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Identification of variability in sub-Arctic sea ice conditions during the Younger 

Dryas and Holocene 

by 
Patricia Cabedo Sanz 

ABSTRACT 

The presence of the sea ice diatom biomarker IP25 in Arctic marine sediments has been used 

in previous studies as a proxy for past spring sea ice occurrence and as an indicator of wider 

palaeoenvironmental conditions for different regions of the Arctic over various timescales.  

The current study describes a number of analytical and palaeoceanographic developments 

of the IP25 sea ice biomarker. First, IP25 was extracted and purified from Arctic marine 

sediments. This enabled the structure of IP25 to be confirmed and enabled instrumental (GC-

MS) calibrations to be carried out so that quantitative measurements could be performed 

with greater accuracy.  

Second, palaeo sea ice reconstructions based on IP25 and other biomarkers were carried out 

for a suite of sub-Arctic areas within the Greenland, Norwegian and Barents Seas, each of 

which represent contrasting oceanographic and environmental settings. Further, an 

evaluation of some combined biomarker approaches (e.g. the PIP25 and DIP25 indices) 

for quantifying and/or refining definitions of sea ice conditions was carried out. 

Temporally, particular emphasis was placed on the characterisation of sea ice conditions 

during the Younger Dryas and the Holocene. Some comparisons with other proxies (e.g. 

foraminifera, IRD) were also made.  

A study of a sediment core from Andfjorden (69.16˚N, 16.25˚E), northern Norway, 

provided unequivocal evidence for the occurrence of seasonal sea ice conditions during the 

Younger Dryas. The onset (ca. 12.9 cal. kyr BP) and end (ca. 11.5 cal. kyr BP) of this 

stadial were especially clear in this location, while in a study from the Kveithola Trough 

(74.52˚N, 16.29˚E), western Barents Sea, these transitions were less apparent. This was 

attributed to the presence of colder surface waters and the occurrence of seasonal sea ice 

both before and after this stadial at higher latitudes. Some regional differences regarding the 

severity of the sea ice conditions were also observed, although an overall general picture 

was proposed, with more severe sea ice conditions during the early-mid Younger Dryas and 

less sea ice observed during the late Younger Dryas.  

A shift in the climate towards ice-free conditions was recorded in northern Norway during 

the early Holocene (ca. 11.5 – 7.2 cal. kyr BP). Milder conditions were also observed 

during the Holocene in the western Barents Sea, with three main climate periods observed.  

During the early Holocene (ca. 11.7 – 9.5 cal. kyr BP), the position of the spring ice edge 

was close to the study area which resulted in high productivity during summers. During the 

mid-late Holocene (ca. 9.5 – 1.6 cal. kyr BP), sea ice was mainly absent due to an increased 

influence of Atlantic waters and northward movement of the Polar Front. During the last ca. 

1.6 cal. kyr BP, sea ice conditions were similar to those of the present day.  

In addition to the outcomes obtained from the Norwegian-Barents Sea region, comparison 

of biomarker and other proxy data from 3 short cores from Kangerdlugssuaq Trough 

(Denmark Strait/SE Greenland) with historical climate observations allowed the 

development of a model of sea ice conditions which was then tested for longer time-scales. 

It is suggested that the IP25 in sediments from this region is likely derived from drift ice 

carried from the Arctic Ocean via the East Greenland Current and that two main sea surface 

scenarios have existed over the last ca. 150 yr. From ca. AD 1850 – 1910, near perennial 

sea ice conditions resulted in very low primary productivity, while from ca. AD 1910 – 

1986, local sea ice conditions were less severe with increased drift ice and enhanced 

primary productivity. This two-component model was subsequently developed to 

accommodate different sea surface conditions that existed during the retreat of the 

Greenland Ice Sheet during the deglaciation (ca. 16.3 – 10.9 cal. kyr BP). 
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CHAPTER ONE 

 

1 Introduction 

1.1 The Arctic Ocean 

The Arctic Ocean is an intricate system and plays an important role in controlling the 

Earth’s climate, largely due to extensive seasonal and year round ice cover (e.g. Comiso 

and Parkinson, 2004; Serreze et al., 2007; Polyak et al., 2010). Sea ice has a major 

influence on the Earth’s climate system by controlling fluxes of heat and moisture 

across the ocean-atmosphere interface. The melting of sea ice and the associated release 

of low-salinity water influences deep water formation and the thermohaline circulation, 

further enhancing the significance of the Arctic on global climate. Further, the ice-

albedo (amount of solar radiation reflected by a surface) and snow-albedo feedbacks 

associated with the high reflectivity of ice and snow also influence the Earth’s climate 

(Dieckmann and Hellmer, 2010; Miller et al., 2010). As such, during warm periods, 

there are fewer snow-covered areas and, therefore, less reflection of solar radiation, 

which results in a decrease of the albedo effect (Stein, 2008). As a consequence, major 

changes in energy balances and oceanic and atmospheric circulation of the Arctic Ocean 

can be observed (e.g. Schubert and Stein, 1996; Comiso and Parkinson, 2004; Miller et 

al., 2010). Ice cover, which expands and retreats seasonally, is the most defining feature 

of the surface of the Arctic Ocean (e.g. Polyak et al., 2010). Two main ice types 

characterise the Arctic Ocean: first-year ice, which represents a single year’s growth 

and multi-year or perennial ice which has survived at least one melt season. Changes in 

the extent and thickness of the ice, both on short and long time scales, affect the ocean 

and the atmosphere in northern latitudes (e.g. Perovich and Richter-Menge, 2009; 
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Miller et al., 2010; Polyak et al., 2010; Kinnard et al., 2011). In recent decades, Arctic 

sea ice (especially perennial sea ice) has undergone dramatic changes, with significant 

thinning and reduction of total area, such as the minimum recorded during the summer 

of 2012 (Figure 1.1) when compared with the 34-year satellite record (Schiermeier, 

2012). 

 

Figure 1.1: Arctic sea ice extent (area of ocean with at least 15% sea ice cover). The grey line 

represents average extent between 1981 and 2010. The green dotted line represents Arctic sea 

ice extent during 2012. 

 

Further, it has been suggested that the decreasing trend of ice extent over the last two 

decades cannot be entirely explained by natural internal climate-system variability, but 

likely involves external factors such as forcing due to anthropogenic greenhouse gasses 

(e.g. Moritz et al., 2002; Johannessen et al., 2004; Kinnard et al., 2011). In addition, the 

loss in Arctic sea ice will pose social, economic, political and ecological challenges 

(Perovich and Richter-Menge, 2009). 
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Thus, reconstruction of Arctic sea ice variations is necessary to understand if recent sea 

ice loss is induced by natural cycles on Earth, or whether this is an accelerated 

phenomenon caused by external forcing (e.g. Moritz et al., 2002; Miller et al., 2010). In 

addition, reconstruction of past sea ice datasets will help improve the accuracy of 

model-based estimates of future changes in climate. 

 

1.2 Marine proxies for palaeoenvironmental reconstructions in the Arctic 

Ocean 

The need to reconstruct past climate conditions in the Arctic has led to extensive 

research in this area over many years. The majority of these have been based on the 

application of a wide range of environmental proxies (a recent review is given by 

Polyak et al., 2010). In this section, a general overview of the most common geological 

proxies used for reconstruction of ancient and modern environmental conditions in the 

Arctic Ocean is presented.  

 

1.2.1   Micropalaeontological proxies 

1.2.1.1   Foraminifers 

Foraminifera (typically < 1 mm length but can reach up to ca. 20 cm) are single-celled 

protists with shells made of calcium carbonate (CaCO3) or agglutinated sediment 

particles, that are found in a wide range of marine environments and may be planktonic 

or benthic in their mode of life (Murray, 2002; Gooday, 2003). For example, benthic 

foraminifera are commonly used as indicators of primary production (Wollenburg and 

Kuhnt, 2000) and are also used to calculate sea level, bottom water temperatures and 
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salinity (e.g. Jennings et al., 2004; Sejrup et al., 2004; Leorri et al., 2013). Planktonic 

foraminifera have been used as proxies for primary production (Carstens et al., 1997), as 

well as tools for  reconstructing sea surface temperatures through the application of 

transfer functions (e.g. Pflaumann et al., 1996; Pflaumann et al., 2003; Sarnthein et al., 

2003c; Kucera et al., 2005). Planktonic and benthic foraminifera are also important in 

correlating and dating sediment cores (Stein, 2008 and references therein). However,  

Husum and Hald (2012) recently raised concerns regarding reconstructions of sea 

surface and subsurface temperatures based on planktonic foraminifera, such as the use 

of datasets based on surface sediment samples that probably cover thousands of years 

instead of modern conditions. In addition, the reduced geographical coverage from the 

region under study results in a poor coverage of all representative environmental 

conditions. Further, Husum and Hald (2012) developed an Arctic training set (using the 

> 100 μm size fraction) from which more robust reconstructions of subsurface 

temperatures were obtained for summer temperatures at 100 m water depth. A further 

limitation regarding the use of foraminifera lies in the dissolution of aragonite/carbonate 

material as a result of increased organic carbon input and its subsequent degradation in 

sediments (e.g. Archer and Maier-Reimer, 1994; Wollenburg and Kuhnt, 2000). As 

such, it is important to quantify the state of preservation in foraminiferal assemblages 

(e.g. Broecker and Clark, 2001; Beer et al., 2010). Despite these limitations, oxygen 

(
18

O/
16

O)  and carbon (
13

C/
12

C) stable isotopes of foraminiferal carbonate shells have 

been used in numerous studies to estimate palaeoenvironmental parameters such as 

temperature, to quantify global changes in sea level and deep-sea circulation (Cooke 

and Rohling, 2001; Ravelo and Hillaire-Marcel, 2007; Ishimura et al., 2012 and 

references therein).  

Regarding their use for palaeo sea ice reconstructions, benthic foraminifera have been 

used as a palaeo sea ice indicator (e.g. Jennings et al., 2002b; Scott et al., 2009) and, 
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although they give information on sea ice cover variation, they are not considered direct 

proxies for sea ice and their response to changing sea ice conditions is not well 

understood (Seidenkrantz, 2013). In addition, studies based on planktonic foraminifera 

have also been used to reconstruct sea ice cover in the Arctic (Sarnthein et al., 2003a). 

 

1.2.1.2   Calcareous nannofossils 

Nannofossils are derived from coccolithophores, single-celled algae, protists and 

phytoplankton belonging to the division of haptophytes. They are formed by special 

calcium carbonate plates called coccoliths (typically < 20 μm length) and cannot live 

under permanent sea ice cover.  

The abundant presence of nannofossils has been interpreted in terms of the occurrence 

of open water conditions in the Arctic Ocean (Gard, 1993) and such a measure has been 

used as a qualitative proxy for circulation changes in the northern North Atlantic (e.g. 

Samtleben and Schröder, 1992; Baumann et al., 2000; Andrews and Giraudeau, 2003; 

Giraudeau et al., 2010). In addition, the abundance ratio between two species of 

coccoliths (Emiliania huxleyi and Coccolithus pelagicus) in fossil assemblages from the 

central Nordic Seas has been suggested as a proxy measure for the location of the Arctic 

Front (Baumann et al., 2000) and has been recently tested in the eastern Nordic Seas 

over the last 3000 yr (Dylmer et al., 2013).  

 

1.2.1.3   Ostracodes 

Ostracodes (typically 1 mm in length) are small bivalved crustaceans that commonly 

occur in Quaternary Arctic sediments (Taldenkova et al., 2005). Many species of 

ostracodes are ecologically susceptible to specific oceanic conditions (Jones et al., 
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1999) and their assemblages have been used in numerous studies to reconstruct Arctic 

palaeoceanography (e.g. Cronin et al., 1994; Jones et al., 1999; Taldenkova et al., 2005; 

Poirier et al., 2012) and sea ice history (e.g. Cronin et al., 2010; Cronin et al., 2013). 

 

1.2.1.4   Diatoms 

Diatoms are unicellular (primarily photosynthetic) microalgae (1 – 1000 μm) with a cell 

wall made of silica (Crosta and Koç, 2007). Diatoms have adapted to a wide range of 

planktonic and benthic marine habitats and represent an essential source of primary 

production in the Arctic ecosystem (e.g. Falk-Petersen et al., 2009; Brown, 2011). 

Freshwater diatoms, which are often part of the particulate organic matter transported 

by rivers onto shelves, have been used to reconstruct surface-water conditions in the 

Greenland, Iceland and Norwegian seas through the last 14 kyr BP (Karpuz and Jansen, 

1992; Koç et al., 1993). Furthermore, marine diatoms are indicators of primary 

production (Koç et al., 2002), and the presence of sea ice diatoms in marine sediments 

can be used to infer past sea ice coverage (e.g. Stein et al., 2004; Justwan et al., 2008). 

Diatom assemblages can also be used to identify different organic carbon sources (i.e. 

terrestrial/freshwater versus marine) in shelf sediments (Stein, 2008 and references 

therein). In addition, the relationship between diatom assemblages and summer surface 

water salinity can be used to reconstruct palaeosalinity and sea ice (e.g. Polyakova and 

Stein, 2004).  

 

1.2.1.5   Palynomorphs 

Palynomorphs are an additional microfossil group used in palaeoenvironmental 

reconstructions as well as stratigraphic markers in Arctic Ocean sediments (Stein, 
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2008). The main group of marine palynomorphs used for palaeoenvironmental and 

palaeoclimate reconstructions are dinoflagellates (flagellate protists) and their remaining 

cysts (dinocysts; typically 10 – 150 μm in length), which are characterised by an 

organic resistant walled material that results in a high degree of preservation.   

De Vernal et al. (2001) raised a number of limitations when reconstructing quantitative 

palaeoceanographic conditions using dinocysts. These included morphological variation 

within taxa, sparse hydrological data and large inter-annual variations of temperature 

and salinity in surface Arctic waters. In addition, a new technique based on the best-

analogue method for quantitative reconstruction of sea surface conditions for the 

northernmost Atlantic and Arctic regions was proposed (de Vernal et al., 2001). Using 

transfer functions based on dinoflagellate cyst assemblages, Solignac et al. (2006) 

reconstructed sea surface parameters such as temperature, salinity and sea ice cover 

extent (as months yr
-1

) during the Holocene on the East Greenland shelf. However, 

some inconsistencies regarding the environmental conditions (i.e. sea ice cover extent) 

during the Holocene in a study in the same area were found by Jennings et al. (2011) 

and these were attributed to the lack of sufficient data points for calibration of the 

dinoflagellate database from this area. A recent synthesis of dinocyst-based 

palaeoenvironmental reconstructions for Arctic and sub-Arctic areas during the 

Holocene is given by de Vernal et al. (2013b). 

 

A further (common) limitation of microfossil-based proxies (e.g. foraminifera, 

coccolith, ostracode, diatom and dinoflagellate) is the high degree of expertise required 

regarding species identification, together with ensuring consistency between 

laboratories and adoption of common methodologies. In addition, the interpretation of 

such proxies relies on biological, chemical and physical factors (e.g. temperature, 
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salinity, nutrients, grazing) that influence the distributions of microorganisms in the 

water column before sinking and reaching underlying sediments (e.g. Polyak et al., 

2010; Belt et al., 2012b; de Vernal et al., 2013a). 

 

1.2.2   Ice Rafted Debris (IRD) 

Ice Rafted Debris (IRD) are sediments that have been transported by icebergs and/or sea 

ice. Although many studies use the coarse sediment fraction, the sand-size within 

studies ranges from > 63 μm to > 2mm (e.g. Nam et al., 1995; Andrews et al., 1997; 

Andrews, 2000; Spielhagen et al., 2004). It has also been shown that sediment > 63 μm 

or higher is indicative of iceberg deposition in the Arctic Ocean, while lower numbers 

can be indicative of both iceberg and sea ice origin (Spielhagen et al., 2004; Polyak et 

al., 2010).  

A large number of studies in the North Atlantic and Nordic Seas have used IRD as a 

proxy for reconstructing palaeoclimate conditions (e.g. Bond et al., 2001; Sarnthein et 

al., 2003b; Moros et al., 2004; Moros et al., 2006). Further, anomalously thick layers of 

IRD, known as Heinrich events (Heinrich, 1988), were thought to be derived from ice 

sheet/ice shelf collapse and massive release of icebergs (Bond and Lotti, 1995; 

Dowdeswell et al., 1995). In addition, proxies for sediment transport in drift ice include 

hematite-stained quartz sand grains (Bond et al., 2001), sand-size quartz (Eiríksson et 

al., 2000; Moros et al., 2006), coal fragments (Bischof and Darby, 2000) as well as the 

presence of calcite and dolomite (Andrews et al., 2010) and quartz wt% (< 2 mm) 

measured by Quantitative X-ray diffraction (e.g. Moros et al., 2006; Andrews and Eberl, 

2007; Andrews, 2011; Andrews and Jennings, 2013). Sediment source identifications 
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have been developed based on the chemical fingerprinting of entrained Fe oxide mineral 

grains in Arctic Ocean sea ice (Darby, 2003; Darby et al., 2012). 

 

1.2.3   Organic geochemical proxies 

Palaeoenvironmental studies and organic carbon source identification (marine and 

terrigenous) can be conducted through the analysis of different organic geochemical 

proxies such as bulk parameters and individual biomarker distributions.  

The most common organic geochemical bulk parameters are total organic carbon (TOC) 

and organic carbon/organic nitrogen ratios, used to make a distinction in marine 

sediments between marine (algal) and terrigenous (higher plant) organic matter 

(Schubert and Stein, 1996). Carbon/sulphur ratios are used to obtain information about 

the oxygenation of bottom waters (Leventhal, 1987, 1995), while the stable carbon 

isotope (
13

C/ 
12

C) ratio of the organic fraction in marine sediments has been used to 

elucidate the marine or terrigenous provenance of the organic fraction (e.g. Mueller-

Lupp et al., 2000; Goñi et al., 2013). 

Biomarkers are molecular fossils that indicate the existence, past or present, of living 

organisms (Eglinton and Calvin, 1967). During the last few decades, a large number of 

biomarker-based studies for palaeoclimate reconstructions have been carried out (a 

review is given by Eglinton and Eglinton, 2008). The methodologies employed for the 

production of such molecular proxy datasets are usually based on organic solvent 

extractions to recover all the organic material from the sediments, followed by 

fractionation, purification and quantification by analytical instrumentation such as gas 

chromatography-mass spectrometry (GC-MS) or high performance liquid 

chromatography (HPLC) (e.g. Eglinton and Eglinton, 2008; Stein, 2008).  
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Example of biomarkers are long-chain alkanes, which are typically used to characterise 

terrigenous organic carbon (Schubert and Stein, 1996). Further, a widespread technique 

used for estimating past sea surface temperatures (SST), is based on the alkenone 

composition of coccolithophorids found in marine sediments and commonly used to 

derive the alkenone unsaturation index,    
  (Brassell et al., 1986). However, the 

optimum use of the    
  index for reconstruction of palaeotemperatures is between 10°C 

and 25°C, which limits its use in the Arctic, where temperatures are normally below 

5°C and coccoliths are rare or absent. Therefore, the reconstructions based on alkenones 

are largely restricted to sub-Arctic areas (e.g. Rosell-Melé, 2001). A further approach 

for reconstructing SST is via the so-called TEX86 index (tetraether index of compounds 

with 86 carbon atoms) (e.g. Kim et al., 2010). The TEX86 index is based on the strong 

relationship between SST and the distribution of crenarchaeotal isoprenoid glycerol 

dibiphytanyl glycerol tetraethers (GDGTs) which are membrane lipids biosynthesised 

mainly by Crenarchaeota (prokaryotes organisms).   

Of the other biomarkers found commonly in marine sediments, sterols have been used 

as indicators of different algal communities, reflecting contrasting oceanographic 

conditions, including the occurrence of sea ice. For example, 24-methylenecholesterol 

was previously reported as the main sterol in sea ice diatom communities during the 

spring bloom in McMurdo, Antarctica (Nichols et al., 1993) and was suggested as a 

potential proxy for Arctic sea ice by Knies (2005). In contrast, a structurally related 

sterol, brassicasterol, is produced by a large number of phytoplankton and has been used 

as a geochemical indicator of open water (ice-free) conditions (Müller et al., 2009). 

However, the specificity of such biomarkers is probably limited as they are formed in a 

large variety of environments and are not especially source-specific. For example, 

sterols can be derived from diverse sources within the marine environment (Volkman, 

1986).  
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In summary, several biomarkers have been used for palaeo temperature reconstructions 

(i.e. alkenones, GDGTs) but these have focussed mainly on sea surface temperature 

determinations. In contrast, reconstruction of sea ice occurrence has generally been 

made by extrapolation of proxy-based climate measurements such as SST and therefore 

there has long been a need to develop a more specific proxy for the past occurrence of 

sea ice. 

 

1.2.4   Highly branched isoprenoid alkenes and the IP25 sea ice biomarker 

C25 and C30 highly branched isoprenoid (HBI) alkenes are secondary metabolites 

derived from certain diatom genera and species found in a large variety of marine 

environments (e.g. Robson and Rowland, 1986; Rowland and Robson, 1990; Belt et al., 

2000a). Gearing et al. (1976) first reported the occurrence of C25 HBIs in sediments. 

Later, Robson and Rowland (1986) determined the parent carbon skeleton of C25 HBIs 

by synthesis (Figure 1.2). 
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Figure 1.2: Molecular structure of a HBI with 25 carbon atoms. 

 

Volkman et al. (1994) identified marine diatoms as the biological sources of at least 

some HBI alkenes and some freshwater diatoms were later identified as sources by Belt 

et al. (2001c). The molecular structures of a number of individual HBI alkenes were 

identified after culturing of Haslea ostrearia, Rhizosolenia setigera and some other 
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diatoms (Wraige et al., 1997; Sinninghe-Damsté et al., 1999a; Sinninghe-Damsté et al., 

1999b; Allard et al., 2001; Belt et al., 2001a; Belt et al., 2001c, b; Belt et al., 2006). 

Studies regarding the position and stereochemistry of double bonds were performed 

(Belt et al., 2000a; Belt et al., 2000b), and the biosynthesis of HBI alkenes by diatoms 

was also investigated (Massé et al., 2004).  

In addition to structural determination studies, other investigations focused on the 

environmental variables that influence the growth of diatoms and distributions of HBIs, 

such as salinity, light and temperature (Wraige et al., 1997; Wraige et al., 1998; 

Rowland et al., 2001). In H. ostrearia, for instance, the extent of unsaturation in the 

alkenes was shown to vary with culture temperature. Thus, at 25 ˚C and 15 ˚C the major 

isomers found were tetra- and tri-unsaturated alkenes respectively, while at 5 ˚C, di-

unsaturated alkenes were the most abundant (Rowland et al., 2001) (Figure 1.3). 

 

Figure 1.3: Partial gas chromatograms illustrating the distributions of alkenes in H. ostrearia 

cultures grown at different temperatures, where the X indicates the degree of unsaturation in the 

HBIs (modified from Rowland et al., 2001).         

Culture T˚ 

25˚C 

15˚C 

5˚C 

C25:X X = 2 3 4 5 
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Based on these outcomes, it was hypothesised that, in Arctic sea ice, where the 

temperature is below 5 ˚C, production of mono-unsaturated HBI alkenes by certain 

Haslea spp., might be possible. In addition, it was suggested that such compounds 

might be better preserved in sediments than the more unsaturated HBIs and, therefore, 

might be useful as palaeo sea ice indicators (Belt et al., 2007). 

Indeed, an initial investigation by Belt et al. (2007) found that a mono-unsaturated HBI 

alkene was detected in sea ice samples from the Canadian Arctic and sub-Arctic. In 

addition, the same mono-unsaturated HBI, subsequently termed IP25 (Ice Proxy with 25 

carbon atoms; Figure 1.4), was later identified in sediments from the Canadian Arctic 

and from different Arctic regions (e.g. Belt et al., 2008; Müller et al., 2009; Vare et al., 

2010). Diatoms belonging to the Haslea genus were suggested as a possible source of 

IP25 (Belt et al., 2007).  

 

Figure 1.4: Molecular structure of the C25 mono-unsaturated HBI alkene termed IP25 

(Unsaturation point at position 23/24).   

 

Since its discovery by Belt et al. (2007), the presence and relative abundances of IP25 

have been used in a number of palaeo sea ice reconstructions, representing different 

Arctic regions over a range of timescales (a recent review is given by Belt and Müller, 

2013). Briefly, these studies include the Barents Sea (last 300 yr) (Vare et al., 2010), 

north Iceland (last 2000 yr) (Massé et al., 2008; Andrews et al., 2009), the Canadian 

Arctic Archipelago (last 10000 yr) (Belt et al., 2010), northern Fram Strait (last 30000 

yr) (Müller et al., 2009), the northern Barents Sea continental margin (last 150000 yr 
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BP) (Stein et al., 2012) and Fram Strait (last ca. 2.2 Ma) (Stein and Fahl, 2013). More 

recent investigations have aimed to establish the relationship between IP25 abundances 

from surface sediments in different Arctic locations and known recent sea ice conditions 

derived from satellite data (Müller et al., 2011; Navarro-Rodriguez et al., 2013; 

Stoynova et al., 2013; Xiao et al., 2013). A further approach, has been to combine 

abundances of IP25 with those of an open water indicator (e.g. a phytoplankton 

biomarker such as a sterol) to generate the so-called PIP25 index in an attempt to provide 

more quantitative measures of palaeo sea ice (Müller et al., 2011). Finally, a number of 

IP25 based sea ice reconstructions have been successfully incorporated into multi-proxy 

and large-scale climate modelling studies (Antoniades et al., 2011; Axford et al., 2011; 

Kinnard et al., 2011; Miller et al., 2012). 

These previous studies have demonstrated the potential of IP25 as a specific (only 

produced by some sea ice diatoms), sensitive (produced in sufficient quantity to be 

detected and quantified) and stable (resistant to degradation over thousands of years) 

biomarker for palaeo-sea-ice reconstructions (Belt et al., 2007). Further work is 

required, however, to increase the knowledge regarding this sea ice biomarker through 

investigation of other Arctic and sub-Arctic areas with contrasting environmental 

conditions.  
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1.3 The current project – background to ‘CASE’ 

The current research work has been carried out within The Changing Arctic and 

Subarctic Environment (CASE, EU FP7) project. CASE is an interdisciplinary Initial 

Training Network investigating marine biotic indicators of past climate change. The aim 

of the overall project was to describe and identify the mechanisms and impacts of recent 

environmental changes in the Nordic Seas as well as to evaluate the nature and 

amplitudes of oceanographic and climate changes and their implications on the structure 

of the marine ecosystem during the present interglacial (the Holocene). CASE 

investigations have been conducted in three specific regions: (1) The Fram Strait and 

northern Svalbard continental margin, which represents the main inflow channel of 

Atlantic waters into the Arctic Ocean; (2) The southern Barents Sea, where the 

Norwegian Atlantic Current flows into the Barents Sea influencing the seasonal sea-ice 

melt; (3) The East Greenland and northern Iceland shelves, where southward flowing 

polar waters are carried to the mid-latitude Atlantic across the Denmark Strait (Figure 

1.5).  

 

1.3.1   Specific aims of the current project within the CASE project 

The main regions investigated by the research work described here and which contribute 

to the CASE project are northern Norway & the south-western Barents Sea (Figure 1.5 

(2)) and south-east Greenland (Figure 1.5 (3)). Overall, the main aim of this study was 

targeted towards sea ice reconstruction in particular, and the application of the IP25 

proxy, from a number of sub-Arctic regions with contrasting oceanographic and 

environmental settings. In addition to the spatial evaluation of IP25, the timescales have 

focused on the Younger Dryas and the Holocene (specific aims of each particular study 

will be introduced in each chapter). For example, northern Norway, which is currently 
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ice-free all year round, is greatly influenced by warm and saline Atlantic water which 

contributes to the formation of North Atlantic Deep Water and is a very sensitive area to 

climatic change (Hald and Hagen, 1998) (Figure 1.5a). The western Barents Sea (Figure 

1.5b) is also dominated by Atlantic waters but is also influenced by Arctic waters. As a 

result, this region experiences some sea ice cover but the inter-annual variability is high. 

However, during glacial periods, colder conditions than those of today occurred; for 

instance, during the Last Glacial Maximum (LGM) Norway and the Barents Sea were 

covered by a vast ice sheet (e.g. Mangerud et al., 1998; Vorren and Plassen, 2002b; 

Clark et al., 2009). In contrast, the south-east Greenland region (Figure 1.5c) represents 

a very different oceanographic and environmental setting. This region is a critical region 

due to the interaction between the Polar and sub-Polar climate systems. Currently, on 

the Greenland side of Denmark Strait, the oceanographic conditions are severe, with 8 – 

10 months sea ice cover during the year, with numerous tidewater glacier margins 

injecting icebergs into the fjords and adjacent shelf. During colder periods, such as the 

LGM, a re-advance of the Greenland Ice Sheet (GIS) resulted in more sea ice cover over 

the East Greenland continental margin (Kellogg et al., 1978; Kellogg, 1980). 
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Figure 1.5: Overview map of the study areas showing March (magenta line) and September 

(green line) median sea ice extent (> 15% monthly mean concentration) for 1981 – 2010 

(National Snow and Ice Data Center, Boulder, Colorado). Black dotted squares represent 

specific areas studied by the CASE project: (1) Fram Strait and northern Svalbard continental 

margin, (2) Southern Barents Sea and (3) East Greenland and northern Iceland. Black dots 

represent specific areas investigated within the current study: (a) northern Norway, (b) western 

Barents Sea and (c) south-east Greenland. Major cold currents are shown by blue arrows: East 

Greenland Current (EGC) and East Spitsbergen Current (ESC). Main warm currents are shown 

by red arrows: Irminger Current (IC), North Atlantic Current (NAC) and West Spitsbergen 

Current (WSC). 

 

In order to achieve these aims, a number of investigations were carried out, which are 

presented and discussed in the following chapters:  

Chapter 2: General laboratory and analytical methods. This chapter provides a 

description of the general laboratory and instrumental analytical procedures used, 

together with an account of a number of methodological developments that have been 

necessary to obtain the data used to address the main aims of this research. 

 

(a) 

(b) 

(c) 

(1) 

(2) (3) 

400 km 
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Chapter 3: Quantification of IP25 and other HBIs in marine sediments. This chapter 

describes the extraction, purification and analytical (GC-MS) calibration of IP25 in 

Arctic marine sediments. The GC-MS calibration of other di- and tri-unsaturated HBIs 

in Arctic marine sediments is also presented. 

Chapter 4: Results (1): Seasonal sea ice conditions in northern Norway during the 

Younger Dryas. This chapter describes the sedimentary analysis of IP25 (and other 

biomarkers) in a sediment core from Andfjorden, northern Norway to characterise sea 

ice conditions from ca. 13.8 – 7.2 cal. kyr BP and the Younger Dryas, in particular. 

Chapter 5: Results (2): Seasonal sea ice conditions in the western Barents Sea 

following the last deglaciation. This chapter describes a biomarker-based reconstruction 

of the palaeo sea ice conditions in the western Barents Sea margin during the last ca. 

15.7 cal. kyr BP. Further, the comparison of biomarker data with other proxy studies 

(including some from the same core) allowed the overall oceanographic conditions to be 

identified. 

Chapter 6: Results (3): Environmental and drift ice conditions in south-east 

Greenland: from recent to ancient sediments. Part A of this chapter describes a multi-

proxy based study of three short gravity cores (last ca. 150 yr) from the outer 

Kangerdlugssuaq Trough, within Denmark Strait, south-east Greenland. The outcomes 

were compared to existing historical and instrumental data and a model from which 

longer term palaeoceanographic reconstructions could be tested was proposed. Part B is 

based on a multi-proxy analysis of a sediment core located in the same area over a 

longer timescale (ca. 16.3 – 10.9 cal. kyr BP). The model provided in Part A was tested 

during this interval, to elucidate the palaeoclimate conditions in the Kangerdlugssuaq 

Trough. Some modifications to the initial model were also proposed. 
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Chapter 7: Conclusions and future work. This chapter summarises the main outcomes 

from each of the individual study areas and provides suggestions of future work that 

might be needed to improve the application of IP25 (and related biomarkers) for palaeo 

sea ice reconstruction in the Arctic. 
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CHAPTER TWO 

 

2 General laboratory and analytical methods 

2.1 Introduction 

This chapter describes the general experimental procedures undertaken as part of this 

research work, including instrumentation and laboratory operating conditions in 

addition to chemical identification and quantification. Any necessary methodological 

developments carried out during this research are also described. 

 

2.2 General procedures 

2.2.1   Freeze drying 

Frozen sediment samples were freeze-dried for 24 – 48 hours in a Thermo Savant 

Modulyo D freeze dryer at -45ºC and 0.2 mbar. Individual sediment horizons were 

weighed before and after freeze drying to determine water content by difference. 

 

2.2.2   Internal standards for lipid quantification 

Addition of the following internal standards prior to extraction was used to permit 

quantification of extracted compounds; 9-octyl-8-heptadecene (9-OHD, 10 μL; 10 μg 

mL
-1

; Figure 2.4b) and 7-hexylnonadecane (7-HND, 10 μL; 10 μg mL
-1

; Figure 2.4c) 

were added for quantification of HBIs (including IP25) and 5α-androstan-3β-ol (10 μL; 

10 μg mL
-1

; Figure 2.6c) was added for quantification of sterols. A detailed description 
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of the methodological development carried out regarding the internal standards for 

quantification of HBIs is presented in Section 2.3.1 of this chapter. 

 

2.2.3   Total organic extracts (TOEs) 

For each sediment extraction, DCM : MeOH (2:1 v/v) was added using a glass pipette 

(Figure 2.1) in sufficient volume (ca. 3 mL), to cover sediments with an excess of ca. 1 

mL above the sediment surface. The vials were then sealed using lined polypropylene 

screw caps (7 mL, Fisher, UK) and ultrasonicated (Transsonic T420, Camlab; ca. 15 

min) to stimulate the disaggregation of the sediment thus permitting more efficient 

solvent penetration of sediment matrices. The samples were centrifuged (2500 rpm; ca. 

30 s) and the supernatant fluid was decanted using a pipette, into a clean pre-labelled 7 

mL glass vial. The extraction procedure was repeated twice more (DCM : MeOH, 1: 0.5 

v/v) yielding the total organic extract (TOE) (Steps 1 to 8 in Figure 2.1). 
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Figure 2.1: Schematic figure showing the steps of the organic extraction and silica purification 

for HBI analysis. 

 

2.2.4   Partial purification of lipid extracts by silica column 

chromatography 

Following removal of the solvent from the combined extracts using nitrogen (step 9 in 

Figure 2.1), the resulting dried total organic extracts (TOE) were re-dissolved in hexane 

(0.5 mL: Rathburn, UK) and ultrasonicated (5 min) before being transferred into a 

small-scale chromatography column made of a glass pipette, containing a small plug of 

cotton wool (DCM-extracted) and deactivated chromatography grade silica (ca 0.7 g; 

60-200 µm, Fisher, UK). Columns were pre-conditioned by rinsing with hexane (ca. 3 
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mL) prior to the addition of sediment extracts. Following the addition of the sediment 

extract using a glass pipette, IP25 and other hydrocarbons (hexane; 6 mL) and sterols 

(20:80 methylacetate/hexane; 6 mL) were collected in pre-labelled 7 mL glass vials as 

two single fractions prior to evaporation of hexane by N2 stream (25 ˚C) (Steps 10 to 12 

in Figure 2.1).  

Identification of IP25 in some sediment extracts was made difficult due to low 

abundance and/or the occurrence of other highly abundant co-eluting organic 

compounds that prevented further concentration of the extracts. In such cases, additional 

purification by Ag-Ion chromatography was required. A detailed description of the 

approach developed for identification of IP25 in such cases is given in Section 2.5. 

 

2.2.5   Derivatisation 

To increase the volatility of some polar compounds on the apolar GC-MS column (HP-

5ms), sterols were derivatised prior to GC-MS analysis using 50 µL of N,O-

bis(trimethylsilyl)trifluoroacetamide (BSTFA). Vials were sealed using aluminium 

lined polypropylene screw caps and parafilm (Fisher, UK) and heated for 1 hour at 

70ºC. The silylated extracts were then transferred to a 2 mL vial and diluted with DCM 

to an appropriate concentration for GC-MS analysis.   
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2.2.6   Gas chromatography – mass spectrometry 

Dried samples were transferred (hexane; 3 x 100 μL) to 2 mL GC vials (Chromacol, 

UK) and diluted appropriately for analysis by gas chromatography-mass spectrometry 

(GC-MS) (Steps 13 to 15 in Figure 2.1). An Agilent 7890A GC coupled to a 5975 series 

mass selective detector fitted with an Agilent HP-5ms (30 m x 0.25 mm x 0.25 μm) 

column was used, along with 1 μL auto-splitless injection (300˚C) with helium carrier 

gas (1 mL min
-1

 constant flow). Total ion current (TIC; m/z 50 – 500 daltons) and 

selective ion monitoring (SIM; -0.3 +0.7 m/z of interest) techniques were used to 

determine compounds detected after elution, with an electron voltage of 70 eV. The GC 

oven was heated from 40 – 300˚C at 10˚C min
-1

 and held at 300˚C for 10 minutes. The 

retention time and mass spectrum of individual compounds was identified using TIC 

chromatograms whereas compound quantification was performed from SIM 

chromatograms due to its high selectivity as well as increased sensitivity. In some cases, 

and when the samples required further concentration for GC-MS analysis, 300 μL GC 

vials (Chromacol, UK) were used.  

