiment #3

When collapsing the Frequency Range values and comparing only the ratings

grouped by the Base Frequency values, no significant differences were found be-

tween the three conditions along any of the affective dimensions, with this being

true for the utterances with 3 sound units, 5 sound units, and when all the utter-

ances collected together (see table C.5 for these results).

Collapsing all the Base Frequency values and comparing the ratings grouped
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Figure 5.5: Box plot of the Arousal ratings for the all the utterances in
Experiment #2 (regardless of the sound uint count), across the three different
Rhythm values (see table C.4 for a summary of the descriptive statistics of the

box plot).

by the three Frequency Range of the NLUs, KW tests found that for 3 sound units,

there was a significant difference in the ratings along the Dominance dimension

(χ2(2) = 6.805, p < 0.05), while for the 5 sound unit utterances there was a

significant difference along the Pleasure dimension (χ2(2) = 7.111, p < 0.05).

The results of the KW test for each dimension, across the two sound unit counts

and these collapsed are summarised in table 5.7.

The Mann-Whiltney U post-hoc tests found that for the NLUs of 3 sound hits

in length, the utterances with a Frequency Range of 500 Hz received significantly

lower Dominance ratings than both the utterances with a frequency range of 1000

Hz (U = 421.5, z = 2.363, p = 0.009), and 1500 Hz (U = 607.5, z = 2.099,

p = 0.018), and that there was no difference in the ratings between the 1000 Hz

and 1500 Hz conditions (U = 522.5, 0.117, p = 0.454). This is shown in figure

5.6.

For the NLUs with 5 sound units, the post-hoc tests revealed that the utter-

ances with a Frequency Range of 1500 Hz were rated significantly higher along

the Pleasure dimension than both the 500 Hz (U = 629.5, z = 2.123, p = 0.017)

and 1000 Hz conditions (U = 788, z = 2.523, p = 0.006), and that there was no

difference between the 500 Hz and 1000 Hz conditions (U = 661.5, z = 0.011,
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Table 5.7: Results of the Kruskal-Wallis tests in Experiment #3, collapsing the
Base Frequency and testing only for the influence of the Frequency Range across

the different sound unit counts and affective dimensions.

Affect Dimension Unit Count d.f. χ2 p value

Pleasure
3

2 0.975 0.614
Arousal 2 0.094 0.954
Dominance 2 6.805 0.033
Pleasure

5
2 7.111 0.029

Arousal 2 1.782 0.410
Dominance 2 1.479 0.477
Pleasure

Both
2 4.996 0.082

Arousal 2 0.768 0.681
Dominance 2 0.836 0.659

Table 5.8: Results of the Kruskal-Wallis tests in Experiment #3, comparing the
difference in ratings across the two difference sound unit counts.

Affect Dimension d.f. χ2 p value

Pleasure 1 0.34 0.558
Arousal 1 0.63 0.428
Dominance 1 3.61 0.057

p = 0.496). These results are shown in figure 5.7.

When both the Base Frequency and Frequency Range values were interleaved,

providing 9 grouping variables for the ratings, no significant differences were found,

along any of the affective dimensions, between the grouping variables, with this

being true for the 3 Sound Unit NLUs, 5 Sound Unit NLUs, and when all NLUs

were collapsed together. The results of these KW tests are shown in table C.6.

Comparing the ratings across the sound unit counts, the KW tests found that

there was a near significant difference in the results due to the different sound

unit count values in the NLUs, along the Dominance dimension (χ2(1) = 3.61,

p = 0.057), while this was not the case along the Pleasure (χ2(1) = 0.63, p =

0.428) and Arousal (χ2(1) = 0.3, p = 0.558) dimensions (see table 5.8). These

results are summarised in figure 5.8.

5.3.4 Experiment #4

When collapsing the Speech Rate parameter and testing only the three Pause

Ratio values, the KW tests found that there were no significant differences in the
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Figure 5.6: Box Plots showing the difference in ratings grouped by Frequency
Range for NLUs with 3 Sound Units, along the Dominance dimension in
Experiment #3 (see table C.7 for descriptive statistics for this figure).

Frequency Range (Hz)

500 1000 1500

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Pl
ea

su
re

 R
at

in
g

p < 0.05
p < 0.05

Figure 5.7: Box Plots showing the difference in ratings grouped by Frequency
Range for NLUs with 5 Sound Units, along the Pleasure dimension in
Experiment #3 (see table C.8 for descriptive statistics for this figure).
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Figure 5.8: Box Plots showing the difference in ratings between the Sound Unit
Count values, for each of the Affect Space dimensions in Experiment #3 (see

table C.9 for descriptive statistics for this figure).

affective ratings, with this being true for the 3 sound unit NLUs, 5 sound unit

NLUs, as well as when all the NLUs were tested together (see table C.10 for the

KW test results).

Similarly, no significant effects were found along any of the affective dimensions

when the Pause Ratio parameter was collapsed and the Speech Rate parameter

tested, with this also being true for all the sound unit conditions (see table C.11).

When interleaving the Pause Ratio and Speech Rate parameters (resulting in

9 grouping variables), again no significant effects were found along any affective

dimension. This was true for each of the sound unit conditions (3, 5 and both).

These results are shown in table C.12.

A significant difference was found along the dominance dimension when check-

ing for differences due solely to the two different sound unit count values (χ2(1) =

8.13, p = 0.004), see table 5.9. Figure 5.9 shows box plots of the ratings for the

NLUs with 3 sound units and 5 sound units, for each of the affect dimensions.

This shows that the utterances with 5 sounds units were rated as significantly

higher than the utterances with 3 sound units along the dominance dimension.
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Table 5.9: Results of the Kruskal-Wallis tests, checking for the differences in
ratings due to the different Sound Unit Counts (3 and 5) of the utterances, along

each affective dimension in Experiment #4.

Affect Dimension d.f. χ2 p value

Pleasure 1 1.6 0.206
Arousal 1 0.01 0.904
Dominance 1 8.13 0.004
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Figure 5.9: Box Plots showing the difference in ratings between the Sound Unit
Count values, for each of the Affect Space dimensions in Experiment #4 (see

table C.13 for descriptive statistics for this figure).
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5.3.5 Experiment #5

Comparison between the ratings between utterances with PC1 and PC2 using the

KW tests, for utterances with 3 sound units and 5 sound units independently,

found that there were no significant differences in the ratings along any of the

three affect dimensions. However, when all the sound unit counts were collapsed

together, the KW tests found that there was a significant difference along the

Dominance dimension (χ2(1) = 4.52, p = 0.034). The results of these tests are

summarised in table 5.10, while figure 5.10 shows a box plot of the ratings for each

Parameter Configuration and shows that the dominance ratings for utterances

with PC1 are significantly lower than those for PC2.

As there were five utterances for each Parameter Configuration (PC1 and

PC2), each with a different Pitch Contour specification, KW tests were performed

to check for differences in the ratings (along each of the three affective dimensions)

due to the five different Pitch Contour specifications. This was done for the five

utterances with a Sound Unit Count of 3 and had been generated using PC1, and

then also for the utterances which had been generated using PC2. The same was

then done for the utterances with a Sound Unit Count of 5. Thus in total, 12 KW

tests were performed. It was found through these tests that there were no signifi-

cant differences in the ratings across the five different Pitch Contour specifications,

across either Sound Unit Counts or Parameter Configurations. This shows that,

contrary to the results of experiment #1, that the Pitch Contour specification

did not have a significant effect upon how subjects rated the utterances. These

results are summarised in table 5.11.

Finally, when grouping the data by sound unit count alone, the KW found

that there were no significant differences along either the Pleasure (χ2(1) = 1.82,

p = 0.1778), Arousal (χ2(1) = 2.8, p = 0.094) or Dominance (χ2(1) = 0.7,

p = 0.402) dimensions, indicating that the different sound unit counts appeared

to have no significant effect on the ratings that subjects provided.
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Table 5.10: Results of the Kruskal-Wallis tests checking for differences in ratings
due to the two different Utterance Parameter configurations (PC1 and PC2) in
Experiment #5, with data grouped by the utterance Sound Unit Count (3, 5

and both). The table shows the degrees of freedom, χ2 values and p values of the
tests that were performed for each affective dimension individually.

Affect Dimension Unit Count d.f. χ2 p value

Pleasure
3

1 0.19 0.667
Arousal 1 3.31 0.069
Dominance 1 2.07 0.145
Pleasure

5
1 1.47 0.225

Arousal 1 0.13 0.724
Dominance 1 2.27 0.132
Pleasure

Both
1 0.2 0.652

Arousal 1 1.17 0.279
Dominance 1 4.52 0.034

Table 5.11: Results of the Kruscal-Wallis tests checking for significant differences
between the five different pitch contour specifications in Experiment #5, with
data grouped by Parameter Configuration (PC1 and PC2) and the Sound Unit
Count (3 and 5) of an utterance. Tests show the degrees of freedom, χ2 values

and p values of the tests that were performed for each affective dimension
individually.

Unit Count Param Config Affect Dim d.f. χ2 p value

3

PC1
Pleasure 4 0.76 0.944
Arousal 4 5.86 0.209
Dominance 4 4.25 0.374

PC2
Pleasure 4 1.47 0.833
Arousal 4 3.01 0.557
Dominance 4 3.67 0.452

5

PC1
Pleasure 4 4.21 0.378
Arousal 4 0.39 0.984
Dominance 4 6.88 0.142

PC2
Pleasure 4 1.87 0.759
Arousal 4 5.35 0.253
Dominance 4 1.9 0.755
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Figure 5.10: Box Plots showing the difference in ratings between Parameter
Configurations 1 and 2 in Experiment #5, regardless of the Sound Unit Count,
across each of the three affective dimensions (see table C.14 for the descriptive

statistics for this figure).

5.3.6 Summary of Results.

Given the rather dense population of results that have been presented. This

section provides an overview summary of the results that have been obtained via

the analyses.

Experiment #1 probed the role of the Pitch Contour parameter across utter-

ances consisting of three sound units. Nine different pitch contour combinations

were tested, with utterances beginning with either a flat, rising or falling pitch

contour, as well as ending with either a flat, rising or falling pitch contour. The

middle sound unit had a fixed, flat, pitch contour shape. This was repeated for ut-

terances with a tremolo value of 0 rad, and a value of 0.34 rad. It was found that

utterances that began with a flat contour shape received a lower rating along the

Dominance dimension than utterances that began with either a rising or falling

contour shape, while no differences were found along the Pleasure or Arousal di-

mensions. No significant differences were found between the ratings due to the

different tremolo values.

Experiment #2 tested the role of the Rhythm parameter, presenting ut-

terances with either a rhythm value of 0, 0.5 or 1. This was done for utterances
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consisting of both three and five sound units. While no significant differences were

found due to the Rhythm values when the sound unit counts were isolated (3 or

5), a significant difference in the ratings along the Arousal dimension was identi-

fied when the sound unit count values were collapsed together, where utterances

with a Rhythm value of 1 were found to have a significantly higher rating than

the utterances with a Rhythm value of 0, and utterances with a Rhythm value of

0.5 were not found to be have ratings that were significantly different from any of

the other utterances.

Experiment #3 probed the influence and interaction between the Base Fre-

quency and Frequency Range parameters, doing so for utterances with both 3

and 5 sound unit utterances. It was found that utterances consisting of 3 sound

units, utterances with a Frequency Range of 500 Hz were rated significantly lower

along the Dominance dimension than the other utterances. For the utterances

consisting of 5 sound units it was found that utterances with a Frequency Range

of 1500 Hz were rated significantly higher along the Pleasure dimension than the

other utterances.

Experiment #4 investigated the relationship between the Pause Ratio and

Speech Rate parameters, again for utterances consisting of 3 and 5 sound units.

When considering only the Pause Ratio, no significant differences were found in

the ratings along any of the affective dimension, regardless of the sound unit

count. Similarly, no significant differences were found for the different Speech

Rate parameters, again regardless of the sound unit count. However, a significant

difference was found along the Dominance dimension when comparing the ratings

across the two different sound unit counts (3 or 5). Specifically, it was found that

utterances consisting of 5 sound units received a higher Dominance rating than

utterances consisting of three sound units.

Experiment # 5 presented subjects with five utterances consisting of 3 and

5 sound units, repeated twice for two different groups of utterances with differ-

ent utterance Parameter Configurations (PC1 and PC2). Also, utterances within

each utterance parameter group had different Pitch Contour specifications. This
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experiment sought to investigate whether two notably different utterance param-

eter configurations would evoke significantly different ratings from subjects, and

whether utterances within the same group with respect to their parameter con-

figurations but with different pitch contour specifications would have different

ratings. The results show that the utterances with different Parameter Config-

urations did evoke ratings that were significantly different along the Dominance

dimension, but not along the Pleasure or Arousal dimensions, regardless of the

different Sound Unit Counts. With respect to the different Pitch Contours of the

utterances, no significant differences were found in the ratings along any affective

dimension. This result is contrary to that of experiment #1 which did find that

there was a difference in how utterances were rated based upon the pitch contour

of the first sound unit within an utterance.

5.4 Discussion

Overall, the results obtained in this chapter have only provided rather limited

insights into how the nine different Utterance Parameters operate and interact,

and how this may impact a child’s affective interpretation of an NLU. Furthermore,

some of these insights have been contradictory, particularly in the case of the Pitch

Contour of an utterance. In experiment #1 it was found that utterances whose

first sound unit had a flat pitch contour shape, received a lower affective rating

along the Dominance dimension that when the first sound unit had either a rising

or falling Pitch Contour shape. However, in experiment #5, it was found that

there was no significant differences in the ratings for utterances that had different

Pitch Contour shapes but the same Parameter Configuration.

These contradictory findings make it difficult to assess the general nature and

influence that the Pitch Contour parameter has, and highlights the potential com-

plexity that one can expect to face in attempting to investigate (through experi-

mental design) and understand this feature of an utterance. This is further com-

plicated given that as the number of sound units in an utterance increases, the

complexity of search space grows exponentially (i.e. the more sound units in an
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utterance, the more possible combinations of sound unit pitch contours). This is

also further evidenced in the fact that across the five different mini experiments,

experiments 3 and 4 found that there were (near) significant differences in the

affective ratings due to the different sound unit count.

Setting the contradictory results aside, some findings have been informative

such as those for the Frequency Range and Rhythm parameters. With respect to

the Frequency Range is was found that utterances with a low value (500 Hz) were

rated as significantly lower than utterances with a high Frequency Range (1500

Hz). This is a encouraging result as it coarsely follows the characteristics in the

human voice that have been reported in the psychological literature: vocalisations

with a high frequency range are commonly associated with an affective state that

is high in Pleasure and Dominance (see Juslin and Laukka (2003); Scherer (2003)).

However, no relationship was uncovered linking the frequency range to the base

frequency (or fundamental frequency, in the human voice) in the results, while

psychological literature do report this (Fernald, 1989; Banse and Scherer, 1996;

Scherer, 1986, 2003). What is interesting about this result is that these differences

occurred over different affective dimensions, depending upon the utterance sound

unit count.

With respect to the Rhythm parameter, which controls the relative overall

length of a given sound unit to all the other sound units in an utterance, the

results have shown that utterances with a Rhythm value of 1 (i.e. all sound units

in an utterance had the same duration) received a significantly higher rating along

the Arousal dimension than utterances that had a Rhythm value of 0 (i.e. all the

sound units in an utterance had a different duration). In essence this results shows

that as the beat of an utterance increased, subjects’ ratings were more toward the

extremities of the AffectButton rather than the center. Overall, this is a result

that is difficult to interpret and compare with the findings in both psychology and

musicology as this particular parameter is not well defined in these two respective

fields (Juslin and Laukka, 2003) and as such, the analogy within the utterance

128



generation algorithm is also limited3.

The results of experiment #5, aside from suggesting that the pitch contour

has not influential role, have shown an important and fundamental characteristic,

in that utterances with notably different parameter configurations do evoke signif-

icantly different affective interpretations, where slower, low pitch utterances were

rated as having less Dominance than utterance that were fast and high pitched.

This is a useful finding as it demonstrates that large differences in the utterance

parameter confirmations do indeed evoke significantly different responses from

subjects. Furthermore given that the two extreme parameter configurations lay

at extreme ends of the parameter space, it shows that the working range of the

parameters are indeed large enough to portray difference affective states, however

this has only been found to occur over one affective dimension thus far.

While the findings of the results analyses have a limited overall scope with

respect to the specific utterance parameters that been manipulated, an overview

of all the data does show an interesting trend. From the plots in figures 5.2 and

5.3, it can be seen that a relatively even sampling of the parameter space has

not resulted in an even distribution of affective ratings in the AffectButton affect

space. Rather, it can be seen that data points appear to follow a non-normal

distribution and are clustered in particular regions of the affect space. These

regions also tend to coincide with the prototype regions of the AffectButton.

It appears that the ratings are somewhat binary an have been pulled toward

particular prototypical facial expressions. This shows that subjects seem to exhibit

a form of categorical perception when interpreting the utterances, in that there

is little subtlety. The robot was - in their eyes - either happy, sad, angry, scared,

surprised or neutral, and seldomly interpreted the utterances in a more subtle

manner. This is an interesting observation that is shown to have some far reaching

implications with respect to the use of NLUs during social HRI (see chapters 6, 8

and 10).

3This lack of analogy with the fields of psychology and musicology is also why through the
majority of this body of work the Rhythm parameter is held constant at a value of one in
utterances generated using the Utterance Generation Algorithm.
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5.4.1 Methodological Remarks

The general lack of clear and firm findings in the results of the analyses may well

be attributed to a number of methodological shortcomings in the experimental

arrangement. Firstly, it must be noted that the goal of attempting to provide as

broad and even a sampling of the Utterance Parameter space in the interest of

collecting training data has adversely affected the power of the statistical tests

that have been performed. This is primarily due to the low number of subjects

that rated each of the utterances in each of the mini experiments (ranging between

9 and 15 children for any given utterance).

Furthermore, given that the utterances for each experiment were randomly

split into three groups of utterances, the experiential design became a mix be-

tween an independent samples and a repeated measures paradigm, as not all the

utterances in each experiment were rated by all the same children. This has

resulted in a child hearing only a small subset of the utterances in each of the

experiments, but not hearing all the utterances related to each mini experiment.

As such, this is a flaw in the experimental design that has made a statistical

analysis difficult, as has the finding that the data did not follow a normal dis-

tribution (thus violating basic assumptions of an ANOVA based approach to the

results analyses). This is why non-parametric tests have been employed. The

Kruskal-Wallis tests have been employed (as opposed to the Friedman tests) as

these perform analogously to an independent samples one-way ANOVA, and it

was deemed that the experimental setup resembled more an independent samples

arrangement than a repeated measures arrangement.

Finally, comment must be made regarding the manner in which the mini exper-

iments went about testing the influence of the individual utterance parameters.

On one hand it was a correct methodology to manipulate only the parameters

that were being investigated in each mini experiment. However, it is the values

of the other parameters that may be subject to criticism. The other values of

the parameters were set with the overall goal of providing as broad a range of

the overall parameter space as possible. Thus, each of the mini experiments was
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performed in a different general region of the utterance parameter space. Herein

may lie a problem in that the influence that the particular utterance parameter

being examined (e.g. the speech rate) has upon the interpretation of the whole ut-

terance may be dependant upon the general region of the parameter space within

which it is being tested - i.e. if the value of the parameters that have been held

constant were different, one might find that the parameter being examined may

have a different influence. The underlying point to be made is that examination

of a given parameter may have occurred in a region of the parameter space in

which the parameter itself could have had little overall influence.

5.5 Summary

This chapter has described an experiment designed to provide initial insights re-

garding the how the Utterance Generation method described in chapter 3 operates,

and how nine of the parameters (Base Frequency, Frequency Range, Speech Rate,

Pause Ratio, Rhythm, Sound Unit Count, Wave Type, Tremolo and Pitch Con-

tour ) may interact and impact how child subjects affectively interpret utterances

generated using this method. Subjects were young children from a local primary

school and were asked to listen to the NLUs and use the AffectButton tool to

assign a facial expression to the utterance, indicating how they thought that the

robot felt when it made a given utterance.

It is stressed that the over arching goal of the experiments presented was to

collect affective ratings of a large variety of utterances that, overall, provided a

sparse, but uniform sampling of as many of the possible combinations of utter-

ance parameters as possible. The purpose of this was that the data collected in

this experiment has formed the large majority of the training data used to train

Artificial Neural Networks to learn a mapping between the AffectButton affect

space and the utterance parameter space, such that utterances may be coloured

in such as manner as to evoke a particular desired affective interpretation.

While the main goal of this chapter has been the collection of training data, a

brief analysis of the data is also presented, though methodological drawbacks are
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acknowledged. The results show that two different utterance parameter configu-

rations, at two opposite ends of the parameter space are indeed rated as having a

significantly different affective interpretation. It was found that utterances that

began with a flat Pitch Contour were rated has having less Dominance than ut-

terances that began with either a rising or falling pitch contour. However, other

results contradicted this, indicating that utterances with notable different pitch

contours but the same parameter configurations did not received significantly dif-

ferent affective ratings. It was also shown that as the Frequency Range of a Pitch

Contour increases, this resulted in an increase in significant increase in ratings

along both the Pleasure and Dominance dimensions. Similarly, it was found that

as the Rhythm parameter increased, subjects tended to provide more extreme

ratings, by selecting facial expressions that were closer to the edge of the Affect-

Button and thus having a higher overall Arousal rating.

Finally, it was observed that while the utterances provided a uniform sampling

of the utterance parameter space, the children provided ratings that are suggestive

of categorical perception in that their ratings were not subtle, but rather tended

toward prototypical facial expression of happy, sad, scared, angry, surprised and

neutral. This suggests that while utterances may have subtle, uniform differences

in their acoustic characteristics, these differences do not result in subtle differences

in affective interpretations, but instead lead to significantly different affective

interpretations that appear to follow the basic emotion categories. This particular

insight has important implications regarding the use of NLUs during social HRI

and thus is addressed in a more direct manner in the next chapter.
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Chapter 6

Categorical Perception of NLUs

Summary of the key points:

• Adopting the experimental approach that has been matured in psychology,

an experiment to assess whether peoples’ affective interpretations of NLUs

are subject to Categorical Perception is conducted with both adults and

children.

• Using two different continuums of NLUs with equal, linear, physical dif-

ferences between stimuli, subjects were asked to rate utterances as having

either a similar or different affective meaning (discrimination task), and to

assign a facial expression to each NLU using the AffectButton in order to

identify the conveyed affective meaning (identification task).

• Results show that adults do indeed exhibit signs of Categorical Perception

when affectively rating NLU, while children do not.

• The main implication for NLUs is that one does not need to invest a great

deal of effort in creating NLUs that convey subtly different affective states

as these efforts are likely lost due to subjects’ perception of NLUs being

drawn to well established affective prototypes.
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The results from chapter 5 have suggested that NLUs were interpreted in a Cat-

egorical manner. To probe this further, in a more direct manner, this chapter

presents the results of two experiments (one with adults, and the other with

school children) aimed at uncovering whether the affective user interpretations of

NLUs are categorical and to what degree this may be the case. This has important

implications on how NLUs may be best used by a robotic agent, and also giving

insights as to how humans are likely to perceive and in turn affectively interpret

utterances. For example, if subjects do interpret utterances categorically, then

it suggests that efforts directed at producing utterances to convey subtly differ-

ent affective states may not equate to subjects interpreting utterances as having

subtly different affective charges or meaning. Thus, efforts directed at evoking

subtly different affective interpretations of NLUs may well hold little practical

value. Furthermore, if utterances are found to be interpreted categorically, when

presented in a context-free manner, it may well be the case that when they are

used in a scenario that does have a clear contextual setting (for example, a chess

game (Castellano et al., 2013; Leite et al., 2013b)) and within a multi-modal inter-

action, effects of categorical perception of the robot may be more vivid. Chapter

8 provides valuable insights with regard to this issue.

6.1 Categorical Perception

Categorical Perception (CP) (Liberman et al., 1957) is the phenomenon where

sensory stimulation is sorted into discrete categories within the brain. In essence,

where one may have a stimulus continuum with equal, linear physical differences

(for example, the hue of a colour), people exhibit discretisation of the contin-

uum where a stimulus in a given region of the continuum gains membership to a

given discrete category (e.g “red”, “blue”, etc). The hallmark of CP is subjects

showing greater sensitivity to a physical change that occurs over a perceptual

boundary than when the same physical change occurs within a perceptual region

(Harnad, 1987; Laukka, 2005). As such, stimuli that lay near such a boundary are

commonly subject to a “magnet effect” (Kuhl, 1991), a mechanism whereby the
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Figure 6.1: Example of the dynamics of class membership associated with
Categorical Perception.

perception of the stimulus is pulled toward a particular well established category,

thus resulting in a non-linear relationship between the stimulus continuum and

the class membership of each stimulus within the continuum.

Figure 6.1 illustrates how two abstract classes are classically discreatised, in

a non-linear fashion, across a stimulus continuum consisting of linear physical

differences between stimuli (see the red and blue lines). The figure also shows

the differentiation profile of the two classes - as the stimulus steps approach the

categorical boundary, people exhibit greater sensitivity to the differences between

the stimuli.

The phenomenon of CP has been shown to take place during the processing

of a broad variety of sensory information in both adults and children. Examples

of this are during the processing of phonetic sounds (Liberman et al., 1957; Kuhl,

1991), colour (Bornstein et al., 1976; Franklin and Davies, 2004; Zhou et al., 2010),

facial expressions (Bimler and Kirkland, 2001; Cheal and Rutherford, 2011) and

affect in synthesised speech (Laukka, 2005). As such CP has been proposed as

a fundamental foundation upon which human cognition is built (Harnad, 1987).

For the interested audience, Repp (1984) provides a good overview of issues, ex-

perimental methods and findings surrounding the scientific study of CP.

The issue of CP also holds relevance for areas closer to HRI. Moore (2012)
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has proposed that the Uncanny Valley effect (see chapter 4) may be a particular

manifestation of CP, where, in the presence of multi-modal perceptual cues feeding

into a category membership, conflicts in these cues could lead to the feelings

of discomfort akin to those as described by Mori (1970). While this example

specifically concerns the relation between the physical appearance of an agent and

its physical behaviour, it may also be possible that similar effects occur between an

agent’s physical appearance and the acoustic behaviour it exhibits, for instance,

NLUs. This notion does however presuppose that NLUs are indeed subject to

CP, the validity of which is investigated in this chapter, however not with respect

to the relevance to the Uncanny Valley hypothesis, but rather to how subjects

affectively interpret NLUs.

6.2 Experimental Setup

In psychological experiments, the typical methodology for testing CP involves pro-

ducing a stimulus continuum in which there are at least two prototype perceptual

categories represented, with all other members of the continuum providing equal,

linear transitions between these prototypes. This presupposes that CP is occur-

ring and that a readily recognisable (and established) categorical boundary exists

at some point along the continuum. Subjects are then asked to complete two

tasks: a discrimination task and an identification task. The purpose of the dis-

crimination task is to determine whether subjects exhibit a perceptual difference

between two stimuli: do the two (or more) stimuli fall into the same category or

a different category, without explicitly declaring their class membership. This is

done by presenting stimulus pairs (usually neighbouring stimuli) from the contin-

uum and asking subjects whether they perceive them as similar or different. The

identification task entails subjects assigning a category to each stimulus individ-

ually and explicitly declaring the class membership. This is done by presenting

a single stimulus and asking subjects to rate it in some way, where the rating

metric relates to the underlying representative categories (e.g. labels or sliders

for dimensions, in the case of affect). The results for these two tasks together are
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then used to assess whether CP is occurring.

From the discrimination task, indications of CP are that subjects rate neigh-

bouring stimuli that cross a categorical boundary as different, while they rate

neighbouring stimuli that sit within a categorical region as similar. Thus, one

would expect to see the frequency of “different” ratings increase as the neighbour-

ing stimulus pairs approach a categorical boundary, providing an inverted “V”

differential profile (see the black differential profile line in figure 6.1).

In the identification task, indications of CP are when there are at least two

clusters of neighbouring stimuli each situated near prototype stimuli that are

closely rated, with clusters being separated by a sharp change (or step) in the

average rating. This represents the crossing of a categorical boundary and is

characterised by a clear step in the class membership profiles (see the red and

blue class membership profiles in figure 6.1).

This experiment adopts the same basic methodology with some minor alterna-

tions to serve the focus on HRI, namely that utterances were embodied in the Nao

robotic platform and a facial gesture tool was used for capturing affective ratings

from subjects via the AffectButton tool (chapter 3). The remainder of this section

details the experimental set-up, covering the stimuli, the three different tasks that

were completed, and the overall experimental procedure.

Given these characteristics, it is possible to formulate the following conditions

under which CP may be said to be occurring:

• C1 : The two extreme/prototypes of the stimulus continuum receive class

membership ratings during the Identification Task that are significantly dif-

ferent.

• C2 : Subjects rate neighbouring stimuli in the continuum that are near a

prototype stimulus as “different” to a degree that is not statistically above

chance (this indicates the presence of a categorical region).

• C3 : Subjects rate neighbouring stimuli that lay in the middle of the contin-

uum as “different” to a degree that is above statistical chance, forming an
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inverted “V” shape in the differential profile (this indicates the presence of

a categorical boundary).

• C4 : Stimuli that are near a particular prototype stimulus have the same

class membership rating as the prototype and a significantly different rating

to the other prototype stimulus in the continuum, forming a step function.

• C5 : The peak in differential ratings during the Discrimination Task coincides

with the step in the class membership rating in the Identification Task.

6.2.1 Utterance Stimuli

For this experiment, a stimuli set of a total of 12 utterances was produced, com-

prised of 2 continua (Set 1 and Set 2) each consisting of 6 utterances (Utter-0 to

Utter-5), each with a different Utterance Parameter configuration (see chapter 3).

Within each continuum there were two prototype utterances (Utter-0 and Utter-5)

separated by 4 utterances with linear transitions in the four utterance parame-

ters (table 6.1). Each utterance was comprised of five sound units, and across

the two continua only the Pitch Contour specifications were different (see table

6.2), whilst within each continuum these combinations remained the same. The

parameter specifications of the two prototype utterances came from the finding in

chapter 5, where subjects were able to distinguish between the two different pa-

rameter configurations, which resulted in significantly different ratings along the

Dominance dimension of the AffectButton (see section 5.3.5). As such, these two

parameter configurations were used to represent the two extremes of each stimulus

continuum. Spectrograms of Utter-0 to Utter-5 from Stimulus Set 1 and Set 2 are

illustrated in figure 6.2. Note the differences in the Pitch Contour specifications

as outlined in table 6.2.

To provide some rationale as to this Stimulus Set arrangement (having two sets

rather than one), the human voice facilitates the efficient duel encoding of both

semantic and affective information through the same acoustic channel (Picard,

1997; Banse and Scherer, 1996; Scherer, 2003), and has led to the question of

what role does the pitch contour of natural language play in affective expression
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Table 6.1: Utterance Parameter configurations for each utterance in both
Stimulus Sets 1 and 2 (see figure 6.2).

Stimulus
Parameter Configuration

Base Freq Freq Rang S. Rate P. Ratio

Utter-0 1500 1500 6 0.05
Utter-1 1333.33 1333.33 5.5 0.166
Utter-2 1166.67 1166.67 5 0.2833
Utter-3 1000 1000 4.5 0.4
Utter-4 833.33 833.33 4 0.5166
Utter-5 666.67 666.67 3.5 0.633

Table 6.2: Pitch Contour specifications for the utterances in Stimulus Set 1 and
Set 2 (see figure 6.2).

Sound Unit
Stimulus Set

Set 1 Set 2

1 Flat Rising-Falling
2 Falling Flat
3 Rising Falling-Rising
4 Falling-Rising Rising
5 Rising-Falling Falling

(Banziger and Scherer, 2005). Given the degree of acoustic simplification of NLUs

in comparison to Natural Language, NLUs are generally considered to contain very

little, if not any semantic content. This is an important distinguishing feature

from Natural Language (chapter 2), and as a result NLUs do not afford this duel

encoding of both semantics and affect. This raises an important issue: what is

the role of the pitch contour in NLUs in portraying affect? This question has a

practical motivation in that as this work has sights on the automated generation

of NLUs (see chapter 7), there is a motivation to understand which properties of

NLUs play a minor role in affective charging, and which do not. In essence, one

is wanting to know which features of utterance, if any, play a minor role and can

potentially be exploited through randomisation with the aim of generating unique

and non-repetitive utterances that may carry similar affective charges. This is

seen as a means of providing a wide variety of utterances that do not make the

robot appear repetitive (and by extension, pre-programmed), as humans are quick

to spot this, which can have negative impacts on HRI (Belpaeme et al., 2012).

Given the large number of combinations of pitch contours for a given utterance

with a given sound unit count, the pitch contour is an appealing feature with
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which to start in this respect.
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Figure 6.2: Spectrograms of the 12 NLUs used as the stimuli.

6.2.2 Labelling Task

In order to use the AffectButton as an effective tool for recording affective ratings,

it is important to ascertain how coherent subjects are in their use of the tool. Thus,

this task was aimed at forming an impression of the overall coherence between

subjects in their use of the AffectButton. Subjects were given some time to

familiarise themselves with the tool and explore the range of facial gestures that

that can be displayed, and the associated mouse cursor locations onscreen.

Once familiarised, an affective label was then displayed on the laptop screen
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(a) Labelling Task

(b) Discrimination Task (c) Identification Task

Figure 6.3: Images of the subjects’ laptop screen during each of the three tasks
in the experiment.

above the button, and subjects asked to match a face to the label (figure 6.3a). The

affective labels that were used were: Happy, Excited, Angry, Annoyed, Surprised,

Scared, Sad, Calm and Relaxed and were presented in a random order. This choice

was motivated by the prototype facial expressions that are hard coded in the

AffectButton (see chapter 3) and the overlap with the theory of basic emotions

(Plutchik, 1994). As such, it was considered that a wide audience of subjects

(e.g. children, adults, individuals from different cultural backgrounds and mother

tongues, etc.) would also be familiar with these labels. The co-ordinates of the

prototype facial expressions in the AffectButton PAD space and the associated

affective labels are shown in table 6.3.

6.2.3 Discrimination Task

The discrimination task was performed using an AX discrimination paradigm

(Cheal and Rutherford, 2011; Gerrits and Schouten, 2004), where two stimuli were

presented in pairs, sequentially (but randomly ordered), and subjects were asked
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Table 6.3: Affective co-ordinates in the AffectButton affect space of the labels
(and associated prototypical facial gestures) used during the Labelling Task.

Note that Calm and Relaxed are no prototypes used in the AffectButton.

Label
Affect Space Coordinate

Pleasure Arousal Dominance

Angry -1 1 1
Annoyed -0.5 -1 0.5
Happy 0.5 1 0.5
Excited 1 1 1
Sad -0.5 -1 -0.5
Scared -1 1 -1
Surprised 1 1 -1
Calm - - -
Relaxed - - -

to report whether they thought the robot felt1 different or the similar between

the stimuli. On their laptop screen, subjects could choose from either “same”,

“different” or “don’t know” options. Stimulus pairs were presented by tapping

the Nao on the head on the touch sensor. At each head tap, the subjects laptop

screen went blank, and at the onset of each of the utterances a small visual symbol

appeared on screen with the aim of aiding the subject to track which stimulus of

the pair was being presented. Once both utterances had been played the options

were then displayed on screen with the cursor reset to the centre of the screen.

The latter was done in order to avoid subjects hovering the cursor over a particular

response button (see figure 6.3b).

In total, each subject rated 13 pairs of utterances in this task. The first three

pairs were test pairs whose order remained constant across all subjects (and were

not used in the results analysis). These consisted of one stimulus pair with two

extreme prototype utterances, one pair with identical utterances and one pair

with neighbouring utterances. All of these stimuli were different from the actual

experiment stimuli as they had a different pitch contour, and served the purpose

to acquaint subjects with the format of the task.

The remaining 10 utterance pairs were neighbouring utterances (e.g. Utter-0

vs. Utter-1, Utter-1 vs. Utter-2, ect), which consisted of 5 pairs in each stim-

1It was made explicit to the subjects that this was not a test of whether they could recognise
whether stimuli were identical, but rather whether they felt that the sound portayed the same
affective state.
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Table 6.4: Overview of the neighbouring utterance pair comparisons in the
Discrimination Task (note that A and X were randomly ordered).

AX Pair Stimulus Set
Utterance Comparison

A X

1

1

Utter-0 Utter-1
2 Utter-1 Utter-2
3 Utter-2 Utter-3
4 Utter-3 Utter-4
5 Utter-4 Utter-5
6

2

Utter-0 Utter-1
7 Utter-1 Utter-2
8 Utter-2 Utter-3
9 Utter-3 Utter-4
10 Utter-4 Utter-5

ulus set. This was done for both the utterances in Stimulus Sets 1 and 2, thus

accounting for 10 utterance pairs in total. This is outlined in table 6.4.

6.2.4 Identification Task

This task involved presenting subjects with a single utterance stimulus and asking

them to provide an affective interpretation by matching a facial expression on the

AffectButton to their affective interpretation of the utterance (figure 6.3c). For

this task, a simplified version of the AffectButton was used, where the facial

gestures were limited to interpolate between only the sad, neutral, happy and

excited prototypes as the mouse cursor was moved horizontally (vertical movement

had no effect). In doing this, the Pleasure value was modulated via the horizontal

cursor movement, and Dominance was then set equal to Pleasure (p) with both

values falling in the range of −0.5 ≤ p ≤ 1.0. This Pleasure/Dominance mouse

position mapping is shown in figure 6.4, with the corresponding prototypical facial

expressions at these PAD coordinates in the AffectButton.

During typical psychological CP identification tasks it is common for subjects

to select from a small set of category labels (e.g. happy, sad, angry), however

doing this explicitly promotes the notion of splitting the stimulus continuum into

two or more categories. The use of the AffectButton overcomes this by present-

ing subjects with a continuous scale of measurement. By using a continuum of
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Figure 6.4: Plot of the Pleasure/Dominance values as a function of the horizontal
onscreen cursor position and the resulting AffectButton prototype expressions

associated with the PAD values (from left to right): neutral (0,−1, 0), sad
(−0.5,−1,−0.5), neutral (0,−1, 0), excited (1, 1, 1), neutral (0,−1, 0).

possible facial expressions subjects are not forced to make an explicit categorical

distinction, rather it leaves room for any CP to present itself in a more unrestricted

manner.

Similarly to the discrimination task, the AffectButton face was hidden at the

onset of an utterance and reappeared at the offset of an utterance in order to avoid

any priming or habituation effects due to the presence of an face with an affective

expression. Finally, by placing the extreme facial expressions at the upper and

lower quartiles of the range of mouse movement, expression selection became a

more cognitive task, avoiding subjects swinging to the extreme locations of the

AffectButton (see figure 6.4).

6.2.5 Experimental Procedure

For the adult experiment, subjects were recruited (and performed the experiment

individually) through advertisements located around the university campus, and

the experiment took place within a lab setting and was conducted using two

laptops and the Nao robot. The adult subjects were rewarded with £5 in cash at
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(a) Adults (b) Children

Figure 6.5: Image of the experimental setups for both the adult and children
subjects.

the end of the experiment. The experiment with the school children was conducted

at a local primary school, in a space classroom with children coming in pairs2.

These differences aside, the experiment was otherwise conducted in an identical

manner between the adults and children.

All stimuli were played through the Nao’s built in speakers, embodying the

utterances in a robotic agent. Furthering the notion of embodiment and agency,

the Nao was also programmed to exhibit neutral behaviours (random gazing,

shifting weight from foot to foot and subtly moving the arms and fingers) in order

to provoke the “illusion of life” in subjects, and avoid it being perceived as a static

object. Care was also taken to avoid subjects witnessing the robot starting up

and loading the experiment software as this too could impact the perception of

the robot.

A laptop was placed in front of the subject and was used to capture their re-

sponses for each task. Iteration through a given task was controlled via the Nao,

where the touch sensors on the head were used to either play the next utterance(s)

or repeat the current utterance(s). A second laptop was operated by the exper-

imenter and was used to orchestrate and monitor the overall experiment from a

global perspective, and also managing the information flow between the Nao and

2Children came in in pairs in order to set them at ease with being in a room with a stranger
and a robot. While one child was performing the experiment, the other was invited to control
the presentation of the utterances by tapping the robot on the head. Software was written such
that a new utterance could only be presented when the child performing the experiment had
provided a rating via their laptop. This avoided missing ratings for utterances. Thus, the child
controlling the sounds had only limited control.
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the subject’s laptop and gathering all the data in one place. The experimental

arrangements for both the children and adults is shown in figure 6.5.

Subjects were told that they needed to provide affective interpretations of

the utterances made by the Nao, and that there were no correct or incorrect

answers. They were also told that they should try and respond as quickly as

possible and use their “gut feeling” so as to avoid over thinking the problem.

The Labelling Task was completed first as this task was intended to enable the

subjects to become familiarised with the AffectButton and place them in a frame

of mind orientated around attributing affect to a robot. It is common practice in

CP studies for the Discrimination Task to be completed before the Identification

Task in order to avoid the process of assigning categories to stimuli biasing the

process of discriminating between two stimulus pairs, a practice that was followed

here. The total duration of the experiment was 20 minutes and once completed,

subjects were free to ask any questions.

6.3 Results

In total, 27 school children (aged 7-8 years old) were recruited for the experiment:

15 girls, and 12 boys. 28 Adult subjects also partook: 17 females (mean age =

32.2, std = 10.6) and 11 males (mean age = 28.8, std= 6.8).

This section presents the results for each of the three tasks, beginning with

the Labelling Task, then the Discrimination Task, and finally, the Identification

Task.

6.3.1 Labelling Task Results

Figure 6.6 shows plots of the mean values and standard deviations for the ratings

of each affective label, of both the adults and children. An initial visual inspection

of the results revealed that both the adults and children provided a range of ratings

that covered the majority of the AffectButton affect space. It is notable however

that the adults provided more precise ratings in that they had smaller standard

deviations, with the mean ratings that appeared to be closer to the coordinates in
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the affect space where the prototype facial gestures associated with each label are

located. The ratings of the children tended to have a larger standard deviation

for each label, with the means tending more toward the centre of the affect space.

The ratings for some of the labels were found to not follow a normal distri-

bution, and as such, non-parametric tests were employed to perform the analysis

of the results in this task. Kruskal-Wallis tests were performed to check for over-

all differences between the genders in their ratings for each affective label, while

Friedman tests were employed to identify whether there were significant differ-

ences in the ratings for the affective labels. Both the Kruskal-Wallis and main

Friedman tests were followed up by post-hoc, pair-wise Friedman tests used to

compare the ratings for two individual labels at a time. All of these tests were

performed for each affective dimension individually.

6.3.1.1 Adult Subject Results

The Kruskal-Wallis tests found that there were no significant differences between

the genders in their overall ratings along either the Pleasure (χ2(1) = 1.29, p =

0.255), Arousal (χ2(1) = 0.09, p = 0.771) and Dominance (χ2(1) = 0.1, p = 0.751)

dimensions.

The Friedman tests, however, found that there were significant differences

in how the affective labels were rated along the Pleasure (χ2(8) = 184.35, p <

0.001), Arousal (χ2(8) = 143.55, p < 0.001) and Dominance (χ2(8) = 153.6,

p < 0.001) dimensions. Table 6.5 shows the χ2 values calculated through the

Friedman tests for pair-wise comparison. The values indicate that the adults

provided significantly different ratings between the majority of the labels overall.

Perhaps what is more important to extract from these results, beyond the in-

dividual differences, is the demonstration that the subjects were able to clearly

able to distinguish between the different affective labels to a degree of high sta-

tistical significance, along the dimensions that differentiate the (prototype) labels

within the AffectButton affect space. For example, while the ratings for the Happy

and Angry labels are not significantly different along the Arousal and Dominance
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Figure 6.6: Plots of the Mean values and Standard Deviations of the ratings for
each affective label in the Labelling Task. These values are summarised in table

D.1. Figures D.1 and D.2 show the AffectButton facial gestures for the mean
values for the adults and children respectively.
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dimensions (which is to be expected, see table 6.3), they were significantly dif-

ferent along the Pleasure dimension. Similarly, the Surprised and Happy labels

were only significantly different along the Dominance dimension, again the key

differentiating dimension in the AffectButton.

Such key, significant discriminations demonstrate the fact that subjects were

indeed able to reliably use the AffectButton to assign significantly different facial

gestures (and thus affective ratings) to the different affective labels, and that

they were able to robustly and coherently rate the labels as different along the

key affective dimension with which the labels are differentiated. For example,

the Happy, Excited and Surprised labels are all associated with (and received)

a high Pleasure rating, while the Angry, Annoyed, Sad and Scared labels are all

associated (and received) low Pleasure ratings. Similarly, the Happy, Excited,

Angry and Annoyed labels were all rated as having high Dominance and were all

significantly different to the Sad, Scared and Surprised labels that all received low

Dominance ratings. As such, subjects were clearly able to identify the differences

between these affective labels, and robustly represent this via the AffectButton

facial gestures. One result that does stand out however, is that there were no

significant differences at all between the Happy and Excited labels, along any

of the affective dimensions: subjects appear to have been unable to distinguish

between these affective labels.

