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ABSTRACT 

INVESTIGATION INTO THE MATERIALS AND MANUFACTURING OF 

A NEW THIN FILM MAGNETORESISTIVE SENSOR 

YONGQINGMA 

There is increasing interest in utilising very thin anisotropic magnetoresistive films 
(typically in the range of a few nano-metres) to make magnetic sensors which can be 
made very small and with a high signal-to-noise ratio. In this thesis, a new type of 
sensor is investigated which has a pair of thin film MR stripes whose magnetisation is 
switched alternately in opposite directions using bias fields from currents in overlay 
conductor films. The investigation considers in particular the Barkhausen noise in 
these sensors and its relationship with factors such as sensor film thickness. 
The effect of thickness and grain size on the coercivity of Ni81Fe1a permalloy thin films 
deposited by r.f. sputtering with negative substrata bias is systematically investigated 
as a function of under-layer materials, thickness, and substrata temperature. The 
results show that there is a minimum in coercivity at a thickness of about 7.5 nm with 
a grain size of 4 nm. This may be attributed to the grain size via its relationship with 
magnetic domain wall thickness. A tantalum under-layer favours a (111) (low 
anisotropy) surface plane in permalloy sensor films. Elevated deposition temperature 
may reduce defects in the films. 
A comparison of the magnetic domain wall structure and the state of magnetisation in 
the very thin (5 - 30 nm) permalloy films with and without Ta underlayer is made by 
using Lorentz TEM observation. The result shows that it is different in both cases. 
With Ta underlayer, the wider, straighter and more regular domain walls together with 
less rippling in magnetisation in adjacent domains may lead to a reduction in the 
Barkhausen noise. 
Barkhausen noise studies of films are carried out by sweeping an ac field of 77 Hz 
onto the permalloy films and recording the induced output voltage due to the flux 
change as a function of time on a digital storage oscilloscope. Barkhausen noise and 
corresponding hysteresis of the sensor is studied by analysis of the MR response of 
various sensors together with their magnetoresistive hysteresis, which may be 
reduced or improved by using a suitable external high frequency field (5 kHz to 20 k 
Hz). Variation in the sensitivity of the sensor to the magnitude of a switched-biasing 
field was measured by applying a very small alternating field (from about tens to a 
few hundreds of nano-Tesla) at frequency above about 250 Hz and varying a 
transverse de field component (oH.), The effect of biasing field frequency and 
external linearising field on the sensitivities of these MR sensors is studied using an 
in-house built measurement system. 
Highly sensitive magnetoresistive sensors (120 different types have been available 
within 30 substrates) have been designed and then fabricated by photolithography in 
a temperature and humidity controlled clean room. Sensor thicknesses are typically in 
the range from 5 nm to 40 nm and other dimensions typically (10 f.lm - 80 f.lm wide) 
and 6.4 mm long. The sensor is linear in the range from zero to 14 400 nT. lt 
produces an almost noise-free output of 20 to 30 millivolts for a field change of about 
160 nano-Tesla. 
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Chapter 1: Background 

CHAPTER 1 

BACKGROUND 

1.1 Introduction 

There is increasing interest in utilising very thin magnetoresistive films (typically in the 

range of a few nano-metres) to make magnetic sensors of a very small size and with a 

high signal-to-noise ratio [Mapps et al., 1997]. Much research has been carried out to 

explore the fundamental and application limitations of magnetoresistive sensors in their 

thin-film form [Kim & Silva, 1996] and some work has been performed using very thin 

magnetoresistive films to make recording heads [Tsang et al., 1996 & 1997]. 

In this thesis, a new type of magnetoresistive sensor is investigated which has a pair of 

very thin film M-R stripes whose magnetisation is switched alternately in opposite 

directions using bias fields from currents in overlay conductor films. The investigation 

considers, in particular, the Barkhausen noise in these sensors and its relationship with 

factors such as sensor film thickness. 

Chapter 1 provides an introduction and background for this investigation with a review 

of various sensors for detecting magnetic fields. Some of these will be described in more 

detail together with their application limitations. In Chapter 2, the theories, including 

some basic parameters and concepts used in magnetism, magnetic materials and 

magnetic thin films are discussed. It also provides a detailed description of thin film 

magnetoresistive sensors. Some theories behind the experimental technology are also 

described in Chapter 2, the description of the experimental development is given in 



Chapter 1: Background 

Chapter 3. Results and a discussion of the relationship between these results and existing 

theories are given in Chapter 4 . Chapter 5 includes conclusions and suggestions for 

future work. 

1.2 Sensors for detecting magnetic fields 

Magnetic Sensors are devices which are able to transform an existing magnetic field into 

an electrical signal. They have been in use in one form or another for many years. They 

range from suspended magnets used for navigation to small thin ftlm detectors which 

sense information in the form of magnetic reversals on magnetic computer disks. 

Magnetic fields are used almost universally in electrical motors and transducers to 

produce movement. They also give rise to concerns about their interaction with human 

beings and conversely, are used via magnetic resonance systems to scan inner parts of the 

human body not visible with X-rays. 

Such a wide range of applications means that detection and measurement of magnetic 

fields is, therefore, of significant technical and commercial importance. A whole range of 

different detectors and systems have evolved to cover the range of magnetic fields of 

interest to society and industry in general [Mapps, 1994. & 1997] [ Heremans, 1993]. 

Figure 1-1 shows the various magnetic sensors used for sensing magnetic fields together 

with the approximate range of fields over which they detect. Most of them are quite 

different from each other in construction and cost, as well as in making comparisons. On 

the other hand, we must take account of the application, the accuracy desired and the 

physical size of the sensor being used. 
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: Search-cpil Magne~ometer : 
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Optically Pumped Magnetometer 

Nuclear-Precession Magnetometer 

SQUID Magnetometer 

Hall-Effect Sensor 
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I I 

Magneto-Optical Sensor 

Figure 1-1 Dynamic range of various magnetic sensors 

(dashed range is possible) (after (Lenz, 1990]). 

1.2.1 Inductive coils (or Search-coil magnetometer) 

When there is a change in the magnetic flux passing through a coiled conductor, a 

current is induced in the coils and a voltage proportional to the rate of change of the flux 

is generated between its leads. This is Faraday's Jaw of induction and is the principle 

behind the search-coil magnetometer. Equation 1.1 show the relationship between rate 

of change offlux (<P) and the induced e.m.f. (V). 

d<P 
V =-N 

dt 
(Equation 1. 1) 

If A is the cross-section area of the coil and N is the number of turns, the magnetic 

induction is then B= (/)/A and 
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dB 
V=-NA

dt 
(Equation 1.2) 

By measuring the magnetic flux passing through the coil (/J, and from a knowledge of the 

cross-sectional area A, the magnetic induction B can be found. 

A typical arrangement of a search-coil magnetometer is illustrated in Figure 1.2. The 

space inside the coil can be occupied by a material with a higher relative permeability 

than an air core. Such high permeability cores can be used to concentrate the 

surrounding magnetic field and increase flux density, and hence improve overall 

sensitivity. The sensitivity ofthe search-coil magnetometer is dependant on the following 

factors : (a)the permeability of the coil core material; (b)the area of the coil; (c) the 

number of turns; (d) the rate of change of the magnetic flux through the coil. 

Magnetic 
Field 

Output Signal 

Figure 1-2 Search-coil magnetometer based on Faraday's Laws of induction 

(after [Lenz, 1990]). 

1.2.2 Flux-gate Magnetometer 

The major limitation of the search coil is that there has to be a change in the flux passing 

through the coil to produce an e.m.f. at the coil ' s ends. This means that only a.c. fields 

can be detected. In contrast, the major advantage of flux-gate magnetometers over 

search coils is their ability to measure precisely direct current (d.c.) fields. 
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A typical flux-gate magnetometer illustrated in Figure 1-3 consists of a ferromagnetic 

material wound with two coils, named a drive coil and a sense coil (a differential coil pair 

as shown in Figure 1 -3) respectively. The drive coil is driven with an alternating 

waveform which magnetises the ferromagnetic core first in one direction and then the 

other. Early types of flux-gate were used to drive the coil hard into saturation in both 

directions. This would trace out a B-H loop as shown in Figure 1-3 for the core with its 

associated hysteresis. However this was not economical in terms of the power required 

by the drive coil to reach saturation. 

Out of Saturation B 

Drive Sense 

H 

In Saturation Drive Sense 
,..A. A. ........ ,..A. 

' 

:-- --t-+-+--- H 

I + ~ -

Figure 1-3 Flux gate magnetometer operation (After [Lenz, 1990]) 

New low power flux-gates do not operate over the major hysteresis loop, but instead 

drive the core around a minor hysteresis loop which does not enter saturation. These 

minor-loop flux-gate magnetometers are much more sensitive to the drive and readout 

electronics than the major-loop versions, which are mostly dominated by the core 

material's properties. 
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Equation 1-3 shows the relationship between the flux-gate output V se:~ and the external 

field. 

(
dB drive dB external ) 

vsense oc - d- + d t t 
(Equation 1-3) 

1.2.3 Hall effect and sensor 

When a magnetic field is applied to a conducting material carrying an electric current, 

there is a transverse force (known as the Lorentz force) on the charge carriers (electrons) 

which can be given by 

F = p 0ev x H (Equation 1.4) 

The Lorentz force, which is perpendicular both to the electric current direction of motion 

and to the direction of the applied magnetic field, can be used to deflect the path of the 

electric current passing through a sample of the material. The effect is known as the Hall 

effect as illustrated in Figure 1-4 and is measured perpendicularly to both current and 

magnetic field. The relationship between Hall effect (the potential difference v) and the 

passing distance Lx of the charge carriers may be given by, 

(Equation 1-5) 

where Ru is the value of the Hall coefficient and is typically 1 o-•o m3 per Coulomb, J is 

the current density and H is the magnetic field strength [Lenz, 1990]. 

The Hall effect is very small in metallic conductors, but some semiconductors such as 

InAs or In Sb, will give a much larger effect. Since there are fewer conduction electrons 

in semiconductors, if the total current through it is the same as that through a metal, the 

electrons in the semiconductor must have a much higher drift velocity than those in the 
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metal. The faster the electrons are moving, the stronger the force they experience and 

the greater the Hall voltage. 

Current 

Magnetic 
Field H 

L, 
Hall Voltage 

Figure 1-4 Hall Effect sensor measures the voltage that appears 

across a thin wafer of a semiconductor if there is a magnetic field perpendicular to 

the plane of the material and a current is sent along its length (after Lenz, 1990) 

1.2.4 SQUID magnetometer 

A ' SQUID' is a Super-conducting Quantum Interference Device, and has as its active 

element one or more Josephson junctions. A Josephson junction is a weak link between 

two superconductors that can support a super-current below a critical value le. The first 

type of SQUID was the two-junction d.c. SQUID (1 964), later the one-junction SQUID 

(the r.f SQUID) then appeared (1970). 

In the d.c. SQUID, two Josephson junctions are connected in parallel as shown in Figure 

1-5. 
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As the magnetic flux <I> threading the super-conducting loop changes the critical current 

of the two junctions, it oscillates with a period equal to that corresponding to the flux 

change. When the flux through the loop changes, the voltage-current characteristic 

oscillates smoothly as shown in Figure 1-5 (b). The SQUID is therefore a highly sensitive 

flux-voltage converter. 

(a) R R V 

Voltage 

(n+ l/2)Cl:lo 
+-- n<l>o Voltage 

: -_-_-_-_-_-_-_-_ -_-_ -_-_-_-_ -_ -_Vl~ -_-~l-Il-_ 

Current n-1 n n+1 Fluxes 
(b) 

Figure 1-5 (a) Schematic diagram of the connection of two Josephson 

junctions in parallel to form a SQUID. 

(b) Current-voltage characters of a SQUID. (after [Jiles,1991]) 

• The voltage is an oscillating function of the flux threading the circuit. The current-voltage 

characteristics are for a SQUID with fluxes nr/J0 and ( n + 1<1>0 ) . The variation of voltage 

across the SQUID with flux linking the circuit is shown on the right. 

In general for practical field strength or induction measurements one usually needs a 

dynamic range somewhat greater than fractions of a flux quantum. In this case, the 

SQUID is often used as a null detector in a feedback circuit in which any change in 
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voltage across the SQUID is amplified and converted to a current through a coil coupled 

to the SQUID to produce an equal and opposite flux. This allows large magnetic fields to 

be measured to an accuracy of less than a flux quantum (2.067 x 10-ts Wb, see [Jiles, 

1991]).The SQUID can be said to be the most sensitive of all instruments for detecting a 

weak magnetic field. 

1.2.5 Magnetoresistive Sensors 

One magnetic sensor, in particular, has become popular because it occupies the mid

range of detection and can be made very small using photolithography fabrication 

methods common to the semiconductor industry. It also has small power consumption 

and relatively high resolution. This is the thin-film magnetoresistance sensor. Even now, 

it is only a quarter of a century after it was first reported in a paper by Hunt [Hunt, 

1971]. More and more new application areas are being found and continue to be 

developed-most important among these are recording heads for magnetic storage 

devices, magnetic memory elements and position and speed sensors. 

Magnetoresistive sensors are based on the magnetoresistive effect which is a change in 

resistance caused by an external magnetic field. The resistance of the magnetoresistive 

material (such as Permalloy) decreases as the direction of magnetisation rotates away 

from the direction in which the current flows because of the electron scattering. 

• Anisotropic Magnetoresistance 

A schematic diagram of a thin-film anisotropic magnetoresistor (AMR) showing the 

principle directions and quantities used in the theory is given in Figure 1-6. 
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Resultant applied 
field HR 

Anisotropy HK 

... ~ 

Figure 1.6 Schematic diagram of a thin-film magnetoresistor showing the principle 

directions and quantities used in the theory (After Mapps, 1997) . 

Where, the film is assumed to be magnetised to saturation Ms at an angle B to its long 

axis which is also the one usually chosen for the direction of the electrical current flow. 

He is the earth' s field and Hb is the bias field . HR is the resultant applied field in which 

the sensor finds itself, and has a direction at an angle a to the long axis. The anisotropy 

field Hk which is the direction of the lowest energy magnetisation direction of the 

material of the film, is at an angle r to the long axis. The ultimate position of the 

magnetisation vector Ms is found as the resultant lowest energy magnetic state when the 

film experiences the applied field given the constraints mentioned above and also the 

demagnetising energy of the film in its own field . The relationship between the resistance 

change and the external magnetic field can be given by 

p = Po + l:!pcos1 B (Equation 1.6) 

where, Po is the isotropic resistivity and L1P,.ax. is the maXImum magnetoresistivity 

(saturation magnetoresistance ). 
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It is well known that the Anisotropic Magnetoresistance (or AMR), in general, is about 

2% - 3% for most of common magnetoresistive materials such as permalloy or Co alloy. 

Research on magnetoresistance has been particularly active in recent years. Sensitivity 

has been especially improved using the Giant Magneto-resistance (GMR) effect in 

multilayers or granular films and their devices, Colossal Magnetoresistive (CMR) 

materials and devices, as well as Spin Polarised Tunnelling (SPT) junctions [Gallagher et 

al. , 1997]. 

• Giant Magnetoresistance and sensors 

The resistance of certain magnetic films may change by more than 20% for relatively 

small applied fields (GMR). This has been reported by many authors such as [White, 

1982], [Mapps, 1994]. The dominant mechanism responsible for GMR is spin-dependent 

electron scattering. A GMR head for magnetic recording has been announced [Gallagher 

et al. , 1997]. 

• Colossal Magnetoresistance 

It has been discovered that certain perovskite materials (such as LaMn03 doped with 

alkaline earth elements) display even larger (such as 80%) magnetoresistance, dubbed as 

' colossal' magnetoresistance (CMR), but the effect only occurs in a large field and has a 

strong temperature dependence. The transport mechanism responsible for CMR is not 

well understood at the moment. The potential of CMR for low field, room-temperature 

applications has yet to be demonstrated [Gallaghe r et al. , 1997]. 

• Spin Polarised Tunnelling Junctions 

Another source of large magneto resistance effects (on the order of about 20% at room 

temperature [Moodera et a l. , 1995] ) have been reported in junctions, where electrons 
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tunnel through an 'insulating' barrier layer of, say, silicon oxide between two magnetic 

layers on either side. The tunnelling resistance depends on the relative magnetisation 

directions on either side of the junction. [Gallagher et al. , 1997]. 

A summary of their advantages and application areas taken from reference [Mapps, 

1997] is given in Table 1-1 and Table 1-2. 

Table 1-1 Advantages of Magnetoresistive sensors 

Main Advantages 

High sensitivity 

Low source resistance 

High-temperature 

operation 

Operation over a wide 

frequency range 

Metal-film technology 

Low sensitivity to 

mechanical stress 

More Details 

-allowing operation over relatively great distances 

-giving low sensitivity to electrical interference 

-150°C continuous, 175°C peak (chip alone can withstand 175 oc 
continuous) 

-from de up to several MHz 

-giving excellent long-term stability 

-facilitating mounting of the sensor and allowing its use in 

relatively rough environments. 

1.3. Application limitations 

It may be hard to say which is the best sensor for detecting magnetic fields, due to the 

different needs for different applications. In general, factors such as temperature, 

sensitivity and SIN level, size and power consumption are of most importance and 

interest for selecting suitable sensors. 

Table 1-3 shows the possible limitations of some sensors m their applications of 

detecting magnetic fields. 

Note: The data shown in Table 1-3 can be found in Ref. [Lenz, 1990], [Jiles, 1991], 

[Wikswo, 1995], [Stewart, 1993] and [Heremans, 1993]. 
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Table 1-2 Application Areas of Magnetoresistive Sensor 

.... M.~.~.~ .. A.E~~.~ ........................................ A.J?P!.~~~.t.i.~.~ ........................................................................... -··········-·-·----·········-······-····-··---····-············-···········-······-
Traffic control • detection of vehicles 
Low-cost navigation allowing the production of simple compass systems with an 

Long-distance metal 
detection 
Motion detectors 

Current detection 
General magnetic-field 
measurement 

Direct-current 
measurement 

Angular or position 
measurement 

Mark detection and 
counting 

Magnetic Recording 

accuracy of around 1 o ideal for automotive applications 
• for the detection of, for example, military vehicles (tanks etc.) 

by measuring disturbances in the earth's magnetic field 
• by measuring position changes relative to the earth's magnetic 

field. 
• for example, earth-leakage switches 
• from 10 Nm to 10 k Nm , 

• starting currents in motor vehicles 

• sensing of accelerator pedal or throttle position engine -
management systems) 

• position sensing in industrial automation systems 
• (commercial sensor arrays that can measure positions with an 

accuracy of ± 30~m) 
• force/acceleration/pressure measurement using a moving 

magnet, for example: engine-intake-manifold pressure sensors, 
fluid-level sensors, low-cost weighing systems, geostatic 
(seismic) sensors, accelerometers. 

• camshaft or flywheel position sensors for engine ignition 
systems. 

• end-point sensors 
• wheel-speed sensors for anti-blocking systems. 
• rpm counters (0 to 20 kHz) for engine tachometers and for 

electronic synchromesh systems. 
• flow meters 
• zero speed detectors. 
• rpm control in electric motors 
• general instrumentation 
• thin film reply heads for tape and disk systems, swipe readers 

for credit cards, bus tickets, door locks, etc. 

Table 1-3 Possible limitations in their a~~lications 

Sensor Type 
Temperature detectable Frequency Size Power 

(Co) range(Tesla) range mm or mm2 consumption 
and S/N level {Hz~ {W~ 

Inductive coils -o to 40 10"11 -101 1 -1M 50 - 1250 1- 10 X 10·3 

mm w 
Flux-gate -o to 40 10"10 -102 d.c. - 10 k 10mm or 2.5 5- 50 X 10-J 

magnetometer mm2 

Hall effect -273-200 10"10 - 101 up to 1 M -7 mm2 0.1 - 0.2 
1% 

SQUID 4 - 77°K 10·16 - 1 o:q 10"2 - 103 - 3 to 25 mm 
magnetometer 1.4 pT 1../Hz in diameter, 

AMR sensors -55 -200 1 o·12 -1 o·3 d.c. - 100 M a few to a 1-5 X 1004 

GMR sensor 4.2-350 K 1.0 nT 1../Hz few tens 
1% mm2 

13 



Chapter 2 Themy 

CHAPTER2 

THEORY 

2.1 Units and some basic magnetic parameters 

2.1 .1 Units 

Some basic parameters used in magnetism are shown in Table 2-1 . It should be noted 

that although the SI system of unjts is demanded in most of the current publications, the 

cgs (Gaussian) system of urut is still often used in practice. All of these parameters will 

be defined using the SI system of uruts in the following section. The SI system of units 

will be used throughout the remainder of this thesis and some conversion factors 

between both systems are given in Table 2-1 . 

Table 2-1 The basic parameters used in magnetism in both SI and cgs units 

Quantity Quantity Unit in Unit in Conversion 

Symbol SI system cgs system Factors 

Magnetic Field H Ampere /metre Oersteds 1 A/m = 47tl1 000 Oe or 

Strength (A/m) (Oe) 1 Oe = (1 000/47t) Aim 

= 79.58 A/m 

Magnetic flux <1> Weber (Wb) Maxwell 1 Wb= 1 08 Maxwell 

or 1 Maxwell= 1 a .a Wb 

Magnetisation M Ampere/metre emu/cm3 1 Aim =10"3 emu/cm3 or 

(A/m) 1 emu/cm3 = 1 000 Aim 

Magnetic B Tesla Gauss 1 Tesla =1 04 Gauss 

Induction (T) (G) 

Magnetic moment m Ampere metre2 emu 1Am2 =1 0 emu or 

(Am2
) 1emu = 10·1 Am2 
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2.1.2 Definition of some basic magnetic parameters 

• H Magnetic field strength 

A magnetic field is produced whenever there is electrical charge in motion. This can be 

generated by an electrical current flowing in a conductor, or produced by a permanent 

magnet. In the case of permanent magnet, there is no conventional electric current but 

there are the orbital motions and spins of electrons within the permanent magnet material 

which lead to a magnetisation within the material and a magnetic field outside. 

The magnetic field strength (H), or magnetising force at a point is a vector quantity and 

is the measure of the effect of a field tending to produce magnetisation at that point. The 

unit of the magnetic field strength H, may be defined in a number of ways [ Jiles, 1990]. 

It is measured in the ampere per metre, and can be simply defined as the field strength 

produced by an infinitely long solenoid containing n turns per metre of coil and 

canying a current of 1/n ampere. 

• <ll Magnetic flux and 8 Magnetic induction or Magnetic flux density 

Whenever a magnetic field is present in free space there will be a magnetic flux <1>. This 

magnetic flux is measured in units ofWebers. 

When a magnetic field H has been generated in a medium by a current, the response of 

the medium is its magnetic induction B. Sometimes it is called magnetic flux density, 

because it is based on the amount of flux passing through a given area of the medium in 

which the magnetic field exists. It is defined as B =<1>/A, and measured in Weber/m2
, or 

equivalently, Testa. 
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Magnetic induction is related to both magnetic field and magnetisation by a parameter 

known as the permeability ~ of the medium, measured in henrys per metre and generally 

calculated from B-H loop. Permeability defines the ability of a magnetic field passing 

through a medium to create an induction within the medium. In particular in free space, 

(Equation 2.1) 

where Jlo is a constant equal to 47tx I o-7 Him. In another medium, however, Jl may not 

be a constant and hence B is not a linear function of H. This is particularly true in 

ferromagnets, where p, varies rapidly. The relative permeability, Jlr of a material is 

quoted, where 

• m Magnetic moment 

J1 
J1 =-

r f-lo 
(Equation 2.2) 

The magnetic moment m is the most elementa1y unit of magnetism and one of the most 

important concepts for magnetic materials. ln the case of magnetic materials, the 

electrical 'current' is caused by the motion of electrons within the solid, particularly the 

spins of unpaired electrons, which generate a magnetic moment even in the absence of a 

conventional current. It is measured in amperes metre2
, and defined as: A magnetic 

moment of 1 ampere metre2 experiences a maximum torque of 1 Netvton meter when 

oriented petpendicular to a magnetic induction of 1 Testa. 

• M Magnetisation 

The magnetic flux is caused by the presence of a magnetic field in a medium. The amount 

of flux for a given magnetic field depends on the properties of the medium in which the 
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field exists. To measure the response of a material (e.g. a medium) to the magnetic field, 

it is first necessary to define the quantities which represent the response of the materials 

to the field. The magnetisation M is a property of the material itself, and is generated by 

the resultant (uncompensated) spin and orbital angular momentum of electrons within the 

solid. The magnetisation of the material is measured in Amperes /metre. 

When the magnetisation M and the magnetic field H are given, the magnetic induction B 

is now (Sommerfeld Convention) 

2.2 Magnetic materials 

2.2 1 Ferromagnetism 

(Equation 2.3) 

The atoms of any substance have an electronic structure in which electrons may be 

regarded as circulating in orbits about a central heavy nucleus. The electrons also have a 

gyroscopic spin. Both the orbital and spin motions of the electron charges can be 

considered like current in closed circuits, and with these permanently circulating currents 

magnetic moments may be associated. It is well known that the free atoms of some 

elements have zero magnetic moment because the various magnetic moments completely 

cancel each other, while the atoms of other elements have a resultant magnetic moment. 

The magnetic properties of any material in bulk depend, not only on the equivalent 

magnetic moments of the free atoms or molecules, but also particularly on temperature, 

that is on the thermal energy, and in solids on complicated inter-atomic forces in the 

crystals [Brailsford, 1966]. (Also see the Weiss Theory, page 20). 
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• Magnetisation curve 

In the case of ferromagnetism, the electronic spins are aligned parallel to one another as 

a result of a strong positive interaction acting between the neighbouring spins as shown 

in Figure 2-1 (a). As the temperature increases, the arrangement of the spins is disturbed 

by thermal agitation, thus resulting in a temperature dependence of spontaneous 

magnetisation as shown in Figure 2-1 (b). 

B. 

(a) 
T 

Figure 2.1 Ferromagnetism (after [Chikazumi,1964]) 

In spite of the presence of spontaneous magnetisation, a block of ferromagnetic 

substance is usually not spontaneously magnetised in the same direction but exists rather 

in an 'overall ' demagnetised state. This is because the interior ofthe block is divided into 

many magnetic domains, each of which is spontaneously magnetised in different 

directions. If an external field is applied, the apparent magnetisation of the block is 

changed as shown in Figure 2-2 and finally reaches saturation magnetisation in the 

direction of the applied field. If the field is reduced, the magnetisation is decreased, but 

does not come back to the original value. 

Such an irreversible process of magnetisation is called hysteresis. The presence of 

saturation magnetisation and hysteresis is an important feature of ferromagnetism. 
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B 

B. 

H 

0 

Figure 2.2 Magnetisation curve of a ferromagnetic substance 

(after [Chikazumi, 1964]) 

• Hysteresis loop 

A way to represent and compare the cyclic magnetic properties of a ferromagnetic 

material is by a plot of forward and reverse magnetic induction B for various field 

strengths H. This is called a hysteresis loop as shown in Figure 2.3. In particular, the 

output performance of ferromagnetic materials is closely related to the shape of the B-

H loops (both easy and hard directions). Various magnetic properties of interest in MR 

sensor applications, can be shown in their B-H loop, such as 

• The saturation magnetisation M0 is the upper limit to the magnetisation that can be 

achieved in which all magnetic moments are aligned parallel. At temperatures well 

below the Curie point the technical saturation Ms can be used instead. The saturation 

magnetisation is dependent only on the magnitude of the atomic moments m and the 

number of atoms per unit volume n and is given by M0 = nm. 

• The width of the M-H loop across the H axis is twice the coercivity He. The coercivity 

is the magnetic field needed to reduce the magnetisation to zero from the remnant 

state. 
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• When the field is reduced to zero after magnetising a magnetic material, the remaining 

magnetic induction is called the remnant induction Br and the remaining magnetisation 

is called the remnant magnetisation Mr. 

The difference between B-H loop (e.g. Figure 2.3a) and M-H loop (e.g. Figure 2.3b and 

c) can be seen from Figure 2.3 and may also be explained theoretically from Equation 2.3 

B =f.lo (H+M). The mechanism of hysteresis loop behaviour is technically related to the 

fundamental magnetisation curve [Jiles, 1991]. 

8 
~ M M 

Br 
~ Mr Ms 

, #' .-- ~ .. . .. / , - / -------, 

H 
Hk 

H H 
He He He He Hk 

/ -........:, ./ 

(a) (b) (c) 

Figure 2.3 A typical hysteresis loop 

• Weiss field theory 

There is a transition temperature Tc, named the Curie point, in a ferromagnet, above 

which the material becomes paramagnetic and below which an ordered (the magnetic 

moments within domains are aligned parallel) ferromagnetic state exists. It can be 

explained phenomenologically by the Weiss theory. 

Most ferromagnetic materials can be saturated by a magnetic field, which is considerable 

weaker than one required for paramagnets. The explanation for the relative ease with 

which ferromagnets may be magnetised is that there is an ' internal ' field which causes all 
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atomic magnets to want to line up parallel to each other. It is normally considered to be 

an electric, not magnetic, effect which causes electrons in the 3d and 4s energy bands in 

certain materials to spin in the same direction as one another(instead of in opposite 

directions such as in most common materials). Thus the magnetic effects in adjacent 

atoms tend to be additive. 

The interaction is such as to correspond to an applied field and this interaction, which 

Weiss introduced to explain the paramagnetic susceptibilities of certain materials, leads 

to the existence of a critical temperature below which the thermal energy of the 

electronic moments is insufficient to cause random paramagnetic alignment [Ma pps, 

1987] [Jiles, 1991]. 

2.2.2 Fundamental energy effects 

One feature of ferromagnets is that they exhibit a complex change in their magnetisation 

upon the application of an external field . This is because there are many different kinds of 

energies and the energy interaction in ferromagnets. Basic energy terms in a ferromagnet 

can be summarised as follows [Jiles, 1991] [Miltat, 1994] [Mapps, 1987]. 

I Exchange energy 

Exchange energy in a ferromagnet, as discussed previously, is based on the Weiss 

interaction theory. If the spins are forced to point in non-parallel directions there is an 

increase in magnetic potential energy. Since all magnetic systems behave as to reduce 

energy the system will have a minimum energy (all other things being equal) when the 

spins are parallel. This energy component is known as exchange energy. There may be a 

number of possible variations to the theme of the inter-atomic interaction or exchange, 
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only two of these, the mean-field approximation and a nearest-neighbour-only coupling 

will be mentioned. The exchange energy per moment due to above two interactions is 

(Equation 2.4) 

where, He is the interaction field which is proportional to the bulk magnetisation M. 

a is the mean field parameter. m; and m1 are neighbouring magnetic moments and N is 

the number of atoms per unit volume. 

11. Anisotropy energy 

Suppose we have a single crystal of iron as shown in Figure 2.4 with an atom at each 

corner of the unit cube and one in the centre. It is found that if a field H is applied as 

shown, the material does not, surprisingly, magnetise along the direction of applied field. 

Instead, it magnetises along the nearest cube edge AB as shown. This is because of a 

spin-orbit coupling which produces a high-energy state for directions other than along 

cube edges. These are the so-called 'easy directions' in a crystal and coincide with a 

minimum in what is termed Anisotropy Energy. 

[100] 

[001] ~0] A 

Figure 2.4 An atomic cube of iron under the influence of 

an external field H (after [Mapps, 1987]) 
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Ill Magnetostatic energy 

If after H is applied in Figure 2.4 it is removed, the crystal appears like a magnet with a 

North Pole remaining at one end and a South Pole at the other. If left in this situation the 

crystal would have a large external field and this would consist high magnetostatic 

energy because all magnetic systems adjust themselves to try to reduce any external field. 