 

2.2.7   Quantification of HBIs and sterols 

2.2.7.1   Quantification of HBIs 

Identification of HBIs isolated from marine sediments was established by comparison of 

the respective mass spectra with those of authentic compounds kept in the laboratory. 

Specifically, each lipid was identified from the mass spectrum molecular ion, 

fragmentation pathway (Figure 2.2, Figure 2.3 and Figure 2.4), and retention index 

(IP25: 2086; diene II: 2085; triene Z: 2045; triene E: 2092; triene 5/6: 2103; triene 6/17: 
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2107) calculated using Equation 2.1. Ri denotes retention index and Rt is retention time 

on GC-MS (HP-5ms). 

Equation  2.1:  

    
             

              
   ⁄

      

An ionization energy of 70 eV was sufficient to fragment HBIs in the mass selective 

detector (MSD) and provide characteristic mass spectra (Brown, 2011) (Figure 2.2, 

Figure 2.3 and Figure 2.4). 

 
Figure 2.2: Background subtracted mass spectra and structures of: (a) the highly branched 

isoprenoid alkene IP25 (showing HBI numbering system) (M
+• = m/z 350.3); (b) the HBI alkene 

diene II (M
+• = m/z 348.3) described in the current study. 
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Figure 2.3: Background subtracted mass spectra and structures of highly branched isoprenoid 

alkenes described in the current study (a) triene Z (M
+• = m/z 346.3); (b) triene E (M

+• = m/z 

346.3); (c) triene 5/6 (M
+• = m/z 346.3). 
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Figure 2.4: Background subtracted mass spectra and structures of highly branched isoprenoid 

alkenes and internal standards described in the current study (a) triene 6/17 (M
+• = m/z 346.3); 

(b) 9-OHD (9-octyl-8-heptadecene; M
+• = m/z 350.3); (c) 7-HND (7-hexylnonadecane; M

+• = m/z 

352; not visible but indicated). 
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Quantification of HBIs was achieved by manual integration (Chemstation, version 

C.03.00 software) of each analyte’s molecular ion signal as recorded by GC-MS SIM 

analysis (IP25: m/z 350.3; diene II: m/z 348.3; triene Z, triene E, triene 5/6 and triene 

6/17: m/z 346.3, Figure 2.5). Factors such as extraction efficiency, sediment sample 

mass and any differences in the relative response factors were accounted for using 

Equation 2.2. 

 
Figure 2.5: Partial GC-MS chromatograms (SIM m/z 350.3, 348.3 and 346.3) of silica purified 

Station 428 sediment extract from the Canadian Arctic Archipelago showing the relative elution 

order of HBIs and the technique adopted for manual peak integration for later quantification of 

HBIs (dashed lines). 
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Briefly, the ratio between the peak area of a selected HBI (PAHBI) and the peak area of 

the internal standard (PAIS) was multiplied by a GC-MS response factor (RF) to account 

for different mass spectral responses between the HBI and the internal standards. Then, 

the modified peak ratios were divided by the mass of sediment extracted (m dry 

sediment (g)) and finally multiplied by the mass of the internal standard added to the 

sediment prior to extraction (m IS (μg)), yielding units for HBIs of μg g
-1

 of dry 

sediment (Equation 2.2; Table 2.1). The approach used for obtaining the response 

factors between the internal standard (9-OHD) and IP25 and di- and tri-unsaturated HBIs 

can be found in Chapter 3 of this thesis. 

Table 2.1: Calculation steps needed to quantify HBI concentration in sediment samples using 

Equation 2.2. The example shown corresponds to a sediment sample from the Canadian Arctic 

Archipelago, Station 428. (RF = response factor) (mass dry sediment (g) = 0.64; mass IS (μg) = 

0.1) (GC-MS SIM-chromatogram given in Figure 2.5). 

  

In some cases, due to highly fluctuating downcore total organic carbon (TOC) data, HBI 

concentrations were normalised relative to TOC (Equation 2.3) 

Equation 2.3:  

    (        )   
    (                  )

    ( )
     

Biomarker concentrations were in some cases expressed as fluxes in order to factor in 

the temporal changes associated with variable sedimentation rates. The conversion of 

sedimentary HBI concentrations to annual fluxes (Equation 2.5) was carried out by 

combining the former with sediment dry bulk densities (DBD) and sedimentation rates 

HBI 
PA 

HBI 
PA IS RF 

     

    
    

     
    

   

               ( )
     

     
    

   

               ( )
       (  ) 

IP25 25228 122372 5.03 1.0369 1.6202 0.1620 

diene II 23635 122372 11.29 2.1806 3.4072 0.3407 

triene Z 3716 122372 1.82 0.0553 0.0864 0.0086 

triene E 4443 122372 1.82 0.0661 0.1033 0.0103 
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derived from an age model, both of which can be determined experimentally (Belt et al., 

2012b). HBI denotes highly branched isoprenoid concentration, DBD is dry bulk 

density and Ased is the sedimentation rate of a given sediment horizon. The DBD is the 

intrinsic sediment dry mass per unit volume of the sampled sediment horizon and can be 

calculated according to Equation 2.4. Dm means dry sediment mass and Wc is Water 

content. 

Equation 2.4:  

    (      )   
  

(
  
     

)  (
  
    

)
 

 

Equation 2.5:  

    (             )      (                  )      (      )       (      
  ) 

 

However, this approach could only be used when a suitable and well-constructed age 

model for a studied sediment core was available. 

Analytical reproducibility during each study was monitored using a standard sediment 

from the Canadian Arctic Archipelago, with known abundances of biomarkers for every 

14 - 16 sediment samples extracted. Overall, the analytical reproducibility during the 

entire research provided an analytical error value of 10% (n = 42).   
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2.2.7.2   Quantification of sterols 

Identification of sterols was established by comparison of the mass spectra of 

derivatised (trimethylsilyl, TMS) samples with those of authentic compounds. Sterols 

studied in this research included 24-methylcholesta-5,22E-dien-3β-ol (hereafter referred 

to as brassicasterol, Figure 2.6a) and 24-methylcholesta-5,24(28)-dien-3β-ol (hereafter 

referred to as 24-methylenecholesterol, Figure 2.6b) and the internal standard 5α-

androstan-3β-ol (Figure 2.6c). 

Quantification of sterols was achieved following the same steps to that of HBIs (Section 

2.2.7.1 of this chapter).  

The response factor of brassicasterol was obtained by preparation of a calibration curve 

of a range of brassicasterol concentrations (authentic standard, Sigma-Aldrich; 0.0001 

mg mL
-1

, 0.0002 mg mL
-1

, 0.0004 mg mL
-1

, 0.0006 mg mL
-1

, 0.0008 mg mL
-1

 and 

0.001 mg mL
-1

) against the internal standard (5α-androstan-3β-ol) of equivalent 

concentration. A GC-MS response factor between the internal standard (5α-androstan-3β-

ol) and brassicasterol value of 50 was obtained by dividing the m/z response of the 5α-

androstan-3β-ol (m/z 333.3) by the m/z response of brassicasterol (m/z 470) in the SIM-

chromatogram. This means that the GC-MS response of 5α-androstan-3β-ol at m/z 333.3 

in the SIM-chromatogram is 50 times larger than that of brassicasterol at m/z 470 in the 

SIM-chromatogram. No authentic 24-methylenecholesterol standard was available for 

carrying out a calibration curve. However, given that both brassicasterol and 24-

methylenecholesterol have the same molecular ion (m/z 470) with similar relative 

abundance values of ca. 12% of the base ion in the mass spectrum (Figure 2.6a and 

Figure 2.6b), the same response factor of 50 was used for 24-methylenecholesterol 

quantification. 
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Figure 2.6: Background subtracted mass spectra and structures of C28 trimethylsilyl (TMS) 

sterol ethers described in the current study: (a) 24-Methylcholesta-5,22E-dien-3β-ol 

(brassicasterol, M
+• = m/z 470); (b) 24-Methylcholesta-5,24(28)-dien-3β-ol (24-

methylenecholesterol, M
+• = m/z 470); (c) the internal standard 5α-androstan-3β-ol (M

+• = m/z 

348). 
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2.2.8   Calculation of the PIP25 index 

Calculation of the PIP25 index was achieved by combination of the concentrations of the 

sea ice biomarker IP25 and a biomarker derived from open-water phytoplankton (e.g. 

brassicasterol) as described previously by Müller et al. (2011). Due to a significant 

difference between the concentrations of both biomarkers, a balance factor (c), was 

calculated by dividing the mean IP25 concentration by the mean phytoplankton 

biomarker concentration. The overall PIP25 calculation is shown in Equation 2.6.  

Equation 2.6:  

       
    

(     (                                ))
 

 

2.2.9   Calculation of the DIP25 index 

In order to examine the concentration relationships between IP25 and the co-occurring 

HBI diene II (hereafter referred to as diene II; Figure 2.2b), relative abundances of IP25 

and diene II were obtained by integration of the m/z 350.3 and 348.3 peaks (molecular 

ions) from the SIM chromatograms, respectively. The relative magnitudes of these mass 

spectral responses were used for the analysis, rather than strict concentrations, since 

calculation of the latter relies on an accurate understanding of the relative GC-MS 

responses for the two biomarkers (Equation 2.7). PA denotes the peak area. 

Equation 2.7:  

       
            

       
 

Although it is also possible to calculate DIP25 using concentration in the Plymouth 

laboratory, this is not necessarily true for other laboratories. Therefore, in terms of 
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transferability of the approach, the use of single ion ratios possibly represents a more 

reliable method.  

The linear correlation between both biomarkers was also often assessed as a scatter (x-

y) representation, where all GC-MS responses for each biomarker (IP25 and diene II) 

were normalised to the maximum value for IP25 observed for each core.  

 

2.2.10   Total Organic Carbon 

The total organic carbon (TOC %) and nitrogen (TON %) content of sediment were 

determined using 100 mg ± 5 mg freeze dried sediment which was digested with 10% 

HCl (1 mL; 18 h) at room temperature to remove inorganic carbonates, after which, the 

HCl was removed and the sample washed 3 times with milli-Q water. Samples were 

analysed by Andrew Tonkin (Plymouth University) with a Carlo Erba EA 1110 

elemental analyser for carbon, nitrogen and hydrogen. 

 

2.3 Methodological developments 

As part of this research, a number of developments regarding laboratory methods were 

needed. These comprised the validation of a new internal standard for HBI 

quantification, the development of a Ag-Ion chromatographic technique, the removal of 

sulphur from sediment extracts and a GC-MS method development to increase 

sensitivity.  
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2.3.1   Internal standards for lipid quantification 

The addition of internal standards to sediment samples prior to extraction was used to 

permit quantification of extracted compounds. Moreover, experimental variations such 

as extraction efficiency, purification and dilution of extracts prior to GC-MS analysis 

were also considered. Previous IP25 studies used 7-hexylnonadecane (7-HND, MW = 

352 g mol
-1

; Figure 2.4c) as an internal standard for quantification. 7-HND has 25 

carbon atoms with an alkyl branch similar to that of IP25 and was synthesised by 

Andrew Tonkin (Plymouth University) (Belt et al., 2012b). Indeed, the structural 

similarities between IP25 and 7-HND showed similar extraction and purification 

efficiencies (Belt et al., 2012b). However, although 7-HND and IP25 have similar GC-

MS responses in the TIC mode, due to their near identical elemental formula, their 

responses in SIM mode (m/z 99.0 and 350.3 for 7-HND and IP25, respectively), which is 

used for quantification of analytes, is rather different. In addition, since 7-HND is a 

saturated hydrocarbon, it is not suitable for use as an internal standard when using the 

Ag-Ion purification method as it elutes in a different fraction to IP25.  

In order to try to overcome these issues, another branched hydrocarbon, 9-

octylheptadec-8-ene (9-OHD; Figure 2.4b) was synthesised by Andrew Tonkin 

(Plymouth University) (Belt et al., 2012b). Unlike 7-HND, 9-OHD contains a single 

double bond, and has the same molecular weight as IP25 (MW = 350.3 g mol
-1

). The use 

of 9-OHD as an internal standard therefore had, the potential to show more appropiate 

behaviour to that of IP25 compared to 7-HND, especially regarding extraction, 

purification and mass spectral responses. A series of experiments were carried out with 

the purpose of examining the reliability of 9-OHD as an internal standard for 

quantification of biomarkers, such as IP25 and other HBIs.  
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2.3.2   Volume (mL) of eluent needed for open silica column 

chromatography 

Routine analysis of marine sediments required both extraction and partial purification of 

total organic extracts (Belt et al., 2012b). In order to establish the volume of eluent 

(hexane) needed to elute the internal standards as well as desired analytes (e.g. IP25) for 

open silica column chromatography, two experiments were performed. 

Firstly, an experiment that only comprised a sample containing both internal standards 

was carried out. Silica (0.7 g; 60-200 µm, Fisher, UK) was transferred to a glass pipette, 

previously plugged with pre-cleaned (DCM) cotton wool. After the silica column was 

conditioned with hexane (ca. 3 mL), 10 μL of a solution containing both 7-HND and 9-

OHD (10 μg mL
-1

 each) was added onto the column. The column was then continuously 

eluted with hexane, and 0.25 mL fractions collected (4 mL total). Finally, the column 

was eluted with 4 mL of DCM as a single fraction, to make sure that both internal 

standards had been completely eluted. After evaporation under a N2 stream, all fractions 

were re-suspended in 1 mL of hexane and analysed by GC-MS. Peak areas in the SIM 

chromatograms were measured at m/z 350.3 and 99 for 9-OHD and 7-HND, 

respectively. The results (Figure 2.7) showed that both internal standards were 

completely eluted from the silica column using ca. 2.5 mL of hexane. No internal 

standards were found after 2.5 mL or in the DCM fraction. 
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Figure 2.7: Internal standards (7-HND and 9-OHD) peak areas according to volume of hexane 

(mL) used in open silica chromatography. 

 

In a second experiment, an extract with known IP25, 7-HND and 9-OHD concentrations 

was added to the silica column. Once again, the results derived from GC-MS analysis 

showed that both internal standards were completely eluted after ca. 3 mL of hexane 

(Figure 2.8). IP25 was also completely eluted with ca. 2.5 mL of hexane, suggesting that 

the internal standards 7-HND and 9-OHD showed a similar chromatographic behaviour 

to that of IP25 on the silica column. No internal standards or IP25 were detected in the 

DCM fraction. 
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Figure 2.8: Internal standards (7-HND and 9-OHD) and IP25 peak areas according to volume of 

hexane (mL) used in open silica chromatography. 

 

2.3.3   Losses of organic compounds in dried sediment extracts under N2 

stream 

An experiment was performed to check the influence of (over) exposure of the N2 

stream on the internal standards. In order to achieve this, a series of 8 vials, each of 

which contained 10 μL of 7-HND and 9-OHD (10 μg mL
-1

 each) and 1 mL of hexane 

were prepared. Following complete evaporation of hexane from all vials, one vial was 

kept as a control (time = 0 min). The remaining vials were kept under continuous N2 

stream and one was removed every 10 min up to 60 min (Figure 2.9). An extra sample 

was kept for 90 min. Samples were then re-suspended in 1 mL of hexane for analysis by 

GC-MS.  
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Figure 2.9: Experiment to study the influence of over exposure of the internal standards (7-HND 

and 9-OHD) under N2 stream. 

 

Subsequent manual integration of peak areas from SIM chromatograms of each internal 

standard (m/z 350.3 and 99 for 9-OHD and 7-HND, respectively) of all samples was 

performed. As shown in Figure 2.10a, decrease in peak areas of both internal standards 

over time was clear, suggesting that significant losses under extended blow-down under 

nitrogen were evident. The initial sample (t = 0) was used as the reference from which 

losses (as percentages) of internal standards for other samples (i.e. 10, 20, 30, 40, 50, 60 

and 90 min) were obtained (Figure 2.10b). As seen in Figure 2.10b, a loss of internal 

standards of ca. 10% after 10 min of exposure under a N2 stream was observed and 

losses increased with time. In all of the samples (excluding the 20 min sample), the 

percentage loss was slightly higher for 9-OHD than 7-HND, indicating that 9-OHD is 

slightly more volatile than 7-HND. This experiment showed the importance of 

controlling the samples under N2 stream as extended blow-down times lead to 

significant losses of internal standards, and therefore, probably also of IP25 and 

compounds of similar volatilities (Belt et al., 2012b).  
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Figure 2.10: (a) Peak area of the internal standards (7-HND and 9-OHD) compared to N2 stream 

exposure time; (b) Percentage of internal standards lost over time under N2 stream.  
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2.3.4   Study of the contribution of other organic compounds to the 

Internal Standard and IP25 signal in the SIM-chromatogram 

Each internal standard used in the extraction process (7-HND and 9-OHD) has a unique 

retention time when analysed by GC-MS. In order to establish if the peak attributed to 

the internal standard and IP25 had any contribution from co-eluting organic compounds 

within the sediments, further sediment samples of each of the sediment cores analysed 

during this research were also analysed without the addition of internal standards. In all 

the studied sediment cores (except GKC cores as sediment material availability was 

limited to biomarker analyses) no signal was found at the retention times corresponding 

to the internal standards (m/z 99 for 7-HND and m/z 350.3 for 9-OHD) and IP25 (m/z 

350.3).  

Although shown not to be a problem here, the existence of analytes that co-elute with 

the internal standards and IP25 could make GC-MS quantification of the analytes of 

interest less reliable. Therefore, it is suggested that the procedure described here should 

be adopted regularly when analysing a sediment core in order to make sure that the GC-

MS peaks attributed to the internal standards and IP25 have no contributions from other 

compounds.  
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2.4 Removal of elemental sulphur 

In some cases (e.g. JM09-KA11-GC sediment core, Chapter 5) TOEs were found to 

contain high concentrations of elemental sulphur (S8, Figure 2.11d) that interfered with 

the subsequent gas chromatographic analyses. This was removed from the TOEs before 

further purification based on a rapid, efficient and non-destructive method described 

previously by Jensen et al. (1977) and based on the following chemical reaction 

(Equation 2.8). TBA
+
 refers to tetrabutylammonium ion. 

Equation 2.8:  

(TBA+)2 SO3
2- +  S (s) 2 TBA+ +  S2O3

2-

 

A tetrabutylammonium sulphite reagent (    )    
    (TBA reagent) was prepared by 

adding 3.39 g of tetrabutylammonium hydrogen sulphate, extra pure (C16H37NO4S, 

Fisher Scientific) in 100 mL of Ultra High Purified (UHP) water saturated with 25 g of 

sodium sulphite anhydrous (Na2SO3, Fisher Scientific). Once the reagent was prepared, 

hexane (1 mL) was added to the dried TOEs, followed by TBA reagent (1 mL) and 2-

propanol (2 mL). This was then shaken by hand (1 min). After addition of Ultra High 

Purified water (3 mL), the samples were shaken again (1 min) and centrifuged (2500 

rpm; 2 min). The hexane layer (containing the lipids of interest) was transferred to a 

clean vial and the procedure repeated twice more. After evaporation of the solvent by 

N2 stream, the TOEs were purified following methods described previously in this 

chapter (Section 2.2.4). 
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Figure 2.11: (a) TIC GC-MS chromatogram before sulphur removal; (b) TIC GC-MS 

chromatogram after sulphur removal; (c) SIM GC-MS chromatogram with selected ion m/z 

350.3 (IP25) after sulphur removal. Dashed line indicates the retention time of IP25; (d) 

Background subtracted mass spectra and structure of elemental sulphur (M
+• = m/z 256). 
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This procedure was tested using a marine sediment. This sediment contained IP25, HBIs 

and sulphur (Figure 2.11a) (GC-MS). Re-analysis of the same sample after sulphur 

removal enabled comparison of HBIs concentrations before and after this procedure. As 

can be seen from Figure 2.11b, the sulphur was successfully removed from the sample 

using the approach previously described. The IP25 biomarker was still present (Figure 

2.11c), as well as di- and tri-unsaturated HBIs, with concentrations very similar to those 

obtained before the sulphur removal (Table 2.2) 

Table 2.2: HBIs concentrations (μg g
-1

 dry sed) before and following removal of elemental 

sulphur from the sediment extract. 

HBI 

Concentration (μg g
-1

dry sed) 

prior removal of elemental 

sulphur  

Concentration (μg g
-1

 dry sed) 

following removal of elemental 

sulphur  

IP25  0.0157 0.0142 

diene II  0.0982 0.0899 

triene Z 0.0379 0.0402 

triene E 0.0390 0.0471 

 

 

2.5 Purification and analysis of IP25 and unsaturated HBIs at low 

concentrations.  

2.5.1   Analysis of IP25 at low concentrations 

In order to detect IP25 at very low concentrations, an additional purification step was 

developed using Ag-Ion chromatography (Supelco discovery
®

 Ag-Ion). With the aim of 

testing this new methodology, a reference sediment from the Canadian Arctic 

Archipelago, with a known concentration of IP25, was analysed before and after the Ag-

Ion chromatographic purification (Figure 2.13). Once the extracts had been partially 

purified (SiO2; hexane), the purified extracts were further fractionated into saturated and 

unsaturated components using glass pipettes containing Ag-Ion stationary phase 
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(Supelco discovery
®

 Ag-Ion). Saturated hydrocarbons were eluted first (hexane; 5 mL, 

then DCM; 5 mL) and unsaturated hydrocarbons (including IP25) were eluted with 

DCM/acetone (95/5; 10 mL) with further poly-unsaturated hydrocarbons eluted with 

acetone (5 mL; Figure 2.12).  

  

 
 

Figure 2.12: Schematic of the Ag-Ion chromatographic procedure for fractionation of saturated 

and unsaturated hydrocarbons. IP25 and the internal standard (9-OHD) used for quantification 

were eluted together in the DCM/acetone fraction. 

 

Following analysis by GC-MS of the fractions obtained after Ag-Ion chromatography, 

IP25 (Figure 2.13c) and the internal standard (9-OHD) were present in the DCM/acetone 

(95/5) fraction, and were absent from all other fractions. Other unsaturated 

hydrocarbons, such as di-unsaturated and tri-unsaturated HBIs, were not recovered in 

the DCM/acetone (95/5) fraction. SIM GC-MS chromatograms of the sediment sample 

Saturated hydrocarbons 

Unsaturated hydrocarbons 

hydrocarbons IP25 

9-OHD 

  1)- Column conditioning: 

   -     5 mL  acetone 

   -      5 mL hexane 

Waste 

  2)- Sample loading: 
-    Sample in hexane          

(~ 100μL) 
          5 mL hexane 

 

Saturated 

hydrocarbons 

5 mL DCM 

Mono-

unsaturated 

hydrocarbons 

(including IP25 + 

9-OHD) 

10 mL DCM/acet 

(95/5) 5 mL acetone 

Saturated 

hydrocarbons 
Poly-

unsaturated 

hydrocarbons 

(including C25:2 

and C25:3) 



46 

 

before and after Ag-Ion chromatography (DCM/acetone fraction) were consistent, with 

IP25 concentrations of 0.098 and 0.096 μg g
-1

 dry sediment before and after Ag-Ion 

chromatography respectively (Figure 2.13b and Figure 2.13c), indicating that few if any 

losses occurred during Ag-Ion purification. The methodology developed was thus 

considered satisfactory when IP25 concentration was relatively high. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13: (a): TIC GC-MS chromatogram of a reference sediment sample from the Canadian 

Arctic Archipelago before Ag-Ion chromatography; (b) SIM GC-MS chromatogram with 

selected ion m/z 350.3 before Ag-Ion chromatography; (c) SIM GC-MS chromatogram of the 

DCM/acetone (95/5) fraction, with selected ion m/z 350.3 after Ag-Ion chromatography.  

Dashed line indicates the retention time of IP25. 
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Once this methodology had been tested with a sediment sample containing relatively 

high IP25 abundances, a sediment sample from the Denmark Strait area (JM96-1213 

core) where IP25 appeared absent (or below the limit of detection) using the standard 

extraction/purification procedure was used for testing. Further purification of the 

partially purified (SiO2) TOEs by Ag-Ion chromatography and analysis by GC-MS of 

the sample containing the DCM/acetone fraction by GC-MS resulted in the successful 

removal of saturated hydrocarbons that were obscuring the IP25 signal.  This allowed the 

detection of IP25 at lower detection limits (S/N > 3) (Figure 2.14). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.14: (a): TIC GC-MS chromatogram of a sediment sample where IP25 was not 

detectable before Ag-Ion chromatography; (b) SIM GC-MS chromatogram, with selected ion 

m/z 350.3 before Ag-Ion chromatography; (c) SIM GC-MS chromatogram of the DCM/acetone 

(95/5) fraction, with selected ion m/z 350.3 after Ag-Ion chromatography.  Dashed line indicates 

the retention time of IP25.  
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A number of factors, such as changes in sensitivity of the GC-MS and type of extracted 

sediment material (i.e. amount and type of organic matter contained in sediments) 

prevented determination of an exact limit of detection. However, an analytical limit of 

detection of 10 ng mL
-1

 was estimated from pure IP25 using standard GC-MS 

conditions. In practice the limit of detection will vary based on instrument performance. 

 

2.5.2   Analysis of unsaturated HBIs at low concentrations  

When other more unsaturated hydrocarbons (e.g. di- or tri-unsaturated) were needed for 

analysis (Figure 2.2, Figure 2.3 and Figure 2.4) another procedure similar to the one 

described previously was used. In this case, the column was first conditioned with 5 mL 

of acetone and then 5 mL of DCM. The silica purified sample was then diluted in DCM 

and loaded onto the column. Saturated hydrocarbons were eluted with 5 mL of DCM 

and unsaturated hydrocarbons (including IP25, 9-OHD and poly-unsaturated HBIs) were 

eluted with 5 mL of acetone (Figure 2.15).  
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Figure 2.15: Schematic of the Ag-Ion chromatography procedure for fractionation of saturated 

and unsaturated hydrocarbons. 

 

Next, an attempt was made to reduce the amount of Ag-Ion chromatography material 

used in each column in order to minimise the amount of solvent used and reduce time 

and overall cost of the procedure. Previously, Ag-Ion chromatographic purification was 

carried out with ca. 500 mg of Ag-Ion solid phase. Hexane extracts from a previously 

analysed sediment were further fractionated into saturated and unsaturated components 

using glass pipettes containing 100 mg of Ag-Ion chromatography material (Supelco 

discovery
®

 Ag-Ion). Saturated hydrocarbons were eluted with hexane (1 mL; Figure 

2.16) and unsaturated hydrocarbons (including IP25, 9-OHD and the rest of HBIs under 

study) were eluted with acetone (2 mL) before being dried (N2).  
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Figure 2.16: Schematic of the Ag-Ion chromatography procedure for fractionation of saturated 

and unsaturated hydrocarbons using 100 mg of Ag-Ion chromatographic material. 

 

All HBIs were absent from the hexane fraction, which contained mainly saturated 

hydrocarbons (Figure 2.17b). The acetone fraction (Figure 2.17c) contained all the HBIs 

of interest, with concentrations that were very similar to those obtained via the standard 

purification procedure (Table 2.3). 

Table 2.3: HBIs concentrations before and after the Ag-Ion chromatography purification 

procedure.  

HBI 
Concentration (μg g

-1 
dry sed) 

before Ag-Ion 

Concentration (μg g
-1 

dry sed) 

following Ag-Ion 

IP25  0.0054 0.0056 

diene II  0.0360 0.0360 

triene Z  0.0021 0.0020 

triene E  0.0024 0.0025 
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The use of hexane allowed the removal of all saturated hydrocarbons that were present 

in the sediment extract at relatively high abundances (Figure 2.17b). When comparing 

relative abundances of the TIC chromatogram of the sediment extract before Ag-Ion 

chromatography (Figure 2.17a) with that of the acetone fraction (containing the HBIs of 

interest) after Ag-Ion chromatography (Figure 2.17c), a considerably reduced 

background signal with lower abundances was observed in the latter. This allowed 

further concentration of the extract without overloading the MS detector and hence 

detecting of HBIs at lower concentrations.  

This improved approach, therefore, allowed the analysis of all HBIs in the same fraction 

using less Ag-Ion chromatography material and solvents, thus reducing the time and 

costs of each chromatographic purification.  
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Figure 2.17: (a) TIC GC-MS chromatogram, before Ag-Ion chromatography; (b) TIC GC-MS 

chromatogram after Ag-Ion chromatography, hexane fraction; (c) TIC GC-MS chromatogram 

after Ag-Ion chromatography, acetone fraction. Dashed line indicates the retention time of IP25. 
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2.5.3   GC-MS method development  

In order to further improve the instrumental (GC-MS) sensitivity for IP25 detection and 

quantification, a modified method was developed. General features of both methods, the 

HBI SIM-SCAN regular (so-called ‘regular’ method) and HBI SIM-SCAN IP25 high 

sensitivity (1) (so-called ‘high sensitivity’ method(1)) are shown in Table 2.4. A third 

method (high sensitivity-short detection window (2)) was also developed to allow 

further concentration of the sample (when possible) without affecting the MS detector, 

consisting of a shorter detection window focused on the known IP25 retention time. 

 

Table 2.4: General features of GC-MS methods developed for regular and high sensitivity 

analysis of IP25. 

 

Moreover, some changes in the injection method were developed in order to further 

improve the sensitivity of the analysis. The Agilent 7890A GC coupled to a 5975 series 

mass selective detector used in this study has a split/splitless injector (Figure 2.18). The 

injector contains a carrier gas inlet, a septum, septum purge, injector insert, heater 

block, column connection and a split line or vent. The sample is injected through the 

septum into the glass liner. The carrier gas (He) enters the chamber and the sample is 

vaporised to form a mixture of carrier gas, vaporised solvent and vaporised solutes.  If 

Method name 
HBI SIM-SCAN 

regular 
HBI SIM-SCAN IP25 

high sensitivity (1) 

HBI SIM-SCAN IP25 

high sensitivity (2)  

(short detection window) 

Function Routine HBI detection 
Increased sensitivity for 

IP25 only 
Increased sensitivity for 

IP25 only  

Mass range (m/z) 50-500 
50-500 (18-20 min = 90-

360) 
90-360 

SIM ions (m/z) 350.3, 348.3, 346.3, 99 350.3 350.3 

Total run time 36 min 36 min 36 min 

GC Temperature 

profile 
40oC - 300oC at 10oC min-1 

(10 min isothermal) 
40oC - 300oC at 10oC min-1 

(10 min isothermal) 
40oC - 300oC at 10oC min-1 

(10 min isothermal) 

Detection time 10-26 min 10-25 min 18.5-19.5 min 
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the split vent is closed (Splitless mode), all the analyte sample vaporised in the injector 

goes onto the column. After the injection (usually 30 – 60 s), the split vent is opened to 

purge excess solvent (and remaining sample). This technique allows a greater amount of 

the injected sample to enter onto the column. If the split vent is open (Split mode), then 

most of the vaporised sample is thrown away to waste via the split vent and only a small 

portion of the sample is introduced onto the column. In both modes there is a purge flow 

which prevents septum degradation products from entering in the system and helps keep 

sample adsorbed on the septum from previous injections from getting into the gas in the 

injector and creating ghost peaks.  

 

Figure 2.18: Diagram illustrating a split/splitless injector with the split vent open so that only a 

small portion of the sample injected goes onto the column  (Sparkman et al., 2011). 
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In regular HBI analysis the injector works in splitless mode and therefore all the sample 

goes onto the column, achieving greater sensitivity than in split mode (Table 2.5). The 

high sensitivity method used a similar technique, named pulsed splitless where the 

sample is injected and a pulse pressure of 25 psi is held for 0.35 min. The pulsing effect 

maximizes sample introduction into the column while narrowing the sample bandwidth. 

The use of this new method increased the sensitivity up to 22%.  

 

Table 2.5: General features of the split/splitless injector in the regular and high sensitivity GC-

MS methods. 

Method name HBI SIM-SCAN regular 
HBI SIM-SCAN IP25 

high sensitivity 

Injection Volume 1 µL 1 µL 

Mode Splitless Pulsed splitless 

Heater 300oC 300oC 

Pressure 7.0699 psi 5.7608 psi 

Total Flow 104 mL/min 104 mL/min 

Septum Purge Flow 3 mL/min 3 mL/min 

Gas Saver 20 mL/min after 3min 20 mL/min after 3min 

Injection Pulse Pressure                - 25 psi until 0.35 min 

Purge Flow to Split Vent 100 mL/min at 0.5 min 100 mL/min at 0.35 min 



 

 

                                                                      56 

 

CHAPTER THREE 

 

3 Quantification of IP25 and other HBIs in marine sediments 

3.1 Extraction, isolation and GC-MS calibration of IP25 

3.1.1   Introduction 

3.1.1.1   Isolation and structural characterisation 

The structure of what was believed to be IP25 was determined previously following 

synthesis from a closely related C25 diene and characterisation using 
1
H and 

13
C NMR 

spectroscopy (Belt et al., 2007). In contrast, the identification of IP25 in extracted Arctic 

marine sediments has, to date, been achieved exclusively by comparison of its gas 

chromatographic (GC) and mass spectral (MS) responses with those reported for the 

synthetic (authentic) standard (Belt et al., 2007). The main aim of this chapter was to 

confirm that the structure of the naturally occurring compound routinely identified in 

marine sediments as IP25 on the basis of its GC and MS characteristics was the same as 

that of the synthetic standard. In order to achieve this aim, the organic matter from 

Arctic marine sediments were extracted and purified through several chromatographic 

techniques to obtain IP25 in sufficiently large quantity for analysis by both NMR and 

GC-MS.  
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3.1.1.2   Requirement for GC-MS calibration 

The accurate quantification of IP25 and other HBIs in marine sediments necessitates the 

use of an internal standard which is added to the sediment material prior to extraction 

(e.g. Belt et al., 2012b). In the simplest or most ideal cases, the analyte (IP25 and other 

HBIs) and the internal standard would have the same chromatographic and mass 

spectral characteristics when performing the analysis by GC-MS. However, differences 

in their chemical structures normally results in different mass spectral responses, 

especially when quantifying using SIM techniques since not all compounds are 

ionisable or detectable with similar efficiencies. To accommodate these differences a 

calibration of the relative GC-MS responses of IP25 (and other HBIs) and the internal 

standard (9-OHD) was carried out to enable accurate quantification of IP25 and other 

HBIs in Arctic marine sediments.    

 

3.1.2   Experimental 

3.1.2.1   Sediment material 

Marine sediment material was obtained from Barrow Strait, Victoria Strait and Dease 

Strait in the Canadian Arctic Archipelago in 2005 as part of the ArcticNet cruise as 

described previously (Belt et al., 2007). Individual (1cm) freeze-dried horizons covering 

the entire core lengths (0 – 4, 0 – 6 m) were combined into batches of 50 – 3,000 g and 

extracted using a combination of Soxhlet and suspension/stirring methods.   
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3.1.3   Extraction procedure 

A summary of the laboratory techniques used to obtain IP25 from marine sediments is 

shown in Figure 3.1. 

 

Figure 3.1: Sample extraction and purificaion flow diagram for obtaining IP25 from marine 

sediments.  
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3.1.3.1.1     Pilot study 

The pilot study was a first attempt to make sure that the extraction, identification and 

quantification of IP25 from marine sediments was feasible. Combined horizons from 

each sampling location were extracted by Soxhlet extraction (Figure 3.2).  

 
Figure 3.2: Series of four soxhlet extraction apparatus. 

 

Approximately 50 g of sediment were added into cellulose extraction thimbles (Fisher, 

UK) and closed with a pre-cleaned (DCM/MeOH) cotton wool plug. Filled Soxhlet 

thimbles (x 4) were then refluxed (50˚C, 24 h) using hexane. The Soxhlet assembly was 

covered with foil to avoid possible photodegradation of HBIs under the influence of 

light and to provide thermal insulation to improve Soxhlet efficiency. 

Following Soxhlet extraction, total hexane extracts (THE) were first partially 

evaporated by rotary evaporator to a small volume (R-215, Büchi, 25˚C) and then to 

dryness (N2 stream; 25˚C) prior to purification.  
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3.1.3.1.2     Large-scale organic extraction 

Since the pilot study (Soxhlet) was found to be effective, but time-consuming (only 

small amounts of sediment fit in each Soxhlet thimble), a larger-scale organic extraction 

was carried out to increase the amount of marine sediments extracted. 

The extraction principle was largely the same as that used for the Soxhlet method but, in 

this case, the extraction was executed in a 10 L round bottom flask (Figure 3.3a), using 

a large stirrer powered by a motor to ensure the thorough mixing of the sediment and 

the solvent throughout.  

 
Figure 3.3: (a) Large-scale extraction manifold; (b) Büchner filtration manifold. 

 

Firstly, while stirring, about 5 L of hexane were added into the flask using a glass 

funnel, followed by ca. 3 kg of the Arctic marine sediment (enabling a total of 16.5 kg 

being extracted by repeating this procedure). A condenser was inserted to avoid 

evaporation of the solvent and the manifold was secured. Following extraction of 

sediments (70˚C, 72h) the resulting suspension was filtered using Büchner filtration 

(Figure 3.3b), using qualitative filter paper (Whatman 1, 185 mm Ø, 11 μm pore size) 

and rinsed with further hexane to yield a THE which was then partially evaporated (R-
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215, Büchi, 25˚C) and then to dryness (N2 stream; 25˚C) prior to purification. This 

procedure greatly improved the amount of sediments extracted each time, thus reducing 

the overall time of the extraction process. 

 

3.1.3.2   Purification 

The purification of THEs was carried out in the same way for both the small scale pilot 

study and the large-scale organic extraction procedure. Hence, all references to specific 

information refer to the latter large-scale organic extraction.  

