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Kim Stevens 
 

MULTIPLICITY OF INFECTION IN BROWN ALGAE 
 

Abstract 

Brown algae are important primary producers and habitat formers in coastal environments 
and are believed to have evolved multicellularity independently of the other eukaryotes.  
The phaeoviruses that infect them form a stable lysogenic relationship with their host via 
genome integration, but have only been extensively studied in two genera: Ectocarpus and 
Feldmannia.  In this study I aim to improve our understanding of the genetic diversity, host 
range and distribution of phaeoviruses. 

Sequencing and phylogenetic analysis of amplified fragments of three core phaeoviral 
genes (encoding major capsid protein (MCP), DNA polymerase and superfamily III helicase) 
of phaeovirus infected algae confirmed the suspected phaeoviral identity of viruses 
infecting E. fasciculatus, F. simplex, Pilayella littoralis, Myriotrichia clavaeformis and 
Hincksia hincksiae.  Furthermore, this approach revealed multiple virus sequence variants 
within individual strains, and moreover that the variants formed two distinct subgroups.  
Subgroup A was highly conserved and observed in multiple algal genera, whereas 
subgroup B was much more diverse, but only found in Feldmannia species.  Transcriptome 
sequencing of an actively infected F. irregularis strain revealed polymorphisms within key 
viral genes, suggesting that multiple variants were indeed active within this strain.   

High resolution melt curve (HRM) technology was used to develop a high throughput 
screening method for detecting phaeoviral MCP as a proxy for detection of phaeoviruses.  
This technique was also able to assign 88% of those detected to one of the subgroups, 
based on their differing melting temperature distributions.  This was then applied to 1034 
Ectocarpus isolates collected from around Europe and South America, and in accordance 
with previous studies of phaeoviral infection, 43-79% of strains contain virus sequence 
(depending on species).  17% of the isolates tested even contained sequence from both 
subgroups.   

82 Laminariales strains, close relatives of the Ectocarpales, were also screened because 
they comprise commercially important kelp species but are not known to be infected by 
viruses.  10-17% of these tested positive for phaeoviral MCP, which when sequenced 
formed a separate group within the phaeoviruses.  This finding could have a major impact 
on the kelp farming industry if the viruses are found to affect reproduction as happens in 
the Ectocarpales. 

The discovery of two subgroups is contrary to current beliefs that the phaeoviruses are a 
single monophyletic group, and that each species of alga has its own phaeovirus, casting 
doubt on the usefulness of the current convention of naming each phaeovirus after its 
host.  It appears that the subgroup B viruses have begun to evolve away from the stable, K-
selected subgroup A viruses towards a more r- type strategy with higher mutation and 
diversification.  This study has identified potential mechanisms that may influence this 
shift, including mutations in a region of the DNA polymerase known to negatively affect 
DNA replication fidelity, combined with an active integrase and lack of a proofreading 
exonuclease, along with the observed infection of individuals with both phaeovirusal 
subgroups.  The resulting mutations and recombinations could lead to the diversity 
observed here, and may provide a suitable model for the study of other emergent virus 
infections. 
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CHAPTER 1  INTRODUCTION 

 
1.1 What is evolution? 

The vast diversity of life-forms, from the smallest microbes to the largest 

mammals, have all appeared as a product of evolution.  A collection of gradual 

changes build up over time in response to environmental pressures, resulting in 

the huge species richness we see today, as was first proposed by Charles Darwin 

and Alfred Wallace from observations on Galapagos mockingbirds and the 

animals of Malaysia and Indonesia, respectively[2].  Evolution centres on the 

fact that biological replication is not 100% accurate, and mutations lead to slight 

changes in the offspring of all organisms.  Environmental selection pressures 

may act preferentially on such mutations, either increasing or decreasing that 

individual’s chance of reproductive success.  In this manner, beneficial 

mutations tend to be more likely to be passed to subsequent generations, and 

deleterious mutations are more likely to be removed from the gene pool by a 

process commonly referred to as “natural selection”, until eventually the 

mutation becomes fixed and the population is said to have evolved. 

 

1.1.1 Evolutionary mechanisms 

Mutations, the driving force of evolution, occur due to a variety of mechanisms 

such as unrepaired DNA damage[3], errors in replication[4], or the insertion[5] 

or deletion[6] of DNA by various mobile genetic elements (MGE). 
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Transposons, or transposable elements, are one example of a mobile genetic 

element which are capable of insertion into the genome of their hosts.  Class 1 

transposons, or retrotransposons, have an intermediate RNA stage, usually have 

long terminal repeats and typically encode reverse transcriptase[7].  Class 2 

elements on the other hand transpose via a DNA intermediate.  These have 

inverted terminal repeats and typically encode a transposase that allows them 

to excise themselves and reinsert elsewhere[7].  The insertion of transposons 

has been found to not only alter genome and gene structure[8], but also gene 

regulation and expression[9].  

Inteins are fragments of protein which include their own homing endonuclease; 

they insert into specific sequences in essential host proteins, and are 

transcribed and translated along with the host protein, excising themselves at 

the protein level[10].  They are selfish mobile genetic elements which are not 

beneficial to their host, but neither are they very detrimental since they catalyse 

their own removal, however, their position in essential host genes makes them 

very difficult for the host to remove by the usual DNA repair mechanisms[11].  

They encode various other genes and they may be a mechanism for genetic 

exchange between their various hosts.   

The age of insertion of any MGE can be estimated by comparing its GC content 

with its surrounding gene; recent acquisitions tend to be accompanied by 

different GC content since there would not have been time for mutations to 

arise to homogenise the DNA composition[11].   
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The fidelity of DNA polymerase is a crucial factor in ensuring accurate DNA 

replication, and depends on a combination of polymerase base selectivity, 3’ – 

5’ exonucleolytic proofreading, mismatch correction and DNA damage 

repair[12].  The loss of either polymerase proofreading capability or mismatch 

repair causes strong mutator phenotypes which may be caused by as little as 

one point mutation.   

As in evolution, the formation of cancerous tumours depends on mutation and 

selection.  Mutated DNA polymerase with decreased nucleotide specificity and 

proofreading capability has been proven in mice to increase the mutation rate 

in studies of tumourigenesis and causes fatal genome instability in yeast[4].   

The crucial mutated amino acid in that study (R696W, arginine to tryphtophan 

in position 696) was not in the base-pair binding pocket which has the main role 

in fidelity, but in the fingers domain which was postulated to affect the partition 

between polymerase and proofreading domains. 

 

1.1.2 Evolutionary strategies 

One of the early models proposed to explain various evolutionary strategies 

employed by organisms is that of r- and K- selection which was developed in the 

1960s[13], based on the formula dN/dt=rN(1-N/K) where r is the growth rate, t 

is the time, N is the population size and K represents the carrying capacity.  

Essentially, r- selection is experienced by organisms in changing conditions 
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where a high mortality rate would be balanced by rapid reproduction, favouring 

an ability to rapidly acquire resources and convert them into offspring.  At the 

opposite end of the continuum, in stable environments close to carrying 

capacity, K- selection favours the efficient utilisation of resources; those 

organisms that display slow growth, low mortality and production of a lower 

number of offspring with a high survival rate will tend to dominate.  This theory 

has since been displaced by demographic models focussing on mortality 

patterns which indicate that the selective effect of a variable environment is 

more likely to be significant when reproduction has a high cost on adult survival, 

or in the case of extreme life histories such as very low or high rates of 

reproduction[14]. Nonetheless r- and K- selection theory does provide a basic 

means of interpreting many evolutionary scenarios, providing it is always 

considered that this is an over-simplification of extremes, and that most 

organisms fall between the two. 

It is important to understand in studies of evolution that it is not the individuals 

that evolve, but the genetic makeup of the population as a whole.  The quasi-

species concept refers to an infinitely large population that has reached steady 

state due to equilibrium of mutation and selection[15].  The fitness of the quasi-

species depends on reproduction rate, adaptability to changes in the 

environment and genetic robustness to withstand deleterious mutations.  

Genetic robustness is favoured in constant environments and is characterised 

by high neutrality; that is the ability to withstand mutations by mechanisms 
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such as gene redundancy and over-expression of chaperones.  High neutrality 

favours a high growth rate, but this can be detrimental to populations which 

suffer frequent bottlenecks due to changing environments.  In this case 

adaptability is more beneficial and results in a reduction in time taken to 

regenerate the equilibrium population from a smaller number of individuals.  It 

is difficult to measure the amount of beneficial and deleterious mutations in 

populations, since lethal and highly deleterious mutations are generally 

eliminated rapidly from the population, and conversely a beneficial mutation 

may be fixed rapidly leading to the loss of others that were also spreading in the 

same population[15]. 

The evolutionary history of parasitism and mutualism are particularly 

interesting, having resulted in a huge number of highly specialised relationships.  

It may seem like the deleterious effects of parasites and parasitoids (parasites 

that kill their hosts) would be an evolutionary dead end since the infected 

individual would be less fit and less likely to reproduce, and certainly on an 

individual level this appears true.  However, the vast diversity of parasitic wasps 

(order Hymenoptera) is just one example of the power of parasitism in driving 

evolution.  The phylogenies of these wasps, combined with life-history trait 

analysis, suggest that the evolution of parasitism in Hymenoptera has a single 

origin in the common ancestor between the families Orussoidea and Apocrita, 

resulting first in ectoparasitoids which develop outside the body of the host, 

and then the endoparasitoids which develop inside their host[16].  Other 
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descendents of this putative ancestor have formed similarly close relationships 

with their host plants, for example fig-pollinating wasps have developed a 

mutualistic relationship with their host, and show clear signs of co-

evolution[16].  The host-parasite relationship is just one scenario selecting for 

increased mutation rates, since the adaptation in one species is often 

detrimental to the other[17], as characterised in the Red Queen hypothesis[18] 

which proposes that organisms must constantly evolve in order to remain 

competitive with those around them. 

 

1.2 Viruses 

Viruses could be considered to be the ultimate parasites; they are incredibly 

abundant[19], yet they depend on their host’s cellular machinery to facilitate 

replication of their own genome and packaging molecules to continue the cycle 

of transmission to a new host cell[20].  They were first reported in 1892 by 

Ivanovsky when he found that the causative agent of tobacco mosaic disease 

was too small to be retained by a filter[21].  Since then our understanding of 

viruses has changed a great deal, shifting from considering them as disease 

causing agents, into understanding their value in global processes such as the 

marine food web and global carbon cycle[22].  

The question of whether viruses are a life form is hotly debated from both sides:  

they are obligate cellular parasites and therefore incapable of reproducing 
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outside their specific host; however, they can survive independently of their 

host cell in much the same way as a dormant plant seed. Recently it has been 

proposed that the living “virus” is not the protein packaged genome, but the 

infected cell which has been transformed to produce virions[23]. Nonetheless, 

the sheer abundance of viruses, particularly in aquatic environments[19] shows 

that they are clearly very important biological entities; whether they live or not 

depends entirely on how one chooses to define life and thus becomes more of a 

philosophical debate.  This debate has prompted the suggestion of a “virus-

friendly” definition of life as being “a collection of integrated organs (molecular 

machines or structures) producing individuals evolving through natural 

selection[23]”. 

 

1.2.1  Viral life cycles 

There are two main strategies of viral reproduction: lytic, whereby the virus 

reproduces rapidly and causes the cell to burst thus releasing new viral particles, 

and latent or lysogenic whereby the virus integrates its genome with the host 

cell and remains there, dormant until some factor triggers production of viral 

particles.  There are grey areas between these two main cycles, including 

pseudolysogeny which has been observed in Chlorella viruses[24], but is most 

commonly observed in bacteriophage infecting starved bacteria[25].   In 

pseudolysogeny, the phage remain inactive within the cell, with the phage 
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genome either not replicating, or doing so in synchronisation with the host 

genome, until the cell is fed and has sufficient energy to support reproduction 

of the phage, which then enter their normal lytic cycle[25].  In addition, some 

viruses cause chronic latent infections which do not kill the host cell; rather, 

viral particles are produced by budding or extrusion over some time[26]. 

Lysis is perhaps the best characterised life cycle mechanism, since its effects on 

the susceptible host (death or disease) are often overt and thus quantifiable.  

The first stage in the cycle is the recognition of the host cell by the virus, which 

usually involves molecules on the outside of the cell and virus particle.  The virus 

nucleic acid then enters the cell, where it is reproduced by the cell’s DNA 

replication machinery.  Transcription of the virus coat proteins also occurs, 

followed by assembly of the progeny virions.  The lytic cycle ends when the 

virions cause the cell to burst (lysis), killing the cell and releasing the progeny 

virus particles.  This is a common approach used by viruses of unicellular 

organisms, such as Emiliania huxleyi virus-86 (EhV-86)[27] or Paramecium 

bursaria chlorella virus-1 (PBCV-1)[24]. 

Latent viruses have similar mechanisms of cell entry to lytic viruses, but once 

inside the cell they enter an inactive state; either their genome integrates with 

that of the host to become a provirus[28], or they are maintained in an 

episomal form within the host cell[29].  Host mechanisms then replicate the 

viral genome every time the host cell divides.  If the integration occurs in the 

germline of the host, or in the spores (for example in the brown algal virus EsV-
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1), the provirus is passed on from parent to offspring with little sign of the 

infection.  A trigger, such as stress to the host, can cause the provirus to become 

active once again and the infection becomes more aggressive, causing the 

production of virus particles which often exit the cell by bursting it in the same 

way as the lytic viruses.   

As stated above, the Red Queen Hypothesis posits that the pathogen does not 

eradicate the host population.  This is due to the complex host immune 

responses to eliminate or destroy infecting viruses.  Often the virus is able to 

survive the host defences just long enough to replicate and be transmitted to 

the next host. However, latency is one of the myriad of mechanisms exploited 

by viruses to evade the host immune defences.  The virus remains in an inactive 

state, which may involve genome integration, sometimes in immune-privileged 

sites such as the brain, until being reactivated by some trigger[30].   

Virus addiction can also occur in latent infections, whereby the fitness of the 

infected organism is greater than those without the virus[31].  This can be seen 

when a population that has been exposed to a virus and therefore has 

developed immunity encounters a separate population that has no immunity.  

The non-immune population can be wiped out in a dramatic fashion as can be 

seen with many laboratory maintained organisms, for example laboratory strain 

mice exposed to mouse hepatitis virus from wild mice with immunity to the 

disease[31].  Some phage also possess an addiction module; for example, the 

phage P1 which infects Escherichia coli becomes integrated into the bacterium 
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as a plasmid and remains dormant while expressing two genes, one long lived 

toxin and one short lived antidote.  If the bacterium eliminates the phage, it dies 

since the antidote degrades before the toxin.  A similar addiction mechanism 

can promote group identity, by killing individuals lacking the addiction module 

by lysis, leading to the hypothesis that viruses may be involved in the 

recognition of self in some organisms[32].  

 

1.2.2 Viruses in evolution 

Viruses can drive evolution. Ancestral retroviral genomes make up around 5 – 

8% of the human genome[20] and have been proposed to play a major role in 

the evolution of eukaryotes[33], by transferring their genes into the genomes of 

their hosts.  Indeed there are proposals that viruses play a much more 

fundamental role even than that; some scientists believe that viruses are the 

source of major eukaryotic genes such as DNA replication machinery[33] and 

potassium channels[34], that the cell wall has evolved in response to selection 

pressure to prevent virion entry[35] or even that the eukaryotic nucleus evolved 

from endosymbiosis of a complex DNA virus[36].   

Initial virus classification was split into bacteriophage and viruses according to 

the domain of life which they were observed to infect; Eukarya and Prokarya, 

respectively.  This in turn led to assumptions that phage originated from 

bacterial plasmids, and viruses from eukaryotic genomes, such as retroviruses 
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from retro-elements.  Most virally encoded proteins actually have no specific 

relationship with those of their hosts, and many viruses share similar proteins 

which have no homologues in cellular life[37].  The identification of a third 

domain, the Archaea[38], with associated unique viruses began to suggest that 

the last universal common ancestor of cells was a victim of viral attack, and that 

viruses originated before the last universal common ancestor (LUCA) when 

some cells had RNA genomes instead of the DNA genomes we see today, 

possibly even triggering the emergence of the three cellular domains by 

inducing the transmission of cells with RNA genomes into cells with DNA 

genomes[23].   

Moreover, Boyer[39] goes as far as to suggest that nuclear-cytoplasmic large 

dsDNA viruses (NCLDVs) which have double-stranded DNA genomes and infect a 

diverse range of eukaryotes, form a fourth kingdom of life based on the 

observation that the phylogeny of their DNA replication machinery shows them 

forming a distinct group from the Bacteria, Eukarya and Archaea.  All of this 

points towards a much more central role of viruses in all kingdoms of life than 

was previously believed.  Indeed it does seem that the most abundant microbial 

hosts in the marine environment are not those that grow the fastest (the r-

strategists), but those that are resistant to viruses and show slow growth and 

adaptation, and therefore a K- type evolutionary strategy.  In contrast to this, 

the most abundant marine viruses are those that are highly virulent and short 

lived, with rapid replication, small genomes and high burst sizes[40].   
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Viral metagenomics has shown that marine viruses contain many genes which 

may augment their host’s metabolism, immunity, distribution and evolution.  

Marine viral cyanophage commonly carry genes for photosynthesis which 

ensure continued cell survival during virion production even after the normal 

host processes have ceased to function.  It has been suggested by comparative 

genomics that phage psbA genes have been exchanged between hosts[41], and 

60% of psbA genes in the marine environment that could be assigned to an 

origin came from phage, making it possible that 10% of the global 

photosynthesis could be the result of a gene originating from phage[42].   

Metagenomic comparisons of microbial and viral fractions showed that the viral 

fractions contained less respiration genes but more nucleic acid metabolism 

genes[42], along with genes associated with vitamin and cofactor synthesis and 

stress response genes such as chaperones, with a roughly equal split of 

carbohydrate and protein metabolism genes.  It has also become clear that viral 

functional diversity and its potential for host adaptation has been seriously 

underestimated[42].  Thus viruses may act as a store of genes involved in 

microbial adaptation to the various niches found in marine environments since 

a high rate of gene transfer has been found between some viruses and their 

hosts.   

Some genes which are important to the host’s survival have been shown to have 

originated from viruses, for example mitochondrial RNA polymerase[23], DNA 

polymerase[23] and DNA helicase[23] originated from a virus that was 
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integrated into the genome of bacteria at the origin of the endosymbiotic event 

resulting in their integration into cells[23].  The cholera toxin gene is another 

example of a viral gene that augments its host’s survival, since Vibrio cholerae is 

usually harmless unless infected by phage with this gene[42].  In addition, a 

temperate phage in Clostridium difficile appears to contribute to host 

pathogenicity either by encoding novel toxins or by differentially regulating the 

expression of bacterial toxins[43].  In fact it appears possible that the presence 

of two separate phage may confer even more evolutionary advantage, since 

simultaneous infection by two types of phage has been observed[43]. 

Horizontal gene transfer (HGT) is less common in large eukaryotic viruses than 

in phage[44]. However, more examples of NCLDVs [45] and other giant viruses 

[46,47]  indicate that these viruses have an important role to play in their host’s 

evolution.  Moreover, latent viruses maintain a stable relationship with their 

hosts by integration of novel genes into the host genome which could facilitate 

HGT, as such, proviruses can be considered to be a specialised form of 

transposon. 

The above theories of the influence of viral infection in the genetic makeup of 

their hosts all deal with the transfer of specific genes between virus and host. 

However, perhaps the most basic mechanism of gene transfer is the release of 

dissolved DNA during lytic events, the uptake of which is not subject to any 

requirement of host specificity and is possibly the source of some of the more 

far-reaching gene transfer events[48]. 
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1.2.3 Virus evolution 

As host populations grow and adapt, they put selection pressure on the viruses 

that infect them.  Equally, the converse is also true; viruses can be a selective 

force in the evolution of host populations[18].  The host-parasite interaction 

theory developed in 1983[49] states that selection acts to maximise R0 – the 

average number of secondary infections arising from one infected host in an 

otherwise uninfected population.  An R0 of less than one means an epidemic 

cannot occur and it may even be possible to eliminate the disease, typified by 

an infection with low exposure time, low yield of infectious virus or a short 

duration of replication.  On the other hand, a large R0 almost certainly results in 

an epidemic and typically has “superspreaders”, single hosts that can infect a 

large number of individuals. 

Viruses are constantly evolving to adapt to changing selective pressures in their 

environments by processes such as mutation, recombination and re-assortment. 

Virus evolution is considered in terms of the population, or quasi-species, not 

the individual, since it is the diversity that is essential in the survival of the 

population and this is maintained by high mutation rates.  Broadly speaking 

there are two evolutionary strategies employed by viruses: acute and 

persistent[50].  The acute strategy is common among lytic viruses and is 

typically characterised by short reproductive cycles producing many progeny 

that are effective when resources are scarce (similar to an r- replication 

strategy).  In spite of the r/K evolutionary theory originating in the 1960s, it only 



35 
 

appears to have been applied to viruses in the last decade or so, being initially 

described in the RNA vesicular stomatitis virus[51] and bacteriophage[52].  This 

theory has only been applied to marine viruses by Suttle in his review in 

2007[40], based on observations in marine bacteriophage[53,54,55,56], and to 

our knowledge has not been used in the description of eukaryotic marine 

viruses until now. 

Some lytic, but mostly latent viruses follow a persistent life strategy (akin to K- 

replication strategy), with a lower reproductive output but better competition 

for resources; they tend to demonstrate low pathogenesis and produce fewer 

progeny with higher survival rate. These viruses generally infect complex 

multicellular organisms such as seaweed[57], plants[58] and animals[59] and 

tend to survive as long as their host survives.  That said, temperate/lysogenic 

phage are also persistent life strategists: persistent when integrated stably in 

their host cell and acute during virulent replication and lysis[40] and are 

therefore able to take advantage of both ends of the r/K spectrum. 

The replication of viruses with RNA genomes is much more error prone than 

those with DNA genomes, and large DNA genomes are usually reproduced more 

faithfully than smaller DNA genomes, therefore viruses with large DNA genomes 

are much more likely to follow the persistent strategy than the acute 

strategy[60]. 



36 
 

There are currently three main theories about the origin of viruses: regressive 

theory states that they came from intracellular parasites that have lost all but 

the most essential genes, the cellular origin theory states they came from 

cellular components that developed autonomous replication within the cell, and 

the independent entity theory is that viruses have co-evolved with cells from 

the origin of life[60].   A cellular origin for viruses seems unlikely since several of 

the common viral genes, such as the major capsid protein, have no homologs in 

the cellular world[61]. 

The independent entity theory is currently the most popular and seems to be 

the most likely since some core viral genes are not present in any other known 

organisms, and evolutionary links have been discovered between distantly 

related viruses infecting hosts from different kingdoms.  For example structural 

analysis of the major capsid protein shows that dsDNA herpesviruses share a 

characteristic unique fold with the tailed DNA bacteriophage of the family 

Caudovirales[62].   This may represent an infection predating the incorporation 

of the prokaryotically derived nucleus into the eukaryotic cell and suggests that 

extant viruses have arisen from a small number of primordial progenitors[62].  

This possibility was investigated by Koonin[63] who used comparative genomics 

to determine the origin of various common viral genes and found no evidence 

of the monophyletic origin of all viruses, although he did demonstrate 

monophyly in several large virus classes.  He defines the ancient virus world as 

consisting of “selfish genetic elements, including viruses, viroids, and mobile 
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genetic elements, which initially predated cellular life but ultimately have come 

to depend on certain cellular processes for replication[63].” 

 

1.2.3.1 NCLDV evolution 

Virus classification is generally based on such characteristics as host range, 

genome composition (double-stranded or single-stranded, DNA or RNA), or the 

morphological characteristics of the virion particle.  There is no evidence for the 

monophyly of all viruses since no one gene is common to all; however, the 

NCLDVs are one of the most diverse virus divisions which appear to be 

monophyletic [64].  They include the families Phycodnavirideae, Mimivirideae, 

Poxvirideae, Iridovirideae, Ascovirideae and Asfarvirideae[65], as well as a 

potential new family comprising Marseillevirus[66] and Lausannevirus[67].  The 

NCLDVs multiply in the cytoplasm and sometimes partly in the nucleus of the 

cells which they infect.  They share a common set of genes and include some of 

the largest known viruses, the family Mimivirideae, which encode over a 

thousand genes and are a similar size to bacteria[68]. 

Around 40 genes have been mapped to their common ancestor[69], although 

there is some dispute as to the exact number[61,64].  Some of these ancestral 

genes are shared with other dsDNA viruses such as DNA polymerase, DNA 

primase and superfamily II helicase [64], whilst other characteristic NCLDV 

genes are unique to the NCLDVs, such as the superfamily III helicase, packaging 
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ATPase and disulphide oxidoreductase [64].   The large size and diversity of 

NCLDV genomes is probably a result of HGT acquisitions from cellular 

organisms, combined with duplication and lineage specific expansion of gene 

families[61].   

A more comprehensive study into the origins of a subset of common NCLDV 

genes has shown that many derive from cellular sources, although the majority 

of those considered to be viral hallmark genes are indeed of monophyletic viral 

origin and seem likely to have been vertically transmitted from a common 

ancestor[37,70].  The genes from a cellular origin follow a general trend; viruses 

infecting protists appear to have acquired the majority of their horizontally 

transferred genes from the bacterial prey of their hosts, whereas viruses 

infecting metazoa have a higher proportion of host derived genes[70].  Thus it 

does indeed seem that the most likely evolutionary scenario for the origin of 

NCLDVs is one of a common viral ancestor with a small number of core genes 

which has been augmented by the acquisition of cellular genes from a variety of 

sources.   

 

1.2.3.2 Phycodnavirus evolution 

The members of family Phycodnavirideae are viruses that infect algae.  This is a 

somewhat arbitrary grouping since the term algae covers an evolutionary 

diverse group of photosynthetic eukaryotes from both freshwater and marine 
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environments[44]; however, the viruses in this group do share a similar 

icosahedral capsid morphology and have been proven by genetic means to be 

related[37]. They share many similarities both in terms of structure and genome 

content, which is surprising since the algae that they infect are polyphyletic.  

This suggests that they are a very ancient group of viruses which arose before 

the division of the algae and infected their common ancestor[71], thus they 

have a roughly equivalent diversity to that between viruses of plants and 

animals[72].  When one considers that the putative first eukaryotic cell was a 

unicellular green alga[73], it seems plausible that if viruses appeared and 

evolved with their host, then phycodnaviruses could date back more than 1.2 

million years.   Indeed this scenario could provide an explanation for the 

presence of both bacterial and eukaryotic genes in NCLDV genomes in spite of 

their surprisingly constant GC content, indicating that these genes are not the 

result of relatively recent horizontal acquisitions[74].  DNA 

polymerase[75,76,77] and MCP[75,78,79,80,81] are the most commonly used 

genes in the study of phycodnaviral phylogeny, and these studies agree on their 

monophyletic origin within the NCLDVs[82].   

The chlorella viruses (Chlorovirus) are the most extensively studied of the 

phycodnaviruses[82,83,84], and clear similarities in gene order and nucleotide 

conservation have been demonstrated between viral strains infecting the same 

host species but less so between viruses infecting different species.  Moreover, 
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comparisons of host and virus phylogeny indicate that it is likely that these 

viruses have changed host during their evolutionary history[85].   

There is a section at the left end of the PBCV-1 (Chlorovirus) genome which 

seems to act as a recombinatorial hotspot, being prone to deletions and 

rearrangements[74].  In fact it is this section which encodes most of the genes 

which have an apparently cellular origin in these viruses[70].  Mobile genetic 

elements (MGEs) are generally associated with HGT, and the Chlorovirus and 

Mimivirus genomes have insertion sequences which are typically found in 

bacteria and archaea, and have probably been acquired as a result of MGE 

activity[61].  Their genomes also have multiple mobile endonucleases, 

sometimes with self-splicing introns, and also some inteins[61].  However, HGT 

appears to be less common in large eukaryotic viruses than it is in phage based 

on nucleotide composition studies[86].  

Studies on phyacodnaviral evolution to date have relied on phylogenetic 

analysis and comparison of gene composition.  For example, the fact that EsV-1 

and FirrV-1 have different but overlapping subsets of histidine kinase genes[87], 

and have concluded that they have all evolved by gene loss from a common 

ancestor with a larger genome[87,88].  Delaroque et al.[87] even suggested that 

the phaeoviruses may have evolved from a primitive single-celled symbiont in 

an algal host which through subsequent gene loss adopted a viral lifestyle, 

although this seems unlikely due to the presence of unique viral genes such as 

the major capsid protein. 
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1.2.3.3 Phaeoviruses 

Phaeoviruses are a group of dsDNA viruses within the family Phycodnavirideae 

which infect members of the class Phaeophyceae (brown algae).  The 

phaeophytes form part of the division Heterokontophyta from the kingdom 

Chromalveolata and consist of mostly marine macroalgae which evolved 

multicellularity separately to the other major multicellular eukaryotic groups 

(Metazoa, Plantae and Fungi)[89,90,91].  They vary in complexity from chains of  

single cells (filaments) in the order Ectocarpales to the orders Fucales and 

Laminariales which have evolved thalli of differentiated tissues[92]. The class 

Phaeophyceae comprises 14 orders as shown in Figure 1.1.  Among the most 

commonly studied of these classes are the Ectocarpales, due to the adoption of 

Ectocarpus siliculosus as a model brown alga [90,93], which are infected by the 

well studied phaeoviruses[94], and their sister class Laminariales, some 

members of which are very valuable, both ecologically as primary producers and 

habitat formers, and commercially for food and chemical production[95,96].   
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Figure 1.1: Maximum likelihood phylogeny of the class Phaeophyceae based on 
a concatenation of 10 genes.  First node label indicates ML bootstrap 
percentage (only those above 75 are shown), second value indicates Bayesian 
posterior probability (only those above 0.95 are shown).  Permission to 
reproduce this figure was granted by http://www.elsevier.com (from [92])  

© 2010 Elsevier Inc. All rights reserved. 
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However, in spite of their inherent value, relatively little research has been 

carried out on members of the Phaeophyceae[93].  This, combined with their 

evolutionary distance from the more intensely studied eukaryotes such as land 

plants and animals, means that little is known about their physiology and 

responses to stress. Therefore there is a real potential to discover novel cellular 

processes through studying these organisms and their viruses.  The recently 

sequenced ectocarpoid, Ectocarpus siliculosus[91], is currently a widely 

accepted model for the study of brown algae and is known to be infected by a 

latent dsDNA phaeovirus, EsV-1[97].  

Phaeoviruses, in spite of their name, have so far only been studied in detail in 

the order Ectocarpales (filamentous brown algae commonly referred to as 

maidens hair) and not throughout the whole brown algal class[44].  However, 

their presence in other members of the brown algae cannot be ruled out simply 

because they have not been seen, as symptom suppression is known to be 

common[98].  Indeed, viruses have been observed in Chorda tomentosa 

Lyngbye[99] and Leptonematella fasciculata (Reinke) Silva[98], which suggests 

that virus infections may be a general feature in the entire Phaeophyceae 

class[98].  Viruses in the order Laminariales (the sister order of the 

Ectocarpales[100]) for example would be of great interest due to the ecological 

and commercial importance of some species of kelp, and so discovering 

anything that may potentially influence their reproductive capacity would be 

very valuable. 
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To date, three phaeoviral genomes have been sequenced: Ectocarpus siliculosus 

virus-1 (EsV-1)[1], Feldmannia irregularis virus-1 (FirrV-1)[87] and Feldmannia 

sp. virus 158 (FsV-158)[88], as well as an inactive provirus in the Ectocarpus 

genome[91].  Five additional phaeoviruses, identified  solely on morphology and 

life cycle, infecting Ectocarpus fasciculatus (Harvey)[101], Feldmannia simplex 

(Crouan & Crouan) Hamel[102], Hincksia hincksiae (Harvey) Silva[103], Pylaiella 

littoralis (Linnaeus) Kjellman[104] and Myriotrichia clavaeformis (Harvey)[103], 

infecting three different Phaeophyceaen families; Ectocarpaceae, 

Acinetosporaceae and Chordariaceae have also been described in the literature. 

 

1.2.3.4 Ectocarpus siliculosus virus-1 

EsV-1 (Figure 1.2) is the most intensely studied phaeovirus 

[80,87,97,105,106,107] and infects Ectocarpus siliculosus [97].  It is pandemic, 

and estimates of infection rates range from 10% in the closely related alga 

Ectocarpus fasciculatus[79], to 40-100% of natural Ectocarpus 

populations[105,108], depending on the detection technique used.  EsV-1 

infection inhibits the reproduction of E. siliculosus and is believed to be a major 

factor in controlling the extent of wild populations of the alga[109]. 

  

http://www.algaebase.org/search/species/detail/?species_id=252&sk=0&from=results
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Figure 1.2 has been removed due to Copyright restrictions. 

 

 

 

1.2.3.4.1 Infection process  

EsV-1, as with other phaeoviruses, can only infect the free-swimming wall-less 

gametes and spores of the filamentous brown alga Ectocarpus siliculosus[109].  

The virus particles attach to the plasma membrane which fuses with the viral 

internal capsid membrane and the viral core enters the cytoplasm[111].  

Müller[109] suggests that the cell wall either acts as a physical barrier against 

virus entry or lacks the molecules involved in host recognition by the virus. 

However, in a previous study it was observed that protoplasts could not be 

infected[112] so it is likely to be a different factor preventing the infection of 

vegetative cells, probably a cell surface recognition molecule.  The infection 

strategy of a phycodnavirus from the chlorellavirideae, Paramecium bursaria 

chlorella virus-1 (PBCV-1), is very different; it enters the host cell by digesting a 

portion of the wall and injecting its DNA and is even capable of binding to 

purified cell wall fragments therefore it seems the cell wall does play an 

important part in host recognition for this virus[113]. 
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Once inside the cell, EsV-1 integrates its genome with that of the host which 

was shown by Delaroque et al. [57] by a study of agarose gel extracted DNA 

from a phaeovirus-infected host alga, followed by virus-specific PCR.  When the 

Ectocarpus genome was sequenced in full [91], it was discovered that a virus 

very similar to EsV-1 was integrated into the algal genome, in almost one 

complete fragment on contig 0052, however the viral integrase gene was found 

in a different host contig and was replaced in the large viral fragment by a 

homologous sequence, suggesting that homologous transposition had occurred 

at some point [91] and may possibly explain the inactivity of this provirus.  After 

genome integration, the provirus enters an inactive, latent state during which it 

is transmitted to all cells of the alga by mitosis during vegetative growth and 

displays Mendelian segregation during meiosis, suggesting that it is linked to a 

host autosome[78].   

Although a few populations of infected E. siliculosus showed retarded growth, 

the majority showed no apparent symptoms during vegetative growth[105].  

However, Feldmannia simplex and F. irregularis did show a growth decrease in 

infected strains due to reduced photosynthetic performance[114].  The 

previously mentioned EsV-1 provirus in the sequenced strain of E. siliculosus has 

been shown not to be transcriptionally active (except for one gene of unknown 

function) [91], which explains why no viral symptoms have been observed in 

this strain (Akira Peters, pers. comm.).  This is surprising however, when one 

considers that the viral genome makes up around 1% of the genes and 0.1% of 
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the sequence length [91], and raises the question of why the alga is using its 

resources to maintain such a large but apparently redundant section of DNA. 

 

1.2.3.4.2 Latent/lytic switch 

At the end of the latent period, an unknown trigger causes EsV-1 to become 

active during the production of the host’s reproductive structures, the 

zoidangia[97], and the cell switches to viral replication and virion production as 

shown in Figure 1.3.  This trigger is likely to be a factor involved in the 

development of reproductive cells[1], because this is the only type of cell which 

allows viral replication.  The reactivation of latent viruses has been intensely 

studied in the bacteriophage λ and in human herpesviruses such as 

cytomegalovirus (HCMV), Epstein-Barr virus (EBV) and herpes simplex virus 

(HsV-1).  These are all capable of maintaining long periods of latency, and 

reactivation relies on transcriptional regulators, such as the cI and cro genes 

which have opposing functions and together control the transcription of viral 

genes for either the lytic cycle or lysogeny in the bacteriophage λ[115]. 
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Figure 1.3: Infected Ectocarpus siliculosus cell containing arrays of EsV-1 
particles. Scale bar represents 1µm, asterisk shows degenerating nucleus. 
Permission to reproduce this figure was granted by John Wiley and Sons (from 
[97]). 

 

The reactivation of human latent viruses generally occurs during a profound 

depression in the host’s immune status[116].  Such changes usually occur as a 

result of some form of stress, which has also been shown in symbiotic 

zooxanthellae of coral exposed to ultra-violet light to induce the release of 

virus-like particles which may be related to bleaching events[117].  Although the 

human immune system is very different to that of plants and algae, analysis of 

the E. siliculosus genome has raised the suggestion that it may be capable of 

adaptive immunity in the form of exon shuffling, which is hypothesised to allow 

the rapidly changing structure of pathogenicity receptors such as leucine-rich 
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repeats[118].  This form of immunity is not likely to occur in specific cell types, 

such as are involved in animals’ immune responses; therefore, it seems unlikely 

that any potential algal immunity can be depressed in the same way. 

Another possible trigger for the reactivation of EsV-1 is the differentiation of 

cells during the formation of zoidangia, since these are the only locations where 

infection symptoms are observed.  Some factor in the mitotic/meiotic switch 

may be responsible for activating this, or the differentiation itself may be the 

trigger, since differentiation of the host cell is also important in the early stages 

of the reactivation of other dsDNA viruses such as the herpesviruses[119,120].  

Human cytomegalovirus (HCMV) infects the cells of the immune system directly, 

entering a latent state in CD14+ monocytes, which are the progenitors of 

phagocytes[121].  Reactivation of the virus depends on the differentiation of its 

host cell into macrophages which allow virus replication[119].  Epstein-Barr 

virus (EBV) reactivation in vitro also depends on cell differentiation and it is 

postulated that in vivo reactivation occurs due to differentiation of memory B 

cells as a response to antigen stimulation[120].   

 

1.2.3.4.3 Virion production 

As with other phaeoviruses[122,123], EsV-1 virion production starts with a 

failure in the cell division resulting in incomplete wall formation and 

multinucleate cells, followed by nuclear hypertrophy as the virus genome is 
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replicated[97].  The zoidangia cells swell, becoming unstructured as can be seen 

in Figure 1.4 and producing virus particles[109].  In the replication of the related 

Hincksia hincksiae virus (HincV-1), empty capsid particles bud from cisternae 

which are thought to be derived from the endoplasmic reticulum.  Packaging of 

the nucleoprotein genome subsequently occurs, and then the virus particles are 

released by cell lysis[122].  From observations of the infection process of EsV-

1[97] and other phaeoviruses[104,124,125,126] it is likely that the process of 

EsV-1 particle assembly is similar to that of HincV-1[122]. 

 

  

Figure 1.4: Asymptomatic (a) and symptomatic (b) strains of E. siliculosus 
showing normal zoidangia containing developing zoids, and deformed zoidangia 
containing virions respectively.  (Bars represent 100µm) 

 

1.2.3.4.4 Virion release 

In Ectocarpus, the release of virus particles can be induced by fresh medium and 

an increase in temperature from 12°C to 18°C; the same conditions that cause 

spore release[127].  This allows both virus and spores to be released at the 

same time, thus maximising the chance of infection by the virions which only 

a b



51 
 

retain their infectious capacity for two to three days[109].  Spore release from 

the unilocular sporangia of Pilayella littoralis has been suggested to be due to a 

combination of digestion of the inner cell wall and increased turgour pressure 

due to production of extracellular polysaccharides and their absorption of 

water[128].   The release of virus particles from infected E. siliculosus zoidangia 

appears to occur in a similar way, with the infected zoidangia cells bursting and 

releasing a spherical mass of virus particles which disperses by Brownian 

motion[105,127].  This lytic mechanism of viral release is common among non-

enveloped viruses, although little is known about the mechanisms involved[20].  

However, some non-enveloped viruses, for example some picornaviruses, have 

developed mechanisms to exit the host cell without lysis, possibly by the action 

of vesicles which fuse with the cell membrane[20].  This may be related to the 

release mechanism of enveloped viruses which either assemble at the plasma 

membrane and bud from it, or are formed from intracellular membranes and 

exit through the cell membrane[20].   

 

1.2.3.4.5 Symptom suppression 

EsV-1 infection symptoms (deformed zoidangia) are more pronounced at lower 

temperatures.  Their suppression in a strain from Naples, resulting in the 

production of normal zoidangia, was much greater at 18°C compared to 

15°C[109].  Partial viral suppression may also occur which results in a mosaic 
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plant producing both spores and virions as a result of developing both normal 

and abnormal zoidangia or sometimes even normal and abnormal sections 

within the same zoidangium producing a mosaic pattern of cells.  Plantlets 

growing from spores produced by an infected plant show infection symptoms at 

sexual maturity and therefore still contain the viral genome[105]. The only 

mechanism by which the host can actually get rid of the viral genome is meiotic 

elimination, whereby the viral genome is transmitted to the offspring in a 

Mendelian fashion, resulting in some offspring being virus-free[78]. 

 

1.2.3.5 Phaeovirus evolution 

Phaeoviruses are the only members of the family Phycodnaviridae known to 

follow a persistent life strategy.  They favour stable integration into their host’s 

genome and only reproduce in large numbers at certain stages during the host’s 

life cycle.  In contrast, the lytic viruses infecting Emiliania huxleyi follow an acute 

strategy with huge diversity among strains infecting the same host that may 

help them overcome strong evolutionary pressures faced by their boom and 

bust life cycle[129].   
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Figure 1.5: Phylogenetic inference tree derived from concatenations of 
conserved domains of NCLDV group I core genes. Node numbers represent 
bootstrap values from 1000 replicates for neighbour-joining and where possible 
parsimony analyses. Virus abbreviations not described already mentioned are: 
ASFV, African swine fever virus; FWPV, Fowlpox virus; BPSV, Bovine papular 
stomatitis virus; VACV, Vaccinia virus; YMTV, Yaba monkey tumour virus; SWPV, 
Swinepox virus; MYXV, Myxoma virus; SPPV, Sheeppox virus; AMEV, Amsacta 
moorei virus; MSEV, Melanoplus sanguinipes entomopoxvirus; FV3, Frog virus 3; 
LCDV, Lymphocystis disease virus. The bar depicts 1 base substitution per 10 
amino acids.  (This figure was published in Virology 384, Schroeder DC, Park Y, 
Yoon H-M, Lee YW, Kang SW et al. Genomic analysis of the smallest giant virus – 
Feldmannia sp.virus 158 p223-232, Copyright Elsevier 2009 [88]). 

 
Phylogenetic relationships between conserved genes amongst the NCLDVs 

suggest that phaeoviruses have a more recent evolutionary history than most 

[88].  Green algal viruses (for example the chloroviruses) split from heterokont 
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algal viruses (haptophytes/brown algae) which further separate into 

coccolithoviruses and phaeoviruses [88] as shown in Figure 1.5.  Even within the 

phaeoviruses, host specific patterns emerge; the two Feldmannia viruses (FsV-

158 and FirrV-1) are more genetically similar to each other than to EsV-1, with 

gene order generally being maintained, albeit with some evidence of genome 

recombination and inversion[88].  Moreover, the Feldmannia viruses even seem 

to have evolved further than EsV-1 by reducing their genome size probably as a 

result of gene losses via recombination[88] suggesting there is a selection 

pressure for smaller genomes in these viruses. 

 

1.2.3.6 Phaeovirus genetics 

The EsV-1 genome is 335 kb double-stranded DNA, separated by some single 

stranded regions. It has inverted repeats at the ends that allow it to form a 

cruciform structure that effectively produces a circular molecule[130].  The 

genome sequence revealed 231 putative CDSs in gene dense regions separated 

by repeats and noncoding regions[1]. 149 of the 231 putative genes (65%) have 

no sequence homology to other identified genes, or only have similarities to 

various identified domains but cannot be assigned a function; therefore, studies 

of these genes have great potential to reveal novel algal or viral functions. 

In spite of the general lack of transcriptome studies and, therefore, knowledge 

of the genetic activity of these viruses, some conclusions can be formed 
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regarding the molecular mechanisms involved in the viral life cycle by 

comparing EsV-1 genes with common genes found in the various algal virus 

genomes which have been sequenced to date: the latent phaeoviruses FirrV-

1[87], FsV-158[88], as well as the lytic Coccolithovirus EhV-86[45] and 

Chlorovirus PBCV-1[24].  Perhaps the most informative genes in NCLDVs, and 

phaeoviruses in particular, are those that are common to all members.  As 

previously mentioned, only 14 genes are common to all phycodnaviruses 

sequenced to date, and when considering the entire NCLDV group this number 

drops to nine[65] which are mainly involved in DNA replication, transcription 

and virion packaging. 

 

1.2.3.6.1 DNA metabolism 

Most of the NCLDV genes involved in DNA processing are considered to encode 

core proteins essential to viral life cycles, and therefore many of these are 

present in all five sequenced phycodnaviruses (EsV-1, FirrV-1, FsV-158, PBCV-1 

and EhV-86).  However, none of the viruses encode all of the necessary proteins 

to replicate their own genome, each rely on different host proteins to complete 

the process.   

DNA replication in eukaryotes relies on the co-ordinated activity of a suite of 

enzymes.  Initially helicases separate the two strands, and a primase creates 

short primers to allow the DNA polymerase to begin replication.  A replication 
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factor (RFC) assembles a clamp-like structure between proliferating cell nuclear 

antigen (PCNA) and the polymerase to enable the latter to remain on the DNA 

strand, increasing its efficiency.  The primers are removed by a further helicase 

and cut out by a nuclease, with the resulting fragments being joined by a DNA 

ligase.  Telomerase delays cell aging due to the loss of the ends of the 

chromosomes by ligating repeats to the end[131]. 