The tendency is for magnetisation to re-arrange itself to reduce the external field and this 

is one key factor in the creation of a multi-magnetic domain system. 

IV Domain wall energy 

Once a single domain has split into multi-domains to minimise energy in a large crystal 

(containing millions of atoms) as shown in Figure 2.5, thin dividing regions between the 

domains are created. These regions are usually a few hundred atoms thick and are known 

as domain walls. They have an energy associated with their creation because 

magnetisation must reverse gradually through the thickness of walls and this will cause 

electron spins to point in non-parallel directions to each other and in non-easy directions 

leading to increases in exchange and anisotropy energy . 

.. 

.. 

Figure 2.5 Domain structure in a specimen of iron with magnetostatic 

energy stored in fields at the domain extremities (after [Mapps, 1987]) 
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V Magnetoelastic energy 

The magnetoelastic energy establishes a link between elastic strains and the direction of 

magnetisation in magnetic materials. Its origin is spin-orbit coupling. For example, it can 

be seen from Figure 2.6 (a), (b) and (c) that external field (and magnetostatic energy) can 

be virtually eliminated if the domain walls take up the positions shown. What, then is the 

magnetic difference between Figure 2.6 (a), (b) and (c)? 

The essential difference is via the phenomenon of magnetostriction whereby magnetic 

materials change their physical shape when magnetised. lf we assume that the material of 

figure 2.6 (a) elongates along the direction of magnetisation by say 5% at saturation, 

then the angle ABC will cease to be 90° if the material ABC were free to expand. Since 

ABC is a part of the crystal it is prevented from expanding in this way causing the angle 

ABC to remain at 90°. Instead, mechanical strain energy is stored in the crystal-known as 

Figure 2.6 Various possible domain configurations with 

zero magnetostatic energy (after [Mapps, 1987]) 

The advantage of the structure in figure 2.6 (b) is that it has smaller triangular regions 

and therefore a lower magnetoelastic energy. It has, however, more domain walls and a 

higher domain wall energy. 
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Therefore, domains split and new domain walls are created until such time as there is a 

balance between domain wall and magnetoelastic energies, as might be indicated, for 

example, by figure 2.6 (c). 

2.2.3 Magnetic domains and Domain Walls 

• Domains 

Domains in a magnetic body can be summarised as regions of very small or zero change 

in magnetic moment direction and were first suggested by Weiss in 1907. The concept of 

domains is now accepted. It was first experimentally verified both indirectly by 

Barkhausen in 1919 and directly observed by Bitter in 1931. Figure 2. 7 shows some 

domain structures taken from ref Chikazumi [Chikazumi, 1964]. 

Stable magnetic domains exist in ferromagnetic materials which can be treated as 

uniformly magnetised volumes in an overall minimum energy state. 

s ---... 
s ---... ---... N N s 

s N N 

s N N s 

(a) (b) 

Figure 2.7 Some domain structures ((a) Single domain structure, 

(b) Domain structure of a material with uniaxial anisotropy (after [Chikazumi,1964]) 

• Domain walls 

The first study of the transition layer between two magnetic regions (domains) with 

different directions of spontaneous magnetisation M was carried out by Bloch in 1932, 
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and it is after him that the 'Bloch waJI' is named. The main concept associated with the 

understanding of this transition region is that the change in spin direction, between 

domains magnetised in opposite directions, does not occur suddenly across one atomic 

plane, but gradually, over many planes. In such a wall the effect of exchange interaction 

is to favour a transition over many planes because the smaller the angle between adjacent 

spins, the lower is the exchange energy between them. However, within this wall the 

magnetisation is in an unfavourable direction as determined by the magnetocrystalline 

anisotropy, so the widening effect of the exchange interaction is counteracted by the 

narrowing effect of the anisotropy [Prutton, 19641. 

• Energy minimisation and domain structure 

In general, the essential reason for the existence of domains within a ferromagnetic 

material is that their formation reduces the magnetic free energy E associated with it. 

Thus, if all the necessary physical properties of the crystal and its surroundings are 

known, it should be possible in principle to deduce the optimum domain configuration so 

that the ferromagnetic material is in a state of minimum free energy, corresponding to a 

particular value of an applied field [Carey & lsaac, 1965). 

However, the structure of domain walls depends on the relative importance of the 

energies such as the exchange anisotropy and magnetostatic contributions to the total 

energy. Hence wall structures depend not only on intrinsic magnetic properties but also 

on specimen dimension. Furthermore, there are generally marked differences between 

wall structures in thin films and bulk materials of the same composition [Chapman & 

Kirk, 1997]. 
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It will be appreciated, however, that the difficulties of computation generally involved in 

such a problem will be enormous. As a result, only in certain simple cases, it is possible 

to determine with accuracy the sum of the energy terms associated with the domain 

[Carey & lsaac, 1965]. 

2.2.4 Mechanism of magnetisation 

When a ferromagnetic substance is put into an increasing magnetic field, its 

magnetisation is increased and it finally reaches saturation magnetisation. Such a process 

is essentially achieved by a change in the direction of domain magnetisation and domain 

size as domains with magnetisation more parallel to the field increase in size at the 

expense of domains with more anti-parallel magnetisation. 

According to classical domain theory, the magnetisation process in a ferromagnet can be 

classified into three ranges as shown in Figure 2.8. 

B 
Ill Magnetisation rotation and 

approach to saturation 

/ -- -. , , 
I 

11. Irreversible magnetisation or I 
I 

irreversible wall displacement 

I. Initial permeability range or 
eversible wall displacement 

-He 0 
+He H 

(b) (a) 

Figure 2.8 Magnetisation curve and the classification of 

magnetisation mechanisms (after [Chikazumi, 1964] and [Chen, 1977]) 

27 



Chapter 2 Themy 

I. Initial permeability range or reversible displacements: 

• Starting from the demagnetised state (B=O at H=O), m which the magnetisation 

changes reversibly. Domain magnetisation in every domain rotates reversibly from 

their stable directions and/or domain walls are displaced reversibly from their stable 

positions. In this range, the reversible magnetisation is accomplished mainly by 

reversible displacements of domain walls. The ease of displacement of domain walls 

is essentially determined by the homogeneity of materials, the contribution of 

displacement of domain walls to an initial permeability is dependent on the kind of 

material studied. 

11 . Range of irreversible magnetisation or irreversible wall displacements 

• If the magnetic field is increased beyond the initial range, the intensity of 

magnetisation will be increased further due to many small discontinuous changes in 

the magnetisation. At this stage, domain walls jump irreversibly past dislocations in 

the lattice structure by which they were initially held, referred to as the pitming sites. 

The occurrence of irreversible rotation of domain magnetisation is also expected in 

fine particles or in an extremely heterogeneous material which may contain many 

inclusions and precipitates. The magneto-thermal effect is also observed here due to 

the generation of heat accompanying magnetisation change. Barkhausen noise occurs 

mainly on the steep part of the magnetisation curve in this range as shown on an 

enlarged part of the curve (b) in the Figure 2.8. 
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Ill. Range of magnetisation rotation and approach to saturation. 

• If the field is increased further, the magnetisation curve becomes less steep and its 

processes become reversible once more. In this range the displacements of domain 

walls have already been completed and magnetisation takes place by rotation of 

magnetisation. Beyond this range the magnetisation gradually approaches the 

saturation stage, in which it increases gradually in proportion to the intensity of the 

magnetic field as all the spins become perfectly aligned. It may be disturbed by 

thermal agitation to the thermal equilibrium state [Chikazumi, 1964]. 

2.2.5 Barkhausen effect 

The Barkhausen effect (also associated with Barkhausen noise) may be summarised as 

the phenomenon of discontinuous changes in the flux density B (or the magnetisation M) 

within a ferromagnetic material as the magnetic field H is changed continuously, shown 

as (b) in Figure 2.8 [Jiles,1991 ]. 

The effect was first observed in 1919 by Barkhausen [Barkhausen, 1919], when a 

secondary coil wound on a piece of iron was connected to an amplifier and loudspeaker. 

As the H field was increased smoothly, a series of clicks were heard (Barkhausen noise) 

over the loudspeaker, which were due to small voltage pulses induced in the secondary 

coil. These voltage pulses were caused through the law of electromagnetic induction by 

small changes in flux density through the coil arising from discontinuous changes (see 

section 2.2.4) in magnetisation M and hence in induction B. 

Barkhausen effects are due to irreversible changes in the state of magnetisation. As can 

be seen from Figure 2.9 (a), there is a general energy minimum corresponding to the 
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central demagnetised state, but there are also many small minima. These can represent 

pseudo-stable states causing the magnetisation to lag behind the applied field, giving rise 

to the well-known phenomena of hysteresis and coercivity. This may be even more 

significant where the magnetisation is not a single magnetic domain. Figure 2. 9 (b) is a 

plot of the rate of change of energy with distance moved of domain wall in a multi-

domain state. This shows a series of irreversible jumps giving rise to a coercivity 

according to the equation 

1 dE 
He = 

2
M dx (Equation 2.5) 

s 

Etot dE/dx 

0 

(a) 
Distance 

(b) 

Figure 2.9 Barkhausen Noise (a) Magnetic energy versus magnetisation; 

(b) magnetic energy and energy gradient versus domain wall position 

showing irreversible and reversible motion (After [Mapps, 1997]) 

The Barkhausen effect is an extremely complex phenomenon and detailed studies are 

lacking. More detailed overviews about the Barkhausen effect, possible orientation, 

irreversible change in domain structure and experimental techniques have been 

summarised by many authors such as [McCiure & Schroder, 1976], [Matzkanin et al. , 

1979], [Farrel, 1994] and [Mapps,1997], and will be further discussed later. 
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2.3 Magnetic thin films 

As a consequence of the small thickness of 'thin' films, the magnetic energies, related 

domain structure and Barkhausen effect may be different from those in bulk material due 

to their thickness dependence. For example, the structure of domain walls depends on 

the relative importance of the exchange, anisotropy and magnetostatic contribution to the 

total energy. As film thickness is decreased the magnetostatic energy contribution 

becomes increasingly important and leads to other types of walls, such as Neel walls in 

the ultra-thin films, which are expected to be the norm [Neel, 1955], [Chapman and 

Kirk, 19978
]. 

2.3.1 Magnetic Domain walls 

The structure of domain walls in thin films was first investigated theoretically by Neel 

[Neel, 1955]. He predicted that the plane of spin rotation inside the wall will be changed 

from parallel to the wall surface to parallel to the thin film surface, and its magnetostatic 

energy should be reduced with a decrease of the film thickness due to reducing (their) 

volume interaction with the surface. More wavy type walls such as Neel wall and cross

tie walls have been observed in the thinner magnetic films. 

Figure 2.10 shows the variation of wall energy density with film thickness for Bloch, 

Neel and cross-tie walls [Prutton, 19648
]. As can be clearly seen in Permalloy films, 

Bloch walls offer the lowest energy option for thicknesses greater than 90 run, and Neel 

walls are dominant for thicknesses less than 30 nm. In the intermediate region, however, 

neither of these walls seem able to provide an advantageous energy state and the 

compromise cross-tie wall is observed. 
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Figure 2.10 Comparison between the energy densities of Bloch, Neel and cross-tie 

walls in Nis1Fe19 films of varying thickness (after Prutton, 1964~ 

• Bloch wall 

The Bloch wall is characterised by the magnetic moments in the wall rotating about an 

axis perpendicular to the plane of the wall itself as shown as in Figure 2. 11 . Both its 

energy and width depend only on the exchange and anisotropy constants and there is 

only a very small magnetostatic contribution [Chapman and Kirk, 19978
]. 
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Figure 2.11 A Bloch wall in a thin film (a) strictly. (b) Neel's approximation 

(after Prutton 1964b) 
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• Neel walls 

The Nee] wall (see Figure 2.12) is energetically favoured once the film thickness 

decreases below a certain value, for example, around 30 nm in permalloy films, in which 

its energy becomes lower than the demagnetisation energy of the Bloch wall. In the Nee] 

wall, the axis about which the magnetisation rotates is perpendicular to the film plane. 

Component of magnetisation 
normal to lane of wall 

+M : · -M 
® :~~~~~: 0 

a 
4 ... 

Path of magnetisation (a) 
through the wall 

ID 
+M @ -M 

® 0 . . 
a 

:4 ... : 

(b) 

Figure 2.12 Structure of a Neel wall (a) strictly (b) Neel's approximation 

(after [Prutton, 1964~) 

• Cross-tie walls 

Cross-tie walls can be observed in the films thick enough to contain purely Bloch walls 

and films thin enough to contain purely Neel walls. Sometimes, they are observed 

together with Neel walls or Bloch walls. The magnetisation reversal may be achieved by 
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rotation of the magnetic moments both normal to and within the plane of the film, as 

illustrated in Figure 2.13. The character of these walls is such that close to the top and 

bottom surfaces they are Neel-like, thereby minimising the surface magnetic charge, 

whilst towards the centre of the film the way in which the moments rotate is more Bloch-

like. 
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Figure 2.13 A cross-tie wall (top view) (after [Huo et al., 1998]) 

Many other wall types have been found in particular circumstances and some of them 

have been summarised by Chapman and Kirk [Chapman and Kirk, 1997a]. 

2.3.2 Barkhausen Effect in Thin Films 

There are very few publications [Decker et al. , 1981] concerrung the thickness 

dependence of Barkhausen noise characteristics especially for the interesting thickness 

range in magnetic films down to a few tens of nanometres. In view of the structure of 

domain walls and its variation with the thickness, Barkhausen effect should be taken into 

account depending on the magnetic film form. Unfortunately, no theory has been yet 

34 



Chapter 2: Theory 

reported for quantitatively describing the variation of Barkhausen noise in the very thin 

magnetic films. 

However, it is well known that Barkhausen noise is a result of irreversible jumps and is 

associated with the coercivity of thin films, so the less irreversible jumps, the smaller the 

coercivity and the lower the Barkhausen noise. Possible mechanisms and theories of 

coercivity will be described in the following section. 

2.3.3 Theory of coercivity 

Coercivity or coercive force is one of the most important properties for determining the 

magnetic behaviour of ferromagnetic films. It is directly related to the critical field 

required for the generation and movement of domain walls. 

Experimental data show that coercivity is a parameter which also closely related to other 

structure-sensitive magnetic properties (e.g. magnetic anisotropy) [Prutton, 1964a] 

[Grundy, 1997]. There are many qualitative models have been developed for explanation 

of the variation of the coercivity in thin films. Some of them have been summarised and 

can be found in reference [Prutton, 1964b], [Chen, 1977]. The most well-known 

theories are: 

I. Neel Model 

Like other earlier theories (e.g. the strain theory developed by Bloch [ 1932] and Kersten 

(1938] and the inclusion theory by Kersten (1943]), The Neel model is based on the 

principle that irreversible movement of domain walls (only) is responsible for the 

coercivity. 
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Neel [Neel, 1956] described the coercive force (critical field ) variation with thickness of 

a thin film based on wall motion and this is given by, 

(Equation 2.6) 

where, c is a constant and t is the thickness of the film. This is the well known '4/3 ' law. 

11. The wall motion model 

Middelhoek constructed a general wall motion coercive force theory for thin NiFe films, 

in which the most important parameters (e.g. the change of the wall energy, film 

thickness variation and the wall length change) have been taken into account. Figure 2.14 

is a schematic diagram of this wall motion model and is taken from reference 

[Middelhoek,1961]. 

Ms 

dxl 
( 

Ms _._ 
X 

Ly .. easy .. easy .. .. 

(a) (b) 

Figure 2.14 {a) Schematic drawing of wall motion under influence of magnetic field. 

{b) Increase of wall length as a result of the motion of a domain tip 

{after [Middelhoek,1961]) 

In this model, for simplicity, it was assumed that the film is reversed by the shift of a 

wall parallel to the easy direction. The energy of the wall is a function of x, but constant 
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in they direction. For a small shift dx of the wall parallel to itself the increase of the free 

energy of the system must be equal to the work performed on it. 

(Equation 2. 7) 

where, Ha is applied field, Ms is saturation magnetisation, I is length of the part of the 

wall under consideration, t is thickness of the film, dx is distance over which the wall is 

shifted and r is surface energy density of the domain wall. 

The coercivity can be then written in more extended form as: 

(Equation 2.8) 

From Equation 2.8, it seems that the wall motion coercive force can be ascribed to three 

roughly independent mechanisms: 

a) The change of the wall energy. 

b) Film thickness variations. 

c) Wall length and width changes [Middelhoek,1961]. 

• The change of the wall energy 

The first term in Equation 2.8 represents the coercivity associated with the change of the 

wall energy. As stated above, the structure of domain walls depends on the relative 

importance of exchange, anisotropy and magnetostatic (stray field) energy, so this can 

been written as, 

dy dy vcchange + dy anisotropy dystrayfield 

dx - dx dx + dx 
(Equation 2. 9) 

The change of the wall energy is quite complex and relates to many factors and 

conditions, so it is quite hard to estimate and quantitatively calculate He by using 
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Equation 2.9. More detail analysis for certain cases can be found m reference 

[Middelhoek,1961]. 

• Film thickness variations 

The part of the coercive force term which depends on the thickness of the film has the 

form [Middelhoek,1961]: 

I for dt r dt l 1 for r l dt 
He (I)= 2M.l"i" dx +I dx J = 2M.l & +I Jdx (Equation 2.1 0) 

For film thicknesses greater than 100 nm, Bloch wall formation is favoured. The total 

wall energy density for a Bloch wall [Middelhoek, 1961] can be expressed by 

(
Jr)2 I JlW 2 M 2s 

r =A- w +-wK+---
Bloch w 2 w +I 

(Equation 2.11) 

where A is the exchange stiffness, w the wall width, K the anisotropy constant, Ms film 

saturation magnetisation, and 1 is the film thickness. 

For thick films, w< < I and Equation 2. 11 becomes: 

"2 A 7lW 2 

r =--+--M2 
8 /och W { s 

Mjnimisation with respect to w, we have 

w ~ V n:At 
2M 2

' s 

,JA2M? 
rB/och = 12.7v~ 

and 

When we substitute this in the expression for He, we obtain: 
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This is the well-known 4/3 law of Neel. This law is based on the assumption (a) the 

coercive force due to thickness variations dominates other effects and (b) that dtldx is 

independent of the thickness itself This calculation is valid only for thick films (e.g. SS 

nm) where w << t and Bloch walls occur [Middelhoek, 1961). 

For the Neel wall, 

( )

2 
Jl I RWI 2 

YN =A- w+2wK+( )M• w w+t 
(Equation 2.14) 

and when t< <w, the total wall energy only consists of the stray field energy and 

Middelhoek was suggested that the energy of the wall may depend only on the film 

thickness t. 

Jl·W·1 , Jr·t , ? 

YN~( )M; =-,M; =JC · I·M; 
w+t 1+-; 

and 

( ) 1 [ 2 2 ] dt dt 
H e / Nee/ = 2M2 JT!vfs + JT!vfs dx = JM. dx 

s 

(Equation 2.15) 

When, it was again assumed, that dtldx is constant (no surface roughness}, they found 

that the coercive force does not depend on the overall thickness (t) of film at all 

[Middelhoek, 1961]. 

• Wall length, width and film crystallite size 

As can be seen from Figure 2.1 0, there should only be Neel walls in the very thin 

Nis1Fe19 films such as below 20 nm due to the fact that a Nee] wall has much lower 

energy at lower film thickness. 

39 



Chapter 2: Theory 

Figure 2.15 is taken from reference [Middelhoek, 1961] and shows the wall width of 

Bloch wall and Neel wall as a function of the permalloy film thickness. 

In very thin films, it is usually assumed that the crystallite size of films is of the order of 

magnitude of the film thickness (- 20 nm), whereas the width of Neel walls is of the 

order of 600 nm (see Figure 2.15), according to Middelhoek, 
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Figure 2.15 Wall width as a function of permalloy film thickness 

(after [[Middelhoek,1961]) 

l dy I dE 
H = ----= ----w 

c 2Ms dx 2Ms dx 
(Equation 2. 16) 

where, y is the surface energy, E is the energy density of the wall and w the wall width. 

!lEdx When the crystallite (grain) size is D (D>w) the energy of wall change by --r;- when 

the wall is shifted over a distance dx, and thus 
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M w 
H = - ·

c 2M D 
s 

(Equation 2. 17) 

When D<w, however, and the wall is shifted over dx and the relative energy increase is 

much smaller than the D>w case, as the energy increase must be averaged over many 

grains. When N is the number of the grains, the average energy increase is expressed by 

When we assume that the energy must be averaged over a wall length I which is given by 

l=qw, thus, 

? w· 
N=q · - 2 

D 
and (Equation 2. 18) 

Equation 2.17 and 2.18 show that the coercivity is proportional to w!D when grain size 

is greater than the width of wall, but will be become opposite when D<<w. It is also 

plausible that the coercivity will have a maximum when w and D are of the same order of 

magnitude, which will be discussed later with experimental results in Chapter Four. 

2.3.4 The ripple theory 

It is well known that all the magnetic properties of thin ferromagnetic films depend on 

the film structure. In the case of polycrystaJline permaJioy films the influence of film 

structure on magnetic properties was first explained by the micro-magnetism 'ripple' 

theory of differential susceptibility for two dimensional samples [Hoffmann, 1969]. 

In this theory the differential susceptibility was related to the structure of the film, 

determined by the thickness, t, the mean diameter of the crystallites, D, and the local 
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anisotropy constant, Ks , which is related to intrinsic stresses (e.g. due to substrate 

temperature), film composition, etc. 

The ripple theory introduces a new material parameter, the structure constant S which 

gives a quantitative description of the film structure. For polycrystalline uniaxial 

perrnalloy films with low magnetostriction, this structure constant S has been calculated 

by [Hoffmann, 1964and 1979] and was given by 

(Equation 2. 19) 

When uniaxial strains are neglected, which is true for most cases of sputtered permaUoy 

films, Equation 2.19 becomes 

(Equation 2.20) 

where, D is mean diameter of the crystallites, calculated from ( <D3>) 113
, Ks local 

anisotropy constant, 11 is the number of crystallites with different orientation through the 

fJ.lm thickness and tJ1 is the standard deviation of the angular function. Oin is the intrinsic 

isotropy strain. K,,is the magnetocrystalline anisotropy constant, A.100 and A.111 are the 

magnetostriction anisotropy constants for single crystals [Kempter and Hoffmann, 1969, 

1970] and [Hoffmann, 1964, 1979]. 

The successful extension of this theory has led to a quantitative understanding of various 

properties of perrnalloy thin films and future details can be found in reference 

[Hoffmann, 1979]. This will be further discussed with experimental results in Chapter 

Four. 
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2.4 Anisotropic magnetoresistance 

2.4.1 Anisotropic Magneto-resistance Effects 

Ferromagnetic materials may show an anisotropic magnetoresistance effect, which means 

that the electrical resistivity in such materials, e.g. nickel, iron and in particular, nickel

iron alloy, or 'perrnalloy' thin films, depends on the direction of their magnetisation 

vector and can be changed by an external magnetic field . This phenomenon is referred to 

as the anisotropic magnetoresistance effect, and was first observed in 1856 and later 

defined in 1857 by William Thomson [Bralisford, 1966] 

If a ferromagnetic material is prepared in the form of a thin film, a layer in the thickness 

range 0 - 1000 nm, the anisotropic magnetoresistance effect may be restricted to lie in 

the plane of the film to a very good approximation due to the demagnetising effect. In 

this case, the effect is called the in-plane anisotropic magnetoresistance effect or simply, 

magnetoresistance effect. 

2.4.2 Basic theory 

There are three principle energy components in the magnetoresistive thin film as follows: 

• The potential energy Ep created when the applied field exerts a twisting couple ( or 

magnetic moment) on the film magnetisation. 

(Equation 2.21) 

where 

Msis the saturation magnetisation ofthe ideal (single domain) state ofmagnetisation; 

43 



Chapter 2: Theory 

HR is the applied field in which the magnetic thin film is placed and has a direction at an 

angle a to the long axis of the fi lm (the so-called easy axis). 8 is the angle between the 

magnetisation and the easy axis 

• The additional anisotropy energy which arises when the magnetic vector lies in a 

direction other than the lowest free magnetisation direction. 

(Equation 2.22) 

where, Hk is the thin film anisotropy field which where the lowest energy magnetisation 

direction of the material of the film, is at an angle r to the long axis. 

• l11e demagnetising energy £ 0 where atomic spins in the material lattice interact with 

each other negatively to reduce the effect of applied field in aligning them. This is 

sometimes described as being like the effect of free magnetic poles at the extremities 

of the film which produce an internal reverse field . Such a field is not due to ' free 

poles' which do not exist in fact, but such a concept is useful for mathematical 

analysis. 

(Equation 2.23) 

where N0 is the demagnetising factor relating to the field opposite to the direction of M s. 

( - tlh where t is the film thickness and h is the width of the film) 

If three energy components are added together and then differentiated for a minimum of 

energy with respect to 8, a condition can be found wherein the energy is a minimum, i.e. 

(Equation 2.24) 
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Equation 2.24 determines the relationship between the applied field HR in which the 

sensor finds itself, and the angle B between the magnetisation and the easy axis (the 

original lowest energy magnetisation direction in the film). 

It should be noted that this energy analysis is based on a single domain model, in which 

the magnetisation in a single domain film is caused by its domain magnetisation rotation. 

The integrals and this analysis assume this domain magnetisation rotates coherently with 

there only ever being a single angle B between the magnetisation vector and the current 

direction. Achieving a single domain state, however may be sometimes difficult in 

practice and has resulted in numerous ideas and configurations in practical designs 

[Mapps, 1994]. 

The basic equation for magneto resistance in thin films was stated by P. R. Hunt in 1971 

[Hunt, 1971] in an application related to the detection of field on magnetic tape. He 

noted that in magnetoresistive thin film materials such as un-oriented polycrystal films 

with isotropic resistance, the resistivity has an un-axial anisotropy with a symmetry axis 

parallel to the direction of magnetisation (see Figure 1.6 taken from ref [Mapps, 1994]}, 

which obeyed a (cosine)2 law, thus 

p = Po + !J.pcos2 B (Equation 2.25) 

where, 

Po is the isotropic portion of the resistivity; 

t1p is the maximum value of the magnetic field related resistivity change (saturation 

magneto resistance); 

B is the angle between the magnetisation Ms and the electric current I. 
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For materials such as permalloy, their iJp and Hk are known. The induced anisotropy 

field (typically 6 Oe or about 480 Nm) can be fixed during film production so that its 

direction is clearly defined. 

Referring to Figure 1.6, if an external magnetic field is applied in the film plane and 

perpendicular to the easy axis, the lowest energy magnetisation direction of the thin 

magnetoresistive film, will be when the magnetisation vector Ms in the thin film has 

rotated by an angle B towards the applied field in order to remain in the lowest energy 

magnetic state. The electrical resistance of the magnetoresistance film can be changed 

and modulated by the external magnetic field . See Equation 2.25. 

If other constants are known, a relationship between the fractional magnetoresistance 

and the magnitude and direction of applied field can be developed by eliminating B. This 

is the basis of the theory ofthe thin film magnetoresistive sensor. 

The magnetoresistance effect in thin magnetoresistive films has been well investigated 

for many years. Intensive studies have been made on magnetoresistive thin films for their 

application in sensors and recording heads [Lenz, 1990]. The theory of the 

magnetoresistance effect may be slightly different in each application. 

2.4.3 Transverse field detection 

In magnetic recording applications, a small current is passed through the thin film along 

its length which also happens to be the same as the direction of the magnetisation vector 

(easy axis) in the film. It means that a = /]= 90 o and r = 0 in Equation 2.24, which can 

then be reduced to 
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. HR 
smB= H N M or 

K + D s 

(Equation 2.26) 

from Equation 2.25, 

(Equation 2.27) 

Since Ha is a constant for a given film with given dimensions, the graph of percentage 

resistance change versus transverse field is typically as shown in Figure 2.16 [Mapps, 

1994). 

(P-Po )/ 6 p 

1.0 

0 

Point of inflection 
Hb I Resistivity variatioo 

C\ (\ .. 

' \ 
'C..7 

\ Experimental curve 
\ 

',,, ___ ; -- - --

Signal field 
from tape 

Figure 2. 16 The magnetoresistive transfer characteristic 

used in magnetic recording (after [Mapps, 1994]) 

In practice, it is usual to apply a steady biasing field to the film in the vertical direction so 

that the operating point moves to the linear part of the magnetoresistance curve (point of 
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inflection). A small sinusoidal signal field (hy) will produce a similarly sinusoidal change 

in resistance of the magnetic medium, giving a sinusoidal voltage variation across the 

film for a constant-current operating condition. Equation 2.27 then becomes, 

= 1-(Hb)2 

- (2Hbhy) -(12_)
2

] p Po + .1 1 H Hz H 
0 0 0 

(Equation 2.28) 

Assuming HR =Hb +hy << Ho and integrating over the device dimensions to get an 

output voltage V, 

f:lp Hb If ( )dy dz V=21R • - • - h yz -.-
o Po H2 y , h I 

0 

volts (Equation 2.29) 

where h and I are the height and length of the magnetoresistor respectively. I is the 

constant current [Mapps, 1994]. 

2.4.4 General field detection 

In the magnetic recording application the direction of a transverse magnetic field relative 

to an M-R film can be assumed constant due to the high demagnetising field 

perpendicular to the film plane. In the general field detection such as the earth's field, the 

magnitude of detected field stays relatively constant but the direction may be changed to 

any direction. 

In practice, the angle between the anisotropy field and the long axis y, can be set at zero 

during film fabrication. Equation 2.24 then becomes [Mapps et al., 1985] 

HR sin( a - B) - H K cosBsin f)- N 0 M5 sin BcosB = 0 or 

(Equation 2.30) 
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For thin film sensors, the anisotropy field HK is much greater than the demagnetising field 

H0 , and the resultant field HR acting on the ftlm can be a function of detected fields (such 

as the earth 's field) and the biasing field. As can be seen from Figure 1.6, a relationship 

can be developed [Mapps et al., 1985] and given by 

(Equation 2.31) 

therefore, 

(Equation 2.32) 

where 

a = tan _1[Hb +H. sin/]] 
H. cos/] 

2.5 Switched-bias MA sensors 

A switched-bias sensor as described in ref. [Mapps et al., 1987] consists of a pair of 

identical MR thin-fllrn sensors which are subjected to transverse fields applied via 

currents in two overlaid thin-film bias conductors as shown in Figure 2. 17. There is an 

insulating layer between the MR layer and the bias conductor layers, therefore, an 

insulated shunt-biasing method is also employed here. 

Where, t1 is the thickness of the bias conductive layer, t2 is the thickness of the insulating 

layer and t3 is the thickness of the Permalloy layer. Lb and Wb are the length and the width 

of the bias conductive layer respectively. Ls and Ws are the length and the width of the 

sensor layer respectively. 
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Bias Current 
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Sensa/ 
Current 

Figure 2.17 Diagram showing a typical switched-bias magnetoresistive sensor 

• Switched-bias field 

The transverse field from these bias conductors are in opposite directions but are 

provided from the same current Ib so that when Ib is reversed (Ib is a square-wave 

alternating current) the transverse bias field also reverses so that the bias point for each 

sensor switches to the other side of the MR characteristic and vice-versa. 

The leading edge of each half-cycle of square-wave ideally has a steep pulse on it so that 

the sensor can be driven into transverse saturation before sampling data if the biasing 

field is smaller than the saturation field required. As can be seen in the exaggerated 

hysteresis diagram (Figure 2.18), with a modified square-wave, the sensors are always 

being sampled at X and Y making the outputs virtually independent of hysteresis effects. 