6.3.1.2 Child Subject Results

The Kruskal-Wallis tests comparing the two genders found that there was no

significant difference between the genders in how they rated the different labels

overall along the Pleasure (χ2(1) = 2.77, p = 0.096) and Dominance (χ2(1) = 0,

p = 1) dimensions. However, there was a significant overall difference identified for

the ratings along the Arousal (χ2(1) = 14.36, p < 0.001) dimension, with males

(mean= 0.349, std = 0.654) providing a overall higher rating than the females

(mean = −0.108, std = 0.933).

As with the adult subjects, the Friedman tests found that there were sig-
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Table 6.5: Results of the post-hoc Friedman pairwise comparisons for the
adults’s affective ratings for the affective labels in the Labelling Task. The table
show the χ2(1) results and indicate the associated p-value for each dimension of

the AffectButton affect space independently.

Label Ang Ann Hap Exc Sad Scar Sur Calm Rel

Angry
P

-A
D

Annoyed
P 14.29‡

-A 17.64‡
D 12.45‡

Happy
P 29‡ 29‡

-A 1.47 17.64‡
D 0.31 5.83∗

Excited
P 25.14‡ 29‡ 0.03

-A 0.25 18.62‡ 1.47
D 0.03 1.69 0.86

Sad
P 12.45‡ 0.31 29‡ 25.14‡

-A 22.15‡ 2.13 27‡ 24.14‡
D 25.14‡ 29‡ 25.14‡ 15.21‡

Scared
P 1.69 18.24‡ 29‡ 29‡ 25.14‡

-A 0.89 14.44‡ 0.05 4.26∗ 20.57‡
D 25.14‡ 25.14‡ 25.14‡ 15.21‡ 2.79

Surprised
P 25.14‡ 25.14‡ 0.03 1.69 25.14‡ 29‡

-A 0.6 18.62‡ 2.88 0 24.14‡ 2.25
D 29‡ 29‡ 29‡ 21.55‡ 15.21‡ 7.76∗

Calm
P 25.14‡ 18.24‡ 25.14‡ 21.55‡ 15.21‡ 25.14‡ 15.21‡

-A 24.14‡ 6∗ 29‡ 29‡ 0 21.55‡ 29‡
D 15.21‡ 2.79 18.24‡ 2.79 25.14‡ 25.14‡ 29‡

Relaxed
P 25.14‡ 21.55‡ 11.57‡ 9.97† 21.55‡ 29‡ 12.45‡ 7∗

-A 19.59‡ 1.64 23.15‡ 24.14‡ 2.91 15.38‡ 19.59‡ 1.09
D 12.45‡ 9.97† 21.55‡ 0.86 21.55‡ 17.29‡ 25.14‡ 1.69

∗ : p < 0.05
† : p < 0.005
‡ : p < 0.001
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nificant differences along the Pleasure (χ2(8) = 119.04, p < 0.001), Arousal

(χ2(8) = 42.51, p < 0.001) and Dominance (χ2(8) = 78.07, p < 0.001) dimensions,

indicating that there were significant differences in the ratings for the affective la-

bels. Again Friedman post-hoc tests were used to perform pair-wise comprising

between the ratings for each of the affective labels, along each of the affective

dimensions individually. The results of these tests are shown in table 6.6. It was

found that while the standard deviations of the ratings were notably larger than

those of the adult subjects (see figure 6.6), there were still important, and sta-

tistically significant differences for various labels, along the affective dimensions

that differentiate the labels. For example, the Happy, Excited, Angry and An-

noyed labels were rated as having high Dominance and were significantly higher

than the ratings for the Sad, Scared, and Surprised labels, which all received low

Dominance ratings. This is generally the same overall result as was found with

the adult subjects. Similarly, these labels were also found to have significantly

different ratings along the Pleasure dimension: Angry, Sad, Annoyed and Scared

all received low Pleasure ratings, while Happy, Excited and Surprised all received

high Pleasure ratings.

Thus, as with the adult subjects, the children subjects did appear to demon-

strate an ability to robustly distinguish between the different affective labels and

translate this to their use of the AffectButton and assigning facial gestures to the

labels.

6.3.2 Discrimination Task Results

To provide a quick reminder, the discrimination task involved presenting subjects

with neighbouring utterances along the stimulus continuum and asking subjects to

rate them as either having the “same” affective meaning or a “different” affective

meaning.

Referring to figure 6.1, and specifically the differential profile, the indication

of CP is that as the AX pairs of neighbouring stimuli approach the categorical

boundary, these are rated as “different” to a degree that is above chance levels (i.e.
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Table 6.6: Results of the post-hoc Friedman pairwise comparisons for the
children’s affective ratings for the affective labels in the Labelling Task. The

table show the χ2(1) results and indicate the associated p-value for each
dimension of the AffectButton affect space independently.

Label Ang Ann Hap Exc Sad Scar Sur Calm Rel

Angry
P

-A
D

Annoyed
P 0.14

-A 2.91
D 7∗

Happy
P 27‡ 23.15‡

-A 0.05 1.64
D 0.33 4.48∗

Excited
P 26‡ 15.38‡ 1

-A 0 2.91 0.06
D 3.85∗ 0 4.48∗

Sad
P 1.29 0.04 27‡ 22.15‡

-A 15.38‡ 13.5‡ 6∗ 11.64‡
D 17.29‡ 5.14∗ 27‡ 9.85‡

Scared
P 2.29 0.14 27‡ 26‡ 0.57

-A 2.91 0.62 1.09 0.18 3.85∗
D 24.14‡ 3.57∗ 13.37‡ 3.85∗ 0.57

Surprised
P 23.15‡ 17.29‡ 0.33 1.38 17.29‡ 17.29‡

-A 0.43 6∗ 2 1.8 15.38‡ 4.48∗
D 14.29‡ 7∗ 19.59‡ 5.54∗ 2.29 1.29

Calm
P 7∗ 7∗ 8.33∗ 12.46‡ 8.33† 7∗ 5.14∗

-A 9.85† 0.93 6.55∗ 4.17∗ 2.46 4.48∗ 12.57‡
D 13.37‡ 1.29 19.59‡ 3.85∗ 6.26∗ 2.29 2.29

Relaxed
P 17.29‡ 5.14∗ 4.48∗ 7.54∗ 19.59‡ 11.57‡ 3.57∗ 4.48∗

-A 6.26∗ 1.38 2.13 6.55∗ 2.13 4.17∗ 12.46‡ 0.36
D 14.29‡ 3.57∗ 19.59‡ 1.38 1.81 2.29 3.57∗ 1.81

∗ : p < 0.05
† : p < 0.005
‡ : p < 0.001

152



tending toward a 100% “different” rating) while utterance pairs that lay within

a categorical region received differential ratings that remain at chance level (i.e.

tending toward a 50% “different” rating). As such, the differential profile follows

an inverted “V” shape.

As such, χ2 goodness-of-fit tests were performed to identify which of the ratings

were above chance and which were at chance level, comparing each AX utterance

pair against a flat, uniform distribution where 50% of the ratings would be classed

as having the “same” affective meaning, and 50% classed as having a “different”

affective meaning. These tests were performed for the results for results for Stim-

ulus Sets 1 and 2 independently, as well as for each of the genders individually.

Two-way independent samples χ2 tests were employed to check for statistically

significant differences between the two genders in the distributions of their ratings

for each of the utterance pairs presented.

6.3.2.1 Adult Subjects

Figure 6.7a shows bar graphs of the percentage of “different” ratings for each of

the neighbouring utterance pairs in Stimulus Set 1, showing the ratings for all

the subjects as well as for the two genders individually. Figure 6.7b shows the

same for the utterance pairs in Stimulus Set 2. Upon visual inspection, it can be

seen that the ratings appear to follow the inverted “V” profile, with this being

more prominent for the utterances in Set 1 than in Set 2. It is also notable that

there is a general skew in the ratings, with the highest ratings occurring for the

comparison of Utter-3 vs. Utter-4 overall.

Table 6.7 shows the results of the χ2 goodness-of-fit tests across the three differ-

ent subject gender breakdowns (both, females and males), and for each Stimulus

Set. With respect to Stimulus Set 1, AX pairs comparing Utter-2 vs. Utter-3

(χ2(1, N = 28) = 3.572, p = 0.05), and Utter-3 vs. Utter-4 (χ2(1, N = 28) =

3.572, p = 0.05) were found have ratings that were above chance levels. For the

male subjects only Utter-2 vs. Utter-3 (χ2(1, N = 11) = 4.455, p = 0.035) were

found to be above chance, while for the female subjects none of the ratings were
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Table 6.7: χ2 Goodness of fit tests for the adult subjects’ comparison of
neighbouring utterances in each of the Stimulus Sets.

Set
Utterance Subjects

A X
Both Females Males

Rating (%) χ2(1) Rating (%) χ2(1) Rating (%) χ2(1)

1

Utter-0 Utter-1 46.667 0.310 44.444 0.529 50.000 0.000
Utter-1 Utter-2 51.724 0.143 47.059 0.000 58.333 0.333
Utter-2 Utter-3 65.517 3.572∗ 55.555 0.529 81.818 4.455∗
Utter-3 Utter-4 65.857 3.572∗ 70.588 2.882 63.636 0.818
Utter-4 Utter-5 59.259 0.926 60.000 0.600 58.333 0.333

2

Utter-0 Utter-1 60.000 1.690 50.000 0.059 75.000 3.000
Utter-1 Utter-2 72.414 7.000∗∗ 64.706 2.250 83.333 5.333∗
Utter-2 Utter-3 68.966 5.143∗ 61.111 1.471 81.818 4.455∗
Utter-3 Utter-4 93.103 20.571† 94.444 13.235∗∗ 90.909 7.364∗∗
Utter-4 Utter-5 70.000 5.828∗ 61.111 1.471 83.333 5.333∗

∗: p < 0.05
∗∗: p < 0.01
†: p < 0.005

found to be above chance. For the utterances in Stimulus Set 2, the table shows

that overall, only the ratings for Utter-0 vs. Utter-1 (χ2(1, N = 28) = 1.690,

p = 0.194) were not above chance, with the same being true for the male subjects

also (χ2(1, N = 11) = 3.000, p = 0.083). With respect to the female subjects,

only Utter-3 vs. Utter-4 (χ2(1, N = 17) = 13.235, p = 0.001) was found to be

above chance.

Finally, the two-way independent samples χ2 test found no significant dif-

ferences in the distribution of the ratings between the genders for any of the

utterances pairs, for both Stimulus Sets. These results are summarised in table

6.8.

6.3.2.2 Children Subjects

Figure 6.8a shows bar graphs of the percentage of “different” ratings for each of

the neighbouring utterance pairs in Stimulus Set 1, showing the ratings for all the

subjects as well as for the two genders individually. Figure 6.8b shows the same

for the utterance pairs in Stimulus Set 2. Upon visual inspection there appears to

be no real trend in how the subjects have rated the utterances pairs. Furthermore,

it appears that the vast majority of ratings are around chance level (50% rating).

Table 6.9 shows the results of the χ2 goodness-of-fit tests for the utterances

in Stimulus Sets 1 and 2 independently, across the three different subject gender
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Figure 6.7: Bar graphs showing the percentage of “different” ratings given by
the adults for the neighbouring utterance AX pairs for both Stimulus Sets. Bars
marked with a star are ratings found to be significantly above chance at the 0.05

level. The ratings shown in this figure are summarised in table 6.7.
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Table 6.8: Results of the two way independent samples χ2 tests checking for
significant differences between the genders in their ratings of each utterance pair.

The table shows the χ2 statistic and p value for both the adult and child
subjects across the two Stimulus Sets.

Set
Utterance Subjects

A X
Adults Children

χ2(1) p value χ2(1) p value

1

Utter-0 Utter-1 0.221 0.638 0.987 0.320
Utter-1 Utter-2 0.191 0.662 1.697 0.193
Utter-2 Utter-3 1.619 0.203 0.1922 0.166
Utter-3 Utter-4 0.148 0.700 0.675 0.411
Utter-4 Utter-5 0.008 0.930 1.025 0.311

2

Utter-0 Utter-1 1.454 0.228 0.512 0.474
Utter-1 Utter-2 0.778 0.378 0.860 0.354
Utter-2 Utter-3 0.958 0.328 0.261 0.609
Utter-3 Utter-4 0.104 0.747 0.000 1.000
Utter-4 Utter-5 1.0222 0.269 0.011 0.916

breakdowns (both, females and males). For Set 1, it was found that for all the

subjects, none of the ratings were significantly different from a chance level dis-

tribution. With respect to the female subjects only the ratings for Utter-0 vs.

Utter-1 (χ2(1, N = 15) = 4.000, p = 0.046) were significantly different to chance,

with the majority of subjects rating the utterances as the “same”, while for the

male subjects, only the ratings for Utter-1 vs. Utter-2 (χ2(1, N = 12) = 6.250,

p = 0.012) were significantly different than chance, again with subjects rating

these utterances as the “same”. Similarly, for the utterances in Stimulus Set 2,

for all the subject combined, it was found all the ratings were not significantly

different to a chance level distribution. The same was also true for the female

subjects. For the male subjects, if was found that only the ratings for Utter-1 vs.

Utter-2 were below chance level (χ2(1, N = 12) = 0.540, p = 0.02), with subjects

rating these as the “same” in the majority.

Finally, the two-way independent samples χ2 test found no significant dif-

ferences in the distribution of the ratings between the genders for any of the

utterances pairs, for both Stimulus Sets. These results are summarised in table

6.8.

156



0-1 1-2 2-3 3-4 4-5
Utterance (AX) Pairs

90

80

70

60

50

40

30

20

Pe
rc

en
t o

f “
D

iff
er

en
t”

 
R

at
in

gs
 (%

)

All Subjects
Males
Females

(a) Utterances Pairs in Stimulus Set 1.
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Figure 6.8: Bar graphs showing the percentage of “different” ratings given by
the children for the neighbouring utterance AX pairs for both Stimulus Sets.
Bars marked with a star are ratings found to be significantly above chance at
the 0.05 level. The ratings shown in this figure are summarised in table 6.9.
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Table 6.9: χ2 Goodness of fit tests for the child subjects’ comparison of
neighbouring utterances in each of the Stimulus Sets.

Set
Utterance Subjects

A X
Both Females Males

Rating (%) χ2(1) Rating (%) χ2(1) Rating (%) χ2(1)

1

Utter-0 Utter-1 34.375 3.125 25.000 4.000∗ 43.750 0.250
Utter-1 Utter-2 34.375 3.125 50.000 0.000 18.750 6.250∗
Utter-2 Utter-3 48.485 0.030 47.059 0.059 50.000 0.000
Utter-3 Utter-4 51.515 0.030 44.444 0.222 60.000 0.600
Utter-4 Utter-5 60.000 1.200 73.333 3.268 46.667 0.068

2

Utter-0 Utter-1 45.714 0.257 29.412 2.882 61.111 0.889
Utter-1 Utter-2 35.484 2.613 50.000 0.000 20.000 0.540∗
Utter-2 Utter-3 40.625 1.125 37.500 1.000 43.750 0.250
Utter-3 Utter-4 51.613 0.032 46.667 0.067 56.250 0.250
Utter-4 Utter-5 51.351 0.027 43.750 0.250 57.143 0.429

∗: p < 0.05
∗∗: p < 0.01
†: p < 0.005

6.3.3 Identification Task Results

This section presents the results of the Identification Task, for both the adults and

children independently. To provide a quick recap, referring to figure 6.1, during

the Identification Task, stimuli that fall within a categorical region are usually

giving similar ratings, with the different category regions having different overall

ratings. This results in a non-linear step function in the ratings occurring over

the categorical boundary.

Cronbach’s α values were calculated for the pleasure ratings provided in or-

der to assess the degree of agreement between subjects in their ratings for each

of the stimuli. After this, a three-way (6x2x2) repeated measures ANOVA3 was

performed for the Pleasure ratings, using the six Utterance Parameter configura-

tions (within-subjects), two Stimulus Sets (within-subjects) and subject gender

(between-subjects) as the three different factors. All significant main effects were

followed up with post-hoc multi-comparison tests with Bonferoni corrections.

3An ANOVA was used here rather than a MANOVA as the AffectButton was modified such
that the Pleasure and Dominance ratings were equal, and as the Arousal is a value calculated
from these (chapter 3), there is little sense in performing tests for all three affective dimensions.
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6.3.3.1 Adult Subject Results

The calculated Cronbach’s α values indicate that overall the adults had a high

degree of agreement in their use of the AffectButton during this task (α = 0.766).

Equally, the males (α = 0.757) and females (α = 0.733) also had equally high

overall agreement as evidenced by their α levels.

The ANOVA found main effects due to both the Utterance Parameter con-

figuration (F (5, 125) = 64.269, MSE = 6.376, p < 0.0001) and the Stimulus

Set (F (1, 25) = 9.082, MSE = 0.927, p = 0.006). Also, a near significant effect

was found due to subject gender (F (1, 25) = 97.891, MSE = 1.416, p = 0.057),

however, no two-way or three-way interaction effects were found.

With respect to the main effect due to the Utterance Parameter configurations,

the post-hoc multi-comparison tests revealed that there were significant differences

between the majority of different Utterance Parameter configurations. Specifi-

cally, it was found that Utter-0 (mean = 0.748, 95% CI = [0.635 0.862]) received

the highest rating and Utter-5 (mean = −0.115, 95% CI = [−0.229 − 0.002])

the lowest and that these were significantly different (p < 0.01). All the other ut-

terances presented a negative gradient of ratings, regardless of the Stimulus Set.

Table 6.10 presents the mean values, standard errors and 95% confidence intervals

for each of the Utterance Parameter specifications. The tests also showed that

the ratings for Utter-0 and Utter-1 were not found to be significantly different

(p = 1.0), while both were found to be significantly different from all the other

utterances (p < 0.05). Similarly, Utter-3 and Utter-4 were not found to be signif-

icantly different (p = 1.0) but too were significantly different from all the other

utterances (p < 0.05). Finally, Utter-2 and Utter-5 were significantly different

from all the other utterances (p < 0.05).

For the main effect due to the Stimulus Sets, the post-hoc tests revealed that

the ratings for the utterances in Set 2 (mean = 0.388, 95% CI = [0.307 0.470])

received overall higher ratings than the utterances Set 1 (mean = 0.279, 95% CI

= [0.203 0.355]), p = 0.006.

Figure 6.9a shows a plot of the ratings for each of the utterances overall, as
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Table 6.10: Mean values, Standard Errors and 95% Confidence Intervals of the
adult ratings for each of the Utterance Parameter configurations.

Utter Mean Standard Error
95% Confidence Interval

Lower Bound Upper Bound

0 0.748 0.055 0.635 0.862
1 0.673 0.051 0.567 0.779
2 0.473 0.043 0.385 0.561
3 0.163 0.053 0.053 0.273
4 0.061 0.054 -0.051 0.173
5 -0.115 0.055 -0.229 -0.002

well as the ratings for the two Stimulus Sets. Also, while the effect due to gender

was not found to be statically significant, it was found that the females (mean

= 0.401, 95% CI = [0.312 0.490]) provided marginally higher ratings overall in

comparison to the males (mean = 0.267, 95% CI = [0.160 0.374]). This is shown

in figure 6.9b.

A visual inspection of figure 6.9a reveals an interesting observation in that the

the ratings for utterances in Stimulus Set 1 appear to resemble a step function

while those in Set 2 do not: rather they appear to follow a linear function. As

shown in figure 6.1, non-linear rating profiles are a telling characteristic of CP.

To investigate this further, a one-way repeated measures ANOVA was per-

formed using only the ratings for Stimulus Set 1 (see figure 6.9a, the red line),

using the Utterance specification as the within-subjects factor. Again, a signif-

icant main effect was found for the Utterance specification (F (5, 135) = 38.521,

MSE = 3.737, p < 0.0001). The post-hoc multi-comparison tests revealed that

the six utterance specifications were grouped into two clusters. Utter-0 (mean =

0.719, 95% CI = [0.598 0.841]), Utter-1 (mean = 0.635, 95% CI = [0.491 0.780])

and Utter-2 (mean = 0.481, 95% CI = [0.375 0.586]) formed one cluster, with

none of these having significant differences in their ratings. Similarly, Utter-3

(mean = 0.043, 95% CI = [−0.098 0.184]), Utter-4 (mean = −0.016, 95% CI =

[−0.146 0.115]) and Utter-5 (mean = −0.126, 95% CI = [−0.275 0.024]) formed a

second cluster, also with no significant differences in the ratings within this clus-

ter. Furthermore, all the members of the two clusters were significantly different

from all the members of the other cluster (p < 0.001).
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(a) Comparing the Stimulus Sets. See figures D.3, D.4 and D.5 for the AffectButton
faces associated with the mean values shown in this figure.
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(b) Comparing the Genders.

Figure 6.9: Plots showing the mean values and 95% confidence intervals of the
adult ratings of each Utterance Parameter specification across the Stimulus Sets

(figure 6.9a), and subject genders (figure 6.9b). The descriptive statistics for
these figures are summarised in tables D.2 and D.3.
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Table 6.11: Mean values, Standard Errors and 95% Confidence Intervals of the
child ratings for each of the Utterance Parameter configurations.

Utter Mean Standard Error
95% Confidence Interval

Lower Bound Upper Bound

0 0.511 0.065 0.376 0.645
1 0.402 0.081 0.233 0.570
2 0.226 0.076 0.067 0.385
3 0.333 0.078 0.171 0.496
4 0.224 0.080 0.057 0.392
5 0.205 0.079 0.041 0.368

6.3.3.2 Child Subject Results

Overall, the children showed a notably lower level of agreement (α = 0.403) in

their ratings when compared to the adult subjects. When splitting the ratings

by gender, the male subjects did show relatively high agreement in their ratings

(α = 0.657). The females however did not have a high degree of agreement

(α = 0.024).

The ANOVA found only a significant main effect due to the Utterance Pa-

rameter configuration (F (5, 105) = 2.730, MSE = 0.673, p = 0.023). No other

effects were identified. The post-hoc multi-comparison tests revealed that, unlike

the results for the adult subjects, none of the different Utterance Parameter spec-

ifications were found to be different to a statistically significant degree. The mean

values, standard errors and 95% confidence intervals are summarised in table 6.11.

To facilitate visual comparison with the results obtained from the adults sub-

jects, figure 6.10 shows plots of the ratings for the different utterance specifi-

cations, across the two Stimulus Sets (figure 6.10a) and across the two genders

(figure 6.10b).

6.3.4 Summary of Results

As the results section has presented a dense population of results and statistical

figures, this section serves to provide a overview summary of the important results

that are to considered within the Discussion section.

The results of the Labelling Task show that both the adult and child subjects
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(a) Comparing the Stimulus Sets. See figure D.6, D.7 and D.8 for the AffectButton
faces associated with the mean values shown in this figure.
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Figure 6.10: Plots showing the mean values and 95% confidence intervals of the
child ratings of each Utterance Parameter specification across the Stimulus Sets
(figure 6.10a), and subject genders (figure 6.10b). The descriptive statistics for

these figures are summarised in tables D.4 and D.5.
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were able to clearly distinguish between the different affective labels by providing

affective ratings for the labels that had, in the majority, statistically significant

differences along the affective dimensions along which the affective labels are dif-

ferentiated in a the AffectButton affect space. It was also found that there were no

significant differences in the ratings between the genders, for either the adults or

children. Overall, this provides strong evidence indicating that the subjects were

indeed able to use the AffectButton in a robust and coherent manner, promoting

confidence in the use of the AffectButton as the means of capturing the affective

rating of utterances during the Identification Task.

With respect to the Discrimination Task, the differential ratings provided by

the adult subjects tended to follow the inverted “V” profile that is associated

with the presence of CP. This was more prominent with the ratings (of utterances

being rated as “different) for utterances in Stimulus Set 1 than the utterances in

Set 2. Furthermore, this is evidenced further by the finding that the ratings for

the utterance pairs at either end of the continuum were found to be at chance

level, while the pairs in the middle of the continuum tended to be above chance,

which again follows the characteristics that are associated with CP. This was not

found to be the case with the ratings provided by the children, whose results did

not appear to follow the inverted “V” trend, and where in the vast majority, the

differential ratings were found to be at chance level.

Finally, for the Identification Task, the affective ratings provided by the adults

followed a clear negative gradient. Furthermore, the ratings for the utterances in

Stimulus Set 1 were also found to have a statistically significant step function

where there were two clusters of results, with all the members of one cluster

receiving ratings that were significantly different to all the members in the other

cluster. This is also a characterisation that is associated with CP. The ratings of

the utterances in Stimulus Set 2 however did not follow this step function, but

rather followed a linear trend which is not associated with the presence of CP.

It was also found that for both Stimulus Sets 1and 2 Utter-0 and Utter-5 were

received ratings that were significantly different, showing that they did indeed
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pot ray different affective sates as evidenced via the facial expressions. With

respect to the child subjects, these ratings in general followed no specific trend,

and while there was an overall significant main effect due to the different utterance

specifications identified, no significant differences were found between the different

Utterance Parameter configurations via the post-hoc tests.

6.4 Discussion

This section provides a discussion of the results obtained during this experiment,

and their relevance to the presence of Categorical Perception in subjects affectively

rating NLUs. Following this, some methodological issues and drawbacks that may

have influenced the outcome of the experiment and discussed. Finally, the findings

of this chapter are discussed in a slightly broader perspective regarding HRI.

6.4.1 Results Discussion

It is clear from the results from the Discrimination and Identification Tasks that

the children performed very differently during this experiment than the adults.

This is notable through the lack of clear ratings in both tasks for the children: in

the discrimination task the vast majority of ratings were all at chance level, and

in the identification task, the low Cronbach’s α values and general lack of any

clear profile in affective ratings. However, the statistical analysis of the Labelling

Task suggests that the children were able to use the AffectButton to assign facial

expressions to affective labels and differentiate between these labels along key

affective dimensions, in a coherent manner. This implies that either the children

did not fully understand the tasks in the experiment, or that they found it difficult

to coherently interpret the utterances on an affective level. In either case, it is clear

that the subjects did not exhibit CP when rating the utterances during either the

Discrimination or Identification Tasks. Rather, their ratings may be considered

as more random and varied, which is in line with the findings in chapter 5.

The results from the adult subjects present an more interesting story however.

The first observation that stands out is that the adults were clearly more coherent
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in the ratings that they provided through each of the three tasks. The results of

the Labelling Task show that the adults were indeed coherent in their use of

the AffectButton, and were able to reliably associate different facial gestures to

the different affective labels to a statistically significant degree. This lends strong

support to the validity of the affective ratings captured by the AffectButton during

the Identification Task.

With regard to the Discrimination and Identification Tasks, and their relation

to CP, these two tasks should be considered simultaneously. During the Discrim-

ination Task both the results for Stimulus Set 1 and Stimulus Set 2 tended to

follow an inverted “V” shape, with the ratings located at the top of the V being

statistically above chance while those at the bottom of the “V” were not signifi-

cant above chance, though this was more prominent for the ratings for Stimulus

Set 1. This supports both C2 (that neighbouring stimuli near a prototype stim-

ulus are rated as “different” to a degree that is not above chance) and C3 (the

the neighbouring stimuli in the middle of the continuum were rated as “differ-

ent” to a degree that was statistically above chance and formed an inverted “V”

shape), and alone already suggests the presence of a categorical boundary in the

region of the stimulus continuums where the peaks are highest. It is interesting

to see that in the case of Stimulus Set 1 the profile of the affective ratings in

the Identification Task followed a step function (between Utter-2 and Utter-3),

which supports C4 (that stimuli near a prototype stimulus have the same class

membership and have a significantly different rating to the stimuli near the other

prototype stimulus). Furthermore, this step coincides roughly with the peak in

the corresponding results of the Discrimination Task (Utter-2 vs. Utter-3, and

Utter-3 v.s Utter-4), which supports C5 (that the peak of the inverted “V” in the

differentiation profile and the step in the category membership profile occur at

the same location in the continuum). When marrying these two sets of results to-

gether, there is strong evidence suggesting the presence of a categorical boundary

along the Pleasure/Dominance dimension of the AffectButton affect space.

The Identification Task also found that there was a significant main effect due
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to the difference in the Stimulus Sets, (which were differentiated by their Pitch

Contour specification), and thus these results show (as the results in chapter 5 do

also) that the Pitch Contour does appear to play a significant role in how subjects

affectively interpret a NLU. This was also evident, though not specifically tested

for during the Discrimination Task where there was a notable visual difference in

the distribution of results between Stimulus Sets 1 and 2 (see figure 6.9).

There have also been some missed opportunities during the Discrimination

Task, where some potentially insightful utterance pairs were not presented to

subjects. For example, there were no comparisons made between corresponding

utterances across the two Stimulus Sets (i.e. Utter-0 in Set 1 vs. Utter-0 in Set

2). Such a comparison would probe whether subjects perceived these as different.

During the Identification Task, the adults provided affective ratings for the two

prototype utterances (Utter-0 corresponding to positive, and Utter-5 correspond-

ing to negative) that were significantly different. This supports C1, confirming

that the two prototype utterances did indeed represent two different categories.

Using this along side the results of the Labelling Task, it would suggest that sub-

jects did perceive these two extreme prototype utterances as different. This is

an important confirmation as it does indeed show that the stimulus continuums

did indeed represent two different affective classes at either end and thus given

the results, there was indeed a categorical boundary covered by the Stimulus Set

1 continuum, and that the presence of the categorical boundary was apparently

related to the Pitch Contour of the utterances.

Finally, while the main effect due to the subject gender in the Identification

Task ANOVA was not found to be statistically significant (though it was close to

being statistically significant), it is likely that with a large corpus of subjects this

would become a significant main effect.

6.4.2 Methodological Remarks

While the results of the adult experiment indicate that CP is occurring, this ex-

perimental set up is not without methodological drawbacks. Gerrits and Schouten
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(2004) have argued that CP findings depend upon the type of Discrimination task

that has been employed. In the experiment presented here, the AX paradigm

has been used, where subjects are presented with two stimuli and have to say

whether they feel that they are the “same” or not. While this is a task with a low

cognitive load, it tends to have a bias toward subjects providing more “different”

ratings as there are not other pairs (presenting identical stimulus pairs) in the

trail with which comparison may be made (Schouten et al., 2003; Gerrits and

Schouten, 2004). As such, where neighbouring stimuli might be expected to fall

within the same categorical region, these have a higher chance of being deemed

as “different”, which reduces the inverted “V” shaped differential profile.

Other paradigms commonly used are the ABX and 4IAX comparison tasks.

In the ABX task, subjects are presented with three stimuli, two of which are

the same, and subjects must identify which of the first two stimuli (A or B) is

the same as the last (X). The 4IAX task is a far more cognitively demanding

task than either the AX or ABX tasks, where subjects are presented with two

pairs per trail (e.g. AA-BA, AB-BB, etc.) and subjects must identify which of

the two pairs contains the odd one out (for example, AA or BA). In the case of

the ABX task, it is common to find a bias due to presentation order where the

B and X stimulus are more likely to be identified as the same than A and X.

This is theorised to be linked (in cases which use auditory stimuli) to the loading

on auditory memory. The 4IAX task is a method that holds less overall bias,

however has high cognitive loading, and requires that subjects listen to a total of

four stimuli rather than 2 per trial, and as such may be cumbersome to explain to

young children. This study has employed the AX as it was deemed to be the least

demanding paradigm to use, which was an appealing factor when considering that

experiment was to be conducted with young school children. This acknowledges

that a different discrimination paradigm may have led to different results with a

different interpretation.

Comment may also be made about the number of utterances that were used in

each Stimulus Set (6 utterances). This is a relatively low number which resulted in
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larger linear physical transitions between the two prototype stimuli in each set. As

such, it may be likely that the stimuli would be perceived as more different during

the Discrimination Task due to the larger differentials in the physical properties

of the utterances. With respect to the Identification Task, this may also have

provoked ratings that were different. However, while this may be the case, the

results for Stimulus Set 1 still have provided compelling evidence supporting the

presence of CP. That said, the results for Stimulus Set 2 could perhaps have

tended more toward CP had there been more utterances in the continuum. A

refinement to the experiment would have been to double the number of utterances

in each stimulus set. However, there were concerns regarding the level of cognitive

loading placed upon the young children, as well as the amount of time taken for

each subject to complete the experiment.

Finally, the actual use of the AffectButton as a means for capturing affective

ratings in this experiment may be subject to criticism. Given that it has been

well established that humans exhibit categorical perception of facial expressions,

it may be argued that this experimental setup has an inherent bias that would

promote evidence supporting the presence of CP. In reality this is a potent criti-

cism to make, and it is difficult to asses whether such a bias is indeed taking place,

as well the magnitude. One would need to use a completely different measure-

ment tool to gauge this, which in itself can lead to more criticisms - for instance

whether a different tool does indeed provide a robust representation of an affective

interpretation (it is argued here that using facial expressions does this). However,

setting this aside, the findings of CP in this study are still relevant to the field

of HRI as many of the current state-of-the art social robots have expressive faces

that are used to display facial expressions (e.g. Breazeal (2002); Delaunay et al.

(2009, 2010); Kuratate et al. (2011)). In this light, robots that are capable of

affective expression through multi-modal displays are more likely to be subject to

CP due to the larger number of cues that are available to the human to decode

the displays in a more refined manner.
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6.4.3 Broader Discussion

The findings of CP (and the lack of) in this chapter have implications regarding

both the generation of NLUs as well as the general use of NLUs during social HRI.

With respect to the use of NLUs in HRI, the finding of CP suggests that subtle

differences in the acoustic features of utterances do not necessarily translate to

subtle differences in how these utterances are interpreted with respect to their

affective meaning/colouring. Rather, the results show that utterances can be sub-

ject to a “magnet effect” whereby they are drawn to more coarse and prototypical

affective interpretations (e.g. happy, angry, sad, act). This is a useful insight

when it comes to attempting to predict how a given utterance may be interpreted

by a subject, a capability that falls toward the modelling of a Theory Of Mind in

social robots (see Scassellati (2002) for a discussion on this broader subject).

The results have shown that utterances were interpreted both in a coarse,

binary manner, and in a manner with a higher degree of subtle sensitivity. This

has implications regarding how affect should be represented in a robotic system,

both with respect to the modelling of the robot’s internal affective state, but

also to the modelling of the affective state of the person/agent that the robot is

interacting with. Dimensional representations of affect have a potent collection of

appealing characteristics. Firstly, they are able to cater for both coarse changes in

affective states as well as more subtle changes, both of which are associated with

how people interpret the affective states of they others that they are interacting

with (Breazeal, 2002; Cowie and Cornelius, 2003; Schröder, 2003b). Furthermore,

dimensional representations also lend themselves to use in the world of machine

learning, an area that has a strong foothold in the state-of-the-art HRI.

Currently this experiment has presented utterances within a context-free man-

ner, and found evidence showing CP of NLUs, though this evidence has not been

as clear cut as CP found with respect to other types of stimulus (e.g. colour,

phonetic sounds and facial gesture). However, real-world HRI is not context-free,

rather all HRI contains implicit context, nor is it uni-modal, rather it is multi-

modal. As such, a valuable extension to the experiment presented in this chapter
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would be to investigate how the use of NLUs within a scenario with a more de-

fined situational context may may differ from the use in context-free settings, and

whether the perceptual magnet effect may be more prominent in such situations.

This is an issue that is addressed in chapter 8.

6.5 Summary

This chapter has presented the results of two experiments designed to investi-

gate whether both adults and children affectively interpret NLUs in a categorical

manner. Employing a methodology that followed the common practice found

in psychological experiments studying CP, with some modifications to tailor the

work toward the focus of HRI.

2 linear continuums of NLUs were created, each containing 6 NLUs, ranging

from fast, high pitch utterances to slow low pitch utterances, with the only differ-

ences across the two continuums being the pitch contours of the utterances. Both

adult and child subjects were asked to perform three tasks: a Labelling Task,

a Discrimination Task and an Identification Task. The Labelling Task was per-

formed to assess the validity of the AffectButton as a means of capturing affective

ratings during this experiment. The results show that both the adults and children

did appear to be able to use the tool in a coherent manner when assigning facial

gestures to various affective labels. The Discrimination Task required subjects to

listen to neighbouring utterance pairs in each continuum and rate them as either

having a similar or different affective meaning. Here for both continuums the

results of the adults followed the trends that are commonly associated with the

presence of CP, while those of the children did not. Similarly in the Identification

Task, where subjects were asked to listen to each utterance individually and use a

simplified version of the AffectButton to assign a facial gesture to each utterance,

the adults again had results that followed the trends associated with CP. However,

the results given by the children did not. It was also found that the differences in

the pitch contours between the two continuums did lead to significant differences

in the affective ratings during the identification task.
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The findings of this chapter have important implications, not only for the use

and generation of NLUs in social robots, but also other areas regarding the repre-

sentation and understanding of affect in social HRI. With regard to the use and

generation of NLUs, it is clear that not all utterances that are subtly different

will evoke subtle different affective interpretations in subjects: there interpreta-

tions have also shown to be rather coarse or binary and subject to a “magnet

effect”. This effect pulls the interpretations to one of a few well established af-

fective affective interpretations. With regard to the generation of NLUs, this is

use to know as it means that one does not need to focus a great amount of effort

toward producing subtly different utterances in order to evoke subtle different

affective interpretations. It may be more fruitful to apply efforts toward identi-

fying acoustic profiles of utterances that are highly representative of known and

established affective states and simply adding noise in order to introduce variety

in the utterances.
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Chapter 7

Using Artificial Neural Networks

to Automate NLU Production

and Affective Charging

Summary of the key points:

• Feed forward Artificial Neural Networks were trained using the data col-

lected form the experiments in chapters 5 and 6 in order to learn a mapping

between peoples’ affective interpretation of NLUs and the parameters of the

NLU generation algorithm.

• Mappings learnt share similar characteristics to the acoustic correlates of

emotional expressive in both the human voice and music.

• A human subject evaluation was performed with young children in order to

assess the learnt mappings. NLUs were generated using the mappings and

subjects asked to rate them using the AffectButton.

• Results show that even when NLUs have similar acoustic characteristics as

those found in the human voice and music, subjects still attribute prototyp-

ical affective to utterances, but are not coherent in how they do this.
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In the experiments presented chapters 5 and 6, the utterances used as stimuli have

been hand crafted for the specific experiment in mind, each aimed at attempt-

ing to uncover how subjects respond to specific manipulations of the parameters

characterising an utterance. While this is suitable for investigating the impact of

each acoustic parameter on the affective interpretation, hand crafting utterances

generally has very limited practical utility. Furthermore, the method for creating

NLUs described in chapter 3 only provides what is essentially a blueprint for how

utterances are described, characterised and synthesised. It does not provide a

specification for how the different parameters characterising and utterance trans-

late to different affective interpretations in the eyes of subjects. This chapter

seeks to address this, and if possible, provide a remedy by investigating whether

the generation of NLUs and specifying the values of utterance parameters may be

automated in some manner using feed-forward Artificial Neural Networks (ANNs)

to provide a means of generating and affectively charging NLUs, without the need

to hand tailor utterances to convey a specific affective meaning.

The chapter beings with an overview of the different methods that have been

used to create and affectively charge both gibberish speech and NLUs in the

existing literature, as well as providing a brief discussion of how the insights gained

in the field of speech synthesis in this regard have, in general, limited application

to the field of NLUs. The field of Machine Learning is then introduced in order to

provide a more formal problem statement that is to be addressed in this chapter

using ANNs. This is followed by a description of how feed-forward ANNs have

been used to try and uncover an affective mapping between the AffectButton PAD

space, and the parameters of the NLU generation algorithm. A human subject

evaluation of this learnt mapping is then presented, followed by a discussion of the

networks that have been developed, and the evaluation results, concluding with a

summary of the work presented.
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7.1 Overview of NLU/gibberish speech Genera-

tion.

Within the world speech synthesis, emotional speech synthesis is now an issue

that is receiving considerable attention. While there is a great volume of knowl-

edge emerging from this field, overall, the state of this remains in early stages

(see Schröder et al. (2010) for a comprehensive overview). Furthermore, while one

might intuitively imagine that knowledge gained from the field regarding how to

synthesise emotional speech may hold useful insights as NLUs may be affectively

charged, in reality, many of these insights cannot be applied to the automated

synthesis of emotional NLUs. The reason for this is simple. Speech synthesis

is concerned with reproducing human speech, which is of course, more broadly

speaking, means natural language. As such, the current state of the art in emo-

tional speech synthesis has focused upon adapting the already well established

underlying technologies in speech synthesis (e.g. format synthesis, diaphone con-

catenation and unit-selection (Schröder, 2001; Schröder et al., 2010)), of which

the primarily goal remains the reproduction of language, where what is said and

how it is said are facets that are difficult split apart due to the way that the

existing technologies work. To clarify, given that NLUs - specifically in this body

of work - are in essence abstract sounds in comparison to human speech, much

of the work on emotional speech synthesis is generally incompatible with NLUs.

With respect to gibberish speech however, this is not the case as gibberish speech

relies heavily on the speech synthesis (TTS) technologies, and as a result, insights

and developments in speech synthesis are very relevant and readily applicable, as

evidence by the work of Breazeal (2002), Oudeyer (2003) and Yilmazyildiz et al.

(2006, 2010).

While the lack of direct compatibility of developments within emotional speech

synthesis to NLUs is an issue, there are some high level methods and ideas that

have been adopted by authors generating both NLUs and gibberish speech, and

as not to neglect this, the rest of this section will outline these.
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Breazeal (2002), Oudeyer (2003) and Yilmazyildiz et al. (2010) describe algo-

rithms and methods for generating utterances consisting of strings of gibberish

text, which are input to a text-to-speech engine, the TTS engine/synthesiser set-

tings used to charge the utterance are based upon static predefined values, or

templates, which have been guided by the acoustic correlates reported in the psy-

chology literature (e.g. Banse and Scherer (1996), Fernald (1989) and Burkhardt

and Sendlmeier (2000)). Broadly speaking, these are examples of a template based

approach to affective charging, where a small number of pre-defined, static, syn-

thesiser settings are used to create utterances that convey a limited number of

affective states. Jee et al. (2007, 2009, 2010) have used the same general approach

with their music inspired NLUs, where they hand crafted a limited number of

utterances to convey basic emotional states based upon observations on how emo-

tion is communicated through music (e.g. Juslin and Laukka (2003)). The benefit

of this approach is that the insights from related literature can be broadly drawn

upon, and so little effort needs to be put into exploring how the settings of their

respective synthesisers need to be manipulated to order to covey different affective

states. This is particularly the case when TTS synthesisers are employed as much

of this has already been established, explored and exploited in the field of speech

synthesis. However, the main drawback is that the number of affective states

that can be modelled is limited by the coverage of affective states that have been

explored in the literature. Furthermore, this approach also tends to result in a

small number of different synthesiser settings for each particular affective state.

Yilmazyildiz et al. (2006) and Yilmazyildiz et al. (2011) describe a slightly

different method in which recordings of expressive speech portraying a limited

number of discrete emotions are recorded from a voice actor and used either as a

prosodic templates which are then mapped to recordings of neutral speech, and in

the case where the expressive speech recording are of gibberish speech, are simply
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used as the final utterances themselves. This tends to follow the unit selection1

approach to speech synthesis. With respect to NLUs, Tuuri et al. (2011) have used

a similar method in the development of their expressive sports wrist watch where

they took voice actor portrayals, extracted the fundamental frequency profile from

these and mapped these to MIDI notes in a music synthesiser, thus retaining the

prosodic properties of the voice recordings, while removing the high level frequen-

cies in the acoustic signals, from which the perception of words tends to emerge

(Remez et al., 1981; Knoll et al., 2009). These approaches have two main bene-

fits. Firstly, little computational effort is required, as a database of (affectively

labeled) utterances is created beforehand, and used utterances only need to be

selected from the database and played back during an interaction. Secondly, as

voice actors have provided the expressive speech, the acoustic correlates for each

emotional state are inherent in the recordings. However, the drawbacks to this

method are that a database of voice recordings must be made, which is a cum-

bersome and time consuming process which results in a large database. This has

limits on the practical use with respect to robots with embedded microprocessors

and computers which have limited computational resources. Furthermore, the

recordings can only be given a discrete label, which limits the number of different

emotions that can ultimately be conveyed by these systems. However, given the

knowledge that NLUs are subject to categorisation with respect to their affective

interpretations, this is a drawback that may only be superficial.

As is evident, there have been more efforts in developing methods for gener-

ating and synthesising gibberish speech than there have been for creating NLUs

that lend themselves to automated generation. It is likely that the main reason

for this is that as gibberish speech tends to rely on TTS technology and the de-

velops surrounding this, which inherently lends itself to more rapid and fruitful

development for gibberish speech than NLUs.