The EsV-1 genome encodes many of these proteins, including a superfamily III 

helicase (EsV-1-109) which may have a primase function[1].  DNA polymerase 

(EsV-1-93) is present and highly conserved in all five viral genomes, and for this 

reason has been used in PCR-based studies to detect the presence of integrated 

viral DNA [132,133].  PCNA is also encoded by the five viruses considered here, 

suggesting that both DNA polymerase and PCNA are essential to viral 

replication.  Indeed EhV-86 has two copies of PCNA.  Each virus has varying 

numbers of the RFC subunits; EsV-1 encodes all four small subunits (EsV-1-87, 

182, 187, 224) as well as the large subunit (EsV-1-138), whereas FsV-158 and 

FirrV-1 both lack the 4 small subunits.  The PBCV-1 large subunit has no 

sequence homology to the phaeovirus versions[87], so although EhV-86 appears 

to lack the large subunit[45], it is also possible that the sequence is so different 

that it has not yet been identified.  Both EhV-86 and PBCV-1 have DNA ligase, as 

well as DNA topoisomerase II [24,45] which separates DNA during mitosis; the 

phaeoviruses lack both of these genes.  Although viral genomes do not contain 

telomeres, all three phaeoviruses encode a protelomerase (EsV-1-175) which is 
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potentially involved in the circularisation or linearisation of the viral 

genome[87].   

Helicases are a group of enzymes which are involved in the separation of DNA 

strands for various purposes such as replication and repair.  EsV-1 encodes a 

rec-BCD like helicase (EsV-1-29) which is responsible for splitting and digesting 

DNA ends after a double stranded break, thus initiating repair 

mechanisms[134].  This gene is not present in FsV-158 or FirrV-1. EsV-1 and 

FirrV-1 both encode further viral DNA repair mechanisms in the form of two 

exonucleases (one of which is missing in FsV-158); one is involved in 

recombination (EsV-1-64)[65] and the other potentially codes for a proofreading 

exonuclease (EsV-1-126)[1]. The Rec-A family profile 2 protein (EsV-1-95) may 

be involved in recombinatorial DNA repair, since these proteins control the 

recombination of DNA and its exchange from one strand to another[135]. 

DNA methylation is an important method of controlling gene expression by 

preventing the transcription machinery from binding to the DNA.  Chlorellavirus 

genomes typically contain extensive adenine and cytosine base methylation, 

therefore unsurprisingly PBCV-1 codes for 3 cytosine DNA methylases and 2 

adenine DNA methylases [136].  The EsV-1 genome contains few methylated 

bases, and correspondingly only codes for the one adenine DNA methylase (EsV-

1-129)[1].   
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1.2.3.6.2 DNA integration and transposition 

The phaeoviruses encode proteins involved in integration and transposition, 

which are essential for their lysogenic lifestyle.  EsV-1 encodes two HNH 

endonucleases, which are rare cutting enzymes that make site specific cuts in 

DNA[137], although FirrV-1 lacks these.  EsV-1 also encodes a protein similar to 

a site-specific integrase (EsV-1-213), and there are two copies of this in FsV-158.  

EsV-1 also encodes a potential viral transposon consisting of two transposases 

(EsV-1-155, 170) flanking a thaumatin-like protein (EsV-1-169)[1], although this 

is not present in the other phaeoviruses:  FirrV-1 lacks transposases, and FsV-

158 only has one that is different from those in EsV-1. 

In spite of their lytic lifestyle, EhV-86 and PBCV-1 code for one and six HNH 

endonucleases, respectively, and PBCV-1 also encodes two transposases, in 

addition to 7 further GIY-YIG endonucleases which are all transcribed at various 

points in the lifecycle[136].  This suggests that they are still capable of 

integrating parts of their genomes with the host’s, perhaps with a transposon-

like system. 

 

1.2.3.6.3 Transcription 

Transcription, the production of messenger RNA from the DNA template, relies 

on a variety of transcription factors to facilitate binding of RNA polymerase to 

the DNA.  EsV-1 is probably able to regulate the transcription of its own genes, 
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as well as potentially those of the host, since it encodes two transcription 

regulators (EsV-1-40, 28) and a variety of transcription factors (EsV-1-96, 193, 

196), only one of which is also encoded by FirrV-1 and FsV-158.  EsV-1, FirrV-1 

and FsV-158 also encode an oligoribonuclease (EsV-1-139) which may play a role 

in mRNA degradation.   The lytic PBCV-1 encodes three putative transcription 

factors (one of which is also present in the EhV-86 genome [45]) as well as 

RNase III [136] which probably controls transcription by determining the 

termination site. 

 

1.2.3.6.4 Nucleotide metabolism 

Genes encoding proteins with nucleotide metabolism functions are essential to 

produce free nucleotides for the replication of the viral genome.  EsV-1 encodes 

both the small (EsV-1-128) and large (EsV-1-180) subunits of ribonucleotide 

reductase, as do FsV-158 and FirrV-1 and PBCV-1[136].  These four viruses also 

encode a viral ATPase (EsV-1-26) which is important in nucleotide metabolism.  

EhV-86 however does not encode any of these proteins [45] and therefore must 

rely on the host’s own mechanisms to provide sufficient nucleotides for viral 

replication.  PBCV-1 encodes more than 12 nucleotide metabolism proteins in 

total, perhaps due to its lytic lifecycle which requires large quantities of 

nucleotides for its reproduction[24]. 
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1.2.3.6.5 Structural proteins 

Three viral structural proteins have been identified in EsV-1: the major capsid 

protein (EsV-1-116) which is common to all phaeoviruses studied, Vp55 (EsV-1-

58) and Vp74 (EsV-1-144)[1] which are all likely to be transcribed late in the viral 

replication cycle, during virion assembly.  In addition, Vp27 (EsV-1-143) may also 

be a structural protein [138].  

 

1.2.3.6.6 Signalling 

Signalling genes are potentially important for sensing environmental stimuli and 

determining the time of the switch from lysogenic to lytic stages of the viral life 

cycle.  Potential signal transduction proteins in EsV-1, FirrV-1 and FsV-158 

consist of putative serine/threonine kinases (EsV-1-11, 82, 104, 111, 156), along 

with putative hybrid histidine kinases (EsV-1-14, 38, 65, 88, 112, 181, 186), 

which are unusual for viruses in having the sensing histidine kinase region linked 

directly to the response region, rather than having two separate enzymes for 

sensing and response as is more common in Escherichia coli[1].  These may 

potentially be involved in regulation of the latent state since they are also 

present in FsV-158 and FirrV-1, but not the lytic PBCV-1[1] which may be a 

symptom of their earlier evolutionary separation from the phaeoviruses.  

Further proteins which may be involved in signalling and sensing are a viral 

phosphoshuttle (EsV-1-113) and a potassium ion channel (EsV-1-223).   
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Additional EsV-1 proteins which are potentially involved in cell signalling or 

membrane transport include the von Willebrand factor domain (EsV-1-

176)[139], the TonB dependent receptor protein (EsV-1-152)[140], lipid 

peroxidise (EsV-1-147)[141] and a calcium binding protein (EsV-1-56).  The four 

fibronectin type III domains (EsV-1-25, 39, 50, 159) may play an important role 

in sensing zoidangia development, or some other host-related cue, since 

fibronectin binds to integrins which have many signalling roles within the cell, 

and are important for cell adhesion and differentiation[142].   

 

1.2.3.6.7 Miscellaneous 

EsV-1 encodes two proteins with similarities to both a viral repressor (EsV-1-

197) and antirepressor (EsV-1-117) of the lysogenic cycle.  These may function in 

a similar manner to the cI and cro proteins in bacteriophage λ which have 

already been mentioned. To date neither of these proteins has been identified 

in the other phaeoviruses studied, lytic or lysogenic. 

EsV-1 contains genes encoding two proteins with homology to HIV proteins and 

therefore may be important in its lysogenic infection strategy: EsV-1-85 

resembles the HIV VPU protein which is important in enhancing the release of 

virions and delaying cell death[143], while EsV-1-92 is similar to the HIV gp120 

envelope surface glycoprotein which binds to CD4[144], a helper T cell surface 
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glycoprotein, therefore it is possible that EsV-1 utilises some of the same 

mechanisms as HIV-1. 

EsV-1 also contains genes involved in a variety of genetic control mechanisms, 

such as encoding the bacterial regulatory protein (EsV-1-97) which is involved in 

gene activation[145].  Two proteins with DnaJ domains (EsV-1-80, 173) 

potentially have a chaperone function[1], since similar proteins have been 

shown to be important in viral DNA replication in SV40[146].  A further gene 

that has a potentially interesting function encodes a regulator of chromosome 

condensation (EsV-1-24) which may be a viral method for inhibiting cell division, 

since chromosome condensation occurs in metaphase, before cell division. 

EsV-1 encoded sugar metabolism proteins include the coat glycoprotein gp1 

(EsV-1-226) which has also been used as a marker to detect the presence of viral 

DNA by PCR in various Ectocarpus strains[80,147,148] since it is highly 

conserved within the phaeoviruses (PlitV-1)[148].  The gp1 is similar to bacterial 

mannuronan C-5-epimerases[1], and together with the sugar lyase (EsV-1-164),  

glycosyltransferase (EsV-1-84), UDP-glucose dehydrogenase (EsV-1-83) and one 

protein with similarities to a fungal cellulose binding domain (EsV-1-166) may be 

involved in modifying or degrading the algal alginate, possibly during virion 

release[1].  
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1.2.4 Phaeovirus ecology 

In spite of the current practice of naming phaeoviruses according to the host 

they infect, a number of studies have shown that some cross-species infection 

can occur within this group.  Some cause symptom-like deformities in the host 

in spite of being unable to produce infectious virions (EsV-1 infecting F. 

simplex[149], or EfasV infection of E. siliculosus[101] and M. clavaeformis[147]).  

Indeed it has even been shown that a complete infection cycle of EsV-1 can 

occur in Kuckuckia kylinii (Cardinal) which produces virions that are infectious to 

the original host[150], so perhaps the host ranges of these viruses are not as 

clearly defined as is generally believed. 

This host species plasticity has also been observed in cyanophage from the Gulf 

of Mexico[151] which was able to infect several different Synechococcus 

species, but not all of them.  However, in the majority of cases it appears that 

each type of virus has its own individual host; for example, a virus observed to 

infect a Vibrio strain was not even able to infect other very closely related Vibrio 

species[22], the viruses of braconid wasps also have very specific host 

species[16] as do chloroviruses[82].  Moreover some viruses, such as the 

coccolithoviruses which infect Emiliania huxleyi, are even limited to infecting 

certain strains within the host species[129].  Indeed, there are some reports of 

catastrophic consequences for new host survival where emerging viruses cross 

species boundaries (for example, Human Immunodeficiency virus (HIV-1)[152], 

Ebola[153], bird flu (H5N1)[154] and honey-bee deformed wing virus 
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(DWV)[155]), and therefore the ability of phaeoviruses to infect a range of 

species without such consequences is unusual. 

 

1.2.4.1 Phaeovirus prevalence 

Studies of the prevalence of phaeovirus infection in natural host populations 

produce very different results depending on the technique used to detect the 

virus.  As previously mentioned, PCR based techniques detecting integrated viral 

DNA showed that viruses were present in between 40-100% of natural 

Ectocarpus populations in the North Atlantic, Gran Canaria and Chile[105,108], 

whereas observations of physical symptoms are much lower, being up to 20% in 

a population of E. siliculosus on the coast of Brittany[98].  In the closely related 

alga Ectocarpus fasciculatus, symptoms were only observed in less than 10% of 

filaments examined in the field[79].  Each of these techniques have their own 

limitations; the high level of symptom suppression in these algae means that 

checking for overt symptoms will fail to detect all infected individuals, while the 

PCR based tests for one or more viral genes only guarantees that specific 

fragments of viral DNA are present and are not necessarily indicative of a fully 

functional virus.  Nonetheless, these various techniques have revealed that 

phaeoviruses are very common, occurring in all sites where filamentous brown 

algae are found[80].  However, for a more accurate observation of their 

prevalence it would be necessary to combine PCR screening with laboratory 
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observations, with the addition of sequencing data to further our understanding 

of their population genetics.  

 

1.2.4.2 Phaeovirus diversity 

Analyses of the diversity and distribution of marine viruses generally do not 

include studies of phaeoviruses due to the lack of similarity between their 

sequences and other phycodnaviruses[75,76]; however it may be possible to 

draw some conclusions about phaeoviruses from studies into other viruses.  

DNA polymerase is often used as a single-gene screen for phycodnaviruses, and 

in spite of the limitations of using just one gene in such studies, it has been 

shown that DNA polymerase phylogenies do accurately reflect whole genome 

phylogenies, at least in Micromonas pusilla viruses[156].  Further screening and 

phylogenetic studies have used the major capsid protein (MCP) [75,80,81]. 

Short et al.[77] found the unexpected result that the DNA polymerase 

sequences obtained from North American freshwater lakes were more closely 

related to the marine phycodnaviruses of the genus Prasinovirus than to the 

freshwater  genus Chlorovirus, although all sequences were still more closely 

related to phycodnaviruses than to the asfarviruses and mimiviruses.  However, 

they did observe that the genetic distances between all the viruses in 

freshwater group II were more closely related to each other than EsV-1 is to 

FsV-158, suggesting that phaeoviral diversity is even greater than that of the 
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viruses in this study.  Genomic comparison studies have shown that 24 genomes 

from four phycodnavirus genera contained over 1000 unique genes, with only 

fourteen being common to all genera[85]. 

In spite of recent trends towards sequencing marine viral metagenomes, these 

studies have so far failed to find any NCLDV genes within the virally enriched 

fractions, although NCLDV genes, including some core genes, were found in the 

fractions that were intended to have been enriched for bacteria[157].  It may be 

that new isolation techniques are necessary in order to study phycodnavirus, 

and thus phaeovirus, diversity on a large scale. 

 

1.2.4.3 Multiplicity of phaeoviral infection 

On a much smaller scale, the naming convention of phaeoviruses from their 

host species or strain is based on the assumption that each individual is only 

infected with one virus.  This may not be the case since Ivey et al.[158] 

demonstrated that two (and potentially four) different size variants (158bp and 

178bp) of a phycodnavirus were present in cultures of a Feldmannia species 

which originated from a single cell.  The size class produced is dependent on 

temperature: 178kb at 5-10°C, both sizes at 15°C and 158kb at 20°C.  They also 

demonstrated by Southern hybridization analysis that the different viruses have 

highly conserved sequences and that the differences between the sizes are 

likely due to duplications and/or deletions.  Delaroque et al.[87] suggest that 
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this multiple infection may be the reason why they were unable to join up all 

the contigs when sequencing the virus from Feldmannia irregularis, FirrV-1. 

 

1.3 Aims 

Although there have been numerous investigations into the biology of 

phaeoviruses and their distribution in wild populations, many unknowns still 

remain.  For example, screening methods to date rely on the detection of a 

section of a viral gene through PCR, with no detail on the type of virus being 

detected [75,80,81]; results are based on the assumption that the detected 

virus is the one that is being screened for.  In addition, there are several viruses 

that have been observed and are assumed to be phaeoviruses, but no genetic 

evidence of this has been obtained [102,103,104,159].  The relationships of 

these viruses to the sequenced phaeoviruses could yield interesting results 

about their evolution.  Furthermore, there is currently very little evidence of the 

existence of viruses in wider members of the family Phaeophyceae as stated in 

section 1.2.3.3, such as the more commercially important order Laminariales.  

The prevalence of viruses in the sea, and their ability to infect the majority of 

living organisms, suggests that other algae are likely to have their own viruses, 

which simply have not been yet identified. 

Another gap in our knowledge of these phaeoviruses is what they actually do at 

a genetic level as described in section 1.2.3.6.  We have several genome 
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sequences which allow us to draw some conclusions about important common 

genes; however, the majority of these genes are of unknown function.  

The overarching objective of this study is to gain a more detailed 

understanding of phaeovirus biology - their genetic diversity, distribution, 

infection frequency and some of the genetic mechanisms involved in the 

infection process.   

My specific objectives are to: 

1) Determine the genetic diversity and phylogenetic relationships of 

phaeoviruses obtained from infected algal strains in culture, including 

both the well-studied phaeoviruses from EsV-1 and FirrV-1, as well as the 

additional viruses which are hypothesised to be phaeoviruses from their 

structure and life history.  This should reveal much about the evolution of 

these closely related viruses. 

2) Obtain a general overview of the active viral genes in an infected strain of 

Feldmannia irregularis, using next generation sequencing technology.  

This will provide a great deal of information both about the activity of 

viral genes and the nature of the infection. 

3) Develop a cheap, high throughput diagnostic test using a PCR-based 

method in order to investigate both the presence and genetic variation in 

viruses present in environmental samples of brown algae.  This test will 

then be used to rapidly screen algal samples for viruses, enabling an 
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understanding of the prevalence and distribution of these viruses in field 

populations.  
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CHAPTER 2 THE DIVERSITY AND EVOLUTION OF PHAEOVIRUSES INFECTING 

ECTOCARPOID ALGAE 

 

2.1 Abstract 

In this chapter, I use a combination of PCR, cloning and sequencing of three core 

phaeoviral genes (major capsid protein, DNA polymerase and superfamily III 

helicase) to demonstrate that individual laboratory maintained strains of 

Ectocarpus siliculosus, E. fasciculatus, Feldmannia sp. and Feldmannia irregularis 

contain multiple phaeoviral sequence variants, and moreover that these 

variants should be split into two subgroups based on sequence as well as 

genome size and host range, where previously phaeoviruses were assumed to 

be a single monophyletic group within the phycodnaviruses.  One subgroup is 

conserved and was observed in three of the genera studied here, whereas the 

other subgroup is much more diverse but was limited to infecting the 

Feldmannia genus only.  The difference in diversity between these two groups 

suggests a shift in evolutionary strategy of subgroup B from the currently 

accepted r-type strategy of the phaeoviruses towards a more K-type strategy 

due to increased mutation rates caused by a lack of proofreading exonuclease 

and DNA polymerase mutations in this subgroup.  In addition, I confirm the 

identity of five additional putative phaeoviruses (EfasV-1, FlexV-1, PlitV-1, 

MclaV-1, and HincV-1), using single and multi-gene phylogenies of the three 

NCLDV core single copy genes mentioned above. 
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2.2  Introduction 

Viruses display various life-history strategies, from the highly virulent, short-

lived r-selected or acute viruses to the more stable K-selected or persistent 

viruses[33].  Broadly speaking, the r-selected viruses are characterised by high 

mutation rates and rapid reproductive strategies, infecting hosts which also 

adopt an r- like strategy, as typified by bacteria and their phage[40].  At the 

other end of the spectrum are the K-selected viruses, which tend to cause 

persistent infections in longer-lived, multicellular organisms, often integrating 

their genomes with that of the host as in the case of herpesviruses and their 

mammalian hosts, generally forming a stable relationship and only causing 

significant host mortality when outside their usual host range[40].   

The majority of known algal viruses (family Phycodnaviridae) follow the acute 

lytic r-selected strategy and as such include many important algal bloom 

terminators such as the coccolithoviruses [45,160,161].  The only exception are 

the  phaeoviruses[1,88,91] that integrate their genomes with that of the host to 

form a latent provirus and have very little impact on the host other than the 

transmission of its genome to all host cells during normal cellular division[97].  

As such they are the only known example of K-selected or persistent viruses in 

the family Phycodnaviridae[40], probably because their multicellular hosts are 

much longer lived and provide a more stable environment than the unicellular 

bloom forming algae which are infected by the other phycodnaviruses. 
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To date, phaeovirus identity has been confirmed only by genome sequencing for 

viruses infecting three species of filamentous brown algae: Ectocarpus 

siliculosus (Dillwyn) Lyngbye, Feldmannia sp. and Feldmannia irregularis 

(Kützing) Hamel infected by EsV-1[130], FsV-158[125] and FirrV-1[103], 

respectively. In addition, the genome of an Ectocarpus strain was found to 

contain a transcriptionally inactive copy of an EsV-1-like phaeovirus which is 

potentially a relic from an ancient viral infection [91].  These genomes vary in 

size from 180 – 336 kb [1,87,88] (see Table 2.1), and have been found to contain 

a limited number of common single copy core genes[88], as well as many 

unique genes.   It is generally accepted that these viruses have a narrow host 

range, with each virus having its own host and each host having only one virus; 

EsV-1 is the only virus known to infect E. siliculosus, and Delaroque et al.[87] 

reported the FirrV-1 genome with no evidence of multiple viruses within F. 

irregularis.  

A number of studies have shown that some cross-species infection of virus-free 

host gametes/spores by isolated phaeovirus particles can occur, some causing 

symptom-like deformities in the host in spite of being unable to produce 

infectious virions (EsV-1 infecting F. simplex [149], or EfasV-1 infecting E. 

siliculosus [101] and M. clavaeformis [147]).  Indeed it has even been shown 

that a complete infection cycle of EsV-1 can occur in Kuckuckia kylinii (Cardinal) 

which produces virions that are infectious to the original host [150].  So perhaps 
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the host ranges of these viruses are not as clearly defined as is generally 

believed. 

Other potential phaeoviruses have been identified, based solely on their 

microscopically observed morphology, life cycle and symptoms produced.  

These infect Ectocarpus fasciculatus (Harvey)[101], Feldmannia simplex (Crouan 

& Crouan) Hamel[102], Hincksia hincksiae (Harvey) Silva[103], Pylaiella littoralis 

(Linnaeus) Kjellman[104] and Myriotrichia clavaeformis (Harvey)[103]; the 

naming of these viruses (EfasV-1, FlexV-1, HincV-1, PlitV-1, MclaV-1) reflects the 

host species in which they were originally found.  However, in contrast to the 

currently accepted belief that each host species has its own unique phaeovirus, 

Ivey et al.[158] reported two (and potentially four) different size variants (158kb 

and 178kb) of phaeoviruses present in cultures of Feldmannia sp.   

This chapter aims to confirm the identity of the five potential phaeoviruses 

mentioned above from the strains in which they were originally identified, by 

sequencing and phylogenetic analysis of three core phaeoviral genes encoding 

major capsid protein (MCP), DNA polymerase and superfamily III helicase.  In 

addition, I aim to determine the phylogenetic relationships between these and 

the remaining sequenced phaeoviruses. (EsV-1, FirrV-1, FsV-158 and the 

Ectocarpus provirus). 

This approach was successful in confirming that the additional five viruses did 

indeed belong to the phaeoviruses.  Moreover, it revealed a huge diversity of 

http://www.algaebase.org/search/species/detail/?species_id=252&sk=0&from=results
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phaeovirus sequences, both within individual algal strains as well as within the 

phaeovirus group as a whole, revealing that the phaeoviruses could be 

subdivided into two subgroups based on their phylogenetic relationships, as has 

previously been suggested based on their genome size and membrane 

composition [74]. 
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Table 2.1: Ectocarpoid strains used for phaeovirus screening. 

Strain code Species Family Location 
Date 
collected 

Reported 
virus genome 
size (kb) 

Ref 

Number of sequence variants of virus 
genes found in this study* 

Possible 
concatenation 
permutations 
(DNApol +MCP) 
for Figure 2.5 

DNApol MCP Helicase 

Esil 
CCAP1310/48 

Ectocarpus siliculosus Ectocarpaceae 
Kaikoura, New 
Zealand 

Aug-88 336 [162] 1 (1) 1 (1) 1 (1) 1 

Efas 
CCAP1310/20 

Ectocarpus 
fasciculatus 

Ectocarpaceae Plouescat, Brittany Mar-93 320 [163] 2 (2) 1 (1) 2 (2) 2 

Plit Pylaiella littoralis Acinetosporaceae 
Savoonga, 
St. Lawrence Island, 
Alaska 

May-96 280 [148] 1 (1) 1 (1) 1 (1) 1 

Hinc Hincksia hincksiae Acinetosporaceae Plouescat, Brittany Mar-93 240 [163] 1 (1) - 2 (1) - 

Mcla 
CCAP1325/1 

Myriotrichia 
clavaeformis 

Chordariaceae Las Grutas, Argentina Jan-95 320 [159] 1 (1) 2 (2) - 2 

Firr Feldmannia irregularis Acinetosporaceae 
Isla Hierro, Canary 
Islands 

Jun-95 180 [94] 2 (2) 3 (2) 2 (2) 4 

Flex Feldmannia simplex. Acinetosporaceae 
Killleany Bay, Aran 
Islands, Ireland 

Sep-90 220 [102] 9 (8) 6 (4) 8 (3) 22 

*: variant in DNA sequence with amino acid variation indicated in parentheses. A negative PCR result is indicated by a minus symbol.  

**CCAP, Culture Collections of Algae and Protozoa (marine) reference number, Dunstaffnage Marine Laboratory, Oban, Scotland. 
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2.3  Materials and Methods 

 

2.3.1  Strains 

See Table 2.1 for a list of the phaeovirus-infected cultures used in this study.  

These are the same infected strains which were used to generate the genome 

sequences of EsV-1 and FirrV-1, as well as those in which EfasV-1, PlitV-1, 

MclaV-1, HincV-1 and FlexV-1 were originally described. 

 

2.3.2  Culture conditions 

Each strain was cultured in a 40ml petri dish at 15°C, 16:8 light-dark cycle, 

approximately 100 µmol photons m-2 s-1. Culture medium was filtered (30kDa) 

natural sea water from the L4 sampling station close to the Eddystone 

Lighthouse near Plymouth, enriched with Provasoli’s enrichment [164]. Sub-

culturing into a new dish with fresh media was carried out every 14 days, when 

the cultures were pulled apart using forceps to separate out filaments in order 

to encourage production of zoidangia and virions. 

 

2.3.3  DNA extraction method 

50 – 200 mg wet weight fresh algal material was transferred to an Eppendorf 

tube, frozen in liquid nitrogen and ground using Eppendorf grinders with 10µl 

saturated ≤106 microns acid washed glass bead solution before proceeding with 
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the Qiagen DNeasy protocol for Genomic DNA purification from cultured animal 

cells, starting with the proteinase K treatment. 40μl proteinase K and 200μl 

Buffer AL were added to the sample and incubated at 56°C for 30 minutes, 

before centrifuging for 2 minutes at maximum speed to separate out the beads.  

200μl ethanol was added to the resulting supernatant, vortexed and pipetted 

onto the spin column, to proceed with the first centrifugation step.  For the final 

step, DNA was eluted using 100μl water, instead of 200μl in order to obtain a 

more concentrated sample. 

 

Table 2.2: Primers used for PCRs 

Primer name Sequence Gene Product size 

(bp) 

PAVS For1.1 GRGGNCAGCAGATYAAGTG DNA polymerase 643 

PAVS Rev1.1 GARTCCGTRTCSCCRTA DNA polymerase 643 

vMCP_F4 CVGCGTACTGGGTGAACGC Major Capsid Protein 268 

vMCP_R3 AGTACTTGTTGAACCAGAACGG Major Capsid Protein 268 

vhelic_F GTGGCAGGTSATYCCYTTC Helicase 303 

vhelic_R GTTKCCGGCCATGATYCC Helicase 303 

 

2.3.4  Primers used 

Degenerate primers were designed for three active viral genes encoding DNA 

polymerase, helicase and major capsid protein (MCP) (See Table 2.2). All three 

sets of primers were designed against a consensus of published sequences from 
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EsV-1, FirrV-1, FsV-158 and the provirus from the sequenced Ectocarpus 

genome. 

 

2.3.5  PCR conditions and product purification 

Degenerate PCR was carried out using Promega GoTaq® Flexi DNA polymerase 

kit according to the manufacturer’s instructions, with an addition of 0.8mg/ml 

bovine serum antigen (BSA). Cycling conditions were 95°C for 5 minutes, 

followed by 35 cycles of 95°C for 1 minute, a 30 second annealing step, an 

extension step at 72°C, and a final elongation step at 72°C for 10 minutes (see   
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Table 2.3 for oligonucleotide and magnesium concentrations, annealing 

temperatures and extension times).  Post-PCR samples were run on a 2% 

agarose gel at 80V to achieve maximum separation between the bands. Samples 

with more than one product were purified by gel extraction; the band of the 

correct size was cut out of the gel and purified using the Qiaex II® Gel Extraction 

Kit according to the manufacturer’s instructions. Samples with clean bands were 

purified using GenElute™ PCR Clean-Up Kit from Sigma according to the 

manufacturer’s instructions. 
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Table 2.3: PCR conditions 

 

 

2.3.6  Cloning and sequencing 

Purified PCR product was cloned into pCR®2.1 vector according to the 

manufacturer’s instructions, incubated overnight at 15°C before storing at -20°C 

until used. 4μl ligation mixture was added to 0.2ml competent cells and mixed. 

The cells were then incubated on ice for 40 minutes, heat shocked at 42°C for 2 

minutes and returned to the ice for 5 minutes. 0.7ml pre-warmed LB medium 

was added to the cells which were then incubated at 37°C for one hour. The 

cells were concentrated by spinning at 8000g for 5 minutes, removing 0.5ml 

supernatant, and re-suspended gently with a pipette before being plated out 

onto LB agar plates containing 5μg/ml ampicillin, with 40μl of 20 X-gal spread on 

each plate. Plates were incubated overnight at 37°C. 

Single cloned colonies were picked from agar plates into a 0.2ml tube containing 

5μl molecular grade water and heated to 95°C for 5 minutes to denature the 

cells before adding 10μl 5x buffer, 5μl 25mM MgCl2, 5μl  2.5mM dNTPs, 2μl 

 [Mg2+]  

(mM) 

[Oligonucleotide]  

(pmol/μl) 

Annealing 

temperature(°C)  

Extension 

time (s) 

DNApol 1.25 4 50 10 

MCP 1.5 8 55 30 

Helicase 1.5 8 55 10 
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each of 10 pmol/μl M13 forward and reverse primers, 0.2 μl Taq polymerase, 

20.8 μl molecular grade H2O. Cycling conditions consisted of 30 cycles of 95°C 

for 45 seconds, 56°C for 45 seconds and 72°C for 45 seconds, followed by a final 

extension step of 72°C for 5 minutes.  

PCR products were purified using the Qiaex II® Gel Extraction Kit and then 

sequenced using the BigDye® Terminator v3.1. The mix consisted of 3.5μl 5x 

BigDye buffer, 1μl Ready Reaction Mix, 2μl template (6 – 14 ng μl-1 

concentration), 1μl primers (either M13 forward or reverse) at a concentration 

of 3.2pmol μl-1 and 12.5 μl dH2O. Cycling conditions were 95°C for 2 minutes, 

followed by 30 cycles of 95°C for 30 seconds, 50°C for 30 seconds, 72°C for 30 

seconds, then a final elongation at 72°C for 5 minutes. Sequenced reactions 

were precipitated by adding 5μl 125mM EDTA and 65 μl cold 100% ethanol and 

incubated in the dark at room temperature for 15 minutes. They were then 

spun for 30 minutes at 2200g, the supernatant removed and the pellet washed 

with 60 μl cold 70% ethanol, and spun for a further 15 minutes at 2200g. The 

supernatant was removed again and the pellet air dried. Sequencing was carried 

out by Source Bioscience in Cambridge.  Sequences were submitted to the 

European Nucleotide Archive with accession numbers (HG003317 – HG003355). 
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2.3.7  Single gene tree production 

Initial alignments were carried out in BioEdit using the ClustalW alignment 

method, followed by a manual check of any unresolved areas, then forward and 

reverse sequences were combined into one read for each clone. Any clones that 

were uniquely different by four or fewer single nucleotides were ignored as 

being due to experimental variation. Translation to amino acid sequence was 

carried out using the ExPASY translate tool http://web.expasy.org/translate/, 

removing any containing stop codons, followed by further removal of any 

identical amino acid sequences post translation.  Alignment was carried out 

using the MergeAlign website http://mergealign.appspot.com/[165,166], and 

then manual deletion of any unresolved areas around gaps. Bayesian analysis of 

phylogenetic trees was carried out using MrBayes v3.2.1, running the analysis 

until the standard deviation of split frequencies reached <0.01 and the number 

of generations was > 100 000. Maximum Likelihood analysis was carried out 

using MEGA5.05 with 500 bootstrap replications, using the Jones-Taylor-

Thornton model and Nearest-Neighbour-Interchange heuristic method. Where 

the topology from these two methods agreed, combined posterior 

probability/bootstrap values are indicated. Where topologies differed, posterior 

probability was used on the main tree based on Bayesian analysis, and the inset 

tree shows the Maximum Likelihood topology. 

 

http://web.expasy.org/translate/
http://mergealign.appspot.com/
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2.3.8  Multiple gene phylogeny 

Since the presence of multiple sequence variants of each gene means it is 

impossible to accurately predict which variants of each gene belong together, 

gene concatenations were carried out allowing for all possible combinations of 

variants. Only the major capsid protein and DNA polymerase gene were used for 

this, since the polyphyletic nature of the helicase gene[37] in phaeoviruses led 

us to discount it as being useful for this study. These concatenations were then 

aligned to produce large multi-gene phylogenies from both the Bayesian and 

Maximum Likelihood analyses. Where multiple Flex variants grouped closely 

together, these branches were collapsed and the number of variants indicated. 

2.3.9  Distance analysis 

Nucleotide sequences were obtained for the various groups of phycodnaviruses 

that have been sequenced to date by carrying out a BLAST search of known 

genome sequences from each group.  The phaeovirus sequences obtained in 

this study were split into two subgroups according to their phylogenies as 

shown in sections 2.4.2 and 2.4.3.  Chloroviruses, being the only green algal 

viruses, were considered as a separate group, and the remaining viral groups 

(coccolithoviruses, prymnesioviruses, prasinoviruses, raphidoviruses) were 

considered together since they are all lytic viruses of stramenopiles.  Pairwise 

distances were computed using Mega 5.05.  
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2.4 Results 

2.4.1  DNA extraction and PCR conditions 

Total genomic DNA was extracted from each of the phaeovirus infected strains, 

as shown in Table 2.1.  Various PCR conditions were tested in order to 

determine the optimal concentrations of oligonucleotide and magnesium, as 

well as the annealing temperature and extension time for the most reliable PCR 

amplification of the different genes (  
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Table 2.3). 

It was not possible to obtain sequences for all genes from all strains screened 

(Table 2.1). This is most likely to be because the degeneracy of the primers was 

insufficient to amplify the more distantly related viruses, since the primers were 

designed against the known sequenced Ectocarpus and Feldmannia virus 

genomes, all of which did amplify.  

 

2.4.2  Cloning and sequencing 

Direct sequencing of many PCR amplicons produced unresolved sequence at 

many positions; therefore, the PCR products were cloned before sequencing in 

both directions using M13 primers. Sequences for all three genes tested 

revealed the presence of multiple sequence variants within most, but not all, 

strains (Table 2.1). 

The sequence alignment for DNApol (Figure 2.1a) shows viral protein sequences 

from Esil matched perfectly with reference gene sequences for EsV-1. The FirrV-

1 DNApol sequence was also confirmed within the Feldmannia irregularis 

isolate; however, at least one other additional variant could also be identified 

(Table 2.1). Most of the other ectocarpoid strains contained two or more viral 

sequence variants, with the Feldmannia simplex (Flex) isolate containing at least 

eight variants which differ from each other in at least five nucleotide positions 

(Table 2.1). These trends (one Esil variant, two Firr variants, and multiple 
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variants in some of the other strains) were also repeated in the MCP (Figure 

2.1b) and helicase sequences (Figure 2.1c), albeit with fewer Flex variants. 

The DNApol alignment suggests that the phaeovirus variants sequenced here 

can be subdivided into two groups (hereupon referred to as subgroup A and 

subgroup B) according to their shared sequence variations.  Furthermore, it 

appears that the Flex 8 variant shares features with both of the subgroups, 

whilst, unsurprisingly, being more closely related to subgroup B (Figure 2.2) 

since this subgroup only appears to infect members of the Feldmannia genus.  A 

closer look at the DNApol sequence (Figure 2.1a) shows not only the high 

degree of amino acid conservation (32% are identical) across all the 

phaeoviruses, but also how certain amino acids in the Flex 8 variant can be 

assigned to belong to either subgroup A (5 - triangles) or subgroup B (10 - 

inverted triangles). The MCP and helicase sequences are more conserved than 

the DNApol sequence (66% and 57% identical amino acids, respectively), but the 

division between the subgroups can still be seen, and where the two subgroups 

differ, the “Flex 8” variant tends to share the amino acid with subgroup A for 

both of these genes; 5 out of 5 for MCP and 10 out of 11 for helicase (Figure 

2.1).   
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                              470       480       490       500       510       520       530       540       550       560       570            

                      ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

EsV-1 genome          MSLILNRIHGEYVCNYAAAKKKMAADGKQVLNEGYKGASVIDAKKGFYEKDPIVTMDFASLYPSIMRLKQLCYTTIV-R----------DV-----KYRGIEGVNYEDHQ  

Esil 1                MSLILNRIHGEYVCNYAAAKKKMAADGKQVLNEGYKGASVIDAKKGFYEKDPIVTMDFASLYPSIMRLKQLCYTTIV-R----------DV-----KYRGIEGVNYEDHQ  

Efas 1                MSLILNRIHGEYVCNYAAAKKKMAADGTQVLNDGYKGASVIDAKKGFYEQDPVVTMDFASLYPSIMRLKQLCYTTIV-K----------DD-----KYRGIEGIVYEDHQ  

Efas 2                MSLILNRIHGEYVCNYAVAKKKVAADGKQVLNEGYKGASVIDAKKGFYEKDPVVTMDFASLYPSIMRLKQLCYTTIV-K----------DV-----KYRDIKGVTYEDHQ  

Esil genome provirus  MSLILNRIHGEYVCNYVVAKKKVAADGKQVLNEGYKGASVIDAKKGFYEKDPVVTMDFASLYPSIMRLKQLCYTTIV-K----------DV-----KYRGIEGVTYEDHQ  

Hinc_1                MSLILNRIHGEFVCNYSPVKKKVAADGNEVLLEGFKGASVIEAKKGFYEKDPVVTMDFASLYPSIMRLKQLCYTTIV-K----------DL-----KYRGIEGIVYEDHE  

Mcla 1                MSLI?NRTHGEFVCNYMPAKRKTTADGKQVPNEGYKGAS?IDAKKGFYEKDPIVTMD?NSLYPSIMRLKQLCYTTIV-R----------DS-----KYRAIEGVSYEDHE  

Plit 1                ?SLILNRTHGEFVCNYTPE-KRVEVDGKQVPKDGYKGASVIDAKKGFYETDPVVTMDFESLYPSIMRLKQLCYTTFV-K----------ED-----KYRGIDGVVYEDHE  

Flex 8                FSLILDRIFGEYVCNQLDARAGDG--------GGYTGATVIDAQTGFHVDDPVVCLDFASLYPSIMRWKNLCYTTYVI-----------DD-----EFRGIGGVNYKEFE  

FsV-158 genome        LSLILDRVHGEFVCNKASRVLPGGV--------KFQGATVIDATKGFHNKDPVVCLDFASLYPSIIRWKNLCYTTYL------------D--SD--EFANIPGVHYERFE  

FirrV-1 genome        LSLILDRIHSEYVLNRSRALEQQDQQC------KFQGATVISAKKGFHCDDPVVCLDFASLYPSIIRWKNLCYTTHV------------D--SD--EFLDIDGVDYEKFE  

Firr 1                LSLILDRIHSEYVLNRSRALEQQDQQC------KFQGATVISAKKGFHCDDPVVCLDFASLYPSIIRWKNLCYTTHV------------D--SD--EFLDIDGVDYEKFE  

Firr 2                LSLILDRIHSEYVLNKTRDSTNKQGDATVSR--KFQGATVISAKKGFHSEDPVVCLDFASLYPSIIRWKNLCYTTHV--------------NSD--EFLGIEGVEYEKFE  

Flex 2                --------------NYVAKCGDASTSSKS----KFQGATVIDAQKGFHCEDPVVCLDFASLHPSIIRWKNLCYTTYIIPNSSSSSSSSSDSNSDSGDYLNIPGVMYEKFE  

Flex 7                LSLILDRIHSVYVLNYVAKCGDASTSSKSNS--KFQGATVIDAQKGFHCEDPVVCLDFASLYPSIIRWKNLCYTTYIIPNSS--------SNSDS-DYLNIQGVMYEKFE  

Flex 6                LSLILDRIHSEYVLNKTAKAEDGSSS-------KFQGATVIDAKKGFHCEDPVVCLDFASLYPSIIRWKNLCYTTYV--------------NSD--EYLDIPGVVYEKFE  

Flex 5                LSLILDRIHSEYVLNYTSKTGDTPLHS------KFQGATVIDAQKGFHCEDPVVCLDFASLYPSIIRWKNLCYTTYV--N----------SN----EYSNIPGVEYERFE  

Flex 3                LSLILDRIHAEYVLNYTSKTRSDDTSSHS----KFQGATVIDAQKGFHCEDPVVCLDFASLYPSIIRWKNLCYTTYA--N----------SN----EYSSIPGVEYERFE  

Flex 4                LSLILDRIHSEYVLNYTSKTRSDDTSSHS----KFQGATVIDAQKGFHCEDPVVCLDFASLYPSIIRWKNLCYTTYV--N----------SN----EYSSIPGVEYERFE  

Flex 1                LSLILDRIHADYVLNYTSKTSND-TSSHS----KFQGATVIDAQKGFHCEDPVVCLDFASSYPSIIRWKNLCYTTYV--N----------SN----EYSSIPGVEYERFE  

                                    *                  ▲  **▼ * *  **▼  ** *▼▼*  *  ***▲*▼*▼*****                     ▼   * *  *  ▼  

                                           

 

                              580       590       600       610       620       630       640       650       660       670             

                      ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|.... 

EsV-1 genome          ISDGVSVTFAHRPGSRSILCELEEMLGEERKATKKLMKSEKD-PFAYSLLDSKQKAQKVTMNSIYGFTGTVNNGMLPLVEIAAAVTSTGRDMIKRTKEYAEKEHGCNVI  

Esil 1                ISDGVSVTFAHRPGSRSILCELEEMLGEERKATKKLMKSEKD-PFAYSLLDSKQKAQKVTMNSIYGFTGTVNNGMLPLVEIAAAVTSTGRDMIKRTKEYAEKEHGCNVI  

Efas 1                ISDEAIVTFAHRPGSRSILCELEEMLGEERKATKKLMKSEKD-PFAYSLLDSKQKAQKVTMNSIYGFTGTVNNGMLPLVEIAAAVTSTGRDMIKRTKEYAEKEHGCNVI  

Efas 2                ISDGVSVTFAHRPGSRSILCELEEMLGEERKATKKLMKSEKD-PFAYSLLDSKQKAQKVTMNSIYGFTGTVNNGMLPLVEIAAAVTSTGRDMIKRTKEYAEKEHGCNVI  

Esil genome provirus  ISDGVSVTFAHRSGSRSILCELEEMLGEERKATKKLMKSEKD-PFAYSLLDSKQKAQKVTMNSIYGFTGTVNNGMLPLVEIAAAVTSTGRDMIKRTKEYAEKEHGCNVI  

Hinc_1                ISDGVSVTFAHRPGSKSILCELEEMLGDERKATKTLMKSEKD-PFAYSLLDSKQKAQKVTMNSIYGFTGTVNNGMLPLVEIAAAVTSTGRNMIKRTKEYAETEHGCNVV  

Mcla 1                VSEGVYATFAHRPGSKSILCELEEVLGEERKATKKLMKSEKD-PFAYSLLDSRQKAHKVTMNSIYGFTGTVNNGMLPLVEIAAAVTSTGRDMIKRTKEYAEQEHGCNVI  

Plit 1                VADGVTATFAHRPGSKSILCEIEEVLGEERRATKKRMKGETD-PFAYSLLDS?QKAQKVTMNSIYGFTGTVNNGMLPLVEIAAAVTS?GRDMIRRTKEYAERAHGCNVI  

Flex 8                TSPGRVETFAYRAGDKSILSQIEEALGMERKATKREMKSEKD-PFRYSLLNSKQLAQKVTANSVYGFCGTT-NGMLPLVAVAAAVTCTGRDMIKATSDYV-KSLGAEVV  

FsV-158 genome        ISPGVYETFATRPGHKGILSAIEEDLGEARRQTKAAMKVEKD-SKKLQLLNSKQLAQKVTMNSLYGFCGTV-NGCLPLVAIAAAVTCTGRSMIKTTADFIRTEMGGTVI  

FirrV-1 genome        VSAGVYETFARRPGRPGILAMIEEDLGEARKLTKRRMKSETD-PTLLQLLNSKQLAQKITMNSLYGFCGTV-RGCLPLVAIAAAVTATGRFMIKRTADFIRNDMKGVVI  

Firr 1                VSAGVYETFARRPGRPGILAMIEEDLGEARKLTKRRMKSETD-PTLLQLLNSKQLAQKITMNSLYGFCGTV-RGCLPLVAIAAAVTATGRFMIKRTADFIRNDMKGVVI  

Firr 2                VNKGVFETFARRPGRKGILSMIEEDLGEARKLTKKKMKSEESGSAAYQLLNSKQLAQKITMNSLYGFCGTV-RGVLPLVAIAAAVTATGRYMIKRTAEFITNEMSGIVI  

Flex 2                VTPGVFETFGRRPGQKGVLSMIEEDLGNARTKTKKLMKTEED-PKVLQLLNSKQLAQKVTMNSLYGFCGTA-KGCLPLVTIAAAVTATGRAMINKTANFIRRDMGGTVI  

Flex 7                VTPGVFETFGRRPGQKGVLSMIEEDLGNARTKTKKLMKTEED-PKVLQLLNSKQLAQKVTMNSLYGFCGTA-KGCLPLVAIAAAVTATGRAMINKTANFIRRDMGGTVI  

Flex 6                VTPGIFETFGSRPGQKGILSMIEEDLGNARSQTKHLMKTEED-PKIIQLLNSKQLAQKVTMNSLYGFCGTA-KGSLPLVAIAAAVTATGRAMINKTAEFIRQDMGGTVI  

Flex 5                ISPGVFETFGRRPGQKGILSMIEEDLGDARKSTKTLMKSEKD-PEKLQLLHSKQLAEKVTMNSLYGFCGTA-RGCLPLVAIAAAVTATGRDMINKTADFIRREMNGTVI  

Flex 3                ISSGVFETFGRRPGQKGILSMIEEDLGDARKTTKTLMKSEKD-PIMLQLLNSKQLAQKVTMNSLYGFCGTV-RGCLPLVAIAAAVTAKGRDMINKTADFIRQEMNGTVI  

Flex 4                ISSGVFETFGRRPGQKGILSMIEEDLGDARKTTKTLMKSEKD-PIMLQLLNSKQLAQKVTMNSLYGFCGTV-RGCLPLVAIAAAVTATGRDMINKTADFIRQEMNGTVI  

Flex 1                ISSGVFETFGRRPGQKGILSMIEEDLGDARKTTKTLMKSEKD-PIMLQLLNSKQLAQKVTMNSLYGFCGTV-RGCLPLVAIAAAVTAKGRDMINKTADFIRQEMNGTVI  

                         *   **  * *  ▲ *   ** **  *   *  ** *       ▲** * *▼*   * ** ***▼**   * ****▼ *****  ** **     ▲        *   

Figure 2.1 (a) DNApol 

Pol III (dNTP binding site) Pol VI 

Pol II (dNTP binding site) 
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                       90       100       110       120       130       140       150            

                     |....|....|....|....|....|....|....|....|....|....|....|....|....|.... 

