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Abstract 

New methodologies have been developed for the determination of arsenic and selenium species in a 
variety of environmentally important matrices. A simple liquid chromatographic separation technique 
based upon mini-column technology was developed to obtain a simultaneous, fast, efficient and 
reliable separation of relatively toxic from relatively non-toxic arsenic and selenium species. The 
relatively toxic arsenic and selenium species studied were inorganic Asv, As111

, Se vt and SeiV. The 
relatively non-toxic species of arsenic and selenium studied were AsBet, DMA and Se Met. Optimum 
conditions were found to be the use of a Hamilton PRP XIOO 12-20 J.lm anion-exchange resin with 
column dimensions of lOO x 3 mm. The mobile phase utilized a 10 mM K2S04 solution at pH 10.2 
with a flow rate of 1 ml min·1 and a sample injection loop of I 00 1-1'- Total analysis time was under 7 
minutes with limits of detection in the range of 2.0 - 10 11g kg·1 for arsenic and selenium species, 
respectively. 

Work was undertaken, using HPLC-ICP-MS instrumentation, as part of a feasibility study, into the 
production and certification of six new reference materials; these being analyzed for the species of 
arsenic, in chicken, fish, rice and soil samples, and selenium, in wheat and yeast samples. Enzyme 
extraction techniques were used throughout, except for soil where a microwave H3P04 extraction was 
used. Efficiencies were in the range 90-100%. The results obtained provided speciation information as 
well as total elemental concentrations with no operationally defined limits. 

Speciation analysis requires that the endogenous species are extracted without modification of their 
chemical form or disturbance to the equilibrium existing between the various species present. Work 
was undertaken to identify and quantify the selenium species present in two samples of novel, 
previously unstudied, bio-natured nutrients, these nutrients being: i) a selenized yeast from a new 
process and: ii) a probiotic bacteria-based dried milk sample (Biogurt®). Specific interest was 
directed towards enzyme, MeOH and KOH and TMAH extraction efficiencies together with retention 
of species information. Selenium speciation was performed using ion-exchange HPLC-ICP-MS. It 
was found that the selenium content, in the form of SeMet, was adequately extracted from the yeast 
(Pharma Nord) that was used for method validation using protease, which yielding 90% of the total 
selenium. However, the determination of selenium and selenium species in the bionatured nutrients 
proved to be quite problematic. Methods that avoided species conversion with the highest extraction 
efficiencies were found to be: i) the use of protease for the yeast sample (19"/o) and; ii) the use ofO.OI 
M HCI for the Biogurt® (71%). Information obtained from speciation of these samples by anion and 
cation-exchange HPLC-ICP-MS was limited due to the low extraction efficiencies of any procedure 
undertaken for the samples, by the retention of the analyte on-column and by the lack of standards 
available for matching of retention times. 

HPLC-ICP-MS has proved an efficient tool for the identification and determination of arsenic and 
selenium species providing detection limits at J.lg kg·' levels. However, a major concern with this 
instrumentation is the unambiguous assignment of peaks which relies on the chromatographic purity 
ofthe signal and the availability of standards. Anion-exchange chromatography employing Hamilton 
PRP XIOO resin with ~HC03 (10 mM, pH 10.2 for arsenic and 10-50 mM, pH 5 for selenium 
species) with methanol (10 %, v/v) as the mobile phase allowed separation of the arsenic and 
selenium speci~ investigated under conditions that were compatible for both HPLC-ICP-MS and 
HPLC-ESMS. Molecular ions and structural fragmentation patterns of these by tandem MS have 
facilitated the identification of chromatographic peaks obtained using HPLC-ICP-MS. In the analysis 
of marine algae, arsenosugars were the major species found, and in yeast the dominant species was 
found to be selenomethionine. 
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Chapter one 



1 Introduction 

1.1 Trace element spedation 

Trace elements are present in nature in a number of different forms or species. 

The adequate functioning of life can be critically dependent on these elements in 

numerous ways. Some are considered to be highly toxic 1 whereas others are 

considered to be essential 2
. The significance of the toxicological, nutritional and 

biochemical impact of any element on a biological system depends on the 

chemical forms present 3
. One of the main reasons is that the toxicity or 

bioavailability of an element can be several orders of magnitude different, 

depending on the chemical form. Thus the field of trace metal or elemental 

speciation has become an area of increasing interest in analytical chemistry. In 

response to this, a European Union network has been established that aims to 

bring together scientists with an interest in speciation of a diverse range of 

elements with potential users from areas that include industrial process control, 

the food industry, biomedical and pharmaceutical discipllnes as well as the 

biological and environmental sciences 4• 

Two elements of particular interest are arsenic and selenium. Arsenic has long 

been regarded as a toxin and long-term consequences of exposure, in particular to 

inorganic forms, are of importance as it is now recognized as a carcinogen 5
• 

Arsenic-contaminated drinking water has been responsible for countless cases of 

chronic arsenic poisoning in countries such as Bangladesh, China and Taiwan 6
. 

Selenium, on the other hand, is recognized as an essential ultra-trace element in 

2 



the human diet 2
• It is an integral component of several enzymes, including 

glutathione peroxidase, which are responsible for disease prevention due to their 

anti-oxidant properties 7• However, it has a narrow therapeutic window. 

Research in identification and determination of the various chemical forms of 

arsenic and selenium will assist in understanding the relationships that link 

speciation with the biochemical and environmental cycling of these important 

elements. 

1.2 Arsenic compounds 

1.2.1 Occurrence of arsenic in the environment 

Arsenic is a ubiquitous element in the environment having been introduced via 

natural and anthropogenic routes. Arsenic can be found in rock, soil, dust, water 

and air. Phenomena, such as weathering of minerals, biological activity and 

volcanic activity, are largely responsible for the emission of arsenic into the 

biosphere from natural sources. Anthropogenic sources arise predominantly from 

the mining and smelting of copper, lead, cobalt and gold ores. Other 

anthropogenic sources are given in Table 1-1. Recent estimates have placed the 

ratio of emission from natural compared with anthropogenic sources at 

approximately 60:40 8• Despite the now known toxicity of arsenic, particularly in 

the inorganic form, production of arsenic has remained static over the last 60 

years 3
• 
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Table 1-l.Common uses of arsenic compounds 3• 

Area Uses 
Agriculture Pesticides, insecticides, defoliants, wood preservatives, soil 

sterilant 

Livestock Feed additives, disease prevention (swine dysentery), cattle and 
sheep dips, algaecides. 

Electronics Solar cells, optoelectronic devices, semi-conductor applications, 
light-emitting diodes. 

Industry Glassware, electrophotography, catalysts, pyrotechnics, anti­
fouling paints, dyes, ceramics. 

Metallurgy Alloys, battery plates. 

Levels of arsenic in different environmental compartments are often quoted in the 

literature but can differ significantly with regard to location and nearby industry. 

This is clearly demonstrated by the values given in Table 1-2. 

Table 1-2 Arsenic levels determined in environmental compartments 9 

Background levels Contaminated sites 

Soil ~ 7 mg kg-1 1000 mg kg-

Air 1 - 10 ngm-3 20 - 1000 ng m-3 

Freshwater o.15 - 0.45 ~g r• up to 3000 ~g r' 

Seawater o.o9 - 24 ~g r' 
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Considering the physicochemical similarities between arsenate and phosphate it 

is not unusual for organisms to inadvertently take up arsenate. However, there is 

a significant difference in the concentrations of arsenic found in terrestrial 

organisms to that found in marine organisms. Terrestrial organisms rarely contain 

more than I mg kg-1 (dry weight) 10 whereas marine organisms are often reported 

as containing much higher levels; with concentrations in marine animals 

generally lying in the range 10-500mg kg-1 but have been known to exceed 

1 OOOmg kg"1 for organisms living in contaminated areas 11
• The highest risk of 

exposure for humans comes from the consumption of seafood 12
• It would, 

therefore, be applicable to focus on the biochemical cycling of arsenic in the 

marine environment. 

1.2.2 Distribution of arsenic in the marine environment 

The presence of arsenic in marine samples was first comprehensively presented 

by Jones 13 in 1922. He remarked on the fact that arsenic was present in an 

organic form. Since then a vast amount of research has been undertaken and a 

variety of arsenic compounds have been identified. The most common organic 

arsenic compounds found in the marine environment are monomethylarsonic acid 

(MMA), dimethylarsinic acid (DMA), trimethylarsine oxide (TMAO), 

tetramethylarsonium IOn (TeMA), arsenobetaine (AsBet), 

arsenoylribofuranosides (trivial name of arsenosugars) and less frequently, 

although still significant, arsenocholine (AsC). Structures of these organoarsenic 

species are shown in Figure 1-1. The distribution of arsenic compounds in 

seawater, marine fauna and flora are given in Table 1-3. 
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Table 1-3 Arsenicals in different marine compartments 15 

Major Minor Trace Not detected 

Sediments and MMA,DMA TMAO As Bet, TeMA, 

porewater AsCbol, 

arsenosugars 

Seawater Asv, Asru MMA,DMA As Bet, TeMA, 

AsChol, 

arsenosugars 

Marloeftora Arsenosugars Asv MMA,DMA As Bet, TeMA, 

AsChol 

Marine fauna As Bet TeMA, Asv • Asm, 

arsenosugars, TMAO, AsChol, 

DMA 

Bioaccumulation of arsenic is high in zooplankton, benthic organisms, seaweed 

and algae. However, there.does not appear to be any biomagnification along food 

chains as levels of arsenic in predators are usually found to be no higher than 

those found in organisms lower down the food chain 16
• 1bis suggests that the 

biochemical cycling of arsenic compounds by marine biota provide a route of 

detoxification with the added ability of the organism to excrete, or degrade to 

excrete, these compounds. 

7 



1.2.3 Biotransformations of arsenic compounds. 

Arsenic readily undergoes conversions mediated by microorganisms, plants and 

animals where biotransformations give rise to the variety of arsenical species 

seen. Research has been abundant in this field and many arsenic compounds have 

been identified and mechanistic pathways for their formation proposed 15
• 

17
• 

The high levels of arsenic found in macroalgae, particularly brown algae, and its 

chemical form was first established in 1981 by Edmonds and Francesconi 18
• The 

two compounds identified by NMR spectroscopy were dimethylarsinoylribosides. 

Since then many other compounds of similar structure have been elucidated from 

marine algae and come under the broad heading of arsenosugars 19
• 
20

• 
21

• 

Classic studies by Challenger 17 on microbial methylation of arsenic still provide 

the basis for current understanding of the transformation of inorganic arsenic to 

the organic forms. Challenger's mycological studies indicated that arsenate could 

be transformed to trimethylarsine by sequential reduction and oxidative 

methylation, with MMA, DMA and TMAO forming the intermediate 

compounds. S-adenosylmethionine (AdoMet) was thought to be the active methyl 

donor. Methylation by methanogenic and non-methanogenic bacteria has also 

been shown to occur with mechanisms likely to be similar to that in fungi 10
• 
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The biogenesis of arsenosugars from arsenate in marine algae follow a similar 

pathway to that described by Challenger 17
• A sequential reduction and oxidative 

methylation of arsenate with S-adenosylmethionine (AdoMet) donating its 

methyl group and adenosyl group to arsenic is given in Figure 1-2. This pathway 

is supported by the detection of both MMA and DMA in algae. 
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Figure 1-2 Proposed pathway for the biogenesis by algae of arsenic-containing ribosides from 
arsenate. The key intermediate (compound 13) undergoes glycosidation with available algae 
metabolites to give the range of dimethylarsinylribosides found in marine algae 
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Arsenobetaine (AsBet) was first identified in marine animals by Edmonds et a/ 22
, 

in 1977 . Since its discovery it has been found to be ubiquitous among marine 

animals. It is present at all trophic levels and is the predominant form of arsenic 

found. Other organoarsenicals may also be present as described in Table 1-3. 

Although many hypotheses have been proposed the pathway for its biogenesis 

remains unsubstantiated. Studies on fish have suggested that arsenobetaine is 

formed by microbial activity either in the seawater, although it is not detected in 

this compartment, or in the host itself and is then accumulated by the host 15
• 

Possible pathways for the formation of arsenobetaine by micro-organisms result 

from the cleavage of carbon-carbon bonds in the furan ring of arsenosugars 

followed by the oxidation of the resultant alcohol, arsenocholine. MMA and 

DMA have also been shown to be precursors of arsenobetaine 23
• Arsenobetaine 

is thought to be the final metabolite in this part of the arsenic cycle. It is itself 

degraded back to inorganic arsenic by the action of micro-organisms 24
• 
25 through 

a series of intermediates as shown in Figure 1-3, and by ultra-violet (UV) 

radiation 26
• 
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Figure l-3 Proposed arsenic cycle in the marine environment 24
• 

1.2.4 Toxicology of arsenic compounds 

It is known that the toxicity of arsenic can vary by several orders of magnitude 

depending on its chemical form, and that exposure to the more toxic species can 

give rise to mutagenic, teratogenic and carcinogenic effects 12
• Inorganic forms of 

arsenic, As m and As v, are considered to be the most toxic 27
• Organic species 

display decreasing toxicity with increasing derivatization. The LD5o values in 

rats, mg kg-1 body weight, in decreasing levels of toxicity has been given as: 

arsenite, 1.5; arsenate, 5.0; MMA, 50; DMA, 600 28
• Arsenobetaine and 

arsenocholine have been shown to be essentially non-toxic with LD50 > 1 Og kg"1 

11
• It is also thought that arsenosugars found in seaweed and algae are relatively 

non-toxic 29
• 
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The degree of gastrointestinal absorption of arsenic depends on the species 

present. Greater than 95% of inorganic arsenic is absorbed, approximately 75% 

of MMA and DMA is absorbed whilst arsenobetaine is not readily absorbed by 

the body and is excreted unchanged 
30

. 