Following extraction of marine sediments, purification of THEs was carried out in 

several steps, starting with open column chromatography (SiO2) and followed by Ag-

Ion solid phase extraction (SPE) and finally Ag-Ion HPLC purification. 

 

3.1.3.2.1     Open-column chromatography 

The high content of sulphur, as well as the presence of small amounts of marine 

sediment particles contained in the flask together with the THEs, prevented accurate 

determination of yield at this stage. THEs were initially partially purified by repeated 

small-scale open-column chromatography made of a glass pipette (150 mm, 3 mL 

capacity) plugged with DCM-extracted cotton wool (ca. 5 mm) and filled with ca. 0.7 g 

deactivated (non-dried, ambient moisture content) chromatography grade silica (60 – 

200 μm, Fisher, UK). Non-polar hydrocarbon fractions, including IP25, were eluted with 

hexane (3 column volumes), before being evaporated by N2 stream (25˚C).  
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3.1.3.2.2     Ag-Ion Solid-Phase Extraction (SPE) purification 

Non-polar THEs were further fractionated into saturated and unsaturated components 

using Ag-Ion SPE cartridges (Supelco Discovery  Ag-Ion, 750 mg). SPE cartridges 

were conditioned in the first instance with 5 column volumes of acetone and 5 column 

volumes of DCM. Following the addition of non-polar THE (1 mg per column) 

fractions in DCM, saturated and unsaturated (including IP25) hydrocarbons were eluted 

with 5 column volumes of DCM and 5 column volumes of acetone respectively, before 

being evaporated by N2 stream (25˚C). 

 

3.1.3.2.3     High-Performance Liquid Chromatography (HPLC) 

Final purification of unsaturated, non-polar THEs was achieved using an Agilent 1100 

series HPLC system fitted with a Varian ChromSpher 5 Lipids (250 × 4.6 mm ID) Ag-

Ion column using a mobile phase gradient (DCM/acetone) at 1 mL min
-1

 (Figure 3.4). 

Specific HPLC gradient conditions were as follows: 100% DCM (0 – 5 min), 100% 

DCM to 100% acetone (5 – 10 min) and 100% acetone (10 – 15 min). Individual 

fractions (ca. 1 min) were collected manually, and subsequent analysis by GC-MS 

revealed that IP25 eluted between 100% DCM and 80:20 DCM/acetone.  

 
Figure 3.4: High performance liquid chromatography mobile phase gradient of increasing 

polarity.  

5 min 100% DCM 

5 min gradient from 100% DCM to 100% acetone 

10 min 100% acetone 

5 min gradient back to 100% DCM 
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3.1.4   Analytical methods 

Analysis of extracts was carried out at each stage of purification using GC-MS. 

Operating conditions were as described in Chapter 2, Section 2.2.6.  Following the 3 

stage purification, the purity of IP25 was determined by GC-MS and NMR spectroscopy 

and ranged from 50 – 90% depending on the original sediment extracted. 
1
H and 

13
C 

NMR spectra were recorded using a JEOL ECP-400 NMR spectrometer and chemical 

shifts were measured relative to those of the solvent (CDCl3; 
1
H: 7.24 ppm; 

13
C: 77.0 

ppm; Table 3.1). NMR analysis and interpretation was carried out by Prof. Simon T. 

Belt. 

 

3.1.5   Results and Discussion 

From each of the three sampling locations, sufficient quantities of the purified IP25 

biomarker were obtained from the extraction and purification procedure to permit full 

characterisation by 
1
H and 

13
C NMR spectroscopy. The individual recoveries of IP25 

were 0.5 – 1.0 mg from several kilograms (ca. 16.5 kg) of sediment, consistent with 

approximate sedimentary concentrations from these locations (Belt et al., 2007). 

Previously, NMR data for IP25 had been reported for a synthetic standard derived from a 

closely related C25 HBI diene, although the complete spectroscopic assignments were 

not presented and the standard was probably a mixture of diastereoisomers as a 

consequence of the synthetic procedure (Belt et al., 2007). For each of the purified 

samples described here, both 
1
H and 

13
C NMR spectra demonstrated that IP25 was 

present in Arctic marine sediments as a single stereoisomer, as evidenced by the 

absence of any doubling (or more) of individual 
1
H and 

13
C resonances (detailed 

information about 
1
H and 

13
C  assignments is given by Belt et al., 2012a). In addition, 
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the 
1
H and 

13
C spectra were identical for samples of IP25 obtained from each of the three 

core locations. Since IP25 was obtained following extraction from combined sediment 

horizons covering the entire core lengths corresponding to the last ca. 7 – 10 kyr BP 

(Vare et al., 2009; Belt et al., 2010), the observation of a single diastereomeric form of 

IP25 suggests that any biosynthetic control over its stereochemistry is not altered post-

deposition through any diagenetic processes such as epimerisation. 

All 
13

C and 
1
H NMR spectroscopic assignments for IP25 can be found in Table 3.1 (Belt 

et al., 2012a). In addition to the NMR analysis, the GC-MS characteristics of purified 

IP25 from each sampling location were identical to those reported previously for this 

biomarker following synthesis as well as extraction from a range of marine sediments 

(Belt et al., 2007) (Figure 3.5).  
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Table 3.1: 
1
H and 

13
C NMR spectral data for IP25 isolated from Canadian Arctic marine  

sediments. (
a, b

 Resonances may be interchanged). (From Belt et al., 2012a).  

 

Carbon 

number 
Carbon shift (δ/ppm) Proton number Proton shift (δ/ppm) 

1 (16)
a
 22.71, 22.78 1, 15, 16, 19 0.85 (12H, d, J = 7.3 Hz) 

2
b
 28.03, 28.06 17 0.74 (3H, d, J = 6.9 Hz) 

3 39.44 18 0.82 (3H, d, J = 6.9 Hz) 

4 25.61 23 
5.67 (1H, ddd, J = 17.6, 10.3, 7.7 

Hz) 

5 35.48 24 4.91 (2H, m) 

6 34.36 25 0.96 (3H, d, J = 6.9 Hz) 

7 42.70   

8 29.76   

9 34.96   

10 33.22   

11 37.47   

12 24.80   

13 39.44   

14
b
 28.03, 28.06   

15 (19)
a
 22.71, 22.78   

17 15.52   

18 19.83   

20 29.76   

21 34.44   

22 38.22   

23 145.11   

24 112.32   

25 20.45   
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Figure 3.5: Mass spectra of the sea ice diatom biomarker IP25: (a) following extraction and 

purification from Canadian Arctic marine sediments; (b) obtained by synthesis. GC retention 

indices for both (RIHP-1 = 2090; RIHP- 5ms = 2086). 

 

3.2 GC-MS response calibration  

3.2.1   GC-MS response calibration of IP25 

As discussed here previously, a GC-MS response factor (RF) needed to be established 

to account for the differences in mass spectral responses of IP25 and the internal 

standards for the respective m/z values used during SIM analysis (m/z 350.3 for IP25 and 

9-OHD). The RF was obtained experimentally by measuring the ratio of the integrated 

peak areas of the selected ion for IP25 and the internal standard (9-OHD) using samples 

of known concentration within the typical working range for GC-MS analysis of Arctic 

sediments. Thus, once the purified IP25 had been structurally characterised and 
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quantified by NMR spectroscopy, a stock solution (0.01 mg mL
-1

 each) of both IP25 and 

the internal standard (9-OHD) was prepared by Dr. Thomas Brown (Plymouth 

University). Further solutions of different concentrations were also prepared from this 

stock solution as shown in Figure 3.6. 

 

 
Figure 3.6: Preparation of IP25 and 9-OHD standard solutions with hexane. 

 

Standard solutions were then analysed by GC-MS using the standard GC-MS method 

for analysis of HBIs described previously by Belt et al. (2012b) (Chapter 2) and the RF 

for each of the standard solutions prepared was obtained by measurement of their 

individual GC-MS responses (m/z = 350.3 for both IP25 and 9-OHD) from the SIM-

chromatograms. The final RF was obtained by dividing the response of the internal 

standard (9-OHD) by the response of IP25 (Figure 3.7a) for each of the standard 
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       V= 100 µL 

 V= 60 µL 
 V= 40 µL 

 V= 20 µL 

0.01 mg mL-1 IP25 + 9-OHD                    
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0.001 mg mL-1  
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V = 1 mL V = 1 mL V = 1 mL 

4 * 10-4 mg mL-1   

 

2 * 10-4 mg mL-1 

1 * 10-4 mg mL-1 

V = 1 mL 

       V= 100 µL 
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solutions prepared and these ratios were averaged (Oct’11 in Table 3.2). The RF value 

for the most dilute standard solution (0.0001 mg mL
-1

, near limit of detection) was 

higher than the others and this value was not taken into account when calculating the 

average RF value.  

 

 

Figure 3.7: Calibration curves of IP25 and the internal standard (9-OHD) in SIM mode (m/z = 

350.3 for both compounds): (a) standard GC-MS method; (b) high-sensitivity GC-MS method.   



 

 

69 

 

The mean RF value of 5.03 ± 0.28 between the 9-OHD and IP25 obtained (Table 3.2), 

indicated that the GC-MS response of the 9-OHD at m/z 350.3 in the SIM-

chromatogram was ca. 5 times larger than that of IP25 (m/z 350.3). The non-linearity in 

the curves (Figure 3.7a) made clear that extrapolation of data points based on a linear 

curve was not reliable. The reasons for the non-linearity of the curves are not yet clear. 

However, it is known that GC-MS systems achieve very low limit of detections and that 

at this point, nonlinear areas are described (Hübschmann, 2009). 

 

Table 3.2: Response factor between the internal standard (9-OHD) and IP25 for each standard 

solution and average RF over a range of concentrations. 
*
 Individual RF value excluded from 

calculation of average RF (n = 5); nd no data. 

Date Oct’11 Jan’13 July’13 Dec’11 Jan’13 July’13 

GC-MS 

method 
Standard Standard Standard 

High-

sensitivity 

High-

sensitivity 

High-

sensitivity 

Concentration 

(mg mL
-1

) 
RF RF RF RF RF RF 

0.001 4.96 6.54 5.07 4.60 5.48 5.7 

0.0008 4.63 6.73 5.16 4.65 5.42 5.55 

0.0006 5.01 6.65 4.99 4.63 4.96 5.32 

0.0004 5.19 6.97 5.65 4.78 5.34 6.05 

0.0002 5.38 7.23 5.26 4.94 5.15 5.57 

0.0001
 

6.26
*
 7.47

*
 nd 5.35

*
 nd nd 

Average 5.03 6.82 5.22 4.72 5.27 5.64 

SD 0.28 0.28 0.26 0.14 0.21 0.27 

RSD (%) 5.54 4.10 4.89 2.94 3.99 4.76 
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3.2.2   Re-calibration of the GC-MS response factor for a new GC-MS 

method 

The use of an enhanced GC-MS method for increased sensitivity (Chapter 2, Section 

2.5.3) necessitated re-calibration of the GC-MS derived RF in order to get a suitable RF 

between the internal standard (9-OHD) and IP25 whilst using the new conditions. This 

was achieved by measurement of the same standard solutions prepared previously 

(Figure 3.6) by GC-MS using the new enhanced method. Data in Table 3.2 and Figure 

3.7b, both show that the regular and the high-sensitivity methods had a similar response 

factor between the internal standard (9-OHD) and the IP25, although it was slightly 

higher in the regular method. 

 

3.2.3   Di- and tri-unsaturated HBIs calibration  

Previous calibrations of pure standards of di- and tri-unsaturated HBIs obtained from 

bulk diatom culture and chromatographic purification from bulk sediment extracts against 

the internal standard 7-HND have been done in the past (Brown, 2011). The need for 

periodic calibrations, possibly due to changes in the sensitivity of the GC-MS over time 

as well as the regular use of a different internal standard for quantification purposes (9-

OHD instead of 7-HND) led to the need of GC-MS re-calibration of these compounds 

against the internal standard. A similar calibration procedure to that described 

previously for IP25 was carried out for a di-unsaturated and four tri-unsaturated HBIs. 

Authentic samples of di-unsaturated (diene II; Chapter 2, Figure 2.2b)) and tri-

unsaturated (triene E; triene Z; triene 5/6; triene 6/17; Chapter 2, Figures 2.3 and 2.4) 

HBIs were available from Plymouth University. Initially, a simple purification of each 

compound by silica column chromatography was performed to remove possible 
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impurities. Individual HBIs were dissolved in 0.5 mL of hexane and loaded onto a 

small-scale silica column (after pre-conditioning of the column with hexane) and eluted 

with ca. 6 mL of hexane. Eluted HBIs were evaporated (N2 stream) and weighed so that 

concentrations could be determined for calibration purposes. 

Separate stock solutions were prepared as described previously for IP25 (Figure 3.6), 

each one containing the individual HBI and the internal standard (9-OHD) (triene Z and 

E were contained in the same solution). A GC-MS RF between the internal standard (9-

OHD) and each individual HBI was obtained by dividing the m/z response of the 9-

OHD (m/z 350.3) by the m/z response of each individual HBI (m/z 348.3 for the diene II 

and m/z 346.3 for the trienes) in the SIM-chromatogram (Figure 3.8).  

As can be seen from Table 3.3, the RF obtained between the internal standard (9-OHD) 

and diene II was ca. 2 times higher than that of 9-OHD/IP25. Similarly, the 9-

OHD/triene 6/17 RF was very similar to that of 9-OHD/diene II. Both diene II and 

triene 6/17 have double bonds at positions 6/17 and 23/24 (Figure 2.2b and Figure 2.4a) 

plus a double bond in position 9/10 in triene 6/17. The similarity in the molecular 

structure of both compounds probably resulted in similar behaviour during GC-MS 

analysis and therefore similar RF. In contrast, the RF obtained for 9-OHD/triene 5/6 

significantly differed from those of 9-OHD/diene II and 9-OHD/triene 6/17 (ca. 5 times 

lower, Table 3.3) probably due to a different position of one of the double bonds 

(position 5/6) (Figure 2.3c), which resulted in a different behaviour by GC-MS. 
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Figure 3.8: (a) Calibration curve of diene II and the internal standard (9-OHD) in SIM mode 

(m/z = 348.3 for diene II and m/z = 350.3 for 9-OHD); (b) Calibration curve of triene 5/6 and the 

internal standard (9-OHD) in SIM mode (m/z = 346.3 for triene 5/6 and m/z = 350.3 for 9-

OHD); (c) Calibration curve of triene 6/17 and the internal standard (9-OHD) in SIM mode (m/z 

= 346.3 for triene 6/17 and m/z = 350.3 for 9-OHD); (d) Calibration curves of trienes E and Z 

and the internal standard (9-OHD) in SIM mode (m/z = 346.3 for trienes E and Z and m/z = 

350.3 for 9-OHD); (e) Calibration curve of triene E+Z and the internal standard (9-OHD) in 

SIM mode (m/z = 346.3 for trienes E+Z and m/z = 350.3 for 9-OHD).   
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Regarding trienes Z and E, both authentic standards were contained in the same solution 

since the similar chromatographic behaviour of these HBIs prevented further separation. 

This prevented individual GC-MS calibrations from being made. As such, a series of 

standard solutions containing both trienes were prepared as previously explained 

(Figure 3.6). The relative distribution of triene Z and E in all the standard solutions 

following analysis by GC-MS in both TIC and SIM modes was 79% and 21%, 

respectively. The absence of changes in the relative distributions of these two isomers 

(between TIC and SIM) suggests that both HBIs have the same GC-MS RF relative to 

the internal standard (9-OHD). This is further confirmed on the basis of comparison of 

the respective mass spectra (Figure 2.3a and Figure 2.3b), where the molecular ion of 

both triene Z and E comprise ca. 3% of the total mass spectral response. Hence, a GC-

MS RF for both HBIs was calculated by dividing the response of the internal standard in 

the SIM chromatogram by the response of both trienes: 9-OHD/(triene Z+E) (Figure 

3.8e).  

Table 3.3: Response factors between the HBIs calibrated and the internal standard (9-OHD). 

HBI RF St. Dev RSD (%) 

diene II 11.37 0.46 4.05 

triene 6/17 10.93 0.76 6.95 

triene 5/6 2.29 0.05 2.18 

triene Z 1.82 0.19 10.47 

triene E 1.82 0.19 10.47 
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3.2.4   Reproducibility/consistency of the GC-MS over time 

In order to check the variability of the RF value and therefore the consistency of the 

GC-MS method (standard) over time, the same IP25/9-OHD calibration standards were 

re-analysed in triplicate (over a 7 day period), about one year after the first calibration 

was obtained (in Jan’13). The results obtained from GC-MS analysis of three replicate 

analyses of the same standard solutions (Figure 3.9a) showed that the variability in the 

sensitivity of the instrument fell within a maximum analytical error of 8%. Further, as 

can be seen from Table 3.2, there was a noticeable change in the RF of nearly two units 

relative to the first calibration, pointing out the need for periodic calibrations to monitor 

any changes in the instrument and therefore the derived RF value. In addition, the RF 

varied for standard solutions of different concentration (Figure 3.9b) and the RF value 

for the most diluted standard solution (0.0001 mg mL
-1

) was again comparably higher 

than the rest of RF obtained; therefore, this value was not taken into account when 

calculating the average RF value.   
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Figure 3.9: (a) Calibration curves for IP25 and the internal standard (9-OHD) in SIM mode (m/z 

= 350.3 for both compounds) for 3 replicates; (b) Mean RF value for each standard solution. 

Error bars are ± 1 s.d. 

 

Overall, individual calibration standards of 9-OHD/IP25, 9-OHD/diene II and 9-

OHD/trienes Z-E were analysed by GC-MS both using the standard and high-sensitivity 

methods in Oct’11, Jan’13 and July’13 (Table 3.2, Table 3.4, Table 3.5 and Figure 

3.10).  
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Table 3.4: Response factor between the internal standard (9-OHD) and diene II for each 

standard solution and average RF over a range of concentrations; nd no data. 

Date Oct’11 Jan’13 July’13 Dec’11 Jan’13 July’13 

GC-MS 

method 
Standard Standard Standard 

High-

sensitivity 

High-

sensitivity 

High-

sensitivity 

Concentration 

(mg mL
-1

) 
RF RF RF RF RF RF 

0.001 11.14 14.01 9.70 nd 13.12 8.19 

0.0008 11.07 15.46 9.09 nd 13.56 7.86 

0.0006 nd 15.33 9.73 nd 13.77 7.84 

0.0005 11.05 nd nd nd nd nd 

0.0004 nd nd nd nd nd nd 

0.0002 11.89 14.28 8.50 nd 15.71 7.66 

0.0001
 

nd 14.49 8.92 nd 15.69 7.24 

Average 11.29 14.71 9.19 nd 14.37 7.76 

SD 0.40 0.65 0.53 nd 1.15 0.22 

RSD (%) 3.57 4.40 5.73 nd 7.98 2.81 

 

 

Table 3.5: Response factor between the internal standard (9-OHD) and trienes Z and E for each 

standard solution and average RF over a range of concentrations; nd no data. 

Date Oct’11 Jan’13 July’13 Dec’11 Jan’13 July’13 

GC-MS 

method 
Standard Standard Standard 

High-

sensitivity 

High-

sensitivity 

High-

sensitivity 

Concentration 

(mg mL
-1

) 
RF RF RF RF RF RF 

0.001 nd 2.05 1.22 nd 1.69 1.06 

0.0008 nd 2.01 1.00 nd 1.68 0.95 

0.0006 nd 1.89 1.02 nd 1.64 0.93 

0.0004 nd 1.71 1.00 nd 1.64 0.88 

0.0002 nd 1.68 0.97 nd 1.66 0.94 

0.0001 nd 1.58 1.00 nd 1.61 0.96 

Average
 

nd 1.82 1.04 nd 1.65 0.95 

SD nd 0.19 0.09 nd 0.03 0.06 

RSD (%) nd 10.47 8.93 nd 1.71 6.39 
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The results show that the RF of a GC-MS method (standard or high-sensitivity) varied 

for a given 9-OHD/HBIs calibration over time (Figure 3.10). Further, these values 

showed a rather fluctuating pattern (increase/decrease) other than following an 

increasing or decreasing trend over time. This for instance, could be related to 

significant GC-MS maintenance procedures that happened during this time frame, as 

part of routine instrument maintenance schedule, such as MS source clean or GC 

column changes, which are known to change the ion responses. In general, RF for the 

high-sensitivity GC-MS method were lower to those of the standard method, apart from 

the RF between 9-OHD/IP25 in July’13 (Figure 3.10). 

 

Figure 3.10: Mean RF value of each HBI for the standard and high-sensitivity methods over 

time. 

Altogether, these outcomes suggest that a GC-MS calibration should be carried out 

regularly for routine HBIs analysis (i.e each day/each week). However, this would be 

time consuming as well as difficult to achieve due to availability of standards. Another 

issue of this approach for quantification of HBIs has recently been pointed out by Belt 

et al. (2013a) regarding the transferability of quantified data between different 
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laboratories. Belt et al. (2013a) carried out an inter-laboratory calibration between seven 

different laboratories, and the outcomes suggested that the use of a GC-MS response 

factor obtained through calibration of standard solutions could be problematic for 

comparison. More specifically, when a 9-OHD/IP25 calibration standard (0.001 mg mL
-

1
) was sent for analysis at another laboratory, then returned to Plymouth for re-analysis, 

the RF had changed significantly, although the Plymouth GC-MS instrument had not 

changed. Further, Belt et al. (2013a) suggested that RFs obtained using the distributions 

of HBIs within sediment material with known concentrations of HBIs could be a better 

approach as it would also include aspects such as extraction and purification differences 

between laboratories as well as GC-MS instrumentation. 

 

3.3 Conclusions 

The main aim of this chapter was to confirm the structural identification of the Arctic 

sea ice diatom biomarker IP25 when found in marine sediments. This was achieved 

following large-scale extraction of IP25 from three locations in the Canadian Arctic, 

purification by a combination of chromatographic methods, and analysis by GC-MS and 

NMR spectroscopy. This work enabled the first accurate confirmation of the structural 

assignment of the Arctic sea ice diatom biomarker IP25 found in marine sediments from 

more than one location.  

Moreover, obtaining authentic IP25 from marine sediments facilitated the first ever 

calibration of the GC-MS response factor between naturally produced IP25
 
and the 

internal standard (9-OHD), enabling accurate quantification of subsequent samples 

containing varying amounts of IP25 from Arctic marine sediments.  Further, calibration 

of the GC-MS response factor between di- and tri-unsaturated HBIs and the internal 

standard (9-OHD) were also performed. An assessment of the reproducibility and 
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consistency of the GC-MS overtime was also carried out. The outcomes suggested that 

either a periodic calibration of the standards was needed, or the use of a new approach 

consisting of obtaining the RF using sediment material with known HBI concentrations 

would need to be considered for routine analysis of HBIs.  
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CHAPTER FOUR  

 

4 Results (1): Seasonal sea ice conditions in northern Norway during the 

Younger Dryas 

4.1 Introduction 

Chapter four describes an investigation of a sediment core from Andfjord, northern 

Norway (JM99-1200; Figure 4.1) focused on the Allerød – Younger Dryas – Holocene 

intervals. The current chapter will demonstrate further the potential utility of the IP25 

biomarker as a palaeo sea-ice proxy, which, when combined with a phytoplankton-

derived biomarker, (the so-called PIP25 index), has indicated recently to be a useful 

approach for quantifying spring sea ice conditions (Müller et al., 2011). Moreover, the 

determination of stability or variability in sea ice conditions will be enhanced here by 

introducing a new approach consisting of a comparison of IP25 concentrations, with 

those of another similar highly branched isoprenoid (HBI) alkene that is di-unsaturated 

and thought also to be produced by Arctic sea ice diatoms. This new approach using the 

ratio between the HBI diene II and IP25, termed “DIP25”, will be tested here for the first 

time. 

 

The Younger Dryas stadial, main focus of this chapter, represents an intriguing and 

much studied short-term (ca. 1400 yr) event that occurred during the transition from the 

last glacial to the current interglacial (the Holocene) and was characterised by 

significant and extended cooling across higher latitude regions of the northern 

hemisphere. Interest in the Younger Dryas stems, in part, from the predictions of 

significant economic and ecological impacts that may be induced during abrupt climate 
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changes (Alley et al., 2003). Numerous studies have investigated the details of the 

Younger Dryas through Greenland ice records (e.g. Alley et al., 1993; Mayewski et al., 

1993; Taylor et al., 1997; Alley, 2000), marine and lake sediment records from Europe 

(e.g. Isarin et al., 1998; Brauer et al., 2008) and Arctic and sub-Arctic areas (e.g. 

Gulliksen et al., 1998; Seppä et al., 2002; Vorren and Plassen, 2002a; Ebbesen and 

Hald, 2004; Bakke et al., 2009; Aagaard-Sørensen et al., 2010), yet the exact triggers 

that caused this abrupt event are still under debate. One explanation is based around a 

reduced North Atlantic Meridional Overturning Circulation, which probably resulted 

from a massive release of melt water into the North Atlantic (e.g. Gildor and 

Tziperman, 2000; Broecker, 2003; Knutti et al., 2004; McManus et al., 2004; Jennings 

et al., 2006). A combination of outbursts from Lake Agassiz (North America) and re-

routing of continental drainage from the Mississippi river into the North Atlantic Ocean 

at the onset of the Younger Dryas has generally been considered to be responsible for 

initiating this abrupt climate change (Clark et al., 2001). More recently, however, it has 

been shown that the re-routing of Arctic meltwater in a north westerly direction through 

the Mackenzie Valley made an additional and significant contribution (Teller et al., 

2002; Tarasov and Peltier, 2005; Teller et al., 2005; Teller and Boyd, 2006; Murton et 

al., 2010; Condron and Winsor, 2012). Alternatively, a model involving extensive 

winter sea ice cover that resulted from more extreme seasonality compared to modern 

times and would have dramatically altered the heat exchange between the ocean and the 

atmosphere, has also been proposed (Denton et al., 2005; Lie and Paasche, 2006). 

Central to the debate, however, remains the occurrence and impact of sea ice to the 

Younger Dryas stadial.  Since reconstructions of sea ice are often made by extrapolation 

of other proxy-based climate measurements such as sea surface temperature (SST) and 

sea surface salinity (SSS), there is a clear need to develop proxies that provide more 

direct evidence for the past occurrence of sea ice. Further, if such proxies are also able 
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to discriminate between different sea ice scenarios, then there is the additional potential 

to improve on the somewhat generic terms that are frequently used to describe past sea 

ice conditions (extreme, extensive, etc) which, while understandable given the nature of 

the proxies from which they are derived, are not especially informative. In the particular 

case of the Younger Dryas, the application of sea ice-specific proxies that also provide 

more specific details of the sea ice conditions should further help identify or confirm the 

role of seasonality during abrupt climate changes (Manabe and Stouffer, 2000; Gildor 

and Tziperman, 2003; Denton et al., 2005; Lie and Paasche, 2006). 

The main aim of the current study was to use the presence of the IP25 sea ice proxy and 

other biomarkers 1) to identify, unambiguously, sea ice occurrence during the Younger 

Dryas stadial in northern Norway, 2) to better define the nature of the sea ice conditions, 

3) to identify any fluctuations within these and 4) to make any sea ice determinations 

more quantitative by comparing the biomarker-based proxy data with predictions of sea 

ice concentrations derived from modelling approaches carried out previously (Müller et 

al., 2011). In addition, these outcomes have the potential to provide insights into the 

mechanism(s) responsible for initiating the Younger Dryas and for establishing a more 

detailed understanding of the oceanographic transitions that occurred within this stadial. 

In order to achieve these aims, we chose to investigate a sediment core for which a 

reasonably comprehensive suite of other oceanographic proxy and geochemical data had 

already been collected and discussed (Knies et al., 2003; Ebbesen and Hald, 2004; 

Knies, 2005). 
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4.2 Regional setting 

Two water masses, the Atlantic water of the North Atlantic Current (NAC) and the 

coastal water of the Norwegian Coastal Current (NCC), dominate the oceanographic 

regime in the study area (Figure 4.1a). The warm (> 2 °C) and saline (> 35‰) NAC 

(Hopkins, 1991) flows northward adjacent to, and beneath, the less saline (32-35‰) 

NCC by following the bathymetry of the northern Norwegian shelf (Loeng, 1991). The 

shelf topography, which is dominated by relatively shallow to intermediate glacial 

troughs, strongly steers the in- and outflow of both water masses (Moseidjord et al., 

1999). Due to the open ocean connection, the water column is well-oxygenated (95-

105% of saturation) (Hald and Vorren, 1984). Almost half of the shelf water flow 

makes a right turn into Andfjorden along the western slope and flows out again on the 

eastern slope (Nordby et al., 1999; Slagstad et al., 1999). When hitting the northward 

flowing NAC along the shelf break again, the flow is forced to change direction, which 

causes a topographically-steered upwelling via vertical mixing (Slagstad et al., 1999; 

Wassmann et al., 1999). The upwelling facilitates primary production rates of up to 190 

g C m
-2

 yr
-1

 in outer Andfjorden by supplying nutrient-rich water masses to the euphotic 

zone (Slagstad et al., 1999). Low phytoplankton concentrations have previously been 

reported, however, as shown by low chlorophyll biomass (Wassmann et al., 1999), 

probably due to substantial grazing and degradation of phytoplankton-derived organic 

matter (Verity et al., 1999; Wassmann et al., 1999). Consequently, advection of 

particulate organic matter and influences from various water masses play important 

roles for the ecology and particulate fluxes in Andfjorden (Wassmann et al., 1996). In 

contrast, the influence of continental input, with regard to nutrient supply and biogenic 

production, is rather small in northern Norway (Wassmann et al., 1996). 
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Figure 4.1: (a) Simplified map showing the surface water currents in the Nordic Seas. Black 

solid arrows indicate the East Greenland Current (EGC), white arrows the North Atlantic 

Current (NAC), and the black dashed arrow represents the Norwegian Coastal Current (NCC); 

(b) Detailed map of the Andfjorden area with the location of core JM99-1200.  

 

Andfjorden, where the current study is based, is a glacial trough on the continental shelf 

off Tromsø, northern Norway (Figure 4.1b) and represents a good setting for 

palaeoenvironmental studies for a number of reasons. Firstly, high sedimentation rates 

(up to 500 cm kyr
-1

) permit high-resolution studies to be carried out. Secondly, since the 

region is influenced by the NAC, which contributes to the formation of North Atlantic 

Deep Water in the Nordic Seas, it is a very sensitive location to climatic changes (e.g. 

Hald and Hagen, 1998). Current surface-water temperatures in Andfjorden  range 

between 9 – 12˚C in August and between 2 – 6˚C in February (Hald and Vorren, 1984).  

(a) (b) 
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4.3 Material and methods 

4.3.1   Field methods and chronology 

The piston core under investigation, JM99-1200, was recovered from Andfjorden off 

northern Norway (69.16˚N, 16.25˚E; water depth 475 m; core length 1115 cm;  Figure 

4.1b) on board the R/V Jan Mayen in November 1999 and stored in situ (5˚C) until 

sampled for analysis. Individual sub-samples for biomarker analysis were taken at 1-5 

cm intervals from 102 to 790 cm, freeze-dried and stored at -20˚C prior to extraction. 

An age model for JM99-1200 was first developed by Knies et al. (2003) and was based 

on linear interpolation between seven accelerator mass spectrometry (AMS) 
14

C dates. 

This age model was improved by Ebbesen and Hald (2004) using additional AMS 
14

C 

dates and the Vedde Ash tephra horizon identified at 436.5 cm (time marker 

corresponding to 11.980 ice-core yr; Grönvold et al., 1995). For the current study, the 

AMS dates have been further recalibrated by Dr. Katrine Husum, using Calib version 

6.0 (Stuiver et al., 2005) and the marine calibration curve marine09 (Hughen et al., 

2004; Reimer et al., 2009) (Table 4.1). A regional R (the difference between marine 

reservoir age of the local region and model ocean) was selected for each date (Ebbesen 

and Hald, 2004 and references herein). In addition, it was assumed that R in northern 

Norway was higher during the Younger Dryas (GS-1) than it was during the Allerød 

(GI-1a) and early Holocene (Bondevik et al., 1999; Ebbesen and Hald, 2004; Bondevik 

et al., 2006). Linear sedimentation rates varied between 30 – 430 cm kyr
-1

 (Figure 4.5a). 

As pointed out previously by Knies et al (2003) and Knies (2005), documentation of 

proxy data as accumulation rates was not recommended in this case due to highly 

fluctuating sedimentation rates and an insufficient number of AMS
14

C dates. Therefore, 

biomarker data presented in this study were given as concentration profiles normalised 
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to sediment dry weight (μg g
-1

 dry sed). Knies (2005) also pointed out the low 

fluctuating TOC content through geologic time (~0.5% - ~1.1%; Figure 4.5c), despite 

highly fluctuating sedimentation rates.  

 Table 4.1. Radiocarbon dates and calibrated ages in core JM99-1200. 

*Dating excluded from the age model. 

 

Core 

depth (cm) 
Material Lab. ref 

Uncorrected 

14C Age (BP) 

Reservoir 

correction 

(yr) 

95.4% (2) 

cal. age ranges 

Age used 

(cal. yr BP) 

Located 

correction 

R 

59 Cylichna alba Tua-2921 5.965 ± 60 400 6.179 – 6.466 6.323 64+/-35 

280.5 shell 

fragments 

Tua-3728 10.350 ± 85 400 * * 200+/-50 

281.8 Nuculana 

pernula 

KIA-

11165 

10.130 ± 50 400 10.640 – 11.106 10.873 200+/-50 

300.5 shell 

fragments 

Tua-3729 10.510 ± 85 400 11.132 - 11.726 11.429 200+/-50 

436.5 Tephra  Vedde Ash   11.980  

457.5 shell 

fragments 

Tua-3730 11.165 ± 90 400 12.361 – 12.819 12.590 200+/-50 

511 Nuculana 

pernula 

TUa-2922 11.460 ± 85 400 12.663 – 13.097 12.880 64+/-35 

655.5 Bathuarca 

glacialis 

TUa-2923 11.830 ± 85 400 13.085 – 13.427 13.256 64+/-35 

723.5 Bathuarca 

glacialis 

Tua-2924 12.160 ± 80 400 13.347 – 13.758 13.553 64+/-35 

788 Bathuarca 

glacialis 

KIA-

11109 

12.425 ± 55 400 13.637 – 13.992 13.815 64+/-35 

855 Bathuarca 

glacialis 

Tua-3030 12.575 ± 100 400 13.700 – 14.246 13.973 64+/-35 
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4.3.2   Experimental 

Each of the biomarkers of interest (hydrocarbons and sterols) required extraction from 

the sample matrix and separation into individual fractions prior to analysis by GC-MS. 

For a detailed description of the extraction and purification techniques shown in Figure 

4.2, refer to Chapter 2 (Methods). 

 

 
 

Figure 4.2: Sample extraction flow diagram for lipid biomarkers.
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Briefly, following addition of the internal standards (7-hexylnonadecane; 10 μL;         

10 μg mL
-1

 and 9-octylheptadec-8-ene; 10 μL; 10 μg mL
-1

) for quantification, the freeze 

dried sediments were extracted with DCM/Methanol (3 x 3 mL; 2:1 v/v) and then 

purified by open column silica chromatography with hexane mobile phase (6 mL) used 

to yield apolar lipids. Methylacetate/hexane (20:80, 6 mL) was used to elute sterols. 

Prior to analysis by GC-MS, sterols were derivatised (BSTFA; 50 μL; 70˚C; 1h). 

Analytical reproducibility was monitored using a standard sediment with known 

abundances of biomarkers for every 14 – 16 sediment samples extracted (analytical 

error of 7%, n = 15). 

Calculation of the PIP25 and DIP25 indices was achieved using the methods described in 

Chapter 2. In this study, the mean IP25 concentration value of all samples analysed 

divided by the mean phytoplankton biomarker (brassicasterol) concentration value, 

yielded a c factor value of 0.1141.  

 

4.4 Results 

4.4.1   Pilot study 

An initial pilot study consisted of the analysis of 80 samples for IP25 content, from 60 to 

790 cm depth covering the period from 6.34 to 13.82 kyr BP. Additionally, samples 

covering the Younger Dryas interval (11.5 – 12.9 cal. kyr BP) were extracted and 

analysed in duplicate (0.5 ± 0.1 g) to check on the reproducibility of the method. This 

set of samples was sub-sampled before 2005 from archived material in collaboration 

with the Geological Survey of Norway (NGU), freeze dried and stored at ambient 

temperature. 
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In all 80 samples analysed in the pilot study, IP25 was found to be present in 25 

horizons, all of which corresponded to the Younger Dryas period (ca. 11.7 – 12.7 cal. 

kyr BP, Figure 4.3a). In contrast, IP25 was absent (or below the limit of detection) in the 

remaining 55 horizons covering the period from ca. 6.34 to 11.7 cal. kyr BP and from 

ca. 12.8 to 13.8 cal. kyr BP. The results (Figure 4.3a) showed an increasing 

concentration trend in IP25 from ca. 12.7 up to 12.4 cal. kyr BP, before decreasing 

slightly at ca. 12.08 cal. kyr BP. After this period, IP25 concentrations increased again at 

ca. 12 to 11.7 cal. kyr BP, after which IP25 was absent. The availability of extra 

sediment material in most of the horizons covering the Younger Dryas period allowed 

duplicate analyses to be performed. The reproducibility of the method, given by the 

close resemblance between both IP25 profiles (Figure 4.3b), was thus demonstrated.  