EsV-1 genome         GYAIISEVEIEIGGTEVDTLYSEWMFLWEELTQRPGARLGEQIGKFAYSADVEEDMIEFASQERKLYVPL  

Esil 1               GYAIISEVEIEIGGTEVDTLYSEWMFLWEELTQRPGARLGEQIGKFAYSADVEEDMIEFASQERKLYVPL  

Esil genome provirus GYAIISEVEIEIGGTEVDTLYSEWMFLWEELTQRPGARLGEQIGKFAYSADVEEDMIEFASQERKLYVPL  

Efas 1               GYAIISEVEIEIGGTEVDTLYSEWMFLWEELTQRPGARLGEQIGKFAYSADVEEDMIEFASQERKLYVPL  

Plit 1               GYAIVSEVEIEIGGTEVDTL?SEWMFLWEELTQRPGARLGEQIGKFAYSADVEEDMIEFASQERKLYVPL  

"Flex 8"             GYAIISEVEIEIGGTEVDTLYSEWMFLWEELTQRPGARLGEQIGKFAFSGDVEEDMIEFASQERKLYVPL  

FsV-158 genome       GYALISEIQIEIGGTEVDTLYPEWMFFWESMTQRPGARLGEQIGKFAYSADVEEDMIEFAQQARTLYVPL  

FirrV genome         GFALISEVQIEIGGTEVDILYPEWMFFWEEMTQRPGARLGEQIGKFTYSADVEEDMIEFAQQARTLYVPL  

Firr 1               GFALISEVQIEIGGTEVDILYPEWMFFWEEMTQRPGARLGEQIGKFTYSADVEEDMIEFAQQARTLYVPL  

Firr 2               GYALISEVQIEIGGTEVDTLYPEWMFFWEEMTQRPGARLGEQIGKFAYSADVEEDMIEFAKQARTLYVPL  

Flex 2               GYALIQDVQVEIGGTEVDVLYPEWMFFWEEMTQRPGARLGEQIGKFSYSADVEEDMIEFACKPRSLYVPL  

Flex 3               GYALISEIQIEIGGTEVDTLYPEWMFFWEEMTQRPGARLGEQIGKFSYSADVEEDMIEFAQQARTLYVPL  

Flex 1               GYALISEIQIEIGGTEVDTLYPEWMFFWEEMTQRPGARLGEQIGKFTYSADVEDDMIEFASQARTLYVPL  

Mcal 1               GFALIQDIQVEIGGTEVDMLYPEWMFFWEEMTQRPGARLGEQIGKFSYSADVEEDMIEFSKKPRSLYVPL  

Mcla 2               GYALIQDIQVEIGGTEVDQLYPEWLFFWEEMTQRPGARLGEQIGKFSYSADVEEDMIEFASKSRSLYVPL 

                     * *▲    ▲ ******** * ▲** *▲** ▲***************  * *** *****    * ***** 

Figure 2.1 (b) MCP 

                             340       350       360       370       380       390       400       410       420       430           

                      ...|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|. 

EsV-1 genome          WQVIPFMKGVAGTGKSTVIKVIQMMYNRADVGVISNNIEKKFGLSTIYNKTIFVVPELKGDFAMDQADFQSMVTGETLSMPVKNGSPITGVWTTPGIMAG  

Esil 1                WQVIPFMKGVAGTGKSTVIKVIQMMYNRADVGVISNNIEKKFGLSTIYNKTIFVVPELKGDFAMDQADFQSMVTGETLSMPVKNGSPITGVWTTPGIMAG  

Esil genome provirus  WQVIPFMKGVAGTGKSTVIKVIQMMYNRADVGVISNNIEKKFGLSTIYNKTIFVVPELKGDFAMDQADFQSMVTGETLSMPVKNGSPITGVWTTPGIMAG  

Efas 1                WQVIPFMKGVAGTGKSTVIKVIQMMYNRADVGVISNNIEKKFGLSTIYNKTVFVIPELKGDFAMDQADFQSMVTGETLSMPVKNGSPITGVWTTPGIMAG  

Efas 2                WQVIPFMKGVAGTGKSTVIKVIQMMYNRADVGVISNNIEKKFGLSTIYNKTIFVVPELKGDFAMDQADFQSMVTGETLSMPVKNGSPITGVWTTPGIMAG  

Hinc 1                WQVIPFMKGVAGTGKSTVIKVIQMMYNRADVGVISNNIEKKFGLSTIYNKTIFVVPELKGDFAMDQADFQSMVTGELLSMPVKNGSPITGIWTTPGIMAG  

Plit 1                WQVIPFMKGVAGTGKSTVIRVIQMMYNRMDIGVISNNVEKKFGLSTIYNKTIFVVPELKGDFAMDQADFQSMVTGEELSMAVKHGNPLTGTWTTPGIMAG  

"Flex 8"              WQVIPFMKGVAGTGKSTVIKVIQMMYNRADVGVISNNIEKKFELSTIFNKTIFVVPELKGDFAMDQADFQSMVTGEILSMPVKNGTPITGMWTTPGIMAG  

FsV-158 genome        WQVIPFLKGVAGTGKSTVIKVVQKLYNQRDIGVVSNNIERQFGPSTIFDKKIFIVPEMKGDFSLDVAVFQSMITGEEVSLAVKHDSPCVGRWVVPGIMAG  

FirrV-1 genome        WQVIPFLKGIAGTGKSTVIKVIQKLYGARDIGVLSNNMEKQFGASTIFDKKVFIIPEMKGDFTLDVAVFQSMVTGEEVSLAVKHESPRVGKWTVPGIMAG  

Firr 1                WQVIPFLKGIAGTGKSTVIKVIQKLYGARDIGVLSNNMEKQFGASTIFDKKVFIIPEMKGDFTLDVAVFQSMVTGEEVSLAVKHESPRVGKWTVPGIMAG  

FirrV 2               WQVIPFLKGVAGTGKSTVIKVIQKFYTTRDIGVVSNNIERQFGASTIFNKKLFIIPEMKGDFSLDAAIFQSMITGEEVSLAVKHDSPCVGKWTVPGIMAG  

Flex 1                WQVIPFLKGVAGTGKSTVIKVVQKLYNQRDIGVVSNNIERQFGPSTIFNKKIFIVPEMKGDFSLDVAVFQSMITGEEVSLAVKHDSPCVGRWVVPGIMAG  

Flex 2                WQVIPFLKGVAGTGKSTVIKVVQKLYNQRDIGVVSNSIERQFGPSTIFNKKIFIVPEMKGDFSLDVAVFQSMITGEEVSLAVKHDSPCVGRWVVPGIMAG  

                      ******▲** ********* * *▲ *   * ** **  * ▲*  ***▼ *▲ *▲ **▲**** ▲* * **** *** ▲*▲ **   * ▲* *  ******  

Figure 2.1 (c) helicase 
 

Figure 2.1: Partial predicted amino acid alignment of cloned fragments of the viral (a) DNA polymerase, (b) Major capsid protein and (c) helicase 
genes.  Numbers refer to amino acid position in the complete EsV-1 DNApol, MCP or helicase genes respectively taken from Delaroque et al. 
2001[1] (GenBank accession numbers NC_002687.1, NP_077601.1 and NP_077594.1). Boxed regions in the DNApol gene indicate conserved 

polymerase domains[12]. * indicates conserved positions between all sequences, ▲ shows where the Flex 8 variant shares an amino acid with the 
larger viruses of subgroup A, ▼ shows where the Flex 8 variant shares an amino acid with the smaller genomed viruses of subgroup B.    

http://www.ncbi.nlm.nih.gov/nuccore/13242472
http://www.ncbi.nlm.nih.gov/protein/13242587?report=genbank&log$=prottop&blast_rank=1&RID=MH21J8SS01N
http://www.ncbi.nlm.nih.gov/protein/13242580?report=genbank&log$=prottop&blast_rank=1&RID=MH3VTN38013
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2.4.3  Phylogenetic analysis 

For the most part, the Bayesian and Maximum Likelihood inference trees 

confirm the observations from the alignments (Figure 2.2, Figure 2.3, Figure 2.4 

and Figure 2.5); the phaeovirus sequence variants group into two distinct 

subgroups, forming a virus subgroup A that infects multiple species across three 

Ectocarpales families. A second subgroup B contains members infecting the 

genus Feldmannia, demonstrating much greater sequence variation than in the 

first subgroup. In addition, there is also a corresponding grouping which can be 

created based on genome sizes (Table 2.1); the larger viral genomes from Esil, 

Efas, Plit, Mcla and Hinc (240-336kb) fall within subgroup A and the smaller 

viruses from Firr, Flex and FsV-158 (158-220kb) within subgroup B.   

However, there are two notable differences between the DNApol and other 

phylogenies.  Firstly, the MCP alignment Figure 2.1 (b) shows the two Mcla 

sequences belonging to subgroup B whereas the DNApol alignment shows it 

belongs to subgroup A.  It was not possible to successfully amplify and clone the 

Mcla helicase fragment which would have assisted in the placement of the Mcla 

viral sequences.  Similarly amplification of the Hinc helicase fragment was 

unsuccessful. In addition, the intermediate position of the “Flex 8” variant from 

the amino acid sequence alignments is confirmed in all phylogenies. In the 

DNApol phylogeny it is clearly positioned between the two subgroups, as is also 

the case with the concatenated phylogeny.  However, both the MCP and 
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helicase phylogenies show “Flex 8” positioned within subgroup A which agrees 

with the amino acid conservation shown in Figure 2.1 b & c. 

The position of the E. siliculosus genome provirus also varies slightly according 

to the gene being analysed; DNApol (and also the concatenated tree) indicates a 

greater degree of homology with one of the Efas variants (Efas2) than with the 

EsV-1 genome sequence.  MCP and helicase sequences are much more 

conserved and therefore such a grouping is not obvious in their phylogenies. 
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Figure 2.2: Maximum Likelihood analysis of the phylogenetic relationship 
between variants of the predicted phaeoviral amino acid sequences of DNA 
polymerase, with EhV-86 being used as an outgroup. Single value node labels 
represent ML bootstrap values. Where nodes are labelled with two values, this 
indicates that both ML and Bayesian topologies agree (whole numbers 
represent ML bootstrap values, decimals indicate Bayesian posterior 
probability).  Subgroup A viruses are labelled in blue, subgroup B viruses are red 
and the intermediate Flex virus variant is green.  Bold values are those greater 
than 75% bootstrap or probability.  
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Figure 2.3: Maximum Likelihood analysis of the phylogenetic relationship 
between variants of the predicted phaeoviral amino acid sequences of major 
capsid protein, with EhV-86 being used as an outgroup. Single value node labels 
represent ML bootstrap values. Where nodes are labelled with two values, this 
indicates that both ML and Bayesian topologies agree (whole numbers 
represent ML bootstrap values, decimals indicate Bayesian posterior 
probability).  Subgroup A viruses are labelled in blue, subgroup B viruses are red 
and the intermediate Flex virus variant is green.  Bold values are those greater 
than 75% bootstrap or probability. 

  



94 
 

 

Figure 2.4: Maximum Likelihood analysis of the phylogenetic relationship 
between variants of the predicted phaeoviral amino acid sequences of 
superfamily III helicase, with EhV-86 being used as an outgroup. Single value 
node labels represent ML bootstrap values. Where nodes are labelled with two 
values, this indicates that both ML and Bayesian topologies agree (whole 
numbers represent ML bootstrap values, decimals indicate Bayesian posterior 
probability).  Subgroup A viruses are labelled in blue, subgroup B viruses are red 
and the intermediate Flex virus variant is green.  Bold values are those greater 
than 75% bootstrap or probability. 
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Figure 2.5: Maximum Likelihood analysis of the phylogenetic relationship 
between variants of the predicted phaeoviral amino acid sequences of 
concatenations of DNA polymerase and Major Capsid Protein, with EhV-86 
being used as an outgroup. Variants are labelled according to DNApol identifier 
initially, followed by the MCP variant number in brackets.  In order to slightly 
reduce the number of combinations of sequences, where individual gene 
phylogenies show a clear separation of individual variants, these are 
concatenated together and excluded from the other combinations.  Single value 
node labels represent ML bootstrap values.  Where nodes are labelled with two 
values, this indicates that both ML and Bayesian topologies agree (whole 
numbers represent ML bootstrap values, decimals indicate Bayesian posterior 
probability).  Subgroup A viruses are labelled in blue, subgroup B viruses are red 
and the intermediate Flex virus variant is green.  Bold values are those greater 
than 75% bootstrap or probability. 
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2.4.4  Distance analysis 

Due to the dependence on sequences in the public databases on previous 

studies, the DNApol alignment for chloroviruses and stramenopile viruses were 

relatively easy to assemble with large numbers of isolates; however, MCP and 

helicase are much less studied and therefore were represented by far fewer 

sequences.  MCP was also much more difficult to align correctly due to its high 

divergence among the stramenopiles, consisting of short conserved regions 

separated by highly variable regions. 

The analysis of evolutionary divergence for the DNApol gene within the various 

phycodnavirus groups (Figure 2.6) revealed that the r-selected lytic viruses in 

the chlorovirus and general stramenopile groups have a much higher divergence 

than the phaeovirus subgroup A, whilst subgroup B is clearly more divergent 

than A, and falls within the values of the lytic viruses of chlorella and r-selected 

stramenopile viruses.  For the purposes of the figure, the Mcla MCP sequence 

was included with subgroup B based on the phylogenetic grouping in Figure 2.3.  

When it was included in subgroup A, the divergence increased, becoming much 

closer to the other viral groups. 
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Figure 2.6: Box and whiskers plot of evolutionary divergence between 
nucleotide sequences of the DNApol fragment used in this study for the various 
virus groups infecting algae sequenced to date, showing the percentage base 
pair difference. Identical sequences were not included more than once.  The box 
represents the interquartile range which shows the middle 50% of the data, the 
bottom line being the first quartile, the middle line being the median and the 
upper line being the third quartile.  The whiskers represent the maximum (or 
minimum) data point up to 1.5 times the box height above (or below) the top 
(or bottom) of the box.  Outliers beyond the whiskers are shown as a *.  
Phaeovirus sub-groups are as shown in Figure 2.2, Figure 2.3, Figure 2.4 and 
Figure 2.5, with Flex 8 being included in sub-group B. Chloroviruses consist of 
thirteen viral isolates from Paramecium bursaria Chlorella (AF344202, 
AF344203, AF344211, AF344212, AF344215, AF344226, AF344230, AF344231, 
AF344235, AF344238, AF344239, M86837, U32985) and one from Acanthocystis 
turfacea Chlorella (AY971002). The r-selected stramenopile group consists of 
three viral isolates from Emiliania huxleyi (AF453961, AF453867, AF472534), 
three from Micromonas pusilla (U32975, U32982, U32976), five from 
Ostreococcus tauri (FJ67503, FJ884758, FJ884763, FJ884773, FJ884776), two 
from Ostreococcus lucimarinus (GQ412090, GQ412099), six from Phaoecystis 
globosa (A345136-AY345140, DQ401030), one from Chrysochromulina 
brevifilum (U32983), one from Chrysochromulina ericina (EU006632) and one 
from Heterosigma akashiwo (AB194136). 
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2.5  Discussion 

The results reported in this chapter strongly suggest that the phaeoviruses 

should be further divided into two additional subgroups as shown in Figure 2.2.  

The combined evidence of the amino acid sequence alignments and 

phylogenetic trees, as well as the nucleotide divergence analyses suggest that 

the two subgroups may have developed different evolutionary strategies: 

subgroup A being highly conserved across three genera (Ectocarpus, Pilayella 

and Hincksia) from two families (Ectocarpaceae and Acinetosporaceae) and 

subgroup B being much more divergent whilst being limited to infecting one 

genus, Feldmannia. 

The gene encoding DNApol is the generally accepted barcoding gene equivalent 

for NCLDVs, so it is reassuring that the viral DNApol gene sequences from Esil 

matched perfectly with the reference gene sequence for EsV-1 (Figure 2.1a) and 

that no additional sequence variations could be found in the Esil strain for any 

of the genes sequenced in this experiment.  This increases our confidence that 

the sequence variants found in the other algal strains are true sequence variants 

and not the result of the PCR and cloning procedures.  The observation of at 

least one additional variant in the Feldmannia irregularis strain (Firr) where 

these have not previously been reported is the likely explanation for the 

inability of Delaroque et al. [87] to assemble the FirrV-1 genome, since 

polymorphic regions would impede assembly. 
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Daee et al.[4] found that a single amino acid mutation (R696W) in the pol III 

region of DNApol resulted in extreme rates of spontaneous mutation in yeast 

due to vastly reduced DNA synthesis fidelity.  The three amino acid 

polymorphisms observed here in this region (Figure 2.1a, positions 618, 621, 

625) could be a contributing factor to the large number of variants observed 

amongst the Feldmannia viruses due to a decrease in DNA replication fidelity, 

since this region affects the partition between polymerase and proofreading 

domains[4].  

Another key observation is that virus variant Flex 8 is likely to be the progenitor 

virus to the Feldmannia subgroup B viruses since it seems to be an intermediate 

between the two subgroups, which therefore gives us a unique insight into the 

emergence of a new phaeovirus subgroup probably as a result of the genome 

reduction of an ancestral member from subgroup A from genome sizes between 

280-336 kb down to between 180-220 kb in subgroup B. Both FirrV-1[87] and 

FsV-158[88] reported the loss of the DNA proofreading exonuclease gene (EsV-

126) known to be present in EsV-1. This, in conjunction with the modifications in 

DNA polymerase Pol III region, may have resulted in the key life strategy shift, 

thereby utilizing the high mutation rates more associated with r- selection.  If 

the DNApol mutations are the driver for further mutations across the viral 

genomes, it follows that the other genes would be more conserved, and this 

appears to be the case for the MCP and helicase genes studied here with amino 
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acid conservation being 66% and 57% respectively, compared to 32% for 

DNApol.  

It is already known that phaeoviruses have the potential for cross-species 

infection as mentioned previously (Section 1.2.4).  Here it can be seen that, for 

DNApol at least, the provirus from the Ectocarpus genome [91] appears to be 

more closely related to an E. fasciculatus variant than the EsV-1 (Figure 2.2). 

This suggests an E. fasciculatus virus infected an Ectocarpus species more 

closely related to E. siliculosus[167].   

M. clavaeformis is the only representative of the family Chordariaceae observed 

to be infected by a virus to date and, therefore, it is not surprising that its virus 

seems to have a different evolutionary history. A cross-species infection of the 

ancestral strain by different viruses from both subgroups may explain its 

phylogeny being different depending on gene (subgroup A for DNApol, B for 

MCP).  Nonetheless, this study confirms the life-history and morphometric data 

that all of the viruses infecting Efas, Mcla, Plit and Hinc do indeed belong in the 

phaeovirus group. 

In screening the genomes of a further five ectocarpoid species known to be 

infected by phaeoviruses that are believed to belong to this group, due to their 

structure and life-history, a remarkable diversity of viral gene sequence variants 

has been revealed, especially amongst the smaller phaeoviral genomes.  
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To our knowledge, this is the first study to show a multiplicity of virus infections 

by different members of a monophyletic group of viruses within a single host 

genome - synonymous with, but nonetheless atypical of, an r-selection strategy. 

Moreover, both multigene and individual gene phylogenies infer that the 

sequenced variants can be separated into two subgroups: the first represents 

the phaeoviruses with larger genomes found within all families of filamentous 

brown algae tested and a second subgroup of viruses with smaller genomes 

that, whilst showing the greatest intrinsic genetic diversity, is restricted to one 

genus of filamentous brown algae. The only exceptions are the Mcla MCP 

sequence which more closely resembles that of subgroup B than A, and the 

variant Flex 8 which shares features from both these subgroups.  It seems 

unlikely that the intermediate position of Flex 8 is a result of convergent 

evolution since the three different genes studied here produce very similar 

topologies and it would be unusual for three individual traits to converge in this 

manner; it is more likely to be a result of divergence acting on the entire viral 

genome in this case.   

Given that the filamentous ectocarpoids separated from the Laminariales 

lineage around 100 Ma[92], to our knowledge Flex 8 provides the earliest 

example on record for an emergent virus exploiting the reduction of its giant 

genome and accompanying apparent loss of DNA proofreading capability to 

shift towards a more r- like evolutionary strategy in the subgroup B 

phaeoviruses, whilst still essentially remaining a stable latent infection within 
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the Feldmannia hosts.  A pairwise analysis of the evolutionary divergence in 

nucleotide sequences within the various groups of phycodnaviruses (Figure 2.6) 

illustrates this shift by subgroup B towards a more r-like evolutionary strategy. 

Subgroup B has a higher nucleotide divergence than subgroup A in the DNApol 

gene fragment and is comparable to that of the other r- selected lytic 

phycodnavirus groups (chloroviruses and the lytic viruses of stramenopiles). 

Subgroup A has maintained the classic K – selection life strategy with a much 

lower divergence. 

Taken together, this study has provided some remarkable observations about 

the diversity, life histories and host specificities of phaeoviruses. Moreover, 

unlike previous reports on emerging viruses which cross species boundaries 

(e.g. HIV[152], Ebola[153], H5N1[154] and DWV[155]) with catastrophic 

consequences for new host survival, this study suggests a very different 

scenario.  It is one in which the integration and diversification of the viruses has 

happened over a long period of time, allowing the relationship to have 

developed into a stable state of co-existence, both between different viral 

strains within the host, and between the host and its viruses. 
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CHAPTER 3 POLYMORPHISM ANALYSIS OF VIRAL GENES IN THE 

TRANSCRIPTOME OF AN INFECTED STRAIN OF FELDMANNIA IRREGULARIS  

 

3.1 Abstract 

This chapter aims to build on the observations of diverse sequence variants in 

phaeoviruses infecting Feldmannia which were detected in Chapter 2.  The 

transcriptome sequence of an actively infected strain of Feldmannia irregularis 

revealed that 97% of the genome was actively transcribed, indicating little, if 

any, redundant genes in this virus.  Moreover, polymorphic regions, including 

two base differences in the helicase gene which were identified during the 

sequencing described in Chapter 2, confirmed that multiple phaeoviral variants 

are not only present in this strain, but also simultaneously active.   

A comparison with a previous microarray study of EsV-1 transcription, as well as 

the previously sequenced FirrV-1 and EsV-1 genomes, revealed differences 

between EsV-1 and FirrV-1 genetic activity which may account for the different 

evolutionary strategies of these viruses.  Firstly, a proofreading exonuclease is 

active in EsV-1 and absent from FirrV-1, and an integrase is active in FirrV-1 

which is present but not transcribed in EsV-1.  These differences, combined with 

the potential decrease in replication fidelity due to the DNA polymerase 

mutations identified in Chapter 2 will result in a higher mutation rate in FirrV-1 

and more potential for recombination than in EsV-1, potentially resulting in the 

greater diversity observed among the subgroup B phaeoviruses.  
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3.2 Introduction 

A great deal is already known about the life cycle of phaeoviruses due to 

extensive studies involving light microscopy and infection experiments[97,105], 

however, little is known about the molecular mechanisms involved in the 

infection cycle of these viruses.  A previous MRes project using microarrays to 

examine the difference in mRNA populations between EsV-1 infected and 

healthy strains of E. siliculosus (Dillwyn) Lyngbye provided inconclusive 

results[168] which was likely due to non-specific hybridization and insufficient 

wash stringency.  A further tiling array analysis of the Ectocarpus genome 

showed that the EsV-1-like provirus was not being expressed and is likely to be 

an inactive remnant of an ancient infection [91].  Microarray analysis, which by 

its very nature requires prior knowledge of gene sequences[169], is less suitable 

than sequencing based analyses for identifying polymorphisms since the results 

usually only show presence or absence of sequence complementary to the 

probe[170] and tend not to highlight the different sequences present.  Thus, the 

multiple phaeoviral sequence variants detected in Chapter 2 would be difficult 

to interpret by microarray analysis, and another approach is necessary to 

identify which variants are active in these virus infected strains.   

Next generation sequencing, or massively parallel sequencing as it is also 

known, has revolutionised the world of genomics[171], allowing the rapid 

production of vast amounts of sequence data which can be used in a wide range 

of applications.  This type of sequencing is the latest development in a long line 
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of improvements to the accuracy and throughput of the original Sanger 

sequencing method derived in 1977[172], which has evolved from radioactively 

labelled nucleotides, through the use of fluorescence and automated capillary 

sequencing.  Next generation sequencing technologies use a synthetic adaptor 

which is ligated to each sequence in a library of fragments[173].  This adaptor 

binds each fragment to a solid surface, either a bead [174,175] or a flat glass 

microfluidics channel [176], where the sequencing reaction takes place.  The 

reaction occurs in a series of steps, from the addition of a fluorescently labelled 

nucleotide, to a detection step which determines which nucleotide was added 

and finally a wash step to remove the fluorescent label or blocking agent to 

allow the addition of subsequent nucleotides[173].  The three most commonly 

used approaches (Illumina[176], 454[174] and ABI[175]) rely on the production 

of vast quantities of sequences due to the short reads produced, and therefore 

require a scaffold of known sequence in the form of a reference genome in 

order to allow assembly of the new sequence data. 

One of the range of uses of next generation sequencing technologies is 

transcriptome sequencing[177], which is rapidly increasing in popularity 

because it not only has the potential to identify new transcripts which may not 

have been annotated[178], but also highlights polymorphisms which would be 

impossible on a microarray[179].  Furthermore, next generation sequencing 

allows the analysis of de novo genomes (genomic[180] or transcriptome[181] 
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analysis), with subsequent gene identification being carried out by similarity 

searches to sequences in the published databases[181]. 

This study is a perfect candidate for next generation transcriptome sequencing, 

since the FirrV-1 genome has been sequenced[1], and can be used as a scaffold 

for alignment of the short reads produced by this technology.  The Illumina 

technology[182] is the best method for this study due to the vast number of 

sequencing reads that can be produced, compared with the 454 

technology[183]. Moreover, since the discovery of two viral variants in 

Feldmannia irregularis (Kützing) Hamel[184], the origin strain of FirrV-1, its 

transcriptome has the potential to reveal the activity of these multiple variants. 

This chapter aims to determine whether one or more viral sequence variants 

are active in the infected Feldmannia irregularis strain used in Chapter 2, as well 

as providing some information about the important viral genes in the infection 

process, by sequencing the entire transcriptome of a highly symptomatic culture 

and checking for polymorphisms by mapping the reads against the published 

FirrV-1 genome.  In addition, the results will be compared to a previous 

microarray study of EsV-1 transcriptome activity described by Stevens et al. 

2009[168] in order to elucidate any potential genetic mechanisms that may 

influence the different evolutionary strategies of these two viruses. 

The FirrV-1 transcriptome revealed polymorphisms in several key genes and 

suggests that the multiple phaeoviral variants found in Chapter 2 are indeed 
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actively transcribed.  The comparison with the EsV-1 transcription study showed 

two key differences between the two viruses that may account for the higher 

mutation rate in subgroup B viruses compared to subgroup A: a proofreading 

exonuclease which is highly transcribed in EsV-1 but not present in the FirrV-1 

genome, and an integrase which is transcribed in FirrV-1 but not in EsV-1 

although it is present in the genome.  
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3.3 Methods 

3.3.1 Strain used 

The infected Feldmannia irregularis strain from Chapter 2 was used because it 

was the strain that most reliably produced abundant symptoms of viral 

infection, indicating that the virus was actively reproducing at the time of RNA 

extraction.  Culture conditions were as described in section 2.3.2 and RNA 

extractions were carried out at one time point, from filaments checked 

microscopically to contain abundant infected zoidangia, i.e. actively reproducing 

virions, in order to ensure high levels of viral transcription. 

 

3.3.2 RNA extraction 

5 – 15 mg wet weight fresh algal material was transferred to an Eppendorf tube, 

frozen in liquid nitrogen and ground using Eppendorf grinders with 10µl 

saturated ≤106 microns acid washed glass bead solution. The sample was then 

subjected to the Qiagen RNeasy Mini Protocol for Isolation of Total RNA from 

Yeast, beginning with the addition of 350µl Buffer RLT according to the 

manufacturer’s instructions, with the exception that beads and other insoluble 

material were removed by centrifuging at maximum speed for 2 minutes after 

vortexing in RLT and only using the resulting supernatant in further steps. 
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3.3.3 cDNA preparation 

cDNA was prepared for sequencing from 6ng RNA, using the Clontech™ 

SMARTer PCR cDNA Synthesis Kit.    The quality of the resulting cDNA was tested 

by running on an agarose gel, PCR using the helicase and MCP primers used in 

Chapter 2 and concentration analysis on a NanoDrop 1000.  The cDNA was then 

sent to the University of Exeter, where it was fragmented into small fragments, 

attached to oligonucleotide adaptors and subjected to paired end sequencing 

on the Illumina Genome Analyzer HighSeq-2000. 

 

3.3.4 Sequence analysis 

Initial quality control was carried out on the data by the University of Exeter 

who trimmed and filtered the reads, removing adaptor sequences and reads 

containing low quality bases (http://biosciences.exeter.ac.uk/facilities/ 

sequencing/postprocessing/).  The 16 contigs comprising the published FirrV-1 

genome[87] were concatenated into a single sequence using the ‘cat’ command 

on the Biolinux shell in order to facilitate alignment of the reads.  All subsequent 

data analysis steps are represented in the flowchart in Figure 3.1.  The quality of 

the read data was summarised using FastQC and some initial quality filtering 

was also carried out at this stage, then the remaining reads were assembled to 

the reference FirrV-1 genome using TopHat, with a mean inner distance 

between mate pairs of 100bp +/- 100 standard deviation, the junction search 

disabled since viruses do not usually have introns, and using the Illumina library 
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type.  SAMtools was used to check for correctly paired reads, correct alignment 

to the reference genome, and finally to detect and remove false SNPs caused by 

PCR errors.  After this, Cufflinks was used to detect expressed genes in the 

dataset.  Finally the unmapped reads from the TopHat output were assembled 

using Velvet (in order to detect potential host genes which would not have 

aligned to the FirrV-1 reference genome) and genes identified via a BLAST 

search for sequence homology and a Pfam search to detect protein families. 

 

3.3.5  Homology search for gene expression 

The expression levels for the viral genes were checked using a BLAST search of 

the reads against the FirrV-1 database.  After the FastQC step shown in Figure 

3.1, a BLASTn homology search was carried out in the BioLinux platform against 

the FirrV-1 genome which was downloaded from the NCBI database.  The top 

hit for each read (with an e-value cut-off of 10e-05) was then exported to a 

spread sheet containing read position and match quality information.  The 

number of matching reads for each gene was then divided by the length of the 

gene and the log calculated.   Genes in the lower and upper quartile were 

classified as having low and high expression respectively, with the interquartile 

range having medium expression.  Any genes with a positive log value were 

classified as very highly expressed. 
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Figure 3.1: Flowchart demonstrating the steps involved in analysing the 
transcriptome data.  Blue ovals represent the programs used and purple boxes 
indicate the steps. 
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3.3.6 Polymorphism detection 

Expressed genes were also examined for polymorphisms in IGV; regions of at 

least 10 reads depth with at least 3 reads containing the same polymorphism 

were considered to be polymorphic.   
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3.4 Results 

3.4.1 cDNA quality 

Running the cDNA on a gel resulted in a smear of varying sized fragments 

between 300 and 1300bp (Figure 3.2) which corresponds with the gene sizes 

identified in the FirrV-1 genome[87].  PCR reactions for the helicase and MCP 

fragments used in Chapter 2 were also positive (data not shown), and the 

concentration was determined to be 56.73ng/µl on a NanoDrop 1000 (Figure 

3.3). 

 

 

Figure 3.2: Agarose gel image of amplified cDNA used to generate the 
transcriptome. 
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Figure 3.3: NanoDrop 1000 analysis of amplified cDNA used to generate the 
transcriptome, showing the concentration to be 56.73 ng/µl. 

 

3.4.2 Transcriptome QC data 

The various processes involved in the analysis of the transcriptome data all 

involved filtering out low quality or non-matching reads.  The numbers of reads 

lost via this entire pipeline are indicated in Table 3.1. 
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Table 3.1: Numbers of reads passing through the various filtering and alignment 
processes. 

Process Number of reads 

Illumina HiSeq 2000 15 203 864 

After filtering by FastQC 6 681 194 

Reads used by TopHat 6 560 298 

Reads discarded by TopHat 120 896 

Reads mapped to FirrV by TopHat 22 134 

Mapped reads after duplicates removed 10 127 

BLASTn matches to FirrV-1 genome 71 882 

 

 

3.4.3 Transcriptome analysis – homology search for expression levels 

The full results of this analysis would be impractical to include in this thesis and 

so a sample of the best 20 hits is shown in Table 3.2.  The complete set of 

results was used to generate the individual FirrV-1 gene expression levels shown 

in full in Table 3.3. 
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Table 3.2:  An example of the output of the BLASTn match, showing the top 20 hits generated by this process 

Query name 
Query 
length 

Accession 
number 

Matched 
contig 
length Matched contig description E value 

Bit 
score Frame 

Query 
start 

Query 
end 

Hit 
start Hit end 

Positive 
matches 

Identical 
nucleotides 

D3P26HQ1:173:D14GLACXX:4:110
1:14101:83380 101 AY225135 24235 

Feldmannia irregularis virus a strain FirrV-1 
contig C, partial sequence 6.00E-54 200 0 1 101 6234 6334 100.00% 100.00% 

D3P26HQ1:173:D14GLACXX:4:110
1:7263:55996 101 AY225135 24235 

Feldmannia irregularis virus a strain FirrV-1 
contig C, partial sequence 6.00E-54 200 0 1 101 10834 10934 100.00% 100.00% 

D3P26HQ1:173:D14GLACXX:4:110
1:7567:72828 101 AY225133 55981 

Feldmannia irregularis virus a strain FirrV-1 
contig A, partial sequence 6.00E-54 200 0 1 101 52054 52154 100.00% 100.00% 

D3P26HQ1:173:D14GLACXX:4:110
1:8001:51395 101 AY225135 24235 

Feldmannia irregularis virus a strain FirrV-1 
contig C, partial sequence 6.00E-54 200 0 1 101 6105 6205 100.00% 100.00% 

D3P26HQ1:173:D14GLACXX:4:110
1:9718:81685 101 AY225135 24235 

Feldmannia irregularis virus a strain FirrV-1 
contig C, partial sequence 6.00E-54 200 0 1 101 6339 6439 100.00% 100.00% 

D3P26HQ1:173:D14GLACXX:4:110
2:14363:26864 101 AY225133 55981 

Feldmannia irregularis virus a strain FirrV-1 
contig A, partial sequence 6.00E-54 200 0 1 101 52371 52471 100.00% 100.00% 

D3P26HQ1:173:D14GLACXX:4:110
2:15169:61402 101 AY225133 55981 

Feldmannia irregularis virus a strain FirrV-1 
contig A, partial sequence 6.00E-54 200 0 1 101 52309 52409 100.00% 100.00% 

D3P26HQ1:173:D14GLACXX:4:110
2:17167:19627 101 AY225135 24235 

Feldmannia irregularis virus a strain FirrV-1 
contig C, partial sequence 6.00E-54 200 0 1 101 5884 5984 100.00% 100.00% 

D3P26HQ1:173:D14GLACXX:4:110
2:19336:57689 101 AY225135 24235 

Feldmannia irregularis virus a strain FirrV-1 
contig C, partial sequence 6.00E-54 200 0 1 101 6024 6124 100.00% 100.00% 

D3P26HQ1:173:D14GLACXX:4:110
2:7252:40909 101 AY225135 24235 

Feldmannia irregularis virus a strain FirrV-1 
contig C, partial sequence 6.00E-54 200 0 1 101 5767 5867 100.00% 100.00% 

D3P26HQ1:173:D14GLACXX:4:110
2:7887:20045 101 AY225134 48352 

Feldmannia irregularis virus a strain FirrV-1 
contig B, partial sequence 6.00E-54 200 0 1 101 20209 20309 100.00% 100.00% 

D3P26HQ1:173:D14GLACXX:4:110
2:8385:61276 101 AY225133 55981 

Feldmannia irregularis virus a strain FirrV-1 
contig A, partial sequence 6.00E-54 200 0 1 101 52614 52714 100.00% 100.00% 

D3P26HQ1:173:D14GLACXX:4:110
6:4445:41717 101 AY225135 24235 

Feldmannia irregularis virus a strain FirrV-1 
contig C, partial sequence 6.00E-54 200 0 1 101 6121 6221 100.00% 100.00% 

D3P26HQ1:173:D14GLACXX:4:110
8:12711:57338 101 AY225135 24235 

Feldmannia irregularis virus a strain FirrV-1 
contig C, partial sequence 6.00E-54 200 0 1 101 5816 5916 100.00% 100.00% 

D3P26HQ1:173:D14GLACXX:4:111
2:11171:64647 101 AY225135 24235 

Feldmannia irregularis virus a strain FirrV-1 
contig C, partial sequence 6.00E-54 200 0 1 101 21773 21873 100.00% 100.00% 

D3P26HQ1:173:D14GLACXX:4:111
6:17745:10733 101 AY225133 55981 

Feldmannia irregularis virus a strain FirrV-1 
contig A, partial sequence 6.00E-54 200 0 1 101 37382 37482 100.00% 100.00% 

D3P26HQ1:173:D14GLACXX:4:111
6:5531:53210 101 AY225135 24235 

Feldmannia irregularis virus a strain FirrV-1 
contig C, partial sequence 6.00E-54 200 0 1 101 4952 5052 100.00% 100.00% 

D3P26HQ1:173:D14GLACXX:4:120
2:14082:15027 101 AY225135 24235 

Feldmannia irregularis virus a strain FirrV-1 
contig C, partial sequence 6.00E-54 200 0 1 101 6488 6588 100.00% 100.00% 

D3P26HQ1:173:D14GLACXX:4:120
3:13608:80963 101 AY225133 55981 

Feldmannia irregularis virus a strain FirrV-1 
contig A, partial sequence 6.00E-54 200 0 1 101 52614 52714 100.00% 100.00% 

D3P26HQ1:173:D14GLACXX:4:120
3:15302:47011 101 AY225133 55981 

Feldmannia irregularis virus a strain FirrV-1 
contig A, partial sequence 6.00E-54 200 0 1 101 52433 52533 100.00% 100.00% 
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3.4.4 Transcriptome analysis – FirrV-1 gene expression 

The full table of expression results from the transcriptome sequencing, together 

with a comparison of EsV-1 orthologue expression from the previous microarray 

study carried out by Stevens[168], is shown in Table 3.3.  Also included are FsV-

158 orthologues, where known [88].  The overall level of transcription of FirrV-1 

genes is much higher than was observed in the EsV-1 microarray study; 151 of 

the 156 FirrV-1 genes (97%) were expressed to some extent, whereas of the 

EsV-1 orthologues considered in this study only 37 of the 86 (43%) were 

considered to be transcribed.  Of the five FirrV-1 genes that were not 

transcribed in this study, three were also not expressed in EsV-1.  Only one of 

the two EsV-1 orthologues of the unexpressed FirrV-1-P1 was expressed.  The 

only real discrepancy between the expression profiles was that FirrV-1-C7, a 

gene of unknown function, was not transcribed whereas EsV-1-207 was, albeit 

only at a low level. 

 

3.4.4.1 DNA metabolism 

Of the fourteen FirrV-1 genes in this category, only one (FirrV-1-H4, putative 

adenine-specific methyltransferase) was not expressed, whereas two (EsV-1-101 

methylase and EsV-1-132 PCNA) out of eleven EsV-1 genes were not expressed, 

although both showed medium expression in FirrV-1 (FirrV-1-B20 and FirrV-1-

A6, respectively).  The two very highly expressed genes in this group were the 

superfamily III helicase (FirrV-1-B27) and DNA adenine methyltransferase 
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(FirrV1-B29), that were also expressed in EsV-1 (EsV-1-109 and EsV-1-129, 

respectively).  Both orthologues of DNA primase were expressed; FirrV-1-A46 

showed medium expression, and EsV-1-45 was also expressed.  The same levels 

of expression were also found for DNA polymerase (FirrV-1-A18 and EsV-1-93), 

and an additional putative DNA polymerase III (FirrV-1-B47) was also expressed 

at a low level.  The large subunit of replication factor C was also expressed at 

the same levels as the DNA primase in both viruses (FirrV-1-A26 and EsV-1-138).  

A putative protelomerase, FirrV-1-B51 and EsV-1-175, showed medium and low 

expression respectively.  The putative ATP-dependent nuclease FirrV-1-A45 was 

highly expressed, although no orthologue for this gene exists in EsV-1.  The 

putative exonuclease was expressed at a low level (FirrV-1-B43 and EsV-1-64) 

and the remaining two nucleases (FirrV-1-B2 and FirrV-1-P2) had medium and 

low expression; their EsV-1-168 orthologue was also expressed at a low level. 

A further DNA metabolism gene worth mentioning here is the proofreading 

exonuclease gene (EsV-1-127) mentioned in Chapter 2 that was present in the 

EsV-1 genome but absent from the Feldmannia viruses.  This gene was highly 

expressed in the EsV-1 microarray experiment[168]. 

 

3.4.4.2 DNA integration and transposition 

In spite of EsV-1 containing several genes for DNA integration and transposition 

(as discussed in section 1.2.3.6.2), FirrV-1 appears to only have one, the 
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integrase FirrV-1-B4/EsV-1-213.  This gene had medium expression in FirrV-1, 

but was not found to be expressed in the EsV-1 transcriptome experiment. 

 

3.4.4.3 Nucleotide metabolism 

All six FirrV-1 nucleotide metabolism genes showed at least medium expression, 

whereas only two of the three EsV-1 orthologues were expressed.  The large 

(FirrV-1-A20) and small (FirrV-1-A19) subunits of ribonucleotide reductase were 

highly expressed in FirrV-1, but showed no and low expression, respectively in 

EsV-1.  The Rad50 ATPase (FirrV-1-C2) was very highly expressed whereas the 

cytidine deaminase and ATPase beta-2-subunit showed medium expression.  

Both orthologues of the VVA32-like ATPase (FirrV-1-A12 and EsV-1-26) had a 

medium expression level. 

 

3.4.4.4 Structural proteins 

All four structural genes were present in both FirrV-1 and EsV-1, and were all 

found to be expressed to some extent.  The major capsid protein (FirrV-1-B50 

and EsV-1-116) showed a medium level of expression in both viruses, but an 

additional FirrV-1 gene similar to a phage MCP was highly expressed (FirrV-1-

B28).  The mannuronan-C5-epimerase was highly expressed in FirrV-1 (FirrV-1-

A15) but only found at a low rate in EsV-1 (EsV-1-226). 
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3.4.4.5 Signalling 

All of the twelve FirrV-1 genes associated with cell signalling or membrane 

transport were expressed, whereas only four of the seven EsV-1 genes were.  

Two (FirrV-1-F1 and FirrV-1-H1) of the three hybrid histidine kinases had low 

expression and the other (FirrV-1-B9) had medium expression, although the 

equivalent EsV-1-181 was not expressed.  Of the two FirrV-1 serine/threonine 

protein kinases, one (FirrV-1-B25) had medium and one (FirrV-1-B44) had low 

expression and EsV-1-111 was expressed.  The serine/threonine protein 

phosphatase FirrV-1-B33 was highly expressed, and EsV-1-68 was also 

expressed.  The calcium binding protein was also highly expressed in FirrV-1 

(FirrV-1-B38) and one of its orthologues (EsV-1-56) was expressed, but the other 

(EsV-1-71) was not. 

 

3.4.4.6 Transcription 

All six FirrV-1 genes with a transcriptional function were expressed, although 

the same was only true for one of the three EsV-1 orthologues.  Both FirrV-1 

orthologues of the putative VLTF2 transcription factor (FirrV-1-B14 and FirrV-1-

I5) were expressed (medium and low expression, respectively).  The remaining 

four FirrV-1 genes (FirrV-1-B21 putative alanine tRNA ligase, FirrV-1-A3 putative 

oligoribonuclease, FirrV-1-D3 putative RNA-binding protein, FirrV-1-A41 

putative transcription regulator) all showed a medium level of expression, 

whereas the putative transcription regulator (EsV-1-40) was the only EsV-1 gene 
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in this group to be expressed, the putative oligoribonuclease (EsV-1-139) was 

not. 

