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Abstract 

The Continuous Plankton Recorder (CPR) survey has been deployed since 1931 to describe 
and analyze plankton variability in the North 1\tlantic and North Sea. This sun·ey measures 
the presence and abundance of 437 phytoplankton and zooplankton taxa and provides an 
assessment of phytoplankton biomass, the Phytoplankton Colour Index (VCI). The diatoms 
and dinoflagellates are the two main phytoplankton groups identified by the CPR sun•ey. 111e 
first part of this work pro\·ides insights into the space-time dynamics of phytoplankton 
communities through an analysis of diatom and dinoflagellate populations in the whole North 
t\tlantic basin. Because the North Atlantic Ocean includes many different biotopes, the 
second part focuses on the mesoscale variability of phytoplankton species. 111e long-term 
tluctuations of the phytoplankton species are studied in the NW and in the NE 1\tlantic, the 
two best sampled areas of the CPR survey. In the NE Atlantic, the aim is to determine the 
contribution of the diatoms and dinotlagellates to the PC I, their tluctuations over 45 years of 
sampling and their geographical variations. Because local variability in environmental 
conditions is thought to play a dominant role in temporal tluctuations of phytoplankton 
biomass, the next part takes advantage to define small areas around the British Isles. This 
allowed me to study more precisely the processes intluencing the long-term \·ariation of 
phytoplankton assemblages. The North Atlantic Current transports water across the Northern 
basin of the t\tlantic Ocean, along the shelf of Ireland and fonn the Norwegian current which 
corresponds to the intlow of oceanic waters into the Norwegian Sea <md the North Sea. In 
this highly hydrodynamic region attention is focused on the tluctuations of plankton species in 
relation to the currents. The aim of this part is therefore to investigate the fluctuations of 
phytophmkton biomass, diatoms and dinotlagellates, their geographical distribution and 
abundance within the area and their relationship with physical processes. The intense 
hydrodynamic activity observed in the Northwestern Atlantic Shelves Province (NWCS) 
makes this region especially intriguing from the point of view of physical-biological 
interactions. The relationship between spatial and temporal structures of eddies (via Sea 
Surface Heights) and chlorophyll a (from the Sea-viewing \Vide Field-of-view Sensor, 
Sea\ViFS) was assessed along the Gulf Stream axis. In particular, the physical structures 
identified were followed and compared with phytoplankton distribution. In addition, the 
impact of the I .S\V changing tlow <~long the Scotian Shelf and the intluence of Gulf Stream 
rings along the George Bank is determined. "fhis work demonstrated that changes are 
occurring in pelagic ecosystems at different temporal and spatial scales. These changes have 
been illustrated by the spatial variability induced by eddies and/or currents but also by the 
regional variability of the hydro-climatic processes, intluencing in different ways Sea Surface 
Temperature, wind-regimes and mixing of local environments. Several different aspects of the 
North Atlantic Oscillations impact on pelagic ecosystems ha\·e been highlighted. In the 
northeast 1\tlantic, N!\0 tluctuations imply changes in (i) SST in northern Europe, (ii) wind 
regimes, (iii) Atlantic \X'ater intlow into the l\'orth Sea. In contrast, in the nortll\vest :\tlantic, 
the \·ariations of NAO imply changes in (i) SST on the Scotian Shelf, (ii) CO>IStal currents, and 
(iii) intlow of Labrador Sea Slope \Vater (LSS\X0 towards the Scotian Shelf and Georges Bank. 
These changes in em·ironmental process impact phytoplankton production, abundance, sp>Hi<ll 
distribution, community structure phenology and ultimately would impact trophodynamics 
processes. it is, however, still difficult to explain unambiguously all the mechanisms that are 
involved in the control of the obsen,ed patterns. 
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rings are labelled A, 13, C, D and cold core rings E, F, G and weaker negative anomalies 1-l, I, 
J. ll1e arrows represent the currents ;~ssociated with eddy structure and the se;~ level slopes 
between eddies C, G, D have been used to determine the velocity of the How between the 
eddies 

Figure 6.14. Bottom topography of the study area and the 15 stations sampled along the CPR 
route ~)lack dots). Stations t\ and B have been chosen as representative of the shelf and the 
open oce;~n, respectively, in order to determine the Huctu;~tions in geostrophic tlow along the 
Shelf Break. 

Figure 6.15. Seasonal cycles of Phrtoplankton Colour Index (A, B, C) and Sea\X'iFS 
chlorophyll a (mg.m-3 Chi a ; D, E, F) ;~long the CPR route (15 stations). 'lne cycles th<lt were 
signitlcantly correlated were observed on Georges Bank (stations 2 ;~nd 3), Shelf Break 
(Stations 6 and 7), Sable Island (stations 8 ;~nd 9) and St Pierre Bank (stations 13 and 14); see 
T;~ble 6.C.2. 

Figure 6.16. !\·lean season;! I cycles of PCI (black triangles) and Sea\ViFS chlorophyll a (mg.m-3 

Chi a ; open dots) over the period 1997-1998 along the CPR route. The error bars are the 
standard deviation. 

Figure 6.17. 1-Iovmoller diagram of original dat1 (A), seasonal cycle (13) and anomalies after 
removing the seasonal cycle (C) of Phytoplankton Colour Index (PCI) for the IS stations 
sampled on the CPR route between January 1995 and December 1998. Cumulative sum 
analysis was performed on PC! anomalies for all the stations (D), over the period 1995-1998. 

Figure 6.18. Hovmoller diagram of original data (A.), seasonal cycle (13) and anomalies after 
removing the seasonal crcle (C) of Sea Surface Temperarure (SST) for the 15 stations sampled 
on the CPR route between January 1995 and December 1998. Cumulative sum analysis was 
performed on SST anomalies for all the stations (D), over the period 1995-1998. 

Figure 6.19. Ho\'lnoller diagram of original dat1 (A), seasonal cycle (13) and anomalies after 
removing the seasonal cycle (C) of Sea Surface Heights (SSH) for the 15 stations sampled on 
the CPR route between January 1995 and December 1998. Cumulative sum analysis \vas 
performed on the residuals of Sea Level Anomalies (SLA) for all the stations (D), over the 
period 1995-1998. 

Figure 6.20. Cumulative NAO (index month; black triangles) and cumulative geostrophic 
current (white triangles) derived from altimeter sea level anomalr (km) over the period 1995-
1998. 

Figure 7.1. i\lechanisms linking the positive (A) and neg;1tive (B) phases of the North 
Atlantic Oscillation (NJ\0) to the variability in phrsical processes and planktonic ecology. 
Red/ green arrows imply an increase/ decrease in the parameter. The dashed arrows illustrate 
the relationship between NAO and Sea Surface Temperature (SS'I) Yia the currents in 
Northeast and Northwest 1\tlantic. 

Figure 7.2. Schematisation of eddy formation from the Gulf Stream meanders and 
mechanism of plankton and nutrient exchange across the front1l boundary between 
Subtropical Waters (light blue) and both Slope -and Subpolar origin waters (dark blue). 
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INT~OD!U CT[ON - - - . -



i\11 marine organisms are affected to some extent by the movement of ocean currents, but 

plankton, because of its minute size and short growth rates, is most directly coupled to the 

physical environment. Being at the base of the marine food-web, infotmation on 

phytoplankton is an absolute prerequisite to the understanding of biological responses to 

natural variability within this environment. Small tluctuations in plank ton biomass at short 

time and space scales may have equal or greater importance in determining ecosystem 

structure and function than larger fluctuations, such as climatic cycles (Haury el aL 1978). In 

addition, interactions between physical (Fig. 1.1) and biological (Fig. 1.2) processes result in 

variability over a wide range of temporal and spatial scales (Kaiser el aL 2005). Physical 

processes are the basis of many perturbations that arc critical for the ecology of organisms 

(Harris 1986). 'l11e spatial and temporal patchiness in the physical environment arises from the 

interaction of solar heating and wind mixing in all bodies of water. t\s the wind induces 

motion in surface waters, both horizontal and vertical water motions arc observed (i.e. 

processes called turbulent advection and diffusion), and dissolved and suspended materials 

(e.g. plankton) arc then carried around by the water masses. Small to large scale events can 

then be observed from 1 o·" to I 06 meters, from microscale vortices to regional scale horizontal 

motions like the Gulf Stream. Those events then create patchiness in the ocean at the 

corresponding scale. 1n temperate climates, it is believed that the primary mechanism initiating 

the spring phytoplankton bloom is the alteration between vertical mixing and stratification of 

the water column and the availability of light; the penetration of light being mainly limited by 

the turbidity of the water (Edwards 2001 ). 

Consistent patterns of ecological succession in the phytoplankton have been observed as a 

result of the de.[,>ree of vertical stability of the water column, consequently intlucncing nutrient 

ratios and life history strategies adopted by spccitlc groups of phytoplankton (l-lolligan 1987). 

'l11t~ increase in the intensity of stratitlcation and nutrient depletion/loading impacts the 

community composition and leads to a shift from diatoms to dinotlagcllatcs, as dinotlagellates 

prefer these conditions (i\largalef 1975). Due to the intrinsic nature of pclagic ecosystems, 

there arc two types of abiotic component which intluence phytoplankton community 

structure: (i) geographically-dependent component, including solar energy tlux, bottom 

topography and current direction, and (ii) geogntphically-independent components associated 

with the hydrodynamics of the system (e.g. eddy structure), including tcmpcmturc, salinity and 

nutrients (\·an der Spoel 1994). t\s Tomczak and Godfrey (1994) pointed our, the Atlantic 

basin is by far the longest latitudinally-extended ocean basin (i.e. 21,000 km from the Be ring 
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Figure 1.1. Stommel diagram, modified from ICES Zooplankton Methodology Manual, Harris et aL 
(eds., 2000), overlaid to show the scales that can be sampled with various platforms, and features such 
as fronts (from Kaiser et aL 2005). 
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Straits over the pole and down to 1\ntuctica) and regroups different provinces that can be 

considered individually due to their physical and biological characteristics. Here, I focus on the 

North Atlantic basin, within which the seasonal chlorophyll anomaly has the greatest spatial 

coverage of any region of the \Vorld Ocean (Longhurst 1998). 'I11e only plankton monitoring 

progr,unme that comes close to this scale is the Continuous Plankton Recorder (CPR) survey, 

which is the only long-term biological monitoring program providing a systematic coverage of 

the Northeast Atlantic and the North Sea in both space and time. "l11e survey measures the 

presence and abundance of ea. 500 phytoplankton and zooplankton taxa and provides a visual 

assessment of phytoplankton biomass: the Phytophmkton Colour Index (PCI, Colebrook & 

Robinson 1965). The PC! has been extensively used to describe the seasonal and long-term 

patterns of phytoplankton abundance in various regions of the North Atlantic (e.g. Reid 1978, 

Edwards et al. 2001, Johns et al. 2003, Batten et al. 2003a). Each region of the Nortl1 1\tlantic 

basin accommodates a characteristic seasonal production within its boundaries; seasonalit:y is 

not, however, identical from year to year. The amplitudes of these year-to-year tluctuations 

may appear to be minor, but arc associated with changes in weather patterns that arc very 

significant (Longhurst 1998). "l11e temporal and spatial scales that arc particularly examined in 

this study range from years to decades and cover environmental processes such as currents 

(e.g. the European Continental Slope Current and the Gulf Stre-am), advection (e.g. eddies) and 

climatic oscillations (i.e. the North Atlantic Oscillation). 

i\t large scales, atmospheric forcing (i.e. North Atlantic Oscillation) ts the dominant 

environmental factor driving tluctuat:ions of phytoplankton popubtions (Drinkwater et al. 

2003). The North Atlantic Oscillation (Ni\0) refers to a redistribution of atmospheric mass 

between the 1\rctic and the subtropical Atlantic. Switches from one Ni\0 phase to another 

produce large changes in the mean wind speed and direction over the Atlantic, the heat and 

moisture transport between the Atlantic and the neighbouring continents, and the intensity 

and number of storms, their paths, and their weather (1-Iurrcll et aL 2003). \V;llker and Bliss 

(1932) constntcted the Erst index of the NAO using a linear combination of surt~1ce pressure 

and temperature measurements from weather stations on both sides of tl1e Atlantic basin. 

i\!ost modem NAO indices are derived from the simple difference in surface pressure 

anomalies between various northern and southern locations (1-lurTell et al. 2003). Several 

indices have been developed to quantify the state of the Ni\0, but the most widely used is 

1-Iurrcll's NAO index (Hurrell 1995a). 1-!urrell (1995a) analysed the wintertime variability in 

Sea Level Pressure and surface temperature over the North Atlantic basin, between Lisbon, 
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Portu!,'<ll and Stykkisholmur, Iceland. It is thought that the recent increasing number of studies 

related to the NAO has been motivated by a trend toward a more positive phase over the past 

30 years. The magnitude of this recent trend appears to be unprecedented in the observational 

record (1-lurrell 1995b), and probably over the past several centuries as shown by paleoclimate 

data (Stockton & Glueck 1999). The most pronounced anomalies have occurred since the 

winter of 1989 (Hurrell 1995a, \X1alsh el aL 1996, Thompson & Wallace 1998) when record 

positive values of an index of the NAO have been recorded. 1\loreovcr, the trend in the Ni\0 

accounts for several remarkable changes recently in the climate and weather over the middle 

and high latitudes of the Northern Hemisphere, in both marine and terrestrial ecosystems. 

The atmospheric shifts associated with the NJ\0 have been linked to (i) changes in sea-ice 

cover in both the Labrador and Greenland Seas as well as over the Arctic (Chapman & \'\'alsh 

1993), (ii) transport by the Labrador Current (ivlarshall el aL 1997) and the iceberg tlux p;L~t 

Newfoundland (Drinkwater et aL 1999), (iii) pronounced decreases in mean sea level pressure 

over the Arctic (Walsh el aL 1996) and changes in the physical properties of Arctic sea water 

(Sy el aL 1997), (iv) changes in North Atlantic surface wave heights (Kushnir el aL 1997), (v) 

evaporation and precipitation patterns (1-lurrell 199Sa), (vi) changes in the paths of :\tlantic 

stonns and their intensity 0"\ogers 1990, Hurrell 1995a), and (vii) the latitude of the Gulf 

Stream (Taylor & Stephens 1998). Part of the response from the pelagic environment is local 

and rapid (eg. Sea Surface Temperature (SS"L), mixed-layer depth or surL1ee Ekman transport). 

However, the geostrophically balanced large-scale horizontal and overturning circulation can 

take scvcr.tl years to adjust to changes in the NAO forcing (Vis beck et al. 2003). 

Major long-term changes in pelagic ecosystems have been apparent in the North Sea 

(Aebischer el aL 1990, Reid & Edwards 2001) and across the North Atlantic Ocean as a whole 

Wlanque & Taylor 1998, Greene & Pershing 2000, Beaugr.md e/ al. 2003). At the regional to 

oceanic scale (and at the sampling scale of the CPR survey), climate variability and regional 

climate warming appear to play a dominant role in the long-tenn changes in phytoplankton 

assemblages and biomass (Reid e/ aL 1998, Edwards 1!1 aL 2002, Richardson & Schoeman 

2004). Barton e/ aL (2003) showed that the positive PC! trends observed in many areas arc 

similar to the long-term trend in the Ni\0 index and they provided hypotheses about the 

NAG-dependent physical factors underlying the long-term pattern of phytoplankton 

,·ariability. In addition, zooplankton species from warmer waters have been observed recently 

in the North Sea (Beaugrand et a! 2002), the changes observed being related to variations at 

higher levels in the food chain or by bottom-up control via phytoplankton. 
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The CPR survey has been used to describe and analyse plankton variability in the North 

Atlantic ;md North Sea and to interpret tl1is variability in relation to fisheries and atmospheric 

climate events 0~obinson & 1-Iiby 1978, Batten et aL 2003a). Recent studies have shown an 

increase in phytoplankton biomass in the North Atlantic via the analysis of the PCI (Barton e/ 

aL 2003). In tile same way, an increasing trend in phytoplankton biomass has been shown in 

the North Sea 0~eid & Edwards 200 I, L1ncelot et aL 1997, Cadee & 1-Iegeman 1993, H ickel et 

aL 1995) and in the area west of the British Isles (Edwards el aL 2001 ). Different explanations 

have been suggested to explain those increase, e.g. hydro-climatic processes (Edwards et aL 

2001) and/or eutrophication (L1ncelot et aL 1997, Cloern 2001). Furtl1ermore, non­

indigeneous phytoplankton species (i.e. Coscinodiscus wailesii, Edwards e/ aL 2001) have been 

observed in tl1e North Sea. 

This work will focuses on the ch;mges that are occurring in pelagic ecosystems at different 

temporal and spatial scales. ·n1ese changes will be illustrated by the spatial \"ariability induced 

by eddies and/ or currents but also by the regional variability of the hydro-climatic processes, 

intluencing Sea Surface Temperature, wind-regimes and mixing of local environments. In 

particular, attention will be focused on the impact of the North Atlantic Oscillation on 

phytoplankton via the changes in the physical and hydrological properties of the pelagic 

environment. The structure of the present work follows a progression from tl1e macroscale 

(i.e. Nortl1 Atlantic basin) to the mesoscale (i.e. eddies), and from phytoplankton biomass to 

tl1e phytoplankton community. 

Chapter 2 provides an over\'iew of the sampling strategy and sample analysis of the CPR 

survey. Tne analysis of phytoplankton biomass and indicltor species (i.e. species most regubrly 

identified during the survey) is subsequently introduced in relation to hydro-climatic and 

physical parameters, at different spatial and temporal scales, across the North Atlantic basin. 

In CIMpter 3, phytoplankton biomass is analysed from the CPR samples usmg the 

Phytoplankton Colour Index (PC!), together with the total count of diatoms and 

dinotlagellates (important groups of primary producers of the North _Atlantic Ocean (I.alli & 

Parsons 1997) and the two main groups of phytoplankton t;Lxa identified by the CPR suf\·ey) 

across the w·hole North Atlantic basin. Diatom and dinotlagellate species with a frequency of 

occurrence greater than I 0/c• in the samples were used as indicator taxa to provide more 

information on the processes linking climate to changes in the phytoplankton community. 
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This chapter investigates (i) long-term Huctuations of phytoplankton biomass, total diatoms, 

and total dinotlagellates, (ii) geographical variation of patterns, (iii) the relative contribution of 

diatoms and dinotlagellates to the PCI, and (iv) the fluctuations of the dominant species over 

the period of the survey to provide more information on the processes linking climate to 

changes in the phytoplankton community. Five dinotlagellate species (Cemtium fim:a, C. fiiJus, 

C. honidum, C. !ine.atum, and C. llipos) and six diatom taxa (Proboscia alata alata, Rhizosolellia 

he/Jetata Jemispina, R. s(y/ifm711is, Thalassionema nitzschioides, Thalassiosim spp., and ThalaSJiothli:v: 

lo11giuima) have thus been investigated further. Due to the differences in microscopic analytical 

methods prior to 1958, the analyses have been conducted only over the period 1958-2002, 

with the North Atlantic basin divided into six sub-regions identified through bathymetric 

criteria and separated along a North-South a.xis. 

However, because local variability in environmental conditions has been shown to play a 

critical role in temporal fluctuations of phytoplankton biomass (1-lasegawa et al. 2004), the 

subsequent chapters are based on the consideration of smaller areas inside these sub-regions 

in order to study more precisely the processes influencing the long-term variation of 

phytoplankton assemblages. These chapters will focus on the variability of the phytoplankton 

species at the mesoscale in the Northeast (NE; chapter 4) and Northwest (N\V; chapter 6) 

Atlantic Ocean as well as in the North Sea (Chapter 5). 

1\s outlined above, sampling by tl1e CPR survey over the North 1\tlantic and the North Sea 

has enabled long-term studies of phytoplankton biomass. Analysis of an index of 

phytoplankton biomass, the PCI, has previously shown an increase in phytoplankton biomass 

in the NE 1\tlantic. In Chapter 4, further investigations arc conducted to determine the 

contribution oF diatoms and dinoflagellates cell counts to the PC I, their Huctuations over the 

last 45 years and their geographical variations in the eastern North Atlantic and the North Sea. 

'1l1c relative contributions of diatom and dinoHagcllate to the PCI could lead to the 

identitication of different regimes in the diatom/dinotlagellatc dynamics of the NE i\tlantic 

and the North Sea. 

Within the North Sea, intricate relationships arc apparent between physical conditions (i.e. 

waves, tides, currents), water chemistry (i.e. nutrients, oxygen, trace metals), sediment (i.e. in 

suspension and on the bottom), living organisms and human activities (Eisma 1987). The 

circulation of Atlantic waters along the European continental slope, and more precisely the 

intlow of Atlantic waters into the North Sea, highly intluences North Sea water characteristics, 
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with any changes in temperature, salinity and nutrient concentration affecting the biology and 

ecology of plankton organisms (Reid 1978, Eisma 1987, Reid e/ al. 1992, Reid et al. 2003). 

Changes in temperature, salinity and nutrient concentration in North Sea waters are then likely 

to have a strong impact on the space-time dynamics of planktonic organisms. Anomalous high 

salinity (Otto eta!. 1990) and Atlantic plankton indicator species (Corten 1999) observed in the 

North Sea are particularly indicative of Atlantic inflow. The variability in the source and 

volume of oceanic water intlow has been shown by Corten (1986, 1990), with a reduction of 

Atlantic inflow into the northwestern North Sea in the 1960s and 1970s, and an increased 

inflow after 1980. Because temporal fluctuations of phytoplankton biomass might also be 

critically influenced by local variability Q-lasegawa et al. 2004), Chapter 5 defines a set of 

smaller regions around the British Isles and assesses the long-term (1958-2003) impact of 

changing oceanographic conditions on the North Sea planktonic ecosystem, with a particular 

focus on (i) fluctuations in Atlantic inflow to the North Sea from two sources over the 45-yr 

study period, (ii) the influence of changes in intlow on North Sea salinity, temperature and 

nutrient levels between 1958 and 2003, (iii) the identit'ic<Jtion of long-term changes in the 

North Sea plankton assemblage (copepod abundance, phytoplankton biomass, diatom and 

dinotlagellate abundances) in different regions of the North Sea and (iv) the potential causal 

relationships between the observed environmental tluctuations and changes in intlow rate. 

As prcviouslr stressed, physic1l parameters, such as currents, have a strong influence on the 

dynamics of plankton species. t\s a consequence, in Chapter 6, the effect of eddies and 

currents on the dynamics and distribution of phytoplankton are specit'ically investigated. 'I11e 

intense hydrodynamic activity observed in the N\V t\tlantic Shelves Province makes this 

region especiallr intriguing from the point of view of physical-biological interactions 

(Longhurst 1998). 1his zone is under the influence of the cold southward inflow of Labrador 

Sea \Vater (LS\'\0 and the warm northward intlow of the Gulf Stream. '1l1e Gulf Stream is tl1e 

largest current in the western North Atlantic, it flows from the continental slope off Cape 

1-latteras and tr;t,·els eastward meandering until the tail of the Grand Banks (Stommel 1958). 

'J11e NW 1\tlantic includes contrasted, well-studied regions like the Gmnd Banks, the Scotian 

shelf and the Georges Bank (Petrie & Yeats 2000, Campbell et al. 2001, Greene et al. 2003, 

Thomas et al. 2003). In this hydrodynamically dri,·en region, a specit'ic attention has been given 

to the intluence of the physical processes on the distribution and fluctuations of 

phytoplankton biomass. 
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Firstly, the intluence of the Gulf Stream and its rings (generated from the cut-off of Gulf 

Stream meanders) on phytoplankton biomass distribution is investigated. No CPR data are 

used in this part, as there is no continuous sampling done by the CPR survey in this area. 

Instead, Sea-viewing \Vide Field-of-view Sensor (Sea\ViFS) Chlorophyll a images are used as a 

proxy of phytoplankton biomass. Gulf Stream warm and cold core rings have been shown to 

intluence surface phytoplankton distributions via the entrainment of the surrounding water 

masses around and into the rings (Kennelly et al. 1985, Garcia-Moliner & Yoder 1994, Ry<m et 

aL 1999, Ryan et aL 2001). In order to determine the relationship between spatial and temporal 

structures of phytoplankton and eddies along the Gulf Stream a.xis, the tirst part of tl1e 

chapter 6 examines and compares: (i) the spatial and seasonal structure of Sea\\'iFS 

chlorophyll a along the spring bloom boundary in the North Atlantic near 35°N in relation to 

eddy structure, (ii) the seasonal cycles of SeaWiFS Chi a along a mean Gulf Stream path, (iii) 

the speed and propagation of Gulf Stream rings and (iv) eddy and SeaWiFS Chi a spatial 

structures along the Gulf Stream route. 

Secondly, Gulf Stream rings have been observed as being partially responsible tor tile warm 

SST in slope water (Fox et al. 2005). In particular, a Gulf Stream warm-core ring has been 

shown as strongly influencing water mass and chlorophyll distributions along the southern 

tlank of Georges Bank (Ryan et al. 2001). 111is area, as well as the Scotian Shelf and the Grand 

Banks, is also under the int-luence of the North Atlantic Oscillation through the moditication 

ot- the inflmv of Ltbrador Sea \Vater (LS\'\0. J\ofore specitically, tluctuations in the int-low of 

LS\V along the Scotian shelf have been associated with changes in coastal water characteristics 

(i.e. SST, salinity and nutrient concentration) and in zooplankton (Greene & Pershing 2000). 

In this context, the second part of this chapter assesses the impact of the LSW ch;mging flow 

along the Scotian Shelf and the intluence of Gulf Stream rings along the George Bank. A 

spccitic CPR route (E-route; between Norfolk (Virginia, USA; 39°N, 71 °\'\0 and Argentia 

(Newfoundland; 47°N, 54°\'\0 has then be used to investigate over the period 1995-1998 (i) 

the consistency between PCI and SeaWiFS Chi a measurements in this area, (ii) the 

tluctuations of phytoplankton biomass and their geographical distribution, (iii) the possible 

links between PCI, SST and NAO, and (iv) the relation between phytophmkton and altimetry 

(i.e. Sea Level Anomalies and eddies). 

The tinal chapter (Chapter 7) critically assesses the potential limitation of the CPR survey in 

monitoring large scale changes in phytoplankton communities and discusses the main 

processes that have been observed as influencing the variations of phytoplankton in the North 

Atlantic basin at different temporal <111d spatial scales during this project. 
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Chapter 2 

GENERAL METHODOLOGY OF THE 

CONTINUOUS PLANKTON RECORDER 

SURVEY 
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2.A. Sampling and Analysis 

2.A. 1. The Sttm~ 

The Continuous Plankton Recorder (CPR) survey is one of the longest running marine 

biological surveys in the world [others include: CALifornia Cooperative Oceanic Fisheries 

Investigations (CALCOFl; loser et aL 2001), Virginia Fishery Independent Seine and T rawl 

Survey (Bonzek et aL 1995), Caribbean Conservation Corporation Research and monitoring of 

sea turtle (G odfrey 1999), Running Wildlife Monitoring Program for Contaminants in Herring 

G ull Eggs (Bishop et aL 1992)] and the only one providing a systematic coverage of the NE 

Atlantic and the North Sea in space and time. This upper layer plankton monito ring 

programme has regularly collected samples, at monthly intervals, in the North Atlantic and the 

North Sea since 1931 (Fig. 2.1). The wide geographical coverage o f the survey has been 

possible through the contribu tion of the many voluntary 'ships of opportuni ty' (Fig. 2.2, 

SOOP) that have towed CPR machines, involving close to 250 vessels from more than 30 

nations. The vessels have included weather, naval, hydrographical and research ships, ferries 

and a wide range of other merchant ships . 

. P 

Figure 2.1. Contin uous Plankton Recorder survey sampling routes between 1958 and 20()...1. 

The prototype CPR was used for tl1e fi rst time during the Discovery expedition in the 

Antarctic between 1925 and 1927. Since the firs t CPR tow in the Nortl1 Sea in 1931 by Alister 

Hardy, the methodology (Warner & Hays 1994) has been used in all the oceans o f the world, 

as well as in the Norm Sea, the Mediterranean, the Baltic, and in freshwater lakes. However, 
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the core CPR programme of monthly, synoptic sampling has focused on the ~\'\' European 

Shelf and in the NE and \\'Atlantic Ocean. lo re than four million miles of CPR tows have 

been carried out since 1931, with the highest concentration o f sampling in the o rth Sea and 

E Atlantic O cean. Close to 190,000 samples have been analysed under mjcroscopes, when 

phytoplankton and zooplankton are counted and identified into - 500 different taxa. TI1e 

co mputerised database for this unique survey contains observations from an average of - 20 

ship routes per month since 1946. 

LINE-

TOWING RECORDf:R AT 

DEPTH OF 10 METRES ' 33 FEET 

Figure 2.2 . . \ Continuous Plankton Recorder towed behind a ship of opportw1ity (from S. \HFOS 
archives) 

For the last 50 years of sampling, the equipment used and procedures applied ha,·e barely 

varied. H owever, O\'er tl1at time tl1ere have been changes, beyond tl1e control o f the agencies 

o perating the CPR survey which might have intluenced the sampling characteristics. The most 

o bYious chan ge has been the increase in the mean operating speed of the SO O P used to tow 

the CPR. I lays and \\'am er ( 1993) calculated the mean annual towing speed and showed that 

a fter an injtial decline between 1946 and 1952 from 11.8 to l 0.5 knots, there was a steady 

increase until 1991 to l..J..2 knots . . ~\ significant amount o f work has been carried out over the 

years to im·estigate possible effects o f this increase in speed o n the consistency o f the CPR 

time series (Batten et aL 2003a) . 1-!.ven if the o perating speed o f the vessels that tow CPRs has 

increased OYer tl1e duration o f the survey, this has no t a ffected the deptl1 a t which the CPR is 

tO\\'Cd (Batten et uL 2003a). In addition, there is no effect o f increased speed on the mechanical 

efficiency o f the sampler, but at highest speeds t1ow through the machine might be reduced 

(Batten et uL 2003a) . 
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2.A.2. Continuous Plankton Recorder 

The CPR is towed at between 10-18 knots, ea 20-36 km h-1, behind voluntary merchant ships 

at a standard depth o f ea 65 m (Hays & Warner 1993). An impeller mounted at its rear drives 

the internal sampling mechanism (Fig. 2.3). Water Hows through a - 1.62 cm2 aperture in the 

CPR nose cone, down a tunnel which expands to a cross-sectional dimension of 5 x 10 cm, 

where it is filtered by a moving band o f silk with an average mesh size of 270 ~- The fi ltering 

silk is covered by a second layer o f silk and wound together into a storage tmk filled with 4% 

formaldehyde for fLxation and preservation of the plankton. This mechanism is analogous to 

that used in a camera. The t\vo bands of silk move continuously across the tunnel at a speed 

adjusted according to the speed o f the ship, via the impeller and gearbox, to 10 cm per 10 

nautical miles (18.5 km). The water exits through a rectangular aperture at the rear o f the CPR. 

The 10 cm of filtered silk equates approximately to the sampling of 3 m3 o f seawater. 

I. IU\\ ing rope 
:!_ 'ibmrion damper 
3 grur box 
-t Jri, mg rol kr 

5. silk 
6. pluyload bay 
7. diving plane 
X. llllpellcr 

Figure 2.3. The Continuous Plankton Recorder 

The CPR is launched at the rear of the SOOP (Fig. 2.4). fte r the tow, the internal 

mechanism is removed from the CPR body (Fig. 2.5) and returned to the laboratory for the 

routine analysis of the silk band. Then the silks, representing a continuous record o f the 

plankton o n that tow, are removed from the internal mechanism and unwound (typically a 500 

nautical mile tow will use about 5 m of silk). For ease of plankton counting, the silk is then 

divided into samples representing 'I 0 nautical miles of tow (Fig. 2.6). The start and end cutting 

13 



Figure 2.4.A, B. Launch of the Continuous Plankton Recorder (from SAHFOS archives). 
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Figure 2.5. Lance G regory (Marine Technician at SAHFOS) removing the internal mechanism from 
the CPR body on board a ship o f opportunity (from SAHFOS archive). 