 
 

Figure 4.3: Individual temporal concentration profile of IP25 for the pilot study of JM99-1200 

core: (a) for the period ca. 6.34 – 13.82 cal. kyr BP; (b) for two replicate

analysis during the period ca. 11.5 – 12.9 cal. kyr BP. 
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4.4.2   Full study 

In an attempt to obtain a higher resolution study, 123 additional downcore sediment 

samples were analysed for the sea ice biomarker IP25 and the structurally related HBI 

diene II (Chapter 2). Samples were also analysed for the sterols 24-methylcholesta-

5,22E-dien-3β-ol (brassicasterol) and 24-methylcholesta-5,24(28)-dien-3β-ol (24-

methylenecholesterol), both of which are commonly synthesised by marine algae 

(Volkman et al., 1998). Sampling and analysis was carried out at 5 cm intervals during 

the Holocene section of the core (ca. 7.2 – 11.5 cal. kyr BP), corresponding to an 

effective age resolution of ca.  200 – 400 yr. A higher resolution study of the Allerød – 

Younger Dryas intevals (ca. 11.5 – 13.8 cal. kyr BP) was achieved by sampling at 1 cm 

intervals, equivalent to a temporal resolution of ca. 5 – 80 yr. This set of samples was 

freshly sub-sampled especially for this study from archived material, freeze dried and 

stored in the freezer until needed for analysis. 

IP25 was found to be present in 96 samples and absent (or below the limit of detection: 

0.92 ng g
-1

 dry sed) in the remaining 27, even after further concentration of the sediment 

extracts. The presence of IP25, moreover, was limited to one continuous period in the 

sequence from ca. 12.9 to 11.5 cal. kyr BP (Figure 4.4a) with no IP25 detected from ca. 

13.8 to 12.9 cal. kyr BP or after ca. 11.5 cal. kyr BP and into the Holocene to ca. 7.2 cal. 

kyr BP. After ca. 12.9 cal. kyr BP, the concentration of IP25 increased rapidly (from not 

detectable) and reached its maximum value at ca. 12.66 cal. kyr BP, before decreasing 

slightly to an approximately constant value until ca. 11.9 cal. kyr BP. After ca. 11.9 cal. 

kyr BP, IP25 concentrations fell sharply and remained relatively low for the next ca. 400 

yr.  The concentration profile of the structurally related HBI diene II exhibited 

extremely similar characteristics to those described for IP25, especially in terms of 

intervals of presence/absence (Figure 4.4b). Thus, diene II was present from ca. 12.9 to 
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11.5 cal. kyr BP and absent either side of this interval, suggesting co-production with 

IP25 by sea ice diatoms, as reported previously (Belt et al., 2007; Belt et al., 2008; Vare 

et al., 2009). 

 

 

Figure 4.4: Individual and combined temporal concentration profiles of biomarkers in the JM99-

1200 core (123 sampling points): (a) IP25; (b) diene II; (c) 24-methylenecholesterol; (d) 

brassicasterol; (e) PBIP25 index. The horizontal solid lines at ca. 12.9 cal kyr BP and ca. 11.5 cal 

kyr BP indicate the onset and the termination of the Younger Dryas, respectively. The 

horizontal solid line at ca. 11.9 ca. kyr BP represents a shift in sea ice conditions during the late 

Younger Dryas. The diamonds mark the AMS 
14

C dates and the arterisk indicates the Vedde 

Ash tephra horizon used in the age model. 

 

As expected, the representation of IP25 results as fluxes (Figure 4.5b) yielded a profile 

highly influenced by the sedimentation rates which, in turn, were derived from the age 

model (Figure 4.5a). As pointed out previously by Knies et al. (2003) bulk and 
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compound-specific accumulation rates in Andfjorden simply follow the fluctuations in 

sedimentation rates and would therefore distort interpretation of biogeochemical 

processes and their changes from bulk and molecular geochemical data. In reality, 

sedimentation rates do not undergo step changes as indicated by Figure 4.5b. Therefore 

in this case, sedimentation rates were considered to provide too severe an overprint on 

biomarker data and as such, all results for this study were given as concentrations of 

biomarkers per gram of dried sediment.  

 

Figure 4.5: (a) Sedimentation rates (cm kyr
-1

); (b) IP25 fluxes (μg cm
-2

 kyr
-1

); (c) total organic 

carbon (TOC, wt. %; Knies 2005) of core JM99-1200. 

 

In contrast to IP25 and diene II, the concentration profiles of the two sterols 

(brassicasterol and 24-methylenecholesterol) showed clear differences compared to 
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those of IP25 and diene II. Firstly, both sterol biomarkers were present throughout the 

entire sequence, consistent with a previous lower resolution study by Knies (2005) and 

concentrations were quite variable between the two sterols and at different time 

intervals. Secondly, concentrations of brassicasterol were relatively constant throughout 

the sequence, although some (mainly) positive departures were observed at ca. 12.9 to 

12.7 cal. kyr BP and ca. 11.9 to 11.5 cal. kyr BP (Figure 4.4d). For 24-

methylenecholesterol the overall concentration profile more closely resembled those of 

IP25 and diene II, but some clear differences were also evident. For example, 

concentrations of 24-methylenecholesterol were highest from ca. 12.9 to 11.9 cal. kyr 

BP, but with a much greater degree of variation than that found for IP25 and diene II 

(Figure 4.4c). The reduced concentrations found for IP25 and diene II from ca. 11.9 to 

11.5 cal. kyr BP was seen in the 24-methylenecholesterol profile; however, unlike IP25 

and diene II, 24-methylenecholesterol was also detected after 11.5 cal. kyr BP into the 

Holocene (Figure 4.4).  

The determination of both IP25 and brassicasterol concentrations enabled the calculation 

of the so-called PIP25 or ‘IP25 – phytoplankton’ index, proposed by Müller et al. (2011) 

to indicate more detailed sea surface conditions and, sea ice, in particular.  The PBIP25 

(subscript B refers specifically to brassicasterol) profile closely resembles that described 

previously for the IP25 and diene II biomarkers (Figure 4.4e) and can be classified 

according to four intervals. Before ca. 12.9 cal. kyr BP and after ca. 11.5 cal. kyr BP, 

PBIP25 values were zero as a consequence of the absence of any detected IP25. At ca. 

12.9 cal. kyr BP, the PBIP25 index increased abruptly (< 40 yr) and remained in the 

range 0.6 – 0.8 from ca. 12.9 to 11.9 cal. kyr BP. Finally, PBIP25 values decreased 

sharply after ca. 11.9 cal. kyr BP and stayed less than 0.2 from ca. 11.9 – 11.5 cal. kyr 

BP.  
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4.4.3   Comparison of results between the pilot study and the full study 

Comparison of results obtained between the pilot study and the full study for the same 

core showed two IP25 profiles with different trends during the Younger Dryas period. 

As can be noticed in Figure 4.6, during the early-mid Younger Dryas, IP25 

concentrations were notably lower in the pilot study than in the high-resolution study. 

The fact that IP25 was absent or below the limit of detection during the early Younger 

Dryas in the pilot study and present between the early-mid Younger Dryas but at lower 

concentrations than the full study, pointed to possible degradation of the samples 

analysed for the pilot study. This set of samples (pilot study) had been stored at ambient 

temperature probably affecting the chemical composition of sediments as shown by 

Grimalt et al. (1988) where they observed alteration in the hydrocarbon composition of 

sediments during storage at ambient temperature for short periods of time (1 month). 

Also, the exposure of the marine sediments to light, could potentially have resulted in 

chemical processes, such as photodegradation, that could have led to degradation of the 

organic matter (including IP25) contained in the samples. However, Rontani et al. (2011) 

recently showed the low photoreactivity of the IP25 compared to the more unsaturated 

HBIs although without detailed information on storage this observation cannot be ruled 

out. Conversely, IP25 concentrations were much higher in the pilot study during the late 

Younger Dryas compared to that of the full study. However, the reason why this could 

have happened is not understood yet. 
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Figure 4.6: IP25 concentrations (μg g
-1

 dry sed) for core JM99-1200 in both the pilot and full 

studies. 

 

Previous studies have noted that degradation of organic matter in sediment samples can 

occur under the influence of parameters such as the ambient atmosphere (Harada et al., 

2012); however, the extent to which these parameters influence the preservation of 

chemical compounds, such as IP25, and encourage the degradation of organic matter it is 

not completely understood. Therefore, since samples obtained for the pilot study were 

not properly stored and samples for the full study were specifically sampled from fresh 

and well-stored material for this study, only the results obtained from the latter study 

were used. Results initially obtained in the pilot study were discarded and not taken into 

account for environmental reconstructions. Hence, the discussion part of this chapter 

will be based on results obtained from the full study. The disparity of results obtained 
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with samples from the same core and depths, but sampled in different periods and stored 

in different ways, shows the great importance of proper storage and handling of 

sediment samples for organic geochemical analysis.  

 

4.5 Discussion 

Previously, a number of investigations into the marine environment for northern 

Norway have been carried out. For example, based on geotechnical and sediment-

petrographical investigations, Vorren and Plassen (2002a) described eight main glacial 

events between ca. >22 – 9.5 
14

C kyr BP in northern Norway, with the final deglaciaton 

from the shelf break occurring at the end of the last glacial period (14.6 
14

C kyr BP). 

They also attributed atmospheric warming as the likely main cause for the melting of 

the ice sheets. In the same region, the end of the deglaciation was set to ca. 11.7 
14

C kyr 

BP based on stratigraphy (Fimreite et al., 2001), while in a more recent study based on 

foraminifera, Risebrobakken et al. (2011) showed that the melting of ice sheets and 

glaciers were responsible for cooling of the upper part of the water column at 12 – 8.5 

kyr BP in the Nordic Seas. 

With respect to the study location described in the current study and, more specifically, 

for the JM99-1200 core, previous studies have focused on the climate conditions of the 

northeast North Atlantic, especially during the Younger Dryas (Ebbesen and Hald, 

2004). Initially, Knies et al. (2003) examined relative percentages of biogenic carbonate 

and marine organic carbon to explain changes in biogenic sedimentation and 

palaeoproductivity, while Ebbesen and Hald (2004) estimated SST inferred from 

planktic foraminifera.  A further study was based on organic geochemical parameters 

(Knies, 2005) such as bulk organic proxies (Rock-Eval pyrolysis and δ
13

Corg and δ
15

N 

stable isotopes) and organic biomarkers (n-alkanes, alkenones and sterols). Analysis of 
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biomarkers from marine (e.g. brassicasterol, dinosterol) and terrigenous (e.g. C25 – C31 

n-alkanes) origin was used to infer past climate changes in northern Norway and it was 

suggested that changes in sedimentary geochemical signatures during the last glacial - 

interglacial transition were mainly climate-induced rather than reflecting different 

preservation states of individual biomarkers.  

Thus, these studies of northern Norway have focused mainly on somewhat broad 

oceanographic signatures of the marine environment as well as identifying the climate 

conditions of this area during different geological time intervals including the last 

deglaciation. Few studies have aimed to identify, uniquely, the occurrence or role of sea 

ice, despite the key role that it plays in controlling the climate system and its variability 

(e.g. Aagaard and Carmack, 1989; Thomas and Dieckmann, 2010). Exceptionally, 

Knies (2005) provided evidence for the occurrence of severe sea ice conditions in 

northern Norway during the Younger Dryas on the basis of a relative enhancement of 

the sterol biomarker 24-methylenecholesterol, believed to be produced by sea ice-

dwelling diatoms. 

 

4.5.1   Sea ice variability during the Younger Dryas 

In the current study, these initial investigations were extended to provide a more 

comprehensive account of the palaeoceanography of the region and, in particular, of the 

identification and classification of the sea ice conditions throughout the Allerød – 

Younger Dryas – Holocene transitions based on temporal changes to a suite of 

biomarkers including IP25. 

The first point to note within the IP25 record is the occurrence of alternating intervals of 

absence and presence (Figure 4.4a) which contrasts the outcomes from previous IP25-
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based sea ice reconstruction studies in the Arctic and sub-Arctic regions, where IP25 has 

either been absent or present (but variable) throughout the entire record (e.g. Massé et 

al., 2008; Andrews et al., 2009; Müller et al., 2009; Belt et al., 2010; Vare et al., 2010). 

This study represents the first example of such a scenario and is interpreted in terms of 

particularly strongly contrasting sea ice conditions during the interval under study. It 

was also noted that the temporal concentration profile of the structurally related HBI 

diene II (Figure 4.4b) was qualitatively very similar to that of IP25, lending further 

support to the suggestion that this biomarker is also produced by sea ice diatoms during 

the spring (Belt et al., 2007). 

In the early part of the record, from ca. 13.8 – 12.9 cal. kyr BP (Allerød), IP25 was 

absent (Figure 4.4a) suggesting ice-free or permanent ice conditions during this interval. 

Previously, a marked and abrupt increase in n-alkane concentrations during the Inner 

Allerød Cold Period (ca. 13.5 – 13.0 cal. kyr BP) was observed within this interval 

which was explained in terms of a possible re-advance of the ice sheet in the study area 

(Knies, 2005) and this observation coincided with a short term reduction in SSTs 

(Ebbesen and Hald, 2004). The precise origins of n-alkanes, however, can be difficult to 

identify unambiguously and the absence of IP25 neither confirms nor rejects the 

possibility of some re-advance of the ice sheet at this time, since this scenario would 

have likely prevented any formation of IP25. However, reduced brassicasterol 

concentrations during this interval (ca. 13.5 – 13.0 cal. kyr BP) provide some support to 

the possibility of glacial re-advance, since this would have limited phytoplankton 

production. Previously, Fahl and Stein (2012) interpreted low abundances of IP25 during 

the Allerød for a core from the Laptev Sea as representing low sea ice occurrence, but 

the observations here and those of Knies (2005) indicate a possible short-term re-

advance of the ice sheet given the proximity of the JM99-1200 core site to the 

Norwegian coast. 
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IP25 first appeared in the record at ca. 12.9 cal. kyr BP and concentrations increased 

sharply, in less than ca. 40 yr, coincident with the onset of the Younger Dryas cold 

period, as reported in previous studies of this core (Ebbesen and Hald, 2004; Knies, 

2005) and for other Arctic regions (e.g. Mayewski et al., 1993; Bakke et al., 2009). 

Interestingly, this first incidence of IP25 in the record occurred around the same time as 

a short-term, but significant increase in local SST (Figure 4.7d) and global atmospheric 

temperatures (Figure 4.7e), indicating that the sharp response in sea ice probably 

resulted from freshwater forcing following a large meltwater release (e.g. Manabe and 

Stouffer, 2000) during warmer summers and freezing of fresher surface waters during 

winter.  

 

Figure 4.7: Temporal palaeoclimate profiles for the JM99-1200 core for the period ca. 13.25 – 

11 cal. kyr BP: (a) IP25 concentrations; (b) PBIP25 index; (c) DIP25 index; (d) estimated mean 

SST (˚C). General deviation of SST is ± 1 ˚C (Ebbesen and Hald, 2004); (e) δ
18

O data from the 

NGRIP core (Rasmussen et al., 2006); (f) Spring sea ice concentration (%) (calculated 

according to the correlated satellite data with PBIP25 data (Müller et al., 2011)). The horizontal 

solid lines at ca. 12.9 cal. kyr BP and ca. 11.5 cal. kyr BP indicate the onset and the termination 

of the Younger Dryas, respectively. The horizontal solid line at ca. 11.9 cal. kyr BP represents a 

major shift in the sea ice conditions during the late Younger Dryas.  
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During the Younger Dryas (ca. 12.9 – 11.5 cal. kyr BP), IP25 abundances could be 

divided into two main sections (Figure 4.4a and Figure 4.7a). During the first interval 

(ca. 12.9 – 11.9 cal. kyr BP), increasing IP25 concentrations (ca. 12.9 – 12.66 cal. kyr 

BP) indicated higher frequencies of seasonal sea ice occurrence consistent with 

increasing rates of fresh surface water, declining SSS and SST and the presence of polar 

planktic foraminifera reported previously (Hald and Aspeli, 1997; Ebbesen and Hald, 

2004). Following this relatively short interval, IP25 concentrations decreased slightly, 

before remaining fairly constant for the subsequent ca. 700 yrs up to ca. 11.9 cal. kyr 

BP. At the same time, concentrations of 24-methylenecholesterol were also elevated 

relative to pre- and post-Younger Dryas values, while brassicasterol concentrations 

were at their lowest levels for the entire record (Figure 4.4c and Figure 4.4d). 

Previously, Knies (2005) found similar (lower resolution) sterol profiles during this 

interval and suggested that enhanced 24-methylenecholesterol and reduced 

brassicasterol abundances during the Younger Dryas were consistent with the 

prevalence of seasonal sea ice during severe climate conditions, since these two 

biomarkers were considered to be representative of sea ice diatoms and phytoplankton, 

respectively.  The outcomes of these proxy data are also consistent with minimum 

SSTs, low sedimentation rates, low foraminiferal fluxes (Ebbesen and Hald, 2004) and 

low primary productivity estimates, inferred from biogenic carbonate and marine 

organic carbon in the same record (Knies et al., 2003). The new proxy data are also 

consistent with low primary productivity and extended sea ice cover for a study carried 

out in the south-western Barents Sea (Aagaard-Sørensen et al., 2010).  

At ca. 11.9 cal. kyr BP, there was a rapid decrease in IP25 concentrations and values 

remained low up to ca. 11.5 cal. kyr BP, indicating a major change to the spring sea ice 

occurrence at this time with less frequent, more variable or shorter seasonal sea ice 

occurrence. This abrupt change in the IP25 profile was accompanied by a decrease in 24-
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methylenecholesterol (Figure 4.4c) and an increase in SSTs (ca. 2 -10 ˚C; Figure 4.7d) 

consistent with a reversal in the sea ice conditions compared to the early-mid Younger 

Dryas. At the same time, higher brassicasterol concentrations, compared to the early 

Holocene (Figure 4.4d), likely reflect the rapid settling of significantly enhanced 

primary produced organic matter due to scavenging on detritus (and increased 

sedimentation rates) (Knies, 2005) and, in terms of production, this period was probably 

the most productive interval during the last ca. 13.8 cal. kyr BP. Higher phytoplankton 

blooms would have been promoted by the occurrence of reduced sea ice and the input of 

additional nutrients resulting from sea ice and ice sheet melt. In addition, the variability 

in the sterol and SST records may also reflect the instability of the thermohaline 

circulation towards the end of the Younger Dryas and into Preboreal times, also as a 

result of variations in meltwater input from melting ice-sheets (Bauch et al., 2001).  

After ca. 11.5 cal. kyr BP, IP25 was again absent, suggestive of ice-free conditions 

following the termination of the Younger Dryas cold period as described in numerous 

previous studies (e.g. Alley et al., 1993; Gulliksen et al., 1998; Alley, 2000; Ebbesen 

and Hald, 2004). The absence of IP25 in the record continued into the early-mid 

Holocene (ca. 7.2 cal. kyr BP), suggesting continued ice-free conditions, reflecting the 

longer term influence of Atlantic waters (Knies, 2005; Hald et al., 2007). The 

occurrence of reduced 24-methylenecholesterol concentrations and increased 

abundances of other sterols (this study and Knies, 2005) also indicates ice-free 

conditions during this period, as does the absence of IRD in a core from the south-

western Barents Sea (Aagaard-Sørensen et al., 2010), although the occurrence of winter 

sea ice in this region cannot be excluded on the basis of low IRD (Risebrobakken et al., 

2010). 
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Exceptionally, within the 11.9 – 11.5 cal. kyr BP interval, a noticeable feature appeared 

at ca. 11.76 – 11.75 cal. kyr BP, where IP25 and the other biomarkers described herein 

(Figure 4.4), were absent despite the presence of reasonable OM content as revealed by 

our GC-MS analyses and TOC data reported previously (Knies, 2005) (Figure 4.5). The 

effective shutdown in production of sea ice diatom and phytoplankton biomarkers 

during this short interval possibly resulted from severe climate conditions during an 

extremely short-term period (ca. 10 yr) with permanent sea ice cover. Significantly, 

these absences in biomarkers were accompanied by a sudden and dramatic drop in mean 

SST (ca. 2 ˚C; calculated using material from the same core and age model as employed 

here; Figure 4.7d) which was preceded and succeeded by high amplitude SST 

oscillations from ca. 4 – 10 ˚C. Interestingly, Taylor et al. (1997) identified a ca. 10-year 

cooling event by a large increase in non-sea-salt sulphate which likely resulted from a 

volcanic eruption recorded at Summit, Greenland, at a similar time period (11.66 kyr 

BP), although the accuracy of the respective age models may prevent any correlations 

between these two observations being made with great certainty. It was also suggested, 

however, that this short-term cooling was probably not the trigger for a warmer climate 

state, which is also supported by our data.  

 

4.5.2   Quantitative sea ice coverage during the last deglaciation – 

application of the PIP25 index 

In this study and in several others previously (e.g. Massé et al., 2008; Vare et al., 2009; 

Belt et al., 2010), temporal changes to IP25 abundances have been interpreted as 

reflecting qualitative directional changes to seasonal sea ice occurrence. With the aim of 

making IP25-based sea ice reconstructions more quantitative or, at least, more accurate 
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in terms of defining ice conditions, Müller et al. (2011) proposed the use of the so-

called PIP25 index whereby, the concentration of IP25 was compared to that of a 

common phytoplankton sterol biomarker (e.g. brassicasterol). While the general 

applicability of the PIP25 index needs further investigation, the principles behind it are 

clear and worthy of testing, where possible. The PIP25 index was calculated according to 

Equation 4.1, whereby [IP25] and [P] represent the respective concentrations of IP25 and 

a phytoplankton biomarker P, while c was used to modify the concentrations of P due to 

its significantly increased magnitude compared to that of IP25; the c factor was 

calculated from the ratio of the mean IP25 and P concentrations.  As a result, PIP25 

values range from 0-1 and Müller et al. (2011) have suggested that individual ranges 

can be classified according to different oceanographic or sea ice scenarios. Thus, high 

(> 0.75) PIP25 values are indicative of severe sea ice cover, medium values (0.5 – 0.75) 

suggest seasonal or stable ice edge conditions, while PIP25 < 0.5 suggests infrequent or 

ice-free conditions. Of course, since the derivation of the PIP25 is largely empirical, the 

boundaries between these classifications should be considered with some flexibility; 

however, the rationale behind them is clear and largely reflects the relative favorability 

in conditions for production of both types of biomarker. For example, PIP25 is 

necessarily zero under ice-free conditions since IP25 is not biosynthesised in the absence 

of sea ice. In contrast, during periods where there is a marginal ice zone or stable ice 

edge, the formation of both biomarkers is favored, resulting in PIP25 values of ca. 0.5 – 

0.75. 

Equation 4.1 

PIP25 = IP25/ (IP25 + (P x c)). 

In the current study, PIP25 values were calculated from the respective IP25 and 

brassicasterol data and this resulted in a PBIP25 profile that can be divided into four 
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intervals (Figure 4.4e and Figure 4.7b). Before ca. 12.9 cal. kyr BP (Allerød) and after 

ca. 11.5 cal. kyr BP (Holocene), PBIP25 values were zero due to the absence of IP25 

during both periods, indicating ice-free conditions during these warm periods, as 

expected. Conversely, the absence of IP25 (and thus PBIP25 = 0) can also imply 

permanent sea-ice cover; however, such an interpretation in this instance can be ruled 

out on the basis of elevated concentrations of other biomarkers, notably the sterols 

which demonstrates the value of  interpreting PIP25 data alongside that of the individual 

biomarkers (Belt and Müller, 2013). The occurrence of permanent sea ice cover also 

seems unlikely given the observation of sub-polar foraminifera (Bauch et al., 2001) and 

low IRD (especially after the Younger Dryas) (Aagaard-Sørensen et al., 2010) from 

nearby locations during these intervals. 

During the Younger Dryas, two main features of the PBIP25 profile were identified 

(Figure 4.7b). Firstly, from ca. 12.9 – 11.9 cal. kyr BP the majority of the PBIP25 values 

were high and fairly constant (0.6 – 0.8). According to the classification of Müller et al. 

(2011), such PBIP25 values indicate the occurrence of either seasonal or marginal ice 

zone conditions with some brief excursions (e.g. at ca. 12.4 cal. kyr BP) indicative of 

more severe sea ice cover. Since the boundary conditions that categorise these scenarios 

are rather poorly defined, the PBIP25 data, like the presence of IP25 alone, are not 

sufficient to distinguish between them with absolute confidence. Further, PIP25 values 

are somewhat sensitive to the c-factor used in their calculation, which further limits 

defining precisely the sea ice conditions using this method alone; however, failure to 

observe enhanced concentrations of brassicasterol and other phytoplankton biomarkers 

during this period, more strongly suggests the occurrence of extended seasonal sea ice 

conditions, since a marginal ice zone scenario generally results in enhanced primary 

production (Smith et al., 1985; Sakshaug, 1997) with associated increased lipid profiles 

relative to open water environments.  
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During the second part of the Younger Dryas, between ca. 11.9 – 11.5 cal. kyr BP, 

PBIP25 values decreased sharply, with mean PBIP25 values of ca. 0.1, suggesting a 

change from extended to reduced sea ice occurrences or short-term seasonal sea ice. 

Interestingly, the rapid (< 40 yr) change in sea ice conditions at the onset of the 

Younger Dryas at ca. 12.9 cal. kyr BP is even more apparent in the PBIP25 index 

compared to the IP25 data alone. In contrast, both the PBIP25 and IP25 records indicate a 

more gradual (ca. 400 yr) decline in sea ice cover between ca. 11.9 and 11.5 cal. kyr BP.  

Since one of the aims of this study was to extend the sea ice record beyond that of 

general descriptions and make the identifications more quantitative, one of the further 

outcomes of the study by Müller et al. (2011) were applied, who demonstrated a 

reasonably good correlation between PBIP25 proxy data and sea ice concentrations (%) 

derived from satellite data. Accordingly, PBIP25 values in the range 0.6 – 0.8 during the 

interval ca. 12.9 – 11.9 cal. kyr BP yielded sea ice concentrations of 60 – 90% (Figure 

4.7f), while between ca. 11.9 and 11.5 cal. kyr BP, the PBIP25 data (0.1 – 0.6) suggested 

significantly reduced and also more variable sea ice cover (0 – 60%; Figure 4.7f). Such 

quantitatve estimates provide further evidence for contrasting seaonal sea ice conditions 

between the early/mid and late Younger Dryas for northern Norway.  
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4.5.3   Diene II/IP25 ratios (DIP25 index): further insights into seasonal sea 

ice conditions? 

Thus far, the environmental significance of the HBI diene II (hereafter referred to as 

diene II) was not specially considered, other than to note that its temporal concentration 

profile aligns reasonably closely with that of IP25 (Figure 4.4b). Previously, the 

occurrence of IP25 and diene II has been observed in a number of Arctic marine 

sediments (Belt et al., 2007; Vare et al., 2009) and, in one instance, a small 

enhancement of diene II relative to IP25 was suggested to be consistent with reduced sea 

ice (Vare et al., 2009) or generally warmer conditions given the previously reported 

temperature dependence of unsaturation in HBIs (Rowland et al., 2001); however, this 

was not investigated further in any great detail and now seems an unlikely explanation 

given that bottom ice temperatures (where sea ice diatoms grow) are largely invariant of 

sea ice surface temperatures, ice thickness, etc. In addition, the stable isotopic 

composition of diene II, like that for IP25, has also been shown to be consistent with a 

sea ice origin (Belt et al., 2008; Brown, 2011), for the Canadian Arctic, at least.  

Given the structural, isotopic and co-occurrence characteristics between IP25 and diene 

II, in the current study, the abundance relationships between the two biomarkers were 

compared in more detail starting with the examination of IP25 and diene II data for three 

Holocene cores from different regions of the Arctic obtained previously. Indeed, a 

similar analysis was performed by Massé et al. (2011) to support the use of diene II as a 

proxy for the past occurrence of Antarctic sea ice when detected in Antarctic sediments, 

since IP25 is absent in the Southern Ocean. Two of the core locations represented 

different regions of the Canadian Arctic Archipelago and different timescales (Barrow 

Strait and Dease Strait; ca. 7 – 10 kyr) (Vare et al., 2009; Belt et al., 2010), while a third 

study site was from the North Icelandic Shelf (1.2 kyr) (Massé et al., 2008). For each 
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location, relative abundances of diene II and IP25 showed a remarkably strong linear 

correlation (Figure 4.8) providing compelling evidence for co-production of both 

biomarkers by sea ice diatoms. Still, relatively little is known about the environmental 

controls over IP25 (and other HBIs) production by sea ice diatoms (a review of this topic 

is given by Belt and Müller, 2013), but the strong linear relationship between the 

abundances of diene II and IP25 was interpreted as a high degree of consistency in the 

nature of the sea ice conditions for each of the individual locations studied. For each 

core site, however, there was a change in the relative concentrations of the two 

biomarkers (as measured by the gradient of the correlations; Figure 4.8) that further 

suggested that the magnitude of this relationship could be used to further characterise 

the sea ice conditions from each region. Thus, diene II/IP25 ratios (hereafter referred to 

as DIP25) were between ca. 1 – 2 for the Canadian Arctic and ca. 3 for North Iceland, 

which experience predominantly landfast and drift ice, respectively. The extent to which 

this parameter may be used in the future to identify either the source or the nature of sea 

ice conditions will require a more comprehensive analysis from different Arctic regions. 

Nevertheless, the clear linear relationship between the abundances of diene II and IP25 

shown here provides the basis for refining the application of the IP25 proxy even further.  
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Figure 4.8: Concentrations of diene II vs IP25 in marine sediment cores from three different 

regions of the Arctic: (a) the North Icelandic Shelf (471 sediment samples) (Massé et al., 2008); 

(b) Barrow Strait (618 sediment samples) (Vare et al., 2009); (c) Dease Strait (80 sediment 

samples) (Belt et al., 2010). Concentrations were normalised to the maximum value of IP25 

measured in each core. 

 

When the equivalent comparison for the biomarker data obtained for the JM99-1200 

core was made, the abundances of diene II and IP25 also showed a strong linear 

correlation between ca. 12.8 – 11.9 cal. kyr BP (Figure 4.9a), consistent with the 

observations made for the cores from the Canadian Arctic and North Iceland; however, 

there were significant deviations in this relationship from ca. 12.9 – 12.8 cal. kyr BP 

and ca. 11.9 – 11.5 cal. kyr BP (Figure 4.9b). The interpretation that the near constant 
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Figure 4.1: Concentrations of diene II vs IP25 in marine sediment cores from three different regions of 

the Arctic: (a) the North Icelandic Shelf (471 sediment samples) (Massé et al., 2008), (b) Barrow 

Strait (618 sediment samples) (Vare et al., 2009), (c) Dease Strait (80 sediment samples) (Belt et al., 

2010). Concentrations were normalised to the maximum value of IP25 measured in each core. 
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DIP25 index between 12.8 – 11.9 cal. kyr BP reflects relatively stable sea ice conditions 

during this interval was supported by low and consistent SSTs for the same interval 

(Ebbesen and Hald, 2004) (Figure 4.7d). In contrast, significantly weaker correlations 

were observed between diene II and IP25 between ca. 12.9 – 12.8 cal. kyr BP and 11.9 – 

11.5 cal. kyr BP as illustrated by the weaker linear correlation (Figure 4.9b) between 

them and the extreme variability in DIP25 values (Figure 4.7c). This variability 

suggested periods of highly unstable or variable sea ice conditions and that, transitions 

to/from consistent DIP25 values indicated major changes to the sea ice regime.  These 

observations and hypothesis were supported by highly fluctuating SSTs (2 – 10 ˚C; 

Figure 4.7d) as well as extremely variable sterol concentrations (Figure 4.4c and Figure 

4.4d) during both periods, which also suggested a high degree of instability in the sea 

surface conditions. Although the interpretation of the DIP25 index will require further 

validation, ideally through measurements for which known stability or variability in sea 

ice conditions have already been established, there was an excellent agreement between 

the proposed interpretations and the ranges in sea ice concentrations predicted from the 

PBIP25-values (Figure 4.7f) and their correlations with satellite data presented previously 

(Müller et al., 2011). 
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Figure 4.9: Concentrations of diene II vs IP25 for the JM99-1200 core during different time 

intervals: (a) ca. 12.8 – 11.9 cal. kyr BP (55 sediment samples); (b) ca. 12.9 – 12.8 cal. kyr BP 

and ca. 11.9 – 11.5 cal. kyr BP (33 sediment samples). Concentrations were normalised to the 

maximum value of IP25 observed for each dataset. 

 

Previously, Taylor et al. (1993) showed that the climate system tends to undergo rapid 

changes or “flickering” during transitions, such as at the end of the Younger Dryas. 

According to our DIP25 profile, two “flicker” points were observed in the JM99-1200 

core, the first of which coincided with the onset of the Younger Dryas (between ca. 12.9 

– 12.8 cal. kyr BP). This initial transition from ice-free to stable sea ice conditions 

occurred relatively quickly (less than ca. 120 yr) and was followed by a period of ca. 

900 yr where sea ice conditions were relatively stable (consistent DIP25 values; Figure 

4.7c). A second, and more pronounced “flicker” point, was observed during the late 

Younger Dryas (beginning ca. 11.9 cal. kyr BP), and this instability in the sea ice 

regime continued until the onset of the Holocene (ca. 11.5 cal. kyr BP). A similar, two 

interval sea ice scenario, was also suggested by Bakke et al. (2009) following analysis 
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Figure 4.1:  
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of a lake sediment core from western Norway and a marine core from the Faeroe-

Shetland channel. Combined geochemical and physical data from the lake core provided 

evidence for a stable early Younger Dryas followed by a second interval, beginning ca. 

12.15 cal. kyr BP, where there were rapidly changing signals from glacial meltwater, 

and this period of instability continued until the transition into the Holocene (ca. 11.7 

cal. kyr BP). This so-called “flickering” in climate conditions was also seen in the 

accompanying marine record (albeit ca. 100 yr later) with high amplitude changes in 

SST and salinity, which were further interpreted as indicating variable sea ice cover. 

Thus, in contrast to the early Younger Dryas, where the combined proxy records 

indicated a stable and extensive sea ice cover, Bakke et al. (2009) suggested that the 

short-term changes in proxy data during the late Younger Dryas (after ca. 12.15 cal. kyr 

BP) indicated a reduction in sea ice extent resulting from a greater influx of warm 

Atlantic water into the region. Clearly, the biomarker data presented in the current study 

from northern Norway (JM99-1200) lend further support to these suggestions and, in 

addition, provided more detailed descriptions of the sea ice conditions in the two sub-

intervals within the Younger Dryas.   

 

4.6 Conclusions 

In contrast to previous IP25-based sea ice reconstructions for the Arctic, this study 

represents the first example where the occurrence of this biomarker had been restricted 

to a relatively short-term and discrete geological interval and has provided unequivocal 

evidence for the occurrence of seasonal, rather than permanent, sea ice conditions for 

northern Norway during the Younger Dryas. In addition, the alternating 

absence/presence of IP25 in the record further illustrates the selectivity of this biomarker 

to a specific source or environment (diatoms in sea ice), which contrasts with the more 
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generic nature of many other biomarker or geochemical proxies. The rapid appearance 

of IP25 at ca. 12.9 cal. kyr BP provides further evidence that the onset of the Younger 

Dryas was extremely rapid, before reasonably consistent sea ice conditions prevailed 

until ca. 11.9 cal. kyr BP. During the latter part of the Younger Dryas (ca. 11.9 – 11.5 

cal. kyr BP), environmental conditions changed again, and sea ice conditions were 

much more variable during this ca. 400 yr period including an extremely short interval 

of permanent or near-permanent sea ice cover at ca. 11.75 cal. kyr BP. The absence of 

IP25 in the record after ca. 11.5 cal. kyr BP signifies the onset of ice-free conditions at 

the beginning of the Holocene. When IP25 abundances were combined with those of the 

phytoplankton biomarker brassicasterol, the resulting PBIP25 data provides additional 

descriptions of the sea ice conditions and estimates of sea ice concentrations from 

previously established modelled correlations; for example, substantially higher sea ice 

concentrations during the early Younger Dryas (ca. 70-95% from ca. 12.9 – 11.9 cal. 

kyr BP). As part of this study, it was also shown that the co-occurrence of the HBI diene 

II, previously identified in sediments from other Arctic regions, had the potential to be 

used alongside IP25 (DIP25 index) to further characterise the sea ice conditions and, in 

particular, to demonstrate contrasting and short-term variability in sea ice cover. The 

application of, and mutual agreement between, a series of organic geochemical proxy 

measures described herein, therefore increased the confidence in their palaeoclimatic 

interpretation and these results were further complemented by other proxy data obtained 

previously.  
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CHAPTER FIVE  

 

5 Results (2): Seasonal sea ice conditions in the western Barents Sea 

following the last deglaciation 

5.1 Introduction 

Chapter five describes a biomarker based analysis of a sediment core from Kveithola 

Trough, western Barents Sea (JM09-KA11-GC; Figure 5.2). Data from this biomarker 

approach, including quantification of IP25, a di-unsaturated HBI alkene and sterols, for 

palaeo sea ice reconstructions, are presented and interpreted. Comparisons are also 

made with other proxy studies for the same core and those obtained close to the study 

area. Amongst the outcomes, the presence of seasonal sea ice conditions during the 

Younger Dryas is further confirmed. 