 

3.4.4.7 Protein metabolism 

All seven FirrV-1 genes with a potential role in protein metabolism were 

expressed to some extent, as were three of the five EsV-1 protein metabolism 

genes.  Ubiquitin ligase was highly expressed in FirrV-1 (FirrV-1-A31) but only at 

a low level in EsV-1 (EsV-1-142), and an additional putative ubiquitin ligase was 

expressed at a low level in FirrV-1 (FirrV-1-D5) but not in EsV-1 (EsV-1-172). 

 

3.4.4.8 Miscellaneous 

There are a further 41 FirrV-1 genes which have similarities to other genes, but 

cannot be easily assigned to any of the above categories.  39 of these were 

expressed in FirrV-1 whereas only 12 of the 20 EsV-1 orthologues were 

expressed.  Five of the very highly expressed FirrV-1 genes belong to this 

category, and none of them have EsV-1 orthologues; these are: putative 

adrenoxin reductase (FirrV-1-B5), putative bestrophin-1 (FirrV-1-C9), putative 

glycosyl transferase (FirrV-1-A14), putative integral membrane protein (FirrV-1-

C3) and putative methyltransferase (FirrV-1-B7). 
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3.4.4.9 Unknown functions 

FirrV-1-B6 was very highly expressed, but no significant BLAST matches were 

found.  FirrV-1-A37 was also very highly expressed and its phaeoviral 

orthologues EsV-1-184 and FirrV-1-A36 were expressed and highly expressed, 

respectively.  There are a total of 64 FirrV-1 genes of unknown function, 62 of 

which were expressed at some level, whereas 22 of the 43 orthologous EsV-1 

genes were not expressed.   
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Table 3.3: Transcription levels of FirrV-1 genes showing their putative functions and functional groups, along with EsV-1, FsV-158 and FirrV-1 
homologues (those with a BLAST search e-value of less than 1).  EsV-1 orthologue transcription levels were obtained from Stevens 2009[168]. 

Gene Expression EsV-1 orthologues FirrV-1 orthologues FsV-158 orthologues Functional group Function 

A1 ++   FirrV-1-A2     Unknown 

A2 +++   FirrV-1-A1   

 
Unknown 

A3 ++ EsV-1-139 - 
 

FsV-158-077 Transcription Putative oligoribonuclease 

A4 + EsV-1-140 ++ 
 

FsV-158-078 

 
Unknown 

A5 ++ EsV-1-141 - 
 

FsV-158-079 

 
Unknown 

A6 ++ EsV-1-132 - 
 

FsV-158-080 DNA metabolism PCNA 

A7 ++   
 

  

 
Unknown 

A8 +++ EsV-1-130 - 
 

FsV-158-082 

 
Unknown 

A9 +++ EsV-1-125 - 
 

FsV-158-083 

 
Unknown 

A10 ++   
 

  Miscellaneous Putative ricin-type beta-trefoil lectin domain protein 

A11 ++   
 

FsV-158-084 Nucleotide metabolism Putative ATPase beta-2 subunit 

A12 ++ EsV-1-26 ++ 
 

FsV-158-087 Nucleotide metabolism VVA32-like ATPase 

A13 +++   
 

FsV-158-088 

 
Unknown 

A14 ++++   
 

  Miscellaneous Putative glycosyl transferase 

A15 +++ EsV-1-226 + 
 

  Structural Mannuronan-C5- epimerase 

A16 ++   
 

FsV-158-090 

 
Unknown 

A17 ++   
 

FsV-158-91/92 Protein metabolism Putative collagenase/protease 

A18 ++ EsV-1-93 ++ 
 

FsV-158-093 DNA metabolism DNA-dependent DNA polymerase 

A19 +++ EsV-1-128 + 
 

FsV-158-094 Nucleotide metabolism Putative small subunit ribonucleotide reductase 

A20 +++ EsV-1-180 - 
 

FsV-158-096 Nucleotide metabolism Putative large subunit ribonucleotide reductase 

A21 + EsV-1-135 + 
 

FsV-158-099 

 
Unknown 

A22 ++ EsV-1-136 ++ 
 

FsV-1-100 

 
Unknown 
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Table 3.3 (continued) 

Gene Expression EsV-1 orthologues FirrV-1 orthologues FsV-158 orthologues Functional group Function 

A23 +++ EsV-1-137 - FirrV-1-O1 FsV-158-101 

 
Unknown 

A24 +++   
 

FsV-158-102 

 
Unknown 

A25 +   
 

FsV-158-103 

 
Unknown 

A26 ++ EsV-1-138 ++ 
 

FsV-158-105 DNA metabolism Replication factor C large subunit  

A27 +++ EsV-1-50 + FirrV-1-B56/N1 FsV-158-065/086/106/119/125 Miscellaneous Putative cell wall adhesion protein 

A28 ++   
 

  

 
Unknown 

A29 ++   
 

FsV-158-107 Nucleotide metabolism Cytidine deaminase 

A30 ++ EsV-1-91 ++ 
 

FsV-158-108 Structural Putative cell surface glycoprotein 

A31 +++ EsV-1-142 + 
 

FsV-158-001/109 Protein metabolism Ubiquitin ligase 

A32 ++ EsV-1-11 - FirrV-1-G3   

 
Unknown 

A33 ++ EsV-1-210/211 -/++ FirrV-1-A34/B3/G1/K1/L1/P1 FsV-158-004/5/69/70/71/72/75/76/92/134/135 Miscellaneous Putative 5-azacytidine-induced protein 

A34 ++ EsV-1-210/211 -/++ FirrV-1-A33/B3/G1/K1/L1/P1 FsV-158-004/5/69/70/71/72/75/76/90/91/92/134/135 

 
Unknown 

A35 ++   
 

FsV-158-110 

 
Unknown 

A36 +++ EsV-1-184 ++ FirrV-1-A37 FsV-158-111/112 

 
Unknown 

A37 ++++ EsV-1-184 ++ FirrV-1-A36 FsV-158-111/112 
 

Unknown 

A38 ++ EsV-1-52 ++ 
 

FsV-158-113 Miscellaneous Putative viral nucleoprotein 

A39 + EsV-1-51/52 ++/++ 
 

FsV-158-114 Miscellaneous Arginine methyltransferase 

A40 +++   
 

  Miscellaneous Putative serine-rich repeat protein 

A41 ++ EsV-1-40 ++ 
 

FsV-158-115 Transcription Putative transcription regulator 

A42 ++ EsV-1-41/99 -/+ FirrV-1-B18 FsV-158-116 

 
Unknown 

A43 + EsV-1-42 - 
 

FsV-158-117 

 
Unknown 

A44 ++ EsV-1-43 - 
 

FsV-158-118 

 
Unknown 

A45 +++   
 

FsV-158-120 DNA metabolism Putative ATP-dependent nuclease 

A46 ++ EsV-1-45 ++ 
 

FsV-158-121 DNA metabolism DNA primase 
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Table 3.3 (continued) 

Gene Expression EsV-1 orthologues FirrV-1 orthologues FsV-158 orthologues Functional group Function 

A47 +   
 

FsV-158-123 Miscellaneous Putative ribonuclease Y 

A48 ++ EsV-1-75 - 
 

FsV-158-126 Protein metabolism Putative cysteine protease 

A49 ++   
 

FsV-158-127 Miscellaneous Putative membrane anchored cell surface protein 

A50 +   
 

FsV-158-009 

 
Unknown 

A51 +++ EsV-1-39/159/160 -/-/+ FirrV-1-C1/E1 FsV-158-012/55/74/124 Signalling Fibronectin type III domain/LamG-like jellyroll 

B1 ++ EsV-1-217 ++ FirrV-1-F4   

 
Unknown 

B2 ++ EsV-1-168 + FirrV-1-P2 FsV-158-148 DNA metabolism Putative nuclease 

B3 ++ EsV-1-210/211 -/++ FirrV-1-A33/A34/G1/K1 FsV-158-004/5/69/70/72/75/76/134/135 

 
Unknown 

B4 ++ EsV-1-213 - 
 

FsV-158-013 DNA integration and transposition Putative integrase (FsV) 

B5 ++++   
 

  Miscellaneous Adrenoxin reductase 

B6 ++++   
 

  

 
No blast matches 

B7 ++++   
 

  Miscellaneous Putative methyltransferase 

B8 +   
 

  Miscellaneous Putative tetratricopeptide 

B9 ++   
 

FsV-158-017 Signalling Putative sensor hybrid histidine kinase 

B10 +++ EsV-1-76 ++ FirrV-1-I1 FsV-158-018 

 
Unknown 

B11 +++ EsV-1-77 – FirrV-1-I2 FsV-158-019 

 
Unknown 

B12 +++ EsV-1-79 - FirrV-1-I3 FsV-158-020 

 
Unknown 

B13 +++ EsV-1-95 - FirrV-1-I4 FsV-158-021 

 
Unknown 

B14 ++ EsV-1-96 - FirrV-1-I5 FsV-158-022 Transcription Putative VLTF2 transcription factor 

B15 +   
 

FsV-158-023 Miscellaneous Putative dnaG/RNA recognition motif 

B16 ++ EsV-1-146 - 
 

FsV-158-024 Miscellaneous Putative peroxide operon regulator 

B17 ++ EsV-1-98 ++ 
 

FsV-158-025 

 
Unknown 

B18 ++ EsV-1-99 + FirrV-1-A42 FsV-158-026 

 
Unknown 

B19 + EsV-1-100 - 
 

FsV-158-027 

 
Unknown 
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Table 3.3 (continued) 

Gene Expression EsV-1 orthologues FirrV-1 orthologues FsV-158 orthologues Functional group Function 

B20 ++ EsV-1-101 - 
 

FsV-158-028 DNA metabolism Methylase 

B21 ++   
 

FsV-158-029 Transcription Putative alanine tRNA ligase 

B22 ++ EsV-1-74/103 ++/++ 
 

FsV-158-030 

 
Unknown 

B23 ++ EsV-1-105 - 
 

FsV-158-031 Miscellaneous 6-carboxy-5,6,7,8-tetrahydropterin synthase 

B24 ++   
 

FsV-158-032 

 
Unknown 

B25 ++   
 

  Signalling Putative serine/threonine protein kinase 

B26 ++ EsV-1-108 - 
 

FsV-158-033 

 
Unknown 

B27 ++++ EsV-1-109 ++ 
 

FsV-158-034 DNA metabolism Superfamily III helicase 

B28 +++ EsV-1-110 + 
 

FsV-158-035 Structural Phage MCP 

B29 ++++ EsV-1-129 ++ 
 

FsV-158-037 DNA metabolism DNA adenine methyltransferase 

B30 + EsV-1-164 - 
 

FsV-158-038 Miscellaneous Putative nosD copper-binding domain 

B31 +++   
 

FsV-158-036 

 
Unknown 

B32 +++ EsV-1-67 ++ 
 

FsV-158-039 

 
Unknown 

B33 +++ EsV-1-68 ++ 
 

FsV-158-040 Signalling Putative serine/threonine protein phosphatase 

B34 ++ EsV-1-70 - 
 

FsV-158-042 

 
Unknown 

B35 ++   
 

FsV-158-043 

 
Unknown 

B36 ++   
 

FsV-158-044 

 
Unknown 

B37 + EsV-1-57 - 
 

FsV-158-045 

 
Unknown 

B38 +++ EsV-1-56/71 ++/- FirrV-B45 FsV-158-046 Signalling Calcium binding protein 

B39 ++ EsV-1-55 ++ 
 

FsV-158-047 Miscellaneous Putative lipase 

B40 ++ EsV-1-61 ++ 
 

FsV-158-049 

 
Unknown 

B41 ++ EsV-1-62 + 
 

FsV-158-050 

 
Unknown 

B42 + EsV-1-63 - 
 

FsV-158-051 

 
Unknown 

B43 ++ EsV-1-64 ++ 
 

FsV-158-052 DNA metabolism Putative exonuclease 
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Table 3.3 (continued) 

Gene Expression EsV-1 orthologues FirrV-1 orthologues FsV-158 orthologues Functional group Function 

B44 + EsV-1-111 ++ 
 

FsV-158-053 Signalling Putative serine-threonine protein kinase 

B45 ++ EsV-1-56/71 ++/- FirrV-1-B38 FsV-158-046 Miscellaneous Putative outer membrane autotransporter 

B46 +   
 

  Miscellaneous Putative collagen-like protein 

B47 +   
 

FsV-158-056 DNA metabolism Putative DNA polymerase III 

B48 ++ EsV-1-161 - 
 

FsV-158-057 Miscellaneous Putative thiol oxidoreductase 

B49 -   
 

  

 
Unknown 

B50 ++ EsV-1-116 ++ 
 

FsV-158-059 Structural MCP 

B51 ++ EsV-1-175 + 
 

FsV-158-060 DNA metabolism Putative protelomerase 

B52 ++   
 

FsV-158-061 Signalling Putative signal transduction histidine kinase 

B53 ++ EsV-1-72 ++ FirrV-1-J2 FsV-158-062 

 
Unknown 

B54 ++ EsV-1-28 + FirrV-1-J1 FsV-158-063 Miscellaneous Deoxyribonuclease II family protein 

B55 + EsV-1-78 - 
 

FsV-158-064 

 
Unknown 

B56 ++ EsV-1-50/159 -/- FirrV-1-A27/N1 FsV-158-065/086/106/119/125 Miscellaneous Putative lamG-like jellyroll protein 

B57 ++ EsV-1-47 - 
 

FsV-158-067 

 
Unknown 

B58 +   
 

FsV-158-068 Miscellaneous Putative oligosaccharyl transferase 

C1 ++ EsV-1-39 - FirrV-1-E1 FsV-158-012/55/74/124 Miscellaneous Putative lamG-like jellyroll protein 

C2 ++++   
 

  Nucleotide metabolism Rad50 ATPase 

C3 ++++   FirrV-1-H3/C4 FsV-158-011 Miscellaneous Putative integral membrane protein 

C4 +   FirrV-1-C3/H3 FsV-158-011 Signalling Fibronectin type III domain protein 

C5 ++   
 

FsV-158-143 Miscellaneous Contains ankyrin repeats 

C6 +++   
 

  

 
Unknown 

C7 - EsV-1-207 + 
 

FsV-158-139 

 
Unknown 

C8 ++   
 

  

 
Unknown 

C9 ++++   
 

  Miscellaneous Putative bestrophin-1 
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Table 3.3 (continued) 

Gene Expression EsV-1 orthologues FirrV-1 orthologues FsV-158 orthologues Functional group Function 

D1 +   
 

FsV-158-128 Miscellaneous Glutamate/valine rich protein 

D2 ++   
 

FsV-158-129 Miscellaneous Phage tail tape measure protein 

D3 ++   
 

  Transcription Putative RNA-binding protein 

D4 +++ EsV-1-183 + 
 

FsV-158-131 

 
Unknown 

D5 + EsV-1-172 - 
 

FsV-158-132 Protein metabolism Putative ubiquitin-protein ligase 

D6 +   
 

  

 
Unknown 

D7 +   
 

  Miscellaneous Sperm nuclear basic protein PL-I 

E1 + EsV-1-39/159/160 -/-/+ FirrV-1-A51/C1 FsV-158-012/55/74/124 Miscellaneous LamG-like jellyroll 

E2 +   
 

FsV-158-133 

 
Unknown 

E3 +   FirrV-1-E5 FsV-158-140/144/145 Protein metabolism Putative ubiquitin-like cysteine protease 

E4 +++   
 

  

 
Unknown 

E5 ++ EsV-1-153 ++ FirrV-1-E3   Miscellaneous Putative histone 

F1 +   
 

FsV-158-141 Signalling Hybrid sensor histidine kinase 

F2 ++ EsV-1-185 + 
 

  Miscellaneous Putative lipase 

F3 ++   
 

  Miscellaneous Contains ankyrin repeats 

F4 + EsV-1-217 ++ FirrV-1-B1   

 
Unknown 

G1 ++ EsV-1-210 - FirrV-1-A33/A34 FsV-158-004/5/69/70/71/72/75/76/90/91/92/134/135 Signalling Cell surface protein 

G2 ++ EsV-1-158 ++ 
 

FsV-158-136 Protein metabolism Putative lysine methyltransferase 

G3 ++   FirrV-1-A32   Miscellaneous ATPase 

H1 + EsV-1-181 - 
 

FsV-158-149 Signalling Putative hybrid sensor histidine kinase 

H2 -   
 

  Miscellaneous Putative beta galactosidase small chain 

H3 +   FirrV-1-C3/C4 FsV-158-011 Miscellaneous Putative autotransporter-associated beta strand repeat 

H4 -   
 

  DNA metabolism Putative adenine-specific methyltransferase 

I1 + EsV-1-76 ++ FirrV-1-B10 FsV-158-018 

 
Unknown 
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Table 3.3 (continued) 

Gene Expression EsV-1 orthologues FirrV-1 orthologues FsV-158 orthologues Functional group Function 

I2 + EsV-1-77 - FirrV-1-B11 FsV-158-019 

 
Unknown 

I3 + EsV-1-79 - FirrV-1-B12 FsV-158-020 

 
Unknown 

I4 + EsV-1-95 - FirrV-1-B13 FsV-158-021 

 
Unknown 

I5 + EsV-1-96 - FirrV-1-B14 FsV-158-022 Transcription Putative VLTF2 transcription factor 

J1 ++ EsV-1-28 + FirrV-1-B54 FsV-158-063 Protein metabolism Putative histone-lysine N-methyltransferase 

J2 +++   FirrV-1-B53 FsV-158-062 Miscellaneous Putative PhoH family protein 

K1 ++ EsV-1-210/211 -/++ FirrV-1-A33/A34/B3/G1/L1/P1 FsV-158-004/5/69/70/71/72/75/76/134/135 Miscellaneous Putative viral A-type inclusion protein 

L1 ++ EsV-1-210/211 -/++ FirrV-1-A33/A34/B3/G1/K1/P1 FsV-158-004/5/69/70/71/72/75/76/134/135 Signalling Putative signal recognition particle receptor 

M1 ++ EsV-1-178/222 ++/++ 
 

  Miscellaneous Putative phosphoserine phosphatase 

N1 ++ EsV-1-50 - FirrV-1-A27/B56 FsV-158-065/106/119/125 Miscellaneous Putative chitinase 

N2 + EsV-1-13 - 
 

FsV-158-066 

 
Unknown 

O1 + EsV-1-137 - FirrV-1-A23 FsV-158-101 

 
Unknown 

P1 - EsV-1-210/211 -/++ FirrV-1-A33/K1/L1 FsV-158-004/72/134/135 Miscellaneous Putative amino acid transporter 

P2 + EsV-1-168 + FirrV-1-B2 FsV-158-148 DNA metabolism Putative nuclease 

Where EsV-1 orthologues are known, the expression of these is indicated (-, + or ++ after the name) from the transcriptome study 
reported by Stevens et al.[168]: - not above background, + above background but lower than 2x the expression of the host tubulin 
housekeeping gene, ++ expressed.  Level of FirrV-1 expression from the transcriptome is indicated as follows: - not expressed (i.e. no 
reads on the assembly to the FirrV-1 reference genome), + slightly expressed (one to twenty reads), ++ expressed (greater than twenty 
reads but not full deep coverage), +++ highly expressed (full deep coverage across the whole length of the gene), ++++ very highly 
expressed (log of standardized read counts is greater than 0).
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Figure 3.4: Barchart showing the transcription levels of FirrV-1 genes represented by the log of 
the number of BLAST matched reads from the transcriptome sequencing divided by the length 
of the gene.  Genes are in the same order as in table 3.3, but those with no matching reads are 
not included. 
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3.4.5 Transcriptome analysis - polymorphisms 

Polymorphisms were found in the mapped transcriptome reads, examples of 

which are shown in Figure 3.5. The results of the polymorphism search carried 

out for the mapped FirrV-1 genes in IGV are shown in Table 3.4.  28 genes were 

found to contain polymorphisms (a single nucleotide polymorphism present in 

at least three reads out of ten), at levels ranging from 77 to 1 polymorphism per 

kilobase.  Ten of these polymorphic reads are of unknown function; two are 

involved in core viral DNA replication functions (superfamily III helicase and RFC 

large subunit), one structural gene (mannuronan-C5-epimerase) is polymorphic, 

as are four genes with a potential role in cell signalling (two putative 

serine/threonine kinases, a calcium binding protein and a putative signal 

recognition particle receptor).  The remaining polymorphic genes have a range 

of functions including adrenoxin reductase, putative glycosyl transferase, 

putative bestrophin-1, Rad50 ATPase, putative integral membrane protein and a 

phage tape measure protein orthologue. 
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Figure 3.5: Example IGV view of typical polymorphisms found in mapped 
transcriptome genes.  Scale along the top of the window refers to position of 
the screenshot within contig B in these examples, and the reference FirrV-1 
genome sequence is along the bottom.  Grey bars represent individual 
transcriptome reads which mapped to the reference genome.  Letters within 
the bars indicate sequence differences between mapped reads and the 

reference.  (a) shows a 27% TC polymorphism in the gene FirrV-1-B38 
(putative membrane anchored cell surface membrane protein), an area of low 

transcriptome coverage (11 reads), (b) shows a 32% CT polymorphism in the 
gene FirrV-1-B27 (superfamily III helicase), an area of high coverage (213 reads). 
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Of the four genes studied in Chapter 2, superfamily III helicase was the only one 

observed to have polymorphisms.  Unfortunately the PCR fragment sequenced 

for Figure 2.1 covered an area from 332 – 431 bp (positions 19235-19334 in  

Figure 3.6) that had low transcriptome coverage, and therefore it was not 

possible to validate the polymorphisms observed in the transcriptome with the 

sequencing data already obtained.  However, when the sequenced fragment 

was compared with the IGV output, two of the polymorphisms were confirmed: 

the TG/C at position 516 (Figure 3.7 (a)) and the CT at position 672 (Figure 

3.7 (b)). 

 

 
 

Figure 3.6: IGV output of the superfamily III helicase gene showing the 
transcriptome read coverage, as well as the area covered by the PCR fragment 
sequenced in Figure 2.1.   
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Table 3.4: Results of the IGV analysis to detect polymorphisms, showing number 
of polymorphisms per kilobase of open reading frame.  The genes in the table 
are ordered from most to least polymorphic. 

Gene 
Polymorphisms 

per kb 
Expression 

level FirrV-1 orthologues Functional group Function 

A40 76.92 +++ 
 

Miscellaneous Putative serine-rich repeat protein 

B5 40.82 ++++ 
 

Miscellaneous Adrenoxin reductase 

C9 34.70 ++++ 
 

Miscellaneous Putative bestrophin-1 

A37 31.63 ++++ FirrV-1-A36 
 

Unknown 

B32 20.35 +++ 
  

Unknown 

B27 17.95 ++++ 
 

DNA metabolism Superfamily III helicase 

C2 11.66 ++++ 
 

Nucleotide 
metabolism Rad50 ATPase 

A15 11.37 +++ 
 

Structural Mannuronan-C5-epimerase 

C6 10.11 +++ 
  

Unknown 

B25 8.81 ++ 
 

Signalling Putative serine/threonine protein kinase 

A14 8.71 ++++ 
 

Miscellaneous Putative glycosyl transferase 

A13 6.11 +++ 
  

Unknown 

B33 5.68 +++ 
 

Signalling Putative serine/threonine protein phosphatase 

B38 4.93 +++ FirrV-B45 Signalling Calcium binding protein 

B31 4.57 +++ 
  

Unknown 

D4 4.15 +++ 
  

Unknown 

B18 4.08 ++ FirrV-1-A42 

 
Unknown 

C3 3.75 ++++ FirrV-1-H3/C4 Miscellaneous Putative integral membrane protein 

A26 2.97 ++ 
 

DNA metabolism Replication factor C large subunit  

L1 2.63 ++ 
FirrV-1-
A33/A34/B3/G1/K1/P1 Signalling Putative signal recognition particle receptor 

A42 2.53 ++ FirrV-1-B18 

 
Unknown 

B22 1.97 ++ 
  

Unknown 

A5 1.91 ++ 
  

Unknown 

B37 1.66 + 
  

Unknown 

D2 1.41 ++ 
 

Miscellaneous Phage tail tape measure protein 

B24 1.16 ++ 
  

Unknown 

B11 1.13 +++ FirrV-1-I2   Unknown 

 

 

3.4.6 Transcriptome analysis – unmapped genes 

The results of the BLASTp and Pfam searches of the unmapped contigs which 

did not match the FirrV-1 reference genome revealed one phaeoviral BLASTp 

match, to the gene EsV-1-7 of unknown function (which represents a potential 

match to FirrV-1).  



135 
 

 

 

Figure 3.7: Confirmation of two polymorphisms in the superfamily III helicase 
gene from Figure 2.1 in the transcriptome sequence as visualized in IGV with the 
nucleotide sequence generated from clones in Chapter 2.  
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3.5 Discussion 

The aim of this chapter was to build on the results of Chapter 2 which 

discovered multiple sequence variants within individual strains of brown algae 

infected with phaeoviruses.  Indeed, the transcriptome analysis of this infected 

F. irregularis strain which was shown to have two main variants[184], has 

confirmed that multiple viral sequence variants are active.  The observations of 

two previously known polymorphisms in the superfamily III helicase gene ( 

Figure 3.6), in addition to the well represented polymorphism in the same gene 

as shown in Figure 3.5 (b), support this conclusion.  Furthermore, several other 

genes crucial to viral reproduction are polymorphic, including the structural 

mannuronan-C5-epimerase and large subunit of replication factor C which is 

involved in DNA replication, as well as several signalling genes.  This suggests 

that the different viruses are not only actively replicating, as observed by the 

extent of physical symptoms mentioned in section 3.3.1, but are also potentially 

communicating with other infected host cells, perhaps to coordinate viral 

release, and potentially also zoid release to ensure the presence of susceptible 

cells for further infection. 

These results build on the observation of multiple virus variants observed in 

Chapter 2 by confirming that these variants are not only present, but also 

transcriptionally active, providing a convenient pool of similar sequences during 

virus multiplication which would facilitate recombination and the packaging of 
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different variants into the offspring virions.  Indeed it seems likely that the 

diversity of transcribed virus genes is much higher than detected here due to 

limitations in our detection methods, both in the mapping process and in our 

definition of a polymorphic region. Further investigations, using reverse-

transcription PCR combined with sequencing were not possible due to time 

constraints, but would confirm more accurately how many variants were active 

in this strain.  Since the polymorphisms that have already been observed in the 

sequencing in Chapter 2 were not all observed in the transcriptome, and the 

fact that the cloned fragment corresponds to the under-represented section of 

the helicase gene, it suggests that this area is too polymorphic for most of the 

reads to map correctly.   

Firstly, many reads would have been rejected from the mapping procedure 

since only paired reads are used, meaning that any reads whose partner has 

failed for some reason would not be considered in this analysis.   Further 

polymorphic reads would also fail due to the stringency of the mapping process, 

therefore only those most similar to the reference genome would be mapped 

and examined in this analysis.  In addition to the mapping methods, the 

stringency with which we have defined a region as polymorphic would not 

normally have picked up the two helicase polymorphisms identified in  

Figure 3.6 since both are only represented by one read; they were only 

observed in this case because we already had the sequence available. 
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The BLAST search was used to detect levels of expression because this is a less 

stringent search method which would detect more polymorphic matches than 

the IGV analysis.  In addition, this analysis starts with a much larger data set of 6 

681 194 reads, of which 71 882 matches were found, instead of the 10 127 (out 

of 22 134 reads) which were eventually mapped to IGV (Table 3.1).  This method 

found that 97% of the FirrV-1 genome was actively transcribed, which is 

comparable to previous studies on phycodnavirus transcriptomes which 

discovered that 86% of EhV-86 genes were expressed during the lytic phase[45] 

and 99% of PBCV-1 genes were expressed at some point in its life cycle.  The 

previous microarray analysis of EsV-1 transcription revealed a much lower level 

of active genes (43% in those genes orthologous to FirrV-1) and in general those 

that were not expressed in FirrV-1 were also not expressed in EsV-1 with the 

exception of one gene of unknown function. 

The fact that the majority of the FirrV-1 genes were found to be transcribed in 

this study confirms that the viruses were actively reproducing.  It also indicates 

that there are very few gene redundancies in the viral genome, which is an 

observation common to all phaeoviruses which tend to keep their genome as 

small as possible in order to remain energetically efficient in spite of containing 

some repetitive sequences that may have a role in host genome 

integration[1,87,88]. 

Those genes of a known function that were very highly expressed include three 

DNA metabolism genes (superfamily III helicase and two methyltransferases), 
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the Rad50 ATPase which has a role in DNA double-strand break repair, one 

sugar biosynthesis gene, as well as the adrenoxin reductase which has a role in 

the p450 respiration pathway, and two genes involved in cell transport and 

signalling (a putative integral membrane protein and a putative calcium 

activated anion channel (putative bestrophin-1)).  This supports the previous 

conclusion that these viruses are actively reproducing, and even replacing some 

of the host cells’ functions in order to ensure their survival until the virion 

replication has finished.  Of special note is the FirrV-1-B6 gene which is very 

highly transcribed, but a BLAST search revealed no known orthologues.  This is 

obviously an important gene for FirrV-1, but its lack of similarity to any other 

known genes, even within other phaeoviruses, is highly unusual and may be a 

function of the strange evolutionary history of these viruses.  The DNA 

proofreading exonuclease gene mentioned in Chapter 2 (EsV-1-126) is highly 

transcribed in EsV-1 and therefore must play an important role in its DNA 

replication fidelity, since it is missing from the much more diverse group of 

viruses infecting F. irregularis and F. simplex.  A further difference between EsV-

1 and FirrV-1 is the integrase (EsV-1-213/FirrV-1-B4) activity; this is expressed in 

FirrV-1 and therefore must play a role in genomic recombination, further adding 

to its genomic diversity.  This gene is not active in the invariant EsV-1. 

Of the five genes that were not transcribed, two were of unknown function.  

One of the remaining three was involved in DNA metabolism (the putative 

adenine-specific methyltransferase FirrV-1-H4) and may have a role in 
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controlling gene expression by methylating the DNA; however, since other 

methyltransferases were active, including one that was highly transcribed, the 

inactivity of this gene is probably unimportant.  The other two inactive genes, 

putative beta galactosidase small chain FirrV-1-H2 and putative amino acid 

transporter FirrV-1-P1 are involved in carbohydrate and protein metabolism, 

respectively which may have many potential uses within the cell and therefore 

reveal little about the virus infection process. 

Not only has this chapter provided useful data about the FirrV-1 genome activity 

and polymorphisms, this transcriptome could also prove to be an invaluable 

resource for the study of the Feldmannia irregularis genome.  Although the host 

genome has not yet been sequenced, de novo assemblies with Pfam and BLAST 

searches to detect potential gene functions and orthologues, combined with 

comparisons of unmapped reads to the recently sequenced Ectocarpus genome 

could reveal much about the F. irregularis genome and its activity. 
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CHAPTER 4 THE PREVALENCE OF VIRUSES IN WILD POPULATIONS OF BROWN 

ALGAE 

4.1  Abstract 

The aim of this chapter was to establish a high throughput, low cost method to 

screen brown algal isolates for phaeoviral infection, in such a way as to provide 

some information about the type of virus present in the light of the observation 

of the sequence diversity found in Chapter 2.  We found that the High 

Resolution Melt (HRM) Curve technology using degenerate primers designed 

against the phaeoviral MCP sequence was able to detect phaeoviral infection, 

which was common in Ectocarpus species: 43% - 79% of isolates studied were 

infected, depending on species. Additionally it was able to detect viral 

sequences in kelp species, albeit at a much lower rate (10% - 17% of tested 

isolates were infected).  Sequence and phylogenetic analysis from the kelps 

revealed that the amplified MCP fragment formed a separate group within the 

phaeoviruses, more similar to subgroup B sequences than subgroup A.  HRM 

was even sensitive enough to separate 88% of the detected viruses in various 

species of Ectocarpus into the two subgroups identified in Chapter 2, since the 

two groups had different melting temperature distributions.  Futhermore, 17% 

of isolates studied were infected by at least one virus from both subgroup A and 

B simultaneously.   

In addition, our results show that the degree of wave exposure and the host 

species have an effect on both the frequency and type of viral infection present.  
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Isolates from shores exposed to greater wave action were more likely to be 

infected than those from more sheltered locations.  E. crouaniorum had a higher 

rate of phaeoviral infection than both E. fasciculatus and E. siliculosus, and also 

had a higher rate of infection by subgroup A viruses, whereas E. fasciculatus was 

more likely to be infected by subgroup B viruses than the other two species. 
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4.2 Introduction 

The phylogeny of the Ectocarpus genus has been subject to several changes 

over the years.  Species within the genus were separated from other small 

brown algae by their ribbon-shaped plastids and lack of phaeophycean 

hairs[167].  Since then, the classification of species within the genus has 

changed several times as more accurate taxonomical tools have become 

available.  The most recent phylogenetic relationships, using molecular 

taxonomy confirmed with crossing experiments to determine hybrid viability, 

have been proposed by Peters et al.[167,185] to contain E. siliculosus (Dillwyn) 

Lyngbye, E. fasciculatus Harvey and E. crouaniorum Thuret.  They also suggest a 

further two potential genotypes in a study focussing mainly on strains from 

Western Europe; one closely related to E. fasciculatus and isolated in France 

and one previously isolated from New Zealand (CCAP1301/47) which sits 

between E. siliculosus and E. crouaniorum (both marked with * in Figure 4.1).  

An additional paper published in the same year[185], identified a total of six 

potential new genotypes from Chile and Peru, one of which contains the 

genome sequenced strain, but for the purposes of this chapter we will be 

concentrating on the three main species: E. siliculosus, E. crouaniorum and E. 

fasciculatus. 
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Figure 4.1: Current proposal for taxonomy of Ectocarpus and Kuckuckia isolates 
showing the three species, E. siliculosus, E. crouaniorum and E. fasciculatus, 
along with two potential additional species (*).  (This figure was reproduced 
with permission from [167] © 2010 Japanese Society of Phycology) 

 

The Ectocarpus genus is widely distributed in temperate marine environments, 

growing on rocky shores from high intertidal pools to the sublittoral zone[90].  

The three main Ectocarpus species, collected for this study, occupy slightly 

different niches[167] on the rocky shores from which they were collected and 

this may affect their susceptibility to viral infection.  Ectocarpus siliculosus is 

found growing epiphytically on Sargassum, Ulva, Porphyra, Gracilaria, 

Saccharina, Himanthalia and Zostera marina collected from mid-intertidal pools 

to subtidal.  Ectocarpus fasciculatus is found on Laminaria, Saccharina, 

Saccorhiza, Himanthalia and Zostera marina from the lower intertidal to 

subtidal and Ectocarpus crouaniorum sporophytes were found on rocks and the 

* 

* 
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gametophytes,  only  in spring, found epiphytic on Scytosyphon, both in high-

intertidal pools[167], as shown in Figure 4.2.  Other brown algae of note which 

also inhabit these zones include the two Feldmannia species, discussed in 

Chapter 2, and members of the order Laminariales which are frequently 

basiphytes (anchors for epiphytes) for members of the order Ectocarpales[167] 

as mentioned above.  

 

 

Figure 4.2: Habitat zonation on the rocky shore, and the preferred habitats for 
E. siliculosus (Esil), E. fasciculatus (Efas) and E. crouaniorum (Ecro)[167], 
Feldmannia irregularis[186,187] (Firr) and F. simplex [186,187] (Flex) and three 
kelp species Saccharina latissima (Slat), Laminaria digitata (Ldig) and L. 
hyperborea (Lhyp) in the “Laminaria zone”[167]. 

 

Investigations in the 1990s into the prevalence of phaeoviruses in wild 

populations of their hosts  concluded that they are highly ubiquitous, occurring 
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in all populations of filamentous brown algae studied to date[80,98,188], as 

discussed in detail in sections 1.2.4.1 and 1.2.4.2.  However, these studies using 

PCR-based techniques were limited in both the host range (the genus 

Ectocarpus) and in only detecting the presence or absence of phaeovirus 

infection in wild populations [79,108,188].  Moreover, numerous studies aiming 

to investigate the diversity of algal viruses more generally, i.e. screening for 

phycodnaviruses, have not included the phaeoviruses due to the lack of 

similarity between their sequences and other phycodnaviruses[75,76].  In 

addition, the huge diversity of phaeovirus sequence within individual strains 

discovered in Chapter 2 would not have been revealed by this type of screen. 

Therefore, a different approach which distinguishes different viral variants is 

necessary in order to examine the true diversity within environmental isolates. 

Sengco et al.[80] focused specifically on those phaeoviruses infecting Ectocarpus 

species by extracting total DNA from collected algal strains, rather than using 

seawater samples. However, even this study did not deal with potential 

phaeoviruses infecting the remaining brown algal genera, even though viruses 

are already well characterized in Feldmannia [87,88].  Indeed, the “Flex8” 

variant discovered in Chapter 2 appears to be an evolutionary intermediate 

originating in an Ectocarpus strain, but having evolved to infect Feldmannia 

strains[184] while maintaining some sequence similarities to subgroupA.  

Although this has only been discovered in just one laboratory strain to date, it 

seems likely that it will also occur in field samples.  
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Moreover, large scale viral screening studies on other members of the class 

Phaeophyceae have not been carried out to date due to a lack of evidence of 

infection in the larger brown algal species, although viruses have been observed 

in Chorda tomentosa Lyngbye and Leptonematella fasciculata Reinke (Silva)[98].  

This observation, combined with the fact that symptom suppression is 

common[101], suggests that virus infections may be a general feature in the 

entire Phaeophyceae class, and that the virus and host have evolved together 

into a stable, persistent relationship which would facilitate the transmission of 

viral DNA to uninfected hosts, potentially across the globe.  If this is indeed the 

case, it would be crucial to understand whether other members of the class are 

affected, particularly in the ecologically and commercially important species 

within the order Laminariales (kelps), the sister order of the Ectocarpales, as 

shown in Error! Reference source not found.. 

Various methods have been employed to determine the extent of viral infection 

in the order Ectocarpales, including the identification of viral symptoms by light 

and electron microscopy[98].  However, the PCR based techniques searching for 

specific fragments of viral DNA appear to be the most useful since they 

eliminate the need to rely on observations of symptoms which are commonly 

suppressed in infected cultures[105].  This allows the use of more targeted PCR-

based approaches using primers specific to known core viral genes, such as DNA 

polymerase or major capsid protein[76,77,79,80,81,189], combined with DNA 

sequencing in order to allow identification (as demonstrated in Chapter 2).   
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High resolution melting curve (HRM) analysis allows researchers to both detect 

amplified product and distinguish between different sequences[190].  This 

technology uses an intercalating fluorescent dye which binds to double- but not 

single-stranded DNA[191].  When the PCR product is subjected to incremental 

temperature increases, the subsequent fluorescence profiles obtained will vary 

depending on the GC content and other physical properties of the sequence, 

thus allowing the identification of sequence variations down to a single base 

pair difference[192].  In combination with a real time PCR cycler, it is possible to 

quantify, amplify and identify differences in one closed-tube reaction, reducing 

the potential for errors in processing and eliminating the need for sequencing, 

making this a highly desirable technique for large-scale and rapid 

screening[193]. 

HRM already has a variety of medical diagnostic uses, such as analyzing genetic 

variants of Salmonella in order to determine the most appropriate 

treatment[194], or patient genotyping to detect mutations in the BRCA1 gene in 

breast cancer testing[195], as well as screening for new variants of influenza 

virus[196]. In the aquatic environment this technique has also been used to 

differentiate harmful algal bloom species[197] and to identify viruses in the 

freshwater prawn Macrobrachium rosenbergii[198], although to our knowledge 

HRM analysis has not yet been employed in the study of algal viruses. 

This study aims to use a combination of reverse-transcription PCR to detect 

phaeoviral MCP and HRM to build on previous PCR-based studies by 
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distinguishing between the two groups of phaeoviruses discovered in Chapter 2.  

This will provide a cheap, high-throughput method which does not rely on 

sequencing to identify the virus type.  The method will be tested on 1034 

phaeophyte specimens collected by Akira Peters (Station Biologique Roscoff) for 

an unrelated study on Ectocarpus phylogeny from various locations around 

Europe, Chile and Peru (see Figure 4.3).  In addition, 48 Laminaria digitata 

(Hudson) J.V.Lamouroux, 10 Laminaria hyperborea (Gunnerus) Foslie and 24 

Saccharina latissima (Linnaeus) C.E.Lane, C.Mayes, Druehl & G.W.Saunders 

isolates were also sampled from Perharidy (location 35 in Figure 4.3) and will be 

tested in order to determine whether this screening method could detect 

potential viruses in the commercially important order Laminariales and 

therefore possibly in other members of the Phaeophyceae. 

HRM detected phaeovirus MCP in 63% of the Ectocarpus isolates tested, as well 

as in 15% of the Laminariales isolates.  Moreover, it was able to successfully 

distinguish between the two phaeoviral subgroups since they have differing 

melting temperature distributions, assigning 88% of those detected to one of 

the two subgroups.   

  

 

http://www.algaebase.org/search/species/detail/?species_id=3&sk=0&from=results
http://www.algaebase.org/search/species/detail/?species_id=27&sk=0&from=results
http://www.algaebase.org/search/species/detail/?species_id=129132&sk=0&from=results
http://www.algaebase.org/search/species/detail/?species_id=129132&sk=0&from=results
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Figure 4.3: Sample collection sites  
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4.3 Methods 

4.3.1 Isolates and DNA extractions 

The isolates used in this study, and the locations from which they were 

collected, are shown in Appendix A.1.  The samples consisted of 1034 

Ectocarpus isolates, focussing on E. crouaniorum, E. fasciculatus and E. 

siliculosus, collected from a variety of locations throughout the Europe and 

South America, as well as some kelp species (10 Laminaria hyperborea, 48 L. 

digitata, 24 Saccharina latissima) from Perharidy in Northern France.  Collection 

and isolation of the cultures and DNA extractions from most isolates were 

carried out by Akira Peters, the kelp DNA extractions were carried out from 

uniparental gametophytes by Frank Ehrlich according to the method described 

in section 2.3.3 (Figure 4.4 step 1).  Since these strains were collected for studies 

on host ecology and phylogenetic relationships, no observations were carried 

out regarding the presence of viral infection symptoms.   

 

4.3.2  Genotypes used in study 

Genotypes Esil1, Firr1 and Flex1 generated in Chapter 2, as well as clones of 

three environmental screens (HAS08-17B, HAS08-20A and RAT08-5C) (Table 4.1) 

were used to generate training data (both HRM and DNA sequence) to allow 

corrections of between run differences (Figure 4.4 steps 6-8) and allow 

subgroup assignment (steps 6, 7 & 9-11 of Figure 4.4) which will be further 

explained in section 4.3.5. 
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Table 4.1: Clones subjected to sequencing, phylogenetic analysis and HRM used 
to generate training data to assess the effectiveness of the HRM to distinguish 
between the two groups of viruses.  Esil1, Firr1 and Flex1 are the sequenced 
clones generated in Chapter 2.  Numbers in brackets show the location from 
which each isolate was collected, as shown in Figure 4.3. 

Genotype Source DNA 
Phylogenetic 
subgroup 

Reference 

Esil1 E. siliculosus A [184] 

Firr1 F. irregularis B [184] 

Flex1 F. simplex B [184] 

HAS08-17B.2 Hastings E. siliculosus (33) A This study 

HAS08-20A.1 Hastings E. siliculosus (33) A This study 

HAS08-17B.3 Hastings E. siliculosus (33) B This study 

HAS08-17B.4 Hastings E. siliculosus (33) B This study 

HAS08-20A.2 Hastings E. siliculosus (33) B This study 

RAT08-5C.1 Rattray Head E. crouaniorum (12) Unassigned This study 

RAT08-5C.2 Rattray Head E. crouaniorum (12) Unassigned This study 

LdigPH10-18.1 Perharidy L. digitata (35) Kelp This study 

LdigPH10-18.2 Perharidy L. digitata (35) Kelp This study 

LhypPH10-3 Perharidy L. hyperborea (35) Kelp This study 

SlatPH10-7.1 Perharidy S. latissima (35) Kelp This study 

SlatPH10-7.2 Perharidy S. latissima (35) Kelp This study 

 

4.3.3 Real–time PCR and High Resolution Melt Curve analysis 

The MCP primers used in this study were as used in Chapter 2, Table 2.2: 

Primers used for PCRs. 

Real-Time PCR (rt-PCR) and High Resolution Melt (HRM) curve analysis (Figure 

4.4 steps 2, 3 & 7) were carried out using the SensiMix™ HRM kit on both 

environmental screening samples and purified colony PCR products (see 
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sections 2.3.5 and 2.3.6 for PCR cleanup and cloning methods) of the strains 

mentioned in Table 4.1.   

The protocol was used according to the manufacturer’s instructions, but 

decreasing the volumes accordingly to a final mix volume of 10 μl for each 

reaction, using 0.4 μl 10 μM primers and 0.7 μl 50mM MgCl2
 per reaction.  To 

ensure the highest reproducibility between reactions, they were set up with a 

CAS1200™ automated liquid handling robot from Corbett Life Science.  PCR and 

melt conditions consisted of a 10 minutes initial denaturation and enzyme 

activation step at 95°C, followed by 40 cycles of 15 seconds at 95°C, 10 seconds 

at 55°C and 10 seconds at 72°C.  To obtain the melting curve, the temperature 

was ramped from 75°C to 90°C, increasing by 0.1°C per step, with a 90 second 

wait for pre-melt on step one and 5 seconds for each subsequent step.  

Reactions were removed from the cycling conditions in the exponential phase of 

amplification to allow more reliable calculations of the melt temperature. 

Each run was initially analysed individually – threshold values for peak calling 

were set by eye to cut off any peaks lower than the negative controls whilst 

attempting to minimize false negatives.  Any peak above the threshold value 

indicates the presence of viral DNA in the sample.  This process provided the 

raw melting temperatures which were subsequently used in Figure 4.4 steps 4 & 

8. 
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4.3.4 Cloning, sequencing and phylogeny 

Sequencing of cloned HRM products was carried out for two reasons; firstly to 

determine whether multiple melting temperature peaks corresponded to 

different sequence variants or were simply due to experimental artefact, and 

secondly to allow the creation of a training data set to provide a correction 

factor to calibrate for differences between HRM runs. 