• Differential output 

If the sensor current is applied as part of a bridge circuit the differential output 

(subtraction of the two sensor output voltages as seen from Figure 2 .19, L1Us1= -L1Us2) 

from the sensors is zero in a zero applied magnetic field. The sensor output is also free 
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from temperature effects. If the sensor is placed in a steady applied field (e.g. the lR of a 

80 nano-Tesla field) the bridge is unbalanced and the output signal is a square wave 

whose amplitude is proportional to the steady field. Figure 2-19 shows the operating 

principle of the switched-bias sensor and assumes the hysteresis of sensor can be 

neglected. 

G 

(b) 

T,U 

----- saturation 

+ Hb 

- Hb 

saturation 

(p-Po)/~p 

(a) 

G,H 

Figure 2.18 (a) Peaked drive current waveform for overcoming hysteresis; 

(b) Exaggerated magnetoresistance loop showing sampling points 

over AB, PQ, CD, RS (after [Mapps et al., 1987]). 

• Lock-in amplifier technique 

One advantage of this kind of sensors is that lock-in amplifier techniques can be used to 

extract the output signal almost totally free of noise, so making the sensor very effective 

for detecting small steady fields in noisy environments [Mapps et al., 1998]. 

51 



Chapter 2: Theory 

time t=O -----£~ 

time t=t 1 

8U52 

Resistivity variation 
from sensor 1 (~Us,) 

Jp. 

H 

time t 1 

time t=t 1 

Resistivity variation 
from sensor 2 (~U52) 

H 

Differential output signal 
~Us12=20Us 1 =2~Us2 

r- -

Figure 2.19 Operation principle of the switched-bias sensor 
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CHAPTER 3.0 

EXPERIMENTAL DEVELOPMENT 

3.1 Introduction 

This chapter will discuss techniques, procedures and experimental steps required to 

develop a novel dual stripe, switched bias, permalloy magneto-resistive (MR.) sensor for 

detection of weak magnetic fields. 

The Sputter coating technology employed to create thin films at the heart of the sensor 

will be discussed. 

Design of photo-masks used to produce sensors, covering layers and bias conductors will 

be described along with associated photo-lithographic techniques. 

Ion-beam etching techniques to fabricate sensors from thin metal layers are described. 

Microstructure investigation of Permalloy films by Transmission Electron Microscopy 

(TEM) methods and observation of magnetic domains by Lorentz microscopy are 

discussed. 

In conclusion, the main experimental methods and test systems used or developed for 

this study are discussed. Barkhausen noise investigation in magnetoresistance films and 

sensors , MR. effect and hysteresis measurement are described 

A test system developed for measuring output performance of switched bias sensors IS 

also described. 

53 



Chapter 3: Experimental development 

3.2 Fabrication Technology of Thin Film MR Sensors. 

3.2.1 Thin Film Deposition by r.f. Sputter Coating 

Production of thin metal layers for this investigation required a suitable coating 

technique. Sputter coating was used as this method produces thin layers with similar 

characteristics to those of the source materials. Additionally, this technology allows thin 

layers to be produced from materials which may be difficult to deposit using other 

methods. Deposited layers are largely free from contaminants, which may be found in 

films created by techniques such as electro-plating. 

There are several variations of sputtering techniques with systems available using d.c., 

r.f , ion-beam, electron-beam and micro-wave power sources. Developments have 

occurred within the technology with variations such as magnetically enhanced cathodes, 

substrate heating and bias sputtering, which improve deposition rate and quality of 

sputtered films. 

A Materials research corporation (MRC) 8632 r.f. system of the "sputter down" type 

was used for the work. Schematic diagram of the Materials Research Corporation 

(MRC) system is given in Figure 3 .1. This machine features a 1.25 kW power supply 

operating at 13.56 MHz. There are three 15.2 cm (6") target stages (cathodes) each 

with water cooling. Each target can be connected separately to the power source by a 

selector switch. 

There are three substrate holders (anodes) which are water cooled, these can be 

positioned below each target as required. One of these three anodes features a substrate 

heating stage which may be used to improve the quality of deposited films. On the 

second stage a switching network allows either electrode to be independently energised 
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for target or substrate etching. Also on this stage a fixed 9:1 power divider network 

allows material to be deposited using bias sputtering. There is a sputtering electrode 

without any additional features at the third position. Substrate to target separation can 

be varied to alter deposition characteristics by raising or lowering the anode. 

Finally a rotatable shutter is located centrally between the target and substrate positions 

to allow each surface to be etch-cleaned before deposition with reduced risk of cross

contamination affecting other electrodes in the chamber. 

Sputtering systems are based on vacuum chambers evacuated by suitable pumps. They 

feature specially constructed electrodes which face each other with a separation gap of 

about 7 cm which is adjustable. These electrodes are electrically insulated from the 

chamber and one-another. 

Inert gas (usually Argon of 99.95% purity) is used as the process gas and is supplied to 

the chamber through a needle valve. Oxygen Free Nitrogen (OFN) is used to flood the 

chamber after ' breaking' the vacuum when loading or un-loading the chamber. 

The source material is attached to one electrode and is known as the "target" . This 

electrode is connected to the negative terminal of the r.f. power supply and is therefore 

known as the "cathode". 

Target material is usually specified at the highest purity, it is common to use "five nines" 

(99.999 %) or "four nines" (99.99 %) purity materials. 

With r.f. sputtering systems a matching network and blocking capacitor are connected 

between the generator and the chamber. The matching network is used to "tune" the 

chamber impedance to that of the generator output impedance (usually 50 Ohms), 

ensuring maximum power transfer for sputtering is made to the chamber. The blocking 
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capacitor is part of the tuning network and can be connected to improve tuning if the 

altering the electrode spacing pushes the chamber tuning out of the range of matching 

network. 

The substrate is attached to the other electrode, called the anode. The anode may be 

allowed to "float" to a high voltage determined by the sputtering power being used. On 

the other hand, it may be grounded or have a tuning network similar to that used on the 

cathode. 

Sputter coating machines which have the cathode mounted above the anode are known 

as "sputter down systems". When the cathode is mounted below the anode they are 

called "sputter up systems". There are variations where the electrodes are mounted on 

the sides of the chamber, these are known as "sideways" sputtering systems. 

In use the chambers are pumped to high vacuum, typically 2 x 1 o·7 Torr. The process 

gas is fed into the chamber, metered through a needle valve this raises the process 

pressure to around 5 x 1 0-6 Torr. Regulation or "throttling" of the high vacuum pump is 

carried out during sputtering to reduce pumping speed. This stabilises the argon 

through-put and chamber pressure to create stable conditions required to maintain a 

plasma. 

Energetic electrons collide with argon atoms in the chamber. If the collision energy is 

high enough a electron is dislodged from the argon atom creating a ion and two 

electrons. If these two electrons collide with further argon atoms more ion and electron 

generation takes place and the process multiplies. 

As the system r.f power source is connected to the cathode the target surface achieves 

positive and negative bias on alternate half cycles. This causes the ions and electrons in 
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the plasma, which are readily influenced by electric fields, to be accelerated towards the 

target surface. 

A particle striking the surface of the target can cause the following events to occur: 

• It may be reflected and possibly neutralised. 

• It may strike causing a electron called a "secondary electron" to be ejected. 

• It may implant itself in the target. 

• It may cause structural alteration of the target. 

• It may cause the ejection of an atom of material. 

A minimum of two collisions, called a collision cascade, within the target are required for 

ejection of material. The phenomenon is relatively inefficient and generally only 1% of 

incident energy appears at the target surface as sputtered material. 

The material arrives at the substrate in atomic or molecular form. The particles may 

begin to "condense" on the surface or may re-evaporate. After a period of time two 

particles may combine to form a "doublet", a form which is more stable and less mobile 

than single atoms, making it less likely to be re-evaporated. After a further period of 

time "triplets" and "quadruplets" form then the films reaches the "nucleation" stage 

where "islands" of material form. These islands may be single crystal structure or 

polycrystalline, although only a few crystals may be found in the structure. After a time 

the islands on the substrate surface grow large enough to touch and reach the stage 

called agglomeration or coalescence. This stage proceeds until continuity is reached 

when the film is complete. Figure 3.2 shows the formation of a thin film forming as the 

deposition process proceeds [Chapman, 1980]. 
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Improving the performance of the Permalloy sensor layer is a important task in this 

project. It is well documented that magnetic properties of permalloy thin films are very 

sensitive to preparation methods and conditions. Optimisation of sputtering conditions 

was carried out in this study to reduce Oxygen and other contaminants possibly trapped 

in the film. Pumping of the vacuum system was continued until to a low base pressure of 

about 6 x 1 o·7 Torr was recorded before sputtering. Pumping to this base pressure was 

considered useful in removing expected contaminants but many workers report higher 

base pressures (up to 2 x 1 0 ·6 ) prove just as effective [Krongelb & Electron, 1973]. 

Sputtering with a suitable negative substrate bias (e.g. -75 Volts for 200 Wand -90 

Volts for 300 W) is also effective in removing unwanted components trapped in the film, 

improving the film quality [Fiur, 1967]. 

The type of substrate and surface temperature are important in determining the nature of 

the film [Chapman, 1980]. The influence of the substrate on thin film structure depends 

on the condition & nature of the surface, the substrate temperature and the chemical 

nature of the substrate (i.e. crystallographic structure & impurity content). This will be 

outlined later in section 3.2.4. 

Normally in permalloy films the anisotropy is self-selecting when depositing on glass 

substrates. For the purpose of this study an in-plane field of about 40 Oe was applied 

during deposition (via a 'magnetic' substrate holder) to "select" anisotropy direction. 

The anisotropy direction was marked on each substrate. The main parameters used in the 

deposition of each layer of the sensor will be given in the section 3. 2.4. 
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Figure 3-1 Schematic diagram of the Materials Research Corporation 
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Figure 3.2 Formation of a thin film (after [Chapman, 1980]) 
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3.2.2 Photolithography techniques 

Photo-lithographic techniques used to create sensors patterns for this work are similar to 

those employed in contact printing photographic negatives. Once the substrates have 

been coated with a particular layer, an ultra-violet light-sensitive chemical called photo

resist is applied to the surface. The substrate is placed in a vacuum chuck in a special 

high speed spin coater. A controlled amount of photo-resist is applied to the substrate 

surface using a calibrated hypodermic syringe. The vacuum chuck is rotated at 4000 

rpm causing the photo-resist to spin out and distributing on the substrate surface in a thin 

planar layer. A typical photo-resist material used is the Microposit 1800 series, 

manufactured by Shipley Europe Limited, type 1813. The last two digits mean that this 

resist deposited using a coater running at 4000 rpm will produce a layer 1.3 J..lm thick. 

A number of chromium-coated high quality glass plates, (mask set) are designed 

specifically for the project and contain the pattern of the sensor to be fabricated . Usually 

there are several masks in the set, especially if multi-layer devices are being constructed. 

The patterned side of the mask is brought into contact with the photo-resist layer on the 

substrate in a mask aligner. These systems feature a powerful u.v (ultra-violet) light 

source, typically of 200 W. This light is directed onto the mask/substrate assembly 

through a mirror and collimating lens assembly which creates a parallel beam of even 

illumination. Clear areas on the mask allow u.v. light to fall on the photo-resist layer 

altering the chemical structure. The areas of photo-resist effected by u.v. light can be 

washed off in a dilute solution of sodium hydroxide (developer), leaving the areas of 

photo-resist covered by the mask as a pattern on the previously deposited film. 
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The substrate can then be placed in a chemical etch solution or ion beam etching machine 

to remove the exposed metal film. Once etching is completed the required sensor 

pattern covered by photo-resist is left on the substrate. The photo-resist layer can now be 

removed if necessary. As additional layers are added the mask aligner is used to line up 

special target marks on the previously etched layers with similar marks on the next mask. 

This ensures the developing layers in a multi-layer device are held in alignment. 

3.2.2.1. Details of MR Sensor Mask Design 

Effective sensor performance depends on quality mask design and careful attention to 

detail in the many steps to produce the sensor. 

Mask manufacture is usually entrusted to a commercial producer to ensure a quality 

product for the important steps in the lithography process 

Eight photo mask designs are required for this project and all are incorporated on two 

mask plates. A novel quartering method is employed to reduce the number of masks 

plates and consequently reduce costs. Sensor arrays are constructed on 51 mm 

(2"square) substrate. Masks are manufactured on 100 mm(- 4"square) plates. During 

photolithography the masks are aligned above the substrate. As the device layers build 

up the substrate is rotated below the mask to each quarter in turn. 

The MR sensor consists of two "active" elements of permalloy, overlaid with a chrome I 

copper I gold laminate to create conductors for carrying the sensor bias current. 

Electrical connections are brought out to pads which can have wires conveniently 

soldered to them for testing. Testing of sensors whilst they are still part of the substrate 

can be carried out, using a "microprobe" IC wafer test system, applied to these 

connecting pads as described later in this work. 
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A combination of positive and negative mask design has been employed in this project. 

This has made it possible to use a range of fabrication techniques including the "lift-off' 

method for certain details, as described later in this work. 

A range of sensor elements with different widths have been included on the mask, these 

include dimensions of 10, 20, 40, 60 and 80 jlm. The bias conductor has a width of 100 

~-tm, allowing it to be used with all widths of sensor as it is approximately 12% larger 

than the widest sensor after etching. The geometric designs of the sensors are shown in 

Figure 3.3. The choice of sensor width is restricted by the micro-manufacturing and 

testing system, such as the limits ofthe mask-aligner system (smallest feature size is - 5 

~-tm) , acceptable resistance of each sensor for the bridge circuit (e.g. about 0.5 kn to 10 

kQ) and the geometric dimensions of the microprobe test system. The length of the 

sensor stripe is 6600 jlm. The length of bias stripe is 6000 jlm. The four sections or 

quadrants corresponding to four separate mask designs on each photo plate are the same 

size, 25 mm ( l ") square. The sections are placed symmetrically about the centre of the 

mask plate. There are 6 pairs of sensors or bias strips in each mask and overall 

dimensions of individual strip pairs are 10000 x 7400 ~-tm . The off-set between strips is 

500 ~-tm. A list of detailed cell-graphs for each mask can be found in Ref. [Ma, 1997]. 

The CAD language used in the mask design was developed by Mentor Graphics 

Corporation for the manufacture of VLSI (Very Large Scale Integration) circuits. The 

program allows the designer to define a series of points, lines, and shapes, to create the 

various feature elements and electrical conductors and connections. A design rule 

checker and utilities converts the database into a commonly used graphical data format 

such as GDS IT. This information is then sent directly to the mask manufacturer. 
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Figure 3.3 Showing the geometric designs of sensor layer and biasing layer 
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3.2.2.2 Photo-resist 

The pattern transfer process is accomplished by spin-coating the substrate with a thin 

photo-resist layer as previously described. The photo-resist material is sensitive to ultra

violet light and is available in positive and negative types depending on their chemical 

structure. For positive resists, the area exposed (through the mask) is affected by u.v. 

radiation and becomes soluble in sodium hydroxide solution during the "developing" 

stage of the process. The image created in the positive resist is the same as the pattern on 

the mask. For negative resists, the exposed regions affected by u.v. light make the 

chemical structure resistant to the developer solution. In this case, the photo-resist 

protected by the mask is removed during developing. 

The Microposit 1800 series photo-resist are high resolution positive photo-resists 

capable of resolving features at less than 1.0 Jlm. For S 1813 photo-resist, the typically 

thickness at 4000 rpm is about 1.3 J..Un. 

3.2.2.3 Aligner system 

The Precima MAS 12 contact mask aligner system was used for the photo-lithographic 

work. This machine features a high pressure mercury arc light source. A concave mirror 

behind the light source and a condenser lens assembly placed in front of it produce a 

powerful collimated ultra-violet beam of 0.2- 0.3 Jlm wavelength with an intense, evenly 

illuminated "footprint". The system is capable of reproducing minimum line I gap widths 

of 5 Jlm with suitable masks. 

A stable substrate mounting system with vacuum clamping for the mask I substrate pair 

prevents errors caused by vibration during exposure. This mounting system is able to 
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accommodate 51 mm (2") substrates. Three micrometer controlled movements (X, Y 

and rotation) allow the user to align the features on a mask with those previously etched 

on a substrate. The mask holder is designed for 102 mm ( 4") square, high quality photo 

mask plates. The ultra-violet source has a shutter with adjustable timer to control light 

exposure. 

3.2.2.4 Etching process 

After resist exposure and development, device patterning is completed by an etching 

process to remove unwanted metal layers. Both chemical etching (or wet etching) and 

ion beam etching (or dry etching) have been considered. 

Chemical etching has been widely used for thin film devices. It is economical and 

straightforward to use on the majority of materials (with some disadvantages). Etch 

geometry is important when creating the sensor layers. The etchant recipe must be the 

same for each etching task on a particular material so that characteristics are repeatable. 

Etching takes place vertically and horizontally in a layer. The rate at which the etching 

takes place in each direction is called the "aspect ratio". Horizontal etching can lead to 

degradation of the edges beneath the photo-resist possibly leading to a reduction in 

sensor performance. Variation of time and temperature can affect the etch so care must 

be taken to repeat the same conditions each time a particular material is etched. 

Tantalum layers are used in the sensor as an underlayer and capping layer. This material 

is difficult to etch using chemical methods. To overcome these problems, ion beam 

etching has been employed. 

Ion-beam etching provides excellent etch resolution and is accurate and repeatable. This 

etching method is not selective since any material presented to the beam will be etched. 
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Careful monitoring of the process must be carried out and etching stopped when the 

necessary material has been removed . If this is not done important components of the 

device may be damaged or removed from the substrate. 

Ion beam etching is based on momentum exchange. Neutral atoms or molecules of the 

process gas (argon) are fed into the discharge chamber inside the ion beam gun. 

Energetic electrons from the gun cathode collide with these atoms or molecules 

producing ions. Ions pass through a screen grid forming 'beamlets' and are attracted to 

the negative potential of the accelerator grid. Most ions pass through this grid without 

striking it because the holes in the screen and accelerator grid are aligned. A Ion beam is 

formed from the combination of individual 'beamlets' after they leave the accelerator 

grid. The beam is neutralised by electrons from the neutraliser cathode which creates a 

beam with equal quantities of ions and electrons. The energetic electrons, ions and other 

low energy electrons in the discharged chamber form a electrically conductive gas or 

plasma. 

The plasma potential is very stable varying only from 1 to 5 Volts. The anode is operated 

at a potential Vb close to the origin potential of the ions. The target potential is close to 

the vacuum chamber ground so the ion energy at the target corresponds to the beam 

supply potential Vb. 

Most of the energy in a ion beam is transferred to the material removed from the surface 

of the substrate by this ion bombardment. A momentum exchange takes place within the 

surface material to be removed similar to that of sputtering. 

In order to create geometric shapes of sensors on the substrate, the required areas of 

material must be protected by an etch resistant material (photo resist) patterned using 
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photolithographic techniques. Usually this photo resist layer should be three times 

thicker than the layer to be etched so that etch patteming of the sensors is completed 

before the etch resisting material is removed. 

A schematic drawing of the ion-beam etching system used in this work is shown in 

Figure 3-4. This system consists of a stainless steel chamber with a 3 cm diameter ion 

source ( the maximum output current is about 100 mA and the total voltage which 

includes the beam and accelerator voltage should be limited to a maximum of 1200 V). 

The substrate mounting system features high rate water cooling, variable speed rotation 

and adjustable beam incidence. The machine has an IDS-250 power supply with 

automatic or manual control and digital readout of the power supply parameters. It 

provides up to 1500 eV ions in a 250 mA beam. The power supply has microprocessor 

control linking the various sections providing an easy-to-use driver for the ion source. 

The uniformity of etch with this system is ± 5% across the 76 mm (3") diameter and 51 

(2") mm square substrate. 

With dry etching, the roughness of the substrate becomes very important. It may only 

take a few seconds to etch off a layer, where the film thickness is only a few nanometers. 

Figure 3-5 (a) and (b) shows broken lines in a joint feature which is believed to be 

caused by over etching in a mis-matched area of a sensor. An overlap joint structure in 

the mask design would eliminate tllis fault. Use of an ideal substrate (e.g. 7059 Coming 

glass) helps to avoid damage to the features previously patterned. The main parameters 

will be given in section 3 .2.4 
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Figure 3-4 Schematic diagram of the Commonwealth Scientific 

Ion Beam Etching System. 
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(a) broken sensor end 

Sensor strip 

(b) half broken sensor end 
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Figure 3.5 Some photographs of sensor showing the damaged 

features caused by over etching. 
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3.2.3 Other Methods Relating Thin Film MR Sensor Fabrication 

(a) Film Thickness Measurement by Taly-step Instrument 

The control of ftlm thickness is an important feature of micro-sensor fabrication, in 

particular when sensor thickness of is a few nano-metres. A precision (Taly-step 1) 

stylus measuring instrument with an accuracy of ± 4 % was used to measure the film 

thickness (full-scale reading is 50 nm, each division is 2 nm). Each value ofthickness for 

the various films used to make up the sensors, conductors and insulating layers was 

averaged for five measurements. 

(b) Lift-off technique 

The lift-off technique is another related patterning process used. A positive resist and its 

matched negative mask is used to fonn the end ofMR sensor pattern. This layer ( about 

5 nm Cr & 30 nm Au) is deposited over the resist and substrate, this layer thickness is 

much less than that of resist. The portion of metal film sputtered onto resist is removed 

by selectively dissolving the resist layer in an appropriate liquid etchant (e.g. Acetone) 

so that the overlying film is lifted off and removed. Many thin film fabrication processes 

can be simplified by using the lift-offtechnique. 

3.2.4 Micro-Fabrication of Thin Film MR sensor 

A major advantage of thin film MR. sensors is that they can be constructed from different 

functional thin film layers on the same substrate using deposition, coating and 

photolithography techniques, which are commonly used and well developed in the 

semiconductor and micro-devices industry. 
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The fabrication procedure for the new MR. sensor, basically consists of over 50 steps. 

The main stages and the main difficulties in MR. sensor fabrication will be described. The 

dimensions and geometric design of the MR sensor and its layer structure are shown in 

Figure 2-17 and Figure 3. 3. 

The fabrication procedure of the MR. sensor can be divided into four main stages. 

(l)Deposition and Patteming of under layer, MR layer and Capping layer 

• The preparation of the substrate surface for thin film deposition is of key importance 

in obtaining good adhesion. Therefore, in each case the substrates were prepared by 

ultrasonically cleaning in a 2% solution of Neutracon, a laboratory cleaning fluid, for 

at least 15 minutes at 65°C, rinsing in deionised water, degreasing in an acetone bath, 

re-rinsing in deionised water and force drying in an oxygen free nitrogen jet. 

• The substrates were then dehydrated by being baked in an air convection oven at 

about 200° for at least 15 minutes to remove residual water contamination of the 

substrate surface. 

• To align the easy axts of the material of the magnetoresistive stripes m a 

predetermined direction, three magnetic substrate holders were used and provided a 

constant direction magnetic field of about 40 Oe across the substrate during 

sputtering. The direction of the anisotropy was marked on each substrate. 

• Three thin film layers, underlayer (5 nm Ta), permalloy (Ni81Fe19 from 5 nm to 40 

nm) , and capping (5 nm Ta) layer are sputter-deposited first. 

• Ion beam etching of these three layers is carried out after a photo-resist layer is 

applied, pre-baked, exposed to u. v. light through No 1" or No 7" chrome photo

mask, and developed to provide the sensor shape required. 
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• Finally, the substrate with MR pattern is cleaned after removal of the photo-resist 

using acetone. 

(2) Removal of the MR layer from the bonding leads region of the MR sensor 

and first deposition of the bonding lead. 

It is necessary to remove the permalloy film from the joint area between the end of MR 

sensor and the conductor bonding leads and deposit the first conducting layer (relatively 

thin, about 50 nm) in this joint area. This can be carried out by the following steps:-

• The No 2# mask is designed to apply to a photo-resist layer on top of the sensor layer 

and to open the windows in the joint area which is to be etched. 

• The Ta capping layer and pern1alloy layer are removed from this window area by ion 

beam etch. The photo-resist applied to substrate for this step must be removed by 

acetone and the substrate cleaned again. It was convenient for the process to employ 

this layer even at 5 nm thickness. If the MR sensor is constructed without a Ta 

underlayer, a difficulty of mask alignment occurs in the next assembly stage because 

no visible layer is left in the window area. 

• A lift-off method and No 3# mask is then used to form the first electrical connection 

layer after applying further photo-resist and patterning layers of 5 nm Chromium and 

about 30 nm Au then were deposited over the photo-resist. The use of a chrome 

under-layer beneath the gold on the electrical connector for the sensors improves the 

adhesion of these features to the substrate. This Cr layer can also be used as an 

interface layer to improve the adhesion between the insulating layer and copper bias 

layer in the next stage. 
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• The Cr/ Au layer is then patterned by using a lift -off method as previously described in 

section 3.2.3. 

(3) Deposition and Patteming of the insulating layer 

For switched-bias type thin ftlm MR sensors, the performance of the insulating layer is 

very important and is a key problem in the fabrication. To achieve enough bias field 

from the bias current, it is necessary to have a small thickness of the insulating layer. 

Three kinds of insulating material, Si02, Photo-resist S 1813 and EPON SU8 photo-resist 

(both supplied by Shipley Europe Limited), were tested for the insulating layer. 

• Si02 is quite a good candidate for the insulating layer and has been widely used in the 

semiconductor industry but it is difficult to deposit and etch. Problems occur such as 

pinholes, cracks and broken joint lines due to over heating during sputtering which 

may be very difficult to improve by using the present sputtering equipment. It can be 

improved a little by sputtering the Si02 film for a longer time and at lower power such 

as 100 - 200 watts, or sputtering with interruption. Even so it was not good enough 

to achieve success both for pinholes or broken joint lines. 

• EPON SU8 photo-resist supplied by Shipley Europe Limited was another candidate, 

as it can be hard baked at lower temperature (e.g. a few hours at about 105°C using a 

hot plate) and good dielectric property (the dielectric constant for EPON SU-8 is 

about 3). The basic component of this photo-resist is a solid epoxy and a range of 

thickness can be obtained in one spin by varying the speed of the spinner and changing 

the viscosity of the resist by altering the quantity of solvent contained in it [Lorenz et 

al., 1996]. It is convenient to use as it is easy to coat and pattern without fear of 

damage to the features of MR sensors' previous pattern. The main problem is that 
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EPON SUS photo-resist was designed for thick films (typically in the range from 5 

J.Lm to 200 J.Lm) applications. The commercially stated minimum thickness of EPON 

SU 8-5 is about 5 J.Lm at 2500 rpm. The experiment for reducing the thickness of 

EPON SU 8-5 was carried out with results as shown in Figure 3-6. 

3.5 

3 

2.5 

e 
~ 2 
In 
In 
Q) 
c: 
~ 1.5 u 
:c 
1-

1 

0.5 

0 
0 1000 

a: EPON SU8-5:GBL(solvent)=6:4 
b: EPON SU 8-5:GBL(solvent)=1 :1 

2000 

Rotation speed (rpm) 

(a) 

3000 4000 

Figure 3.6 A graph showing the coating thickness for EPON SU 8-5 

photo-resist versus the speed of the spinner 

• A thickness of less than 1 J.Lm can be obtained at about 3 000 rpm and with a volume 

ratio of EPON SU 8-5 : GBL (Gamma-butyloracton) solvent of about 6:4. It was 

found that when the thickness of EPON SU 8-5 was less than 1 J.Lm, there were many 

pinholes in the film after being hard baked on a hot plate, possibly caused by the high 

solvent content. Further experimental results also show there are other problems in 

later fabrication steps of the sensors if the EPON SU 8-5 photo-resist has been used 
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as an insulating layer, such as surface re-cleaning and insulating layer re-melting due 

to t he lower hard-bake temperature. 

• The latest candidate used is Microposit S 1813 Photo Resist, which is the same 

photo-resist used for other patterns in this work. It was reported that photo resist can 

be used as an insulating layer if it is hard baked at up to 200 - 250°C for a few hours 

although there are some problems (such as cracking off and poor adhesion property 

ofthe top conducting layer) [ Stewart, 1992]. By carefully graduated hard-baking and 

deposition of the interface layer, this photo-resist has been successfully used as an 

insulating layer in this work. The number 2# mask (negative) was used. The thickness 

of the hard-baked photo-resist insulating layer can be produced and controlled in the 

order of about 1 ± 0.05 Jlm, which allows the conducting bias layer above it to be 

quite effective. It was found that the most effective hard baking temperature range is 

around 220°C ± 1 0 oc. 

(4) Deposition and patterning of the bias layer 

• In the final fabricating stage, a 0.55Jlm thick copper and 50 run gold cap is sputter 

deposited and used as a current bias layer. To improve the adhesion property between 

the hard baked photo-resist insulating layer and copper bias layer, 5 run of Chromium 

is deposited. The use of the 50 run gold cap also improves the stability of the copper 

and reduces its oxidation problem whilst wire-bonding and during use. 

• The main difficulty in tlus stage is the problem of mis-matched bias features relating to 

the aligning precision of the exposure system and the over-etching problem which 

relates to the roughness of the substrate and that of the multiple-film array. By using a 
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high quality substrate, optimising the multiple-film structure and carefully controlling 

the etching rate and time, a switched-bias MR. sensor can be successfully made. 

The sputtering details for each layer are: 

a) Tantalum: Target sputter cleaned for 20 minutes at 200 watts after changing target, 

or sputter cleaned for 10 minutes at 200 watts after changing substrate. 5 nm Ta is 

sputtered for 29 seconds at 200 watts (forward power) and zero watts (reverse 

power). Forward power refers to the power delivered to the target. Reverse power 

refers to the power delivered to the substrate platen. 

b) Nis1Fe19: Target sputter cleaned for 20 minutes at 200 watts after changing target, or 

sputter cleaned for 10 minutes at 200 watts after changing substrate. The sputtering 

rate for Ni81Fe19 is about 0.28 nm per second at 200 watts (forward power) and 

zero watts (reverse power). Bias voltage set to -75 volts. 

c) Chromium: Target sputter cleaned for 20 minutes at 200 watts after changing target, 

or sputter cleaned for 10 minutes at 200 watts after changing substrate. 5 nm 

Chromium is sputtered for 20 seconds at 200 watts (forward power) and zero watts 

(reverse power). 

d) Copper: Target sputter cleaned for 20 minutes at 200 watts after changing target, or 

sputter cleaned for 10 minutes at 200 watts after changing substrate. The sputtering 

rate for Copper is about 30 nm per minute at 200 watts forward power and about 

50 nm per minute at 300 watts (forward power) with zero watts (reverse power). 

e) Gold: The sputtering rate for gold is about 10 nm per minute at 200 watts forward 

power and about 15 nm per minute at 300 watts (forward power) with zero watts 

(reverse power). 
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f) The thickness of all films is controlled by depositing at a selected forward power for 

a particular length of time. 

Other main parameters used in the fabrication of thin film MR sensors are as follows:-

• A typical parameter program used for ion beam etching process (Table 3-1). 

Table 3-1 A typical parameter used in ion beam etching 

Cathode Discharge Beam Current 

(Amps) (Amps) (mA) 

12.9 2.71 30 

Beam Voltage 

(Volts) 

500 

Accelerator 

(Volts) 

460 

Neutralise 

(m A) 

28.8 

• A typical hard baking procedure for using S 1813 photo-resist as an insulating layer: 

a) Clean and gradually heat the substrate from ambient temperature up to 250° (keep 

constant for more than 15 minutes). 

b) Spray about 2 ml S 1813 photo-resist on a 2" substrate and spin at a speed of 4000 

rpm. 

c) Soft bake for about 5 minutes at 110°C, then expose in ultra-violet light and develop 

to obtain the insulating layer features required. 

d) Put in an air convection oven to heat gradually the substrate from ambient 

temperature up to 220°C ± 10 oc (keep for 3 - 4 hours). 

e) Gradually cool down to ambient temperature. 
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3.3 Microstructure and texture analysis for thin M-R film 

3.3.1 Transmission Electron Microscopy 

There are two types of electron microscope in common use, the Scanning Electron 

Microscope (SEM) and the Transmission Electron Microscopy (TEM). 