1Unit Selection (Iida et al., 2003) is where large collection of recordings of expressive speech
are captured from voice actors and are split up into smaller sound units, which in turn are then
concatenated to produce different utterances, and had proved to be one of the most fruitful
methods in current speech synthesis. This approach, however, is limited by the number of
available sound units, as well as the different emotions that have been portrayed by the voice
actor(s), as well as the expressive tones of the various recordings. See Schröder et al. (2010) for
a comprehensive overview of this technique with respect to emotional speech synthesis.
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With respect to NLUs that consist of simple frequency and amplitude modu-

lated sine waves, the main body of literature has been Komatsu (2005); Komatsu

and Yamada (2007, 2008); Komatsu et al. (2010); Komatsu and Yamada (2011);

Komatsu et al. (2011), however their focus has not been upon attempting to con-

very a variety of different affective states, rather they have focused upon how

single sine waves can be used to manipulate how people perceive the attitude of

the agent making the utterances. Furthermore, the utterances that they have used

have been very simple, consisting of single sine wave signals with either a rising

or falling pitch/frequency modulation, and as a result, there has been no need to

develop a system for generating their utterances in an automated manner.

This body of research uses NLUs that are in essence the same type of acoustic

signal (i.e. single sine waves that have a frequency and amplitude modulation) as

used by Komatsu et al., but extends beyond a single wave, to multiple, concate-

nated waves also. As such there are many more parameters required to charac-

terise an utterance, and so in order to produce and characterise utterances in a

standardised manner, a custom has been developed to do this (chapter 3). Due

to the overall increased complexity, the method is capable of producing a rich

variety of different NLUs. However, the specification of the utterance parameters

has thus far only been achieved via human hand craft, which in the long term,

is impractical. What is currently lacking is the ability to automatically specify

these parameter values given that there is a desired affective interpretation - the

mapping between affective interpretation and utterance parameters is unknown.

It may be argued that the insights from the related psychological and musicology

literature could be directly used, given the language inspired design of the NLU

algorithm, however this is not clear and has not been explicitly tested for. Nor

it is to be assumed that such a mapping is direct. Taking the insights regarding

the acoustic correlates of the human voice and music and directly applying these

to NLUs may not result in people having the desired interpretation. Chapters 5

and 6 have presented experiments where subjects were asked to affectively rate

utterances, where the acoustic features of the utterances were systematically ma-
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nipulated in such as way as to explore the utterance parameter space and probe

the landscape of subjects’ affective interpretations. The most logical next step

is to investigate whether the data collected during these experiments may have

a hidden general mapping between the affective interpretations of utterances and

parameters used to generate the utterances. This is done using machine learning

in this case.

7.2 Machine Learning

Machine Learning (ML) is a field within the world of computer science, and more

specifically, artificial intelligence (AI), that concerns itself with developing tech-

niques and algorithms that allow computers to learn from data by themselves.

Mitchell (1997) provides a more formal definition for the notion of a computer

that learns:

“A computer program is said to learn from experiment E with respect to some

class of tasks T and performance measure P, if its performance at tasks in T, as

measured by P, improves with experience E.” - Mitchell (1997).

For example, if a computer is learning to filter “SPAM” emails, then this

process of filtering is the task, T. The performance metric, P, would be the number

emails correctly labelled as “SAPM”, and finally, the computers’ prior experience,

E, would be having access to a collection of example emails which have been user

labeled as either SPAM or not SPAM. This filtering task is an example of a

computer that has leant to perform a classification task through a supervised

learning process.

There are many different ML techniques, each which is tailored toward specific

problems, and each which have slightly different variants. These can range from

very simple and classic techniques such as logistic or linear regression, to more

tried and tested approaches such as Artificial Neural Networks, to the state-of-

the-art and very exotic approaches such as AdaBoost and Echo-State Networks,

to name a few. With this wide range of techniques also comes a wide range of

problems that can be solved also, such as regression, classification, clustering,
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feature learning, prediction and association rules, to name a few.

This section serves to to provide a brief overview of the general approaches

that are most commonly used in ML, and then to highlight the supervised learning

approach and outline the two main tasks that this approach is used to address.

Doing this allows us to put into perspective the ML problem that this chapter

seeks to address given the training data that was collected, and sketch out a formal

problem definition which can help in the selection of an appropriate learning

approach and technique.

7.2.1 Approaches to Machine Learning

ML techniques tend to come in one of four different general flavours: supervised

learning, unsupervised learning, reinforcement learning and evolutionary learning.

In the case of the SPAM filter example, the approach used was a supervised

learning approach in that each example email in the training data was paired

with the correct response. Having the correct output data for each input data

point is analogous to having a teacher sitting next to you and supervising your

learning, thus ensuring that you are indeed learning the correct things.

In the case of unsupervised learning, example data is not presented with the

correct responses. Instead, the algorithms attempt to identify similarities between

different inputs such that they may be grouped or clustered together in some way,

and ultimately be classified with some label (which the compeer then decides on).

The algorithm has to make sense of the data by itself, and thus is free to form it’s

own internal, meaningful representations of the data that is present to it.

Reinforcement learning lays somewhere in-between supervised and unsuper-

vised learning. The algorithm performs a task, and is then told whether the

outcome is correct or incorrect, and in the case of the latter, it is not told how to

amend the error. In the case of the former, while it is told that it has succeeded,

it is not told which aspects of what it did were correct, and which were incor-

rect. The algorithm has to explore and try the various different possibilities with

varying success until it works out how to solve the task at hand.
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Finally, evolutionary learning is an approach that takes inspiration from the

world of biology, where biological evolution is seen as a learning process also. Here,

computers run algorithms that model analogies to the adaptions that biological

organisms undergo in order to improve their survival rates and increase their

chances of having offspring in the environment. This approach models different

solutions as members of a population and seeks to “cross-breed” the most suc-

cessful solutions (as measured against a given fitness metric) in order to produce

new solutions. The hope with this approach is that an optimal, robust solution

will emerge when this process is repeated many times on end.

The machine learning approach adopted in this thesis falls into the supervised

learning category. The data that was collected in the experiments described in

the two preceding chapters (chapters 5 and 6) contains both the parameter values

of the different NLUs, as well as the affective interpretations as captured via the

AffectButton. This training data contains data examples that are paired with

“correct” responses (in the eyes of the subjects). As such, this form of training

data makes a supervised learning approach very suitable.

7.2.2 Supervised Learning

Given the input data/correct response format of the training data that is presented

to a supervised machine leaning algorithm, supervised leaning algorithms tend to

tackle one of two types of problem: classification and regression. Both of which

we shall in more detail in a moment.

The training data presented to the algorithms typically takes the following

form: T = {(x1,y1), (x2,y2), (x3,y3), ..., (xn,yn)}, where both xi and yi are vec-

tors that can contain lots of pieces of data that can take either binary or continuous

values. For example, in the case of this thesis, xi = [x1, x2, ..., xm], where xj is

a given NLU parameter, and yi = [p, a, d]T , where p, a and d are the respective

Pleasure, Arousal and Dominance values for the given utterance with parameters

xi.

It is the values in both x and y that play a large role in determining the
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nature of the problem that needs to be solved by a given ML algorithm. When

the output (y) values take on discrete values (i.e. one and only one value within

a given set), then this is a classification problem. Conversely, when the values

of y fall along a continuous range, predicting the values of y given input data x

becomes a problem of regression.

Supervised learning, like the other four ML approaches, also holds the property

of generalisation. As the training data that it has learnt from does not represent

the entire input space, it is likely that examples that are not in the training set

are presented to the algorithm after learning has finished. In these situations

the trained algorithms are able to generalise and provide realistic output values,

through either interpolation between data points, or extrapolation beyond the

range of data points presented during training.

7.2.2.1 Classification

A classification problem consists of taking the input vectors of data points xi and

predicting which of N classes (yi) they each belong to based upon the features of

a given example (i.e. the contents of xi), where the classifier is trained using the

exemplar data contained within the training set T. Here also, the values in y are

discrete values which represent categories where x is a member of only one class.

This is not strictly a universal rule, as there are classifiers that perform fuzzy logic

(Marsland, 2009), but these are far beyond the scope of this thesis.

The task of the learning algorithm in this case is to establish either one or

multiple discussion boundaries that are used to separate the input feature space

into the different discrete regions, and then assign a category label to each region

(see figure 7.1a). Depending of the type of values that are contained within

xi these decision boundaries can either be linear or non-linear which allows for

differing degrees of classifier complexity. Examples applications include Speech

and Handwriting recognition as well we biological recognition such as tumour

diagnosis.
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(a) Example of a Classification
problem where class membership is

predicted based upon the features x1
and x2 and non-linear decision
boundaries have been learnt.

(b) Example of a Regression problem
where a mathematical function has
been approximated by an algorithm
allowing the output value y to be
predicted by the input variable x.

Figure 7.1: Illustrative examples of a Classification problem and a Regression
problem which may both be solved through Supervised Learning.

7.2.2.2 Regression

Regression problems are different in that rather than attempting to assign a dis-

crete class membership to a given point in the input feature space, they attempt

to predict and then assign one or more continuous values as outputs (y) to the

input point (x). Essentially, regression algorithms attempt to fit a mathematical

function describing a curve/surface so that it passes as close as possible to all

the dat points in T. As such, regression is also know as a problem of function

approximation or interpolation, working out the values between the data points

that we know (see figure 7.1b).

The problem faced by the learning algorithm is to determine the parameters

of the mathematical function that is being fit, as these depend on T. For exam-

ple, if you consider the equation of a strait line: y = θ0 + θ1x, θ0 and θ1 are the

parameters whose value that need to be learnt by the algorithm, for example, a

linear regression algorithm. Here also the linear shape of the function is deter-

mined by the variable x. If the input variable were x2, then the function shape

would be non-linear and polynomial. Examples applications include House Price

estimation, Robot Arm Torque Controllers and Stock Market Analysis.
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7.2.3 Formal ML Problem Statement

The previous two chapters described experiments in which subjects affectively

rated NLUs with known parameter values using the AffectButton measuring tool.

As such, the data collected represents training data that consists of input/output

value pairs. The goal of this chapter is to uncover a generalised mapping between

these NLU parameters/affective ratings whereby it is possible to specify a desired

affective rating, and through the use of an ML algorithm, obtain NLU parameters

that are representative of this affective rating. More formally, a mathematical

function needs to approximated using supervised learning to solve a regression

problem such that NLU parameter values may be predicted based upon a given

PAD coordinate within the AffectButton affect space:

y = hθ(x) (7.1)

where hθ(x) is the approximated function (also known as the hypothesis func-

tion), x is the desired input affective PAD coordinates that takes the form [p, a, d]T

and y is a vector consisting of the predicted NLU parameter values, taking the

form [x1, x2, ..., xm].

The function hθ has a number of parameters, Θ, which characterise the map-

ping. The role of ML here is to identify the optimal values of Θ such that the

error between hθ(x) and y is minimised for all data points in the training data

set, T = {(x1,y1), (x2,y2), (x3,y3), ..., (xn,ym)}:

J(Θ) =
1

2m

m∑
i=1

(h(x(i))− y(i))2 (7.2)

where J(Θ) (also known as the cost function) is the total mean squared error

across all the m training data points in T, Θ are the parameters of hθ, hθ(x
(i)) is

the predicted output of a given training data input point, and y(i) is the desired

output value.
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7.3 ANN Design and Implementation

This section outlines the implementation of feed-forward ANNs and how they

have been used to try and learn and generalise an functional mapping between

the AffectButton affect space (as outlined about) , within which subject affective

ratings are located, and the parameters of the NLUs. First, the training data

is described. Then the implementation of the ANNs is described, followed by a

presentation of the the mappings that have been obtained.

7.3.1 Training Data

The data collected from the experiments described in chapters 5 and 6 were com-

bined to from the training data set. Overall this set consisted of 2263 data points,

with the majority of the data coming from experiments with children, rather than

adults (see table 7.1). Figure 7.2 shows plots of both the affective ratings in

the AffectButton PAD affect space, and the generation parameter values of the

utterances to which these ratings correspond.

Input data consisted of affective ratings of utterances captured using the Af-

fectButton, and as such consisted of vector holding the Pleasure, Arousal and

Dominance values. As the AffectButton outputs values along each dimension in

the range [−1 1], no pre-processing was performed on the data before being into

the ANNs. Figure 7.2a shows a scatter plot of all the input data. Note that

there is a prominent diagonal line of data points in the figure, which is the data

collected from the Categorical Perception experiments (chapter 6) and is the re-

sult of the constraining of the AffectButton during the Identification Task during

these experiments. It is also notable, from a visual inspection, the distribution

of data points throughout the affect space is uneven, with the majority of data

points being clustered into the corners of the figure.

Output data consisted of the specific NLU generation parameters that were

varied over the various experiments. These were the F0 Base, F0 Range, Tremolo,

Speech Rate, Pause Ratio, Rhythm, Sound Unit Count, and Wave Type and the

Pitch Contour. All values, except for the Pitch Contour, were normalised such
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(b) Parallel plot of the output training data.

Figure 7.2: Plots of the Input and Output training data.

that, like the input data, their values fell into the range [−1 1]. The Pitch Contour

was encoded as an integer that whose length was equal to the sound unit count,

with the 5 contour shapes were each encoded as a single integer (see table 7.2)

and being concatenated together.

This training data set presents a challenge for machine learning techniques

in general. This is due to the high dimensionality of both the input and output

spaces, and that the number of outputs in larger than the number of inputs. This

means that the problem involves dimensional expansion rather than reduction.

Furthermore, the utterance parameter space has been very sparsely sampled dur-

ing the experiments (see chapter 5) providing few data points, with large euclidean
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Table 7.1: Break down of training data set with respect to the original
experiments within which the data was collected.

Experiment No of Data Samples Percent (%)

Training Data Collection (Children) 1373 60.68
Categorical Perception (Adults) 430 19.0
Categorical Perception (Children) 460 20.32
Total 2263 100

Table 7.2: Schema for encoding the Contour shape of a given Sound Unit in the
training data.

Contour Shape Encoding

Flat 1
Rising 2
Falling 3
Rising-Falling 4
Falling-Rising 5

distances between them, which may well pose a problem from generalisation be-

tween training points. While this is the case, it can be seen from figure 7.2b that

the output parameter space has been sampled rather evenly. There are however

some regions of the output space that have been sampled more densely than oth-

ers. For example, the Rhythm parameter has in most cases held the value of 1.

This was done due to the inherent randomness that is introduced via the NLU

generation algorithm when the value is lowered (see chapter 3, section 3.1). Simi-

larly, the wave type parameter has only two values (1 for saw wave and 0 for sine

wave) with most values being 0.

While the training data covers the nine different NLU parameters that were

manipulated throughout the experiments, the Pitch Contour parameter as not

included in the final training data set, and as a result, the ANNs were not em-

ployed to learn a mapping for this particular parameter. The reason for this is

that as the experiments in chapters 5 and 6 have found inconsistent results re-

garding influence of the Pitch Contour upon affective ratings. Given the apparent

elusiveness nature of this particular parameter, clearly more carefully designed

research and experiments are required to fully understand the exact role of the

Pitch Contours. As a result, the Pitch Contours of the utterances in the subject

evaluations (section 7.4) and were again pre-specified in order to not confound the
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results with respect to the other, mapped, utterance parameters.

7.3.2 Using Feed Forward ANNs

A feed-forward Artificial Neural Network (ANN) architecture was used to process

the training data. ANNs are a very well documented method of machine learning

that has been applied successfully in a variety of different fields (see Marsland

(2009); Mitchell (1997); Bishop (2006) for extensive, detailed overviews), and as

such, this chapter will not provide a detailed description of this machine learning

technique and the underlying mechanisms, principles and algorithms regarding

their operation and functionality.

However, with that said, the rationale for employing this particular type of

machine learning tool, as opposed to the many others that also exists is as follows.

Firstly, the application of ANNs has been extensively explored in many areas, and

as such, the characteristics of their operation too is well documented, and thus

they severe as an obvious and practical first stepping stone with respect to the goal

of using machine learning techniques to automate affective NLU generation: ANNs

are essentially a classic tried and tested machine learning technique. Secondly,

ANNs provide both linear and non-linear function approximation functionality,

which is in essence the problem that is being presented here: within the data

there likely lays functional relationships between the three dimensions of the affect

space and each dimension of the output space (i.e. each NLU parameter). Finally,

with the exception of the Pitch Contour (which we have already outlined will be

not addressed in this chapter), each NLU parameter holds a static value for each

utterance, and thus only a static function mapping is required, so there is no need

to employ extensions such as recurrent ANNs, which may well overcomplicate the

problem at hand.

7.3.2.1 Network Topologies

Initially, two general network topologies were explored: a configuration based

upon a single multi-layer perceptron with all inputs and outputs being handled
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via a Single Multi-Layer Perceptron (S-MLP) network (figure 7.3a), and Multiple

Multi-Layer Perception (M-MLP) network (figure 7.3b) where each ANN handled

the same input values, but outputting a single output parameter (thus, this in-

volves creating 8 individual networks, one of each output). This was done using

the MatLab2 neural network toolbox as it is a useful prototyping tool that af-

fords extensive control and specification for the parameters that control how an

ANN behaves (e.g. the transfer functions, learning rules, number of hidden nodes,

learning rates, etc.).

The rationale for exploring both the S-MLP and M-MLP network configura-

tions is related to the quality of the training data with respect to the mappings

that may be learnt. In the case of an S-MLP topology, if the training data does

not yield enough quality for a mapping to be learnt, or if a clear mapping does

not exist, the quality of the mapping for the other parameters will likely be af-

fected. In the case of the M-MLP topology, each output parameter is the sole

focus ofneurons the network and is unaffected by the quality of mapping for the

other parameters. One can view this as an approach where the mapping for each

individual is more robust, but comes as the expensive of potentially overlooking

potential relationships and interactions between the output parameters.

These two main types of network topology both had three layers: an input

layer, a hidden layer (with a sigmoid transfer function) and an output layer (with

a linear transfer function), see figure 7.4. The reason of this is that a network

that has a a hidden layer with an non-linear sigmoid transfer function and a

output layer with a linear transfer function is capable of mapping any non-linear

mathematical function, thus expanding beyond this serves little practical purpose.

The two network topologies were subject to an brief exploration (using the

training data) with regard to the number of neurons that should be used to pop-

ulate the hidden layer, and to get a feel for which of the two topologies should be

adopted and used to learn the affective mapping, and in turn used for a subject

evaluation. This process is not explained in this chapter as it diverts the focus of

attention away for the main goal: to train ANNs to learn an affective mapping

2MatLab version 7.13 was used with version 7.02 of the Neural Network toolbox.

189



(a) Single MLP Network topology.

(b) Multiple MLP Network topology.

Figure 7.3: Multi Layer Perceptron topologies explored for mapping affective
input values with output NLU algorithm parameters.

and then evaluate this mapping with human subjects. The question is not what

specification of network is required, but rather do ANNs hold any potential for

proving an affective mapping?

It is suffice to say that the results of this exploration revealed that the S-

MLP topology (where all the inputs and outputs are handled by one network)

held little promise for learning a mapping as the outputs or each parameter were

found to be essentially random. The M-MLP topology (where there is a network

for each individual output parameter), on the other hand, did show considerable

promise for learning a mapping for each output parameter, showing more clean,

smoother and clear non-linear mappings in general. Furthermore, it was found

that networks with seven hidden neurons produced mappings that were deemed

to complex and dynamic enough to represent such an affective mapping, rather
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Figure 7.4: Example of a hidden layer with a sigmoid transfer function, and an
output layer with a linear transfer function.

than producing mappings that were considered as to general and linear (which

was the case for a small number of hidden neurons, e.g 1 to 5), or mappings than

were deemed to show characteristics of over-fitting to the data (which was the

case with a larger number of hidden neurons, e.g > 9).

7.3.3 Network Training

Given the insights outlined above, the M-MLP network topology, with seven hid-

den neurons, was employed to produce the mapping for each of the remaining

eight utterance parameters: the Base Frequency, Frequency Range, Speech Rate,

Pause Ratio, Rhythm, Tremolo, Wave Type and Sound Unit Count.

As all the ANNs did not always produce the same exact function mapping with

the same training data, 50 networks were trained for each output parameter, and

thus 400 networks were trained in total. For each PAD input value, the average

output value of the 50 networks, for each of the eight output parameters, was

taken as the final mapping values, thus producing a vector of 8 values. For each

of the 400 networks the training data set was randomly split up into a training

set (70% = 1540 data points), validation set (15% = 330 data points) and a test

set (15% = 330 data points). These data sets (and their respective purposes and

roles) are detailed below:

The Training Data set is used throughout the training process and is used to

compute the error (cost function) of the current network configuration (i.e.

the weights and biases of the neurons), which in turn is used to update these

values and drive the network learning.

The Test Data set is used at the very end of the training process. This data is
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kept aside and only shown to the network once training has been completed

and allows for an assessment of how well the network is able to generalise

to new data that it has not seen before.

The Validation Data set has a slightly more complicated role. It is used to

check how well the network is learning during training after each epoch

(training cycle). It is similar to the test data set in that it is able to assess

the network’s ability to generalise, however, it has a more important role

also. The validation set is used to check whether the network is over-fitting

to the training data. Normal training would result in the error for both

the training and validation data sets to decrease as the number of epochs

increases. However, when a network begins to over-fit to data, the error in

the validation set begins to increase again while the error for the training

data continues to decrease. The two error values diverge. It is at this stage

that the training is then stopped as the network is no longer learning about

the general trends in the data, but rather is beginning to learn about the

noise that is in the training data set itself (Marsland, 2009). This is known

as over-fitting. When the training and validation errors begin to diverge, and

the validation error begins to increase, training is not stopped immediately.

Rather, training is halted when the validation error has continued to increase

over a given number of epochs (known as the number of validation data

failures). Setting this to a low value halts training at the first sign of over-

fitting, when it may be pre-mature. Increasing the value allows the training

to continue while monitoring and ultimately better asses whether over-fitting

is indeed taking place.

Training was performed using the Levenberg-Marquardt Backpropagation al-

gorithm (Hagan and Menhaj, 1994) with the learning rate held constant at 0.01.

The number of validation data failures was set to 15, and the target gradient value

was set to 0.001.
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7.3.3.1 Training Results

There are a few ways in which a regression model may be evaluated. The most

common is to observe how the error/cost function J(Θ) varies as model learns

(i.e. across training epochs). As the model becomes more tuned to the data that

it is learning from, the overall error decreases as the number of training cycles

increases. When this occurs, it is a good indication that the model has indeed

undergone an optimisation process and as a result is becoming a more accurate

approximating to the underlying function within the training data. This decrease

in the error is not always a linear process. Rather, depending on the learning

algorithm that is used, as well as the error metic (in this case, the mean squared

error (MSE)), the decrease in error is non-linear, where the overall MSE is quickly

reduced in the early stages of the training, after which it begins to flatten out as

the model becomes more refined.

As outline above, the training process for the ANNs made use of three data

sets. The training data, validation data, and then the test data. The training

and validation data sets were used throughout the training process, and as such,

their values after each training cycle may be monitored and plotted as a function

of epochs. Figure 7.5 shows plots of the mean MSE in both the training and

validation data sets for each of the eight NLU parameters. As there were 50

ANNs trained for each NLU parameter, the plots show the average MSE values

across all 50 networks, for each epoch.

Each of the plots shows that indeed each of the 50 networks for each of the

NLU parameters indeed did have a decrease in the MSE through the training

process. The plots also reveal that the error for both the training and validation

data sets had similar values throughout the training process, suggesting that the

ANNs were indeed able to generalise also.

In addition to the error plots, table 7.3 shows the overall values of the training,

test, and validation data for all 50 networks for each NLU parameter once training

had finished, as well as the duration of training as measured in epochs, and the

gradient values of error function. From this table it can be seen that the number
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of epochs required to train each ANN, across the different NLU parameters varied

notably. For example, the mean number of epochs for the Sound Unit Count and

the Tremolo ANNs tended to be around double that for the Base Frequency and

Frequency Range. This may suggest that the respective function mappings for

each parameter varied considerably in complexity.

The table also shows that the performance with respect to the error in the three

data sets was very comparable once training had completed, with this being true

for each of the either NLU parameters. This again suggests that the networks have

been able to approximate the underlying functions while retaining their ability to

generalise (this, overfitting does not appear to have been a large problem).
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Figure 7.5: Plots of the mean errors (based upon 50 ANNs) in the Training data
and Validation data sets over the ANN training cycles (epochs), for each NLU

parameter.
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Table 7.3: Performance values for the eight trained ANNs. The table shows the number of Epochs performed during training, and the
performance on the Training, Validation and Test data sets after training was completed, as well as the final gradient values.

Network Values
Network Performance At the End of Training

Epochs Train Performance Validation Performance Test Performance Gradient Values

Base Frequency

Mean 26.44 0.4417 0.4689 0.4687 0.0135
Std 9.008 0.007 0.0228 0.0210 0.0161
Min 18 0.4233 0.4146 0.4298 5.76×10−5

Max 56 0.456 0.5255 0.5182 0.0564

Frequency Range

Mean 24.640 0.4382 0.4691 0.4669 0.0169
Std 6.5489 0.0083 0.0254 0.0262 0.0235
Min 18 0.4129 0.4124 0.4064 1.15×10−4

Max 45 0.4558 0.5353 0.5173 0.1280

Pause Ratio

Mean 48.540 0.1654 0.1734 0.1742 0.0075
Std 30.125 0.0055 0.0102 0.0091 0.0125
Min 18 0.1572 0.1510 0.1535 4.81×10−5

Max 150 0.1768 0.1950 0.1955 0.0664

Rhythm

Mean 25.620 0.0918 0.1064 0.1333 0.0065
Std 8.0277 0.0077 0.0273 0.2354 0.0096
Min 18 0.0721 0.0395 0.0448 1.02×10−4

Max 49 0.1094 0.1827 1.7519 0.0480

Speech Rate

Mean 27.600 0.2357 0.2503 0.2481 0.0071
Std 15.4906 0.0044 0.0126 0.0152 0.0110
Min 17 0.2253 0.2179 0.2175 7.35×10−5

Max 133 0.2453 0.2848 0.2780 0.0508

Tremolo

Mean 71 0.3176 0.3362 0.3441 0.0094
Std 46.9881 0.0247 0.0284 0.0380 0.0152
Min 25 0.2829 0.2757 0.2736 2.30×10−5

Max 295 0.3648 0.4292 0.4512 0.0784

Wave Type

Mean 48.200 0.1489 0.1581 0.1589 0.0065
Std 31.6937 0.0068 0.0117 0.0117 0.0096
Min 17 0.1383 0.1334 0.1337 2.05×10−5

Max 208 0.1645 0.1848 0.1953 0.0446

Sound Unit Count

Mean 84.1400 0.1369 0.1482 0.1539 0.0066
Std 59.2043 0.0100 0.0156 0.0175 0.0152
Min 28 0.1256 0.1046 0.1222 2.58×10−5

Max 333 0.1619 0.1725 0.1967 0.0896
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Table 7.4: Correlation Coefficients (ρ) between the target output values and the
ANN output values (based on 50 ANNs), for each NLU parameter.

Parameter Correlation (ρ)

Base Frequency 0.2114
Frequency Range 0.1992
Pause Ratio 0.3248
Speech Rate 0.1191
Rhythm 0.2303
Tremolo 0.5322
Wave Type 0.3841
Sound Unit Count 0.5596

7.3.3.2 Function Approximation Accuracy

While monitoring the error in a networks performance can provide insights as

to whether the network has been learning to approximate a function, doing this

provides limited insights as to the final accuracy of the mapping that is being

learnt. A more fruitful approach to this end is the compare the expected (or target)

output values for a given input value against the value output by the network. This

is shown in figure 7.6 for each of the NLU parameters. A perfect approximation

would result in the ANN output values being identical to the target values, and

thus all the data points in the plot would fall along the diagonal blue line. The

plots however show that this is not the case for each of the ANNs trained for each

of the NLU parameters. Rather, the plots show that the approximations made

by the networks overall are far from perfect and hold considerable inaccuracy, as

well as not covering the full possible range of output values.

This is also evidenced further by the low correlation coefficients between the

ANN output values and the target values (see table 7.4). However, while this

is the case, this method of assessing the final network does not account for the

complexity of the function that needs to be approximated, which in this case is

known the be complex due to conflicting affective ratings for NLUs with similar

properties. As such, it is perhaps not overly surprising that the approximation

accuracy is by no means perfect.
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Figure 7.6: Plots of the ANN output values (of 50 ANNs) vs the target output
values for each of the NLU parameters. See table 7.4 for the Correlation

Coefficients.

198



Table 7.5: Mean, Standard Deviations, Minimum and Maximum values for the
ANN Mappings for each of the utterance parameters.

Parameter
Mapping Values

Mean Std Min Max

Base Frequency 0.0982 0.0922 -0.1156 0.4174
Frequency Range -0.1156 0.0874 -0.1005 0.3555
Speech Rate 0.3074 0.0807 0.1564 0.5362
Pause Ratio -0.0847 -0.0847 -0.3199 0.0435
Rhythm 0.9246 0.0334 0.7993 0.9806
Tremolo -0.2527 0.1304 -0.9694 0.0081
Sound Unit Count 0.0593 0.0999 -0.1472 0.5949
Wave Type 0.3353 0.0666 0.0454 0.4952

Table 7.6: Partial Linear Correlation Coefficients (ρ) between the affect space
dimensions and the generation parameter values output from the ANN.

Parameter
Affect Space Dimension

Pleasure Arousal Dominance

Base Frequency 0.164 0.381 0.592
Frequency Range 0.482 0.400 0.715
Speech Rate 0.609 -0.325 0.650
Pause Ratio -0.486 0.095 -0.688
Rhythm 0.226 0.124 0.155
Tremolo 0.104 0.186 -0.171
Sound Unit Count 0.088 -0.278 0.319
Wave Type -0.172 0.507 -0.201

7.3.4 Affective Mapping Analysis

Figure 7.7 displays surface plots of the averaged mapping values between the affect

space (along the Pleasure and Dominance dimensions) and the individual param-

eter spaces. Upon initial visual inspection these plots show correlations between

a variety of the parameters. It is also worthy to draw attention to the value range

of the parameter mappings, which tend to be small rather than covering the full

range of [−1 1] which the training data set did do. Table 7.5 shows the mean,

standard deviation, minimum and maximum values of the mappings for each of

the NLU parameters.

Table 7.6 shows the Liner Partial Correlation Coefficients (ρ) between each

dimension in the affect space (accounting for the other two dimensions) and each

acoustic parameter. These correlations reveal that there are certain notable tends

within the mappings. For example, the correlation coefficients indicate that the
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Speech Rate parameter is positively correlated with both the Pleasure (ρ = 0.609)

and Dominance (ρ = 0.650) dimensions. Also, the Base Frequency and Frequency

Range parameters are also found to be positively correlated with all the affect

space dimensions, with a varying degree. What is interesting to see is that some

of the of these values appear to concur with findings that have been reported

in the related psychological and musicology literature. For example, Banse and

Scherer (1996) confirmed predications made by Scherer (1986) regarding the acous-

tic correlates of the human voice across different emotions states, finding that the

fundamental frequency (Base Frequency parameter) of the human voice increases

with happy, while decreasing with sad and anger, with the range of the funda-

mental frequency (Frequency Range parameter) following a similar pattern. Also,

with respect to the Speech Rate, it was found that with a happy emotion, speech

rate went up (meaning a flagger Speech Rate and a Smaller pause Ratio), while

going down with a sad emotional state.

As well as calculating the correlations between the individual input and output

values, the correlation coefficients between each of the output values were also

calculated using Spearman’s ρ. These coefficients are shown in table 7.8. These

coefficients reveal valuable insights as to how the different outputs co-vary. For

example, a significant (p < 0.01), positive correlation between the Base Frequency

and Frequency Range is identified (ρ = 0.806). Similarly, a significant (ρ =

−0.813), negative correlation is identified between the Speech Rate and Pause

Ratio parameters. The Rhythm parameter was also found to be with both the

Speech Rate (ρ = 0.463, p < 0.01) and Pause Ratio (ρ = −0.626, p < 0.01).

The corrections between the Speech Rate, Pause Ratio and Rhythm parameters

are all intuitive in that each of these parameters directly influences the temporal

characteristics of an utterances. In order to produce a fast utterance, the Speech

Rate should be high, with a small Pause Ratio (with the opposite being true for

producing slow utterances).

From these correlations, more general characteristics (that are specific to this

mapping) may be extracted regarding the features of utterances and their respec-
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Table 7.7: General description of utterance characteristics is different regions of
the AffectButton PAD affect space.

Affect Space
Label Utterance Description

P A D

1.0 1.0 1.0 Excited Fast, high pitch utterances, with short
pauses a high frequency range and a clear
beat and a medium tremolo.

0.5 0.11 0.5 Happy Same as Excited, but overall to a lesser de-
gree, however the rhythm is more renounced.

-1 1.0 1.0 Angry Medium pitch and frequency range and a
high tremolo. Utterances are slow, with
medium pauses and medium rhythm.

-0.5 0.11 0.5 Annoyed Similar to Angry, but slower utterances, little
rhythm, high tremolo and low base frequency
and frequency range.

1.0 1.0 -1.0 Surprised Medium base frequency and range, with
medium fast speech rate and rhythm, but a
low pause ratio.Tremolo is high.

0.5 0.11 -0.5 Content Similar to surprised, but lower frequencies
rhythm, but it slightly faster speech and
slightly higher pause ratio. Tremolo remains
high..

-1.0 1.0 -1.0 Scared Medium base frequency and range. Slow
speech rate and high pause ratio, and a
medium rhythm value. Tremolo is high.

-0.5 0.11 -0.5 Sad Low base frequency and range. Slow utter-
ances with a high pause ratio, but with high
rhythm. Tremolo is low.

0 -1 0 Relaxed Medium base frequency and range, and
medium speech rate and pause ratio.
Rhythm is high and tremolo is low.

tive (and supposed) affective meaning. Table 7.7 outlines the utterance charac-

teristics for each of the nine affective prototype locations within the AffectButton

PAD space.

Figures 7.7f, 7.7g and 7.7h stand apart from the other plots in figure 7.7 as

in these there is a clearly visible diagonal peak/trough in the mappings. These

diagonals coincide (with respect to the affect space) with the data collected from

the Categorical Perception experiments and are due to the modification of the

AffectButton, where the input PAD space was limited such that the Pleasure and

Dominance ratings were equal to each other, and their values limited to fall within

the range [−0.5 1]. Furthermore, in the utterances used in this experiment, the
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values for the Tremolo, Sound Unit Count and Wave Type were all fixed and as

such have been learnt by the ANNs, which is also something that impacts the

subject evaluation of the mappings.
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Figure 7.7: Plots of average mappings learnt by the independent ANNs for each
of the 8 parameters.
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Table 7.8: Spearman’s ρ Correlation Coefficients for the correlation between the different ANN output values of the utterance parameters.

Base Freq Freq Range Speech Rate Pause Ratio Rhythm Tremolo Sound Unit Count Wave Type

Base Freq 1.0
Freq Range 0.806** 1.0
Speech Rate 0.463** 0.602** 1.0
Pause Ratio -0.402** -0.545** -0.813** 1.0
Rhythm 0.106** 0.091** 0.463** -0.626** 1.0
Tremolo -0.021 -0.006 -0.202** 0.439** -0.565** 1.0
Sound Unit Count 0.084** 0.032 0.343** -0.502** 0.324** -0.463** 1.0
Wave Type 0.058* -0.060* -0.480** 0.523** -0.486** 0.408** -0.316** 1.0
* : p < 0.05
** : p < 0.01
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7.4 Subject Evaluation

Up to this point, this chapter has been concerned with the training of ANNs

to learn an affective mapping between input coordinates within an affect space,

and output values for parameters that characterise NLUs, the results of which

have been described above. This section details an experiment in which these

mappings are evaluated and tested in order to assess their validity. In essence, this

evaluation seeks to uncover whether the mappings indeed produce NLUs which

subjects are able to accurately and coherently decode, and having the desired

affective interpretation. If an NLU n is generated using the input coordinate

(pi, ai, di), that subjects indeed provide an affect rating (pr, ar, dr) that is similar

to (pi, ai, di). If this is not the case, then it suggests that either the mapping

is incorrect, or that subjects in general find it cumbersome to attribute affective

ratings to NLUs coherently, when presented outside of an interaction context and

in an context-free scenario.

7.4.1 Experimental Setup

The experiment was setup with a local primary school where young children (aged

7-8 yrs) were recruited to partake. The children were presented with NLUs gener-

ated (and played through the robot’s onboard speakers) using parameters output

by the ANNs and asked to rate these using the AffectButton by assigning facial

expressions to each utterance. If the mappings that have been learnt by the ANNs

are indeed correct (i.e. subjects are sensitive to the different acoustic cues in the

utterances and are able to decode the affective meaning accurately), then one

would expect to see a strong correlation between the PAD values used to generate

utterances and the corresponding PAD ratings associated with those utterances

As with the experiment in chapter 6, since the AffectButton was used to

capture affective ratings, subjects completed three different tasks: a Matching

Task, an Identification Task, and finally a Labelling Task. These are explained in

sections 7.4.1.2, 7.4.1.3 and 7.4.1.4 respectively.
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7.4.1.1 Stimulus Production

13 PAD values from the AffectButton input space (figure 7.8) were selected and

input to trained ANNs to obtain mapped values for the Base Frequency, Frequency

Range, Speech Rate Pause Ratio and Tremolo parameters (table 7.9). Given the

small range of the mapping values for many of the parameters, for this experiment,

the mapping values were normalised such that they fell into, and fully covered the

numeric range of [−1 1], thus also covering the full working range of the generation

algorithm. Had this not been done then it would be likely that many of the NLUs

would have sounded very similar if not identical. The Sound Unit Count, Rhythm,

Wave Type and Pitch Contour values were all pre-specified and held constant.

Two different pitch contours were predefined. This was done as no mapping

was learnt for this parameter and allowing this to be randomised for each of

the utterances generated would introduce an random element that would not

be accounted for when presenting these utterances to subjects. The difference

between the two pitch contour specifications was that the contour shape of the

first and last sound unit were identical, both set to rising in the case of the first

specification, and both set to falling in the case of the second specification (see

figure 7.10). This was done in order to test whether the different pitch contours

would evoke different affective ratings from the subjects.

The rhythm parameter was held constant at a value of 1 for all utterances as

this parameter, when below a value of 1, controls the amount of random variance

with which the duration of each sound unit is specified. Thus, if the value is not

equal to 1, Then it cannot be guaranteed that each NLU would be identical with

respect to the duration of each individual sound unit. the sound unit count was

held constant with a value of 5, keeping to the aim of studying longer, nor complex

utterances, rather than short, single burst iconic utterances. Finally, only sine

waves were used as the carrier signals, as has been the case in the majority of the

work in this thesis.

For each of the in PAD input values, the ANN output values and pre-specified

parameter values were input to the NLU generation algorithm and the outputs

206



D
om

in
an

ce A
rousal

Pleasure

1

0

0.2

0.4

0.6

0.8

-0.2

-0.4

-0.6

-0.8

-1

1

-1
10.80.60.40.20-0.2-0.4-0.6-0.8-1

Figure 7.8: AffectButton PAD values used as inputs to the trained ANNs used
to obtain the output utterance parameter values used to generate the

experimental NLUs.

recorded. This was done for each of the two Pitch Contour specifications (CS1

and CS2), thus producing a total of 26 experimental utterances.

7.4.1.2 Matching Task

The matching task was used as a means to help subjects explore the range of the

facial gestures that the AffectButton is able to produce. Subjects were first guided

through the buttons input space by the experimenter. Once complete, subjects

were presented with an image of a prototypical AffectButton face and asked to

match the face of the onscreen AffectButton to the face in the image (see figure

7.11a). Eight of the nine prototypical AffectButton faces were used (see figure

E.1) and presented to subjects in a random order. If it appeared that subjects

were struggling to match a face, the experimenter, provided a suggestion as to the

region of the AffectButton input space that would produce the facial gesture to

be matched.

7.4.1.3 Identification Task

Once acquainted with the AffectButton via the matching task, subjects were then

asked to listen to the experimental NLUs and assign a facial gesture to match

how they thought that the robot felt. Subjects were first presented with five test
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Figure 7.10: Spectrograms of NLUs with the two difference pitch contour
specifications.
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Table 7.9: Obtained Mappings between the PAD values input to the ANNs and
the output parameter values, scaled to fit the working range of the NLU

generation algorithm.

NLU
PAD Values Parameter Values

P A D B. Freq F. Range S. Rate P. Ratio Trem

1 -0.8 0.111 -0.8 753.9 861.5 1.33 0.934 0.25
2 -0.8 0.111 0.8 1072.97 1036.8 2.37 0.66 0.17
3 -0.5 -1.0 -0.5 528.35 570.31 2.22 0.78 -0.28
4 -0.5 -1.0 0 590.89 574.70 2.27 0.77 0.09
5 -0.5 -1.0 0.5 775.78 803.84 1.92 0.81 0.29
6 0 -1.0 -0.5 837.17 925.42 2.43 0.61 0.20
7 0 -1.0 0 767.08 828.70 4.01 0.44 -0.34
8 0 -1.0 0.5 864.10 807.17 3.52 0.59 0.27
9 0.5 -1.0 -0.5 1040.87 1077.11 3.31 0.83 0.33
10 0.5 -1.0 0 1001.85 1034.02 4.96 0.63 0.30
11 0.5 -1.0 0.5 1080.22 1120.10 5.36 0.08 -0.36
12 0.8 0.111 -0.8 767.54 873.31 2.44 0.78 0.33
13 0.8 0.111 0.8 1500 1460.77 5.83 0.19 -0.10

utterances, before being presented with the 26 experimental NLUs. The order

of the test utterances was held constant for all the subjects, while the order of

the experimental utterances was randomised. Subjects were allowed to hear each

utterance as many times as they wished, but were not permitted to hear any

previous utterances.

7.4.1.4 Labelling Task

Finally, in order to assess the subjects’ ability to use the AffectButton, subjects

undertook a labelling task, whereby they were asked to assign a facial gesture

to match an affective label (see figure 7.11c). The labels that were used were:

Excited, Happy, Angry, Surprised, Sad, Scared and Calm and were presented in

a random order. As with the labelling task used in the Categorical Perception

experiment in chapter 6, this choice of labels was motivated by the prototype faces

that are hardcoded in the AffectButton and the overlap with the theory of basic

emotions (Plutchik, 1994), with the assumption that children would be familiar

with the affective labels and have an good understanding of there meaning.
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(a) Matching Task (b) Identification Task

(c) Labelling Task

Figure 7.11: Images of the subjects’ laptop for each of the three tasks performed
during the experiment.

7.4.1.5 Experimental Procedure

Subjects were recruited via two year 3 (7-8 yrs) classes in local primary school,

and were taken out of class time individually to partake in the experiment. The

experiment itself was conducted in a spare classroom in the school, and spread

over two days of the week (one day for each class). The children were seated

in front of a laptop computer, with the Nao robot standing on the table facing

the child. A second laptop was operated by the experimenter, and was used to

manage the experiment and orchestrate the data flow between the robot and the

subjects laptop, collecting all the data in a single location. Figure 7.12 shows an

image of the experimental set up.

The Nao was programmed such that when touching it on the head, it cycled

through the different stimuli in each task. This was controlled by the experi-

menter. The robot was also programmed to exhibit some natural behaviour (e.g.

gazing, shifting weight, moving fingers and arms) as a means to avoid present-

ing the robot as a static object, but rather promote the idea of the robot being

“alive”.

When each child entered the room, they were seated in front of the robot. The
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Figure 7.12: Image of the experimental setup.

experimenter explained that the robot, called “Pop”, was a little different from

humans as he didn’t speak in english, but rather, he spoke with sounds, however,

we were unable to understand what Pop was saying when he spoken, and how he

felt when he was speaking. The children were told that they needed to tell the ex-

perimenter how they thought Pop was feeling when he said something. Following

this, the children were asked whether they had used a laptop computer before, and

were shown how to use the trackpad, and how to control the AffectButton face3.

Once acquainted with the laptop itself and the use of the trackpad, the children

performed the Matching, Identification and Labelling Tasks, in that order.

No reward was given after the experiment, however at the end of each day,

the class was given a little demonstration of the Nao, and were free to ask any

questions about the robot.

7.4.2 Results

In total, 25 children (aged 7-8 years old) partook in the experiment: 12 boys and

13 girls. The average time taken to complete the experiment was 12 minutes (std

= 3.5 mins).

As the matching task served as a means to help subjects become acquainted

with the AffectButton, with the experimenter, in some cases, providing sugges-

tions to the subjects, the data collected regarding the PAD values provided by

3The movement of the mouse cursor was limited to within the area of the AffectButton in
order to make the task simpler and less confusing for the children.
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Figure 7.13: Plot of the PAD ratings for the 26 NLUs presented to subjects
during the Identification Task.

the subjects for each face are not subject to analysis.