Cloning, sequencing and phylogenetic analysis were carried out for the strains in 

Table 4.1 according to the methods described in Chapter 2, sections 2.3.6 and 

2.3.7.  Clones were sequenced in triplicate across two different runs to allow an 

estimation of the technical variability between samples of the same and 

different runs. 

These extra analyses created a training data set which was used for two 

purposes.  Firstly, since the melting temperatures of the HAS08-17B and HAS08-

20A isolates were obtained for both individual clones (step 7) and the genomic 

DNA (step 3), and both should be the same because they originate from the 

same sequences; any differences were considered to be part of the between 

run variation and applied to the main screening data set in order to calibrate the 

results. 

The second use of the training data was to determine the phylogenetic 

relationships between the viral sequences in order to assign a range of melting 

temperatures to the two subgroups (Figure 4.4 steps 10-11) using clones of Esil, 

Firr, Flex, HAS08-17B and HAS08-20A (subgroup A and B strains in Table 4.1).  

The phylogenetic analysis was used to assign a distribution of melting 
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temperatures to the following viral types: EsV (Ectocarpus virus), FirrV 

(Feldmannia irregularis virus), FlexV (F. simplex virus), unEV (unknown 

Ectocarpus-like virus belonging to subgroup A), unFV (unknown Feldmannia-like 

virus belonging to subgroup B) or unPV (unknown phaeovirus belonging to 

neither subgroup A or B).   

A normal mixture model with two groups was fitted to the corrected melting 

points for the environmental isolates.  This model assumes that there are two 

different virus groups with different melting point distributions underlying the 

data set.  The distribution of melting points is different for each virus subgroup, 

since subgroup B was observed to be much more diverse than subgroup A, and 

these can be approximated by normal distributions with different mean and 

variance parameters.  These parameters were estimated using iterative 

maximum likelihood techniques in order to fit the model to the test data.  Initial 

parameters were set to reflect the distributions of melting points observed in 

the sequenced subgroup A and subgroup B viruses in the training data set.  

Using these parameter estimates, together with an estimate for the proportion 

of subgroup A and B virus infections overall, the posterior probability that the 

virus belonged to subgroup A or subgroup B was computed as follows: 

 (          )   
  (           )

[  (           )  (   ) (           )]
  

  represents the estimate of the proportion of subgroup A and B infections, and 

f is the normal likelihood function with mean parameters µA and µB, and 

parameters A
2 and B

2 estimated as part of the model fitting process. The 
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groups had different variances to allow for the differences in variability between 

the sequences in the two subgroups (i.e. that subgroup B is more diverse than 

subgroup A).  These posterior model probabilities were computed for each 

melting point and used to assign a viral subgroup, providing it could be assigned 

with at least 90% probability, otherwise the virus remained unclassified.   

 

4.3.5 Screening pipeline 

Figure 4.4 shows the process of assigning a viral subgroup to each of the algal 

isolates (steps 1-5).First DNA was extracted from the isolates, then rt-PCR and 

HRM analyses were carried out on each.  The raw melting temperatures 

obtained were first calibrated (step 4) by applying the correction factor 

obtained from the comparison of the HAS08-17B and HAS08-20A clones and 

genomic DNA (step 8) and then each corrected melting temperature was 

assigned to a viral subgroup (step 5) using the posterior group probabilities 

determined from comparing the phylogenetic grouping with the melting 

temperatures (step 11). 

 

4.3.6 Association analyses 

After assignment of melting temperatures to virus subgroups, various 

association analyses were carried out to determine whether any relationships 

existed between viral infection rate, species and degree of wave exposure (as 

defined by Akira Peters (pers. comms.) of the collection sites. 
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4.3.6.1 Chi-squared 

A Chi-squared (2) test is used to determine whether a set of observed data fits 

to what would be expected from the hypothesis being tested.  It is calculated 

using the formula: 

  ∑
(       ) 

   
 

If this calculated value is greater than the critical value for the appropriate 

number of degrees of freedom (related to the sample size).  In this case a two 

way classification was used to determine whether the number of infections was 

the same between exposed and sheltered environments. 
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Figure 4.4: Pipeline for assigning viral subgroup to the environmental algal 
isolates (steps 1-5), showing how the training data was produced and used to 
calculate the correction factor to allow comparisons between the training data 
and the environmental samples (steps 6-8), and to assign a viral subgroup to 
each isolate (steps 6 & 9-11).  Purple boxes represent biological samples or data, 
blue ovals represent processes and unboxed text indicates the clones used for 
training data in steps 6-11. 
 
 

4.3.6.2 Logistic regression and odds ratios 

A logistic regression model can be fitted when the outcome is dichotomous (i.e. 

failure and success are coded as a binary variable taking values 0 and 1 

respectively) and there is a set of dependent variables which aim to explain 

differences in the probability of success or failure.  In this case to investigate the 

variables affecting infection rate, the response variable was given the value 1 if 
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there was a viral infection, and 0 otherwise.  In the analysis to compare the 

rates of group A and B infection in the infected isolates, the response variable 

was 1 if a group virus was present, and 0 otherwise. 

A logistic regression model assumes that there is an underlying bernoulli 

distribution explaining the dependent variable, i.e. that it takes the value 1 with 

probability (p) and 0 with the probability (1-p).  In a logistic regression the 

probability (p) is not explained as a function of the dependent variables directly, 

but instead seeks to explain the log of the odds, calculated as  

    (                 )        (
 (         )

   (         )
) 

as a linear function of the dependent variables.  Since the probability (p) takes a 

value between 0 and 1, the log of the odds takes values between –infinity and 

infinity.  This allows this quantity to be modelled as a linear function of the 

dependent variables.  As a result, probabilities (p) for different variables are not 

compared, rather the odds via computation of the odds ratio: 

                          
               

               
 

The odds of infection in group one are said to be equal to the odds ratio times 

the odds of group two, all other things being equal (e.g. all other factors being 

controlled for).  The hypothesis test to determine whether the odds of infection 

are different between two groups tested whether the odds ratio is significantly 

different from 1. 
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4.3.6.3 Cochran-Mantel-Haenszel test 

The Cochran-Mantel-Haenszel test is used to determine whether there are 

differences in overall viral infection rate in the exposed and sheltered shore 

environments.  Since there may be differences in infection rates according to 

species, it was necessary to test whether there is a common effect for exposed 

environments relative to sheltered environments within each host species.  

Hence a common odds ratio for exposed and sheltered shore environments was 

fitted within each host species group and permutations were used to determine 

whether this odds ratio is significantly different from 1.  In a permutation test 

the labels of exposed and sheltered environments were swapped within host 

species and the common odds ratio recomputed. The p-value of the test is 

estimated to be the proportion of permutated odds ratio statistics which 

exceeded the observed odd ratio.  

 

4.3.6.4 Mantel-Haenszel (exact) test 

This test was carried out on the 2x2 tables of exposure versus presence/absence 

of virus infection in order to estimate the common odds ratio of the probability 

of virus infection occurring in exposed or sheltered environments, and whether 

this ratio was independent of host species.  
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4.4 Results 

4.4.1  Virus detection by real time-PCR 

Real-time PCR screening found that the MCP DNA fragment is highly prevalent 

in Ectocarpus species, infecting 63% of isolates across the three main species as 

shown in Table 4.2 (79% E. crouaniorum (out of 242), 64% E. siliculosus (out of 

479) and 43% E. fasciculatus (out of 215)).  Figure 4.5 shows a typical screening 

run; the fluorescence increases in the majority of the samples, demonstrating 

the number of positive results in each run. 

 

 
Figure 4.5: A typical real-time PCR screening run demonstrating the increase in 
fluorescence (y-axis) as the cycle number increases (x-axis) as each PCR product 
is amplified.  The negative control is a DNA-free reaction mix and any product 
that amplifies above this level is considered to be a positive result. 

 
  



162 
 

Table 4.2: Percentage of positive MCP real-time PCR test for Ectocarpus species 

Species Total MCP + % 

Ectocarpus crouaniorum 242 191 78.926 

Ectocarpus fasciculatus 215 93 43.256 

Ectocarpus siliculosus 479 305 63.674 

Totals 936 589 62.927 

 

 

4.4.2 Training data set 

The HRM analysis of the clones created in Chapter 2 (Table 4.1) indicates that it 

may be possible to separate the two viral subgroups (A and B) if their melting 

temperature is known.  However, further information was needed since the 

melting points for Flex1 (subgroup B) are close to those for Esil1 (subgroup A).  

The combination of sequence data and melting point information from the 

other E. siliculosus clones (HAS08-17B and HAS08-20A) isolated from Hastings 

(Table 3.1) provided greater confidence for separating the subgroups (based on 

the maximum likelihood analysis in Figure 4.9. 
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Figure 4.6: HRM analysis of technical replicates for the Chapter 2 clones (Table 
4.1.  The threshold bar was set at 0.7 to allow calling of the main peaks but no 
false peaks.  The melting temperature in °C is along the X axis, and the Y axis 
represents a measure of the change in fluorescence.   

 
HRM analysis of the cloned MCP fragments from the infected Ectocarpus and 

Feldmannia strains used in Chapter 2, as well as the other clones mentioned in 

Table 4.1, demonstrated that the melting temperatures could indeed be used to 

distinguish between the two viral subgroups groups (Figure 4.77).  These 

boxplots clearly indicate that although subgroup B has a wide distribution, the 

median is skewed to the lower temperatures.   

An unexpected observation from the HRM analysis of the HAS08-17B and 

HAS08-20A genomic DNA and their cloned MCP fragments described in Table 

4.1 was that multiple melt temperatures, corresponding to different sequences, 

were observed in both isolates as shown in Figure 4.88 (a) for the genomic DNA 

and for both genomic and cloned MCP (Appendix A.2).  The maximum likelihood 

analysis (Figure 4.99) produced from the clone sequences (Table 4.1) shows that 
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not only do the HAS08-17B and HAS08-20A melting temperature peaks 

correspond to multiple sequences, but each isolate contains variants from both 

subgroups A and B.  Their melting points are represented in Figure 4.77 (b) and 

Appendix A.3 as unEV (HAS17B.2 and HAS08-20A.1: unknown Ectocarpus virus 

from subgroup A) and unFV (HAS0817B.4 and HAS08-20A.2: unknown 

Feldmannia virus from subgroup B).  The melt points of the unEV and unFV 

cover almost the entire range of melt points in the training data as shown in  

Figure 4.77, and the medians of their melt points differ from their equivalent in 

the environmental data by 0.77 and 0.80 respectively (Appendix A.2).  

Consequently, the entire set of environmental data was shifted by a mean of 

0.79 in order to account for this shift.  The calibrated environmental data then 

aligned with the distribution of the training data as shown Figure 4.88 (b), and 

therefore gives confidence in our ability to assign groups.  

After the data correction was applied, Subgroup A and B medians and variances 

shown in Appendix A.3 (86.42 & 0.063 and 84.08 & 0.501, respectively) were 

used as the starting parameters for calculating the posterior probabilities used 

for subgroup assignment.  88% of the melting temperatures were successfully 

assigned to one or other of the subgroups using this method (see Appendix A.1 

for the full table of results of the screening experiment with subgroup 

predictions). 

It can also be seen that the RAT08-5C sample did contain two sequences with 

distinct peaks which were detected after cloning, although in the original HRM 
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analysis (Figure 4.8 (a)) the second peak was below the threshold and therefore 

not detected.  These two RAT08-5C (E. crouaniorum) sequences were not 

obviously assignable to either subgroup A or B, and were instead assigned as 

unPV and unPV2 (unknown phaeovirus) in Figure 4.7 (b).  Both Figure 4.7 and 

Figure 4.9 demonstrate the diversity of subgroup B viruses compared to 

subgroup A viruses which have a much more tightly packed distribution of both 

sequences and melting temperatures. 
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Figure 4.7: Box and whiskers plot of melting temperatures obtained from cloned 
MCP fragments.  The box represents the interquartile range which shows the 
middle 50% of the data, the left line being the first quartile, the middle line 
being the median and the right line being the third quartile.  The whiskers 
represent the maximum (or minimum) data point up to 1.5 times the box width 
to either side of the box.   

(a) the variation between replicates and different sequences of the two 
subgroups A and B.  

(b) the variation between replicates of the various virus sequences as defined in 
Figure 4.9  (EsV and unEV (unknown Ectocarpus virus) belong to subgroup A, 
FirrV, FlexV and unFV (unknown Feldmannia virus) belong to subgroup B. unPV 
and unPV2 (unknown phaeovirus) were not assigned to either group 
phylogenetically). 
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Figure 4.8 (a): MCP HRM analysis of two E. siliculosus (HAS08-17B and HAS08-
20A) and one E. crouaniorum (RAT08-5C) isolate showing that multiple peaks do 
indeed occur in these wild populations. Key: Dark blue is HAS08-17B, lighter 
blue is HAS08-20A and purple is RAT08-5C.   The threshold bar was set at 0.38 to 
allow calling of the main peaks but no false peaks.  The melting temperature in 
°C is along the X axis, and the Y axis represents a measure of the change in 
fluorescence.   

(b) Distributions of melting points for the training data (pink) and all 
environmental screening results after calibration (blue).  The peaks represent 
the most common melting temperatures for each dataset. 
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Figure 4.9: Maximum likelihood analysis of cloned phaeoviral MCP fragment as 
in Figure 2.1, including all sequences used for training data, with EhV-86 being 
used as an outgroup. Single value node labels represent ML bootstrap values. 
Where nodes are labelled with two values, this indicates that both ML and 
Bayesian topologies agree (whole numbers represent ML bootstrap values, 
decimals indicate Bayesian posterior probability).  Subgroup A viruses are 
labelled in blue, subgroup B viruses are red and the intermediate Flex and Ecro 
virus variants are green.  Bold values are those greater than 75% bootstrap or 
probability. Sequences marked with asterisks are those used in the training 
data. *indicates sequences from laboratory maintained strains, ** indicates 
unknown Ectocarpus virus (unEV) sequences, *** indicates unknown 
Feldmannia virus (unFV) sequences, **** indicates unknown phaeoviruses 
(unPV and unPV2). 
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4.4.3 Infection rates vs. host species and exposure to waves  

The fact that the data sets studied in this chapter were of unequal sizes means 

that a simple comparison of the number of infections in each species would be 

misleading, and therefore it was decided to use a chi-squared test to account 

for the differences in sample sizes.  This was carried out based on the null 

hypothesis that the number of infections (characterized as the number of 

melting temperature peaks) is the same between sheltered and exposed 

environments based on the data in Table 4.3, which revealed that the sheltered 

environments have lower than expected infection rates compared to the 

exposed environments (p = 2.5e-07).  For example, if the distribution was 

homogeneous between the two environments, the number of isolates with a 

single viral infection would be expected to be 105.7 in exposed environments 

and 298.3 in sheltered environments, but the observed numbers were 143 and 

261, respectively.  An additional odds ratio estimated by the fitting of a logistic 

regression model indicated that the odds of a sample being infected by one or 

more viruses is 2.03 (95% confidence interval 1.47-2.81) times greater than for a 

sample from a sheltered environment. 
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Table 4.3: Number of infections in all isolates from exposed and sheltered 
environments.  Numbers in brackets represent the expected values if infection 
rates were homogeneous between the two types of environments. 

Number of infections (HRM peaks) Exposed  Sheltered Total number of isolates 

0 63 (91.3) 286 (257.7) 349 

1 143 (105.7) 261 (298.3) 404 

2 34 (37.7) 110 (106.3) 144 

3 6 (11.3) 37 (31.7) 43 

Total number of isolates 246 694 940 

 
 

Concentrating on the most abundant species, i.e. E. siliculosus, E. fasciculatus 

and E. crouaniorum, a further Chi-squared test for homogeneity of virus type 

with species also rejected the null hypothesis (p = 3.96e-19).  Table 4.4 shows 

that E. fasciculatus had fewer subgroup A infections than expected (30 

observed, 69.3 expected) but more from subgroup B (19 observed, 8.6 

expected), E. crouaniorum showed the reverse pattern (118 observed and 80.8 

expected in subgroup A; 7 observed and 10 expected in subgroup B), and the 

number of subgroup A infections in E. siliculosus were roughly as expected (158 

observed, 156 expected) but the subgroup B infection rate was lower (12 

observed, 19.4 expected). 
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Table 4.4: Incidence of infection in E. siliculosus, E. fasciculatus and E. 
crouaniorum by subgroup A and B viruses.  Numbers in brackets represent the 
expected values if infection rates were homogeneous between the three 
species. 

Viral subgroup 

present 

E. siliculosus E. crouaniorum E. fasciculatus Total number 

of isolates 

A 158 (156) 118 (80.8) 30 (69.3) 306 

B 12 (19.4) 7 (10.0) 19 (8.6) 38 

Both 77 (71.8) 43 (37.2) 21 (31.9) 141 

None 174 (173.8) 50 (90) 117 (77.2) 341 

Total number of 

isolates 

421 218 187 826 

 
However, a further chi-squared test revealed that the null hypothesis of equal 

distribution of species between sheltered and exposed sites can be rejected (p = 

1.2e-45).   From Table 4.5 it can be seen that the distribution of species is not 

uniform between exposed and sheltered sites: E. crouaniorum and E. 

fasciculatus are more abundant than expected in exposed areas and less 

common in sheltered areas (104 observed, 63.9 expected and 109 observed, 

54.6 expected, respectively), whereas the converse is true for E. siliculosus (31 

observed, 127.5 expected). 
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Table 4.5: The distribution of E. siliculosus, E. fasciculatus and E. crouaniorum in 
exposed and sheltered environments. Numbers in brackets represent the 
expected values if the three species were distributed evenly between exposed 
and sheltered environments. 

Species Sheltered Exposed Total number of isolates 

E. siliculosus 448 (359.8) 31 (127.5) 479 

E. crouaniorum 136 (180.2) 104 (63.9) 240 

E. fasciculatus 96 (154.0) 109 (54.6) 205 

Total number of isolates 680 244 924 

 

Because both algal host species and exposure have an effect on the infection 

rates of these viruses, a further test was carried out to take both of these 

factors into consideration.  Table 4.6 shows the incidence of infection of the two 

subgroups of viruses by exposure, subdivided into species which demonstrates 

the variability in viral subgroup between both the different species and the 

exposure levels.   

The observed frequency of the different viral subgroups within E. siliculosus are 

roughly as would be expected if the distribution were homogeneous between 

the different subgroups and exposure levels; for example, the expected 

amounts of subgroup B in sheltered and exposed locations were 11.2 and 0.8 

respectively, and the observed amounts were 12 and 0 (Table 4.6 (a)).   

However, E. crouaniorum had many more uninfected isolates in sheltered 

locations than expected (observed 43, expected 27.3) and fewer uninfected 

isolates in exposed areas than expected (observed 7, expected 22.7).  
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Consequently the number of subgroup A infections were much lower than 

expected in sheltered areas (observed 46, expected 63.9) and higher in exposed 

areas (observed 71, expected 53.1).  The number of subgroup B and infections 

by both subgroups were roughly as expected in this species (Table 4.6 (b)).   

Conversely, in spite of E. fasciculatus also being enriched for uninfected isolates 

in sheltered shores (observed 69, expected 58.8) compared to exposed 

(observed 46, expected 56.2), it shows the opposite subgroup infection pattern 

to E. crouaniorum, having more subgroup B than expected in exposed shores 

(observed 18 expected9.3) and fewer in sheltered areas (observed 1, expected 

9.7).  However, it does also have approximately the expected numbers of the 

other subgroup (A) and both subgroups in both types of locations, as was seen 

for E. crouaniorum (Table 4.6 (c)). 

A Cochran-Mantel-Haenszel test for homogeneity across sheltered and exposed 

sites with respect to species based on Table 4.6 led to rejection of the null 

hypothesis (p = 8.583e-11), i.e. both species and exposure have an effect on the 

type of virus infection.   

The data from Table 4.6 was reduced to a binary form considering only isolates 

which tested positive for virus infection,  with those only infected by subgroup A 

viruses represented by 0 and those infected by subgroup B, or both A and B, as 

1.  Fitting a logistic regression model to this binary data shows that the odds of 
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subgroup B infection is significantly more likely (p = 0.00302) in infected isolates 

of E. fasciculatus than in either E. crouaniorum or E. siliculosus. 

A Mantel-Haenszel (exact) test, considering the presence or absence of virus 

infection for each species individually, rejected the hypothesis of infection rates 

for each species being independent of exposure (p = 8.8e-11) with an estimated 

common odds ratio of 3.74 (95% confidence interval 2.42-5.89).  When each 

species was considered individually, they each had different odds ratios as 

shown in Table 4.7.  Although the 95% confidence intervals for each species 

(1.19 – 8.35 for E. siliculosus, 2.84-15.45 for E. crouaniorum, 1.62-5.20 for E. 

fasciculatus) contain the common odds ratio (3.74), this test still suggests that 

the infection rate of E. crouaniorum is higher than that in E. siliculosus and E. 

fasciculatus, and that exposure increases the chance of phaeoviral infection in 

all three species.  
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Table 4.6: A three-way contingency table showing the viral subgroups in 
sheltered and exposed samples divided by species:  (a) E. siliculosus (b) E. 
crouaniorum and (c) E. fasciculatus. Numbers in brackets represent the 
expected values if the viral types were distributed evenly between exposed and 
sheltered environments for each algal host species. 

(a) E. siliculosus    

Infection type Sheltered Exposed Total number of isolates 

None 169  (162.0) 5 (12) 174 

Subgroup A Only 139 (147.1) 19 (10.9) 158 

Subgroup B Only 12 (11.2) 0 (0.8) 12 

Both  72 (71.7) 5 (5.3) 77 

Total number of isolates 392 29 421 

    
(b) E. crouaniorum 

 

   

Infection type Sheltered Exposed Total number of isolates 

None 43 (27.3) 7 (22.7) 50 

Subgroup A Only 46 (63.9) 71 (53.1) 117 

Subgroup B Only 4 (3.8) 3 (3.2) 7 

Both  25 (23.0) 17 (19.0) 42 

Total number of isolates 118 98 216 

    
(c) E. fasciculatus 

 

   

Infection type Sheltered Exposed Total number of isolates 

None 69 (58.8) 46 (56.2) 115 

Subgroup A Only 13 (14.3) 15 (13.7) 28 

Subgroup B Only 1 (9.7) 18 (9.3) 19 

Both  9 (9.2) 9 (8.8) 18 

Total number of isolates 92 88 180 
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Table 4.7: Odds ratios of infection rates for E. siliculosus, E. fasciculatus and E. 
crouaniorum from exposed and sheltered environments, including the 95% 
confidence intervals and p-value. 

Species Odds Ratio Odds Ratio 

(95% Conf. Int.) 

p-value 

E. siliculosus 3.15 [1.19, 8.35] 1.9e-02 

E. crouaniorum 6.63 [2.84, 15.45] 9.4e-07 

E. fasciculatus 2.91 [1.62, 5.20] 3.6e-04 

 

4.4.4  Laminariales screening 

Some of the kelp isolates also tested positive for the phaeoviral MCP fragment, 

albeit at a lower rate than in the Ectocarpus isolates, as shown in Table 4.8: 10% 

Laminaria hyperborea (out of 10), 17% L. digitata (out of 48) and 13% 

Saccharina latissima (out of 24) were infected.  Table 4.9 provides the full 

results, including melting temperatures.  Since no signs of virus infection have 

ever been observed in this order, it was decided to sequence one MCP positive 

isolate from each species (Table 4.1), in order to determine whether these could 

be due to contamination from ectocarpoid endophytes.  Phylogenetic analysis 

showed that the Laminariales viruses group together (Figure 4.10) and are more 

closely related to subgroup B than to subgroup A, but still form a separate 

group, with a bootstrap value of 60, posterior probability of 0.70.  The group 

prediction based on these melting temperatures fits within the group B viruses 

with high significance, except for two peaks which do not significantly belong to 

either subgroup A or B (see Table 4.9.) 
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Table 4.8: Percentage of positive MCP real-time PCR tests for members of the 
Laminariales. 

Species Total MCP + % 

Laminaria digitata 48 8 16.67 

Laminaria hyperborea 10 1 10.00 

Saccharina latissima 24 3 12.50 

Totals 82 12 14.63 

 
 
Table 4.9: Positive real-time PCR results from the kelp isolates collected from 
Perharidy, France (location 35 of Figure 4.3 in 2010. Isolates marked * were 
sequenced for the phylogeny in Figure 4.100.  Total number of isolates for L. 
digitata = 48, L. hyperborea = 10, S. latissima = 24.  Posterior probabilities 
indicate the chance that the peak belongs to subgroup A instead of subgroup B. 

Genotype Species Peak 1 Peak 2 
Predicted 
Group 

Posterior 
probability 

LdigPH10-10 Laminaria digitata 83.38   B 0.0012 

LdigPH10-11 Laminaria digitata 83.25 
 

B 2.00E-04 

LdigPH10-18* Laminaria digitata 83.15 
 

B 0 

LdigPH10-22 Laminaria digitata 83.27 
 

B 2.00E-04 

LdigPH10-24 Laminaria digitata 83.25 
 

B 2.00E-04 

LdigPH10-31 Laminaria digitata 82.97 
 

B 0 

LdigPH10-33 Laminaria digitata 83.3 
 

B 4.00E-04 

LdigPH10-44 Laminaria digitata 83.27 
 

B 2.00E-04 

LhypPH10-3* Laminaria hyperborea 82.4 83.45 B/B 0/0.0033 

SlatPH10-10* Saccharina latissima 83.22 83.98 B/NA 0.0001/0.5443 

SlatPH10-14 Saccharina latissima 84 
 

NA 0.5849 

SlatPH10-20 Saccharina latissima 83.53   B 0.0096 
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Figure 4.10: Maximum likelihood analysis of cloned phaeoviral MCP fragment as 
in Figure 2.1, including the positive Laminariales results from the screening 
study, with EhV-86 being used as an outgroup. Single value node labels 
represent ML bootstrap values. Where nodes are labelled with two values, this 
indicates that both ML and Bayesian topologies agree (whole numbers 
represent ML bootstrap values, decimals indicate Bayesian posterior 
probability).  Subgroup A viruses are labelled in blue, subgroup B viruses are 
red, the intermediate Flex virus variant is green and the Laminariales sequences 
are in purple.  Bold values are those greater than 75% bootstrap or probability.  
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4.5 Discussion 

This study has successfully expanded on previous phaeoviral screening studies 

by using HRM analysis combined with a newly designed pair of MCP primers to 

not only detect the presence of viruses, but also to assign 88% of the detected 

viruses to one of the two viral subgroups (Ectocarpus virus-like or Feldmannia 

virus-like[184]).  In addition, we have successfully detected phaeoviruses in the 

kelps which, to our knowledge, have not been previously reported to be infect 

by these viruses. 

This study showed that 43%, 64% and 79% isolates of E. fasciculatus, E. 

siliculosus and E. crouaniorum, respectively are infected with at least one 

phaeovirus, i.e. HRM amplification of phaeoviral PCR revealed at least one 

melting temperature peak.  This falls well within the amounts found by previous 

PCR-based studies which detected viral DNA in between 40 – 100% of natural 

Ectocarpus populations[105,108].  In addition, the previous studies of physical 

symptoms in field populations confirm the infection rate being proportionately 

lower in E. fasciculatus (less than 10%[79]) than in E. siliculosus (up to 20%[98]). 

The training data revealed that the two viral subgroups do indeed have different 

melting temperatures and that these can be used to assign viral types to the 

melting temperatures obtained from environmental isolates of various 

Ectocarpus species.  Although we are confident of our ability to assign viral 

subgroups within the Ectocarpus species, further work would be necessary 

before we could confidently apply this technique to more widespread screening 
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of other members of the brown algae such as kelp or Feldmannia, since our 

training data did not consider these other algae. 

The discovery of multiple peaks in the environmental isolates was not wholly 

unexpected given the results of the sequencing studies of Chapter 2, which 

revealed multiple virus sequences within laboratory maintained strains of 

ectocarpoid algae[184].  However, the extent to which both subgroup A and B 

viruses are present in the same environmental isolate, as revealed by melting 

temperature analysis, as well as cloning and sequencing, was completely 

unexpected based on previous assumptions that each host strain is infected by 

only one phaeovirus.  Nonetheless, we have already discovered an intermediate 

virus sequence (“Flex8”) present in the same Flex isolate as subgroup B virus 

variants which may be a sign of the emergent evolution of new phaeoviruses; 

infections by viruses from both subgroups could be considered as a further 

necessary step in the evolution of phaeoviruses, allowing for exchange of 

genomic material. 

The fact that E. crouaniorum and E. fasciculatus are enriched on exposed shores 

may be because their preferred high and low shore locations[167] (Error! 

Reference source not found.) are somewhat more stable than the mid-

intertidal range preferred by E. siliculosus which would be particularly 

vulnerable to wave action for a higher proportion of the time.  Although the 

result was not statistically significant, our analyses still suggest that E. 

crouaniorum is more likely to be infected by one or more phaeoviruses than the 
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other two species studied here.  In spite of the enrichment of E. crouaniorum on 

exposed shores, it still has a higher rate of overall phaeoviral infection than E. 

fasciculatus which is also enriched on exposed shores.  This is perhaps counter-

intuitive since its high shore location would be less exposed to water-borne 

viruses; however this could be a sign of a higher rate of an early persistent 

infection of this species after the split from the other Ectocarpus species. 

The virus type (i.e. the subgroup present) is not homogeneous between the 3 

most prevalent Ectocarpus species when considering both sheltered and 

exposed locations together.  Although the differences in type of viral infection 

within infected isolates is only statistically significant in showing that E. 

fasciculatus has a higher proportion of subgroup B than the other two species, 

our analysis still suggests that E. fasciculatus and E. siliculosus are enriched for 

subgroup B, whereas E. crouaniorum has more A and less B than expected.  

Feldmannia irregularis and F. simplex (subgroup B viral hosts) are found in the 

mid- and low-intertidal and subtidal zones[186,187] (Error! Reference source 

not found.2), closer to the populations of E. fasciculatus and E. siliculosus which 

may explain the enrichment of subgroup B viruses in these species since the 

closer contact will facilitate cross species infections.  We cannot draw any 

conclusions about whether the converse has occurred, i.e. whether subgroup A 

viruses have infected Feldmannia species, since the sampling effort was 

targeting Ectocarpus hosts, although it seems likely that this has occurred, given 

the “Flex8” virus grouping with subgroup A sequences shown in the previous 
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chapter.  A similar study targeting Feldmannia species would reveal whether 

subgroup A viruses have infected this genus to the same extent. 

When considering the effect of wave exposure on subgroup type, E. 

crouaniorum and E. fasciculatus showed opposite trends, i.e. that the former 

had fewer A than expected in sheltered, whereas the latter had more B than 

expected in exposed areas.  This suggests that wave exposure is an important 

factor for the spread of both phaeoviral subgroups, since E. fasciculatus will be 

exposed for longer periods since it occupies the lower shore level and thus is 

more likely to come into contact with new phaeoviral infections.  Conversely, E. 

croaniorum on the high shore will be exposed to waves for less time in each 

tidal cycle and therefore has a lower infection level. 

Regardless of viral subgroup, this HRM assay has shown that the frequency of 

viral infection is affected by both the host species and the exposure to wave 

energy of the shore from which the isolate was collected.  However, since 

exposure also affects species distribution, it is very difficult to determine which 

of these is the most important factor for determining rate of phaeovirus 

infection.    

The common odds ratio showing that exposed isolates are 3.74 times more 

likely to be infected by a phaeovirus than those from sheltered sites is a fairly 

large effect.  Other studies of factors affecting viral infection have found odds 

values of similar orders of magnitude, from 1.2-2.69 (the odds of injecting drug 
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users being infected with Hepatitis C virus living in Glasgow instead of 

London[199]) to 4.4 (the odds of West Nile virus infection in humans in US 

counties with less forest cover (a proxy for urbanisation) than heavily forested 

counties[200]), up to greater than 10 (the odds of Epstein-Barr virus infection in 

humans with systemic lupus erythematosus[201]).    

It was decided that due to the confounding factors of differences in infection 

between different species and also exposure, and the fact that not all species 

were represented in all locations and that the proportions of exposed and 

sheltered habitats vary with location, studies of virus prevalence and type with 

location would prove inconclusive.  More sampling effort with an experimental 

design to specifically target this question is necessary. 

Finally, we have successfully detected what appears to be a new group of 

viruses infecting the kelps.  In spite of the melting points of the kelp MCP 

fragments identifying them as belonging to subgroup B, they still formed a 

phylogenetically distinct division within this subgroup.  It seems likely, 

therefore, that these are indeed unique to the kelps and not due to potential 

contamination from endophytic members of the order Ectocarpales.  This 

potential virus group is very interesting and worth further investigation, since 

the kelps are a group of economically important algae, and therefore anything 

potentially affecting their growth and fertility would be of great scientific and 

commercial interest.  Indeed it may prove possible to use this screening test to 
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extend the range of phaeoviruses detected even further to include more 

members of the brown algae, such as the order Fucales. 
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CHAPTER 5 FINAL DISCUSSION 

The importance of viruses in the marine environment is apparent when one 

considers their abundance and the fact that they are probably the most diverse 

group of organisms on the planet[202], playing such crucial roles as controlling 

host abundance[40], biogeochemical processes[40], horizontal gene transfer 

and thus host evolution[18].  In spite of the wealth of information about the 

physical infection process of EsV-1 in Ectocarpus siliculosus from investigations 

by Dieter Müller[97,101], little is understood about the true diversity, and thus 

evolution, of phaeoviruses, since most phycodnaviral studies only grant them a 

cursory investigation[75,76]. 

 

5.1 Phaeoviruses are extremely diverse 

In attempting to further our understanding of the genetic diversity, distribution, 

infection frequency and infection mechanisms within the phaeoviruses 

specifically, this study has revealed a great deal more than originally expected 

by revealing the diversity of phaeoviruses in the strains studied here.  The true 

extent of phaeoviral diversity has only been hinted at previously from 

suggestions that viral size variants in a Feldmannia species are due to 

differences in repeat regions[158].  However, the results from this study show 

that this is only the tip of the iceberg.  The phaeoviruses were once considered a 

single virus group based on a shared phylogeny [64] and classified according to 

the host in which they are found [88].  Based on our observations they need to 
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be redefined into two subgroups; one conserved group that infects at least 

three genera within the Ectocarpales, and one much more diverse group which 

has so far only been observed within the Feldmannia genus.  While these two 

groups have already been suggested, based on previous observations of the 

genome size as well as observed differences in membrane composition[74], this 

study has provided a great deal more information to confirm this theory. 

By carrying out a routine PCR and sequencing effort to enable us to carry out 

maximum likelihood analysis to confirm the classification of the putative 

phaeoviruses EfasV-1, FlexV-1, PlitV-1, HincV-1 and MclaV-1, considerably more 

has been revealed; specifically, up to eight phaeoviral sequence variants were 

present in a single algal strain and the presence of polymorphisms in key 

phaeoviral genes in the transcriptome implies that multiple variants are active 

within an individual strain.   

It is likely that phaeoviral diversity is even greater than discovered here, and this 

would be confirmed by a further study considering more genes, or even whole 

viral genomes after virion extraction.  Chromosome walking off the known ends 

of the virus sequence, followed by cloning and sequencing, could reveal the 

virus insertion position within the host genome, but was not carried out due to 

time constraints.  Complete genome sequencing of host strains would also 

demonstrate whether multiple complete viruses are indeed inserted into the 

genome or just multiple viral fragments, as well as allowing identification of the 

site(s) of viral integration. 
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However, the diversity of variants found here definitely suggests the existence 

of two phaeoviral subgroups; subgroup A is a conserved group of viruses that 

infect at least 3 genera (Ectocarpus, Pilayella and Hincksia) across 2 families 

(Ectocarpaceae and Acinetosporaceae), whereas the viruses of the much more 

divergent subgroup B are limited to hosts from just one genus (Feldmannia) in 

the laboratory strains tested here.  The observation of both subgroups of 

viruses in Ectocarpus from the HRM screen suggests that the host boundaries of 

these subgroups are not so clearly defined, and a similar screening study 

focussing on Feldmannia isolates would reveal whether these species are also 

susceptible to infection from both virus subgroups. 

To confirm the existence of these two subgroups, further sequence information 

is necessary; the full host genome sequence mentioned previously would show 

whether the different gene sequence variants discovered by this study are part 

of different complete proviruses, or simply inactive fragments of viral genes.  If 

the subgroups are as predicted here, sequencing would also reveal differences 

in virus genome size as well as gene content which could be used to split the 

viruses into their respective subgroups. 

 

5.2 Potential phaeovirus evolutionary mechanisms revealed 

Thus far, phaeoviruses have been considered to have a K-type, persistent 

evolutionary strategy, favouring stable integration into their host’s genome [57] 



188 
 

rather than having the high mutation and reproduction rates associated with r-

strategists.  Our observations show that the diverse subgroup B viruses have 

adopted a strategy between these two extremes, and appear to be evolving 

away from their original hosts (from the families Ectocarpaceae and 

Acinetosporaceae) to infect members of the genus Feldmannia.  This is 

demonstrated in the F. simplex strain, which contained the largest number of 

subgroup B variants, and was also infected by a subgroup A virus which appears 

to be an evolutionary intermediate since it shares some sequence similarities 

with subgroup B viruses.   

Previous studies have suggested that phaeoviruses have evolved by gene loss 

from a common ancestor[87], since they both have different subsets of various 

DNA replication genes, but our results suggest a slightly different scenario 

whereby subgroup B phaeoviruses have evolved from subgroup A.  Our analyses 

have even suggested various mechanisms by which the subgroup B diversity 

may have developed relative to the subgroup A viruses.  It seems likely that the 

first stage was the development of polymorphisms in a region of DNA 

polymerase which is known to be important for controlling mutation rates in 

yeast[4], possibly as a result of the host switch from Ectocarpus to Feldmannia. 

This increased the mutation rate and could have led to the loss of a 

proofreading exonuclease in subgroup B viruses that is highly expressed in EsV-1 

(subgroup A) and the re-activation of an integrase that is expressed in FirrV-1 

(subgroup B) but is inactive in EsV-1.  This combination of differences not only 
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allows spontaneous variations to occur by decreased fidelity of DNA replication 

by the mutated DNA polymerase and absence of the proofreading exonuclease, 

but the active integration allows increased recombination between the different 

variants. 

Moreover, our observation from the HRM analysis, confirmed by the 

sequencing data and maximum likelihood analysis, shows that this infection 

with phaeoviruses from both subgroups is a reasonably common occurrence, 

even in environmental isolates (17%), and therefore is not simply an artefact of 

the prolonged laboratory culturing of the original four strains.  Furthermore, the 

transcriptome results showed that these multiple variants are not merely 

inactive artefacts of mutation over time, but are actively being transcribed in F. 

irregularis.  This provides a wealth of genetic variation within each virus-

infected zoidangium, facilitating further mutation via the active integrase gene, 

and perhaps contributing to virally-mediated horizontal transfer of sections of 

the host genome as the viruses move from infecting their original hosts to 

invading their new ones. 

The environmental screening results support previous studies [80,108] showing 

that up to 90% of individuals in natural populations of Ectocarpus can contain 

phaeoviral DNA without necessarily showing any symptoms.  Although there is 

no obvious explanation as to the prevalence of phaeoviruses in these algae, 

since the only obvious phenotypic change from infection is a decrease or 

cessation of host reproduction, it is difficult to imagine why the host alga would 
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maintain such a large fragment of DNA if it were completely useless.  One 

observation during the course of this study was that actively symptomatic 

cultures appeared “cleaner” under the microscope than those without 

symptoms, i.e. they had less obvious epiphytic growth associated with the 

filaments.  Although this is a purely anecdotal observation, it may be a defensive 

benefit provided by the virus to the host in exchange for the provision of the 

stable intracellular habitat which the host provides. 

Furthermore, we have discovered that infection rates, and even subgroups of 

viruses, differ depending on host species and whether the isolate comes from 

an exposed or sheltered shore.  Of particular interest is that the two species (E. 

fasciculatus and E. siliculosus) which were enriched for subgroup B viruses 

favour the lower shore locations that are also inhabited by Feldmannia species.  

This suggests a scenario whereby the phaeoviruses originated in the Ectocarpus 

genus (subgroup A) and mutated to be able to infect both Ectocarpus and 

Feldmannia (subgroup B), based on the observation of both subgroups in 

Ectocarpus and only subgroup B in Feldmannia.  However, the strains used in 

this screening study were selected for an unrelated investigation into 

Ectocarpus ecology and therefore research into the viruses infecting Feldmannia 

was limited to the original strains in which FsV-1 and FlexV-1 were found, which 

is probably not an accurate representation of the subgroup distribution in this 

genus.  In order to further investigate this assumption, a much broader study 

considering the whole range of brown algae is necessary.  If indeed the scenario 
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suggested above is true, there should be no (or very little) infection of 

Feldmannia species by subgroup A.  In addition, this further study would 

determine whether this test, or a modification of it, could be used to screen 

more widely for phaeovirus diversity within the brown algae. 

 

5.3 Explanation for fragmented FirrV-1 genome and Feldmannia virus 

diversity 

The diverse nature of the Feldmannia viruses provides an explanation for the 

differences between two of the phaeoviral sequencing projects of EsV-1[1] and 

FirrV-1[87] in spite of them being carried out by the same authors.  The EsV-1 

genome is fully assembled and of the expected size, whereas the FirrV-1 

genome could not be assembled in one contiguous sequence and was instead 

published as a series of smaller contigs, including some which contained 

orthologous genes to those on larger contigs, the total of which exceeded the 

expected size of the complete genome.  Based on our findings of a single EsV-1 

variant, but multiple FirrV-1 variants, within the strains used to generate these 

genomes, it becomes clear that this may well be the cause of the assembly 

problems found with FirrV-1.   

Multiple lysogeny has been described for many years in bacteriophage studies, 

e.g. [203,204,205] however to our knowledge this has not been found in 

eukaryotic DNA viruses such as the phaeoviruses, with one exception: an 

infected strain of Feldmannia sp. was found to contain two different size 
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variants[158] with the active variant depending on the culture temperature, 

although these multiple viruses were not confirmed by sequence data and 

therefore the true diversity was not revealed until now.  It is possible that this 

higher diversity is due to the lower position of Feldmannia species on the shore 

than Ectocarpus which potentially could increase the exposure of these hosts to 

the virus, however it seems more likely that it is due to the mutations in DNA 

polymerase and loss of proofreading genes in the smaller viral genomes as 

described above. 

 

5.4 Transcriptome dataset is an excellent resource for future work 

Phaeoviral transcriptome studies have so far been limited to the 

transcriptionally inactive EsV-1-like provirus in the Ectocarpus genome[91], and 

a microarray study of EsV-1[168] which demonstrated a pattern of gene 

expression.  Our study of the entire FirrV-1 transcriptome sequence has 

provided many useful observations of FirrV-1 activity and genetic 

polymorphisms; however, by limiting our study to the viral genes as a result of 

mapping the reads to the FirrV-1 genome, we have automatically eliminated all 

the information about the host gene expression.  Whilst the F. irregularis 

genome is not available to use as a reference, the Ectocarpus genome is likely to 

be sufficiently similar to allow mapping of some of the host genes, which will 

provide some information about the host gene content, sequences and activity.  

The analysis of this pre-existing dataset is for a future study which would reveal 
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a great deal of information about the active genes within this F. irregularis host, 

and potentially its evolutionary relationship to the Ectocarpus genus, allowing 

the identification of host transcripts without much further financial or time 

investment. 

 

5.5 The discovery of kelp viruses 

The discovery of a new subgroup of viruses within the kelps raises the 

interesting question of whether other orders within the brown algae are also 

infected with viruses that have not yet been detected, and if so, how many?  

We are confident that the phaeoviral sequences detected in the kelps are not 

due to potential contamination by endophytic Ectocarpus species since the 

maximum likelihood analysis showed that the kelp MCP sequences grouped 

separately from the other phaeoviruses considered here.  However, there is still 

a great deal of potential for further study within this new group of 

phaeoviruses.   

Due to the commercial importance of many kelp species, any factor that could 

potentially affect their reproduction, such as viruses, would be of great interest, 

therefore this is an important first step in the identification of viruses within 

these species.  Although we have only shown the presence of phaeoviral MCP 

sequence in this study, genome and transcriptome sequencing would determine 

whether these species contain complete, active viruses or simply an inactive 

relic proviral infection.  The design of kelp-specific viral primers would also give 
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a more accurate representation of the true extent of phaeoviral infection in 

these species, since this study used primers which were designed against 

ectocarpoid algal viruses and therefore it is impossible to say whether the lower 

infection rate in the kelps is a true result or simply because the primers used 

here were too specific to amplify the less- related kelp viruses.  Close physical 

examination by microscopy may also reveal viral reproduction, either as arrays 

of virions in the cell, or physical abnormalities of the host.  This could be 

followed by virion extraction and further sequencing to greatly expand 

knowledge of viruses in kelps and their potential effects. 

 

5.6 Wider impact 

Overall, the results presented in this thesis show that the relationship between 

brown algae and their phaeoviruses is far more complex than previously 

suspected.  Until now the phaeoviruses have been believed to be a single 

monophyletic group of viruses, and the generally accepted practice of naming 

the virus for the host in which it was found relied on host specificity which we 

have shown is not necessarily as strict as that practice would suggest.  Now we 

have shown that the phaeoviruses comprise at least two subgroups, and 

possibly three if the kelp viruses are taken into consideration, and that the host 

range of one of these subgroups is much less specific than previously thought, 

since they are able to infect multiple genera within the Ectocarpales.  

Nonetheless, the data presented here suggest an ancient relationship between 
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the phaeoviruses and their hosts in which integration and diversification has 

occurred over a long time period, resulting in a stable co-existence between not 

only the hosts and their phaeoviruses, but also between different phaeoviruses 

within the same host. 