The SEM is perhaps the most useful and widely used instrument for the study of surface 

or cross section micro-morphology of materials. It also allows ease of specimen 

preparation. The various SEM techniques are differentiated on the basis of what is 

subsequently detected and imaged. By mean of scanning the probe, the image can be 

built up point by point in a way similar to that generated in a television display. The 

information detected and imaged by an SEM is therefore limited and the information 

about the crystallographic structure of specimen may not be provided. 

Unlike SEM, the Transmission Electron Microscope (TEM), as the name implies, is used 

to obtain structural information from specimens that are thin enough to allow electron 

transmission. It is therefore like a true microscope, in the sense that all the image 

information is acquired simultaneously or in parallel. With high resolution TEM, it is 

possible to obtain detailed information about the microstructure of grains and grain 

boundaries near atomic level, e.g. a sub-50 nm scale, which is of great interest in the 

detailed investigation of many materials [Chapman & Kirk, 1997]. 

The modem TEM is a powerful tool for the study of a wide range of magnetic materials 

currently under development. It offers very high spatial resolution because of the large 

number of interactions that take place when a beam of fast electrons hits a thin solid 

specimen. It provides detailed insight into compositional, electronic, as well as structural 

and magnetic, properties. The achievable resolution of a TEM depends largely on the 
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information sought and may be limited by the spec1men itself Typical resolutions 

achievable for structural imaging are 0.2 - 1.0 nm, for the extraction of compositional 

information 1 - 3 nm and for magnetic imaging 2 - 20 nm [Chapman & Kirk, 1997] 

Both SEM and TEM have been used in this study. Although SEM was used to observe 

the morphology and features of the sensor, most microstructure and texture analysis such 

as grain size, was performed by TEM, therefore, the TEM technique will be discussed 

here in more detail. Figure 3-7 is a picture of the JEOL 2000 FX Transmission Electron 

Microscope system used in this study. The accelerating voltage ofthis TEM can be up to 

200 kV, and has been varied from 100 kV to 200 kV during observation as the changing 

in the thicknesses of specimens. 

3.3.1.1 Specimen preparation for TEM 

The principal disadvantage of a TEM is that it can be used only to study thin specimens. 

In most cases of thin films, the TEM specimen preparation may not be a serious problem 

except that the bulk substrate has to be removed. Usually this process can be successfully 

performed by using a carbon film (typically, 30 to 50 nm thick) pre-coated on the 

substrate as a transfer film. The films to be observed are deposited on this carbon film, 

and then floated off from the substrate by water (or other solvents) and placed in foldable 

Copper grids for TEM observation. 

It was found that when the thickness of films becomes very small, for example, below I 0 

nm, it is very hard to prepare the specimen by using the transfer method because the thin 

film is very likely to disintegrate in the water. Direct deposition of the thin films on 

Copper TEM grids was also tried but failed because the thin films cannot be supported 

by a grid alone. 
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To overcome this problem, a support film, of ' Formvar', was then used for the 

preparation of specimens. Formvar is a polyvinyl formaldehyde resin and can very easily 

and quickly form a film on the surfaces of a substrate. The easiest way to prepare a thin 

film TEM specimen using Formvar is to put several TEM grids on a piece of paper, 

which has been first adhered to the substrate (e.g. a glass slide). A few drops of a 

solution of 0.5 percent Formvar in chloroform is then placed on the grids and a glass rod 

is used to wipe these drops uniformly over the whole slide to form a continuous film on 

the grids. The substrate with grids coated with Formvar can be used directly as a 

substrate to deposit thin film for examination. Afterwards, each grid together with a thin 

fi lm specimen can be easily lifted offfrom the slide and placed in a TEM specimen holder 

for observation. Experiments showed that the film structure in the TEM Sample was 

not affected by using both (carbon or Formvar films) specimen preparation methods. 

3.3.1.2 Electron diffraction pattern and images 

There are two basic operations of the TEM imaging system, one ts to project the 

diffraction pattern on the viewing screen (diffraction mode) and another is to project the 

image onto the viewing screen (image mode). Both operations are useful for the study of 

magnetic thin films and have been employed in this study. To see the diffraction pattern 

you have to adjust the imaging system lenses so that the back focal plane of the objective 

lens acts as the object plane for the intermediate lens. Then the diffraction pattern is 

projected onto the viewing screen, as shown in Figure 3.8 (a). In image mode, the 

intermediate lens is readjusted so that its object plane is the image plane of the objective 

lens. Then an image is projected onto the viewing screen, as shown in Figure 3.8 (b) 

[Williams & Carter, 1996]. 
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Figure 3-7 A Photograph of the JEOL 2000FX Transmission 

Electron Microscope System 
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Figure 3.8 The two basic operations of the TEM imaging system 

(a) projecting the diffraction pattern on the view screen and 

(b) projecting the image onto the view screen. 

(after [Williams & Carter, 1996) ) 
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• Electron Diffraction Pattern and Selected-Area Diffraction 

The electron diffraction mode is based on the fact that electrons are scattered by the film 

material and this can be used to form a picture (Electron Diffraction Pattern)) of the 

scattered electrons distribution in the TEM imaging system. As can be seen from Figure 

3.8 (a), the diffraction pattern contains electrons from the whole area of the specimen 

illuminated by the beam. Such a pattern is not very useful because the specimen will 

often be buckled. Furthermore, the direct beam is often so intense that it will damage the 

viewing screen. In practical operation, Selected-Area Diffraction is performed by 

making the beam smaller or inserting an aperture above the specimen which would only 

permit electrons that pass through it to hit the specimen [Williams & Carter, 1996]. 

This method can be used to get a qualitative measure of any crystallographic texture 

present in the film, by looking at the relative intensity of diffraction rings. 

In principle, the index of a diffraction ring can be determined by Bragg's Law, and is 

depicted in simplified form in Figure 3-9. 

When an electron beam with wavelength A. strikes a specimen with incident angle 8, a 

diffraction pattern is formed on a photographic plate in the TEM screen, at a distance R 

from the centre of the diffraction pattern. The distance between the specimen and the 

screen plate (the camera length) is designated L. According to Bragg's law, 

A=2dsinB 

and by simple geometry, equation 3.2 becomes, 

tan2 () = RIL 

For very small () , tan2 () = 2sinB, and equation 3-3 becomes, 
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Rd =AL (Equation 3.4) 

With equation 3.4, if R can be measured from a particular diffraction ring, L can be 

calibrated by a known crystalline specimen, e.g . a gold sample, and A can be obtained 

from the accelerating voltage of the electron beam, then the d-spacing of the set of 

lattice planes giving rise to the diffraction ring can be determined [Williams & Carter, 

1996]. 
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Figure 3-9 Simplified schematic diagram showing the forming of an Electron 

Diffraction Pattern (after [Pan, 1993]) 

When the type of film structure (e.g . fee cubic for NiFe) is known, another easy way can 

be introduced to determine the index of the diffraction rings. For example, it is well 

known that Ni8,Fe19 films have a cubic crystal of an fee structure and therefore, the 

allowed reflections for an fee structure should correspond to the diffraction ring 

diameters of Nis,Fe19 obtained by TEM. It is much better to investigate the RATIO of 

ring diameters assuming the smallest ring to be the [ 111] ring and so on. For an fee 

structure, the ratios of ring diameters can be illustrated in Table 3-2 [Petford-long, 

1996]. 
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Figure 3-10 is an example ofEDP for a 10 nm NistFet9 thin film, which was indexed in 

this simple way. By means of the electron diffraction pattern and by comparison with 

typical intensity ratios of the diffraction rings of textured polycrystalline samples, more 

information about the texture of thin films may be obtained. This is because the relative 

intensities of the different rings depend on whether the grains are randomly aligned or 

have a crystallographic texture along the film in the normal direction. For example, the 

diffraction pattern in Figure 3-10 shows that there is a random texture in this sample. 

Table 3-2 Diffraction ring ratios for an cubic crystal of fee structure 

[hkl] [111] [200] [220] [311] [222] [400] [331] 

Ring Diameter Ratio 1.0 1.16 1.63 1.92 2.0 2.31 2.52 

• TEM Images 

A TEM image can be formed in a number of ways. By changing the objective aperture, 

two basic images, bright-field (BF) image and dark-field (DF) image can be obtained. 

The former is formed by placing suitably sized apertures in the back focal plane of the 

objective lens, and in this case, only the central direct beam can be selected. A DF image 

is formed by magnifying a single beam, which is chosen by means of an aperture that 

blocks the central direct beam and some other diffracted beams. The BF and DF images 

can be viewed at any magnification simply by adjusting the intermediate lenses of the 

microscope. Typical magnification ranges will be 25,000x- 100,000x. They can be used 

for the measurement of microstructure details such as the grain size, whether 

homogeneous and continuous. The Bright-field image was used in this study and will be 

further described in Chapter Four. 
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Figure 3-10 An EDP or SAD showing there is a random texture and 

which is indexed by looking at the ratio of the ring diameters (assuming the smallest 

ring is the [111] ring) {after[Petford-long, 1996]) 

87 



Chapter 3: Experimental development 

3.3.2 Domain Observation by Lorentz Microscopy 

Any feature of a transmission microscope specimen which deflects the electron beam can 

be translated into image contrast. Electrons are also deflected by internal magnetic and 

electric fields in the specimen, and the distribution of these fields can be made visible and 

used to detect the magnetic domain structures. Magnetic domain structures in thin films 

may be revealed in a number of ways in the transmission electron microscope, and are 

most commonly revealed using one of the modes of Lorentz microscopy. Since the 

observed contrast can be understood qualitatively in terms of the Lorentz force, this 

branch of electron microscopy is known as Lorentz microscopy [Chapman, 1984]. 

AJJ imaging modes in which contrast is generated as a result of the deflection 

experienced by electrons as they pass through a region of magnetic induction, are called 

Lorentz images modes. The angular deflection of the electrons in ferromagnetic materials 

such as iron is typically 0.01° [Jiles, 1991]. 

The most commonly used modes for revealing magnetic domain structures are the 

Fresnel (or defocus) and Foucault imaging modes, because they are generally fairly 

simple to implement and they provide a clear picture of the overall domain geometry and 

are a useful indication of the directions of magnetisation in (at least) the larger domains 

[Chapman, 1997]. 

A schematic drawing of how magnetic contrast can be generated in Fresnel and Foucault 

imaging modes is shown in Figure 3-11 . Fresnel is particularly useful for revealing 

domain boundaries and Foucault gives an indication of the areas in the sample with a 

similar component of magnetic induction vector [Daykin & Petford-long, 1995]. The 
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Fresnel image was mainly employed in this study because the domain boundaries and 

walls were of most interest. 

The principal difficulty encountered when using a TEM to study magnetic materials is 

that the specimen is usually immersed in the high magnetic field (e.g . about 1000 Oe for 

JEOL 2000FX) of the objective lens. This is sufficient to eradicate completely or 

severely distort most domain structures of interest, particularly for soft magnetic thin 

films. A number of strategies have been devised to overcome this problem [Chapman 

and Kirk, 1997]. A modified TEM in which the specimen can be sited in a field-free 

region of the microscope is required and employed for this observation [Daykin and 

Petford-Long, 1995]. 

The domain wall images presented in this thesis were observed at 400 kV in a JEOL-

4000 EX TEM with an AMG 40 (low field) pole-piece using Fresnel imaging in the 

' long camera length' mode. This was carried out at Oxford University. The applied field 

can be varied in the range of ±3 80 Oe. Most magnetic domain images presented here are 

approximately 25 J.lm in diameter and full details will be discussed in Chapter Four. 

The preparation of specimens for Lorentz TEM observation is similar to that stated 

above. In order to know the direction of the anisotropy in the TEM grid, a field of 

about 40 Oe was used (via a magnetic substrate holder) during deposition and the 

direction of anisotropy was marked on each slide. This was marked again on each grid 

prior to being placed into the TEM grid holder for observation. 
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Figure 3-11 Fresnel and Foucault imaging used for revealing magnetic domain 

structure observation (after [Chapman, 1997] ) 
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3.4 Measurements of magnetic properties of M-R Films and sensors 

As previously described, the deposition of the permalloy thin films is optimised in many 

ways, providing a reliable means of producing high quality magnetoresistive permalloy 

thin films for use in the fabrication of sensors. However, in order that the sensors 

produced from such films are able to provide the highest possible magneto-resistive (M

R) response, the lowest coercivity and Barkhausen noise, lower hysteresis and the 

highest possible sensitivity, several of their fundamental magnetic properties have to be 

investigated and optimised. 

1. Film coercivity is interesting, not only for inclusion in the theoretical description of 

the sensors' dynamic response, but as a fundamental property of the films. 

2. The resistivity and magnetoresistivity of the complete films and sensors needs to be 

measured so that the maximum magnetoresistive response can be calculated. 

Additionally the change in resistance versus applied field, resulting from the 

anisotropic Magnetoresistance of the whole film and complete sensors, provides 

qualitative information on their magnetic behaviour such as hysteresis. 

3. Barkhausen noise in the films has to be measured in order to explain the variation in 

coercivity and magnetic domain structure. 

4. The sensitivities of the switched bias sensors and variation in sensor sensitivity with 

magnitude of switched-biasing field should be studied so that information about the 

highest possibility sensitivity, frequency response and output performance of the 

sensors can be provided and evaluated. 
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3.4.1 Measurement of the magnetic properties of Permalloy films 

3.4.1 .1 Coercivity Measurement by 8-H loop plotting 

The coercivity measurement by B-H loop plotting (hysteresis loop plots) has been widely 

used to observe the magnetisation of thin films for many years. It was based on the fact 

that the magnetisation reversal in thin ferromagnetic films can be produced by a 

magnetic field which may change slowly (typically, at times much longer than about 100 

microseconds) in relation to the switching time of the films. This technique enables highly 

sensitive electronic circuits to be used to amplify and integrate the very small signal 

generated as a result of the small flux change occurring when a magnetic film is switched 

[Prutton, 19641. 

Figure 3-12 is a schematic diagram of a thin film B-H loop testing system used in this 

study. This sensitive instrument consists of two pairs of coils, one power generator and 

its amplifier, one X-Y plotter (or printer), a signal amplifier and integrator (which 

behaves as a low pass filter), as well a storage oscilloscope. The power amplifier 

provides an alternating current to a Helrnholz coil pair which generates a uniform field in 

the film sample. The film specimen is inserted in one of the inner sense coils ( pick-up 

coil). The current passing through the coils generates a voltage across a known resistor 

in series with coils, which is amplified and taken to the X axis of an oscilloscope. The 

flux change in the film sample will induce a voltage in its sense coil. The air flux 

contribution to this voltage is compensated by connecting the coil in series opposition 

with another pick-up coil, which is of similar cross-sectional area but without a film 

sample. This voltage is an amplified, integrated induction signal and is taken to the Y 
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Figure 3.12 Schematic drawing of a thin MR film or sensor B-H loop testing system 
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axis plate of the oscilloscope. A typical frequency around 77 Hz was used in this study 

to avoid any mains generated noise at 50 Hz. 

The Helmholtz drive coils consist of 400 turns of copper wire with an average diameter 

of about 20x 1 o·2 m. The resistance of each coil is 4.3 oluns and the inductance is 48.4 

mH in the zero field . They can produce a maximum field of about 5.6 kNm (about 70 

Oe) and are typically calibrated at 480 A/m (6 Oe) for soft magnetic thin film 

measurement. The sense (pick up) coil consists of about 1172 turns copper wire with an 

average wire diameter of about 0.16 mm. The resistance of each coil is 22.3 oluns and 

the inductance is 2.043 mH in the zero field. A standard sample of coercivity 115.2 A/m 

( 1.44 Oe) is used to calibrate the testing system prior to each measurement. The 

coercivity data for the films was averaged for five readings. 

The easy direction coercivities of Ni81Fe19 films varies in the range from about 10 to 

1 000 A/m. In the hard direction, the coercivities become very small, and may be less than 

a few A/m in the case of very thin films. The measurement became very difficult as the 

flux change in such thin films may be too weak. Most of the coercivity measurement 

results presented and discussed here are taken from the easy direction of the films. 

3.4.1.2 Barkhausen Noise Analysis for MR Film 

It is well known that Barkhausen noise has been a major problem in MR sensor design 

and application for many years. Barkhausen noise measurement also provides basic 

information on magnetisation processes of magnetic thin films. 

The Barkhausen Noise measurement for MR thin films in this study was based on 

analysing the voltage induced by flux changes in the films as a result of sweeping them 

with a field of 77 Hz. The difference between this and the B-H loop measurement system 
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was only in the output signal amplifier and integrating circuit. The experimental basis for 

the measurement is also shown in Figure 3-13. A schematic diagram of this test system 

is given in Figure 3-14. 

The theory of Barkhausen noise measurement is based on Faraday's law of electro-

magnetic induction, and may be described as follows: 

For the differential sense coils arrangement shown in Figure 3-14, in a constant field, 

without a sample present, the induced field B is 

B =f.loflcoill - j.lo Hcoi/2 = 0 (Equation-3 .5) 

If a sample with magnetisation M is now introduced into coil 1. 

(Equation-3.6) 

where, f.lo = -1 1r x 10-7 Him . 

The e. m. f. induced in a circuit is equal to the product of the number of coil turns and the 

rate of change of flux linking the circuit 

d<l> 
e=-N 

dt 
(Equation 3. 7) 

If A is the cross-sectional area of the coil (e.g. 1 o-3 m2
) and N is the number of turns the 

magnetic induction (e.g. N=ll72 turns) is then B=<f>/A 

d<l> dB dM 
e = V = /(<I>) = - N- = - NA - = - NAJ-Io -

dt dt dt 
(Equation 3.8) 

As can be seen from Equation 3.8, the induced voltage is proportional to the rate of 

change of magnetic induction or magnetisation. And thus, by connecting the sense coils 

to a suitable signal capture system, it is possible to observe the rate of change of 

magnetic induction or magnetisation, dB!dt or dM/dt, as a function of applied field. 
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Figure 3.13 The experimental basis of Barkhausen Noise measurement 
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Figure 3.14 Schematic diagram of Barkhausen Noise measurement system 
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3.4.1.3 Resistance and Magnetoresistance Measurement for MR Films 

• Sheet Resistance 

Sheet resistance is a very useful quantity that is widely used for comparing thin films 

particularly those of the same material deposited under similar conditions. The resistance 

of a rectangular shaped section of film can be defined by 

p · l 
R= 

d ·b 
(Equation 3.8) 

where, l and b are the side lengths of the rectangular section of ftlm, and d is the 

thickness of film. 

If l=b, equation (3-8) then becomes R=pld =RJ and is independent of the size of the 

square, depending only on the resistivity and thickness of the film. 

An in-line four-point probe method and a square-probe array method (such as shown in 

Figure 3-15) have been used to measure the sheet resistivity of MR films. These 

methods are based on using a four probe (contact) potentiometric circuit and more 

details can be found in refs. I.Maissel and Glang, 1970] and [Jenkins, 1995]. 

In the former method, a constant current is passed between an outer pair of contact 

probes. An inner pair of contacts is then used to measure the voltage dropped across a 

portion of ftlm between these outer probes. When the probes are placed on a material of 

semi-infinite volume, the resis tivity is given by 

WhcnS1= S2 = S3 =S, this reduces to 
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If the material on which the probes are placed is an infinitely thin slice resting on an 

insulating support (e.g. glass substrate}, then, 

Vd~r 
p = /ln2 or 

p V 
-= R = 4532-d s . I 

For the square-probe array, current I is fed in through any two adjacent probes and the 

voltage V generated across the other two is then measured. With both methods, the sheet 

resistance of films can be obtained by 

Vd1r V 
p=-- or p=4532-d 

/ln2 · I 
for the four-point method (Equation 3. 9) 

and 
V •27r •d V 

p= = p=9.06-d 
I •ln2 I 

for the square-probe method (Equation 3 . I 0) 

where, I is a constant current fed into the probe, V is a voltage generated across the 

probes, and d is the thickness of film. The units of p are 0-m or ~-cm. 

In-line !our-11oint probe. 

f--v--1 
~---- - - - --~ 

I 
I 
I 

I I 
I I 

IoN -----~------- -- -~-----lour 

Figure 3-15 In-line four -point probe and a square-probe array 

for resistance measurement (after [Maissel and Glang, 1970]) 

In practice, it is the difficult to make a perfect geometry for the probe arrangement, the 

reading accuracy of about 1%- 5 % can be obtained by using a d.c. constant-current 

99 



Chapter 3: Experimental development 

source in a suitable potentiometric circuit and with good connection between the probes 

and film. The values of film resistance may be changed in a wide range. For thinner films 

having high resistance a balance point can be found using reasonable values for the 

standard resistance and adjusting the bridge output to zero volts. 

• The anisotropic magnetoresistance measurement 

It is necessary to accurately measure the anisotropic magnetoresistance of the films after 

deposition before lithography to ensure that films will be suitable to be made into 

sensors. To measure the anisotropic magnetoresistance of a film, an external magnetic 

field has to be applied to rotate its magnetisation moment relative to the current 

direction. The physical arrangement of the various elements of the anisotropic 

magnetoresistance measurement system are given in Figure 3-16. This consists of a pair 

of Helmholtz coils, one generator with amplifier, a pressure pad with two probes, a 

standard resistance box and an X-Y plotter. 

The Helmholtz coils are fixed to the sample holder plate and used to generate an external 

magnetic field in the range from 800 Nm to 8 000 Nm. For soft magnetic films such as 

permalloy, the peak applied field is calibrated at ±1600 Nm (±20 Oe). This is typical for 

most measurements in this study. The ramp generator supplies a current to the drive coil, 

providing a very slowly varying triangular waveform oscillating about zero volts at about 

0.1 to 1 Hz. The direction of the magnetisation vector in the film can be rotated by this 

field and the resistance of films also changes due to their anisotropic properties. With this 

applied field, the magnetisation in a film is saturated first in one direction, and then after 

passing through zero, saturated in the other direction. A potentiometric circuit is used to 

measure the change in the resistance of the film sample. 
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Figure 3.16 Schematic diagram of the anisotropic magnetoresistance testing system 
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There are two identical current sources in this potentiometric circuit, which supply 

currents to the film sample and a standard resistance box. The connection between the 

film and circuit is performed by using a pressure pad with two probes. The sample film 

and a standard resistance box are connected to a bridge and the bridge output fed to a 

differential amplifier. The resultant output from this amplifier is fed to the vertical 

terminals of an X-Y plotter (or oscilloscope). A voltage proportional to the current in the 

field coils is also introduced to the horizontal terminals of the plotter. A record of the 

magnetoresistive change in the sample film can be produced. 

Figure 3-17 is a typical magnetoresistance plot produced using the testing system as 

shown in Figure 3-16. The change in resistivity (along theY axis) can be determined by 

reducing the external field to zero, and then altering the value of the standard resistance 

box in fixed standard increments to obtain the same change in the bridge output observed 

by the deflection of the plotter pen) as that produced by the magneto resistive change of 

the :MR. film. 

3.4.2 MR Response Measurement for MR Sensor 

For the completed sensors, magnetoresistance can be measured with the testing system 

shown in Figure 3-16. The only difference is that the pressure-pad probes are connected 

to the ends of sensors to be examined. This time the M-R response may be changed in 

the sensors made from the same substrate film but with different geometry (for example, 

different width) due to the transverse demagnetising field. 

It was found that, there are two peaks (see Figure 3-17) on the magnetoresistance loop 

in some samples. The double peaks may be introduced by hysteresis related to the 
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dispersion in the magnetoresistive films. Like Barkhausen noise, hysteresis also needs to 

be eliminated or overcome in sensor applications. It has been reported that the hysteresis 

and Barkhausen noise can be reduced by means of applying a constant longitudinal field 

in Ref. [Tsang, 1984], (Watson,1986], [Fiynm, 1994]. It can also be seen from Figure 

3.17, that the double peaks are also not symmetrical and there is over-cross in some parts 

of curve, which may be caused by the error movement of pen. 

l 
Q) 
0 
c ro ..... 
Cl) 

'iii 
Q) 

0:: 

+200e 

Transverse Field -----+ 

-200e 

Figure 3-17 Showing a typical plot of the anisotropic magnetoresistance versus the 

applied field (± 20 Oe, or 160 Aim) 

An alternative method was adopted in this study using an additional high-frequency 

external 'linearising' field perpendicular to the saturating (drive) field. In this case, a 

well defined direction can be obtained for the sensors magnetisation to relax and these 

double magnetoresistance peaks (the hysteresis) can be pulled together. This high-

frequency field also has the effect of producing the maximum possible magnetoresistive 

change by improving the original state of magnetisation in the sensors [Watson, 1986]. A 

schematic diagram of the M-R response test system (including high-frequency external 

linearising field) is shown in Figure 3.18 
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Figure 3.1 8 Schematic diagram of the anisotropic magnetoresistance testing system 

(including high-frequency external linearising field) 
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3.4.3 Electronic drive and test system used to evaluate MR Sensor 

performance 

There are very few publications concerning the fundamental magnetic properties of very 

thin e.g., a few nano-metres thick, MR sensors [Fiynn, 1994]. Also, no systems have been 

reported for evaluating the output perfonnance of thin, switched-bias MR. sensors. 

Figure 3-19 is a schematic diagram of the sensor electronic drive and test system, which 

has been developed and successfully used in the evaluation of the sensors in this study. 

Because of its importance, it is described here in more detail. 

3.4.3.1. Test procedure 

The two sensors are connected to a bridge and the bridge output to a differential 

amplifier. It is well known [Mapps, 1997] that if the sensor current is applied as part of a 

bridge circuit the differential output ( subtraction of the two sensor output voltages) 

from the sensor will be zero in a zero applied magnetic field . The sensors are always 

biased in opposite directions so that any d.c. field (oH) such as from a pair of 1 0-tum 

Helmholtz coils can unbalance the bridge. The output from the differential amplifier is a 

square wave containing some noise if the sensor is used to detect small fields. This 

output is fed into a lock-in amplifier and compared with a reference signal from the bias 

current. This square-wave reference ensures that only signals of this same shape and 

repetition frequency will be registered in the output of the lock-in amplifier. This output 

is a d.c. level proportional to the applied field 8H. 

105 



Chapter 3: Experimental development 

I I D.C. Supply for BH 
r--

Square Wave Generator 
1kHz bias Field 250 or 1kHz 
(square wave) 

5-25kHz 
linearising field 

~ 
I ¥' I .. -- ------- ----------- --- --

' ' 
' 
' 

I ' BIAS 1 BIAS 2 . 
' ' H ' . 8H ' 
' ' ' ' .. 
' ~ - - -' ' 
' SEN S OR 1 SENSOR 2 ' 
' ' 
' ' 
' ' ' ' ------- ---- ---. ----------

Microprobe System 
..... ...... 

Amplifi e r Sensor Drive 1 .... 
Source and 
Bridge 1-

Sine Wave 1 Reference Sign a l Generator 
(5- 25 kHz) I Lock-in Amplifier I 

~ 

Q Digital 
Oscilloscope 

" 
Output ~nal 

Figure 3-19 A schematic diagram of sensor electronic drive and test system. 
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In addition to the applied field and sensor switching bias field (which can be, say from 

zero to 1 kHz and typically 250 Hz) an additional high-frequency bias field can be 

supplied from another set of Helrnholtz coils (shown in ' longitudinal ' field mode in 

Figure 3-19). This field reduces hysteresis and Barkhausen effects. The output from the 

lock-in amplifier is fed to an oscilloscope with an averaging capability to reduce any 

fluctuations in the output. 

The value of oH can be varied precisely from zero to 300 nT. The peak switched-bias 

current is typically from 0 to 140 mA (field approx. 100 Aim) but can be varied to find 

the best operating point ofthe sensor. All data is averaged for five measurements. 

3.4.3.2. Microprobe system 

In the test system the sensor substrate (which contains many prototype sensors) is 

mounted in a non-magnetic microprobe system so that each dual sensor can be accessed 

by tungsten probes mounted on a microprobe card, for supplying bias current and sense 

current. There are 18 pairs of sensors in a 2 inch square substrate. Using the microprobe 

system, it is easy to examine all the sensors very quickly. 

The contact area of the tungsten micro-probe is about 15 - 16 1-lm in diameter and this 

means the area size is about 180 l-lm2
. Assuming the maximum bias current to be about 

200 mA (corresponding to about 0.4 x 1010 A/m2 current density for the Cu bias film) the 

maxtmum current density in micro-probe tip is given by 

I maxb 200 X 1 o-3 

a: --- - = l.ll x l09 A/m2 

max - A ma'< - 1.80 X I o - 10 
(Equation 3. 11) 
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This is safe for the tungsten probes and copper & gold bias films [Ciureanu, 1992]. In 

practice, it is very important to make sure of good contact between each probe and the 

end leads prior to each measurement, because any bad contact may cause contact 

resistance to rise. 

To reduce any noise coupling into any metal part in the micro-probe system, all 

connections are screened and all metal parts (including spare filaments in the microprobe 

card) are connected to the system earth. 

3.4.3.3.The coil system 

The field coils must be designed so that the field over the whole of the sample is 

substantially uniform. Also, the constant of proportionality between field and current was 

calculated as well as calibration being performed by measuring the field with an accurate 

gaussmeter [Prutton, 19641. To meet this need, three sets of coils were designed and 

used in this test system. 

Because of the physical space limit within the microprobe system, two pa1rs of 

rectangular coils were used both for a d.c. field (8H) and for another applied field (e.g. 

the M-R response measurement) . The calculation of magnetic field from a pair of 

rectangular coils is explained as below. 

Considering one turn of the rectangular coil as shown in Figure 3-20. 

here 

108 



Chapter 3: Experimental development 

and, 
. a 

smy = .J 2 2 
a +d 

from the Biot-Savart law, 

A 

I l 
c 

b 
8 

b ~b2 + r2 

a 

0 d a 

HAs 
D 

Figure 3-20 Geometry for calculation of the magnetic field 

on the axis of a one-tu m rectangular coil 

I 
dHA8 = - cosa ·da 

4nr 

I +fa I [ . ]+a I . 
H AB = - cos a· da =- + sm a = - · 2 sm a 

4nr 4nr -a 4nr 
- a 

I b 

X 

- 2nr . .Jb2 + a 2 +d2 
(Equation 3.12) 
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and since 

therefore 

to get H ox we must resolve HA8 along the axis XO , 

Le. 
a 

H0 x = HA8 · sina where siny = 1 va2 +d2 

For two conductors AB and CD we get 2 x H ox 

Similarly, for conductors DA and BC we get 

therefore, total field 

Aim/Tu m (Equation-3. 13) 

for one coil with N turn, we get 

(Equation-3.14) 

Practical sizes of the rectangular coils used are: 
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(1) The drive coil 

The drive coils consist of 300 turns of enamelled copper wire in a rectangular form to 

produce a field along the sensor long axis as shown in Figure 3-1 9. The dimensions are, 

N=300, d=9.5 cm=9.5xJo·2 m, 

b =7 cm= 7xJo·2 m, 

a = 3.7 cm = 3.7xJo·2 m, 

usmg 

If / = /A,then 

77.7 X I 04 I I I l = L + J= 335.5 (Aim) = 4.194 Oe 
3.14 X 12.37 103.94 139.25 

The calibration for this coil has been performed by measuring the field with an accurate 

gauss-meter. 