Figure 2.6. The silk is cut into sections (samples), representing 10 nautical miles o f tow 
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points for each sample are calculated from the exact length of the ~iltering silk, the speed of 

the silk advance through the mechanism, ;md from information on a log sheet completed by 

the officers of the towing vessel. '111e log sheet records the exact time and position of CPR 

deployment and recovery, in addition to intermediate times and positions of alterations in the 

course. Calculations assume the vessel does not alter course or speed between successive 

points on the log sheet. Position Qatitude and longitude) and local time for each sample are 

also calculated, corresponding to the geographical position of the CPR when the mid-point of 

the sample is in the middle of the filtering tunnel Q{ichardson et aL 2006). Comparison 

between the calculated position and data from vessels where a GPS record was available 

suggests the position assigned to CPR samples is accurate to within 10-20 nautical miles. 

2 .. 4.3. Sample anab'JiJ 

Colebrook (1975), \Vamer & !-lays (1994) and Richardson e/ aL (2006) have described methods 

of counting ;md data processing. Despite the near-surface sampling, studies have shown that 

the CPR gives a satisfactory representation of plankton dynamics in the epipelagic zone 

Q~indley & \Villiams 1980, Williams & Lindley 1980, Batten et aL 1999). 'I here are four steps in 

the analysis: 

• 'lhe first step is a visual estimation of the total phytoplankton biomass, known as 

the Phytoplankton Colour Index WC!), determined for each sample prior to the cutting of the 

silk (Robinson & Hi by 1978). This index has four levels of colour from 'nil' to 'green': 

-'Nil': no phytoplankton. 

-'Very pale green': low biomass of phytoplankton. 

-'Pale green': medium biomass of phytoplankton. 

-'Green': high biomass of phytoplankton. 

·n1cse ordinal values have been assigned numerical values (0, I, 2 and 6.5) based on the work 

of Colebrook and Robinson (1965). 

• 'Ihe second step involves the identification of phytoplankton species following a 

well-established protocol (Colebrook 1960). Following the assessment of PCI, the silk is cut 

into sections (samples), representing 10 nautical miles of tow (Fig. 2.6). Each sample is then 

laid out on a purpose-built stage (Fig. 2.7) and 10 ~ields on each of two diagonals of the 

tiltering silk are counted at 450x magnitication for phytoplankton (using the \'\'atson Bactil 

microscopes), consisting of 20 microscope tields of 0.295 mm diameter (Fig. 2.8). These 20 
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Figure 2.7. Paul Tranter (analyst at SAHFOS) is undertalcing routine analysis of the silk under 
microscope in the laboratory (from SAHFOS archive). 

Figure 2.8. Layout of silk sample showing the 20 phytoplanki:on fields 
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fields amount to 1/10,000 of the area of the filtering silk. The analyst centres the field of view 

on a grid square of the mesh and records the taxa present and the total number of individuals 

of each species per field. This is repeated for 20 tields, giving the total number of fields (20 

abundance "categories") in which each ta.xon has been seen. Each of these 20 categories has 

an associated accepted value, representing the total number of indi\·iduals of a species that are 

likely in the tields examined O~ichardson et al. 2006). This has been derived from the Poisson 

distribution, which assumes organisms are randomly distributed on the silk (Colebrook, 1960). 

The stttistic h = -ln(Yz0) is used as an estimate of the mean number of cells per field, where 

k equals the number of empty fields observed (Robinson & Hi by 1978). If no empty fields are 

observed the value 4.5 is used for h. If a species is randomly distributed over the silk with a 

mean density of m cells per field, the probability that a species is absent from a field is e-"', 

independently for each field, so k has a binomial distribution B(20, e-"'). 111en fork not equal 

to 0, h is the maximum likelihood estimator for m (Robinson & 1-liby 1978). These accepted 

values are then multiplied by I 0,000 to estimate the phytoplankton abundance on the filtering 

silk. Unfortunately, because of historical data storage limimtions before computers were used, 

these 20 abundance values are compressed into I 0 by averaging (Table 2.1 ). Phytoplankton 

abundance Yalues are thus restricted to lO discrete \"alues and can be considered semi­

quantitati,·e estimates. Different groups of phytoplankton taxa are identified, many to the level 

of species, e.g. di:ttoms, dinotlagellates, coccolithophores and silicotlagcllatcs. 

'l11e third step is the analysis of zooplankton taxa and/or species with a size up to 2 mm called 

'zooplankton traverse'. The microscopic analysis is a stepped traverse of the CPR tiltering silk 

and co\•ering silk at 54x magnitication using the \Vatson Bactil microscopes. The field of view 

is 2.06 ± 0.05 mm and all zooplankton organisms <2 mm total length are counted. Although 

it is assumed that retained organisms arc unifom1ly distributed on the silk, the design of the 

phytoplankton analysis and zooplankton traverse procedures ensures all areas of the silk 

receiYe equal weighting. "l11e zooplankton traverse procedure examines l/50 of the silk. "Ihe 

main types of zooplankton encountered in this traverse are small copepods and decapods. 

ll1e tinal step of the CPR analysis procedure counts all zooplankton greater th;m Metlidia lucem 

stage V in size (>2 mm total length: Rae, 1952). Individuals are remO\·ed from the tlltering silk 

and covering silk for identitication. Generally all individuals are counted, but for particularly 

dense samples a sub-sample may be counted. 
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Plankton identitlcation at the Survey is a trade-off between providing the highest tmmnomic 

identification possible and the time taken to analyse the large number of CPR samples each 

year (currently totalling > 5000). Copepods, diatoms and dinoflagellates arc the groups most 

commonly recorded in the dat1base because their members are common in the plankton and 

are robust, remaining relatively intact during CPR sampling. \Vithin these groups, specimens 

are usually identified to species or at least to genus. Other common and robust crustaceans 

such as decapods and euphausiids are not spcciated. lhis is partly because of factors such as 

the high diversity, but also because of the susceptibility to damage of the prominent spines of 

many larval decapods and the damage to larger adult euphausiids and post-larval decapods 

(Richardson et aL 2006). 

Table 2.1. Phytoplankton analysis: calculating abw1d;U1ce of a particular taxonomic entity in a CPR 
S<Ullple. 'll1e total number of fields out of 20 in which the taxon was present is converted to a value 
representing the tot;~ number of cells of that t;uwn present in those 20 fields. This is t11en multiplied 
by 10,000 to give the abundance per smnple and compressed into I 0 values to give the recorded 
abund;u1ce per s;unplc in the database. (from Richardson et aL 2006). 

Total number of fields Accepted value Abw1dance per sample 
Recorded abundance 

per sample 
10,000 15.000 

2 2 20.000 15.000 
3 3 30.000 35,000 
4 4 40,000 35.000 
5 6 60,000 65,000 
6 7 70,000 65,000 
7 9 90,000 95,000 
8 10 100.000 95.000 
9 12 120.000 130.000 
10 14 140.000 130.000 
11 16 160,000 170,000 
12 18 180.000 170.000 
13 21 210.000 225.000 
14 24 240.(Xl0 225.000 
IS 28 280,000 300.000 
16 32 320,000 300,000 
17 38 380,000 420,000 
18 46 460.000 420.000 
19 60 600.000 750.000 
20 90 900.000 750.000 

'l11e size and compact morphology of most copepods usually makes identification reasonably 

straightforward despite specimens being partially tlattened (Richardson et aL 2006). By 

contrast, many gelatinous and delicate taxa are damaged irrevocably and are not easily 
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identitlable in CPR samples. These include "Coelenterata tissue", "Doliolidae", "Salpidae", 

"Siphonophores" and to a lesser extent "Chaetognatha" (Richardson et aL 2006). The nature 

of CPR sampling therefore unfortunately reinforces the traditional bias towards copepods and 

away from gelatinous taxa in zooplankton ecological research (Richardson et aL 2006). 

All taxa in the CPR database are counted numerically except for two that are only ever 

recorded as present: i.e. Phaeog'sfis pouchetii and "Coelenterata tissue". The colonial 

Prymnesiophyte Phaeoryslif pouchetii appears as a dense mass of nondescript cells under the 

microscope, making abundance estimates very difficult. Unusually, Pbaeoryslif is most easily 

identitled on CPR samples by its slimy, mucilaginous feel when gently brushing a finger across 

the silk. Coelenterates are delicate and extremely damaged during CPR sampling and 

consequently cannot be speciated or given a numerical abundance other than percentage of 

occurence. They are only recorded as present under "Coelenterata tissue". Coelenterates are 

identitled by a combination of their appearance as acellular tissue strewn over the silk in 

zooplankton eyecount, and the presence of nematocysts during phytoplankton analysis and 

zoopbnkton traverse. 

2.B. Phytoplankton 

2. B.!. T/Je P~ytopkmkton Colo11r l11de.'\· 

The visual estimation of the total phytoplankton biomass, known as the Phytoplankton 

Colour Index (PC!), is detem1ined for each sample prior to the cutting of the silk 0~obinson 

& Hi by 1978). The green coloration of the silk mesh has been used as an index of chlorophyll 

concentration 0~eid 1975, 1978) to describe seasonal and long-term patterns of phytoplankton 

abundance. i\ number of studies have examined relationships between the PCI and other 

types of estimates of phytoplankton abundance. 'll1e tlrst comparison between PCI and 

tluorometrically measured chlorophyll was undertaken by Hays & Lindley (199-t). 'll1eir results 

showed a good relationship between PC! and chlorophyll, but only when the number of cells 

retained by the CPR mesh was small. Batten et aL (2003b) compared simultaneous 

tluorometric measurements of chlorophyll a, phytoplankton cell abundance and PC! from the 

Iberian margin, western Europe. 'll1c relationships between tluorometrically determined 

chlorophyll, cell abundance and PCI were all positive and significant, with PC! showing a 

better relationship to chlorophyll than cell abundance. ·n1is tends to support the hypothesis 
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(Reid 1978) that small phytoplankton cells that are not well preserved in formaldehyde, or are 

too small to be enumerated under the microscope, contribute to the green coloration of the 

sampling mesh. The study also compared PC! and tluorometer data with chlorophyll values 

obtained from satellite imagery (Sea\ViFS) for the Iberian margin. Significant correlations exist 

between these three estimates of phytoplankton concentration. This estimation of 

phytoplankton biomass can be used to study bloom dynamics between 1936 and now. l11c 

last comparison of the PCT with another estimate of phytoplankton abundance was achieved 

by Raitsos el al. (2005) using Sea-viewing Wide Field-of-view Sensor (SEA Wl FS) data. They 

found a significant relationship between PCI and Sea\ViFS data and made available data on 

the monthly variation of plant biomass (Chl-a) in the NE Atlantic and the North Sea since 

1948. 

2.B.2. Phytoplankton species 

Cells are identitled to species where practicable or to other t:L'..:onomic groups. The 

phytoplankton species identified by the plankton analysts of SAHFOS are listed below by 

systematic order. The two main groups of phytoplankton ta .. ,a sampled by the CPR are the 

diatoms and the dinotlagellates. 

Division Chromophyta 

2.B.2.a. Diatoms 

Dinophyceae (dinoflagellates) 

Prymnesiophyceac/1-Iaptophyta (coccolitl1ophorids) 

Dictyochophyccae (silicotlagellates) 

Bacillariophyceae (diatoms) 

The diatoms belong to a class of algae called the Bacillariophyceae. They are among the best 

studied of the planktonic algae and arc often the dominant phytoplankton in temperate and 

high latitudes. Diatoms are unicellular, with cell sizes ranging from about 2 pm to O\'er 1000 

pm (Lalli & Parsons 1997). Some species form large chains or aggregates in which individual 

cells arc held together by mucilaginous threads or spines. 1\ll species haYe <tn external skeleton, 

or frustulc, made of silica and are fundamentally composed of two \'alvcs. Diatoms may be 

divided into two main classes, the centric diatoms, or Ccntrobacillariophyceac, which arc 
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Table 2.2. Diatom taxa identified since 1958 by the CPR survey (fhomas 1997) 

Adinoryci11J octonmi11,. ra!fi"i 

Adinopi.JCb!IJ spp. 
Ampbidoma am data 
Ampbtprora fijperborl!a 

Asteriollel!a b/eakelf!Ji 
Asterio11el!a glacialis 
AJ!eliollel!a k.t11ia11a 
Aslervmphalus ,pp. 

A11lacodisms mg11s 
Badl/alia pa.-..illifera 
Badnim·tmm spp. 

Bat1e1iosira fragili,­
Belle!YJcbea mal/em 

Bidd!lfpbia altemans 
13iddllfpbia biddu!pbiana 
Ca11rpy/o,·ira qmbellijormiJ 

Cerataulina pelagica 

Cbaetocelvs (1-Jyalochaete) 'PP 
ChaetoamH (/Jhaeocero') 'PP 
Climacodi11111 jiuumfeldialllt111 

Coretbmn aiopbi/11111 
Cosdnodisms contimms 
CosdnodimtJ wai/e,-ii 
Cjolindmthem doJfeliu111 

/Ja,yy!iosolen anlan1iclh" 

Dmtyliosolen meditenuneus 

Detonllla co11jem.1Cea 

Diploneis 'PP· 
Di{rlum 1Nigbt11'elui 
E.uca11rpia gtvenlandim 

E11canrpia zydiac1H 

Fmgi!alia spp. 

Gossle!iella tmpitYJ 
Gui11anlia jlaccida 

Gy!YJJigma ,pp. 
H emia11111s spp. 
Hemidisms mneij01miJ 
1-le: ... :aJtelim pmblematica 

La11delia borea!is 
Leptoqlindms danims 
Lithodesmi11m !llldula!IIJJI 

Melosiw arctica 
Melmim Uneala 
Narimla p!anamemb!w!acea 

Natimla spp. 
Neodmtimla ,·eminae 

Nit>;yhia delicatiHima 
Nitzghia longiuima 

Nit::;_schia miata 
NitzHhia sigma tigida 
Odollte!la ami fa 
Odolllella mobi!iewi,· 

Odontella obtum 
Odontella regia 

Odontel!a rhombus 
Odontelltt Iinewis 

Paralia su!cata 
Plallkfoniella sol 

Podosim stell{~er 
FJ.~apboneis anrphimvJ 

Rhizosolmia acuminata 

Rhizyso!e11ia ala/a ala/a 
Rhizoso!enia a/at a amim,·t,is 

Rhizosolenia a/ala i11dica 
Rhizyso!enia a/ala i11ermis 

Rhizosolenia !JeJgonii 
Rhizosolenia calcar-mis 

Rhizosolellia rylindms 
Rhizysolmia de!imtllla 
Rhizysolmia jiugi!issima 

Rhizosolenia hebetata Jemi,pina 
Rhizysole11ia im/Nita sbmbsolei 
Rhizysolenia robiiJia 

Rhi::;_osolenia set(~em 
Rhizysolenia stolteifothii 
Rhizysolenia s(ylijom;iJ 
Scbmederel!a delicatula 
Skeletomma coslafu111 

Stamvneis memlmmacea 
J fphaiiOJ?)!)..iS ,pp. 

S treptothetYJ lamesis 
Thalauionema llitz,·cbioides 
Tha!aJJiosim ,pp. 
Tbalassiolhli."\.·lollgissima 

Tticemtiun; Jcmts 

U 11ide11t[jied mb-,pedeJ 

Nitzscbia 'PP· 
Co,-cillodimH ,pp. 
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Table 2.3. Dinoflagellate taxa identified since 1958 by the CPR survey (rhomas 1997). 

Aclinisms pentasterias Ceratium karstenii E:.-..miaella 'PP· 
Amphiso!enia 'PP· Ceratium lame!!icome G!wodi nium ,pp. 

B!ephalrii]'Sfa pau!..renii Cemlium l.imu!rtJ" Goniodoma po!yed!iallll 

Centrodinium 'PP· Ceratium !inea/11111 G"O!I)'Iillfa:.:.· Jj!p. 

Ceratium antimm Ceratiun1 !ongipes G)msigma spp. 

Ceratium mietimtm Ceralium !ollgi,vstmnl Hemiau!us spp. 

Cewtium az01imn1 Cemlium !mill/a 1-btiolleis ,pp. 

Ceratium befo11e Ceralium macmcervs Katodinium ,pp. 

Ceralium /Jret-'e Ceratium maJJi!inue Mum!Je!la spp. 

Ceratium lmcephalum Ceraliumminulum Nocti!uca scillli!la11s 

Ceratium bumvs Ceratium pe111agomm1 Omithomt7ts ,pp. 

Ceralium m11delabmm Ceratium plat)'come 0.'':)'/0.\."11111 spp. 

Ceralium mnie11se Ceratium pu!che!!um Pamhi,·tiollei,- JpjJ. 

Ceralium mmpressum Ceratium nmipes Phalm7Vn/a 'pp. 

Ceralium co/1/011/lm Ceratium se/aceun; Podo!ampas Jj!p. 

Cemlium dec!i11alum Ceratium {YIIIlNellimm Pob•k1iko,· schuwt'{ji cysts 

C e ltllium.fakatifo!me Ceratium tern P!vllocti!uca pe!agica 

Cemtium exfei/JIIm Cemlium 11ichomvs Pmmcmlmm ,pp. 

Cemlium fakatum Ceralium tlipos Pmtocemtium 1rtim!atum 

Cemtium .furm Ceratium m!tur Protopelidinium ,pp. 

Cemtium .fmus Ceratocorys Jj!p. P(ychodimts Jtodi!uca 

Cemlium genim!atum Cladop_y.\.is ,pp. f]'wq,"tiJ· 'PP· 
Ci.!ltlltlllll gibiJCI7illl Colj'fhodinium 'PP· l~)'mphams 'pp. 

Cemtium he.'.<mmthum Di11oflagellate cysts Saippsie!la Jj!p. 

Cemlium honidum Di11op~ysis spp. 
Cemlium i11 fii!JI DiSJodilll-,1111 · Jeudo!wlllh 
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generally radially symmetrical and the pennate diatoms, members of the 

Pennatibacillariophyceae, showing a typical bilateral symmetry. i\·[embers of both classes may 

be found in either fresh or salt water, although centric forms tend to predominate in marine 

habitats, while pennate diatoms are associated with benthic sediments or typical of freshwater 

environments. ·n1e main diatom ta.'a observed during the CPR survey are listed below in 

alphabetic order (Table 2.1). 

2.B.l.b. Dinoflagellates 

The dinotlagellates are the second most important group of primary producers identified in 

CPR samples, following the diatoms (Table 2.2). Dinotlagellates are unicellular protists that 

exhibit a great diversity of form. Only some dinotlagellates are strictly autotrophic, building 

organic materials and obtaining all their energy from photosynthesis. Other species carry out 

heterotrophic production; they meet tl1eir energy needs by feeding on phytoplankton and 

small zooplankton. The genus Noctiluca, for example, is large enough to eat fish eggs and is 

able to S\vallow protists larger than itself. Finally, some dinotlagellatcs are mixotrophic, and 

are capable of both autotrophic and heterotrophic production (Lalli & Parsons 1997). A 

number of photosynthetic dinotlagellatcs take up residence within other organisms as 

symbiotic partners (Lalli & Parsons 1997). These zooxanthellae may be found in many marine 

invertebrates, including sponges, corals, jellyfish, as well as within protists, such as ciliates or 

foraminifera. ·n1e majority of planktonic dinotlagellate species form the Dinophyceac, and the 

majority of them arc thecate. Common thecate genera include Cemlium, Pmtopelidillium, 

G OI!J'aula.Y and Di11ophysis. 

2.B.l.c. Other taxa 

Others taxa identitied by the CPR survey are listed below. 

) Coccolithophorids: tl1ey belong to a class of algae called the 

Prymnesiophyceae/1-Iaptophyta, and have been recorded as present or absent in the CPR 

database between 1965 and 1993. Since 1993, they arc counted in the CPR samples. 

Records are weighted tO\vard larger species such as Coccolitbus pelagiaiJ', but 7 other species, 

including Emilia11ia hu.'\l~yi, and holococcolithophorids have been recorded (Hays et aL, 
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1995). Hays et aL ( 1995) suggested that these small species are present on CPR samples 

due to plankton clogging up the silk. 

);- Oscillatoria spp.: this species are now called TlichodeJmiHIJI spp., belong to the class of 

Cyanophyceae and has been identitled and counted in the CPR samples since 1958. 

~ Pachysphaera spp.: this species belong to the division Chlorophyt,1 and the class of 

Prasinophyceae and has been identified and counted in the CPR samples since 1958. 

,_ Phaeocystis pouchetii this spec1es belong to the class of 

Prymnesiophyceae/Haptophyta. Its presence recorded since 1958. This species has been 

found to be toxic to cod larvae in Norway (J\-Ioestrup 2004). 

~ Pterosperma spp.: this species belong to the division Chlorophyt1 and the class of 

Prasinophyceae and has been counted in the CPR samples since 1958. 

,_ SilicoflageUates: they belong to a class of algae called the Dictyochophyceae and have 

been recorded as present or absent between 1965 and 1993 and have been counted in the 

CPR samples since 1993. 
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Chapter 3 

DECADAL BASIN-SCALE CHANGES IN 

DIATOMS, DINOFLAGELLATES, AND 

PHYTOPLANK.TON COLOUR ACROSS THE 

NORTH ATLANTIC 

Part of this chapter has been included in the following: 

l.etcrrne S.C., Edwards J\1., Seuront L., '\rtrill MJ, Rcid P.C. & John A.\'\'.G. (2005) Decaclal 
basin-scale changes in diatoms, dinotlagellates, and phytoplankton colour across the North 
Atlantic. Limnology & Oceanography SO( -1): 1244-1253. 

Lctenne S.C., Edwards J\1., Seuront L., 1\ttrill M.J. & Rcid P.C. (2004) Decaclal changes in 
phytoplankton biomass in the North i\tlantic. Postgraduate Marine Biology Workshop, April 
2004, UniYersity of Wales, Bangor, United 1-:.ingdom. 
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3.!\. Introduction 

The Phytoplankton Colour lnde.x (PCI) and phytoplankton species determined by the CPR 

survey gives estimates of phytoplankton populations over large areas of the North Atlantic 

Ocean. This chapter will focus on the determination of long-term changes in phytoplankton at 

a basin-scale. In this context, a recent stud)' based on CPR samples showed that much of the 

North 1\tlantic exhibited an increase in the Phytoplankton Colour Index during the period 

1948-2000 (Barton et al. 2003). Barton et al. (2003) showed that the positive PCI trends 

observed in many areas arc similar to the long-term trend in the Nortl1 Atlantic Oscillation 

(NAO) index and provided hypotheses about the NAO-dependent physical factors underlying 

the long-term pattern of phytoplankton variability. Recent studies in fJords reported positive 

correlations between tl1e NAO and both phytoplankton biomass and the abundance of three 

species of toxic dinotlagellatcs (Belgrano et al. 1999). A similar relationship has been shown in 

the English Channel for diatoms (lrigoien et al. 2000) and Phaeoo•stis sp. abundance (Seuront & 

Souissi 2002). Barton et al. (2003), however, b;1sed their analysis only on yearly mean PCI 

anomalies and whilst the PCI has been shown to be a relevant index of i11 si/11 chlorophyll 

concentration (Batten et al. 2003b), it has several limitations. First, it does not provide relevant 

information on the structural changes occurring in phytoplankton communities that arc likely 

to intluence phytoplankton biomass. A tirst step that would provide further insights into the 

space-time dynamics of phytoplankton communities is an analysis of diatom and dinotlagellatc 

populations. These data can be used as corollary variables of phytoplankton biomass, allowing 

comparison of potential differences in the space-time dynamics of the PCI, diatom and 

dinotlagcllatc abundance. Finally, it is also critical to dctennine how the PCI compares to cell 

counts and to understand what is causing the observed large increase in phytoplankton 

bionuss with time. 

"l11e aim of this chapter is thus to investigate over the period 1958-2002 (i) the long-term 

tluctuations of phytoplankton biomass, diatoms and dinotlagellates, (ii) their geographical 

variation within the North Atlantic basin, (iii) their relationship with climate forcing, (iv) the 

contribution of both diatoms and dinotlagellatcs to the PCI and (v) the tluctuations of the 

dominant species over the period of survey to provide more information on the processes 

linking climate to changes in the phytoplankton community. 

27 



3.B. Materials and methods 

3. B. I. The data 

!\·lost of the diatom and dinotlagellate species have been identitied and counted in the same 

way since 1958. Two t;L...:a - coccolithophores and silicotlagellates - have only been counted 

since 1 993; previously they were merely recorded as present or absent. Consequently, only 

diatoms and dinoflagellatcs arc taken into account in the present work as they have complete 

time series. First, all species identitied by the CPR survey (\"\lamer & 1-lays 1994), and 

belonging to diatoms or dinoflagellates, were grouped by summing the number of cells 

identitied to determine the overall trends of these two groups. Second, diatom and 

dinotlagellate species with a frequency of occurrence greater than 1% of the samples were 

used as indicator species to provide more information on the processes linking climate to 

changes in the phytoplankton community. Five dinoflagellate species (i.e. Cemtium fmra, C. 

fusus, C. honidum, C. linea/11111, and C. !lipo,) and six diatom taxa (i.e. P. ala/a ala/a, Rhizosolenia 

hebetala semispina, R. ,-~ylijiN7Jiis, Thalassionema llilzschioides, Thakmiosim spp., and Thak.wioth1i.'\' 

longi,-sima) have thus been investigated further. 

The anal)'Sis is based on monthly time senes to take into account the effect of seasonal 

variability. "l11e area of sntdy was divided into six regions, identitied on bathymctric criteria (i.e. 

continental shelf boundaries) and divided according to a north-south axis. The six sub-regions 

of tl1c North .r\tlantic Ocean considered here arc as follows (Fig. 3.1): Nortl1\vcst (51.5-

74.50N, 79.5-45°\'\1), Southwest (29.5-51.5°N, 79.5-45°\\0, North Central (51.5-74.5°N, 45-

200\\0, South Central (29.5-51.5°N, 45-20°\\0, Northeast (5 1.5-74.5°N, 20°\V-I5°E), and 

Soutl1east (29.5-51.5°N, 20°\V-15°E). In each area, the data obtained for the estimates of 

phytoplankton biomass (i.e. PC!) and phytoplankton abundance (i.e. total diatoms, total 

dinotlagellatcs and indicator species), have been averaged evet)' month over the period 1958-

2002; this period was chosen because analytical methodology has been consistent since 1958. 

To identify the relationship between phytoplankton and climate forcing, two climatic indices 

h;we been used, the Sea Surface Temperature (SS"I) and the North Atlantic Oscillation 

(Ni\0). Several indices have been developed to quantify the state of the North t\tlantic 

Oscillation, but the most widely used is 1-lurrell's NAO index (1-lurrell 1995a). "Il1is index 

computes the pressure difference based on measurements from Lisbon, Portugal and 

Stykkisholmur, Iceland. In particular, Nt\0 index values averaged from December to March 
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inclusive have been used as a climatic index (1-lurrell l995a). 111is index corresponds to the 

NAO winter index (see \V\V\v.cdg.ucar.edu/ ~jhurrell/nao.html) which is used in this chapter. 

The Sea Surface Temperature (SS'T'; see The British Atmospheric Data Centre, 

http:/ /badc.nerc.ac.uk/home) data were used to provide additional climatic information likely 

to intluence phytoplankton growth and abundance. 

3. B.2. S tatiJtical a11a!JJiJ 

The normality of the data was assessed using a Kolmogorov-Smimov statistical test. \Vhere 

data did not correspond to a normal distribution, non-parametric statistics were used for 

further analysis. The stationarity of time series obtained in each of the six sub-regions was 

tested by calculating Kendall's coeft'icient of rank correlation, T, between the series ;md the x­

axis values in order to detect the presence of a linear trend. \Ve thus eventually detrended the 

time series by fitting regressions to the original data by least squares and used the regression 

residuals in further analysis. As our samples are independent, Bonferroni's correction was not 

performed. 

To detect changes, intensity and duration of any changes in the value of a given parameter, the 

cumulative sums method (lbanez el al. 1993) has been used. The calculation consists of 

subtracting a reference value Q1ere the mean of the series) from the data; these residuals are 

then successively added, forming a cumulative function. Successive positive residuals produce 

an increasing slope, whereas successive negatiYe residuals produce a decreasing slope. 1\ 

succession of values similar to the mean shows no slope. This method has only been applied 

on the NE and SE phytoplankton time series (i.e. PCI, total diatoms and total dinotlagellates) 

due to missing nlues in the other regions. 

Autocorrclation was tested on each time series usmg ARIJ\-IA (AutoRegressive lntegntted 

J'v[oving Average); absence of any signiticant autocorrelation in the hydroclim<ttic indices 

ensures the relevance of further statistical analysis between these series and other data 

(Legendre & Legendre 1998). 1ne relationship between phytoplankton and climate forcing 

was tested through Spearman correlation analysis performed between the phytoplankton 

estimators (i.e. abundance of the indicator species, total diatoms, total dinothgellates, and 

PCI), the NAO winter index and SST. This test was conducted between 45 twelve-month 

series of SST, PCI, total diatom, total dinotlagellate and indicator species abundance over the 
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period 1958-2002. To tes t the relationship with the 0 , six time-series from [arch to 

August (which con·espond to the m~in period o f occurrence o f the diatoms and the 

dino tlagella tes) have been correlated with the AO winter index of the previous winter . In 

o rder to infer potenti~J differences in the effect o f climate fo rcing on phytoplankton, 

correlation analyses were systematically conducted o n no n-detrended and detrended time 

senes. 

T o identify the phytoplankton group and / or species that contributed to the PCis in each 

month over the time period, multiple linear-regression models were constructed on the 

mo nthly time series. However, in o rder to assess complete time series, this analysis has been 

conducted only on the eastern part o f the North Atlantic, which is the most continuously 

sampled over the study pe riod. :\lo t enough samples had been obtained in the N\V K orth 

Atlantic over the period 1958-2002 to allow tl1e relevant application o f sta tistical analyses. f o 

quanti tt1 tive results are thus m·ailable for this area. 

Figure 3.1. The o rth .\tlantic basin c.l i\' iucd into 6 regions identified o n b athymetric c rite ria and 
separated acco rding to a north-south axis: ·o rthwest (N\X ), Southwest (S\X) , North Central (1\:Q, 
South Central (Sq , . o rtheast (!'E) and Southeast (SE). CPR samples used in this chapter a rc 
illustrated in g rey. 
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3.C. Results 

Positive long-term trends have been observed for PC! within the ~ive sub-regions of the 

North Atlantic (Fig. 3.2, Table 3.1), these trends are significant in the NE, S\V ;md SC for the 

PC!. Total dinotlagellates and Cemfium flora have shown signiticant positive trend in the S\V. 

Apart from the SW North Atlantic, where there is significant positive correlation between SST 

and both PC! and total dinoHagellates, tl1ere is no signi~icant relationship between 

phytoplankton estimators and the SST. The cumulative sums obtained in the Eastern North 

Atlantic have shown different phases to the long-term trends (Fig. 3.3). For the PC!, there is 

an initial decreasing phase until 1979 and 1987 in tl1e SE and in the NE, respectively. 

Subsequent increases in PCI have been observed. In the SE, the increasing trend is stronger 

than in the NE. (Fig. 3.3). For diatoms (Fig. 3.3) there is an initial increasing trend until 1968 in 

the NE and 1970 in the SE, then a succession of decreasing trends has been observed. 