Inorganic arsenic absorbed by humans is detoxified via a similar pathway to that 

described by Challenger with methylation to MMA and DMA occurring by 

hepatic enzyrnatic transfer of methyl groups from S-adenosylmethionine 
31

• 

Toxicological effects in marine organisms vary but in general show a modemte 

tolemnce to the presence of arsenic 32
• There does not appear to be 

biomagnification along the food chain and bioaccumulation of species will 

largely depend on the presence of phytoplankton and micro-organisms which are 

capable of transfonning toxic to less toxic forms of arsenic 
32

• 

1.3 Selenium compounds 

1.3.1 Occurrence of selenium in the environment 

Although selenium appears to be ubiquitous in the environment its uneven 

distribution results in regions with very low or very high natuml levels. This is 

reflected in the levels found in endogenous food sources, which have been found 

to vary widely depending on the availability of selenium in the immediate 

environment. Soils derived from sedimentary rocks tend to have higher levels of 

12 



selenium than do igneous and metamorphic rocks. These soils tend to be alkaline 

in reaction and favour the presence of selenate. There is variable analytical data 

available for levels of selenium found in differing environmental compartments. 

However, Table 1-4 gives some indication of values expected 33
. 

Table 1-4 Levels of selenium found in different environmental compartments 33
• 

Source 

Air 

Water 

Foodstuffs: 

Meat and seafood 

Cereals 

Dairy products 

Fruit and vegetables 

Levels 

< 10ngm­

~"=' 1-5 J.Lg r' 

0.4- 1.5 mg kg-1 

< 0.1- > 0.8 mg kg-1 

< 0.1 - 0.3 mg kg-1 

< 0.1 mg kg-1 

Anthropogenic sources of selenium arise from its use in agriculture and from 

products and/or byproducts of industry. The addition of selenium to animal 

feedstuffs and fertilizers to rectify naturally occurring low selenium levels is not 

thought to contribute significantly towards an environmental pollution risk. 

However, an incident at the Kesterton reservoir in California, where 

accumulation of selenium-laden water from agricultural run-off, led to toxic 

effects being demonstrated in birds and fish 34
• 

35
• 
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The main industrial sources of selenium come from oil refineries and the burning 

of fossil fuels, mining and smelting of metal ores and in the production and 

purification of selenium itself. Ground water can be directly polluted from 

industrial effluent and atmospheric emissions may also be important in the 

contamination of open-water reservoirs. 

Selenium exists in the environment in several oxidation states, predominantly 

( -11), (IV) and (VI). Inorganic forms of selenium are more commonly present as 

selenite, SeiV, and selenate, Se VI. Organic selenium compounds are ordinarily 

found in the -IT oxidation state as selenides and as analogues of sulphur­

containing compounds. Selenium is present mainly in the aminoacids 

selenomethionine and selenocysteine. Selenomethionine and selenocysteine are 

bound covalently to proteins where they carry out a number of important 

biological functions. The major product of selenium metabolism is the 

trimethylselonium ion which is excreted via the urine. Selenium also exists in 

volatile forms, predominantly as dimethylselenide. Structures of some 

environmentally important selenium compounds are shown in Figurel-4. 
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1.3.2 Biotransformations of selenium in plants and humans 

Although biogeochemical cycles for selenium are not fully characterized, a 

review of the available research gives an insight into some of the mechanistic 

pathways that allow inclusion of selenium into the food chain. It is known that 

bacteria in soils can convert between elemental selenium, selenite and selenate 33
• 

Prevailing redox conditions in soil also allow for the presence of selenium as 

selenite and selenate. Selenium in these fonns is bioavailable and uptake from 

soil by plants can occur. Plants vary considerably in their physiological response 

to selenium. Some plant species are selenium accumulators as they have a degree 

of tolerance to selenium whereas other plant species can be selenium-sensitive 

and, therefore, avoid selenium accumulation. In this respect, plants can play a 

pivotal role in the food chain as there is a narrow margin between the beneficial 

and harmful levels of selenium required in maintaining optimum human health. 

Plants may also take up organic fonns of selenium such as selenomethionine 37
• 

Selenium accumulators can be used in areas where naturally occurring selenium 

levels are low providing a useful way of supplementing the diet. 

Plant roots accumulate selenate by active transport. Selenite and organic forms of 

selenium can also be accumulated actively. Selenate readily competes with 

sulphate uptake 38 and a sulphate transporter therefore, mediates its accumulation. 

In selenium accumulators selenate is taken up preferentially over sulphates. 

Selenate is easily transported within the plant to the leaves whereas selenite and 

organic selenium compounds tend to remain in the root system. It is thought that 
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selenite is rapidly converted to organic selenium and thereby accumulates in the 

roots 39
• Plants can also release and absorb volatile selenium compounds to and 

from the atmosphere. The production of selenocysteine most probably occurs 

within the chloroplasts whereas selenomethionine is more likely to be 

synthesized in the cytosol; both are incorporated in proteins. Many other 

selenium compounds are also found in plants that include intermediates in 

metabolic pathways (selenocystathionine, selenohomocysteine) and end-products 

in themselves (dimethylselenide). 

The major selenoamino acid found in plants is selenomethionine 40 and is 

assimilated by animals that feed on the vegetation. However, selenocysteine is 

the major selenoamino acid found in animals 40
• This implies that nutritionally 

derived selenium is used in metabolic processes within animals to achieve the 

required selenoprotein status. Selenium function within animals is primarily as 

selenoproteins. 

In humans, the major biological functions of selenium are achieved through its 

redox activity when present as selenocysteine at the active sites of selenoproteins 

7
• These proteins are selenium-dependent as replacement with the sulphur 

analogue renders them enzymatically inactive 2
• At least thirteen selenoproteins 

have been identified in humans. including glutathione peroxidases, selenoprotein 

P and iodothyronine deiodinases, all of which contain selenocysteine. 

Selenocysteine can be obtained from exogenous sources, however only 

endogenously derived selenocysteine is incorporated into the selenoproteins 41
• 
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Although metabolic pathways are not fully characterized it is known that humans 

are capable of synthesizing selenocysteine, which has become known as the 21 51 

amino acid, using a genetic code via the UGA codon 42
• Ultimately, 

selenocysteine is derived from the amino acid serine and selenide, which suggests 

that selenium compounds from dietary intake, must enter a metabolic pathway 

that pass through a common selenide intermediate 2• 

Selenomethionine cannot be formed in vivo and is therefore exclusively obtained 

from the diet. It is incorpomted non-specifically into body proteins in place of 

methionine, as met-tRNA. Excess selenomethionine is able to enter the metabolic 

pathway where its selenium can be incorpomted into selenoproteins 2• 

Selenides can be methylated to the trimethylselonium ion, which is the major 

route for excretion via the urinary tmct 43
• If this process becomes overloaded 

then the methylation is to that of dimethylselenide which is excreted via the 

respimtory tmct and hence the 'selenium/garlic breath' associated with high 

intake levels. Other metabolites such as monomethylselenol and dimethyl 

diselenide have been identified and, therefore, it can be inferred that methylation 

is a detoxification process. A selenium metabolic pathway, as described by Ip 44
, 

is shown in Figure 1-5. 
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Figure 1-S Selenium metabolic pathway. GS-Se-SG = selenodiglutathione, GS-SeH =glutathione 
selenopersulphide 41 

1.3.3 Selenium as an essential element in the diet 

Selenium is widely recognized as both a toxic and an essential element depending 

on its chemical fonn and concentration. Although organic and inorganic fonns of 

selenium have a common metabolic pathway it is generally thought that organic 
19 



forms of selenium are less toxic 45
• The gap between toxic and essential levels of 

selenium in humans is narrow. Diseases related to selenium deficiency were first 

identified in 1979 when Chinese researchers established an association between 

low selenium status in humans and the presence of Keshan disease, a form of 

cardiomyopathy, and Keshan-Beck disease, a deforming osteoarthritis 46
• A major 

clinical development of the 1990's was the findings ofClark et al. 41 that human 

dietary supplementation with selenium-enriched yeast decreased cancer incidence 

and mortality by up to 50%. The cancer chemopreventative effect of selenium has 

been tentatively attributed to the biological anti-oxidant functions of selenoamino 

acids 48
• However, the form of dietary selenium most appropriate to confer anti­

oxidant properties remains unclear. 

Plasma GSH-Px activity is often used as an indicator for selenium levels as there 

is a close correlation between the two. GSH-Px activity plateaus out at similar 

intake levels for both organic and inorganic dietary forms. However, 

selenomethionine has a stronger and more stable effect on raising and 

maintaining GSH-Px 44
• Whilst this may be true, it has also been noted that it may 

not confer any greater degree of anti-carcinogenic properties than do other forms 

49
• A more comprehensive explanation may be arrived at when considering that 

there is differential regulation of the selenoproteins; this ensures that those, which 

perform the most important functions, are preferentially preserved. Selenium 

supply to the brain, endocrine and reproductive organs is as far as possible 

maintained at optimum levels with the synthesis of selenoproteins such as 

iodothyronine deiodinases taking precedence 50
• GSH-Pxs are the most 

20 



dispensable and, therefore, when these levels are at an optimum it can be 

conferred that all other selenoproteins are also at an optimum. Any further 

selenomethionine taken up in the diet is incorpomted non-specifically into 

selenium-containing proteins. Excess levels of other forms of dietary selenium 

are excreted in the urine 43
• 

Humans are exposed to selenium mainly through their diet. Studies have shown 

that the body absorbs approximately 95% of ingested selenomethionine whereas 

only 60% of selenite is absorbed with selenate absorption being around 90% 51
• 

Although selenomethionine is absorbed from the diet more rapidly and to a 

greater extent than any other form of selenium it is also retained in the tissues 

following non-specific incorpomtion more strongly than other forms. The dietary 

selenium species other than selenomethionine are therefore more readily 

available for biosynthesis of the active selenoproteins that contain selenocysteine. 

The UK Reference Nutrient Intake (NRI) of75 Jlg per day for men and 60 Jlg for 

women 52 has been determined as the intake believed to be necessary to maximize 

the activity of the anti-oxidant selenoprotein GSH-Px which occurs at a plasma 

concentmtion of around 95 Jlg 1"1
• Toxic symptoms occur at approximately 

to,ooo 11g r1 53
• 

Seafood and offal provide a large source of dietary selenium together with yeasts 

and mushrooms. However, there is limited information available on the 

proportions of organic to inorganic forms of selenium in these foods and of their 
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bioavailability. r:>ietary supplementation of selenium has become an increasingly 

popular choice as a route to redress the balance of naturally low selenium levels 

in food. Supplements can·befound with varying amounts and forms of selenium. 

Most contain single chemical entities. Conversely, selenized yeast preparations 

may contain a mixture of compounds, some of which may be unspecified. 

Research has shown a diversity in yeasts ranging from 20 - 80% 

selenomethionine with selenocystine, Se-methylselenocysteine and 

selenoethionine (amongst others) comprising the remainder 54
• 

44
• Selenized yeast 

was used in the Clarke et al. 41 trials but it is not known exactly which form of 

selenium is responsible for reducing the incidence of cancers. 

As the cancer chemopreventative effect of selenium has been tentatively 

attributed to the biological functions. of selenoamino acids further understanding 

of the efficacy ofdietary:supplementation relies on the development of analytical 

methodology for the separation, identification and determination of the various 

species present in selenium-enriched food-stuffs. There is no doubt that the 

absorption, transport, metabolism, retention and elimination of selenium 

compounds is dependent on its chemical form but further work in these areas is 

needed to develop a more informed view regarding selenium supplementation. 
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1.4 Methods for tbe speeiation of arsenic and selenium 

It is recognized that the need for trace element analysis requires very sensitive 

analytical techniques for quantification and qualitative identification. Speciation 

of elemental compounds is essential for the assessment of their toxicological 

impact. Methods to separate and identify various species are now becoming a 

necessity for any elemental analysis. There are numerous review papers 

published annually dealing with analytical methods used for the identification 

and determination of arsenic and selenium compounds 55
• 

56
• Analytical 

approaches generally involve the use of separation techniques coupled with a 

sensitive element specific or molecular detectors for quantification purposes. 

Recent successful applications of electrospmy mass spectrometry (ESMS) for 

species characterization and identification have confirmed the potential 

opportunities offered by this technique 36
• 

57
• Chromatogmphic techniques, for 

separation of analytes, comprise liquid and gas chromatogmphy. Both are high 

performance methods but the most important distinction between the two is that 

GC relies on compounds that are volatile or can be evaporated intact at elevated 

temperatures, and can separate approximately 20% of known organic compounds 

without prior derivitization, whereas for LC most organic and inorganic 

compounds can be dissolved in a solvent and are therefore amenable to 

separation using this technique. HPLC together with ICP-MS and ESMS provide 

an exciting route for analytical chemistry, particularly in the area of speciation. 
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1.4.1 High performance liquid chromatography 

Chromatographic separations have been used successfully since the 1930's 58
• 

Since its inception, chromatography has developed so that a vast array of 

complex matrices can be determined. This is due to the versatility of the 

technique. Liquid chromatography is a generic term used to describe any 

chromatographic procedure in which the mobile phase is a liquid. Examples of 

these techniques include ion-exchange, ion-pairing, reversed phase and size­

exclusion chromatography. Ion-exchange chromatography will be used 

throughout the experimental chapters of this thesis and, therefore, a brief 

description of this will follow. 

1.4.1.1 Ion-exchange chromatography. 

Ion exchange comes under the umbrella of liquid chromatographic techniques. It 

is a process wherein a solution of an electrolyte (mobile phase) is brought into 

contact with an ion exchange resin (stationary phase) and active ions on the resin 

are replaced by ionic species of a similar charge from the electrolyte solution. 