Currently phaeoviruses are believed to only infect members of the Ectocarpales, 

the small filamentous brown algae.  The discovery of potential viruses in kelp 

could be of great interest to the commercial production of these species, since if 

the symptoms are similar to known phaeoviruses, they could potentially affect 

their host’s reproduction, so it will be crucial to understand the effects of viral 

infection in these species, as well as potential triggers for the reactivation of 

virus reproduction in order to minimise their impact on the industries build up 

around them. 

The findings of this study are not only of interest to kelp farmers and algal 

virologists, but also reveal much about the field of general viral evolution.  Until 

now, studies of phaeoviral evolution have been limited to phylogenetic analysis 

and genetic composition.  We have not only uncovered potential mechanisms 

for increased mutation rates caused by the DNA polymerase mutation and lack 

of a proofreading exonuclease, but also for increased chances of genetic 

recombination and horizontal gene transfer due to the simultaneous infection 

by multiple viral sequence variants and an active integrase gene. 
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The shift from the persistent K-type life strategy of the subgroup A viruses 

towards the greater diversity, but more limited host range, of the viruses within 

subgroup B, takes advantage of the higher mutation rates of r-strategists whilst 

maintaining stable relationships with their hosts. This a perfect example of 

evolution in action, and could provide a convenient model by which to study the 

mechanisms of more virulent emergent diseases such as HIV[152], H5N1[154] 

and DWV[155].  Due to the potential scale and covert nature of persistent 

infections, many similar scenarios could still be undetected, and the presence of 

these as yet unknown infections could potentially have a massive impact on 

global biogeochemical processes.  Similarly, this infection strategy is likely to be 

more prevalent than currently suspected in related animal viruses, with equally 

huge impacts on our ability to control further emergent diseases. 
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Appendices 

A.1 Isolates screened for phaeoviral DNA and results of subgroup analysis 

Key 

 “Tm”  Melting temperature peak 
"Unclassified" Infected with virus that cannot be classified at 90% threshold 
"None"  No virus infections 
"0"   Group B virus infection (with >90% certainty) 
"1"   Group A virus infection (with >90% certainty) 
"0*"   Group B virus infection and an unclassified virus 
"1*"   Group A virus infection and an unclassified virus 
"Both"   Group A and Group B infection (both classified with >90% certainty)  
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Table A.1: Isolates screened for phaeoviral DNA and results of subgroup analysis 

Name No. of infections Tm 1 / °C Tm 2 / °C Tm 3/ °C Collector Species Country Collection site Date Exposure Virus Group 

ARB7C 3 83.45 84.3 85.55 AF Peters Ectocarpus crouaniorum UK 11 09/06/2004 Exposed Both 
TRE08-15C 3 82.75 83.07 85.57 AF Peters Ectocarpus crouaniorum UK 21 21/06/2008 Exposed Both 
TRE08-16C 3 81.75 82.68 85.42 AF Peters Ectocarpus crouaniorum UK 21 21/06/2008 Exposed Both 
WEM08-10C 3 83.78 84.4 85.35 AF Peters Ectocarpus crouaniorum UK 26 21/05/2008 Exposed Both 
BUT08-11A 2 82.1 85.62 NA AF Peters Ectocarpus crouaniorum UK 10 02/06/2008 Exposed Both 
ARB4C 2 84.5 85.45 NA AF Peters Ectocarpus crouaniorum UK 11 09/06/2004 Exposed Both 
WIC08-25C 2 83.4 85.32 NA AF Peters Ectocarpus crouaniorum UK 13 12/06/2008 Exposed Both 
SKY08-9 2 85.07 85.77 NA AF Peters Ectocarpus crouaniorum UK 14 14/06/2008 Exposed 1* 
TRE08-17A 2 82.63 85.45 NA AF Peters Ectocarpus crouaniorum UK 21 21/06/2008 Exposed Both 
TRE08-4B 2 83.63 85.27 NA AF Peters Ectocarpus crouaniorum UK 21 21/06/2008 Exposed Both 
TRE08-9B 2 84.25 85.5 NA AF Peters Ectocarpus crouaniorum UK 21 21/06/2008 Exposed Both 
RHOS08-1C 2 82.37 85.28 NA AF Peters Ectocarpus crouaniorum UK 22 20/06/2008 Exposed Both 
WEM08-15A 2 83.98 85.7 NA AF Peters Ectocarpus crouaniorum UK 26 21/05/2008 Exposed Both 
WEM08-16A 2 83.17 86.02 NA AF Peters Ectocarpus crouaniorum UK 26 21/05/2008 Exposed Both 
WEM08-19A 2 82.27 85.77 NA AF Peters Ectocarpus crouaniorum UK 26 21/05/2008 Exposed Both 
WEM08-20B 2 84.9 85.85 NA AF Peters Ectocarpus crouaniorum UK 26 21/05/2008 Exposed 1* 
WEM08-21C 2 82.22 85.32 NA AF Peters Ectocarpus crouaniorum UK 26 21/05/2008 Exposed Both 
WEM08-7A 2 84.83 85.75 NA AF Peters Ectocarpus crouaniorum UK 26 21/05/2008 Exposed 1* 
TOR4A 2 82.05 85.4 NA AF Peters Ectocarpus crouaniorum UK 30 29/06/2008 Exposed Both 
GOS4c 2 84.15 85.52 NA AF Peters Ectocarpus crouaniorum UK 31 28/05/2008 Exposed Both 
BUT08-13C 1 85.65 NA NA AF Peters Ectocarpus crouaniorum UK 10 02/06/2008 Exposed 1 
BUT08-1A 1 85.42 NA NA AF Peters Ectocarpus crouaniorum UK 10 01/06/2008 Exposed 1 
BUT08-4A 1 85.97 NA NA AF Peters Ectocarpus crouaniorum UK 10 01/06/2008 Exposed 1 
BUT08-5C 1 85.95 NA NA AF Peters Ectocarpus crouaniorum UK 10 01/06/2008 Exposed 1 
BUT28A 1 85.5 NA NA AF Peters Ectocarpus crouaniorum UK 10 02/06/2008 Exposed 1 
ARB1C 1 85.52 NA NA AF Peters Ectocarpus crouaniorum UK 11 09/06/2004 Exposed 1 
ARB8A3 1 85.53 NA NA AF Peters Ectocarpus crouaniorum UK 11 09/06/2004 Exposed 1 
RAT08-5C 1 84.65 NA NA AF Peters Ectocarpus crouaniorum UK 12 10/06/2008 Exposed Unclassified 
RAT9B 1 85.67 NA NA AF Peters Ectocarpus crouaniorum UK 12 11/06/2008 Exposed 1 
WIC08-10C 1 85.4 NA NA AF Peters Ectocarpus crouaniorum UK 13 12/06/2008 Exposed 1 
WIC08-16C 1 84.98 NA NA AF Peters Ectocarpus crouaniorum UK 13 12/06/2008 Exposed Unclassified 
WIC08-17A 1 85.7 NA NA AF Peters Ectocarpus crouaniorum UK 13 12/06/2008 Exposed 1 
WIC08-18A 1 85.4 NA NA AF Peters Ectocarpus crouaniorum UK 13 12/06/2008 Exposed 1 
WIC08-19C 1 85.58 NA NA AF Peters Ectocarpus crouaniorum UK 13 12/06/2008 Exposed 1 
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Table A.1 (continued) 

Name No. of infections Tm 1 / °C Tm 2 / °C Tm 3/ °C Collector Species Country Collection site Date Exposure Virus Group 

WIC08-21B 1 85.45 NA NA AF Peters Ectocarpus crouaniorum UK 13 12/06/2008 Exposed 1 
WIC08-22C 1 85.8 NA NA AF Peters Ectocarpus crouaniorum UK 13 12/06/2008 Exposed 1 
WIC08-23A 1 85.38 NA NA AF Peters Ectocarpus crouaniorum UK 13 12/06/2008 Exposed 1 
WIC08-24B 1 85.45 NA NA AF Peters Ectocarpus crouaniorum UK 13 12/06/2008 Exposed 1 
SKY08-10C 1 85.33 NA NA AF Peters Ectocarpus crouaniorum UK 14 14/06/2008 Exposed 1 
SKY08-11C 1 85.42 NA NA AF Peters Ectocarpus crouaniorum UK 14 14/06/2008 Exposed 1 
SKY08-1C 1 85.5 NA NA AF Peters Ectocarpus crouaniorum UK 14 14/06/2008 Exposed 1 
SKY08-4C 1 85.4 NA NA AF Peters Ectocarpus crouaniorum UK 14 14/06/2008 Exposed 1 
SKY08-5C 1 85.38 NA NA AF Peters Ectocarpus crouaniorum UK 14 14/06/2008 Exposed 1 
SKY08-8C 1 85.45 NA NA AF Peters Ectocarpus crouaniorum UK 14 14/06/2008 Exposed 1 
SKY12B 1 85.9 NA NA AF Peters Ectocarpus crouaniorum UK 14 14/06/2008 Exposed 1 
LIA08-3B 1 85.85 NA NA AF Peters Ectocarpus crouaniorum UK 15 15/06/2008 Exposed 1 
LIA2A 1 85.18 NA NA AF Peters Ectocarpus crouaniorum UK 15 15/06/2008 Exposed 1 
GAL08-13A 1 85.4 NA NA AF Peters Ectocarpus crouaniorum UK 20 17/06/2008 Exposed 1 
GAL08-14C 1 85.3 NA NA AF Peters Ectocarpus crouaniorum UK 20 17/06/2008 Exposed 1 
GAL08-16B 1 85.32 NA NA AF Peters Ectocarpus crouaniorum UK 20 17/06/2008 Exposed 1 
GAL08-17B 1 85.52 NA NA AF Peters Ectocarpus crouaniorum UK 20 17/06/2008 Exposed 1 
GAL08-1A 1 85.22 NA NA AF Peters Ectocarpus crouaniorum UK 20 17/06/2008 Exposed 1 
GAL08-21C 1 85.13 NA NA AF Peters Ectocarpus crouaniorum UK 20 17/06/2008 Exposed 1 
GAL08-23C 1 85.37 NA NA AF Peters Ectocarpus crouaniorum UK 20 17/06/2008 Exposed 1 
GAL08-24B 1 85.35 NA NA AF Peters Ectocarpus crouaniorum UK 20 17/06/2008 Exposed 1 
GAL08-26C 1 85.38 NA NA AF Peters Ectocarpus crouaniorum UK 20 17/06/2008 Exposed 1 
GAL08-27C 1 85.33 NA NA AF Peters Ectocarpus crouaniorum UK 20 17/06/2008 Exposed 1 
GAL08-29C 1 85.27 NA NA AF Peters Ectocarpus crouaniorum UK 20 17/06/2008 Exposed 1 
GAL08-2C 1 85.12 NA NA AF Peters Ectocarpus crouaniorum UK 20 17/06/2008 Exposed 1 
GAL08-3C 1 85.28 NA NA AF Peters Ectocarpus crouaniorum UK 20 17/06/2008 Exposed 1 
GAL08-5C 1 85.32 NA NA AF Peters Ectocarpus crouaniorum UK 20 17/06/2008 Exposed 1 
GAL08-6C 1 85.45 NA NA AF Peters Ectocarpus crouaniorum UK 20 17/06/2008 Exposed 1 
GAL08-7C 1 85.18 NA NA AF Peters Ectocarpus crouaniorum UK 20 17/06/2008 Exposed 1 
GAL08-8C 1 85.18 NA NA AF Peters Ectocarpus crouaniorum UK 20 17/06/2008 Exposed 1 
GAL08-9C 1 85.2 NA NA AF Peters Ectocarpus crouaniorum UK 20 17/06/2008 Exposed 1 
GAL15A 1 85.07 NA NA AF Peters Ectocarpus crouaniorum UK 20 17/06/2008 Exposed Unclassified 
GAL22 1 85.48 NA NA AF Peters Ectocarpus crouaniorum UK 20 17/06/2008 Exposed 1 
GAL28A 1 85.48 NA NA AF Peters Ectocarpus crouaniorum UK 20 17/06/2008 Exposed 1 
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Table A.1 (continued) 

Name No. of infections Tm 1 / °C Tm 2 / °C Tm 3/ °C Collector Species Country Collection site Date Exposure Virus Group 

TRE08-10B 1 85.52 NA NA AF Peters Ectocarpus crouaniorum UK 21 21/06/2008 Exposed 1 
TRE08-18C 1 85.45 NA NA AF Peters Ectocarpus crouaniorum UK 21 21/06/2008 Exposed 1 
TRE08-3C 1 85.2 NA NA AF Peters Ectocarpus crouaniorum UK 21 21/06/2008 Exposed 1 
TRE08-5A 1 85.3 NA NA AF Peters Ectocarpus crouaniorum UK 21 21/06/2008 Exposed 1 
TRE08-6C 1 85.47 NA NA AF Peters Ectocarpus crouaniorum UK 21 21/06/2008 Exposed 1 
TRE08-7A 1 85.47 NA NA AF Peters Ectocarpus crouaniorum UK 21 21/06/2008 Exposed 1 
TRE1B 1 85.47 NA NA AF Peters Ectocarpus crouaniorum UK 21 21/06/2008 Exposed 1 
TRE2C3 1 85.33 NA NA AF Peters Ectocarpus crouaniorum UK 21 21/06/2008 Exposed 1 
TRE8B4 1 85.5 NA NA AF Peters Ectocarpus crouaniorum UK 21 21/06/2008 Exposed 1 
RHOS08-2C 1 85.25 NA NA AF Peters Ectocarpus crouaniorum UK 22 20/06/2008 Exposed 1 
RHOS08-3C 1 85.33 NA NA AF Peters Ectocarpus crouaniorum UK 22 20/06/2008 Exposed 1 
RHOS08-4B 1 85.25 NA NA AF Peters Ectocarpus crouaniorum UK 22 20/06/2008 Exposed 1 
WEM08-11C 1 85.52 NA NA AF Peters Ectocarpus crouaniorum UK 26 21/05/2008 Exposed 1 
WEM08-12C 1 85.85 NA NA AF Peters Ectocarpus crouaniorum UK 26 21/05/2008 Exposed 1 
WEM08-13A 1 85.5 NA NA AF Peters Ectocarpus crouaniorum UK 26 21/05/2008 Exposed 1 
WEM08-14B 1 85.92 NA NA AF Peters Ectocarpus crouaniorum UK 26 21/05/2008 Exposed 1 
WEM08-17B 1 85.72 NA NA AF Peters Ectocarpus crouaniorum UK 26 21/05/2008 Exposed 1 
WEM08-18A 1 85.67 NA NA AF Peters Ectocarpus crouaniorum UK 26 21/05/2008 Exposed 1 
WEM08-22A 1 85.58 NA NA AF Peters Ectocarpus crouaniorum UK 26 21/05/2008 Exposed 1 
WEM08-23C 1 85.95 NA NA AF Peters Ectocarpus crouaniorum UK 26 21/05/2008 Exposed 1 
WEM08-24B 1 85.98 NA NA AF Peters Ectocarpus crouaniorum UK 26 21/05/2008 Exposed 1 
WEM08-25C 1 85.55 NA NA AF Peters Ectocarpus crouaniorum UK 26 21/05/2008 Exposed 1 
WEM08-26A 1 85.47 NA NA AF Peters Ectocarpus crouaniorum UK 26 21/05/2008 Exposed 1 
WEM08-27C 1 84.35 NA NA AF Peters Ectocarpus crouaniorum UK 26 28/06/2008 Exposed 0 
WEM08-6C 1 85.67 NA NA AF Peters Ectocarpus crouaniorum UK 26 21/05/2008 Exposed 1 
Tor 3c3 1 84.5 NA NA AF Peters Ectocarpus crouaniorum UK 30 29/06/2008 Exposed 0 
GOS1c 1 85.67 NA NA AF Peters Ectocarpus crouaniorum UK 31 28/05/2008 Exposed 1 
WIC08-11B 0 NA NA NA AF Peters Ectocarpus crouaniorum UK 13 12/06/2008 Exposed None 
WIC08-12C 0 NA NA NA AF Peters Ectocarpus crouaniorum UK 13 12/06/2008 Exposed None 
WIC08-13C 0 NA NA NA AF Peters Ectocarpus crouaniorum UK 13 12/06/2008 Exposed None 
WIC08-15C 0 NA NA NA AF Peters Ectocarpus crouaniorum UK 13 12/06/2008 Exposed None 
TRE08-19C 0 NA NA NA AF Peters Ectocarpus crouaniorum UK 21 21/06/2008 Exposed None 
RHOS08-5C 0 NA NA NA AF Peters Ectocarpus crouaniorum UK 22 20/06/2008 Exposed None 
RHOS08-6A 0 NA NA NA AF Peters Ectocarpus crouaniorum UK 22 20/06/2008 Exposed None 
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Table A.1 (continued) 

Name No. of infections Tm 1 / °C Tm 2 / °C Tm 3/ °C Collector Species Country Collection site Date Exposure Virus Group 

Mul(06-4)1 1 85.65 NA NA Claire Gachon Ectocarpus crouaniorum UK 17 23/05/2006 NA 1 
TOR6B2 3 83.15 83.48 85.4 AF Peters Ectocarpus crouaniorum UK 27 29/06/2008 Sheltered Both 
EcPH11-14 3 83.65 84.6 86.02 AF Peters Ectocarpus crouaniorum France 35 20/01/2011 Sheltered 0* 
EcPH11-20 3 83.18 84.17 85.4 AF Peters Ectocarpus crouaniorum France 35 20/01/2011 Sheltered Both 
EcPH11-25 3 83.05 83.5 85.08 AF Peters Ectocarpus crouaniorum France 35 20/01/2011 Sheltered 0* 
EcPH11-43 3 83.23 85.1 85.37 AF Peters Ectocarpus crouaniorum France 35 20/01/2011 Sheltered 0* 
EcPH11-5 3 81.8 84.2 84.62 AF Peters Ectocarpus crouaniorum France 35 20/01/2011 Sheltered 0* 
EcPH11-s#2A-31 3 81.75 82.22 85.45 AF Peters Ectocarpus crouaniorum France 35 26/01/2011 Sheltered Both 
EcPH11-s#2A-42 3 81.85 82.12 85.1 AF Peters Ectocarpus crouaniorum France 35 26/01/2011 Sheltered 0* 
EcPH11-s#2A-44 3 82.33 82.55 85.22 AF Peters Ectocarpus crouaniorum France 35 26/01/2011 Sheltered Both 
VF08-3C 3 82.27 83.45 85.73 AF Peters Ectocarpus crouaniorum France 41 19/04/2008 Sheltered Both 
VF08-4A 3 82.42 83.05 85.95 AF Peters Ectocarpus crouaniorum France 41 19/04/2008 Sheltered Both 
TOR08-5C 2 82.53 85.25 NA AF Peters Ectocarpus crouaniorum UK 27 29/06/2008 Sheltered Both 
TOR08-7B 2 82.5 85.4 NA AF Peters Ectocarpus crouaniorum UK 27 29/06/2008 Sheltered Both 
EcPH10-35 2 82.55 85.42 NA AF Peters Ectocarpus crouaniorum France 35 27/05/2010 Sheltered Both 
EcPH11-113 2 85.48 85.82 NA AF Peters Ectocarpus crouaniorum France 35 27/06/2011 Sheltered 1 
EcPH11-16 2 82.1 85.2 NA AF Peters Ectocarpus crouaniorum France 35 20/01/2011 Sheltered Both 
EcPH11-18 2 84.4 85.38 NA AF Peters Ectocarpus crouaniorum France 35 20/01/2011 Sheltered Both 
EcPH11-2 2 81.72 84.35 NA AF Peters Ectocarpus crouaniorum France 35 20/01/2011 Sheltered 0 
EcPH11-26 2 82.13 85.25 NA AF Peters Ectocarpus crouaniorum France 35 20/01/2011 Sheltered Both 
EcPH11-27 2 84.32 85.42 NA AF Peters Ectocarpus crouaniorum France 35 20/01/2011 Sheltered Both 
EcPH11-3 2 83.98 85.25 NA AF Peters Ectocarpus crouaniorum France 35 20/01/2011 Sheltered Both 
EcPH11-31 2 82.03 84.6 NA AF Peters Ectocarpus crouaniorum France 35 20/01/2011 Sheltered 0* 
EcPH11-46 2 83.35 85.52 NA AF Peters Ectocarpus crouaniorum France 35 20/01/2011 Sheltered Both 
EcPH11-6 2 84.45 85.58 NA AF Peters Ectocarpus crouaniorum France 35 28/04/2011 Sheltered Both 
EcPH11-s#2A-19 2 84.35 85.45 NA AF Peters Ectocarpus crouaniorum France 35 26/01/2011 Sheltered Both 
EcPH11-s#2B-20 2 84.75 85.68 NA AF Peters Ectocarpus crouaniorum France 35 25/01/2011 Sheltered 1* 
EcPH11-s#2B-22 2 82.25 85.15 NA AF Peters Ectocarpus crouaniorum France 35 25/01/2011 Sheltered Both 
EcPH11-s#2B-30 2 81.92 85.17 NA AF Peters Ectocarpus crouaniorum France 35 25/01/2011 Sheltered Both 
EcPH11-s#2B-47 2 83.25 85.12 NA AF Peters Ectocarpus crouaniorum France 35 25/01/2011 Sheltered Both 
EcPH11-s#2B-7 2 81.95 85.27 NA AF Peters Ectocarpus crouaniorum France 35 25/01/2011 Sheltered Both 
EcPH11-s#5-38 2 83.42 85.6 NA AF Peters Ectocarpus crouaniorum France 35 21/01/2011 Sheltered Both 
EcPH11-s#5-7 2 84.97 85.68 NA AF Peters Ectocarpus crouaniorum France 35 21/01/2011 Sheltered 1* 
Ec244 2 84.3 85.12 NA AF Peters Ectocarpus crouaniorum France 38 13/07/2011 Sheltered Both 
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Name No. of infections Tm 1 / °C Tm 2 / °C Tm 3/ °C Collector Species Country Collection site Date Exposure Virus Group 

VF08-5A 2 82.17 85.57 NA AF Peters Ectocarpus crouaniorum France 41 19/04/2008 Sheltered Both 
TOR08-8B 1 85.3 NA NA AF Peters Ectocarpus crouaniorum UK 27 29/06/2008 Sheltered 1 
LH6b 1 85.5 NA NA AF Peters Ectocarpus crouaniorum UK 32 28/05/2008 Sheltered 1 
LH8A 1 84.97 NA NA AF Peters Ectocarpus crouaniorum UK 32 28/05/2008 Sheltered Unclassified 
HAS08-10B 1 85.38 NA NA AF Peters Ectocarpus crouaniorum UK 33 30/05/2008 Sheltered 1 
HAS08-1C 1 85.42 NA NA AF Peters Ectocarpus crouaniorum UK 33 30/05/2008 Sheltered 1 
Ec195 1 85.4 NA NA AF Peters Ectocarpus crouaniorum France 35 13/01/2010 Sheltered 1 
EcPH10-14 1 85.27 NA NA AF Peters Ectocarpus crouaniorum France 35 14/05/2010 Sheltered 1 
EcPH10-24 1 84.75 NA NA AF Peters Ectocarpus crouaniorum France 35 27/05/2010 Sheltered Unclassified 
EcPH10-28 1 85 NA NA AF Peters Ectocarpus crouaniorum France 35 27/05/2010 Sheltered Unclassified 
EcPH10-29 1 85.53 NA NA AF Peters Ectocarpus crouaniorum France 35 27/05/2010 Sheltered 1 
EcPH10-31 1 85.23 NA NA AF Peters Ectocarpus crouaniorum France 35 27/05/2010 Sheltered 1 
EcPH10-33 1 85.25 NA NA AF Peters Ectocarpus crouaniorum France 35 27/05/2010 Sheltered 1 
EcPH10-37 1 85.5 NA NA AF Peters Ectocarpus crouaniorum France 35 27/05/2010 Sheltered 1 
EcPH10-60 1 84.58 NA NA AF Peters Ectocarpus crouaniorum France 35 27/05/2010 Sheltered Unclassified 
EcPH10-63 1 85.38 NA NA AF Peters Ectocarpus crouaniorum France 35 27/05/2010 Sheltered 1 
EcPH11-1 1 85.52 NA NA AF Peters Ectocarpus crouaniorum France 35 20/01/2011 Sheltered 1 
EcPH11-106 1 85.4 NA NA AF Peters Ectocarpus crouaniorum France 35 06/06/2011 Sheltered 1 
EcPH11-11 1 85.43 NA NA AF Peters Ectocarpus crouaniorum France 35 20/01/2011 Sheltered 1 
EcPH11-112 1 85.52 NA NA AF Peters Ectocarpus crouaniorum France 35 27/06/2011 Sheltered 1 
EcPH11-114 1 85.4 NA NA AF Peters Ectocarpus crouaniorum France 35 27/06/2011 Sheltered 1 
EcPH11-13 1 85.1 NA NA AF Peters Ectocarpus crouaniorum France 35 20/01/2011 Sheltered Unclassified 
EcPH11-17 1 85.45 NA NA AF Peters Ectocarpus crouaniorum France 35 20/01/2011 Sheltered 1 
EcPH11-21 1 85.75 NA NA AF Peters Ectocarpus crouaniorum France 35 20/01/2011 Sheltered 1 
EcPH11-28 1 85.3 NA NA AF Peters Ectocarpus crouaniorum France 35 20/01/2011 Sheltered 1 
EcPH11-37 1 84.93 NA NA AF Peters Ectocarpus crouaniorum France 35 20/01/2011 Sheltered Unclassified 
EcPH11-38 1 84.33 NA NA AF Peters Ectocarpus crouaniorum France 35 20/01/2011 Sheltered 0 
EcPH11-39 1 85.52 NA NA AF Peters Ectocarpus crouaniorum France 35 20/01/2011 Sheltered 1 
EcPH11-42 1 85.27 NA NA AF Peters Ectocarpus crouaniorum France 35 20/01/2011 Sheltered 1 
EcPH11-47 1 85.47 NA NA AF Peters Ectocarpus crouaniorum France 35 20/01/2011 Sheltered 1 
EcPH11-7 1 85.2 NA NA AF Peters Ectocarpus crouaniorum France 35 20/01/2011 Sheltered 1 
EcPH11-9 1 85.5 NA NA AF Peters Ectocarpus crouaniorum France 35 20/01/2011 Sheltered 1 
EcPH11-s#2A-1 1 85.3 NA NA AF Peters Ectocarpus crouaniorum France 35 26/01/2011 Sheltered 1 
EcPH11-s#2A-14 1 85.05 NA NA AF Peters Ectocarpus crouaniorum France 35 26/01/2011 Sheltered Unclassified 
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Name No. of infections Tm 1 / °C Tm 2 / °C Tm 3/ °C Collector Species Country Collection site Date Exposure Virus Group 

EcPH11-s#2A-29 1 85.48 NA NA AF Peters Ectocarpus crouaniorum France 35 26/01/2011 Sheltered 1 
EcPH11-s#2A-46 1 85.23 NA NA AF Peters Ectocarpus crouaniorum France 35 26/01/2011 Sheltered 1 
EcPH11-s#2B-1 1 85.2 NA NA AF Peters Ectocarpus crouaniorum France 35 25/01/2011 Sheltered 1 
EcPH11-s#2B-10 1 85.73 NA NA AF Peters Ectocarpus crouaniorum France 35 25/01/2011 Sheltered 1 
EcPH11-s#2B-17 1 85.1 NA NA AF Peters Ectocarpus crouaniorum France 35 25/01/2011 Sheltered Unclassified 
EcPH11-s#2B-2 1 85.5 NA NA AF Peters Ectocarpus crouaniorum France 35 25/01/2011 Sheltered 1 
EcPH11-s#2B-21 1 85.58 NA NA AF Peters Ectocarpus crouaniorum France 35 25/01/2011 Sheltered 1 
EcPH11-s#2B-23 1 85.25 NA NA AF Peters Ectocarpus crouaniorum France 35 25/01/2011 Sheltered 1 
EcPH11-s#2B-25 1 84.28 NA NA AF Peters Ectocarpus crouaniorum France 35 25/01/2011 Sheltered 0 
EcPH11-s#2B-28 1 85.33 NA NA AF Peters Ectocarpus crouaniorum France 35 25/01/2011 Sheltered 1 
EcPH11-s#2B-3 1 85.48 NA NA AF Peters Ectocarpus crouaniorum France 35 25/01/2011 Sheltered 1 
EcPH11-s#2B-35 1 85.35 NA NA AF Peters Ectocarpus crouaniorum France 35 25/01/2011 Sheltered 1 
EcPH11-s#2B-37 1 85.2 NA NA AF Peters Ectocarpus crouaniorum France 35 25/01/2011 Sheltered 1 
EcPH11-s#2B-4 1 85.4 NA NA AF Peters Ectocarpus crouaniorum France 35 25/01/2011 Sheltered 1 
EcPH11-s#2B-42 1 85.37 NA NA AF Peters Ectocarpus crouaniorum France 35 25/01/2011 Sheltered 1 
EcPH11-s#2B-52 1 85.2 NA NA AF Peters Ectocarpus crouaniorum France 35 25/01/2011 Sheltered 1 
EcPH11-s#2B-53 1 85.35 NA NA AF Peters Ectocarpus crouaniorum France 35 25/01/2011 Sheltered 1 
EcPH11-s#2B-54 1 85.3 NA NA AF Peters Ectocarpus crouaniorum France 35 25/01/2011 Sheltered 1 
EcPH11-s#2B-9 1 84.57 NA NA AF Peters Ectocarpus crouaniorum France 35 25/01/2011 Sheltered Unclassified 
Ec326 1 84.1 NA NA AF Peters Ectocarpus crouaniorum France 36 27/05/2006 Sheltered 0 
Ec329 1 85.25 NA NA AF Peters Ectocarpus crouaniorum France 36 27/05/2006 Sheltered 1 
Ec243 1 85.22 NA NA AF Peters Ectocarpus crouaniorum France 38 13/07/2011 Sheltered 1 
VF08-2C 1 86.08 NA NA AF Peters Ectocarpus crouaniorum France 41 19/04/2008 Sheltered 1 
Ec334hSP 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 14/04/2007 Sheltered None 
EcPH10-13 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 14/05/2010 Sheltered None 
EcPH10-22 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 27/05/2010 Sheltered None 
EcPH10-23 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 27/05/2010 Sheltered None 
EcPH10-25 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 27/05/2010 Sheltered None 
EcPH10-32 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 27/05/2010 Sheltered None 
EcPH10-34 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 27/05/2010 Sheltered None 
EcPH10-36 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 27/05/2010 Sheltered None 
EcPH10-4 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 01/03/2010 Sheltered None 
EcPH10-45 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 27/05/2010 Sheltered None 
EcPH10-46 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 27/05/2010 Sheltered None 
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Name No. of infections Tm 1 / °C Tm 2 / °C Tm 3/ °C Collector Species Country Collection site Date Exposure Virus Group 

EcPH10-48 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 27/05/2010 Sheltered None 
EcPH10-49 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 27/05/2010 Sheltered None 
EcPH10-50 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 27/05/2010 Sheltered None 
EcPH10-51 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 27/05/2010 Sheltered None 
EcPH10-54 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 27/05/2010 Sheltered None 
EcPH10-55 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 27/05/2010 Sheltered None 
EcPH10-57 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 27/05/2010 Sheltered None 
EcPH10-58 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 27/05/2010 Sheltered None 
EcPH10-64 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 27/05/2010 Sheltered None 
EcPH10-65 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 27/05/2010 Sheltered None 
EcPH10-70 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 27/05/2010 Sheltered None 
EcPH10-8 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 28/04/2010 Sheltered None 
EcPH11-10 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 20/01/2011 Sheltered None 
EcPH11-12 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 20/01/2011 Sheltered None 
EcPH11-33 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 20/01/2011 Sheltered None 
EcPH11-35 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 20/01/2011 Sheltered None 
EcPH11-36 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 20/01/2011 Sheltered None 
EcPH11-40 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 20/01/2011 Sheltered None 
EcPH11-s#2A-18 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 26/01/2011 Sheltered None 
EcPH11-s#2A-21 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 26/01/2011 Sheltered None 
EcPH11-s#2A-24 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 26/01/2011 Sheltered None 
EcPH11-s#2A-36 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 26/01/2011 Sheltered None 
EcPH11-s#2B-16 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 25/01/2011 Sheltered None 
EcPH11-s#2B-2 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 25/01/2011 Sheltered 1 
EcPH11-s#2B-26 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 25/01/2011 Sheltered None 
EcPH11-s#2B-32 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 25/01/2011 Sheltered None 
EcPH11-s#2B-34 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 25/01/2011 Sheltered None 
EcPH11-s#2B-36 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 25/01/2011 Sheltered None 
EcPH11-s#2B-39 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 25/01/2011 Sheltered None 
EcPH11-s#2B-49 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 25/01/2011 Sheltered None 
EcPH11-s#5-44 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 21/01/2011 Sheltered None 
EcPH11-s#5-47 0 NA NA NA AF Peters Ectocarpus crouaniorum France 35 21/01/2011 Sheltered None 
Ec308 3 83.33 84.05 85.08 AF Peters Ectocarpus fasciculatus Peru 3 06/03/2006 Exposed 0* 
RHOS08-15A 3 81.5 82.42 85.17 AF Peters Ectocarpus fasciculatus UK 22 20/06/2008 Exposed Both 
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Name No. of infections Tm 1 / °C Tm 2 / °C Tm 3/ °C Collector Species Country Collection site Date Exposure Virus Group 