The data for the Identification and Labelling Tasks were also found to be non-

normal. Due to to this (as with the experiments in chapter 5), traditional tests

such as the (M)ANOVA are not applicable as a means of performing analysis as

the assumption of data normality is violated. As such, the data collected has been

subject to non-parametric tests as an alternative.

7.4.2.1 Identification Task Results

Figure 7.13 shows a plot of all the subject PAD ratings obtained for the experi-

mental NLUs. A visual inspection of the data points indicates, as with the ratings

observed in the experiment in chapter 5, that the subjects tended to provide ex-

treme ratings: ratings are drawn to the corners of the affect space. We again

appear to see characteristics of categorical perception (chapter 6)

Cronbach’s α was used as the measure of agreement between subjects in their

ratings. The α values were calculated for the ratings grouped by the two genders

(males, female and both) as well as the ratings for the two different pitch con-

tour shapes (CS1, CS2 and both). The values are shown in table 7.10 and show

that subjects had, in general weak agreement along the Pleasure and Dominance

dimensions, while having notably high agreement along the Arousal dimension.

This shows that the while subjects had little agreement in their selection along the
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Table 7.10: Cronbach’s α values indicating the degree of agreement between
subjects in their ratings of the NLUs. α values are shown for ratings grouped by

gender, and for each of the pitch contour specifications.

Subjects Contour
Affect Space Dimension

Pleasure Arousal Dominance

All
Both 0.378 0.808 0.433
CS1 0.218 0.693 0.271
CS2 0.341 0.681 0.367

Females
Both 0.536 0.793 0.429
CS1 0.197 0.668 0.312
CS1 0.581 0.703 0.174

Males
Both 0.079 0.818 0.476
CS1 0.288 0.724 0.087
CS2 -0.339 0.658 0.491

Table 7.11: Pearson Correlation Coefficients (ρ) between the input and observed
PAD values. None of the ρ values are statistically significant at the 0.05 level.

Subject Ratings
P A D

Input PAD Values
P -0.034 -0.023 0.031
A 0.042 0.044 0.025
D -0.078 -0.004 -0.024

Pleasure and Dominance dimensions (i.e. along the horizontal and vertical axis of

the AffectButton input space), they did exhibit strong agreement in their rating

with respect to the radial distance from the horizontal and vertical origin (i.e. the

center co-ordinates of the button). This too supports the notion of categorical

perception being present.

Table 7.11 shows the Pearson Correlation Coefficients (ρ) between the PAD

values used as inputs to the ANNs, and the subject ratings for each of the gener-

ated NLUs. All the values are near zero and show that, overall, subjects did not

coherently provide ratings that were similar to the original PAD values used to

generate the NLUs, nor did they coherently provide ratings that were dissimilar

to the original PAD values. Rather, the values show that there is little relation

between the input PAD values used to generate the NLUs, and the ratings for

these NLUs.

The findings of the Cronbach’s α and the Pearson Correlation Coefficients are

also echoed in table 7.12, which shows the partial linear correlation coefficients
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Table 7.12: Partial Linear Correlation Coefficients (ρ) between the parameters of
the experimental NLUs and their PAD affective ratings.

Parameter
Affect Space Dimension

Pleasure Arousal Dominance

Base Frequency -0.045 0.025 0.039
Frequency Range -0.032 0.024 0.051
Speech Rate -0.068 -0.004 0.028
Pause Ratio 0.078 0.002 -0.027
Tremolo 0.051 0.023 -0.002

between each NLU parameter, and the PAD (along each dimension, accounting

for the remaining dimensions) obtained from the subjects. The table shows that

there is essentially no correlation between any of the 5 varied parameters (Base

Frequency, Frequency Range, Speech Rate, Pause Ratio and Tremolo) and the

affective ratings, as all the ρ values are low.

Friedman tests were used to perform a non-parametric one-way repeated mea-

sures ANOVA, testing for differences in the ratings of the NLUs. This was done

for each affective dimension independently, with the data being isolated by subject

gender (males, females and both) as well as the pitch contour shapes (CS1, CS2

and both). Figure 7.14 shows plots of the mean values and standard deviations of

the ratings for each NLU specification, for both pitch contour specifications. The

table shows that there was significant differences between any of the the ratings

for the different NLUs along any of the affective dimensions. This was true when

grouping the data by subject gender and the pitch contour specification. These

results are summarised in table 7.13.

Friedman tests were also employed to compare the ratings across the two dif-

ferent pitch contour specifications (PC1 and PC2). As with the tests checking for

differences due to the different utterance specifications, no significant differences

were found due to the different pitch contours, along any of the three affective

dimensions, regardless of the subject gender. These results are summarised in

table 7.14.

Kruskal-Wallis (KW) tests were used to check for differences in ratings between

the two genders, along each affective dimension individually. These tests found

no significant differences in the affective rating provided by the two genders along
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Table 7.13: Results of the Friedman tests, testing for significant differences in
the affective ratings for each of the NLUs. Ratings are grouped by gender as well

as the contour specification. The table shows the degrees of freedom for each
test, the χ2 values and the associated p values.

Subjects Contour d.f.
Affect Space Dimension

Pleasure Arousal Dominance
χ2 p χ2 p χ2 p

All
Both 25 26.27 0.393 20.09 0.742 22.6 0.601
CS1 12 10.09 0.608 11.47 0.489 11.34 0.500
CS2 12 14.34 0.280 9.31 0.677 10.13 0.605

Females
Both 25 26.19 0.398 24.65 0.482 27.98 0.309
CS1 12 13.73 0.318 7.56 0.819 12.85 0.380
CS2 12 15.64 0.208 16.05 0.189 10.65 0.559

Males
Both 25 34.11 0.106 24.83 0.472 21.83 0.645
CS1 12 14.77 0.254 15.57 0.212 10.1 0.608
CS2 12 15.27 0.227 10.11 0.606 9.33 0.675

Table 7.14: Results of the Friedman tests, testing for significant differences in
the ratings across the two different Pitch Contour Specifications with ratings
grouped by subject gender. The table shows the degrees of freedom for each

test, the χ2 values and the associated p values.

Subjects d.f.
Affect Space Dimension

Pleasure Arousal Dominance
χ2 p χ2 p χ2 p

Both 1 1.58 0.209 0.18 0.671 0.02 0.898
Females 1 0.14 0.706 0.1 0.751 1.9 0.168
Males 1 1.91 0.167 0.81 0.369 2.26 0.133

the Pleasure (χ2(1) = 1.4, p = 0.236), Arousal (χ2(1) = 3.12, p = 0.075) or

Dominance dimensions (χ2(1) = 0.11, p = 0.735).
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Figure 7.14: Mean and Standard Deviations of the ratings for each NLU specification. Blue data shows the ratings for CS1 and red points for
CS2. The green point shows the original PAD input value used to generate the NLU parameters. The descriptive statistics for these plots are

summarised in table E.1.
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Figure 7.15: Plots of the mean and standard deviations of the ratings for each
affective label in the Labelling Task (see table 7.16 for a summary of the

descriptive statistics). Figure E.2 shows the AffectButton facial gestures for the
mean ratings for each of the affective labels.

7.4.2.2 Labelling Task Results

Cronbach’s α values were calculated for the label ratings, along each of the af-

fective dimensions, with data grouped by subject gender. The α values are sum-

marised in table 7.15. Overall, the values are low, and in the case of the Pleasure

dimension, negative. This indicates that there was little agreement in how sub-

jects used the AffectButton.

Figure 7.15 shows a plot of the mean and standard deviations of the ratings

for each affective label. A visual inspection suggests that while there are low

Cronbach’s α values, subjects provided a broad variety of ratings and appear to

have been able to differentiate between some of the labels along both the Pleasure

and Dominance dimensions. To further investigate this, Friedman tests was used

to check for significant differences in the ratings for each of the affective labels.

Table 7.15: Cronbach’s α values calculated for the results obtained during the
Labelling Task, across the subjects genders.

Subjects
Affect Space Dimension

Pleasure Arousal Dominance

Both -0.281 0.363 0.216
Females -0.836 0.365 0.397
Males -0.310 0.271 0.026
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Table 7.16: Mean and standard deviations of the ratings for each of the affective
labels in the Labelling Task, along each of the affect space dimensions.

Label
Affect Space Dimension

Pleasure Arousal Dominance
Mean Std Mean Std Mean Std

Angry -0.850 0.218 0.968 0.097 0.940 0.080
Happy 0.658 0.246 0.582 0.559 0.774 0.302
Excited 0.815 0.177 0.817 0.405 0.682 0.559
Sad -0.375 0.204 -0.690 0.458 -0.491 0.147
Scared -0.269 0.690 0.510 0.713 -0.623 0.376
Surprised 0.845 0.193 0.950 0.107 -0.486 0.710
Calm 0.150 0.363 -0.601 0.502 0.155 0.409

The tests found that there were significant differences in ratings along the Pleasure

(χ2(6) = 118.59, p < 0.001), Arousal (χ2(6) = 103.63, p = 0.001) and Dominance

(χ2(6) = 99.41, p < 0.001) dimensions.

Pairwise Friedman tests were performed as post-hoc tests in order to identify

which labels were significantly different in their ratings, with this being done for

each of the three affective dimensions individually. The results of these tests

(χ2(1) values) are summarised in table 7.17. The tests found that in the majority

of cases there were significant differences in the ratings for each affective label.

However, it was also found that certain similar labels did not have significantly

different ratings, thus revealing a degree of confusion between the labels. For

example, the ratings for Happy and Excited were only significantly different along

the Pleasure dimension (χ2(1) = 4.84, p < 0.05), with Excited having a higher

rating than Happy. Also, the ratings for Scared received a higher Arousal rating

than Sad (χ2(1) = 16.67, p < 0.001). Finally, there was no significant difference

found between the ratings along the Dominance dimension between the Excited

and Surprised labels. The means values and standard deviations of the ratings

for each different affective label are summarised in table 7.16.

Finally, Kruskal-Wallis tests were employed to check for differences in how the

two genders rated the affective labels. The tests found no significant differences

along either the Pleasure (χ2(1) = 0.56, p = 0.456), Arousal (χ2(1) = 0.08,

p = 0.781) or Dominance (χ2(1) = 0.06, p = 0.812) dimensions.
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Table 7.17: Results of the pairwise Friedman test comparing the ratings between
of the affective labels in the Labelling Task. The table shows the χ2(1) values

with an indication of the degree of statistical significance along each affect space
dimension.

Label Ang Hap Exc Sad Sca Sur Calm

Angry
P
A -
D

Happy
P 25‡
A 11.27‡ -
D 8.17†

Excited
P 25‡ 4.84∗
A 0.11 2 -
D 2.67 0.36

Sad
P 17.64‡ 25‡ 25‡
A 25‡ 17.64‡ 25‡ -
D 25‡ 25‡ 17.64‡

Scared
P 11.56‡ 14.44‡ 17.64‡ 0.36
A 6.25∗ 0.53 2.57 16.67‡ -
D 25‡ 25‡ 17.64‡ 3.24

Surprised
P 25‡ 14.44‡ 3.24 25‡ 14.44‡
A 3 5.56∗ 0 25 5.4∗ -
D 23‡ 11.56‡ 13.5‡ 4.84∗ 0.04

Calm
P 25‡ 21.16‡ 21.16‡ 17.64‡ 3.24 25‡
A 25‡ 21.16‡ 21.16‡ 0.22 19.17‡ 25‡ -
D 25‡ 17.64‡ 9† 14.44‡ 14.44‡ 9†

∗ : p < 0.05
† : p < 0.005
‡ : p < 0.001

7.4.3 Summary of Results

To provide a brief summary of the results, the results of the Matching task were

not subject to statistical analysis as the purpose of this task was primarily to aid

subjects in the process of exploring the AffectButton input space.

For the Identification Task, it was found that there was no real relationship

between the PAD values used to generate and affectively charge NLUs, and the

ratings that subjects gave these utterances. This was furthered as there was also

no relation found between the values of the utterance parameters and the subjects’

ratings. While there were 26 different utterances rated, each with notably different

parameter values, were no differences in how subjects rated these utterances - in

essence, subjects showed little coherence in their affective interpretations of the
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utterances. Finally, it was also found that there was no difference in how the two

genders rated the utterances, nor was there a difference due to the different pitch

contours.

The results of the Labelling Task found that subjects indeed appeared to be

coherent in how they assigned facial gestures to different affective labels. More

importantly, the results demonstrate that the children were able to discriminate

between the different affective labels along affective dimensions that differentiate

the affective labels. This is taken as strong evidence that the children were indeed

able to use the AffectButton tool correctly.

7.5 Discussion

As this chapter can naturally be split into two sections: the design and imple-

mentation of the ANNs, and the subject evaluations, the discussion presented in

this section will address these two sections individually.

7.5.1 ANN Design and Implementation

This chapter has presented the implementation of simple feed-forward ANNs to

uncover potential correlations between the parameters and affect space dimensions

based upon a training data set. While there are similarities between the mappings

learnt by the ANNs and other works such as Laukka et al. (2005); Scherer (2003);

Burkhardt and Sendlmeier (2000), there are problems that stand in the way of

being able to make direct comparisons. For instance, the review works of Scherer

(1986, 2003), Banse and Scherer (1996) have a focus around emotional labels

rather than affective dimensions. Similarly the large scale review of affective

expression in music and speech by Juslin and Laukka (2003) presents a similar

problem. Given that these are works providing a review of fields of research,

this highlights the more general issues that revolve around the use of different

representations of emotions and affect and how these differing representations can

make meaningful comparisons cumbersome. As such, the work presented in this

thesis indeed also falls victim to the same shortcoming by the use of a highly
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specific and novel affective measuring tool.

The end solution that has been employed has used a single ANN for each ut-

terance parameter, rather than using a single network to handle all the inputs

and outputs in one model. This solution was informed through brief explorations

where it was found that a single network did not provide adequately robust map-

pings when compared to a collection of multiple networks. This may well be

the case as the initial training data presented a fundamental problem where, if a

single network were used, it would need to perform dimension expansion, rather

than reduction. By splitting the training data into smaller sets, each tailored to

a specific utterance parameter, and subsequently training individual networks on

these sets, the problem suddenly becomes one of dimension reduction, a task at

which ANNs have been shown to perform well (Marsland, 2009). Though it can

be argued that doing this came at the expense of potentially overlooking relation-

ships and interactions between the output parameters, the similarity between the

obtained mappings and the findings of the related literature would suggest that

is has not been a problem. Rather, it appears to have been a fruitful choice to

make.

The use of feed-forward ANNs also has the characteristic of function approx-

imation. The ANNs provide a single surface mapping between the inputs and

outputs, which inherently always produces the same output value for a given in-

put value. With respect to generating NLUs, what this entails is that, for certain

parameters at least (e.g. the Base Frequency, Frequency Range, Speech Rate and

Pause Ratio), the networks will produce very similar (if not identical) character-

istics within utterances, which runs the risk of having repetitive utterances for

a given location in the input affect space. An easy way to overcome this is to

add noise to the outputs and/or inputs, thus introducing random variability and

reducing this repetitiveness.

While this issue of a static mapping is not necessarily a negative characteristic

as it simplifies the initial investigation at hand, it does raise the question of how

to avoid having repetitive utterances, which can be a problem in HRI as it runs
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a risk of the robot being perceived as pre-programmed which tends to have an

adverse effect on how people view the robot (Belpaeme et al., 2012; Ros Espinoza

et al., 2011). There are two possible ways to over come this beyond simply adding

noise to the ANN outputs, and they are heavily intertwined. Randomising the

number of sound units within an utterance is potentially one solution, as is pseudo-

randomising the Pitch Contour. The intertwined nature comes from the fact that

as the number of Sound Units in an utterance changes, so must the Pitch Contour.

This chapter has purposely avoided the mapping of the Pitch Contour and used

a fixed value of the number of Sound Units in an utterance as this research has

far as been unable to gain a coherent understanding upon how this feature of an

utterance actually impacts how peoples’ affective interpretations. As such, further

research addressing this is clearly required.

7.5.2 Subject Evaluation

The results of the Identification Task indicate that the subjects did not provide

affective ratings that were similar to the original PAD input values used to gen-

erate the values for the NLU parameters in a coherent manner. This is evidenced

by lack of correlation between the original PAD values and the obtained PAD

ratings. Furthermore, there is also no correlation between the affective ratings

provided by the subjects and the generation parameters, showing that subjects

did not appear to associate particular generation parameters with different fa-

cial gestures/affective states. This is to be expected as the trained ANNs have

provided a correlated mapping between the PAD affect space the the parameter

values, and if there is no relationship between the input PAD values and the sub-

jects’ PAD ratings, there will also be no relationship for the utterance parameters

either. More specifically, this may be characterised as subjects’ not being coherent

in their selection of the horizontal and vertical location of the mouse cursor in the

AffectButton, but they did exhibit coherence with respect to the radial distance

from the centre of the button.

Furthermore, the broad range of ratings for each utterance suggest that sub-
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jects were very varied in their affective interpretations, perhaps to the degree that

the ratings were psuedo-random, as the subjects did exhibit coherence in the use

of the AffectButton along the Arousal dimension. However, the plot of the raw

data (figure 7.13) shows clusters of data points in the areas where the prototyp-

ical affective facial expressions are located, indicating that while there is no real

coherence between subjects, they did appear to have interpretations that were

aligned with particular affective prototypes (e.g. happy, sad, angry, surprised):

there appears to be a magnet effect/categorical perception again. This is in line

with the results of chapters 5 and 6.

The results of the Labelling Task show that subjects did appear to exhibit a

strong coherence in their use of the AffectButton. For example, it is clearly shown

that subjects were indeed able to distinguish, to a statistically significant degree,

between the Angry, Sad and Scared labels and the Happy, Exited, Calm and Sur-

prised labels along the Pleasure dimension. Similarly, subjects also appear to have

been able to distinguish between the Angry, Happy and Excited labels, and the

Sad, Scared and Surprised labels along the Dominance and Arousal dimensions.

In both these cases, it is clear that subjects were able to discriminate between the

various labels along the dimensions that fundamentally differentiate the labels.

These findings are more supportive of the notion that subjects were able to use

the AffectButton in a manner whereby they were able to distinguish between the

different basic emotions labels as well as the different facial expressions that are

associated with these labels. This counters the notion that the lack of clear results

in the Identification Task are due to an inability of subjects being able to use the

AffectButton robustly.

Considering the results of both the Identification and Labelling tasks, the lack

of overall coherence between subjects in their affective interpretations of NLUs,

and the lack of correlation between the parameter values and the affective ratings

draws out the question of why this is the case, given that the ANNs have provided

mappings that have notable similarities with the findings that are reported in

the psychology and musicology literature. Why is this the case, and are there
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any ingredients missing currently that are hindering the ability for subjects to

affectively interpret NLUs coherently?

On one hand, given that the ANN mappings have notable similarities with

findings from related literature, it appears that the findings regarding the acoustic

features of the human voice as well as music and how these relate to affective

interpretation do not translate well, (if at all) to NLUs, though it does indicate

the people are indeed sensitive, to some degree, to the acoustic features of NLUs.

On the other hand it is notable that all the experiments thus far have presented

utterances to subjects in a context-free manner: there has been no real task or

interaction with a clear context within which the NLUs have been used by the

robot/presented to the subjects, which could well be an factor that influences

(as it does in animation) how NLUs are interpreted. Currently, with the data

collected in this evaluation, it is not possible ascertain exactly where the problem

lies. What can be said with confidence is that when utterances are presented in

a context-free manner, and the utterances have acoustic characteristics that are

similar to those reported in related literature, people do not appear to associate

different types of sounds with a given affective meaning.

7.5.3 Methodological Remarks

This section addressees some potentially important methodological drawbacks

that may have impacted the final subject evaluations that were performed and

the results obtained.

7.5.3.1 ANNs versus other ML Techniques

The world of ML is now a large field of research with many active members

exploring a wide variety of different ML techniques and algorithms and their

applications to many different real world problems. As such, there are many

different flavours and types of ML solutions that could have been used to tackle

the regression problem that was faced in this chapter. While the justification

for using ANNs, over these other techniques follows in the next subsection, this
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section provides a brief outline of some of the other possible approaches (presented

in particular order) that may have been used, and are recommend as alternative,

and potentially for fruitful approaches for the future.

AdaBoost Regression is an approach to the regression problem that embraces

the AdaBoost meta-algorithm. Put plainly, this algorithm acts as a means of

assessing the outputs of many simple regression models (which are essentially weak

in their performance) and combining these in a weighted format which results in

a more accurate and complex regression and function approximation. While this

approach requires that many different regression models be created and trained,

these models are all simple and relatively computationally inexpensive which make

this approach practically feasible from a real-time computing standpoint. This is

something that is important for HRI.

Echo-State Networks are a branch of what is known a reservoir computing.

These are recurrent neural networks with many sparsely connected nodes in the

reservoir. Rather than having to learn the weights of the neurone connections

within the reservoir, the last of the training algorithm is to learn the weights of

the connections to the output layer, of which there are far fewer connections than

connections within the reservoir. A key benefit to this method is that it is able to

handle very non-linear problems and thus maybe used to model very non-linear

dynamical systems.

Gaussian Process Regression is a regression method that has its roots in statis-

tics. In this approach, the function that needs to be approximated can be mod-

elled using a number of different gaussian distributions. With this approach, each

predicted output based upon an input value has an associated probably which

indicates how sure the model is of this prediction. Furthermore, very complex

functions may also be approximated given that there is no limit set upon how

many different gaussian distributions may ultimately be used.

Support Vector Machines Regression is yet another alternative approach to the

regression problem. In this approach, the training data is mapped into a high-

dimensional hyper-plane in which the complexity of the regression problem is then
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reduced. A regression model is the trained to the data as it sits in this hyper-plane.

Regression is then practically perfumed by taking an input data point, identifying

the dat points location in the hyper place, predicting the output value, and taking

this value back the the original representation of the training data.The benefit of

this approach is that the functions that may be mapped may be very complex

indeed in their original dimensions, but once in a hyper-place representation, only

a simple regression model is needed in order to perform function mapping and

prediction tasks.

This is only a brief outline of a limited number of different ML techniques

that may be used to address regression problems. The following section serves

to outline why in light of these more sophisticated and complex methods, feed-

forward ANNs have been adopted in this chapter.

7.5.3.2 ANN Implementation

One issue to highlight is in the choice of machine learning technique used to learn

the mapping. In this case feed-forward ANNs have been employed, with the justi-

fication that they meet the main requirement of the problem being presented: the

approximation to non-linear relationships between the input and output variables

- a regression problem. However, the field of machine learning now has a rich

history, and a very large and active community that has developed and explored

a large number of different techniques and algorithms, some of which are out-

lined above. One might ask, given this rich choice of different algorithms that all

achieve similar outcomes, albeit via different methods, why choose one of the most

basic approaches? Furthermore, why has there not been more extensive, deeper

exploration of the setup, training and ultimate behaviour of the ANNs that have

been used?

To address the first point, while feed-forward ANNs may be limiting in compar-

ison to more sophisticated machine learning methods (e.g. radial basis functions

Marsland (2009) or Gaussian Mixture Models Murphy (2012)), they are very well

documented and met the requirements of the problem at hand, and thus it was
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deemed as unwise to employ more sophisticated techniques that could potentially

overcomplicate things. Furthermore, the purpose of this chapter (and this work

more generally) is not to perform a deep exploration of how machine learning

techniques can be used to generate and affectively charge NLUs, and which tech-

niques may be more suited than others. Rather, this particular chapter serves

as an initial stepping stone toward these more specific and applied questions,

which themselves form a whole new direction of research. Given this, it is also

more rational and productive in the long term to begin with a simple approach

to the problem, and in doing so, any future research need only address the more

sophisticated methods of approaching the problem of affective mapping.

The second issue of the limited exploration of the setup of the ANNs ultimately

used, many of the same reasons as decried above apply. However, the main rea-

son for this is not to draw the focus of attention away from the purpose of this

chapter with respect to the general thesis presented here. This body of research

is not about machine learning. It is concerned with investigating, more broadly,

how NLUs may be utilised by a robot during real world social HRI. Within this

scope, the use of ANNs has a primary function of providing a means to try and

produce an affective mapping between the acoustic features of an utterance, and

how utterances generated that are affectively charged using this mapping are sub-

sequently interpreted. This was something that was missing with respect to the

NLU generation algorithm. Suffice to say, this main goal of the chapter has been

achieved. An affective mapping has been learnt using a collection of simple feed-

forward ANNs and training data collected by specifically designed experiments.

Moreover, the mapping that has been learnt has characteristics that are similar to

the acoustic correlates that are reported in both the psychological literature and

the music literature. Perhaps the most important insight that has been gained,

via the subject evaluation, is that people (specifically, children) do not appear to

coherently associate different affective states with the NLUs, while this has been

the case with natural language, even when there are few contextual cues, as shown

by Le Sourn-Bissaoui et al. (2013). Thus, the conclusion to draw here is that the
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interpretations associated with the affective chartings of the human voice do not

transfer well to their use in NLUs.

7.5.3.3 Subject Evaluation Methodology

Perhaps the first criticism to make regards the number of subjects who partook.

When compared with the experiment used to collect the majority of the training

data, nearly double the number of children partook. Had more children been used

than perhaps a tend could have emerged from the data. A similar line of argument

also applies to adults, who have not been evaluated here.

Also, one may make comment over the fact that only two different Pitch Con-

tours were used. As the previous experiments have shown that pitch contour can

matter, but not in all cases, it could be that the particular Pitch Contour specifi-

cations used could be those that did not make a difference. The Pitch Contour is

problematic and elusive facet of an NLUs in a broader sense also, and the full ex-

tent of their influence is not yet understood. This is why they have been omitted

from the machine learning process, and had their values pre-specified, rather than

randomised for the evaluation. The knock on effect to this is that the number of

sound units for each utterances was also held at a fixed value, which limits the

evaluation for both shorter and longer utterances, and the overall generalisation

of the insights gained.

Another criticism that can be made regards the limited number of NLUs sam-

ples from the affect space. In total, only 13 different PAD values were used to

generate different utterance parameter specifications. The rationale for this is

essentially two fold. Firstly, the PAD affect space locations that were selected

were very near the nine prototype facial expressions in the AffectButton, and

also represented, generally speaking, the extreme values of each of the mappings.

Secondly, given the lessons learnt regarding experimental design from the exper-

iment in chapter 5 (where the complex presentation of utterances resulted in a

cumbersome statistical analysis), it was deemed suitable to have all subjects rate

the same stimuli in order to retain the repeated measures experiential design.
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7.6 Summary

This chapter has presented an exploration of the potential for automating the gen-

eration and synthesis of NLUs by employing Artificial Neural Networks to learn

a mapping between desired affective interpretations and the parameter specifica-

tions required to achieve the desired affective interpretation.

Training data from the experiments in chapters 5 and 6 have been used to

train the networks and has resulted in mappings between the acoustic parameters

of the NLUs and the input affect space that share a number of similarities with

the acoustic correlates of both the human voice and music with respect to affec-

tive expression. While in the experiments in which training data was collected,

subjects tended to show limited coherence in their affective interpretations of the

utterances, the fact that the mappings are similar to those in the related literature

indicates that people are indeed sensitive, to some degree, to the acoustic features

of the utterances, and do mildly associate different acoustic features of NLUs with

different affective meanings.

A human subject evaluation was carried out with local school children in order

to gain an assessment of whether the learnt affective mappings indeed did evoke

affective interpretations in people in a more coherent manner. Using the same

form of experimental method as in chapters 5 and 6 the results of the evaluation

reveal that even when NLUs have acoustic features and correlates that are similar

to those found in both the human voice and music, these do not translate to the

same affective interpretations in people, or even to an increased coherence between

subjects in this regard.

There are two potential factors that can lead to this. Firstly, that the notion

that subjects can indeed interpret, coherently, NLUs as having distinct affective

meanings is perhaps wrong, and as such the findings from the related literature

do not translate to their use in NLUs in the same way. Secondly, it is also

noted that all the experiments thus far have not included any concrete form of

situational context, which when reflecting on the world on animation appears to

play an important role in scaffolding and directing how people interpret NLUs.
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The current experimental arrangement has not been able to differentiate these

two possibilities, and as such, the latter factor is subject to investigation in the

next chapter.
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Chapter 8

The Influence of Situational

Context upon the Interpretation

of NLUs

Summary of the key points:

• The influence of a valenced physical interaction with the robot over how the

affective meaning of NLUs is explored via an online experiment.

• Videos showing the robot either being subject to an action, making an NLU,

or making the NLU in reaction to the action were shown to adults, and were

rated along a valence scale.

• Results show that the affective meaning of an NLU is overridden by the

valence of the action when the NLU is make in reaction to the action and

that NLUs do not bias the perceived valence of the action.

• When the affective interpretations of the interaction and the NLUs are

aligned, this evokes more extreme affective interpretations from people.
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All the experiments presented thus far in this thesis have lacked any concrete

situational context1, with varying levels of coherence and agreement in affective

interpretation between subjects. For example, chapters 5, 6 and 7 all found that

children showed little coherence in their ability to assign facial expressions to their

affective interpretations of NLUs. While presenting utterances without situational

context provides a means of obtaining base levels of interpretation, which are not

confounded, this is not a true representative of real world HRI, which is inherently

embedded in a situational context. The work presented in this chapter explores

how the inclusion of a situational context may influence the interpretation of

NLUs.

The experiment presented in this chapter seeks to address two related ques-

tions: can the situational context override the interpretation of an utterance, and

can an utterance override the interpretation of the situational context? These

two questions are relevant for the use of NLUs in HRI as situational context is an

inherent facet of an interaction and likely plays an influential role in how events

in the environment are perceived and interpreted by people (or agents). With

respect to the use of NLUs, it may be that the inclusion of context has the ef-

fect of biasing a subjects interpretation of what may otherwise be an ambiguous

utterance. Conversely, it may also be possible that the inclusion of an utterance

provides a means of biasing what may be an ambiguous situation to having a

particular interpretation. It is likely that both cases are true, with the influence

of an utterance being determined by the ambiguity of the context, and visa-versa.

However, at this stage, given the difficulty in obtaining constant coherence and

agreement between subjects in their affective interpretations of NLUs, it is rea-

sonable to presume that, generally speaking, NLUs hold more ambiguity than

context.

With respect to HRI, there have been few efforts to investigate how context

and NLUs influence each other. Komatsu et al. (2010) investigated the ability of

1Here, Situational Context relates to an interaction scenario in which the use of NLUs has
been embedded were there are clear cues that relate to and guide the mood of the overall
interaction as it is unfolding. For example, a game of chess, where there are clearly interpretable
outcomes (such as a good or bad move, or winning or loosing the game) which each have a valence
(Castellano et al., 2013).
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their artificial subtle expressions (ASEs) to influence and sway the decision making

behaviour of a subject whilst playing a simple treasure hunt computer game where

a robot was able to provide clues as to where the treasure was hidden. ASEs

made by the robot were intended to convey the confidence the robot had in the

accuracy of its clue. Their results suggest that when the robot made a sound with

a decreasing frequency modulation, subjects rejected the clue provided far more

frequently than when the frequency modulation was held constant (flat). This

case demonstrates that the use of a simple utterance by the robot was enough to

significantly alter the behaviour of the subjects, and that subjects were indeed

sensitive to the acoustic features of their utterances. With respect to the two

questions posed at the start of this chapter, this study provides evidence that

utterances can be used to alter the interpretation of the situational context, and

in turn through this, the behaviour of the subjects.

The ASEs used in the work by Komatsu et al. (2010) are, however, simplistic

in comparison to the NLUs used in this thesis. ASEs consisted of short (500 ms)

single tones with either a decreasing (400 Hz to 250 Hz ) or flat, constant (400

Hz ) frequency modulation, whereas the NLUs here are more complex, consisting of

multiple tones concatenated, each with a different modulation, and have a similar

temporal duration (i.e. they were all of similar length in time). Furthermore, the

context of the game in which ASEs were presented was held constant, thus the

influence of the context was not addressed. This chapter presents an experiment

in which both the situational context and the NLUs presented in this context were

varied, allowing both variables to be studied simultaneously.

8.1 Experimental Setup

The experiment set out to test the following hypotheses:

• H1: An NLU overrides the interpretation of a situational context.

• H2: The situational context overrides the interpretation of an NLU.
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Situational context, in these hypotheses are external actions that happen to

the robot (such as the robot being slapped), and have an implied affective inter-

pretation. The NLUs are also presumed to have an affective interpretation (albeit

more coarse), and are presumed to be generally more ambiguous than those of the

contexts in this respect. The nature of the interaction between the context and

NLUs is quantified through the affective interpretations provided by subjects.

To test these hypotheses, an online survey was set up using an online crowd-

sourcing service, where subjects were asked to affectively rate videos of a robot

across five conditions:

• CP
NLU : The robot emitting a positive sounding NLU.

• CN
NLU : The robot emitting a negative sounding NLU.

• CAction: The robot being subject to an action from a human (e.g. the robot

being slapped on the head) with no response.

• CP
Action: The robot being subject to an action from a human and emitting

the NLU from CP
NLU in reaction.

• CN
Action: The robot being subject to an action from a human and emitting

the NLU from CN
NLU in reaction.

Conditions CP
NLU and CN

NLU provide the base interpretation for the respective

NLUs without any situational context; a sanity check to see whether the NLUs

are indeed interpreted differently. Similarly, condition CAction obtains the base

interpretation for the actions, again necessary before we can measure the relative

influence of NLUs on actions. Conditions CP
Action and CN

Action assess the interaction

between the NLU and the context when combined.

Relating these conditions to the hypotheses (see figure 8.1), if H1 is true, it

would be expected that, for example, the ratings for CP
Action and CAction would

be significantly different while CP
Action and CP

NLU would have similar ratings -

the NLU has been able to pull the rating of the action away from the original

interpretation. Conversely, if H2 were true, the opposite would be expected: the
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H1:

H2:

Valence

Valence

Figure 8.1: Example of how the video conditions CAction, CP
NLU and CP

Action may
hypothetically be rated, for each of the two Hypotheses.

ratings for CP
Action and CP

NLU would be significantly different while CAction and

CP
Action would have similar ratings - the situational context has been able to pull

the rating of an utterance away from the original interpretation.

Ratings were given along a 9-point Likert scale representing valence, where 1

corresponded to “very negative” and 9 to “very positive”. Subjects were asked to

watch each video and provide a rating of how they thought the robot felt based

upon the action that happened in the video, or the sound that the robot made in

the video. As this was an online experiment, it was decided that using a measuring

tool based on dimension representations of affect, such as the Self Assessment

Manikin (Lang and Bradley, 1994) would introduce a level of complexity that

would confound the results. The dimensions of the SAM are cumbersome to

explain to naive subjects in person, let alone subjects who are recruited via online

crowd-sourcing.

Five different action scenarios were selected and videos for the conditions

CAction, CP
Action and CN

Action produced, thus producing 15 videos in total. The

five different actions provided a gradient of affective interpretations across the

Likert scale (this is described in more detail in the following section). These

videos are referred to as Action Videos. Similarly, five different NLUs were pro-

duced using the NLU generation method (chapter 3), and videos were recorded of

the robot emitting the utterance. These are referred to as the NLU Videos. Two

of these NLUs were used as the NLUs in conditions CP
Action and CN

Action as they

were deemed to be most representative for positive and negative affective states

respectively. The process of selecting the actions and NLUs, and producing the
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Figure 8.2: Setup of the professional audio equipment used to capture the audio.
The video recorder is located at the right hand side of the image (just out of

sight).

videos for the five different conditions is detailed in the following section.

8.1.1 Stimulus Production

All videos (including the NLU videos) were recorded using both a digital video

recorder, and professional audio equipment. The audio equipment consisted of a

hyper-cardioid microphone directed at the speakers on the robot’s head to capture

high quality audio of the utterances made by the robot, and an omnidirectional

microphone to capture the more ambient sounds in the environment (e.g. motor

activity and sounds caused by the actions of the human). Figure 8.2 shows a

picture of this video and audio recording arrangement.

All audio captured via the microphones was recorded in stereo, and was then

subject to the following post processing performed using the open source Audacity

sound editing software2. Each stereo channel was independently normalized to

−1 dB. Background noise was removed from each channel using the noise removal

algorithm within Audacity. The two channels were then merged into a single

mono channel, with this mono channel being normalized again to −1 dB before

being exported.

2Audacity may be downloaded from: www.audacity.sourceforge.net
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8.1.1.1 Action Stimulus

11 Different action videos were recorded with the aim of identifying a subset of

these that would represent a gradient from very negative actions, mildly negative

actions, natural actions, mildly positive actions and very positive actions. Each

video was no longer than 6 seconds long, with no speech being made by either the

human or the robot. Videos were made of the robot being subject to the following

actions:

• A slap to the side of the head.

• A poke in the chest with a board marker pen.

• A poke in the forehead with a board marker pen.

• A flick with the fingers to the forehead.

• Clicking fingers in front of the robot’s eyes.

• Covering the robot’s eyes with a hand.

• Waving a hand in front of the robot’s eyes.

• Tickling the robot under the chin.

• Tickling the robot in the ribs.

• The robot being stroked on the head.

• The robot receiving a kiss on the head.

8.1.1.2 NLU Stimulus

8 NLUs were recorded using the NLU generation algorithm (see chapter 3) and

were produced with a variety of acoustic parameter configurations (see table F.1

and figure F.1). As with the experiment in chapter 4, the acoustic parameters

were not subject to explicit, systematic alterations, but rather were intended to

elicit affective interpretations that would cover as broad a range of the Likert

scale as possible. In this light, two utterances from the Categorical Perception
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(CP) study were also included as it was thought that these would represent the

extremes of the valence dimension (as they did in chapter 6). All utterances were

normalized and recorded onto a mono track, such that each speaker onboard the

Nao produced the same sound. Each utterance was then played through the robot,

with the robot remaining stationary thus to have no background noise from motor

activity, and only the audio being recorded.

A short video of the robot standing making small, neutral movements3 was

made, again with the audio being recorded separately, and the audio recordings

of the utterances were added to the audio track of the video to produce identi-

cal videos with different utterances. The total length of each NLU video was 4

seconds.

8.1.1.3 Pilot Study & NLU and Action Selection

A small pilot study was conducted to gain insight as to how the 11 different

scenarios and 8 NLUs might be interpreted, and to guide the final selection of

videos and utterances for the experiment. Subjects were recruited through the

university, and were asked to watch each video individually and rate how they

thought the robot felt based upon what happened in the video, or by the utterance

that the robot made. The same 9-point Likert scale was employed to capture

ratings. Videos were made available online, and subjects provided their ratings

electronically by filling in and returning a spreadsheet to the author via email.

In total, 15 subjects responded. 10 were male (mean age = 28.4, std = 3.31),

and 5 were female (mean age = 28.2, std = 4.32). Cronbach’s α was used as

a measure of internal agreement between subjects. For the Action Videos an α

value of 0.9546 was obtained, while for the NLU Videos an α value of 0.8773 was

obtained. Both values indicate strong agreement between subjects, with more

agreement in the ratings of the actions videos than the utterances.

Figure 8.3 shows a bar graph of the mean values and standard deviations of

the ratings for each of the 11 Action Videos. The results reveal that the Slap was

3Neutral movements were included in order to present the robot as alive, rather than a static
object.
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Figure 8.3: Bar graph showing the mean and standard deviations for the ratings
of the Action Videos in the pilot study. These ratings are summarised in table

F.3.

rated as the most negative action (mean = 2.0667, std = 1.2799) while the Kiss

on the robot’s head was rated as the most positive action (mean = 6.533, std =

1.6847). The robot being stroked on the head (mean = 6.1333, std = 0.9904)

and being tickled under the chin (mean = 6.3333, std = 1.0465) also received

similar mean ratings to the Kiss on the Head. The video showing someone waving

their hand in front of the robots eyes (mean = 5.2000, std = 1.7403), someone

covering the Nao’s eyes (mean = 4.5333, std = 0.9155) and tickling the robot on

either side of the Torso (mean = 4.8667, std = 1.3558) were rated approximately

in the middle of the scale, and thus may be considered as neutral. The videos

showing a poke to the chest (mean = 3.5333, std = 1.1872), a flick to the head

(mean = 3.3333, std = 1.3452), poke to the face (mean = 3.0000, std = 1.2536)

and finger clicking in front of the robot’s eyes (mean = 3.8000, std = 1.3202) all

received mean ratings between 2 and 4 and as a result can be considered as mildly

negative when compared with the slap action. Overall, it can be seen that the

videos provide a gradient across ratings, while not covering the full range of the

scale, with respect to the positive region of the scale in particular.

Figure 8.4 shows a bar graph of the mean values and standard deviations of the

ratings for the NLU videos. A notable feature of these ratings is the small range
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Figure 8.4: Bar graph showing the mean and standard deviations for the ratings
of the NLU videos in the pilot study. These ratings are summarised in table F.4.

of responses within the scale. The lowest rating was for NLU#7 (mean = 3.7333,

STD = 1.3870) and the highest rating was for NLU#8 (mean = 6.4667, STD

= 1.8074). This, as with the results in previous chapters, illustrates the general

ambiguity of NLUs when presented without any context. In these results it is also

interesting to note that the two utterances taken from the CP study were found

to have similar ratings, while in the CP study they were rated as significantly

different when rated using the AffectButton.

8.1.1.4 Final Video Production

The five action videos selected were the Slap, Kiss to the Head, Flick to the Face,

Stroke to the head and covering of the robot’s eyes (see figure 8.5). As well as

being guided by the results of the pilot study, this choice was also made as these

actions were all applied to the head of the robot. 5 of the 8 NLUs were selected

from the pilot study (NLUs #1,2,3,7 and 8) as these most represented a gradient

of valence ratings in the pilot study. NLUs #7 and 8 were selected to be used as

the reaction NLUs in conditions CN
Action and CP

Action respectively given that they

had the two most extreme ratings. The rationale for including 5 NLU videos in

the final survey was an attempt to disguise the repetition of NLUs #7 and 8 in

the action/NLU combination videos. This repetition may have lead to subjects

recognising the NLUs and in turn recalling their affective ratings and introducing
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(a) Slapping Action (b) Kiss Action

(c) Flick Action (d) Head Stroke Action

(e) Eye Cover Action

Figure 8.5: Images from the videos showing the five different action scenarios
used in the final study, selected via the pilot study.

a bias.

In order to produce the videos for the combined action/NLU video conditions

(CP
Action and CN

Action), two videos were made for each selected action, one with

NLU#7 being added to the audio track of the video, and one with NLU#8 being

added. Thus in total, 10 videos were produced. By producing the videos in this

manner, the start of the two NLUs were synchronised exactly, and the visual of

the video being identical between the two conditions also, thus ensuring that it

was only the NLUs that were different between these two video conditions.

8.1.2 Experimental Procedure

Using crowd sourcing methods to conduct online studies have recently been shown

to be a fast and fruitful means to gather information on HRI on a large scale (e.g.
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Breazeal et al. (2013) and Chernova et al. (2011)), and as such this experiment was

conducted using an online crowd sourcing service, CrowdFlower 4. Recruitment of

subjects was limited to the USA to provide a limit on and focus to the subject

demographic, and subjects were rewarded 0.3$ USD for their participation.

At the start of the experiment, subjects were asked to provide their age and

gender. Each video was then presented with all 20 videos in one of three orders5

(it was not possible to completely randomise the order of the questions using the

CrowdFlower service). For each video, subjects were asked to provide an affective

rating indicating how they thought that the robot felt based upon what happened

to the robot in the video, or by the sound that the robot made. Each video also

had a validation question, which asked a specific question about the content of

the video. This was done to confirm whether a subject indeed had watched the

video and not provided a random rating. Questions queried details such as the

colour of the robot’s eyes, the colour of the human’s t-shirt, whether or not the

robot made a sound in the video, and what action happened in the video. All the

validation questions were forced choice with either two or three options. Finally,

at the end of the experiment, subjects where asked whether they had seen the

robot before, to determine whether they were familiar with the Nao platform in

some way.

Overall, subjects were asked to rate 5 NLU Videos, 5 Action Videos, 10 Ac-

tion/NLU combination videos, 2 personal questions, and the question regarding

their familiarity with the robot. Thus, there were 23 questions in the survey in

total. The average time taken to complete the experiment was no more than 6

minutes.

8.2 Results

In total, 324 people responded via the CrowdFlower service, however, the data

for 21 subjects was omitted as their accuracy on the validation questions (mean

4CrowdFlower can be accessed from www.crowdflower.com.
5Orders are presented in table F.2
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= 93.96%, std = 11.02%) fell below 80%. 303 Subjects were thus used in this

analysis. Of these subjects, 87 were male (mean age = 32.24, std = 10.27) and

216 were female (mean age = 37.15, std = 11.39). 99 Subjects answered the first

order of questions, 101 subjects for the second order and 103 for the third order.

151 subjects reported that they had seen the robot before (53 males, mean age =

32.24, std = 11.12, and 98 females, mean age = 37.71, std = 11.12).

Cronbach’s α was used as a measure of internal agreement between subjects.