Figure 3-21 shows the magnetic field generated in the rectangular coil versus the input 

current. The solid curve is for the theoretical result and the broken curve is the 

calibration. The difference may be as a result of the coil resistance changing with 

temperature and that the theory assumes that every turn of the coil is in one place (which 

is impossible in practice). 
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Figure 3-21 The magnetic field generated in a rectangular coil versus 

the input current. (the solid curve is for the theoretical calculation 

and the dotted curve is the calibration, 1 Oe=79.6 A/m). 

(2) The sense coil 

The dimension are N =JO, d =9.5 cm =9.5x l0"2 m, b =5.4 cm = 5.4x Jo·2 m and 

a = 2.2 cm = 2.2x10·2 m, for a pair coils N =2x /O =20 

from Equation 3- 14, 

2 x 1 o x 2.2 x w-2 
x 5.4 x w-2 

[ 1 04 
1 0

4 J 
= 3.14 X ~(2.22 +5.42 +9.52

) X lQ-4 2.22 + 9.52 + 5.42 + 9.52 

2 X }1.88 X 1 0
3 

[ 1 1 ] 1 = --+ = 6.408 x 2 = 12816 m· 
3.14 x 11.15 95.09 119.41 

if/ = 1 mA , 
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12.816 X 10-3 

Hrorat = 12.816x10-
3 

Aim = {
100

%7r) Oersteds {;5Gauss) 

= 16.1 nano-Tesla per mA 

The corresponding current I for 1 nano-Tesla (I1nr) is, 

f 1nr = ){ 6.1 = 0.062 mA 

This means that a one nano-Tesla field can be generated by applying a current of 0. 062 

mA to the OH coil. However, the applied field was set at about 9.95 mA (about 160 nano 

Tesla), and used for most measurements of OH. 

Initially, the OH coils were supplied by an a.c. power supply but this proved 

unsatisfactory because of unexpected noise at 50 Hz. A 12-Volt battery was therefore 

employed, together with a potentiometer for measurement and variation of current. In 

this way a noise-free and precise sense field of a few tens or hundreds (e.g. 160 nT) 

nano-Tesla could be applied. 

(3) Ring coil supplying a high-frequency 'linearising' field 

The high-frequency linearising field coil consists of about 140 turns of enamelled copper 

wire wrapped on a ferrite ring with an air gap Sm.m long. It is mounted with epoxy on 

the top of a plastic cover and placed on the micro-probe card. The field direction 

provided by this coil is along the sensor long axis, and perpendicular to the 8H applied 

field and the switching bias field . The distance between the sensor and the gap of the ring 

is set at 1.2 x l0-2 m. The resistance and inductance of this ring coil are 2.0 and 7.8 mH 
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respectively. The magnetic field generated at the sample is linear with input current at 

about 1. 6 A/m per mA. 

It was found that the field required for the linearising effect is small, of the value of a few 

to a few tens of A/m. This is because the sensors have been optimised for lowest 

coercivity and Barkhausen noise. 

3.4.3.4. Others 

Except for micro-probe and coils, there are two functional power generators, one 

amplifier, one sensor drive source and bridge box, one precision lock-in amplifier and 

one or two digital oscilloscopes in this system. In practice, the electrical behaviour of this 

system is complicated by some effects (e.g. noise) which may be related to the 

connection arrangement. For example, if the sensor drive and bridge box is put on the 

top of the switching bias field generator, the output of sensor noise level will rise even m 

the case when they have screens connected to earth. 

In order to properly evaluate the output of sensor, all precautions and pre-checking 

should be done prior to measurement, e.g. proper screening and good connection, using 

high-quality elements .. 

By means of its switched-bias nature the sensor can be used with a precision lock-in 

amplifier together with low pass and high pass filters. An output signal whjch excludes 

any extraneous noise at frequencies other than the bias switching frequency ofthe sensor 

can be produced. The noise level on this output is about I m V when set up to produce 

24 mV from about 160 nano-Tesla. 
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CHAPTER4 

RESULTS AND DISCUSSION 

This chapter will present the results obtained from the experimental development 

described previously. Comparisons between theoretical and experimental values will 

emphasise discussion of the correlation of magnetic properties such as coercivity with 

microstructure, thickness dependence, underlayer effects and temperature influence. The 

ultimate aim of the study is to make new kinds of M-R sensor with lower Barkhausen 

noise and lower demagnetising field . The sensor's output results will be presented 

initially together with some selective review of the related subjects so as to discuss some 

of my own work and that of others. This highlights the effect of microstructure on the 

magnetic properties of thin film M-R sensors. Special attention is paid to the Ta under

layer effect on hysteresis, the effect of bias field and the optimum sensitivity to a low 

field of about 80 nano-T esla. 

4.1 Magnetic properties in very thin Permalloy Films 

4.1.1 The variation of coercivity in very thin Permalloy films 

4.1.1.1 Thickness dependence 

Figure 4.1 (a) shows the results of coercivity measured from B-H plots as a function of 

Nis1Fe19 permalloy film thickness in the range from 2.5 nm to 30 nm. Four sets of 

multi-layer structures were studied, Ni81Fe19 films deposited on glass (a) at a substrate 

temperature of 20°C (b) at a substrate temperature of 300°C (c) with 5 nm of Si02 as 

underlayer at a substrate temperature of 20°C (d) with a 5 nm Ta underlayer at a 
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substrate temperature of 20°C. As can be seen from figure 4.1(a), there is a similar 

minimum in coercivity at 7.5 nm film thickness ofpermalloy in each case. 

Figure 4.1 (b) shows the extended results of coercivity variation of permalloy films in 

the thickness range from 2.5 nm to 100 nm, which were deposited at substrate 

temperatures of 20 oc and 300°C. These correspond with sets a and b in Figure 4.1.a. 

As can be more clearly seen from Figure 4.1 (b), there is a similar minimum in coercivity 

at 7.5 nm but there are also two peaks in coercivity at film thicknesses of about 27.5 nm 

and 50 nm. These cases may relate to the change of domain wall structure and the micro

structure of the films. This will be discussed later. 

• Grain size 

Table 4.1 shows some results for coercivity versus grain size in Ni81Fe19 Permalloy thin 

films. As can be seen from the change in coercivity against the thickness and the change 

in grain size for such thin films, higher coercivity does not mean greater grain size. Other 

factors such as underlayer and deposition temperature may also affect the coercivity. 

For example, No. 1 and No. 2 (see Table 4.1) permalloy films have the same thickness, 

but a different deposition temperature resulted in a different grain size and gives the same 

coercivity. No. 5 and No. 6 samples have same thickness but different underlayer. The 

No. 6 film deposited on 5 nm Ta underlayer has smaller grain size (less than half) and 

less coercivity(about half ) than those of film (No.5) with 5 nm Cr underlayer [Ma, 

1996]. More details about such factors are given below. 
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Figure 4.1: Graphs of coercivity versus. film thickness for Nis1Fe1s thin films 

deposited on various surfaces (after [Ma, 1996)). 

(a) for Ni81Fe19 Thin Films Deposited on Glass at a Substrate Temperature of 20°C and (b) for 
films at 300°C 

(c) for Ni81Fe19 Thin Films Deposited on Glass with a 5 nm of Si02 Underlayer at a Substrate 
Temperature of 20°C and (d) for films with a 5 nm of Ta Underlayer. 
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Figure 4.1 b: Graphs of coercivity versus film thickness in the range 

from 2.5 to 100 nm (.A. for films deposited at 20°C and 0 for 300°C) 

Table 4.1 Some Results for Coercivity versus 

Grain Size in Nia,Fe,9 Permalloy Thin Film 

Film layers and Thickness (nm) and Depositing Average Grain Coercivity 

Temperature Size (nm) (Aim) 

Nia,Fe,s ( 10 nm, 20°C) 4.8 75.5 

Ni81Fe,9 ( 10 nm, 300°C ) 7.5 75.5 

Ni8,Fe,9 ( 30 nm, 20°C) 12 135 

Nia,Fe,s ( 40 nm, 20°C) 12-15 131 

Cr (20 nm) + Ni81 Fe19 ( 30 nm, 20°C) 35-40 207 

Ta (20 nm) + Ni81 Fe19 ( 30 nm, 20°C) 12-15 111 

Cr (5 nm)+ Ni81 F e1s (1 0 nm 20°C} 25-35 127 

Ta (5 nm) + Ni81Fe19 (10 nm, 20°C) 5-7 95 
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• Lateral grain size examined by TEM 

Figure 4.2 shows TEM bright field images: (a) for a 5 nm Permalloy film and (b) for a 

40 nm Permalloy film. As can be clearly seen, the 5 nm Permalloy film shows much 

smaller grain size than the 40 nm film. The bright field image of the 5 nm film also shows 

that at such a thickness the film is not yet continuous and this may be a reason for its 

higher observed coercivity. 

4.1.1 .2 Underlayer effect 

• Underlayer materials 

An experimental study of very thin Ni81Fe19 permalloy films deposited on vanous 

underlayers such as Ta, Cr, Si02 was undertaken. Some results show that both grain size 

and texture of Permalloy thin films are strongly affected by underlayers. As can be seen 

from Table 4 .I, the coercivity is lower in Permalloy thin films with Ta underlayer but 

higher with Cr underlayer. This results is in good agreement with results reported by 

[Galtier et al. , 1993]. 

• Grain size and texture 

For comparison, the TEM bright images for 40 nm Permalloy thin films with the same 

thickness ( 5 nm) Ta and Cr underlayer deposited under the same conditions are given in 

Figure 4.3. The bright field image for theTa underlayer shows a small lateral grain size 

of about I 0 to 15 nm and no particular lateral shape. In the Cr case, the average grain 

size is much bigger (it may be up to 50 nm) and is more likely to be randomly oriented. 
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Tlus may suggest that the lower coercivity observed for films with a Ta underlayer, 

corresponds to relatively smaller grain size and a more circular grain shape. 

• Electron diffraction study 

In order to understand the textural relationsrup between the Ni81Fe19 permalloy ftlms and 

Ta underlayers, film tlllcknesses such as 5 nm, 7.5 nm, 10 nm and 30 nm with 5 nm Ta 

underlayers were studied by TEM diffraction pattern. Two pairs of electron diffraction 

pattern images, for 7.5 nm and 30 nm Ni81Fe19 permalloy films with and without Ta 

underlayers, are given in Figure 4.4 and Figure 4.5 respectively. 

In the Electron Diffraction Pattern of permalloy films grown with Ta underlayers, the 

innermost ring corresponds to bee Ta [11 0], and the next two rings being Permalloy 

[ 111] and [200], then a rather fuzzy Ta [211] ring. The rest are Permalloy [220], [311] 

and [222] respectively. In tills case, there is some degree of (111) in-plane texture in 

pern1alloy film which may be favoured by the presence of Ta. The films grown without 

Ta underlayer had all rings showing typical Ni81Fe19 permalloy fee structure and there is 

a random crystallograpruc texture [Petford-long, 1996]. 

4.1.1.3 Temperature dependence 

• Grain size and substrata temperature 

An estimation of grain size for Ni81Fe19 permalloy films in the tlllckness range from 2.5 to 

1 0 nm was made and a plot of grain size as a function of film thickness vs. its coercivity 

is given in Figure 4.6. There are two sets of curves in Figure 4.6, one for a Ni81Fe19 

permalloy film deposited at about 300°C, another for a Ni81Fe19 permalloy film deposited 
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at 20°C . It can be clearly seen that the grain size of films increases with increasing 

thickness. The average grain size of the set deposited at 300°C is greater than for 20°C. 

The coercivity results show that films deposited at 300°C have relatively lower 

coercivity independent of their grain size. This result suggests that a suitable elevated 

substrate temperature can be used to improve the film quality and obtain lower 

coercivity. Possible reasons are reduced initial anisotropy dispersion and increase in 

thermal stability and related to the [ 111] crystal orientation. These have been discussed 

by many authors such as [Engelman & Hardwick, 1963], [Prutton, 1964] and [Jhingan et 

al. , 1984]. 

• TEM bright field images and EDP observation 

Figures 4. 7 to 4. 1 0 show two sets of TEM bright field images and corresponding 

electron diffraction patterns for very thin permalloy films (2.5 run, 5 run, 7.5 nm and I 0 

nm) deposited at 300°C and ambient temperature respectively. A higher magnification 

image for a 10 nm film deposited 20°C is given in Figure 4.11. 

The films deposited at higher substrate temperature have greater grain size and stronger 

intensity of the diffraction ring at the same fi lm thickness. The size of the continuous 

regions of these permalloy films increases with increasing film thickness and is greater in 

the films deposited at higher temperature. 

Films deposited at higher substrate temperature have a large crystal size. As film 

thickness increases, the degree of crystallisation is raised and their fee structure becomes 

more clear. The ring diameter ratios are in good agreement with an fee structure of 

random texture. From Figure 4.11, it can be seen that a Ni81Fe19 permalloy film of 10 nm 
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thickness is polycrystalline, continuous and has small grain size. However, thinner films 

(such as 2.5 nm and 5 nm) may be less continuous. 

• Thermal history 

It was found that the coercivity of pennalloy film is dependant not only on substrate 

temperature during deposition but also thennal history during fabrication. In particular, if 

the film was deposited at room temperature, the coercivity value may be slightly varied 

during or after fabrication. 

Table 4.2 shows some experimental data of film coercivity, where H cf is the initial 

(continuous film sheet) coercivity of the film and H cs is for the etched sensor. These films 

were very thin in the range of several nm. 

Table 4.2 Coercivity versus thermal history 

Sample No 2 3 4 5 

Hcj (Aim) 80.5 76.1 96.7 98.6 105 

Hcs (A/m) 79.5 74.0 93.8 98.6 101 

It was found in this work that the thennal effect on the coercivity of ultrathin soft 

magnetic films such as pennalloy ( several nm) is substantial and the coercivity obtained 

at room temperature by means of quasistatic methods such as VSM, B-H loop and 

SQUID, may not be equal to the intrinsic coercivities [Hou et al., 1997]. However, 

insufficient data has been reported on this subject. 
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(a) 5 nm Pennalloy film 

(b) 40 nm Pennalloy film. 

Figure 4.2 The TEM bright field images showing the lateral grain size versus film 

thickness (the dark areas correspond to the crystalline grains of 

deposited film-'light' areas are amorphous) 
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(a) with 5 nm Ta underlayer 

(b) with 5 nm Cr underlayer 

Figure 4.3 The TEM bright images for 40 nm Permalloy thin films with same 

thickness ( 5 nm) Ta and Cr underlayer deposited in the same condition 

(the dark areas correspond to the crystalline grains of deposited film 
-'light' areas are amorphous) 
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(a) with 5 nm Ta underlayer 

(b) without Ta underlayer 

Figure 4.4 Electron Diffraction Patterns of 7.5 nm Nis1Fe19 thin films 
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(a) with 5 nm Ta underlayer 

(b) without Ta underlayer 

Figure 4.5 Electron Diffraction Pattern of 30 nm Nis1Fe1s films 
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(a) deposited at 3ooac 

(b) Deposited at 20 ac 

Figure 4.7 TEM bright field images and Electron Diffraction Patterns 

for 2.5 nm Nis1Fe19 films 
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(a) Deposited at 300°C 

(b)deposited at 20°C 

Figure 4.8 TEM bright field images and Electron Diffraction Patterns 

for 5 nm Nia1Fe19 films 
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(a) Deposited at 300°C 

(b) deposited at 20°C 

Figure 4.9 TEM bright field images and Electron Diffraction Patterns 

for 7.5 nm Ni81 Fe19 films 
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(a) deposited at about 300°C, 

(b) deposited at 20°C 

Figure 4.10 TEM bright field images and Electron Diffraction Patterns 

for 10 nm Nis1Fe19 films 
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10 nm 

Figure 4.11 High magnification TEM image of 10 nm Ni81Fe1e thin film 
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4.1.2 Magnetic domains 

Earlier experimental results for Nis1Fe19 films (section 4.1.1.1) show that there is a 

minimum coercivity at a thickness of7.5 nm. The main sources of coercivity in magnetic 

thin films are rotation against magnetic anisotropy, domain nucleation and wall pinning. 

In order to obtain more insight into the behaviour of the coercivity in this most 

interesting range, magnetic domain observations by Lorentz TEM were carried out. 

4.1.2.1 Domains in very thin Nia1Fe19 film 

Lorentz TEM studies ofNi81Fe19 films with thicknesses in the range from 30 to 100 nm 

have been reported by many researchers such as [Prutton, 1964] [Middelhoek, 1961 and 

1963]. [Lo and Hanson, 1969]. However, sample thickness was smaller in this study. 

The films were observed at 400 kV in a JEOL 4000 EX TEM at the Department of 

Materials, University of Oxford. An applied field varying over a range of ± 380 Oe 

(30.21 k A/m) was employed during observation. Most magnetic domain images 

presented here are approximately 25 ~-tm in diameter and all using Fresnel image mode. 

The preparation of specimens was the same as described in section 3.3.1.1. Two sets of 

specimens of Ni81Fe19 films (2. 5, 5, 7.5 and 10 nm) were prepared for this observation. 

The films were directly deposited on a Cu grid with a formvar support film. 

In the second case, films were deposited on glass or mica substrates (at about 300°C) 

with - 80 nm carbon underlayer. Specimens were prepared at Oxford University and 

obtained from the larger pieces. The quality of the specimens was poor with high 

structural contrast making it quite difficult to see the magnetic contrast. In this case, the 
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angle of zero degrees of the applied field in the microscope corresponded to this field 

being applied parallel to the easy axis of the sample [Petford-Long,1996]. 

• 2.5 nm films 

The first sample (2.5 nm thick) film did not show any clear magnetic contrast at all. The 

second one showed magnetisation ripple perpendicular to the anisotropy easy direction. 

There were no domain walls visible in this case [Petford-Long,1996]. 

• 5.0 nm films 

The first of 5 nm film sample was with very low magnetisation, and magnetic contrast 

was only seen at near zero to a few Oe fields. Very fine and fuzzy domain walls (like 

ripple) were seen at a field of 5 Oe ( 400 A/m). These were very unstable and the sample 

was almost saturated at a field of about 6.5 Oe (520 A/m). In the second sample case, 

the film also shows uniaxial anisotropy with an easy direction in which the domain 

(ripple) is at a direction perpendicular to this. When a magnetic field was applied, a 

sudden change in contrast was seen but it was not possible to observe a moving domain 

wall [Petford-Long, 1996]. 

• 7.5 nm films 

In the first 7.5 nm film, magnetic domains can be more clearly seen and the film 

saturated at a field of ± 46 Oe (or 3.68 k A/m). Figure 4.12 (a) and (b) shows domain 

wall images and the saturation state. In the second sample case, the film also shows 

uniaxial anisotropy with an easy direction whose domain (ripple) is in a direction 

perpendicular to this (but still in the plane of the film) . The ripple rotates and suddenly 

changes in contrast but no domain wall was seen [Petford-Long, 1996]. 
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• 10 nm films 

In the 10 run film, the specimen showed very strong magnetic contrast with domains 

clearly seen in the 'as grown' state. Figure 4.13 (a) shows a domain wall's image in a 10 

run film at zero field. Figure 4. 13 (b) shows a domain wall image in a 10 run film at a 

field of 7.5 Oe (600 Nm). There was a slight increase in ripple contrast near zero field 

which gradually strengthened until at a field of between 6 and 7.5 Oe (480 and 600 

Nm) domain walls suddenly formed. The saturation field was at about 28 Oe (2.24 

kNm). For the second sample, no clear anisotropy was seen [Petford-Long, 1996]. 

The observation results indicated that visible domains and domain walls in very thin 

Ni81Fe19 films cannot be observed below a critical thickness such as 5 run, due to weak 

magnetic contrast (image contrast). This is also strongly dependent on specimen quality 

and preparation method. 

In such thin films, magnetic domains show fine ripple with thin walls of irregular shape 

and closely spaced. The domain magnetisation is in a direction usually perpendicular to 

the ripple axis (90 or 180° domain) and still in the film plane. The magnetisation of 

domains seems to vary in angle from 90° to 180°. Domain walls seem very unstable and 

will be suddenly formed or disappear with a small change of applied field. Domain 

structure and domain walls can be more clearly seen above thicknesses of 7. 5 nm. The 

results suggest that the domains of Ni81Fe19 perrnalloy films in this range seem to be of 

Neel wall type only with in-plane magnetisation and no cross-tie walls [Petford-Long, 

1996]. 
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4.1.2.2 Ta underlayer effect 

One set ofNis,Fe,9 films with 5 run Ta underlayer thickness was prepared for Lorentz 

TEM observation. The thickness ofpermalloy films was in the range from 2.5 run to 100 

run. Five of these samples, with thicknesses at 5, 7.5, I 0,15 and 30 run, were selected 

for examination. All results repented here are taken from experimental data recorded by 

[Doole, 1997]. 

• Domain structure and magnetisation 

Magnetic domains and walls have been observed for each thickness (including for 5 run 

thick permalloy). Figures 4.14 to 4.18 show the initial images of magnetic domain 

structure in each sample, which were obtained at zero field . 

As can be seen from these images, the structure and shape of domains and domain walls 

seem quite different with those offilms deposited without Ta underlayer. 

In the 5.0 run film, the grown film has very faint ripple contrast but no domain wall can 

be seen (see Figure 4. 14), but the domain wall can been found when applying a field (see 

Figure 19). The records show that the domain wall in this case is less stable and easily 

changed by the very small field. Figure 4.20 is three images showing the domain 

magnetisation, which rotates through 90° across the wall. The change of value of applied 

field between each image is only about 0.356 Oe or 28.3. Nm. The field required to 

rotate the film magnetisation to 90 degrees is about 2.5 Oe or 200 Nm. 

In the 7.5 nm thick film, domains are well defined with straighter and wider walls (see 

Figure 4.15). The domain wall width is approximately 300 run. The size of the domain is 
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quite large-it may be over 100 Jlm2
. A field of about 4.3 Oe or 342 A/m is required to 

rotate the film magnetisation to 90°. 

The 'as-grown' film has clear waUs with very large domains as shown in Figure 4 .16 for 

a 1 0 nm permalloy film. There are some pinned walls in this film and these can remain 

up to 128 Oe of applied field. The field required to rotate magnetisation through 90° in 

this case, is about 10 Oe or 800 A/m. In some areas, the ripple seems to rotate through 

150° without any domain walls forming. In an area with stronger defects, the domain 

magnetisation process has been observed. Ripple is rotated within a domain and starts 

to break up into 'Vee' ripples after which a definite domain is formed as shown in 

Figure 4.21 (a). The walls then start rotating in the outer domains with increasing 

applied fields (see Figure 4 .21 b). The direction of magnetisation will be changed by 

some angle when the walls meet defects (see Figure 4.21 c) during this time. Ripple still 

rotates within domains with increasing applied field, but domain walls eventually cancel 

each other until only ripple is left (see Figure 4 .21 d). The remaining ripple rotates until 

magnetisation is aligned with applied field. 

The initial domain and domain wall images for a 15 nm Permalloy film with 5 nm Ta 

underlayer are shown in Figure 4 .17. The shape and structure of domains in this case is 

similar to that for 10 nm film. The field required to rotate magnetisation 90° is about 

15.7 Oe or 1255 A/m. No cross-tie walls were found in this film. 

In 30 nm thick permalloy films with 5 nm Ta underlayers, large domains and some 

cross-tie walls have been observed in zero field as shown as Figure 4.18. It was found 

that there are more cross-tie walls near a 'bent' area in the main domain wall. Cross-ties 

near a bend in a wall are shown in Figure 4 .22. The domain wall is still quite wide and 
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about 300 to 350 run. The field required to rotate magnetisation 90° is about 13.9 Oe or 

1110 Nm. 

• Comparing with films without Ta 

To compare with permalloy films without Ta underlayer, two PermaUoy film samples, 

7.5 run and 30 run thick respectively, were examined by Lorentz TEM. 

In 7.5 nm films without Ta, there was no clear domain wall found. The domains have 

many fine ripples with irregular shape as shown in Figure 4.23 . The field needed to 

change the ripple and rotate the ripple 90° to the original direction is about 14.3 Oe or 

1144 Nm. The magnetisation in the film changed sudd~nly. 

Larger domains and a clearly defined domain wall (see Figure 4.24) were observed in 30 

nm permalloy films without Ta underlayers. The domain walls are very thin, say less 

than 1 00 nm. They are irregular, are closely spaced and have cross-ties. The domain 

magnetisation in adjacent domains varies in angle from 90° to 180° and with strong 

rippling. The field required to rotate domain walls 90° to the original direction is around 

14.3 Oe or 1144 Nm, similar to the 7.5 nm film. This varied sometimes for different 

observations. 

Typical magnetic domain wall images for 7.5 nm and 30 nm with and without Ta 

underlayer are shown in Figures 4.25 and 4.26 respectively. The domain structure and 

walls are very different in both cases. 

Table 4.3 is a simple comparative summary of the main differences in the permalloy 

films deposited with or without Ta underlayer. 

138 



Chapter 4: Results and Discussion 

Table 4.3 Domain structure and magnetisation properties observed in Permalloy 

films deposited with and without a 5 nm Ta under1ayer 

Sample 7.5 nm Nia1Fe19 7.5 nm Ni11Fe19 30 nm Nia1Fe19 30 nm Nia1Fe19 

/5 nm Ta /5 nm Ta 

Domain shape large and fine, closely large, definite, closely spaced, 

regular, definite spaced, irregular regular, a few irregular, many 

and hard to see cross-ties cross-ties 

Domain size may be over 1 00 may be a few may over 100 varied from 1 0 

l!m2 l!m2 l!m2 to over 1 00 l!m2 

Domain wall about 300 nm may be a few may over 300 around 1 00 nm 

width tens nm nm 

Domain domain rotates ripple rotates ripple rotates strong ripple 

magnetisation through 90° with strong and splits into V- starts to split into 

across the wall rippling effect. shape and then a 'V-shape'. 

domains formed Unstable rotates within Magnetisation in 

suddenly domain through adjacent 

90° across the domains varies 

wall. Walls may in angle from 

cancel each 90° to 180° to 

other and form a form domains 

new domain with a jumping 

effect 

The field for 90° about 340 Aim about 1144 Aim about 1104 Aim about 1144 Aim 

magnetisation 
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28 ~m 

(a) domains 

28~m 

(b) saturation state 

Figure 4.12 Magne't~c domains in a 7.5 nm Nis1Fe19 thin film 
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281J.m 

(a) domains 

28 ~-Lm 

(b) saturation state 

Figure 4.13 Magnetic domains in an 10 nm Nia1Fe19 film 
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Figure 4.14 Lorentz TEM initial image for 5 nm Nia1Fe1s film with 5 nm Ta 

underlayer at zero field (Ho=O) and the average diameter of image is 25 flm. 

Figure 4.15 Lorentz TEM initial image for a 7.5 nm Ni81Fe1s film with a 5 nm Ta 

underlayer at zero field (H0=0) and the average diameter of image is 25 JliTl. 
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Figure 4.16 Lorentz TEM initial image for an 10 nm Nis1Fe1s film with a 5 nm Ta 

underlayer at zero field (H0=0) and the average diameter of image is 25 J.lm. 

Figure 4.17 Lorentz TEM initial image for an 15 nm Ni81Fe1s film with a 5 nm Ta 

underlayer at zero field (Ho=O) and the average diameter of image is 25 J.lm. 
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Figure 4.18 Lorentz TEM initial image for a 30 nm Nis1Fe19 film with a 5 nm Ta 

underlayer at zero field (H0=0) and the average diameter of image is 25 Jlm. 

Figure 4.19 Magnetic domains exist in a 5 nm Ni81 Fe1e film with a 5 nm Ta 

underlayer at an applied field of- 0. 72 Oe (-57 Aim) and the average diameter of 

image is 25 Jlm. 
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(a) Showing walls at Ha =1.4 
Oe or 112 A/m 

(b) Showing domain walls 
at Ha = 1.1 Oe or 84 A/m 

(c) Showing 'jumped' walls, 
large domain overall area 
recorded at Ha =0.7 Oe or 
56 A/m. 

Figure 4.20 Images showing domain movement in a 5 nm Nis1Fe19 

film with a 5 nm Ta underlayer and the average diameter of image is 25 f.lm. 
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(a) (b) 

(c) (d) 

Figure 4.21 Images showing domain magnetisation in 10 nm Ni81Fe19 /5 nm Ta 

film and the average diameter of image is 25 flm. 

(a) Domain walls at Ha =1.75 Oe or 140 Aim; 

(b) Rotated ripple in outer domain at Ha = 6.4 Oe or 510 Aim; 

(c) Change in angle of magnetisation at Ha=9.6 Oe or 764 Aim 

(d) Ripple only and magnetisation aligned with applied field at 1 0. 7 Oe or 800 Aim. 
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Figure 4.22 Image showing cross-tie domain walls in 30 nm Ni81 Fe19 film 

with 5 nm Ta underlayer near a bend in the wall and the average diameter of image is 

25~m. 
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28J.1m 

Figure 4.23 Lorentz TEM initial image for a 7.5 nm Nis1Fe19 film without a 5 nm Ta 

underlayer at zero field (Ho=O) 

Figure 4.24 Lorentz TEM initial image for a 30 nm Nis1Fe19 film without a 5 nm Ta 

underlayer at zero field (Ho=O) 

148 



Chapter 4: Results and Discussion 

(a) with 5 nm Ta under1ayer 

(b) without 5 nm Ta under1ayer 

Figure 4.25 Images showing typical domain structure and wall in 7.5 nm 

Nis,Fe,g films with and without 5 nm Ta under1ayer and the average diameter of 

image is 25 f.lm. 
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(a) with 5 nm Ta underlayer 

(b) without Ta underlayer 

Figure 4.26 Images showing typical domain structure and wall in 30 nm 

Nia1Fe19 films with and without 5 nm Ta underlayer, and the average diameter of 

image is 25 J.1n1. 
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4.1.3 Barkhausen noise analysis 

As already stated in chapter 3.4.1.3, a Barkhausen noise study of very thin Ni81Fe19 

Permalloy films has been extensively carried out as a function of the thickness, substrate 

temperature and underlayer effect of the film. 

The main measurement of Barkhausen noise was carried out by sweeping an 77 Hz ac 

field (± 480 A/m) through the permalloy films and recording the induced output voltage 

due to the flux change on a digital storage oscilloscope. A number of plots (about 50) 

were examined in each measurement. Typical plots for the rate of change of flux as a 

function of time were recorded from the oscilloscope. 

The Barkhausen effect of such films was also observed by MR. & hysteresis 

measurement. The MR. & hysteresis loop for each sample was obtained from a in-house 

MR test instrument. The maximum transverse field for the MR loop is set at ± 20 Oe and 

the typical current flowing in each sample was I mA. These results will be presented 

later. 

4.1.3.1 Thickness dependence 

Figure 4.27 is a series of the plots showing results of Barkhausen noise in very thin 

Nis1Fe19 films, which were measured by differentiating the B-H characteristic. These 

films were deposited on glass substrates at normal temperature, with thicknesses of 5, 

10, 15, 15, 20 and 25 nm respectively. These plots are single test results but are 

representative of about 50 similar plots from a number of thin film samples for each case. 

The main peak is due to the magnetisation reversal of the films and is proportional to the 

. . . . . del> dB 
mduced voltage, the rate of change of flux hnking the ctrcmt V = N dt = NA --;}1 . The 
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shape of this peak and the remaining part of the curve differs for each film and gives a 

qualitative insight into the Barkhausen noise. As can be clearly seen from Figure 4.27, 

the Barkhausen noise became stronger with increasing film thickness, and, in particular, 

when film thickness is greater than 20 nm. Similar results were obtained from two sets 

of very thin films, one set deposited at about 300°C and the other on 5 nm Ta 

underlayers. The thickness range was from 2.5 nm to 30 nm. 