I"halassiouema uitzschioides, ThaiaJJiosira spp. and ThaiaHiofhn~"·lougim"nta exhibit the same patterns 

as the one observed for total diatoms. Dino~lagellates (Fig. 3.3) exhibit a combination of 

small-scale fluctuations around a succession of positive and negative phases. The same pattern 

has been observed with Ceralium flwts, C. bonidum and C. l1ipos, which were also the most 

abundant species in the samples. 

Table 3.1. Results of Kendall's st<ttistical rest for the whole time series of PC!, total diatoms ;md total 
dinotlagellates over the period 1958-2002. Significant (p<O.OS) results are in bold. 

Northeast Southeast North central South central Southwest 

PCI 0.229 0.183 O.o97 0.196 0.2112 

Total dinoflagcllates -{).035 0.040 0.016 0.046 0.240 

Total diatoms -{).080 -0.071 0.003 0.107 

Correlation analyses conducted between the 45-year time series of SST, PCI and 

phytoplankton species have shown positive relationships across the whole North I\tlantic (Fig. 

3.4). However, most significant correlations bel:\veen SST, PCI and dinoHagellates (i.e. total 

dinotlagelbtes and indicator species) have been observed in the eastem, rather than in the 

western part of the North Atlantic Ocean (fable 3.2). The relationship bel:\veen ss·r and 

diatoms showed a different pattem, as more signiticant correlations have been observed in the 

western than in the eastern part of the North Atlantic Ocean for tor.rl diatoms as well as forT 

1/ilzithioideJ", Tbalauiosim spp. and T /o,giuima (fable 3.2). Conversely, 1:\vo of the indicator 

species (i.e. P. ala/a ala/a and R. s(J/ifomti,) have shown the same pattern as the one observed 
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for dinoflagellates in the NE and NC Atlantic. The indicator species that have shown the 

same pattern as their ta.xonomic group (i.e. total diatoms) are the species that are the most 

abundant in the samples: T nitzschioides, Tba!assiosira spp. and T !ongissima. 

Table 3.2. Proportion (%) of significant correlations (Speannan correlation analysis) over the period 
1958-2002 between 45 tweh•e-month time series of PC!, total dinoflagellates and total diatoms :md 
SST across the North 1\tlantic. 

Northeast Southeast North central South central Southwest 

PCI 64 ~9 53 18 18 
Total dino flagellates lOO 89 69 31 22 

Ctralium ji1rra lOO 64 47 20 4 
Ceraliunr fusu.r lOO 80 60 16 31 

Ceralimn bonidum 98 44 ~9 0 9 
Ceratium linealum lOO 47 44 2 7 

Ceralium lnfos lOO 91 33 13 9 
Total diatoms 4 11 53 16 33 

Probostia ala/a alilla 96 71 31 2 7 
R!Jizysoknia bebetala semispina 4 24 13 0 4 

RJJiifJsoknia s!Jiifonnis 76 24 51 0 9 

18 13 311 ~ 31 
ThuitJJsiosira s 0 2 33 9 27 

Tbalassiolhrix longissima 36 22 49 4 38 

More detailed analyses of the 12 monthly time series have highlighted that the significance of 

trends observed for the PCI depends on the month and the geographical area (Table 3.3). 

Similar results have been found for dinotlagellates and diatoms. In the NE and NC, 

dinotlagellates have shown negative trends (rable 3.3), while positi\·c trends have been 

observed in the other regions. On the other hand, positive trends have been obsen·ed for total 

diatoms in the SW, but trends arc negati\·e in the other regions of the North Atlantic (fable 

3.3). Alternatively, in the NC, for total diatoms, significant negative trends h:!Ye been observed 

in July and September. Correlation analyses conducted between the mon thlr time series and 

the NAO winter index (1-lurrell 1995a) have also shown different results related to the time 

period and the study area. Positive relationships ha\'e been obsen•ed between the NAO and 

dinotlagellates during April (i.e. total dinotlagellatcs, C. .ftmu and C. honidum) and i\!ay (i.e. total 

dinotlagellates and all the indicator species) and between Nr\0 and PCI during t\pril, May and 

June in the NE (Table 3.4). 
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Fig ure 3.2. Hovmoller diagrams o f PO, total diatoms abundance and total dinoflagellates abundance 
over the period 1958-2002 in the different regions of the orth Atlantic basin. 
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Table 3.3. Kendall 's statistical test perfo tmcd on monthly time series of PCI (J\), total diatoms (B) and total dinoflagellatcs (Q over d1c period 1958-2002. 
Significant (p<(l.05) results are in bold. 

Northeast Southeast North central South central Southwest 

A B c A B c A B c A B c A B c 
January 0.362 0.101 -0.125 0.446 0. 130 0.097 0.337 0.289 0.223 -0.099 0.053 0.145 0.370 0.394 0.362 
February 0.339 0.122 -0.079 0.353 -0.070 -0.087 0.249 0.196 0.192 0.252 0.154 0.089 0.424 0.397 0.382 
March 0.145 -0.203 -0.029 0.187 -0.200 0.197 0.249 0.0 19 0.172 0.229 -0.010 0.053 0.344 0.391 0.412 
April 0.298 -0.074 0.108 0.251 -0 .126 0.190 0.102 -0.097 0.214 0.267 0.226 0.180 0.354 0.212 0.465 
May 0.434 -0.351 0.087 0.226 -0.105 0.187 -0.088 -0. 165 -0.185 0.219 0.136 0.276 0.124 0.032 0.301 
June 0.509 -0.210 0.067 0.516 0.106 0.090 0.0 19 -0.190 0.081 0.102 -0.261 -0. 155 0. 15 1 -0.056 0.374 
July 0.313 -0.250 -0.059 0.485 -0.163 0.048 0.12 -0.383 -0.228 0.384 0.006 0.179 0.210 0.037 0.144 

A ugust 0.547 0.224 0.040 0.542 -0.171 0.157 0.184 -0.307 -0.177 0.278 0.1 24 0.277 0.312 0.237 -0.084 
September 0.378 -0.177 -0.348 0.361 -0.212 0.204 -0.08 -0.344 -0.214 0.236 -0.091 0. 153 0.304 -0.008 0.028 

October 0. 197 -0.296 -0.444 0.13 1 -0.181 -0.1 L 9 0.307 -0.142 0.022 0.171 0.004 0.038 0.243 -0.028 0.039 
November 0.281 -0.038 -0.271 0. 162 -0.230 -0.104 0.121 -0.053 -0.0 13 0.493 -0.215 0.192 0.494 0.246 0.153 
December 0.409 0.003 -0.084 0.339 -0.021 -0.016 0.361 0.192 0.179 0.214 0.1 13 -0.062 0.489 0.228 0.246 

Table 3.4. Results o f Spearman 's correla tion ~u1alys is benvecn the mondlly tim e.: series o f PCT, d iatoms and dino flagellates and the AO wmtcr index over the 
pe riod 1958-2002. Significant (p< 0.05) results are in bold. 

PC! D iatoms Dinofhgellates 

months / lpril , l,luy June July Auou.ff A pril .\.lay fune 
'"~ 

August April Airq June July August 
;-.,.odlle3st 0.388 0.371 OA82 0. 176 0.23~ 0.07~ -0.259 -0.027 -0. 13 1 -0. 109 0.389 0.546 0.109 0.08-+ -0.139 

Southeast 0.172 0.218 0.295 0.189 0.297 -0.008 0.078 0.070 -0.146 0.042 0.207 0.183 0.039 0.070 0.143 

North centr:al 0.0 10 OA08 0.380 0.029 0.146 -0.210 0.272 0.2 13 -0.27-+ -0.356 0.025 0.182 0. Lll -0.1-+3 -0.139 

So\ath cent ral 0.285 0.237 0.029 0.331 0. 195 0.300 0.2-+2 -0. 1~4 -0.134 0.030 0.191 0.202 -0.360 0.0~6 0.025 

Soutll\vest 0.328 0.395 -0.0 15 0.249 0.145 0.076 0.137 -0. 110 0.080 0.281 0.368 0. 178 0.418 -0.151 -0.148 
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Figure 3.4. Fluctuations of the Spearman correlation coefficient (bold lines) obtained between SST and PCI, total diatoms and total dinoflagellates over the period 
1958-2002 in the Southwest, Central and Eastern North Adantic. The Central and the Eastern areas have been divided in two parts: North (orange) and South 
(blue). The thin lines represent the significance limits at p<O.OS. 



In the ,E, JAO and PCI haYe shown a positive correlation in June and August (fable 3.-1) . In 

the .. C positive rela tio nships have been obsen-ed between AO and PCI in .\fay and June 

even though diatoms and .. 0 have shown negative correlation in July (i.e. total diatoms, 

Tha!msiosira spp. and T nit:;:_sfhioidu) and August (i.e. to tal diatoms and T nitzschioides) and a 

positive relationsh ip in lay (i.e. total diatoms, R hebetata n:mispina, Tha!msiosira spp. and T. 

!ongissi!Jia) and June (i.e. tota l diatoms, R. hebetata seJJJiJpina and Tha!assiosira spp.) . 

ln the SC, the N1\0 shows a positiYe relationship with PCI in April and July, with diatoms in 

.. -\pril and a negatiYe relationship with dinotlagellates in June (i.e. total dinoflagellates, Cfusus 

and C !inealuJJJ) . In the S\V, positive relationships haYe been o bsenred between the .. .. 0 and 

PCI in pril and lay [ fable 3A), with dinotlagellates in pril (i.e. total dinoflagellates, C 

!ineat!IJJJ and C. ttipos) and June (i.e. to tal dinotlagellates) and with dia toms in ugust (i.e. total 

diato ms, P. a!ata a/ala, R. hebetala semispina and T nitzs,hioides) . T he analyses conducted on the 

detrended time series led to similar results, but only during the spring as no significant 

correlations were obsen'ed for other months. 
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Figure 3.5. Contribution to the PCl of total diatoms and to tal dinoflagellates in the ~ortheast (A) and 
Southeast (B) NOLth Atlantic. 

Finally, the results of the multiple linear-regression conducted on the monthly time series to 

identify the contributions o f diato ms and dinotlagellates to the PCI in the Eastern ~orth 

,\tlantic are shown in Fig. 3.5. These contributions are Yariable depending on the montl1. In the 

NE, the main contribution of diatoms occurs between January and lay and during l"m·ember 

and D ecember (Fig. 3.5). For the dinotlagellates the main contribution is between J une and 

October (Fig. 3.5). In contrast, in the SE tl1e contribution of diatoms and dino tlagellates to PCI 
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is more variable over the whole year. The mam contribution of diatoms to the PC! thus 

occurred from February to July and in November and from August to October and in 

December for the dinoHagellates (Fig. 3.5). No signitlcant contribution of diatoms and 

dinoHagellates to the PCI has been identitled in January. 

3.D. Discussion 

In the North Atlantic Ocean, between 1958 and 2002 there arc c\·idcnt overall trends of 

increasing Phytoplankton Colour and dinotlagellates and a decrease of diatoms (Fig. 3.4). This 

increasing trend of the PCI has already been shown in the North Sea (Reid & Edwards 200 1), 

in the area west of the British Isles (Edwards et aL 2001), over the Scotian Shelf and Georges 

Bank in the NW Atlantic (Sameoto 2001) and recently over all the North 1\tlantic basin (I3arton 

et aL 2003). In the framework of this chapter, the use of diatoms and dinoHagellates allowed a 

better understanding of the processes leading to the long-term trends observed for the PC I. 

3. D.!. Phytoplankton rmiability in the EaJtem Atlantic lmvardr .rea .rmjace temperature and 
Jlti!Jienl wntrol 

In the Southern ~orth Sea, the increase in phytopLmkton biomass has been attributed to an 

increase in nutrient inputs from the major Europe;m rivers during the past decades 0tichardson 

1997). However, eutrophication has mainly an effect on phytoplankton biomass in the coastal 

margins and, in p<lrticular, those are;lS that have limited water exchange (Edwards e/ aL 2001). 

In the offshore waters of the North Sea, variability in environmental conditions is thought to 

play a dominant role in temporal tluctuations of phytoplankton biomass (Edwards et a!. 20CJ1). 

In this chapter, the NE North !\tbntic area brings together different types of em·ironmcnt like 

the North Sea, the English Channel, the Celtic Sea, the Irish Sea and the area west of the 

British Isles (which corresponds to oceanic waters). In such open waters, eutrophication rs 

highly unlikely to cxpL1in the tluctuations in phytoplankton biomass. 

It is possible, however, to relate phytoplankton Huctuations to hydrometeorological processes 

characterizing the ~orthem hemisphere. These processes arc thus likely to control physical 

parameters that affect phytoplankton growth (e.g. temperature and turbulence). Temperature 

determines the rate at which phytoplankton cells divide; nutrient supply and wind-induced 

turbulent mixing control the onset of the spring phytoplankton bloom (Sverdrup 1953). All 

these parameters have also been shown to be inHuenced by the N1\0, the atmospheric 
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variables exerting strong forcing on the ocean leading to changes in sea surface temperature, 

seawater salinity, vertical mixing, circulation patterns and, in northern areas, ice formation 

(Vis beck et aL 2003). 

i'vlore specitically, the present work showed that the relationship between PCI, dinotlagellatcs, 

diatoms and the SST varies depending on the area, there being a stronger relationship between 

SST and PCI or dinoflagellates in the eastern part of the ocean (see Table 3.2). 111C inverse has 

been observed for diatoms (i.e. T llitzuhioides, Tha!msiosira spp. and T. lo11gissima), with a stronger 

correlation in the \Vestern North Atlantic. These observations can be linked to the influence of 

the NAO through the North Atlantic basin, as Drink·water e/ aL (2003) have shown that the 

physical response to Ni\0 forcing varies spatially across the North Atlantic. Furthermore, the 

main factors likely to affect phytoplankton dynamics and community structure QJcsides light, 

temperature and salinity) are turbulence and tl1e related nutrient supply (Li 2002, Rodrigucz et 

aL 2001). 

Different adaptive strategies arc required to deal with different combinations of these facrors, 

embodied mainly in the differences between diatoms and clinot1agellatcs (Margalcf 1975). 

Dinotlagellates possess an undulating tlagellum that keeps the cell turning and accelerates the 

tlow of water over the cell body that improves the chances for nutrient absorption (J\!argalef 

1997). In strati tied and low turbulence water, it pays to invest energy in swimming and so to be 

able to position the cell in the most favourable environment. This optimisation can be useless 

in turbulent water where the nutrients arc more easily redistributed in the water column and 

where non-motile diatoms frequently tlourish. Warmer surface temperatures related to the 

increasing NAO winter index promote earlier, or more intense, stratification of the upper 

water-column (Drinkwater et al. 2003). According to ~largalefs (1975) hypothesis, all these 

factors would create an environment favouring the growth of dinoflagellates (e.g. C. !1ipoJ, a 

typical species of mixed ,c\tlantic waters) over the growtl1 of diatoms (e.g. R. ,D·!iformi') in both 

parts of the eastern North Atlantic. 11lis is fully congtUent with our observations regarding the 

differential relationships found between clinotlagellates, diatoms and the NAO (see Table 3.3, 

4). 
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3. D.2. Pbytoplank!on J!udualioiiJ ill tbe lll'e.rtem At/anti,:· /Jasin-.rcale drmlation control 

Bathymetry, coupled with the differences in the relative strength and/or seasonalit:y of 

advection, tidal mixing and strati~ication lead to a strong spatial heterogeneity in the 

oceanographic environment that phytoplankton encounter in the Gulf of ~vlaine ("Il1omas et aL 

2003). Georges Bank, on the other hand, remains relatively well vertically mixed throughout the 

year, eliminating much of the inHuence of stratification on the timing of phytoplankton 

seasonality (Thomas et al. 2003). In this chapter, PCI, dinotlagellates and diatoms have all 

shown significant increasing trends in this area, but during different periods. Diatoms have 

shown an increase between January and March and dinotlagellates increased in spring. These 

observations correspond to an increase in the occurrence of these two t<L"a during the tirst 

months of the period in which they are usually present, leading to an earlier presence of these 

t;L"a during d1e year. Similar conclusions have been drawn for the dino~lagellates in the NE. 

Furthermore, positive relationships have been observed between the winter NAO ;md spring 

values for both dino~lagcllates (i.e. C. li!leatu!JI and C. l!ipo!) and the PCI and on the other hand 

with diatoms (i.e. P. a!ata a!ata, R. hebetata senli,pi!Ja and T llii>:_JChioide,) during August. 

Thomas et a! (2003) suggest that basin-scale forcing associated with the :--.!i\0, d1rough its 

intluence on hydrographic stn.Icture, has also the potential to induce interannual \·ariability in 

phytoplankton dynamics in the Gulf of J\laine. During positive NAO phases, d1is area is 

subjected to wanner, drier and milder conditions (l-lurrell 199Sa, Visbeck e/ al. 2003). 1l1e 

Ni\0 also affects the shallow and deepwater circulation pattcms of d1c North Atlantic. During 

positive phases of the Ni\0, convection is deeper and more intense in the Labrador Sea and a 

relatively cool, fresh and thick layer of Labrador Sea \Vater QJ3\'\0 is formed (Dickson et a! 

1996). 111is results in higher salinity and temperature on the Scotian Shelf and in the Gulf of 

Maine (Petrie & Dtinkwater 1993) and in higher nutrient concentration (Gatien 1976). The 

observed increase of the PCI can then be linked to the increase in nutrients in the Gulf of 

i\Iaine and the Scotian Shelf. Higher salinity and temperature associated with higher nutrient 

concentration can also create favourable conditions for the growth of dino~lagellates such as C. 

lilleaflllll and C. t1ipos, typical of mixed Atlantic waters, in spring. Diatom species typical of 

oligotrophic waters, such as Rhizo,-ofellia spp., thus encounter Lwourable conditions at the end 

of the summer when low nuttient conditions prevail. 
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3. D.3. Pbytoplankton cbange.r in tbe Central At/anti,:· meteorological control 

Few studies have focused on the central part of the North Atlantic Ocean (Kushnir e/ al. 1997, 

1-Iurrell e/ al. 2003). Here, long-term increasing trends in PC! have been observed over the 

whole area and only in the SC for the dinotlagellates. In contrast, positive then negative trends 

have been observed for diatoms in tl1e NC (Table 3.3). These observations correspond to a 

decrease in the occurrence of these two taxa for the last months of their bloom period, leading 

to a shortening of their presence during the year and/ or to an earlier bloom. The same situation 

has been observed for the dinotlagellates in the se area. 111eir abundance at the beginning of 

the bloom signitlcantly increased, suggesting an e-arlier presence of dinoflagellates during the 

year. In addition, the relationship between NAO and phytoplankton is clearly different, 

whether it relates to different taxonomic groups or to PCI. A positive relationship has been 

observed between both PC! and diatoms (i.e. R. hebelala semispi11a, Tha/assiosira spp. and T 

longissima) and NAO in the North and South of the central area. In the opposite sense, a 

negative relationship has been identitled in the NC between diatoms (i.e. T !lilzschioides, a typical 

species in the Central North Atlantic Ocean) and NAO in August and between dinotlagellates 

(i.e. C. fums and C li11eatum) and Nt\0 in June in the SC (see Table 3.4). 

While it is still difficult to clearly identify the processes driving the patterns discussed above, it 

should be noted that changes in the mean circulation patterns over the North Atlantic 

associated with the NAO are also associated with changes in the intensity and number of 

storms. During winter, a well-detlned storm track connects the North Pacitlc and North 

Atlantic basins, with m;L-.;imum storm actjvity over the oceans (1-Iurrell et al. 2003). As the ocean 

integrates the effects of storms in the form of surt~\Ce waves, the recent upward trend towards 

more positive NJ\0 index winters could be associated with increased wave heights over the 

nortl1east Atlantic and decreased wave heights south of 40°N (Kushnir e/ al. 1997). As tl1e 

increase in storms will lead to an increase in wind-induced \'ertical mixing, during positive 

NAO phases a larger area in the centre of the North Atlantic is expected to be less stratitled 

and cooler tl1an normal. As these parameters strongly intluence phytoplankton growth and 

species succession, it is believed that their complex interactions might play a role in the timing 

and temporal patterns of diatom and clinotlagellate occurrence, abundance and succession. 

Further information relating to the specitlc hydrometeorological conditions characterizing our 

sampling would nevertheless be necessary to infer the previous hypothesis. 
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3. D.+. Diffirential conlli/Jution of pl.iytoplankton ta.Yoltomic groups to tbe P!Jytoplankloll 
Colour f11dex 

In the NE Atlantic, the main contributors to the Phytoplankton Colour Index are diatoms (j.e. 

Thakmiosira spp. and T. longissima) between January and J\hy and dinotlagellates (i.e. C. fmra and 

C. juJIIs) between June and October. These periods correspond to the characteristic bloom 

periods of these groups. However, whilst from March to September and in November, 52 to 

82% of the PCI can be explained respectively by the contribution of diatoms and 

dinotlagellates, during other months they explain only up to 40% of the PCI (Fig. 3.5). TI1e 

same pattern occurs in the SE area, where 39 to 64% of the PCl is explained by diatoms and 

dinoAagellates between February and December. Diatoms (i.e. P. ala/a ala/a, T. nitzJthioides and 

Thalmsiosira spp.) and dinotlagellates (i.e. C. flm:a ;md C. liipO!J are the main contributors to the 

PCl between February and July and between 1\ugust and December respectively in the SE. 

During January, only 1% of the PCI is explained by these groups (Fig. 3.3). Other categories of 

phytopbnkton must also be involved in the tluctuations of the PC I. Other ta....:a identified by 

the CPR survey have not been taken into account in this chapter and some ta....:a are too small to 

be counted and identitled by the CPR survey. J\·Iicrotlagellates, for instance, would not be 

identitlable in the CPR samples, as they disintegrate in formalin, but their chloroplasts would 

survive to <1dd to the coloration of the silks. Future studies would then benefit from more in 

depth investigations of the relative contribution of other taxonomic groups identified by the 

CPR survey to the PCI, in order to improve the ecologic<~l relevance of tl1is index. 
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Chapter 4 

DIFFERENTIAL CONTRIBUTION OF 

DIATOMS AND DINOFLAGELLATES TO 

PHYTOPLANKTON BIOMASS IN THE NE 

ATLANTIC AND THE NORTH SEA 

Part of this chapter has been included in the following: 

Letenne S.C., Seuront, L. & Edwards i\1. (2006) Differential contribution of diatoms and 
dinoHageiLues to phytoplankton biomass in the NE Atlantic and the North Sea. Marine 
Ecology Progress Series 312: 57-65. 
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4.A. Introduction 

Interannual Auctuations in phytoplankton species composition and abundance have received 

less attention in the NE Atlantic than those of higher trophic groups such as zooplankton 

(Plangue & Taylor 1998, Hays et aL 2001, Lindley & Batten 2002) and tlsh (Fromentin et al. 

1998, Sims & Re id 2002, Lindley et al. 2003). Since 1958, several studies have shown an increase 

in phytoplankton biomass in the North Atlantic (Barton et al. 2003, Leterme et al. 2005), the 

NE Atlantic 0~eid et aL 1987) and the North Sea ~eid 1978, Reid & Edwards 2001). 'The 

overall phytoplankton abundance in the NE Atlantic has been shown to be driven mainly by 

variations in sea surface temperature 0ucharclson & Schoeman 2004). 

Changes in phytoplankton abundance and/ or community composition may impact 

zooplankton population stntcture and their predator abundance. 'l11is is especially true in a 

complex marine ecosystems including different types of environments from open oceanic 

waters to epicontinental basins and neritic coasttl regions such as the NE 1\tlantic and the 

North Sea. In particular, the North Sea is hydrographically divided into different regions, from 

seasonally stratitled waters in the north to tidally mixed waters in the south. Edwards and 

Richardson (2004) have shown that the response of the marine pelagic community to climate 

changes in the central 1'\orth Sea, letding to a mismatch between trophic Ie,-cls and taxonomic 

groups. 

The Continuous Plankton Recorder (CPR) survey provides records of the abundance of 500 

phytophmkton and zooplankton ttxa and provides a visual assessment of phytoplankton 

biomass, i.e. the Phytoplankton Colour index 0lCI, Colcbrook & Robinson 1965). Within the 

phytophmkton, diatoms and dinotlagellates arc the main taxonomic groups identitled by the 

survey, consisting of 178 species or taxa. tvlost phytoplankton taxa have been enumerated and 

identitled following a procedure that has remained consistent since 1958. The PC! has been 

extensively used to describe the seasonal and long-term patterns of phytoplankton abundance 

0~eid 1978, Edwards et al. 2001, Batten et al. 2003a, Johns et al. 2003) in various regions of the 

North Atlantic. An increasing trend in phytoplankton biomass has been shown in the North 

Sea (Lancelot et al. 1997, Cadcc & Hegeman 1993, Hickel et al. 1995, Reid & Edwards 2001), 

and in the area west of the British Isles (Edwards et al. 2001). Such increases ha,·e been lately 

obsen·ed in different region of the globe. Different explanations have been formulated to 

explain this increase, e.g. hydro-climatic processes (Edwards et al. 200 I, Richardson & 

Schoeman 2004) and eutrophication (Lancelot et aL 1997, Cloem 200 I). However, to our 
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knowledge, this increase has not been investigated in relation to the two most abundant 

ta.xonomic groups within the phytoplankton assemblage, the diatoms and dinotlagellates. 

The aim of this chapter is thus to determine: (i) the long-term trends of PCI and diatom and 

dinotlagellate abundance, (ii) the contribution of the diatoms and dinotlagellates to the PCI, (iii) 

their tluctuations over 45 yr of sampling, (iv) their geographical variations in the NE Atlantic 

and (v) how they may be linked to hydro-climatic variables such as the North 1\tlantic 

Oscillation (NAO) and sea surface temperature (SST). 

4. B. Materials and methods 

Different groups of phytoplankton tLxa have been identitied by the CPR survey (e.g. diatoms, 

dinotlagellates, coccolithophores and silicotlagellates), many to the species level. Diatom and 

dinotlagellate species have been identitied ;md counted in the same way since 1958, while 

coccolithophores and silicotlagellates have only been enumerated since 1993. It is ti1Us 

impossible to conduct the same analyses on those taxa. Consequently, only diatoms and 

dinotlagellates (i.e. a tot1l of 131 species) were taken into account in the present chapter, to 

consistently investigate the period from 1958 to 2002. The abundance of all diatom and 

dinotlagellate species (75 and 56, respectively) identified in the NE Atlantic (\'hrner & Hays 

1994) was derived by summing the number of cells identified to determine the overall trends of 

these 2 groups (Leterme et al. 2005). 

The potential intluence of hydro-climatic variables on phytoplankton tluctuations was 

investigated using the NAO winter index and the SST. Hurrell's NAO winter index Q-lurrell 

1995a) computes the pressure difference based on measurements from Lisbon, Portugal, and 

Stykkisholmur, Iceland, from December to March. "ll1e SST (1-Iadley Centre Sea Ice and SST 

data set (1-IadJSSl) Version 1.1) data were provided by the 1-Iadley Centre, UK !\·let Office. 

The study area (Fig. 4.1) corresponds to 2 regtons identitied along a north-south axis: the 

Nortl1 NE .Atlantic (51 to 64°N, 20°\V to 15°E) and the South NE Atlantic (37 to 51°N, 20°\V 

to 15°E). Even if the Nortl1 NE Atlantic includes tl1e epicontinent.1l North Sea, the latter \Vas 

considered separately for the purposes of this study and divided into 3 regions along a north­

south axis following tl1e limits of the CPR 'Standard Areas' (Colebrook 1975) to take into 
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account the different hydrographical fo rcing processes (eg. the northern intlow of Atlantic 

waters between co tland and orway and the southem inHow via the English Channel). 

Using the 108,951 samples anilable from 1958 to 2002, ~tnnual means o f PCI, diatom and 

dino tlagellate abundance were generated as a preliminary step to detect long-term trends. i\{ore 

specitlcally, monthly means o f PCI, diatom and dino tlagellate abundan ce were calculated to 

inves tigate details o f the relatio nship between the PCI and diato m and dino tlagellate abundance 

in the 5 abm·e mentioned a reas . To determine tl1e contribution o f diatoms and dino tlagellates 

to the P CI and tl1eir variations during the period of study, multiple linear regression analysis 

(Sokal & Rohlf 1995, Zar 1996) was conducted between monthly means of PCI, diatom and 

dino tlagellate abundance fo r each sampling year. 111is analysis was performed only on the 

complete time series o f da ta (i.e. 12 monthly means yr 1
) . "\.s a consequence, when the time 

series were not complete, our analysis generated missing values in the contribution time series. 

Thus, -1- and 20° o of the ,·alues are missing in tl1e contribution time series fo r the centr.1l and 

southern 1'\o rth Sea, respectively. We also stress that because large d ino tlagellate species (eg. 

Ceralium spp.) and chain-forming dia to ms (e.g. ChaetoceroJ spp.) were unders::unpled (\\ 'arner & 

I lays 199-1-, Edwards et aL 2006), the sum o f the contributions of to tal diatoms and to ta l 

dino tlagellates did not al\\'ays reach I 00° o. 

o· 

Figure 4.1. TI1e \:E .\tltmttc di\'lded mto two regions separated according to a ~orth-South axts: 0:orth 
~E (:': E) and South \:E (S I~) and the \:orth , ea divided m to three regions: \:o rthem (\:), central (q 
;md Southern (S) from a ~orth-South ax1s fo llowmg the ltrni ts of the CPR St;mdard .\reas. CPR samples 
used in this study are illustrated in grey. 
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The residuals of the diatom/dinotlagellate contribution were analysed in order to infer the 

contribution of other groups to the PCI. Long-term trends in abundance and in the 

contribution of diatoms and dinotlagellates to the PCI were examined in each region by 

calculating Kendall's coefticient of rank correlation, 1, between the series and the time in years 

in order to detect the presence of a linear trend (Kendall & Stuart 1966). Kendall's coefticient 

of correlation is used in preference to Spearrnan's coeHicient of correlation, Q, although the 

latter was recommended in Kendall (1976), because Spearman's Q gives greater weight to pairs 

of ranks that are further apart, while Kendall's 1 weights each disagreement in rank equally (see 

Sokal & Rohlf 1995 for further developments). 

To detect changes and the intensity and duration of any ch;mges in the value of a given 

parameter, the cumulative sums method (lbanez et aL 1993) has been used. The calculation 

consists of subtracting a reference value (here the mean of the series) -from the data; the 

anomalies are then successively added, forming a cumulative timction. Successive positi\'e 

anomalies produce an increasing slope, whereas successive negative anomalies produce a 

decreasing slope. Succession of values with little difference from the mean show no slope. This 

analysis was performed on the time series of annual means in <Ill the areas, but it was performed 

on the time series of contributions only in the NE 1\tlantic, due to the excess of missing data 

for the Nortl1 Sea. 

The relationship between phytoplankton and climate indices \vas tested through Speam1an 

correlation analysis performed for the NE :md SE North Atlantic between the abundance and 

contribution of diatoms and dinotlagellates and (i) the NAO winter index and (ii) the SST. As 

stated above, these tests were not performed for the North Sea, due to the excess of missing 

data. 

4.C. Results 

+.C. I. The Nortbeast .4thnlic 

4.C.l.a. The North Northeast Atlantic 

In the North NE 1\tlantic, there is a signiticant increase in PC! and a signiticant decrc:ase in 

diatom and dinotlagellate abundances (Fig. 4.2.A, Table 4.1 ). The cumulative sums revealed 

different short-tenn trends in PCI and diatom abundance, but none for dinotlagellate 
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abundance (Fig. 4.2.C). The cumulative sums of PC! decreased and increased, respectively, 

before and after 1986, while it increased and decreased, respectively, before and after 1967 for 

diatoms. This suggests a shift in phytoplankton biomass and diatom abundance before and 

after 1986 and 1967, respectively. 