Competition between ions of the mobile phase and that of the analyte allow 

chromatographic separation to occur, separations being based on the difference in 

migration rates among the analyte components. To achieve a successful 

separation of analyte ions by ion chromatography the effects of pH, the counter 

ion and the ionic strength of the eluent can be manipulated until optimum 

conditions are obtained. 
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Column packing materials used for ion exchange are characterized by the 

presence of charged groups covalently bound to the stationary phase. Anion­

exchange columns carry a positive charge, usually a quaternary ammonium group 

(strong anion-exchange) or an amine group (weak anion-exchange). Cation­

exchange columns carry a negative charge, usually a sulphonate group (strong 

cation-exchange) or a carboxylate group (weak cation exchange). Strong ion­

exchange groups are more commonly employed as they retain their properties 

over a wide range of pH. The driving force for the separation is the charge on the 

analytes, which depending on the pH may or may not be fully ionized. For weak 

acids or bases retention behavior is pH dependent. However, if the analyte 

molecules are strong acids or bases their retention behavior is not affected by 

changes in pH of the mobile phase as they remain fully charged over a wide pH 

range. The pKa values for compounds provide an indication of how they will 

behave and this knowledge can be used to optimize separation conditions based 

on the pH of the mobile phase. 

Ion-exchange will also be influenced by the choice of the counter ion. As a rule, 

multiply charged ions are bound more strongly than singly charged ones. The 

retention time in anion-exchange increases if a counter ion is exchanged with 

another, for example, in the following sequence: citrate - sulphate - oxalate -

tartrate - iodide - borate - nitrate - phosphate - bromide - cyanide - nitrite -

chloride - acetate. For example citrate solutions elute analyte anions more rapidly 

than phosphate solutions. Ion exchangers have a preference for ions with a higher 

charge, smaller diameter and greater polarizability. 
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Ion-exchange equilibria can also be displaced by changes in the ionic strength of 

the buffer solution. The ionic strength affects the capacity factor, k', and causes it 

to drop with increasing ionic strength; the k' values of samples are inversely 

proportional to the ionic strength 59
• As the counter ion concentration increases 

the analyte ion will spend less time in the stationary phase due to increased 

competition and hence k' will decrease. 

Other effects on ion-exchange chromatography include column temperatures. The 

higher the temperature the faster the rate of diffusion which gives rise to better 

peak shapes and shorter elution times 60
• This is not directly attributable to ion-

exchange equilibria but a kinetic effect on the rate at which equilibria are 

attained. Column efficiency is also improved when eluent viscosity is 

decreased 60
• 

1.4.2 Inductively coupled plasma-mass spectrometry (ICP-MS) 

The argon ICP is the most widely used atomic spectroscopic source in analytical 

chemistry 61
• A schematic of the instrumentation is shown in Figure l-6. It is 

increasingly used as a high-temperature ion source for mass spectrometry. 

Practical considerations for the generation of ICPs were originally addressed by 

Reed 62 and refined for spectrochemical analysis in the early 1960's. Greenfield 

successfully used ICP as an ion source for atomic emission spectrometry 63 and 

the technique was further development by Date and Gray 64 for use as an ion 

source for mass spectrometry. Since then many elements of the Periodic Table 

have been analyzed with success, including As and Se 65
• 
66

. 
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Figure 1-6 Schematic of an ICP-MS instrument 67
• 

An inductively coupled plasma is a relatively well characterized, high-

temperature source, suitable for the atomization and ionization of elemental 

species. Generation of the plasma occurs within a quartz torch, which consists of 

a series of concentric tubes, through which argon gas flows. The coolant and 

auxiliary gases enter tangentially creating a vortex that produces the distinctive 

annular plasma characteristic of an ICP. The torch is encircled at the top by an 

induction or load coil, which is connected to a radiofrequency (rt) generator. The 

magnetic field generated by the rf current induces a current in the gas stream. The 
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seeding of the gas with electrons fonns the plasma by initial excitation from a 

Testa coil attached at the coolant gas inlet. The electromagnetic vectors giving 

them sufficient energy to cause ionization of the gas accelerate these initial 

electrons. Further collisions that ensue enable the plasma to become self­

sustaining as long as the electromagnetic field is sufficiently high and the gas 

flows in a symmetrical pattern. The ionization conditions within the plasma result 

in highly efficient ionization of most elements in the periodic table (dependant 

upon their ionization energies) and. importantly, these ions are almost always 

exclusively singly charged 68
• 

Liquid sample introduction is the most common way for presenting samples to 

the plasma. Typical sample introduction systems consist of a nebulizer (e.g. 

crossflow, V groove) and spray chamber (e.g. double or single pass, cyclonic). 

The nebulization process creates a fine aerosol of the liquid sample and the spray 

chamber then separates out large droplets. The spray chamber may also be cooled 

facilitating the removal of solvent. The small droplet aerosol is then transported 

to the plasma by the nebulizer gas flow where it undergoes desolvation, 

vaporization, atomization and finally ionization. The analyte ions are 

subsequently introduced into the MS by a series of chambers held at 

consecutively lower pressures where they are focused by ion lenses then 

separated according to their mass:charge ratio either by using a quadrupole (low 

resolution MS) or magnetic sector (high resolution MS) analyzer and finally 

detected by an electron multiplier or Faraday cup detector (depending on analyte 

concentrations). 
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ICP-MS is generally regarded as a sensitive and selective multi-element detector 

with a wide linear range capable of providing low limits of detection 61
• However, 

spectroscopic and non-spectroscopic interferences can limit the utilization of this 

technique; an important case in point is the interference of 40Ar160+ on 56Fe+. By 

careful selection of operating conditions or sample modification most 

interferences can be minimized or reduced in magnitude. 

Spectroscopic interferences include isobaric overlap of element isotopes and 

polyatomic ions which can be formed from water, plasma gases and from 

compounds present in the sample matrix. Such interferences can cause an 

erroneously large signal at the m/z of interest. Some polyatomic interferences for 

selenium and arsenic are shown in table 1-5. 

Table 1-5. Spectroscopic interferences of arsenic and selenium in ICP-MS 69
• 

Molecular ion Analyte ion Nominal mlz 

interference interfered with 

Se 74 

Art, Ca02+ Se+ 76 

ArCl+, eaot, Arzlt Se+ 77 

+ c + Arz, aOz Se+ 78 

+ o+ArC+ Arz, Ca 2, a se+ 80 

ArzHz+ se+ 82 

ArCl+,eaot, ArzW As+ (monoisotopic) 75 
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Spectroscopic interferences can be overcome by employing a mixed gas plasma 

Evans and Ebdon 70 have proposed that the reduction of 40 M 5Cl+ in the presence 

of N2 can be explained by the competitive formation of ArW. Increasing the 

nebulizer flow rate can also reduce polyatomic interferences as there is less time 

spent in the plasma and therefore less time for the formation of these interferents. 

Other techniques to reduce spectroscopic interferences include matrix removal 

prior to analysis or the use of a high resolution MS. 

Non-spectroscopic interferences refer to matrix-induced changes in signal 

intensity that are unrelated to the presence of a spectral component. They 

manifest themselves by signal suppression or enhancement although most 

commonly by suppression. These interferences are mainly attributable to space 

charge effects. Space charge effects arise from the mutual repulsion of ions in the 

ion beam, which influence ion trajectories. 

The matrix effect is quite general in that almost any concomitant in high 

concentration will cause an effect To reduce matrix effects the injector gas flow 

rate can be reduced in the ICP torch and ion lens modification can be utilized to 

enhance the throughput of certain mass ranges thereby avoiding interfering 

matrix elements. As with spectroscopic interferences matrix removal where 

possible is always beneficial. The use of internal standards, although they do not 

reduce or eliminate matrix effects, can be used to compensate for the changes that 

may occur. 
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1.4.3 Eledrospray ionization mass speetrometry (ES-MS) 

Electrospray ionization mass spectrometry has developed to become a widely 

used analytical technique since its introduction in the 1980's by both Yamashita 

and Fenn 71 and Aleksandrov et a/ 72
• Electrospray ionization is a technique that 

allows the transfer of ions from solution to the gas phase whereby they can be 

analyzed by mass spectrometry. The fundamental features ofES are that: i) it can 

produce extensively multiply charged ions enabling the analysis of large 

molecular weight compounds; ii) they are introduced in solution making ES 

compatible with many types of separation techniques: and iii) it is a 'soft' 

ionization technique retaining molecular structure. ESMS as a source for 

elemental speciation relies on its ability to preserve the formal oxidation state of 

metal ions and the molecular form of the species. 

The ion formation process is the starting point for mass spectrometric detection. 

There are three steps involved in the production by electrospray of gas-phase ions 

from electrolyte ions in solution: i) production of charged droplets at the ES 

capillary tip; ii) shrinkage of the charged droplets by solvent evaporation; and iii) 

the production of gas-phase ions from the now small, highly charged droplets. 

The production of charged droplets at the capillary tip is achieved by the 

application of a high electric field to the flow of liquid. This is achieved by the 

application of a potential difference of approximately 3-6 kV between the 

capillary tip and the counter electrode located at approximately 0.3-2 cm away. 

When the capillary tip is in the positive mode positive electrolyte ions will drift 
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towards the liquid meniscus and negative ions will drift away from the surface, 

the charge separation being electrophoretic in nature. The mutual repulsion 

between the positive ions at the surface overcomes the surface tension of the 

liquid and the surface begins to expand. The liquid is drawn out into a cone 

known as the 'Taylor' cone. If the applied electric field is high enough a fine jet 

of charged droplets will emerge from the cone tip. The charged droplets produced 

then drift downfield towards the counter electrode. At this point the droplets 

undergo solvent evaporation without change in charge. The decrease of droplet 

radius at constant charge leads to an increase in the electrostatic repulsion of the 

charges at the surface until the droplets reach the Rayleigh stability limit, the 

condition at which the electrostatic repulsion becomes equal to the force due to 

surface tension which holds the droplet intact. Droplets undergo fission when 

they are close to the Rayleigh limit. This fragmentation is caused by Coulombic 

repulsion of the charges on the droplet. The energy required for solvent 

evaporation is provided by the thermal energy from the ambient air. These smal~ 

highly charged droplets ultimately provide gas phase ions. A schematic of this 

process is shown in Figure 1-7. However, currently there are two schools of 

thought as to bow this process occurs; the ion evaporation model (IEM) proposed 

by lribarne and Thompson 73 and the charge residue model (CRM) developed by 

Dole et al 14
• In brief, the CRM depends on the formation of extremely small 

droplets containing only one ion. Solvent evaporation from this droplet will give 

rise to a single gas phase ion. The IEM predicts that after the radii of the droplets 

decrease to a given size, direct emission from the droplets becomes possible and 

this process, ion evaporation, becomes dominant over coulomb fission for 
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droplets with radii > 10 nm. Much work has and is being carried out in this area 

of research but it is still not possible to say with any certainty which theory most 

closely matches the available evidence 77
• 

75
• 

76
• Although the emission of ions to 

the gas phase is highly endothermic and endoergic this process of evaporation is 

gentle enough not to fragment the parent molecule. 

Oxidation 

Electrons 

High Voltage 
Power Supply 

Electrons 

Figure 1-7 Schematic of major processes occurring in electrospray n . 

The gas phase ions produced during the electrospray process drift towards the 

counter electrode (e.g. the mass spectrometer sampling orifice) and enter the 

mass spectrometer where they are separated according to their mass/charge ratio 

under reduced pressure. 

Limitations of electrospray as a technique for elemental speciation are mainly 

attributable to the physical processes responsible for the generation of the 
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electrospmy and chemical considemtions 78
• 

79
• A stable electrospray is only 

genemted within a given conductivity range for a given solvent for a fixed set of 

opemting conditions. Outside of this range droplet production, and hence ion 

current, becomes erratic. The use of electric fields for nebulization leads to some 

restraints on the solvents employed. Fluids with higher surface tensions require a 

higher threshold voltage for stable electrospmy production and higher dielectric 

liquids produce higher currents. This can lead to the onset of electrical discharges 

from the capillary tip. The presence of an electrical discharge degmdes the 

perfonnance of ESMS particularly at high discharge currents. The ES ions are 

seen at much lower intensities than prior to the discharge and the corresponding 

discharge-generated ions have much higher intensities. It is likely that the 

discharge reduces the electric field near the capillary tip, which in turn interferes 

with the charged droplet formation. Ideally, the solvent flow rate, surface tension 

and electrolyte concentmtion will be low to avoid the use of higher electric fields 

for droplet formation and droplet charging. Amenable solvents for ESMS are 

volatile (aqueous Nf4HC03, MeOH, CH3CN) and at a suitable pH for ion 

formation in solution: acidic for opemtion in the positive ion mode; and basic for 

operation in the negative ion mode. 

Although ESMS is primarily a qualitative technique it can be used for 

quantitation but the linear relationship of analyte concentmtion to signal is 

limited due to the complex and competitive nature of ion production. When a 

matrix ion is present in excess, signal suppression can be severe. 
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1.5 The speciation of arsenic and selenium 

Speciation analysis of elemental compounds and their oxidation states has 

become more frequent over the past decades as it is now known that toxicity and 

bioavailability, for example, of an element can be several orders of magnitude 

different depending on the chemical form 28
• One of the key issues surrounding 

speciation analysis is to preserve the integrity of the species in a sample. Many 

elements of interest are present in trace amounts and the species a fraction of this. 

This requires that analytical techniques and methodology are capable of sensitive 

and selective separation and detection. 