4.1.3.2 Ta Underlayer effect 

For comparison, the Barkhausen noise analysis of permalloy thin films with and without 

5 nm Ta underlayers (which were prepared for sensor fabrication), are presented in 

Figures 4.28, 4.29 and 4.30. The average sampling for each record is 128. 

The films with 5 nm Ta underlayer exhibited less Barkhausen noise and have a relatively 

stable and sharp response in the thickness range from 5 nm to 40 nm. 

In the films without Ta, the behaviour of the Barkhausen effect seems quite complicated. 

The maximum rate of change of flux (or say the maximum induced voltage) may 

sometimes be less than the ones with Ta. The width of the peak being greater than the 

case with Ta. This means that more irregular jumps happen for these films. With a 5 nm 

Ta underlayer, the phenomenon of Barkhausen effect in Permalloy thin films exhibits 

more stability and less noise. 

The early experimental results also show that the effect ofTa underlayer on the reduction 

ofBarkhausen noise may not be very strong in very thin Ni81Fe19 films such as below 20 

nm [Akhter et al. , 1997]. However, some later experimental results (see Figure 4.3 l) 

show the Ta underlayer may also have considerable effect on Barkhausen noise in very 

thin films of several nanometers thickness. 
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The results given in Figure 4.31 were obtained from the substrates of sensors. There are 

18 pairs of sensors created on about 3/4 area in each 2 inch square substrate. A 

triangular wave was used for this measurement so that the distance between two peaks 

is a reflection of the coercivity in the film examined. The average sampling rate for each 

test sample is 128 per second and the persistence time is 5 seconds. 

The structure of these films ( presented in Figure 4. 31) are as below: 

(a) 7.5 nm film on high quality 7059 glass substrate; 

(b) 7. 5 nm film on microscope glass slide; 

(c) 7.5 nm film with 5 nm Ta underlayer on 7059 glass substrate; 

(d) 7.5 nm film with 5 nm Ta underlayer on microscope glass slide. 

(e) I 0 nm film with 5 nm Ta underlayer on 7059 glass substrate; 

(f) 10 nm film with 5 nm Ta underlayer on microscope glass slide 

In the films without Ta underlayer, the coercivity of film deposited on 7059 Coming 

glass substrates is smaller (about 1.01 Oe or 80 A/m) than the one (about 1.3 Oe or 104 

A/m) deposited on a microscope glass slides due to the effect of surface roughness. The 

shape of the peak is similar in both cases but the width of peak in the film with Ta 

underlayer is slightly narrower than the other. 

For the films with 5 nm Ta underlayer, the coercivities of films increase with increasing 

film thickness on both substrates. It should be noted from Figure 4.31, the curve shape 

and height in the films deposited on 7059 glass (curve c and e) are very different with 

those of films deposited on a microscope glass slides (curve d and f). 

The results show that Barkhausen jumps in the films deposited on 7059 glass may be 

bigger but they happen less often, while for the films deposited on microscope glass 
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slides, the jumps may be small but many. Why there is such difference needs to be 

examined in more detailed experiments. The difference that occurs by using 7059 glass 

may be disadvantageous because of substrate cost but offers opportunities for better 

films based on better fabrication. 

4.1.3.3 Temperature effect 

As can be seen from Figure 4.1 , one set of fi lms deposited at about 300°C shows weaker 

coercivity than those deposited at ambient temperature. The measurement of 

Barkhausen noise in these films was carried out and the results are in fair agreement with 

the variation of their coercivity (see Figure 4 .32). 

A number of experimental results obtained in this study show that the films deposited at 

elevated temperature have lower coercivity, less Barkhausen noise and more stable 

magnetic properties. A possible explanation for the coercivity behaviour in terms of free 

energy is the fact that the films deposited at elevated substrate temperature may have 

their initial minimum surface free energy state related to deposition temperature. This 

initial minimum state will be quite stable if their later thermal experience is below the 

deposition temperature. One should note that the elevated temperature may cause other 

thermal effects such as increasing the dispersion of the magneto-crystalline easy axis 

[Fiur, 1967) so that a suitable value should be carefully chosen. 
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Ta underlayer varied with the substrates. 

7.5 nm films on 7059 glass substrate (a) and on normal microscope glass substrate (b). 

7.5 nm film (c) and10 nm film (e) with 5 nm Ta underlayer on 7059 glass substrate . 

7.5 nm film(d) and 10 nm film (f) with 5 nm Ta on microscope glass substrate. 
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Figure 4.32 Graphs showing Barkhausen noise in Ni81Fe19 thin films 

varied with deposited temperature 
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(a) 20 nm film deposited at ambient temperature. (b) 20 nm film deposited at 300°C 

(Rate of change of flux is obtained from a sense coil with 1170 turns and the applied field on 

the sample is sinusoid of zero to peak value of 6.1 Oe under the frequency of 77 Hz) 
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4.2 Switched-bias magnetoresistive sensors 

As stated previously, the total fabrication procedure consists of about 55 steps for each 

substrate and one set of eight photo-masks has be designed and used for the fabrication. 

A number of sensors (about 30 substrates or 540 pairs of sensors) with film thickness of 

5 to 40 nm, stripe widths varying between 10 to 80 ~-tm and a standard length of 6 mm, 

have been completed in this study. After the fabrication of sensors, measurements of 

their output performance was carried out and some of results are presented here. 

The anisotropic M-R response or hysteresis loop for each completed sensor is measured 

by an M-R or B-H test instrument, purpose built for thin-films. The transverse field for 

the M-R loop is set at ± 20 Oe and a typical current flowing in the sensor or fi lm is 1 

mA. Barkhausen noise and the corresponding hysteresis are studied by analysis of the 

MR response of various sensors together with their magnetoresistive hysteresis. In order 

to reduce hysteresis in the sensors, a high-frequency external ' linearising' field method is 

used. This high-frequency field (5 to 20 kHz) oscillates the magnetisation in the sensor 

so that the sensor magnetisation finds the lowest magnetic energy condition for all 

magnetisation conditions. In our experiments a high-frequency field of various 

amplitudes is applied both along the sensor long ax.is and transverse to it. 

Variation in the sensitivity ofthe sensor to the magnitude of a switched-biasing field was 

measured by applying a very small alternating field (variable from 80 nT to 24000 nT) 

and varying a transverse de field component (H .. ), The effect of biasing field frequency 

and externallinearising field on the sensitivit ies of these MR sensors is studied using an 

in-house built measurement system .. 
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4.2.1. M-R response 

For comparison, the results of anisotropic magnetoresistance coefficient for Nis1Fet9 

thin films deposited under different conditions as a function of film thickness are plotted 

in Figure 4.33. The results of anisotropic magnetoresistance for sensors with stripe 

widths of 20, 40 and 80 J...lm and a standard length of 6 mm, as a function of their 

thickness are given in Figure 4.34 and Figure 4.35 . Figure 4.34 is for sensors with 5 nm 

Ta underlayer and Figure 4.35 is for sensors without Ta underlayer. 

Figure 4.33 shows that as the film becomes thinner, the i\p/ps decreases due to the 

additional resistivity which is known to occur in very thin films [Krongelb, 1973). The 

change in M-R response is almost the same in the thinner films but in the Ni81Fe19 

perm alloy film thicknesses above 1 0 nm, the change is slightly higher in the films grown 

on Ta underlayers. The change ofM-R response is also more stable in the films with Ta. 

The saturation anisotropic magnetoresistance for these sensors in the thickness range 

from 5 to 40 nm varied between about 1% to 2 %, with the exception of the 5 nm film. 

The variation in sensor widths seems to only have a slight effect on the change of M-R 

response due to the very large aspect ratio (/ I w varying from 75 to 600). In the case of 

sensors with Ta underlayer, similar effects still can be seen and the results show that a Ta 

underlayer favours the magnetic properties of these sensors. 

It should be noted that the M-R change of the 5 nm sensor seems not to be stable and 

has an unexpected high value. The reasons for this are not clear yet but data has been 

repeated 5 times. It was found that the measurement of M-R response becomes quite 

difficult in very thin films (below 15 nm) due to high resistance. 
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The variation of ~p I p for sensors with Ta underlayer exhibits oscillatory characteristics 

in the film thickness below 15 nm, which may be caused by the presence of Ta and seems 

to have a similar tendency on the change of their coercivity. However, the maximum 

anisotropic magnetoresistance change in very thin sensors of thickness about 7. 5 nm 

(about 1.88 %) or even 10 nm (about 1 %) is still useful for their application. 

4.2.2 Ta underfayer effect on hysteresis 

MR/field characteristics are useful for checking the response of an MR. sensor in respect 

of hysteresis and Barkhausen noise. 

In order to reduce hysteresis in the sensors, a high-frequency external ' linearising' field 

method is used. This high-frequency field oscillates the magnetisation in the sensor so 

that the sensor magnetisation finds the lowest magnetic energy condition for all 

magnetisation conditions. In our experiments the high-frequency field of various 

amplitudes is applied both along the sensor long axis and transverse to it. 

An indicator of hysteresis is the separation of the forward and reverse curve around the 

vertical axis as shown by the apparent ' coercivity' in Figure 4.36 and Figure 4.37. 

In the case of Figure 4.36 the curves are from a 10 nm-thick sensor deposited directly on 

the glass substrate. In this case, with no high-frequency ' linearising' field applied, the 

separation of forward and reverse curves reaches a value of 1.5 Oersteds (119 A/m). 

Application of the high-frequency field along the sensor long axis reduces this but some 

Barkhausen jumps are seen in the characteristics even when no hysteresis is present. 
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Figure 4.33 Magnetoresistance change versus Nis1Fe19 thin film thickness 

(.&) on glass substrate deposited at ambient temperature; 

(+)on glass substrate with 5 nm Ta underlayer deposited at ambient temperature 

(0) on glass substrate deposited at about 300° C. 
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Figure 4.36 Graph showing the M-R response and hysteresis variation of 10 nm 

sensor (80 ~tm wide) without 5 nm Ta underlayer versus the frequency of 

linearising field (0.2 Oe and applied along the easy axis) 
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Figure 4.37 Graph showing the M-R response and hysteresis variation of 10 

nm sensor (80 ~tm) wide) with 5 nm Ta underlayer versus the frequency of 

linearising field (0.2 Oe and applied along the easy axis) 
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Figure 4.38 Graph showing the M-R response and hysteresis variation of 10 nm 

sensor (80 1-1m wide) with 5 nm Ta underlayer vs. the frequency 

of linearising field (0.2 Oe and applied along the hard axis) 
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In the case of Figure 4.37, an identical sensor is used except that it has been deposited on 

a tantalum underlayer. For this case the 'coercivity' separation field is reduced to 0.7 Oe 

(55 Nm) and there are almost no Barkhausen effects visible for frequencies up to 20 

kHz. The best linearising frequency appears to be about 1 0 kHz when the forward and 

reverse MR. curves coincide although linearising fields at nearby frequencies are almost 

as effective. 

The result of Figure 4. 3 7 can be explained if it is realised that the effect of the tantalum 

underlayer is to promote microstructure growth in the Nis1Fe19 film with its (Ill) 

crystallographic plane (Miller indices) parallel to the film surface. This leads to a more 

isotropic magnetic behaviour as reported in ref [Akhter et al. , 1997 & 1998]. 

It was found that the direction of this external linearising field is more effective when 

aligned with the easy axis than with the hard axis as shown in Figure 4.38. The results 

also confirm that the field required to significantly reduce the hysteresis of such sensors 

is very small such as about 1.6 Nm or 0.02 Oe. Similar results can be found in ref 

[Decker and Tsang, 1980], [Mapps et al., 1985] and [Fiynn, 1994], and was thought 

due to enhancement of single domain behaviour. 

It should be noted that the initial magnetisation state of such a sensor is easily changed 

by applying an external field during measurement due to its low demagnetising field . This 

suggests that each sample should be carefully demagnetised to ensure the initial 

magnetising state of each sensor is the same. 

4.2.3. Sensitivity to applied d.c. field 

4.2.3.1 Effect of bias field on the output characteristics 

170 



Chapter 4: Results and Discussion 

• Amplitude of bias field Hb 

For a magnetoresistor with easy axis parallel to the current flow the change in resistivity 

(and the output voltage V) can be determined from a magnetic model based on 

minimisation of the free energy assuming a single domain system [Fiynn, 1994]. This 

output voltage is proportional to a steady field, which is transverse to the film easy axis 

direction and in-plane. 

Figure 4.39 shows the output characteristics of a 10 nm Nis1Fe19 sensor with 5 nm Ta 

underlayer as a function of d.c. field for three bias fields. It can be seen that the output 

of the sensor is highly dependent on the magnitude of the switched-bias field, this is to be 

expected from the (bell) shape of the M-R response characteristic seen in Figures 4.36 

and 4.37. 

• Frequency of bias field Hb 

The frequency of bias field was set at 1 kHz for the first measurements. It was found 

that the best frequency of bias field for the sensor is at a lower frequency e.g. 250 Hz. 

The variation of the output of the sensor as a function of frequency of bias field is given 

in Table 4.4. In this case the external field change is set at about 2960 nT and bias field is 

set at about 80 A/m or 1 Oe. 

Table 4.4 Effect of frequency of bias field on the output of sensor 

Frequency of 70 100 200 300 400 500 600 700 800 900 1000 

Hb (Hz) 

The output of 1 0 20 20 16.5 16 14 13 12 11 10 10 

sensor (mV) 
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nm Ta underlayer versus d.c. field for three bias fields 
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(b) Hb= 1.47 Oe or 117 A/m; 

(c) Hb=0.89 Oe or 71 A/m 
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This effect was thought to be caused by the filter at the front end of the Lock-in 

amplifier. There are two low pass filters in this Lock-in amplifier, one is F< 30 kHz and 

the other is F < 1 kHz. The test results show that there is some change on the output of 

sensor using each one, but it seems not great enough to explain the change shown in 

Table 4.4. However, the frequency of the bias field at the order of 250 Hz was chosen 

and used in the later measurements. 

4.2.3.2 Sensitivity to applied d. c. fields 

As can be seen from Figure 4.39, output of the sensor is linear in all cases up to a 

maximum value of 91 x 160 nT (about 14 560 nT). It can also be seen that the switched

bias field required is quite small around 0.485 Oe or 38.5 Nm. This is surprising since, 

even when the sensor is not operating on the linear part of curve the differential system is 

sufficiently effective in maintaining linearity. The results show that the sensor is linear 

over quite a wide range if used to measure very small fields in the tens or hundreds 

nano-Tesla region. 

4.2.4 Optimum sensitivity to a low field in the nano-Tesla range 

Figure 4.40 shows the output response of a 7.5 run sensor to an applied field (OH) of 

about 160 nano-Tesla. The Channel 1 curve in Figure 4.40 (a) is the original signal 

output of sensor from Lock-in amplifier at zero field . After switching on an about 160 

nano-Tesla field , the record ofchannel1 is as shown as in Figure 4.40 (b). The change of 

output is about 4.4 mY for 160 nano-Tesla. Channel 2 is used for the signal output of 

the sensor before the lock-in amplifier. 
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The curves of Figure 4.41 and 4.42 are the output response of 10 and 7.5 nm sensors 

for an applied field (8H) of 160 nano-Tesla respectively. A convenient switched-bias 

frequency is chosen to match the low-pass filter in the lock-in amplifier system (250 Hz). 

The frequency ofthe linearising field (about 0.2 Oe or 16 A/m) is set at 15kHz . 

In the case of Figure 4.41 , a 10 nm sensor was examined. In this case, the amplitude of 

the switched-bias current is varied and the output reaches a maximum at a current of 90 

mA corresponding to a peak switched-bias field of 0.455 Oe (about 32 A/m). At this 

condition an output change of24 mY is obtained for a 8H field of about 160 nano-Tesla, 

and the noise level on this output is less than 1 m V. 

Figure 4.42 shows the output response of a 7.5 nm sensor. A maximum output of29 mY 

is obtained at a bias current of 60 mA corresponding to a peak switched-bias field of 

0.27 Oe or 21.5 A/m for a 8H field of about 160 nano-Tesla. This is to be expected as 

the thinner sensor has higher sensitivity and lower switched-bias field due to lower 

coercivity. 

In the cases ofFigure 4.41 and 4.42 the applied (constant) field (8H) has been fixed at 

about 160 nT which is some 300 times smaller than the earth's field . In this case the 

expected peak with switched-bias current is found corresponding to the point of 

inflection on the MR characteristic. Because of the low noise level in this condition it 

appears that the sensor is capable of detecting changes much smaller than 160 nano

Tesla (e.g. 16 nano-Tesla) under ideal conditions. 

174 



Chapter 4: Results and Discussion 

(a) at zero field before switching on 

(b) at 80 nano-Tesla field after switching on 

Figure 4.40 The output response of 7.5 nm sensor (80 11m wide) 

for a oH field of 160 nano-T esla 

(a) at zero field before switching on 

(b) at 160 nano-Tesla field after switching on 
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Figure 4.41 The output response of a 80 11m wide, 10 nm thick sensor 

versus 250Hz bias field (0.00906 Oe or 0.72 Aim per mA) 

for an applied field (oH) of about 160 nano-Tesla 
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4.3. Discussion 

As can been seen from section 4.1.1 to 4.1.3, magnetic properties such as coercivity and 

domain structure in thin Nis1Fe19 films such as those below 30 nm thick exhibit marked 

differences with those in thicker films. Films with thicknesses in this range show a 

minimum in coercivity at a thickness of7.5 nm where the grain size is about 5 nm. There 

are also distinct differences in the magnetic domain structure and magnetisation between 

the very thin Nis1Fe19 films with and without a 5 nm Ta underlayer. 

The correlation of the magnetic properties with the Ni81Fe19 Perrnalloy films 

microstructure will be discussed in this section in conjunction with the classical models 

and theoretical development. Special attention is paid to the possible mechanisms of 

coercivity. 

4.3.1.Coercivity variation 

I. Film thickness 

From Figure 4.I(a), it seems that the coercivity ofthese magnetic thin films is dependant 

on their thickness and there is a similar minimum in coercivity for about 7.5 nm film 

thickness in each case. The coercivity variation in two sets of films in a wider thickness 

range from 2.5 nm to 100 nm are also given in Figure 4.1.(b). In the range from 2.5 nm 

to 1 00 nm, the coercivity variation as a function of film thickness can be roughly divided 

into four ranges and described as follows: 

• 2.5 to 7.5 nm: the coercivity increases with reducing film thickness. There ts a 

minimum coercivity at a thickness of7.5 nm. 
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• 7.5 to 27.5 run: the coercivity increases with increasing film thickness. There is a 

maximum in coercivity at a thickness about 27.5 run. 

• 27.5 to 50 run: the coercivity decreases and then increases slightly with increasing film 

thickness. There is a minimum in coercivity at a thickness of about 40 run and another 

maximum in coercivity at a thickness around 50 run. 

• 50 to 100 nm: the coercivity variation of films seems to be near constant with slightly 

increases or decreases until 1 00 nm. 

It is surprising that these results do not seem to agree with the well known '4/3' law 

[Akhter et al., 1997]. Many experimental results (e.g. ref. [Mapps et al., 1991]) have 

been previously reported and show that the coercivity of magnetic thin films increases 

with decreasing film thickness and the variation of coercivity with film thickness agrees 

with f 413
. 

Further studies of the variation of coercivity with film thickness have been carried out 

both in the literature and by experiment. Repeatable results have been obtained in this 

study and some films were also examined by CTEM, HR TEM and Lorentz TEM as 

shown in section 4. 1. 2. 

It is well known that the coercivity of these films, in fact not only relate to the film 

thickness, but also depends on other factors such as composition and deposition 

conditions so the He mechanism proposed by Neel can not be only one. As stated in · 

section 2.3.3, this ' 4/3' law is based on the assumption (a) the coercive force due to 

thickness variations dominates other effects and (b) that dtldx (surface roughness) is 

independent of the thickness itself. Both assumptions are risky and the fact that 

deviations are found in experiments is 'not surprising' [Middelhoek,1961]. 
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This '4/3 ' law has been queried by some researchers both in the experiments such as 

[Methfessel, et al. , 1960], [Middelhoek, 1961], [Noreika & Francombe, 1962], [Prutton, 

19649
], [Lo & Hanson, 1969], [Lo et al., 1987] and in the theories, for example, 

[Middelhoek, 1961]. The discrepancy was considered due to the differences in sample 

preparation [Lo & Hanson, 1969], chemical in-homogeneity [Noreika & Francombe, 

1962] and measurement technique and not debated for many years [Ciureanu, 1992]. 

It was found that the comparison between the ' 4/3' law and experiment may start from 

the beginning of 1960's, when it was reported that for evaporated permalloy films, a 

maximum in coercivity was found at a thickness of around 75 nm [Methfessel,.et al. , 

1960]. This maximum coercivity has been correlated with the possible transition from 

Neel to Bloch type domain walls. 

Similar results were also found and reported by Middelhoek [Middelhoek, 1961]. Figure 

4.43 shows the coercivity He variation in the easy direction as a function of the thickness. 

This is based on Figure 4.1b and together with a doted line c, which is reprinted from 

reference [Middelhoek, 1961]. It can be seen from the curve c in Figure 4.43, that the 4/3 

law of Neel seems only correct for Bloch walls in thick films such as t > 85 nm. For 

thinner films, where Nee) and Cross-tie walls occur, the 4/3 law loses its validity. There 

is a minimum in coercivity at about 45 nm and a maximum in coercivity at about 75 nm 

in line c. They concluded that this relative maximum is related to the transition from 

Bloch to Cross-tie wall and it was believed that the transition was associated with the 

decrease of coercivity [Middelhoek, 1961]. 

Figure 4.44 is a diagram showing the type of domain wall to be theoretically expected 

and experimentally observed as a function of the film thickness and the angle through 
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which the magnetisation turns in the wall. This is taken from reference [Middelhoek, 

1963]. They assume that a magnetic field is applied in the hard axis. Under the influence 

of this field the magnetisation in domains on both sides of the wall will make an angle <l>o 

or -<1>0 with the hard axis. In our experiments no hard-axis field was applied during 

observation so the angle 2 <l>o of less than 180° happened naturally in zero applied field 

(e.g. see Figure 4.16). More details about the theoretical calculations and experiments 

also can be found in this reference. For example, the thickness at which the transition 

from Cross-tie to Bloch wall occurs is 85 to 90 nm. Furthermore, Nee! walls dominate 

when roughly 2 <l>o < 150°. Bloch walls occur for the thick films (> 90 nm) and Cross-tie 

walls for the relative thin films(< 90 nm but > 20 nm) . 
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Figure 4.44 Diagram showing the type of wall to be theoretically 

expected (solid lines) and experimentally observed (dashed lines) as a function 

of the angle ~0 (between magnetisation outside the wall and the direction normal to 

the wall) and the film thickness. (after [Middelhoek, 1963] 

11. The type of domain wall and the transition between walls 

It has been reported by many researchers that the coercivity variation of magnetic thin 

films is related to the change of domain wall structure such as [Middelhoek, 1963]. 

[Prutton, 1964b1], [Lo & Hanson, 1969], [Grundy, 1997]. It can be clearly seen from 

Figure 4.44, there are three types of wall in the thickness range < 100 nrn and two 

possible transitions, one is from the Nee! wall to the Cross-tie wall and another is from 

the Cross-tie wall to the Bloch wall. 
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From our experiments shown in Figure 4.1.(b), and together with the observation by 

Lorentz TEM, a possible explanation about the coercivity variation related to the change 

of the type of wall can be given by: 

(a) 2.5 to 7.5 nm: Neel wall only but less continuous film. The coercivity increases with 

reducing film thickness due to inclusions etc. 

(b) 7.5 to 27.5 nm: Nee) wall is the nonn (continuous film), and the coercivity increases 

regularly with increasing film thickness. 

(c) 27.5 to 50 nm: Nee! wall reducing, Cross-tie wall occurs and becomes the nonn. 

The coercivity relating to Neel walls increases with increasing film thickness. Two 

peaks may relate to the possible transition between walls, such as from the Neel wall 

to the Cross-tie wall (at about 27.5 nm) and the Cross-tie wall to the Bloch wall (at 

around 50 nm). The relative minimum in coercivity at thickness around 40 nm may 

relate to the coercivity variation of Cross-tie wall with thickness due to the change m 

Cross-tie density (walls/mm) and Cross wall length [Middelhoek, 1963]. 

(d) 50 nm to 100 nm: Neel wall (tend to zero) + Cross-tie wall (increasing then 

decreasing) + Bloch walls (becoming the nonn). The coercivity variation of films in 

this thickness range is very complex and may depend on the variation of the total wall 

energy, which relates to the possible transition between the walls and relative energy 

contribution from these three walls. The energy of Bloch walls decreases with 

increasing film thickness in this range. 

The Lorentz TEM results shown in section 4.1.1 and 4.1.2 are in agreement with the 

above explanation for the film thicknesses in range (a) and (b), partially correct for (c) 
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but there are no TEM results for (d). Further studies are needed both in theory and 

experiment. 

The Bitter technique observations [Middelhoek, 1963] show that the Bloch-Neel wall 

transitions when increasing the field do not occur at the same field as the Neel-Bioch 

wall transitions on decreasing the field . Generally a hysteresis occurs in the wall 

transitions. The coercivity of the these hysteresis loops depends on the film 

characteristics. If we consider that the average of the fields at which the transitions 

occur is the transition field . Then under the influence of the film characteristics, the 

disagreement between experimental results and agreement between experiment and 

theory seems to be reasonable and rather satisfactory. 

As was reported by [Yeh et al. , 1987], the Neel wall model (see Equation 2.6), is based 

on the assumption that the magnetisation rotates parallel to the film plane only so that the 

total wall energy has almost entirely no magnetostatic contribution. Both the exchange 

and the anisotropy contribution have been neglected in the Nee! wall energy model. 

Unfortunately, when the thickness of film is very much smaller, such as less than 20 nm, 

the relative contribution from exchange, anisotropy and magnetostatic energy may 

become very complex [Ground, 1997]. 

No comprehensive data on the variation of coercivity with the distribution of these 

energies in films (relating to the transition between types of wall) over this thickness 

range have yet been published so evaluation of their effects on the coercivity cannot be 

made. 

Ill. Width of domain wall 
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Experimental results for observation by Lorentz TEM in this study show that the wall 

width ofNi81Fe19 films without Ta in the thickness from 10 to 30 nm is approximately 

100 nm. 

In the case of curve (d) in Figure 4.1 (a), for films with 5 nm Ta underlayer, the width of 

walls observed by Lorentz TEM is about 300 nm. 

As can be seen from Table 4.1, most experimental results show that the grain sizes of 

films with and without Ta underlayer are similar for the same thickness. According to 

Equation 2.18, He ex: Dlw and the coercivity is proportional to the film thickness (grain 

size) but inversely proportional to the width of the wall, which is in good agreement with 

the experimental results in the thickness range from 7.5 nm to about 30 nm. 

Furthermore, the lower coercivity and Barkhausen Noise can be improved by using a 

Ta underlayer due to the experimental fact that the domain wall width of films with Ta is 

much wider than those offilms without Ta underlayer [Akhter et al. , 1998]. 

IV. Grain size 

It is well known that the grain size of these films is proportional to film thickness but 

may affected by other factors such as type of underlayer and substrate temperature. As 

can be seen from Table 4.1 and Figure 4.6, the variation of coercivity of Ni81Fe19 films 

may depend on the grain size of the films. The experimental results show that the average 

crystallite size of these films is of the order of a few or a few tens of nm (typically 3 to 

40 nm) within the thickness range from 2.5 to 30 nm. The TEM observation results also 

show that the very thin Ni8 1Fe19 films are polycrystalline with a small grain size and 

random texture. 
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It is well known that the good soft magnetic properties of magnetic materials require 

very large grains, which reflects the classical rule (e.g. Neel wall model). Recently, some 

researchers have been reported that good soft magnetic properties can also be found in 

the nanocrystalline materials and amorphous materials [Herzer, 1990,1991 and 1993], 

[Yoshizawa et al., 1988], [Grundy, 1997]. 

Amorphous films have lower coercivity because of the apparent absence of any 

discontinuities, at least on a scale approaching the domain wall width, so amorphous 

films can be extremely soft [Grundy, 1997]. 

Very small coercivities can be realised and these are related to a uniform, nanocrystalline 

(< 10 nm) microstructure [Lin et al. , 1994] with the fairly high anisotropy of each grain 

moderated due to the large number of nano-crystallites in the characteristic coupling 

volume (1 jlm) [Takahashi and Shimatsu, 1990], [Grundy, 1997]. 

As described in section 2.3 .3, Equation 2. 17 and 2.18 show that the coercivity ts 

proportional to w/D when grain size is greater than the width ofwall (D>>w), but will 

be become opposite when D< <w. It is plausible that the coercivity will have a maximum 

when w and D are of the same order of magnitude, which has been in good agreement 

with experimental results as described in section 4.1.1 .1. 

Compared to the experimental data as shown in Figure 4.1a, 4.1.b, 4 .6 and Table 4.1, 

the equation 2. 18 may be also of some help for understanding why lower coercivities can 

be found in thin Permalloy films of thickness below 30 nm, which corresponds to a grain 

size smaller than 25 nm. The assumption (D< <w) is relevant here, so the coercivity 

decreases with decreasing film thickness in a range from 30 to 7.5 nm. It also indicates 

that films with relatively smaller grain size such as the films deposited on Ta underlayer, 
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may have lower coercivity than the films with relative greater gram stze such as 

deposited on a Cr underlayer. Comparing the change in coercivity and grain size against 

thickness for such thin films, it is clear that as the grain size changes so does the 

coercivity. There is a minimum coercivity at a film thickness of 7.5 nm and a 

corresponding grain size of about 4 nm. 

As can be seen from Figure 4. la, 4. lb, 4.6 and Table 4 .1, some experimental data show 

that, in fact, greater average grain size does not mean higher coercivity even if the films 

have the same thickness. Such a phenomenon seems in contrast to this model. Moreover, 

experimental data shows that the coercivity in these films depends on the grain size but 

no quantitative relationship has yet been seen. 

For films (see Figure 4.1 a) thinner than 5 nm, the TEM images show that the films 

become discontinuous leading to a large increase in non-magnetic 'holes' and inclusions 

that may result in a corresponding increase in coercivity and Barkhausen noise. If the film 

deposition processes could be improved to realise continuous films at thicknesses below 

7. 5 nm, then a lower coercivity and lower coercivity and lower Barkhausen noise 

performance can possibly be obtained. 

Although there is some agreement between these models and experimental results, 

arguments are still to be expected when considering the other possible origins of 

coercivity such as stress, underlayer effects and surface roughness etc. In particular, such 

factors may play a more important role when film thicknesses reduce to a few or a few 

tens of nanometers. However, these models have provided some qualitative insight into 

the understanding of the variation of coercivity in very thin Ni81Fe19 films and produced 

limited correlation with the experimental data presented here. 
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There is insufficient experimental data and theory describing the variation of the 

magnitude of coercivity with structural parameters for the Ni81Fe19 films of thickness 

below 30 nm so the correlation between the micro-structure and coercivity in such films 

cannot be clearly evaluated. However, the coercivity of ferromagnetic films is not a well 

understood parameter and the theory of coercivity may be developed further [Prutton 

19641, [Kim and Oliveria, 1992], [Grundy, 1997]. 

4.3.2 Ta Underlayer effect 

In 1993 & 1994, Galitier et al. , reported progress in the study of Ni80Fe20 films, which 

have very similar properties to Nis1Fe19 films . They found that for NisoFe2o thin films with 

thickness below I 00 nm, the nature of the underlayer deeply affects the structural 

characteristics such as grain size and texture, and is responsible for the observed 

magnetic properties. The coercivity ofNi8oFe20 films (in hard axis) can be reduced from I 

Oe (8 A/m) to 0.1 Oe (0.8 A/m) by using a 5 nm Ta underlayer instead of Cr. 