Over the period of study, the contribution of diatoms significantly decreased (Table 4.2) from 

66 to 37%. In contrast, the contribution of dinot1agellates did not exhibit any signiticant trend. 

TI1e residuals of the diatom/dinoHagellate contribution significantly increased (fable 4.2) from 

22 to 36%. In addition, a shift was observed in the phytoplankton community between 1986 

and 1996, when dinoHagellates become more dominant than diatoms in the community Fig. 

(4.3.1\). Tl1is is specifted by the cumulative sums, which suggests a period of relative stability in 

diatom and dinoHagellate contributions from 1958 to 1985, followed by antisymmetric short­

term trends from 1985 to 2002 (Fig. 4.3.C). 'll1is suggests a stability of the phytoplankton 

community composition before 1985. 

PCT and diatom abundance have shown a signiticant positive correlation with NJ\0 and SST, 

respectively, but no relationships were observed between the climatic parameters and 

dinotlagellate abundance (rabic 4.3). No relationship was obsen•ed between tl1e NJ\0 winter 

index and the diatom/dino~lagellate contribution to the PCI (fable 4.4). Conversely, the 

contribution of dinotlagellates resulted in a significant neg;1tive relationship with SST (Table 

4.4). No significant long-term trend \vas obsen•ed for the SST over the period of study 

(Kendall's 1 = 0.034, p < 0.05). 

However, no signi~icant decadal trend was identitied for dinot1agellate abundance (fable 4.1). 

The cumulative sums revealed different short-term trends in PCI, with a decrease and increase, 

respectively, before and after 1984 (Fig. 4.2.0). As obsen•ed in the North NE Atlantic, the 

cumulative sums of diatom abundance increased before 1967 and globally decreased after 1967, 

with a short-term increase between 1979 and 1985 (Fig. 4.2.0). ln contrast, the cumulative 

sums of dinotlagellate abundance were relatively constant from 1958 to 1979, followed by ;m 

increase until 1985 and a decrease until 2002 (Fig. 4.2. D). 
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Table 4.1. Kendall's 1 es timated from the time series ofPCI, diatom and clino flagellate abundances over 
the period 19S8-2002. · S" o significance le\'el 

PCI diatoms dino flagellates 

o rth NE AthU1tic 0.378. -0.337 . -0.297 I 

South E J\tlantic 0.535 ! -0.2-+8 ~ 0.08S 

1 o rthern 1'-:orth Sea 0.62-+ ! -0.020 0.36-+ ' 

Central North ea 0.386 . -0.200 -0.085 

Southern • o rth Sea 0.329! -0.1S8 -0.2-+2 -

Table 4.2. Kendall's 1 estim:tted fo r the contribution of diatoms and dinoflagellates toward the PCI and 
their res iduals over the period 1958-2002. • S0 o significance level 

diatoms di.noflagellates residual s 

orth NE ,\tlantic -0.236 < 0.190 0.232 < 

South N E ,\tl:mcic 0.039 0.206- -0. 177 

1 orthem orth Sea -0.20-l - 0.253 - 0. 114 

Central orth Sea -0.038 -0.054 0. 10-l 

Soul hem o rth Sea 0.011 -0.059 0.075 

Table 4.3. Spearman's Q es timated between PCI and diatom ~md dinol:lageilate abund;u1Ces and (~ the 
l\:o rth Atlantic Oscillatio n index ~U1d (ii) rhe Sea Surface Temperature over the period 19S8-2002. ' S0 1o 

sign i fic;ulCe le\'el 

North Atlantic Oscillation Sea Surface T e mperature 

Abundance dt3loms dtno llagdlates PCI dt3l0111S d tno tl;gellates PCI 

North NE Atlantic -0 . 11~ -0.031 OT8' OT2' 0.250 0.281 

South NE Atlantic -0.20~ 0.161 0.263 -0.0 1 ~ -0.0~ 0.1-o 

No rthern Nonh Sea -0.008 0.153 0.399' -0.028 0.0~6 0.155 

Central N orth Sea -0. 1~3 0.0 18 or9 -0.119 -{),028 0.302' 

Southe rn Nonh Sea -0.153 -0.193 0.082 -{).06- -0.1-3 0A66' 

Table 4.4. Spearman's e es timated between the contribution of diatoms ~md dino l:lagellates 1U1d (i) the 
~onh .\tlantic Oscillatto n tndex and (ii) the Sea Surface Temperature o\·er the penod 1958-2002. ·5° o 

sig111 ficance le\·el 

Contribution 

North NE Atlantic 

South NE Atlantic 

North Atlantic Oscillation 

diatoms 

-0.193 

0.055 

dinollagellates 

0.133 

0.096 

Sea Surface Temperature 

diatoms dinoflagel lates 

OTI -0.302 • 
0.368 . -0. ll9 
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4.C.I.b. The South Nmtheast Atlantic 

As pre\·iously seen in the North NE Atlantic, there was a significant increase in PCI and a 

significant decrease in diatom abundance (Fig. 4.2.B, Table 4.1). Only the contribution of 

dinotlagellates to the PCI significantly varied over the period of study (fable 4.2, Fig. 4.3.13), 

with an increase from 7 to 19%. The residuals of the cliatom/dinotlagellate contribution did not 

exhibit any significant trend (fable 4.2). In addition, cumulative sum analysis did not show any 

significant short-term trend over the period of study (Fig. 4.3.0). In contrast to what was 

observed for the NE Atlantic, this suggests that the ecosystem is still in evolution, with a 

constant contribution of diatoms to the PCI and an increasing contribution of dinotlagellates. 

No relationship was observed between PCI and diatom and dinotlagellate abundance ;md the 

N1\0 winter index (fable 4.3). ll1e same observation was true of the SST. 'll1ere was no 

significant relationship between diatom and dinotlagellate contributions ;1nd the NAO winter 

index (fable 4.4). On the contrary, there was a significant positive correlation between the 

contribution of diatoms and SST (Table 4.4). As observed in the North NE Atlantic, no 

significant long-tenn trend was observed for the SST over the period of study in this area 

(Kendall's 1 = 0.188,p < 0.05). 

-I-.C2. The Nor!/1 Sea 

In the northem North Sea, PC! and dinotlagellate abundance increased signiticantly (Fig. 4.4.A, 

Table 4.1) and exhibited short-term trends (Fig. 4.4.0). Diatom abundance did not exhibit any 

long-term trend. More specitically, the PCI cumulative sums decreased until 1985 and increased 

afterwards. Dinotlagellate cumulative sums decreased before 1984 and subsequently increased, 

while diatom cumulative sums remained roughly steady (Fig. 4.4.0). The contribution of 

diatoms and dinotlagellates signiticmtly decreased from 71 to 50"/c, and increased from 10 to 

24'Yo, respectively (fable 4.4, Fig. 4.5). The residuals of diatom/dinotlagellate contributions did 

not significantly vary over the period of study. These results suggest an evolution of the 

ecosystem towards a balance between diatoms and dinotlagellates m·er the last 45 yr, with the 

overall diatom/ dinotlagellate contribution decreasing from 97 to 72% from 1958 to 2002. In 

the central and sou them North Sea, PCI signiticantly increased, while dinotlagellate abundance 

signiticantly decreased in the southern North Sea, and diatom abundance did not show any 

long-term trend in either :.~rea (Fig. -L4.B, C:, Table 4.1). In addition, PCI :.~nd diatom abundance 

revealed short-term trends 111 both areas 
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(Fig. 4.4.E, F). Diatom cumulative sums increased until 1968 and decreased afterwards, and 

PCI cumulative sums decreased until 1985 and subsequently increased. In the central North 

Sea, dinotlagellate cumulative sums were roughly steady over the period of study, with a drop 

between 1974 and 1989, while in the southern North Sea dinotlagelbte cumulative sums 

increased until 1979 and decreased afterwards. 

The contributions of diatoms and dinotlagellates as the residuals did not vary over the period 

of study in the central and southern North Sea (fable 4.4). In these areas, the ecosystem can 

thus be regarded as being in <l stable state, in which diatoms dominate the phytoplankton 

community. The mean diatom and dinotlagellate contributions were 41.4 and 37.8% and 27.7 

and 21.6% in the central and southern North Sea, respectively (Fig. 4.5). l11e mean 

diatom/dinotlagellate contribution residuals were 30.92 and 40.60% in the central and soutl1em 

Nortl1 Sea, respectively. 

There was a signiftcant relationship between the NAO winter index and PCI in the northern 

North Sea (fable 4.3), but no relationship was observed between the N1\0 and diatom and 

dinotlagellate abundance in this area. Moreover, no signitlcant relationship was observed 

between PCI, diatom and dinotlagellate abundance and l\.1!\0 winter index in the centml and 

southern North Sea (Ltble 4.3). SST and PCI were signitlcantly correlated in the central and 

southern Nortll Sea (fable 4.3), but no relationship was observed between SST and diatom and 

dinoflagellate abundance in these areas. In addition, no signitlcant relationship was observed 

between PCI, diatom and dinotlagellate abundance and SST in the northern North Sea (fable 

4.3). l11ere was a signitlcant, positive, long-term trend for the SST over the period of study in 

the central and southern North Sea (Kendall's 1 = 0.267 and1 = 0.380, respectively, p< 0.05). 

By contrast, no signitlcant long-term trend was observed for the SST in the northern North Sea 

(Kendall's 1 = 0.137,p< 0.05). 

4.D. Discussion 

+. 0.1. Multiple ecogJiem JlateJ in tbe JVE. Lit/antic and tbe Nmtb Sea 

Three states of the phytoplanktonic ecosystem have been identitled throughout the NE 

Atlantic, suggesting differential temporal and spatial dynamics of the phytoplankton 

communities in geographically adjacent oceanic domains. 
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Firstly, a stable ecosystem was observed in the southern and central North Sea, where diatoms 

dominated the phytoplankton community. These areas belong to an epiconcinentli basin, where 

the intluence of the North Atlantic water intlow is much weaker than in the northern North 

Sea (e.g. Turrell et aL 1992, Corten 1999). The southern area is also characterised by strong tidal 

mixing and is increasingly impacted by eutrophication (Lancelot et al. 1997), two factors more 

favourable for diatoms than for dinotlagellates (e.g. i\brgalef 1975) and thus fully compatible 

with our observations. 

Secondly, an evolving ecosystem was determined in the South NE Atlantic and the northern 

North Sea, with an increasing contribution of dinotlagellates contrasting, respectively, with a 

stable di<ttom population in the former region and a decreasing contribution of diatoms in the 

latter. These patterns can be related to the specific circulation patterns characterising these 

areas. The South NE Atlantic and the northern North Sea are indeed both highly influenced by 

the North Atlantic water inflow (Reid e/ aL 1992, Corten L 999). During the late 1980s, the 

Ni\0 index was strongly positive and the strengtl1 of the westerly winds increased in tl1e NE 

i\tlantic, leading to an increase in the oceanic intlow into the North Sea (Drinkwater et al. 

2003). Turrell et al. (1992) suggested that the Atlantic intlow makes a major contribution to the 

input of generally warmer, nutrient-rich water into the northern J'.:orth Sea. The resulting 

relatively warmer surt;tce temperatures promote earlier, or more intense, stratification of the 

upper water column (Drinhvater et aL 2003), which, according to Margalefs (1975) hypothesis, 

would create an environment favouring the growth of dinotlagellates over the growth of 

diatoms. 

Finally, the north NE 1\tlantic is an ecosystem that has moved from one stlte to another, to 

reach a balanced state over the last decade. More specifically, our results suggest evolution from 

a diatom-dominated ecosystem to a more even distribution between diatoms and dinotlagellates 

and an increase in the proportion of other ta.xonomic groups such as phytotlagellates, as 

recently observed in coastal ecosystems (Cioern 2001) . 

.f.D.2. Pbytaplankton commllnitieJ and regime Jbift in the N011b Sea 

The different ecosystem states discussed in the above section are dearly related to a shift in the 

abundance and/ or composition of phytoplankton communities. 1-loweYer, in our analyses, only 

the PCI proYided evidence for the regime shift (defined as an abrupt shift from one dynamic 
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regime to another, mwt Scheffcr et al. 2001) observed in the North Sea during the period 1982 

to 1988 (Reid e/ aL 2001, Beaugrand 2004). Dinotlagellates showed a shift in 1985, but only in 

the northern North Sea, and diatoms did not exhibit any evidence of a regime shift over this 

period. ·n,e observed discrepancy then suggests that the ch;mges seen in PCI do not reHect 

changes in the community structure. 

In addition, the features suggested to explain the regime shift in the North Sea by Bcaugrand 

(2004) arc acknowledged to inHuencc the whole North Sea. shown here, however, that the 

dynamics of the northern North Sea clearly differ from those of the central and southern 

North Sea. "ll1is suggests that different driving processes might control the dynamics of the 

phytoplankton community. \Vhile this question needs to be addressed through in-depth 

investigations of the temporal Huctuations in the phytoplankton tm[onomic composition, it is 

(i) beyond the scope of the present work and (ii) still unfeasible, considering that the different 

taxonomic groups have not been surveyed over the same period. 111Us, pico- and nanoplankton 

that contribute to the PCI cannot be identified in the samples (Reid 1978). t\s a consequence, 

their potential contribution to the PC! space-time patterns is intrinsically not detenninable, and 

might ultimately drive PC! variability and/ or obfuscate the variability of the contributions of 

identitiable groups. 

Finally, the decreasing contribution of diatoms/dinotlagellates along a north-south gradient 

could possibly be related to the increasing contribution of other taxonomic groups or smaller 

size fractions of phytoplankton, such as naked Hagcllates, which either break up when they 

impact the silk or disintegrate in formaldehyde (Batten et al. 2003b), and thus contribute to PCI 

without being identitlable. 

4.D.3. P~ytop!ankton compoJition and ecoryJtem J!mdum and fimdion 

The Huctuations in the two phytoplankton ttxonomic groups studied here arc likely to impact 

the dynamics of the whole food web. The space-time differences in taxonomic group 

contributions could, for instance, have an effect on zooplankton populations through their 

trophodynamics. Richardson & Schoeman (200-l) have thus shown a dominant bottom-up 

control within the plankton community in the ~E Atlantic over time and space as the result of 

sea surface warming. However, this study shows that: (1) the SST only exhibited a signiticant 

long-term trend in the central and southern 1\orth Sea from 1958 to 2002, (2) the PCI, the 
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abundance of diatoms and dinotlagellates and the contribution of diatoms and dinotlagellates 

to the PCI were barely correlated to the NAO and SST (cf. Tables 4.3 & 4.4), and (3) the 

significant correlations did not exhibit any distinct spatial pattern (cf. Tables 4.3 & 4.4). As a 

consequence, it is suggested that: (i) the so-called hydro-meteorological forcing is likely to have 

short-term rather than long-term effects on phytoplankton communities in the eastern North 

Atlantic and the northern North Sea, (ii) SST is likely to have long-term effects on 

phytoplankton communities in the central and southern North Sea and (iii) the potential causal 

relationships between hydro-meteorological variables and phytoplankton abundance and 

community composition are strongly affected by the spatial location. 

~\>lore detailed investigations of the relationships between changes in phytoplankton 

composition and their potential effects on zoopbmkton communities are needed to achieve a 

deeper understanding of the mechanisms driving the observed p:lttems. Phytoplankton 

composition and thus zooplankton diet have indeed already been shown to inf-luence hatching 

success (Laabir el a! 200 I, lrigoien et a! 2002), growth and development (Koski et al. 1999) of 

calanoid copepods. As the production of copepods supports most food webs, directly affecting 

higher trophic levels and the biological pump of carbon (Ohman & 1-lirche 2001), elucidation 

of the interplay between phytoplankton and zooplankton communities is vital for the future. 

The global relevance of this inter-relationship is clear, considering the importance of these 

organisms in the context of climate change, anthropogenic impacts on ecosystems and the 

consequences on management of aquatic living resources. 
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Chapter 5 

DECADAL FLUCTUATIONS OF THE INFLOW 

OF NORTH ATLANTIC WATER INTO THE 

NORTH SEA BETWEEN 1958-2003 AND ITS 

IMPACT ON PLANKTON ASSEMBLAGES 

Part of this chapter has been included in the following: 

Leterme S.C., Pingree R.D., Attrill M.J., John i\.\V.G, Reid P.C. & Skogcn r..tD. (submitted) 
Decadal t1uctuations of plankton species in the North Sea: relation with physical and 
hydrological parameters. Limnology and Oceanography. 

Leterme S.C., Pint,JTee ItD., Attrill ;\f.J., John A.\V.G & Skogen M.D. (2006) Decadal 
tluctuations of plankton species in the North Sea: relation with physical and hydrological 
parameters. i\G U-i\SLO-TOS Ocean Sciences Meeting, February 2006, Honolulu, Hawaii, 
US!\. 
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5. A .Introduction 

As a semi-enclosed basin, the North Sea is characterized by complex interactions between 

physical conditions (i.e. waves, tides, currents), water chemistry, suspended sediments, living 

organisms, and human activities (Eisma 1987). In particular, the circulation of Atlantic waters 

along the European continental slope, and more precisely the intlow of Atlantic waters into the 

North Sea, highly intluences its water characteristics, with consequent changes in temperature, 

salinity, and nutrient concentration affecting the biology and ecology of plankton organisms. 

1\tlantic waters tlow into the North Sea along two pathways: the continental slope flow enters 

the northern North Sea through the Fair Isle Channel and along the east side of the Shetland 

Islands (furrell et aL 1990), while a smaller How enters from the south through the Straits of 

Dover, with warmer and saltier properties that intluence the temperature and salinity 

distributions of the Southern Bight of the North Sea (Pingree 2005). The resulting outtlow of 

North Sea water, called the Norwegian coastal current (NCC), is concentrated along the 

western coast of Norway. This current is a combination of wind-driven coastal water from the 

southern Nortl1 Sea, saline water from the western North Sea, freshwater Baltic outflow (l..ee 

1970). 

The possibility that large-scale ecological changes in the N01th Sea arc related to variations in 

the Atlantic intlow has been mentioned by several authors (e.g. Fraser 1952, Turrell et al. 1996, 

\Vi tbaard et al. 1997, Re id et al. 2003). 1-1 igh salinity water masses (Otto et al. 1990) and t\ tlantic 

plankton 'indicator species' (Fraser 1969, Rcid et a! 1992, Corten 1999, Edwards et al. 1999, 

Lindley & Batten 2002) observed in tl1e North Sea are particularly indicative of Atlantic intlow. 

The composition of copepod species undertaking ontogenic migration (e.g. CahllliJ"jin!Jimrhims) 

in shelf seas is also largely dependent upon the input of inter-annually varying pulses of oceanic 

water (Corten 1999, Heath et al. 1997). 

The intlO\v of Atlantic waters to the North Sea is highly variable in both source and volume 

(Corten 1986, 1990), and is strongly linked to climate variability mainly through the North 

Atlantic Oscillation (Corten 1990). t\ decrease and an increase in the t\tlantic intlow into the 

northwestern North Sea has been identified in the 1960s and 1970s, and in the 1980s, 

respectively. In this context, the objective of this chapter is to assess the long-term (1958-2003) 

impact of inflow tluctuations in North 1\tlantic water on the North Sea plankton ecosystem. 

Special attention will be given to (i) the relative fluctuations in the two sources of 1\tlantic 

waters intlow (i.e. through the northern North Sea and English Channel) over a 45-year period, 
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(ii) the impact of these Huctuations on salinity, temperature, and nutrient levels between 1958 

and 2003, (iii) the related long-term changes in North Sea plankton, including copepod 

abundance, phytoplankton biomass, and diatom and dinot1agellates abundances, in different 

regions of the North Sea (Fig. 5.1), and (iv) the assessment of the contribution of Atlantic 

int1ow t1uctuations to the observed changes. 

S.B. Data and methods 

5.8.1. Pbytoplankton data 

Only diatoms and dinot1agellates are taken into account in the present work, <lS they are the 

most regularly identitled phytoplankton groups in the CPR survey. Firstly, the abundance of 

every species identified as belonging to the diatoms or dinot1agellates were grouped by 

summing the number of cells identitled to detennine the overall trends in these two groups. 

Secondly, diatom and dinot1agellate species witl1 a frequency of occurrence greater than I "fr, in 

the samples were used as indicator species to provide more information on the processes 

linking climate to changes in the phytoplankton community (Letenne et aL 2005). Five 

dinothgellate species (i.e. Ceratilll?l Jimu, C. .fitJ!IJ~ C. ho17id11m, C. lilleallllil, and C. l1ipol) and six 

diatom t:Lxa (i.e. PI'OboJda ala/a ala/a, Rhi::;pJolellia hebeta/a semiJpina, R. JfJ'liformiJ, ThalaSJionema 

nitzschioideJ, ThalanioJim spp., and ThalaJJiothli.Y lo11giJJima) have thus been considered. 

5.13.2. Zooplankton data 

The most frequently recorded zooplankton organisms within the CPR survey are calanoid 

copepods. Here the most common species identitled in the North Sea are taken into account: 

Am11ia spp., (mainly A. da11si and some A. longiremiJ, Colebrook ( 1982)), Calan11s jillmmrhicm, C. 

helgolandims, Para-PsmdomlamJJ spp. (includes all stages of Pamtu!mms spp. and of Psmdocala11m 

spp. and any unidentifiable small (i.e. <2 mm) copepods), and Temora longicomis. Acartia spp., 

Pam-PJendo,ulamJJ spp. and T. longicomiJ have been identified as represent:ltive of the North Sea 

neritic community (Oceanographic Laboratory Edinburgh 1973, Fransz et al. 1991). Abundance 

estimates from individual plankton samples are inherently imprecise because of variable 

zooplankton behaviour such as dial vertical migration and local weather conditions that can 

concentrate or disperse tine-scale p<ttches (Robertson 1968). The potential biases related to this 

tine-scale variability have been discarded through spatial and temporal averaging of CPR data 

over areas and periods of interest 0\ichardson et aL 2006). 
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5. B.3. Plankto11 specieJ indicati1:e of !be illjlmv of oceanic 1vater 

Some of the plankton species identified by the CPR survey have previously been associated 

with the inflow of oceanic water into the North Sea. These include calanoid copepods such as: 

Aetide11s armalus, SHbeucalaii!IJ cmum, ParaeHchaela hebeJ~ iHellidia IHcells, Rhillcala11m 1/aJIIIIIs, and 

Gmdada am1ata (Lindley et aL 1990, Corten 1999, Edwards el aL 1999). These species were 

included in the analyses. C. armata and M. !ucel/s have already been identified as indicator species 

for Atlantic waters in the northwestern North Sea in several studies (Farran 1910, Rae & Fraser 

1941, Rae & Rees 1947, Corten 2001). A few other species th:1t appear occ:L~ionally in the 

nortll\vestern North Sea, and are also likely to be related to the Atlantic intlow (AW.G. John, 

personnal communication), i.e. the dinoflagellate Ceratium he.'>"aCalltllflnJ and the calanoid 

copepods C!ausot"a!a/1/tS spp. and P!eHrrJIJJamnJa spp., have also been taken into account. 

5.B.4. Hydrological and diJJJalic data 

ICES have provided data ob hydrological parameters such as salinity and nutrient 

concentration (e.g. nitrate and phosphate) on a monthly basis over the period 1958-2003. These 

data were collected for all years from 1958 to 2003 to obtain yearly time series and averaged for 

the top 20 meters of the water column to be consistent with the CPR sampling conducted at 

-10 meters. The climatic indices used in this study are the North Atlantic Oscillation (NAO) 

winter index and Sea SurEJCe Temperature (SST). Several indices have been developed to 

quantify tl1e state of the NAO, but the most widely used is 1-Iurrell's NAO Index (1-Iurrell 

1995a). This index computes the pressure difference based on measurements from Lisbon, 

Portugal and Stykkisholmur, Iceland. In particular, the NAO winter index (NAO) values 

averaged from December to i\Iarch inclusive have been used as a climatic index Q-Iurrell 

1995a). Sea Surface Temperature (SST; see 1he British Atmospheric Data Centre, 

http:/ /badc.nerc.ac.uk/home) data were used to provide additional climatic information that is 

likely to impact phytoplankton growth and abundance. 

5.13.5. Norlb Atlantic !Paten inflow into !be Nortb Sea 

The NORWegian ECOlogical J\Iodel System (NOR\VECOl\I) is a coupled physical, chemical, 

and biological model designed to study primary production, nutrient budgets, and dispersion of 

particles such as fish larvae and pollution (Skogen e/ aL 1995, Skogcn & Soiland 1998). ·n1c 

forcing variables arc six-hourly hindcast atmospheric pressure fields and wind stress from the 
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Norwegian J\-leteorological Institute (DNMI), four tidal constituents at the lateral boundaries, 

and freshwater runoff. Due to a lack of data on the surface heat tluxes, evaporation, and 

precipitation, a climatology method is used for the surface layer (Cox & Bryan 1984). Validation 

of the model system has been achieved by comparison with tleld data in the North Sea and the 

Skagerrak (Svendsen et aL 1995, Skogen et aL 1997, Soiland & Skogen 2000). The circulation 

module is based on the wind and density driven primitive equation Princeton Ocean Model 

(Blumberg & Melior 1980). i\ 20-km horizontal grid covering the whole shelf area from 

Portugal to Notway, including the North Sea has been used. Each simulation was started on 

December 15'h and, after a 2-weeks spin-up time, model results were stored from January 1" to 

December 31 ".The model was then re-initialized and run for the next year. 

Based on the modelled current tlelds, average monthly intlows through ;m east-west section 

from Utsira (Norway) to the Orkney Islands along 59°17'N (i.e. northern intlow) in the 

northern North Sea and a longitudinal section through the English· Channel in the Dover 

Straits along 0°E (i.e. southern inflow), were computed for all years from 1958 to 2003 and 

averaged for the whole water column. The outtlow and net tlow (i.e. the sum of Baltic outtlO\v, 

river runoff, and tluxes through the Channel via the Dover Straits) were also computed over 

the same period. Data from the NOR\VECOM model were provided by Dr. M.D. Skogen 

(Institute of Marine Research, Bergen, Norway). 

5. B. 6. 5 /aliJiical anafyJiJ 

In each region, the data obtained for the estimates of phytoplankton biomass (i.e. PCI), 

phytoplankton abundance (i.e. total diatoms, total dinotlagellates, and phytoplankton indicator 

species), zooplankton species, plankton species indicative of oceanic water intlow, salinity, and 

nutrients have been averaged every year over the period 1958-2003. The climatic index (j.e. 

SST), as well as the estimated northern and southern inflows from the Atlantic, were also 

computed as yearly means. 

Any temporal trends within the time series obtained for each of the 13 regions delimited within 

the North Sea (Fig. 5.1) were tested by calculating Kendall's cocftlcient of rank correlation, 1, 

between the yearly time series of the physical and biological parameters and the x-axis values in 

order to detect the presence of an underlying linear trend. 
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To detect changes, intensity, and dura tion of any variation in the value o f a gi \'en parameter, the 

cumulative sum method 0banez et aL 1993) which enhances the trends in data anomalies and 

the presence o f a regime shift has been used. The calculation consists o f subtracting a reference 

value 01ere the mean of the series) from the o riginal datl; these ano malies are then successively 

added, fo rrning a cumulative function . Successive positive anomalies produce an increasing 

slope, whereas successive negative anomalies produce a decreasing slope; a succession o f values 

similar to the mean shows no slope. This analysis has only been applied to the environmental 

Yariables (i.e. SST, )J .. .-\0 and inflow o f Atlantic waters) and plankton variables, but no t to the 

hydro logical parameter datase t (salinity and nutrient concentratio n) as there were too many 

missing data in the time series. 

l 
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Figure 5.1. Study area divided into 13 regions identified using hydrodynamic (i.e. s tratified , mixed and 
frontal) and bathymetric criter~t. 

The association between the northern and southern in~lows of Atlantic waters and o ther large­

scale ,·ariables (i.e. clima tic fo rcing _ _ -\0 and ' S1), hydrological parameters (salinity and 

nutrient concentration), and biological measures (copepod species, phytoplankton groups and 

plankton species indicative o f oceanic inflow) was tested th rough Spearman rtmk co rrelation 
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analysis. The analysis was performed between residual monthly time series (i.e. seasonal cycle 

removed) of both northern and southern intlows of Atlantic waters and residual monthly time 

series SST in order to test the long-term effect of oceanic inflow. Because of the scarcity of 

values other than zero in some plankton time series, the traditional methods of correlation were 

not appropriate (Scherrer 1984). In order to have homogeneity in the statistical methods 

applied, the relationship between the oceanic inflow and plankton species has been investig,lted 

by applying Spearman's correlation to cumulative sums of the variables. The same method was 

applied to climatic forcing data such as SST and NAO. However, as the cumulative sum 

method could not be performed on the hydrological parameters, Spearman's correlation 

analysis was not conducted between inflow of Atlantic waters and salinity and nutrient 

concentration. 

To investigate changes in the whole assemblage composition of the plankton, a suite of 

multivariate analyses were employed utilizing the PRii'v!ER 5 O)lymouth Routines 111 

Multivariatc Ecological Research version 5) software. These arc similarity-based analyses 

designed to visualize, and test the significance of, changes in community composition in time 

and space and they have been particularly widely utilized in the marine environment (sec Cbrkc 

& \Varwick 2001). 'Il1ree procedures were employed in this analysis: 

I. :--!On-metric multi-Dimensional Scaling (NODS), producing a 2-dimensional ordination to 

visualize differences in community composition, supplemented by creating second-stage 

""·lDS ordinations of regions to assess similarity of temporal trends (Somcrfield & Clarke 

1995); 

2. ANOSIM (Analysis of Similarities, Clarke 1 993), a formal signiticance test of differences in 

composition between a p1i01i defined groupings 

3. BIOENV (Ciarke & Ainsworth 1 983), correlation-based procedures that de tine the 

environmental variables that best explain patterns in the underlying biotic matrix. 

Separate analyses were undertaken on zooplankton and phytoplankton species matrices, plus 

2"'1-stage MDS on environmenttl variables, in order to identify significant differences between 

decades (i.e. from 1960 to 2000) and/ or presence of regime shifts. 'T'he term 'regime shift' has 

been used to describe large, decadal-scale switches in the abundance and composition of 

plankton and fish (Reid et aL 200 1). First, Bray-Curtis similarity indices were calcubted between 

each pair of samples, to form a similarity matrix, using Log (X+ I) transformations to smooth 

out the influence of abundant plankton species. r\lulti-Dimensional Scaling (r\IDS; 10 runs) was 

then under~aken on the similarity matrix for each region, resulting in 2-dimension ordination 
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plots. Using the similarity matrices produced for all North Sea regions, a 2"ct-stage J\·IDS was 

computed tor copepods, phytoplankton and environmental variables. This method calculates a 

similarity value between all pairs of matrices, using rank correlation (here, Kendall). The results 

give a graphical indication of the similarity of change within the regions on a second stage !\{OS 

ordination plots. To formally test differences in assemblage composition between decades (to 

investigate major changes in the plankton) and pre- and post-regime shift, analysis of 

similarities (ANOSIM, a multivariate randomisation procedure broadly analogous to ANOV A) 

was applied to similarity matrices for each region. Finally, in order to determine which 

environmental and hydrological variables (i.e., SST, NAO, salinity, phosphate, nitrate, and 

intlows of Atlantic waters) best explained the changes observed m 

zooplankton/phytoplankton, the BIOENV algorithm was applied on a joint matrix of 

copepods, environmental and hydrological variables, and on a plankton similarity matrix from 

the same region. Combinations of the environmental variables were considered at steadily 

increasing levels of complexity, i.e., k variables at a time (k = 1, 2, 3), to yield the best matches 

of biotic and abiotic similarity matrices tor each k, as measured by Spearman rank correlation 

p,. This method then selects the variables that best explain the phytoplankton community 

pattern by maximizing a Spearman rank correlation between their respective similarity matrices. 