1.5.1 The use of HPLC-ICP-MS for speciation analysis 

ICP-MS has fast become the detector of choice for the determination of elements 

in a wide range of samples at concentrations in the ng 1"1 to J.lg 1"1 range. The 

versatility and reliability of the technique in terms of element specificity and 

sensitivity and the ease in which HPLC systems can be hyphenated to it make it 

ideally suited for use as a chromatographic detector. Due to its multi-element 

capability arsenic and selenium can be determined simultaneously with the 

correct chromatographic conditions. The advantages of ICP-MS as a detector 

include a wide linear dynamic range, low limits of detection and high speed of 

analysis. Liquid chromatography with ICP-MS detection is principally used for 

speciation analysis and a review of the literature reflects the versatility of the 

technique 80
• 
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The molecular fonns of arsenic commonly encountered in the environment are 

anions, e.g. arsenate, MMA and DMA, cations, eg. the quaternary arsonium 

compounds AsBet, AsC and tetramethyl-arsonium ion (TeMA) or uncharged 

compounds at neutral pH, e.g. arsenite and trimethylarsine oxide (TMAO). 

Arsenosugars present in marine algae are another commonly encountered group 

of arsenic-containing compounds. Their chromatographic behavior is dependent 

on the size of the molecule and the functional groups present in given solvent 

conditions. Similarly with selenium compounds, the inorganic selenate and 

selenite form anions at neutral pH whilst the amino acids SeMet, SeCys and 

selenocysteine are zwitterions. Because of this the most common types of liquid 

chromatography used for the speciation of arsenic and selenium include ion 

exchange (anion and cation), reversed phase and ion-pairing. 

The simultaneous separation of 17 arsenic species has been achieved using 

HPLC-ICP-MS with an anion exchange column and a gradient mobile phase 

within 15 mins 81
• More commonly, fewer species are reported relying on the use 

of both anion and cation exchange chromatography for the separation of neutral, 

anionic and cationic arsenic compounds independently 82
• 

83
• 

84
• 

66
• 

85
• Cation and 

anion exchange chromatography has also been reported for the speciation of 

selenium compounds 86
• 

87
• Simultaneous use of the two fonns of ion-exchange 

has allowed the separation of a mixture of 12 inorganic and organic selenium 

compounds 36
• The use of both types of ion exchange for the analysis of either 

arsenic or selenium (or both) in the same sample ensures the separation of 

compounds that would otherwise be eluted in the dead volume of a column. 
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Arsenic and selenium have some common chemical properties. The predominant 

inorganic forms appear as oxyacids and/or ions and in pH conditions that ionize 

organic forms of arsenic the organic forms of selenium are also ionized and 

therefore conditions can be applied for simultaneous separation 88
• 

89
. 

Simultaneous separation conditions often rely on gradient elution programs 

whereas isocratic mobile phases are the preferred choice as they provide greater 

stability 90
• lsocratic mobile phases may reduce analysis times, as no equilibration 

step is required between analyses although late eluting compounds in isocratic 

conditions will hinder the overall times. 

Many of the ion exchange column packing materials are based on the eo­

polymerization of styrene with divinylbenzene to produce degrees of cross­

linking with the Hamilton PRP XlOO (strong anion exchange) being the most 

frequently employed. These columns are resistant to a pH range of 1-13 as 

opposed to silica based columns that dissolve at a pH above 8. This allows for a 

greater variety of eluents to be employed when establishing optimum separation 

conditions. High salt eluents such as sulphates and phosphates are very good at 

providing ion-exchange chromatographic separation. However, when coupling 

HPLC to ICP-MS several precautions must be taken. The salt content in the 

mobile phase needs to be maintained at less than 2% to reduce the risk of 

blocking the nebulizer and eroding the sampler and skimmer cones in the MS 

detector. Ion exchange chromatography generally utilizes low concentrations of 

buffer, which help to reduce these problems and of those related to matrix 
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interference effects. Although much work is based on salt buffers, nitric acid has 

been used successfully with less clogging of the sampler cone being reported 91
• 

Reversed-phase and ion-pairing reversed-phase chromatographic methods have 

been applied successfully to the separation of arsenic and selenium compounds. 

Two reviews, the first by Sutton and Caruso 92 and the second by Guerin et al. 80 

discuss the merits of these techniques with a comprehensive reference list of 

speciation methods employed. However, work by Larsen 36 suggests that full 

optimization of ion-exchange techniques provide superior results to those 

obtained by reversed-phase techniques. This appears to be due to the direct 

interaction of analyte ions with the stationary phase of the chromatographic 

column making the analyte ion less prone to interferences from eo-eluting matrix 

constituents and due to the lower amounts, if any at all, of organic solvents used 

in the mobile phase which can de-stabilize the ICP-MS system. Gilon et al. 93 

tested ion- pairing with ion-exchange chromatography for the separation of 

selenium and also found ion-exchange to be the superior mode of analysis. 

Modifications to the chromatographic and ICP-MS system have been reported 

that can improve the sensitivity of detection. Matrix removal and pre­

concentration of samples by solid phase extraction (SPE) techniques have been 

applied to the speciation of arsenic 94
• 
95 and selenium 96

• 
97 compounds. However, 

these techniques are often limited in that only cationic or anionic species can be 

observed at any one time due to the nature of the SPE cartridge. Pre­

concentration does not directly affect sensitivity or limits of detection but is 
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frequently used to improve the analyte signal. On-column pre-concentration work 

with selenium speciation 98 has demonstrated a signal improvement by 1-2 

orders of magnitude and techniques for arsenic have reported similar 

efficiencies 94
• 

Modifications to the ICP-MS instnnnentation have included the use of various 

types of nebulizers, spray chambers and the introduction of alternative gases to 

the plasma. Crossflow nebulizers are most frequently used for samples that 

contain a heavy matrix or have small amounts of undissolved matter. Although 

they are much less likely to block. they are generally not as efficient as concentric 

nebulizers at creating a fine aerosol of droplets required for ICP-MS. Low-flow 

nebulizers are also available for work with micro-bore HPLC columns where 

eluent flow rates are typically at 0.2 ml min-1
• Two designs of spray chamber are 

used in commercial ICP-MS instrumentation - the double-pass and cyclonic. 

Research carried out into the performance of spray chambers 99 demonstrates that 

the transport efficiency and washout times for the cyclonic spray chambers are 

much more effective thereby improving signal:noise ratios and the overall 

performance of analyte detection. Cooling jackets around the spray chamber can 

also improve performance by reducing the solvent load to the plasma, particularly 

where organic solvents are employed in the mobile phase. The introduction ofN2 

into the plasma 70 is a well-documented technique for reducing polyatomic 

interferences in the analysis of arsenic. The polyatomic ion 40 ~5Cl+ is a 

particular problem as arsenic is monoistopic at mass 75. The addition of N2 has 

39 



been effective for samples containing in excess of 1% chloride. Without 

modification results for arsenic can be up to 30% higher 100
. 

HPLC with ICP-MS as a detector is now well established with an extensive 

number of publications supporting its popularity. Much work has been directed 

towards the separation of a greater numbers of species per analysis 101
• 

102 with 

high-speed separation 103 and improving on limits of detection. For arsenic 

speciation detection limits as low as 0.005 ng as arsenic have been reported 104
• 

105• For selenium speciation limits in the region of0.8 ng as selenium are reported 

93• Simultaneous separations give similar limits which implies there is no 

deterioration in analytical capability between individual determinations and when 

performed concurrently 106
• 

107
• The choice of system depends primarily on the 

research objective. There are a number of excellent reviews published that cover 

this area of research 80
• 

108
• 

109 providing an overview of the many systems used 

and results obtained. 

Although HPLC is undeniably an excellent separation technique it relies on the 

identification of species by matching retention times with that of known 

standards. However, the complexity of samples may lead to errors in 

identification due to eo-elution of species, matrix constituents altering retention 

times and the lack of commercially available standards for peak identification. 

This has led analytical science towards the use of multi-dimensional approaches 

for the speciation of compounds. As previously stated, anion and cation exchange 

chromatographic techniques have been employed simultaneously for the 
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determination of arsenic and selenium species. Size exclusion chromatography 

has also been used together with ion-exchange and reversed phase 

chromatography allowing unambiguous peak assignments to be made where 

standards are available 110
• 

111
• This is brought about by matrix simplification and 

by distinction of compounds against standards according to their elution times 

that remain independent of the type of chromatography used. This type of 

approach is usually successful for speciation of elemental compounds but is still 

limited by the availability of standards. When performing complex biochemical 

speciation analysis standards are usually unavailable since the majority of species 

remain unidentified and, as in the case of arsenosugars, compounds with similar 

chemical structures may persistently eo-elute despite the use of multi­

dimensional chromatographic techniques. The lack of convenient methods for 

structural determination and confirmation remains a major barrier to the 

mechanistic understanding of function. Mass spectroscopic analyses that retain 

molecular information of the species have become powerful tools for the 

identification of compounds particularly when used in conjunction with HPLC­

ICP-MS instrumentation. 

1.5.2 The use ofHPLC-ESMS in speciation analysis 

ESMS is based on a 'soft' ionization approach of the sample components and, 

therefore, can retain the molecular structure of a compound. By studying spectra 

obtained from samples it is possible to deduce molecular masses and, by 

fragmentation patterns of the parent molecule, their molecular structure. In 1996 
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Corr and Larsen 112 obtained spectra of four arsenosugars by HPLC coupled with 

ESMS demonstrating the possibility of structural characterization for these 

species. Since this time, an increasing amount of work has been carried out using 

HPLC-ESMS with successful results in verifying compound structures and in the 

characterization of previously unidentified species 57
• 

113
• However, some of the 

limitations in ESMS result from the matrix components swamping the signal 

from the analytes of interest and subsequently affecting the detection limit. This 

has resulted in the use of multi-dimensional chromatographic techniques for 

matrix removal and sample pre-concentration by fraction collection to obtain the 

best results. McSheehy et al. 110 employed three-dimensional chromatography 

(size exclusion, anion exchange and cation exchange) and was able to confirm the 

presence of four previously unidentified arsenic compounds in the kidney of the 

clam Tridacna derasa. Similar success has been reported for selenium speciation 

114
•

115 again with the use of multi-dimensional chromatography. HPLC-ESMS has 

also been used as a complementary technique to that of HPLC-ICP-MS 116
• 

HPLC-ICP-MS provides information of where arsenic-containing species elute 

and then by HPLC-ESMS their molecular mass and structure can be confirmed. 

ESMS precludes the use of crude extracts as it can suffer from matrix suppression 

of the analyte signal. Another drawback is that the mass spectra obtained can be 

highly complex and the possibility of matrix constituents having coincident 

masses to that of the analytes under investigation must also be considered. 

However, the use of chromatographic techniques together with ESMS provides 
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an attractive alternative to that of the so far exclusively used NMR. which 

requires labour-intensive isolation and purification techniques 
117

• 

ESMS allows an accumte determination of the molecular mass of a compound 

with structural chamcterization provided by tandem MS techniques. It is 

becoming a valuable tool for the identification and characterization of species in 

real samples detected by HPLC-ICP-MS where lack of available standards or eo­

elution of species may cause ambiguity in peak assignment. However, at the 

present stage of development the sensitivity of ESMS is approximately 2-3 orders 

of magnitude higher than that of ICP-MS. Improvements in purification of 

sample extracts and choice of eluents compatible with ESMS is required. 

The paucity of ESMS applications in the litemture to environmentally relevant 

samples may be as a direct impact of its poor sensitivity in comparison to 

techniques such as ICP-MS. However, the application of ICP-MS, with its 

element selectivity and sensitivity, Wld ESMS, with its moleeular specificity, as 

complementary to one another has proved a powerful analytical tool with the 

subsequent detection and chamcterization of previously unidentified 

compounds 110
• 

Further research and development to provide methods that are HPLC-ESMS/ICP­

MS compatible and easy to use is required in promoting elemental speciation 

analysis of real environmentally complex samples. 
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1.6 Aims oftbe study 

Research in the field of elemental speciation has utilized instrumental techniques 

where elegant separation techniques can be coupled with sophisticated detectors 

according to requirements. When investigating samples for toxicological 

purposes, in-depth speciation analysis may be unnecessarily time-consuming and 

expensive. For initial environmental pollution screening purposes the separation 

of relatively toxic from relatively non-toxic species may be all that is required. 

Should high levels of toxic species be encountered then further more rigorous 

analytical procedures can be employed. The aims of this work are to develop a 

simple, yet effective, system for the separation of relatively toxic from relatively 

non-toxic arsenic and selenium species. This may be achieved by the 

development of methodology based on low-pressure chromatographic systems 

for separation coupled with ICP-MS detection. By selection of suitable 

chromatographic conditions, which utilize the pKa values of the various species 

under investigation, optimum conditions may be achieved to target the level of 

analytical perfonnance required. The use of ICP-MS instrumentation, which 

offers multi-element 'simultaneous· capabilities of high sensitivity should extend 

the analytical perfonnance of the chromatographic systems, developed. 

Analytical data on individual molecular species of an element present in a sample 

can provide fundamental information regarding its toxicity, bioavailability, 

metabolism or biogeochemical cycling. However, for quality control and quality 

assurance purposes all analytical measurements must be comparable and 
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traceable. The basic purpose of certified reference materials (CRMs) is to 

improve the comparability of results 118
• They can be used at two different stages 

of the analytical process: as a tool to demonstrate traceability; and as a tool for 

method validation. One of the main obstacles in the progress of speciation 

analysis is the paucity of reference materials that are certified for species as well 

as for total elemental concentrations. The aims of the following work include that 

of using conventional and novel analytical approaches for the determination of 

arsenic and selenium species present in a variety of environmentally important 

samples for future inclusion as new certified reference materials. lbis will be 

achieved by participation in two European collaborative feasibility and pre­

certification trials. 