Ec310 2 84.02 85.05 NA AF Peters Ectocarpus fasciculatus Chile 4 01/03/2009 Exposed 0* 
BUT08-14C 2 81.7 82.97 NA AF Peters Ectocarpus fasciculatus UK 10 02/06/2008 Exposed 0 
BUT08-16A 2 81.73 85.35 NA AF Peters Ectocarpus fasciculatus UK 10 02/06/2008 Exposed Both 
RHOS08-16A 2 82.18 85.1 NA AF Peters Ectocarpus fasciculatus UK 22 20/06/2008 Exposed 0* 
WEM08-2A 2 83.2 85.15 NA AF Peters Ectocarpus fasciculatus UK 26 21/05/2008 Exposed Both 
GOS3b 2 82.27 84.3 NA AF Peters Ectocarpus fasciculatus UK 31 28/05/2008 Exposed 0 
(Ec)PHH9 2 84.45 85.42 NA AF Peters Ectocarpus fasciculatus France 35 13/08/2006 Exposed Both 
EcPH10-255 2 83.35 85.07 NA AF Peters Ectocarpus fasciculatus France 35 11/08/2010 Exposed 0* 
EcPH10-273 2 82.5 85.22 NA AF Peters Ectocarpus fasciculatus France 35 12/08/2010 Exposed Both 
EcPH10-274 2 82.85 85.33 NA AF Peters Ectocarpus fasciculatus France 35 12/08/2010 Exposed Both 
EcPH10-279 2 82.33 85.25 NA AF Peters Ectocarpus fasciculatus France 35 12/08/2010 Exposed Both 
EcPH10-285 2 82.18 85.23 NA AF Peters Ectocarpus fasciculatus France 35 12/08/2010 Exposed Both 
QY16 1 84.8 NA NA Aaron Mann Ectocarpus fasciculatus Chile 9 05/10/2006 Exposed Unclassified 
QY19 1 85.43 NA NA Aaron Mann Ectocarpus fasciculatus Chile 9 05/10/2006 Exposed 1 
QY21 1 84.73 NA NA Aaron Mann Ectocarpus fasciculatus Chile 9 05/10/2006 Exposed Unclassified 
QY22 1 84.77 NA NA Aaron Mann Ectocarpus fasciculatus Chile 9 05/10/2006 Exposed Unclassified 
QY23 1 85.45 NA NA Aaron Mann Ectocarpus fasciculatus Chile 9 05/10/2006 Exposed 1 
BUT08-15B 1 81.68 NA NA AF Peters Ectocarpus fasciculatus UK 10 02/06/2008 Exposed 0 
BUT08-17B 1 81.85 NA NA AF Peters Ectocarpus fasciculatus UK 10 02/06/2008 Exposed 0 
BUT08-2B 1 85.23 NA NA AF Peters Ectocarpus fasciculatus UK 10 01/06/2008 Exposed 1 
BUT08-3C 1 85.13 NA NA AF Peters Ectocarpus fasciculatus UK 10 01/06/2008 Exposed 1 
BUT20A 1 83.1 NA NA AF Peters Ectocarpus fasciculatus UK 10 02/06/2008 Exposed 0 
WIC08-26C 1 85.17 NA NA AF Peters Ectocarpus fasciculatus UK 13 12/06/2008 Exposed 1 
WIC08-28A 1 81.2 NA NA AF Peters Ectocarpus fasciculatus UK 13 12/06/2008 Exposed 0 
WIC08-29C 1 81.65 NA NA AF Peters Ectocarpus fasciculatus UK 13 12/06/2008 Exposed 0 
WIC08-30C 1 85.2 NA NA AF Peters Ectocarpus fasciculatus UK 13 12/06/2008 Exposed 1 
GAL08-10C 1 85.02 NA NA AF Peters Ectocarpus fasciculatus UK 20 17/06/2008 Exposed Unclassified 
GAL08-12A 1 81.47 NA NA AF Peters Ectocarpus fasciculatus UK 20 17/06/2008 Exposed 0 
GAL08-18A 1 81.35 NA NA AF Peters Ectocarpus fasciculatus UK 20 17/06/2008 Exposed 0 
GAL08-19C 1 81.32 NA NA AF Peters Ectocarpus fasciculatus UK 20 17/06/2008 Exposed 0 
GAL08-4C 1 81.5 NA NA AF Peters Ectocarpus fasciculatus UK 20 17/06/2008 Exposed 0 
TRE08-14B 1 81.45 NA NA AF Peters Ectocarpus fasciculatus UK 21 21/06/2008 Exposed 0 
RHO14C 1 84.68 NA NA AF Peters Ectocarpus fasciculatus UK 22 20/06/2008 Exposed Unclassified 
W004 1 85.12 NA NA D Schroeder Ectocarpus fasciculatus UK 26 05/07/2004 Exposed 1 
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WEM08-1A 1 85.2 NA NA AF Peters Ectocarpus fasciculatus UK 26 21/05/2008 Exposed 1 
WEM4B 1 85.32 NA NA AF Peters Ectocarpus fasciculatus UK 26 21/05/2008 Exposed 1 
(Ec)PHL10 1 86.22 NA NA AF Peters Ectocarpus fasciculatus France 35 13/08/2006 Exposed Unclassified 
(Ec)PHL12 1 85.02 NA NA AF Peters Ectocarpus fasciculatus France 35 08/09/2006 Exposed Unclassified 
(Ec)PHL30 1 84.92 NA NA AF Peters Ectocarpus fasciculatus France 35 08/09/2006 Exposed Unclassified 
(Ec)PHL6 1 83.45 NA NA AF Peters Ectocarpus fasciculatus France 35 13/08/2006 Exposed 0 
Ec680 1 84.55 NA NA AF Peters Ectocarpus fasciculatus France 35 13/08/2006 Exposed 0 
Ec684 1 84.77 NA NA AF Peters Ectocarpus fasciculatus France 35 08/09/2006 Exposed Unclassified 
EcPH10-245 1 84.85 NA NA AF Peters Ectocarpus fasciculatus France 35 11/08/2010 Exposed Unclassified 
EcPH10-264 1 85.18 NA NA AF Peters Ectocarpus fasciculatus France 35 11/08/2010 Exposed 1 
EcPH10-267 1 85.1 NA NA AF Peters Ectocarpus fasciculatus France 35 11/08/2010 Exposed Unclassified 
EcPH10-270 1 85.13 NA NA AF Peters Ectocarpus fasciculatus France 35 11/08/2010 Exposed 1 
EcPH10-271 1 85.1 NA NA AF Peters Ectocarpus fasciculatus France 35 12/08/2010 Exposed Unclassified 
EcPH10-275 1 84.58 NA NA AF Peters Ectocarpus fasciculatus France 35 12/08/2010 Exposed Unclassified 
EcPH10-277 1 84.4 NA NA AF Peters Ectocarpus fasciculatus France 35 12/08/2010 Exposed 0 
EcPH10-278 1 84.55 NA NA AF Peters Ectocarpus fasciculatus France 35 12/08/2010 Exposed 0 
EcPH10-281 1 84.33 NA NA AF Peters Ectocarpus fasciculatus France 35 12/08/2010 Exposed 0 
EcPH10-283 1 85.77 NA NA AF Peters Ectocarpus fasciculatus France 35 12/08/2010 Exposed 1 
EcPH10-287 1 85.07 NA NA AF Peters Ectocarpus fasciculatus France 35 12/08/2010 Exposed Unclassified 
EcPH10-288 1 85.37 NA NA AF Peters Ectocarpus fasciculatus France 35 12/08/2010 Exposed 1 
QY20 0 NA NA NA Aaron Mann Ectocarpus fasciculatus Chile 9 05/10/2006 Exposed None 
BUT7B 0 NA NA NA AF Peters Ectocarpus fasciculatus UK 10 01/06/2008 Exposed None 
RAT1C4 0 NA NA NA AF Peters Ectocarpus fasciculatus UK 12 10/06/2008 Exposed None 
WICK27A 0 NA NA NA AF Peters Ectocarpus fasciculatus UK 13 12/06/2008 Exposed None 
LIA08-1C 0 NA NA NA AF Peters Ectocarpus fasciculatus UK 15 15/06/2008 Exposed None 
GAL08-11C 0 NA NA NA AF Peters Ectocarpus fasciculatus UK 20 17/06/2008 Exposed None 
GAL08-20C 0 NA NA NA AF Peters Ectocarpus fasciculatus UK 20 17/06/2008 Exposed None 
GAL08-25A 0 NA NA NA AF Peters Ectocarpus fasciculatus UK 20 17/06/2008 Exposed None 
TRE08-12C 0 NA NA NA AF Peters Ectocarpus fasciculatus UK 21 21/06/2008 Exposed None 
WEM08-3A 0 NA NA NA AF Peters Ectocarpus fasciculatus UK 26 21/05/2008 Exposed None 
WEM08-5B 0 NA NA NA AF Peters Ectocarpus fasciculatus UK 26 21/05/2008 Exposed None 
TOR08-1C 0 NA NA NA AF Peters Ectocarpus fasciculatus UK 30 29/06/2008 Exposed None 
TOR08-2A 0 NA NA NA AF Peters Ectocarpus fasciculatus UK 30 29/06/2008 Exposed None 
(Ec)PHH2 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 13/08/2006 Exposed None 
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 (Ec)PHH7 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 13/08/2006 Exposed None 
(Ec)PHL1 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 12/08/2006 Exposed None 
(Ec)PHL2 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 13/08/2006 Exposed None 
(Ec)PHL26 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 08/09/2006 Exposed None 
Ec396 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 30/09/2003 Exposed None 
Ec578 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 29/09/2005 Exposed None 
Ec674 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 13/08/2006 Exposed None 
Ec683 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 08/09/2006 Exposed None 
EcPH10-227 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 11/08/2007 Exposed None 
EcPH10-227 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 11/08/2007 Exposed None 
EcPH10-228 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 11/08/2007 Exposed None 
EcPH10-228 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 11/08/2007 Exposed None 
EcPH10-234 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 11/08/2010 Exposed None 
EcPH10-234 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 11/08/2010 Exposed None 
EcPH10-240 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 11/08/2010 Exposed None 
EcPH10-240 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 11/08/2010 Exposed None 
EcPH10-245 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 11/08/2010 Exposed Unclassified 
EcPH10-248 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 11/08/2010 Exposed None 
EcPH10-248 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 11/08/2010 Exposed None 
EcPH10-255 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 11/08/2010 Exposed 0* 
EcPH10-260 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 11/08/2010 Exposed None 
EcPH10-260 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 11/08/2010 Exposed None 
EcPH10-262 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 11/08/2010 Exposed None 
EcPH10-262 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 11/08/2010 Exposed None 
EcPH10-264 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 11/08/2010 Exposed 1 
EcPH10-267 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 11/08/2010 Exposed Unclassified 
EcPH10-270 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 11/08/2010 Exposed 1 
EcPH10-272 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 12/08/2010 Exposed None 
EcPH10-276 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 12/08/2010 Exposed None 
EcPH10-282 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 12/08/2010 Exposed None 
EcPH10-284 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 12/08/2010 Exposed None 
EcPH10-286 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 12/08/2010 Exposed None 
EcPH10-289 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 12/08/2010 Exposed None 
EcPH10-290 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 12/08/2010 Exposed None 
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EcPH10-5 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 01/03/2010 Exposed None 
CH(05-)11 3 82.65 84.17 85.13 DG Müller Ectocarpus fasciculatus Chile 8 10/01/2004 NA Both 
M001 2 83.9 85.38 NA D Schroeder Ectocarpus fasciculatus UK 28 23/11/2003 NA Both 
S001 2 82.97 84.75 NA D Schroeder Ectocarpus fasciculatus UK 29 04/06/2004 NA 0* 
S002 2 82.7 85.6 NA D Schroeder Ectocarpus fasciculatus UK 29 04/06/2004 NA Both 
Caro(05-)12 1 85.25 NA NA DG Müller Ectocarpus fasciculatus Chile 8 10/01/2004 NA 1 
P002 1 85.15 NA NA D Schroeder Ectocarpus fasciculatus UK 25 04/06/2004 NA 1 
P005 1 84.87 NA NA D Schroeder Ectocarpus fasciculatus UK 25 24/02/2004 NA Unclassified 
P006 1 84.97 NA NA D Schroeder Ectocarpus fasciculatus UK 25 23/07/2004 NA Unclassified 
Y003 0 NA NA NA D Schroeder Ectocarpus fasciculatus UK 24 30/07/2004 NA None 
P001 0 NA NA NA D Schroeder Ectocarpus fasciculatus UK 25 04/06/2004 NA None 
SAL08-2C 3 81.5 83.6 85.03 AF Peters Ectocarpus fasciculatus UK 29 29/06/2008 Sheltered 0* 
EcPH10-178 3 81.95 82.27 85.08 AF Peters Ectocarpus fasciculatus France 35 15/07/2010 Sheltered 0* 
EcQB10-2 3 83.67 83.98 85.48 AF Peters Ectocarpus fasciculatus France 39 31/07/2010 Sheltered Both 
SAM08-8C 2 81.28 85.65 NA AF Peters Ectocarpus fasciculatus UK 16 07/06/2008 Sheltered Both 
QAB08-4B 2 82.38 85.62 NA AF Peters Ectocarpus fasciculatus UK 25 24/05/2008 Sheltered Both 
SAL08-1C 2 81.85 85.2 NA AF Peters Ectocarpus fasciculatus UK 29 29/06/2008 Sheltered Both 
HAS08-2B 2 83.1 85.5 NA AF Peters Ectocarpus fasciculatus UK 33 30/05/2008 Sheltered Both 
(Ec)PHZ5 2 82.25 85.35 NA AF Peters Ectocarpus fasciculatus France 35 24/08/2006 Sheltered Both 
EcQB10-11 2 83.93 85.57 NA AF Peters Ectocarpus fasciculatus France 39 31/07/2010 Sheltered Both 
EcQB10-15 2 84.4 85.87 NA AF Peters Ectocarpus fasciculatus France 39 31/07/2010 Sheltered Both 
EcQB10-18 2 84.2 85.3 NA AF Peters Ectocarpus fasciculatus France 39 31/07/2010 Sheltered Both 
Ec165 1 85.2 NA NA AF Peters Ectocarpus fasciculatus Chile 4 01/03/2006 Sheltered 1 
Ob07-2 1 84.93 NA NA AF Peters Ectocarpus fasciculatus UK 16 07/11/2007 Sheltered Unclassified 
TOR08-15B 1 84.93 NA NA AF Peters Ectocarpus fasciculatus UK 27 29/06/2008 Sheltered Unclassified 
HAS08-4C 1 85.48 NA NA AF Peters Ectocarpus fasciculatus UK 33 30/05/2008 Sheltered 1 
(Ec)PHZ17 1 85.48 NA NA AF Peters Ectocarpus fasciculatus France 35 24/08/2006 Sheltered 1 
(Ec)PHZ35 1 85.38 NA NA AF Peters Ectocarpus fasciculatus France 35 30/08/2007 Sheltered 1 
(Ec)PHZ6 1 85.48 NA NA AF Peters Ectocarpus fasciculatus France 35 24/08/2006 Sheltered 1 
(Ec)PHZ8 1 85.47 NA NA AF Peters Ectocarpus fasciculatus France 35 24/08/2006 Sheltered 1 
EcPH10-186 1 84.45 NA NA AF Peters Ectocarpus fasciculatus France 35 15/07/2010 Sheltered 0 
EcQB10-10 1 85.52 NA NA AF Peters Ectocarpus fasciculatus France 39 31/07/2010 Sheltered 1 
EcQB10-12 1 85.73 NA NA AF Peters Ectocarpus fasciculatus France 39 31/07/2010 Sheltered 1 
EcQB10-13 1 85.42 NA NA AF Peters Ectocarpus fasciculatus France 39 31/07/2010 Sheltered 1 
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EcQB10-5 1 85.47 NA NA AF Peters Ectocarpus fasciculatus France 39 31/07/2010 Sheltered 1 
EcQB10-6 1 85.87 NA NA AF Peters Ectocarpus fasciculatus France 39 31/07/2010 Sheltered 1 
EcQB10-9 1 85.53 NA NA AF Peters Ectocarpus fasciculatus France 39 31/07/2010 Sheltered 1 
Ob07-12C 0 NA NA NA AF Peters Ectocarpus fasciculatus UK 16 07/11/2007 Sheltered None 
Ob07-13C 0 NA NA NA AF Peters Ectocarpus fasciculatus UK 16 07/11/2007 Sheltered None 
Ob07-7 0 NA NA NA AF Peters Ectocarpus fasciculatus UK 16 07/11/2007 Sheltered None 
SAM08-1B 0 NA NA NA AF Peters Ectocarpus fasciculatus UK 16 07/06/2008 Sheltered None 
SAM08-6C 0 NA NA NA AF Peters Ectocarpus fasciculatus UK 16 07/06/2008 Sheltered None 
SAM2 0 NA NA NA AF Peters Ectocarpus fasciculatus UK 16 07/06/2008 Sheltered None 
SAM7A 0 NA NA NA AF Peters Ectocarpus fasciculatus UK 16 07/06/2008 Sheltered None 
SAM08-13C 0 NA NA NA AF Peters Ectocarpus fasciculatus UK 18 08/06/2008 Sheltered None 
POR08-3C 0 NA NA NA AF Peters Ectocarpus fasciculatus UK 19 17/06/2008 Sheltered None 
POR08-4C 0 NA NA NA AF Peters Ectocarpus fasciculatus UK 19 17/06/2008 Sheltered None 
RHOS08-10C 0 NA NA NA AF Peters Ectocarpus fasciculatus UK 22 20/06/2008 Sheltered None 
RHOS08-11B 0 NA NA NA AF Peters Ectocarpus fasciculatus UK 22 20/06/2008 Sheltered None 
RHOS08-13B 0 NA NA NA AF Peters Ectocarpus fasciculatus UK 22 20/06/2008 Sheltered None 
RHOS08-7C 0 NA NA NA AF Peters Ectocarpus fasciculatus UK 22 20/06/2008 Sheltered None 
RHOS08-8B 0 NA NA NA AF Peters Ectocarpus fasciculatus UK 22 20/06/2008 Sheltered None 
RHOS08-9B 0 NA NA NA AF Peters Ectocarpus fasciculatus UK 22 20/06/2008 Sheltered None 
REP10-2 0 NA NA NA AF Peters Ectocarpus fasciculatus UK 23 14/06/2010 Sheltered None 
REP10-3 0 NA NA NA AF Peters Ectocarpus fasciculatus UK 23 14/06/2010 Sheltered None 
REP10-4 0 NA NA NA AF Peters Ectocarpus fasciculatus UK 23 14/06/2010 Sheltered None 
REP10-5 0 NA NA NA AF Peters Ectocarpus fasciculatus UK 23 14/06/2010 Sheltered None 
TOR08-17C 0 NA NA NA AF Peters Ectocarpus fasciculatus UK 27 29/06/2008 Sheltered None 
(Ec)PHZ1 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 24/08/2006 Sheltered None 
(Ec)PHZ29 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 24/08/2006 Sheltered None 
(Ec)PHZ36A 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 26/09/2007 Sheltered None 
(Ec)PHZ7 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 24/08/2006 Sheltered None 
Ec736 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 21/08/2009 Sheltered None 
EcPH10-175 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 15/07/2010 Sheltered None 
EcPH10-176 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 15/07/2010 Sheltered None 
EcPH10-179 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 15/07/2010 Sheltered None 
EcPH10-18 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 14/05/2010 Sheltered None 
EcPH10-181 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 15/07/2010 Sheltered None 
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EcPH10-183 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 15/07/2010 Sheltered None 
EcPH10-184 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 15/07/2010 Sheltered None 
EcPH10-185 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 15/07/2010 Sheltered None 
EcPH10-187 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 15/07/2010 Sheltered None 
EcPH10-196 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 15/07/2010 Sheltered None 
EcPH10-197 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 15/07/2010 Sheltered None 
EcPH10-198 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 15/07/2010 Sheltered None 
EcPH10-209 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 15/07/2010 Sheltered None 
EcPH10-210 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 15/07/2010 Sheltered None 
EcPH10-211 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 15/07/2010 Sheltered None 
EcPH10-213 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 15/07/2010 Sheltered None 
EcPH10-214 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 15/07/2010 Sheltered None 
EcPH10-216 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 15/07/2010 Sheltered None 
EcPH10-217 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 15/07/2010 Sheltered None 
EcPH10-219 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 15/07/2010 Sheltered None 
EcPH11-120 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 02/08/2011 Sheltered None 
EcPH11-s#2A-10 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 26/01/2011 Sheltered None 
EcPH11-s#2A-15 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 26/01/2011 Sheltered None 
EcPH11-s#2A-3 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 26/01/2011 Sheltered None 
EcPH11-s#2A-30 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 26/01/2011 Sheltered None 
EcPH11-s#2A-51 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 26/01/2011 Sheltered None 
EcPH11-s#5-2 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 21/01/2011 Sheltered None 
EcPH11-s#5-23 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 21/01/2011 Sheltered None 
EcPH11-s#5-29 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 21/01/2011 Sheltered None 
EcPH11-s#5-45 0 NA NA NA AF Peters Ectocarpus fasciculatus France 35 21/01/2011 Sheltered None 
Ec328 0 NA NA NA AF Peters Ectocarpus fasciculatus France 36 27/05/2006 Sheltered None 
EcQB10-14 0 NA NA NA AF Peters Ectocarpus fasciculatus France 39 31/07/2010 Sheltered None 
EcQB10-17 0 NA NA NA AF Peters Ectocarpus fasciculatus France 39 31/07/2010 Sheltered None 
EcQB10-27 0 NA NA NA AF Peters Ectocarpus fasciculatus France 39 31/07/2010 Sheltered None 
EcQB10-29 0 NA NA NA AF Peters Ectocarpus fasciculatus France 39 31/07/2010 Sheltered None 
EcQB10-3 0 NA NA NA AF Peters Ectocarpus fasciculatus France 39 31/07/2010 Sheltered None 
EcQB10-31 0 NA NA NA AF Peters Ectocarpus fasciculatus France 39 31/07/2010 Sheltered None 
EcQB10-33 0 NA NA NA AF Peters Ectocarpus fasciculatus France 39 31/07/2010 Sheltered None 
EcQB10-34 0 NA NA NA AF Peters Ectocarpus fasciculatus France 39 31/07/2010 Sheltered None 
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EcQB10-4 0 NA NA NA AF Peters Ectocarpus fasciculatus France 39 31/07/2010 Sheltered None 
EcQB10-7 0 NA NA NA AF Peters Ectocarpus fasciculatus France 39 31/07/2010 Sheltered None 
Ec156 2 82.45 85.4 NA AF Peters Ectocarpus siliculosus Chile 5 01/03/2006 Exposed Both 
REP10-59 2 83.2 85.37 NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Exposed Both 
REP10-60 2 83.13 85.15 NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Exposed Both 
REP10-61 2 83.55 85.35 NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Exposed Both 
Ec286 1 85.77 NA NA AF Peters Ectocarpus siliculosus Peru 2 08/03/2006 Exposed 1 
Ec287 1 84.95 NA NA AF Peters Ectocarpus siliculosus Peru 2 08/03/2006 Exposed Unclassified 
Ec288 1 85.28 NA NA AF Peters Ectocarpus siliculosus Peru 2 08/03/2006 Exposed 1 
Ec161 1 85.2 NA NA AF Peters Ectocarpus siliculosus Chile 4 01/03/2006 Exposed 1 
Ec157 1 85.1 NA NA AF Peters Ectocarpus siliculosus Chile 5 01/03/2006 Exposed Unclassified 
Ec159 1 85.4 NA NA AF Peters Ectocarpus siliculosus Chile 5 02/03/2006 Exposed 1 
QY24 1 85.45 NA NA Aaron Mann Ectocarpus siliculosus Chile 9 05/10/2006 Exposed 1 
LIA08-4A 1 85.62 NA NA AF Peters Ectocarpus siliculosus UK 15 15/06/2008 Exposed 1 
REP10-56 1 85.82 NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Exposed 1 
REP10-58 1 85.88 NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Exposed 1 
REP10-59 1 85.43 NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Exposed Both 
REP10-62 1 85.38 NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Exposed 1 
REP10-64 1 85.35 NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Exposed 1 
REP10-65 1 85.35 NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Exposed 1 
REP10-67 1 85.3 NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Exposed 1 
REP10-68 1 85.32 NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Exposed 1 
REP10-69 1 85.32 NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Exposed 1 
REP10-70 1 85.85 NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Exposed 1 
REP10-75 1 85.5 NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Exposed 1 
REP10-77 1 85.5 NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Exposed 1 
REP10-78 1 85.37 NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Exposed 1 
REP10-79 1 85.3 NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Exposed 1 
Ec721 0 NA NA NA AF Peters Ectocarpus siliculosus Chile 4 01/03/2006 Exposed None 
WIC08-14C 0 NA NA NA AF Peters Ectocarpus siliculosus UK 13 12/06/2008 Exposed None 
REP10-80 0 NA NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Exposed None 
W009 0 NA NA NA D Schroeder Ectocarpus siliculosus UK 26 04/12/2004 Exposed None 
GOS2b 0 NA NA NA AF Peters Ectocarpus siliculosus UK 31 28/05/2008 Exposed None 
EcQAB10-1 3 84.35 85.55 85.82 AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered Both 
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EcQAB10-3 3 83.03 84.15 85.38 AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered Both 
TOR08-10A 3 82.7 83.73 85.8 AF Peters Ectocarpus siliculosus UK 27 29/06/2008 Sheltered Both 
TOR08-14C 3 82.75 83.87 85.78 AF Peters Ectocarpus siliculosus UK 27 29/06/2008 Sheltered Both 
GOS7b 3 82.25 84.17 85.45 AF Peters Ectocarpus siliculosus UK 31 28/05/2008 Sheltered Both 
LH08-1B 3 83.33 83.93 85.8 AF Peters Ectocarpus siliculosus UK 32 28/05/2008 Sheltered Both 
LH10b 3 82.72 84.18 85.72 AF Peters Ectocarpus siliculosus UK 32 28/05/2008 Sheltered Both 
HAS08-17B 3 83.3 84.55 85.62 AF Peters Ectocarpus siliculosus UK 33 30/05/2008 Sheltered Both 
HAS08-21A 3 83.78 85.03 86.1 AF Peters Ectocarpus siliculosus UK 33 30/05/2008 Sheltered 0* 
HAS08-22A 3 83.7 84.95 85.98 AF Peters Ectocarpus siliculosus UK 33 30/05/2008 Sheltered 0* 
HAS08-5A 3 83.42 84.68 85.77 AF Peters Ectocarpus siliculosus UK 33 30/05/2008 Sheltered 0* 
Ec669 3 82.25 82.55 85.07 AF Peters Ectocarpus siliculosus France 35 12/08/2006 Sheltered 0* 
EcPH10-171 3 82.07 83.35 85.35 AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered Both 
EcPH10-9 3 82.87 83.1 84.98 AF Peters Ectocarpus siliculosus France 35 28/04/2010 Sheltered 0* 
EcPH11-107 3 81.72 82.12 85.65 AF Peters Ectocarpus siliculosus France 35 06/06/2011 Sheltered Both 
EcPH11-s#2A-16 3 82.23 83.42 85.4 AF Peters Ectocarpus siliculosus France 35 26/01/2011 Sheltered Both 
EcPH11-s#2A-37 3 81.9 83.12 85.13 AF Peters Ectocarpus siliculosus France 35 26/01/2011 Sheltered Both 
EcPH11-s#2A-41 3 82.25 83.3 85.4 AF Peters Ectocarpus siliculosus France 35 26/01/2011 Sheltered Both 
EcPH11-s#2B-8 3 82.85 83.55 85 AF Peters Ectocarpus siliculosus France 35 25/01/2011 Sheltered 0* 
EcTH10-18 3 83.6 84.33 85.07 AF Peters Ectocarpus siliculosus France 36 28/05/2010 Sheltered 0* 
EcTH10-205 3 83.05 84.22 85.58 AF Peters Ectocarpus siliculosus France 36 13/08/2010 Sheltered Both 
EcTH10-8 3 83.57 84.23 85.1 AF Peters Ectocarpus siliculosus France 36 28/05/2010 Sheltered 0* 
Ec278 2 84.57 86.05 NA AF Peters Ectocarpus siliculosus Peru 2 08/03/2006 Sheltered 1* 
BUT08-12B 2 82.1 84.62 NA AF Peters Ectocarpus siliculosus UK 10 02/06/2008 Sheltered 0* 
SKY08-13C 2 84.15 85.87 NA AF Peters Ectocarpus siliculosus UK 14 14/06/2008 Sheltered Both 
SAM08-9C 2 84.35 85.7 NA AF Peters Ectocarpus siliculosus UK 16 07/06/2008 Sheltered Both 
SAM4 2 84.25 85.9 NA AF Peters Ectocarpus siliculosus UK 16 07/06/2008 Sheltered Both 
REP10-13 2 83.63 85.5 NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered Both 
EcQAB10-15 2 83.48 85.37 NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered Both 
EcQAB10-16 2 83.2 85.18 NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered Both 
EcQAB10-19 2 85.57 85.8 NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered 1 
EcQAB10-27 2 84.35 85.45 NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered Both 
EcQAB10-40 2 83.45 85.33 NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered Both 
EcQAB10-46 2 83.45 85.37 NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered Both 
TOR08-9C 2 82.18 85.32 NA AF Peters Ectocarpus siliculosus UK 27 29/06/2008 Sheltered Both 
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GOS08-14B 2 83.7 86.07 NA AF Peters Ectocarpus siliculosus UK 31 28/05/2008 Sheltered Both 
GOS08-8C 2 83.8 85.77 NA AF Peters Ectocarpus siliculosus UK 31 28/05/2008 Sheltered Both 
GOS08-9A 2 83.77 86.17 NA AF Peters Ectocarpus siliculosus UK 31 28/05/2008 Sheltered 0* 
LH12c 2 83.53 84.73 NA AF Peters Ectocarpus siliculosus UK 32 28/05/2008 Sheltered 0* 
LH2b 2 84.17 85.92 NA AF Peters Ectocarpus siliculosus UK 32 28/05/2008 Sheltered Both 
LH9c 2 83.47 84.65 NA AF Peters Ectocarpus siliculosus UK 32 28/05/2008 Sheltered 0* 
HAS08-11B 2 83.33 85.73 NA AF Peters Ectocarpus siliculosus UK 33 30/05/2008 Sheltered Both 
HAS08-12B 2 83.3 85.7 NA AF Peters Ectocarpus siliculosus UK 33 30/05/2008 Sheltered Both 
HAS08-13C 2 83.33 85.7 NA AF Peters Ectocarpus siliculosus UK 33 30/05/2008 Sheltered Both 
HAS08-14B 2 83.3 85.7 NA AF Peters Ectocarpus siliculosus UK 33 30/05/2008 Sheltered Both 
HAS08-15A 2 83.28 85.65 NA AF Peters Ectocarpus siliculosus UK 33 30/05/2008 Sheltered Both 
HAS08-16A 2 83.38 85.8 NA AF Peters Ectocarpus siliculosus UK 33 30/05/2008 Sheltered Both 
HAS08-18B 2 83.35 85.62 NA AF Peters Ectocarpus siliculosus UK 33 30/05/2008 Sheltered Both 
HAS08-19B 2 83.4 85.82 NA AF Peters Ectocarpus siliculosus UK 33 30/05/2008 Sheltered Both 
HAS08-20A 2 83.33 85.73 NA AF Peters Ectocarpus siliculosus UK 33 30/05/2008 Sheltered Both 
HAS08-6A 2 83.37 85.77 NA AF Peters Ectocarpus siliculosus UK 33 30/05/2008 Sheltered Both 
HAS08-7A 2 83.35 85.75 NA AF Peters Ectocarpus siliculosus UK 33 30/05/2008 Sheltered Both 
HAS08-8B 2 83.33 85.75 NA AF Peters Ectocarpus siliculosus UK 33 30/05/2008 Sheltered Both 
HAS08-9B 2 83.28 85.6 NA AF Peters Ectocarpus siliculosus UK 33 30/05/2008 Sheltered Both 
HAS12B 2 83.38 85.78 NA AF Peters Ectocarpus siliculosus UK 33 30/05/2008 Sheltered Both 
(Ec)PHS2 2 81.95 85.55 NA AF Peters Ectocarpus siliculosus France 35 26/11/2007 Sheltered Both 
Ec487 2 82 85.2 NA AF Peters Ectocarpus siliculosus France 35 16/08/2004 Sheltered Both 
Ec673 2 82.38 85.07 NA AF Peters Ectocarpus siliculosus France 35 27/09/2007 Sheltered 0* 
Ec730 2 83.25 85.32 NA AF Peters Ectocarpus siliculosus France 35 21/08/2009 Sheltered Both 
Ec731 2 85.48 85.9 NA AF Peters Ectocarpus siliculosus France 35 21/08/2009 Sheltered 1 
Ec732 2 83.27 85.37 NA AF Peters Ectocarpus siliculosus France 35 21/08/2009 Sheltered Both 
EcPH10-127 2 82.02 85.7 NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered Both 
EcPH10-128 2 82.35 84.4 NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered 0 
EcPH10-129 2 83.2 85.3 NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered Both 
EcPH10-132 2 82.03 85.57 NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered Both 
EcPH10-134 2 82.22 85.65 NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered Both 
EcPH10-139 2 81.93 85.37 NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered Both 
EcPH10-173 2 83.37 85.68 NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered Both 
EcPH10-292 2 82.15 85.57 NA AF Peters Ectocarpus siliculosus France 35 12/08/2010 Sheltered Both 
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Name No. of infections Tm 1 / °C Tm 2 / °C Tm 3/ °C Collector Species Country Collection site Date Exposure Virus Group 

EcPH11-100 2 82.3 85.42 NA AF Peters Ectocarpus siliculosus France 35 06/06/2011 Sheltered Both 
EcPH11-108 2 82.22 85.65 NA AF Peters Ectocarpus siliculosus France 35 06/06/2011 Sheltered Both 
EcPH11-115 2 82.47 84.98 NA AF Peters Ectocarpus siliculosus France 35 03/07/2011 Sheltered 0* 
EcPH11-116 2 83.37 85.18 NA AF Peters Ectocarpus siliculosus France 35 03/07/2011 Sheltered Both 
EcPH11-117 2 82.3 85.1 NA AF Peters Ectocarpus siliculosus France 35 03/07/2011 Sheltered 0* 
EcPH11-118 2 82.37 85.05 NA AF Peters Ectocarpus siliculosus France 35 03/07/2011 Sheltered 0* 
EcPH11-s#2A-4 2 82.25 85.7 NA AF Peters Ectocarpus siliculosus France 35 26/01/2011 Sheltered Both 
EcPH11-s#2A-40 2 82.27 85.77 NA AF Peters Ectocarpus siliculosus France 35 26/01/2011 Sheltered Both 
EcPH11-s#2A-47 2 81.93 85.43 NA AF Peters Ectocarpus siliculosus France 35 26/01/2011 Sheltered Both 
EcPH11-s#2A-48 2 82 85.4 NA AF Peters Ectocarpus siliculosus France 35 26/01/2011 Sheltered Both 
EcPH11-s#2A-50 2 82.45 85.68 NA AF Peters Ectocarpus siliculosus France 35 26/01/2011 Sheltered Both 
EcPH11-s#2A-52 2 82.37 85 NA AF Peters Ectocarpus siliculosus France 35 26/01/2011 Sheltered 0* 
EcPH11-s#2B-15 2 82.13 84.98 NA AF Peters Ectocarpus siliculosus France 35 25/01/2011 Sheltered 0* 
EcPH11-s#2B-19 2 83.55 85.4 NA AF Peters Ectocarpus siliculosus France 35 25/01/2011 Sheltered Both 
EcPH11-s#2B-41 2 82.07 85.03 NA AF Peters Ectocarpus siliculosus France 35 25/01/2011 Sheltered 0* 
EcPH11-s#5-17 2 83.4 85.28 NA AF Peters Ectocarpus siliculosus France 35 21/01/2011 Sheltered Both 
EcPH11-s#5-25 2 82.12 85.7 NA AF Peters Ectocarpus siliculosus France 35 21/01/2011 Sheltered Both 
EcPH11-s#5-30 2 84.57 85.33 NA AF Peters Ectocarpus siliculosus France 35 21/01/2011 Sheltered 1* 
EcPH11-s#5-33 2 84.68 85.78 NA AF Peters Ectocarpus siliculosus France 35 21/01/2011 Sheltered 1* 
Ec539 2 84.15 85.53 NA AF Peters Ectocarpus siliculosus France 36 24/05/2005 Sheltered Both 
EcTH10-10 2 84.28 85.1 NA AF Peters Ectocarpus siliculosus France 36 28/05/2010 Sheltered 0* 
EcTH10-17 2 84.17 85.05 NA AF Peters Ectocarpus siliculosus France 36 28/05/2010 Sheltered 0* 
EcTH10-176 2 83.98 85.57 NA AF Peters Ectocarpus siliculosus France 36 13/08/2010 Sheltered Both 
EcQB10-21 2 84.07 85.5 NA AF Peters Ectocarpus siliculosus France 39 31/07/2010 Sheltered Both 
EcQB10-22 2 84.07 85.85 NA AF Peters Ectocarpus siliculosus France 39 31/07/2010 Sheltered Both 
EcQB10-23 2 84.37 85.9 NA AF Peters Ectocarpus siliculosus France 39 31/07/2010 Sheltered Both 
(Ec)BIOCEAN 2 82.22 85.6 NA AF Peters Ectocarpus siliculosus France NA 28/03/2008 Sheltered Both 
Ec201 1 85.05 NA NA AF Peters Ectocarpus siliculosus Peru 2 08/03/2006 Sheltered Unclassified 
Ec202 1 85 NA NA AF Peters Ectocarpus siliculosus Peru 2 08/03/2006 Sheltered Unclassified 
Ec246 1 85.18 NA NA AF Peters Ectocarpus siliculosus Peru 2 08/03/2006 Sheltered 1 
Ec266 1 85 NA NA AF Peters Ectocarpus siliculosus Peru 2 08/03/2006 Sheltered Unclassified 
Ec267 1 85.82 NA NA AF Peters Ectocarpus siliculosus Peru 2 08/03/2006 Sheltered 1 
Ec269 1 85.15 NA NA AF Peters Ectocarpus siliculosus Peru 2 08/03/2006 Sheltered 1 
Ec270 1 85.1 NA NA AF Peters Ectocarpus siliculosus Peru 2 08/03/2006 Sheltered Unclassified 
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Ec274 1 85.05 NA NA AF Peters Ectocarpus siliculosus Peru 2 08/03/2006 Sheltered Unclassified 
Ec283 1 85.95 NA NA AF Peters Ectocarpus siliculosus Peru 2 08/03/2006 Sheltered 1 
Ec284 1 86.03 NA NA AF Peters Ectocarpus siliculosus Peru 2 08/03/2006 Sheltered 1 
Ec285 1 85.5 NA NA AF Peters Ectocarpus siliculosus Peru 2 08/03/2006 Sheltered 1 
Ec289 1 84.97 NA NA AF Peters Ectocarpus siliculosus Peru 2 08/03/2006 Sheltered Unclassified 
Ec290 1 85.97 NA NA AF Peters Ectocarpus siliculosus Peru 2 08/03/2006 Sheltered 1 
Ec291 1 85.88 NA NA AF Peters Ectocarpus siliculosus Peru 2 08/03/2006 Sheltered 1 
Ec294 1 85.22 NA NA AF Peters Ectocarpus siliculosus Peru 3 06/03/2006 Sheltered 1 
Ec295 1 85.4 NA NA AF Peters Ectocarpus siliculosus Peru 3 06/03/2006 Sheltered 1 
Ec296 1 85.23 NA NA AF Peters Ectocarpus siliculosus Peru 3 06/03/2006 Sheltered 1 
Ec297 1 85.22 NA NA AF Peters Ectocarpus siliculosus Peru 3 06/03/2006 Sheltered 1 
Ec298 1 85.17 NA NA AF Peters Ectocarpus siliculosus Peru 3 06/03/2006 Sheltered 1 
EC298 1 85.4 NA NA AF Peters Ectocarpus siliculosus Peru 3 06/03/2006 Sheltered 1 
Ec299 1 85.2 NA NA AF Peters Ectocarpus siliculosus Peru 3 06/03/2006 Sheltered 1 
Ec300 1 85.22 NA NA AF Peters Ectocarpus siliculosus Peru 3 06/03/2006 Sheltered 1 
Ec302 1 85.17 NA NA AF Peters Ectocarpus siliculosus Peru 3 06/03/2006 Sheltered 1 
Ec304 1 85.27 NA NA AF Peters Ectocarpus siliculosus Peru 3 06/03/2006 Sheltered 1 
Ec305 1 85.27 NA NA AF Peters Ectocarpus siliculosus Peru 3 06/03/2006 Sheltered 1 
Ec306 1 85.22 NA NA AF Peters Ectocarpus siliculosus Peru 3 06/03/2006 Sheltered 1 
Ec307 1 85.35 NA NA AF Peters Ectocarpus siliculosus Peru 3 06/03/2006 Sheltered 1 
Ec147 1 85.25 NA NA AF Peters Ectocarpus siliculosus Chile 6 28/02/2006 Sheltered 1 
Ec150 1 83.33 NA NA AF Peters Ectocarpus siliculosus Chile 6 28/02/2006 Sheltered 0 
Ec151 1 83.45 NA NA AF Peters Ectocarpus siliculosus Chile 6 28/02/2006 Sheltered 0 
Ec153 1 83.47 NA NA AF Peters Ectocarpus siliculosus Chile 6 28/02/2006 Sheltered 0 
Ec154 1 83.45 NA NA AF Peters Ectocarpus siliculosus Chile 6 28/02/2006 Sheltered 0 
Ec155 1 83.38 NA NA AF Peters Ectocarpus siliculosus Chile 6 28/02/2006 Sheltered 0 
Ob07-10A 1 85.78 NA NA AF Peters Ectocarpus siliculosus UK 16 07/11/2007 Sheltered 1 
Ob07-15A 1 85.72 NA NA AF Peters Ectocarpus siliculosus UK 16 07/11/2007 Sheltered 1 
Ob07-4 1 85.75 NA NA AF Peters Ectocarpus siliculosus UK 16 07/11/2007 Sheltered 1 
SAM08-5A 1 85.58 NA NA AF Peters Ectocarpus siliculosus UK 16 07/06/2008 Sheltered 1 
RHOS08-12C 1 85.7 NA NA AF Peters Ectocarpus siliculosus UK 22 20/06/2008 Sheltered 1 
REP10-18 1 85.42 NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered 1 
REP10-22 1 85.8 NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered 1 
REP10-23 1 85.55 NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered 1 
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REP10-26 1 84.4 NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered 0 
REP10-28 1 85.85 NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered 1 
REP10-30 1 85.82 NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered 1 
REP10-32 1 85.85 NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered 1 
REP10-35 1 84.82 NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered Unclassified 
REP10-36 1 85.67 NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered 1 
REP10-38 1 85.83 NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered 1 
REP10-42 1 85.62 NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered 1 
REP10-45 1 85.77 NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered 1 
REP10-47 1 85.87 NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered 1 
REP10-48 1 85.77 NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered 1 
REP10-50 1 85.9 NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered 1 
REP10-51 1 85.4 NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered 1 
REP10-52 1 85.52 NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered 1 
REP10-54 1 85.67 NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered 1 
EcQAB10-10 1 85.45 NA NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered 1 
EcQAB10-11 1 85.6 NA NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered 1 
EcQAB10-13 1 85.8 NA NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered 1 
EcQAB10-14 1 85.53 NA NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered 1 
EcQAB10-17 1 85.08 NA NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered Unclassified 
EcQAB10-18 1 85.5 NA NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered 1 
EcQAB10-2 1 85.4 NA NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered 1 
EcQAB10-20 1 85.35 NA NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered 1 
EcQAB10-24 1 85.6 NA NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered 1 
EcQAB10-25 1 85.4 NA NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered 1 
EcQAB10-28 1 85.45 NA NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered 1 
EcQAB10-29 1 85.48 NA NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered 1 
EcQAB10-30 1 85.53 NA NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered 1 
EcQAB10-32 1 85.47 NA NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered 1 
EcQAB10-33 1 85.35 NA NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered 1 
EcQAB10-34 1 85.2 NA NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered 1 
EcQAB10-35 1 85.38 NA NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered 1 
EcQAB10-38 1 85.47 NA NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered 1 
EcQAB10-39 1 85.48 NA NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered 1 
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EcQAB10-43 1 85.35 NA NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered 1 
EcQAB10-48 1 85.4 NA NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered 1 
EcQAB10-5 1 85.47 NA NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered 1 
EcQAB10-6 1 85.5 NA NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered 1 
EcQAB10-7 1 85.32 NA NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered 1 
EcQAB10-8 1 85.45 NA NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered 1 
EcQAB10-9 1 85.5 NA NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered 1 
QAB08-1C 1 85.7 NA NA AF Peters Ectocarpus siliculosus UK 25 24/05/2008 Sheltered 1 
QAB08-2A 1 85.9 NA NA AF Peters Ectocarpus siliculosus UK 25 24/05/2008 Sheltered 1 
QAB08-3A 1 85.78 NA NA AF Peters Ectocarpus siliculosus UK 25 24/05/2008 Sheltered 1 
TOR08-13B 1 85.65 NA NA AF Peters Ectocarpus siliculosus UK 27 29/06/2008 Sheltered 1 
GOS08-11B 1 85.98 NA NA AF Peters Ectocarpus siliculosus UK 31 28/05/2008 Sheltered 1 
GOS08-12B 1 86.05 NA NA AF Peters Ectocarpus siliculosus UK 31 28/05/2008 Sheltered 1 
GOS08-13B 1 86.1 NA NA AF Peters Ectocarpus siliculosus UK 31 28/05/2008 Sheltered 1 
GOS08-17B 1 86.12 NA NA AF Peters Ectocarpus siliculosus UK 31 28/05/2008 Sheltered 1 
GOS5c 1 85.8 NA NA AF Peters Ectocarpus siliculosus UK 31 28/05/2008 Sheltered 1 
GOS6c 1 85.78 NA NA AF Peters Ectocarpus siliculosus UK 31 28/05/2008 Sheltered 1 
LH11c 1 84.72 NA NA AF Peters Ectocarpus siliculosus UK 32 28/05/2008 Sheltered Unclassified 
LH5c 1 85.83 NA NA AF Peters Ectocarpus siliculosus UK 32 28/05/2008 Sheltered 1 
(Ec)PHL21 1 85.2 NA NA AF Peters Ectocarpus siliculosus France 35 08/09/2006 Sheltered 1 
(Ec)PHS1 1 85.82 NA NA AF Peters Ectocarpus siliculosus France 35 12/08/2006 Sheltered 1 
(Ec)PHU(07)2 1 85.53 NA NA AF Peters Ectocarpus siliculosus France 35 27/09/2007 Sheltered 1 
Ec670 1 85.15 NA NA AF Peters Ectocarpus siliculosus France 35 12/08/2006 Sheltered 1 
Ec671 1 85.07 NA NA AF Peters Ectocarpus siliculosus France 35 26/09/2007 Sheltered Unclassified 
EcPH10-11 1 84.32 NA NA AF Peters Ectocarpus siliculosus France 35 14/05/2010 Sheltered 0 
EcPH10-130 1 85.45 NA NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered 1 
EcPH10-131 1 85.13 NA NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered 1 
EcPH10-142 1 85.42 NA NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered 1 
EcPH10-15 1 85.18 NA NA AF Peters Ectocarpus siliculosus France 35 14/05/2010 Sheltered 1 
EcPH10-151 1 84.72 NA NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered Unclassified 
EcPH10-152 1 84.65 NA NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered Unclassified 
EcPH10-157 1 85.35 NA NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered 1 
EcPH10-160 1 85.55 NA NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered 1 
EcPH10-162 1 85.03 NA NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered Unclassified 
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EcPH10-165 1 85.32 NA NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered 1 
EcPH10-166 1 84.97 NA NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered Unclassified 
EcPH10-167 1 84.95 NA NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered Unclassified 
EcPH10-168 1 85.67 NA NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered 1 
EcPH10-170 1 85.57 NA NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered 1 
EcPH10-294 1 85.03 NA NA AF Peters Ectocarpus siliculosus France 35 12/08/2010 Sheltered Unclassified 
EcPH11-109 1 84.9 NA NA AF Peters Ectocarpus siliculosus France 35 06/06/2011 Sheltered Unclassified 
EcPH11-124 1 85.47 NA NA AF Peters Ectocarpus siliculosus France 35 02/08/2011 Sheltered 1 
EcPH11-8 1 83.2 NA NA AF Peters Ectocarpus siliculosus France 35 20/01/2011 Sheltered 0 
EcPH11-97 1 85.8 NA NA AF Peters Ectocarpus siliculosus France 35 06/06/2011 Sheltered 1 
EcPH11-98 1 85.77 NA NA AF Peters Ectocarpus siliculosus France 35 06/06/2011 Sheltered 1 
EcPH11-99 1 85.42 NA NA AF Peters Ectocarpus siliculosus France 35 06/06/2011 Sheltered 1 
EcPH11-s#2A-17 1 84.72 NA NA AF Peters Ectocarpus siliculosus France 35 26/01/2011 Sheltered Unclassified 
EcPH11-s#2A-32 1 85.45 NA NA AF Peters Ectocarpus siliculosus France 35 26/01/2011 Sheltered 1 
EcPH11-s#2A-35 1 85.33 NA NA AF Peters Ectocarpus siliculosus France 35 26/01/2011 Sheltered 1 
EcPH11-s#2A-39 1 84.93 NA NA AF Peters Ectocarpus siliculosus France 35 26/01/2011 Sheltered Unclassified 
EcPH11-s#2A-49 1 85.3 NA NA AF Peters Ectocarpus siliculosus France 35 26/01/2011 Sheltered 1 
EcPH11-s#2A-6 1 85.75 NA NA AF Peters Ectocarpus siliculosus France 35 26/01/2011 Sheltered 1 
EcPH11-s#2A-9 1 85.75 NA NA AF Peters Ectocarpus siliculosus France 35 26/01/2011 Sheltered 1 
EcPH11-s#2B-12 1 85.62 NA NA AF Peters Ectocarpus siliculosus France 35 25/01/2011 Sheltered 1 
EcPH11-s#2B-38 1 85.6 NA NA AF Peters Ectocarpus siliculosus France 35 25/01/2011 Sheltered 1 
EcPH11-s#2B-40 1 84.82 NA NA AF Peters Ectocarpus siliculosus France 35 25/01/2011 Sheltered Unclassified 
EcPH11-s#2B-43 1 85.15 NA NA AF Peters Ectocarpus siliculosus France 35 25/01/2011 Sheltered 1 
EcPH11-s#2B-45 1 85.47 NA NA AF Peters Ectocarpus siliculosus France 35 25/01/2011 Sheltered 1 
EcPH11-s#2B-46 1 85.25 NA NA AF Peters Ectocarpus siliculosus France 35 25/01/2011 Sheltered 1 
EcPH11-s#2B-48 1 85.58 NA NA AF Peters Ectocarpus siliculosus France 35 25/01/2011 Sheltered 1 
EcPH11-s#2B-5 1 85.35 NA NA AF Peters Ectocarpus siliculosus France 35 25/01/2011 Sheltered 1 
EcPH11-s#2B-6 1 85.15 NA NA AF Peters Ectocarpus siliculosus France 35 25/01/2011 Sheltered 1 
EcPH11-s#5-1 1 85.05 NA NA AF Peters Ectocarpus siliculosus France 35 21/01/2011 Sheltered Unclassified 
EcPH11-s#5-13 1 85.1 NA NA AF Peters Ectocarpus siliculosus France 35 21/01/2011 Sheltered Unclassified 
EcPH11-s#5-15 1 85.37 NA NA AF Peters Ectocarpus siliculosus France 35 21/01/2011 Sheltered 1 
EcPH11-s#5-18 1 85.25 NA NA AF Peters Ectocarpus siliculosus France 35 21/01/2011 Sheltered 1 
EcPH11-s#5-19 1 85.25 NA NA AF Peters Ectocarpus siliculosus France 35 21/01/2011 Sheltered 1 
EcPH11-s#5-20 1 85.5 NA NA AF Peters Ectocarpus siliculosus France 35 21/01/2011 Sheltered 1 
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EcPH11-s#5-28 1 85.02 NA NA AF Peters Ectocarpus siliculosus France 35 21/01/2011 Sheltered Unclassified 
EcPH11-s#5-31 1 86.05 NA NA AF Peters Ectocarpus siliculosus France 35 21/01/2011 Sheltered 1 
EcPH11-s#5-32 1 85.05 NA NA AF Peters Ectocarpus siliculosus France 35 21/01/2011 Sheltered Unclassified 
EcPH11-s#5-34 1 85.05 NA NA AF Peters Ectocarpus siliculosus France 35 21/01/2011 Sheltered Unclassified 
EcPH11-s#5-35 1 85.5 NA NA AF Peters Ectocarpus siliculosus France 35 21/01/2011 Sheltered 1 
EcPH11-s#5-37 1 84.47 NA NA AF Peters Ectocarpus siliculosus France 35 21/01/2011 Sheltered 0 
EcPH11-s#5-42 1 85.03 NA NA AF Peters Ectocarpus siliculosus France 35 21/01/2011 Sheltered Unclassified 
EcPH11-s#5-43 1 85.1 NA NA AF Peters Ectocarpus siliculosus France 35 21/01/2011 Sheltered Unclassified 
EcPH11-s#5-49 1 84.33 NA NA AF Peters Ectocarpus siliculosus France 35 21/01/2011 Sheltered 0 
EcPH11-s#5-5 1 85.38 NA NA AF Peters Ectocarpus siliculosus France 35 21/01/2011 Sheltered 1 
EcPH11-s#5-6 1 85.73 NA NA AF Peters Ectocarpus siliculosus France 35 21/01/2011 Sheltered 1 
EcPH11-s#5-8 1 84.53 NA NA AF Peters Ectocarpus siliculosus France 35 21/01/2011 Sheltered 0 
Ec531 1 85.45 NA NA AF Peters Ectocarpus siliculosus France 36 24/05/2005 Sheltered 1 
Ec533 1 84.75 NA NA AF Peters Ectocarpus siliculosus France 36 24/05/2005 Sheltered Unclassified 
Ec540 1 85.52 NA NA AF Peters Ectocarpus siliculosus France 36 24/05/2005 Sheltered 1 
Ec543 1 85.9 NA NA AF Peters Ectocarpus siliculosus France 36 22/08/2005 Sheltered 1 
EcTH10-172 1 84.75 NA NA AF Peters Ectocarpus siliculosus France 36 13/08/2010 Sheltered Unclassified 
EcTH10-175 1 85.53 NA NA AF Peters Ectocarpus siliculosus France 36 13/08/2010 Sheltered 1 
EcTH10-197 1 85.52 NA NA AF Peters Ectocarpus siliculosus France 36 13/08/2010 Sheltered 1 
EcTH10-198 1 85.62 NA NA AF Peters Ectocarpus siliculosus France 36 13/08/2010 Sheltered 1 
EcTH10-199 1 85.9 NA NA AF Peters Ectocarpus siliculosus France 36 13/08/2010 Sheltered 1 
EcTH10-201 1 85.9 NA NA AF Peters Ectocarpus siliculosus France 36 13/08/2010 Sheltered 1 
EcTH10-202 1 85.87 NA NA AF Peters Ectocarpus siliculosus France 36 13/08/2010 Sheltered 1 
EcTH10-9 1 85.17 NA NA AF Peters Ectocarpus siliculosus France 36 28/05/2010 Sheltered 1 
EcQB10-1 1 85.53 NA NA AF Peters Ectocarpus siliculosus France 39 31/07/2010 Sheltered 1 
EcQB10-16 1 85.92 NA NA AF Peters Ectocarpus siliculosus France 39 31/07/2010 Sheltered 1 
EcQB10-26 1 84.85 NA NA AF Peters Ectocarpus siliculosus France 39 31/07/2010 Sheltered Unclassified 
EcQB10-8 1 85.9 NA NA AF Peters Ectocarpus siliculosus France 39 31/07/2010 Sheltered 1 
ET08-2A 1 85.93 NA NA AF Peters Ectocarpus siliculosus France 40 15/04/2008 Sheltered 1 
ET08-3A 1 85.9 NA NA AF Peters Ectocarpus siliculosus France 40 15/04/2008 Sheltered 1 
ET08-4B 1 85.87 NA NA AF Peters Ectocarpus siliculosus France 40 15/04/2008 Sheltered 1 
ET08-5B 1 85.78 NA NA AF Peters Ectocarpus siliculosus France 40 15/04/2008 Sheltered 1 
Ec311 0 NA NA NA AF Peters Ectocarpus siliculosus Peru 1 07/03/2006 Sheltered None 
Ec312 0 NA NA NA AF Peters Ectocarpus siliculosus Peru 1 07/03/2006 Sheltered None 
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Ec314 0 NA NA NA AF Peters Ectocarpus siliculosus Peru 1 07/03/2006 Sheltered None 
Ec247 0 NA NA NA AF Peters Ectocarpus siliculosus Peru 2 08/03/2006 Sheltered None 
Ec275 0 NA NA NA AF Peters Ectocarpus siliculosus Peru 2 08/03/2006 Sheltered None 
Ec276 0 NA NA NA AF Peters Ectocarpus siliculosus Peru 2 08/03/2006 Sheltered None 
Ec277 0 NA NA NA AF Peters Ectocarpus siliculosus Peru 2 08/03/2006 Sheltered None 
Ec279 0 NA NA NA AF Peters Ectocarpus siliculosus Peru 2 08/03/2006 Sheltered None 
Ec280 0 NA NA NA AF Peters Ectocarpus siliculosus Peru 2 08/03/2006 Sheltered None 
Ec281 0 NA NA NA AF Peters Ectocarpus siliculosus Peru 2 08/03/2006 Sheltered None 
Ec282 0 NA NA NA AF Peters Ectocarpus siliculosus Peru 2 08/03/2006 Sheltered None 
Ec292 0 NA NA NA AF Peters Ectocarpus siliculosus Peru 2 08/03/2006 Sheltered None 
Ec293 0 NA NA NA AF Peters Ectocarpus siliculosus Peru 2 08/03/2006 Sheltered None 
Ec315 0 NA NA NA AF Peters Ectocarpus siliculosus Peru 2 07/03/2006 Sheltered None 
Ec316 0 NA NA NA AF Peters Ectocarpus siliculosus Peru 2 07/03/2006 Sheltered None 
Ec301 0 NA NA NA AF Peters Ectocarpus siliculosus Peru 3 06/03/2006 Sheltered None 
Ec303 0 NA NA NA AF Peters Ectocarpus siliculosus Peru 3 06/03/2006 Sheltered None 
REP10-1 0 NA NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered None 
REP10-10 0 NA NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered None 
REP10-11 0 NA NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered None 
REP10-12 0 NA NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered None 
REP10-14 0 NA NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered None 
REP10-16 0 NA NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered None 
REP10-17 0 NA NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered None 
REP10-19 0 NA NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered None 
REP10-21 0 NA NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered None 
REP10-25 0 NA NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered None 
REP10-27 0 NA NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered None 
REP10-29 0 NA NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered None 
REP10-33 0 NA NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered None 
REP10-34 0 NA NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered None 
REP10-39 0 NA NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered None 
REP10-40 0 NA NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered None 
REP10-43 0 NA NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered None 
REP10-44 0 NA NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered None 
REP10-46 0 NA NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered None 
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Table A.1 (continued) 