 

During the last glacial maximum the Barents Sea shelf area was covered by the 

Svalbard-Barents Sea Ice Sheet (e.g. Elverhøi and Solheim, 1983; Mangerud et al., 

1998; Ingólfsson and Landvik, 2013) which following retreat, allowed the transport of 

Atlantic waters towards the Arctic Ocean. Numerous studies have focused on studying 

variations in Atlantic water inflow into the northern north Atlantic during the last 

deglaciation and the Holocene (e.g. Hald et al., 2007; Andersson et al., 2010). 

Furthermore, changes in the West Spitsbergen Current (WSC) that branches off the 

Norwegian Atlantic Current have been documented (e.g. Rasmussen et al., 2007; 

Ślubowska-Woldengen et al., 2007; Rasmussen et al., 2012) as well as variations north 

of Svalbard (e.g. Koç et al., 2002; Ślubowska et al., 2005). Oceanographic variations 

during the last deglaciation have also been reported in the Barents Sea region (e.g. Hald 
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and Aspeli, 1997; Duplessy et al., 2001; Sarnthein et al., 2003b; Aagaard-Sørensen et 

al., 2010; Risebrobakken et al., 2010).  

The main aim of the current study was to use a biomarker-based approach, including the 

use of the sea ice biomarker IP25, to reconstruct the palaeo sea ice conditions in the 

western Barents Sea margin following the last deglaciation. Further, the comparison of 

biomarker data with other proxy-based studies for the same core allowed to better 

define the overall oceanographic conditions.  

 

5.2 Regional setting 

The Barents Sea is a relatively shallow continental shelf with an average water depth of     

230 m. The total area of the Barents Sea is 1.4 million km
2  

 (Loeng, 1991; Sakshaug, 

1997; Loeng and Drinkwater, 2007). The ocean Polar Front, which is the boundary 

between Atlantic and Arctic waters, divides the Barents Sea into the northern and 

southern parts in the western part of the Barents Sea at latitudes of 75 – 76˚N (e.g. 

Loeng and Drinkwater, 2007) (Figure 5.1). The southern part of the Barents Sea is 

characterised by Atlantic surface waters (temperature > 2˚C; salinity > 35‰). The 

influx of Arctic water to the Barents Sea forms its northern part and can be transported 

to the Barents Sea by two main routes, between Spitsbergen and Frans Josefs Land and, 

to a greater extent, between Frans Josefs Land and Novaya Zemlya (Loeng, 1991) 

(Figure 5.1). A small amount of Arctic water enters through the Kara Sea (Loeng et al., 

1997). Polar waters are characterised by salinities in the range 34.3 – 34.7‰ and 

temperatures below 0˚C due to meltwater from sea ice. In summer, a 5 – 20 m layer of 

melt water covers the polar water, while in winter, the upper 150 m of the water column 

is formed by Arctic waters  (Loeng, 1991). Tides and winds are the main reason for 

climatic variability in the Barents Sea (Slagstad and McClimans, 2005).  
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Figure 5.1: The main features of the circulation and bathymetry of the Barents Sea; grey line 

defines the Polar Front (modified from Stiansen and Filin, 2006). 

 

The main water mass in the Barents Sea (by volume and flux) is Atlantic water coming 

from the Norwegian Sea (Figure 5.1) which is almost continuously transported 

northwards into the Barents Sea changing its temperature and salinity, most probably 

also affecting the variability of the Barents Sea climate (Loeng, 1991). The ice drift in 

the Barents Sea is mainly wind-driven (Vinje and Kvambekk, 1991). The presence of 

cold polar waters results in an annual average of about 40% of the Barents Sea being ice 

covered. However, there is also a large variation of the ice conditions in this region (e.g. 

Vinje and Kvambekk, 1991; Divine and Dick, 2006). The ice reaches its minimum in 

August/September, when the ice edge retreats to the northern shelf break. In October, 

new ice starts to form, usually reaching its maximum in March/April where 

approximately 60% (varying from 0.77 – 1.1 million km
2
) of the Barents Sea is ice 
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covered, with ice-free conditions in the southern and western areas (Vinje and 

Kvambekk, 1991; Loeng and Drinkwater, 2007). 

 

 

Figure 5.2: Map of the sampling location JM09-KA11-GC with main surface water currents. 

Atlantic waters are carried northwards along the Norwegian continental shelf break by the North 

Atlantic Current (NAC) and continue into the Arctic Ocean via the West Spitsbergen Current 

(WSC) and into the Barents Sea as the North Cape Current (NCaC). Also shown in the map are 

the Norwegian Coastal Current (NCC) and the cold water East Greenland Current (EGC), East 

Spitsbergen Current (ESC) and Bear Island Current (BIC).  
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Kveithola, where the current study is based, is a small trough extending westwards from 

Spitsbergenbanken in the western Barents Sea. The trough is approximately 100 km 

long and 15-20 km wide, with water depths ranging between 200 – 400 m (Rüther et al., 

2012). Within the Norwegian Sea, Atlantic waters are carried northwards along the 

Norwegian continental shelf break by the North Atlantic Current (NAC) and continue 

into the Arctic Ocean via the West Spitsbergen Current (WSC) and to the Barents Sea 

via the North Cape Current (NCaC) (Figure 5.2). These bring heat and salt to the high 

northern latitudes, which greatly influences the climate of the region (e.g. Sarnthein et 

al., 2003b; Ślubowska et al., 2005). Presently, the south-western Barents Sea (including 

the study site) is dominated by warm and saline Atlantic water, while the northern 

Barents Sea is dominated by cold and less saline Arctic waters. Further, the study area 

under investigation currently lies close to the modern day maximum sea ice extent 

(Figure 5.3). Kveithola Trough is characterised as a sediment trap during the last 

deglaciation, although modern accumulation rates are low (5 cm kyr 
-1

) (Elverhøi et al., 

1989). Hence, the Kveithola Trough is considered to be a key area for understanding the 

ice dynamics and the timing of deglaciation of the north-western Barents Sea (e.g. 

Rüther et al., 2012). 
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Figure 5.3: Maps showing the sampling location (JM09-KA11-GC) and sea ice concentrations 

(in tenths), corresponding to: (a) March 1995; (b) March 2000; (c) March 2007; (d) March 2009 

(bottom right). Data obtained from the U.S. National Ice Center. The selected years illustrate the 

contrasting sea ice conditions from zero ice cover to sea ice edge conditions. The maximum sea 

ice extent in most years occurs during March. 

  

(a) (b) 

(c) (d) 
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5.3 Material and methods 

5.3.1   Field methods and chronology 

The gravity core under study, JM09-KA11-GC, was retrieved from Kveithola Trough, 

western Barents Sea, (74.52˚N, 16.29˚E; water depth 345 m; core length 3.86 m; Figure 

5.2) on board the R/V Jan Mayen in 2009 and stored in situ (5˚C) until sampled for 

analysis. Individual sub-samples for biomarker analysis were taken at 0.5 – 1 cm 

intervals from 0 to 386 cm, freeze-dried and stored at -20˚C prior to analysis. 

An age model for JM09-KA11-GC was first constructed by Rüther et al. (2012). A total 

of eight AMS 
14

C age determinations were performed. Five additional AMS 
14

C dates 

were obtained after that and a new depth-age model was developed by linear 

interpolation (Berben et al., 2013; Groot et al., 2013). Linear sedimentation rates varied 

between 4 – 240 cm kyr
-1

 (Figure 5.6a) giving an effective temporal resolution of 3 – 

300 yr.  

Note: Following submission of this thesis a minor revision of the age model was 

performed. Further information is given by Berben et al. (2013) and Aagaard-Sørensen 

et al. (in prep). 

 

5.3.2   Experimental 

Analysis of biomarkers (hydrocarbons and sterols) required extraction from the sample 

matrix and separation into individual fractions prior to GC-MS analysis. A complete 

description of the experimental procedure shown in Figure 5.4, is given in Chapter 2 

(Methods). However, the following amendments and other observations are noted. 
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Figure 5.4: Sample extraction flow diagram for lipid biomarkers. * Two different approaches 

regarding Ag-Ion chromatography were adopted depending on level of purification and 

biomarkers required for GC-MS analysis.   
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Following addition of the internal standards for quantification (7-hexylnonadecane; 10 

μL; 10 μg mL
-1

 and 9-octylheptadec-8-ene; 10 μL; 10 μg mL
-1

), the freeze dried 

sediments were extracted with DCM/Methanol (3 x 3 mL; 2:1 v/v). Since many TOEs 

were found to contain high concentrations of elemental sulphur (GC-MS) that interfered 

with the gas chromatographic analyses, this was removed from the primary extracts 

before further purification (Chapter 2). Having removed sulphur, extracts were further 

purified using column chromatography (silica), with apolar lipids (hexane; 6 mL) and 

sterols (20:80 methylacetate/hexane; 6 mL) collected as two single fractions.  In some 

cases, the identification or quantification of some HBIs in these partially purified 

extracts was made difficult due to a combination of low concentrations and the 

occurrence of other highly abundant co-eluting organic compounds that prevented 

further concentration of the extracts. Depending on which biomarkers were needed for 

analysis and on degree of purification required (Figure 5.4), two different approaches 

were adopted (a detailed description of these techniques is given in Chapter 2) by using 

Ag-Ion chromatographic material. The use of different solvents allowed the elution of 

different biomarkers (Figure 5.4). Sterols were derivatised (BSTFA; 50 µL; 70°C; 1h) 

prior to analysis by GC-MS. Analytical reproducibility was monitored using a standard 

sediment with known abundances of biomarkers for every 16 - 18 sediment samples 

extracted (analytical error of 10%, n = 11).  

TOC data were determined at the University of Tromsø using a Leco CS 200 analyser. 

Briefly, sediment samples were repeatedly treated with 10% (vol.) hydrochloric acid 

(HCl) to remove carbonate, then washed repeatedly with distilled water to remove 

traces of HCl and finally dried overnight (50˚C) before being analysed.  

Regarding the quantification of the C25:2 HBI (6/17) (diene II) by GC-MS, poor 

chromatographic resolution of di-unsaturated HBIs was observed, which made it 
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difficult to obtain reliable manual integration data for this biomarker (Figure 5.5). 

Therefore, baseline-to-baseline manual peak integrations were carried out to include all 

C25 dienes in a single measurement. The C25 dienes included isomers with unsaturation 

at positions 5/6 and 23/24 (C25:2 (5/6), Brown, 2011), diene II (Chapter 2), and a further 

C25:2 HBI reported by Brown (2011), following GC-MS analysis of an Arctic sea urchin 

extract. Hydrogenation of the latter, followed by analysis by GC-MS confirmed the 

same C25:0 parent structure compared to previously reported C25:2 HBIs, although the 

lack of sufficient material prevented structural identification by NMR spectroscopy. On 

the basis of the relative peak heights of these three HBI dienes, diene II appeared to be 

the most abundant, although all three were included in the integrated data (Figure 5.5). 

Thus, diene concentrations are referred to, collectively, as ΣDienes. 

 

Figure 5.5: Partial GC-MS chromatogram (SIM m/z 348.3) of a silica and Ag-Ion purified 

JM09-KA11-GC sediment extract. Red dotted line shows the approach adopted for manual 

integration of the C25:2 HBI diene II peak (middle main peak), which also included two other 

compounds identified as C25:2 (5/6) (left minor peak, Brown, 2011) and an extra C25:2 with 

identical C25:0 parent structure to previously reported C25:2 HBIs but yet, unidentified by NMR.  
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All biomarkers concentrations (μg g
-1

 dry sed) were normalised to TOC content         

(μg g
-1

 OC) as TOC data for this core showed a highly fluctuating profile (~0.8 – 1.7%; 

Figure 5.6b). Biomarker concentrations were also converted to fluxes (μg cm
-2

 kyr
-1

) as 

described in Chapter 2, Section 2.2.7.1. 

 

Figure 5.6: (a) Sedimentation rates (cm kyr
-1

); (b) Total organic carbon (TOC, wt. %) of core 

JM09-KA11-GC. 

 

 

Calculation of the PIP25 and DIP25 indices was carried out as described in Chapter 2. 

Concerning the PIP25 index, a c factor value of 0.0179 was obtained by dividing the 

mean IP25 concentration (all samples) by the mean phytoplankton biomarker 

(brassicasterol) concentration. Regarding the calculation of the DIP25 ratio, since the 

peak integrations included (at least) three C25:2 HBIs (as previously explained) the ratio 

was named ΣDIP25.  
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5.4 Results 

Overall, a total of 152 downcore sediment samples were analysed for the sea ice 

biomarker IP25, the structurally related HBI diene II and other lipid biomarkers, 

including the two sterols, 24-methylcholesta-5,22E-dien-3β-ol (brassicasterol) and 24-

methylcholesta-5,24(28)-dien-3β-ol (24-methylenecholesterol) commonly found in 

marine algae (Volkman et al., 1998). Sampling was carried out according to the age 

model, in order to achieve decadal to centennial resolution. 

IP25 was present in some (but not all) horizons, consistent with the core location and 

known ice cover (Figure 5.3). From the late Oldest Dryas, Bølling – Allerød 

interstadials and up to the beginning of the Younger Dryas (ca. 15.7 – 13.1 cal. kyr BP, 

P-I), TOC normalised IP25 concentrations showed a slight increasing trend up to ca. 

13.1 cal. kyr BP. In general, however, IP25 concentrations were relatively low although 

higher than those observed during the Holocene (Figure 5.7a). At the end of the Allerød 

period and at the onset of the Younger Dryas stadial at ca. 13.1 cal. kyr BP (P-II), the 

concentration of IP25 increased more rapidly up to ca. 12 cal. kyr BP. Highest IP25 

concentrations recorded for the entire record were observed at both ca. 12.45 and 12 cal. 

kyr BP. After ca. 12 cal. kyr BP, IP25 concentrations fell sharply towards the transition 

to the current interglacial at ca. 11.7 cal. kyr BP. At this point IP25 concentrations 

remained relatively low but stable up to ca. 9.5 cal. kyr BP (P-III). From ca. 9.5 – 1.6 

cal. kyr BP (P-IV), IP25 was mainly absent (or below the limit of detection: 0.05 ng g
-1

 

dry sed), although some minor positive departures were observed around ca. 6.5, 5.5 – 

4.5 and 3.5 – 2.5 cal. kyr BP (Figure 5.7a). During the last ca. 1.6 cal. kyr BP of the 

record (P-V), IP25 was present more consistently, although still at relatively very low 

concentrations. The concentration profile of ΣDienes (believed to consist mainly of 

diene II) showed a  similar trend to that of IP25, especially between ca. 15.7 – 11.7 cal. 
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kyr BP (Figure 5.7b) suggesting co-production of diene II (and possibly other HBI 

dienes) and IP25 by sea ice diatoms, as suggested previously (Belt et al., 2007; Belt et 

al., 2008; Vare et al., 2009; Brown, 2011).  

 

Figure 5.7: Individual and combined temporal concentration profiles (fluxes plotted in green) of 

biomarkers in the JM09-KA11-GC core: (a) IP25; (b) ΣDienes; (c) 24-methylenecholesterol; (d) 

brassicasterol; (e) PBIP25 index. The horizontal solid lines at ca. 13.1 cal. kyr BP and ca. 11.7 

cal. kyr BP indicate the onset and the termination of the Younger Dryas, respectively. The 

horizontal solid lines at ca. 9.5 cal. kyr BP and ca. 1.6 cal. kyr BP represent shifts in the sea ice 

conditions during the early-mid and mid-late Holocene boundaries, respectively. The diamonds 

mark the AMS 
14

C dates used in the age model. 
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During the late Oldest Dryas – Bølling – Allerød periods (P-I), concentrations of 24-

methylenecholesterol and brassicasterol fluctuated significantly from ca. 15.7 to 13.1 

cal. kyr BP (Figure 5.7c and Figure 5.7d). At the boundary between the Allerød and 

Younger Dryas periods, both sterol concentrations decreased up to ca. 12.7 cal. kyr BP 

and remained relatively low throughout the Younger Dryas cold period up to 11.7 cal. 

kyr BP (P-II). Brassicasterol and 24-methylenecholesterol concentrations increased 

again during the early Holocene up to ca. 10 cal. kyr BP before decreasing again to ca. 

9.5 cal. kyr BP (P-III). Between ca. 9.5 – 1.6 cal. kyr BP (P-IV) brassicasterol 

concentrations were at their lowest for the entire record, while 24-methylenecholesterol 

was absent between ca. 8 – 5 cal. kyr BP and then present again at very low 

concentrations up to ca. 1 cal. kyr BP.  

24-methyelenecholesterol and brassicasterol profiles were very similar (Figure 5.7c and 

Figure 5.7d), even during the Younger Dryas, where concentrations of both sterols were 

fairly low. However, some differences were observed, such as during ca. 11 cal. kyr BP 

(P-III) where 24-methylenecholesterol concentrations increased more than those of 

brassicasterol. In addition, during the last ca. 1.6 cal. kyr BP (P-I) brassicasterol 

increased rapidly towards the present, while 24-methylenecholesterol was either absent 

or present at very low concentrations. The observation that both sterol profiles were 

quite similar and differed from those of IP25 and ΣDienes (Figure 5.7), contrasts with 

that found previously, where 24-methylenecholesterol was more abundant during the 

Younger Dryas and similar to IP25 (Chapter 4). Previously, 24-methylenecholesterol 

was reported as the main sterol in sea ice diatom communities during the spring bloom 

in McMurdo, Antarctica (Nichols et al., 1993). A recent study by Belt et al. (2013b) 

shows the presence of a number of sterols, including 24-methylenecholesterol and 

brassicasterol, in sea ice samples from Resolute Passage in the Canadian Arctic 

Archipelago and the Amundsen Gulf. Although 24-methylenecholesterol is one of the 
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most common sterols in diatoms (Rampen et al., 2010), this biomarker is not considered 

source specific, since some dinoflagellates and prasinophytes also produce it (Volkman, 

1986). Further, the observed similarity of brassicasterol and 24-methylenecholesterol 

profiles in the JM09-KA11-GC core, reflects the poor source specificity of both 

biomarkers.  

The IP25 and brassicasterol concentration data were combined to generate PIP25 indices 

(Müller et al., 2011) in an attempt to provide more quantitative palaeo sea ice estimates. 

The PBIP25 (subscript B refers specifically to brassicasterol) profile showed some 

similarities to those of IP25 and ΣDienes. Between ca. 15.7 – 13.1 cal. kyr BP PBIP25 

values ranged between ca. 0.2 – 0.6, after which a sharp increase during the Younger 

Dryas was observed (ca. 0.8 – 0.9). Towards the end of the Younger Dryas, PBIP25 

values decreased rapidly again to ca. < 0.4 followed by a further decreasing trend up to 

ca. 9.5 cal. kyr BP (Figure 5.7e). Between ca. 9.5 – 1.6 cal kyr BP, PBIP25 values were 

at their lowest for the entire studied period, although some positive departures were 

observed, coinciding with periods where IP25 was present at very low concentrations at 

ca. 6.5, 5.5 – 4.5 and 3.5 – 2.5 cal. kyr BP. During the last millennium, PBIP25 values 

increased again, but the actual values remained relatively low. Finally, biomarker 

concentration profiles broadly align with fluxes throughout the record (Figures 5.7 and 

Figure 5.8), except around ca. 13.5 – 13 cal. kyr BP (Figure 5.7) where enhanced fluxes, 

relative to concentrations, were observed as a result of very high sedimentation rates 

(Figure 5.6a). 



 

 

128 

 

 

Figure 5.8: Individual and combined temporal concentration profiles (fluxes plotted in green) of 

biomarkers in the JM09-KA11-GC core during the last ca. 11.7 cal. kyr BP: (a) IP25; (b) 

ΣDienes; (c) 24-methylenecholesterol; (d) brassicasterol. The horizontal solid line at ca. 11.7 

cal. kyr BP indicates the termination of the Younger Dryas. The horizontal solid lines at ca. 9.5 

cal. kyr BP and ca. 1.6 cal. kyr BP represent shifts in the sea ice conditions during the early-mid 

and mid-late Holocene boundaries, respectively. The diamonds mark the AMS 
14

C dates used in 

the age model. 

 

5.5 Discussion 

Previously, many studies have been focused on the Norwegian-Svalbard region. These 

include, for example, reconstructions of Atlantic water inflow around west Svalbard  

during the late glacial – early Holocene transition (Ebbesen et al., 2007), the Holocene 

(Rasmussen et al., 2012) as well as on the Norwegian-Svalbard continental margin 

(Hald et al., 2007) along with palaeoceanographic reconstructions of the south-west 

Svalbard margin during the last deglaciation (Rasmussen et al., 2007). Similarly, studies 

of the south-western Barents Sea area included seafloor geomorphology investigations 
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(Andreassen et al., 2008; Winsborrow et al., 2010) as well as palaeoceanographic 

studies covering the late Weichselian – early Holocene transition (Aagaard-Sørensen et 

al., 2010), early Holocene (Wohlfarth et al., 1995) and the entire Holocene 

(Risebrobakken et al., 2010). A further study, located close to that of the current study, 

was focused on the palaeoceanographic conditions during the Holocene (Sarnthein et 

al., 2003b). 

Regarding the study area described in this chapter and, more specifically, for the JM09-

KA11-GC core, one previous study focused on acoustic characteristics, lithology and 

physical properties (Rüther et al., 2012). In a further study, benthic and planktic 

foraminiferal fauna, stable isotopes (δ
13

C, δ
18

O), geochemical (e.g. %TOC) and 

geophysical (e.g. IRD) parameters, covering the late Oldest Dryas, the Bølling – 

Allerød interstadials and the Younger Dryas have been investigated (Aagaard-Sørensen 

et al., In prep). Further, within the changing Arctic and Subarctic Environment  network 

(CASE, EU FP7), the Holocene section of the JM09-KA11-GC core has been 

investigated using benthic and planktic foraminifera and stable isotopes (δ
13

C, δ
18

O) 

(Berben et al., 2013; Groot et al., 2013) as well as dinocyst assemblages (Dylmer, 

submitted). The biomarker data presented here are discussed alongside these existing 

investigations.  
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5.5.1   Sea ice conditions during the last ca. 15.7 cal. kyr BP 

Based on the age model, biomarker data presented here and comparisons with other 

proxy data, it is proposed that the palaeoceanographic conditions at the JM09-KA11-

GC core location covering the last ca. 15.7 cal. kyr BP can be divided into five distinct 

periods (Figure 5.7):   

 

5.5.1.1   Period I: 15.7 – 13.1 cal. kyr BP (late Oldest Dryas – Bølling – 

Allerød) 

Period I (P-I) corresponds to the late part of the Oldest Dryas stadial and the Bølling – 

Allerød interstadials (Figure 5.7). Overall, the IP25 and ΣDienes profiles show an 

increasing trend from ca. 15.7 cal. kyr BP to ca. 13.1 cal. kyr BP with intermediate 

concentrations compared to the rest of the record. The presence of IP25 suggests the 

presence of seasonal sea ice at that time. In contrast, the sterol concentrations were high 

but rather variable during the whole interval. Together these observations suggest 

overall quite variable seasonal sea ice as well as open-water conditions. Relatively low 

bottom and subsurface water temperatures and salinities were reported in a study of the 

same core by Aagaard-Sørensen et al. (In prep) where a strong influence of meltwater 

was inferred by planktic foraminifera further suggesting the presence of sea 

ice/icebergs. During the Bølling – Allerød, primary productivity increased markedly, as 

shown by relative abundances of benthic fauna, while water temperatures and salinities 

rose periodically, in response to a changing influx of Atlantic water (Aagaard-Sørensen 

et al., In prep), suggesting the presence of sea ice and the Polar Front at, or in close 

proximity to, the core site. These observations were further supported by the biomarker 

data, where high but variable sterol concentrations (especially brassicasterol) and 
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relatively high IP25 concentrations (Figure 5.7a), suggested that this period was 

characterised by enhanced primary productivity and ice edge conditions. In addition, the 

high degree of variability in the concentrations might reflect movements of the ice edge 

in the area under study consistent with modern day conditions (Figure 5.3). Previously, 

the benthic foraminifera Nonionellina labradorica has been related to Polar Front 

conditions associated with high primary productivity (e.g. Jennings et al., 2004; 

Wollenburg et al., 2004; Jennings et al., 2011). However, and unlike the biomarker data, 

which points to enhanced primary productivity during this period, low relative 

abundances of N. labradorica are observed (Figure 5.9f). This observation suggests that 

the influence of enhanced freshwater conditions as well as higher turbidity and 

sedimentation rates possibly disfavoured the proliferation of this species during this 

period (Aagaard-Sørensen et al., In prep) at times when primary productivity was high.  
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Figure 5.9: Temporal palaeoclimate profiles for the JM09-KA11-GC core: (a) IP25; (b) 

Brassicasterol; (c) Reconstructed summer Sea Surface Temperature (˚C) estimates; (d) % 

Turborotalia quinqueloba; (e) % Neogloboquadrina pachyderma; (f) % Nonionellina 

labradorica; (g) % Brigantedinium spp. The horizontal solid lines at ca. 13.1 cal. kyr BP and ca. 

11.7 cal. kyr BP indicate the onset and the termination of the Younger Dryas, respectively. The 

horizontal solid lines at ca. 9.5 cal. kyr BP and ca. 1.6 cal. kyr BP represent shifts in the sea ice 

conditions during the early-mid and mid-late Holocene boundaries, respectively. The diamonds 

mark the AMS 
14

C dates used in the age model. 

 

5.5.1.2   Period II: ca. 13.1 – 11.7 cal. kyr BP (Younger Dryas) 

P-II included the Younger Dryas period, (further information about this cold stadial is 

given in Chapter 4). Changes in all biomarker data occurred at the onset and end of the 

Younger Dryas, at ca. 13.1 and 11.7 cal. kyr BP, respectively, although these were 

clearer in the IP25 and ΣDienes profiles. Both biomarkers were present at their highest 

concentrations during this interval (Figure 5.7a and Figure 5.7b) suggesting higher 

frequencies or concentrations of seasonal sea ice. In contrast, both brassicasterol and 24-

methylenecholesterol (Figure 5.7c and Figure 5.7d) showed a marked reduction in their 

concentrations during this period, suggesting that primary productivity was inhibited 
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during a period of greater sea ice cover. These observations are consistent with a 

substantial increase of the cold water foraminifera species Neogloboquadrina 

pachyderma (s) (e.g. Bé and Tolderlund, 1971) (Figure 5.9e), a decrease of the subpolar 

species Turborotalia quinqueloba (e.g. Bé and Tolderlund, 1971; Carstens et al., 1997) 

(Figure 5.9d), low IRD and minimum SST reconstructed from the same core (Aagaard-

Sørensen et al., In prep) (Figure 5.9c)  and the likely prevalence of seasonal sea ice 

conditions during severe climatic conditions. In contrast, high concurrent bottom water 

temperatures, as a result of a strong influx of subsurface Atlantic water below a layer of 

Polar surface water were also observed as shown by an increased dominance of the 

benthic species Cassidulina neoteretis (Aagaard-Sørensen et al., In prep) which is often 

associated with chilled Atlantic waters (e.g. Jennings et al., 2004; Wollenburg et al., 

2004). This observation is also seen in a previous study of a nearby location north of the 

current study (Rasmussen et al., 2007). 

Towards the transition between the end of the Younger Dryas stadial and the onset of 

the Holocene (ca. 12.1 – 11.7 cal. kyr BP), IP25 and ΣDienes concentrations decreased 

sharply (Figure 5.7a and Figure 5.7b), pointing to a shift in the seasonal sea ice 

conditions from more severe towards lower frequencies of spring sea ice, and this is 

supported by increasing 24-methylenecholesterol and brassicasterol concentrations 

(Figure 5.7c and Figure 5.7d). The abrupt decrease in IP25 and ΣDienes concentrations 

also coincided with a rapid increase in SST (from ca. 3 to 6 ˚C; Figure 5.9c) and a 

depletion in δ
18

O (Berben et al., 2013), indicating a surface warming. Such a warming 

was also reported in previous studies from the Storfjorden Trough (76˚N) (Rasmussen 

et al., 2007) and over the slope south of Svalbard (75˚N) close to the core site 

(Sarnthein et al., 2003b). This abrupt transition was also seen in a study by Hald et al. 

(2007), where a shift from polar foraminifera and cool SST to subpolar fauna and 

temperatures, similar or warmer than those of the present, was observed across a core 
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transect (60 – 77˚N). Hald et al. (2007) also noted a more gradual change in both fauna 

and temperatures in the northernmost locations (where the current study is based, 

74.5˚N), which was explained in terms of a higher heat loss to the atmosphere or the 

existence of colder water conditions due to the influence of the remnants of the last 

glacial towards the north.  

 

5.5.1.3   Period III: 11.7 – 9.5 cal. kyr BP (early Holocene) 

After the abrupt Younger Dryas – early Holocene transition (ca. 11.7 cal. kyr BP), IP25 

concentrations remained consistently low until ca. 9.5 cal. kyr BP (Figure 5.8a and 

Figure 5.8a). In contrast to P-I and P-II, where IP25 and ΣDienes showed very similar 

profiles, there appeared to be less consistency during P-III (Figure 5.7a and Figure 

5.8b). In contrast to the lower IP25 and ΣDienes concentrations, sterols increased 

towards the end of the Younger Dryas, reaching maxima at ca. 10.7 cal. kyr BP before 

decreasing slightly up to ca. 9.5 cal. kyr BP (Figure 5.8c and Figure 5.8d). These 

combined biomarker observations indicate a period characterised by the presence of 

seasonal sea ice conditions that would have been less severe compared to the Younger 

Dryas, but would have promoted enhanced primary productivity. Indeed, the presence 

of IP25 and ΣDienes (albeit low concentrations) and relatively high concentrations of 

both sterols, especially around ca. 10.5 – 11 cal. kyr BP suggests that, during the early 

Holocene, the study area was probably characterised by periods of sea ice edge 

conditions or close to the marginal ice zone, since this scenario results generally in 

enhanced primary production (Smith et al., 1985; Sakshaug, 1997). This conclusion is 

also supported by relatively high abundances of the benthic species N. labradorica 

(Groot et al., 2013) (Figure 5.9f). Higher productivity in surface waters is also 

supported by increased relative abundances of the dinoflagellate species Brigantedinium 
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spp (Dylmer, submitted) (Figure 5.9g) although this can also be found in broader 

environmental settings (e.g. Marret and Zonneveld, 2003).  

The initial warming at the Younger Dryas – Holocene transition that was observed in 

this study (Figure 5.9c) and by Sarnthein et al. (2003b), was succeeded by a short-term 

cooling interval at ca. 11.2 cal. kyr BP, possibly as a result of a large meltwater input 

from melting ice-sheets during the Younger Dryas (Bauch et al., 2001). Following this 

short-term cooling, SST increased again towards the end of P-III. This warm-cold-warm 

oscillation in P-III was not observed in the IP25 record (Figure 5.8a) or the carbon 

isotope data (δ
13

C) (Berben et al., 2013) but could also be seen in the oxygen isotope 

data for the same core (δ
18

O) (Berben et al., 2013) and in a study from western Svalbard 

(Rasmussen et al., 2012). Previous studies from several terrestrial and marine records 

correlated these events with the Pre-Boreal Oscillations of the early Holocene (e.g. 

Björck et al., 1997; Nesje et al., 2004) and attributed this temperature variability to the 

final stage of the deglaciation of the Fennoscandian and Svalbard ice sheets (Hald et al., 

2007). A widespread cooling in the north Atlantic region around ca. 11.3 cal. kyr BP 

was suggested to be driven by a meltwater outburst hampering the thermohaline 

circulation in the north Atlantic (Hald and Hagen, 1998; Husum and Hald, 2002). It is 

not clear why this change was not observed in the IP25 record, although, one possible 

explanation could be that the sea ice conditions were not favourable for diatom growth. 

The Holocene Thermal Maximum has been recorded in many previous studies from the 

northern North Atlantic area and linked to the increased summer (June) insolation at 

high latitudes (Koç et al., 1993; Kaufman et al., 2004; Hald et al., 2007). However, the 

reconstructed summer SST (Figure 5.9c) show a small warming profile after the 

Younger Dryas and up to ca. 8 cal. kyr BP, remaining relatively stable throughout the 

rest of the Holocene. As suggested by Andersson et al. (2010) this temperature trend 
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may simply reflect that temperatures on subsurface waters were stable and only the 

upper surface layers were affected by maximum insolation. However, reconstructed 

sSST also reflects the planktic foraminiferal fauna data, with relatively low abundances 

of T. quinqueloba (Figure 5.9d) compared to other studies in the same region (e.g. 

Sarnthein et al., 2003b; Ebbesen et al., 2007; Hald et al., 2007; Risebrobakken et al., 

2010). Nevertheless, the close proximity of the study site to the Arctic Front compared 

to other studies might have caused the difference in the foraminiferal fauna or might 

also be ascribed to the state of preservation (Berben et al., 2013). 

The declining IP25 trend (Figure 5.8a) observed during this period, before disappearing 

at ca. 9.5 cal. kyr BP, points to a transition from a favourable marginal ice zone scenario 

to reduced seasonal sea ice conditions and finally open water conditions with increased 

Atlantic water inflow (Berben et al., 2013), which is consistent with previous 

observations during this time interval (e.g. Risebrobakken et al., 2010). 

 

5.5.1.4   Period IV: ca. 9.5 – 1.6 cal. kyr BP (mid-late Holocene) 

During P-IV, IP25 was mainly absent, indicating ice-free conditions during the spring, 

although some periods of low seasonal sea ice (low IP25) were recorded between ca. 6.5, 

5.5 – 4.5 and 3.5 – 2.5 cal. kyr BP (Figure 5.8a).  A previous study across the northern 

north Atlantic of a core transect (60 – 77˚N) revealed cooling in the northern locations 

(72 – 77˚N) around ca. 7.5, 6.5, 5.5-3, 1 cal. kyr BP (Hald et al., 2007) and these were 

related to enhanced influence of Arctic waters. At present, the western Barents Sea is 

characterised by sharp gradients between cold Arctic waters and warm Atlantic waters 

(Hald et al., 2007). As a result, a large inter-annual variability in sea ice conditions 

exists around the study area and sea ice can be present, absent or close to the study site 

(Figure 5.3). Therefore, periods of ice-free or low seasonal sea ice conditions recorded 
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in this core during P-IV, could be due to small northward or southward movements of 

the Polar Front relative to the study area. Interestingly, the cooling around ca. 6.5 cal. 

kyr BP was also recorded in the western Barents Sea (Hald et al., 2007) and was linked 

to increased tidewater glacier activity on western central Svalbard, deduced from an 

IRD record in the van Mijenfjorden. Furthermore, a study from northern Norway also 

showed a cooling around this period (Hald and Aspeli, 1997). However, the very low 

IP25 data might also be attributed to allochthonous input from the Barents shelf. Indeed, 

a previous study very close to the core site during the Holocene pointed to the  existence 

of lateral sediment transport (Sarnthein et al., 2003b). Evidence for the allochthonous 

input of IP25 into marine sediments around the Bear Island Trough, close to the current 

study site, has been reported for the first time by Navarro-Rodriguez et al. (2013). 

In general, however, stable SSTs were recorded during this period (Figure 5.9c), as well 

as low biomarker concentration data (Figure 5.8) point to a rather stable period, mostly 

characterised by increasing influence of Atlantic waters (Risebrobakken et al., 2010; 

Berben et al., 2013) and open-water conditions, with little or no influence of sea ice 

(Hald and Aspeli, 1997). This stability in the oceanographic conditions is also reflected 

by planktic and benthic foraminifera (Berben et al., 2013; Groot et al., 2013) (Figure 

5.9d, Figure 5.9e and Figure 5.9f) and dinocyst assemblages (Dylmer, submitted) 

(Figure 5.9g).  

The 8.2 kyr event was a cold spell recorded in Greenland ice cores (e.g. Johnsen et al., 

2001) as well as marine (e.g. de Vernal et al., 1997; Wang et al., 1999; Bond et al., 

2001) and terrestrial (e.g. Baldini et al., 2002) sediment cores. Unlike many previous 

studies close to the area under study, where the 8.2 kyr event was also recorded (e.g. 

Sarnthein et al., 2003b; Hald et al., 2007), the biomarker data for core JM09-KA11-GC 

did not show a cooling or the presence of sea ice during this period. The reason why this 
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well-known cold event was not reflected by the biomarker data may be due to the low 

temporal resolution of the study: there is only one data point available for IP25 and 

ΣDienes and none for sterols biomarkers from ca. 8 – 9 kyr BP (Figure 5.8). However, 

neither planktic/benthic (Figure 5.9d, Figure 5.9e and Figure 5.9f) (Berben et al., 2013; 

Groot et al., 2013) foraminiferal fauna nor dinocyst assemblages (Dylmer, submitted) 

(Figure 5.9g) obtained for the same core showed a cooling at this time interval possibly 

due also to low temporal resolution.  

Further, a general cooling trend from the early to the mid-late Holocene has been 

recorded at high-latitudes (e.g. Hald and Aspeli, 1997; Ślubowska et al., 2005; Hald et 

al., 2007; Risebrobakken et al., 2010; Rasmussen et al., 2012). Indeed, stable isotope 

δ
18

O trends based on planktic (Berben et al., 2013) and benthic (Groot et al., 2013) 

foraminifera showed a slightly decreasing trend from lower to higher isotopic values 

towards the late Holocene following the decrease in summer (June) insolation at high 

latitudes (Koç et al., 1993; Hald et al., 2007) . However, this was not reflected in 

summer sea surface (Figure 5.9c) and bottom temperature reconstructions (Groot et al., 

2013), either because the cooling seen was within the error bars of the transfer function, 

the temperature decrease was too small to affect the foraminiferal assemblages or 

because the two SST reconstructions correspond to a different seasonal signal (Groot et 

al., 2013). 