Further aims of this work are to use HPLC-ICP-MS together with ESMS to 

develop and improve methodologies available for speciation analysis. Initial 

studies will be carried out using HPLC-ICP-MS with multi-dimensional 

chromatography employed where appropriate. ESMS will be used as a 

harmonizing technique for species identification and confirmation, particularly in 

cases where commercial standards are unavailable for matching peak retention 

times. Development of an HPLC system that is compatible with ICP-MS and 

ESMS will be undertaken so that comparisons between the two techniques can be 

made. 
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When performing speciation analysis it is of vital importance that species are 

extracted from the matrix unchanged. Investigation of extraction procedures to 

broaden techniques available for arsenic and selenium speciation will be pursued. 
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2 Development of a novel LC-ICP-MS system for the 

simultaneous separation and determination of arsenic and 

selenium species based upon toxicity 

2.1 Introduction 

The elemental speciation of arsenic and selenium has become an area subject to 

increasing attention due to their toxicological and biological significance in living 

organisms. A range of toxicities is exhibited for both elements dependent on the 

chemical form. Inorganic forms of arsenic exhibit high toxicities with Asm being 

the most toxic and a suspected human carcinogen. Organic species such as 

arsenobetaine are considered to be essentially non-toxic. Current permitted or 

allowable ·levels for arsenic in drinking water stand at 50 J.lg r• (EU and USA) 

and 10 J.lg r• (WHO) and levels in foodstuffs stand at 1 mg kg·• total arsenic, 

under review as inorganic arsenic 119
• 

Selenium is an essential trace element in the human diet possessing a narrow 

therapeutic range; too low an intake can lead to various deficiency syndromes 

whereas too high an intake can be toxic or even lethal 120
• Its nutritional 

bioavailability, toxicity and anti-carcinogenic properties have been found to be 

species dependent. It is thought that inorganic selenium, particularly as selenite, 

is the most likely form to induce toxic symptoms 41
• The UK Reference Nutrient 

Intake has been given as 75 J.lg daily for men and as 60 J.lg daily for women 2
• 
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Symptoms of toxicity are thought to occur at an intake of approximately 1 000 J.l.g 

daily. However, in susceptible individuals this level may be as low as 600 J.l.g 
121 

Determination of distinct chemical species, often referred to as speciation 

analysis, of arsenic and selenium in a variety of foodstuffs has provided essential 

information for elucidation of, for example, absorption, bioavailability, metabolic 

pathways of the compounds under investigation and the nature of their toxicities 

10• Research in this area has utilized instrumental techniques that include HPLC 

for separation purposes coupled with element-specific detectors such as ICP-MS 

101• 103, atomic absorption spectrometry (AAS) 122
• 

123
, atomic emission 

spectrometry (AES) 124
• 

125 and atomic fluorescence spectrometry (AFS) 
126

• 
127

. 

However, when investigating samples for toxicological purposes, in-depth 

speciation analysis may be unnecessarily time-consuming and expensive. For 

screening purposes an estimate of the toxicology of a sample may suffice, i.e. 

separation of inorganic from organic species of arsenic and selenium, whereby an 

overall simplification of the instrumentation and methodology for the analysis 

can be implemented. A protocol showing the progression through a speciation 

analysis is shown in Figure 2-1. 
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Sample 

l 
Total element concentration 

above 

Speciation 

1 
Target 'general' characteristics 
of species 

Threshold value 

above below 

Target specific 
characteristics of species 

Threshold value 

below 

No further action 

No further action 

Figure 2-1 Protocol showing progress through a speciation analysis, which demonstrates inherent 
screening steps 
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The aim of this study was to investigate and develop a simple, yet effective, 

system for the simultaneous separation and detection of inorganic (high toxicity) 

from organic (relatively lower toxicity) arsenic and selenium species present in a 

variety of environmentally and biologically important samples. The samples 

chosen for investigation were a variety of food types known to contain high 

levels of arsenic (fish) and selenium (selenized yeast dietary supplement) which 

have obvious health implications in the human diet. In terms of toxicity the LDso 

values for the species under investigation in this work are shown in Table 2-1. 

Table 2-1 LD$0 values for arsenic 28 and selenium 1
28.

41 species under investigation 

Species LD5o (rat) oral dose - mg kg· body weight 

Arsenite 1.5 

Arsenate 5.0 

MMA 50 

DMA 600 

Selenite 7 

Selenate 53 

SeMet• <toxic than selenite 

SeCys • = to selenite 

variable data, therefore given in relation to selenite . 
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2.2 Experimental 

2.2.1 Instrumentation 

ICP-MS measurements were performed usmg a VG Plasmaquad, 2+ (fJA 

Solutions, Winsford, Cheshire, UK), using the operating conditions described in 

Table 2-2. A Perkin Elmer series 410 high-pressure pump (Perkin Elmer, CT, 

USA) and a Gilson peristaltic pump were used for control of chromatographic 

eluent flow mtes. A Rheodyne 7152 injection valve (Rheodyne, Cotati, CA, 

USA) was used for column loading. pH readings were taken using a 3010 pH 

meter (Jenway, Ltd., Essex, UK). 

Arsenic was measured using m/z 75. 4% (v/v) N2, for the reduction of ArCI+ 

interferences on m/z 75, was added via a Signal series 850 gas blender (Signal, 

Camberley, Surrey) to the nebulizer gas flow. 

Selenium was measured using isotpes at m/z 77, 78 and 82. 
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Table 2-2 ICP-MS opemting conditions used for the determination of arsenic and selenium in all 

samples. 

ICP-MS 

Parameters 

Plasma Quad 2+ 

V groove nebulizer 

Double-pass, water cooled Scott type spray chamber 

Fassel torch- 1.5 mm bore injector 

Argon plasma - 4% N2 added for direct total As 

determination to the nebulizer gas flow 

Nebulizer flow rate 0.81 I min-I 

Coolant gas flow rate 

Auxiliary gas flow rate 

Forward power 

Dwell time 

13.11 min-I 

0.81 min-I 

1350W 

500ms 

Two types of anion-exchange mini-column (Benson AXI 0, 7 - 10 ~. and 

Hamilton PRP X100, 12- 20 ~.both polystyrene divinylbenzene-based resins 

with quaternary ammoniwn functional groups) were prepared. A wet slurry 

eluent technique was used to pack the different columns at low pressure. The 

experimental parameters under consideration are given in Table 2-3 and 

conditions were optimized for both resin type mini-columns. 
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Table 2-3 Range of experimental chromatographic conditions used for the separation of inorganic 
ftom organic arsenic and selenium species. 

Parameters 

Column dimensions 

Column packing materials 

Eluent flow rate 

Sample loop 

pH 

Competitive counter ion 

Concentration of eluents 

Experimental conditions 

25, 50, 100 x 3 mm 

Benson AXIO, 7-10 J.Uil 

Hamilton PRP XIOO, 12-20 jJm 

0.75- 1.4 m1 min-1 

100-250 jJl volume 

4-10.2 

Sulphate, phthalate, phosphate 

Sulphate- 0.1, 1.0, 2.5, 5.0 and 10 mM 

Phthalate- 0.0, 0.1, 50, 100 mM 

Phosphate- 5.0, 7.5, 10 mM 

2.2.2 Chemicals and Reagents 

All commercial chemicals were of analytical grade and used without further 

purification. Sodium selenate, sodium selenite, selenomethionine, arsenous acid, 

arsenic acid, dimethylarsinic acid (Sigma-Aldrich Chem. Co., Poole, Dorset, UK) 

and arsenobetaine (BCR, Retieseweg, Belgium) were used as stock solutions of 

1000 jJg ml-1 in terms of the element. They were stored in the dark at 4°C. 

Solutions of the compounds for daily use were prepared by appropriate dilution 

from the stock solutions using Milli-Q water (Milli-pore, Bedford, MA, USA). 
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Eluent solutions of potassium sulphate (Sigma-Aldrich), potassium hydrogen 

phthalate and di-ammonium hydrogen orthophosphate (Merck, Poole, Dorset, 

UK) were prepared as required using Milli-Q water and the pH adjusted using a 

solution of 0.91 sp. gr. NH3 (Merck). Bovine trypsin and type XIV protease 

(Sigma-Aldrich) were used for enzymolysis digestion of samples. Hydrogen 

peroxide, 37% v/v ( Sigma Aldrich), stored in the dark at 4°C, and nitric acid, 

69% v/v, (Primer, Fisons, Loughborough, UK) were used for microwave 

digestion procedures. 

2.2.3 Reference materials and samples 

The certified reference materials, DORM-2 (Dogfish muscle) and TORT-2 

(Lobster hepatopancreas) (National Research Council, Ottowa, Canada) were 

used to validate the methods. Oyster samples were obtained from a European 

inter-laboratory pre-certification trial. 'Selenoprecise'® tablets are available 

commercially (Pharma Nord, Vejle, Denmark). Samples of plaice, intended for 

domestic consumption, were obtained locally. They were dried at -60°C and 1 x 

10'2 Torr in a freeze drier (Edwards Super Modulyo, Edwards High Vacuum, 

Crawley, Sussex) and ground to fine powder using an Optiblend 2000 electrical 

blender (Moulinex, France) prior to use. 

2.2.4 Sample digestion procedures 

In the determination of total element concentrations it is necessary to utilize a 

sample decomposition technique that will ensure that the analyte of interest 
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remains in solution. is stable and any chemicals used do not cause instrumental 

interferences that may increase the limits of detection, particularly in cases where 

trace or ultra-trace elemental levels are expected. The practice of microwave 

digestion has been comprehensively reviewed 129 and in the dissolution of 

biological matrices, it has been shown that the three primary components of 

carbohydrates, proteins and lipids completely decompose in nitric acid (::::: 2 M) at 

temperatures of between 145 - 165°C 130
• Nitric acid (69% - azeotropic) has a 

boiling point of 122°C and in order to adjust the oxidizing potential of HN03, by 

means of elevating the temperature, closed vessel microwave conditions are used 

130
• The overall decomposition process is further assisted by the addition of 

hydrogen peroxide as the oxidizing power ofHN03 increases with higher acidity. 

Once complete digestion has been obtained, the elements of interest remain in 

solution and can be determined by the chosen method of detection. 

Acidic microwave digestions can destroy speciation information. Where 

speciation analysis is to be performed digestion procedures that retain the 

chemical form of the compound must be employed. The choice of a suitable 

enzyme for the sample matrix where the cell contents can be released into 

solution unchanged is one way in which this can be achieved. Enzymatic 

digestions are widely reported in the literature with effective extraction of the 

species under consideration 65
•

131
•

132
• Optimum conditions of pH and temperature 

must be employed, as enzyme activity is sensitive to these parameters. 
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• HN03 digestion for the measurement of 'total' arsenic and selenium 

Microwave bombs (Savillex, Minetonka, Minnesota, USA) were cleaned with 3 

ml HN03 (69%, v/v) in a Perfecto 800 W microwave oven (DeLonghi, Italy) on 

medium power for 2 mins. Samples of approximately 0.25 g were accurately 

weighed into the bombs and 4 ml HN03 (691'/o, v/v) and 1 ml H2<h (37%, v/v) 

were added. The bombs were loosely capped and left overnight to allow easily 

oxidised material to be destroyed. After pre-digestion, the bombs were sealed 

tightly and microwaved on medium power for 1 - 2 mins, or until the sample was 

a clear colour (indicating a completed digest). The samples were transferred 

quantitatively into volumetric flasks and made up to volume with deionized 

water. The samples and standards were spiked to give a fmal concentration of 

100 llg r1 Indium (In) which acted as an internal standard prior to analysis by 

ICP-MS using the conditions previously described. The internal standard was 

used to correct for instrumental drift (sample viscosity effects, mass transport, 

etc.) over the analysis period 

• Extraction procedure for the speciation of materials 

Freeze-dried samples (plaice, oyster, DORM-2 and TORT-2) of approximately 

0.25 g of tissue were accurately weighed together with 0.025 g trypsin (Sigma­

Aldrich, Dorset, UK.) and approximately 20 ml NH.tHC03 (0.1 M, pH 8) 
132

• The 

solutions were homogenized in a 'Potter' homogenizer, transferred to 

polyethylene centrifuge tubes and placed in a shaking water bath at 37°C for a 

minimum of 4 hours. The samples were centrifuged at 2500 rpm for 40 min, the 
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supematant transferred quantitatively to 25 ml volumetric flasks and made up to 

volume with the N~HC03 buffer. In this case, samples and standards were 

spiked to give a final concentration of 100 J.lg r1 caesium (Cs) that acted as an 

internal standard prior to analysis. Due to the change in pH conditions Cs was 

used in preference to In as In is not very soluble at pH 8 and can precipitate out 

of solution onto surfaces of the container or any particles present thereby being 

lost to the analysis. 

The Selenoprecise® yeast samples were prepared by accurately weighing 

approximately 0.25 g of the pre-ground material together with 0.025 g of protease 

(Type XIV) and approximately 20 ml ~C03 (0.1 M, pH 8) 
133

• The solutions 

were homogenized in a 'Potter' homogenizer, transferred to polyethylene 

centrifuge tubes and placed in a shaking water bath at 37°C for a minimum of 4 

hours. The samples were centrifuged at 2500 rpm for 40 min, the supernatant 

transferred quantitatively to volumetric flasks and made up to volume with the 

NRtHC03 buffer. Samples and standards were spiked to give a final 

concentration of 100 J.lg 1"1 caesium (Cs) that acted as an internal standard prior to 

analysis. 
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2.3 Results and Discussion 

2.3.1 Choice of chromatographic conditions 

To achieve the separation of highly toxic from less toxic arsenic and selenium 

species in the chosen samples a number of experimental parameters were 

manipulated until optimum conditions were attained. The species targeted were 

inorganic As111, As v, Se1v and Se VI which are considered to be the most toxic and 

the organic forms of arsenobetaine (AsBet), dimethylarsinic acid (DMA) and 

selenomethionine (SeMet) which have a much lower toxicity. These species, 

being weak acids or zwitterions, for which the structure of AsBet is shown in 

Figure 2-2, appear in a number of ionic forms dependent upon the pH and redox 

conditions used. The pKa values for these species, shown in Table 2-4, were used 

to provide a basis for the work. 