Here, BIOENV analysis selects the \·ariable that best explains the tluctuations of plankton 

species. 'l'he best three explanatory variables are also t,1ken into account to determine which 

combination of environmental factors induces the changes observed (or not) in plankton 

spectes. 

S.C. Results 

5. C. 1. Long-/em; cbangeJ in !be etmironmenl 

Between 1958 and 2003, based on modelled dat,t, the southern intlow of I\tlantic \Vaters into 

the North Sea signiticantly increased ( T = 0.22, p<O.OS). 1-Imvever, no signiticant long-tem1 

trend in the northern intlow was identitied (b>0.05). A signiticant relationship was observed 

between Ni\0 and the northern intlow (P, = 0.581, p<0.05). The cumulative sums revealed 

short-tenn trends within the long-term changes identitied above (Fig. 5.2). 'l11e northern intlow 

decreased until 1988, then increased until 1995, and tinally decreased until 2003. i\ decreasing 

trend was observed in the southern intlow until 1982, tollowed by an increase until 2003. This 

suggests differential shifts in the intlow of Atlantic Waters through the northern and southern 
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_ o rth Sea. H owever, the regJmes identified are similar with a low and high intlow 

characterized respectively by the decrease and increase in cumulative sums. In addition, a 

significant relatio nship was observed between cumulative sums of AO and the cumulative 

sums of no rthern intlow (P, = 0.85, p<O.OS, Fig. 5.2) . D espite a similar trend, the relationship 

between NAO and the southern in How was weaker ( p, = 0.66 , p<O.OS, Fig. 5.2) . This was 

primarily due to a decoupling of the intlow trend from the _ AO after 1980. 
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Figure 5.3. Decadal means of Sea Surface Temperature fo r the whole North Sea from 1958 to 2003 
(from ICES and UK MetO ffice dataset). 
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Figure 5.4. Ctm1ulative sums of Sea Surface Temperature (SST) in the different regions of the North 
Sea and English Channel. Regions 1 and 4, showing different patterns to the other regions are shown in 
black. 
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Across most of the North Sea, long-term changes have been observed in SST (Table 5.1, Fig. 

5.3). Apmt from regions I and 4, the cumulative sums of SST increased until 1962, then slowly 

decreased until 1987 (Fig. 5.4), and finally increased until 2003. "This suggests that regions 1 and 

4 have not been constrained by the same forcings as the other regions of the North Sea. In the 

s:tme way, the relationship between SST and the inHow of Atlantic \Vaters differed depending 

on the origin of the How. In regions 5 to I 0, there was a signitlcant positive relationship 

between annual time series of SST and northern inHow (0.36.::; P,.::; 0.44, p<0.05). However, 

signitlcant positive relationships between annual time series of SST and the southern inHow 

were only observed in region 10 (P, = 0.30, p<0.05). This suggests a long-term effect of 

oceanic intlow on the SST of the North Sea, supported by a signitlcant correlation observed 

between cumulative sums of SST and cumulative sums of northern inHow in region 1 

(P, = -0.38, p<O.OS) and in regions 7 to l3 ( 0.32.::; P, .::; 0.43, p<0.05). For areas 8 to 12, 

signitlcant correlations were also apparent between cumulative sums of SST and cumulative 

sums of southern intlow (0.47.::; P,.::; 0.79, p<0.05). In addition, except in region I, 4 and 13, 

signitlc;mt positive correlations were observed between annual time series of SST and NAO 

(0.31.::; p,.::; 0.62, p<0.05). However, signiticant correlations between cumulatiYe sums of SST 

and cumulative sums of NAO were only observed in region I (P, = -0.57, p<0.05), 7 to 10 

( 0.29.::; p, .::; 0.33, p<O.OS), and 13 (p, = 0.30 , p<O.OS). 

Table 5.1. Results of Kendall's statistical test for the yearly time series of Sea Surface Temperature, 
s;dinity, nutrients, Phytoplankton Colour Index Q)Cl), dinoflagcllares, diatoms, phytoplankton indicator 
species and copepod species over the period 1958-2003. ·• 5% confidence level. Due to missing data, 
nutrients time series have not been an:dysed for regions 11 to 13 (-). 

Areas ~ 3 4 5 6 7 8 9 10 11 I~ 13 

SST -0.02 0.23' 0.20' 0.17 0.30' Ll26' 0.36' 0.32' 0.36' 0.33' 0.23' 0.22' 0.23' 

Salinity -0.18 -0.14 -0.14 0.29' -0.06 -0.07 -0.14 -0.14 -0.17 0.18 -0.21 -0.10 0.21 

Nitrate 0.25' 0.22 Ll02 0.05 -0.08 0.51' 0.07 0.32' 0.36' -0.02 

Phosphate 0.14 0.35' -0.08 0.02 -0.07 0.34' 0.07 0.18 0.23' 0.11 

PCI 0.03 0.04 0.15 0.20' 0.13 0.22" 0.13 Ll08 0.11 -0.02 0.19 0.22' -llOI 

Dinofhgcllatcs -0.27 1 0.05 0.41' -0.28' -0.14 -0.23' -0.19 -0.17 -Ll26' -ll02 0.03 0.26 1 0.12 

Diatoms -{1.42' 0.03 0.33' -OJY -0.18 -0.24' -0.25' -Ll07 -0.17 -[1.1 0 -0.24' Ll07 -[1.1 () 
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5.C.2. Decadal.fludualiOIIJ qfp/?ytop!tmkton in the North Sea 

Between 1958 and 2003, decadal-scale changes have been observed m the phytoplankton 

community. These trends, however, were not consistent across the whole North Sea, indicating 

the importance of smaller spatial scale processes. Hereafter the name of the diatom and 

dinotlagellates indicator species exhibiting the s:une trends as their taxa are given in parenthesis. 

The Phytoplankton Colour Index (PCI) significantly increased in regions 4, 6, and 12 (Table 

5.1). Significant increases have also been observed for diatoms ('r !ongissima) in region 3, and 

for dinotlagellates (Cemti11m spp.) in regions 3 and 12. However, significant decreases have been 

observed in regions 1, 4, 6, 7, and 11 for diatoms (P. a/ala ala! a) and in regions I, 4, 6, and 9 for 

dinotlagellates (C. j11ms, C. lilleafllm, and C. tlipo.~). Some indicator species, however, did not 

follow the same trend as their major taxonomic group. Rhizosolellia spp., Tba!assiosim spp., T 

llitzscbioides, and P. a!ataa!ata significantly increased in region 8, but Rhizosolellia spp. and P. alata 

alata significantly decreased in region 5 (Fig. 5.5). ln addition, T llitzschioides significantly 

decreased in region I and increased in region I 0, whilst signitlcant increases were observed for 

Thalassiorira spp. in regions 2, 3, 8, 9, 12, and 13. 

Signiticant correlations were also observed between cumulative sums of phytoplankton and 

cumulative sums of both Atlantic \Vater intlows. For the northern intlow, there were signitlcant 

negative correlations with diatoms (P. alata a!ata and T llitzschioide.~) in regions I and 4 to 8 

(Table 5.2) and with dinotlagellates (C. jiwts, C. lilleaflllll, and C. f1ipo .. ) in regions 1, 4, and 6 

(Table 5.2). Conversely, positive correlations \vere apparent between northern inflow and 

diatoms (T lo11giHima and Tba!assiosim spp.) in regions 2 and 3 (Table 5.2) and with 

dinotlagellates (C.fiura and C. t1ipos) in regions 2, 3, and 8 (fable 5.2). r•or the southern inflow, 

there was a signitlcant negative correlation with diatoms (P. alata a/ala, R. bebeta/a semispi11a, and 

T lo11giuima) in regions 8 to 11 (fable 5.3), and with dinotlagellates (e.g. C. fiuw, C. bonidii!IJ, C. 

lillealllm, :md C. l1ipo.~) in region 9 (Table 5.3). 

1lle relationship between phytoplankton indicator species and :\tlantic intlow differed between 

regions and did not always retlect the relationship observed as a whole for their taxa. In 

contrast to most other diatom indicators, signitlcant positive correlations were mostly recorded 

between FbalaJJiosira spp. and northern intlow (Table 2), similarly observed for three 

dinotlagellate indicator species: C. jiom, C. fiwu, and C. bonidum (fable 5.2). The relation 

observed between R. sty/ifiH7lliJ· and the southern inflow was highly polarized with positive 

correlation in regions 8, 12, and 13, and negative correlation in region 9 (fable 5.3). In 

69 



Table 5.2. Results of Spearman's correlation analysis between the cumulative sums o f the time series of 
phyto plankton indicato r species, copepods and the modelled no rthem inflow (at 59°17'N) over the 
period 1958<:W03. T he analysis was performed only in the areas poten tially influenced by the northern 
inflow (regions 1-8). Black and grey areas represent significant (D<O.OS) positive and negative 
correlations, respectively. 

Areas 

total Diatoms 

Proboscia alata a/ala 

Rhi::;psolmia hebetata semispina 

Rbizysolenia sfJ'liformis 

Tbalo.rsionema nitzscbioides 

Thalassiosira spp. 
ThaiafJiot hri.-.· ltmgiJsima 

to tal Dinoflagellates 

Ceratium Jurca 

Ceratium juSIIS 

Ceratium horridum 

Ceratium linealti!JJ 

Ceratium tripos 

Amrtia spp. 

Calanus jinmardJicus 

Calanus belgolaudims 

Para-Pseudocaltmw spp. 
Temom lnmum,rm,. 

2 3 4 5 6 7 8 

Table 5.3. Results of Spearman's correlation analysis between the cumulative sums o f time series of 
phytoplankton indicator species and copepods and the modelled southem inflow (through the E ngl ish 
Channel) over the period 1958-2003. 1l1e analysis was perfo tmed only in the areas possibly influenced 
by the southern inflow (regions 8-13). Black and grey areas represent significant (D<O.OS) positive and 
negative correlations, respectively. 

Areas 

total D iatoms 

Probosda ,i/ata alata 

Rhi::;ysolenitt hebetata semispina 

Rhizysoleuia JtylijomJis 

TbaltTJsionenw nit::;:_scbioides 

TbalaJsiosira spp. 
Thalassiothri: .. : lougissima 

to tal Di.noflagellates 

Ceratium jilfra 

Ceratium jt1sus 

CeratiJifll borridum 

Ceratium lineatum 

Ceratium tripos 

Amrtia spp. 

Calmms Jinmarcbims 

Calanus belgoltmdim.< 

8 9 10 11 12. 13 
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Figure 5.5. Kendall's rank correlation coefficient identi fying long-term trends 111 phytoplankton 
indicator species over the period 1958-2003 (5% significant level: 1 >0.201). 
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addition, the relationship between T. !ongiuima and the southern int-low was variable, with 

positive correlation in region 8, and negative correlation in regions 9 to 12. Cemtium honidum 

and the southern int-low also showed opposite relationships, with positive correlation in regions 

11 and 12, and negative correlation in regions 8 to 10. ivloreover, the relation between C. flora 

and the southern intlow was mainly positive in the southern North Sea and English Channel 

regions, (fable 5.3). On the contrary, the relation between R. hebetafa semispina and the southern 

intlow was negative in the southern regions of the North Sea (fable 5.3). 

5.C.3. Decadal Jlttctuatiom of zoopla~~kton in the North Sea 

i\s observed with phytoplankton indicator species, differential long-term trends have been 

identified for copepod species dependent on the region. Acmtia spp. showed a marked split in 

response within the North Sea, signitlcantly increasing in regions 2, 3, 5, and 6 (Fig. 5.6) yet 

decreasing in regions 4, 7, and 8. Similarly, T. !ongicomis signitlcantly increased in regions 3, 6, 

and 11 and decreased in regions 4 and 7 (Fig. 5.6). Significant decreases of C. Jinmmrhims and 

Pam-Pseudo,da!lus spp. populations occurTed in most regions, except in regions I (far N\'\0 and 

12 (far S\'\0 respectively, where they signitlcantly increased (Fig. 5.6). Finally, C. he!go!andim,· 

significantly increased in most regions. 

The relationship between oceanic intlows and copepod spectes varied geographically. 

Signitlcant negative relationships were identitled between copepod species (Acmtia spp., C. 

ji11man'himJ, Para-Pseudocaia!IIIJ' spp., and T. lo11gicomis) and southern intlow in the southern North 

Sea (fable 5.3). Some of these copepods (Acmtia spp., Para-Pmtdoca!amts spp., and T. !ongicomi!), 

however, were also positively correlated to the northern int-low (fable 5.3) in the northern and 

central North Sea. In contrast, the relationship observed between C. he!go!andimf and northern 

(fable 5.2) and southem (Table 5.3) intlows was mainly positive over all the regions of the 

~orth Sea. 

5. C.~ F lflctflationJ in plankton JpedeJ indicators q/ oceanic inf/oJV 

The decadal changes in the intlow reported earlier are expected to be related to the occurrence 

of plankton species indicative of oceanic waters. Two such species of calanoid copepods (i.e. 

Mettidia illce!ls and Ca11dacia armata) ustully associated with the intlow from the northern North 

Sea (Lindley et al. 1990) demonstrated long-term trends between 1958 and 2003. Whilst both 
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Figure 5.6. Kendall's rank correlation coefficient identifying long-term trends in zooplankton indicator 
species over the period 1958-2003 (5% significant level: 1 > 0.201). 
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spec1es significantly increased m most o f the re~ons of the o rth Sea (Fig. 5.6), their 

relationship with the oceanic intlow •aried geographically with the source of the inflow 

considered. M. lucens and C arma/a showed a positive correlatio n with bo th southern and 

no rthern inflows in most of the regions of the ~orth ~ea (Table SA), but i\1. lumJJ was 

negatively correla ted with the southern intlow in regions 12 and 13 (Table 5.4) and with the 

northern intlow in region 3 ( f able SA). 

Table 5.4. Results o f Spearman's correlation ;malysis between the cumulative sums of time series of 
plankton species indicators of oceanic inflow and the modelled (N) northern and (S) southern inflow 
over the period 1958-2003. Black and grey areas represent significant (p<O.OS) positive and neg,ttive 
correlations, respectively. \'l1ite areas correspond to non-significant correlations. Due to the scarce 
observation o f some species in the 'o rth Sea, when there were only zeros in the area the analysis was 
not performed (-). 1 The considered inflow does not influence this region. 

Spec ies Inflow 2 3 4 5 6 7 ll 9 10 11 12 13 

Attidus armalus 
s -~ 

Cmulacia armala 
s 
N 

Cemlium hexoranlhHm 
s 

( .lausorolam11 
s 

PP· :-J • Submrolmms crassus 
s -N • • Paramrbatla bebes 
s • N • ,\[dridia hums 
s 
:-J • • J>lmrnmmama spp. 
s 
N 

HlJinralanm nas11h1s 
s • :-J 

\ few o ther spec1es, including spec1es of phytoplank ton (i. e. CewtiNJJI he.:,:acalllfmm) and 

zooplank to n (i.e. rletidew arJJiallfJ", Chmoca/.anw spp., S~tbeucalamts ounw, Pamelfchae/a hebeJ~ 

PlmromaniJJia spp., and RJJi11calanw ntmtfNs), appear occasion,•lly in the no rthwestern orth Sea 

and seem to be related to the _-\tlantic intlow (Lindley t!l al. 1990, Corten 1999). 111ose species 

have si~1i~lcantly increased in regions 2 and 7, ,md were COtTelated to the northern inflow in 

the western ~or-tll Sea ( fabl e SA). In addition, in most of the English Channel, the southern 

intlow was positiYely related to tl1cse species (l"able 5.~). ll owever, some o f these species also 
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increased in other regions of the North Sea: P. hebeJ increased in regions 1 to 8 and Clawocalamts 

spp. and S. tmss11s increased in the English Channel (fable 5.4). However, only Plem'O!JJ!l!JIIJ/a 

spp. singularly showed a different relation with the intlows, i.e. negative correlation with the 

southern and northern intlow (fable 5.4). 

5.C.5. Decadal changes in the North Sea pelagic communi(y compoJition 

\'1/ithin the North Sea, decadal-scale trends in community composition varie~ depending on the 

region of study and between phytoplankton and zooplankton. Using ANOSil\{, the existence 

of significant difference between decades in the assemblage of key copepod and phytoplankton 

species was determined. On the assumption of a regime shift in the 1986-1988 (Reid et al. 2001; 

Beaugrand 2004), the difference in phytoplankton between the two regimes (i.e. 1958-1987 ;md 

1988-2004) was tested; a significant difference was only evident in regions 1 ( r = 0.32, p<O.Ol) 

and 9 ( r = 0.27, p<0.02). In contrast to the phytoplankton, signitlcant differences between the 

pre- and post-regime shift assemblages (1 958-1987 and 1988-2004) was apparent in regions 2 

(r=0.26, p<0.01), 3 (r=0.30, p<0.01), 4 (r=0.27, p<0.02), 6 (r=0.27, p<0.01), and 7 

(r = 0.39 ,p<0.01). 

The variables (i.e. SST, Ni\0, salinity, phosphate, nitrate, and intlows of Atlantic waters) are 

likely to explain the tluctuations observed in phytoplankton and zooplankton species in the 

North Sea. However, their contribution to the plankton tluctuations was not consistent across 

regions (fable 5.5), although for phytoplankton species, northern intlow, NAO, and SST are 

included in the combination of variables in most of the regions. In regions I, 5, 6, and 7 the 

tluctuations in phytoplankton were explained by the northern intlow as a single variable. In 

addition, SST, alone, best explains as a single variable the phytoplankton variations of regions 2 

and 4, and is included in the combination of variables explaining the changes in regions 5, 6, 

and 7 (fable 5.5). Finally, phosphate and Nt\0 best explain as single variables the variations 

obsen,ed in coastal regions 3 and 9, and 8 and 10, respectively. Different results were obtained 

for copepod species, with SST best explaining the changes as a single variable in regions 2, 4 to 

7, and 9. In contrast, in regions 3 and 10 (northeastern and southernmost North Sea) the 

southern intlow best explained, as a single variable, the variability observed. In addition, 

phosphate and northern intlow best explained, as single variables, the tluctuations obsen'ed in 

regions 8 and I, respectively. 
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Table 5.5. Result o f BTOE)JY ru1alysis between environmental/hydrulogtc variables (i .e . SST, NAO, sal inity, phosphate, nitrate and inflows of Atlantic 
waters), phytoplankto n indicator spcctcs and copepods. The single vanable best explain Ulg the patterns wtthin the biotic matri..x is underlined and the 
corresponding weighted pearman correlation coefficient ts indicated. 

Phytoplankton Copepods 

Environmental and hydrological 
Best Best 

Environmental and hydrological 
Best Best 

Region single combination single combination 
variables 

rl rbest 
variables 

rl rbest 

Northern Inflow, NAO 0. 154 0.178 Northern Inflow 0.162 

2 SST, Salinity 0.143 0.145 SST, NAO 0.175 0.180 

3 NAO, Northern Inflow, Phosphate 0.079 0.115 Southern Inflow, NAO, SST 0.192 0.242 

4 SST 0. 121 SST, Northern Inflow 0.081 0.103 

5 Northern Inflow, Nitrate, SST 0.287 0.422 SST, Nitrate 0.179 0.232 

6 Northern Inflow, SST 0. 182 0.229 SST, Phosphate, Southern Inflow 0.175 0.198 

7 Northern Inflow, SST 0. 104 0.127 SST 0.304 

8 Phosphate, Salinity, NAO 0.09 1 0. 109 Phosphate, Northern Inflow, Nitrate 0.042 0.070 

9 NAO 0.205 SST, Salinity, Nitrate 0.081 0.127 

10 Phosphate, NAO 0. 157 0.273 Southern Inflow, SST 0.176 0.208 
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Figure 5.7. Second stage Multi-Dimensional Scaling ordinations for similarity matrices of (A) 
environmental variables, (B) phytoplank'ton indjcator species and (q copepods in each region of the 
North Sea (R1-R10). 
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The second stage MDS enabled a groupmg of regions by similarity in order to assess 

consistency of patterns of change over time within multivariate data matrices. From the analysis 

using environmental variables (i.e. SST, NAO, salinity, phosphate, nitrate, and intlows of 

Atlantic waters), three groupings can be identified (Fig. 5.7a). The first group corresponds to 

regions 2 and 4, the second gathers regions 3 and 5 to 8 and the third group assembles regions 

9 and l 0. The same analysis was conducted using key phytoplankton species (C. fimu, C. fiiJus, 

C. honidum, C. lineatunl, C. tlipos, P. alata a/ala, R hebelata semiJpilla, R s(J'!iformis, T nitzHhioides, 

Thalassiosira spp., and T. longissima) and four groups were identified (Fig. 5.7b). The first group 

gather regions 3 and 10, the second brings together regions 4 and 5 to 7, the third group 

gathers regions 2 and 8, and the fourth group corresponds to regions I ;md 9. Using copepod 

species (Atw1ia spp., C. ji11mmrhims, C. helgolandiau, Para-Psmdocala11w spp., and T longicomis), 

only two groups of regions were identified (Fig. 5.7c). The first group brings together regions 2 

and 4, and the second group gathers regions 5, 7 and 8. The group of regions identitied using 

the different variables (i.e. phytoplankton, copepods, or environmental variables) were rarely the 

same, implying that the underlying patterns of environmental change do not result in similar 

plankton assemblages. However, the groups identified in the environmental variable analysis 

(Fig. 5.7a) were most similar to those for copepod species (Fig. 5.7c), suggesting that copepods 

arc rctlecting more closely than phyropbnkton species the physico-chemical changes within the 

pelagic em·ironment. 

S.D. Discussion 

5.D.I. Long-term Jludualiom '!f. LJt/anliL" IPaten i1~[/ow into !be Nortb Sea 

Between 1958 and 2003, the intlow of Atlantic \Vaters into the North Sea has signiticantly 

increased through the English Channel, but no signiticant trend was observed for the northern 

intlow. J\'loclelled tlows indicate higher intlow into the northern North Sea from the west in the 

region of the Fair Isle Channel, between the Orkney and Shetland Isles, in the late 1980s and 

early 1990s, but decreased intlow from the Norwegian Sea, east of Shetland (Stcphens el aL 

1998). 1\s the northern intlow used in our study combined the intlows via the cast of the 

Shetland Islands and the Fair Isle Channel, this would explain why no long-term tluctuations 

were observed in overall northern intlow. The regime shifts observed in northern and southern 

intlows during the 80s have already been suggested by Cotten (1999) and Rcid et al. (2003). This 

is also consistent with previous statements that the intlow of species associated to the oceanic 

78 



inflow into the North Sea appears to have been greater in the late 1980s and 1990s than 

previously (Lindley & Batten 2002). 'l11eir biolog1cal observations have been supported by 

hydrographic data, such as the anomalously high salinity in the late 1980s and early 1990s 

recorded in the Skagerrak (Danielssen et aL 1996), the Southern Bight (Laane et aL 1996) and in 

the northern North Sea (Heath et al. 1991). In our study, salinity revealed a long-term increase 

only in the northwestern North Sea and a significant relationship was observed between salinity 

and the northern and southern inflows in reg1ons 2 and 11, respectively. Decadal changes have 

also been observed in nutrients, with positive long-term trends in nitrate in reg1ons 1, 6, 8, and 

9 and in phosphate in reg1ons 2, 6, and 9. In the Southern Bight of the North Sea (i.e. reg1on 8 

and 9), the increase in nutrients reflects the eutrophication (i.e. the increase in the rate of supply 

of organic matter (Nixon 1995) of the area (Lancelot et aL 1997, Druon et aL 2004). In reg1on 6, 

the increase in nutrients might retlect changes in the circulation of the North Sea. During 

positive phases of Ni\0, the increase in westerly winds results in an intensitication of the 

cyclonic circulation in the North Sea (Schrum 2001). 'l11e transport of water masses along the 

Southern Bight is then enhanced, as well as the sweep of rich nutrient water towards the east of 

the North Sea. 

A significant relationship was observed between the NAO and both northern and southern 

intlows, but the relationship between the N1\0 and the southern intlow was weaker than with 

the northern inflow. The intlow via the Fair Isle Channel is mainly wind-driven and 

signiticantly positively correlated to the Ni\0 during the winter (Planque & Taylor 1998). In 

addition, a smaller wind-driven How enters through the Strait of Dover, witl1 warmer saltier 

properties tl1at are signiticant for the temperature and salinity distributions in the Southern 

Bight of the North Sea (Pingree 2005). However, the east Shetland inflow current seems to be 

more density-driven (Svendsen et aL 1991), at least during summer months, \Vith a tendency for 

topographic stirring of flow from far tie id forcing (Pingree & Le Cann 1989). The wind-driven 

component of the oceanic intlow is associated witl1 the different phases of the NAO. Positive 

phase NAO is associated with southwesterly winds that increase wind-driven intlow through 

the northern North Sea (Fig. 5.8). Greater intlow of oceanic water following soutll\vest or 

northwest winds has already been obsen'ed (Fumes 1992, Svendsen & i\hgnusson 1992). In 

addition, Schrum (2001) showed that the intlow of saltier North Atlantic water increased 

strongly with increasing westerly winds. On the other hand, a neg<ltive phase of NAO is 

associated with southeasterly winds (Fig. 5.8), resulting in less intlow for the same wind stress 
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0)ingree 2005). Southeasterly winds will ha-.e a negative impact on the wind-driven inflow via 

the Fair Isle Channel but little o r no impact on the wind-driYen southern inflow through the 

Stmit of D over. TI1e strength of the wind during positiYe phases of NAO will determine the 

inrlow and imply a greater entrance o f warmer water into the 1 orth Sea and, consequently, an 

increase in SST and salinity. ln most of the North Sea, long-term changes have been observed 

in SST <md these have been related to the northern inflow. In addition, significant positive 

relationships have been o bserved between SST and the soutl1ern intlow in regions 9 and I 0. 

The regime shifts observed in SST and no rthern inflow occur during the same period (1985-

1990) which led to the hypothesis that decadal f-lu ctuations o f SST in the o rth Sea are highly 

influenced by the oceanic inrlows (Becker & Pauly 1996). Howe,·er, stra tification and surface 

heat tluxes that are also important factors influencing the Yariations o f SST have not been taken 

into account in tl1is study. 

Figure 5.8. \\ 'ind-dri\'en residual currents resulting from a uniform southwest <U1d southeast wind stress 
of 1.6 dynes cm-2. T he length of a current ,-ector deteonines the strength o f the current at its central 
point. The current arrows arc slightly curved to conform to the direction of current flow (after Pingree 
& G rifftths 1980). 
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5.D.2. Decadal changeJ i11 JjJedeJ i11dicati1'e rfAtlantic i1~{1ow 

As decadal changes have been observed in the intlow of Atlantic \Vaters into tl1e North Sea, 

the occurrence of plankton species considered as ilie best indicators of oceanic waters (Corten 

1999) would be expected to show the same t1uctuations. This is indeed the case for iHet1idia 

!ucei/J and Candacia mmata that demonstrated long-term increases between 1958 and 2003 (Fig. 

5.6). Both species usually appear in the North Sea in the second half of the year, and survive for 

several months before iliey decline (Corten 1999). ll1ey are associated with the int1ow of 

oceanic/mixed warm waters into the central and soutllCrn Nortl1 Sea and have shown an 

increase in the western and southern North Sea (rable 5.4). Moreover, C armafa increased in 

the northeastern North Sea. 1\s plankton species are highly int1uenced by the t1ux of water 

masses, C mmata is dependent on oceanic int1ows and cirLl..llation within the North Sea. i\s 

the abundance of C armafa increased in western and southern North Sea regions, the currents 

towards the northeastern Norili Sea might have entrained more individuals than usual and 

caused the increase of C m'lJJafa in the northeastern North Sea. 

In addition, the relationship of M. !ucei/J ;md C ammta with the oceanic int1ow varied according 

to the region and ilie source of the int1ow considered, but they were mainly positively 

correlated to both southern and northern int1ow in the North Sea. However, M. !ucens was 

negatively correlated with the southern int1ow in the English Channel and eastern Atlantic, and 

with the nortl1ern int1ow in the northeastern North Sea. Some environmental parameters 

inherent to those areas might have had a negative impact on M. !ucms. In particular, SST and 

NAO have been observed int1uencing copepods t1uctuations in the northeastern North Sea. A 

fe\v other species, including phytoplankton (i.e. C hc,·act1111fmm) and zooplankton (i.e. A. am1atus, 

C!amoca!anw spp., S. oasmJ~ P. hebes, P!eurvmamma spp., and R namtus) species, have also been 

described as indicative of Atlantic int1ow (Lindley et al. 1990, Corten 1999). However, in 

contrast to M. !ucms and C armata, those species (e.g. P. hebes) have only significantly increased in 

the regions directly int1uenced by the northern int1ow (e.g. regions l, 2, 4, and 7). In addition, 

they have been reported as showing up in tl1e North Sea only during episodes of exceptional 

input of Atlantic water (Corten 1999). If these species were not observed in the central and 

southern Nortl1 Sea, it might be because they cannot adjust to North Sea conditions and 

disappear soon after entering the North Sea. i\n exceptional el'ent is then needed for tl10se 

species to be observed in the ~orth Sea by the CPR survey. 
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5.D.3. Lollg-term fludualioiiJ ill tbe plank/oil COI!lllllllli(J' 

Between 1958 and 2003, decadal-scale changes have been observed within phytopbnkton and 

zooplankton communities, but these trends were not consistent across the whole sea, indicating 

the importance of processes acting at the below-sea scale. 

Firstly, diatoms significantly increased in southeastern (i.e. P. a/ata a/ata, R. hebetafa semiJpina, K 

styltformis, T longiJSima, and ThalaSfioJira spp.) and northeastern (i.e. T. longi;Jima) North Sea 

regions. T. kJIIgissima and ThalasJinsira spp. were positively correlated to both southern and 

northern inHow in this area. T. longiHima is a typical Atlantic diatom which usually declines 

rapidly after entering the North Sea Q{eid et aL 1992, Corten 1999). However, due to the 

increase in the cyclonic circulation of the North Sea associated to the increase in westerly winds 

(Schmm 2001), T !tJIIgiHima might have drifted further, towards the eastern North Sea 

causing the increase in abundance of that species not usually observed in this part of the basin 

(Reid et al. 1992). On the opposite, TbalaJ·Jiosira spp. are typical species of the NE J\tlantic and 

the North Sea (Continuous Plankton Recorder Team 2004). The increases in ThalaJ·Jiosira spp. 

in the southeastern "-Jorth Sea then does not seem to be related to changes in the intlows or in 

the circulation of the North Sea, but to local processes inherent to this region. In particular, 

during positive phases of the ~1\0, the increase in precipitation over Northern Europe is 

associated with an increase in river runoff (Drink·water et aL 2003). In the south North Sea, 

Belgium, Dutch and German rivers discharge lots of nutrients (llickel et al. 1995). The 

increased nutrient stocks in the southeastern North Sea might then be responsible for the 

increase in ThalaJJio;ira spp. 