An interesting feature about the P-IV concerns the very low brassicasterol 

concentrations recorded during this interval which, together with low or absent IP25 

might, according to Müller et al. (2011), indicate permanent sea ice conditions other 

than open water conditions. However, this could not have been the case for the study 

area at this time period due to high SST (Figure 5.9c) and high abundances of the 

planktic foraminifera T. quinqueloba (Figure 5.9d). Instead, the low sterol 
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concentrations (Figure 5.8), presumably reflect lower primary production in general. 

This is supported further by the low TOC (Figure 5.6b). The stability of the water 

column in Atlantic waters depends on the formation of a temperature-dependent 

thermocline and results in a fairly late spring bloom (Sakshaug, 1997). Additionally, 

late and prolonged phytoplankton blooms in permanently ice-free Atlantic waters would 

maximise grazing by zooplankton and therefore minimise sedimentation (e.g. Hassel et 

al., 1991). Therefore, an alternative to permanent ice cover inhibiting primary 

productivity could be a scenario where by a northward movement of the Polar Front and 

increased influence of Atlantic waters, could have resulted in a late phytoplankton 

bloom together with enhanced grazing. This, in turn, could have resulted in low organic 

matter sedimentation to the seafloor, thus resulting in low occurrences of biomarkers in 

sediments.  

 

5.5.1.5   Period V: ca. 1.6 – 0 cal. kyr BP (late Holocene) 

During the last part of the Holocene (P-V) IP25 was absent (or present yet at very low 

concentrations), while the ΣDienes concentration showed a peak around ca. 0.5 cal. kyr 

BP (Figure 5.8a and Figure 5.8b). Regarding the sterols, 24-methylenecholesterol was 

absent or present at very low concentrations (Figure 5.8c). Increasing brassicasterol 

concentrations towards the present (Figure 5.8d), coincided with an increase of the 

planktic foraminifera species Globigerinita uvula (Berben et al., 2013) which indicates 

cold-water conditions and high food supply (e.g. Boltovskoy et al., 2000; Bergami et al., 

2009). Further, G. uvula was found as a dominant species in coastal waters in the south-

western Barents Sea, and was also related to slightly reduced salinities (Husum and 

Hald, 2012).  These observations suggested a period characterised by the presence of 

cold waters and seasonal sea ice as a result of high seasonality, where open-water 
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conditions would have favoured primary productivity. Similarly, a study located on the 

west margin of Svalbard by Jernas et al. (2013), also pointed to strong seasonality 

(spring/summer) during this time period. Furthermore, Groot et al. (2013) also observed 

more unstable conditions compared to the mid Holocene for the same core (JM09-

KA11-GC), with episodes of enhanced productivity. 

Currently (ca. last 20 yr), the core site is characterised by rather large year-by-year sea 

ice variability as shown in Figure 5.3 (with maximum sea ice extent generally observed 

in March). Therefore, the absence or presence of IP25 at very low concentrations and 

increasing brassicasterol concentrations during the last ca. 1.6 cal. kyr BP could indicate 

that this area experienced sea ice conditions similar to those of the present day, with 

alternating periods of ice-free conditions and low occurrences of seasonal sea ice 

reflected by sea ice being in or close to the core site. Similar conditions have also been 

observed based on satellite imagery and biomarker reconstructions (Navarro-Rodriguez 

et al., 2013). 

 

5.5.2   Application of the PIP25 index 

A PBIP25 profile was obtained for the JM09-KA11-GC core site (Figure 5.7e and Figure 

5.10b) by combining the concentrations of the sea ice biomarker IP25 with those of the 

phytoplankton biomarker brassicasterol (B referred to brassicasterol). Furthermore, 

estimates of spring sea ice concentrations were also made (Figure 5.10e) using the 

correlation of the PIP25 proxy data with sea ice concentrations (%) derived from satellite 

data by Müller et al. (2011). During P-I PBIP25 values fell within the range ca. 0.2 – 0.7 

(Figure 5.10b), suggesting a period of alternating less frequent and seasonal sea ice or 

stable ice edge conditions, respectively (10 – 60%), and this is supported further by 
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individual biomarker profiles. During the Younger Dryas (ca. 13.1 – 11.7 cal. kyr BP, 

P-II) the PBIP25 values were mainly higher (ca. 0.4 – 0.9) with maximum values of ca. 

0.9 during the mid-Younger Dryas before sharply decreasing towards the Younger 

Dryas/Holocene transition (Figure 5.10b). Sea ice concentrations were estimated to be 

between 50 – 99% (Figure 5.10e) suggesting a period characterised by severe sea ice 

conditions and lower primary productivity. At the transition between the Younger Dryas 

and the Holocene (ca. 11.7 cal. kyr BP), lower PBIP25 values compared to the Younger 

Dryas (ca. 0.3) suggested a shift in the sea ice conditions from more severe to less 

seasonal sea ice conditions, consistent with the IP25 and ΣDienes data (Figure 5.7a and 

Figure 5.7b). During the early Holocene, PBIP25 values remained low up to ca. 9.5 cal. 

kyr BP, suggesting less severe sea ice conditions compared to the Younger Dryas with 

lower sea ice concentrations (1 – 40%). This observation contradicts the suggested 

marginal ice zone scenario based on individual biomarker data, as well as other proxy 

data presented for the same core (Figure 5.9), which further confirms the need to 

consider individual and combined biomarker profiles for sea ice reconstructions (Müller 

et al., 2011; Belt and Müller, 2013). During the mid-late Holocene the PBIP25 index was 

predominantly 0, although some positive departures of different PBIP25 values were 

observed at ca. 6.5 cal. kyr BP (PBIP25 = 0.6), ca. 5.5 – 4.5 and 3.5 – 2.5 cal. kyr BP 

(PBIP25 = 0.1 – 0.4) suggesting moderate frequencies of seasonal sea ice conditions, and 

infrequent or less seasonal sea ice conditions, respectively. PBIP25 values of 0 result 

from the absence of IP25 and can indicate either ice-free or permanent sea ice 

conditions. However, the presence of low IRD (Aagaard-Sørensen et al., In prep) as 

well as SST of ca. 5˚C and high abundances of the sub-polar species T. quinqueloba 

(Figure 5.9d) rejects the latter observation, pointing to ice-free conditions during this 

period, with alternating low occurrences of seasonal sea ice at ca. 6.5, 5.5 – 4.5 and 3.5 

– 2.5 cal. kyr BP. These minor PBIP25 excursions (also observed in the IP25 profile) 
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could also be due to advected material as previously mentioned. Finally, during the last 

ca. 1.6 cal. kyr BP, the PBIP25 data suggest a period of lower frequencies of seasonal sea 

ice compared to the early Holocene. Estimated spring sea ice concentration values of 0 

– 15% during this period (Figure 5.10e), compare relatively well with satellite-derived 

sea ice concentrations for this area, with values between 0 – 5% (Navarro-Rodriguez et 

al., 2013). Interestingly, the distinction of different sea ice conditions during the late 

Oldest Dryas and Bølling – Allerød periods and the transition between the Younger 

Dryas and the Holocene was more obvious in the PBIP25 index than in the IP25 profile 

alone. 

 

Figure 5.10: Temporal palaeoclimate profiles for the JM09-KA11-GC core: (a) IP25; (b) PBIP25 

index; (c) Σ DIP25 ratio; (d) Reconstructed summer Sea Surface Temperature (˚C) estimates 

(Berben et al., 2013; Aagaard-Sørensen et al., In prep); (e) Spring sea ice concentration (%) 

(calculated according to the correlated satellite data with PBIP25 data (Müller et al., 2011)). The 

horizontal solid lines at ca. 13.1 cal. kyr BP and ca. 11.7 cal. kyr BP indicate the onset and the 

termination of the Younger Dryas, respectively. The horizontal solid lines at ca. 9.5 cal. kyr BP 

and ca. 1.6 cal. kyr BP represent shifts in the sea ice conditions during the early-mid and mid-

late Holocene boundaries, respectively. The diamonds mark the AMS 
14

C dates used in the age 

model. 
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One potential limitation of the PBIP25 approach, as pointed out by Belt and Müller 

(2013), concerns the use of the c factor that is used to account for substantial differences 

in biomarker concentrations. Belt and Müller (2013) suggested that, depending on the 

section of the core analysed, this c factor could be significantly altered, which could, in 

turn, affect the PIP25 profile and, therefore, the interpretations of the sea ice conditions. 

The study of this core (JM09-KA11-GC), which covered different time periods with 

clearly different climatic conditions (e.g. Younger Dryas, Holocene) allowed for a 

further evaluation of the c factor used in the PIP25 calculations. A c factor value of 

0.0179 was obtained when taking into account the IP25 and brassicasterol values of the 

entire core (ca. 15.7 – 0 cal. kyr BP), and this c factor yielded the PBIP25 profile 

presented previously (Figure 5.10b). However, if only the Holocene section (ca. 11.7 – 

0 cal. kyr BP) of the core is taken into account, a c factor of 0.0047 is calculated, which 

is ca. 4 times lower than the one obtained for the whole core. A consequence of this is 

an increase in all Holocene PBIP25 values compared to the previous PBIP25 profile (data 

points after ca. 11.7 cal. kyr BP were not taken into account, Figure 5.11c) and different 

sea ice interpretations. For example, previously the interpretation of PBIP25 values 

during the mid-late Holocene interval (P-IV) indicated a period of alternating ice-free or 

less sea ice conditions. However, if only the Holocene section of the core is considered, 

the PBIP25 indices indicate a period characterised by varying ice-free and seasonal or 

stable ice edge conditions or even more severe sea ice conditions (Figure 5.11c), which 

is not consistent with other proxy data. Similarly, if PBIP25 data were based only on 

values of IP25 and brassicasterol for the older part of the core comprising the late Oldest 

Dryas – Bølling – Allerød/Younger Dryas periods, the c factor becomes ca. twice that 

obtained when considering the whole core (c factor = 0.0337) with consequential 

lowering of PBIP25 values (Figure 5.11d) which also influences the interpretation of the 

sea ice conditions. In addition, if this core extended further back in time, and for 



 

 

144 

 

example higher IP25 concentrations than those found during the Younger Dryas were 

recorded, the c factor obtained would be bigger than the c factor obtained for this study. 

Therefore, the full range of biomarker concentrations needs to be known with 

confidence (i.e. all available material). Even then, the interpretation of the PBIP25 index 

should always be carried out alongside other proxy and biomarker data as, pointed out 

previously (Belt and Müller, 2013; Cabedo-Sanz et al., 2013).  

 

Figure 5.11: (a) Temporal IP25 profile; (b) PBIP25 profile obtained by using a c factor                  

(c = 0.0179) that included all IP25 and brassicasterol values for the whole studied interval; (c) 

PBIP25 profile obtained by using a c factor (c = 0.0047) that excluded the late Oldest Dryas –  

Bølling – Allerød – Younger Dryas IP25 and brassicasterol values. (d) PBIP25 profile obtained by 

using a c factor (c = 0.0337) that excluded the Holocene IP25 and brassicasterol values.   
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5.5.3   Application of the DIP25 ratio 

Regarding the use of the DIP25 index (described in Chapter 4) and in order to expand 

upon this initial investigation, relative abundances of IP25 and ΣDienes obtained for the 

JM09-KA11-GC core were used to calculate ΣDIP25 ratios. (Note: when IP25 was 

absent, e.g. between ca. 9.5 – 1.6 cal. Kyr BP, the ΣDIP25 ratio could not be calculated). 

Further, linear correlations between both biomarkers were calculated for each period 

(Figure 5.12). During P-I and P-II, ΣDIP25 values were fairly constant compared to the 

rest of the core (Figure 5.10c), supported by strong linear correlations between the two 

biomarkers (Figure 5.12e). In contrast, a weaker linear correlation was observed 

between IP25 and ΣDienes during P-III (Figure 5.12c) as shown by highly variable 

ΣDIP25 values (Figure 5.10c). Indeed, the weakest linear correlation between both 

biomarkers for the entire studied period was observed in P-III, possibly suggesting a 

period characterised by highly variable or unstable sea ice conditions, coinciding with a 

rapid warm-cold-warm oscillation recorded in this core and associated to meltwater 

events and found in other studies (e.g. Nesje et al., 2004; Hald et al., 2007). 

Interestingly, a significant change in ΣDIP25 values at the transition between the 

Younger Dryas and Holocene (ca. 11.7 – 9.5 cal. kyr BP; Figure 5.10c) coincided with a 

change in the sea ice conditions (inferred by individual biomarker and proxy data) from 

more stable (and severe) to more variable (and less frequent) seasonal sea ice 

conditions, respectively. This observation further supports the previous suggestion that 

transitions to/from consistent ΣDIP25 values could indicate major changes to the sea ice 

regime (Chapter 4). For P-IV, IP25 was mostly absent and this prevented an adequate 

assessment of the ΣDIP25 ratio and potential correlation for this interval (Figure 5.12b). 

Nevertheless, stable SST (Figure 5.10d), TOC, biomarker and proxy data suggests a 

period of relatively stable (and mild) climatic conditions. During P-V, the ΣDIP25 ratio 
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was relatively variable showing a weaker IP25 – ΣDienes  linear correlation (Figure 

5.12a) compared to P-I and P-II (although stronger compared to P-III), suggesting a 

period characterised by some variability in the sea ice conditions although to a lesser 

extent than during P-III. This is also reflected by (estimated) calculated spring sea ice 

concentration ranges for the two intervals (Figure 5.10e; P-III: 1 – 40%, P-V: 0 – 15%). 

An alternative to the explanations for changes to the ΣDIP25 ratio described above may 

potentially be found in the analytical measurement. In particular, the reliability of the 

measurement of ΣDienes, given their chromatographic co-eluting (Figure 5.5). For 

example, intervals where the two biomarkers are more poorly correlated may simply 

reflect the challenges associated with accurately measuring the C25:2. However, the 

strong correlation observed at least in two intervals (Figure 5.12d and Figure 5.12e), 

suggests that this is not always a major factor, if ever.  
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Figure 5.12: Relative abundances of ΣDienes vs IP25 for the JM09-KA11-GC core during 

different time intervals: (a) ca. 1.6 – 0 cal. kyr BP (17 sediment samples); (b) ca. 9.5 – 1.6 cal. 

kyr BP (7 sediment samples); (c) ca. 11.7 – 9.5 cal. kyr BP (20 sediment samples); (d) ca. 13.1 – 

11.7 cal. kyr BP (18 sediment samples); (e) ca. 15.7 – 13.1 cal. kyr BP (20 sediment samples). 

Relative abundances were normalised to the maximum values of IP25 observed for each dataset.  

 

In addition to ΣDIP25 values obtained from relative abundances (manual peak 

integrations of SIM chromatograms) of both biomarkers (Figure 5.10c and red dotted 

line in Figure 5.13) the ΣDIP25 ratio was also calculated from ΣDienes and IP25 

concentrations (black dotted line in Figure 5.13). Biomarker concentrations include 

factors such as the response factor between the internal standard and the biomarker and 

the sediment mass. Regarding ΣDienes concentrations, these included the response 
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factor between the internal standard (9-OHD) and diene II (Chapter 3), but the unknown 

response factors for the other two C25:2 overlapped with diene II (Figure 5.5) are not 

considered. Both ΣDIP25 profiles (derived from abundances and concentrations) showed 

a relatively similar trend (Figure 5.13), although ΣDIP25 values were higher when 

obtained from concentrations, indicating that the response factor of the other two C25:2 

HBIs did have an effect on the calculation of the ΣDIP25 ratio. Indeed when subtracting 

ΣDIP25 values obtained from biomarker concentrations from those obtained from 

relative abundances (blue line in Figure 5.13) fairly constant DIP25 values were 

observed from ca. 15.7 to 12 cal. kyr BP, after which ΣDIP25 values increased but also 

remained stable up to ca. 9.5 cal. kyr BP. This observation further suggested that 

challenges associated with the correct measurement of C25:2 were not a major factor and 

that both approaches can provide similar outcomes.  
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Figure 5.13: Red dotted line represents the ΣDIP25 ratio (top axis) calculated based on relative 

abundances of ΣDienes and IP25. Black dotted line represents the ΣDIP25 ratio (top axis) 

calculated based on ΣDienes and IP25 concentrations. Blue line indicates ΣDIP25 values (bottom 

axis) obtained when subtracting ΣDIP25 ratio calculated based on concentrations from that based 

on relative abundances. 

 

5.6 Conclusions  

Five distinct periods of varying palaeoceanographic conditions have been identified in 

the Kveithola Trough during the last ca. 15.7 cal. kyr BP based on a multi proxy 

approach. P-I covers the late part of the Oldest Dryas and the Bølling – Allerød 

interstadials (ca. 15.7 – 13.1 cal. kyr BP). The presence of seasonal sea ice throughout 

the whole period, as inferred by the presence of IP25, was observed. During the Bølling 

– Allerød ice edge conditions and enhanced primary productivity probably dominated in 

the study area. P-II comprises the Younger Dryas (ca. 13.1 – 11.7 cal. kyr BP) 

characterised by low primary productivity as a result of seasonal sea ice conditions 
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during severe climatic conditions. A shift in the IP25 concentrations from higher to 

lower represented a change in the sea ice conditions at the Younger Dryas – early 

Holocene boundary. P-III includes the early Holocene (ca. 11.7 – 9.5 cal. kyr BP) 

characterised with less severe seasonal sea ice conditions compared to the Younger 

Dryas. High sterol concentrations together with high abundances of N. labradorica and 

Brigantedinium spp. suggest enhanced primary productivity and sea ice edge conditions 

at, or in close proximity to, the core site. P-IV included the mid-late Holocene (ca. 9.5 – 

1.6 cal. kyr BP) which was characterised by predominantly ice-free and rather stable 

climatic conditions as suggested by all the proxy data (e.g. SST, benthic and planktic 

foraminifera, dinocysts). Low brassicasterol concentrations and low TOC data during 

this interval also suggested a northward movement of the Polar Front and increased 

Atlantic water influence. During P-V (ca. 1.6 – 0 cal. kyr BP) low or absent IP25, 

increasing brassicasterol concentrations and increasing abundance of G. uvula indicates 

the presence of cold waters and sea ice conditions similar to those of the present day. In 

general, the good agreement between all biomarker and proxy data presented for the 

JM09-KA11-GC core further shows the advantage of using a multi-proxy approach for 

palaeo sea ice reconstructions.  

Further, the use of the PIP25 index provided estimates of sea ice concentrations derived 

from satellite data and additional information regarding sea ice conditions. The ΣDIP25 

ratio also allowed to further characterise sea ice conditions. For example, high sea ice 

concentrations and more stable sea ice conditions were found during the Younger Dryas 

(P-II; 50 – 99%) compared to other intervals such as the early Holocene (P-III; 1 – 40%) 

or late Holocene (P-V; 0 – 15%), with less and more variable sea ice conditions. The 

use of a c factor in the PIP25 index has also been shown to greatly influence the 

interpretation of the sea ice conditions, being a potential limitation of this approach. 
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CHAPTER SIX 

 

6 Results (3): Environmental and drift ice conditions in south-east 

Greenland: from recent to ancient sediments. 

6.1 Introduction 

Sea ice in the Arctic has undergone dramatic changes in recent years, with significant 

thinning and reduction of total area (e.g. Polyak et al., 2010). In 2012, the summer sea 

ice loss was at its largest for the 34-year satellite record (Schiermeier, 2012). At the 

same time, there has been an increased loss of mass from the Greenland Ice Sheet (GIS) 

(e.g. Hanna et al., 2008; Rignot et al., 2008; Van de Wal et al., 2008). Many studies 

since the 1970s have aimed to study the variability in climatic conditions and evaluate 

their impact on future climate (e.g. Caseldine et al., 2010; Polyak et al., 2010). The East 

Greenland Shelf is a very sensitive area to changes in sea ice and freshwater outflow 

from the Arctic Ocean (e.g. Jennings and Weiner, 1996). The East Greenland Current 

(EGC), which flows adjacent to the east Greenland shelf, is one of the main sea ice and 

freshwater export pathways from the Arctic Ocean (Aagaard and Coachman, 1968). 

Denmark Strait (Figure 6.1) represents a particularly sensitive area for 

palaeoceanographic and palaeoclimatic studies since it corresponds to where the cold 

and low-saline EGC meets the warm Irminger Current (IC) to form the oceanic Polar 

Front (e.g. Andrews et al., 1998; Andresen and Björck, 2005). Previous palaeoclimatic 

and palaeoceanographic studies have focused on different time-scales, such as the 

Holocene (e.g. Jennings and Weiner, 1996; Jennings et al., 2002b; Andersen et al., 

2004a; Solignac et al., 2006; Andrews et al., 2010; Jennings et al., 2011), the Younger 

Dryas (e.g. Jennings et al., 2006) and older (e.g. Andrews et al., 1998). 
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This chapter describes a further investigation into this sensitive region and is divided 

into two parts. The main aim of the first part of the chapter (Part A) was to carry out a 

multi-proxy based study of three short gravity cores from the outer Kangerdlugssuaq 

Trough, within Denmark Strait, south-east Greenland (PO175GKC cores; Figure 6.1). 

These cores span the last ca. 150 yr, presenting the opportunity to study recent 

oceanographic changes through comparison of compiled proxy data. Comparisons are 

made between a variety of mineralogical determinations and biomarker analyses and 

these are further compared to historical and instrumental data. The outcomes presented 

provide a better understanding of the ice sheet-ocean interactions in the Denmark Strait 

area in recent times. These outcomes, in turn, provided an opportunity to develop a 

model from which longer term palaeoceanographic reconstructions could be tested. 

Thus, the second part of this chapter (Part B) was based on a multi-proxy based study of 

a sediment core, also located within the Kangerdlugssuaq Trough (JM96-1213), over an 

extended timescale (ca. 16.3 – 10.9 cal. kyr BP). The aims of Part B of the chapter were 

1) to test the model provided in Part A for longer term palaeoceanographic 

reconstructions in the same study area, 2) to enable modifications of the model to be 

made (where needed) and finally, 3) to elucidate the palaeoclimatic conditions in the 

Kangerdlugssuaq Trough during the studied interval. 
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6.2 Regional setting 

The two main currents that characterise the Denmark Strait area are the East Greenland 

Current (EGC) and the Irminger Current (IC) (Figure 6.1 and Figure 6.2). The EGC is a 

cold, low-salinity polar water current that flows southward from the Arctic Ocean as an 

extension of the Trans-Polar Drift (TPD) (Figure 6.2) along the Greenland margin 

carrying sea ice and freshwater from the Arctic Ocean. Freshwater and icebergs 

discharged from the Greenland Ice Sheet (GIS) are incorporated to the EGC as it flows 

southwards (Aagaard and Coachman, 1968; Rudels et al., 2002). The IC is a branch of 

the North Atlantic Current (NAC) that flows northward, carrying warm and saline 

Atlantic waters from the south (Figure 6.1 and Figure 6.2). The IC splits close to 

Denmark Strait; one branch flows northwards and clockwise along the west Iceland 

shelf and another is directed southwards and counter clockwise along south-east 

Greenland, entering the Kangerdlugssuaq Trough as an intermediate layer between the 

polar water and the Atlantic intermediate water of the EGC (e.g. Jennings et al., 2011). 

Rudels et al. (2002) showed that most of the Denmark Strait Overflow Water is carried 

by the EGC and that the rest is derived from the Iceland Sea. Changes in the extent of 

the IC have been linked to phases of the North Atlantic Oscillation (NAO) (Hurrell et 

al., 2003) where, in general, positive (negative) NAO result in reduced (increased) IC 

flow (e.g. Myers et al., 2007).  
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Figure 6.1: Location map showing the cores under study: PO175GKC#7, #8, #9 and JM96-

1213. Other locations mentioned in this chapter are: HH11-142/143; MD99-2263. Core sites 

studied by Müller et al. (2011) and mentioned in this chapter are: PS62/020-1; PS62/015-4; 

PS62/017-1 and PS62/012-2. Main surface water currents are the cold East Greenland Current 

(EGC) carried southwards along the east coast of Greenland and the relatively warm Irminger 

Current (IC), a branch of the north Atlantic current that flows northward carrying Atlantic 

waters. Rendland Ice Cap (RIC), Scoresby Sund Fjord (SS), Kangerdlugssuaq Fjord (KF), 

Nansen Fjord (NF), Stykkisholmur (STK). 

 

Kangerdlugssuaq Trough, where the study is based (PO175GKC and JM96-1213 cores), 

is formed as a continuation of the Kangerdlugssuaq Fjord onto the continental shelf 

(Figure 6.1). Kangerdlugssuaq Fjord is a large fjord that drains Kangerdlugssuaq 

glacier, one of the main outlets of the GIS (Luckman et al., 2006), that maintains a 

sikkusaq, a mélange of sea ice and icebergs at the tidewater terminus (Dwyer, 1995). 

Estimated fluxes of iceberg calving across the Kangerdlugssuaq Trough are in the range 

of 30 – 100 km
3
 yr

-1
 (Bigg, 1999). Calving rates of 18 km

3
 yr

-1
 were estimated during 

the 1990s (Andrews et al., 1994). Kangerdlugssuaq Trough and Fjord are directly 
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influenced by modified intermediate Atlantic water linked with inflow of waters from 

the IC (Syvitski et al., 1996; Jennings et al., 2006). The trough reaches the shelf edge at 

450 m water depth. Additionally, 19 tidewater glaciers descend to sea level from the 

Geikie Plateau (Nuttall, 1993) and several large tidewater glaciers contribute icebergs 

into the fjords that lead into Scoresby Sound (e.g. Seale et al., 2011). 

 

Figure 6.2: Simplified map showing the main Arctic Ocean circulation pattern and the potential 

Fe oxide sources (red dotted squares) that reached the study area (yellow star). East Greenland 

Current (EGC), Irminger Current (IC), North Atlantic Ocean (NAC), Beaufort Gyre (BG), 

Transpolar Drift (TPD), Yermak Plateau (YP), Franz Josef Land (FJL), Kangerdlugssuaq Fjord 

(KF). 
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Sea ice forms in the fjords and the coast of east Greenland as landfast ice, which 

contrasts with the belt of drifting sea ice from the Arctic Ocean along the east coast of 

Greenland via Fram Strait (Schmith and Hansen, 2003; Rogers et al., 2005) (Figure 

6.4). The movement of icebergs onto the shelf is restricted by the presence of sea ice. In 

severe years, the presence of a perennial sea ice cover impedes iceberg calving from 

glaciers (Reeh et al., 1999; Reeh et al., 2001; Reeh, 2004). Inspection of Danish 

Meteorological Institute sea ice charts from 2000 to 2009 by Jennings et al. (2011) 

indicated 6.5 – 8.5 months of sea ice cover around core site JM96-1213 with ice-free 

conditions beginning in July/August and new ice cover re-established by late October to 

late December. Similarly, examination of sea ice charts from the US National Ice Center 

from 2000 to 2011 in this study indicates around 7 months of sea ice cover at site 

PO175GKC, with ice-free conditions starting in July or August and newly-formed sea 

ice during January. An example of current sea ice conditions is shown in Figure 6.3, 

which shows the sea ice extent (in tenths) during March and August in 2000. During 

March 2000, the whole study area was covered by sea ice, with higher concentrations of 

sea ice found close to land. In the summer (August 2000) a reduced sea ice cover was 

observed, especially along the Kangerdlugssuaq Trough, due, in part, to the inflow of 

Atlantic waters.  



 

 

157 

 

 

Figure 6.3: Total concentration of sea ice in the area in tenths during March and August AD 

2000, according to the U.S. National Ice Center. The reduced summer sea ice cover along the 

Kangerdlugssuaq Trough is due, in part, to the inflow of Atlantic water. Locations mentioned in 

this chapter are also shown. Rendland Ice Cap (RIC), Scoresby Sund Fjord (SS), 

Kangerdlugssuaq Fjord (KF), Nansen Fjord (NF), Stykkisholmur (STK) 

 

An image taken by the Moderate Resolution Imaging Spectroradiometer (MODIS) on 

NASA’s Aqua satellite shows the modern sea ice conditions (27
th

 March 2010) along 

the south-east coast of Greenland (Figure 6.4a). Drift ice is multiyear ice carried 

southwards as sea ice or icebergs from the Arctic Ocean by the EGC following the east 

coast of Greenland. A magnified image of the study area (Figure 6.4b) shows clearly 

that this area is characterised by two well-delimited sea ice types; landfast sea ice 

formed along the east coast of Greenland and sea ice drifting from further north. 
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Figure 6.4: (a) Moderate Resolution Imaging Spectroradiometer (MODIS) image of the south-

east coast of Greenland sea ice cover, 27
th
 March 2010, indicating land fast ice and the 

predominant southward transit of drift ice along the east coast of Greenland; (b) Magnified 

image of the study area. The red circle represents the region where the short cores (PO175GKC) 

were taken.  
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6.3 Historical data 

Extensive instrumental and observational records of sea ice conditions and air 

temperatures are available for both the Greenland and Iceland side of Denmark Strait.  

In addition, historical observations of “storis” (Figure 6.5b), which is multiyear ice from 

the Arctic Ocean that is advected to south-west Greenland by the EGC exist from 1820 

(Schmith and Hansen, 2003). Observational sea ice data from Iceland goes even further 

back in time (ca. 1000 yr) (Koch, 1945; Björnsson, 1969) and several studies have 

attempted to reconstruct the climate in the last few centuries on a more solid historical 

basis (Ogilvie et al., 2000; Ogilvie and Jónsdóttir, 2000; Ogilvie and Jónsson, 2001). 

Thus, the Koch index represents the sea ice extent observed near the coasts of Iceland 

(Koch, 1945) and a revised version of the Koch index of sea ice cover (Figure 6.5b) has 

been carried out by Wallevik and Sigurjonsson (1998). 

Air temperatures at Stykkisholmur (west Iceland) and Angmagssalik (south-east 

Greenland) are very well correlated (Figure 6.5a), although the Iceland record extends 

further back in time. Significantly, both records show variability during the last century. 

For example, a marked increase in Mean Annual Temperature (MAT) occurs on both 

sides of the Denmark Strait (Figure 6.5a) at ca. AD 1920, peaking at ca. AD 1940 

before decreasing up to ca. AD 1970. The minimum in MAT at ca. AD 1970, has been 

associated with the Great Salinity Anomaly (Dickson et al., 1988; Belkin et al., 1998). 

As expected, the MAT record for East Greenland (as well as Iceland) shows an inverse 

correlation to that of the storis record (Figure 6.5). Thus, higher temperatures coincided 

with less multiyear ice exported from the Arctic Ocean and viceversa. The main 

historical observations during the studied interval are heavy ice years between AD 1860 

– 1920 (e.g. Gray, 1881), less ice after AD 1920, with some “ice years” excursions 

between AD 1960 – 1970 (Figure 6.5). The variability of temperatures and drift ice has 
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also been related to variations in both the NAO (Figure 6.9f) and Arctic Oscillation 

(AO) indices (Thompson and Wallace, 1998; Wang and Ikeda, 2000; Hurrell et al., 

2003; Darby and Bischof, 2004; Hanna et al., 2004). 

 

 

Figure 6.5: (a) Mean annual temperature (MAT) at Stykkisholmur, west Iceland (red line),and 

Angamassalik, south-east Greenland (red line); (b) Indices of sea ice off south-west Greenland 

and in Iceland waters. The red line represents the revised Koch sea ice index (Wallevik and 

Sigurjonsson, 1998) and the blue line corresponds to the storis index (Schmith and Hansen, 

2003). 
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6.4 Part A: Recent sediments: last ca. 150 yr  

6.4.1   Material and methods 

6.4.1.1   Field methods and chronology 

The short gravity core PO175GKC#9 (hereafter GKC#9) which represents the main 

focus of this study, was retrieved from the margin of the Kangerdlugssuaq Trough, 

(66.2˚N, 32.0˚W; water depth 313 m; core length 20 cm; Figure 6.1) on board the 

German research vessel Posseidon in 1990. Two other short gravity cores, 

PO175GKC#7 (hereafter GKC#7; 66.6˚N, 30.8˚W; water depth 325 m; core length 20 

cm; Figure 6.1) and PO175GKC#8 (hereafter GKC#8; 66.4˚N, 30.9˚W; water depth 300 

m; core length 20 cm; Figure 6.1) were obtained during the same cruise. The cores were 

stored (vertically and refrigerated; 4˚C) at the Institute of Arctic and Alpine Research 

(INSTAAR), and were sampled at 1 cm intervals in 2011 and kept in the freezer (-20˚C) 

prior to analysis. Surface sediment material from two multicores offshore East 

Greenland and further north than the GKC cores were collected in 2011 (HH11-142, 

70.36˚N, 18.02˚W; water depth 1689 m and HH11-143, 69.41˚N, 18.39˚W; water depth 

1332 m) aboard the RV Helmer Hanssen as part of the Changing Arctic and sub-Arctic 

Environment (CASE) International Training Network research project. Surface 

sediment material from each multicore was stored frozen (-20ºC) prior to freeze drying 

and analysis in the laboratory.  

An age model for GKC#9 core was developed using 
210

Pb and 
137

Cs radioisotopes 

(Alonso-Garcia et al., 2013). A core top age of 1990 cal. yr AD was assumed and a 

mean linear sedimentation rate of 0.14 cm yr
-1

 was obtained. The chronology obtained 

for GKC#9 was then expanded to the two adjacent cores (GKC#7 and GKC#8) based 

on correlations between calcite wt% records. The calcite wt% showed a similar pattern 
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in GKC#8 and GKC#9, while GKC#7 was rather different (Alonso-Garcia et al., 2013). 

Therefore, GKC#8 and GKC#9 records span the interval from AD 1990 to ca. 1850, 

with a sampling interval of ca. 7 yr cm
-1

 and GKC#7 covers the period from AD 1998 – 

1945.  
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6.4.1.2   Experimental 

Analysis of the IP25, diene II and sterol biomarkers (24-methylenecholesterol and 

brassicasterol) was performed using methods described in Chapter 2.  

Regarding analysis of the GKC cores specifically, and due to the low abundances of all 

biomarkers, extractions were performed on 5 g of dried sediment which required a 

corresponding scaling adjustment of the solvent volumes and chromatographic 

conditions. A complete description of the experimental procedure shown in Figure 6.6 

is given in Chapter 2. 

 

Figure 6.6: Sample extraction flow diagram for lipid biomarkers.
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Briefly, three internal standards were added to each freeze-dried sediment sample (ca. 5 

g) to permit quantification. 7-hexylnonadecane (7-HND, 10 μL; 10 μg mL
-1

) and 9-

octylheptadec-8-ene (9-OHD, 10 μL; 10 μg mL
-1

) were added for quantification of IP25 

and diene II while 5α-androstan-3β-ol (10 μL; 10 μg mL
-1

) was added for quantification 

of sterols. Samples were then extracted using DCM/methanol (3 x 15 mL; 2:1 v/v) and 

ultrasonication. Following removal of the solvent (N2), the resulting total organic 

extracts (TOE) were purified using column chromatography (SiO2; 2 silica columns 

were used for each sample), with IP25 (hexane; 6 mL) and sterols (20:80 

methylacetate/hexane; 6 mL) collected as two separate fractions.  Since the 

concentration of IP25 was generally very low and identification and quantification was 

often difficult due to the abundance of other hydrocarbons, hexane extracts were further 

fractionated into saturated and unsaturated components using glass pipettes containing 

Ag-Ion stationary phase (Supelco discovery
®

 Ag-Ion). Ag-Ion columns were first 

conditioned (5 column volumes acetone, then 5 column volumes DCM) before addition 

of partially purified hexane extracts in DCM (100 μL). Elution of saturated and 

unsaturated hydrocarbons (including IP25) was achieved with DCM (5 column volumes) 

and acetone (5 column volumes), respectively. Analysis of each fraction was carried out 

using GC-MS (Chapter 2). Sterols were derivatised (BSTFA; 50 µL; 70°C; 1h) prior to 

analysis by GC-MS. Analytical reproducibility was determined using a standard 

sediment with known abundances of biomarkers (± 7%).   

Additional biomarker data of surface sediments was obtained from two multicores 

(HH11-142 and 143) and from a box core collected from north-west Iceland  (Andrews 

et al., 2009) (MD99-2263; Figure 6.1). 

Total organic carbon (TOC) of the sediment horizons were determined by Andrew 

Tonkin (Plymouth University) using ca. 10-20 mg of sediment and a LECO 900 CHN 
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analyser. Inorganic carbonates were removed with hydrochloric acid (10%; 1 mL) (Belt 

et al., 2010). Acetanilide was used as a calibration standard.  

 

6.4.2   Results 

A total of 20 downcore sediment samples (1 cm resolution) for each of GKC#8 and 

GKC#9 cores in addition to 2 sediment samples from core GKC#7 were analysed for 

the sea ice biomarker IP25, a structurally related HBI diene II and the sterols 24-

methylcholesta-5,22E-dien-3β-ol (brassicasterol) and 24-methylcholesta-5,24(28)-dien-

3β-ol (24-methylenecholesterol). 