Figure 2-2 Structure of AsBet 
14 
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Table 2-4 pK, values for arsenic 134 and selenium 135 compounds 

Compound pKa Species present 

Arsenite 9.23 HAs02~AsO£ 

Arsenate 2.20, 6.67' 11.53 HJAs04 ~ Asol· 

AsBet 2.18 (CH3)3As+CH2COOH 

DMA 1.28, 6.2 (CH3)2As(O)OH 

Selenite 2.46, 7.31 H2Se03 ~ Se03 2. 

Selenate 1.92 HSe04-~ Seol· 

Se Met 2.6, 8.9 
CH3SeCH2CH2CH(COOH)NH2 

The degree of ionization of the species is pH dependent At pH 10.2 the arsenate 

present will be in the form of HAsol· whereas at pH 5 the predominant species 

is H2Aso4·. A diagram of Asv as a function of pH is shown in Figure 2-3. At pH 

10.2 AsBet, being a quaternary arsonium compound, exists as a zwitterion. DMA 

and As111 species are similarly dependent on the pH of solution. 

Ionization of selenium compounds is also pH dependent and a diagram of Se1v as 

a function ofthis is shown in Figure 2-4. Both the SeiV and the Se VI have doubly 

negative charges at pH 10.2, existing as the anions SeO/- and Seo/-, 

respectively. SeMet, a zwitterion at neutral pH, will possess a single negative 

charge in alkaline conditions. 
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The ionic character of the various arsenic and selenium species under particular 

pH and oxidation conditions determined that greater flexibility and suitable 

separation would be obtained using anion-exchange chromatography and this was 

employed throughout. The parameters considered were: column length; type and 

particle size of anion exchange resin; eluent flow rate; pH of mobile phase; 

concentration of mobile phase; and type of competitive counter ion. The range of 

experimental conditions used for each of the parameters is shown in Table 2-3. 

The chromatogram shown in Figure 2-5 demonstrates the elution patterns of the 

four arsenic species under considemtion using the optimum conditions derived 

experimentally for the Hamilton PRP XlOO column. It demonstrates the eo­

elution of the organic species followed by the eo-elution of the inorganic species 

under investigation. Optimum conditions were a column of I 00 x 3 mm 

dimensions, with a IO mM K2S04, pH I0.2 and a mobile phase at a flow mte of I 

ml min-1 with a sample injection loop volume of 100 lJ.l. The larger particle size 

of the Hamilton PRP XIOO resin (12-20 llffi) as opposed to the Benson AXIO 

resin (7-10 llffi) reduced the back-pressure experienced allowing the use of a 

simple peristaltic pump for control of the mobile phase flow-mte. 
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Figure 2-S Chromatogram of 4 arsenic standards (250 J.lg 1"1
) obtained using a Hamilton PRP 

XIOO column, lOO x 3 mm dimensions, with a lO mM K2S04, pH 10.2, mobile phase 
demonsttating the separation of organic from inorganic species. Peak l, As Bet and DMA; Peak 
2, Asm (oxidized to Asv) and Asv. 

The eo-elution of the organic species followed by the eo-elution of the inorganic 

species under investigation was expected when taking into account theoretical 

considerations of pKa values, pH used and column chromatography. The degree 

of ionization of the species is pH dependent. At pH 10.2 the arsenate present will 

be in the form ofHAso/·. This species has a doubly negative charge and thus a 

greater affinity for the anionic stationary phase than the other arsenic species 

under investigation and would be expected to elute last. At pH 10.2 AsBet, being 

a quaternary arsonium compound, exists as a zwitterion and elutes with the 

solvent front. DMA and arsenite, the latter being present in the form As02·, at 

this pH will exist as singly charged anionic species and will also elute early due 

to limited interaction with the stationary phase. Due to the shorter column length 
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and larger particle size than would be used for HPLC there are fewer theoretical 

plates and, therefore, less ability of the column to separate and resolve species 

having similar chemical properties. By experiment it was found that only 

arsenate, possessing two negative charges at pH I 0.2, had any affinity for the 

stationary phase and that all the other species eo-eluted. The intention of this 

work was to separate organic arsenic from inorganic arsenic species. To 

overcome the eo-elution of Asm with the organic species, As01 was oxidized to 

Asv. This was possible by the addition of 37% v/v H20 2 (0.25 ml) to 25 ml of 

sample (ratio of 1:100 H202: sample). The standard potential of the reduction 

half-reaction of H202 ~ H20 is more positive than that of As v ~ Asm. The 

stability of the other arsenic and selenium species under investigation was studied 

with the addition of 37% v/v H202. It was experimentally determined that the 

addition of H202 had no adverse effect since there were no conversions of the 

other concomitant arsenic and selenium species. 

Investigation of alternative column dimensions indicated that smaller column 

dimensions gave rise to poor resolution between peaks as would be expected 

from fewer theoretical plates being present 136
• Higher and lower flow rates than 

the optimum gave poor peak shapes due to the effects of longitudinal diffusion 

and mass-transfer effects. 

The use of phosphate as a mobile phase eluent is often reported by workers 137
• 

138 

for the separation of arsenic species by HPLC, with pH conditions frequently 

being within the range of pH 5.75 to 6.5.1nvestigation ofdi-ammonium hydrogen 
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phosphate providing the competitive counter ion in the mobile phase for this 

study, although providing the necessary resolution, appeared to be fairly unstable 

with shifting peak retention times. This may be accounted for by greater 

equilibrium effects for HPol· at pH 10.2 than for the SO{ ion, which was fully 

ionized under these pH conditions. The retention times were also longer 

suggesting that 10 mM phosphate provides a weaker counter ion than does I 0 

mM sulphate. To negate the lengthened retention times a higher concentration 

would be required. An increase in ionic strength is known to have a deleterious 

effect on the ionization processes in the plasma and the mass spectrometric 

detection of ions 139
• It was therefore, decided to proceed no further with the 

investigation of phosphate as a mobile phase counter ion. 

Experimental conditions to elute the species in a similar way to that of the 

Hamilton column were also found when using the Benson resin. However, a step 

gradient elution of 0 M potassium hydrogen phthalate (Milli-Q water), pH 7 and 

0.1 M potassium hydrogen phthalate, pH 4 (2 mins then 5 mins, respectively), at 

an eluent flow rate of 1.4 m1 min"1 was required with a column length of 25 x 3 

mm. A range of pH values for the mobile phase were analyzed. It was shown that 

the higher concentration of the competitive ion in the mobile phase solution was 

required to elute the inorganic arsenic anions. By lowering the pH the number of 

charges associated with each species would have also been reduced (see pKa 

values - Table 2-4) giving them less affinity for the stationary phase. Mobile 

phase solutions of sulphate and phosphate also required a step gradient. However, 

0.1 M potassium hydrogen phthalate is naturally at pH 4 and it was therefore 

65 



decided that this solution was the most convenient as no adjustment of pH was 

required. The optimum conditions required could be accounted for by the smaller 

particle size and greater surface area of the resin and it possessing a higher 

capacity (1.5 meq m1"1
) than that of the Hamilton resin (0.19 meq mr' 1

). 

The Benson AX l 0 system was considered to be less practicable due to the step 

gradient requirement, in concentration as well as pH, which necessitated a re­

equilibration stage, thereby lengthening the analysis time. Calibration results with 

standards also showed greater standard deviation than those obtained with the 

Hamilton column. Further work was performed using the optimum conditions 

derived from the Hamilton PRP XI 00 column system only. 

During investigations for experimental conditions to achieve the required 

separation of organic from inorganic arsenic species, the simultaneous separation 

of selenium species in a similar manner was also considered. Using the 

conditions applied for the separation of arsenic species (using either the Hamilton 

PRP XlOO column with 10 mM potassium sulphate, pH 10.2 or the Benson AX 

10 column with the step gradient elution of 0 M potassium hydrogen phthalate, 

pH 7 to 0.1 M potassium hydrogen phthalate, pH 4, as the mobile phase) it was 

possible to separate the three selenium species under investigation. A 

chromatogram of this separation is shown in Figure 2-6. 
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Figure 2-6 Chromatogram of three selenium standards (250 j.lg r1
) obtained using a Hamilton 

PRP XIOO column, 100 x 3 mm dimensions, with a 10 mM K2S04 mobile phase at pH 10.2 
demonstrating the separation of all species. Peak I, SeMet; Peak 2, Se!V; Peak 3, Se VI. 

Both the SeiV and the Se VI have doubly negative charges at pH 10.2, existing as 

the anions SeO{ and Seal-, respectively. SeMet, a zwitterion at neutral pH, will 

possess a single negative charge in alkaline conditions. SeMet, possessing only 

one negative charge would have the least affinity for the stationary phase and 

consequently elute in the shortest time, which was found to be the case. The 

separation of Se1v from Se VI, although they possess similar charges, would be 

possible due to the differences in the hydrated radius of each and the resulting 

charge density. Conditions to either oxidize Se1v or to reduce Se VI were not 

attainable experimentally to induce eo-elution that would have simplified the 

chromatograms. 
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The optimum conditions for simultaneous separation of arsenic and selenium 

"' 
ij 
0 u 

species, with the best peak shape and shortest chromatographic run times were 

found to be the use of a 100 x 3 mm column packed with Hamilton PRP X100 

resin, 12-20 J.llil particle size, a 10 mM K2S04 mobile phase at pH 10.2 and an 

eluent flow mte of 1.25 m1 min"1 with an injection loop volume of 250 J.Ll. The 

arsenic species eluted within 4 mins and the selenium species eluted in less than 6 

mins. A cbromatogmm demonstmting simultaneous separation of arsenic and 

selenium compounds is shown in Figure 2-7. 
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Figure 2-7 Chromatogram demonstrating simultaneous separation of four arsenic and three 
selenium species, into their relative toxicity classification, under the same experimental 
conditions - Hamilton PRP X I 00 { 100 x 3 mm) column, 10 mM K2S04 mobile phase at pH 102, 
eluent flow rate of 125 ml min"1

• Peaks: 1, AsBet and DMA; 2, Asm and Asv; 3, SeMet; 4, SeiV; 
5, Se vt. This chromatogram clearly shows the separation of low toxicity from high toxicity 

species obtained. 
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The linearity of results obtained using the column system was determined in the 

range of 50 - 500 J.lg r 1 for each of the analytes. Graphs demonstrating the 

linearity obtained for the selenium and arsenic species are shown in Figures 2-8 

and 2-9, respectively. Correlation coefficients are shown on the graphs and are all 

close to 1 demonstrating a linear relationship between concentration and signal 

response in the form of peak area 
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Figure 2-8 Graph demonstrating the linearity obtained for the selenium species on simultaneous 
separation together with arsenic species using a Hamihon PRP X lOO mini-column (lOO x 3 mm 
1.0.). Error bars are derived from 95% confidence intervals where n=3. 
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Figure :Z:.? Graph demonstrating .the linearitY obtained :for the arsenic species oil simultaneous 
seParation together with selenium species iising a Hamilton PRI'XIOO mini,-cOiiiinn (lOO x J,mm 

. I.D.). 

23.2 Spedation of·CRMstand' real samples using LC-'lCP-MS 

Having identified ·the opti.lpum chromatographic conditions followed by 

assessment of .the lin~arity for the eluting species using commercially available 

Standards; the methodology \Vas applied to that of n:al samples, ·Certified: 

reference materials (l'ORT-2· and DORM.~2) were· included• for quality control 

and,niethod validation purposes, ;rb,e•sarnple ofT0RT~21s kno:WnOto contain bOth 

arsenic and' seleniuni as certified reference values are given for •both elements. 

D0RM-2 was also chosen for analysis as certified values .are given for total 
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arsenic and for that of AsBet. Samples were prepared using a HN03 digest for 

total elemental deterrninations and using an enzymatic extraction for speciation 

studies (as described' in section 2.2.4). The results are shown in Table 2-5. 

Table 2-5 Results of samples analyzed,using LC-ICP-MS. All values are given in mg kg'\ as the 
element. 

Sample Total As Total Se Organic As SeMet 

Plaice 39.36± 1.72 37.6 ± 3.8 

Oyster 10.02 ± 1.1 9.13 ± 1.4 

Selenoprecise ™ 522 ±24.8 571 ± 50.2 

TORT-2 20.7 ± 1.9 5.23 ± 0.78 23.5 ± 3.1 4.1 ± 0.54 

DORM-2 17.8 ± 0:91 15.4 ± 1.68 

Limits of detection 0.001 0.008 0;002 0~010 

Certified values: TORT-2- Total As 21.6 ± 1.8 mg kg·•, Total Se 5:63 ± 0.67 mg kg·• 
DORM-2- Total As 18:0 ± 1.1 mg kg"1

• AsBet 16;4 ± 1.1 mg kg'1 

11he results for the samples demonstrate that all species present were found as the 

organic forms of the element. No inorganic compounds were detected in any 

sample. The values obtained by LC-ICP-MS closely match the total values 

obtained by direct ICP-MS suggesting that all species are accounted for. 

However, it can be seen that the confidence intervals obtained by direct ICP-:MS 

are much narrower than those obtained by LC-ICP-MS. It is worth noting that 

inorganic arsenic, organic arsenic and the three selenium species used as 

standards demonstrate differing sensitivities when determined by ICP"MS. This 
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is evident when examining Figures 2-8 and 2-9. The gradient of the slopes is 

different for all species although the same concentrations, based upon the 

element, have been measured. As the system is used to separate organic from 

inorganic arsenic and selenium species the fact that the detection is species­

sensitive will affect calculations. Where there are two or more eo-eluting species, 

or in a situation where an unidentified arsenic or selenium compound is present, 

errors will inevitably occur as signal response varies for individual compounds. 