Name No. of infections Tm 1 / °C Tm 2 / °C Tm 3/ °C Collector Species Country Collection site Date Exposure Virus Group 

REP10-53 0 NA NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered None 
REP10-6 0 NA NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered None 
REP10-7 0 NA NA NA AF Peters Ectocarpus siliculosus UK 23 14/06/2010 Sheltered None 
EcQAB10-21 0 NA NA NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered None 
EcQAB10-22 0 NA NA NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered None 
EcQAB10-23 0 NA NA NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered None 
EcQAB10-36 0 NA NA NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered None 
EcQAB10-37 0 NA NA NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered None 
EcQAB10-41 0 NA NA NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered None 
EcQAB10-42 0 NA NA NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered None 
EcQAB10-44 0 NA NA NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered None 
EcQAB10-45 0 NA NA NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered None 
EcQAB10-47 0 NA NA NA AF Peters Ectocarpus siliculosus UK 25 13/06/2010 Sheltered None 
GOS08-16B 0 NA NA NA AF Peters Ectocarpus siliculosus UK 31 28/05/2008 Sheltered None 
LH3C 0 NA NA NA AF Peters Ectocarpus siliculosus UK 32 28/05/2008 Sheltered None 
LH4A 0 NA NA NA AF Peters Ectocarpus siliculosus UK 32 28/05/2008 Sheltered None 
Ec331 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 05/06/2007 Sheltered None 
Ec393 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 01/07/2003 Sheltered None 
Ec488 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 16/08/2004 Sheltered None 
Ec489 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 29/08/2004 Sheltered None 
Ec697 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 16/04/2007 Sheltered None 
EcPH10-12 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 14/05/2010 Sheltered None 
EcPH10-133 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered None 
EcPH10-135 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered None 
EcPH10-137 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered None 
EcPH10-140 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered None 
EcPH10-141 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered None 
EcPH10-143 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered None 
EcPH10-144 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered None 
EcPH10-145 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered None 
EcPH10-146 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered None 
EcPH10-147 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered None 
EcPH10-148 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered None 
EcPH10-149 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered None 
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Table A.1 (continued) 

Name No. of infections Tm 1 / °C Tm 2 / °C Tm 3/ °C Collector Species Country Collection site Date Exposure Virus Group 

EcPH10-153 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered None 
EcPH10-154 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered None 
EcPH10-156 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered None 
EcPH10-158 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered None 
EcPH10-159 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered None 
EcPH10-16 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 14/05/2006 Sheltered None 
EcPH10-161 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered None 
EcPH10-164 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered None 
EcPH10-17 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 14/05/2010 Sheltered None 
EcPH10-172 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered None 
EcPH10-174 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 04/07/2010 Sheltered None 
EcPH10-20 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 14/05/2010 Sheltered None 
EcPH10-21 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 14/05/2010 Sheltered None 
EcPH10-291 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 12/08/2010 Sheltered None 
EcPH10-293 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 12/08/2010 Sheltered None 
EcPH10-296 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 12/08/2010 Sheltered None 
EcPH10-38 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 27/05/2010 Sheltered None 
EcPH10-40 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 27/05/2010 Sheltered None 
EcPH10-41 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 27/05/2010 Sheltered None 
EcPH10-43 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 27/05/2010 Sheltered None 
EcPH10-44 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 27/05/2010 Sheltered None 
EcPH11-102 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 06/06/2011 Sheltered None 
EcPH11-103 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 06/06/2011 Sheltered None 
EcPH11-104 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 06/06/2011 Sheltered None 
EcPH11-105 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 06/06/2011 Sheltered None 
EcPH11-110 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 06/06/2011 Sheltered None 
EcPH11-121 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 02/08/2011 Sheltered None 
EcPH11-s#2A-12 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 26/01/2011 Sheltered None 
EcPH11-s#2A-20 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 26/01/2011 Sheltered None 
EcPH11-s#2A-22 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 26/01/2011 Sheltered None 
EcPH11-s#2A-28 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 26/01/2011 Sheltered None 
EcPH11-s#2A-38 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 26/01/2011 Sheltered None 
EcPH11-s#2A-43 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 26/01/2011 Sheltered None 
EcPH11-s#2A-45 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 26/01/2011 Sheltered None 
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Table A.1 (continued) 

Name No. of infections Tm 1 / °C Tm 2 / °C Tm 3/ °C Collector Species Country Collection site Date Exposure Virus Group 

EcPH11-s#2B-13 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 25/01/2011 Sheltered None 
EcPH11-s#2B-14 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 25/01/2011 Sheltered None 
EcPH11-s#2B-18 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 25/01/2011 Sheltered None 
EcPH11-s#2B-51 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 25/01/2011 Sheltered None 
EcPH11-s#5-10 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 21/01/2011 Sheltered None 
EcPH11-s#5-11 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 21/01/2011 Sheltered None 
EcPH11-s#5-12 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 21/01/2011 Sheltered None 
EcPH11-s#5-14 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 21/01/2011 Sheltered None 
EcPH11-s#5-21 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 21/01/2011 Sheltered None 
EcPH11-s#5-22 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 21/01/2011 Sheltered None 
EcPH11-s#5-36 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 21/01/2011 Sheltered None 
EcPH11-s#5-39 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 21/01/2011 Sheltered None 
EcPH11-s#5-4 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 21/01/2011 Sheltered None 
EcPH11-s#5-40 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 21/01/2011 Sheltered None 
EcPH11-s#5-48 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 21/01/2011 Sheltered None 
EcPH11-s#5-50 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 21/01/2011 Sheltered None 
EcPH11-s#5-51 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 21/01/2011 Sheltered None 
EcPH11-s#5-9 0 NA NA NA AF Peters Ectocarpus siliculosus France 35 21/01/2011 Sheltered None 
Ec327 0 NA NA NA AF Peters Ectocarpus siliculosus France 36 27/05/2006 Sheltered None 
Ec530 0 NA NA NA AF Peters Ectocarpus siliculosus France 36 24/05/2005 Sheltered None 
Ec534 0 NA NA NA AF Peters Ectocarpus siliculosus France 36 24/05/2005 Sheltered None 
Ec535 0 NA NA NA AF Peters Ectocarpus siliculosus France 36 24/05/2005 Sheltered None 
Ec536 0 NA NA NA AF Peters Ectocarpus siliculosus France 36 24/05/2005 Sheltered None 
Ec538 0 NA NA NA AF Peters Ectocarpus siliculosus France 36 24/05/2005 Sheltered None 
Ec542 0 NA NA NA AF Peters Ectocarpus siliculosus France 36 24/05/2005 Sheltered None 
Ec544 0 NA NA NA AF Peters Ectocarpus siliculosus France 36 22/08/2005 Sheltered None 
Ec546 0 NA NA NA AF Peters Ectocarpus siliculosus France 36 22/08/2005 Sheltered None 
EcTH10-1 0 NA NA NA AF Peters Ectocarpus siliculosus France 36 28/05/2010 Sheltered None 
EcTH10-11 0 NA NA NA AF Peters Ectocarpus siliculosus France 36 28/05/2010 Sheltered None 
EcTH10-12 0 NA NA NA AF Peters Ectocarpus siliculosus France 36 28/05/2010 Sheltered None 
EcTH10-13 0 NA NA NA AF Peters Ectocarpus siliculosus France 36 28/05/2010 Sheltered None 
EcTH10-14 0 NA NA NA AF Peters Ectocarpus siliculosus France 36 28/05/2010 Sheltered None 
EcTH10-15 0 NA NA NA AF Peters Ectocarpus siliculosus France 36 28/05/2010 Sheltered None 
EcTH10-16 0 NA NA NA AF Peters Ectocarpus siliculosus France 36 28/05/2010 Sheltered None 
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Name No. of infections Tm 1 / °C Tm 2 / °C Tm 3/ °C Collector Species Country Collection site Date Exposure Virus Group 

EcTH10-170 0 NA NA NA AF Peters Ectocarpus siliculosus France 36 13/08/2010 Sheltered None 
EcTH10-171 0 NA NA NA AF Peters Ectocarpus siliculosus France 36 13/08/2010 Sheltered None 
EcTH10-173 0 NA NA NA AF Peters Ectocarpus siliculosus France 36 13/08/2010 Sheltered None 
EcTH10-174 0 NA NA NA AF Peters Ectocarpus siliculosus France 36 13/08/2010 Sheltered None 
EcTH10-177 0 NA NA NA AF Peters Ectocarpus siliculosus France 36 13/08/2010 Sheltered None 
EcTH10-178 0 NA NA NA AF Peters Ectocarpus siliculosus France 36 13/08/2010 Sheltered None 
EcTH10-2 0 NA NA NA AF Peters Ectocarpus siliculosus France 36 28/05/2010 Sheltered None 
EcTH10-200 0 NA NA NA AF Peters Ectocarpus siliculosus France 36 13/08/2010 Sheltered None 
EcTH10-203 0 NA NA NA AF Peters Ectocarpus siliculosus France 36 13/08/2010 Sheltered None 
EcTH10-204 0 NA NA NA AF Peters Ectocarpus siliculosus France 36 13/08/2010 Sheltered None 
EcTH10-206 0 NA NA NA AF Peters Ectocarpus siliculosus France 36 13/08/2010 Sheltered None 
EcTH10-3 0 NA NA NA AF Peters Ectocarpus siliculosus France 36 28/05/2010 Sheltered None 
EcTH10-4 0 NA NA NA AF Peters Ectocarpus siliculosus France 36 28/05/2010 Sheltered None 
EcTH10-5 0 NA NA NA AF Peters Ectocarpus siliculosus France 36 28/05/2010 Sheltered None 
EcTH10-6 0 NA NA NA AF Peters Ectocarpus siliculosus France 36 28/05/2010 Sheltered None 
EcTH10-7 0 NA NA NA AF Peters Ectocarpus siliculosus France 36 28/05/2010 Sheltered None 
Ec547 0 NA NA NA AF Peters Ectocarpus siliculosus France 37 26/04/2005 Sheltered None 
Ec548 0 NA NA NA AF Peters Ectocarpus siliculosus France 37 26/04/2005 Sheltered None 
Ec549 0 NA NA NA AF Peters Ectocarpus siliculosus France 37 26/04/2005 Sheltered None 
Ec550 0 NA NA NA AF Peters Ectocarpus siliculosus France 37 26/04/2005 Sheltered None 
Ec551 0 NA NA NA AF Peters Ectocarpus siliculosus France 37 26/04/2005 Sheltered None 
Ec552 0 NA NA NA DG Muller Ectocarpus siliculosus France 37 10/04/2005 Sheltered None 
EcQB10-19 0 NA NA NA AF Peters Ectocarpus siliculosus France 39 31/07/2010 Sheltered None 
EcQB10-20 0 NA NA NA AF Peters Ectocarpus siliculosus France 39 31/07/2010 Sheltered None 
EcQB10-24 0 NA NA NA AF Peters Ectocarpus siliculosus France 39 31/07/2010 Sheltered None 
EcQB10-25 0 NA NA NA AF Peters Ectocarpus siliculosus France 39 31/07/2010 Sheltered None 
BUT08-8C 2 84.85 85.78 NA AF Peters Ectocarpus sp. UK 10 01/06/2008 Exposed 1* 
RAT08-6A 1 85.78 NA NA AF Peters Ectocarpus sp. UK 12 11/06/2008 Exposed 1 
QAB08-5D 2 82.27 84.97 NA AF Peters Ectocarpus sp. UK 25 24/05/2008 Sheltered 0* 
LH7c 2 82.8 85.8 NA AF Peters Ectocarpus sp. UK 32 28/05/2008 Sheltered Both 
SAM08-11C 1 84.53 NA NA AF Peters Ectocarpus sp. UK 16 07/06/2008 Sheltered 0 
SAM08-3B 1 84.12 NA NA AF Peters Ectocarpus sp. UK 16 07/06/2008 Sheltered 0 
SAM11C4 1 84.5 NA NA AF Peters Ectocarpus sp. UK 16 07/06/2008 Sheltered 0 
EcQAB10-26 1 84.47 NA NA AF Peters Ectocarpus sp. UK 25 13/06/2010 Sheltered 0 
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Name No. of infections Tm 1 / °C Tm 2 / °C Tm 3/ °C Collector Species Country Collection site Date Exposure Virus Group 

LH14a 1 85.97 NA NA AF Peters Ectocarpus sp. UK 32 28/05/2008 Sheltered 1 
SAM08-10C 0 NA NA NA AF Peters Ectocarpus sp. UK 16 07/06/2008 Sheltered None 
POR08-1B 0 NA NA NA AF Peters Ectocarpus sp. UK 19 17/06/2008 Sheltered None 
POR08-2B 0 NA NA NA AF Peters Ectocarpus sp. UK 19 17/06/2008 Sheltered None 
EcQAB10-31 0 NA NA NA AF Peters Ectocarpus sp. UK 25 13/06/2010 Sheltered None 
Ec160 1 84.98 NA NA AF Peters Kuckuckia Chile 4 01/03/2006 Sheltered Unclassified 
BUT08-10C 3 81.62 83.62 85.3 NA Unknown NA NA NA NA Both 
TOR08-11A 3 81.95 83.25 85.02 NA Unknown NA NA NA NA 0* 
W010 3 83.45 84.05 85.6 NA Unknown NA NA NA NA Both 
L(els)PH(06)-4 2 84.07 86.55 NA AF Peters Unknown France 35 07/11/2006 NA 0* 
BRI08-3A 2 82.12 84.6 NA NA Unknown NA NA NA NA 0* 
BRI1 2 84.7 85.55 NA NA Unknown NA NA NA NA 1* 
Ec351 2 83.55 85.15 NA NA Unknown NA NA NA NA Both 
EcPH11-119 2 83.33 85.35 NA NA Unknown NA NA NA NA Both 
EcPH11-29 2 83.35 85.42 NA NA Unknown NA NA NA NA Both 
EcPH11-s#5-16 2 82.25 85.35 NA NA Unknown NA NA NA NA Both 
ET08-1B 2 82.53 85.82 NA NA Unknown NA NA NA NA Both 
FW Ecto 2 82.48 84.18 NA NA Unknown NA NA NA NA 0 
HAS08-3C 2 84.08 85.55 NA NA Unknown NA NA NA NA Both 
J002 2 82.92 85.05 NA NA Unknown NA NA NA NA 0* 
P003 2 81.65 84.7 NA NA Unknown NA NA NA NA 0* 
RSA001 2 83.27 85.07 NA NA Unknown NA NA NA NA 0* 
RSA002 2 83.7 85.15 NA NA Unknown NA NA NA NA Both 
SKY08-7C 2 84.45 85.53 NA NA Unknown NA NA NA NA Both 
W011 2 84.87 85.4 NA NA Unknown NA NA NA NA 1* 
WEM08-9B 2 83.65 85.65 NA NA Unknown NA NA NA NA Both 
L(els)BR(02)D 1 84.3 NA NA AF Peters Unknown France 35 13/06/2002 NA 0 
(Ec)PHG1 1 85.27 NA NA NA Unknown NA NA NA NA 1 
(Ec)PHG2 1 85.33 NA NA NA Unknown NA NA NA NA 1 
(Ec)PHH11 1 85.22 NA NA NA Unknown NA NA NA NA 1 
(Ec)PHL18 1 85.25 NA NA NA Unknown NA NA NA NA 1 
BER4A 1 85.4 NA NA NA Unknown NA NA NA NA 1 
BUT08-6B 1 85.17 NA NA NA Unknown NA NA NA NA 1 
CH(05-)2 1 84.72 NA NA NA Unknown NA NA NA NA Unclassified 
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Ec less 1 85.45 NA NA NA Unknown NA NA NA NA 1 
Ec Oban 06-29-7 1 85.3 NA NA NA Unknown NA NA NA NA 1 
Ec238hSP 1 83.33 NA NA NA Unknown NA NA NA NA 0 
Ec32m 1 85.17 NA NA NA Unknown NA NA NA NA 1 
Ec454f 1 85.7 NA NA NA Unknown NA NA NA NA 1 
EcJAP07-19 1 85.18 NA NA NA Unknown NA NA NA NA 1 
EcPH11-24 1 85.4 NA NA NA Unknown NA NA NA NA 1 
EcPH11-s#2B-24 1 85.35 NA NA NA Unknown NA NA NA NA 1 
EcPH11-s#2B-29 1 85.5 NA NA NA Unknown NA NA NA NA 1 
EcPH11-s#5-46 1 85.48 NA NA NA Unknown NA NA NA NA 1 
J001 1 84.65 NA NA NA Unknown NA NA NA NA Unclassified 
KckCRO11-1 1 84.93 NA NA NA Unknown NA NA NA NA Unclassified 
Na108f 1 83.18 NA NA NA Unknown NA NA NA NA 0 
REP10-20 1 85.7 NA NA NA Unknown NA NA NA NA 1 
REP10-66 1 85.35 NA NA NA Unknown NA NA NA NA 1 
S003 1 85.28 NA NA NA Unknown NA NA NA NA 1 
SKY3B 1 85.55 NA NA NA Unknown NA NA NA NA 1 
TOR08-12C 1 84.97 NA NA NA Unknown NA NA NA NA Unclassified 
TOR08-16A 1 85.17 NA NA NA Unknown NA NA NA NA 1 
W012 1 85.05 NA NA NA Unknown NA NA NA NA Unclassified 
wem 8c4 1 85.58 NA NA NA Unknown NA NA NA NA 1 
Y004 1 85.27 NA NA NA Unknown NA NA NA NA 1 
L(els)BR(02)C 0 NA NA NA AF Peters Unknown France 35 13/06/2002 NA None 
L(els)BUT(08) 0 NA NA NA AF Peters Unknown France 35 02/06/2008 NA None 
L(els)PH(06)-1 0 NA NA NA AF Peters Unknown France 35 07/11/2006 NA None 
L(els)PH(06)-2 0 NA NA NA AF Peters Unknown France 35 07/11/2006 NA None 
L(els)PH(06)-3 0 NA NA NA AF Peters Unknown France 35 07/11/2006 NA None 
L(els)PH(06)-5 0 NA NA NA AF Peters Unknown France 35 07/11/2006 NA None 
L(els)Seil(07)-1 0 NA NA NA AF Peters Unknown France 35 04/11/2007 NA None 
L(els)Seil(07)-2 0 NA NA NA AF Peters Unknown France 35 04/11/2007 NA None 
(Ec)PHH1 0 NA NA NA NA Unknown NA NA NA NA None 
(Ec)PHL20 0 NA NA NA NA Unknown NA NA NA NA None 
BUT08-9A 0 NA NA NA NA Unknown NA NA NA NA None 
CH(05-)3 0 NA NA NA NA Unknown NA NA NA NA None 
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Dga 0 NA NA NA NA Unknown NA NA NA NA None 
Ec08m 0 NA NA NA NA Unknown NA NA NA NA None 
EcPH10-10 0 NA NA NA NA Unknown NA NA NA NA None 
EcPH10-136 0 NA NA NA NA Unknown NA NA NA NA None 
EcPH10-6 0 NA NA NA NA Unknown NA NA NA NA None 
EcPH10-7 0 NA NA NA NA Unknown NA NA NA NA None 
EcPH11-34 0 NA NA NA NA Unknown NA NA NA NA None 
EcPH11-41 0 NA NA NA NA Unknown NA NA NA NA None 
EcPH11-s#2A-2 0 NA NA NA NA Unknown NA NA NA NA None 
EcPH11-s#2A-23 0 NA NA NA NA Unknown NA NA NA NA None 
EcPH11-s#2B-50 0 NA NA NA NA Unknown NA NA NA NA None 
L(els)HSoW15 0 NA NA NA NA Unknown NA NA NA NA None 
Na166m 0 NA NA NA NA Unknown NA NA NA NA None 
PHZ30B 0 NA NA NA NA Unknown NA NA NA NA None 
PHZ37 0 NA NA NA NA Unknown NA NA NA NA None 
RB1m 0 NA NA NA NA Unknown NA NA NA NA None 
REP10-15 0 NA NA NA NA Unknown NA NA NA NA None 
REP10-55 0 NA NA NA NA Unknown NA NA NA NA None 
REP10-9 0 NA NA NA NA Unknown NA NA NA NA None 
EcPH11-4 1 84.97 NA NA AF Peters Unknown France 35 20/01/2011 Sheltered Unclassified 
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A.2 Comparison of melting temperatures for cloned and genomic DNA from 

environmental isolates used as training data 

 

Comparison of the melting temperatures for the HAS08-17B and HAS08-20A 
clones used as training data for the calculation of the correction factor used to 
calibrate the screening data in Figure 4.4 step 4. 

 Repeat unFV unEV 

 
Cloned Genomic Cloned Genomic 

1 84.05 83.30 86.47 85.62 
2 84.00 83.33 86.42 85.73 
3 84.08 

 
86.42 

 4 84.08 
 

86.55 
 5 83.98 

 
86.48 

 6 84.05 
 

86.50 
 7 84.07 

 
86.55 

 8 83.92 
 

86.57 
 9 83.98 

 
86.50 

 10 84.18 
 

86.47 
 11 84.12 

 
86.48 

 12 84.20 
 

86.42 
 13 84.18 

   14 84.10 
   15 84.13 
   16 84.17 
   17 83.98 
   18 84.10 
   Median 84.08 83.32 86.48 85.68 

Difference 0.77 0.80 
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A.3 Melting temperatures of cloned DNA used for training data 

 

The melting temperatures for the training data generated by HRM analysis of 
clones of known sequence (Figure 4.5 step 7).  Abbreviations are as follows: EsV 
(Ectocarpus virus), FirrV (Feldmannia irregularis virus), FlexV (F. simplex virus), 
unEV (unknown Ectocarpus-like virus belonging to subgroup A), unFV (unknown 
Feldmannia-like virus belonging to subgroup B) or unPV (unknown phaeovirus 
belonging to neither subgroup A nor B).  Medians and variances of the two 
subgroups and two unknown phaeovirus temperatures are also shown. 

 Repeat Subgroup A Subgroup B Unassigned subgroup 
  EsV unEV FirrV FlexV unFV unPV unPV2 

 1 85.78 86.47 83.93 85.95 84.05 86.03 85.13 
2 85.72 86.42 83.8 85.82 84 86 85.2 
3 86.15 86.42 83.85 85.88 84.08 86 85.17 
4 86.2 86.55 83.57 85.48 84.08 86.15 85.25 
5 86.05 86.48 83.47 85.25 83.98 86.13 85.32 
6 86.25 86.5 83.4 85.33 84.05 86.12 85.22 
7 86.2 86.55 
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83.92 
  9 
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Abstract

Phaeoviruses infect the brown algae, which are major contributors to primary production of coastal waters and estuaries.
They exploit a Persistent evolutionary strategy akin to a K- selected life strategy via genome integration and are the only
known representatives to do so within the giant algal viruses that are typified by r- selected Acute lytic viruses. In screening
the genomes of five species within the filamentous brown algal lineage, here we show an unprecedented diversity of viral
gene sequence variants especially amongst the smaller phaeoviral genomes. Moreover, one variant shares features from
both the two major sub-groups within the phaeoviruses. These phaeoviruses have exploited the reduction of their giant
dsDNA genomes and accompanying loss of DNA proofreading capability, typical of an Acute life strategist, but uniquely
retain a Persistent life strategy.
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Introduction

All viruses broadly follow one of two life strategies, Acute or

Persistent [1,2,3]. Moreover, the switch from Persistent to Acute in

animal systems underpins emerging new viral epidemiology,

notable examples being influenza, measles and HIV [2]. This

transformation is often triggered by viruses jumping from one

species to another. Viruses that follow an Acute life strategy have

characteristic features that associate them with a disease pheno-

type; high reproduction and mutation rates, and greater depen-

dency on host population densities for transmission. Many animal

viral infections that are responsible for emerging epidemic diseases

follow this Acute infection dynamic that originated from a

Persistent viral life strategist [2]. Despite their likely prevalence,

Persistent viral life strategies are not well described. Persistence is

defined as a stable coexistence in an individual host, seldom

causing disease, and transmission is often from parent to offspring

[1]. Phaeoviruses infect the Ectocarpales brown algae, which are

major contributors to primary production of coastal waters and

estuaries [4], and separated from the kelps around 100 Ma [5].

Viral infections in protists contribute significantly to the sheer

abundance of viruses in our oceans [6], and have been shown to

play important roles in some of the major oceanic processes, such

as plankton mortality [7,8], nutrient cycling and carbon storage

[9,10]. Their ubiquitous nature means that viruses affect every

aspect of life in the marine environment, and their importance in

such fundamental areas as evolution [3,11], the global food web

and even climate change should not be underestimated [3,9,12].

Protist viruses belonging to the family Phycodnaviridae [13] are

members of the wider grouping of nuclear cytoplasmic large

dsDNA viruses (NCLDVs). The coccolitho-[11,14] and phaeo-

viruses [4,15] are two examples of NCLDVs having opposing life

strategies Acute vs Persistent, respectively. The former are lytic

algal bloom terminators [14], while the latter covertly infect and

integrate their genomes via the gamete and/or spore life stages of

the host, forming a latent provirus which is transmitted to all cells

during adult development [4]. As with most persistent viruses,

phaeoviruses have no noticeable negative impact on the life-cycle

of the host; however, overt symptoms of phaeovirus infection can

be seen when the reproductive organs become deformed and

produce virions, instead of gametes or spores (Figure 1).

To date, phaeovirus identity has only been confirmed for viruses

infecting three species of filamentous brown algae: Ectocarpus

siliculosus (Dillwyn) Lyngbye (Esil), Feldmannia sp. and Feldmannia

irregularis (Kützing) Hamel (Firr); infected by EsV-1, FsV and

FirrV-1, respectively [16]. They vary in genome size from 180–

336 kb (Table 1). In addition, the genome of an Ectocarpus strain

was found to contain a transcriptionally inactive copy of an EsV-1-

like provirus [4]. Complete genome sequences show that EsV-1,

FirrV-1 and FsV-158 contain a limited number of common single

copy core genes, as well as many unique genes [15]. Five

phaeoviruses, identified by morphology and life cycle, infecting

Ectocarpus fasciculatus (Harvey) (Efas), Feldmannia simplex (Crouan &

Crouan) Hamel (Flex), Hincksia hincksiae (Harvey) Silva (Hinc),

Pylaiella littoralis (Linnaeus) Kjellman (Plit) and Myriotrichia

clavaeformis (Harvey) (Mcla) have also been described in the

literature (Table 1) [16]. Here we report on the phylogenetic

placement of these phaeoviruses, using single and multi-gene

phylogenies for three NCLDV core single copy genes, namely the

major capsid protein (MCP), DNA polymerase (DNApol) genes,
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and a hitherto untested viral superfamily III helicase (VACV D5-

like) gene.

Results and Discussion

EsV-1 is the only virus known to infect E. siliculosus, while Ivey

et al.[17] reported the presence of two (and potentially four)

different size variants (158 kb and 178 kb) of phaeoviruses in

cultures of Feldmannia sp. Delaroque et al. [18] reported an

incomplete FirrV-1 genome, with no evidence of multiple variants,

within F. irregularis. Our viral sequences from Esil matched

perfectly with reference gene sequences for EsV-1 (Table 1 &

Figure 2). Notably, no additional sequence variation for EsV-1

could be found. The other available DNApol gene sequences for

the reference genome, FirrV-1, were identified within the

Feldmannia irregularis (Firr 1) isolate (Figure 2); however, at least

one additional variant could also be identified (Table 1). This

result is the likely explanation for the inability of Delaroque et al. to

assemble the FirrV-1 genome [18]. All the other ectocarpoid

strains contained two or more viral sequence variants, with the

Feldmannia simplex (Flex) isolate containing at least eight different

variants (Table 1). Our Bayesian and Maximum Likelihood

inference trees (DNApol or multigene) were largely in agreement

that the phaeovirus sequence variants group should be split into

two distinct sub-groups: a virus sub-group A that infect multiple

species across three families of the Ectocarpales (Figures 3 & 4) and

a second sub-group B containing members that infect the genus

Feldmannia.

Furthermore, there are two unexpected observations from these

phylogenies. Firstly, the Flex 8 variant shares features with both of

the sub-groups, whilst, unsurprisingly, being more closely

connected to sub-group B (Figure 3 & Figure 4). A closer look at

the DNApol sequence (Figure 2) shows not only the overall

conservation of amino acids (32%) across all the phaeoviruses and

the wider eukaryote kingdom as a whole, but also how certain

amino acids can be assigned to either sub-group A (triangles,

Figure 2) or sub-group B (inverted triangles, Figure 2). Moreover,

one important conserved region, Pol III dNTP binding site, is

Figure 1. Epifluorescence microscope images of E. siliculosus. The pink stained individual spores (combination of DAPI stained blue DNA and
red auto-fluorescence from nuclei and chloroplasts, respectively) are clearly visible within the normal zoidangium (A), whereas in (B) the zoidangium
is misshapen and heavily stained showing that the space is filled with densely packed blue viral particles.
doi:10.1371/journal.pone.0086040.g001

Table 1. Ectocarpoid strains used for phaeovirus screening (adapted from Schroeder [16]).

Strain Species Family Location Genome Number of sequence variants * Concatenations**

kb DNApol MCP Helicase

Esil Ectocarpus siliculosus Ectocarpaceae New Zealand 336 1 (1) 1 (1) 1 (1) 1

Efas Ectocarpus fasciculatus Ectocarpaceae France 320 2 (2) 1 (1) 2 (2) 2

Plit Pylaiella littoralis Acinetosporaceae Alaska 280 1 (1) 1 (1) 1 (1) 1

Hinc Hincksia hincksiae Acinetosporaceae France 240 1 (1) - 2 (1) -

Mcla Myriotrichia clavaeformis Chordariaceae Argentina 320 1 (1) 2 (2) - 2

Firr Feldmannia irregularis Acinetosporaceae Canary Islands 180 2 (2) 3 (2) 2 (2) 4

Flex Feldmannia simplex. Acinetosporaceae Ireland 220 9 (8) 6 (4) 8 (3) 22

*: variant in DNA sequence (HG003317 - HG003355) with amino acid variation indicated in parentheses. A negative PCR result is indicated by a minus symbol.
**: possible permutations for DNApol and MCP as seen in Figure 4.
doi:10.1371/journal.pone.0086040.t001
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known to be important for genome stability [19]. Daee et al. found

that a single amino acid mutation was associated with extreme

rates of spontaneous mutation in yeast. Three amino acid

polymorphisms in this region (Figure 2, positions 618, 621, 625)

could be a contributing factor to the large number of variants

observed amongst the Feldmannia viruses. The second key

observation is that Flex 8, at the base of the sub-group B clades

in all the phylogenetic trees, is probably the progenitor virus to the

Feldmannia sub-group B viruses. This, therefore, gives us a unique

insight into the emergence of a new phaeovirus sub-group, which

is likely to be a result of the genome reduction of an ancestral

member from sub-group A. Both FirrV-1 and FsV-158 [15] show

the loss of the DNA proofreading exonuclease gene (EsV-126)

known to be present in EsV-1 [20]. We therefore hypothesize that

these genomic modifications could have resulted in the key life

strategy shift, thereby utilizing the high mutation rates more

associated with acute infections. When and how this happened is

unclear; however, the expansion of localised genomic regions in

poxviruses, causing gene duplications and mutations have been

proposed to be a response to overcoming changing immune

responses after a host switch [21]. Whilst gene duplications have

not yet been discovered in the phaeoviruses sequenced thus far,

these expansions are usually followed by a rapid gene reduction in

order to minimise the burden of replicating and enlarged genome,

therefore a similar mechanism may also be involved here.

A pairwise analysis of the evolutionary divergence in nucleotide

sequences within the various groups of phycodnaviruses (Figure 5)

illustrates the shift by sub-group B to a genome characteristic of an

r-like evolutionary strategy. Sub-group B has a median nucleotide

divergence of 29.3% in the DNApol gene fragment, comparable to

that of the other r- selected lytic phycodnavirus groups (24.3–

47.9%). Sub-group A has maintained the classic K – selection life

strategy with a much lower divergence of 14.9%.

There have been several studies that reported on the host

specificity of phaeoviruses. EsV-1 can successfully infect Kuckuckia

kylinii (Cardinal) producing virions infectious to the original host

[22]. Other cross-species infections do not produce infectious

virions although the virus does induce symptom-like deformities in

the host, for example EsV-1 in F. simplex [22], or EfasV in E.

siliculosus [23] and M. clavaeformis [24]. This demonstrates not only

the potential of phaeoviruses to jump between species but also that

not all jumps result in successful infections. Another example of

this unsuccessful jump can be seen by the presence of an inactive

provirus in the Ectocarpus genome [4]. Here we show that the

Figure 2. Partial nucleotide alignment of cloned fragment of the viral DNA polymerase gene. Numbers refer to amino acid position in the
complete EsV-1 DNA polymerase gene taken from Delaroque et al. 2001 [20] (GenBank accession number NC_002687.1). Boxed regions indicate
conserved polymerase domains [30]. * indicates conserved positions between all sequences, m shows where the Flex 8 variant shares an amino acid
with the larger viruses of sub-group A, . shows where the Flex 8 variant shares an amino acid with the smaller genomed viruses of sub-group B.
doi:10.1371/journal.pone.0086040.g002
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provirus appears to be more closely related to an E. fasciculatus

variant than to EsV-1 (e.g. Figures 3 & 4). This suggests that an E.

fasciculatus virus infected an Ectocarpus species more closely related

to E. siliculosus [25]. This study also confirmed the life-history and

morphometric data that the viruses infecting Efas, Mcla, Plit and

Hinc do indeed belong in the phaeovirus group. Moreover, there

is also a corresponding grouping which can be created based on

genome sizes (see Table 1); the larger viral genomes from Esil,

Efas, Plit, Mcla and Hinc (240–336 kb) fall within sub-group A

and the smaller viruses from Firr, Flex and Feldmannia sp [15]

(158–220 kb) into sub-group B.

This study provides the first example of an emergent virus

system retaining a Persistent life strategy, but exploiting an Acute

strategist’s high genomic mutation rate. Moreover, unlike current

reports on how emerging acute diseases develop where cryptic

persistent viruses cross species boundaries (e.g. HIV [26], H5N1

[27] and DWV [28]), which can have catastrophic consequences

for new host survival, this study suggests a very different scenario

of one in which the integration and diversification of Persistent

viruses has been stably maintained over a long period of time.

Similarly, due to their evolutionary link to animal viruses this

infection strategy is likely to also occur in these systems, and

further studies in this field may help our understanding of the

spread of new emergent diseases.

Materials and Methods

Isolates & culture conditions
See Table 1 for a list of the phaeovirus-infected cultures

used in this study. Each strain was cultured in a 40 ml petri

dish at 15uC, 16:8 light-dark cycle, approximately 100 mmol

photons m22 s21. The Western Channel Observatory (www.

westernchannelobservatory.org.uk) is an oceanographic time-series

and marine biodiversity reference site in the Western English

Channel. In situ measurements are undertaken weekly at coastal

station L4 (source of water for our study) and fortnightly at open

Figure 3. Maximum Likelihood analysis between variants of the phaeoviral sequences of DNA polymerase. Single value node labels
represent ML bootstrap values. Where nodes are labelled with two values, this indicates that both ML and Bayesian topologies agree (whole numbers
represent ML bootstrap values, decimals indicate Bayesian posterior probability). Sub-group A viruses are labelled in blue, sub-group B viruses are red
and the intermediate Flex virus variant is green. Bold values are those greater than 75% bootstrap or probability.
doi:10.1371/journal.pone.0086040.g003
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shelf station E1 using the research vessels of the Plymouth Marine

Laboratory and the Marine Biological Association. THE DATA

POLICY of the NERC National Capability funded Western

Channel Observatory is to make the data freely available at the

point of delivery. Culture medium was filtered (30 kDa) natural

sea water from the L4 sampling station close to the Eddystone

Lighthouse near Plymouth, enriched with Provasoli’s enrichment

[29]. Sub-culturing into a new dish with fresh media was carried

out every 14 days, when the cultures were pulled apart using

forceps to separate out filaments in order to encourage production

of zoidangia and virions.

DNA extraction method
50–200 mg wet weight fresh algal material was transferred to an

Eppendorf tube, frozen in liquid nitrogen and ground using

Eppendorf grinders with 10 ml saturated #106 microns acid

washed glass bead solution before proceeding with the Qiagen

DNeasy protocol for Genomic DNA purification from cultured

animal cells, starting with the proteinase K treatment. 40 ml

proteinase K and 200 ml Buffer AL were added to the sample and

incubated at 56uC for 30 minutes, before centrifuging for 2

minutes at maximum speed to separate out the beads. 200 ml

ethanol was added to the resulting supernatant, vortexed and

pipetted onto the spin column, to proceed with the first

centrifugation step. For the final step, DNA was eluted using

100 ml water, instead of 200 ml in order to obtain a more

concentrated sample.

Figure 4. Maximum Likelihood analysis between variants of the phaeoviral sequences of concatenations of DNApol and MCP.
Variants are labelled according to DNApol identifier initially, followed by the MCP variant number in brackets. In order to slightly reduce the number
of combinations of sequences, where individual gene phylogenies show a clear separation of individual variants, these are concatenated together
and excluded from the other combinations. Single value node labels represent ML bootstrap values. Where nodes are labelled with two values, this
indicates that both ML and Bayesian topologies agree (whole numbers represent ML bootstrap values, decimals indicate Bayesian posterior
probability). Sub-group A viruses are labelled in blue, sub-group B viruses are red and the intermediate Flex virus variant is green. Bold values are
those greater than 75% bootstrap or probability.
doi:10.1371/journal.pone.0086040.g004
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PCR, cloning & Sequencing
Degenerate primers were designed for three active viral genes

(DNA polymerase (GRGGNCAGCAGATYAAGTG forward,

GARTCCGTRTCSCCRTA reverse), helicase (GTGGCAGGT-

SATYCCYTTC forward, GTTKCCGGCCATGATYCC reverse)

and major capsid protein (MCP) (CVGCGTACTGGGT-

GAACGC forward, AGTACTTGTTGAACCAGAACGG re-

verse)) against a consensus of published sequences from EsV-1,

FirrV-1, FsV-158 and the provirus from the sequenced

Ectocarpus genome. Degenerate PCR was carried out using

Promega GoTaqH Flexi DNA polymerase kit, with an addition

of 0.8 mg/ml bovine serum antigen (BSA). Cycling conditions

were 95uC for 5 minutes, followed by 35 cycles of 95uC for 1

minute, a 30 second annealing step, an extension step at 72uC,

and a final elongation step at 72uC for 10 minutes. Oligonu-

cleotide and magnesium concentrations, annealing temperatures

and extension times varied for each gene: DNApol required

1.25 mM MgCl2, 4 pmol/ml oligonucleotides, 50uC annealing

temperature and 10 second extension time, MCP required

1.5 mM MgCl2, 8 pmol/ml oligonucleotides, 55uC annealing

temperature and 30 second extension time and helicase required

1.5 mM MgCl2, 8 pmol/ml oligonucleotides, 55uC annealing

temperature and 10 second extension time. Post-PCR samples

were run on a 2% agarose gel at 80 V to achieve maximum

separation between the bands. Samples with more than one

product were purified by gel extraction; the band of the correct

size was cut out of the gel and purified using the Qiaex IIH Gel

Extraction Kit. Samples with clean bands were purified using

GenEluteTM PCR Clean-Up Kit from Sigma. Purified PCR

product was cloned into pCRH2.1, incubated overnight at 15uC
before storing at 220uC until used. 4 ml ligation mixture was

added to 0.2 ml competent cells and mixed. The cells were then

incubated on ice for 40 minutes, heat shocked at 42uC for 2

minutes and returned to the ice for 5 minutes. 0.7 ml pre-

warmed LB medium was added to the cells which were then

incubated at 37uC for one hour. The cells were concentrated by

spinning at 8000 g for 5 minutes, removing 0.5 ml supernatant,

and re-suspended gently with a pipette before being plated out

onto LB agar plates containing 5 mg/ml ampicillin, with 40 ml

of 20 X-gal spread on each plate. Plates were incubated

overnight at 37uC.

Single cloned colonies were picked from agar plates into

individual 0.2 ml tubes containing 5 ml molecular grade water and

heated to 95uC for 5 minutes to denature the cells before adding

10 ml 56 buffer, 5 ml 25 mM MgCl2, 5 ml 2.5 mM dNTPs, 2 ml

each of 10 pmol/ml M13 forward and reverse primers, 0.2 ml Taq

polymerase, 20.8 ml molecular grade H2O. Cycling conditions

consisted of 30 cycles of 95uC for 45 seconds, 56uC for 45 seconds

and 72uC for 45 seconds, followed by a final extension step of

72uC for 5 minutes.

PCR products were purified using the Qiaex IIH Gel Extraction

Kit and then sequenced using the BigDyeH Terminator v3.1. The

mix consisted of 3.5 ml 56 BigDye buffer, 1 ml Ready Reaction

Mix, 2 ml template (6–14 ng ml21 concentration), 1 ml primers

(either M13 forward or reverse) at a concentration of 3.2 pmol

ml21 and 12.5 ml dH2O. Cycling conditions were 95uC for 2

minutes, followed by 30 cycles of 95uC for 30 seconds, 50uC for 30

seconds, 72uC for 30 seconds, then a final elongation at 72uC for 5

minutes. Sequenced reactions were precipitated by adding 5 ml

Figure 5. Box and whiskers plot of evolutionary divergence between nucleotide sequences of the DNApol. Identical sequences were
not included more than once. The box represents the interquartile range which shows the middle 50% of the data, the bottom line being the first
quartile, the middle line being the median and the upper line being the third quartile. The whiskers represent the maximum (or minimum) data point
up to 1.5 times the box height above (or below) the top (or bottom) of the box. Outliers beyond the whiskers are shown as a *. Phaeovirus sub-
groups are as shown in Fig. 3 & 4, with Flex 8 being included in sub-group B. Chloroviruses consist of thirteen viral isolates from Paramecium bursaria
Chlorella (AF344202, AF344203, AF344211, AF344212, AF344215, AF344226, AF344230, AF344231, AF344235, AF344238, AF344239, M86837, U32985)
and one from Acanthocystis turfacea Chlorella (AY971002). The other phycodnaviruses group consists of three viral isolates from Emiliania huxleyi
(AF453961, AF453867, AF472534), three from Micromonas pusilla (U32975, U32982, U32976), five from Ostreococcus tauri (FJ67503, FJ884758,
FJ884763, FJ884773, FJ884776), two from Ostreococcus lucimarinus (GQ412090, GQ412099), six from Phaoecystis globosa (A345136-AY345140,
DQ401030), one from Chrysochromulina brevifilum (U32983), one from Chrysochromulina ericina (EU006632) and one from Heterosigma akashiwo
(AB194136).
doi:10.1371/journal.pone.0086040.g005
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125 mM EDTA and 65 ml cold 100% ethanol and incubated in

the dark at room temperature for 15 minutes. They were then

spun for 30 minutes at 2200 g, the supernatant removed and the

pellet washed with 60 ml cold 70% ethanol, and spun for a further

15 minutes at 2200 g. The supernatant was removed again and

the pellet air dried. Sanger sequencing was carried out by Source

Bioscience in Cambridge. Sequences were submitted to the

European Nucleotide Archive with accession numbers

(HG003317–HG003355).

Phylogeny
Bayesian analysis of phylogenetic trees was carried out using

MrBayes v3.2.1, running the analysis until the standard deviation

of split frequencies reached ,0.01 and the number of generations

was .100 000. Maximum Likelihood analysis was carried out

using MEGA5.1 WAG model with 500 bootstrap replications and

the Nearest-Neighbour-Interchange heuristic method. DNApol

and MCP sequences were combined in all possible combinations

(Table 1) in order to create concatenations which were used to

create Figure 4.

Distance analysis
Nucleotide sequences were obtained for the various groups of

phycodnaviruses that have been sequenced to data by carrying out

a BLAST search of known genome sequences from each group.

The phaeovirus sequences obtained in this study were split into

two subgroups according to their phylogenies as shown in Figures 3

& 4. Chloroviruses were considered together with the prasino-

viruses, and the remaining viral groups (coccolithoviruses,

prymnesioviruses, raphidoviruses) were considered together since

they are all lytic viruses of stramenopiles or coccolithophores.

Pairwise distances were computed using Mega 5.05.
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