Observation by transmission electron microscopy, shows that the permalloy (Ni80Fe20) 

thin films deposited on Ta underlayers were strongly (Ill) textured and obtained smaller 

grain size. In the case of a Cr underlayer, permalloy thin films were mostly randomly 

textured and had a relatively large grain size. This suggests that the preferential 

orientation observed in permalloy films sputtered on Ta appears to be the dominant 

parameter responsible for low coercivity [Jerome et al., 1994] and this also reported by 

other researchers such as [Rijks et al., 1995]. 

Similar results have been obtained in this study and extensive experimental evidence has 

shown that with a 5 nm Ta underlayer, the magnetic properties such as coercivity, 
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hysteresis and Barkhausen noise in very thin Nis1Fe19 films have be improved [Akhter et 

al., 1997 & 1998], [Mapps et al., 1998]. 

• Domain walls and domain structures 

Some of the most interesting phenomena observed in this work are the domain 

magnetisation and domain wall configurations in these films. There are distinct 

differences between films with and without Ta underlayers. As can seen from section 

4.1.2, with noTa underlayer the domain walls are very thin irregular, closely spaced and 

have cross-tie walls. Domain wall widths in this case are about I 00 run. Also the domain 

magnetisation varies in angle from 90 to 180° in adjacent domains with a strong rippling. 

In the case of a 5 run Ta underlayer, the domain walls are wider, straighter and have less 

cross-ties. the domain magnetisation changes in angle by 90° across the wall with no 

rippling and the width of domain walls is about 300 nm. The domain size in the 

permalloy films is much bigger than the ones without Ta and is independent of the film 

thickness in the range from 5 nm to 30 nm. 

Unfortunately, no other similar observations have been yet reported so that comparisons 

can not be made. 

• Ta underlayer 

It is well known that when a film is deposited on a crystalline underlayer or substrate, 

the orientation of the initial nucleation layers ( a few atomic layers) will be affected by 

the crystallographic orientation of the underlayer or substrate. When the film thickness 
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reduces to the molecular level, the effect of an underlayer or substrate may play a more 

important role in the orientation ofthe film [Ohring, 1992]. 

There are two kinds of crystal structure of Ta. The bulk crystal structure of Ta is bee 

texture with a lattice parameter of a (in OXY plane) about 0.234 or 0.331 nm [Galtier 

et al., 1994] and [Gill and Yamashita, 1984]. When sputtered in a thin film form, in 

general, it has an hcp crystal structure W-Ta) with lattice parameters a about 0.235 or 

0.283 and c (along OZ axis and perpendicular to the OXY plane) about 0.534 (varying 

with deposition conditions). It was reported by [Gill and Yamashita, 1984] that the 

hcp-Ta grains were more well-developed than the bee-Ta, which may favour and 

influence the epitaxial growth and preferred orientation of some films . 

The crystalline anisotropy in the (Ill) plane of permalloy is smaller than the other 

planes, so the increase of the effective anisotropy by grain growth is expected to be 

smaller than those of other oriented films resulting in smaller coercivity and good 

thermal stability [Pfeifer and Radeloff, 1980], [Li et al., 1994]. Sputtered Ni81Fe19 films 

have an fee crystal structure and may exhibit a predominantly (111) texture with .1950 

ranging between 9° to 10° [Yeh et al., 1987]. It was reported that the (I 11) cl-spacing 

for sputtered Nis1Fe19 films is about 0.2043 nm which corresponds to a lattice parameter 

of about 0.3539 nm [Yeh et al. , 1987]. 

Frank and van der Merwe introduced a theoretical explanation in 1949, and predicted 

that any epitaxial layer having a lattice parameter mismatch with another layer (or 

substrate) ofless than - 9% would grow pseudo-morphically, i.e., for very thin films the 

deposit would be elastically strained to have the same inter-atomic spacing as the 

substrate [Ohring, 1992]. 
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It may be difficult to say whether the fee Ni8,Fet9 ftlm lattice and Ta (bee or hcp) lattice 

match well due the lack of sufficient experimental data. , but this could result in a 

minimum interface stress. Further study such as with cross-section TEM observation 

may provide more information. 

On the other hand, Ta is one of the transition elements, which can exhibit texture or 

randomly oriented microstructure or an amorphous atomic arrangement [Grundy, 1997]. 

When Ta is like an amorphous material, the effect from the underlayer should be less 

than those from a crystalline underlayer. It may be a possible explanation why the grain 

size of perrnalloy ftlms deposited on Ta is smaller than films deposited on Cr. In view of 

the amorphous-like nature of Ta, the magnetic properties of perrnalloy films with Ta 

should to be similar to that of films deposited directly onto a glass substrate, but the 

Lorentz TEM images obtained in this study show this assumption was not correct. 

Like coercivity, the effect of a Ta underlayer on the orientation of a Ni81Fe19 film is a 

complex phenomenon and many probable reasons are yet not well known due the lack of 

sufficient experimental data. 

4.3.3 Thermal effects 

The origin of [111] permalloy films on heated glass surfaces (260 - 500°C) has been 

reported but the reasons for the orientation are not certain [Bauer, 1963], [Prutton, 

1964~ . A similar effect was also found by using a suitable annealing treatment (less than 

300°C for Nis,Fe,9 films) [Narayan et a l, 1992], [Li et al. , 1994]. 

Figure 4.45 is an example which is calculated by using Equation 2.19 and 2.20 based on 

the ripple model , and is taken from reference [Hoffmann, 1979] 
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As can be seen from Figure 4.45, the calculated results of Hoffmann show that a 

substrate temperature of about 290°C gives minimum values for Structure Constant S 

(S = Kj;t' ). The permalloy films with minimumS are the best possible approximations 
ll 

to ideal films (for which S=O). At higher substrate temperature the crystallite size 

increases while at lower temperatures the intrinsic strains in the evaporated films 

increases, and both processes increase S. This theory has produced in good agreement 

with our experimental results shown in section 4. I . 1. 1. 

-4·1:) -~---f---t---t--t-11-H 

~~--+--+--~~~-H 

/ 31----+----t--t--t-H 

100 200 300 't .coo 
evaporation temperature 

Figure 4.45 The dependence of the structure constant on evaporation (substrate) 

temperature for Nis1Fe19 films (after [Hoffmann, 1979]) 

As Hoffinann said, practically all the magnetic properties of thin ferromagnetic films 

depend on the film structure but it is not possible to give an exhaustive description of all 

the relationships between magnetic properties and film structure. The film structure is 
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characterised by the crystal lattice, the range of ordering, the gram s1ze, the film 

geometry (mainly the film thickness) and intrinsic stresses as well as film production 

conditions. However, it would be quite inappropriate to investigate the dependence of 

some magnetic properties on onJy one or two parameters without knowing the influence 

of these parameters on the film structure. In particular, some fundamental magnetic 

properties of permaJloy films are now being changed due to the development of new 

techniques and applications. Therefore, further study of the correlation between the 

magnetic properties such as coercivity and Ni81Fe19 film microstructure is needed and 

should be performed both in the theory and experiment. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

5. 1.1 Coercivity 

The effect of thickness and grain size on the coercivity of Ni81Fe19 permalloy thin films 

deposited by r. f. sputtering with negative substrate bias is systematically investigated as a 

function of under-layer materials, film thickness, and substrate temperature. The results 

show that there is a minimum coercivity at a thickness of about 7. 5 nm with a grain size 

of 4 nm. The experimental data indicates that the coercivity of very thin Nis1Fe19 

permalloy films in the range from 2.5 to 30 nm is dependant on the film thickness. It is 

affected by the nature of underlayer and substrate material as well as the deposition 

temperature. The reduction of coercivity in very thin Ni81Fe19 permalloy films has been 

achieved by using a 5 nm Tantalum underlayer or depositing the fi lms at a suitable 

elevated substrate temperature of about 280°C. This may be attributed to the grain size 

and domain wall width variation. A tantalum underlayer favours a (11 1) (low anisotropy) 

surface plane in Nis,Fe,9 permalloy films. Elevated deposition temperature may reduce 

defects in the fi lms and may enhance the ( 111) orientation. 

5.1.2 Domain walls and Barkhausen noise 

A comparison of the magnetic domain wall structure and the state of magnetisation in 

the very thin (5 - 30 run) Ni81Fe19 permalloy thin films with and without a Ta under-layer 
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was observed by Lorentz TEM . The observation results suggest that the domain wall 

configuration and magnetisation may play a dominant role in the magnetic properties of 

these permalloy thin films for applications such as recording heads and sensors. The 

domain configuration, domain walls and magnetisation in very thin permalloy films 

deposited on Ta underlayer exhibit distinct differences with the ones without Ta. With no 

Ta underlayer, the domain walls are very thin irregular, closely spaced and have cross-tie 

walls. Domain wall width in this case is about 1 00 nm. Also the domain magnetisation 

varies in angle from 90 to 180° in adjacent domains with a strong rippling. In the case 

with a 5 nm Ta underlayer, the domain walls are wider, straighter and have fewer cross

ties. The domain magnetisation changes in angle by 90° across the wall with no rippling. 

The width ofthe domain walls is about 300 nm. The domain size in the permalloy films is 

much bigger than the ones without Ta and is independent of the film thickness in the 

range from 5 nm to 30 nm. The results suggest that by using tantalum as an underlayer, a 

reduction in the Barkhausen noise of sensors can be achieved. 

Barkhausen noise studies of films were carried out by sweeping an ac field of 77 Hz 

onto the permalloy films and recording the induced search-coil output voltage due to the 

flux change as a function of time on a digital storage oscilloscope. Experimental results 

show that the films deposited on normal glass substrates have more Barkhausen noise 

than the ones deposited on Ta underlayer or at an elevated temperature (e.g. 280°C). 

5.1 .3 Switched-bias Sensor 

A highly sensitive magnetoresistive sensor has been designed and fabricated by 

photolithography in a temperature and humidity controlled clean room. Sensor 
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thicknesses are typically in the range from 5 nm to 40 nm and other dimensions typically 

(I 0 j.lm - 80 j.lm wide) and 6.4 mm long. Two sets of sensors with and without a 5 run 

tantalum underlayer have been completed and about 120 types of sensors are available 

within 3 0 substrates. 

Barkhausen noise and corresponding magnetic hysteresis of the sensor were studied by 

analysis of the M-R response of various sensors together with their magnetoresistive 

hysteresis. The properties of sensors with and without Ta were compared with and 

without a suitable external high frequency field (5 kHz to 20 k Hz), by which the 

hysteresis of sensors can be reduced. The best linearising frequency appears to be about 

I 0 kHz when the forward and reverse MR curves coincide although linearising fields at 

frequencies close to 1 0 kHz are found to be almost as effective. The linearising field 

required is quite small, typically around a 0.2 Oe or 16 A/m. 

Variation in the sensitivity of the sensor to the magnitude of a switched-biasing field was 

measured by applying a very small alternating field and varying a transverse de field 

component (Hx), The effect of biasing field frequency and external linearising field on 

the sensitivities of the MR sensors was studied using an in-house built measurement 

system. Experimental data shows that the switching field of such sensors required is 

quite small and may be around a few tens of A/m (e.g. about 21.7 A/m or 0.27 Oe in the 

case of Figure 4.42). 

The results show that the sensor is linear in the range from zero to 16,000 nT. The 

sensors produce an almost noise-free output of 20 - 30 millivolts for a field change of 

about 160 nano-Tesla. Because of its switched-bias nature, the sensor can be used with a 
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Jock-in amplifier to produce an output which excludes any extraneous notse at 

frequencies other than the bias switching frequency of the sensor. 

5.2 Future work 

The very thin Ni81Fe19 permalloy film sensor developed in this study exhibits excellent M

R response and produces an almost noise-free output of 20 - 30 millivolts for a field 

change of about 160 nano-Tesla. The output of such a sensor is linear over quite a wide 

range if used to measure very small fields in the tens or hundreds nano-Tesla region. 

Further development of such sensors offers users the possibility of detecting much 

smaller fields such as a few tens nano Testa or even lower and are of considerable 

interest for future M-R sensor applications. 

It is also necessary to undertake further microstructure observation and performance 

examination of such sensors by high resolution TEM and Lorentz microscopy and to 

combine such examinations with Barkhausen noise analysis and MR response 

measurement. Such fundamental studies will greatly favour the thorough understanding 

of the correlation between the microstructure of Ni81Fe19 permalloy films and the 

performance of such sensors, so that more knowledge about the limitations of sensors 

will be clear. The effect of a Ta underlayer on the microstructure of very thin Nis1Fe19 

pem1alloy films may be of some interest to future generation of sensors such as GMR, 

TMR and CMR. Therefore, further studies of tllis effect are also needed. 

Limited experimental results of sensor performance have shown that the sensor is 

capable of detecting changes much smaller than 160 nano-Tesla (e.g. a few tens or a few 

nano-Tesla) under ideal conditions. The fabrication of many sensors has been carried out 
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but the performance of all of the sensors has not yet been examined due to the 

limitations of time and the test system. This should be completed in the future. Further 

study of the optimisation of the insulating layer, new sensor structural design (e.g. add 

thin film flux concentrator [Smith et al. , 1991]) and proper controlling of sensor 

performance during fabrication is needed so that new opportunities in the detecting of 

much weaker magnetic fields may be found and achieved [Mapps et al. , 1998]. 
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Optimisation of Material and Structure for a Switched-bias Magnetoresistive Sensor 
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Abstract 

This paper describes research on a magnetoresistive sensor consisting of two differentially connected Pennalloy stripes 
with an overlay bias conductor (see ref. 1 ). A magnetic field derived from current flowing in the bias conductor switches the 
magnetisation in the sensor stripes alternately in opposite directions for each half-cycle of the bias field current. The 
material of the sensor is optimised for lowest Barkltausen noise (see ref. 2) and lowest demagnetising field. A number of 
sensors have been prepared with ftlm thicknesses of 5 to 40 nrn, stripe widths varying between 10 to 80 J..Lm and a standard 
length of 6 mm. Barkhausen noise and corresponding hysteresis is studied by analysis of MR. response of the group of 
sensors, together with their magnetoresistive hysteresis, which may be reduced or improved by using a suitable ex1ernal 
high frequency field (5 to 20kHz). Variation in the sensitivity of the sensor to the magnitude of a switched-biasing field 
was measured by applying a very small alternating field (variable from a few tens to hundreds nano-Tesla) and a varying 
transverse de field component (8Hx). A<h•antages and limitations of the sensors will be discussed in the paper. 

Keywords: Magnetoresistance, Sensor, Switched-bias, Pennalloy, Thin-Film 

1. Introduction 

There is increasing interest in the use of very thin 
magnetoresistive ftlms to make sensors of small physical 
size with low coercivity, low Barkhausen noise and high 
signal-to-noise ratio[ref. 3, 4 and 8]. There are very few 
publications concerning the fundamental magnetic 
properties of very thin film devices similar to those 
studied here [ref. 5]. Little has been reported on the 
switched-bias type MR. sensor which consist of a pair of 
sensors alternately switched with transverse fields in 
opposite directions via an overlay bias conductor. The 
ultimate resolution of such sensors for detecting very 
small fields in the nano-Tesla region has not been fully 
ex"J>lored therefore application limits are not yet recorded 
(ref. 61. 

In our previous papers, dependence of coercivity on 
thickness and grain size in permalloy films, suitable for 
these sensors, in the range from 2.5 to 30 nrn [ref. 2], 
was presented. Barkhausen noise ongm and 
characteristics of these films were investigated by 
differentiating the B-H characteristic along with study of 
magnetic domain wall structures using Lorentz TEM 
observation [ref. 7). 

In this paper, we report new progress in this study 
including the behaviour of the MR response and 
hysteresis, the effect on the amplitude and frequency of 

bias field, and the influence of a high-frequency external 
(linearising) field on Lhe output characteristics. 

2. The switched-bias Sensor 

The switched-bias sensor as described in ref. I consists 
of a pair of identical MR. thin-film stripes in a bridge 
circuit subjected to transverse fields applied via currents 
in two overlaid thin-ftlm bias conductors shown in figure 
I. 

Figure Diagram showing a typical Switched-bias 
Magnetoresistive sensor 
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The transverse fields from these bias conductors are in 
opposite directions but are provided from the same 
current Ib so that when Ib is reversed (lb is a square-wave 
alternating current) the transverse bias field also reverses 
so that the bias point for each sensor switches to the other 
side of the MR. characteristic and vice-versa. If the sensor 
is placed in a steady applied field the bridge is 
unbalanced and the output signal is a square wave whose 
amplitude is proportional to this steady field. One 
advantage of tllis system is that lock-in amplifier 
techniques can be used to extract the output signal almost 
totally free of noise, so making the sensor very effective 
for detecting smaU steady fields in noisy environments. 

3. Materials and Geometry 

Preparation procedure and structural characterisation 
of film used in t11is study has been described previously 
[ref. 2]. A number of sensors have been prepared for tllis 
investigation, the main structural dinlensions are: (a) 
tl1ickness (ti) of the perrnalloy layer used :- 5, 7.5, 10, 15, 
25 and 40 nm (b) widtlls (wi) of the etched permalloy 
stripes were 10, 20, 40, 60 and 80 J..l.ill (c) length (l1)of 

' the stripe= 6600 J..l.m (d) thickness (h) of Cu bias layer = 
0.55 J..l.ln (e) width (w3) and length (13) of bias stripe = 
lOO J..I.ID x 6000 J..l.ill (f) thickness (t2) of insulating layer = 
l J..l.m (g) the resistance of insulating layer <::40 Mn (h) 
the thickness (tJ of Ta underlayer and capping layer is 5 
nm. Figure 2 shows the geometric dimensions of 
sensor(s) and bias conductors. 

Figure 2 Showing U1e geometry of a Switched-bias MR. sensor 

In order to compare and check tl1e effect of a Ta 
underlayer on the output of the sensors, two sets of 
sensor films with and without this Ta underlayer were 
prepared for sensor fabrication. 

4. Experimental Details 

4.1. Fabrication 

The total fabrication procedure consists of about 55 
steps for each substrate and one set of eight photo-masks 
has be designed and used for the fabrication. 24 
substrates (432 pairs of sensors) have been completed in 
this study. 

4.2. MR effect & Hysteresis Measurement 
After preparation, the MR. response and hysteresis loop 

for each sensor was obtained from a MR test instrument, 
purpose built at the CRIST Facility. The transverse field 
for the MR. loop is set at ± 20 Oe and a typical current 
flowing in each sensor is l mA. 

[n order to reduce hysteresis in the sensors, a high
frequency external ' linearising' field method is used. 
Tllis high-frequency field oscillates the magnetisation in 
the sensor so that the sensor magnetisation finds the 
lowest magnetic energy condition for all magnetisation 
conditions. [n our experiments this high-frequency field 
at various amplitudes is applied both along the sensor 
long axis and transverse to it. 

4.3 Electronic drive and test system 
A schematic diagram of the sensor electronics is 

shown in figure 3. The two sensors are connected as part 
of a Whetstone bridge network with the output taken to a 
differential amplifier. The sensors are always biased in 
opposite directions so that any d.c. field (8H) such as 
that produced from of pair of l 0-turn Helmholtz coils 
used in this e>."periment, can unbalance the bridge. The 
output from the differential amplifier is a square wave 
containing some noise if tbe sensor is used to detect small 
fields. This output is fed into a lock-in amplifier and 
compared with a reference signal from the bias current 
used to "drive" the bias stripes. This square-wave 
reference ensures that only signals of the same shape and 
repetition frequency will be registered in the output of the 
lock-in amplifier. This output is a d.c. level proportional 
to the applied field 8H. 

In addition to the applied field and sensor switching 
field (which can be from zero to 1 kHz) an additional 
high-frequency bias field can be supplied from another 
set of Helmholtz coils. This field reduces hysteresis and 
Barkhausen effects. The output from the lock-in amplifier 
is fed to an oscilloscope with an averaging capability to 
reduce any fluctuations in the output. 

In the test system the substrate (which contains many 
prototype sensors) is mounted in a non-magnetic 
microprobe test system so that each dual sensor can be 
accessed and tested individually. Bias and sense currents 
can be supplied to the sensor and operational tests 
applied . The whole array is electrically screened by 
connecting all parts (including spare filaments in the 
microprobe card) to the system earth. 
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Figure 3 Electrical Schematic Diagram for Switched-bias MR. 
Sensor 

5. Experimental Results 

5.1 Magnetoresistance/Field Characteristics 
The MR/field characteristic is useful for checking the 

response of an MR sensor in respect of hysteresis and 
Barkhausen noise. An indicator of hysteresis is the 
separation of the forward and reverse curve around the 
vertical axis as shown by the apparent 'coercivity' in 
figure 4. In figure 4 the curves are from a 10 nm-t.hick 
sensor deposited on a tantalum film on a the glass 
substrate. In this case, with no high-frequency 
' linearising' field applied, the separation of forward and 
reverse curves reaches a value of 0.7 Oersteds (55 Aim). 
Application of the high-frequency field along the sensor 
long axis reduces this for frequencies above 5 k:Hz. The 
best linearising frequency appears to be about lO kHz 
when the forward and reverse MR curves coincide 
although linearising fields at frequencies close to lOkHz 
are found to be almost as effective. 

5.2 Sensitivity to applied d .c. field (8H) 
These results are shown in figure 5 for the sensor with 

5 nm tantalwn underlayer. The response is linear in all 
cases up to a maximum value of 16000 nT. It can be seen 
that the output is highly dependent on the magnitude of 
the switch-bias field, this is to be expected from the (bell) 
shape of the MR/8H characteristic seen in figure 4. 

1' 

J 

+200e -200e 
-4----Transverse Field---

Figure 4 Graph showing the MR. response and hysteresis 
variation of a 10 run NiFe sensor (80 1.1111 wide) with 5 run 
Ta underlayer vs. the frequency oflinearising field (0.2 Oe) 

1200 

1000 

800 

> 
:::··::::: :: j:::::: ~~~:~i~~-:~~:~~~::· :: : :::: ::: ________ _ 

.§. 600 .. 
> 

400 

200 

0 

. ' . . 

19 37 54 73 

I>H (x 160 nT) 

10 nm NiFe Sensor with 6 nm Ta Underlayer 
(fb=1 kHz, fL =5 kHz, HL =1.2 Oe) (80 l1ffi wide) 

91 

Figure 5 Showing the output of sensor vs. d.c. field for three 
bias fields 

5.3 Optimum sensitivity to low fields 
The curve of figure 6 is for an applied field (8H) of 

160 nano-Tesla. A convenient switched-bias frequency is 
chosen to match the low-pass filter in the lock-in 
amplifier system (250 Hz). The amplitude of the switch
bias current is varied and the output reaches a maximum 
at a current of 90 mA corresponding to a peak switch
bias field of 0.81 Oe (64 Aim). At tlus condition an 
output of 24 mY is obtained for a 8H field of 160 nano
Tesla. The noise level on tllis output is less than l m V. 
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Figure 6 The output of I 0 nm sensor vs. 250 Hz bias field 
(0.00906 Oe/mA) for an applied field (oH) of 160 nano-Tesla 

6. Discussion 

The results show that the sensor is linear over quite a 
wide range if used to measure very smaU fields in the 
nano-Tesla region. This is surprising since, even when 
the sensor is not operating on the linear part of curve the 
differential system is sufficiently effective in maintaining 
linearity (see figure 5) 

The result of figure 4 can be explained if it is realised 
that the effect of the tantalum underlayer is to promote 
microstructural growth in the NiFe fi lm with its (I l l) 
crystaUographic plane (Miller indices) paraUel to the film 
surface. Tllis leads to a more isotropic magnetic 
behaviour (see ref. 2 and 7). 

In figure 6 the applied (constant) field (8H) has been 
fixed at 160 nT which is some 300 times smaller than the 
earth' s field. ln this case the expected peak with 
switched-bias current is found, corresponding to the point 
of inflection on the MR characteristic. Because of the low 
noise level in this condition it appears that the sensor is 
capable of detecting changes much smaller than 160 
nano-Tesla (e.g . a few nl) under ideal conditions. 

7. Conclusions 

A highly sensitive magnetoresistive sensor has been 
designed and fabricated. The sensor is linear in the range 
from zero to 16000 nT. It produces an almost noise-free 
output of several rniUivolts for a field change in the nano
Tesla range. Because of its switched-bias nature the 
sensor can be used with a lock-in amplifier to produce an 
output which excludes any extraneous noise at 
frequencies other than the bias switching frequency of the 
sensor. 
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Magnetoresistive Sensors 

M. A. Akhter, D. J. Mapps and Y. Q. Ma 
C.R.LS.T., SECEE, UniversityofPlymouth, Plymouth, PL4 8AA, U.K. 

and 
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Absfract-The magnetic properties (coertivity and 
1111~netoresistance) or very thin permalloy films were studied 
(or their use In magnetoreslstive (MR) sensors. Permalloy films 
"ere deposited under dirTerent conditions and a comparison 
"u made in their properties. Domain walls in these films were 
studied using a specially modified TEM. Darkhausen noise was 
studied by dirrerenliating the-M-11 characteristic and Its origin 
Is discussed in the context or the magnetic domain wall 
structures. 

/ntlo: Terms--llarldlausen noise, Domain wall, 
MagneforeJistive sensors, Permalloy thin films. 

L INTRODUCTION 

Magnetoresistive materials have been intensively studied for their 
applications in recording heads and sensors (1). Modem anisotropic 
nugnetoresistive (MR) sensors require high sensitivity with low 
Badhausen noise. To achieve this, MR sensors must be very thin, 
have high penneability and low coercivity. These magnetic 
properties are strongly dependent on the crystalline grain size, 
::rystalline structure and the underlayer used (2). In our last paper 
we presented the dependence of coercivity on the thickness and 
uai.n size in pennalloy films in the range from 2.5 nm - 30 nm (3) . 
N'~a,Fe" films prepared under different deposition conditions of 
thickness in the range of 2.5 nm - 10 nm show a minimum in 
coercivity at a thickness of 7.5 nm at which the grain size is about 
4 nm. This minimum in coercivity may be attributed to the grain 
rile via its relationship with domain wall width. In this paper we 
report Lorentz TEM studies of magnetic domain wall images in 
¥er)' thin (5 - 30 nm) permalloy films with i.nd without tantalum 
(Ta) underlayers. Crystallography of the films using electron 
dilliaction miaoscopy was studied. Coercivity and anisotropic 
IIUgnetoresistance coefficient results for these permalloy films with 
IDd without Ta underlayer are presented. The behaviour Qf these 
films under an ac applied field was studied and analysed to help 
IIDderstand the origin of Barkhausen noise. 

11. EXPERIMENTAL PROCEDURE 

Preparation procedure and structural characterisation used in this 
Ytor1c tw been described previously [3]. Two sets of pennal loy 
(Ni., Fe.,) thin films or 5 nm - I 00 nm thickness With and without 5 
~ Ta underlayers were prepared for this study. For Lorentz TEM 
II!Uge observation the specimens were deposited onto copper grids 
COvered with very thin Formvar coatings on glass slips. Normally in 
J>enn.a.lloy films the anisotropy is self-selecting but in this case a 40 
Oe field was used to select anisotropy direction during deposition 
and the direction or anisotropy was marked on each grid. 

The domain wall images shown in this work were taken using a 
IEOL-4000 microscope fitted with a JEOL AMG-40 low-field pole-

piece operating at 400 lc:V. With a mollified pole-piece U1e 
specimen sits above the objective lens in a field free region. The 
microscope was operated in the long camera length mode or 
Fresnel imaging. This mode is particularly useful for revealing 
magnetic domain boundaries. For this work the objective lens 
setting was at 2.0 and camera length at 4.0 n•m. Magnification of 
the images is x 260 on the negative. The magnetic domain images 
presented here are approJtimately 28 Jlll1 in diameter. The Electron 
diffraction pattern for each sample was taken which $bowed that 
the film structure was not affected by the sample preparation 
method for Lorentz TEM observations. 

Barkhausen noise studies were canied out by sweeping an ac 
field of 77 Hz onto the pennalloy films and recording the induced 
output voltage due to the flUJt change on a digital storage 
oscilloscope. Every time a number of plots were taken and when 
consistent, the plots for the rate of change of flUJt as a function of 
time were recorded from the oscilloscope. 

Measurements of coercivity and anisotropic magnetoresistance 
coefficient were made by using in-house bui lt equipment Data for 
each measurement was averaged over five readings. 

IlL RESULTS AND DISCUSSION 

(a) Coucivity Measurements 
Easy uis coercivity for the films deposited with and without Ta 

underlayer are shown in Fig. (1). The coercivity for the permalloy 
filins grown on Ta underlayer is slightly higher compared with the 
ones without Ta underlayer. 
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FIG. I. Gnph or Couch1ty vs. Film Thlckncu for Pennalloy (NI., Fe,) 
Thin FUnu (a) on z:lus substnte at nonn:U tempcnaturc; (b) on z:l:a.ss 
substnate with 5 run Ta undcrtayer at nonnal tempcr.&ture. 
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(h) M-R Measurements 
The results of anisotropic magneloresislance coefficient for 

pennalloy films deposited under different conditions are plotted in 
Fig. (2). This change is almost the same in thinner films but in 
permalloy thickness above 10 nm the change is slightly higher in 
the fJ.ims grown on Ta underlayer. Also in this case the change is 
more stable. 
(c) Barkhausen Noise Analysis 

To analyse the Barkhausen noise the permalloy films were studied 
by applying an ac field (± 480 Nm) of 77 Hz. The plots are shown 
in Fig. (3a to 3c). These plots are single test results but are 
representative of -so similar plots from a number of thin ftlm 
samples for each case a, b, tnd c considered. The main peak is due 
to the magnetisation reversal of the fllm.s. The remaining part of 
the cwve ditrers for each film and gives a qualitative insight into 
the Barkhausen noise. The large peak at 0.2 ms in Fig. (3a) is 
typical of a random B arldausen peak in films deposited directly on 
glass at low temperature. 
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Comparison between the plots shows that the fJ.ims deposited 011 

glass substrates have more Barkhausen noise than the OOd 
deposited on Ta or deposited at higher deposition temperature. We 
conclude tliat the films deposited with a Ta underlayer and • 
elevated temperatures have less Barlchausen noise. Our results alJo 
show that the Ta Wlderlayer has very little effect on the reductiOII 
ofBarldausen noise below the permalloy film thickness of20 DilL 

(d) TEM Studies 
In order to observe the domain wall patterns we studied lht 

permalloy films with the Lorentz TEM. The domain wall imJ8d 
for 1.S nm and 30 nm with and without Ta underlayer are shown ill 
Fig. (4a to 4d). We observe that the domain walls of the fthi!S 
deposited without underlayer are very thin, irregular, do~ 
spaced and have cross-ties. The domain wall width in this case 11 
about 100 nm. Also the domain wall magnetization in adjaccd 
domains vary in angle from 90° to 180° with slrong rippling eiTcct 
On the other band the domain walls in permalloy films deposittd 
with a Ta underlayer are very well defmed with less cross-ties. 1b' 
domain wall width in this case is approximately JOO IIJ!I. 
Magnetization shows no rippling and the domain magnerisa~ 
rolales through 90° across lhe wall. Electron diffraction palleflll 
for the films were studied. The films grown with Ta underla)'C'" 
showed in-plane texture in permalloy induced due the presence rl 
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T~. while the films groy..n without Ta underlaycr had all rings 
showing fee structure and there was a random texlure. 