For the videos showing only the NLU conditions (CP
NLU and CN

NLU), the α value

for the ratings was 0.973, and for the videos showing only the action (CAction)

the α value for the ratings was 0.997. The ratings for the videos showing the

Action/NLU combinations (CP
Action and CN

Action) both had α values of 0.998. Col-

lapsing all the ratings together an α value of 0.9973 was obtained. All these α

values are high, indicating a strong level of internal agreement between all subjects

across all of the conditions.

In order to access the interpretation of the NLUs, the ratings for the NLU

videos (CP
NLU and CN

NLU) were subject to a 3-way repeated measures ANOVA

(5x2x2), where the factors were the video shown (within subjects), subject gender

(between subjects) and robot familiarity (between subjects). The Action Videos

were subject to the same ANOVA design.

To test the impact of the Action/NLU combinations (CP
Action and CN

Action) of

the five different actions, the same 3-way repeated measures ANOVA (5x2x2)

design was used. The video factor consisted of the videos showing each of the

five different conditions. The two other factors were again subject gender and

robot familiarity. All results were also subject to post-hoc multi comparison tests

using the Scheffé method with Bonferroni corrections used to identify the relative

ratings between the various factors and video conditions.

The remainder of this section presents the results of the analysis for the NLU

Videos alone (section 8.2.1), the Action Videos alone (section 8.2.2), and then the

analysis of each of the five video conditions for each of the five different action

scenarios (sections 8.2.1 to 8.2.2).
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Figure 8.6: Bar graph showing the Mean values and 95% Confidence Interval for
the valence ratings for each of the 5 NLU videos. These ratings are summarised

in table F.5.

8.2.1 NLU Videos

The ANOVA identified a significant main effect due to the video shown (F (4, 1196) =

32.024, MSE = 31.206, p ≤ 0.001). No main effects were found due to the subject

gender or the robot familiarity, and no interaction effects were found.

The post-hoc tests showed that NLU#7 (mean = 5.129, 95% CI = [5.053 5.385])

was rated significantly lower than all the other NLUs (p ≤ 0.001). NLU#1

(mean = 6.100, 95% CI = [5.923 6.277]) and NLU#8 (mean = 6.102, 95% CI

= [5.926 6.278]) jointly had the highest rating6 and received significantly higher

rating than NLU#3 (mean = 5.781, 95% CI = [5.621 5.942]), p ≤ 0.05. NLU#2

(mean = 5.866, 95% CI = [5.703 6.029]) was found to only have a statistically

higher (p ≤ 0.001) rating than NLU#8. These results are shown in figure 8.6,

and show that indeed NLUs#7 and 8 represented the extremes with respect to

the affective ratings.

6Thus there was no significant difference between these two NLUs.
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Figure 8.7: Bar graph showing the Mean values and 95% Confidence Interval for
the valence ratings for each of the 5 Action videos. These ratings are

summarised in table F.6.

8.2.2 Action Only Videos

For the Action Videos a significant main effect was found due to the action that

was shown in the video (F (4, 1196) = 251.833, MSE = 601.029, p ≤ 0.001), with

no other main effects or interaction effects found.

The post-hoc tests revealed that the videos indeed represented a gradient of

affective interpretations across the 5 different actions, and that the ratings for

all actions were significantly different (p ≤ 0.001). The video showing the robot

being slapped received the lowest rating (mean = 3.045, 95% CI = [2.828 3.262]),

followed by the flicking action (mean = 3.787, 95% CI= [3.578 3.995]). The cover-

ing of the robot’s eyes action (mean = 4.669, 95% CI = [4.517 4.822]) represented

the middle action, being interpreted as relatively neutral. The video of the robot

being stroked on the head received the second highest rating (mean = 6.361, 95%

CI= [6.172 6.549]), while the video showing the robot being kissed on the head

received the highest rating (mean = 6.687, 95% CI = [6.469 6.905]). These results

are shown in figure 8.7.
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(c) Flicking Action
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(d) Stroking Action
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Figure 8.8: Results of the 3-way repeated measures 5x2x2 ANOVA showing the
Mean ratings for the videos as well as the 95% Confidence Interval for each of

the 5 video conditions. across the 5 action scenarios. Primary statistically
significant differences are shown, and the other significant differences may be

inferred from those already displayed. These ratings are summarized in table F.7
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(a) Flick Action: Plot of the interaction
between the subject gender and the video

shown (see table F.8).
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(b) Stroke Action: Plot of the interaction
between subject gender and the video

shown (see table F.9).
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(c) Cover Action: Plot of the interaction
between subject gender and the video

shown (see table F.10).
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(d) Cover Action: Plot of the interaction
between the robot familiarity and the

video shown (see table F.11).

Figure 8.9: Plots of the interaction effects identified through the 3-way
ANOVAs. Each plot shows the Mean values and 95% CI for the ratings across
each of the five video conditions, with each line either representing the subject

gender or robot familiarity factors.
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8.2.3 Action/NLU combination Videos

This section presents the results of the 5x2x2 ANOVA analysis for each of the

five action scenarios individually. Referring to figure 8.8, the CP
NLU and CN

NLU

conditions are present in all of the scenarios, and thus these two conditions have

the same mean ratings and 95% confidence intervals throughout while the ratings

for conditions CAction, CP
Action and CN

Action for each action scenario are different.

8.2.3.1 Slap Action Scenario

For the slapping action, only a main effect due to the video shown was found

(F (4, 1196) = 301.774, MSE = 546.218, p ≤ 0.001). No other main effects or

interaction effects were found.

The post-hoc tests showed that the videos showing condition CP
NLU (mean =

6.102, 95% CI = [5.926 6.278]) and CN
NLU (mean = 5.129, 95% CI = [5.053 5.385])

had a significantly different rating (p ≤ 0.001), and that the videos showing

condition CAction (mean = 3.045, 95% CI = [2.828 3.262]), CP
Action(mean = 3.042,

95% CI = [2.810 3.275]) and CN
Action (mean = 2.805, 95% CI = [2.604 3.007]) had

no significant differences in their ratings while they were all rated significantly

lower than the video showing CN
NLU , p ≤ 0.001 (figure 8.8a).

8.2.3.2 Kiss Action Scenario

For the kissing action, the ANOVA showed that there was again only a main effect

due to the video condition (F (4, 1196) = 139.445, MSE = 191.377, p ≤ 0.001)

and no interaction effects.

The post-hoc tests revealed that all of the videos had significantly different

ratings (p ≤ 0.001). The video showing the CP
Action condition received the highest

rating (mean = 7.550, 95% CI = [7.378 7.721]), followed by CN
Action (mean =

7.017, 95% CI = [6.822 7.212]). The CAction condition (mean = 6.687, 95% CI =

[6.469 6.905]) was rated higher than CP
NLU (mean = 6.102, 95% CI = [5.926 6.278])

while the CN
NLU condition received the lowest rating (mean = 5.129, 95% CI =

[5.053 5.385]). These results are shown in figure 8.8b.
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8.2.3.3 Flicking Action Scenario

It was found that, in the flicking scenario, there was a significant main effect due

to the video condition that was shown (F (4, 1196) = 184.597, MSE = 309.671,

p ≤ 0.001), as well as an interaction effect between the subject gender and the

video condition (F (4, 1196) = 3.021, MSE = 5.069, p ≤ 0.05).

With respect to the main effect due to the video shown, the post-hoc tests indi-

cated that the videos showing the action (CAction) and action/NLU combinations

(CP
Action and CN

Action) were rated as significantly lower than the video showing CN
NLU

(p ≤ 0.001). There was no difference in the rating between CAction (mean = 3.787,

95% CI = [3.578 3.995]) and the CP
Action (mean = 3.784, 95% CI = [3.556 4.012]).

The CN
Action video (mean = 3.456, 95% CI = [3.251 3.661] was rated significantly

lower than all other videos (p ≤ 0.001). These results are shown in figure 8.8c.

For the interaction effect, the means and 95% confidence intervals indicate

that for the two NLU videos, females provided marginally higher ratings, while

for the flicking action and combination videos the females provided lower ratings.

However, post-hoc independent samples t-tests found that there were no signifiant

differences between the genders for either CP
NLU (t(301) = 0.109, p = 0.914),

CN
NLU (t(301) = 1.021, p = 0.308), CAction (t(301) = −1.767, p = 0.078), CP

Action

(t(301) = −1.553, p = 0.121), or CN
NLU (t(301) = 1.772, p = .077). These results

are shown in figure 8.9a.

8.2.3.4 Stroke Action Scenario

For the stroking action, the ANOVA found that there were main effects due to the

video shown (F (4, 1196) = 66.843, MSE = 98.964, p ≤ 0.001) and the subject

gender (F (1, 299) = 11.411, MSE = 55.833, p ≤ 0.001), as well as an interaction

effect between these two factors (F (4, 1196) = 4.707, MSE = 6.968, p ≤ 0.01).

With respect to the main effect due to the video condition, the post-hoc tests

revealed that the CP
Action had the highest rating and was significantly different

(p ≤ 0.001) to the ratings for CP
NLU (mean = 6.102, 95% CI = [5.926 6.278]) and

the video of CAction (mean = 6.361, 95% CI = [6.172 6.549]), while no significant
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difference was found between the CP
Action and CN

Action (mean = 6.663, 95% CI =

[6.464 6.862]) or the CAction and CN
Action videos. The CN

NLU video had the lowest

rating (mean = 5.129, 95% CI = [5.053 5.385]) and was significantly different from

all the other videos (p ≤ 0.001). This result is shown in figure 8.8d.

The tests also revealed that overall the mean rating for the female subjects

(mean = 6.459, 95% CI = [6.326 6.592]) was significantly higher (p ≤ 0.01) than

the ratings provided by the male subjects (mean = 6.027, 95% CI = [5.813 6.241).

The interaction effect between the videos and subject gender was identified

as female subjects providing higher ratings than the males, with the difference

between the ratings being larger for the action/NLU combinations than the other

videos. Post-hoc independent samples t-tests found that for CP
Action the female

(mean = 7.159, 95% CI = [6.944 7.374]) subjects provided significantly higher

ratings than the males (mean = 6.588, 95% CI = [6.242 6.933]), t(301) = 2.801,

p = 0.005. Similarly for CN
Action the female (mean = 7.129, 95% CI = [6.920 7.339])

subjects again provided significantly higher mean ratings than the males (mean

= 6.196, 95% CI = [5.859 6.534]), t(310) = 4.789, p < 0.001. These results are

shown in figure 8.9b.

8.2.3.5 Eye Cover Action Scenario

It was found that the video condition again had a significant main effect (F (4, 1196) =

78.989, MSE = 105.718, p ≤ 0.001), and that there were interaction effects be-

tween the subject gender and the video condition (F (4, 1196) = 2.571, MSE =

3.441, p ≤ 0.05), and the robot familiarity and the video condition (F (4, 1196) =

2.871, MSE = 3.842, p ≤ 0.05).

For the main effect due to the videos condition, the post-hoc tests revealed that

CAction video (mean = 4.669, 95% CI = [4.517 4.822]), CP
Action (mean = 4.611, 95%

CI = [4.422 4.799]) and CN
Action (mean = 4.497, 95% CI = [4.322 4.672]) videos

had no significant difference, but all were rated as significantly lower than the

CN
NLU video (mean = 5.129, 95% CI = [5.053 5.385]), p ≤ 0.001 (see figure 8.8e).

The interaction effects were identified as the female subjects providing higher
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ratings than the males for the NLU videos, while providing lower ratings for the

action and action/NLU combination videos. The post-hoc t-tests found that there

was a significant difference in the ratings between the genders for CP
Action (t(301) =

−2.144, p = 0.033), with males (mean = 4.819, 95% CI = [4.498 5.139]) providing

a higher mean rating than the females (mean = 4.403, 95% CI = [4.204 4.602]).

Similarly, the subjects who were familiar with the robot provided higher ratings

for the NLU videos than subjects unfamiliar with the robot, with the opposite

being true for the action and action/NLU combination videos. The post-hoc t-

tests found that there was only a significant difference for CN
NLU (t(301) = −2.395,

p = 0.017), with the subjects familiar with the robot (mean = 5.421, 95% CI =

[5.202 5.639]) giving higher ratings than the subjects unfamiliar (mean = 5.017,

95% CI = [4.768 5.267]) with the robot. These results are shown in figures 8.9c

and 8.9d.

8.2.4 Summary of Results

It was found the five different actions shown in the videos indeed did represent

a gradient of different affective ratings along a valence Likert scale. The action

where the robot was slapped was rated as being the least positive, followed by

the video showing the robot being flicked in the forehead. The middle, or neutral

action was the scenario in which the robot’s eyes were covered. Subjects rated the

video showing the robot being stoked on the head as mildly positive, while the

video of the robot being kissed on the head received the highest valence rating,

being most positive.

With respect to the videos showing the robot making one of five NLUs with

no action, these too were found to represent a gradient of valence, though the

overall range of ratings was notably smaller than that of the action videos. The

two NLUs that were rated as being least positive and most positive were then

used in the action/NLU videos.

In the videos showing the combination of the actions and the two NLUs, it was

found that in all cases, subjects rated these as having the same degree of valence

251



as the particular action alone, or a more extreme valence (i.e. more positive or

negative).

8.2.4.1 Slapping Action

For the videos showing the robot being slapped, both the videos in which the robot

made the positive and negative utterances were rated as being equally negative

as the video showing only the robot being slapped. The NLU only videos were

both found the be rated as more positive than the action only videos and both

the NLU/action videos.

8.2.4.2 Kissing Action

The combination videos were found to have slightly more extreme, positive ratings

than the video showing the robot just being kissed on the head. It was found that

the combination of the positive NLU and the action were rated as more positive

than the video of the negative NLU and the action, while the negative NLU and

action video were still rated as more positive than the action only video. The

positive NLU video received the same rating as the action only video, but was

rated as significantly less positive than the NLU/action combination videos. The

negative NLU video was found to have the lowest overall rating.

8.2.4.3 Flicking Action

It was found that the positive NLU and action combination were rated as being

equally negative, while the video showing the negative NLU and action were rated

as more negative. Both the NLU only videos were rated as being more positive

than the action only video and the two NLU/action combination videos.

8.2.4.4 Stroking Action

Similarly to the Kissing action scenario, the combination of the positive NLU and

the stroking action were rated as more positive than the video showing only the

action as well as the combination of the negative NLU and the action. No differ-

ence was found in the ratings between the negative NLU and action combination
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and the action only video. It was also found that there was a different between

the two genders in how they rated the two action/NLU combination videos, where

the female subjects rated these videos as more positive than the males subjects.

Again, the positive NLU video received the same rating as the action only video,

but was significantly as significantly less positive than the NLU/action combina-

tion videos. The negative NLU video was found to have the lowest overall rating.

8.2.4.5 Eye Cover Action

Both the NLU/action combinations were found to have the same relatively neural

rating as the video showing only the action, while the videos of only the NLUs

were both rated as more positive. As with the flicking action and the slapping

action, both the NLU only videos were rated as being more positive than the

action only video and the two NLU/action combination videos.

8.3 Discussion

This section provides a discussion of the experiment and results obtained from a

variety of perspectives such as regarding the Hypotheses outlined at the begin-

ning of the chapter, the drawbacks of the methodology, limitations regarding the

interpretation of the results and the implications of these results with respect to

the practical use of NLUs during social HRI.

8.3.1 Main Effects

The high Cronbach’s α values indicate that overall the subjects were in agreement

in their interpretations of the videos presented, and in their use of the Likert scale

when interpreting and rating the videos. As a result, this promotes confidence

regarding the validity of the results obtained via this measuring scale.

With respect to H1 (the hypothesis that the interpretation of an NLU overrides

that of the action), none of the results provide any support for this hypothesis. No

significant effects were found, across any of the actions, where the interpretation

of either the CP
Action or CN

Action condition was significantly different to the CAction
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condition and closer to the rating of either the CP
NLU or CN

NLU conditions. Thus,

it can be concluded that the NLUs did not have an effect whereby they pulled the

interpretation of an Action/NLU combination toward the base interpretation of

the NLU.

With respect to H2 (the hypothesis that the interpretation of an action over-

rides that of an NLU), all the results provide clear evidence supporting this hy-

pothesis. In all of the action scenarios, the videos showing the action/NLU com-

binations (CP
Action and CN

Action) received ratings that were either not significantly

different from the action only video (CAction), or they were significantly different

and more extreme than the action video rating. Coupling this with the finding

that in all but one of the action conditions (the stroking action) the action videos

were found to be rated significantly different and more extreme than the NLU

only videos. It is clear that the actions provided a strong biassing effect that

overrode the base interpretation of a given NLU.

These results did also yield a further insight: the results for the kissing action,

stroking action and flicking action all indicate that the alignment in valence be-

tween the NLU and the action can actually enhance a given rating of an action,

pushing it to a more extreme interpretation (i.e. CP
Action was significantly more ex-

treme than CAction whereas CN
Action was not). While this is a rather intuitive result,

given that the NLU provided a reaction to the action, it also demonstrates that

while the action provided a dominant bias, the NLU did contain subtle acous-

tic cues that subject were sensitive to. The identification of this sensitivity is

important as it highlights the degree through which NLUs operate7.

8.3.2 Interaction Effects

Significant interaction effects were identified between the different video conditions

and the subject gender, with this being true for the Stroking, Flicking and Eye

Covering action scenarios. In all cases it was found that the females provided more

extreme ratings than the males overall, with this being a more prominent effect

7This insight provides a justification for the previous experiments in which no context was
provided amid concerns regarding the potential confounding of results.
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with the Action Videos than the NLU Videos. These effects may be a suggestion

that the female subjects are able to empathise more with the robot; something

that has been reported in a variety of HRI studies, however with inconsistent

results (Rosenthal-von der Pütten et al., 2012).

It is, however, important to consider the magnitude of the interaction effect

and the conditions under which it has been found. The general size of effects due

to gender and the familiarity with the Nao are all small (≤ 1.0). These differences

cover a small range of the overall rating scale, and more importantly, cover a small

proportion of the working range of responses (i.e. between the highest and lowest

mean ratings). Also, these effects have only been found in the scenarios in which

the affective ratings are not extreme (i.e. the flicking, stroking and eye covering

action scenarios).

8.3.3 Methodological Remarks

While the results have shown support for H2, there are a number of drawbacks

that need to be highlighted with respect to the methodology of the experiment in

this chapter.

The fact that the experiment was conducted online using videos results in

somewhat reduced ecological validity. The rational for the use of videos was that

subjects can be presented with exactly the same stimulus, and given the content

of the videos, this is something that could not be achieved when presenting the

action scenarios in real life. However, it is possible that the results found may have

been different if the experiment were to have been conducted within the real world

as it is likely that a medium of video provides a certain degree of disconnection

between the subjects and the events shown within the videos. In particular with

respect to a subjects’ ability to empathise with the robot given that the subjects

were observing the actions and reactions of the robot, rather than being the cause

of these. Future work may seek to conduct a similar experiment within a real

world setting, with subjects being both observers of the robot’s behaviour as well

as the cause of the behaviours.
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The actions that were selected in this study may be considered as iconic and

thus hold little ambiguity than other potential physical interactions (for example,

someone moving the robot’s arm in a random manner). As a result, the notion that

the situation overrides the NLU in the case of the actions presented is unsurprising,

and it is a notion that may not be very generalisable to physical interactions with

the robot in general. This proposition does not, however, consider how people may

interpret random physical interactions with the robot. It may be that subjects

(consciously or unconsciously) project meaning into physical interactions with

robots that they either observe or engage in. If this is the case, then the underlying

insight, that physical interaction appears to bias how NLUs are interpreted, may

remain valid.

There is an issue surrounding the repetitiveness of the NLUs presented in the

videos. While NLUs #1, 2, and 3 were presented as NLU only videos as a means to

increase the number of NLUs subjects were presented with in an effort to disguise

the repetition of NLUs #7 and 8 in the Action/NLU videos, it may be that the

subjects were still able to recognise NLUs #7 and 8 and recall the ratings that

they provided in the NLU only conditions. If this is the case, then this may be a

factor influencing the observed effect due to the valence alignment.

Finally, all the NLUs covered a small region of the Likert scale with this region

being located around what might be considered as “neutral”. Given this, it is

not overly surprising that the actions override the NLU interpretation, however

in this light it is surprising that effect of the alignment in valence between the

NLU and action occurs. If the NLUs were to represent and evoke more extreme

affective ratings, evidence supporting H1 may emerge, particularly in the case of a

misalignment in the valence of the action and NLU. This could result in evidence

supporting H2 being less prominent. However, this assumes that it is indeed

possible for NLUs to hold interpretations with a similar magnitude as the Kissing

and Slapping action scenarios without the inclusion of context. This is a more

general assumption about the utility and communicative capabilities of NLUs that

has a variety of complex facets (such as how exposure to NLUs through long-term
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social interaction with the robot may impact how subjects in turn perceive and

interpret NLUs) and is a subject that will be addressed in the final chapter of this

thesis, as the findings of this chapter alone address this only in part.

8.3.4 Practical Use of NLUs

The results of this experiment also lend themselves to providing insights as to how

NLUs may be used practically in robotic systems:

What NLU to make: As a general “rule of thumb”, if the context is clear, it

is likely that any sound (within reason) is likely to produce an adequate alignment

to the desired interpretation. However, the subtle sensitivity to NLUs that has

been demonstrated here should not be overlooked. If both the valence of the

action and the NLU are known, the affective interpretation of the scenario can

be amplified to be more extreme (and perhaps robust). Though, caution must be

drawn to the use of iconic sounds such as single tones with either a rising or falling

frequency modulation as these tend to have clear and robust iconic meanings, and

the interaction between iconic actions and iconic sounds has not been studied

here.

When to make an NLU: This experiment has used NLUs as a means of

animating how a robot reacts to physical actions it is subject to, each with an

implied affective valence, rather than a means of replacing natural language in-

teraction (NLI). In a similar light to providing feedback, NLUs that have been

used here may potentially be used as reactions/feedback to external events that

are encoded in language - NLUs could be used for back-channelling also. When

a robot experiences salient sensory input, or performs a salient physical action,

using NLUs will likely enhance how the robot is perceived by a human.

Replacing NLI: Depending on the type of interaction that is desired, NLUs,

like gibberish, may be used to foster natural language responses (and other be-

haviours, such as gesturing) from a user, without the need to rely on NLP. As an

example of this, Chao and Thomaz (2013) have used gibberish speech to circum-

vent the need for NLP (and the inherent complexities it adds to a system) while
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still evoking natural dialogue from subjects when evaluating their model of turn-

taking behaviour. In this light, both NLUs and gibberish might have potential

in moving beyond Wizard of Oz (WoZ) approaches in HRI studies to overcome

shortcomings in NLP (Riek, 2012), moving closer to fully autonomous social HRI.

8.4 Summary

This chapter has focused upon the influence that a situational content may have

upon the affective interpretation of NLUs. The inclusion of context is an important

aspect to investigate as situational context is also always inherent within real world

social HRI.

Two hypotheses were tested. Firstly, that a subject’s affective interpretation of

an NLU overrides their affective interpretation of a situational context. Secondly,

that the opposite is true; that a subject’s affective interpretation of a context

overrides that of an NLU. The experiment presented in this chapter tests these

hypotheses by presenting subjects with five different video conditions:

• The robot emitting a positive NLU and a negative NLU.

• The robot being subject to an action (e.g. a slap on the head)

• Two videos in which the action is accompanied by either the positive or

negative NLU.

The results have provided strong support for the second hypothesis in that,

in all cases, that the interpretation of the action and NLU combinations were

significantly different to that of the NLUs alone, and at the same time having a

similar (and in the majority not significantly different) interpretation to that of

the action alone. Furthermore, the results also indicate that while the context

provides a more weightily cue for interpretation, subjects are still sensitive to the

acoustic cues present within the NLU. It was found that when the interpretation

of the NLU and the action were aligned (having the same valence), the overall

interpretation was enhanced and more extreme, whilst when the valences were
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misaligned there was no statistical difference between the action only and the

action/NLU combination.

The apparent dominance of the context over the NLUs has important implica-

tions upon the practical use of NLUs, particularly with regard to the specification

of the acoustic properties. Provided that the context is clear and unambiguous, it

is likely that if a robot just makes an NLU (paying little attention to the details

of the utterance) the overall interpretation of the scenario remains unchanged. As

such, the robot may potentially make a completely random utterance, with little

chance of an adverse outcome. Moreover, if the robot is able to make appraisals

of salient sensory input, as well as of its planned, actions, the users’ affective in-

terpretations of these will likly be amplified if the valence of the NLU made by

the robot is aligned with the users interpretation of the situation.

259



260



Chapter 9

Combining NLUs with Natural

Language

Summary of the key points:

• As NLUs have a great deal of potential utility during linguistic interaction,

and linguistic interaction is a rich source of situational context and mood in

an interaction, an online experiment is conducted to assess the compatibility

of NLUs and language when used in the same robot.

• Adults were shown videos a robot playing a guessing game with a human,

where the robot either used only NLUs, natural language, or a combination

of the two.

• People show preference for a robot that uses NLUs in combination with

natural language than when a robot only uses NLUs, however, a robot that

uses only natural language has the highest overall preference.

• If NLUs are to be used by a robot, this should be done in combination with

natural language, rather than as a replacement for natural language.
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The study presented in the last chapter found that when NLUs were presented

within a clear context, the subjects’ affective interpretation of the context overrode

or significantly biased their affective interpretation of the NLUs. This in itself

already sheds light on the factors that are influential in directing and biasing how

people respond NLUs. As a result, guidelines regarding the practical use of NLUs

were proposed.

However, while physical interaction with social robots and the surrounding

environment provides a rich source for context within an interaction, it is not the

only phenomenon that occurs regularly during social HRI - people use natural lan-

guage to communicate with each other, and readily do the same when interacting

with social robots (Breazeal, 2002). This also extends to machines and computers

(Nass and Brave, 2005; Reeves and Nass, 1996). Thus, natural language is an

important aspect to consider as this too is a rich source of situational context,

mood and subject matters within an interaction. All of which are facets that will

likely impact how NLUs are perceived and interpreted.

The field of HRI is now striving to understand how social robots engage in

interactions with people over longer periods, with active efforts directed at de-

veloping new systems and technologies that facilitate this increasing in number

(see current research projects such as ALIZ-E (Belpaeme et al., 2012) and LIREC

(Leite et al., 2013a)). Initial outcomes of these efforts are some clear guidelines for

designing these long-term capable systems, with competency in the use of Natural

Language as a key capability required (Belpaeme et al., 2012). This raises issues

that relate to NLUs: if utterances are indeed to be a useful means of communica-

tion and expression in complex and competent social robots, it is likely that their

use will need to be integrated alongside natural language. The NLUs will support,

rather than a replace natural language, as the latter is most likely to hamper the

development of a long-term interaction bond. In this respect utterances can have,

for example, a supportive role by providing backchannel feedback during spoken

dialogue (Yngve, 1970) or be used to make expressive and affective displays. How-

ever, these potentials are founded on the assumption that natural language and
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NLUs are indeed compatible and can be used together without having an adverse

impact upon HRI. Furthermore, it must be recognised that natural language and

NLUs both operate via the acoustic modality and thus are essentially in direct

competition for the same resource when used alongside each other by the same

agent. This competition may be the cause of adverse effects and thus should also

be investigated.

In this light, the content of this chapter is focused upon gaining initial insights

as to whether the modality of natural language and NLUs are fundamentally

compatible with each other if used by the same agent. This will allow a first

assessment of whether the theoretical potential of NLUs and language also has

a practical foundation. More specifically, this chapter presents the results of a

video based online experiment in which subjects were presented with four different

videos, each showing the robot playing a game and using either natural language,

NLUs, or a combination in reaction to events that occur as the game unfolds.

Subjects were then asked to rate the vocal utterances made by the robot in the

video with respect to their appropriateness, expressiveness and naturalness and

how much they liked the robot, as well as providing a preference rating for the

robot in each of the videos.

9.1 Experimental Setup

The experiment set out to test the following hypotheses:

• H1: A robot that uses only natural language will be rated as more appro-

priate/expressive/natural/preferable than a robot that uses NLUs alongside

natural language.

• H2: A robot using only NLUs will be rated as less preferable/natural/appropriate

than a robot that uses NLUs alongside natural language.

• H3: The ratings of appropriateness/expressiveness/naturalness/preference

will be influenced by how NLUs and natural language are combined.
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H1 provides a clear hypothesis that a robot that solely uses natural language

will have the highest overall ratings, while H2 hypothesizes that a robot that uses

only NLUs will have the lowest overall ratings across the measures. The rational

for these hypotheses is that natural language is an ultimate goal in HRI as it

provides (in part) a truly social and natural interface for humans with which we

have a vast amount of experience to draw upon in order to decode utterances.

In comparison to this, NLUs may be considered as an unfamiliar modality of

expression in that it is likely that the majority of people have little real-world

experience to draw upon and relate to in order to decode utterances. H3 states

that how the two modalities are combined will impact the subjects’ perception of

the robot. This hints at the notion that some combinations of NLUs and natural

language may be “correct” or “better” in some way than others, while not seeking

to provide a specification of this, as this is likely to be highly context dependent.

To test these hypotheses, four videos were created, each showing the robot

playing a game with a human, with the type of utterance (natural language,

NLUs or combination of the two) being varied across the four videos. The game

was based upon the “Cups and Balls” game, also know as the “Three Cups and

Ball Routine”. In this game, an object (in this case, a small blue fury ball, see

figure 9.3) is placed under one of three cups, and the cups shuffled. The objective

of the game is for the observer (in this case, the robot) to guess under which of the

cups the ball is hidden after they have been shuffled. This scenario was chosen as

it facilitates the robot making a variety of different vocalisations throughout the

scenario. These vocalisations range from linguistic comments regarding what is

happening (such as it recognising the game), conversational fillers (to show that

the robot is thinking about the guess it will make), and reactive and expressive

vocalisations (used when the robot’s guess is revealed to be incorrect). For the

purpose of this experiment the unfolding of this game was scripted such that the

robot’s physical behaviour was always the same, that the robot always made the

same (incorrect) guess and that the end location of the ball was always the same.

Thus, only the utterances were the controlled dependant variable.
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(a) The ball being presented. (b) The cups being shuffled.

(c) The robot guessing which cup
the ball is under.

(d) The correct location of the
ball being revealed to the robot.

Figure 9.1: Frames from the videos depicting each of the four components to the
cups and balls game.

To help formalise the conditions, the scenario may be broken down into the

following four main components or events (see figure 9.1):

1. The human presents the ball to the robot, and then places the cups on the

table with the ball being placed under the middle cup.

2. The cups are then shuffled by the human (approx. 10 seconds).

3. The robot behaves in such a manner as to show that it is thinking about

which cup the ball is under. It makes a guess and indicates the guess to the

human by pointing at the cup (on the right).

4. The guess made by the robot is revealed (to be incorrect) and then the

actual location of the ball is revealed (under the left cup).

During each of these components, the robot made a vocalisation, or multiple

vocalisations in order to provide feedback to the human either showing the robot’s

awareness and understanding of the situational context at the given time, or as

a means of showing a reaction to what is happening within the context. These
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vocalisations also have the benefit of helping animate the whole scenario and bring

it more to “life”.

The four video conditions were as follows:

• V1: The robot only making natural language utterances.

• V2: The robot making only NLUs.

• V3: The robot making a combination of natural language and NLUs.

• V4: The robot making an inversed combination of natural language and

NLUs.

Videos V1 (natural language only condition) and V2 (NLU only condition) serve

as opposite control conditions by which conditions V3 and V4 (the language/NLU

combined conditions) may be measured and compared against. Table 9.1 shows

a breakdown of the language/NLU usage across the four conditions. The table

shows that V3 had 7 language samples and 5 NLU samples overall, while V4 had

8 language samples and 4 NLU samples, with, in the majority, the NLUs and

language samples being swapped over between the two conditions. The ratio of

NLU to language utterances in V3 was dictated by selecting utterances from the

language only condition that could be replaced with NLUs while still preserving

the coherence in the overall vocal behaviour of the robot throughout the game.

As this study was not focused on varying the ratio (i.e. the frequency of NLUs vs

that of natural language) of NLU to language utterances, this was not explicitly

controlled. Certain language samples were kept constant between the two condi-

tions however. These were language sample 1 which informed the viewer that the

robot was indeed aware of how the game was played, and language samples 5 and

6 which provided an indication that the robot was thinking about which cup to

select. All other NLU/language samples were inverted across video conditions V3

and V4.

The remainder of this section outlines in more detail the process undertaken

to produce the videos shown to subjects, the audio samples used and an overview

of the experimental procedure that was undertaken.
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Table 9.1: Breakdown of Language and NLUs used across each of the four video
conditions. Note the inverses use of NLUs and language in conditions 3 and 4.

Component Utterance #
Video Condition

1 2 3 4

1 1 Lang-1 NLU-1 Lang-1 Lang-1

2
2 Lang-2 NLU-2 Lang-2 NLU-2
3 Lang-3 NLU-3 NLU-3 Lang-3

3

4 Lang-4 NLU-4 Lang-4 NLU-4
5 Lang-5 NLU-5 Lang-5 Lang-5
6 Lang-6 NLU-6 Lang-6 Lang-6
7 Lang-7 NLU-7 NLU-7 Lang-7
8 Lang-8 NLU-8 Lang-8 NLU-8
9 Lang-9 NLU-9 NLU-9 Lang-9

4
10 Lang-10 NLU-10 NLU-10 Lang-10
11 Lang-11 NLU-11 NLU-11 Lang-11
12 Lang-12 NLU-12 Lang-11 NLU-12

Language Total 12 0 7 8
NLU Total 0 12 5 4

Table 9.2: The text input to the TTS engine to produce the language samples
used during the videos.

Language Sample # Speech

1 “Ah, I know this game.”
2 “Where’s it going?”
3 “Whoa, slow down!”
4 “Now then, where did it go?”
5 “Let me see”
6 “I think it’s...”
7 “It’s... It’s...”
8 “That one!”
9 “Am I right?”
10 “Drats!”
11 “Oh that’s a shame”
12 “I could have sworn that I was right!”
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Table 9.3: Specification of the Generation Parameters used to generate each NLU.

NLU #
NLU Parameters

Base Freq Freq Range Speech Rate Pause Rat. Rhythm Unit Count Tremolo Skew Rat. Node Rat.

1 792 641 3 0.25 0.701 4 -0.0329 0.694 0.817
2 580 1000 2 1.011 0.05 4 0.0416 0.601 0.007
3 580 1000 2 0.992 0.05 4 -0.0943 0.393 0.866
4 1242 524 2.168 0.077 0.443 3 0.3681 0.562 0.205
5 580 500 1.95 0.15 0.3 3 0.066 0.809 0.110
6 772 1057 3.279 0.269 0.080 3 -0.2805 0.524 0.720
7 650 1000 3 0.15 0.3 1 0.0699 0.084 0.120
8 650 1000 3 0.15 0.3 2 0 0.937 0.168
9 650 1000 3.5 0.15 0.3 3 0 0.957 0.017
10 600 511 5.29 0.079 0.825 2 0.3847 0.655 0.334
11 518 1299 1.569 0.4826 0.340 1 -0.3031 0.405 0.621
12 1114 1171 3.5 0.15 0.3 3 0.0887 0.348 0.539
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9.1.1 Stimulus Production

The language samples were pre-recorded by using the Nao’s built in Text-To-

Speech (TTS) engine and saving the output to a file (see table 9.2 for the specifi-

cation of what was said - i.e. the input text strings). These audio files were then

played back during the execution of the robot’s scripted behaviour. Similarly,

the NLUs were pre-recorded using the generation algorithm (chapter 3) and also

called from the scripted behaviour. While the language monologue was designed

to support the events occurring within the unfolding of the game, the NLUs were

not intended (or specifically designed) to portray any particular affective state or

have any communicative intent. This was done in the light of the findings out-

lined in the previous chapter (chapter 8) where the situational context was found

to provide adequate cues and help direct how an utterance may be interpreted.

Table 9.3 outlines the parameter specification for each NLU and figure 9.2 shows

the spectrograms for the utterances indicating the pitch contour shapes. Once

recorded, all the audio files underwent post-processing by being converted from a

stereo to mono track file, as well as being normalised to -1 dB such that they all

had roughly the same acoustic volume when played back via the robot.

Each video was recorded individually1, with the audio being captured both via

the video camera, and separately using professional audio equipment (see figure

9.3). These audio recordings were then converted to a mono-track, normalised

to -1 dB and subject to noise removal. Using video editing software, the audio

captured via the video camera was discarded and replaced with the post-processed

recordings captured via the audio equipment to produce a higher quality end

product.

At the end of each video either a number or word was displayed for 1500ms

on screen. This was used as a means within the online survey to check whether

subjects had indeed watched the video and paid attention to the content, through

validation questions for each video. The total length of each of the four videos

1As the videos were each recorded individually and separately, they were not completely
identical however aside from the vocalisations made by the robot, there were only minor differ-
ences in the video due primarily to differences in the human’s behaviour, which includes same
differences in sounds made by the human interacting with the cups and balls.
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Figure 9.2: Spectrograms of the 12 NLUs used as stimulus.
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(a) Image of the Nao, Cups
and Ball used in the game.

(b) Image of the professional
audio equipment setup.

Figure 9.3: Images of the apparatus used in the stimulus recording.

was 64 seconds.

9.1.2 Experimental Procedure

The online survey was facilitated, and subjects recruited via the CrowdFlower

crowd sourcing service and were rewarded $0.3 USD for their participation. Sub-

jects were first asked to provide their age and gender, and then presented with

the four videos in random order. After viewing every video, subjects were asked

to rate how appropriate, natural and expressive they felt the speech/sounds made

by the robot were. They were also asked how much they liked the robot in the

video as well as answering the validation question confirming whether they indeed

had watched the video. This question queried what the text shown (at the end

of the video) was. Once all four videos had been presented and the video specific

questions answered, subjects were asked to provide a rating of preference for each

video. Both the preference and liked measures were included; while they measure

similar aspects of the subject’s attitude toward the video, differences may arise

due to the ordering of the videos and the fact that the preference ratings were re-

quired in the latter stages of the survey, while the likeabilitiy ratings were spread
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out and queried after each video was viewed.

All ratings were collected using a 9-point Likert scale with 1 representing the

most negative aspect of the rating (e.g. for the preference rating, 1 = Least

Preferred) and 9 representing the most positive aspect (e.g. for the preference

rating, 9 = Most Preferred).

This was followed by 3 more general validation questions, asking details unre-

lated to focus of the experiment. These questions asked what colour t-shirt the

human in the video was wearing, the colour of the object that was covered by the

cup and the colour of the robot’s eyes. All validation questions were forced choice

from a list of four possible answers. Finally subjects were asked whether they had

seen the robot before.

9.2 Results

In total, 480 people completed the experiment online, however the data for 210

respondents was not used in the analysis presented in this section as the time taken

for them to complete the survey fell below 5 minutes. This threshold was set as

each of the four videos was just over one minute, thus it would take approximately

4 minutes 20 seconds to watch all the videos, an additional 40 seconds were added

to this to account for subjects also answering all the questions.

Of the remaining 270 subjects whose data was included, 89 were male (mean

age = 36.74, std = 10.8) and 181 were female (mean age = 37.74, std = 11.0). 166

subjects reported to have seen the robot before (57 males, mean age = 36.6, std

= 10.5, and 109 females, mean age = 39.61, std = 10.15). The average time taken

to complete the survey was 8.16 minutes, std = 3.43 minutes, and all validation

questions were answered correctly.

Cronbach’s α was used as a measure of the agreement between subjects, for

each of the 5 different rating scales, across all the video conditions (see table 9.4).

High α values were obtained for all the scales with the exception of the preference

ratings, which had a very low value indicating little agreement between subjects

in their ratings across the four conditions.
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Table 9.4: Cronbach’s α ratings for each of the rating scales, across all of the
language/NLU conditions.

Rating Scale α

Appropriateness 0.762
Expressiveness 0.720
Naturalness 0.724
Preference 0.172
Rating 0.841

3-way repeated measures ANOVAs were performed for each of the DVs using

the ratings for appropriateness, expressiveness, naturalness, preference and the

rating of likability as the multiple dependant variables (DVs), and the different

video conditions as the repeated measures. Subject gender and robot familiarity

were used as independent, between subjects, variables (IVs). The main effects for

the different video conditions were followed up with multi-comparison tests that

included a Bonferroni correction2. Multi-comparison tests were not performed for

the gender or robot familiarity factors as these only had two levels.

When significant three-way interaction effects were found, these were followed

up by four 2-way repeated measures ANOVAs, splitting the data with respect to

subject gender, using the video condition and robot familiarity as the factors, and

then by splitting the data by robot familiarity and using the video conditions and

subject gender as the factors. Doing this provides a deeper insight as to the na-

ture of the interactions that have been found. Significant main effects were again

subject to the same multi-comparison format outlined above. In the case of signif-

icant two-way interactions, post-hoc independent samples test were performed to

test for differences between either the two genders, or subjects familiar/unfamiliar

with the robot, for each of the four video conditions individually.

The rest of this section presents the results of the ANOVAs for each of the 5

units of measure.

2Bonferroni corrections are applied in order to reduce the chance of finding Type 1 errors
(rejecting the null hypothesis when it is in fact true) when comparing the means of multiple
groups simultaneously.
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9.2.1 Appropriateness Ratings

The Univariate test found that there was a main effect due to the video condi-

tion (F (3, 798) = 49.278, MSE = 68.123, p < 0.0005), and a three-way inter-

action effect between the video condition, subject gender and robot familiarity

(F (3, 798) = 3.790, MSE = 5.240, p = 0.01).

Given the presence of the three-way interaction, the main effect was not fol-

lowed up as it is likely not a true representative of the nature of the relationships

between the variables. However, the three-way interaction effect was followed up

by four two-way repeated measures ANOVAs, splitting the subjects by the two

levels of the robot familiarity variable, using the four video conditions (within sub-

jects) and subject gender (between subjects) as the two factors, and then splitting

the subjects by gender and using the video conditions and robot familiarity as the

two factors.

9.2.1.1 Splitting Subjects by Robot Familiarity

For the subjects whom were unfamiliar with the robot a main effect was found

for the video condition (F (3, 798) = 18.997, MSE = 26.254, p < 0.0005) as

well as a significant interaction effect between the video condition and subject

gender (F (3, 798) = 2.929, MSE = 4.049, p = 0.0328). With respect to the

main effect, post-hoc multi-comparison tests revealed that both V1 and V2 were

significantly different than V3 and V4 (p < 0.01), with V1 (mean = 7.358, 95% CI

= [7.073 7.642]) receiving the highest ratings and V2 (mean = 6.052, 95% CI =

[5.578 6.526]) receiving the lowest ratings. Video conditions V3 (mean = 6.757,

95% C = [6.405 7.109]) and V4 (mean = 6.938, 95% CI = [6.600 7.275]) were

not found to be significantly different. Post-hoc independent sample t-tests were

used to uncover the nature of the interaction effect between the video conditions

and the subject gender. These test found no significant differences between the

genders for any of the video conditions.

For the subjects who were familiar with the robot, a main effect was found for

the video condition (F (3, 798) = 34.234, MSE = 47.308, p < 0.0005) with no sig-
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nificant interaction between the video condition and subject gender (F (3, 798) =

2.384, MSE = 3.294, p = 0.068). The post-hoc multi-comparison tests revealed

that as with the subject unfamiliar with the robot, V1 and V2 had ratings that

were significantly different from all the other video conditions (p < 0.001). Again,

V1 (mean = 6.160, 95% CI = [5.844 6.476]) received the highest rating while V2

(mean = 7.515, 95% CI = [7.311 7.719]) received the lowest overall rating. Video

conditions V3 (mean = 6.911, 95% CI = [6.703 7.119]) and V4 (mean = 7.047, 95%

CI = [6.841 7.253]) were not significantly different from each other (p = 0.431).

These results are displayed graphical in figure 9.4 and summarised in table

G.1.

9.2.1.2 Splitting Subjects by Gender

When isolating the male subjects, a significant main effect was found for the

video conditions (F (3, 798) = 18.993, MSE = 26.249, p < 0.0005), however no

interaction effect was found between robot familiarity and the video conditions

(F (3, 798) = 1.583, MSE = 2.189, p = 0.191). The post-hoc multi comparison

tests revealed that V1 (mean = 7.525, 95% CI = [7.261 7.789]) received ratings

that were significantly higher than all the other video conditions (p ≤ 0.01), while

V2 (mean = 6.174, 95% CI = [5.746 6.602]) received the lowest overall ratings

and was significantly different from all the other video conditions (p < 0.05). V3

and V4 were not found to be significantly different (p = 0.157), with V4 (mean =

7.008, 95% CI = [6.715 7.300]) receiving and overall higher rating than V3 (mean

= 6.697, 95% CI = [6.355 7.040]).