IP25 was identified in 10 out of 20 samples in GKC#9 and in all but 1 sediment sample 

in GKC#8. It was also found in the 2 samples from GKC#7. The temporal abundance 

profiles of IP25 (TOC normalised) were similar for GKC#9 and GKC#8 although 

concentrations were slightly higher in the latter (Figure 6.7a), probably reflecting 

slightly different burial efficiencies between the two core sites. For both GKC#9 and 

GKC#8, IP25 was absent (or below the limit of detection: 0.03 ng g
-1

 dry sed) and 

concentrations were at their minimum values from ca. AD 1850 – 1910, respectively, 

before increasing to ca. AD 1990. In GKC#7, IP25 concentrations were very low (ca. 50 

– 100 ng g
-1

OC; Table 6.1). Similar temporal profiles were observed for diene II in both 

GKC#9 and GKC#8 cores (Figure 6.7b), consistent with this lipid being co-produced by 

Arctic sea ice diatoms (e.g. Belt et al., 2007; Vare et al., 2009; Cabedo-Sanz et al., 

2013). Despite these relative temporal abundance changes, however, absolute 

concentrations of both biomarkers were extremely low, especially when compared with 

those found for locations slightly further north of GKC#9 and GKC#8 along the east 

Greenland margin and from north-west Iceland (Table 6.1).  
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Figure 6.7: Individual temporal concentration profiles of biomarkers (TOC normalised) in the 

GKC#9 (20 sampling points) and GKC#8 cores (18 sampling points): (a) IP25; (b) diene II; (c) 

brassicasterol; (d) TOC (%); (e) Storis index (Schmith and Hanssen, 2003); (f) winter NAO 

index record (Hurrel et al, 2003).The horizontal solid line at AD 1910 indicate a prominent shift 

in sea ice conditions during the last ca. 150 yr.  

 

For example, the maximum IP25 concentration in the current study was 160 ng g
-1

OC 

compared with values of ca. 4 g g
-1

OC from surface sediments from ca. 68˚N; 25˚W 

(Müller et al., 2011) (PS62/015-4; PS62/017-1; Figure 6.8) and ca. 400 ng g
-1

OC from 

ca. 70˚N; 18˚W (HH11-142/143; Figure 6.8; this study). In contrast, IP25 was not 

identified in surface sediments from ca. 65˚N; 32˚W (PS62/012-2; Figure 6.8) (Müller 

et al., 2011). Finally, the concentration of IP25 in surface sediment material from north-

west Iceland (surface grab, MD99-2263; this study) was found to be ca. 2 g g
-1

OC, 

similar to the values found by Müller et al. (2011) for sediments from ca. 70˚N; 18˚W  

(Müller et al., 2011) (PS62/020-1; Figure 6.8). 
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Figure 6.8: IP25 concentrations for surface sediments analysed in the study area, including those 

previously studied by Müller et al. (2011). Rendland Ice Cap (RIC), Scoresby Sund Fjord (SS), 

Kangerdlugssuaq Fjord (KF), Nansen Fjord (NF), Stykkisholmur (STK). 

 

Relative concentration changes to the general phytoplankton biomarker brassicasterol in 

GKC#9 and GKC#8 were similar to those of IP25 and diene II (Figure 6.7c), with 

increases after ca. AD 1910; however, absolute concentrations (GKC#9; ca. 2-4 μg g
-

1
OC) were also extremely low compared to many other Arctic and sub-Arctic locations  

and generally ca. 2 orders of magnitude lower than other locations along the east 

Greenland margin (Müller et al., 2011) and north-west Iceland (MD99-2263;                 

308 ng g
-1

OC; this study) (Table 6.1). In contrast, the lipid biomarker 24-

methylencholesterol was absent or below the limit of detection in all the samples 

analysed for this study.  
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Table 6.1: TOC normalised concentrations of IP25 and brassicasterol in surface and near surface 

sediments from GKC#7, GKC#8 and GKC#9 and other locations near to the area under study. 

Core name 
IP25  

(ng g
-1

 OC) 

Brassicasterol 

(μg g
-1

 OC) 

GKC#8 (0.5 cm depth) 160 9 

GKC#9 (0.5 cm depth) 34 3 

GKC#7 (1.5 cm depth) 50 5 

GKC#7 (5.5 cm depth) 100 4 

HH11-142-MC 310 410 

HH11-143-MC 400 64 

PS62/020-1 2590 117 

PS62/015-4 3880 135 

PS62/017-1 4110 234 

MD99-2263 2000 308 

PS62/012-2 0 111 
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6.4.3   Discussion 

6.4.3.1   Surface sediments: IP25 concentrations versus satellite data 

In order to perform an assessment of IP25 concentrations in surface sediments around 

the Denmark Strait area and to compare them with modern-day sea ice conditions, sea 

ice concentrations (%) were obtained from satellite data from the U.S. National Ice 

Center. A 12 year (2000 – 2011) monthly average sea ice concentration record was 

obtained (Figure 6.9). This sea ice record (satellite) shows that the percentage of sea ice 

for northerly locations (HH11-142/143; PS62/020-1; PS62/015-4 and PS62/017-1) is 

more than ca. 2 times higher compared to the PO175GKC core sites (Figure 6.9). The 

sea ice also extends further into the summer for the northerly locations but normally 

disappears from PO175GKC sites by July/August (and sometimes June). The core 

located in north-west Iceland (MD99-2263; Figure 6.1) also receives some sea ice from 

January to June, although to a lesser extent than that of the other core sites. No sea ice 

has been observed in southerly locations (PS62/012-2) for this interval. 

 
 

Figure 6.9: Sea ice concentration (%) based on a 12 year (2000 – 2011) monthly average 

obtained from satellite data from the U.S. National Ice Center, for each of the locations studied. 
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Satellite data were then compared to IP25 concentrations (TOC normalised) from surface 

sediments (Figure 6.8 and Figure 6.9). IP25 concentrations from the PO175GKC sites 

were lower than for the other locations from further north (HH11-142/143; PS62/020-1; 

PS62/015-4 and PS62/017-1) and IP25 was absent in a core from further south 

(PS62/012-2), consistent with a general reduction in sea ice from north to south along 

east Greenland. However, some anomalies were observed. For example, IP25 

concentrations for north-west Iceland were ca. 10 times higher than those found for the 

PO175GKC core sites and ca. 5 times higher than for the northern locations (HH11-

142/143; Figure 6.8) even though, according to the satellite data, there has been more 

sea ice recorded in the PO175GKC and northern areas compared to north-west Iceland 

(Figure 6.7). Further, IP25 concentrations were much higher in northern locations 

compared to the GKC sites yet this is not reflected by the satellite data where the GKC 

sites show sea ice concentrations that are ca. half those of northern locations (Figure 

6.7). These outcomes suggest that the concentration of IP25 in this area does not simply 

reflect sea ice concentration, but perhaps is a better indicator of more specific sea ice 

conditions such as drift ice input from the north versus less productive or other types of 

ice. In order to examine this hypothesis, comparison of biomarkers with other proxy 

data covering the last ca. 150 yr was carried out (Figure 6.1). 
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6.4.3.2   Recent sediments: General considerations 

6.4.3.2.1    Biomarker data 

In general, and during the whole studied interval (last ca. 150 yr), for both GKC#8 and 

GKC#9 cores, concentrations of IP25 and diene II were very low or not detectable 

(Figure 6.7a and Figure 6.7b). Similarly, brassicasterol and TOC data were also low 

(Figure 6.7c and Figure 6.7d), suggesting that summer productivity has been 

significantly inhibited at GKC#9 and GKC#8 during the last ca. 150 yr, probably due to 

severe sea ice conditions. These observations, together with the outcomes observed by 

assessment of IP25 concentrations in surface sediments and satellite data, suggest that 

any IP25 recorded in this area, was probably advected from elsewhere through drift ice 

and not as a result of local production in first year ice. This conclusion is supported by 

very low brassicasterol concentrations, since poor open water conditions would prevent 

this biomarker being abundant. In contrast, locations further north (HH11-142/143, 

PS62/020-1, PS62/015-4 and PS62/017-1; Figure 6.1) and south (PS62/012-2; ice-free) 

in the drift ice corridor and north-west Iceland (MD99-2263; drift ice only) all represent 

more favourable conditions for phytoplankton production (i.e. high brassicasterol, Table 

6.1). 

 

6.4.3.2.2    Overview of proxy data obtained for the same study 

Other proxy data obtained for the GKC#9 core included a variety of mineralogical 

determinations including quantitative x-ray diffraction (qXRD, provided by Prof. John 

T. Andrews, University of Colorado), ice-rafted debris (IRD) including hematite stained 

grains (HSG, provided by Dr. Montserrat Alonso-García, University of South Florida), 

Fe oxide measurements (provided by Prof. Dennis Darby, Old Dominion University) 

and quartz data (provided by Prof. John T. Andrews, University of Colorado). Detailed 
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interpretations of mineralogical data are discussed by Alonso-Garcia et al. (2013) and 

an overview is given here. 

The qXRD mineralogical data suggest that most of the IRD probably came from Nansen 

and Kangerdlugssuaq Fjords during the last ca. 150 yr. IRD has been used in many 

previous studies as a tracer for sediment transport in sea ice (e.g. Eiríksson et al., 2000; 

Moros et al., 2006; Andrews and Eberl, 2007). Total IRD concentration (Figure 6.10d) 

showed a long-term decreasing trend in ice-rafting towards the present, although several 

peaks in IRD concentration were also recorded. HSG (63-150 µm; Figure 6.10c) are 

quartz and feldspar grains with a red coating composed of Fe oxides, mainly hematites, 

that derive primarily from the red bed deposits in NE Greenland and the Arctic coasts 

(Bond and Lotti, 1995). It is likely that a significant amount of the HSG found in GKC 

samples were wind-blown to the top of terrestrial glaciers or sea ice rather than IRD 

incorporated at the bottom of the glacier. As such, higher abundances of HSG would 

suggest stronger ice export via the EGC. Both, total IRD concentration and relative 

abundances of HSG showed opposite trends on long-term and decadal scales (Figure 

6.10c and Figure 6.10d). Quartz wt% (< 2 mm from XRD; Figure 6.10e) is used as a 

proxy for drift ice transport and grain size (e.g. Andrews and Eberl, 2007; Andrews, 

2011; Andrews and Jennings, 2013). Quartz is generally higher in surface samples from 

Scoresby Sund and further north along the NE Greenland shelf than in Kangerdlugssuaq 

Fjord (Andrews et al., 2010; Andrews, 2011). Similar to the HSG results, the quartz 

data showed an overall increasing trend towards AD 1990 (Figure 6.10c and Figure 

6.10e), possibly associated with the increased calving of tidewater glaciers that followed 

the local and regional Little Ice Age (Geirsdóttir et al., 2000; Reeh et al., 2001; Hall et 

al., 2008). 
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Figure 6.10: Temporal palaeoclimate profiles for the GKC#9 core (20 sampling points) for the 

last ca. 150 yr: (a) IP25 concentrations (TOC normalised); (b) brassicasterol concentrations 

(TOC normalised); (c) Percentage of hematite stained grains (HSG); (d) Total ice-rafted debris 

(IRD) concentration; (e) Quartz data; (f) Storis index; (g) winter NAO. 

 

Source identifications were carried out based on Fe-oxide measurements (Darby, 2003; 

Darby et al., 2012), showing that the dominant sources are east and south Greenland, 

with average inputs of 28% and 27%, respectively (Alonso-Garcia et al., 2013) (Figure 

6.2 and Figure 6.11). Other significant sources are from the Canadian Arctic 

Archipelago, especially Banks and Victoria Islands, and also southeast Ellesmere 

Island, all with an average of 6%. Franz Josef Land and the Yermak Plateau near 

Svalbard also contribute about 4% (Figure 6.11). These observations indicated that 

‘dirty’ sea ice, or sediment entrained ice from the Arctic Ocean, survives through 

Denmark Strait (Alonso-Garcia et al., 2013) (Figure 6.11) carried by the clockwise 

Beaufort Gyre (BG) north of Alaska and Canada, and the TPD in the Eurasian Arctic 

(Russian Siberia) (Figure 6.2). The combination of the BG and TPD constitute the 
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major drift system that removes North American sea ice from the Arctic down to the 

east coast of Greenland. The TPD also carries sea ice from the Eurasian part of the 

Arctic down to the east coast of Greenland. Further, the comparison of Fe grains from 

BG sources in GKC#9 with the NAO records shows an overall weak correlation, 

indicating that the mechanisms that deliver Fe oxides from the Canadian Islands to the 

study area might be more complicated (Alonso-Garcia et al., 2013) (Figure 6.11). 

 

 

Figure 6.11: Temporal palaeoclimate profiles for the GKC#9 core (20 sampling points) for the 

last ca. 150 yr: (a) IP25 concentrations (TOC normalised); (b), (c) and (d) Fe-oxide sediment 

source analysis; (e) Storis index; (f) winter NAO.  
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6.4.3.3   Sea ice and environmental conditions during the last ca. 150 yr 

The comparison of the biomarker data obtained for the GKC#9 core with these other 

mineralogical proxy data together with historical records indicates the occurrence of 

two distinct periods, distinguished by different sea ice and environmental conditions.  

 

6.4.3.3.1     ca. AD 1850 – 1910  

Between ca. 1850 – 1910 AD, IP25 and diene II concentrations for both GKC#8 and 

GKC#9 cores were very low or not detectable (Figure 6.7a and Figure 6.7b). Similarly, 

brassicasterol and TOC data were also low (Figure 6.7c and Figure 6.7d), indicating that 

primary productivity was inhibited, probably due to severe sea ice conditions. 

Alternating periods of higher and lower ice rafting in the area occurred especially 

during this interval, as inferred by the total IRD concentration (Figure 6.10d). It has 

previously been shown that ice streams may accumulate mass at times when perennial 

sea ice conditions prevail, and that when the sea ice breaks up, usually as a consequence 

of ocean temperature changes, an abrupt and strong iceberg calving occurs (Reeh et al., 

2001; Alvarez-Solas et al., 2010). Therefore, periodic positive departures in IRD 

probably resulted from sea ice break-up resulting in strong iceberg calving in glaciers 

from Kangerdlugssuaq and Geikie Plateau (Alonso-Garcia et al., 2013). The strong ice-

rafting events recorded at ca. AD 1860 and ca. AD 1885 (high IRD; Figure 6.10a) 

occurred slightly after MAT increases in Stykkisholmur (north-west Iceland) (Figure 

6.10d and Figure 6.5a) supporting the hypothesis that ice break-up occurred as a result 

of oceanic warming (Alonso-Garcia et al., 2013). The increased ice cover from the 

strong calving probably prevented biological productivity during those events as shown 

by low brassicasterol concentrations (Figure 6.7c). When comparing the IP25 data with 

the Storis record, positive fluxes in the Storix index were mainly observed before AD 
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1910 (Figure 6.7e), suggesting that high fluxes of multi-year ice were exported from the 

Arctic Ocean. However, low or absent IP25 concentrations (Figure 6.7a) suggested that 

even if higher concentrations of sea ice were being exported from the Arctic Ocean 

along the east coast of Greenland, little or no sea ice reached the study area, due to the 

prevalence of severe local sea ice conditions. Historical records also suggest colder 

conditions and higher sea ice presence before AD 1920 (e.g. Gray, 1881; Ogilvie and 

Jónsson, 2001). Interestingly, a drift ice signal (inferred from IP25 concentrations) from 

a sediment core from north-west Iceland (MD99-2263; Figure 6.1) (Andrews et al., 

2009) shows a downward trend from AD 1850 to more recent times, and follows the 

storis, showing an opposite trend to the GKC cores. This suggests that, even if sea ice 

flux from the Arctic was stronger before AD 1910, it was not recorded in the GKC sites, 

but was observed in north-west Iceland. Enhanced Arctic ice has been related to the 

conditions during the NAO positive phase (Kwok and Rothrock, 1999), whereas 

conditions during the negative phase of the NAO have been related to an increased 

influence of the IC in Denmark Strait and north of Iceland (Blindheim and Malmberg, 

2005; Jennings et al., 2011). However, the NAO record does not show any clear pattern 

with the drift ice proxies (IP25, HSG and Fe oxides; Figure 6.7, Figure 6.10 and Figure 

6.11) before AD 1910, as the study site was covered by perennial ice. This likely 

illustrates the more generic nature of the NAO in contrast to specific local 

measurements such as the drift ice proxies studied in the GKC area.  
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6.4.3.3.2     ca. AD 1910 – 1986  

After ca. AD 1910, IP25 and diene II concentrations increased towards the present 

(Figure 6.7a and Figure 6.7b) suggesting that more drift ice reached the study area. 

Brassicasterol concentrations also showed a general increasing trend (Figure 6.7c), 

although the values for the GKC cores are amongst the lowest reported from cores from 

the same area (Table 6.1). These observations suggest that sea ice conditions during this 

period were less severe than during before ca. 1910, although still only short periods of 

open water likely occurred, similar to those observed today, as shown by the summer 

sea ice distribution during August AD 2000 (Figure 6.3). Lower total IRD 

concentrations (Figure 6.10d), higher percentages of HSG (Figure 6.10c) and lower 

storis (Figure 6.10f) compared to those from before AD 1910, suggests that although 

less drift ice was carried out through the EGC, a greater amount of it reached the core 

site. Alonso-Garcia et al. (2013) also observed a larger influence in the input of 

sediment from distant sources after AD 1910, as inferred by the comparison of 

mineralogical data with the AO index, indicating that more drift ice (as icebergs 

containing sediments together with sea ice) was transported to the core site from the 

Arctic Ocean (Figure 6.11). Increased quartz and HSG after AD 1910 have also been 

related to a possible increase in calving of tidewater glaciers (e.g. Reeh et al., 2001; Hall 

et al., 2008) following the local and regional Little Ice Age (Alonso-Garcia et al., 2013). 

Overall, the main sediment sources, as given by Fe oxide data, are east and south 

Greenland and, to a minor extent, the Canadian Arctic, Franz Josef Land, Yermak 

Plateau and Svalbard areas (Figure 6.11). This observation confirmed that Arctic sea ice 

reached the GKC sites (Alonso-Garcia et al., 2013). It is known that IP25 is formed in 

sea ice from the Canadian Arctic (Vare et al., 2009; Belt et al., 2010; Brown et al., 

2011) and northern Barents Sea (Stein et al., 2012). Hence, any IP25 formed there could 

have been transported as drift ice. However, the extent to which multi-year ice, carried 
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via the BG and TPD along the east coast of Greenland, can transport IP25 is unknown. 

Largest peak contributions of Fe oxides in the Canadian Islands were observed at ca. 

AD 1865, 1895 and 1960 (Figure 6.11). However, IP25 was absent in core GKC#9 

before AD 1910, showing an overall weak correlation to the Fe oxide data (Figure 

6.11). The generic nature of Fe oxide measurements for source identification and the 

specificity of IP25 to sea ice prevented any further comparison. The alternation of high 

and low total IRD concentration (Figure 6.10d) together with the presence of IP25 

throughout this period, also suggested that alternating periods of “mixed” conditions 

between iceberg discharge from Kangerdlugssuaq/Nansen Fjords (high IRD) and drift 

ice from the Arctic (present IP25, high HSG) could have prevailed during this period. 

 

6.4.4   Conclusions 

Two distinct periods with different environmental and drift ice conditions have been 

identified on the east Greenland shelf (ca. 66˚N) during the last ca. 150 yr based on a 

comparison of biomarker data measured in the current study with other proxy and 

observational data obtained from other researchers. 

During the first interval (ca. AD 1850 – 1910; Figure 6.12a), it is proposed that 

perennial sea ice conditions prevailed in the south-east Greenland coast and very low 

biomarker abundances indicate that biological productivity was very low or absent. 

Further, even if high fluxes of Arctic sea ice were being exported along the east coast of 

Greenland as drift ice (high Storis), the presence of local severe sea ice conditions 

prevented any drift ice from reaching the study area (low biomarker data and low HSG), 

and was limited mainly to north-west Iceland. Some abrupt and strong iceberg calving 

events in the glaciers in Kangerdlugssuaq Fjord and Geikie Plateau were also recorded 
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in this area during this period (high IRD). Nevertheless, biological productivity during 

those strong calving events was also limited. 

 

Figure 6.12: Schematic representations of sea ice conditions for the GKC study sites during the 

two intervals differentiated: (a) AD 1850-1910 and (b) AD 1910-1986. 

 

During the second interval (ca. AD 1910 – 1986; Figure 6.12b), the biomarker and other 

proxy data suggest that sea ice conditions were less severe, coastal sea ice became more 

seasonal, and occasional open water conditions permitted limited biological 

productivity. Although lower fluxes of Arctic sea ice were exported from the Arctic 

Ocean compared to the first interval (low Storis), more of this drift ice reached the study 

area (higher IP25 and HSG). Interestingly, the proposed environmental and sea ice 

conditions during this interval more closely resemble those of present-day conditions as 

shown by satellite data (Figure 6.3).  

A number of environmental factors need to be considered in the south-east Greenland 

area, such as the strength and temperature of the IC, atmospheric conditions, and sea ice 

conditions (landfast ice formation, iceberg calving from Greenland and drift ice 

(a) (b) 
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transported from the Arctic Ocean by the EGC). The complexity between these factors 

makes palaeoceanographic studies very challenging. Nevertheless, the complementary 

and individual information that all of the proxies used in this study provide, as well as 

historical records, have allowed some specific and variable oceanographic conditions to 

be deciphered.  
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6.5 Part B: Ancient sediments: ca. 16.3 – 10.9 cal. kyr BP 

6.5.1   Introduction  

During the Last Glacial Maximum (LGM; ca. 26.5 – 19 cal. kyr BP), ice sheets covered 

large areas in northern latitudes (e.g. Hughes et al., 1977; Clark et al., 2009; Clark et al., 

2012). The Greenland Ice Sheet (GIS) represents the only remaining ice sheet that 

survived the climate warming after the LGM in the northern hemisphere (a review is 

given by Kelly and Long, 2009). The East Greenland continental margin, was probably 

covered by a continental ice sheet with a more or less closed sea ice cover during the 

LGM (Kellogg et al., 1978; Kellogg, 1980) and the same observations were inferred in a 

study from south west Greenland (ca. 65˚N) (Roberts et al., 2008). Previous studies 

based around southern Greenland have shown that such conditions lasted until ca. 15 

cal. kyr BP (Funder and Hansen, 1996), at which time the break-up of the GIS probably 

began (Nam et al., 1995; Funder and Hansen, 1996; Wohlfarth et al., 2008). 

The main aim of this investigation was to test the model proposed in part A of this 

chapter in the Kangerdlugssuaq area after the termination of the LGM. Thus, there are 

two considerations to take into account: can the model (previously proposed to explain 

the biomarker and proxy data for GKC cores) be used directly for longer timescales, or 

will it require some adaptation? With the aim of answering this question, a sediment 

core (JM96-1213; Figure 6.1), located close to the GKC cores, also in the 

Kangerdlugssuaq Trough, covering the mid-late Oldest Dryas – Bølling-Allerød – 

Younger Dryas periods was studied.   
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6.5.2   Material and methods 

6.5.2.1   Field methods and chronology 

The core JM96-1213 (67.17˚N, 30.57˚E; water depth 557 m; core length 540 cm; Figure 

6.1), was recovered from the middle basin of the Kangerdlugssuaq Trough on board the 

R/V Jan Mayen in October 1996 and stored in situ (5˚C) until sampled for analysis. 

Individual sub-samples for biomarker analysis were taken at 5 cm intervals (15 – 115 

cm) and at 5 – 40 cm intervals (120 – 493 cm), freeze-dried and stored at -20˚C prior to 

extraction. Samples were provided by Prof. John T. Andrews and Dr. Anne Jennings 

(University of Colorado). 

A total of 6 AMS 
14

C age determinations on foraminifers, molluscs and bryozoans were 

performed on JM96-1213 core previously by Jennings et al. (2002a), who also used  

tephrostratigraphy such as identification of the Vedde Ash tephra horizon identified at 

99 – 101 cm (time marker corresponding to 11.980 ice-core yr; Grönvold et al., 1995). 

A final age model was then constructed by Jennings et al. (2006). A 400 yr marine 

reservoir correction was applied to all radiocarbon dates. The 
14

C dates were calibrated 

to calendar years using Calib version 4.3 (Stuiver et al., 1998). A third-order polynomial 

fit was then applied to the calibrated 
14

C dates (2 AMS 
14

C dates were excluded from 

the age model) and tephra markers (Jennings et al., 2006) resulting in linear 

sedimentation rates of ca. 5 – 30 cm kyr
-1

. Sampling and analysis was carried out at 5 – 

40 cm intervals, corresponding to an effective age resolution of ca.  30 – 400 yr. 

  



 

 

183 

 

6.5.2.2   Experimental 

Analysis of biomarkers (hydrocarbons and sterols) required extraction of lipids from the 

sediment samples and separation into individual fractions prior to GC-MS analysis. A 

complete description of the experimental procedure shown in Figure 6.13 is given in 

Chapter 2 (Methods). 

Figure 6.13: Sample extraction flow diagram for lipid biomarkers. * Two different approaches 

regarding Ag-Ion chromatography were adopted depending on level of purification and 

biomarkers required for GC-MS analysis. The use of approach (1) allowed the analysis of IP25 

only. Approach (2) allowed the analysis of all HBIs under study using reduced amounts of Ag-

Ion phase (more information is given in Chapter 2). 
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+ 
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Extraction with DCM:Methanol 

(2:1 v/v) 

Chromatography (SiO2:hexane) 
Chromatography 
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2
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C25:3, 9-OHD) 
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Briefly, following addition of the internal standards for quantification (7-

hexylnonadecane; 10 μL; 10 μg mL
-1

 and 9-octylheptadec-8-ene; 10 μL; 10 μg mL
-1

), 

the freeze dried sediments were extracted with DCM/Methanol (2:1 v/v; 3 x 3 mL) and 

then purified by open column silica chromatography with hexane (6 mL) used to yield 

apolar lipids. Methylacetate/hexane (20:80, 6mL) was then used to elute sterols. In 

some cases, the identification or quantification of some HBIs in these partially purified 

extracts was made difficult due to the low concentrations and the occurrence of other 

highly abundant co-eluting organic compounds that prevented further concentration of 

the extracts. Depending on which biomarkers were needed for analysis (Figure 6.13), 

two different approaches were adopted (detailed in Chapter 2, Section 2.5) using Ag-Ion 

chromatography material. All biomarker concentrations (μg g
-1

 dry sediment) were 

converted to fluxes (μg cm
-2

 kyr
-1

) and normalised to TOC content (μg g
-1

 OC) (Chapter 

2). TOC (wt. %) data were provided by Dr. Anne Jennings and Prof. John T. Andrews 

(University of Colorado).  

 

6.5.3   Results 

Overall, a total of 43 downcore sediment samples were analysed for the IP25 biomarker, 

the structurally related HBI diene II and two sterol biomarkers, 24-methylcholesta-

5,22E-dien-3β-ol (brassicasterol) and 24-methylcholesta-5,24(28)-dien-3β-ol (24-

methylenecholesterol) commonly found in marine algae (Volkman et al., 1998). IP25 

was absent (or below the limit of detection: 0.54 ng g
-1

 dry sed) in 5 samples between 

ca. 16.3 – 15.2 cal. kyr BP (Figure 6.14a), after which IP25 was present, showing an 

increasing trend up to ca. 14.3 cal. kyr BP. Highest IP25 fluxes recorded for this record 

were observed between ca. 14.3 – 13.8 cal. kyr BP. After ca. 13.8 ca. kyr BP, a long-

term decreasing trend in IP25 fluxes was observed, before disappearing at ca. 12.5 cal. 
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kyr BP. IP25 remained absent up to ca. 12.2 cal. kyr BP, after which, it was present 

again up to ca. 10.9 cal. kyr BP, although lower fluxes, compared to the rest of the 

record, were observed. A short-term (one data point only) increase in IP25 flux was also 

observed at ca. 11.7 cal. kyr BP (Figure 6.14a). The flux profile of the structurally 

related HBI diene II was similar to that of IP25 (Figure 6.14b), suggesting co-production 

of diene II and IP25 by sea ice diatoms, as suggested previously (Belt et al., 2007; Belt et 

al., 2008; Vare et al., 2009; Brown, 2011). 

 

 

Figure 6.14: Individual temporal palaeoclimate profiles for the JM96-1213 core: (a) IP25 fluxes; 

(b) diene II fluxes; (c) 24-methylenecholesterol fluxes; (d) brassicasterol fluxes; (e) TOC (wt. 

%); (f) IRD (> 2mm). The horizontal solid and dashed lines at ca. 15.2 cal. kyr BP and ca. 14 

cal. kyr BP, respectively, represent shifts in the sea ice conditions. The rectangle between ca. 

12.8 – 11.5 cal. kyr BP represent the Younger Dryas cold stadial. The diamonds mark the AMS 
14

C dates and the arterisk indicates the Vedde Ash tephra horizon used in the age model. 
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Regarding the two sterols analysed during this study (24-methylenecholesterol and 

brassicasterol), the brassicasterol flux profile was similar to those of IP25 and diene II 

(Figure 6.14d). This observation coincides with that seen in the previous study from 

Kangerdlugssuaq Trough during the last ca. 150 yr (GKC#8 and GKC#9; Figure 6.7). 

Unlike the previous study carried out on the GKC#8 and GKC#9 cores, however, where 

24-methylenecholesterol was absent, this biomarker was present (Figure 6.14c), with a 

profile that also resembled somewhat those of brassicasterol, IP25 and diene II. 

 

6.5.4   Discussion 

Previously, a number of studies have focused on the Denmark Strait area over different 

timescales. These include, for example, reconstructions of palaeoclimate variability 

during the Late Quaternary (e.g. Kuijpers et al., 2003) and the Holocene (e.g. Jennings 

and Weiner, 1996; Jennings et al., 2002b; Andersen et al., 2004a; Andersen et al., 

2004b; Solignac et al., 2006; Jennings et al., 2011; Andresen et al., 2013). Some other 

studies have also addressed the provenance of sediments deposited in this area, as 

inferred by mineralogical data such as IRD (e.g. Andrews et al., 1998; Andrews, 2000; 

Linthout et al., 2000; Andrews et al., 2010; Andrews and Eberl, 2012).  

Further, the proxy-based study described in Part A of this chapter focused on the 

palaeoclimatic conditions in the Kangerdlugssuaq Trough (GKC cores), during the last 

ca. 150 yr. A model that explained variations in different proxy data and related this to 

different environmental settings was introduced. As such, two different scenarios with 

different environmental conditions were derived from this model (Figure 6.12). 

Nevertheless, this was reconstructed during a relatively short time period and needed to 

be further tested for longer term reconstructions. As such, a sediment core (JM96-1213; 
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Figure 6.1) located close to the GKC cores and that covered the period between ca. 16.3 

– 10.9 cal. kyr BP was studied. This core, has previously been studied by Jennings et al. 

(2006), and was used to focus on the reconstruction of climatic conditions at the 

Kangerdlugssuaq Trough area after the termination of the LGM using benthic and 

planktic foraminifera, as well as oxygen stable isotopes (δ
18

O) and IRD data. In 

addition, Jennings et al. (2006) provided evidence for freshwater forcing from the GIS 

during the Younger Dryas.   
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6.5.4.1   Sea ice variability between ca. 16.3 – 10.9 cal. kyr BP in the 

Kangerdlugssuaq Trough 

First of all, it is noted that TOC was low (ca. 0.1 – 0.4%) as well as low biomarker data 

for the JM96-1213 core during the whole studied period (ca. 16.3 – 10.9 cal. kyr BP; 

Figure 6.14). This indicates that primary productivity was very low in the 

Kangerdlugssuaq Trough. This observation suggests that this area experienced severe 

sea ice conditions, probably due to the close proximity of this core site to the Greenland 

margin which was still under the influence of the retreating GIS after the LGM (e.g. 

Jennings et al., 2006). 

Based on the age model, biomarker data and comparisons with existing proxy data (e.g. 

IRD, stable isotopes), in addition to the model suggested in Part A of this chapter, it is 

proposed that the palaeoceanographic conditions at the JM96-1213 core location 

covering the period between ca. 16.3 – 10.9 cal. kyr BP can be divided into four main 

periods (Figure 6.14) (P-IV excluded from any interpretation; Section 6.5.4.1.4). A 

schematic representation of the sea ice conditions during the studied interval is shown in 

Figure 6.15. Thus, a description of the environmental conditions during each interval 

will be discussed here, alongside a comparison with the model proposed previously 

(Chapter 6, part A). 
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Figure 6.15: Schematic representations of sea ice conditions for the JM96-1213 study site 

(green square) during the five distinctive periods characterised: (a) P-I: ca. 16.3 – 15.2 cal. kyr 

BP; (b) P-IIa: ca. 15.2 – 14 cal. kyr BP; (c) P-IIb: ca. 14 – 12.8 cal. kyr BP. The shaded area 

indicates a possible cooling between ca. 13.4 – 13.2 cal. kyr BP ; (d) P-IIIa: ca. 12.8 – 12.2 cal. 

kyr BP; (e) P-IIIb: ca. 12.2 – 11.5 cal. kyr BP.   
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6.5.4.1.1     Period I: 16.3 – 15.2 cal. kyr BP (mid-late Oldest Dryas) 

Period I (P-I) corresponds to the mid-late part of the Oldest Dryas (ca. 16.3 – 15.2 cal. 

kyr BP; Figure 6.14). During P-I, IP25 and 24-methylenecholesterol were absent (Figure 

6.14a and Figure 6.14c), while diene II, brassicasterol and TOC (ca. 0.14 – 0.25%)  

were very low (Figure 6.14b, Figure 6.14d and Figure 6.14e). These data suggest that 

primary production was especially limited during this period, probably due to severe sea 

ice conditions. In addition, IRD was mainly absent (Figure 6.14f) and δ
18

O (NPS) 

values of ca. 2.4% were recorded (Figure 6.16d), which further suggests that severe and 

cold conditions with a near-permanent to permanent ice cover existed in the area. This 

would have prevented drift ice from reaching the area (IP25 absent) as well as iceberg 

calving of nearby fjords (IRD absent) (e.g. Kangerdlugssuaq Fjord and Geikie Plateau). 

Previous studies based around this area have shown that the GIS extended offshore onto 

the continental shelf and that this continued until ca. 15 cal. kyr BP at least (Nam et al., 

1995; Funder and Hansen, 1996; Kelly and Long, 2009). As such, the biomarker and 

proxy data also point to the presence of a (thick) permanent ice cover (as a result of the 

expanded GIS) in the Kangerdlugssuaq Trough during P-I (Figure 6.15a). These 

conditions would also have severely limited primary productivity (low TOC). 

When comparing these results with the initial model (Part A of this chapter; Figure 

6.12), the scenario of permanent or perennial ice cover with severe sea ice conditions 

(year round) observed during P-I was also suggested during AD 1850 – 1910 for the 

same region. However, it is worth pointing out that the environmental conditions 

surrounding the Kangerdlugssuaq Trough area were rather different between these 

periods. During P-I, this area was under the influence of the (thick) GIS, while between 

AD 1850 – 1910, this area was characterised by a less thick landfast sea ice cover. As 

such, no IRD was recorded during P-I, suggesting that the ice did not break-up and no 
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calving events occurred, unlike that seen in the initial model (AD 1850 – 1910). 

Therefore a further adaption to the model was required to consider this scenario (Figure 

6.15a) in which all biomarkers were absent or very low in addition to absent IRD. 

 

6.5.4.1.2     Period II: 15.2 – 12.8 cal. kyr BP (Bølling – Allerød) 

P-II includes the Bølling – Allerød interstadials. This period is further divided into two 

sub-periods according to a pronounced change in IRD delivery (> 2 mm) recorded at ca. 

14 cal. kyr BP (Figure 6.14f): P-IIa (ca. 15.2 – 14 cal. kyr BP) and P-IIb (ca. 14 – 12.8 

cal. kyr BP). IP25 first appeared in the record at ca. 15.2 cal. kyr BP (Figure 6.14a). 

Previously, a study by Johnsen et al. (1992) pointed to the end of a long, cold period 

(LGM) at ca. 15 cal. kyr BP, as observed in the oxygen isotope data from the Renland 

ice core in Greenland, and a period when the break-up of the GIS probably began (e.g. 

Nam et al., 1995; Funder and Hansen, 1996; Wohlfarth et al., 2008).  Jennings et al. 

(2002a) also observed that the GIS margin had retreated landward of Kangerdlugssuaq 

Trough and Grivel Basin by ca. 15 cal. kyr BP. These observations are consistent with 

the IP25 and diene II data, as the presence of these biomarkers after ca. 15.2 cal. kyr BP 

probably signified the beginning of less severe climatic conditions compared to P-I with 

delivery of some drift ice to the study area.  

Overall, the presence of IP25 and diene II during the Bølling – Allerød (ca. 15.2 – 12.8 

cal. kyr BP; P-II) with varying fluxes (Figure 6.14a and Figure 6.14b), suggests a period 

characterised by variability in the sea ice conditions and delivery of drift ice. Changes in 

the influence of Atlantic Intermediate Waters (AIW) were found to affect the variability 

of hydrographic and sea ice conditions in this area (e.g. Jennings et al 2006). For 

example, the presence of IP25 during ca. 15.2 – 14 cal. kyr BP (P-IIa) with highest IP25 

fluxes for the entire record observed at ca. 14.3 cal. kyr BP coincides with very high 
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IRD (Figure 6.14a and Figure 6.14f). Jennings et al. (2006) attributed the enhanced IRD 

input in this core as derived by increasing influence of AIW, melting of the GIS and 

iceberg calving. The presence of IP25, together with high IRD, suggests a period with 

“mixed” conditions, where sediments deposited in the seafloor were derived from 

icebergs produced locally (due to melting of the GIS) as well as icebergs and sea ice 

(containing IP25 and diene II) from the Arctic Ocean carried southwards by the EGC. In 

addition to high IP25, higher fluxes were also observed for the sterol biomarkers (24-

methylenecholesterol and brassicasterol, Figure 6.14c and Figure 6.14d). This 

observation may potentially indicate a marginal ice zone scenario, as high primary 

productivity has previously been related to sea ice edge conditions  (Smith et al., 1985; 

Sakshaug, 1997). However, the observation of high IRD being released from the 

adjacent south-east Greenland fjords suggests this is not the case, as this scenario would 

prevent any icebergs from being released and low or absent IRD would be observed. In 

addition, overall TOC data values were very low (< 0.4%; Figure 6.14e), which is not 

consistent with a sea ice edge scenario. Instead, it is proposed that, during P-IIa, the 

increasing influence of the AIW, probably caused the retreat of the GIS (Jennings et al., 

2006) which, in turn, triggered the release of high fluxes of icebergs (high IRD). 