Secondly, dinotlagellates (i.e. Ceratium spp.) significantly increased in the northeastern North 

Sea; Ceratium spp. was positively correlated to the northern inHow in this area. Edwards et aL 

(2006) suggested that the increase in the abundance of the genera Ceralittlll spp. off the coast of 

Norway was related to hydroclimatic changes. Schrum (200 I) showed that the outtlow of the 

fresher North Sea water along the Norwegian coast increased. ll1e long-term decreasing trend 

in salinity is probably caused by the increase in precipitation and substantial increase in nmoff 

associated with positive values of the Ni\0 (Sa~tre et al. 2003). As the NCC How has increased 

between 1958-2003 (Kendall correlation test, r = 0.26, p<O.OS), low-salinity water input from 

the Baltic, as well as transport of freshwater discharged by ri\·ers draining the continental areas, 

might have increased, causing more frequent stratitication along the western Norwegian coasts. 

Bearc et aL (2002) indeed observed <t freshening of the North Sea waters west of .'i0 E between 
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1958 and 1998 and an increase in stratification. According to MargalePs (1975) hypothesis, the 

growth of dinotlagellate species should be enhanced during stratification, which is congruent 

with our observations. 

However, significant decreases have also been observed m diatoms (e.g. P. alata alata) and 

dinoHagellates (e.g. Cemtium spp.) in the northwestern and central North Sea. As the 

northwestern area (i.e. regions 1 and 4) is directly under the intluence of the northern inHow, 

this area is most representative of North 1\tlantic conditions. l\!oreover, some indicator species 

did not follow the same trend as their main taxa: the diatom Rhizosolenia spp., for example, 

signiticantly increased in the southeastern North Sea and the English Channel, but significantly 

decreased in the central and southwestern North Sea (Fig. 5.5). llowever, it was not possible to 

determine the mechanisms underlying those changes. 

Finally, significant decadal changes have been observed in copepods (i.e. C. .finnwrhims, C. 

he!golandims, and Para·Pmtdocalamts spp.). C: he(golandims sit,mificantly increased in most regions 

of the North Sea and was positively related to both intlows. C. he!golandims is char,Kteristic of 

warmer shelf-edge Atlantic water (Continuous Plankton Recorder Team 2004) advected into 

the North Sea via the English Channel and Fair Isle current. PositiYe phases of NAO <lre 

associated with southwesterly winds that increase the wind-driven intlow through northern 

North Sea (i.e. Fair Isle current) and then induce an increase in C. he(golandims in the North Sea. 

Even if that species has Atlantic water origins, it can now effectively reproduce in the North 

Sea, spread over large parts of it and beha\·e like indigenous North Sea species (Corten 1999). 

By contrast, signiticant decreases of Para-Pseudocalanus spp. and C jinman-hims populations have 

occurred in most regions; they signiticantly increased, however, in the northwestern North Sea 

and in the western English Channel, respectively. C jinmanhims and Pam-Pseudoca/mws spp. were 

negatively related to northern and southern intlows in most of the regions of the North Sea. 

On the opposite, they were positively related to the southern inHow in the English Channel. C 

jinman'hims is mainly advected through the east Shetland intlow current (Beare et al. 2002) 

which seems to be predominantly density-driven (Svendsen et al. 1991). The tluctuations in 

wind-regimes associated with the NAO phases should only have a minor intluence on this 

current. However, during positive NAO phases in the late 1980s and early 1990s, the intlO\v 

through the cast of Shetland decreased (Step hens et al. 1998). t\ reduction in Atlantic intlow via 

the East Shetland is one scenario that might explain the long-term changes observed in C. 

jinmanhimJ (Beare et al. 2002). In addition, the Huctuations of C. rinmarchicus have been linked 

83 



to the increase in SST in the North Sea associated to the increasing trend in Northern 

Hemisphere Temperature (Beaugrand et aL 2002). However, the tluctuations of SST are also 

highly intluenced by the oceanic inflows. The abundance of C. jillllllllrhims in the North Sea 

seems then to be driven by (i) a decrease in the inflow through the east Shetland intlow current, 

(ii) changes in temperature related to the tluctuations of the inflow and (iii) the increasing trend 

in Northern Hemisphere temperature (Beaugrand et al. 2002). 

Other species, like A,wtia spp. and T IOIIJ'.icomiJ~ significantly increased in the northern and 

central North Sea and decreased in the western and southern North Sea regions. T lollgicomiJ­

was negatively correlated to the northern inflow in the western and southern North Sea 

regions, but positively related to southern inflow in the central North Sea and the English 

Channel. Conversely, Acmtia spp. was positively correlated to the southern intlow in the 

English Channel and negatively correlated in the Straits of Dover, whilst its relationship with 

the northern inflow was essentially positive, except in the northwestern North Sea. Acattia spp. 

enters the northern North Sea mainly with the mixed oceanic and coastal waters which flow 

around tl1e Scottish north coast (i.e. through the Fair Isle Channel), and also into the southern 

North Sea through the English Channel. This ta.'a therefore decreases in the regions directly 

intlucnced by the northern inflow·, whereas T lo11git"omis increases when the Atlantic intluence 

becomes minimal. T longicomis is a coast1l species usually encountered at m;L,imum ;Jbundance 

in the southern and western North Sea, whereas Aautia spp. is an oceanic species (Continuous 

Plankton Recorder Team 2004), predominantly found offshore that drift from southern 

latitudes into the Nortl1 Sea along witl1 temperate waters of the NE Atlantic Current (Krause et 

aL 1995). Being a coastal species, typical of the North Sea (Continuous Plankton Recorder 

Team 2004), T lo11gicomis can may be not adapt to the changes in water characteristics 

associated to the northern intlow. ln contrast, Act~~1ia spp. might not be able to adapt to North 

Sea water conditions and disappear soon after entering in the North Sea. 

5.D.4. Demdal dHmgeJ and regime Jhfftx in the Nmt/1 Sea pelagic cotmnuni!J compo.1ition 

\Vi thin the North Sea, decadal-scale trends in community composition varied depending on the 

region of study and between phytoplankton and zooplankton components. Under the 

assumption of a regime shift in 1986-1988 (Reicl et al. 2001, Beaugrancl 2004), a regime shift in 

phytoplankton (1958-1987 and 1988-2004) \Vas only evident in northwestern and southwestem 

North Sea regions. Edwards et al. (2006) showed that regime shifts were less evident in 
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phytoplankton speocs than for the PC!. In contrast to the phytoplankton, significant 

differences between the pre- and post-regime shift copepod assemblages (1958-1987 and 1988-

2004) were apparent in northern, western, and eastern North Sea regions. 1l1e regime shifts 

idcntitied in the phytoplankton and zooplankton do not therefore seem to be related. \Ve did 

not identify regime shifts in every region of the North Sea, but only in specific areas, directly 

intluenced by the oceanic intlows or by the NCC. In addition, differential regime shifts were 

also identitied in the northern intlow in 1988 and in the southern intlow in 1982; however, the 

regimes identitied had similar phases, with a low :md high intlow characterised respectively by 

the decrease and increase in cumulative sums. This suggests that the regime shift identitied in 

phytoplankton and zooplankton species is related to a shift in the oceanic intlow towards the 

North Sea. These obscn,ations arc in agreement with the work of Reid et al. (2001). 

However, other environmental or hydrological variables (i.e. SST, NAO, salinity, phosphate, 

nitrate, and inflows of Atlantic waters) might also be involved in the changes obscn,ed in 

plankton. The best explanatory variables were not consistent across regions, although For 

phytoplankton species, northern intlow, NAO, and SST are included in the combination of 

variables in most of the regions (l'able 5.5). We obt1ined different results for copepod species, 

with SST best explaining the changes as a single variable in most of the regions of the North 

Sea. In conclusion, zooplankton seems to be under the intluence of one major single \'ariable 

(i.e. SS'I) while phytopLmkton appears to be under the intluence of different environmental 

variables according to the region of study. This is congruent with the results of 13eaugrand et al. 

(2002) that demonstr,Jted the major intluence of the Northern Hemisphere temperan1re on 

copepod assemblages. 
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Chapter 6 

IMPACT OF CLIMATE AND MESOSCALE 

PHYSICAL PROCESSES ON 

PHYTOPLANI<TON DISTRIBUTION IN THE 

NORTH\X!EST ATLANTIC OCEAN 

Part of this chapter has been included in the following: 

Letenne S.C. & Pingree R.D. (in press) The Gulf Stream, Rings and North Atlantic Eddy 
stmcture from remote sensing (Altimeter and Sea\ViFS). Journal of marine Systems. 

Leterme S.C. & Pingree R.D. (2005) Impact of mesoscale physical processes on phytoplankton 
distribution in the Northwest Atlantic Ocean. ASLO Summer l\!eeting, June 2005, Santiago de 

Compostela, Spain. 

Letermc S.C. & Pingree R.D. (submitted) StnJCture of phytoplankton (Continuous Plankton 
Recorder and Sca\ViFS) and impact of climate in the Northwest Atlantic Shckes. Ocean 

Science. 
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6.A. Introduction 

The intense hydrodynamic activity obsen•ed in the Northwestern Atlantic Shelves Province 

(Longhurst 1998) makes this region especially intriguing from the point of view of physical­

biological interactions. This area is under tl1e influence of the cold southward inflow of 

Labrador Sea \'\later (LS\'\0 and the warm northward flow of the Gulf Stream. The Gulf Stream 

Hows from the continental slope off Cape Hatteras and tmvels eastward, meandering until the 

tail of tl1e Grand Banks (Stommel 1958). Meanders which separate northward of the stream 

de1•tlops into anticyclonic (warm core) eddies and those separating southward produce cyclonic 

(cold core) eddies (Richardson 1983, Tomczak & Stuart 2003). 1110se rings usually move 

westward when they are not touching the Gulf Stream meanders and eastward when they are 

attached to tl1em (Fuglister 1972, Richardson 1980). Because of its highly dynamic nature, this 

environment is a perfect candidate to assess the role on physical-biological interactions in the 

control of the biological processes by their physical environment. 

Frontal and upwelling regions, and their related enrichment processes, are widely acknowledged 

to be fwourable for tl1e rapid growth of phytopbnkton (e.g. \Vyatt & Horwood 1973) as they 

represent areas where 'auxiliary energy' (Margalef 1978) fluctuates rapidly in space and time 

(Legendre & Demers 1984, Legendre et al. 1986). Pingree et al. (1979) also established that 

eddies have an influence on the transfer and growth of the phytopbnkton. !v!ore recently, 

Gonzalez et al. (2001) have shown that mesoscale features are important sources of organic 

carbon to the pelagic ecosystems in oligotrophic areas and thus greatly influence the plankton 

community. i\•!ore specitlcally, Gulf Stream warm core and cold core rings have been shown to 

influence surface phytoplankton distributions via tl1e entrainment of the surrounding water 

masses around and into tl1e rings (Kennelly et al. 1985, Garcia-Moliner & Yoder 1994, Ryan et 

al. 1999, Ryan et al. 2001). Gulf Stream warm-core rings have also been shown as strongly 

intluencing water mass and chlorophyll distributions along tl1e southern tlank of Georges Bank 

(Ryan et al. 2001, Bisagni et al. 2001). This area is also under the influence of the North Atlantic 

Oscillation through modification of the surflCe and deepwater circulation patterns of the North 

Atlantic, and more specitlcally the transport of Labrador Current (Marshall et al. 1997). The 

related tluctuations in the intlow of LS\V along the Scotian shelf have been associated with 

changes in coastal water characteristics (i.e. SST, salinity and nutrient concentration) and 

zooplankton abundance (Greene & Pershing 2000). 
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In this context, the first part of this chapter will investigate the relationship between spatial and 

temporal structures of eddies (via Sea Surface Heights) and chlorophyll a (from the Sea-viewing 

\Vide Field-of-view Sensor, Sea\ViFS) along the Gulf Stream <Lxis. In particular, identified 

physical structures are followed and compared with phytoplankton distribution. Then, on the 

basis of a route continuously s<tmpled by the CPR between Norfolk (Virginia, USA; 39°N, 

71°\'\0 and Argentia (Newfoundland; 47°N, 54°\\0 over the period 1995-1998, the second p<trt 

of this chapter specifically assesses the relation between phytoplankton and altimetry dat1 on 

the Georges Bank, with a special focus on the tluctuations in PCI and Sea\ViFS data in relation 

with hydroclimatic variability. 

G.B. The Gulf Stream, Rings and North Atlantic Eddy structures from 

remote sensing (Altimeter and SeaWiFS) 

6. 13. 1. 1ntrodttdioll 

In order to determine the relationship between spatial and temporal structures of 

phytoplankton and eddies along the Gulf Stream <Lxis, the first part of the chapter 6 examines 

and compares: (i) the spatial and seasonal structure of Sea\ViFS chlorophyll a along the spring 

bloom boundary in the North Atlantic near 35°N in relation to eddy stn1cture, (ii) the seasonal 

cycles of SeaWiFS Chi a along a me;m Gulf Stream path, (iii) the speed and propag,Jtion of Gulf 

Stream rings and (iv) eddy and Sea\ViFS Chi a spatial structures along the Gulf Stream route. 

6./3.2. i'vlethod.r and data 

G.B.2.a. Sea level anomaly 

The purpose of Topex/Poseidon is to measure the sea surface height (SSI-1), with an 

exceptional accuracy of less than 5cm precision. Sea level anomaly (SLA) heights have been 

measured by the ERS 1/2 and Topex Poseidon satellites since the 22 October 1992 at I 0 day 

intervals. Radar altimeters on board the satellite continually transmit signals at high frequency 

to Earth and receive reflected sibrnals from the sea surface. The data have been processed 

according to Le ·rraon et a! (1998) with SLA d<Wl spatially interpolated to 0.25° in both latitude 

and longitude. 
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l\Iaps of SLA were derived for the North Atlantic to compare with monthly Sca\ViFS 

chlorophyll a concentration. l11e SLA is composed of mcsoscalc structures imposed on 

seasonal changes with eddy or Rossby wave stmctures usually dominant. The annual or 

seasonal signal corresponds, in part, to the rise and fall of the sea surface that arises from the 

expansion and contraction of the ocean due to its seasonal heating up and cooling down. In 

addition, the SLJ\ is intluenced by an annual cycle due to ocean circulation. The region of 

ma.ximum variance of sea surface height in the North Atlantic will be along a mean Gulf 

Stream route (Pingree, pers. co1nm.). Along the Gulf Stream route, annual buoyancy and 

circulation changes c;m result in a ma.ximum annual elevation signal change of± 20 cm. Since I 

am interested in elevation structure that matches or correlates with non-seasonal Sea\ViFS 

structure, the annual component and any residual mean elevation was removed from the SLA 

data using Fourier analysis. Although relatively small in this context, tidal aliasing due to the 

semi-diurnal tide was also removed. I refer to the resulting dat1 as SLt\ rcsiduals. 

The Gulf Stream route selected follows closely the maximum annual amplitude of Sea Level 

Anomalies (Fig. 6.1). The chosen patl1 (Fig. 6.2) is in concordance with fom1er Gulf Stream 

studies (\Vatts 1983, Brown et al. 1986, Lee & Cornillon 1996, Schoellart et al. 2004). 'l11c 

downstream pmh was also followed closely by an 1\LACE (25976) subsurface tloat at - 600m 

depth (Pingree & Sinha 2001) moving witl1 the Gulf Stream in 2002 and an ALt\CE subsurface 

tloat (25972, at -150m depth) mm·ing from tl1c Florida Strait (-25.9°N, 79.7°\V, near ['vliami) 

in ZOOS which gave a consistent upstream position (- 37.1 °N, 70.6°\'\~ off Cape 1-Iatteras 20 

days later (a mean speed of 1.2 ms·' between the positions). 

Altimeter and Sea\'\'iFS Chi a data were extracted every 0.25° along the Gulf Stream route 

(corresponding to 92 st1tions sampled over a distance of 2080 km; Fig. 6.2). Sca\ViFS 

chlorophyll (Chi a) data have been processed and analysed along this route from September 

1997 to t\ugust 2002 (5 years period). Sea Level Anomalies (SLA) were derived along the same 

route from January 1993 to December 2000 (8 years period) and time changes of sea surface 

elevation rcsiduals along the Gulf Stream route arc plotted on a 1-Iovmoller diagram. An 

overlapping time window of Sea\ViFS Chi a and altimeter anomalies is compared between 

September 1997 and December 2000. 
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Figure 6.1. Annual Sea Level Anomaly amplitude (mm) in the North Adantic. The Gulf Stream route selected (marked black) starts along the continental slope off 
Cape Hatteras and then follows the ma.ximum amplitude region. 
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6.B.2.b. Sca\ViFS Chlorophyll a 

Sea\ViFS is a spectroradiometer that measures radiance in specific bands of the visible light 

spectrum (Mueller & Austin 1995). The satellite spectroradiometer offers the possibility of 

observing and investigating the oceans from a global point of view and provides information 

on chlorophyll a on a daily, weekly, monthly and annual basis. As species of phytoplankton 

contain dissimilar concentrations of chlorophyll, they can be detected by Sea\\'iFS as they 

appear as different colours to this sensitive instrument. SeaWiFS data produced by the SeaWiFS 

project were obtained from the Goddard Distributed Active Archive Centre under the auspices 

of NASA. Use of these data is in accord with the SeaWiFS Research Data Use Terms and 

Conditions Agreement. Processing of Sea\ViFS data to final chlorophyll a concentration (Ca) 

used the SeaDAS (Sea\ViFS Data Analysis System) software, and Ca was also estimated from 

the ratio of radiances measured in band 3 (480-500 nm) and band 5 (545-565 nm) according to 

the following NASA algorithm: 

C .. = exp[0.464 -1.989Ln(~1u490/ ~ru555)] (1) 

Monthly composite Sea\ViFS m;1ps for the North Atlantic were derived. For deriving the 5 year 

mean seasonal cycles, the Sea\ViFS Chi a data were spatially averaged over± 25 km in both 

latitude and longitude, and missing data due to cloud coverage interpolated. 

Sea\ViFS Chi a structure along the spring bloom boundary near 35°N in April 1999 was 

matched with the SLA map of elevation (or eddy structure) for 1\pril 1999 to detennine the 

intluence of eddies on the spatial scale. Eddy orbital velocities were determined using the 

gcostrophic relation. Direct measurements were obtained from the track of t\RGOS (Airborne 

Remote Geographic/Oceanographic System) buoy 1811 moving wesl:\vard in a <..)'clonic eddy 

on the chlorophyll frontal boundary in April 1999. 

To examine the chlorophyll structure along the Gulf Stream route, seasonal cycles of Sea\ViFS 

Chi a were derived ;tmi a mean cycle QJased on 5 years of data) was removed from the data to 

produce Sea \Vi FS anomalies or residuals between September 1997 and December 2000 and for 

comparison with SLA residuals. 
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6.B.3. ReJu!tJ 

6.B.3.a. Structure of Chi a and SLA in the Subtropical Atlantic Ocean near 35°N 

In April 1999, the spring bloom boundary stretches across the North Atlantic from Cape 

1-Iattcras to \Vcstcm Europe at ~ 35°N (Fig. 6.3). The monthly composites show that during 

April the spring bloom boundary in the central North Atlantic near 35°N is northward at a 

speed of about 250 km per month (see also Campbell and Aarup (1992) using CZCS data). 1l1e 

boundary is not regular but has pcrturbations due to eddy structures. 

The North Atlantic altimeter SLA map for April 1999 shows the corresponding mesoscale eddy 

tick! (Fig. 6.4.a-e). By matching the altimeter spatial structure with the Sea\ViFS boundary 

spatial structure, it reveals that the Sea\'i/iFS Chi a protrusions (a, b, c, d, e, Fig. 6.3) result from 

the southern components of eddy motions which draw elevated Chi a values from the nortl1 to 

the south. Hence, although eddy spatial structure is evident in the Sea\'\liFS Chi a spatial 

structure, the main inHucnce of eddies in tl1e open oce;m is one of advection or redistribution 

of the Chi a tield as the spring bloom boundary propagates QJy growth) northward. The 

Sea\ViFS Chi a perturbation structure has a scale that is about two times the eddy scale. Based 

on the Sea\ViFS Chi a protrusions (rig. 6.3.a-e), a scale, I ~ 430 km,was estimated for the 

perturbation wavelength or about two times the eddy scale, L (c.f. L- 220 km at 34°.N for the 

NE Atlantic, gi\·cn in Pingree (2002)). 

The track of ARGOS buoy 1811 in March and April 1999 is superimposed on the Sea\ViFS Chi 

a and SLA tields for 1\pril (Fig. 6.3 and 4). The buoy made 11 loops in tl1c same eddy between 

January and June 1999 near 35°N. 'll1e westward speed of the eddy was 5 km.d-1. ·n,e buoy 

movement in the cyclonic eddy centred near 34.7°N, 53°W in April ~ves some direct 

measurements of the How component between eddies (sec section 6.B.3.e). 

The region near 35°N can be considered as northern subtropical water and the seasonal cycle 

of Sea\ViFS Chi a concentration for this region (Fig. 6.5) shows a spring bloom peak in March 

with a mean ma.-.;imum Sea\ViFS Chi a concentration of~ 0.3 mg.m·-'. This cycle contrasts with 

those representative of NE i\tlantic temperate regions (- 45°N- 50°N), since Chi a levels start 

to increase in the autumn-winter period (after September) as the mixed layer deepens due to 

winter mixing (with nutrient renewal). The Sea Surface Temperature (SST) from t\RGOS buoy 

1811 showed that the bloom m:L-.;imum occurred near the winter minimum temperature of 

I8°C (in i\·larch). Sea\'\1il'S Chi a concentrations arc elevated above a 
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Figure 6.3. SeaWiFS Chi a distribution in the North Atlantic Ocean during the spring bloom in April 1999. Black line contour shows 2000m depth. A value of 0.2 
mg.m-3 Chi a (red) has been chosen to show the structure along the frontal boundary of the North Atlantic spring bloom. Plumes extending southward along the 
spring bloom boundary are labelled a to e. In the Gulf Stream region, cyclonic structures labelled 1 to 7 (see Fig. 6.4) are associated with higher levels of Chl a. 
Anticyclonic eddies to the north of the Gulf Stream axis labelled A to G (see Fig. 6.4) are generally associated with lower Chi a levels. Low values of Chi a near the 
Gulf Stream route are marked with- sign (these correspond with warm core rings marked with + in Fig. 4) 
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Figure 6.4. Sea level anomalies (cm) for the North Atlantic Ocean for April 1999. Positive and negative anomalies match the spring bloom boundary near 35°N. 
Labels a toe correspond to the plwnes on chlorophyll frontal boundary and are associated with the southerly component of an adjacent cyclonic eddy. Argos buoy 
track moving anticlod'Wise around cyclonic eddy between two adjacent anticyclonic structures indicated (marked with stars). More intense mesoscale activity, warm 
core rings (yellow /white) and cold core rings (blue) can be identified in the Gulf Stream region. Some cold rings are labelled 1 to 7 (nwnerals placed to the left of the 
eddy) and 7 warm core eddies to the north of the G ulf Stream axis are labelled A to G. Positive SLA values representing warm core rings between cold core rings 
near the Gulf Stream axis are marked with + sign. 



mean le\'el from about ~ovember to t-.•lay and structure due to advectio n, o r m ix ing by eddies, 

is eYident fo r these mo nthly Sea\'\' iF concentratio n maps. By examining the m onthly maps for 

any tendency fo r regular zonal sttucture, a separation or wavelength scale o f L = 480±-W km 

was es timated fo r -35°~ (with abo ut half o f the maps showing some structure) . 

6.B.3.b. Fluctuations of Chi a and SLA along the G ulf Stream rou te 

Inspection o f both Sea Level A no malies and Sea\\' iFS Chi a maps shows mo re intense spatial 

s tructure in the Gulf Stream region. The m ean values o f SeaWiFS Chi a variance and SLA 

variance were determined every 0 .25° along the G ulf Stream route (Fig. 6.6 and 7). There is a 

signitlcant difference between the Chi a values obtained between stations 1 and 17 and those 

o btained between stations 18 and 92 (Wilcoxon- !ann-\Vitney, z = 3.621 p<O.Ol). The mean 

Chi a values are lower fo r statio ns I to 17 ( X c hta ± a= 0.23 ± 0.02 mg.m 3 Chi a) than for 

statio ns 18 to 92 ( -; ::bb ± a = 0.35 ± 0.03 mg. m ·' Chi a) . T11e difference in Chi a is likely due to 

the changing properties along the route. Between sta tions 1-17, at the beginning of the Gulf 

Stream route, the water correspo nds to Su btro pical Water, low in Chi a andinorganic nutrients. 

fi'urther downstream, meanders o r eddies result in elevated mean Chi a levels as Atlantic 

Temperate Slope \Vater (AT S\\0 and Subpolar \\ 'ater are sampled. 
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Figure 6.5. Seasonal cycles of Sca\\ 'ifS C hi a (mg.m 3) at 3-+.5° _ , 5~0\''\' over a 5 year data period. Start 
of the year and ftrst letter o f alternate months annotated. ll1e time window corresponding to the buoy 
track in .'\!;trch Q\Q and April 1999 is indicated. 
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Figure 6.8. Hovmoller diagram of SLA residuals along the route o f the Gulf Stream between 
September 1997 and December 2000. The altimeter signal is the SLA (mm) with the annual signal 
removed. Anticyclonic (C, D and F) and cyclonic (A, B, E, G, H and I) eddies have been followed in 
time and space. egative sign indicates position of a low SLA associated with elevated Chi a anomaly (+ 
in Fig. 6.10). Positive sign indicates position of a high SLA associated with lower Chi a anomaly (- in 
Fig. 6.10) . 
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The vatiance signal o b tained fo r SLA shows high Huctuatio ns w ith an average spatial scale o f -

260 km along the route and a m ean ,-a tiance of ~ sL-J· ±a= 1030 ± 450 cm1 (Fig. 6.6). The 

maximum variance o f - 1600 cm 2 corresponds to a root mean squared Huctuation o f sea level 

o f - ±-W cm o n the Gulf Stream axis. 'I11e SL-\. variance spatial scale is not retlec ted in the 

SeaWiFS Chi a s tructure (Fig . 6.7) and if no t due to sub-sampling in space and time (see Le 

Traon et a! 1998), then the m inimum values represent a regular pattern o f nodes (where the 

cross axis compo nent o f current may increase) or a meander scale extending 1000 km from 

near Cape H atteras. To seek a relatio nship between ~ea\'\'iFS Chi a structure and ' LA 

varia tions in the absence o f any variance correspo ndence it will be necessary to take account o f 

phase (i.e. time) using the H ovmoller diagrams. 
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Figure 6.9. Sea\riFS Chi a (mg.m 3) seasonal cycle (determined with 5 years of data) along the Gulf 
Stream route fo r stations 1-17 (grey) and fo r stations 18-92 (black). 

6.B.3.c. Propagation o f eddies over the study period 

The SL\. res iduals have the local <mnual component remoYed and the mean value at a po int is 

zero. Intense m esoscalc ac tivity, warm core rings (yellow /whi te) and cold core rings (blue), can 

be identified alo ng the route o f th e G ulf ' tream (Fig. 6.8) . The propagatio n of these rings oYer 

time ,-aties according to their locatio n. Cyclonic (Fig. 6.8, ~-\ and B) and ;-mticyclonic (C and D) 
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Figure 6.10. Hovmoller diagram o f SeaWiFS Chi a residuals along the route of the G ulf Stream 
between September 1997 and December 2000. l11e Chi a signal is the Sea~'iFS Chi a (mg.m·3) with the 
seasonal cycle removed. a, h and i Q1igh Chl a) correspond to cyclonic eddies (A, Hand I, Fig. 6.8) and d 
Qow Chi a) corresponds to an anticyclonic eddy (D, Fig. 6.8). Positive sign indicates position of elevated 
Chi a anomaly associated with low SLA (- in Fig. 6.8). egative sign indicates position of lower Chl a 
anomaly associated with high SLA (+ in Fig. 6.8). 
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eddies moving upstream in the path of the Gulf Stream have respectively an average speed 

between 3.3 - 5.2 km.day·' and 2.4 - 4.8 km.day" 1
• Cyclonic (E) and anticyclonic (F) eddies 

moving downstream along the axis of the Gulf Stream have an average speed of 3.5 km.day·' 

and 2.6 km.day"1 respectively. Some eddies (G and H) do not move over time. Other eddies 

leave the path of the Gulf Stream; anticyclonic eddies were observed to have a westward speed 

of 3.8 km.day"1 and cyclonic eddies had westward speed of 4.5 km.day"1
• 

A scale Q~) for eddies or rings on the Gulf Stream a.xis was estimated by measuring the 

separation distance between positive or negative anomalies along the eastern half of the route 

where the anomaly structures were more marked. i\ separation, or anomaly wavelength, was 

determined as 2L := 440±65 km from Figure 6.8, but extended for an 8 year period. 

6.B.3.d. Comparison of SLA and Sea\\fiFS Chi a stmctures along the Gulf Stream route 

Sea\ViFS structure in space and time may be masked by a dominant seasonal cycle so the 

Sea\X1iFS anomalies or residuals are defined as differences from the mean seasonal cycle. 

Theseasonal cycles obtained for stations 1 to 17 and stations 18 to 92 are shown in Figure 6.9. 

For stations 1 to 17 the bloom occurs from November until April, ret1ecting nutrient limitation 

in Subtropical Water, with a maximum value in i\hrch (0.31 mg.m·3 Chi a) and a minimum 

value in August (0.12 mg.m 3 Chi a). These results are typical of the Mid-Atlantic Bight water 

masses that have a simple annual cycle in chlorophyll concentration consisting of a broad peak 

during w·inter and minimum concentrations during summer (Yoder et aL 2001). For stations 18 

to 92, two blooms can be observed, the first in April (0.70 mg.m·3 Chi a) and the second in 

November (0.41 mg.m 3 Chi a); the minimum occurs in August with a value of 0.16 mg.m·3 Chi 

a. "l11e spring bloom might results from increased light levels and the autumn bloom might be a 

response to nutrient availability due to increased vertical mixing and seasonal thermocline 

eros1on. 

Removing the mean Sea\ViFS seasonal cycle for stations 1-17 from these stations and, similarly, 

mean Sea\ViFS seasonal cycle for stations 18-92 from this set of stations gives the anomaly time 

series, or SeaWiFS residuals, along the Gulf Stream route (Fig. 6.1 0). 

There is a signiticant overall inverse relationship between Sea\ViFS Chi a (Fig. 6.10) and SLA 

residuals (Fig. 6.8) (P, = -0.34, p<O.OOI). Warm core (anticyclonic) rings generally correspond 
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to areas o f low Chi a concentratio n. For example, the anticyclonic eddy marked D (Fig. 6.8) 

corresponds to the low Chi a pattern marked d (Fig. 6. 10). Cold core (cyclo nic) rings generally 

correspond to high Chi a concentration structure; the cyclonic eddy marked :\ (rig. 6.8) 

corresponds to the high le, el Chi a pattern marked a (Fig. 6. 10). Other lower SLA residuals 

(marked - in Fig. 6.8) are associated with higher Chi cnalues (m;1rked + in Fig. 6.1 0). The linear 

regression equatio n between Chi a (mg.m ~ and SL\ (cm) is : 

Ch/.a = -0.0017 (s!.a) +0.0167 

\\'hen the relationship between Sea\X' il •'S Chi a and SL\ residuals is analysed for the two 

different water masses sampled along the route, a higher correlation is found fo r the 

' ubtropical \Vater, fo r stations I and 17 ( p = - 0.55 , p<0.001: rig. 6.11 ), than for the other 

part o f the route, i.e. statio ns 18 to 92 (p =-QA t , p<O.OO l: Fig. 6.1 1). Values also \'ary for 

different months in both water regio ns (Fig. 6. 12). [aximum negative co rrelation for statio ns 

18 and 92, occurred in !\[ay (p = -0.66) when the seasonal values are t;1lling, and in , \ugust 

(p, = -0.6 1) when the minimum levels occur. In the ubtropic tl \Vater (stations 1-17), a 

rna."Ximurn negative ,·aluc occurred in February with p = -0.7-t . 
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Figure 6.11. Correlation between SeaY\I I'S Chi a and SL \ residuals 111 the d ifferent water masses 
sampled along rhe route. Black triangles represent stations 1- 17 and stations 18-92 are in white dots. 
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The overall correlation coeffi cient, p = -0.3-J. (b<O.OS), shows tha t the chlorophyll scale o r 

anomaly wavelength along the Gulf Stream a."Xis matches the separation scale between SL.A 

residuals o r eddies of the same sign (2L = ..J.-.J-0 ±65 km). However, the Sea\ViFS structure (Fig. 