For the female subjects, a main effect was found for the video condition

(F (3, 798) = 39.195, MSE = 54.168, p < 0.0005), as well as an interaction

effect between the video condition and robot familiarity (F (3, 798) = 2.601,

MSE = 3.595, p < 0.0005). The post-hoc multi-comparison tests found that

V1 (mean = 7.348, 95% CI = [7.147 7.549]) received the highest ratings and was

significantly different than all the other video conditions (p < 0.005). V2 (mean

= 6.038, 95% CI = [5.718 6.358]) again received the lowest overall ratings and
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(a) Subjects unfamiliar with the Nao robot.
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(b) Subjects familiar with the Nao robot.

Figure 9.4: Plots showing the mean and 95% confidence intervals for the
appropriateness ratings and interaction between male/female subjects and video

conditions, with the data split across the robot familiarity factor.

too was significantly different from all the other video conditions (p < 0.0005).

V3 (mean = 6.970, 95% CI = [6.726 7.179]) and V4 (mean = 6.977, 95% CI

= [6.760 7.194]) received similar ratings and were not found to be significantly

different (p = 1.00). With respect to the interaction effect identified, post-hoc

independent sample t-tests were performed to check for differences between the

female subjects who were familiar/unfamiliar with the robot, for each of the four
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video conditions. Each of these tests found no significant differences either video

conditions 1 (t(179) = 0.536, p = 0.592), 2 (t(179) = −1.521, p = 0.130), 3

(t(179) = 0.413, p = 0.680) or 4 (t(179) = 0.209, p = 0.835).

These results are displayed graphical in figure 9.5 and summarised in table

G.2.

9.2.2 Expressiveness Ratings

The Univariate test found that there was a main effect due to the video condi-

tion (F (3, 798) = 52.119, MSE = 86.818, p < 0.0005), and a three-way inter-

action effect between the video condition, subject gender and robot familiarity

(F (3, 798) = 6.056, MSE = 10.088, p < 0.0005).

The three-way interaction effect was followed up by four two-way repeated

measures ANOVAs, splitting the subjects by the two levels of the robot familiarity,

using the four video conditions (within-subjects) and subject gender (between

subjects) as the two factors, and then splitting the subjects by gender and using

the video conditions and robot familiarity as the two factors.

9.2.2.1 Splitting Subjects by Robot Familiarity

When isolating the subjects unfamiliar with the robot, a main effect was found for

the video condition (F (3, 798) = 22.640, MSE = 37.719, p < 0.0005), as well as

an interaction effect between the subject gender and video condition (F (3, 798) =

5.230, MSE = 8.714, p = 0.001). Post-hoc multi-comparison tests showed that

for the main effect there were no significant differences in the ratings for V1 (mean

= 7.047, 95% CI = [6.738 7.355]), V3 (mean = 6.688, 95% CI = [6.338 7.037]) and

V4 (mean = 6.960, 95% CI = [6.644 7.277]), (p > 1.58), and that V2 (mean = 5.628,

95% CI = [5.108 6.149]) was rated lower than all the other videos to a statistically

significant degree (p < 0.001). Regarding the interaction effect identified, the post-

hoc independent samples t-tests found that only for V2 there was a significant

difference between the two genders in their ratings of expressiveness (t(102) =

−2.132, p = 0.035).
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(b) Female Subjects

Figure 9.5: Plots showing the mean and 95% confidence intervals for the
appropriateness ratings and interaction between subjects familiar and unfamiliar
with the robot and the video conditions, with the data split across the subject

gender factor.
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For the subjects familiar with the robot, again a main effect was found for the

video condition (F (3, 798) = 32.331, MSE = 53.864, p < 0.0005), however no

interaction was found between the genders and video condition (F (3, 798) = 2.300,

MSE = 3.823, p = 0.0759). The post-hoc tests revealed that for the main effect,

V1 (mean = 7.300, 95% CI = [7.076 7.525]) again received the highest rating

and was significantly different to all the other videos (p < 0.01), and that V2

(mean = 5.913, 95% CI = [5.588 6.237]) received the lowest rating and was also

significantly different to all the other videos (p < 0.0005). V4 (mean = 6.990,

95% CI = [6.765 7.215]) was rated as more marginally expressive than V3 (mean

= 6.829, 95% CI = [6.673 7.110]), however this difference was not found to be

statistically significant (p = 1.000).

These results are shown in figure 9.6 and summarized in table G.3.

9.2.2.2 Splitting Subjects by Gender

When isolating the female subjects, the ANOVA found a main effect for the video

condition (F (3, 798) = 49.575, MSE = 82.592, p < 0.0005) and an interaction

effect between familiarity with the robot and the video condition (F (3, 798) =

6.361, MSE = 10.599, p < 0.0005). The post-hoc tests show that V1 (mean =

7.046, 95% CI = [6.828 7.263]) received the highest expressiveness rating, V2 the

lowest rating (mean = 5.544, 95% CI = [5.204 5.883]), and V3 (mean = 6.864, 95%

CI = [6.649 7.079]) and V4 (mean = 6.821, 95% CI = [6.579 7.044]) received near

identical ratings. No significant differences were found between V1, V3 and V4 (p >

0.1), while all three videos were rated significantly higher than V2 (p < 0.0005).

For the interaction effect, the post-hoc independent samples t-tests found that

there was only a difference between the female subjects familiar/unfamiliar with

the robot for V2 (t(179) =-2.758, p = 0.006).

For the male subjects, a main effect was again found for the video condition

(F (3, 798) = 16.578, MSE = 27.260, p < 0.0005), however no interaction effect

was found between robot familiarity and the video condition (F (3, 798) = 1.763,

MSE = 2.946, p = 0.151). The post-hoc tests revealed that again, V1 (mean
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(a) Subjects unfamiliar with the Robot

All Familiar
Familiar Females
Familiar Males

Video Condition

E
xp

re
ss

iv
en

es
s R

at
in

g

1 2 3 4

5.5

6

6.5

7

7.5

8

5

(b) Subjects familiar with the Robot

Figure 9.6: Plots showing the mean and 95% confidence intervals for the
expressiveness ratings and interaction between male/female subjects and video

conditions, with the data split across the robot familiarity factor.
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= 7.301, 95% CI = [7.005 7.598]) received the highest rating of expressiveness,

V2 the lowest (mean = 5.997, 95% CI = [5.547 6.447]). V4 (mean = 7.130, 95%

CI = [6.842 7.417]) was rated as more expressive than V3 (mean = 6.715, 95%

CI = [6.374 7.056]), with this also being statistically significant (p = 0.011).

The difference between V1 and V4 was not found to be statistically significant

(p = 0.993), while the difference in rating between videos 1 and 3 was found to be

statistically significant (p = 0.001). The rating for video 2 was significantly lower

than that of all the other videos (p < 0.05). These results are shown in figure 9.7

and summarised in table G.4.

9.2.3 Preference Ratings

The Univariate tests found that there were main effects due to the video condition

(F (3, 798) = 67.4, MSE = 145.264, p < 0.0005) and the familiarity with the robot

(F (1, 266) = 6.959, MSE = 53.002, p = 0.009)

With respect to the video condition main effect, multi-comparison tests showed

that V1 had the highest rating (mean = 6.845, 95% CI = [6.645 7.063]) and was

significantly higher than all the other conditions (p < 0.001). V2 was found to have

the lowest rating (mean = 4.969, 95% CI= [4.659 5.319]) and was significantly

different than all the other conditions (p < 0.001). V4 had the second highest

rating (mean = 6.470, 95% CI = [6.256 6.684]) and V3 the third (mean = 6.260,

95% CI = [6.044 6.475]), with no significant difference found between these two

conditions.

With respect to the main effect due to robot familiarity, multi-comparison

tests revealed that subjects who had seen the robot before provided higher ratings

(mean = 6.387, 95% CI = [6.165 6.609]) than subjects whom had not seen the

robot before (mean = 5.899, 95% CI = [5.611 6.188]).

The results for both main effects are shown graphically in figure 9.8 and sum-

marised in table G.5.
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(b) Male Subjects

Figure 9.7: Plots showing the mean and 95% confidence intervals for the
expressiveness ratings and interaction between the subjects familiar and

unfamiliar with the robot and video conditions, with the data split across the
subject gender factor.
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Figure 9.8: Plot of the mean ratings and 95% Confidence Intervals for the
Preference ratings for all the subjects combined, and the subjects whom were

familiar/unfamiliar with the robot.

9.2.4 Naturalness Ratings

The Univariate tests found a main effect due to the video condition (F (3, 798) =

56.834, MSE = 206.102, p < 0.0005) and subject gender (F (1, 266) = 10.298,

MSE = 43.316, p = 0.001), and a two-way interaction effect between the video

condition and subject gender (F (3, 798) = 3.445, MSE = 12.494, p = 0.016).

With respect to the main video condition effect, multi-comparison tests re-

vealed that V1 had the highest rating (mean = 7.165, 95% CI = [6.936 7.393]) and

was significantly different to all the other video conditions (p < 0.05). Similarly,

V2 was found to have the lowest rating (mean = 4.981, 95% CI = [4.630 5.331]) and

was significantly different to all the other video conditions (p < 0.0005). V4 was

found to have the second highest rating (mean = 6.781, 95% CI = [6.577 6.985]),

while V3 had the second lowest rating (mean = 6.586, 95% CI = [6.372 6.800]).

No significant difference was found between V3 and V4.

With respect to the main effect due to subject gender it was found that male

subjects provided a significantly higher mean rating (mean= 6.599, 95% CI =

[6.376 6.822]) than the female subjects (mean = 6.158, 95% CI = [6.004 6.311]).

With respect to the interaction effect between the video conditions and subject
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Figure 9.9: Plot of the mean ratings and 95% Confidence Intervals for the
Naturalness ratings across the four video conditions, for all the subjects

collectively and subject genders.

gender, the post-hoc independent sample t-tests found no significant differences

between the two genders across any of the four video conditions.

The results for main and interaction effects are shown graphically in figure 9.9

and summarised in table G.6.

9.2.5 Like-ability Ratings

The Univariate tests found a main effect due to the video condition (F (3, 798) =

20.396, MSE = 28.711, p < 0.0005) and robot familiarity (F (1, 266) = 7.988,

MSE = 68.288, p = 0.005), Two-way interaction effects were found between the

video condition and subject gender (F (3, 798) = 3.617, MSE = 5.092, p = 0.013)

and between subject gender and robot familiarity (F (1, 266) = 3.948, MSE =

33.750, p = 0.048).

The multi-comparison tests found that, for the main effect due to the video

condition, that V1 had the highest rating (mean = 7.305, 95% CI = [7.091 7.519]),

while V2 had the lowest rating (mean = 6.462, 95% CI = [6.176 6.748]). V1

was found to be statistically different from V2 and V3 (p < 0.05) but not from

V4. V2 was different from all the other conditions to a statistically significant

degree (p < 0.0005). V4 had the second highest rating (mean = 7.095, 95% CI
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= [6.878 7.311]) and was significantly different from V2 (p < 0.0005). V3 had the

second lowest rating (mean = 7.001, 95% CI = [6.783 7.220]) and was significantly

different from V1 and V2 (p < 0.05).

For the main effect due to robot familiarity the multi-comparison tests revealed

that subjects whom had seen the robot before had a mean rating (mean = 7.243,

95% CI = [7.007 7.478]) that was significantly higher than the subject whom had

not seen the robot before (mean = 6.689, 95% CI = [6.383 6.995]).

Post-hoc independent samples t-tests were performed to uncover the nature of

the interaction effect between the video conditions and subject gender. These tests

were performed to compare the ratings of each gender, for each video condition

independently (thus four t-tests were performed). For V1, no significant differences

(t(268) = −1.534, p = 126) were found between the males (mean = 7.426, 95%

CI = [7.073 7.779]) and females (mean = 7.184, 95% CI = [6.942 7.426]). The

ratings for V2 were found to be significantly different (t(268) = −3.93, p = 0.002),

with the ratings for the males (mean = 6.846, 95% CI = [6.375 7.318]) being

higher than those for the females (mean = 6.077, 95% CI = [5.753 6.402]). No

significant difference was found for V3 (t(268) = −0.930, p = 0.353), though the

male subjects (mean = 7.031, 95% CI = [6.670 7.391]) had a higher overall rating

than the females (mean = 6.972, 95% CI = [6.725 7.220]). The ratings for V4 were

found to be significantly different (t(268) = −2.412, p = 0.017), with the males

(mean = 7.302, 95% CI = [6.945 7.659]) again having a higher overall rating than

the females (mean = 6.887, 95% CI = [6.641 7.133]).

With respect to the interaction effect between subject gender and robot famil-

iarity, that post-hoc independent samples t-tests found that the female subjects

whom had seen the robot before had a mean rating (mean = 6.862, 95% CI =

[6.587 7.138]) that was higher than the female subjects who had not seen the robot

before (mean = 6.698, 95% CI = [6.359 7.037]), but this was not significantly dif-

ferent (t(179) = −0.750, p = 0.454). Similarly, male subjects who had seen the

robot before had an significantly higher overall mean rating (mean = 7.623, 95%

CI = [7.242 8.004]) than males who had not seen the robot before (mean = 6.680,
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95% CI = [6.171 7.189]), t(87) = −2.849, p = 0.005. The tests also revealed that

when isolating the subjects familiar with the robot, the male subjects had a signif-

icantly higher overall mean rating than the females (t(164) = −3.186, p = 0.002),

while this was not the case for the subjects who were unfamiliar with the robot

(t(102) = 0.059, p = 0.953).

The interaction effects are shown graphically in figures 9.10a and 9.10b and

summarised in tables G.7 and G.8.

9.2.6 Summary of Results

As this section of results has been densely populated with statistical results, this

section serves to provide a summary of the main, important findings.

Each of these ANOVAs found a main effect due to the video condition. For all

of these, it was shown that V1 received the highest rating, and V2 the lowest, with

these two conditions being significantly different in all cases. For the appropriate-

ness, naturalness, preference and likeability ratings, V3 and V4 were not found to

be significantly different from each other, but were found to be significantly dif-

ferent (and rated lower) than V1 and (rated higher) than V2. With respect to the

expressiveness ratings, V1, V2 and V4 were not found to be significantly different,

but were all significantly different from V2.

Other main and interaction effects are outlined for each unit of measure here:

Appropriateness Ratings: It was found that for the subjects unfamiliar

with the robot there was an interaction between the subject gender and video

condition. Similarly, it was found that when isolating the female subjects, there

was an interaction effect between the robot familiarity factor and the video condi-

tion. However for both of these interaction effects, the post-hoc t-tests found no

significant differences between the testing factors for any of the video conditions.

Expressiveness Ratings: As with the appropriateness ratings, it was found

that for the subjects unfamiliar with the robot there was an interaction between

the subject gender and video condition. Similarly, it was found that when isolating

the female subjects, there was an interaction effect between the robot familiarity
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(a) Plot of the interaction effect between the video condition and the subject gender.
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(b) Plot of the interaction effect between subjects familiar/unfamiliar with the robot
and the subject gender.

Figure 9.10: Plot of the mean ratings and 95% Confidence Intervals of the
Likeability across the four video condition for all the subjects collectively and
the genders, and the interaction effect between the subject gender and robot

familiarity.
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factor and the video condition. In both cases, it was found that there was a signif-

icant difference between the between-subjects factor (gender or robot familiarity)

for V2, but no other video conditions.

Naturalness Ratings: A main effect was found due to subject gender, where

male subjects gave, overall, a higher mean rating than the females. An interaction

effect between subject gender and the video condition was also found, however,

the post-hoc t-tests found no significant differences between the genders for any

of the video conditions.

Preference Ratings: The preference ratings also had a main effect where

the subjects who were familiar with the robot tended to provide a higher overall

preference rating than subject who were unfamiliar with the robot.

Like-ability Ratings: A main effect due to the robot familiarity was also

found, where subjects familiar with the robot provided a higher overall rating than

subject unfamiliar with the robot. Also, two, two-way interaction effects were

also found. Firstly between the video condition and subject gender, where the

males provided significantly higher mean ratings for V2 and V4 than the females.

The second interaction effect identified was between subject gender and robot

familiarity. The post-hoc tests revealed that when unfamiliar with the robot, the

two genders had no significant differences in their ratings. However, when subject

were familiar with the robot, the males provided a significantly higher overall

mean rating than the females.

9.3 Discussion

The results of the tests have clearly shown that the four different video conditions

have elicited different ratings for each of the units of measure overall, for each

of the videos shown, with these differences being statistically significant in some

cases. From the results it is clear that subjects found the language only condition

(V1) to be most appropriate, expressive and natural as well as having the highest

overall preference. Conversely, the opposite was true for the NLU only condition

(V2). Together, these results paint a clear picture that a robot using only natural
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language holds more promise during an interaction than a robot that uses only

NLUs, at least in settings where the human counterparts speak the same language

as the robot (this experiment has not tested with subjects who do not understand

English). These findings confirm both H1 and H2 which state respectively that a

robot that uses only natural language will have the highest overall ratings, and a

robot that uses only NLUs will have the lowest overall ratings.

What is also interesting is that the NLU and natural language combinations

(V3 and V4) represent a middle-ground with respect to the overall ratings. Both of

the combination conditions were rated higher than the NLU only condition, and

in the majority of cases (the expressiveness ratings being the exception) received

ratings that were significantly lower than those for the language only condition.

Furthermore, few differences were found between the V3 and V4. This shows that

the combination of NLUs and natural language do not appear to have a drastic,

detrimental effect on people ratings (i.e. the ratings were not the same as the

ratings for the NLU only condition). This finding does not confirm H3 which

states that how the NLUs are combined with language will influence the subjects’

ratings. This is a promising result suggesting that there is indeed potential for

NLUs and natural language to be used in combination.

Furthermore, within the set up of this experiment this makes sense as in both

these conditions the robot used natural language to make important statements

regarding its knowledge of the game (Lang-1 utterance) and feeding back to the

human it is was thinking about which cup the ball was under (Lang-5 and Lang-6

utterances). All the other utterances essentially provided colouring to the scenario

and were not strictly required and thus may be used interchangeably. With respect

to the ratings of expressiveness, while conditions V3 and V4 were rated lower than

V1, this was not found to be statistically significant. This indicates that subjects

found natural language to be a far more expressive means of vocalisation than

NLUs, and that even when combined with NLUs, the subjects perception of the

expressiveness of language remained totally dominant.

It is also interesting to note that in general, the standard error in the ratings for
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the NLU only condition were notably higher than those for all the other conditions,

showing the subjects provided a far broader range of ratings for this condition than

the other three (see the tables in appendix G). This is further evidence of subjects

struggling to find a general coherent understanding and interpretation of NLUs in

general, as suggested in the experimental results presented in previous chapters

(chapters 5 and 7). Also, while the units of measure do not query affect in any

way, one might suspect that if they did, one might well get a smaller range of

ratings for the V1, V3 and V4 conditions also.

It is also shown that subject gender (for the naturalness ratings) and the

familiarity with the robot (for the appropriateness and preference ratings) impact

how the robot is perceived. With respect to the naturalness ratings the male

subjects provided higher overall ratings of naturalness than the females. While

this effect was found to be significant, it is noteworthy that the difference in the

ratings between the genders is rather small, relative to the overall range of the

ratings for the video, as well as the overall range of the Likert scale also. As

such, it may be prudent to apply little weight to this finding. With respect to

the appropriateness and preference ratings found that the subjects familiar with

the robot provided, in general, higher overall ratings than the subjects who were

unfamiliar with the robot, with the overall profile of the ratings relative to each

video being the same across the subject groups. This indicates that the levels of

appropriateness and preference appear to be a function of familiarity, and that as

experience with the robot is gained, people become more accustomed to the robot

and may have a more positive view of the robot.

The results also identified a number of interaction effects, however. It was

found in the majority that there were no significant differences between the levels

of the factors that interacted with the video condition. As a result, it is difficult

to interpret these interactions meaningfully. For the like-ability ratings, an inter-

action effect was found between the two between-subjects factors (subject gender

and robot familiarity). It was found that there was no difference in the ratings

between the genders when the subjects were unfamiliar with the robot. However,
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when subjects were familiar with the robot, the males gave an overall higher mean

rating than the females. Furthermore, it was found that when isolating the males,

the males who were familiar with the robot gave higher rating than the males

unfamiliar with the robot, while there was no such difference for the female sub-

jects. This suggests that it is perhaps the case that as males gain experience with

the robot, they are more likely (or easily swayed) to like the robot more, while

females might have more inertia to overcome in this respect.

The final set of results to address is the the low Cronbach’s α value for the

Preference ratings. This shows that subjects showed little agreement as to their

preference for each of the conditions. This low value could well be due to the main

effect where subjects familiar with the robot provided significantly higher overall

ratings along this scale, as this was a factor that split the subjects almost into two

equal halves, introducing a overall difference in the variances in the ratings for

the two genders. This may be enough to disrupt the overall Cronbach’s α value.

9.3.1 Methodological Remarks

This methodology is subject to shortcomings. Firstly, as with the experiment in

the previous chapter (chapter 8), the use of videos rather than real robots is a

line of criticism, with the same arguments for the use of videos applying - with

real robots it would be highly cumbersome to recreate each of the conditions, for

each participant.

Authors have argued both ways with respect to this issue. For example, Woods

et al. (2006a,b) and Walters et al. (2011) have all advocated the use of videos as

a valid means of measuring HRI, citing that benefits such as reaching a larger

subject size and demographic, less effort to administer, and increased control for

standardised methodologies (e.g. identical robot behaviours, balanced subject

groups and conditions, etc) provide adequate justification for this methodology.

These arguments are of course valid and attractive in the eyes of an experimenter,

however, studies that have investigated the influence of a physical robot as opposed

to a virtual robot present compelling counter arguments. For instance, Bainbridge
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et al. (2010) have found that humans obey the instructions of a physical robot

more than a virtual robot, even when the instructions are likely to be considered

as wrong by the subject (e.g. throwing their Professors’ text book in a bin). Along

a similar line, Leyzberg et al. (2012) have found that the human subjects able to

perform a cognitive task with a higher degree of performance when they have

been given tuition on the task by a physical robot than when taught by a virtual

robot. Here the message is simple: a robot that is physicaly present makes people

behave differently.

The arguments for the use of videos are orientated around the ease of per-

forming high quality, well controlled experiments, which is attractive, however,

the arguments for the use of real robots are based around the fact that people

behave differently when interacting with a real robot and are very persuasive for

all HRI. However while these arguments exist, with respect to this experiment,

it was deemed the having accurate repeatability through the use of videos and

placing the subject in the perspective of an observer (rather than interacting with

the robot) took precedence. Though, it is noted that had the subjects been ob-

serving a real robot, their ratings may have been different. Furthermore, it seems

plausible to argue that had the subject been interacting with the robot rather

than observing it, then again, one might expect to have obtained different results.

These arguments are also applicable to the work regarding morphology, and the

biasing that situational context has upon the affective interpretations of NLUs

presented in chapters 4 and 8 as these too were online experiments conducted

without the use of a real robot.

The experiment presented here is ultimately limited in the insights that it

can provide on this issue due to the set up and overall methodology employed.

However, it has generally provided a coarse answer to whether NLUs are indeed

compatible with natural language, with the answer being, broadly speaking, “yes”.

This is, however, only scratched the surface of what is very likely a deep avenue

of research that extends far beyond the scope of this thesis, which is, in part, why

this particular experiment has been set up and conducted in the manner that it
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has - it provides an insight into the further possible directions that future work

may follow, without deviating too far from the rest of the body of work presented.

9.3.2 Broader Remarks

This section serves to provide a slightly broader interpretation and discussion of

the results obtained, with the aim of providing initial pointers to areas that either

require further research or may be interesting and fruitful entry points for avenues

of further research.

These results would suggest that while language certainly appears to be the

preferred modality for vocalisations made by the robot, mixing natural language

and NLUs is also acceptable for adults. It is also clear that, when compared with

both natural language and the combination of language and NLUs, the sole use

of NLUs is the least desirable means for expression. However, this is currently

limited to situations in which the humans and the robot speak the same natural

language (English in this case), and thus in situations where the robot and human

do not speak the same language this may be different.

With respect to the question of whether NLUs may be used alongside lan-

guage, the results provide evidence that this is indeed possible and has potential,

though the ratings for the NLU combinations sit approximately in the middle of

the ratings for the language only condition and the NLU only condition, suggest-

ing that there may be a direct, linear relationship between the ratio of the NLUs

to natural language and the ratings for each of the five units of measure. It is

also unclear as to what the impact of this NLU/natural language combination

may be upon real HRI. This study has not controlled the ratio of NLUs to nat-

ural language when they are combined, rather it has provided four rather coarse

conditions representing roughly the two extremes and the centre point (with two

different combinations). This ratio is also a factor likely to influence how the

robot is perceived and the potentially (and more importantly) the quality of the

interaction. It would be beneficial to have an insight as to this what relationship

is, as a non-linear relationship in the form of a step function would provide a
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useful guideline as to how frequently a robot may use NLUs in combination with

natural language before severely impacting the quality of interaction in an adverse

manner. This is considered as a valuable avenue for future research.

However, this chapter has only provided a brief insight into the combined use

of NLUs and language, and as such, there remain a number of important open

questions. Firstly, and perhaps most importantly, the issue of exactly when an

NLU is made by the robot, relative to any context set by natural language has

not been investigated or defined in any manner. Incorrect use of NLUs may have

potent impacts upon how the robot is perceived by the user(s) and is likely to

influence how an interaction ultimately unfolds, as well as the overall quality of

the interaction. Furthermore, there is also an issue surrounding the frequency of

use - i.e. the ratio of NLUs to spoken language. NLUs and natural language

have a fundamental rivalry rooted in that fact that they both operate through the

acoustic modality and thus are competing for “airtime”. As this ratio between

the use of NLUs and language changes, the interaction quality is also likely to

change.

Similarly to the findings of chapter 8, in which the influence of a context based

upon a physical interaction influences the affective interpretation of an NLU, the

influence of context defined by what the robot says also requires investigation,

particularly given the rich nature of context that may be derived from natural

language. This too is considered to be a deep and valuable avenue of future work

that will likely lead to important findings that will help inform how NLUs may

be best used in social robots that engage in natural language conversations with

people.

Finally, another potential avenue of utility may come as a tool for provid-

ing back-channel feedback during active listening in Sensitive Artificial Listeners

(Schröder et al., 2012). In this scenario, it is not so much the combination with

language that is of importance, but whether NLUs are able to give (in part) an

impression to the speaker that the robot is indeed listening and interested in the

subject matter of the conversation as well as the robots affective appraisal of
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the subject matter (which in turn influences the unfolding of the conversation).

This may be an area of interest particularly with aesthetically and behaviourally

simpler robots such as Keepon (Kozima et al., 2009), which have found traction

as a means of providing therapy for young users, an area that appears to hold

considerable potential as a real world application area of robotic technology.

9.4 Summary

This chapter has presented the results of an experiment aimed at uncovering

whether NLUs may be used alongside natural language by a single robotic agent.

Using an online crowd sourcing facility, subjects were presented with four different

videos, each depicting the same scenario (a ball being placed under one of three

cups, the cups shuffled and the robot incorrectly guessing which cup the ball is

under), but varying the type of vocalisations that were made by the robots as the

scenario unfolded. Specifically, the four videos showed the robot using only natural

language, using only NLUs, and in two cases using a (different) combination of

NLUs and natural language. After watching each video, subjects were asked to

rate the speech/sounds made by the robot with respect to their appropriateness,

expressiveness and how natural they felt the vocalisations were. Also, subjects

were asked to rate how much they liked the robot, and finally, only all the videos

had been viewed, provide a preference rating for each video.

The results have conclusively shown that subjects gave the robot that used only

natural language the highest ratings across all the units of measure, while the robot

that used only NLUs was rated lowest. The videos showing the combinations of

NLUs and natural language were found to have only minor differences, which were

in the majority not statistically significant, with both the videos reciting similar

ratings that were approximately in the middle of the ratings for the extreme

conditions. While these results are rather intuitive, they do present the message

suggesting that it is indeed possible to combine natural language and NLUs in a

single robotic agent.
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Chapter 10

Conclusions, contributions and

future work

This chapter serves to provide an overview of the topics that have been covered

within this thesis as well as some concluding remarks. The main themes are

recapitulated and reflected upon using the insights that have been gained through

the experiments conducted. The overall contributions to the field of social Human-

Robot Interaction are discussed, as are the shortcomings and limitations. Finally,

a collection of suggestions of future avenues of research are outlined.

10.1 Summary

This thesis has investigated how abstract, robotic Non-Linguistic Utterances may

be used during social HRI, particularly with respect to how they may be utilised

for making affective displays by a social robot, and what factors are influential

in achieving this. The use of NLUs in fictional robotic characters has enjoyed a

rich amount of success in the world of Animation and Film, however there is little

understanding of how this rich and vibrant expressive modality can be transferred

to social robots in the real world. It has been established that there is only a very

small community of researchers who have been active in the areas of both NLUs

and gibberish speech (as applied to social HRI), and as such, an overall body of

research and literature that covers and reviews the topics in their current states,
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as a collective, has been lacking. This is arguably the biggest part of the problem,

and this thesis has sought to provide an initial step forward in regard to this, and

is intended to serve as a stepping stone for other other research efforts to draw

and build upon.

After reviewing the directly related and relevant prior works on both gibberish

speech and NLUs, it is clear that much of the previous work has been concerned

with two things: basic methods that can be used to generate expressive utterances,

and how these utterances may be charged to convey different affective states to

people, mainly adults. There has been very little work beyond this looking at what

factors might impact affective interpretation, and more generally, what affordances

NLUs can have during social HRI. Komatsu (2005); Komatsu and Yamada (2007);

Komatsu et al. (2010, 2011) appear to be the only authors who have addressed

this, using very simple NLUs rather than gibberish, and have focused upon how

a robot is able to convey either a positive or negative attitude, and whether a

robot’s use of NLUs can impact upon how people behave. These are the kinds

of questions that are vital if the use of NLUs is to gain increased traction in

broader efforts investigating real world HRI both with respect to research, but

also with respect to commercial robots. Understanding how to create expressive

utterances to covey different affective states is important, but confirming whether

these utterances have the same effect during a real world interaction, and what

may influence this, is equally essential.

As robots come in a variety of embodiments with different shapes and sizes, a

facet that people are sensitive to, this thesis began with an investigation into how

a robot’s morphology influences the perception that people have of the NLUs that

the robot makes (chapter 4). This served two main purposes. Firstly, to probe

whether people have a different interpretation (with respect to conveyed affect

and intention, as well as what is deemed as acceptable) of the same NLUs made

by robot’s with different morphologies (an Aldebaran Nao vs. a Sony Aibo), mak-

ing comparison to utterances that might be more associated with the particular

embodiments (e.g. utterances made by humans vs. utterances made by animals).
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Secondly, and more importantly for this thesis specifically, whether the Nao robot

is an appropriate platform through which NLUs may be embodied and studied.

It transpires that when NLUs are presented in a context-free manner, people ex-

hibit very little coherence in how they affectively interpret utterances made by

the robot in general, a finding that is echoed in other experiments in this thesis

also (see chapters 5, 6 and 7). People also show a preference to having an align-

ment between the type of utterances made by a robot and the morphology of the

robot. More specifically, people found human-like utterances made by the Nao

more appropriate than animal-like utterances, and visa versa, where animal-like

utterances were deemed more appropriate than human-like utterances when made

by the Aido dog robot. Furthermore, people also showed a preference for NLUs

being made by the Nao rather than the Aibo. This latter finding essentially pro-

vided a basic confirmation that the Nao robot is a suitable platform though which

NLUs may be studied.

Given the general small volume of research that has directly investigated NLUs

(rather than gibberish speech), there is also a distinct lack of methods and tools

available to generate and synthesise utterances beyond single sine waves. More-

over, utterances have all been hand crafted for particular experiments, as well as

for animation and commercial robots. As a result of this, it has been necessary

to develop a custom tool for designing, characterising and synthesising NLUs1.

The tool takes inspiration from the algorithms described by Breazeal (2002) and

Oudeyer (2003) to generate and synthesise expressive gibberish speech, as well

as having built in parameters that characterise utterances in a manner that is

analogous to the fields psychology and musicology, and could be manipulated in-

dependently in a systematic manner. While the tool essentially provided a means

of creating an utterance, it was lacking a means or a set of rules or a specifi-

cation regarding how different acoustic features of an utterance evoke different

affective interpretations in people - a mapping between the utterance parameters

and affective interpretations was missing. To address this, two experiments were

1This tool will also be made freely available to the general public and scientific communities
at a later date to serve as a stepping stone for future research efforts.
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conducted in which a broad range of different utterances with different parameter

values were rated by both children and adults (see chapters 5 and 6), with the

main goal of using this data as training data.

This training data was then used to train a collection of feed-forward Multi-

Layer Perception Artificial Neural Networks (ANNs) that learnt a mapping be-

tween a PAD affect space and each utterance parameter individually (chapter 7)

such that a desired affective interpretation could be input to the networks and the

values for each utterance parameter, in order to elicit this interpretation, would

be output. Interestingly, the mappings that were leant though this process had

stark similarities with the reported acoustic correlates of both the human voice

and music with respect to emotional expression (with respect to their dynamics).

A small collection of utterances was produced using the output of the ANNs with

various affective inputs that correspond to basic affective prototypes in the Af-

fectButton affect space, and were presented to, and affectively rated by young

school children as part of a human subject evaluation of the mappings. It was

found that while the utterances had acoustic characteristics that followed those

that are found in both the human voice and music, people again did not exhibit

coherence in their affective interpretations of the utterances.

While the experiments in chapters 4, 5 and 7 found that people do not exhibit

coherence in how they affectively interpret NLUs, there was one prevailing trend

in how people affectively rated utterances. This was that ratings appeared to

be subjects to a perceptual magnet effect and were drawn to particular affective

prototypes (or basic emotions). The hypothesis was that people exhibit Categor-

ical Perception when affectively rating NLUs. Using methods that have matured

in psychology for measuring categorical perception, the experiments presented in

chapter 6 were designed to test this hypothesis head on. It was revealed that

children do not appear not exhibit signs of Categorical Perception while adults

do, particularly when the scope of potential affective interpretations is narrowed.

Real world HRI inherently has situational context that influences how events

that occur within this context are perceived and interpreted by people. It is thus
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important to investigate and understand how situational context influences peo-

ples’ affective interpretations of NLUs and this provides more relevant insights

regarding how NLUs may be using by a robot during an interaction to better

effect. This has been lacking in the literature. Furthermore, such insights also

help explain and account for some of the findings from the previous experiments,

namely the observation that people generally show little coherence when inter-

preting NLUs that are presented in a context-free manner. Chapter 8 presented

an experiment designed to test how a physical interaction with a robot biases how

people interpret the NLUs that the robot makes. Specifically, adults were asked

to rate a collection of videos where the Nao robot was subject to a physical action

from a human (each with a varying agree of positive or negative valence), where

the robot only made an NLU with a perceived valence and no physical interac-

tion occurred, and finally to rate videos where both the physical interaction and

NLU made by the robot were combined. This allowed assessment of whether the

affective interpretation of the action overrode that of the NLU, or visa versa. The

results showed that the physical interaction with the robot biases, arguably to the

point of dictation, how NLUs are interpreted. A more subtle and interesting effect

was also identified: when the interpretation of an action and NLU are aligned the

overall affective interpretation of the interaction is more extreme, showing that

while the context plays the predominant role in directing the overall interpreta-

tion, people are subtly sensitive to the acoustic features of the utterances that the

robot makes.

Finally, this notion of situational context having a prominent bias is extended

to the realm of natural language in chapter 9. Natural language is a rich source of

situational context and mood within a social interaction and thus will also likely

have a similar influence. Furthermore, assuming that NLUs can be used alongside

natural language rather than as a replacement, there is a great deal of potential

for NLUs to have a supportive utility in this respect by facilitating social cues such

as affect bursts, back-channel feedback and affective listening. However, before

one can engage with an investigation of these potentials, the assumption upon
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which they are founded must be validated. In an experiment, adults were shown

videos of a robot playing a guessing game with a human, where the robot either

used only natural language, only NLUs, or a combination of the two. It was found

that while people prefer a robot that uses only natural language, they prefer a

robot that combines natural language and NLUs more than a robot that only uses

NLUs. The guideline drawn from this is that if a robot is going to use NLUs, this

is best done in combination with natural language rather than as a replacement.

10.1.1 Summary of the main contributions

Overall, this thesis has presented a dense volume of information and data regard-

ing six experiments designed to gain deeper insights into the use of NLUs during

real world HRI and factors that impact how NLUs are perceived by people. A

number of important findings have been uncovered as a result, and while these

are eluded to in the previous section, they are explicitly outlined here:

• The design and development of a new method of parameterising

and creating NLUs that can be used to generate and systematically ex-

plore the acoustic characteristics of NLUs beyond single tones with either a

rising or falling pitch envelope.

• Not all robotic platforms are compatible with NLUs: morphology

matters. People deem it less acceptable for some robots with a given

morphology to use NLUs than others with a different morphology, and as

such there is an alignment that needs to be made between a robot’s physical

design and the vocal behaviour that it exhibits.

• People are not coherent in their inferred affective meanings of

NLUs when they are presented in a context-free manner. When different

people are presented with the same utterance, they readily perceive it as

having an affective meaning, but across people this meaning is not the same:

they are not coherent in interpreting NLUs.
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• The acoustic correlates in the human voice and music during af-

fective expression do not appear to have the same effects when

transfed to NLUs. When NLUs have acoustic features that are associ-

ated with a particular emotion meaning in the human voice or music, people

do not interpret the NLUs as having that same emotion.

• People exhibit Categorical Perception when affectively interpret-

ing NLUs. When listening to, and rating NLUs with regard to their affec-

tive meaning, peoples’ interpretations are drawn to particular (basic) emo-

tional states.

• Situational context biases greatly how NLUs made by a robot

are affectively interpreted. While two different utterances may have a

different meaning in the eyes of a person when they are both made by a

robot during an interaction with a clear context and affective mood, the

utterances adopt the affective interpretation of the context and loose their

original affective meaning.

• During a vocal interaction NLUs are better used along-side lan-

guage than on their own. People show a preference for a robot that uses

both NLUs and natural language in a combined manner over a robot that

solely uses NLUs.

10.2 Discussion

The tools that have been used throughout this body of work, as well as the ex-

periments that have been conducted are believed to provide a robust arrangement

through which NLUs can be studied in a systematic and thorough manner. Nev-

ertheless, the are some remarks and points to be made that require discussion.

These issues are addressed in this section.
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10.2.1 The custom method for creating NLUs

An important part of this body of work has concerned the design and development

of a custom method for creating, parameterising and synthesising NLUs (chapter

3). This was a necessity as no such tool exists for the NLUs, while this is the

case for gibberish speech. While on one hand this contributes considerably to the

novelly of the research and thesis, the sole use of this method is also an important

limiting factor with respect to how the findings of this thesis can be generalised,

applied to and compared with other work on NLUs as well as broader areas of

HRI also. In essence, the insights underpinning this thesis are heavily tied to the

specific method for generating NLUs. If a different method were to have been

used, it is unclear whether the same main thesis would have emerged.

Comment may also be made regarding the simplistic approach that has been

taken regarding utterances that consist of multiple, single sine wave carrier sig-

nals and have a limited number of characterised frequency modulation and are

separated by small temporal pauses. While the underlying parameters that con-

trol how these simple carrier signals are modulated is designed to be analogous to

the characteristics that the fields of psychology and musicology focus upon when

studying affective expression via the human voice and musical pieces, the NLUs

generated are very simplistic acoustic signals in comparison. It is possible to argue

that by employing such a simplistic type of acoustic signal, there are limitations

as to the extent of the parallels that may be drawn between the findings of the

literature on the human voice and music and those of the NLUs. Furthermore,

one can also argue that due to the simplistic nature of the NLUs, potentially in-

teresting and rich results regarding the acoustic correlates of affect in NLUs and

in turn how utterances are interpreted have been missed.

To address these, indeed it is possible that the simplistic nature of the NLUs

generated indeed do limit the potential parallels that may be drawn the music

and the human voice. It is possible that given the abstract nature of the NLUs

in comparison to the human voice and music, that these signals are processed

differently by the human brain. This is plausible as it has been shown that
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there are differences, at a neurological level, in how human speech and music are

processed (Tervaniemi et al., 2006). As NLUs sit somewhere in the middle, it is

likely that they too are processed differently in the brain.

10.2.2 Using a single robotic platform

The Aldebaran Nao robot has been the sole platform used throughout the body

of work that has been presented here. It has been deemed, through human based

experimentation, that the Nao is indeed an appropriate platform in which to em-

body NLUs. However, there are both benefits and drawbacks to the sole use of

this platform. The main motivation for using a single platform is that as this

work has sought to provide a broad exploration as to how NLUs may be used

during social HRI, it was deemed unwise to use multiple different robots with

different embodiment and morphologies as this would introduce a discontinuity

between the findings across the different experiments. Maintaining a single plat-

form throughout the work circumvents this and keeps the focus of the research on

NLUs and the factors that impact their use in real robots.

However, this also results in shortcomings with respect to the generality of

the findings in this work. Does the validity findings and conclusions that have

emerged from the experiments transfer to the use of NLUs in different robotic

platforms? For example it is unclear whether the findings of this thesis apply in

the same manner when NLUs are used with robots that do not have the same

type embodiment, for example the ASIMO robot or Sony’s QRIO humanoid, or

other robots that already use NLUs such as Keepon.

Furthermore, it is unwise to assume that the findings here apply to service

robots such as the iRobot Roomba, simply because these robot not only have a

different embodiment, but they are also not necessarily considered as being social.

The Nao is a humanoid robot and as a result people tend to anthropomorphise if

to a great degree than robots that do not have such an anthropomorphic embodi-

ment. However, it has been shown that people do attribute emotion to such robots

through observed motion (Saerbeck and Bartneck, 2010), as well as by adding an-
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imated accessories such as a tail (Singh and Young, 2012). This particular issue

is addressed in the future work section of of this chapter.

10.2.3 The AffectButton measuring tool

Similarly to the use of a single, custom method of creating NLUs, the use of

the AffectButton to capture affective ratings from people is is both the source

of novelty in this research, and of limitations also. The AffectButton presents

a paradigm in which people are asked to explicitly (i.e. self report (Plutchik,

1994)) provide their affective rating or interpretation of a stimulus by selecting

an expressive facial gesture from a continuum that matches their interpretation,

where the facial gestures are also associated with a three-dimensional co-ordinate

within an affect space. The use of this tool has a number of important benefits.

Firstly, it provides a way of capturing affect through a continuous manner, rather

than using discrete affective labels or categories, meaning that any subtle effects

with respect to how people could rate the stimulus are captured, as can larger,

more coarse effects. The value of this has been shown in via the experiments in

chapter 6 where it was confirmed that peoples’ ratings of NLUs are subject to

Categorical Perception.

Secondly, given that ratings are captured via facial gestures, this has lent itself

to the use with both young children and adults (chapters 5, 6 and 7) in that the

underlying dimensional representation of affect has been hidden from the subjects

and thus it was not necessary to explain the nature of affective dimensions, which

is known to be a cumbersome task (Broekens et al., 2010). However, as the validity

of the tool has only been confirmed with teenagers and adults (see Broekens and

Brinkman (2013)), it was still necessary to take care to explain to subjects’ how the

tool worked, and confirm that the young children who partook in the experiments

did indeed use the tool in a similar manner as the adults, allowing comparison

between the two age groups to be facilitated. The results of these experiments

have shown that this is the case.

Marrying these two benefits with the fact that the Nao robot does not have an
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expressive face, and that the stimulus presented use the acoustic modality, means

that this was a well suited tool that provided an intuitive means for people to

provide ratings, and that the social modalities through which the measuring tool

and stimulus being rated did not conflict. Though, one must be wary of the effects

that have been shown regarding how people perceive expressive gestures made by

the human face.

There are drawbacks to the use of the AffectButton also however. Firstly is the

concern regarding the compatibility between the rather specific mapping between

the facial gestures and the underlying PAD co-ordinates (and more specifically

the actual PAD space and mapping itself) with other dimensional models of affect

which are used in other tools such as FEELTRACE (Cowie et al., 2000), EMuJoy

(Nagel et al., 2007) and the Self Assessment Manikin (Lang and Bradley, 1994).

Generally speaking, there is still no firm consensus in the world of Emotion Theory

regarding the exact nature of emotion (Plutchik, 1994; Scherer, 2013), and this also

extends to the fields concerned with measuring affect also (Cowie and Cornelius,

2003) and as a result a wide variety of different tools have been developed for both

the explicit and implicit measurement of affect, and their compatibility with each

other is currently rather unclear, a pitfall that this research also falls into.

10.2.4 Child and Adult Evaluations

It is noted in chapter 2 that none of the previous work has actually attempted to

perform evaluations with both adults and young children, rather evaluations were

only performed with a small number of adults. The work in this thesis has tried to

address this, recognising that Child-Robot Interaction is a very promising are of

HRI, in which NLUs likely have many exploits. As such, this work has performed

evaluations with both children and adults where possible.

However, it has not been possible to perform comparative evaluations between

both for all the experiments. This is primarily due to time constraints of the work.