The results obtained in this experiment, particularly for the organic arsenic 

species where eo-elution of species occurs, appear to be satisfactory probably 

because the samples analyzed predominantly contain AsBet and AsBet was used 

as a standard for quantification. The standard addition technique was used for 

quantification purposes as this is known to minimize the effects of non-spectral 

interferences caused by the sample matrix. Inaccuracies in original weights of 

samples and fluctuations in temperature and pressure on the column are other 

factors that must be considered. 

The use of CRMs provided useful data for method validation. A chromatogram of 

the TORT-2 sample demonstrating the simultaneous separation of organic from 

inorganic arsenic and selenium species is shown in Figure 2-10. Mass 75 was 

monitored for arsenic as it is mono-isotopic, and mass 82 was monitored for 

selenium as this isotope suffers the least from spectroscopic interferences. At 

mass 75, for direct ICP-MS analysis, 4% N2 was added to reduce the 

spectroscopic interference of ArCt+. However, this measure was not necessary 

when using the mini-column as er ions are retained on the resin. This was 
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verified by the introduction of a 2% NaCl solution onto the column and no 

subsequent peak being seen when recording at mass 75. 
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Figure 2-10 Chromatogram of TORT-2 demonstrating the simultaneous separation of organic 
arsenic (mass 75) and SeMet (mass 82) using optimum mini-column LC-ICP-MS conditions. 
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2.4 .Conclusions 

The implementation•of·lllulti-eleiiient detection using ICP~Ms .coupled to a low-

pressure miiti,..colwnn .liquid chromatograpliic system provided' a usefuir method 

for the simultaneous :separati011 of organic .from inorganic ilrst;:nic ·and •Selenium 

species. It was· suC(;essfully appiled for·the separaiion and1 detection of standards 

as well as real samples that Were of environmentai :importance. As stated; the 

method can be employed for initial; rapid species monitoring for 'samples .of 

environmental and biological~importance ,poliution. If· high levels of• toxic species 

·are found th_en· further, more rigorous analytical techniques can be used as· 

required~ 

Low-pressure. :systems were obtained by the use of mini-colllmns with column 

dimen.Sions no greater than 3 x •100. ,run. Conditions suitable for the 

chromatographic separatio11 of inorganic from organic species utilizing the :pKa 

values of .the species were investigated together with choice of competitive ion 

eluent, itsrconcentratioil and flow rate. ICP-MS:wasrused al).the detector due•to its 

multi-element detection ·capability, :although less expensive element-specific 

detectors·can be used. Optimlim conditions to·.achieve simultaneous separaiion of 

relatively toxic ·from relatively non"toxic arsenic and selenium species were 

found~ to be the use of a Hamilton PRP XlQO, 12-20 J.1111, ·resin rpacked in a 

column of.lOO x 3 mm I.D. The eluent.competitive counter ion was K2S04 at 10 
' . 

mM-concentration andrpH lO.i 'The optimum;eluent flow rate·was 1.25 ml:min·1
• 
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An injection volume of 100 J.1l was found to provide optimum sample loading 

onto the column. 

Under the optimum conditions employed, the results obtained for the CRMs 

DORM-2 and TORT-2, the selenoprecise® and two marine samples of plaice and 

oyster compare favourably with the expected and reference values. Limits of 

detection were determined to be in the range of 2- 10 J.tg kg·' for organic and 

inorganic arsenic and selenium species. 

The validity of this simple procedure for screening biota samples in terms of their 

arsenic and selenium toxicity was, therefore, demonstrated. This rapid screening 

technique allows a suitable estimate of the implications to health to be made for 

samples containing arsenic and selenium without resorting to a full speciation 

procedure. 
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Chapter three 
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3 Feasibility study for the speciation of arsenic and selenium in 

candidate reference materials 

3.1 Introduction 

Speciation analysis focuses on the clear identification of specific chemical 

species or forms of an element and its quantification 140
• Sample preparation and 

extraction techniques for the analyte of interest together with hyphenated 

techniques commonly used for speciation separation and detection will all 

possess their own sources of errors. Measurements by laboratories, even when 

applying the same method may differ significantly from each other 141
• However, 

results are only of use where they are considered to be accurate and precise. 

Reliable measurements are vital for quality control and assurance in areas of 

trade, agriculture, food and nutrition science, health, environment, toxicological 

studies and in legal requirements for monitoring and consumer protection 142
• 

Traceability and comparability of measurements have long been acknowledged as 

holding an important place in analytical science 143
• Results can only be accurate 

and comparable worldwide if they are traceable. An unbroken chain of 

calibrations connecting the measurement process to fundamental units achieves 

traceability of a measurement 144
• It must be demonstrable that no loss or 

contamination has occurred and that chemical species have been preserved 145
• It 

is possible to verify analytical procedures in a simple manner by the use of 

certified reference materials and by the use of mass balance calculations. 
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Analysts involved in method development require suitable validation procedures, 

which ideally involves the use of a CRM of the same or similar matrix type and 

similar analyte concentration to that of the sample. Reference materials for 

arsenic and selenium speciation are very limited. More are urgently required to 

expand the base of CRM sample matrices available to analysts, in order to meet 

the growing demands of society 143
• 

Certified reference materials are costly to produce and therefore feasibility 

studies are generally undertaken to determine whether a 'candidate' material will 

produce a viable CRM. A reference material suitable for control purposes will 

usually be a 'real world' material so that it behaves as similarly as possible to the 

samples being measured with the method being controlled. Preference is given to 

materials where there are naturally occurring higher levels of particular species or 

to naturally contaminated materials rather than having materials spiked with the 

substance of interest during the preparation stage. The requirements of a material 

suitable for entering into a feasibility study depends on a number of criteria: the 

analytes of interest need to be extractable and in concentrations that are 

representative of the sample type; the prepared material must be homogenous and 

stable in storage conditions, i.e. absence of degradation of species over time in a 

range of acceptable moisture, light and temperature conditions 
146

. 

The work presented here comprises part of a feasibility study into the production 

and certification of six new reference materials, analyzed for species 

concentrations of the element arsenic (in chicken, fish, rice and soil) and 
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selenium (in wheat and yeast). The project was funded by the European 

Community under the 'Competitive and Sustainable Growth' programme (1998-

2002) 147. 

The project was set out in three stages. The role of the University of Plymouth in 

the first stage of this project was to conduct a survey on a variety of fish types to 

identify a particular sample that would be suitable as a candidate reference 

material. The purpose of the survey was to determine total arsenic concentrations 

in the fish and the number of arsenic-containing species present in measurable 

quantities with the best extraction efficiency obtainable. The plaice sample 

appeared to be most fit for purpose and a quantity of this material was obtained 

and forwarded to the Institute for Reference Materials and Measurements 

(IRMM, Geel, Belgium). Here, the materials underwent sample preparation 

processes to produce 100 bottles of homogenous candidate reference material. 

These were dispatched back to the labomtory for homogeneity and stability 

studies. Each of the six participating labomtories in this part of the feasibility 

study underwent a similar process for their chosen material. 

The second stage of the study encompassed the homogeneity and stability studies 

undertaken by each partner for their chosen candidate material. Following this, 

each partner labomtory sent two bottles of their candidate material to all other 

participating labomtories. This allowed the third and final stage of the project to 

be carried out which involved the inter-laboratory comparison of all sample types 

for the species of interest. There were nine participating laboratories for this stage 
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of analysis 147• The data obtained from this stage of the project was used to 

calculate the uncertainties in the measurements obtained and hence the suitability 

of the material to go forward for full certification. Ideally, a CRM should possess 

a narrow confidence range for a specified substance with no, or minimal, 

opemtionally defined limits 144
• 

3.2 Preliminary survey of a variety of possible fiSh types with subsequent 

homogeneity and stability studies using plaice 

3.2.1 Instrumentation 

ICP-MS measurements were performed usmg a VG Plasmaquad (2+, TJA 

Solutions, Winsford, Cheshire, UK), using the conditions described in Table 3-1. 

A Perkin Elmer series 410 high-pressure pump (Perkin Elmer, CT, USA) was 

used for control of the cbromatogmphic eluent flow mte. A Rheodyne 7125 

injection valve (Rheodyne, CA, USA) with a 20 J.d loop volume was used for 

column loading of sample digests. pH readings were taken using a 3010 pH meter 

(Jenway, Ltd., Essex, UK). 

80 



Table 3-l ICP-MS operating conditions used for the detennination of total and arsenic species in 
fish sample extracts. 

ICP-MS Plasma Quad 2+ 

Concentric pneumatic nebulizer (Meinhard) 

Water-cooled cyclonic spray chamber- 50 ml vol 

Fassel torch- 1.5 mm bore injector 

Parameters Argon plasma - 4% N2 added for direct total As determination 

to the nebulizer gas flow 

Nebulizer flow rate 

Coolant gas flow rate 

Auxiliary gas flow rate 

Forward power 

Dwell time 

0.8 1 min-I 

13.0 1 min"1 

0.8 1 min"1 

1350W 

500ms 

Arsenic was measured using rnlz 75. 4% (v/v) N2, for the reduction of ArCl+ 

interferences on rnlz 75, was added. via a Signal series 850 gas blender (Signal, 

Camberley, Surrey) to the nebulizer gas flow. 

Hydride generation atomic absorption spectroscopy (HG-AAS) was performed 

using a continuous flow hydride generator (PS Analytical, Sevenoaks, Kent, UK) 

and a PYE Unicam SP9 AAS instrument (Philips Scientific, Cambridge, UK). 

Operating conditions are shown in Table 3-2. 

81 



Table 3-2 Operating conditions for determination of reducible arsenic in the plaice sample using 
HG-AAS 

Hydride generation Rise time - I 0 s 

Decay time- I 0 s 

Atomic absorption 

Spectrometer 

UnicamSP9 

Argon purge- 250 ml min"1 

Reducing agent- I% NaBR$ in O.I M NaOH at 3 ml min"1 

Acid- 3 M HCI at 8 ml min"1 

Sample flow rate- 5 mJ min"1 

Wavelength-I93.7 run (As) 

- Lamp current- I 0 mA 

Band pass - 2 run 

Air- 5.0 I min"1 

Acetylene- 1.5 I min"1 

3.2.2 Chemicals and reagents 

All commercial chemicals were of analytical grade and used without further 

purification. Arsenous acid (assay - 99.95-100.05 % purity), arsenic acid, 

dimethylarsinic acid, (Sigma-Aldrich Chem. Co., Poole, Dorset, UK), 

arsenobetaine (BCR, Retieseweg, Belgium), monomethylarsonous acid (kindly 

donated by Dr. A. Moreda-Pineiro, University Santiago de Compostela, Spain) 

and trimethylarsenic oxide (TMAO, Argus chemicals, Vernio, Italy) were used as 

stock solutions of 1000 J.lg ml"1 in terms of the element. They were stored in the 

dark at 4°C. Solutions of the compounds for daily use were prepared by 
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appropriate dilution from the stock solutions using Milli-Q water (Milli-pore, 

Bedford, MA, USA). The CRM used in the preliminary study was TORT-2 

(National Research Council). Eluent solutions were prepared using solid Na2S04, 

liquid pyridine, 0.91 sp. gr. NH3 solution and 98% HCOOH (Sigma-Aldrich). 

Samples for HG-AAS were prepared using L-cysteine (Sigma-Aldrich) and 69% 

HN03. 

All plastic/glassware was soaked in HN03 (10%, v/v) for a minimum of24 hours 

and rinsed thoroughly with de-ionized water prior to use. 

3.2.3 Chromatographic conditions for the determination of arsenic species 

All mobile phase solutions were degassed by ultra-sonication for 15 rnins prior to 

use. Anion-exchange HPLC, for the speciation of arsenic, was carried out using 

a column (250 x 4.6 mm) packed with Hamilton PRPXlOO 10 !liD resin 

(Phenomenex, UK) with a guard column (50 x 4.6 mm) of the same material. The 

mobile phase employed a step gradient elution using a solution of 5 mM and 50 

mM Na2S04 at pH 10.2, adjusted with NH3 solution (0.9lsp. gr.). The 

programme for elution is given in Table 3-3. An eluent flow rate of 1.2 ml min-1 

was used throughout. 
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Table 3-3 Elution programme for anion-exchange HPLC of arsenic species using a Hamilton PRP 
X lOO column. 

Concentration 0 -5 m ins 5-9mins 9-15 mins 

5 mM Na2S04 (adjusted to pH 10.2) 100% 0% 100% 

50mM Na2S04 (adjusted to pH 10.2) 0% 100% 0% 

Cation-exchange HPLC was carried out using a Partisil SCX 10 column (250 x 

4.6 mm, Phenomenex) packed with a silica gel of 10 J.lDl particle size with a 

guard column (50 x 4.6 mm) of the same material. The mobile phase employed 

an isocmtic elution using 20 mM pyridine solution adjusted to pH 3 with 

HCOOH (98%, v/v) 148 with an eluent flow mte of 1.2 ml min"1 used throughout. 