6.1 0) was too broken or fragmented fo r an es timate of scale along the G ulf Stream a."is. 

Instead, a wavelength value was determined from montl1ly Sea\Vi F , concentratio n maps fo r 

occasions when a repe 1ting concentratio n structure was e,·ident alo ng the G ulf Stream route. 

This m ethod gaye an independent \'alue o f 2L = -1-60±50 km, based on 17 mo ntl11y occurrences 

when there was a tendency for a repeating structure o r oscillation w;w elength along tl1e Gulf 

, tream route (see Fig. 6.131\, for example) . 

6.B.3.e . . \.dvection of Chlorophyll stmcture by eddies 

In the central region o f an eddy, the currents mO\·e with tl1e eddy and so turn the chlorophyll 

structure at a near constant radius within the eddy. For external regions, chlorophyll structure 

can be moYed between eddies and so is mixed from regions o f higher concentra tio n. J7o r eddy 
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currents, to show a signiticant redistribution o f a phytoplankton bloom, the eddy swirl currents 

must be able to advect phytoplankton concentrations a t rates compar,tble o r greater th1m the 

propagation rates of concentration structures due to phytoplankton growth dynamics. 

The velocity of tangential tlow due to eddies can be determined by applying the geostrophic 

rela tion to maps o f ~L \ (e.g. Figs. 6.-J. and 6. 13.B): 

.fv =-g 'Vp 
p 

(2) 

\\'here f is the Coriolis parameter, ,- is the horizon tal tangential swirl velocity, 'Vp 1s the 

horizontal pressure g radient and p 1s the density o f seawater. Apply111g (1) to eddies C/G or 

G / D (see Fig. 6. 13.B) gives ma.ximum speeds between eddies of 

g dn I -1 v=-- - m.s 
fdx 

(3) 

whcreg is the graYitational acceleration, d11 is the elevatio n change over a distance change d.:,:. 

In the Gulf Stream region, chlo rophyll le,·els a re elevated towards the slope and shelf region 

and eddy currents could produce curYed chlorophyll plume structures o f a few hundred 

kilom etres in a several days. 

Fo r eddies, to be able to produce the chloro phyll struc tures a, b, c, d and e along the spring 

bloom frontal boundary (see Fig. 6.3), it is necessary to show that the eddy current struc ture 

can result in southward flow speeds tha t are as fas t, or faster, than the northward propagatio n 

speed o f the chlorophyll structure. L:sing the geostrophic rela tion (2), the ma.'l:imum tlow 

between the cyclo nic eddy marked with a white star in Figure 6.-J. and the <ldjacent anticyclonic 

eddies (marked with black stms, Fig. 6.-J.) is - 20 cm.s 1 southwestward and - 25 cm .s 1 

northeastward. These Yalues can be compared w ith a direct southward tlow measurement o f -

18 cm.s 1 and a northward tlow o f - 35 cm.s 1 derived from the track of the "\rgos buoy in the 

same cyclonic eddy in _\pril 1999. Camp bell and / \arup ( 1992) show tha t the bloom boundary 

moves seasonally almost sinusoidally by 11° (30°:\'--l1 o:-.,~ at a latitude near 35° 1. This gi,-es a 

ma.'l:imum northward progression of (27t x 5.5) I 12 degrees of latitude per month or 12 cm.s 1
• 

Hence, southward eddy speeds o f - 12 cm.s 1 could locally st<lll o r arrest the northward 

progression. The obserred southward tlow measurements MC greater than 12 cm.s 1 and the 

southward component o f the tlow be tween eddy pairs account fo r the scale and structure of 

the Sea\\'iFS chlorophyll fea tures a, b, c, d and e obserYed in \pril 1999 near 35°:\'. 
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6. B. 4. Di.IL'IISJiOII 

In open ocean conditions of the North Atlantic (32°N-40°N, 30°\V-60°\'\0, SeaWiFS 

chlorophyll (Chi a) concentration is redistributed at the eddy scale by the eddy surface S\virl 

currents. Estimates of eddy surface currents derived from altimeter sea level anomalies (SLA), 

and direct measurement from an ARGOS buoy, show that chlorophyll structure may be 

introduced between eddies of opposite sign. The zonal scale for chlorophyll perturbations was 

determined at - 430 km (Fig. 6.3) in April near 35°N. The mixing effect of eddies 

redistributing chlorophyll concentrations will be most marked where there is a gradient in 

concentration, as for example for the zonal structure of the spring bloom in the North Atlantic 

in t\pril. Structure with a similar scale (- 480±40 km) was observed for the productive period 

(November to May) when levels of chlorophyll are elevated. 

The Gulf Stream represents the boundary between Subtropical Water (i.e. with high dynamic 

heights and lower Chi a levels) and Slope and Subpolar Waters (i.e. with low dynamic heights 

and elevated Chi a levels) and sea elevation changes or SLA variance levels are a maximum as 

eddies and meanders cross the mean route. Gulf Stream meanders and rings carry different 

water types across the mean Gulf Stream position. Bower and Rossby (1989) related meander 

circulation to cross-frontal exchange with rings providing a mechanism for exchange of both 

nutrients and biota among Slope and Sargasso Sea \Vater (Gould & Fryxell 1988). In this study, 

a wavelength scale from one cold ring to another along the m(is of the Gulf Stream was 

determined as - 440±65 km, giving a ring scale of- 220 km. 

The rings have shown two distinct types of movement. Firstly, both anticyclonic and cyclonic 

rings have been observed moving upstream. Ring-population studies by Bisagni (1976), Lai and 

Richardson (1977), Haliwell and J\·looers (1979), Richardson (1983) and Brown e1 aL (1986) 

have shown that several warm-core rings can be found moving westward in the Slope \Vater 

witl1 speeds between 2 and 15 cm.s·'. Cold core rings well separated from the Gulf Stream 

generally move westward at about 5 cm.s·' (fhe Ring Group 1981 ). Speeds measured in this 

study for wann-core and cold-core rings are included within the range of speeds recorded in 

former studies. Secondly, both anticyclonic and cyclonic rings have been observed moving 

downstream. Rings can be partially reattached to and interacts with the Gulf Stream, their 

movement is then parallel to, and with, the Gulf Stream (fhe Ring Group 1981). 
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Figure 6.13. Examples of (A) SeaWiFS Chl a and (B) SLA structures fo r August 2001. Warm-core rings 
are labelled A, B, C, D and cold core rings E, F, G and weaker negative anomalies H, I, J. The arrows 
represent the currents associated with eddy structure and the sea level slopes between eddies C, G, D 
have been used to determine the velocity o f the flow between the eddies 

It is shown that SLA residuals are correlated negatively with chlo rophyll residuals with a 

monthly correla tion coefficient -0.7 < P. < -0.2 . In general, the positive elevation anomalies 

are low in chlo rophyll with a core of Subtropical Water. Seven anticyclones can be seen in 

Figure 6.4; all these positive eddies along the north of the G ulf Stream axis have low 
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chlorophyll concentration (labelled i\-G, Fig. 6.3). Anticyclonic eddies are associated with 

depressed isotherms and low levels of inorganic nutrients. On the Gulf Stream ;u;:is, lower 

chlorophyll concentration (marked with - sign, Fig. 6.3) is associated with positive SLA or 

anticylonic structure (marked with + sign, Fig. 6.4). Cyclonic eddies have higher levels of 

inorganic nutrients, the isotherms are domed upwards and localised upwelling may introduce 

new nutrients into the euphotic zone, which could cause higher primary production in their 

core (Hitchcock et al. 1993, i\ristegui et al. 1997). The cold core rings are thus generally higher 

in Chi a and cyclonic rings marked 1, 2, 3 along the Gulf Stream route (Fig. 6.4) have elevated 

chlorophyll concentrations (Fig. 6.3). 

The eddy currents may also redistribute surface Chi a levels, drawing out plumes of locally 

increased Chi a from regions of higher Chi a. This effect can be seen in some SLt\ maps and 

Sea\\/iFS monthly composites: August 2001 (Fig. 6.13) for example, where the eddy current 

structure draws out plumes (Fig. 6.13, near anticyclonic ring D, or around cyclone F, for 

example) and in the Hovmoller diagrams (Figs. 6.8 and I 0). Between November and October 

1999, from stations 33 to 41 there is a marked negative anomaly (marked 1-I, Fig. 6.8). Near the 

same area and for the same period, a Sea\ViFS positive anomaly can be observed in Figure 6.10 

0abelled h). However, the Sea\ViFS positive anomaly is displaced to the west of the negative 

SL\ anomaly and not centred on it with a maximum near station 31 and as such will tend to 

reduce the correlation between anomalies. Other decorrelating structures, like the more marked 

spring bloom conditions extending to the Gulf Stream from the shelf and slope regions in i\hy 

2000 (Fig. 6.1 0), are independent of Gulf Stream conditions. Overall, the correlation coefticient 

between Sea\ViFS Chi a structure and SLA residuals along the selected Gulf Stream ;Lxis was 

P, = -0.34 and the Sea\ViFS Chi a spatial variation, or meander wavelength, was- 460±50 km, 

or equal to the altimeter SLA separation determined between cold core or warm core rings. 
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6.C. Impact of climate and mesoscale physical processes on 

phytoplankton (Continuous Plankton Recorder and SeaWiFS) along the 

E-route 

6. C. 1. l11trod11dion 

This section assesses the impact of the LS\V changing flow along the Scotian Shelf and the 

influence of Gulf Stream rings along Georges Bank. t\ specific CPR route (E.-route; between 

Norfolk (Virginia, USA; 39°N, 71°\'\0 and Argentia (Newfoundland; 47°N, 54°\'\0) has then be 

used to investigate (i) the consistency between PCI and Sea\ViFS Chi a measurements in this 

area, (ii) the tluctuations of phytoplankton biomass and its geogr,lphical distribution, (iii) the 

potential links between PCI, SST and NAO, and (iv) the relation between phytoplankton and 

altimetry (i.e. Sea Level Anomalies (SLA.) and eddies) over the period 1995-1998. 

6.C.2. J\1/et/JodJ and data 

The visual estimation of the total phytoplankton biomass, known as the Phytoplankton Colour 

Index QlCJ), was detennined for each of 15 smtions along the E.-route, corresponding to the 

stations most continuously sampled over the period of study (Fig. 6.14). Hovmoller diagrams 

ofPCI were used to compare PCI space-time structure with those observed from space (i.e. Sea 

Level 1\nomaly and Sea Surface Temperature (SS'I)). 

6.C.2.a. Sea level anomaly 

Fourier analysis and tiltering of SLA in time has been useJ (i) to determine the periods of 

dominant stmcture (i.e. annual signal) along the CPR route and (ii) to remove the annual signal 

and any residual mean elevation (which should be zero). Being in a shelf break area, tidal 

aliasing due to the semi-diurnal tide was also removed through Fourier tiltering. SLA has 

already been shown to allow the tracking of propag,1ting features (Sinha et al. 2004, Leterme & 

Pingree, in press). 111ese data have then been used to estimate the presence and nature of 

anomalies in the are;1 of study between Januar)' 1995 and December 1998. Elevation and 

depression of the sea surface are plotted on a 1-Iovmoller diagram (i.e. changes of property in 

space and time). 
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6.C.2.b. Sea\ViFS Chlorophyll a 

Sea\ViFS Chi a dat1 were spatially averaged over ± 25 km in both latitude and longitude. 

i\·[issing data due to cloud coverage have been interpolated (sec chap. 6.13.2). The Sea\ViFS 

chlorophyll a concentration data allow the comparison of the structure and seasonality of 

phytoplankton along the E-route in the overlapping PCI time window between September 

1997 and December 1998. 

6.C.2.c. Climatic indices 

Several indices have been developed to guantify the state of the North Atlantic Oscillation, but 

the most widely used is Hurrell's NAO index (Hurrell 1995a). Monthly indices of the NAO, 

based on the difference of normalised sea level pressures between Ponta Delgada, Azores and 

Stykkisholmur/Reykjavik, Iceland, are available since 1865. In order to take into account the 

monthly variability, monthly-time series of NAO have been used as a climatic index. 1l1e Sea 

Surface Temperature (SST; HadiSST I. I from the British Atmospheric Data Centred, data 

were used to provide additional climatic information likely to intluence phytoplankton growth 

and abundance. 

6.C.2.c. Data analyses 

Trends in monthly time series of PCI were examined at each station by calculating Kendall's 

coeHicient of rank correlation, T, between the series and the time in months in order to detect 

the presence of a linear trend (Kendall & Stuart 1966). -l11e relationship between phytoplankton 

and climate indices was tested through Spearman rank correlation analysis performed at each 

station bet\veen monthly time series of PCI and (i) the NAO and (ii) the Sea SurE1ee 

Temperature. As the environmental changes induced by the NAO do not occur 

instantaneously, the possibility of a lagged response from the phytoplankton has been taken 

into account and conducted the correlations bet\veen PCI and NAO with a lag of zero to 3 

months. However, as the response of phytoplankton to SST tluctuations is guick, the 

correlation bet\veen SST and PCI was not performed at different lags. 

To detect changes, intensity and duration of any changes in the value of PCI, the cumulative 

sums method (Ibaiiez et al. 1993) was used. lt consists of subtracting a reference value (here the 
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mean of the PC! anomalies time series at each station) from the data; these anomalies are then 

successively added, forming a cumulative function. This analysis was performed on the time 

series of monthly anomalies of PC! at each station along the route. The cumulative sum 

method was also used on the altimetry and SST anomaly data. This method is useful for data 

where high frequency variance may obscure longer-term trends. The relationship between PCI 

and Sea\ViFS was also tested through Spearman rank correlation analysis performed at each 

station between (i) original data (4 years time series) and (ii) mean seasonal cycles (12 months 

time series) of PC! and Sea\ViFS Chi a. The structure (i.e. mean, amplitude and phase) of PCI 

and Sea\ViFS Chi a seasonal cycles (!2 month time series) was compared. 

6.C.3. Re.rult.r 

6.C.3.a. Comparison of temporal structures of two phytoplankton estimators 

Seasonal cycles of Sea\ViFS and PCI (Fig. 6.15) identified distinct regimes for Georges Bank 

(stations 2 and 3), Shelf Break and Sable Island (stations 6, 7, 8 and 9) and St Pierre Bank 

(stations 13 and 14). t\ decrease (non-signitlcant at 5% signitlcance level) in SeaWiFS Chi a is 

observed along the E-route towards Newfoundland. Along the CPR route, monthly time-series 

of PCI and Sea\ViFS chlorophyll a showed signitlcant correlation in only 20% of the stations, 

with a ma.,imum positive correlation of. 0.69 (fable 6.1). In contrast, significant relationships 

between seasonal cycles of PC! and SeaWiFS Chi a were observed in 53% of the stations along 

the CPR route (Table 6.1, Fig. 6.15), with a maximum positive correlation of 0.92 (fable 6.1 ). 

There is, tlnally, a signitlcant correlation (P, = 0.65, p<0.05) between the averaged seasonal 

cycles of these two estimators of phytoplankton (Fig. 6.16). 

6.C.3.b. Phytoplankton Colour Index and climate indices 

No si1,>nitlcant trends were obsen,ed in PCI time series along the CPR route. i\'lostly significant 

inverse relationships occur along the route between the PC! dat·,J and SST (fable 6.2). This is 

consistent with the shift occurring between their seasonal cycles, with a minimum SST in 

March occurring near the m<L,imum of PCI (i.e. Spring Bloom period). However, no significant 

relationships were found between PC! residuals and SST residuals. Finally, no correlations were 

Found between PC! and NAO (fable 6.2). However, positive signitlcant correlations were 

obsen•ed between PC! and monthly NAO (witl1 a lag of 2 months) (fable 6.2). 
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The spting bloo m usually observed between February and i\lay (Riley 1941) was not detected 

on Georges Bank in 1997, and an unusual autumn bloom was observed in 1996 (Fig. 6.17a). At 

the other stations along the E-route, the usual bloom was obserTed but during an extended 

period of time (November 1996-June 1997). 1l1ose changes were also visible on the PCI 

cumulative sums diagram (Fig. 6. 17d). ·n,e PCI anomaly cumulative sums analysis revealed 

different short-term trends in the time series, with a change of slo pe in winter 1996/ 1997 for 

stations 1 to 5. Fo r statio ns 6 to 10, the cumulative sums of PCI increased from D ecember 

1996 until larch 1997 and decreased afterwards. Changes were also observed in ,ST, with 

negative anomalies obserTed between June 1996 and June 1997 on the SST H ovmoller diagram 

(Fig. 6. 18c). Conversely, no specific trends were observed for stations 6 to 15. The S T 

an omalies cumulati\e sums analysis (Fig. 6. l8d) revealed different trends depending on the 

location along the continental shelf. In sta tions 1 to 5, the cumulative sums of SST increased 

until December 1995 and then decreased. 

Table 6.1. Spearman correlation analysis between the monthly time series of PCI and Sea\\'iFS (o riginal 
data) and between seasonal cycles of PCI and Sea\\IFS over d1e period 1997-1998. ' 5°o significance 
le\'el. 

Stations O riginal data Seasonal cvcles 

0.56' 0.5-t 

2 -0.23 0.58 ' 

3 -0.-13 0.58' 

-l 0.30 0.36 

5 0.16 0.52 

6 0.03 0.78 ' 

7 0.02 0.92 ' 

8 0.5 1·' 0.86 ' 

9 0.-13 0.89 ' 

10 0.41 0 .-+2 

11 0.69 ' 0.33 

12 0.22 0 .45 

13 0.3-t 0.67 ' 

14 0.37 0.60' 
15 0.22 0 .37 

6.C.3.c. Ph)1oplankton and mcsoscale physical proce. ses 

The annual component o f altimeter Sea LeYel Anomaly CL\.) and tidal aliasing (Fig. 6.l9b) 

reYealed the alternation between positiYe and negati,·e ~L\ with annual periodicity. This 

corresponds to the rise and fall of the se<l surface resulting from the expansion and contraction 

o f the ocean due to seasonal heating and cooling. There was a Jag of two months in the 
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ma.ximum rise and fall of the water level between stations 1 and 15. The amplitude o f the 

annual component is reduced nOLthward along the route where the surface water is cooler. 

Table 6.2. Results of Spearman correlation analysis between the monthly time series of PCI :Uld K \ 0 
index and between both original and residual (seasonal cycle removed) time series of PCI ;md SST over 
the period 1995-1998. · 5°1o significance level. 

Stations 
monthly PCI-NAO original data residual 

110 h& I month h& 2 months h& 3 months 9~ PCI-SST PCI-SST 

1 o.:w 0.29' 0. 17 -0.09 -0.38" 0. 11 

2 0.07 0.27 0.3-l" 0. 12 -0.25 0.08 

3 -0.18 0. 12 0.23 0. 1-l -0.2-l 0.07 

4 0.08 0.24 0.20 -0.02 -0.21 0.15 

5 0.01 0.03 (1.15 0.06 -0.39' 0.08 

6 0.00 0.25 0.39~ -0.02 -o.so· 0.03 

7 0.08 0.25 0.3-l ... 0. 10 -0.56 ' 0.02 

8 0. 10 0.35• 0.22 -0.0-l -0.-+8. 0.06 

9 0.07 0.10 0. 17 0. 13 -0.59. -0.02 

10 -0.1-l 0.23 0.36' 0. 18 -0.71' -0. 17 

11 -0.10 0.23 (l.-15 ' 0. 11 -0.69' -0. 13 

12 ( ).( l-1 0.23 0.36 ... 0. 19 -0.70 ' 0.11 

13 -0.05 0.22 0.35. 0. 13 -0.63' o.us 
14 -0.02 0.22 0.2-1 0. 19 -0.59' tl.U1 

15 -0.07 0.28 0.20 0. 13 -0.67' 0.02 
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Figure 6.16. ~ lean seasonal cycles of PCl ~>lack triangles) ;md Sea\'\'iFS chlorophyll a (mg.m 3 Chi a ; 
open dots) over the period 1997-1998 along the CPR route. The error bars are the standard deviation. 
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Positi\' e and negative ano malies have been identitied in the L-\ residuaJs on H ovmoller 

diagram (e.g. marked + / -, Fig. 6. 19c). 'These anomalies can intluence the spatial structure o f 

PCI (see tirst part o f this chapter). Tn particular, PCI anomaly structures corresponding to the 

SLA residuals structures were identitied. Lower/ higher SLA residuals (identitied respecti,ely by 

signs - and + in Fig. 6.1 9c) are associated with higher / lower Chi a values (identitied 

respectively by signs - and + in Fig. 6.17c). I Iowever, there was no statistically significant 

correlation between residuals o f PCI and SLA for the w hole regio n. 
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Figure 6.20. Cumulative Nt\0 (index month; black triangles) and cumulative geos trophic current 
(white triangles) derived from altimeter sea level anomaly (km) o ver the period 1995-1998. 

Changes in geos trophic su rface How can be derived from altimetry data. This was done by 

measuring the difference in SL\ residuals between 2 locations specifically chosen as 

represen tatiYe of the shelf area (:\; 44 ° 62°\\') and the open ocean (B; 42° · 60°\\'; Fig. 6.14) 

and removing the annual component and tidal alias ing fo r a 9 years period 1992-200 I. Between 

October 1992 and July 1995, t.l1 e geostrophic How mo,·ing nort.l1east between t.l1e two stations 

increased by about I cm.s 1 
(- I km.day 1

). 1l1en, after July 1995, the main tlow was reduced by 

about 3 km.day 1 until June 1998. The cumulati,-e sums of geostrophic current (from ,L \ data 

effecti,-ely gi,·ing a distmce o f traYel) was positi\'ely correlated with .\0 monthly index (Fig. 

6.20) (P, = 0.60 ,p<O.OOOl). 
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6.C.-I-. DiJt-'ltSJion 

6.C.+.a. Seasonal cycle of Phytoplankton Colour Tndex and Sea\\.iFS chlorophyll a 

Along the E-route, a signiticant relationship has been observed between the seasonal cycles o f 

two estimators of phytoplankton biomass (i.e. PCl and ,ea\\'iFS chlorophyll a) in 53° o of the 

stations, with a maximum positive correlation of p = 0.92. r\ similar comparison, based on 

monthly time seties of PCI and 'ea\\'iF over the period 1997-2002, made for the Central ~E 

Atlantic and the orth Sea (i.e. 1585 samples), gave a Pearson's correlation coefticient of 0.79 

Ql aitsos et aL 2005). I Iowever, based on monthly tune senes, only 20° o of the stations 

in>estigated here showed a signiticant relationship. This strongly suggests that the relationship 

between PCI and 'eaWiF, varies spatially (i.e. tl1e average distance between 2 stations along the 

E-route is I 00 km) and that the most part of the obsen·ed variability is driven by small-scale 

processes. Finally, as Raitsos et aL (2005) took into account CPR sampling stations located all 

over the Central NE Atlantic <U1U the 'orth Sea, and did not compare indiYidual stations, they 

smoothed the aboYe-mentioned spatial '"ariability that could have been present in the 

relationship. 

Table 6.3. Structure o f the seasonal cycles o f Phytophmkto n Colo ur Index (PCI) ;mcl Sea\'CiFS 
chlorophyll a over the period 1997- 1998. 

Annual Scmj-annual 
,\ lean 

Ratio of the amplitudes 

J\mplitudc Phase (0
) . \mplitudc Phase (0

) (Semi-annual / Annual) 

PCI 1.57 74 1.10 170 1.57 0.70 

Sca\\'il-S 
0.~0 ~8 l1.~3 ~ IS 0.9-1 1.15 

(mg m 
3 

Chla) 

ln addition to the modemte level o f association between the seasonal cycles of PCI and 

SeaWiFS (Table 6.1), the structu re of the seasonal cycle also differs (l'able 6.3). Fundamentally, 

a seasonal cycle can be thought as a simple tl1ree component model, i.e. the sum of the mean, 

the fundamental component (annual component) and its first distorting harmonic (semi-annual 

component) . Except in 1996, no autumn blooms were identified for PCI on the llovmoller 

diagram (Fig. 6.1 7). l loweYer, the annual and semi-annual components resulting from a Fourier 

fil tering procedure lead to the identitication of spring and au tumn blooms for both PCI and 

~,ea\\ 'iF,, data ( fable 6.3). The combination of phases and amplitudes of the annual and semi­

annual components estimated for PCI ( Ltble 6.3; sec also Fig. 6.16) leads to a magnitication 
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and a dampening of the spring and autumn blooms, respectively. In contrast, this results in a 

magnification of both spring and autumn blooms for Sea \ViFS data (Fig. 6.1 6). In addition, the 

phases of the PCI and Sea\ViFS dominant annual and semi-annual cycles similarly differ by ea. 

45° (Table 6.3), indicating a ea. 1.5 months lag between the maximum values of each blooms 

(i.e. spring and autumn) of the two d;~ta sets. This reveals ;~nother difference between PCI and 

SeaWiFS measurements, a discrepancy in the timing of phytoplankton spring and autumn 

blooms. Finally, the difference between the ratio of the mean to the ;~nnual component 

(Sea\ViFS - 5, PCl - I) suggests a clear divergence in the two methods for assessing 

chlorophyll a levels. According to these arguments, further examination of the seasonal cycle 

observed along the E-route suggests a more signitlcant contribution of the semi-annual 

component to both PCI and Sea\X'iFS signals on Georges Bank (Fig. 6.1 Sa, d) when compared 

to Shelf Break ;~nd Sable Island (Fig. 6.1 5b, e) and St Pierre Bank (Fig. 6.15 c, t). The 

differences in amplitude between PCI and Sea WiFS signals ·is a consistent feature along the E­

route (see Fig. 6.15). The comparison of PC! and Sea\ViFS seasonal cycles thus leads to the 

conclusion that: 

• 

• 

• 

the global picture given for a mean seasonal cycle is the same; 

the correlation between these parameters depends on the observation scale (i.e. spatial 

and temporal). As marine ecosystems are highly heterogeneous in space and time over a 

wide nmge of scales (Legend re & Demers 1984, Mackas et al. 1 985), it is critical to use 

plankton estimators that will retlect the most closely the variability of the environment 

at scales the most relevant of the population dynamics. In particular, for phytoplankton 

as it represents the first level of the food web. 

the detailed structure ofPCI and Sea\ViFS mean seasonal cycles completely differs . 

In order to detennine which estimator is the most accurate, it would be necessary to conduct a 

companson between those estimators and Chi a concentn1tion estimated from bulk phase 

seawater. 

6.C.4.b. Influence of the climate 

!\long the CPR route, phytoplankton was signiticantly correlated with monthly Ni\0 (with a 

lag of 2 months). PCI anomaly cumulative sums analysis revealed changes in trends of the time 

series, with a change in slope between December 1996 and J'vlarch 1997 for stations 2 to 13. In 

addition, there was no spring bloom on Georges Bank in 1997 (Fig. 6.17a). Finally, a decrease 
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in SST was observed between June 1996 and June 1997 on the Scotian Shelf (Fig. 6.20). This 

period (winter 1995-96) corresponds to the most negative value observed in NAO winter index 

since 1970s (Hurrell l99Sa). After the NJ\0 index's large drop in 1996, the Labrador Subarctic 

Slope Water (LSS\\f, i.e. cool, fresh water poor in nutrients; Petrie & Years (2000)) advanced 

along the shelf break, displacing the Atlan6c Temperate Slope Water (ATS\V, i.e. relatively 

warm and salty) offshore and penetrating to the southwest as far as the Middle Atlantic Bight 

(1\!ercina 2001). Between October 1992 and July 1998, the geostrophic tlow was observed 

moving northeast (i.e. corresponding to 1\ TSW flowing along the continental shel~. This tlow 

towards Newfoundland increased by - I km day·' until July 1995, then decreased by about 3 

km day·' until June 1998. It is then suggested that the ATSW was progressively replaced along 

the shelf by LSSW from September 1997 to February 1998, in accordance with previous 

observations (Greene & Pershing 2003). 111ese water masses movement are also associated to 

decrease in surface salinity on Georges Bank between 1995 and 1997 (Smith et al. 2001). 111e 

movement of water masses along the Scotian Shelf is then strongly intluenced by the different 

phases of NAO. 

There is strong evidence that production rates of the copepod Ca/mt!IS jillmarchims were limited 

by the lack of food on the southern tlank of Gcorgcs Bank during April 1997 (Campbell et al. 

2001). 'lnis observation is consistent with the absence of phytoplankton spring bloom in 1997 

on the Georges Bank (Fig. 6.1 7a). The timing and development of density stratitlcation on 

Southern Georges Bank have, however, also been shown to intluence the growth and 

recruitment of copepods (Bisagni 2000). The changes in seawatcr characteristics (i.e. 

temperature and salinity) following the intlow of LSSW might then have moditled the timing 

and development of density stratitlcation on Georges Bank and consequently the development 

of the spring bloom early 1997. It is tlnally suggested that such modifications in the ecosystem 

might have a strong impact on the higher levels of the food web. This is especially critical in a 

region like Georges Bank that is a brge retention area for t\ tbntic herring, cod, haddock, Iuke 

and tlounder Q3ackus 1987). 

6.C.4.c. Influence of mesoscale physical processes 

The annual component of Sea Level Anomalies (SLt\) has shown two stnJCturcs along the CPR 

route: 
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a lag of two months in the rise and fall of the water level between stations 1 and 15 

(Fig. 6.19b); 

a decrease in the amplitude of the annual component northward along the route (Fig. 

6.19b), where the surface water is cooler. 

The expansion and contraction of the water column, represented by the annual component, is 

associated to the seasonal changes in atmospheric temperature. i\{oving northward along the E­

route, the mean temperature of the seawater is cooler, and the heat necessary to expand the 

water column as much as in the southward stations is greater. So, for a same temperature the 

expansion and contraction of the water column will be much smaller towards Newfoundland 

than near Georges Bank. 

More specifically, positive and negative values have been identifted in SLA on the 1-Iovmoller 

diagram (Fig. 6.19c). Specif-Ic structures have also been identitled in PCI. Neg;1tive anomalies 

visually correspond to areas of high chlorophyll a concentration and positive anomalies are 

associated with low Sea\ViFS chlorophyll a concentrations. Negative SLA anomalies, 

corresponding to cyclonic eddies, are associated with high levels of inorganic nutrients 

reintroduced in the water column by localised upwellings (1-litchcock d al. 1993, Aristegui et al. 

1997). In contrast, positive anomalies corresponding to anticyclonic eddies are associated with 

depressed isotherms and low levels of inorganic nutrients. -nlese processes are thus likely to 

modify the development of localised phytoplankton blooms and then inHuence the 

concentration in Sea\ViFS chlorophyll a observed at the same location. However, there was no 

signitlcant overall correlation between residuals of PCI and SLA On the Shelf, SLJ\ may not be 

related to eddies, but result from different causes (e.g. wind set-up, circulation, tidal aliasing, 

surges) that may not correlate directly with Chi a. Moreover, Chi a anomalies are likely to have 

a ma.ximum signal in the productive season due to variations in the timing of the spring bloom 

whereas SL!\ anomalies are not seasonally constrained. Those observations lead to the 

conclusion that except in the open ocean, it is difftcult to state unambiguously that there is a 

relation between eddy stn1ctures and phytoplankton structures. 