Contrary to what intuition might suggest, it is more time effective to perform

human based evaluations with children in local schools, rather than adults within
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a lab setting. Conducting evaluations in a school means that subjects are readily

available, and there is a very small turn around time between subjects. This is

not always the case with adults. That said, in the case of the online studies, where

people were rating videos of the robot, it was easier to gain access to adults.

As a results of the different type of experiments that have been performed,

some of the conclusions and contributions outlined about may have general lacking

generalisation to encompass both adults and children.

10.2.5 Automating the generation of NLUs, their affective

meaning and the role of situational context

It appears that on their own, without the influence on situational context, NLUs

do not project a coherent affective impression on people: people do perceive NLUs

have having an expressive, affective meaning, but they do not all see the same

meaning from the same utterance. Furthermore, people readily perceive utter-

ances to have very clear and distinct affective meanings, and exhibit Categorical

Perception. The lack of general coherence, also holds true when utterances have

similar general acoustic characteristics as the human voice when expressing af-

fect, achieved via the use of machine learning. What is interesting about this is

that while subjects are not coherent in their interpretations, the neural networks

trained on data collected from people did in fact produce an affective mapping

that had notable similarities with the acoustic correlates of the human voice and

music. This implies that people are sensitive, to some degree, to the acoustic

features of an utterance, even when rating NLUs in a context-free manner. This

implication is made more concrete by the finding (refer to chapter 8) that when

the perceived valence of a situational context and an NLU made within this con-

text are aligned, people perceive the whole situation as having a more extreme

valence than when the two valences do not align (in this case the valence of the

context overrides that of the NLU).

This general notion has some interesting implications for the how NLUs can

be used during an interaction, and how to generate these utterances. Firstly,
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given that the situational context biases and directs how NLUs are interpreted

affectively, it shows that while NLUs on their own do evoke different but proto-

typical affective interpretations, coherence of these interpretations emerges from

the situation within which the utterances are used - the other events that are

occurring within the environment provide more salient cues that guide a person’s

overall interpretation of the situation as it is unfolding. Moreover, given that this

holds true even when the original interpretations of the NLUs are different, this

suggests that it does not matter what utterance is made, rather that the utterance

generally provides a means to further animate the robot.

From the perspective of generating utterances, one hand this can mean that

using a random utterance, with little regard for the acoustic properties, will suffice.

However, a robot is able to modulate the intensity of the affective meaning of an

NLU if it aligns the acoustic features of an utterance with the overall valence of

the situation in which the NLU is being used. Though, the challenge there is to

get the robot to recognise the actual valence of the situation.

10.3 Future Work

This section serves out outline some possible future directions of research that

are considered as valuable to further understanding how NLUs may be applied to

HRI research and what factors are influential in the successful integration of this

expressive modality. Firstly, further exploration with regard to how robots with

different embodiments is deemed fruitful as this an initial aspect of an interaction

in which expectations of how a robot behaves can be managed. Secondly, the

use of different NLU synthesisers to firstly replicate the findings of the research

presented here is required, but also to further explore other potential influences

that NLUs can have on an interaction and visa versa. Thirdly, the use of NLUs

alongside language is clearly an area of potential that needs further exploration as

this thesis has only touched upon the matter. Natural Language Interaction is a

vital component for engaging HRI, however, much of the field of HRI is contingent

upon the state-of-the-art in natural language processing, and currently, it is not at
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a level where it can be readily utilised. Rather, much of the HRI field (and other

fields) are contingent upon the overall performance of NLP systems, however given

the overall lacking performance (in real world settings, and with respect to general

open ended conversations), the field of HRI in general is being hindered by this

and is having to employ temporary work arounds (such as the WoZ technique).

Finally, the use of NLUs in a robot that engages in Long-Term HRI is necessary

in order to understand how people perceive and respond to utterances once they

are no longer novel is required.

10.3.1 Robot embodiment and morphology

Robots come in all shapes and sizes, and are entering a large variety of different

areas that impact the daily life of people. This ranges from service robots that

clean our home environments, robots that can provide care and assistance for

elderly members of society, through to robots that can be used in the classrooms

and educational settings with young children in order to boost performance during

the learning process, and as therapeutic tools for people suffering with social

disorders.

Part of the research in this thesis, and previous works has touched upon the

fact that different morphologies and embodiments causes people to perceive and

interpret NLUs in different ways. However, there is little understanding regarding

exactly what aspects of a robot’s physical design and aesthetic have influence

here. Something that is missing is a set of guidelines that robot designers can

utilise to better inform the physical design of robots and how this relates to the

kinds of vocal (and other) behaviours that the robot exhibits, as clearly there is

an alignment that needs to be made between the two. Such a set of guidelines

would not only benefit the robot designer, but also researchers who are seeking to

examine and further explore either aspect. For example, in this research, the focus

has been vocal behaviour, and as such an experiment was performed in order to

confirm that the Nao robot was indeed an appropriate platform to be used. Here,

the behaviour of the robot has been the priority, and the robot platform itself
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has needed to be aligned to this. However, conversely, research into design may

be interested in exploring different aesthetics of a robot, and so when evaluating

this, it would be useful to have a guideline for the general types of behaviour

that would be deemed acceptable for the robot to exhibit such that during human

based evaluations, people to not have an adverse reaction to the (mis-)alignment

between the robot’s morphology and behaviour. A set of guidelines as proposed

could be used to aid the design of such evaluations in real HRI.

10.3.2 Exploration of different types of NLU synthesisers

and replication of results

When compared with classic examples of NLUs, such as those made by the robot

R2D2, the NLUs used in this thesis are still very simple, and as outlined in the

discussion above, many of the insights are likely confided to the specific method

in which NLUs have been created. In order to validate the overall conclusions and

insights gained through this thesis, it is necessary to address some of the same

issues that have been covered in this thesis, but with another NLU synthesiser

which can made different sounding NLUs. Replication of results is required.

Particularly the finding that people are generally not coherent in their inter-

preting NLUs when presented in a context free-manner needs replication, as does

the finding that NLUs adopt the overall valence and affective interpretation of the

situation in which they are used. An easy initial step in this direction would be to

replicate the exact experiments and see if the same results emerge, but in the case

of situational context, this is something that has many subtle and intricate facets

to it, and as such it would also be valuable to explore different contexts also to

identify whether this overriding of interpretation is a universal trait of NLUs. If

so, this opens many avenues through which NLUs may be used in robotic system

in open needed, unconstrained HRI.
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10.3.3 Using NLUs alongside Natural Language

The use of NLUs alongside natural language has been shown to be a possibility

in the last experiment presented in this thesis. The suggestion that people prefer

a robot that uses NLUs alongside language rather than a replacement is an in-

teresting result. However, the finding that people prefer a robot that speaks only

language seemingly stands in the way of using NLUs in real robots. This however,

is arguably superficial, in that the technologies for facilitating natural language

interaction in robots is far from perfect, and the experiment in chapter 9 was not

representative of this.

If used alongside natural language, NLUs have a large number of potential

uses. Firstly, they may be used to to try and disguise the times when NLP

fails completely, or simply is taking too long to process the input and provide an

appropriate output2. Robots that have delayed responses during a conversation

has a detrimental effect upon an interaction, and this maybe mitigated simply

by making the robot do something, as opposed to nothing. Given that NLUs

only gain coherent meaning when used in a contextual setting, their use in such

situations is appealing - the person interacting with the robot projects meaning

into what the NLU means, when it could only be a random NLU just to fill a gap

of silence.

Further more, back channelling is known to be highly important for both

Human-Human Interaction and Human-Robot Interaction, and the use of NLUs in

this regard is also seen as advantageous. Not only would NLUs be able to support

an interaction by providing vital feedback and social cues during a conversation,

but they could also serve the practical function of buying more time for an NLP

system if it is struggling, and would do so with little computational expense.

What is not currently known is how NLUs are best used alongside language,

and there are a few important open questions regarding this. Firstly, the notion

itself must be validated in a more robust manner. The experiment in this thesis

only serves to provide a hint that this is possible - it does not confirm it completely.

2Identifying when the NLP system has misunderstood (i.e. speech recognition has failed)
something a person has said and produces an incorrect response is a harder problem to overcome.
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Furthermore, how frequently NLUs are used is also something that requires atten-

tion, as this will likely impact the quality of interaction. For example, if the robot

uses NLUs very infrequently, will this have a negative impact, and if so, would it

have more of a negative impact than if NLUs were used more frequently (meaning

that people would come to expect these types of utterance from a robot)? These

are the types of fundamental questions that need addressing if the potential use

of NLUs during verbal conversations are indeed to be realised.

10.3.4 Long-Term Human-Robot Interaction

Establishing and maintaining Long-Term HRI is a very current goal of the field of

HRI, and is something that is now beginning to be tackled head on. As such, it is

not clear exactly how people will respond to robots, generally, after long periods

of time, and this applies to a very large number of different aspects of HRI. As

such, it is likely that many findings that have already been reported are likely to

require validation and replication with respect to their validity during Long-Term

HRI.

This is also true for the use of NLUs in robots. However, if NLUs indeed can be

used in a robot for longer term interactions, a great number of interesting questions

emerge from this. Let us assume for the time being that they can. This thesis has

opted for the view that NLUs do not constitute a language as some fundamental

issues regarding established cultural rules concerning vocabulary and grammar

are missing. If NLUs were used in robots in a consistent manner, for long periods

of time, it can be argued that through this, it is possible that an established

vocabulary and grammar would emerge. This may be a potent inroad toward

the evolution of NLUs as single abstract utterances to an artificial language that

could at least be understood by people, through they would perhaps struggle to

speak it themselves.

Furthermore, use of NLU through long term interactions may also be a way

of solving the lack of coherence that people exhibit. It can be argued that an

important factor that leads to this incoherence is that lack of prior experience
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that can be drawn upon in order to decode the affective meaning that different

utterances can have. Through having increased experience with the utterances a

robot makes in different situations, it is likely that people will begin to form asso-

ciations between the acoustic features of an utterance and the perceived affective

meanings. Most of this is of course highly speculative, but it if such developments

were to begin emerging it would paint a very bright future for the use of NLUs in

real social HRI in the long term.
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Methods
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Pseudo code implementation of the NLU genera-

tion algorithm

Algorithms 1, 2, 3, 5, 4, 6, 7 present the NLU generation algorithm in pseudo

code, with this section serving to provide a descriptive, supportive overview. It

is noteworthy that this description assumes that all Utterance parameters are

applied globally at an utterance level - that is to say that all parameters aside

from the pitch contour are applied uniformly to all sound units.

The algorithm has in essence two stages. The first stage is the generation

process whereby the blueprint for an utterance is generated. The second part is

taking this blueprint, and transforming it to real-world units of Frequency and

Time ready for synthesis through SuperCollider. Referring to Algorithm 1, once

the all the Global Utterance parameters have been specified, the sound units

are recursively generated and concatenated, being stored in a List which is a

member of the Utterance instance. Each sound unit has an overall start and end

time stamp, and a duration specification, as do the spoken and silent components.

Initially, these values do not have any specific unit of measure, but rather are there

in place to provide a relative relationship and proportional relationship between

all sound units within the utterance with respect to their respective temporal

durations.

It can be seen that the duration of the spoken component is determined by

the rhythm parameter, which in essence controls the random variance in temporal

duration (t) that a utterance may have from a fixed length of 1, where 0 ≤ t ≤ 1.

This is the only aspect of the whole generation algorithm that is left to random

chance. The start time stamp is set to the total duration of all the previous sound

units within the utterance (this is why there is a running total as each sound

unit is generated). The end time stamp of the spoken component is set to the

addition of the stand time stamp and the duration value. With respect to the

silent component, the start time stamp is set to the same value as the end time

stamp of the spoken component, and the duration is proportional to the duration
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of spoken component, using the pause ratio as the control. At the sound unit

level, the start time stamp is set to the same value as the startStamp of the

spoken component and the the end time stamp is set to the endStamp value of

the silent component.

The next phase is to recursively create and modulate the carrier signals and

respective frequency and amplitude envelopes for the spoken component, the num-

ber of which is specified by the waveCount parameter. The envelopes are stored in

a Wave object, which as two members, a frequency and amplitude envelope. Once

created, each word object is appended to the waveList which is a member of the

SoundUnit object. Algorithm 6 outlines the procedure to generate the amplitude

envelopes. As mentioned previously, the amplitude envelopes have been kept con-

testant throughout this work, and as such, the GenerateAmplitudeEnvelope

function is in essence a static process and applies equally to all sound units that

are generated1. Algorithm 2 outlines the process for generating the Frequency

Envelope of a carrier signal and begins by determining the type of pitch contour

modulation that is to be generated as the process is somewhat different for each

type of contour. The pitch contour shape may have one of five different values:

“flat”, “rising”, “falling”, “rising-falling”, and “falling-rising”.

These five contour characterisations may all be broken down to, and built up

from the generation of a single, horizontal, linear array of equally spaced and

temporally sequenced nodes, with the frequency values being set as the tangent of

angle specified by the tremolo parameter as to produce the tremolo effect. The

result of this alone is the “Flat” contour. Rotating this array about first node

(located at point (0, 0) in the bi-normal space) through the angle parameter

value, a “Rising” contour is produced. By inverting the frequency values of the

nodes, the rising contour may be transformed to a “Falling” contour. Finally,

“Rising-Falling” and “Falling-Rising” contours may be produced by creating and

concatenating the “Rising” and “Falling” contours in the respective orders (this

process is described below).

As a result of the Rising-Falling and falling-Rising contours being created

1This is true for all the work that is described in this Thesis.
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from the addition of two individual node array, in Algorithm 2 the process for

generating the Flat, Rising and Falling contours is notably difference than the

process for the Rising-Falling and Falling-Rising contours. In the case of the

first three contours, only a single node array is generated, with the nodeCount

(n), tremolo angle (t) and rotation being specified (a), as well as a invert flag

(i). In the case of Rising-Falling and Falling-Rising contours, two node arrays

must first be generated, and as a result, more generation parameters must be

considered also as the nodeRatio and skewRatio parameters only apply to these

contour shapes. To cater for these two other parameters, a nodeCount must be

specified for each array in order to adhere to the nodeRatio2. This is done by

multiplying the overall node count by the nodeRatio, and rounding this value up

to the nearest integer for the first array, and the nodeCount for the second array

set to the total nodeCount minus the nodeCount for the first array3. Also, each

array also requires a different invert flag, as one array will be be rising, and

the other falling. Finally, in addition to calling the GenerateArray function

twice to generate two arrays, the AddArrays function is also called, returning

a concatenation of the two arrays.

Algorithm 2 outlines the GenerateArray function which beings by creating

the horizontal array of nodes, adding a tremolo effect, and then rotating them.

However, before checking and acting upon the invert flat, the array is normalized

using the NormalizeArray function (see Algorithnm 4). This function takes

an input node array and scales all the node values such that their values fully

cover the range [−1 1] in the frequency dimension, and the range [0 1] in the time

dimension. The pitchContour shape of the array is also passed to the function,

as in the case of a Flat contour, the frequency values are not scaled as this would

distort any tremolo effect4.

The AddLines function is used to concatenate two node arrays, and is used

2A node about the nodRatio parameter: this particular parameter is only useful when used
in conjunction with the tremolo parameter, and when the tremolo 6= 0

3There is also an subtle but important detail to highlight here, and that is that the second
array has 1 added to the value. The practical nature of this will be outlined later in this text
as it is related to the AddArray function.

4The result of this would require more complex control of the frequency range parameter, at
the (local) sound unit level, rather than the (global) utterance level.
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only to create the rising-falling and falling-rising pitch contours. It receives three

inputs, the two lines that are to be concatenated, and the skew ratio that is to

be applied to the envelope. In order to apply the skew ratio, the total duration

of the two lines must be calculated, and then two scalar constants (r1 and r2) are

calculated, one for each input node array respectively.. These constants determine

what proportion of the spoken duration each array must cover. Each array is then

recursed and the respective constant applied to the temporal component (x) of

each Node. There are some noteworthy features of the function. Firstly, as all the

input lines to this function are already normalised, the frequency components of

each Node (y) have a value of 1 added to them placing them into the range [0 2].

This is temporary, and done in order to reuse the NormalizeLine function and

adhere to the assumption that all node values are greater or equal to zero, and once

normalized, the frequency values fall back into the range [−1 1]. Secondly, when

iterating the Nodes in line2, n = 2 rather than 1. This is the aforementioned

detail that relates to the addition of 1 to the nodeCount of the second node

array for Rising-Falling and Falling-Rising pitch contours and has the function

of skipping the first Node in the array, avoiding overlap in both the time and

frequency dimensions with the last Node in line1.

Once all the sound units have been created, the blueprint for the utterance

is complete. Currently all the values of the properties of the utterance have no

specific units of measure associated with them. As such, the next phase of the

generation process is to transform the blueprint to an utterance with real world

units. This is done via the ScaleToRealUnits function (Algorthm 7). This

function has four inputs: a specific sound unit whose values are to be scales, the

scalar constant to be applied to all duration values, and the base and frequency

range values which are used to calculate the frequency values for each node indi-

vidually. With respect to the duration, the duration values and time stamps are

corrected as these values are used to calculate the real world time values for each

of the nodes. The frequency values for the nodes are calculated by multiplying

the normalised node value but the absolute difference between the frequency base
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and range values, and adding this proportional value to the base frequency value.

This process must be completed if any changes are made to any of the utterance

properties or parameters, and hence is only called just prior to utterance synthesis

through SuperCollider.

Algorithms 1, 2, 3, 5, 4, 6, 7 present the NLU generation algorithm in pseudo

code, with this section serving to provide a descriptive, supportive overview. It

is noteworthy that this description assumes that all Utterance parameters are

applied globally at an utterance level - that is to say that all parameters aside

from the pitch contour are applied uniformly to all sound units.

The algorithm has in essence two stages. The first stage is the generation

process whereby the blueprint for an utterance is generated. The second part is

taking this blueprint, and transforming it to real-world units of Frequency and

Time ready for synthesis through SuperCollider. Referring to Algorithm 1, once

the all the Global Utterance parameters have been specified, the sound units

are recursively generated and concatenated, being stored in a List which is a

member of the Utterance instance. Each sound unit has an overall start and end

time stamp, and a duration specification, as do the spoken and silent components.

Initially, these values do not have any specific unit of measure, but rather are there

in place to provide a relative relationship and proportional relationship between

all sound units within the utterance with respect to their respective temporal

durations.

It can be seen that the duration of the spoken component is determined by

the rhythm parameter, which in essence controls the random variance in temporal

duration (t) that a utterance may have from a fixed length of 1, where 0 ≤ t ≤ 1.

This is the only aspect of the whole generation algorithm that is left to random

chance. The start time stamp is set to the total duration of all the previous sound

units within the utterance (this is why there is a running total as each sound

unit is generated). The end time stamp of the spoken component is set to the

addition of the stand time stamp and the duration value. With respect to the

silent component, the start time stamp is set to the same value as the end time

321



stamp of the spoken component, and the duration is proportional to the duration

of spoken component, using the pause ratio as the control. At the sound unit

level, the start time stamp is set to the same value as the startStamp of the

spoken component and the the end time stamp is set to the endStamp value of

the silent component.

The next phase is to recursively create and modulate the carrier signals and

respective frequency and amplitude envelopes for the spoken component, the num-

ber of which is specified by the waveCount parameter. The envelopes are stored in

a Wave object, which as two members, a frequency and amplitude envelope. Once

created, each word object is appended to the waveList which is a member of the

SoundUnit object. Algorithm 6 outlines the procedure to generate the amplitude

envelopes. As mentioned previously, the amplitude envelopes have been kept con-

testant throughout this work, and as such, the GenerateAmplitudeEnvelope

function is in essence a static process and applies equally to all sound units that

are generated5. Algorithm 2 outlines the process for generating the Frequency

Envelope of a carrier signal and begins by determining the type of pitch contour

modulation that is to be generated as the process is somewhat different for each

type of contour. The pitch contour shape may have one of five different values:

“flat”, “rising”, “falling”, “rising-falling”, and “falling-rising”.

These five contour characterisations may all be broken down to, and built up

from the generation of a single, horizontal, linear array of equally spaced and

temporally sequenced nodes, with the frequency values being set as the tangent of

angle specified by the tremolo parameter as to produce the tremolo effect. The

result of this alone is the “Flat” contour. Rotating this array about first node

(located at point (0, 0) in the bi-normal space) through the angle parameter

value, a “Rising” contour is produced. By inverting the frequency values of the

nodes, the rising contour may be transformed to a “Falling” contour. Finally,

“Rising-Falling” and “Falling-Rising” contours may be produced by creating and

concatenating the “Rising” and “Falling” contours in the respective orders (this

process is described below).

5This is true for all the work that is described in this Thesis.
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As a result of the Rising-Falling and falling-Rising contours being created

from the addition of two individual node array, in Algorithm 2 the process for

generating the Flat, Rising and Falling contours is notably difference than the

process for the Rising-Falling and Falling-Rising contours. In the case of the

first three contours, only a single node array is generated, with the nodeCount

(n), tremolo angle (t) and rotation being specified (a), as well as a invert flag

(i). In the case of Rising-Falling and Falling-Rising contours, two node arrays

must first be generated, and as a result, more generation parameters must be

considered also as the nodeRatio and skewRatio parameters only apply to these

contour shapes. To cater for these two other parameters, a nodeCount must be

specified for each array in order to adhere to the nodeRatio6. This is done by

multiplying the overall node count by the nodeRatio, and rounding this value up

to the nearest integer for the first array, and the nodeCount for the second array

set to the total nodeCount minus the nodeCount for the first array7. Also, each

array also requires a different invert flag, as one array will be be rising, and

the other falling. Finally, in addition to calling the GenerateArray function

twice to generate two arrays, the AddArrays function is also called, returning

a concatenation of the two arrays.

Algorithm 2 outlines the GenerateArray function which beings by creating

the horizontal array of nodes, adding a tremolo effect, and then rotating them.

However, before checking and acting upon the invert flat, the array is normalized

using the NormalizeArray function (see Algorithnm 4). This function takes

an input node array and scales all the node values such that their values fully

cover the range [−1 1] in the frequency dimension, and the range [0 1] in the time

dimension. The pitchContour shape of the array is also passed to the function,

as in the case of a Flat contour, the frequency values are not scaled as this would

distort any tremolo effect8.

6A node about the nodRatio parameter: this particular parameter is only useful when used
in conjunction with the tremolo parameter, and when the tremolo 6= 0

7There is also an subtle but important detail to highlight here, and that is that the second
array has 1 added to the value. The practical nature of this will be outlined later in this text
as it is related to the AddArray function.

8The result of this would require more complex control of the frequency range parameter, at
the (local) sound unit level, rather than the (global) utterance level.
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The AddLines function is used to concatenate two node arrays, and is used

only to create the rising-falling and falling-rising pitch contours. It receives three

inputs, the two lines that are to be concatenated, and the skew ratio that is to

be applied to the envelope. In order to apply the skew ratio, the total duration

of the two lines must be calculated, and then two scalar constants (r1 and r2) are

calculated, one for each input node array respectively.. These constants determine

what proportion of the spoken duration each array must cover. Each array is then

recursed and the respective constant applied to the temporal component (x) of

each Node. There are some noteworthy features of the function. Firstly, as all the

input lines to this function are already normalised, the frequency components of

each Node (y) have a value of 1 added to them placing them into the range [0 2].

This is temporary, and done in order to reuse the NormalizeLine function and

adhere to the assumption that all node values are greater or equal to zero, and once

normalized, the frequency values fall back into the range [−1 1]. Secondly, when

iterating the Nodes in line2, n = 2 rather than 1. This is the aforementioned

detail that relates to the addition of 1 to the nodeCount of the second node

array for Rising-Falling and Falling-Rising pitch contours and has the function

of skipping the first Node in the array, avoiding overlap in both the time and

frequency dimensions with the last Node in line1.

Once all the sound units have been created, the blueprint for the utterance

is complete. Currently all the values of the properties of the utterance have no

specific units of measure associated with them. As such, the next phase of the

generation process is to transform the blueprint to an utterance with real world

units. This is done via the ScaleToRealUnits function (Algorthm 7). This

function has four inputs: a specific sound unit whose values are to be scales, the

scalar constant to be applied to all duration values, and the base and frequency

range values which are used to calculate the frequency values for each node indi-

vidually. With respect to the duration, the duration values and time stamps are

corrected as these values are used to calculate the real world time values for each

of the nodes. The frequency values for the nodes are calculated by multiplying
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the normalised node value but the absolute difference between the frequency base

and range values, and adding this proportional value to the base frequency value.

This process must be completed if any changes are made to any of the utterance

properties or parameters, and hence is only called just prior to utterance synthesis

through SuperCollider.
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Algorithm 1

U = new Utterance

U.duration = 0
U.soundCount = set to value
U.bluePrint = new List

U.realPrint = new List

//Create Utterance Blueprint
for n = 1 to U.soundUnitCount do

s = new SoundUnit

s.spoken = new SpokenComponent

s.spoken.startStamp = Global.totalDuration
s.spoken.duration = (1− U.rhythm) + [(1− U.rhythm) · rand()]
s.spoken.endStamp = s.spoken.startStamp + s.spoken.duration
s.waveList = new List

s.silent = new SilentComponent

s.silent.startStamp = s.spoken.endStamp
s.silent.duration = s.spoken.duration · U.pauseRatio
s.silent.endStamp = s.silent.startStamp + s.silent.duration

s.startStamp = s.spoken.startStamp
s.duration = s.spoken.duration + s.silent.duration
s.endStamp = s.startStamp + s.duration

U.duration += (s.spoken.duration + s.silent.duration)

for i =1 to U.waveCount do
freqEnv = GenerateFrequencyEnvelope() . Goto Algorithm 2
ampEnv = GenerateAmplitudeEnvelope() . Goto Algorithm 6
s.spoken.waveList[-1].freqEnv = freqEnv
s.spoken.waveList[-1].ampEnv = ampEnv

end for

U.bluePrint.append(s)
end for

//Create Utterance Real Print
for all in U.bluePrint do

r = new SoundUnit

k = (soundUnitCount/speechRate)/totalDuration
r ← ScaleToRealUnits(s, k, U.baseFreq, U.freqRange) . Goto

Algorithm 7
U.realPrint.append(r)

end for
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Algorithm 2

function GenerateFrequencyEnvelope
if wave.pitchContour == “Flat” then

n = wave.nodeCount
t = wave.tremolo
a = 0
i = false
wave.nodeList ← GenerateArray(n, t, a, i) . Goto Algorithm 3

else if wave.pitchContour == “Rising” then
n = wave.nodeCount
t = wave.tremolo
a = (2π)/8
i = false
wave.nodeList ← GenerateArray(n, t, a, i) . Goto Algorithm 3

else if wave.pitchContour == “Falling” then
n = wave.nodeCount
t = wave.tremolo
a = (2π)/8
i = true
wave.nodeList ← GenerateArray(n, t, a, i) . Goto Algorithm 3

else if wave.pitchContour == “Rising-Falling” then
n1 = ceil(wave.nodeCount · wave.nodeRatio)
n2 = (wave.nodeCount - n1) + 1 . Add one, this will be removed later
r = wave.skewRatio
t = wave.tremolo
a = (2π)/8
i1 = false
i1 = true
l1 ← GenerateArray(n1, t, a, i1) . Goto Algorithm 3
l2 ← GenerateArray(n2, t, a, i2) . Goto Algorithm 3
wave.nodeList ← AddArrays(l1, l2) . Goto Algorithm 5

else if wave.pitchContour == “Falling-Rising” then
n1 = ceil(wave.nodeCount · wave.nodeRatio)
n2 = (wave.nodeCount - n1) + 1 . Add one, this will be removed later
r = wave.skewRatio
t = wave.tremolo
a = (2π)/8
i1 = true
i2 = false
l1 ← GenerateArray(n1, t, a, i1) . Goto Algorithm 3
l2 ← GenerateArray(n2, t, a, i2) . Goto Algorithm 3
wave.nodeList ← AddArrays(l1, l2, r) . Goto Algorithm 5

end if
end function
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Algorithm 3

function GenerateArray(nodeCount, theta, angle, invert)
nodeList = new List
k = 1/(nodeCount− 1) . k is used to keep the x and y values in a relative

scale.

for i = 0→ (nodeCount− 1) do
node = newNode

if i == 0 or i == nodeCount− 1 then
node.x = i · k
node.y = 0

else if i mod 2 == 0 then
node.x = i · k
node.y = − tan(theta) · k

else
node.x = i · k
node.y = tan(theta) · k

end if

nodeList[−1]← node . Append this node to the nodeList
end for

// Rotate the Line.
for all node ∈ nodeList do

node.x = (cos(angle) · node.x) + (sin(angle) · node.y)
node.y = (sin(angle) · node.x)− (cos(angle) · node.y)

end for

nodeList← NormalizeLine(nodeList) . Goto Algorithm 4

// If needed, invert the frequency values of the line
if invert == true then

for all node in nodeList do
node.y = (−1) · node.y

end for
end if

return nodeList
end function
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Algorithm 4

function NormalizeArray(nodeList, baseFreq, freqRange, pitchContour)
Assume that all node values in nodeList ≥ 0!

xmax = 0
ymax = 0

for all node in nodeLIst do
if xmax ≤ node.x then

xmax = node.x
end if
if ymax ≤ node.y then

ymax = node.y
end if

end for

for all node in nodeList do
node.x = (node.x/xmax)
if pitchContour != “Flat” then

node.y = [(node.y/ymax) · 2]− 1
end if

end for

return nodeList
end function
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Algorithm 5

function ConcatenateArrays(line1, line2, ratio)
nodeList = new List

totalDuration = line1[-1].x + line2[-1].x
r1 = totalDuration · ratio
r2 = totalDuration · (1− ratio)

for n = 1→ line1.size do
tmp = new Node

tmp.x = line1.x ·r1
tmp.y = line1.y + 1
nodeList.append(tmp)

end for

midPoint = line1[-1].x

for n = 2→ line2.size do . Note that n starts at 1 here!
tmp = new Node

tmp.x = midPoint+ (line2.x · r2)
tmp.y = line2.y + 1
nodeList.append(tmp)

end for

nodeList← NormalizeLine(nodeList) . Goto Algorithm 4

return nodeList
end function

330



Algorithm 6

function GenerateAmplitudeEnvelope
node1 = newNode
node1.x = 0
node1.y = 0

node2 = newNode
node2.x = 0.05
node2.y = 1.0

node3 = newNode
node3.x = 0.2
node3.y = 0.7

node4 = newNode
node4.x = 0.85
node4.y = 0.7

node5 = newNode
node5.x = 1.0
node5.y = 0

return [node1, node2, node3, node4, node5]
end function
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Algorithm 7

function ScaleToRealUnits(s, k, baseFreq, freqRange)
s.spoken.startStamp∗ = k
s.spoken.duration∗ = k
s.spoken.endStamp∗ = k

s.silent.startStamp∗ = k
s.silent.duration∗ = k
s.silent.endStamp∗ = k

s.startStamp = s.spoken.startStamp
s.duration = s.spoken.duration + s.silent.duration
s.startStamp = s.silent.endStamp

for all wave in sound.spoken.waveList do
for all node in wave.freqEnv do

node.x = s.spoken.startStamp+ (node.x · s.spoken.duration)
node.y = baseFreq + (node.y · |baseFreq − freqRange|)

end for

for all node in wave.ampEnv do
node.x = s.spken.startStamp+ (node.x · s.spoken.duration)
node.y = node.y · s.volumeIntensity

end for
end for

return s
end function
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Algorithm 8 Calculating Pleasure, Arousal and Dominance from Screen Co-
ordinates.
xm = mouse.x
ym = mouse.y
factor = 0.55
sensitivity = 1.1
p = xm · sensitivity
a = 0
d = ym · sensitivity

if (p ≥ factor) or (d ≥ factor) or (p ≤ −factor) or (d ≤ −factor) then
if (p = 0) then

if then(d ≤ 0)
x1 = 0
x2 = 0
y1 = factor
y2 = 1.0

else
x1 = 0
x2 = 0
y1 = −factor
y2 = −1.0

end if
else

if (p ≥ d) and then
x1 = factor
x2 = 1.0
y1 = x1 · rc
y2 = x2 · rc

else if (p ≥ d) and (−p ≥ −d) then
y1 = −factor
y2 = −1.0
x1 = y1/rc
x2 = y2/rc

else if and (−p ≥ d) then
x1 = −factor
x2 = −1.0
y1 = x1 · rc
y2 = x2 · rc

else
y1 = factor
y2 = 1.0
x1 = y1/rc
x2 = y2/rc

end if
end if
d1 =

√
(x1 − x2)2 + (y1 − y2)2

a1 =
√

(x1 − p)2 + (y1 − d)2

a = 2 · (a1/d1)− 1
else

a = −1
end if 333



Algorithm 9 Calculating Pleasure, Arousal and Dominance from Screen Co-
ordinates.

if p ≥ 1.0 then
p = 1.0

else if (p ≤ −1.0) then
p = −1.0

end if

if a ≥ 1.0 then
a = 1.0

else if (a ≤ −1.0) then
a = −1.0

end if

if d ≥ 1.0 then
d = 1.0

else if (d ≤ −1.0) then
d = −1.0

end if

return [p, a, d]

334



Appendix B

Alignment of NLUs with Agent

Morphology
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Table B.1: Ratings and χ2 values for overall Affective Ratings across robot and sound categories. The columns for each utterance class are the
overall percentage of ratings for a given affective label, the results of a χ2 test checking that that rating is above chance, and the results of a
Stewart-Maxwell test indicating whether there was an overall difference in the distribution of ratings due to the robot image that was also

presented. Please see Figures 4.3a, 4.3b and 4.3c

Emotion Robot
Utterance Class

Human Animal Technological
Rating (%) χ2 S&M (χ2) Rating (%) χ2 S&M (χ2) Rating (%) χ2 S&M (χ2)

Anger
Nao 3.006 21.642?

8.346

15.738 5.876

8.347

17.486 20.082∗

8.649

Aibo 3.279 20.208? 19.016 17.155∗ 17.304 18.951∗

Fear
Nao 3.006 21.642? 15.082 4.328 12.751 1.328
Aibo 1.366 31.281‡ 14.426 3.017 13.661 3.213

Disgust
Nao 5.465 10.503 13.771 1.941 13.297 2.361
Aibo 4.645 13.773 12.459 0.499 13.115 1.984

Happiness
Nao 11.202 0.003 9.508 0.705 10.383 0.262
Aibo 11.202 0.003 7.213 4.171 11.475 0.066

Sadness
Nao 3.552 18.822∗ 11.803 0.132 8.015 4.738
Aibo 1.923 27.872‡ 11.147 0.000 9.836 0.803

Affection
Nao 12.295 0.462 12.459 0.499 6.011 12.853
Aibo 12.295 0.462 14.098 2.450 5.282 16.787†

Boredom
Nao 14.481 3.740 6.230 6.541 9.472 1.328
Aibo 15.027 5.052 9.180 1.023 7.468 6.557

Interest
Nao 33.880 170.765‡ 3.934 14.138 17.501 22.443‡
Aibo 36.339 209.642‡ 2.295 21.335? 19.126 31.738‡

Relaxation
Nao 13.115 1.322 11.475 0.036 4.736 20.082∗
Aibo 13.934 2.626 10.164 0.246 2.732 34.689‡

† : p < 0.05
∗ : p < 0.025
? : p < 0.01
‡ : p < 0.005
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Table B.2: Gender differences for Affective Ratings across the Utterance Classes and Robot Morphologies. The table shows the percentages of
each affective ratings for each robot across the two genders and the χ2(8) values indicating whether this rating is above chance (compared to a

flat uniform distribution).

Emotion Subject
Human Animal Technological

Rating (%) χ2 Rating (%) χ2 Rating (%) χ2

Nao Aibo Nao Aibo Nao Aibo Nao Aibo Nao Aibo Nao Aibo

Anger
Males 1.852 3.086 12.500 9.389 20.741 25.926 11.267 26.667‡ 20.988 18.519 21.333? 12.000
Females 3.922 3.432 9.490 10.828 11.765 13.529 0.065 0.895 14.706 16.340 3.559 7.529

Fear
Males 1.235 1.235 14.222 14.222 16.296 14.815 3.267 1.667 11.111 10.699 0.000 0.037
Females 4.412 1.471 8.240 17.064† 14.118 14.118 1.383 1.383 14.052 16.013 2.382 6.618

Disgust
Males 8.025 6.173 1.389 3.556 11.852 11.111 0.067 0.000 11.934 13.580 0.148 1.333
Females 3.431 3.431 10.828 10.828 15.294 13.529 2.677 0.095 14.379 12.745 2.941 0.735

Happiness
Males 10.494 6.790 0.056 2.722 5.185 5.182 4.267 4.267 10.288 10.288 0.148 0.148
Females 11.765 14.706 0.078 2.373 12.941 8.824 0.512 0.801 10.458 12.418 0.118 0.471

Sadness
Males 4.321 3.704 6.722 8.000 8.148 8.889 1.067 0.600 8.642 11.111 1.333 0.000
Females 2.941 0.490 12.255 20.712? 14.706 12.941 1.977 0.512 7.516 8.824 3.559 1.441

Affection
Males 14.198 15.432 1.398 2.722 11.852 7.407 0.067 1.667 6.173 7.407 5.333 3.000
Females 10.784 9.804 0.020 0.314 12.941 19.412 0.512 10.542 5.882 3.595 7.529 15.559†

Boredom
Males 17.284 14.815 5.556 2.000 8.889 12.596 0.600 0.267 12.757 6.173 0.593 5.333
Females 12.255 15.196 0.240 3.064 4.118 6.471 7.483 3.295 6.863 8.497 4.971 1.882

Interest
Males 32.099 36.420 64.222‡ 93.389‡ 2.963 2.222 8.067 9.600 12.757 18.519 0.593 12.000
Females 35.294 36.275 107.373‡ 116.255‡ 4.706 2.353 6.277 11.736 21.895 19.608 32.029‡ 19.884∗

Relaxation
Males 10.494 12.346 0.056 0.222 14.074 11.852 1.067 0.067 5.340 3.704 7.259 12.000
Females 15.196 15.196 3.064 3.064 9.412 8.824 0.442 0.801 4.248 1.961 12.971 23.0.59‡

† : p < 0.05
∗ : p < 0.025
? : p < 0.01
‡ : p < 0.005
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Figure B.1: Overall percentage of the Affective Ratings across both the two
robot and subject gender. This is shown for each of the three utterance

categories.
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Figure B.2: Overall percentage of the Affective Ratings across both the two
robot and pet/non-pet owners. This is shown for each of the three utterance

categories.
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Table B.3: Pet Ownership differences for Affective Ratings across the Utterance Classes and Robot Morphologies. The table shows the
percentages of each affective ratings for each robot across the two genders and the χ2(8) values indicating whether this rating is above chance

(compared to a flat uniform distribution).

Emotion Subject
Human Animal Technological

Rating (%) χ2 Rating (%) χ2 Rating (%) χ2

Nao Aibo Nao Aibo Nao Aibo Nao Aibo Nao Aibo Nao Aibo

Anger
Pet 2.083 1.042 14.083 17.521† 15.625 18.750 2.934 8.403 15.972 15.625 6.125 5.281
Non-Pet 4.023 1.724 7.868 13.799 15.862 19.310 2.946 8.773 19.157 19.157 15.207 15.207

Fear
Pet 2.083 1.042 14.083 17.521† 18.125 16.250 7.084 3.803 13.194 12.847 1.125 0.781
Non-Pet 4.023 1.724 7.868 13.799 11.724 12.414 0.049 0.222 12.261 14.560 0.310 2.793

Disgust
Pet 5.729 5.208 5.005 6.021 11.250 11.875 0.003 0.084 12.500 10.764 0.500 0.031
Non-Pet 5.172 4.023 5.523 7.868 16.552 13.103 3.863 0.518 14.176 15.709 2.207 4.966

Happiness
Pet 12.500 11.458 0.333 0.021 9.375 6.250 0.434 3.403 9.722 12.500 0.500 0.500
Non-Pet 9.770 10.920 0.282 0.006 9.655 8.276 0.277 1.049 11.111 10.345 0.000 0.128

Sadness
Pet 4.167 1.563 8.333 15.755† 11.875 7.500 0.084 1.878 8.681 10.417 1.531 0.125
Non-Pet 2.874 2.299 10.626 12.161 11.724 15.172 0.049 2.153 7.280 9.195 3.448 0.862

Affection
Pet 8.333 9.375 1.333 0.521 14.375 15.000 1.534 2.178 7.292 4.514 3.781 11.281
Non-Pet 16.667 15.517 4.833 3.040 10.345 13.103 0.077 0.518 4.598 6.130 9.996 5.828

Boredom
Pet 17.188 16.146 6.380 4.380 6.875 11.250 2.584 0.003 9.722 10.069 0.500 0.281
Non-Pet 11.494 13.793 0.023 1.124 5.517 6.897 4.084 2.318 9.195 4.598 0.862 9.966

Interest
Pet 35.417 39.583 102.083‡ 140.083‡ 4.375 3.125 6.534 9.184 19.097 20.833 16.531† 24.500‡
Non-Pet 32.184 32.759 69.540‡ 73.385‡ 3.448 1.379 7.663 12.359 16.475 17.241 6.759 8.828

Relaxation
Pet 12.500 13.021 0.333 0.630 8.125 10.000 1.284 0.1778 3.819 2.431 13.781 19.531∗
Non-Pet 13.793 14.943 1.126 2.299 15.172 10.345 2.153 0.077 5.747 3.065 6.759 15.207

† : p < 0.05
∗ : p < 0.025
? : p < 0.01
‡ : p < 0.005
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Table B.4: Ratings and χ2 values for Intentional Ratings across both robot types and sound categories. The columns for each utterance class
are the overall percentage of ratings for a given intentional label, the results of a χ2 test checking that that rating is above chance, and the

results of a Stewart-Maxwell test indicating whether there was an overall difference in the distribution of ratings due to the robot image that
was also presented

Intention Subject
Human Animal Techno

Rating (%) χ2 S&M ( χ2) Rating (%) χ2 S&M ( χ2) Rating (%) χ2 S&M ( χ2)

Neutral
Nao 23.771 2.602

3.841

18.361 0.410

3.762

21.129 0.350

0.710

Aibo 21.038 0.197 14.098 5.312 22.587 1.836

Attention
Nao 38.525 62.79† 26.885 7.230 33.698 51.503†
Aibo 41.530 84.828† 30.164 15.754† 32.969 46.170†

Comfort
Nao 19.399 0.066 23.607 1.984 9.472 30.427†
Aibo 16.393 2.380 24.262 2.771 10.018 27.350†

Approval
Nao 12.842 9.378 7.869 22.443† 12.022 17.472†
Aibo 14.481 5.574 6.557 22.557† 11.111 21.689†

Prohibition
Nao 5.465 38.665† 23.279 1.639 23.679 3.716
Aibo 6.557 33.069† 24.918 3.689 23.315 3.017

† : p < 0.05
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Table B.5: Gender differences for the Intention ratings. The table shows the percentages of each affective ratings for each robot across the two
genders and the χ2(8) values indicating whether this rating is above chance (compared to a flat uniform distribution).

Emotion Subject
Human Animal Technological

Rating (%) χ2 Rating (%) χ2 Rating (%) χ2

Nao Aibo Nao Aibo Nao Aibo Nao Aibo Nao Aibo Nao Aibo

Neutral
Males 18.519 18.519 0.178 0.178 19.259 14.074 0.037 2.370 18.107 24.280 0.435 2.226
Females 27.941 23.039 6.432 0.942 17.647 14.118 0.471 2.941 23.529 21.242 1.906 0.2359

Attention
Males 38.889 44.444 28.900‡ 48.400‡ 25.926 27.407 2.370 3.704 33.745 29.630 22.954‡ 11.267∗
Females 38.235 39.216 33.918‡ 37.663‡ 27.647 32.353 4.971 12.971∗ 33.660 35.621 28.550‡ 37.334‡

Comfort
Males 20.988 16.667 0.079 0.900 18.519 20.471 0.148 0.037 11.111 11.111 9.600† 9.600†
Females 18.137 16.177 0.354 1.491 27.647 27.059 4.971 4.235 8.170 9.150 21.412‡ 18.011‡

Approval
Males 17.284 12.346 0.598 4.746 8.148 3.704 9.482 17.926‡ 10.700 11.523 10.510† 8.732†
Females 9.314 16.177 11.648∗ 1.491 7.647 8.824 12.971∗ 10.618† 13.072 10.784 7.344 12.994∗

Prohibition
Males 4.321 8.025 19.912‡ 11.616∗ 28.148 34.074 4.482 13.370? 26.337 23.457 4.880 1.452
Females 6.373 5.392 18.942‡ 21.766‡ 19.412 17.647 0.029 0.471 21.569 23.203 0.377 1.569

† : p < 0.05
∗ : p < 0.025
? : p < 0.01
‡ : p < 0.005

343



Figure B.3: Overall percentage of the Intention Ratings across both the two
robot and subject gender. This is shown for each of the three utterance

categories.
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Table B.6: Pet Ownership differences for the Intention ratings. The table shows the percentages of each affective ratings for each robot across
the two genders and the χ2(8) values indicating whether this rating is above chance (compared to a flat uniform distribution).