The Barkhausen noise in permalloy films deposiled on a Ta 
underlayer and the ones deposited directly on glass but at higher 
temperature is less compared with the films deposited directly on 
&las.s at normal temperature. This may be attributed to wider, 
straight and regular domain walls and is due to less rippling in 
111~flletisation adjacent to the walls. This reduction in Barkhausen 
~~s~ may also be due to less defects, smaller grain size and the 
microstructure of the films grown on Ta underlayer. 

IV. CONCLUSIONS 

Our study shows that the domain wall configuralion and 
~1

1
1gnctisation play a dominant role in the properties of perm alloy 

11 nu lilr th · · d · "" c1r use m recor mg heads and sensors. The domain 
(5

1~ 5 structure and the stale of magnetization in the very thin 
30 nm) permalloy lilrns with and without tantalum underlayers 

~~ llillcrcnt. With nll Ta underlayer the domain walls arc \CI'V 
11110 • • 
Yrid~l~cg~lar, ch~sely spaced and have cross-tics. Domain wall 
~ . 1 ~ llm case 1s a !lout I 00 nm. Al so the domain magn~tization 
ri111c.s 10 angle from ()O• to 18o• in adjacent walls wi lh a strung 

PPitng. But with 5 nm Ta undcrlaycr, the domain walls arc'' idcr, 

· · ~ · 

F'IC:. ~ ~. Lorrntz TF.M lma~r nr 7. ~ nm ~~ .. F.· .. Thin Fihn Mith ~ nil I Ta 
undrrl><~·rr d<pusitrd •I norm:.~! l.emJH'nturr. Thr size or ma~nrtir 
domain lna•c• prurntrd ht~ Is •pproxlm•trly 28 j.Ullin dlamtlu. 

FH;. ~~~. Lortntz T E!\1 lm~~r ur 30 run Ni11fr, Thin Film Mith 5 nm T• 
urufrrl~_.-.r drpositrd • t nonn•l t~mprnturr. Th~ slzt or nu~nrtic 

''""'~in i111•~• prr~rnt<d hrrr u •pprvsina•trly 211 j.Ullln dl•m•lrr. 

straight and have less t:ross-ties. 'lbe domain magneti i.ali1•n 
changes in angle by 90° across the wall with no rippling. '11te 
width of domain walls in this case is about 300 run. The domain 
size in perrnalloy films with Ta underlayer is much bigger than the 
ones without Ta, which wi ll reduce the Barkhausen noise. ,.,1e 
wider, straight and regular domain walls with less rippling in 
magnetization in the adjacent walls reduces the Barkhauseo noise. 
The reduced Barkhaus~n noise may also be due to less defects, 
smaller grain size and microstructure of ihe films grown on Ta 
underlayeer (3 ). The reduction in Barkhausen noise Cilll tx: 
achieved by depositing the fi lms at elevated temperatures. 
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fhickness and grain-size dependence of the coercivity in permalloy 
thin films 
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This paper reports the effect of thickness and grain size on the coercivity of Nis1 Fe 19 pennalloy thin 
fi lms (2.5-30 nm) sputtered on glass substrates for their application in magnetoresistive sensors. 
Coercivity was systematically investigated as a function of underlayer materials, thickness, and 
substrate temperature. Lateral grain size of the sputtered fi lms was investigated. The grain size 
reduced very quickly in the thinner fi lms. It was also found that the coercivity of the films with very 
small lateral grain size is much lower than those with a normal grain size. The lowest coercivity 
(Hc=0.8 Oe) was observed in 7.5 nm thick film and having a grain size of 4 nm. When an 
underlayer is used, its crystallinity affects the lateral grain size in the permalloy and correlates with 
the observed coercivity variation [P. Galtier, R. Jerome, and T. Valet, Mater. Res. Soc. Symp. Proc. 
313, 417 ( 1993).] It was also observed that the coercivity of the perm alloy is dependent on the 
nature of the underlayer. It was establ ished that the coercivity of Nis1Fe19 fi lms increases when the 
thickness increased from a critical film thickness and grain size. The variation of the coercivity in 
thin Ni81Fe 19 fi lms with lateral grain size and relationship with domain-wall width is discussed and 
compared with other theories for magnetization reversal. © 1997 American Institute of Physics. 
[S0021-8979(97)25008-5] 

INTRODUCTION 

Intensive studies have been made on magnetoresistive 
1aterials for their application in sensors and recording 
eads. 1 For this purpose one has to look for materials with 
>w coercivity, near zero magnetostriction, and low noise. 
lis1Fe 19 as the magnetic materia l has been studied to a great 
epth for this purpose. It is well known that the magnetic 
ropert ies of this permalloy are very sensitive to the prepa
Hion methods and also are effected by the underlayers 
sed. 2 For this purpose, we have undertaken a study of struc
•ral (in particular grain size) and magnetic properties of 
lis1Fe19 thin films in the range from 2.5 to 30 nm. To a 
ertain limitation, we have also studied the effect of substrate 
:mperature on the magnetic properties of this material. 

. EXPERIMENTAL PROCEDURE 

Ni81 Fe19 thin fi lms were prepared using rf sputtering in a 
IRC high-vacuum deposition chamber. To reduce any oxy
~n in the fi lm a low base pressure of 2X 10- 7 Torr was used 
!though high base pressures (up to 2X 10- 6) are not a criti-
11 factor for oxygen contamination:1 Also, by sputtering 
'ith negative substrate bias, ti lm contamination is reduced. 
xperiments with 5 nm capping layers of Ta showed that 
1rface absorption of oxygen was not a factor in changing 
>ercivity after sample removal from the sputtering system. 
~mples were preheated to 300 oc prior to deposition.4 In 
iFe fi lms, anisotropy is self-select ing but alignment can be 
!termined and, in this case, a 40 Oe field was used. All 
rgets used for deposilion were of "999" research grade 
1d were precleaned by plasma etching. Fi lm thicknesses 
ere measured by Talystep with in an accuracy of :t I nm 
1d averaged for five measurements. These were confirmed 

by scan ning electron microscopy. Coercivities of the films 
were measured using a laboratory built B-H testing instru
ment and were averaged for fi ve measurements. Microstruc
tures of the permalloy fi lms were studied by transmission 
electron microscopy (TEM) images, electron diffrac tion pat
terns and x-ray diffraction. Experiments showed that the fi lm 
structure was not affected by the sample preparation method 
for TEM measurements. 

Ill. RESULTS 

A. Magnetic properties 

Four sets of multilayer structures were studied: (a) 
Ni81Fe19 deposited on glass at a substrate temperature of 
20 oc ; (b) Nis1Fe 19 deposited on glass at a substrate tempera
ture of 300 oc ; (c) Ni81 Fe19 deposited on glass with 5 nm of 
Si02 as underlayer at a substrate temperature of 20 °C, and 
(d) Ni81Fe 19 deposited on glass with a 5 nm of Ta underlayer 
at a substrate temperature of 20 °C. A set of samples was 
studied with permalloy thickness varying from 2.5 to 30 nm. 
The results of coercivity measured from B-H plots as a 
function of pennalloy thickness are shown in Fig. I. The 
plots in each case show a minimum in coercivity at 7.5 nm 
film thickness of Ni81 Fe19 permalloy. We found some change 
in coercivity as a function of substrate temperature. 

B. Structural properties 

The TEM images are shown in Fig. 2 and 3. The micro
structure of the fi lms was studied for NeH 1Fe 19 films depos
ited on a microscope grid . In each case. the darker regions 
correspond to the Nis1 Fe19 and the pale regions in between 
are the carbon underlayer as the grids were not cleaned prior 
to deposition. It can be seen that the films are not continuous 

22 J . Appl. Phys. 81 (8), 15 April 1997 0021·8979/97/81 (8)/4122/3/$1 0.00 © 1997 American Institute of Physics 
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type and thickness of the at the lower end of the Ni81Fe19 thickness. As the Nig1Fe19 

main walls in thin films thickness increases, the size of the continuous regions of 
bottom surfaces of the fi1Ni81Fe19 increase. At 10 nm the fi lm is continuous. The small 
important factor in detemnlack and white dots {which are more visible in thicker film) 
civity. These factors becoare individual Ni81 Fe19 grains that are oriented such that that 
ness increases resulting inhey are strongly diffracting. An estimation of grain size was 
creasing thickness.7 Also, nade and a plot of grain size as a function of film thickness 
structural correlation lengts shown in Fig. 4. A higher magnification image is given in 
netic exchange length8 ar:::ig. 5, which shows that the films are polycrystalline with 
served for very small graquite a small grain size. We obtained diffraction patterns for 

·our sets of thicknesses, i.e., 2.5, 5, 7.5, and 10 nm. An 
:lectron diffraction pattern of Ni81Fe19 fi lm of thickness of 
0 nm is shown in Fig. (6). We can get a qualitative measure 

crystallographic texture present in the film by looking at 
relative intensity of the diffraction rings. As the film 

IU\..11.11"'"" increased, the ring pattern for Ni81Fe19, i.e., face-

FIG. 6. An Electron Diffractio n F 

I 20nm I I 20nm I 

IG. 2 . (a) The Transmission Electron Microscopy (TEM) image and Elec
on Diffraction pallem of 2.5 nm thin film of Ni81Fe19. (b) The TEM image 
1d Electron Diffraction pallem of 5 nm thin film of Ni81 Fe19. 
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FIG. 3. (a) The TEM image and Electron Diffraction pauem of 7.5 nm thin 
film of Ni81Fe19. (b) The TEM image and Electron Diffraction panem of 10 
nm thin film of Ni81Fe19. 

centered-cubic (fee) became more clear. The ring diameter 
ratios are exact for a fee structure and there is a random 
texture. 

IV. DISCUSSION 

Comparing the change in coerciVIty against thickness 
and the change in grain size against thickness for such thin 
Ni81 Fe19 fi lms, it is clear that as the grain size changes so 
does the coercivity. We can see a minimum in coercivity at a 
grain size of about 4 nm, Figs. I and 4. It is also a well
known fact that for the grain size lower than 30 nm, the 
Barkhausen noise decreases. 5 A large number of publications 
have been produced showing that the wall energy is a func
tion of the volume of the material it occupies,6 so when part 
of the wall moves to a point where it occupies less volume 
(e.g., when it becomes shorter because of an edge defect in 
the film or when it intersects a nonmagnetic inclusion) this 
represents a low energy state. The depth of the local energy 
minima depends on the size of the defect or inclusion and the 
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FIG. 4. Coercivity vs Grain size of Ni81Fe 19 thin films. Set I for Nis,Fe,9 
thin film deposited at 300 °C. Set 2 for Ni81 Fe 19 thin fi lm deposited at 20 oc. 

Akhter et al. 4123 



Bibliography 

Bibliography 

[Akhter et al., 1997] M. A .. Akhter, D. J. Mapps, Y. Q. Ma, A. Petford-Long and R. 

Doole, Thickness and grain-size dependence of the coercivity in permalloy thin films, 

J. Appl. Phys., Vol. 81 (8), p4122-4124 1997. 

[Akhter et al., 1998] M. A .. Akhter, D. J. Mapps, Y. Q. Ma, A. Petford-Long and R. 

Doole, Domain Walls and Magnetic Properties of Very Thin Permalloy Films for 

Magnetoresistive Sensors, IEEE Trans., Magn., Vol.34, No. 4, p1147-1149, 1998. 

[Barkhausen, 1919] H. Barkhausen, Physik Z., Vol. 20, p401, 1919. 

[Bauer, 1963] E. Bauer, Growth of Oriented films on amorphous surface, p44-67, 

1963. 

[Bralisford 1966] F. Brailsford, Physical Principles of Magnetism, LCCC No 66-

21547, D. Van Nostrand Co Ltd, London, 1966. 

[Carey and lsaac, 1965] R. Carey and E.D. lsaac, Magnetic domains and techniques 

for their observation, LCCN 65-28612, Academic Press Inc. New York, 1965. 

[Chapman, 1980] B. Chapman, Glow discharge processes: sputtering and Plasma 

etching, John Wiley & sons, Inc., ISBM 0471-07828-X, New York, 1984. 

[Chapman, 1984] J.N. Chapman, The investigation of magnetic domain structures in 

thin foils by electron microscopy, J. Phys. 0 : Appl. Phys., Vol. 17 p623-647, 1984. 

[Chapman and Kirk, 1997a] J N Chapman and K J Kirk, Domains, domain walls and 

the magnetisation reversal process, in G. C. Hadjipanayis (ed) Magnetic Hysteresis in 

Novel Magnetic Materials, Kluwer Academic Publishers., , the Netherlands, p207-214, 

1997. 



Bibliography 

[Chapman and Kirk, 1997b] J N Chapman and K J Kirk, Domains, lmaging magnetic 

structures in the transmission electron microscope, in G.C. Hadjipanayis (ed) 

Magnetic Hysteresis in Novel Magnetic Materials, Kluwer Academic Publishers, the 

Netherlands, p195-205, 1997. 

[Chen, 1977] C W Chen, Magnetism and metallurgy of soft magnetic materials, North

Holland Publishing Company, Amsterdam, ISBN 0 7204--0706-0, 1977. 

[Chikazumi, 1964] S. Chikazumi, Physics of magnetism, John Wiley & Sons, New 

York, LCCCN: 64-14985, 1964. 

[Ciureanu, 1992] P. Ciureanu et al. , Magnetoresistive Sensor , in Thin Film Resistive 

Sensors, eh. 5, ISBN 0-7503-0173-2, lOP Publishing Ltd, 1992. 

[Daykin and Petford-Long, 1995] A.C. Daykin and A.K. Petford-Long, Quantitative 

mapping of the magnetic induction distribution using Foucault images formed in a 

transmission electron microscopy, Ultra-microscopy Vol. 58, p365-380, 1995. 

[Decker and Tsang, 1980] S.K. Oecker, C. Tsang, Magnetoresistive response of 

small permalloy features, IEEE. Trans. on Magn., Vol. Mag-16, No.5, p643-645, 1980. 

[Decker et al., 1981] S.K. Decker, J. Dittmar and C. Tsang, Barkhausen noise 

characteristics of magnetoresistive sensors of different thickness, IEEE, Trans. Magn. 

Vol. Mag-17, No 6, p2662-2664, 1981 . 

[Dibbern et al., 1983] U. Dibbem et al. , The Magnetoresistive Sensor-a Sensitive 

Device for Detecting Magnetic Field Variations, Electronic Components and 

Applications, Vol.5, No.3, p148-153, 1983. 

[Doole, 1996] R Doole, The Lorentz TEM observation Lab. Notebook, 1996. 

[Engelman and Hardwick, 1963] J.H. Engelman and A.J. Hardwick, Trans. 9th 

National Vacuum Symposium, New York: Macmillan, p100, 1963. 

11 



Bibliography 

[Farrel, 1994] G. P. Farrel, The Barkhausen Effect in Single layer and multilayers 

Thin Ni-Fe Films, PhD Thesis in Univ. Of Manchester, 1994. 

[Fiur, 1967] B. L. Flur, On the Magnetic Properties of Sputtered NiFe Films, IBM J. 

p563 - 569, Sept. , 1967. 

[Fiynn, 1994] 0.1. Flynn, A new Technique of Noise Reduction for large aspect 

magnetoresistor, IEEE Trans. on Magn., Vol. 30 No. 3, p1263-1266, 1994. 

[Fiynn and Shi, 1994] 0 .1. Flynn and X. Shi, A mechanism for obtaining a single 

magnetisation state in permalloy films, J. Appl. Phys. 75(7), p3674-3677, 1994. 

[Gallagher et al., 1997] W. J. Gallagher et al. , Microstructured magnetic tunnel 

juctions, J. Appl. Phys. 81 (8), No. 8, p3741-3746, 1997. 

[Galtier et al., 1993] P. Galtier, R. Jerome and T. Valet, Texture and Grain Size of 

Permalloy Thin Films Sputtered on Silicon with Cr, Ta and Si02 Buffer Layers, Mat. 

Res. Soc. Symp. Proc. Vol. 313. P417-423, 1993. 

[Gill and Yamashita, 1984] H.S.Gill and T.Yamashita, The growth characteristics of 

ion-beam sputtered CoCr films on Ta isolation layers, IEEE. Trans. on Magn., Vol. 

Mag-20, No. 5, p776-778, 1984. 

[Grundy, 1997] P. J. Grundy, Microstructure and coercivity in thin films and 

multilayers, in G.C. Hadjipanayis(ed.), Hysteresis in Novel Magnetic Materials, p453-

465, Kluwer Academic Publishers, the Netherlands, 1997. 

[Heremans, 1993] J. Heremans, Solid State Magnetic Filed Sensors and Applications, 

Phys. D: Appl. Phys. Vol. 26, p1149..,1168, 1993. 

[Herzer, 1990] G., Herzer, Grain Size Dependence of Coercivity and Permeability in 

Nanocrystalline Ferromagnetism, IEEE Trans., Magn. , Vol. 26, p1397-1402, 1990. 

[Herzer, 1995] G. Herzer, Soft Magnetic Nanocrystalline materials, Scripta 

Metal/urgicaetMaterialia, Vol.33, Nos. 10/11 , p1741 -1756, 1995. 

l1l 



Bibliography 

(Hill et al., 1991] E. W. Hill, J.P. Li and J.K. Birtwistle, Magnetic and Structural 

Properties of Permalloy-tantalum Multi-layer Thin Films, J. Appl. Phys. 69(8), p4526-

4628, 1991 . 

(Hoffmann, 1964] H. Hoffmann, Quantitative calculation of the magnetic ripple of 

uniaxial thin permalloy films, J. of Applied physics, Vol.35, No.6, p1790-1798, 1964. 

[Hoffmann, 1979] H. Hoffmann, Magnetic Properties of Thin Ferromagnetic Films in 

Relation to Their Structure, Thin Solid Films, Vol. 58, p223-233, 1979. 

[Hosono and Shimada, 1990] A. Hosono and Y. Shimada, Crystal structure and 

magnetic softness of Fe-Si polycrystalline films, J. Appl. Phys. Vol. 67, No. 11 , p6981 -

6990, 1990. 

[Hou, et al., 1997] C. Hou, H. Fujiwara, T. J. Klemmer, R. M. Metzger and W. D. 

Doyle, Thermal effect on the coercivity of ultrathin NiFe films, IEEE Trans. Magn., Vol. 

33, No. 5, Spet., 1997 pp3625- 3627. 

[Hunt, 1971] R. P. Hunt, A Magnetoresistive Readout Transducer, IEEE Trans. Magn. 

Vol. 7, No1 1971. 

[Huo et al., 1998] S. Huo, G. Pan, D. J. Mapps, W. W. Clegg, G. Heydon and W. M. 

Rainforth, Dependence of domain wall structures on the thickness of Co91 NbsZr3, 

Paper accepted for J. Magn. Magn. Mater. 1998. 

[Jahnes et al., 1992] C. V. Jahnes, M.A. Russak, B. Petek and E. Klokholm, Ion beam 

sputter deposited permalloy thin film, IEEE Trans. on Magn. Vol. 28, No. 4, p1904-

1910, 1992. 

[Jenkins, 1995] T E Jenkins, Semiconductor science growth and characterisation 

techniques, Prentice Ha// International UK Ltd., ISBN 0-13-805771-0, New York, 1995. 

IV 



Bibliography 

[Jerome et al., 1994] R. Jerome et al. , Correlation Between Magnetic and Structural 

Properties of Niso Fe2o Sputtered Thin Films Deposited on Cr and Ta Butter Layers, 

IEEE Trans. Magn. Vol. 30, No.6, p4878-4880, Nov. 1994. 

[Jiles, 1991] D. Jiles, Introduction to Magnetism and Magnetic Materials, ISBN 0-412-

38640-2, Chapman & Hall, London, 1991. 

[Jhingan et al., 1984] A.K. Jhingan, R.R. Dubin and L.F. Herte, Film growth 

characterisation of an underlayer for perpendicular magnetic recording, IEEE Trans. 

on Magn. , Vol. Mag-20, No. 5, 1984. 

[Kempter and Hoffmann, 1969] Investigation of the structure of ferromagnetic films 

by means of the differential susceptibility., Phys. Stat sol.34. , p237-248, 1969. 

[Kempter and Hoffmann, 1970] The dependence of the structure constant of 

uniaxial permalloy films on the evaporation temperature and the alloy composition. , 

Journal De Physique, Vol. 32., C1-397, p396-398, 1970. 

[Kim and Oliveria, 1993] Y.K. Kim and M. Oliveria, Magnetic properties of sputtered 

Fe thin films: processing and thickness dependence, J. Appl. Phys. Vol. 74, No. 2, 

p1233 - 1241 , 1993. 

[Kim and Slive., 1996] Y.K. Kim and T.J. Silva, Magnetorestriction characteristics of 

ultrathin permalloy films, J. Appl. Phys. Left., Vol. 68, (20}, 1996. 

[Krongelb, 1973] S. Krongelb, The preparation and properties of magnetoresistive 

Permalloy films, J. of Electronic materials, Vol.2, No.2, p227-238, 1973. 

[Kronmuller, 1992] H. Kronmuller, Coercivity Mechanism in Modern Magnetic 

Material, Proc. Magneto-Optic Recording lnt. Symp. J. Magn. Soc. Jpn. 17, S1 p260, 

1992. 

V 



Bibliography 

[Lee, et al., 1994] W.Y. Lee, G. Gorman, and R. Savoy, Giant magnetoresistance in 

as-sputter-deposited Au/NiFe multi-layer thin films, Mat. Res. Spc. Symp. Proc. Vol. 

343, p405-410, 1994. 

[Lenz, 1990] J.E. Lenz, A Review of Magnetic Sensors, Proc. IEEE Vol. 78, No.6, 

p973-989, 1990. 

[Li et al., 1994] S Li , M Yan, C Yu and W Lai, Effect of interface on the properties of 

Ti/NiFe thin films, J. Appl. Phys. , Vol. 75, No.1 0, p6504- 6506, 1994. 

[Lin et al., 1994] Lin J. C., Chen L.J. , and Chen C. J. , Effects of nitrogen content on 

the microstructure and magnetic properties of FeTaN films, IEEE Trans. Magn. , 

No:30, p3912-3914, 1994. 

[Lo and Hanson, 1969] D. S. Lo and M. M. Hanson, Magnetic Properties and creep 

observations of Ni-Fe Films 30 to 300 A, IEEE Trans. on Magn. Vol. MAG-5, No.2, 

p115 -117, 1969. 

[Lo et al., 1987] J. Lo, C. Hwang, T. C. Huang and D Allee, Magnetic and structural 

properties of high rate dual ion-beam sputtered NiFe films, J. Appl. Phys., 61 (8), 

p3520 - 3525, April1987. 

[Lorentz et al., 1996] H Lorentz, et al., EPON SU-8: A low cost negative resist for 

MEMS, SUSS report, Vol10, Q3/Q4, p1 - 3, 1996. 

[Ma,1996] Y. Q. Ma, Mphii/PhD transfer report, at the University of Plymouth, 1996. 

[Ma,1997] Y. Q. Ma, Report for new mask design and fabrication of MR sensors, at 

the University of Plymouth, 1997. 

[Maissel and Glang, 1970] L.l . Maissel and R. Glang (ed.), Handbook of thin film 

technology, McGraw-Hill Book Company, New York, 1970. 

VI 



Bibliography 

(Mapps et al., 1985] D. J. Mapps et al. , Asymmetric biasing fields from mismatched 

current-carrying overlay conductors on magnetoresistive replay sensors, J. Appl. 

Phys. , Vol. 57 (1), p3982- 3984, 1985 

(Mapps and Watson, 1985] D.J. Mapps and M. L. Watson, Thin f-lm magnetoresistive 

sensors for Earth's field detection, Internal report at Plymouth Polytechnic, 1985. 

[Mapps, 1987] D. J. Mapps, Innovative methods for teaching the fundamentals of 

Magnetics, Paper at UNESCO-SEFI International Symposium on Innovative Methods 

in Technological Education, 1987. 

[Mapps et al., 1987] D. J. Mapps, M. L. Watson and N. Fry, A double bifilar magneto

resistor foe Earth's field detection, IEEE, Trans. On Magn. Vol. Mag-23, No.5, 

pp2413- 2415, 1987. 

[Mapps,1991], D. J. Mapps, British Patent No 2262635, 8th November, 1991 . 

[Mapps et al., 1991] D. J, Mapps et al, Cobalt-Niobium-Iron Soft Magnetic Back Layer 

for Glass Computer Disks, J. of Appl. Phys., Vol. 69, No. 8, p5178- 5180, 1991 . 

[Mapps, 1994] D. J. Mapps, Magnetoresistance, an chapter in R. Gerber et al., (ed.) 

Applied Magnetism, Kluwer Academia Pub., p376- 406, the Netherlands, 1994. 

[Mapps, 1997] D. J. Mapps, Magnetoresistive Sensor, J. Sensors and Actuators A 

59., p9- 19, 1997. 

[Mapps et al., 1998] D.J. Maps, Y.Q. Ma and M. A. Akhter, Optimisation of material 

and structure for a switched-bias magnetoresistive sensor, in press at J. Sensors and 

Actuators, 1998. 

[Matzkanin et al., 1979] G.A. Matzkanin, R. E. Beissner and C. M. Teller, The 

Barkhausen effect and its applications to non-destructive evaluation, NT/AC-79-2 

p1 - 49, 1979 

VII 



Bibliography 

[McCiure and Schroder, 1976) J.C. Mcclure, and J.K. Schroder, The Barkhausen 

effect, CRC Critical reviews in Solid State Sciences, p45-83, Jan., 1976. 

[Methfessel et al., 1960] S. Methfessel, S. Middelhoek and H. Thomas, IBM, J. 

Research Develop, Vol: 4, p96, 1960. 

[Middelhoek, 1961] S. Middelhoek, Ferromagnetic Domain in thin Ni-Fe films, Thesis, 

University of Amsterdam, Holland, 1961. 

[Middelhoek, 1963] S. Middelhoek, Domain walls in thin Ni-Fe films, J. of Appl. Phys., 

Vol.34, No.4 (part 2), p1054-1059, 1963. 

[Miller et al., 1994] M.S. Miller et al., Influence of r.f. magnetron sputtering conditions 

on the magnetic, crystalline, and electrical properties of thin nickel films, J. Appl. Phys. 

Vol. 75, No.1 0, p5779-5781 , 1994. 

[Miltat, 1994] J Miltat, Domains and domain walls in soft magnetic materials, an 

chapter in R. Gerber et al., (ed.) Applied Magnetism, Kluwer Academia Pub., p221-

308, the Netherlands, 1994. 

[Narayan et al., 1992] P B Naarayan, R D Silkensen, S Bryant and S Dey, IEEE, 

Trans. Magn. Vol. 28, p2934, 1992. 

[Neel, 1946] L. Neel, Principles of a New General Theory of the Coercive Force, Ann 

Univ. Gerenable, 22 p299- 341,1946. 

[Neel, 1955] L. Neel, Energie des parois de Bloch dans les couches minces, Compt. 

Rend. Acad. Sci. Paris, Vol. 241 , p533-536, 1955. 

[Nishioka et al., 1996) K. Nishioka et al. , J. Applied Physics, Vol:79, p4970, 1996. 

Vlll 



Bibliography 

[Noreika & Francombe, 1962] A. J. Noreika and M. H. Francombe, Factors 

Influencing Coercive Force Values in Sputtered Permalloy Films, J. Applied. Physics., 

Vol.33, No 3, p1119- 1120, 1962. 

[Ohring,1992] M. Ohring, The materials science of thin films, Academic Press, ISBN 

012-524990-X, San Diego, 1992 

[Pan, 1993] G. Pan, Investigation into the microstructure, magnetic properties and 

read/write performance of thin-film media for perpendicular recording computer disks, 

PhD thesis, at University of Plymouth, 1993. 

[Petford-Long, 1996] A. K. Petford-Long, Private communication, 1996 

[Pfeifer and Radeloff, 1980], F Pfeifer and Radeloff, Soft Magnetic NiFe and CoFe 

alloys-some physical and metallurgical aspects, J. of Magn. Magn. Mat., Vol.19, 

p190- 207, 1980. 

[Prutton, 1964a] M. Prutton, The Structure and Properties of Ferromagnetic Films, 

Brit. J. Applied. Physics., Vol. 15 p815-824, 1964. 

[Prutton, 1964b] M. Prutton, Thin ferromagnetic films, Butterworths & Co. (Pub) Ltd., 

London, 1964 

[Rijks et al., 1995] Th. G.S.M. Rijks, R.L.H. Sour, et al. , Influence of grain size on the 

transport properties of NisoFe20 and Cu thin films, IEEE trans. on Magn. Vol. 31 , No. 6, 

p3865-3867, Nov. 1995. 

[Smith et al., 1991]N. Smith et al. , A High-sensitivity magnetoresistive magnetometer, 

J. Appl. Phys. 69(80) 15 p5082- 5084, 1991 . 

[Stewart, 1991,1992 and1993] K. Stewart, Serpentine thin fi lm magnetoresistive 

sensors for navigational applications, 1st, 2nd, 3rd, 4th, six-monthly reports, at 

Polytechnic Plymouth and university of Plymouth, 1991 ,1992,1993. 

LX 



Bibliography 

[Takahashi and Shimatsu, 1990] Takahashi M.and Shimatsu T., Soft magnetism of 

crystalline Fe-based alloy sputtered films, IEEE Trans. Magn., No:26, p1485-1490, 

1990. 

[Tsang and Decker, 1981] C. Tsang and S.K. Decker, The origin of Barkhausen in 

small permalloy magnetoresistive sensors, J. Appl. Phys. 53 (3), 2465-2467, 1981 . 

[Tsang and Decker, 1982] C. Tsang and S.K. Decker, Study of domain formation in 

small permalloy magnetoresistive elements, J. Appl. Phys. 53 (3) , 2602-2604, 1982. 

[Tsang et al, 1991) C. Tsang et al. , Design and Performance Considerations in High 

Density Longitudinal Recording, J. Appl. Phys. 69(8), p5393-5398, 1991 . 

[Tsang et al., 1993] C. Tsang et al. , Gigabit-Density Magnetic Recording, Proc. of 

IEEE Vol. 81 , No8 p1344 - 1359,1993. 

[Tsang et at, 1996] C. Tsang et al., 3 Gb/in2 Recording Demonstration with Dual 

Element Heads & Thin Film Disks, IEEE Trans. Magn. Vol. 32 No.1, p? -12, 1996. 

[Tsang et at, 1997] C. Tsang, T Lin, S MacDonald, et al. , 5 Gb/in2 Recording 

Demonstration with Conventional AMR Dual Element heads &Thin Film Disks, IEEE 

Trans. Magn. Vol . 33 No. 5, pp2866-2871 , Sept., 1997. 

[Watson, 1986] M L Watson, A multiple-film magnetoresistive replay head for audio 

applications, PhD thesis, at the University of Plymouth, U.K 1986 

[Williams and Carter, 1996) D.B. Williams and C.B. Carter, Transmission Electron 

Microscopy, Plenum Press, New York, 1996. 

[Wikswo, 1995) J. P. Wikswo, SQUID magnetometers for bio-magnetism and non

destructive testing: important question and initial answer, IEEE trans.on Appl. 

Superconductivity, Vol. 5, No2, p1-7, 1995. 

X 



Bibliography 

[Yeh et al., 1987] T. Yeh, M Sivertsen and J H Judy, Thickness Dependence of the 

Magnetoresistance Effect in RF Sputtered Thin Permalloy Films, IEEE Trans. Magn. 

Vol.23, No.S p2215- 2217,1987. 

[Yoshizawa et al., 1988] Y. Yoshizawa et al. , New Fe-Based Soft Magnetic Alloys 

Composed of Ultra-fine Grain Structure, J. Appl. Phys., Vol. 64, p6044- 6046, 1988. 

XI 