Increasing IP25 and diene II fluxes also suggest increasing drift ice from the Arctic 

Ocean. At the same time, increasing sterol fluxes (but still low) are consistent with 

partial open water conditions during the summer although biological productivity was 

still limited (low TOC) due to the presence of icebergs and sea ice at the core site 

(Figure 6.15b).  

Mixed conditions between iceberg calving and drift ice observed in the model described 

in Part A (Figure 6.12) were also recorded during P-IIa (presence of IP25, diene II and 

IRD with varying fluxes). However, some further adaptions were required to account 

for different environmental conditions. For instance, during P-IIa, this site was greatly 
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influenced by the melting of the GIS after the LGM (Figure 6.15b), compared to 

modern conditions (ca. last 150 yr)  and therefore a greater amount of icebergs calved 

from the south-east Greenland margin (high IRD) were observed, instead of the slow 

iceberg calving that was recorded between AD 1910 – 1986 (Figure 6.12). 

Between ca. 14 – 12.8 cal. kyr BP (P-IIb), IP25 and diene II were still present showing a 

decreasing trend towards ca. 12. 8 cal. kyr BP (Figure 6.14a and Figure 6.14b). Unlike 

P-IIa, where IRD was very high, IRD was clearly lower (although still present) during 

P-IIb, (Figure 6.16c) which could indicate that fewer icebergs were being discharged 

from nearby locations. A pronounced light isotope event was recorded between ca. 13.4 

– 13.2 cal. kyr BP (Figure 6.16d). It has previously been suggested that the increased 

melting of the retreating ice sheet resulted in reduced sea surface salinity, which would, 

in turn, have promoted the formation of sea ice by changing the freezing point of the 

ocean surface. The resulting brine rejection and subsequent increased salinity would 

lead to the sinking of surface water, resulting in a depletion of δ
18

O (Dokken and 

Jansen, 1999; Jennings et al., 2006; Knudsen et al., 2008). Interestingly, this light 

isotope spike (Figure 6.16d), coincides with a small decrease in all the biomarker data 

during this interval (ca. 13.4 – 13.2 cal. kyr BP; Figure 6.14). Indeed, the presence of 

locally produced sea ice would have limited drift ice from reaching the area, as 

observed from current environmental conditions (Figure 6.4) and therefore, a reduction 

of IP25, diene II and sterol fluxes.  

Overall, P-IIb was still characterised by the influence of the GIS retreat, as recorded 

between ca. 13.4 – 13.2 cal. kyr BP (Jennings et al., 2006), which caused an increased 

freshwater influence and sea ice cover that limited IRD and biomarkers. For the rest of 

the interval this phenomenon could also be occurring but to a lesser extent. Therefore 

some drift ice reached the area (IP25 and diene II present) as well as some IRD being 
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deposited, although less than during P-IIa. Primary productivity was still rather limited 

(low sterols, low TOC). 

Further, the environmental conditions inferred during P-IIb (Figure 6.15c) were to some 

extent different from those reported previously by the model described in Part A, as the 

Kangerdlugssuaq Trough area was still under the influence of the melting GIS. Iceberg 

calving from nearby locations and drift ice reached the core site, although to a lesser 

extent compared to P-IIa. A short-term cooling period was observed between ca. 13.4 – 

13.2 cal. kyr BP (shaded area in Figure 6.15c). 

 

6.5.4.1.3     Period III: 12.8 – 11.5 cal. kyr BP (Younger Dryas) 

P-III corresponds to the Younger Dryas cold stadial (ca. 12.8 – 11.5 cal. kyr BP). 

Overall, the IP25 profile in JM96-1213 is clearly different to those previously observed 

during the Younger Dryas in two sediment records from north-western Norway 

(Chapter 4, Figure 4.4) and western Barents Sea (Chapter 5, Figure 5.7). This is 

potentially because the IP25 signal in the Denmark Strait area represents mainly 

advected drift ice from the north rather than locally produced sea ice, as was likely in 

the other studies. At the onset of the Younger Dryas (ca. 12.8 cal. kyr BP) both IP25 and 

diene II were present (only one data point), yet low fluxes were observed (Figure 

6.14a). The onset of the Younger Dryas coincided with a spike of relatively high IRD 

(Figure 6.14f), suggesting that the AIW was rather strong during this period, producing 

rapid iceberg calving (Jennings et al., 2006) that would only have allowed little drift ice 

to reach the area (low IP25) and low primary productivity (low TOC and low 

brassicasterol). Indeed, Jennings et al. (2006) provided evidence for freshwater forcing 

from the GIS during the last deglaciation, and linked this freshwater event to the 

Younger Dryas abrupt cooling. Between ca. 12.6 – 12.2 cal. kyr BP (P-IIIa) all 
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biomarkers were absent or extremely low (Figure 6.14), pointing to more severe sea ice 

conditions during this period. Interestingly, a further light isotope event occurred at this 

time (Figure 6.16d), coinciding with an increase in IRD (Figure 6.14f). This event was 

also thought to be derived by a glacial meltwater event onto the shelf during retreat of 

the GIS (Jennings et al 2006) similar to that recorded during P-IIb. Therefore, a 

pronounced meltwater event from the GIS (larger than the previous recorded meltwater 

event at ca. 13.4 – 13.2 cal. kyr BP) resulted in reduced surface salinity which in turn 

promoted the formation of sea ice. Primary productivity was mainly absent during this 

period (as evidenced by low brassicasterol and low TOC), all supporting a near-

permanent sea ice scenario during this interval. Periodic positive departures in IRD 

probably resulted from eventual sea ice break-up resulting in strong iceberg calving in 

glaciers from Kangerdlugssuaq and Geikie Plateau (Alonso-Garcia et al., 2013). After 

ca. 12.2 cal. kyr BP and up to the end of the Younger Dryas (ca. 11.5 cal. kyr BP; P-

IIIb) IP25 was present and increased (although with very low fluxes), suggesting that the 

seasonal opening of waters allowed some drift ice to reach the area. A rapid increase in 

IP25 and diene II was observed at ca. 11.6 cal. kyr BP, which could indicate a period 

with significantly increased drift ice in the area (or in situ production), although any 

attempt at interpretation cannot be considered reliable on the basis of one data point. 

Previous studies around the southern Greenland area have shown anomalously warm 

conditions during the Younger Dryas compared to other north Atlantic regions. For 

example, a study based on a lake from the southern tip of Greenland (ca. 59˚N) 

suggested cold and dry winters during the Younger Dryas (Björck et al., 2002). In 

contrast, summers were suggested to be warmer due to increased summer insolation. 

Further, the surrounding ocean was thought to be ice covered most of the year as shown 

by a minimum of the sea-spray-indicating diatom Achnanthes conspicua (Björck et al., 

2002). Similarly, Kuijpers et al. (2003) carried out a study (ca. 62˚N) to the south of 
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Kangerdlugssuaq Trough and did not find evidence of a return to extreme glacial 

conditions during the Younger Dryas. A previous study of the JM96-1213 core, by 

Jennings et al. (2006) also revealed the influence of Atlantic bottom waters during this 

period. However, the strong dominance of the polar foraminifera species 

Neogloboquadrina pachyderma suggested the existence of cold surface waters. 

Therefore, low biomarker fluxes between ca. 12.8 – 12.2 cal. kyr BP (P-IIIa, Figure 

6.15d) may indicate the existence of locally produced sea ice conditions (permanent or 

near-permanent sea ice cover) with occasional sea ice retreat and rapid iceberg 

discharges (Alonso-Garcia et al., 2013) and scarce or infrequent drift ice reaching the 

area. In contrast, during the second part of the Younger Dryas (ca. 12.2 – 11.5 cal. kyr 

BP, P-IIIb, Figure 6.15e), sea ice conditions were less severe compared to the early 

Younger Dryas, characterised by intrusion of drift ice, and seasonal opening of waters 

during summer. This is in agreement with warmer Younger Dryas conditions found in 

previous studies around southern Greenland (Björck et al., 2002; Kuijpers et al., 2003; 

Jennings et al., 2006). The differences in seasonality observed between different areas 

of southern Greenland studies however, can also be due to local weather conditions as 

previously stated by Björck et al. (2002). 

Interestingly, during P-IIIa and P-IIIb (Figure 6.15) the outcomes were very similar to 

those obtained by the model proposed in Part A. In the first place, during P-IIIa, more 

perennial sea ice and occasional sea ice retreat with rapid iceberg discharges was 

suggested (Figure 6.15d), with similar environmental conditions to those observed 

between AD 1850 – 1910 in the GKC cores (Figure 6.12). Secondly, during P-IIIb, less 

severe sea ice conditions, with seasonal opening of waters and slow iceberg calving and 

more drift ice from the Arctic Ocean reaching the study area were observed (Figure 

6.15e), similar to those recorded between AD 1910 – 1986 in the GKC cores (Figure 

6.12). 
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6.5.4.1.4     Period IV: 11.5 – 10.9 cal. kyr BP (Early Holocene) 

During the last part of the record (ca. 11.5 – 10.9 cal. kyr BP; Period IV) IP25 and diene 

II fluxes were generally low (Figure 6.14a and Figure 6.14b), and slightly lower than 

during the second part of the Younger Dryas (P-IIIb). Sterol fluxes showed 

intermediate/low values compared to the rest of the record (Figure 6.14c and Figure 

6.14d) and IRD was very low (Figure 6.14f). However, due to the absence of a well 

dated chronology after ca. 11.5 cal. kyr BP, any attempt at interpretation of these data 

could potentially be misleading or inaccurate, especially as biomarker data are presented 

as fluxes and sedimentation rates following the Younger Dryas may have changed 

significantly. Nevertheless, Jennings et al. (2011) suggested that this was a cold period 

influenced by the melting of the GIS both locally and along the EGC. Similarly, high 

percentages of N. pachyderma, alongside light isotope data were recorded in a core 

further south from JM96-1213 during this interval (Jennings et al., 2006) and ascribed 

due to cold surface conditions. 

 

6.5.4.1.5     Summary 

Based on the model proposed by Alonso-Garcia et al. (2013), the outcomes obtained as 

part of this study further suggest that the IP25 signal in the Kangerdlugssuaq area is 

mainly derived from drifted sea ice from the Arctic Ocean. The first thing to note within 

the current study (JM96-1213) is the significant influence that the advance of the GIS 

during the LGM, and its subsequent retreat, had in the Denmark Strait area during the 

investigated interval (ca. 16.3 – 10.9 cal. kyr BP) (e.g. Jennings et al., 2006; Wohlfarth 

et al., 2008). This was not the case in the interval covered by the GKC cores (ca. last 

150 yr) as the GIS had already receded from the shelf and into the fjords (e.g. Funder 

and Hansen, 1996).  
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The biomarker and proxy data available for the current study (JM96-1213) show that 

more sea ice scenarios with different environmental conditions can be found in this area 

at different time intervals (Figure 6.15) other than the two proposed initially by Alonso-

Garcia et al. (2013).  Nevertheless, this study has shown that the initial model can be 

used as a basis for elucidating different environmental conditions over longer 

timescales, at least in the Kangerdlugssuaq Trough area. This study has also shown that 

some adaptation of the previous model is required in order to take into account the 

greater variability of the biomarker and proxy data presented in the JM96-1213 

compared to the GKC cores and differentiate between more environmental conditions. 

To this point, what remains uncertain is whether this model can be applied in nearby 

locations within the Denmark Strait area (e.g. Grivel Basin, Nansen Fjord). So far this 

has only been tested in the Kangerdlugssuaq Trough area, and therefore the analysis of 

more sediment cores around Denmark Strait that cover different time periods is needed 

to improve confidence in the model suggested. 

 

6.5.4.2   Application of the PIP25 index 

For the JM96-1213 core, a PIP25 index profile that resulted from the combination of IP25 

fluxes with those of brassicasterol (Müller et al., 2011) is shown in Figure 6.16e. 

Between ca. 16.3 – 15.2 cal. kyr BP (P-I), PIP25 values are zero due to the absence of 

IP25 (Figure 6.16a), which, with the presence of only low brassicasterol fluxes (Figure 

6.16b) points towards possibly ice-free conditions. However, the comparison of the 

biomarker data (absent IP25 and low brassicasterol) with other proxy data such as IRD 

(absent IRD), points to the presence of permanent sea ice conditions during this time 

interval in the Kangerdlugssuaq Trough. Additionally, high fluxes of IP25 and 

brassicasterol between ca. 15.2 – 14 cal. kyr BP (P-IIa) would be interpreted in the 
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PIP25 index as a marginal ice zone (PIP25 values between ca. 0.5 – 0.75), which is ruled 

out given the presence of very high IRD recorded at this time interval (Figure 6.16c), 

which suggests a scenario characterised by mixed conditions between high fluxes of 

icebergs being discharged from Kangerdlugssuaq Fjord (and nearby locations) and drift 

ice from the Arctic Ocean reaching the area. 

  

Figure 6.16: Individual temporal palaeclimate profiles for the JM96-1213 core: (a) IP25 fluxes; 

(b) brassicasterol fluxes; (c) IRD; (d) Planktic stable isotopes; (e) PBIP25 index; (f) DIP25 ratio. 

The horizontal solid and dashed lines at ca. 15.2 cal. kyr BP and ca. 14 cal. kyr BP, respectively, 

represent shifts in the sea ice conditions. The rectangle between ca. 12.8 – 11.5 cal. kyr BP 

represents the Younger Dryas cold stadial. 

 

Something to note at this point is the similarity of the brassicasterol and 24-

methylenecholesterol profiles to those of IP25 and diene II (Figure 6.14). This feature is 

also mainly observed in the biomarker data (brassicasterol and IP25) of the GKC cores 

(Figure 6.7). Brassicasterol fluxes were ca. 10 and 100 times higher than those of IP25 

for the JM96-1213 core (Figure 6.14) and GKC cores, respectively (Figure 6.7). A 
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recent study by Belt et al. (2013b) observed the occurrence of brassicasterol and 24-

methylenecholesterol in sea ice samples from Resolute Passage and the Amundsen 

Gulf. Individual sterol/IP25 ratios were determined in these sea ice samples. For 

example, mean brassicasterol/IP25 ratios of 11 and 35 were obtained for sea ice from 

Resolute Passage and the Amundsen Gulf, respectively. Similar ratios were obtained for 

24-methylenecholesterol. In addition, these ratios were also obtained in surface 

sediments from the Canadian Arctic Archipelago with mean values of 9 and 1 for 

brassicasterol and 24-methyelencholesterol, respectively. These values were lower than 

those found in the sea ice samples. Belt et al. (2013b) postulated that the lower 

sterol/IP25 ratios observed in surface sediments compared to sea ice samples could 

indicate an important contribution of these sea ice derived sterols to the sedimentary 

sterol budget. Regarding the JM96-1213 core, values of 28 and 9 were obtained for 

brassicasterol/IP25 and 24-methylenecholesterol/IP25 ratios, respectively. These values 

were also quite low, consistent with the previous findings by Belt et al. (2013b). 

However, the lack of sea ice samples from this region prevented any further 

assessments. The lipid biomarker brassicasterol has previously been suggested as a 

suitable biomarker for representing open water conditions due to its phytoplanktonic 

origin (Müller et al., 2009; Müller et al., 2011). The similarity of the sterol profiles with 

those of IP25 and diene II in this study and the findings by  Belt et al. (2013b), however, 

show that caution must be taken when interpreting the sterol biomarkers as their 

presence in the sediments could be due, in part to a contribution from sea ice. 

A further caveat, or limitation of this approach, appears when the presence of IP25 is 

related to drift ice other than to locally produced sea ice, as noted here. In these cases, 

any attempt at calculating the PIP25 index would not give any indication of the presence 

of IP25 in the area as a result of ice being drifted from the Arctic Ocean, as this scenario 

is not contemplated in this approach.  
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Thus, the PIP25 index should be somehow modified to include these sea ice scenarios 

which given the complexity of the area, especially regarding the different sea ice 

conditions that need to be taken into account (landfast ice formation, iceberg calving 

from Greenland and drift ice transported from the Arctic Ocean by the EGC) would 

probably prove to be a very difficult task, if not incompatible with the principles of the 

PIP25 approach. 

 

6.5.4.3   Application of the DIP25 ratio 

Assessments regarding the relationship between IP25 and diene II as well as DIP25 ratios 

have been carried out previously (Chapter 4, section 4.5.3 and Chapter 5; section 5.5.3). 

Unlike these previous studies, however, where the presence of IP25 was attributed to 

locally produced sea ice (in the Denmark Strait area), the IP25 measured here most likely 

represents the signal of drift ice from the Arctic Ocean carried out by the EGC (Part A 

of this chapter). DIP25 ratios were calculated for the GKC cores and JM96-1213 (Note: 

when IP25 was absent, the DIP25 ratio could not be calculated; Figure 6.17). Comparison 

of DIP25 values between both studies (DIP25 values ranged between ca. 1.5 – 2.5 in the 

GKC cores (Figure 6.17a) and ca. 1 – 4 in the JM96-1213 core (Figure 6.17b)), showed 

that the ratio was relatively similar between both locations at different time scales. 
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Figure 6.17: DIP25 index for (a) GKC cores and (b) JM96-1213 core. 

 

In addition, linear correlations calculated for each core (Figure 6.18) showed a high 

degree of correlation between IP25 and diene II in both studies (R
2
 = 0.90 – 0.99) further 

supporting the sea ice origin of diene II as suggested in previous studies (e.g. Belt et al., 

2008; Vare et al., 2009; Massé et al., 2011). The gradient values of each linear 

correlation for both GKC cores were very similar (ca. 1.5), which is not surprising given 

that both cores are located close to each other and span the same time interval (last ca. 

150 yr). Interestingly, the gradient value obtained for the correlation between IP25 and 

diene II in the JM96-1213 core, which is also located nearby to the GKC cores, but 

covers a different time period (ca. 16.3 – 10.9 cal. kyr BP), was also very similar (ca. 

1.6) to those of the GKC cores (Figure 6.18).  
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Figure 6.18: Relative abundances of Diene II vs IP25 for (a) GKC cores and (b) JM96-1213 core 

Relative abundances were normalised to the maximum values of IP25 observed for each dataset.  

 

These outcomes suggest that there is possibly consistency in sea ice type, as in this case 

both studies (GKC cores and JM96-1213) are characterised by drift ice conditions. In 

contrast, the nature of sea ice bearing IP25 is probably different during different intervals 

for previously studied cores, where constant and fluctuating DIP25 values were 

suggested to indicate stable and variable sea ice conditions (locally produced sea ice), 

respectively (Chapter 4 and Chapter 5).  
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6.5.5   Conclusions 

A reconstruction of the sea ice and oceanographic conditions from Kangerdlugssuaq 

Trough between ca. 16.3 – 10.9 cal. kyr BP, which included a multi-proxy study of 

biomarker data, in addition to mineralogical (IRD) and stable isotope (δ
18

O) data was 

carried out based on model proposed previously in Part A of this chapter. 

The outcomes of this study showed that the principles behind the initial model provided 

the basis from which longer term palaeoclimatic reconstruction could be made. 

Additionally, this study showed that the model needed expanding to account for 

different environmental scenarios other than the two proposed initially during the last 

ca. 150 yr (Figure 6.12), especially due to the influence of the retreating GIS. As such, 

five distinct environmental scenarios were recreated within the studied interval. P-I (ca. 

16.3 – 15.2 cal. kyr BP) was still under the influence of the expanded GIS and therefore 

severe sea ice conditions existed (permanent ice cover), which resulted in low or absent 

biomarker data and absent IRD with very low primary productivity (Figure 6.15a). 

During P-II (ca. 15.2 – 12.8 cal. kyr BP) all biomarker fluxes were relatively high, 

although this period was further subdivided in two sub-periods given by a shift in IRD 

counts at ca. 14 cal. kyr BP. During P-IIa (ca. 15.2 – 14 cal. kyr BP) the GIS had 

already retreated behind the core site. High fluxes of icebergs were being calved (high 

IRD) as a result of increased AIW and drift ice from the Arctic Ocean was also reaching 

the study area (high IP25 and diene II). Primary productivity was still limited due to the 

presence of abundant sea ice (Figure 6.15b). P-IIb (ca. 14 – 12.8 cal. kyr BP) was still 

influenced by the retreat of the GIS, some icebergs were released although to a lesser 

extent compared to P-IIa. Drift ice was still reaching the area and primary productivity 

was still rather limited (Figure 6.15c). The Younger Dryas, P-III (ca. 12.8 – 11.5 cal. 

kyr BP) was also further divided into two periods. During the first part, P-IIIa (ca. 12.8 
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– 12.2 cal. kyr BP) sea ice conditions were rather severe in this area, although 

occasional sea ice retreat with rapid iceberg discharges were recorded (Figure 6.15d), 

similar to those observed in the GKC cores during AD 1850 – 1910. During the late 

Younger Dryas, P-IIIb (ca. 12.2 – 11.5 cal. kyr BP), the environmental conditions were 

less severe, with seasonal opening of waters and some drift ice reaching the area 

together with some primary productivity allowed (Figure 6.15e), also similar to those 

observed in the GKC cores during AD 1910 – 1986. These findings were in line with 

milder conditions suggested from the same and nearby locations during the Younger 

Dryas (e.g. Björck et al., 2002; Kuijpers et al., 2003; Jennings et al., 2006).  

In addition to this, the current study also enabled further discussion of the PIP25 

approach, suggesting further limitations of this approach. For example, the most 

probable origin of IP25 from drifted ice from the Arctic Ocean in this region is not 

contemplated in the PIP25 approach and thus, the PIP25 index would not reveal any 

useful information regarding the sea ice conditions. 

Further, the similarity between the IP25 and brassicasterol profiles in this study and in 

Part A of this chapter together with the recent findings by Belt et al. (2013b) suggested 

a possible common origin (sea ice) which could potentially result in misleading 

palaeoclimatic interpretations and therefore care must be taken when interpreting the 

biomarker brassicasterol.  

Finally, regarding the DIP25 ratio, similar values were obtained for both cores spanning 

the last ca. 150 yr (GKC#8 and GKC#9 cores). Interestingly, similar values were also 

obtained for the JM96-1213 core which covers a very different time interval, further 

supporting the idea of consistency in sea ice type (drift ice) in both studies. 



 

 

                                                                      206 

 

CHAPTER SEVEN 

 

7 Conclusions and Future work 

The main aim of this study was to reconstruct the sea ice conditions for a suite of sub-

Arctic areas within the Greenland, Norwegian and Barents Seas, each of which 

represents contrasting oceanographic and environmental settings. In addition, the study 

focused mainly on the short-term cooling event (ca 12.9 – 11.5 cal. kyr BP), commonly 

referred to as the Younger Dryas, and the transition into the Holocene and onwards, 

which represented milder climate conditions. The reconstructions of the sea ice 

conditions described herein are based mainly on the occurrence and variable abundance 

of the organic geochemical biomarker IP25, a proxy for seasonal sea ice in the Arctic.  

In order to achieve this main aim, it was necessary to: 

1.  Isolate and confirm the structure of IP25 from Arctic marine sediments and obtain a 

GC-MS calibration of IP25 (and other HBIs), in order to permit accurate quantification 

in sediment extracts. 

2.  Use the IP25 sea ice proxy and other biomarkers to identify, unambiguously, sea ice 

occurrence during the Younger Dryas stadial from different sub-Arctic regions to better 

define the sea ice conditions. 

3. Use a multi-proxy based approach, including the sea ice biomarker IP25, to 

reconstruct the palaeo sea ice conditions in the western Barents Sea margin during the 

Holocene. 
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4.  Carry out a multi-proxy based study to reconstruct the palaeo sea ice conditions in 

south-east Greenland during the last ca. 150 yr, to provide a model from which longer-

term reconstructions could be made, and then test this model over longer time intervals.  

5. Evaluate the usefulness of two new biomarker-based approaches to more detailed sea 

ice reconstruction (i.e. PIP25 and DIP25) in different sub-Arctic areas covering different 

timescales.   

 

In order to investigate these objectives, a number of Arctic marine sediment cores were 

analysed for IP25, a related di-unsaturated HBI and various sterol biomarkers. In 

addition, these biomarker data were compared with other proxy data for the same cores, 

such as foraminiferal assemblages and IRD. 

 

The first aim of this study was to confirm the chemical structure of IP25 from Arctic 

marine sediments and to obtain a GC-MS calibration of IP25 response in order to 

improve the accuracy of quantitative analytical measurements. Large amounts of 

sediment material (ca. 16.5 kg) were obtained from 3 locations within the Canadian 

Arctic Archipelago, extracted and purified using several chromatographic techniques 

and analysed by both NMR spectroscopy and GC-MS. This allowed the structure of IP25 

in marine sediments to be confirmed as the same as that of a C25 monoene previously 

synthesised in the laboratory from a related C25 diene (Belt et al., 2007). In addition, the 

preparation of a series of standards of authentic IP25 (and internal standards) allowed the 

first thorough calibration of the GC-MS response factor between IP25 and the internal 

standard to be calculated and monitored on a routine basis. The fluctuation of the GC-
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MS RF for IP25 (and other HBIs) showed that periodic calibration of the standards was 

needed (i.e. daily/weekly) for routine analysis of HBIs. 

 

The second aim of this work was to identify and characterise the sea ice conditions 

during the Younger Dryas cold period within different sub-Arctic regions and compare 

the outcomes. Thus, the biomarker results provided some insights into the sea ice 

conditions during this period. In the first place, it is worth noting that the studied 

locations are characterised by different oceanographic and environmental settings. 

Regarding the present-day sea ice conditions, northern Norway is ice-free all year 

round, while the western Barents Sea lies close to the present day maximum sea ice 

extent with significant annual sea ice variability. A more contrasting setting is 

represented by the Greenland side of Denmark Strait, where more severe sea ice 

conditions exist. This region experiences 8 – 10 month sea ice cover in a year and is 

also influenced by large iceberg calving from east Greenland fjords and drift ice from 

the Arctic Ocean. Regional differences regarding climate conditions were also evident 

during the Younger Dryas from the biomarker data presented here. For example, the 

study from northern Norway (Chapter 4) provided unequivocal evidence for the 

occurrence of seasonal sea ice conditions during the Younger Dryas due to the 

occurrence of IP25 throughout this interval. The change in sea ice conditions at the onset 

and termination of the Younger Dryas in this location were especially clear (absent IP25 

pre- and post-Younger Dryas), while in the study from western Barents Sea (Chapter 5) 

these transitions were less apparent, with IP25 being present both before and after 

(Figure 7.1). This difference was attributed to the presence of colder surface waters and 

the occurrence of seasonal sea ice before, during and after this stadial at higher latitudes. 

Previously, Rasmussen et al. (2007) also observed a less pronounced Younger Dryas 
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event at high latitudes (> 75˚ N) and attributed this to the presence of cold surface 

conditions leading up to and following this cold stadial. In Denmark Strait (Chapter 6, 

Part B) the onset and end of the Younger Dryas were also unclear, as this site also 

experienced sea ice conditions throughout the studied interval, consistent with modern 

observations.  

Regarding the severity of the sea ice conditions during the Younger Dryas, some 

regional differences were observed, although an overall general picture is proposed with 

more severe sea ice conditions recorded during the early-mid Younger Dryas and less 

sea ice observed during the late Younger Dryas (Figure 7.1). However, the provenance 

of the IP25 sea ice signal was different amongst studies of different cores. For example, 

in northern Norway and the western Barents Sea, IP25 was probably of local origin, 

representing seasonal sea ice cover. Its absence in northern Norway pre- and post- 

Younger Dryas, therefore signified ice-free conditions. What remains unclear, at this 

point, is whether the sea ice started to form in more northern locations at the onset of 

the Younger Dryas and then extended southwards reaching northern Norway, or if 

regional conditions would have promoted the formation of localised land fast ice. 

Previous studies have shown that Norway was influenced by the Eurasian ice sheet prior 

to the Younger Dryas (e.g. Fahl and Stein, 2012), and this suggests that, most probably, 

the sea ice was locally produced. Future work related to the origin of the sea ice during 

the Younger Dryas would, therefore, be needed and could potentially be achieved by 

studying a number of cores, ideally those representing north-south and west-east 

transects.  

Conversely, it is suggested that IP25 in sediments from Denmark Strait was derived 

mainly from drift ice, although local severe sea ice conditions prevail most of the year. 
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Hence, the absence of IP25 during the early Younger Dryas recorded in Denmark Strait 

(Figure 7.1) indicated a period characterised by (near) perennial sea ice cover.  

In addition, the stability or consistency of the sea ice conditions during this cold stadial 

was also evaluated. For instance, in northern Norway, stable, then variable, seasonal sea 

ice conditions were predicted during the early-mid and late Younger Dryas, 

respectively, and this was supported by reconstructed SST for the same location and by 

a previous study in southern Norway (Bakke et al., 2009). The results from the western 

Barents Sea indicated more consistent seasonal sea ice conditions throughout the whole 

period and this suggested that the stability of the sea ice conditions during the Younger 

Dryas increased towards northern latitudes. This, in turn, could be attributed to a 

reduced influence of Atlantic waters or southward movement of the Polar Front.  
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Figure 7.1: Temporal palaeoclimate profiles (a) IP25 concentrations; (b) DIP25 ratio from three 

different sub-Arctic regions. 

 

The third aim of the study was to reconstruct the sea ice conditions from the western 

Barents Sea during the Holocene using a multi-proxy based approach. In order to do 

this, four researchers within the CASE network (including this study) analysed the same 

sediment core for different proxies such as biomarkers (IP25, diene II and sterols), 

benthic and planktic foraminifera and dinocysts. A comparison of all proxy data showed 

a generally good agreement (Chapter 5) and it is proposed that the Holocene could be 

divided into three main climate periods. During the early Holocene (ca. 11.9 – 9.5 cal. 

kyr BP), the position of the ice edge was close to the study area resulting in high 
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productivity during summers. In the mid-late Holocene (ca. 9.5 – 1.6 cal. kyr BP), sea 

ice was mainly absent due to the increased influence of Atlantic waters and northward 

movement of the Polar Front. All proxy data pointed to a rather stable climate at this 

time. Finally, the last ca. 1.6 cal. kyr BP were characterised by sea ice conditions 

similar to those of the present day. Palaeoclimate studies are often limited by focusing 

on an individual proxy (e.g. foraminifera, IRD, dinocysts, GDGTs). However, the 

outcomes from this study show that the use of a multi-proxy approach provides a more 

complete picture of the climate conditions for a given period as it combines several 

aspects of the environment (e.g. water masses, sea ice, surface water conditions). 

Further, previous studies from the northern North Atlantic and close to the core site 

have recorded clear climate changes such as the Holocene Thermal Maximum warming, 

a cooling trend from the early to the mid-late Holocene, or the 8.2 kyr cooling event 

(e.g. Sarnthein et al., 2003b; Hald et al., 2007). These, however, were not clearly 

recorded within the JM09-KA11-GC core site and some explanations for this have been 

provided (Chapter 5).  

 

The fourth aim of this work was to characterise the sea ice conditions from a very 

contrasting setting compared to the Norwegian-Barents Sea region, namely Denmark 

Strait which separates East Greenland and Iceland. Here, data from several proxies from 

3 short cores covering the last ca. 150 yr from Kangerdlugssuaq Trough within 

Denmark Strait were compared with historical observations of climate conditions (e.g. 

temperature and sea ice) and this was used to develop a model of sea ice conditions 

which was then tested for longer time-scales. In the first place, it was suggested that the 

IP25 in sediments from this region was mainly derived from drift ice carried from the 

Arctic Ocean via the EGC. The model included two different environmental scenarios:  
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one where the sea ice conditions were more severe (ca. AD 1850 – 1910) with perennial 

sea ice conditions, and hence very low primary productivity, and a second, where the 

local sea ice conditions were less severe (ca. AD 1910 – 1986) with increased drift ice 

and enhanced primary productivity. This two-component model was subsequently 

tested through analysis of a sediment core from the same area, covering an older 

climatic period (ca. 16.3 – 10.9 cal. kyr BP). This core was studied for biomarkers and 

comparisons were made with existing data (e.g. IRD, stable oxygen isotopes). As a 

result, some adaptations to the initial model were required in order to account for 

different environmental scenarios, especially as the core site was influenced by the 

retreating GIS after the LGM. In the future, it will be interesting to see if this model can 

be used in different areas within the Denmark Strait (e.g. Scoresby Sund, Nansen 

Trough, Grivel Basin) or across Greenland and at different time intervals (e.g. 

Holocene). Therefore, this needs to be tested further by carrying out additional multi-

proxy studies. 

The investigation of IP25 in three different areas with different oceanographic and sea 

ice conditions has shown that IP25 can represent different sea ice settings, including 

locally produced landfast ice in addition to drift ice exported from elsewhere. Although 

IP25 found in the Denmark Strait area (Chapter 6) was suggested to be derived from drift 

ice this needs to be further confirmed, ideally through analysis and comparison of sea 

ice samples and underlying surface sediments.    

 

The fifth aim of this work was to test two combined biomarker approaches (the PIP25 

and DIP25 indices) for quantifying and/or refining definitions of sea ice conditions. 

Within this study, the PIP25 index was tested first in a sediment core from northern 

Norway during the Younger Dryas (Chapter 4). Firstly, IP25 and brassicasterol 
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concentrations showed opposite trends, consistent with their sea ice and phytoplankton 

origins, respectively. Secondly, the PIP25-based estimated ranges in sea ice 

concentrations calculated according to the method of Müller et al. (2011) were 

consistent with the individual biomarker and other proxy data. For example, abrupt 

transitions such as the onset of the Younger Dryas were clearly recorded within the 

PIP25 profile. However, when this (PIP25) approach was tested in other sub-Arctic 

locations, such as the western Barents Sea (Chapter 5) and Denmark Strait (Chapter 6, 

Part B) some anomalies with this approach were identified. It has previously been 

suggested by Belt and Müller (2013) that the use of a correction term (‘c’) in the PIP25 

index to account for differences in biomarker concentrations could appear problematic 

in some palaeo sea ice reconstructions and this was shown to be the case for a surface 

calibration study in the Barents Sea (Navarro-Rodriguez et al., 2013). The sediment 

core from the western Barents Sea covered the last ca. 15.7 cal. kyr BP. Depending on 

the geological period studied, (i.e. Holocene, Younger Dryas, Bølling – Allerød) and on 

the distribution of these biomarkers (low, medium or high) within each period, different 

c factor values were obtained which, in turn, had an impact on sea ice concentration 

estimates. In addition, unlike in the study from northern Norway, IP25 and brassicasterol 

followed a rather similar trend. In some cases, in-phase fluctuations of both biomarkers 

(both low or both high) resulted in similar PIP25 values, even if they reflected known 

different sea ice scenarios (e.g. near-permanent sea ice and marginal ice zone, 

respectively) showing the need to consider the individual biomarker profiles in addition 

to the PIP25 index. Regarding the Denmark Strait area (Chapter 6), IP25 and 

brassicasterol profiles were also very similar. These observations further suggest that 

the previous assumption that brassicasterol represents open water (e.g. Müller et al., 

2009) is not valid as it is also found in sea ice (Belt et al., 2013b). In addition, attempts 

to use the PIP25 index in the Denmark Strait resulted in misleading results, possibly as 
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the IP25 signal is thought to be derived from drift ice from the Arctic Ocean and this 

scenario is not considered in the PIP25 approach.  

The outcomes from the current study show that the PIP25 index may be suitable when 

the brassicasterol signal is mainly derived from open-water phytoplankton (Chapter 4) 

but fails to provide a good interpretation in areas where there is co-production within 

different environments (e.g. sea ice). Thus, more research is needed to overcome 

potential caveats related to this approach and ultimately, improve or identify a better 

approach for making biomarker-based quantitative measures of sea ice reconstruction. 

The relationship between IP25 and the HBI diene II (e.g. via the DIP25 ratio) within this 

study has provided some potential insight regarding further descriptions of sea ice 

conditions, such as variability (or otherwise) in sea ice occurrence. However, this 

approach, and the interpretation of the DIP25 ratio, in particular, needs to be tested much 

more rigorously, especially within areas with known sea ice conditions (i.e. variable 

versus stable). In addition, some issues regarding the chromatographic separation of 

diene II and other di-unsaturated HBIs encountered within this research (Chapter 5) 

need to be addressed in order that interpretations based on these biomarkers can be 

carried out with confidence.  

Finally, regarding the preservation methods for sediment samples prior to biomarker 

analyses, some disparity in the results obtained for samples from the same core and 

same depths, but kept in different ways and sub-sampled at different times during this 

research (Chapter 4) was observed. The observations described here therefore suggest 

that a more systematic study is needed. 
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