Emotion Subject
Human Animal Technological

Rating (%) χ2 Rating (%) χ2 Rating (%) χ2

Nao Aibo Nao Aibo Nao Aibo Nao Aibo Nao Aibo Nao Aibo

Neutral
Pet 25.521 23.958 2.926 1.504 18.125 15.625 0.281 1.531 25.347 23.958 4.117 2.256
Non-Pet 21.839 17.816 0.294 0.415 18.621 12.414 0.138 4.172 16.475 21.073 1.622 0.150

Attention
Pet 41.667 43.750 45.067‡ 54.150‡ 28.750 29.375 6.125 7.031 29.514 34.375 13.034∗ 29.756‡
Non-Pet 35.058 39.081 19.725‡ 31.674‡ 24.828 31.035 1.690 8.828 38.314 31.418 43.771‡ 17.012‡

Comfort
Pet 18.229 16.146 0.301 1.426 26.875 24.375 3.751 1.531 11.458 10.417 10.506∗ 13.225∗
Non-Pet 20.690 16.667 0.041 0.967 20.000 24.138 0.000 1.241 7.2797 9.579 21.116‡ 14.173?

Approval
Pet 8.333 9.375 13.067∗ 10.838† 3.750 4.375 21.125‡ 19.531‡ 10.417 9.722 13.225∗ 15.211‡
Non-Pet 17.816 10.115 0.4149 0.001 12.414 8.966 4.172 8.828 13.793 13.644 5.028 7.062

Prohibition
Pet 6.250 6.771 18.150‡ 16.801‡ 22.500 26.250 0.500 3.125 23.264 21.528 1.534 0.336
Non-Pet 4.598 6.322 20.639‡ 16.277‡ 24.138 23.448 1.241 0.862 24.138 25.287 2.235 3.648

† : p < 0.05
∗ : p < 0.025
? : p < 0.01
‡ : p < 0.005
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Table B.7: Appropriateness ratings for utterances and associated χ2 values for
the one-way χ2 test comparing the ratings a flat uniform distribution, and the
χ2 values of the McNemar tests checking whether the difference in the rating

distributions across the two robots are significantly different.

Utterance
Robot “Yes” Ratings (%)

Chi Squared McNemar
Class Text (χ2) Test (χ2)

Human
Nao 74.590 44.262‡

27.480‡
Aibo 57.924 4.596†

Animal
Nao 46.230 0.867

34.299‡
Aibo 68.197 20.198‡

Techno
Nao 59.745 10.427‡

4.198†
Aibo 54.827 2.558

† : p < 0.05
‡ : p < 0.005

Table B.8: Appropriateness ratings for utterances and associated χ2 values for
the one-way χ2 test comparing the ratings a flat uniform distribution, and the
χ2 values of the two-way tests checking whether the difference in the rating

distributions between the genders are significantly different.

Utterance Subject “Yes” Rating (%) 1-way χ2 2-way χ2

Class Group Nao Aibo Nao Aibo Nao Aibo

Human
Males 73.457 56.790 17.827‡ 1.494

0.197 0.153
Females 75.490 58.824 23.152‡ 2.526

Animal
Males 39.259 67.407 3.115 8.182‡

4.734† 0.070
Females 51.765 68.824 1.269 10.552‡

Techno
Males 55.144 47.325 1.286 0.348

3.847† 9.907‡
Females 63.399 60.784 7.235? 4.499†

† : p < 0.05
∗ : p < 0.025
? : p < 0.01
‡ : p < 0.005

Table B.9: Appropriateness ratings for utterances and associated χ2 values for
the one-way χ2 test comparing the ratings a flat uniform distribution, and the
χ2 values of the two-way tests checking whether the difference in the rating

distributions between pet/non-pet owners are significantly different.

Utterance Subject “Yes” Rating (%) 1-way χ2 2-way χ2

Class Group Nao Aibo Nao Aibo Nao Aibo

Human
Pet 75.000 55.729 24.000‡ 1.260

0.036 0.798
Non-Pet 74.138 60.345 22.321‡ 2.371

Animal
Pet 39.375 64.375 3.613 6.613∗

6.36∗ 2.266
Non-Pet 53.793 72.414 2.172 10.200‡

Techno
Pet 59.722 54.514 5.444∗ 1.174

0.000 0.024
Non-Pet 59.770 55.172 5.236∗ 1.274

† : p < 0.05
∗ : p < 0.025
? : p < 0.01
‡ : p < 0.005
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Figure B.4: Overall percentage of the Intention Ratings across both the two
robot and pet/non-pet owners. This is shown for each of the three utterance

categories.
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Appendix C

Collecting Training Data for

Machine Learning
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C.1 Experiment #1 - Tables of Results

Table C.1: Results of the Kruskal-Wallice tests testing the difference in affective
ratings due to the Tremolo values in Experiment #1.

Affect Dimension d.f. χ2 p value

Pleasure 1 0.7 0.405
Arousal 1 0.67 0.412
Dominance 1 0.5 0.477

Table C.2: Descriptive statistics for the Box Plots shown in figure 5.4, showing
the ratings for the Utterances with a Tremolo value of 0, grouped by the first

pitch contour shape. The table shows the Median values, 1st and 3rd Quartiles,
Inter-Quartile Range, and the Lower and Upper estimated 95% Median

Confidence Intervals.

Dimension Contour Median Q1 Q3 IQR
95% CI

Lower Upper

Dominance
Flat -0.423 -0.942 0.730 1.673 -0.874 0.027

Rising 0.727 -0.276 0.910 1.186 0.387 1.0
Falling 0.096 -0.473 0.847 1.319 -0.249 0.441

C.2 Experiment #2 - Tables of Results

Table C.3: Results of the Kruskal-Wallice tests checking for differences in the
affective ratings across the two different sound unit counts in Experiment #2.

Affect Dimension d.f. χ2 p value

Pleasure 1 2.03 0.154
Arousal 1 0.22 0.641
Dominance 1 1.04 0.308

Table C.4: Descriptive statistics for the Box Plots shown in figure 5.5, showing
the ratings for the Utterances with a Rhythm value of 0, 0.5 and 1. The table
shows the Median values, 1st and 3rd Quartiles, Inter-Quartile Range and the

Lower and Upper estimated 95% Median Confidence Intervals.

Dimension Rhythm Median Q1 Q3 IQR
95% CI

Lower Upper

Arousal
0 0.433 -0.925 0.974 1.899 -0.007 0.873

0.5 0.761 0.122 1.000 0.878 0.556 0.967
1 0.788 0.548 1.000 0.452 0.643 0.933
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C.3 Experiment #3 - Tables of Results

Table C.5: Results of the Kruskal-Wallice tests, collapsing the Frequency Range
and testing only for the influence of the Base Frequency across the different

sound unit counts, along each affective dimensions.

Affect Dimension Unit Count d.f. χ2 p value

Pleasure
3

2 2.448 0.294
Arousal 2 0.809 0.667
Dominance 2 1.468 0.480
Pleasure

5
2 0.815 0.665

Arousal 2 0.335 0.846
Dominance 2 2.667 0.264
Pleasure

Both
2 1.924 0.382

Arousal 2 0.973 0.615
Dominance 2 2.269 0.322

Table C.6: Results of the Kruskal-Wallice tests with interleaved Base Frequency
and Frequency Range values, across the different sound unit counts, along each

affective dimensions.

Affect Dimension Unit Count d.f. χ2 p value

Pleasure
3

8 8.878 0.353
Arousal 8 4.134 0.845
Dominance 8 10.855 0.210
Pleasure

5
8 13.677 0.091

Arousal 8 2.785 0.947
Dominance 8 9.452 0.306
Pleasure

Both
8 14.351 0.073

Arousal 8 3.395 0.907
Dominance 8 8.526 0.384

Table C.7: Descriptive statistics for the Box plots in figure 5.6, showing the
ratings for all Utterances with 3 Sound Units, grouped by the Frequency Range
values, along the Dominance dimension. Table shows the Median values, 1st and
3rd Quartiles, Inter-Quartile Range, and the lower and upper estimated Median

Confidence Intervals.

Dimension Base Freq Median Q1 Q3 IQR
95% CI

Lower Upper

Dominance
500 Hz -0.655 -0.924 -0.068 0.856 -0.889 -0.421
1000 Hz -0.020 -0.735 0.890 1.625 -0.434 0.394
1500 Hz 0.010 -0.747 0.878 1.625 -0.472 0.492
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Table C.8: Descriptive statistics for the Box plots in figure 5.7, showing the
ratings for all Utterances with 5 Sound Units, grouped by the Frequency Range
values, along the Pleasure dimension. Table shows the Median values, 1st and

3rd Quartiles, Inter-Quartile Range, and the lower and upper estimated Median
Confidence Intervals.

Dimension Freq Range Median Q1 Q3 IQR
95% CI

Lower Upper

Pleasure
500 Hz 0.068 -0.907 0.702 1.609 -0.372 0.508

1000 HZ -0.178 -0.783 0.687 1.469 -0.543 0.187
1500 Hz 0.623 -0.027 0.958 0.985 0.336 0.910

Table C.9: Descriptive Statistics for the Box Plots in figure 5.8, showing the
ratings for utterances across two two difference Sound Unit Counts, for each
affective dimension. Table shows the Median values, 1st and 3rd Quartiles,

Inter-Quartile Range, and the lower and upper estimated Median Confidence
Intervals.

Dimension Unit Count Median Q1 Q3 IQR
95% CI

Lower Upper

Pleasure
3 0.056 -0.869 0.860 0.173 -0.217 0.328
5 0.074 -0.791 0.835 1.625 -0.179 0.327

Arousal
3 0.619 -0.361 0.934 1.295 0.415 0.824
5 0.699 -0.587 1.0 1.587 0.452 0.946

Dominance
3 -0.335 -0.824 0.854 1.678 -0.600 0.071
5 0.042 -0.671 0.942 1.613 -0.209 0.293
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C.4 Experiment #4 - Tables of Results

Table C.10: Results of the Kruskal-Wallice tests, collapsing the Speech Rate and
testing only for the influence of the Pause Ratio across the difference sound unit

counts, along each affective dimension.

Affect Dimension Unit Count d.f. χ2 p value

Pleasure
3

2 0.94 0.625
Arousal 2 2.03 0.362
Dominance 2 3.42 0.181
Pleasure

5
2 0.03 0.984

Arousal 2 0.29 0.865
Dominance 2 1.48 0.476
Pleasure

Both
2 0.49 0.784

Arousal 2 1.52 0.468
Dominance 2 1.12 0.571

Table C.11: Results of the Kruskal-Wallice tests, collapsing the Pause Ratio and
testing only for the influence of the Speech Rate across the difference sound unit

counts, along each affective dimension.

Affect Dimension Unit Count d.f. χ2 p value

Pleasure
3

2 0.33 0.849
Arousal 2 2.15 0.341
Dominance 2 0.37 0.832
Pleasure

5
2 3.85 0.146

Arousal 2 2.53 0.283
Dominance 2 1.78 0.411
Pleasure

Both
2 3.24 0.198

Arousal 2 0.43 0.808
Dominance 2 0.44 0.801

Table C.12: Results of the Kruskal-Wallice tests, interleaving the Pause Ratio
and Speech Rate, across the different sound unit counts, along each affective

dimension.

Affect Dimension Unit Count d.f. χ2 p value

Pleasure
3

8 3.46 0.902
Arousal 8 4.73 0.786
Dominance 8 6.05 0.642
Pleasure

5
8 4.17 0.841

Arousal 8 4.72 0.787
Dominance 8 5.26 0.730
Pleasure

Both
8 5.31 0.724

Arousal 8 3.35 0.910
Dominance 8 3.55 0.896
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Table C.13: Descriptive Statistics for the Box Plots in figure 5.9. Table shows
the Median values, 1st and 3rd Quartiles, Inter-Quartile Range, and the lower

and upper estimated Median Confidence Intervals.

Dimension Unit Count Median Q1 Q3 IQR
95% CI

Lower Upper

Pleasure
3 0.128 -0.855 0.846 1.701 -0.135 0.391
5 0.238 -0.605 0.915 1.519 0.004 0.472

Arousal
3 0.690 -0.170 1.0 1.170 0.509 0.871
5 0.779 -0.454 1.0 1.454 0.555 1.0

Dominance
3 0.180 -0.809 0.903 1.713 -0.085 0.445
5 0.611 -0.421 0.984 1.405 0.395 0.827
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C.5 Experiment #5 - Tables of Results

Table C.14: Descriptive Statistics for the Box Plots in figure 5.10. Table shows
the Median values, 1st and 3rd Quartles, Inter-Quartile Range, and the lower

and upper estimated Median Confidence Intervals.

Dimension PC Median Q1 Q3 IQR
95% CI

Lower Upper

Pleasure
1 0.069 -0.771 0.886 1.657 -0.178 0.318
2 0.064 -0.843 0.896 1.739 -0.194 0.322

Arousal
1 0.823 -0.126 1.0 1.126 0.655 0.992
2 0.673 -0.437 1.0 1.437 0.459 0.886

Dominance
1 -0.246 -0.870 0.914 1.785 -0.513 0.022
2 0.393 -0.529 0.902 1.431 0.181 0.606

Table C.15: Results of the Kruskal-Wallice tests checking for differences in
ratings, along each affective dimension, between PC2 and PC3 in Experiment

#5.

Affect Dimension Unit Count d.f. χ2 p value

Pleausre
3

1 3.63 0.057
Arousal 1 1.41 0.235
Dominance 1 0.28 0.594
Pleasure

5
1 1.15 0.284

Arousal 1 1.53 0.217
Dominance 1 0 0.951
Pleasure

Both
1 0.27 0.603

Arousal 1 0.25 0.616
Dominance 1 0.01 0.939
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(a) Angry (b) Annoyed (c) Happy

(d) Excited (e) Sad (f) Scared

(g) Surprised (h) Calm (i) Relaxed

Figure D.1: AffectButton facial gestures of the mean ratings given by the adult
subjects for each of the affective labels in the Labelling Task.

(a) Angry (b) Annoyed (c) Happy

(d) Excited (e) Sad (f) Scared

(g) Surprised (h) Calm (i) Relaxed

Figure D.2: AffectButton facial gestures of the mean ratings given by the
children subjects for each of the affective labels in the Labelling Task.
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Table D.1: Mean values and Standard Deviations of the ratings for each of the
affective labels presented in the Labelling Task. The table shows the values for

the adults and children, along each affective dimension of the AffectButton.

Subjects Label
Affect Space Dimension

Pleasure Arousal Dominance
Mean Std Mean Std Mean Std

Adults

Angry -0.8096 0.2426 0.7981 0.5025 0.7541 0.3343
Annoyed -0.8096 0.2426 0.7981 0.5025 0.7541 0.3343
Happy 0.7712 0.2260 0.8301 0.3211 0.7613 0.3560
Excited 0.5511 0.4672 0.7391 0.4819 0.2800 0.7449
Sad -0.3907 0.3010 -0.5661 0.6868 -0.5229 0.1665
Scared -0.9343 0.2272 0.7385 0.6519 -0.5793 0.4908
Surprised 0.6506 0.4601 0.9221 0.1359 -0.8251 0.2099
Calm 0.1022 0.3628 -0.5639 0.5274 0.3051 0.3588
Relaxed 0.2976 0.4131 -0.2938 0.7266 0.2109 0.4131

Children

Angry -0.6207 0.5325 0.3010 0.9468 0.4406 0.8665
Annoyed -0.3933 0.6543 0.0176 0.8344 0.1994 0.7765
Happy 0.5578 0.3360 0.2577 0.8661 0.5376 0.4675
Excited 0.6266 0.2724 0.2964 0.8403 0.2234 0.6479
Sad -0.3444 0.4747 -0.3041 0.7549 -0.5997 0.3309
Scared -0.3076 0.4115 0.1838 0.8209 -0.2437 0.6608
Surprised 0.4174 0.4534 0.4950 0.7017 -0.3803 0.6558
Calm 0.0315 0.6203 -0.1941 0.7548 -0.2581 0.6076
Relaxed 0.2306 0.5651 -0.2257 0.7869 -0.0841 0.6811

(a) Utter-0 (b) Utter-1 (c) Utter-2

(d) Utter-3 (e) Utter-4 (f) Utter-5

Figure D.3: Mean AffectButton facial gestures for both the Stimulus Set ratings
provided by the adult subjects during the Identification Task.
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(a) Utter-0 (b) Utter-1 (c) Utter-2

(d) Utter-3 (e) Utter-4 (f) Utter-5

Figure D.4: Mean AffectButton facial gestures for the Stimulus Set 1 ratings
provided by the adult subjects during the Identification Task.

(a) Utter-0 (b) Utter-1 (c) Utter-2

(d) Utter-3 (e) Utter-4 (f) Utter-5

Figure D.5: Mean AffectButton facial gestures for the Stimulus Set 2 ratings
provided by the adult subjects during the Identification Task.
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Table D.2: Mean values and 95% confidence intervals for the overall adult
ratings of stimuli in the Identification Task. The table shows the values for the

overall different Utterance Parameter configurations, as well as those for
Stimulus Set 1 and Stimulus Set 2.

Set Utter Mean Std Error
95% Confidence Interval

Lower Bound Upper Bound

Both

0 0.748 0.055 0.635 0.862
1 0.673 0.051 0.567 0.779
2 0.473 0.043 0.385 0.561
3 0.163 0.053 0.053 0.273
4 0.061 0.054 -0.051 0.173
5 -0.115 0.055 -0.229 -0.002

1

0 0.711 0.063 0.580 0.841
1 0.614 0.073 0.464 0.764
2 0.456 0.052 0.349 0.562
3 0.043 0.073 -0.108 0.193
4 -0.005 0.068 -0.146 0.135
5 -0.141 0.072 -0.288 0.007

2

0 0.786 0.059 0.664 0.908
1 0.732 0.055 0.619 0.845
2 0.490 0.065 0.357 0.624
3 0.284 0.065 0.151 0.417
4 0.127 0.079 -0.035 0.290
5 -0.090 0.065 -0.223 0.043

(a) Utter-0 (b) Utter-1 (c) Utter-2

(d) Utter-3 (e) Utter-4 (f) Utter-5

Figure D.6: Mean AffectButton facial gestures for both the Stimulus Set ratings
provided by the child subjects during the Identification Task.
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Table D.3: Mean values and 95% confidence intervals for the overall adults
ratings of stimuli in the Identification Task. The table shows the values for the

overall different Utterance Parameter configurations, as well as those for the two
genders.

Subjects Utter Mean Std Error
95% Confidence Interval

Lower Bound Upper Bound

Both

0 0.748 0.055 0.635 0.862
1 0.673 0.051 0.567 0.779
2 0.473 0.043 0.385 0.561
3 0.163 0.053 0.053 0.273
4 0.061 0.054 -0.051 0.173
5 -0.115 0.055 -0.229 -0.002

Females

0 0.749 0.071 0.604 0.894
1 0.715 0.066 0.579 0.850
2 0.573 0.054 0.461 0.685
3 0.235 0.068 0.095 0.376
4 0.139 0.069 -0.004 0.282
5 -0.005 0.070 -0.150 0.140

Males

1 0.747 0.085 0.572 0.923
2 0.631 0.079 0.468 0.794
3 0.373 0.066 0.238 0.508
4 0.091 0.082 -0.078 0.260
5 -0.017 0.084 -0.189 0.155
6 -0.226 0.085 -0.401 -0.051

(a) Utter-0 (b) Utter-1 (c) Utter-2

(d) Utter-3 (e) Utter-4 (f) Utter-5

Figure D.7: Mean AffectButton facial gestures for the Stimulus Set 1 ratings
provided by the child subjects during the Identification Task.
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(a) Utter-0 (b) Utter-1 (c) Utter-2

(d) Utter-3 (e) Utter-4 (f) Utter-5

Figure D.8: Mean AffectButton facial gestures for the Stimulus Set 2 ratings
provided by the child subjects during the Identification Task.

Table D.4: Mean values and 95% confidence intervals for the overall child ratings
of stimuli in the Identification Task. The table shows the values for the overall

different Utterance Parameter configurations, as well as those for Stimulus Set 1
and Stimulus Set 2.

Set Utter Mean Std Error
95% Confidence Interval

Lower Bound Upper Bound

Both

0 0.511 0.065 0.376 0.645
1 0.402 0.081 0.233 0.570
2 0.226 0.076 0.067 0.385
3 0.333 0.078 0.171 0.496
4 0.224 0.080 0.057 0.392
5 0.205 0.079 0.041 0.368

1

0 0.512 0.091 0.323 0.701
1 0.283 0.098 0.080 0.487
2 0.182 0.104 -0.034 0.398
3 0.451 0.097 0.249 0.653
4 0.225 0.095 0.028 0.422
5 0.164 0.087 -0.016 0.344

2

0 0.509 0.088 0.326 0.693
1 0.520 0.087 0.339 0.701
2 0.270 0.096 0.070 0.469
3 0.216 0.104 -0.001 0.433
4 0.224 0.114 -0.013 0.461
5 0.245 0.108 0.020 0.470
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Table D.5: Mean values and 95% confidence intervals for the overall child ratings
of stimuli in the Identification Task. The table shows the values for the overall

different Utterance Parameter configurations, as well as those for the two
genders.

Subjects Utter Mean Std Error
95% Confidence Interval

Lower Bound Upper Bound

Both

0 0.511 0.065 0.376 0.645
1 0.402 0.081 0.233 0.570
2 0.226 0.076 0.067 0.385
3 0.333 0.078 0.171 0.496
4 0.224 0.080 0.057 0.392
5 0.205 0.079 0.041 0.368

Females

0 0.442 0.085 0.265 0.619
1 0.325 0.107 0.102 0.547
2 0.222 0.101 0.013 0.432
3 0.395 0.103 0.181 0.610
4 0.369 0.106 0.149 0.590
5 0.161 0.104 -0.054 0.377

Males

1 0.579 0.097 0.377 0.781
2 0.478 0.122 0.225 0.732
3 0.229 0.115 -0.010 0.468
4 0.272 0.117 0.027 0.516
5 0.080 0.121 -0.172 0.331
6 0.248 0.118 0.002 0.494
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(a) Happy (b) Excited

(c) Annoyed (d) Angry

(e) Sad (f) Scared

(g) Contempt (h) Surprised

Figure E.1: Images of the AffectButton facial gestures used during the Matching
Task in the ANN Evaluation experiment presented in chapter 7.
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Table E.1: Mean and Standard Deviations for the Affective PAD ratings for each
NLU parameter specifications, across the two pitch contour specifications.

NLU Contour
Affective Dimension

Pleasure Arousal Dominance
Mean Std Mean Std Mean Std

1
1 0.350 0.728 0.613 0.586 0.100 0.779
2 0.335 0.660 0.417 0.717 0.225 0.687

2
1 -0.007 0.683 0.241 0.783 -0.281 0.733
2 0.083 0.696 0.393 0.688 0.227 0.738

3
1 0.067 0.733 0.367 0.782 0.205 0.669
2 -0.007 0.728 0.200 0.784 0.102 0.698

4
1 0.040 0.689 0.074 0.837 -0.250 0.628
2 0.121 0.741 0.321 0.781 -0.085 0.725

5
1 0.129 0.675 0.167 0.763 0.219 0.656
2 0.127 0.770 0.397 0.787 0.034 0.731

6
1 0.049 0.726 0.261 0.805 0.137 0.729
2 0.169 0.773 0.509 0.652 0.372 0.695

7
1 0.240 0.678 0.415 0.765 0.259 0.689
2 -0.041 0.72 0.133 0.831 -0.025 0.716

8
1 0.154 0.688 0.481 0.589 0.132 0.776
2 -0.135 0.704 0.369 0.798 0.075 0.759

9
1 0.112 0.712 0.231 0.739 0.110 0.682
2 0.129 0.692 0.279 0.764 0.064 0.742

10
1 0.263 0.716 0.377 0.849 0.227 0.743
2 -0.049 0.748 0.282 0.791 0.139 0.702

11
1 0.024 0.748 0.293 0.764 0.175 0.706
2 -0.038 0.704 0.182 0.812 -0.004 0.721

12
1 0.112 0.657 0.242 0.725 0.242 0.694
2 0.179 0.697 0.239 0.834 0.046 0.701

13
1 0.265 0.729 0.473 0.685 0.076 0.768
2 -0.204 0.722 0.324 0.759 0.252 0.673
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(a) Happy label. (b) Excited label.

(c) Angry label. (d) Sad label.

(e) Scared label. (f) Surprised label.

(g) Calm label.

Figure E.2: Images of the AffectButton facial gestures for the mean ratings
obtained during the Labelling Task in the ANN Evaluation experiment

presented in chapter 7.
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Table F.1: Parameter Configurations of the NLUs used in the Pilot and Main Survey presented in chapter 8. Spectrograms of these are shown
in figure F.1 and outline the Pitch Contour

NLU
NLU Parameter

Base Freq. (Hz) Freq. Range (Hz) Speech Rate Pause Ratio Rhythm S. Unit Count Tremolo (rad)

1 1500 1500 6 0.05 1 5 0
2 666.67 666.67 3.5 0.633 1 5 0
3 700 700 3 0.5 1 5 0.3839
4 500 550 4 1 1 5 0.2181
5 500 600 5 0.75 1 5 0
6 1200 1000 3 0.5 1 5 0
7 600 500 3 0.75 1 5 0
8 1500 1500 4 0.25 1 5 0.2181

375



Time (s)
0 0.8237

0

5000

Fr
eq

ue
nc

y 
(H

z)

0

1000

2000

3000

4000

5000

(a) NLU 1

Time (s)
0 1.325

0

5000

Fr
eq

ue
nc

y 
(H

z)

0

1000

2000

3000

4000

5000

(b) NLU 2

Time (s)
0 1.612

0

5000

Fr
eq

ue
nc

y 
(H

z)

0

1000

2000

3000

4000

5000

(c) NLU 3

Time (s)
0 1.183

0

5000

Fr
eq

ue
nc

y 
(H

z)

0

1000

2000

3000

4000

5000

(d) NLU 4

Time (s)
0 0.9995

0

5000

Fr
eq

ue
nc

y 
(H

z)

0

1000

2000

3000

4000

5000

(e) NLU 5

Time (s)
0 1.681

0

5000

Fr
eq

ue
nc

y 
(H

z)

0

1000

2000

3000

4000

5000

(f) NLU 6

Time (s)
0 1.671

0

5000

Fr
eq

ue
nc

y 
(H

z)

0

1000

2000

3000

4000

5000

(g) NLU 7

Time (s)
0 1.284

0

5000

Fr
eq

ue
nc

y 
(H

z)

0

1000

2000

3000

4000

5000

(h) NLU 8

Figure F.1: Spectrograms of the NLUs outlined in table F.1
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Table F.2: Question orders for the online CrowdFlower surveys. Questions with
a (0) are action videos with no NLU (CAction). Questions with a (1) are action

videos combined with NLU #8 (CP
Action). Questions with a (2) are action videos

combined with NLU #7 (CN
Action).

Question
Question Order

1 2 3

1 Subject Age Subject Age Subject Age
2 Subject Gender Subject Gender Subject Gender
3 NLU#1 Eye Cover (2) Head Stroke (2)
4 Head Stroke (1) Kiss (0) Eye Cover (0)
5 Slap (2) Face Flick (1) Slap (2)
6 Eye Cover (0) NLU#3 NLU#7
7 Face Flick (1) Kiss (1) NLU#2
8 Kiss (0) NLU#2 Slap (0)
9 NLU#3 Face Flick (2) Face Flick (2)
10 Eye Cover (2) Slap (0) Head Kiss (1)
11 NLU#7 NLU#7 NLU#1
12 Face Flick (2) Face Flick (0) NLU#8
13 NLU#8 Head Stroke (2) Head Kiss (0)
14 Slap (0) Slap (1) Face Flick (1)
15 Kiss (1) Kiss (2) Eye Cover (2)
16 Slap (1) Head Stroke (0) Head Stroke (0)
17 Head Stroke (2) NLU#1 Head Kiss (2)
18 Face Flick (0) Eye Cover (1) Eye Cover (1)
19 NLU#2 Slap (2) Head Stroke (2)
20 Head Stroke (0) NLU#8 NLU#3
21 Eye Cover (1) Eye Cover (0) Face Flick (0)
22 Kiss (2) Head Stroke (1) Slap (1)
23 Seen Robot Before Seen Robot Before Seen Robot Before

Table F.3: Mean and Standard Deviations of the Ratings for the Action Videos
in the Pilot Study (refer to section 8.1.1.3 and figure 8.3).

Action
Rating

Mean Std Dev

Slap on Head 2.066 1.279
Poke in Chest 3.533 1.187
Poke on Forehead 3.000 1.253
Flick to Head 3.333 1.345
Clicking Fingers 3.800 1.320
Covering Eyes 4.533 0.915
Waving in front of Eyes 5.200 1.740
Chin Tickle 6.333 1.046
Rib Tickle 4.866 1.355
Stroked on Head 6.133 0.990
Kiss on Head 6.533 1.684
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Table F.4: Mean and Standard Deviations of the Ratings for the NLU Videos in
the Pilot Study (refer to section 8.1.1.3 and figure 8.4).

NLU Video
Rating

Mean Std Dev

1 5.733 1.387
2 4.933 1.751
3 4.000 1.464
4 4.066 1.162
5 6.133 1.060
6 5.000 1.732
7 3.733 1.387
8 6.466 1.807

Table F.5: Mean, Standard Error and 95% Confidence Intervals of the NLU
Video Ratings obtained from the CrowdFlower Study (refer to section 8.2.1 and

figure 8.6).

NLU Video Mean Std Error
95% Confidence Interval

Lower Bound Upper Bound

1 6.100 0.090 5.923 6.277
2 5.781 0.082 5.621 5.942
3 5.866 0.083 5.703 6.029
7 6.102 0.089 5.926 6.278
8 5.219 0.084 5.053 5.385

Table F.6: Mean, Standard Error and 95% Confidence Intervals of the Action
Video Ratings obtained from the CrowdFlower Study (refer to section 8.2.2 and

figure 8.7).

Action Video Mean Std Error
95% Confidence Interval

Lower Bound Upper Bound

Covering Eyes 4.669 0.078 4.517 4.822
Kiss 6.687 0.111 6.469 6.905
Slap 3.045 0.110 2.828 3.262

Stroke 6.361 0.096 6.172 6.549
Flick 3.787 0.106 3.578 3.995
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Table F.7: Mean, Standard Error and 95% Confidence Intervals for the overall
ratings for the Video Conditions, across each action scenario (refer to section

8.2.3 and figure 8.8).

Action Condition Mean Std Error
95% Confidence Interval

Lower Bound Upper Bound

Eye Cover

CP
NLU 6.100 0.090 5.923 6.277

CN
NLU 5.219 0.084 5.053 5.385

CAction 4.669 0.078 4.517 4.822
CP
Action 4.611 0.096 4.422 4.799

CN
Action 4.497 0.089 4.322 4.672

Kiss

CP
NLU 6.100 0.090 5.923 6.277

CN
NLU 5.219 0.084 5.053 5.385

CAction 6.687 0.111 6.469 6.905
CP
Action 7.550 0.087 7.378 7.721

CN
Action 7.017 0.099 6.822 7.212

Slap

CP
NLU 6.100 0.090 5.923 6.277

CN
NLU 5.219 0.084 5.053 5.385

CAction 3.045 0.110 2.828 3.262
CP
Action 3.042 0.118 2.810 3.275

CN
Action 2.805 0.102 2.604 3.007

Stroke

CP
NLU 6.100 0.090 5.923 6.277

CN
NLU 5.219 0.084 5.053 5.385

CAction 6.361 0.096 6.172 6.549
CP
Action 6.873 0.103 6.670 7.077

CN
Action 6.663 0.101 6.464 6.862

Flick

CP
NLU 6.100 0.090 5.923 6.277

CN
NLU 5.219 0.084 5.053 5.385

CAction 3.787 0.106 3.578 3.995
CP
Action 3.784 0.116 3.556 4.012

CN
Action 3.456 0.104 3.251 3.661

Table F.8: Mean, Standard Error and 95% Confidence Intervals for the ratings
of the interaction effect between Subject Gender and the Video Condition for

the Flicking Action (refer to section 8.2.3.3 and figure 8.9a).

Gender Condition Mean Std Error
95% Confidence Interval

Lower Bound Upper Bound

Females

CP
NLU 6.119 0.095 5.932 6.306

CN
NLU 5.336 0.089 5.161 5.512

CAction 3.580 0.112 3.360 3.801
CP
Action 3.601 0.122 3.360 3.842

CN
Action 3.277 0.110 3.061 3.494

Males

CP
NLU 6.081 0.153 5.780 6.382

CN
NLU 5.102 0.143 4.820 5.383

CAction 3.993 0.180 3.639 4.347
CP
Action 3.968 0.197 3.580 4.355

CN
Action 3.634 0.177 3.286 3.982
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Table F.9: Mean, Standard Error and 95% Confidence Intervals for the ratings
of the interaction effect between Subject Gender and the Video Condition for

the Stroking Action (refer to section 8.2.3.4 and figure 8.9b).

Gender Condition Mean Std Error
95% Confidence Interval

Lower Bound Upper Bound

Females

CP
NLU 6.119 0.095 5.932 6.306

CN
NLU 5.336 0.089 5.161 5.512

CAction 6.553 0.101 6.354 6.752
CP
Action 7.159 0.109 6.944 7.374

CN
Action 7.129 0.107 6.920 7.339

Males

CP
NLU 6.081 0.153 5.780 6.382

CN
NLU 5.102 0.143 4.820 5.383

CAction 6.169 0.163 5.848 6.489
CP
Action 6.588 0.176 6.242 6.933

CN
Action 6.196 0.171 5.859 6.534

Table F.10: Mean, Standard Error and 95% Confidence Intervals for the ratings
of the interaction effect between Subject Gender and the Video Condition for

the Eye Covering Action (refer to section 8.2.3.5 and figure 8.9c).

Gender Condition Mean Std Error
95% Confidence Interval

Lower Bound Upper Bound

Females

CP
NLU 6.119 0.095 5.932 6.306

CN
NLU 5.336 0.089 5.161 5.512

CAction 4.594 0.082 4.433 4.755
CP
Action 4.403 0.101 4.204 4.602

CN
Action 4.456 0.094 4.271 4.641

Males

CP
NLU 6.081 0.153 5.780 6.382

CN
NLU 5.102 0.143 4.820 5.383

CAction 4.744 0.132 4.485 5.003
CP
Action 4.819 0.163 4.498 5.139

CN
Action 4.538 0.151 4.241 4.836

Table F.11: Mean, Standard Error and 95% Confidence Intervals for the ratings
of the interaction effect between Robot Familiarity and the Video Condition for

the Eye Covering Action (refer to section 8.2.3.5 and figure 8.9d).

Familiarity Condition Mean Std Error
95% Confidence Interval

Lower Bound Upper Bound

Unfamiliar

CP
NLU 6.032 0.135 5.765 6.298

CN
NLU 5.017 0.127 4.768 5.267

CAction 4.810 0.117 4.580 5.039
CP
Action 4.640 0.144 4.357 4.924

CN
Action 4.506 0.134 4.242 4.770

Familiar

CP
NLU 6.168 0.119 5.935 6.402

CN
NLU 5.421 0.111 5.202 5.639

CAction 4.529 0.102 4.328 4.730
CP
Action 4.581 0.126 4.333 4.830

CN
Action 4.488 0.117 4.257 4.719
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Table G.1: Results of the 2-way ANOVAs for Appropriateness ratings with the subjects split across the robot familiarity factor (refer to
section 9.2.1.1). The Tables shows the Mean Values, Standard Errors and 95% Confidence Intervals. See figure 9.4.

Familiarity Gender Subjects (N) Video Condition Mean Standard Error
95% Confidence Interval

Lower Bound Upper Bound

Unfamiliar

All 104

1 7.358 0.144 7.073 7.642
2 6.052 0.239 5.578 6.526
3 6.757 0.178 6.405 7.109
4 6.938 0.170 6.600 7.275

Females 72

1 7.403 0.159 7.087 7.719
2 5.792 0.265 5.266 6.318
3 7.014 0.197 6.623 7.405
4 7.000 0.189 6.626 7.374

Males 32

1 7.313 0.239 6.839 7.786
2 6.313 0.398 5.523 7.102
3 6.500 0.295 5.914 7.086
4 6.875 0.283 6.314 7.436

Familiar

All 166

1 7.515 0.103 7.311 7.719
2 6.160 0.160 5.844 6.476
3 6.911 0.105 6.703 7.119
4 7.047 0.104 6.841 7.253

Females 109

1 7.294 0.121 7.055 7.532
2 6.284 0.187 5.914 6.655
3 6.927 0.124 6.683 7.171
4 6.954 0.122 6.713 7.196

Males 57

1 7.737 0.167 7.406 8.067
2 6.035 0.259 5.523 6.547
3 6.895 0.171 6.557 7.232
4 7.140 0.169 6.806 7.474
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Table G.2: Results of the 2-way ANOVAs for Appropriateness ratings with the subjects split across the subject gender factor (refer to section
9.2.1.2). The Tables shows the Mean Values, Standard Errors and 95% Confidence Intervals. See figure 9.5.

Gender Familiarity Subjects (N) Video Condition Mean Standard Error
95% Confidence Interval

Lower Bound Upper Bound

Females

All 181

1 7.348 0.102 7.147 7.549
2 6.038 0.162 5.718 6.358
3 6.970 0.106 6.726 7.179
4 6.977 0.110 6.760 7.194

Unfamiliar 72

1 7.403 0.158 7.091 7.715
2 5.792 0.251 5.296 6.288
3 7.014 0.164 6.690 7.337
4 7.000 0.171 6.664 7.336

Familiar 109

1 7.294 0.128 7.040 7.547
2 6.284 0.204 5.881 6.687
3 6.927 0.133 6.664 7.190
4 6.954 0.139 6.681 7.228

Males

All 89

1 7.525 0.133 7.261 7.789
2 6.174 0.215 5.746 6.602
3 6.697 0.172 6.355 7.040
4 7.008 0.147 6.715 7.300

Unfamiliar 32

1 7.313 0.213 6.890 7.735
2 6.313 0.345 5.627 6.995
3 6.500 0.276 5.952 7.048
4 6.875 0.235 6.407 7.343

Familiar 57

1 7.737 0.159 7.420 8.054
2 6.035 0.258 5.522 6.548
3 6.895 0.206 6.484 7.305
4 7.140 0.176 6.790 7.491
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Table G.3: Results of the 2-way ANOVAs for Expressiveness ratings with the subjects split across the robot familiarity factor (refer to section
9.2.2.1). The Tables shows the Mean Values, Standard Errors and 95% Confidence Intervals. See figure 9.6.

Familiarity Gender Subjects (N) Video Condition Mean Standard Error
95% Confidence Interval

Lower Bound Upper Bound

Unfamiliar

All 104

1 7.047 0.156 6.738 7.355
2 5.628 0.262 5.108 6.149
3 6.688 0.176 6.338 7.037
4 6.960 0.160 6.644 7.277

Females 72

1 7.000 0.173 6.658 7.342
2 5.069 0.291 4.492 5.646
3 6.875 0.195 6.488 7.262
4 6.889 0.177 6.538 7.240

Males 32

1 7.094 0.259 6.580 7.607
2 6.188 0.436 5.322 7.053
3 6.500 0.293 5.919 7.081
4 7.031 0.265 6.505 7.558

Familiar

All 166

1 7.300 0.114 7.076 7.525
2 5.913 0.164 5.588 6.237
3 6.892 0.110 6.673 7.110
4 6.990 0.114 6.765 7.215

Females 109

1 7.092 0.133 6.829 7.355
2 6.018 0.193 5.638 6.399
3 6.853 0.129 6.598 7.109
4 6.752 0.133 6.489 7.016

Males 57

1 7.509 0.184 7.145 7.873
2 5.807 0.266 5.281 6.333
3 6.930 0.179 6.576 7.283
4 7.228 0.185 6.864 7.592
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Table G.4: Results of the 2-way ANOVAs for Expressiveness ratings with the subjects split across the subject gender factor (refer to section
9.2.2.2). The Tables shows the Mean Values, Standard Errors and 95% Confidence Intervals. See figure 9.7.

Gender Familiarity Subjects (N) Video Condition Mean Standard Error
95% Confidence Interval

Lower Bound Upper Bound

Females

All 181

1 7.046 0.110 6.828 7.263
2 5.544 0.172 5.204 5.883
3 6.864 0.109 6.649 7.079
4 6.821 0.113 6.597 7.044

Unfamiliar 72

1 7.000 0.171 6.662 7.338
2 5.069 0.267 4.543 5.596
3 6.875 0.169 6.541 7.209
4 6.889 0.176 6.541 7.236

Familiar 109

1 7.092 0.139 6.817 7.366
2 6.018 0.217 5.590 6.447
3 6.853 0.138 6.582 7.125
4 6.752 0.143 6.470 7.035

Males

All 89

1 7.301 0.149 7.005 7.598
2 5.997 0.226 5.547 6.447
3 6.715 0.171 6.374 7.056
4 7.130 0.145 6.842 7.417

Unfamiliar 32

1 7.094 0.239 6.619 7.569
2 6.188 0.362 5.467 6.908
3 6.500 0.274 5.954 7.046
4 7.031 0.231 6.571 7.491

Familiar 57

1 7.509 0.179 7.153 7.865
2 5.807 0.272 5.267 6.347
3 6.930 0.206 6.521 7.339
4 7.228 0.173 6.884 7.573
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Table G.5: Results of the Univariate tests for the Preference ratings (refer to section 9.2.3). The table shows the Mean values, Standard
Errors and 95% Confidence Intervals for the Main effects due to the video condition and robot familiarity factors. See figure 9.8.

Familiarity Subjects (N) Video Condition Mean Standard Error
95% Confidence Interval

Lower Bound Upper Bound

All 270

1 7.436 0.087 7.265 7.608
2 6.106 0.139 5.832 6.380
3 6.834 0.097 6.643 7.025
4 6.992 0.095 6.806 7.178

Unfamiliar 104

1 6.521 0.168 6.189 6.852
2 4.785 0.266 4.261 5.308
3 5.967 0.174 5.625 6.309
4 6.325 0.173 5.985 6.664

Familiar 166

1 7.188 0.130 6.933 7.443
2 5.194 0.204 4.791 5.597
3 6.552 0.134 6.289 6.815
4 6.615 0.133 6.354 6.876
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Table G.6: Results of the Univariate tests for the Naturalness Ratings (refer to section 9.2.4). The table shows the Mean values, Standard
Errors and 95% Confidence Intervals for the Interaction effect found between the video condition and subject gender factors. See figure 9.9.

Gender Subjects (N) Video Condition Mean Standard Error
95% Confidence Interval

Lower Bound Upper Bound

All 270

1 7.165 0.116 6.936 7.393
2 4.981 0.178 4.630 5.331
3 6.586 0.109 6.372 6.800
4 6.781 0.104 6.577 6.985

Females 181

1 7.119 0.131 6.860 7.378
2 4.440 0.202 4.042 4.837
3 6.549 0.123 6.306 6.791
4 6.523 0.118 6.292 6.755

Males 89

1 7.211 0.191 6.834 7.587
2 5.522 0.294 4.944 6.100
3 6.623 0.179 6.271 6.976
4 7.039 0.171 6.702 7.376
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Table G.7: Results of the Univariate tests for the Like-ability Ratings (refer to section 9.2.5 and figure 9.10a) The table shows the Mean
values, Standard Errors and 95% Confidence Intervals for the Interaction effect between the video condition and subject gender.

Gender Subjects (N) Video Condition Mean Standard Error
95% Confidence Interval

Lower Bound Upper Bound

All 270

1 7.305 0.109 7.091 7.519
2 6.462 0.145 6.176 6.748
3 7.001 0.111 6.783 7.220
4 7.095 0.110 6.878 7.311

Females 181

1 7.184 0.123 6.942 7.426
2 6.077 0.165 5.753 6.640
3 6.972 0.126 6.725 7.220
4 6.887 0.125 6.641 7.133

Males 89

1 7.426 0.179 7.073 7.779
2 6.846 0.239 6.375 7.318
3 7.031 0.183 6.670 7.391
4 7.302 0.181 6.945 7.659

Table G.8: Results of the Univariate tests for the Like-ability, Subject Gender and Robot Familiarity Interaction (refer to section 9.2.5 and
figure 9.10b). The table shows the Mean values, Standard Errors and 95% Confidence Intervals for the Interaction effect found between the

subject gender and robot familiarity.

Gender Familiarity Subjects (N) Mean Standard Error
95% Confidence Interval

Lower Bound Upper Bound

Females
Unfamiliar 72 6.698 0.172 6.359 7.037
Familiar 109 6.862 0.140 6.587 7.138

Males
Unfamiliar 32 6.680 0.258 6.171 7.189
Familiar 57 7.623 0.194 7.242 8.004
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