Even if Gulf Stream rings have been identified as moving towards the Scotian shelf between 

September 1997 and December 2000 (see section 6. B.3.c), none of them (based on looking at 

the centre of the eddy) was actually observed crossing the shelf break. 1\s a consequence, the 

positive and negative anomalies identitled in SL1\ between 1995 and 1998 do not seem to be 

related to Gulf Stream rings. However, a positive SLA observed on the southern Hank of the 
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Georges Bank (i.e. our stations 2 and 3) in ivlay-June 1997 (Fig. 6.20) has been identified by 

Ryan et al. (200 I) as a warm-core ring (anticyclone). Low Sea\X1iFS Chi a features related to 

anticyclonic eddies were observed near Georges Bank in February and i\·larch 1999, but could 

only intluence the stations I and 4 of the E-route. In addition, two such anticyclonic eddies 

were also observed at Station 4 in 1995 near Georges Bank (see figure 6.19c). 'Ihese 

observations corroborate the possible observation of anticyclonic rings on the southern flank 

of the Georges Bank. t\ more extended ~malysis of sea level ~momalies showed that a few of 

these relatively smaller anticyclonic eddies could move cyclonically around a larger cold core 

negative anomaly or Gulf Stream Ring in the ocean region and reached the continental slope 

region near Station 6 (> ZOOm depth). From here they tended to move southward along the 

slope region around Georges Bank as far as Station I. Corresponding SeaWiFS Chi a structures 

showed that the centre of the ;mticyclonic structure was low in chlorophyll a and two such 

anticyclonic features intluencing the Georges Bank region in August 2001 are shown in the first 

part of this chapter (e.g. markecll3 on Fig. 6.13). The shelf Chi a was thus entrained to the ocean 

by the ocean eddies from outer regions (see Figs. 6.3 and6.13). The interactions of anticyclonic 

rings with shelf \Vater masses, via eddy swirl currents, then likely modify the distributions of 

phytoplankton and zooplankton species, <L~ well as the retention of fish larvae on the southern 

flank of the Georges Bank and might have critical implications for tisheries (Ryan et al. 2001). 

G.D. Conclusion 

The :1im of this chapter was to investig.Jte the relationship between spatial and temporal 

structures of eddies (using SLA) and chlorophyll a (i.e. PCI and SeaWiFS Chi a) in the 

Northwest 1\tlantic. In particular, the impact of the Gulf Stream rings on phytoplankton 

distributions and the tluctuations of ph)•sical processes and phytoplankton distribution were 

compared to climate indices (i.e. monthly time series of SST and Ni\0) along theE-route. 

In the North Atlantic open ocean conditions, Sea\ViFS Chi a is rcdisttibuted at the eddy scale 

by the eddy surface swirl currents. 'fhis led to a significant overall inverse relationship between 

SeaWiFS Chi a and SLt\ residuals. l\lore specifiCally, Gulf Stream anticyclonic and cyclonic 

rings have been observed moving upstream at speed ranging between 2.4 and 5.2 km day·1
• In 

contrast, anticyclonic and cyclonic rings moved downstream respectively at 3.5 km day-1 and 2.6 

km day·1
• Those eddies were identified on the Hovmoller diagrams and anticyclonic and 
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cyclonic rings generally corresponded respectively to areas of low and high Chi a concentration 

(see Figs. 6.8 and 6.1 0). 1\nticyclonic rings are associated with depressed isotherms and low 

levels of inorganic nutrients. On the Gulf Stream a_xis, those rings are associated to low 

chlorophyll concentration (marked with '-' sign in Fig. 6.3). In contrast, cyclonic rings are 

associated to high chlorophyll concentration (marked with '+' sign in Fig. 6.3). Cyclonic rings 

have domed isotherms and the related localised upwellings may bring nutrients into the 

euphoric zone, which could fuel prim,·rry production in their core (1-Iitchcock et aL 1993, 

Aristegui et aL 1997). These mesoscale features can then modify the spatial distribution of 

phytoplankton in the open ocean by causing localised bloom in the core of an eddy or 

redisttibute the phytoplankton around the eddy via eddy swirl currents. 

Along the E-route, the phytoplankton structures were not significantly inHuenced by the 

mesoscale features of the Gulf Stream, but were mainly impacted by the changes in surface 

rlow along the Scotian Shelf: 

Firstly, no significant relationship was found between the Sl.t\ and PCI structures along 

the E-route. On the Shelf, SL'\ may not be related to eddies, but instead result from 

different causes (e.g. wind set-up, circulation, tidal aliasing, surges) that may not 

correlate directly with Chi a. It is therefore difficult to afr"im1 if there is a relation 

between eddy stmctures and phytoplankton stn1ctures. 

Secondly, although positive anomalies were observed on Georges Bank could be related 

to the warm-core ring identified by Ryan et aL (2001) in spring 1997 on the southern 

flank of the Georges Bank (stations 2 and 3), no eddies were observed actually crossing 

the Shelf Break. Over their lifespan, tl1e shape of the eddies is modiried by tl1e 

movement of the surrounding water masses. As some eddies get to a diameter of -200-

250 km (see Chapter 6), it is suggested that tl1eir edge could easily be on the shelf break 

but not their centre. The current associated to the edge of the eddy (i.e. edd)• swirl 

current) would then modify the distribution of phytoplankton and zooplankton species, 

as well as the retention of tish larvae on the southern rlank of the Georges Bank and 

have important implications for fisheries oceanography and shelf carbon budgets Q~yan 

et aL 2001). 

Finally, changes were identiried in the How of t\tlantic Temperate Slope Water ·,!long 
I 

the Scoti;m Shelf. This change in water mass circulation caused a drop in temperature 

and salinity along the Scotian Shelf and then induced changes in phytoplankton and 

zooplankton abundance. In particular, these changes in phytoplankton and zooplankton 
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might have an impact on the recruitment of fish larvae, such as cod and haddock that 

use Georges Bank as a spawning ground (Camp bell et aL 2001). 

The \Vestem North Atlantic is then highly intluenced by the hydrodynamic processes. In 

particular, Gulf Stream mesoscale features modify the spatial distribution of phytoplankton in 

the open ocean. In addition, the fluctuations in t-low along the Scotian Shelf influence the 

characteristics of seawater (i.e. temperature and salinity) and then the plankton dynamics. 
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Chapter 7 

GENERAL DISCUSSION 
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The Continuous Plankton Recorder (CPR) survey has measured the presence and abundance of 

ea. 500 phytoplankton and zooplankton t;n;a since 1931 and has provided a visual assessment 

of total phytoplankton biomass through the Phytoplankton Colour Index WCl, Colebrook & 

Robinson 1965) since 1946. The aim of this estimator is to provide an estimation of total 

phytoplankton biomass. However, some studies have shown that the relationship between PCI 

and other estimators of phytoplankton abundance is variable. 

The first comparison between PCI and tluorometrically measured chlorophyll was undert1ken 

by Hays & Lindley (1994). They showed a good relationship between PCI and chlorophyll 

concentration, but only when the number of cells retained by the CPR mesh was small. 1l1is 

implies that the relationship, and thus the use of PC!, was signitlc;mt only in oligotrophic and 

non-bloom conditions. Batten e/ aL (2003b), however, compared simultaneous fluorometric 

measurements of Chi a, phytoplankton cell abundance and PCI from the Iberian margin, 

\Vestem Europe. The relationships between fluorometrically determined chlorophyll, cell 

abundance and PCI were all signitlcant, with PCI showing a better relationship to chlorophyll 

than to cell abundance. This supports previous research (Colebrook & Robinson 1965, Hays & 

Lindley 1994) suggesting that the PC! is a useful index of phytoplankton standing stock and, 

furthennore, may be a measure of cells 0ike small naked thgellates) that <lre not preserved or 

counted in the routine microscopic processing of CPR samples. The relationship between PCI 

<md chlorophyll nevertheless appeared ro vary seasonally (Batten e/ aL 2003b), although more 

extensive data are needed to quantify this variability. The Batten et aL (2003b) study also 

compared the PCI and tluorometer data with chlorophyll values obtained from Sea-viewing 

\Vide Field-of-view Sensor (SeaWiFS) for the Iberian margin. Signitlcant correlations were 

found during a 15-month time-series between these three estimates of phytoplankton 

concentration. This result demonstrates that the -50 year time-series of PCI for the North 

Atbntic can provide valuable information on changes in phytoplankton standing stock. 

However, as the relation between PC! and chlorophyll varies seasonally, the interpret1tion of 

any results based on PC! data only should be taken with great caution. 

The most recent comparison of the PCI with another estimate of phytoplankton abundance 

was achieved by R<titsos et aL (2005) using SeaWiFS data. They found a significant relationship 

between PCI and SeaWiFS data in the Northeast Atlantic and the North Sea. In this thesis, PCI 

was compared with Sea\ViFS data <tlong the E-routc, in western North Atlantic, and there w<ts a 

significant rcbtionship between the two estim<ltors. i\lthough the characteristics of the seasonal 

cycles (sec Table 6.3) of PCI and Sea\ViFS are correlated at 53% of the stations along the E­

route, the stn1cture of the seasonal cycle differs for these measurements. For example, the 
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secondary late autumn peak observed in PCJ has a much smaller amplitude relative to the 

spring bloom, which is not the case in Sea\ViFS data (see Fig. 6.17). In addition, the ratio of the 

mean to the annual component (Sea\ViFS - 5, PC! - 1) shows a large discrepanq' in the two 

methods for assessing Chi a levels, particularly for assigning a value of near zero Chi a 

concentrations. It is thus suggested that the PC! is less reliable than the Sea\\1iFS dat.1 as it is 

only a semi-quantitative index while SeaWiFS data are continuous. PC! must then be only 

considered as 'an estimation of phytoplankton biomass' that requires additional data in order to 

quantify the fluctuations in phytoplankton community. 

As a conclusion, it can be stated that the PC! index has shown some limitations: (i) the relation 

between phytoplankton abundance and biomass is not constant Q-Iays & Lindley 1994), (ii) the 

relation between PC! and chlorophyll appears to vary seasonally (Batten e/ aL 2003b), (iii) Chi a 

is an imperfect measure of phytoplankton biomass (see e.g. Seuront e/ al. 2006, Figs. 3 and 5) 

and (iv) PCJ does not provide relevant infonnatiori on the structural changes occurnng m 

phytoplankton communities that are likely to influence phytoplankton biomass. 

The study of space-time dynamics of phytoplankton communities therefore requtre further 

analysis of the diatom and dinoflagellate assemblages. Diatoms and dinotlagellates are the two 

most important groups of primary producers in the North Atlantic Ocean (Raymont 1980, Lalli 

& Parsons 1997) and are the two most recorded ta_xonomic groups in the CPR survey. These 

data have subsequently been used as corollary variables of PC!. A comparison of potential 

differences in the space-time dynamics of the PC!, diatom and dinotlagellate abundance was 

thus undertaken (see Chapters 3 and 4). In particular these three parameters respond in a 

different way to the modifications of their environment caused by the fluctuations of the NAO. 

There was a high variability in the trends of PC!, diatom abundance and dinotlagellate 

abundance observed in the same (or different) region(s) of the North Atlantic basin. PC! is 

then not always an appropriate assessor of the fluctuations of phytoplankton biornass at the 

different spatial and temporal scales considered in this work. 

Barton e/ al. (2003) reported positive long-tenn trends in PC! time series across the continental 

shelf areas in the NE and N\V Atlantic, as well as a narrow transition zone between the 

subarctic and subpolar Central North Atlantic over the period 1948-2000. This increasing trend 

in the PC! had previously been shown in the North Sea Q{eid & Edwards 2001), in the area 

west of the British Isles (Edwards et aL 2001) and over the Scotian Shelf and Georges Bank in 

the NW Atlantic (Sarneoto 2001). In the present work, increasing trends of PC! are evident in 
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the NE, SC and S\X' North Atlantic. However, dinotlagellates significantly increased only in the 

SW and no long-term trends were observed in diatoms between 1958 and 2002 (see Chapter 3). 

These observations indicate th;1t the PC! does not retlect tluctuations in the dinotlagellates and 

diatoms found on the CPR silk. More detailed analyses have highlighted that the signiticance of 

trends observed for the PC! depends on tl1e month and the geogr;1phical area (see Table 3.3). 

The trends observed in montl1ly time series of dinotlagellates and diatoms also vary temporally 

and spatially, but the PCI still does not reflect the changes in dinotlagellates and diatoms. 

J'vlore specifically, the tluctuations of PC I, diatoms and dinoflagellates were compared with tl1e 

SST across the North 1\tlantic basin (see Chapter 3). This showed that the relationship between 

phytophmkton and the SST varies depending on the area: a stronger relationship between SST 

and PC! and dinotlagellates has been observed in the eastern part of the ocean (see Table 3.2). 

The opposite has been obsen,ed for diatoms, with a stronger correlation in the NW Atlantic, 

suggesting the potential intluence of different forcing factors across the North Atlantic basin. 

Drinkwater et al. (2003) showed that the physical response to NAO forcing varies spatially 

across the North Atlantic basin. In particular, there is a region;11ly variable component to tl1e 

NAO-climate relationship (Smaycb el al. 2004). In the north-western /\tlantic from the Gulf of 

!\bine southward, there is positive correlation between Nt\0 and sea temperature anomalies 

(Smayda e/ al. 2004). By contrast, along the North European coastal zone there is a negative 

correlation between Ni\0 and the sea temperature anomalies. 

Even if the PCI is increasing in NE: and NW Atlantic, and shows higher correlation with SST in 

the NE, the t<Lxa leading to these correlations are not the same on both sides of the Atlantic. 

Diatoms and dinotlagellates have shown different trends, and correlations witl1 SST, in the NE 

and NW Atlantic, thus seemingly responding in different ways to the same changes occurring in 

their environment. In addition, the environmental factors (i.e. currents, wind regime, SST and 

precipitation) that are under the intluence of the NAO can tluctuate differently according to 

the location in the North Atlantic basin. Different adaptive strategies are required to deal \vith 

varying combinations of these factors, embodied mainly in the physiological differences 

between diatoms and dinotlagellates (Margalef 1973). Dinotlagellates possess an undulating 

tlagellum that improves the chances for nutrient uptake in nutrient depleted w·aters (Margalef 

1997). In contrast, diatoms, with their relatively low surface-to-volume ratios need nutrient-rich 

conditions for growth (Chisholm 1992). In oligotrophic, stratitied and/or low turbulent waters, 

it pays to invest energy in swimming to be able to position the cell in the most favourable 

environment. This optimisation is however useless in eutrophic and/ or turbulent waters, where 

nutrients are homogeneously distributed and/or redistributed in the water column. 
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As a consequence, in stratitled water (poor ;md rich in nutrients), dinotlagellates may be 

dominant; conversely, in turbulent and/or nutrient rich water, diatoms would be dominant. In 

the NE Atlantic, warmer surface temperatures related to the increasing Ni\0 winter index 

promoted earlier, or more intense, stratification of the upper water-column (Drinbvater et aL 

2003). According to tvlargalefs (1975) hypothesis, all these factors would create an 

environment favouring the growth of dinotlagellates over the growth of diatoms in both parts 

of the eastern North Atlantic. This is congruent with the observations regarding the differential 

relationships found between dinotlagellates, diatoms and the NAO (see Table 3.3, 3.4). 

In the N\V 1\tlantic, phytoplankton measures (i.e. PC!, total diatoms and dinotlagellates) have 

signitlcantly increased between 1958-2003, but during different periods of the year (see Chapter 

3). ll1ese observations correspond to an increase in the occurrence of diatoms and 

dinotlagellates during the tirst month of the period in which they are usually present, and/ or an 

earlier appearance of these t;L';a during the year .. Edwards and Richardson (2004) have 

previously observed changes in the phenology of these ta:xa in the central North Sea. They 

stated that diatoms showed the largest variations in phenology, with particular taxa occurring 

both earlier and later during the spring and autumn respectively. 'll1is study suggests that 

changes in the timing of the blooms of those taxa in the North Atlantic could be associated 

with the variations of physical processes along the Scotian Shelf associated to the NAO. 

During positive phases of the NAO (Fig. 7.1a), convection is deeper and more intense in the 

Labrador Sea and a relatively cool, fresh and thick layer of LSW is formed (Dickson et al. 1996). 

This results in higher salinity and temperature on the Scotian Shelf and in the Gulf of Maine 

(Petrie & Drinkwater 1993) and in higher nutrient concentrations (Gatien 1976). Higher salinity 

;md temperature associated with higher nutrient concentrations can create Ewourable 

conditions in spring for the growth of dinotlagellates such as C. li11eat!lm ;md C. t1ipos, typical of 

mixed AtLmtic waters (sec Chapter 3). In contrast, diatom species typic1l of oligotrophic 

waters, such as Rhizosolellia spp., encounter favourable conditions from the end of the summer 

when low nutrient conditions prevail. These large-sized diatoms ·,1dopt a str,Jtegy of buoyancy­

mediated vertical migration to access nutrient-enriched waters located below the nutricline and 

then return to the surface to photosynthesise (Villareal 1992, Villareal e/ aL 1993, Villareal et al. 

1999). This behavioural adaptation prevents direct competition with the dominant 

nanoplankton size classes (usually encountered in oligotrophic \Vater conditions) for nutrients 

and allows their sun·ival despite the disadv·,mtages of large size (Singler & Villare.JI 1995). 
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Figure 7.1. Mechanisms linking the posttlve (A) and negative (B) phases of the North Atlantic 
Oscillation (NAO) to tl1e variability in physical processes and planktonic ecology. Red/green arrows 
imply an increase/decrease in the paran1eter. The dashed arrows illustrate tl1e relationship between 
NAO and Sea Smface Temperature (SSl) via tl1e currents in Nortl1east and Northwest Atlantic. 
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During negative phases of the NAO (Fig. 7.1 b), the Labrador Basin convection is weaker, the 

LS\V export is diminished and the transport of Labrador Subarctic Slope Water (LSSW, i.e., 

cool, fresh water poor in nutrients 0Jetrie & Ycats 2000)) along the continental shelf is 

enhanced Wickart et aL 1999). During the winter of 1995/1996, the NAO index became 

strongly negative and LSSW moved southward along the Scotian Shelf (Thomas et aL 2003). 

LSSW advanced along the shelf break, displacing 1\tlantic Temperate Slope \Vater (ATS\X0 

offshore (i\·[ercina 2001). Changes in surface tlow were estimated from the altimeter data 

between the 2 stations located on the shelf and in tl1e open ocean, respectively (sec Chapter 6). 

Between October 1992 and July 1998, tl1e geostrophic How moving northeast (i.e. 

corresponding to ATSW tlowing along tl1e continental shelt) was determined. This tlow 

towards Newfoundland increased by - I km day·1 until July 1995, then was reduced by about 3 

km daf1 until June 1998. "l11e ATSW was progressively replaced along the shelf by LSS\V from 

September 1997 to February 1998 (Grecne & Pershing 2003). In this work, changes in the 

environment of the Scotian Shelf have been observed, as the SST decreased between June 1996 

and June 1997, as well as in phytoplankton as tl1ere was no spring bloom in 1997 on Georges 

Bank (see Chapter 6). The decrease in temperature and the changes in water characteristics (i.e. 

salinity and nutrients) associated to the inHow of LSSW along the Scotian Shelf might have 

modi tied the growth of phytoplankton and subsequently the higher level of the pelagic food 

web. For instance, there is strong e1·idence that production rates of the cope pod C Ji!Jnlarchitm 

were limited by the lack of food on the soutl1ern Hank of Georgcs Bank during t\pril 1997 

(Campbell et al. 2001). If phytoplankton limitation on the southern Hank is interannually 

variable, as suggested above, then there is tl1e potential for interannual variation in C 

_jillnlalrhit11J·, with potentially signiticant consequences for the growth and survival of tish larvae 

on the Bank. Ultimately, these changes in phytoplankton ;md zooplankton might have an 

impact on the recn.titment of tish larvae, such as cod and haddock, that use Georges Bank as a 

spawning ground (Camp bell et aL 2001). 

Water masses and chlorophyll distribution of Georges Bank have been observed as being 

intluenccd by mesoscale eddies with Gulf Stream origins (watm-core ring, \VCR, Ryan et al. 

2001). The Gulf Stream represents the boundary between Subtropical Waters (i.e. with high 

dynamic heights and lower Chi a levels) and both Slope and Subpolar origin waters (i.e. with 

low dynamic heights and elevated Chi a levels). Fuglister and Worthington (1947) discovered 

that rings are generated from the cut-off of Gulf Stream meanders. These meanders, which 

separate northward of the stream, cb·elop into anticyclonic eddies and those separating 

southward produce cyclonic eddies 0tichardson 1983, Tomczak & Stuart 2003). Those eddies 
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usually move westward when they are not touching the Gulf Stream and eastward when they 

are attached to it (Fuglister 1972, Richardson 1980). Even if these rings have been identitied as 

moving towards the shelf break (westward) between September 1997 and December 2000 (see 

Chapter 6), none of them Q1ased on looking at the centre of the eddy) has been observed 

crossing the shelf break. Over their life duration, the shape of the eddies is moditied by the 

movement of water masses surrounding them. As some eddies get to a diameter of -200-250 

km (sec Chapter 6), it is suggested that their edge could easily be on the shelf break and not 

their centre. In that case, the edge of the eddy can have an impact on the area it is entering on 

the Shelf. In particular, along the E-route (mainly located on the Shelf break), a positive 

anomaly that was obserTed on Georges 13;mk in l\lay-June 1997 (see Fig. 6.21) could be related 

to the warm-core ring (anticyclone) identified by Ryan et aL (2001) in spring 1997 on the 

southern Hank of the Georges 13ank. This confirms d1e above-mentioned hypod1esis stating 

that the centre of eddies might not cross the shelf break, while their edge might and thus 

intluence the water masses surrounding them. 

The Gulf Stream rin~:,>s redistribute the surface Chi "and then modify the spatial patterns of Chi 

" (see Chapter 6). Gulf Stream anticyclonic (wann core) and cyclonic (cold core) rings have 

thus been shown to intluence surface phytoplankton distributions via the entrainment of the 

surrounding w>lter masses around and into the rings (1--::ennelly et aL 1985, Garcia-Moliner & 

Yoder 1994, Ryan et aL 1999, Ryan et aL 2001). Chlorophyll structure can be stirred between 

eddies and then mixed from regions of higher concentration with area of lower concentrations, 

modifying, for example, the boundaries of a bloom. To show a signiticant redistribution of a 

phytoplankton bloom, the eddy-swirled currents must be able to advect phytoplankton 

concentrations at rates comparable to, or greater than, the propag;1tion rates due to 

phytoplankton growth dynamics. P.·loreover, rings [XOI'ide a mechanism for exchange of both 

nutrients and biota among Slope and Sarg.tsso Sea waters (Could & Fryxell 1988, :O..kGillicudy 

et aL 1997) and cross-frontal exchange related to meander circulation has been dernonstr.tted by 

13ower and Rossby (1989). Two scenarios can be observed (Fig. 7.2). First, many plants and 

;mimals that are translocated by the rings die as the ring ages (l11e Ring Group 1981). Second, 

some species might successfully exploit these unusual environments and a successful exchange 

between slope and Sarg;1sso Sea water species communities can be achieved (Fig. 7.2). Eddies 

could then be seen as <111 individual microcosm within which pbnkton species would be 

different from the one observed in the 'outside-eddy' environment. Depending on the size and 

persistence of the eddy, d1ose species would sun·i1·e and reproduce in this 'independent' water 

mass. According to the location of the disappearance of the eddy, 
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Figure 7.2. Schematic eddy formation from the Gulf Stream meanders and mechanism of plankton and nutrient exchange across the frontal boundary between 
Subtropical Waters (light blue) and both Slope and Subpolar origin waters (dark blue). Species from Subtropical Waters could be exported toward Slope waters and 
if they can adapt to this new environment (and there is enough nutrien t), survive in those waters. However, it will be more challenging for Slope water species to be 
exported and survive in Subtropical Waters that are very poor in nutrients. 



those species would then be observed in regions from where they are usually absent. Ultimately, 

if the translocated species manage to survive in their new environment, this could impact the 

ecosystem by introducing new competitive species and then modify the state of the ecosystem. 

In the NE Atlantic, three states of the phytoplanktonic ecosystem have been identitled, 

suggesting differential temporal and spatial dynamics of the phytoplankton communities in 

geographically adjacent oceanic domains. These states have been related to the nuct:uations in 

the NAO (see Chapter 4). In particular, in the South NE Atlantic and northern North Sea, a 

currently evolving ecosystem was determined, with an increasing contribution of 

dinotlagellates. This increase is in contrast to a stable diatom population 111 the South NE 

Atlantic and a decreasing contribution of diatoms in the northern North Sea. 

These pattems can be related to the spcciftc circulation patterns characterising these areas. l11e 

South NE Atlantic and the northern North Sea are indeed both highly intluenced by the North 

Atlantic water intlow (Corten 1999). During the late 1980s, the N1\0 index was strongly 

positive and the strength of the westerly winds increased in the NE Atlantic, leading to <m 

increase in the oceanic intlow into the North Sea (Drinkwater et al. 2003). Turrell et ul. (1992) 

suggested that the Atlantic intlow makes a major contribution to the input of generally \varmer, 

nutrient-rich water into the northem North Sea. The resulting relatively warmer surface 

temperatures promote earlier, or more intense, stratitication of the upper water column 

(Drinkwater el al. 2003), which, according to i'v[argalefs (1975) hypothesis, would create an 

environment favouring the growth of dinotlagellates over the growtl1 of diatoms. "Il1e 

nuctuations observed in these tWO phytopJankton t;LXOnomic groups are likely tO impact the 

dynamics of the whole food web through herbivorous copepods and carnivorous zooplankton: 

Richardson and Schoeman (2004) have shown a dominant bottom-up control within the 

plankton community in the NE Atlantic over time and space as the result of sea surface 

wanning. The space-time differences in ta_xonomic group contributions could, for instance, 

have an effect on zooplankton populations through their trophodynamics. Different 

hypotheses have been formulated on the effect of diatoms and dinotlagellates on copepod 

growth and reproduction. In particular, copepods' reproduction has been shown to be 

innuenced by their diet. First, some diatom monodiets induce teratogenic effects (i.e. 'birtl1 

defects') in newly hatched copepod nauplii, which then have asymmetrical bodies and reduced 

numbers of feeding appendages (Poulet el ul. 1995). Second, rather than showing that they were 

toxic, Jones and Flynn (2005) showed that some diatoms have lower nutritional value than 

dinotlagellates. "l11e presence of dinotlagellates or other phytoplankton taxa that would 
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supplement a purely diatom diet would then maximise copepod growth Qones & Flynn 2005). 

Finally, I rigoien et al. (2002) observed that under natural environmental conditions, there is no 

negative effect of diatoms on copcpod hatching success. The different results obtained in these 

studies might be due to interspecitic variability and be relevant in specific regions of the North 

Atlantic basin. However, changes in the phytoplankton community structure like the one 

observed in this work might induce dramatic changes in copepods and then strongly impact the 

sustainability of higher levels of the food web. "111is cascade of reaction would then affect the 

entire ecosystem via o:-..)'gen production, carbon sequestration, and biogeochemical cycling. 

The observed different ecosystem states arc clearly related to a regime shift in the abundance 

and/or composition of phytoplankton communities. During the last two decades, "regime 

shift" has been ddined in many different ways. The term was first introduced to describe tl1c 

concurrent alternations between sardines and anchovies in several parts of the world (Liuch­

Belda et aL 1989). Scheffcr et al. (200 1) ddined it as ·an abrupt shift from one dynamic regime to 

<mother. Some oceanographers and ecologists choose, therefore, to define regime shifts on the 

basis of clunges in the ecosystem as a whole rather than simply on the basis of abrupt changes 

in time series. Laws (2004), for example, stated that regime shifts occur when a system 

transitions from one stable contiguration to another, specifying that such abrupt changes m 

biologic.tl communities may rctlect small ch;mges in environment;tl conditions such as 

temperature, oxygen concentration, or irradiance. In addition, Rcid et al. (200 I) used the term 

"regime shift" to describe large, decadal-scale switches in the abundance and composition of 

plankton and tish; this detinition will be used hereafter. In my analyses (see Chapter 4), only the 

PCl provided evidence for the regime shift observed in the North Sea during the period 1982 

to 1988 0~eid et aL 2001, Beaugrand 2004). Dinotlagellates showed a shift in 1985, but only in 

the northern North Sea, and diatoms did not exhibit any evidence of a regime shift over this 

period. The observed discrepancy tl1erefore suggests that tl1e changes seen in PCI do not 

retlect changes in the community structure of major taxa. In addition, the features suggested to 

explain the regime shift in the North Sea by Beaugrand (2004) are acknowledged to intluence 

the whole North Sea. This study shows, however, that the dynamics of the northern North Sea 

clearly differ from those of the central and southern North Sea. To investigate tl1is issue more 

thoroughly, the presence and/or absence of a regime shift was tested in even smaller regions 

within the North Sea (see Chapter 5). Under the assumption of the regime shift observed in 

1986-1988 (Reid et aL 2001, Beaugrand 2004), signiticant differences between the pre- and post­

regime shift copepod assemblages (1958-1987 and 1988-2004) were apparent in northem, 

western, and eastem North Sea regions. Looking at phytoplankton in the same areas, this 
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reg1me shift was only apparent in northwestem and southwestern North Sea reg10ns. This 

suggests that different driving processes might control the dynamics of the phytoplankton and 

zooplankton community at different locations within the North Sea. By looking at smaller 

spatial scales, the explanatory mechanisms identi~ied to explain changes in pelagic ecosystems 

are different than at larger scales. 1l1is implies that local and regional processes play an 

important role in the control of the abundance and community structure of phytoplankton. 

This work allowed to observe that changes are occurring in pelagic ecosystems at different 

temporal and spatial scales. These changes have been illustrated by the spatial variability 

induced by eddies and/ or currents but also by the regional variability of the hydro-climatic 

processes, influencing in different ways SST, wind-regimes and mixing of local environments. 

Several different aspects of the Ni\0 impact on pelagic ecosystems have been highlighted: 

• In the northeast i\tlantic, NAO tluctuations imply changes in (i) SST in northern 

Europe (Chapter 3), (ii) wind regimes, (iii) Atlantic \Vater intlow into the North Sea 

(Chapter 5). 

• On the other hand, in the northwest :\tlantic, the ,·ariations of N:\0 imply changes in 

(i) SST on the Scotian Shelf (Chapters 3 and 6), (ii) coastal currents (Chapter 6), and (iii) 

inflow of Labrador Sea Slope \Vater (LSS\V) towards the Scotian Shelf and Georges 

Bank (Chapter 6). 

These changes in environmental processes impact phytoplankton production, abundance 

(Chapters 3, 4 and 5), spatial distribution (Chapter 6), community structure (Chapter 4), 

phenology (Chapter 3) and ultimately would impact trophodynamics processes. It is, 

however, still difficult to explain unambiguously all the mechanisms that are involved in the 

control of the observed patterns. As most of the processes affecting the physiology, the 

biology, and ultimately the ecology of phytoplankton communities are typically occurring at 

the scale of individual organisms, future work is still needed to reconcile micro- and 

macroscale observations to critically assess the impact of e1wironmental ~luctuations on the 

growth and sustainability of phytoplankton species, and in the end pelagic ecosystems. 
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