3.2.4 Mass balance calculation 

To obtain data for mass balance calculations determination of total element 

concentmtions in the sample, a sum of the species in the extmcts together with 

total element concentmtions in any residues must be accounted for. A flow 

diagmm of mass balance analysis can be seen in Figure 3-1. 
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Acid digest 

Sample 'total' element concentrations 

1 
Extraction process ---~~Residue ---!~~·total' element in residue 

l 
Extract ------------+ 'total' element in extract 

1 
Speciation -------------;~sum of elemental species 

Figure J,.l FloW diagram for acquisition of mass balance data 
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3.2.5 Sample preparation procedures for determination using ICP-MS and 

HPLC-ICP-MS 

Eight fish samples (plaice, monk, hake, haddock, cod. coley, pollack and whiting) 

were purchased locally from the Plymouth fish market where they were 

beheaded. gutted and filleted. The fish were further prepared in the laboratory by 

removing the skin and ensuring that all bony material was removed. They were 

then cut into small pieces and freeze dried (Edwards Super Modulyo, Edwards 

High Vacuum, Crawley, Sussex, UK) at -60°C and 1 x 10-2 Torr (or until a stable 

pressure was maintained) for approximately 48 hours, at which point a constant 

weight had been achieved. The dried fish were blended gently in an Optiblend 

2000 electrical blender (Moulinex, France) until fine powder was obtained. A 

microwave digestion for total arsenic determination and an enzymolysis 

extraction for the determination of arsenic species were both performed using the 

following methods, 

HNOill202 digestion for 'total' arsenic concentrations in fiSh samples and 

residues 

Microwave bombs were pre-cleaned using 3 ml69% v/v HN03 (Aristar, Fisons) 

on medium power in a Perfecto 800 W microwave oven (DeLonghi, Italy) for 2 

mins. Samples of approximately 0.5 g (all fish types and TORT-2 as CRM) were 

accurately weighed into the bombs and 3 ml HN03 (69% v/v) together with 1 ml 

H20 2 (37% v/v) were added 132
• The bombs were loosely capped and left 

overnight to allow easily oxidizable material to be destroyed. After predigestion, 
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the bombs were gently swirled, sealed tightly and microwaved on medium power 

for I - 2 mins, or until the digest was a clear colour with no residue (indicating a 

completed digest). The samples were transferred quantitatively into volumetric 

flasks and made up to volume with deionized water. The digested samples and 

matrix matched standards were spiked with indium to give a fmal concentration 

of I 00 f.lg r1 In, which acted as an internal standard prior to analysis by N2-ICP­

MS using the conditions described in Table 3-l. 

Enzymolysis Extraction of Arsenic Species 

An enzymatic extraction procedure adopted by Branch et al. 132 was employed. 

Samples (all fish types and TORT-2 as the CRM) of approximately l.O g of tissue 

were accurately weighed together with 0.1 g trypsin (Sigma-Aldrich, Dorset, UK) 

and approximately 20 ml NRsHC03 (0.1 M, pH 8) buffer. The solutions were 

homogenized in a 'Potter' homogenizer, transferred to polyethylene centrifuge 

tubes and placed in a shaking water bath at 31'C for a minimum of 4 hours. The 

samples were centrifuged at 2500 rpm for 20 min, the supematant transferred 

quantitatively to volumetric flasks and made up to volume with the Nl4HC03 

buffer. The samples and standards were spiked with caesium to give a final 

concentration of lOO f.lg r1 Cs, which acted as an internal standard prior to 

analysis by direct ICP-MS using the conditions described in Table 3-l. 

Determination of arsenic species was carried out using the chromatographic 

conditions described in Section 3.2.3. 
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Mass ,balance 

To obtain further mass balance:data, total arsenic concentrations were determined 

in extract solutions and the residues from the trypsin extraction procedure. The 

residues were digested using the HN03 digestion method described above. 

3.2.6 Sample p .. eparation procedures for determination of reducible 

arsenic in plaice samples using HG-AAS 

Enzymatic sample digest solutions, prepared as above, were used for the 

determination of reducible arsenic species in the plaice samples using HG-AAS. 

Sample volumes of 25 ml were added to 4 ml of 8.75% L-cysteine in 50 ml 

volumetric flasks and made up to volume with 0.05 M HN03 
149

• Standards and 

blanks were prepared using the same concentrations of L-cysteine and HN03. 

The solutions were allowed to stand for approximately 1 hour to allow complete 

pre-reduction of any arsenate to arsenite by L-cysteine prior to analysis using the 

conditions described in Table 3-2. 

3.2. 7 Preparation of plaice samples for homogeneity and stability studies 

The most suitable fish type, plaice, was taken forward for the homogeneity and 

stability studies, after sample processing by IRMM as shown in Figure 3-2. It was 

analyzed for total element concentrations and speciation of arsenic compounds 

according to the microwave and enzymolysis digestion techniques described in 

Section 3.2.5. 
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Collection and slicing of 20 kg fish 

[~==J=a=w=c=nm==bin='=g=an=d=&e==e=~==~==in=g========~l 
[ Ball milling - I 00 g I Teflon bowl ] 

Sieving <125 ~- ftaction > 125 ~ to 

Homogenisation- 'Turbula' mixing 

Sampling and storage of 115 units of 20 g 

[ Analytical control - particle size l 
Homogeneity and stability studies 

University of Plymouth 

IRMM,Geel 

IRMM,Geel 

IRMM,Geel 

University of Plymouth 

Figure 3-2 Flowchart for the preparation of fish samples by the University of Plymouth and 
IRMM. 
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When carrying out the homogeneity studies sample weights of 0.25, 0.5 and 1.0 g 

were taken. To ensure complete digestion of all the material the amount of 

trypsin added was varied in a ratio of 10: 1 for sample:trypsin, which is 

considered to be the optimum ratio 93
• The stability studies performed were based 

on the results from 1 g sample weights using HNDJ microwave and enzymolysis 

digestion techniques. The stability of total arsenic and AsBet was determined 

under conditions of temperature and time, ranging from 4 to 40°C with material 

at -20°C as a reference and 0 to 7 months, respectively. 
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3.3 Results and discussion 

3.3.1 Preliminary fash survey 

The preliminary survey was carried out on a number of fish types as shown in 

Table 3-4. The enzyme extraction efficiency given in the experimental data 

varied from 37-98%. This may be explained in terms of the overall extraction 

efficiency for arsenic from various types of fish which possess different lipophilic 

properties 132
• Trypsin, a protease, attacks proteins and can destroy cell walls 

whereas lipase may be the preferred enzyme for releasing arsenicals that may be 

lipid-bound. A previous inter-laboratory exercise for the certification of arsenic 

species in tuna fish ISO reported extraction efficiencies (the sum of arsenic in 

various chemical forms compared to total arsenic determination) ranging from 50 

to 90% depending on the extraction method used (e.g. MeOH/H20, H20, 

MeOHJCH3Cl, trypsin, etc.). Trypsin appeared to be the most efficient in this 

study ISO and was subsequently used here. The trypsin extraction proved most 

successful for plaice and whiting giving 98 and 96% efficiencies, respectively. 

However, the deficit of arsenic following enzymatic extraction compared with the 

total arsenic values obtained for the other fish in the survey should present itself 

in the residue. This was not the case for all the fish samples and was most 

noticeable for hake, haddock and cod. The reasons for this are not clear but may 

include instrumental matrix effects and loss of analyte to container surfaces. 
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Table J-4Arsenic speciation for all fish samples. Results given as mg kg"1 in tenns of the element 
at 95 % confidence interval. n = 3 

Total As- Toto/As As Bet 
Sample Total As- Inorganic Extraction 

HN01 
digest residue digest 

As efficiency 

Plaice 39.5 ± 1.7 38.7 ± 1.9 0.78± 0.034 38.7 ± 2.7 1.95 ± 0.21 98% 

Monk 48.1 ± 2.4 32.6±2.0 3.33 ± 0.12 12.6± 4.9 1.33 ± 0.19 68% 

Hake 17.5 ± 27 6.6± 1.5 1.83 ± 0.15 7.6± 1.9 1.09 ± 0.18 37% 

Haddock 34.6±2.6 22.1 ± 1.7 420±0.28 21.7 ±0.8 1.54 ± 0.13 65% 

Cod 122.1 ± 4.3 92.3 ± 6.1 5.36 ± 0.22 91.0 ± 0.9 1.46 ± 0.18 75% 

Coley 9.4±0.7 7.9±0.9 1.09 ± 0.053 8.7 ± 0.5 0.91 ± 0.11 85% 

Pollack 17.1 ± 0.7 10.7 ± 1.3 1.70 ± 0.19 8.3 ± 1.4 1.48 ± 1.9 63% 

Whiting 11.9 ± 0.7 11.6 ± 0.4 0.42 ± 0.014 11.5 ± 2.0 1.23 ± 0.11 96% 

TORT -2' 21.8 ± 0.8 17.8 ± 1.1 2.41 ± 0.087 16.6 ± 1.2 < LOD 80% 

'certified value of TORT -2 = 21.6 ± 1.8 mg kg"1 for 'total" arsenic 
+'digest" refers to trypsin enzymolysis digestion solutions 
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The purpose of this survey was to screen for the most suitable material to go 

forward into a feasibility study for the production of a CRM. As outlined in the 

introduction, an ideal candidate reference material would contain a number of 

species at easily extractable and measurable concentrations. Work by Francesconi 

and Edmonds 14 suggests that while AsBet is the major form of arsenic found in 

marine animals with inorganic forms constituting < 2% of the total, other 

organoarsenic compounds may be present These most important species include 

methylated forms such as MMA and DMA (which are known to be formed in the 

detoxification process 14
), tetramethylarsonium ion (TeMA), arsenocholine 

(AsChol) and trimethylarsine oxide (TMAO) all of which have been reported in 

various types of marine fauna AsChol is thought to be a precursor of AsBet, 

although the metabolic pathway of AsBet has yet to be fully elucidated. TeMA is 

usually present as a degradation product caused by microbial breakdown of 

AsBet 151 and its presence has been reported in catfish 152
• It is conjectured to be 

an intermediate ofthe methylation of arsenate. TMAO is also considered to be an 

important organoarsenical accounting for up to 50% of the total arsenic in some 

marine fauna for example, the sea anemone, Parasicyonis actinostoloides m.The 

results for the fish samples under investigation in this survey, shown in Table 3-4, 

show that AsBet was the predominant form of organic arsenic found. 

Chromatograms of the arsenic standards and plaice sample using anion-exchange 

HPLC-ICP-MS are shown in Figures 3-3 and 3-4. Although Francesconi and 

Edmond's work 14 suggests that a number of organic arsenic species exist in 

nature and is supported in a review by Cullen and Reimer 10 summarizing this, 

the results are 

93 



"' --
~ 
8 

"' 
~ 
8 

50000 3 

45000 

40000 I 
36000 

soooo 

215000 

20000 2 4 

15000 

10000 

5000 

0 
0 100 200 300 400 500 000 700 000 

Time(s) 

Figure 3-3 Chromatogram obtained using anion-exchange HPLC-ICP-MS of arsenic standards at 
250 J.lg 1"1, l=AsBet; 2= DMA; 3=MMA; 4=Asv. Conditions as shown in Table 3-3. 
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Figure 3-4 Chromatogram of plaice using anion-exchange HPLC-ICP-MS, using conditions 
shown in Table 3-3. Peaks: 1, AsBet; 2, Asv/ artifact 
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comparable to those reported by other workers JJ2; 
148 where AsBet is the major 

compound found in fish. 

Identification of species based on matching chromatographic peak retention times 

with that of known standards can lead to ambiguity in peak assignment due to eo­

elution of chemically related compounds. liMAO is an arsenical that can be 

.present in significant amounts in seafood. TMAO, being a cation, is likely to eo­

elute with AsBet under the anion exchange chromatographic conditions 

employed. Experimental analysis with the use of standards showed this to be the 

case. To minimize the risk of misidentification of TMAO and AsBet, a cation 

exchange chromatographic system was employed using a Partisil SCX 10 column 

with a pyridine mobile phase (see Section 3.2.3). Figures 3-5 and 3-6 provided 

experimental evidence that the major peak in the plaice sample was due to the 

presence of AsBet and not TMAO. There is also no evidence· of an early eluting 

peak in Figure 3-6, which may be caused by Cl- ions indicating the lack of 

spectroscopic interference from this ion. 

No simple methylated fonns of arsenic were found in the fish studied in this 

report although small amounts of inorganic.arsenic were found to be present. It is 

thought that in the presence of amines, inorganic arsenic is displaced from the 

detoxification pathways.ofmethylation 154
, reducing the number of species likely 

to be found. However, the levels of amines in white fish are generally low and 

methylated species have been detected by other workers 112
• 

155
• 
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Figure 3-5 Chromatogram obtained using cation-exchange HPLC-ICP-MS, using a Partisil SCX 
10 column with 20 mM pyridine at pH 3, of arsenic standards at 250 J!g r' of: I,DMA; 2, AsBet; 
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Figure 3-6 Chromatogram of plaice sample using cation-exchange HPLC-ICP-MS, using a 
Partisil SCX 10 column and eluent of20 mM pyridine, pH 3. Peak l = AsBet. 
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The amount of inorganic As found was unusually high when compared with other 

research 156
• Inorganic arsenic is not commonly found at levels higher than 

approximately 6% of that of the total arsenic determined although levels as high 

as 25% have been recorded for some fish 132
• It is almost always found as Asv as 

opposed to As111
, as was the case in this study. This species may be considered, in 

the light of the predominance of Asv in seawater, to be relatively abundant due to 

prevailing redox conditions 157
• All the fish in this survey were found to have 

similar levels of As v regardless of the total levels of As found. This appears to be 

an anomalous finding when taking into account work published by other 

researchers. Their work suggests that levels of inorganic arsenic in marine 

animals will vary according to the type of animal and its habitat 158
• 

Although all the fish in this study were caught locally and therefore subjected to 

similar environmental pollution levels, it is possible that the similar levels of As v 

found may be accounted for by contamination of samples prior to purchase and 

during preparation. It is important to note that no contamination was seen in the 

blank samples. Also, results from the CRM, Tort-2 (lobster hepatopancreas), 

showed that approximately 90% of the extracted As was present as AsBet within 

the limits of experimental error and no inorganic arsenic was detected; this 

sample having gone through an identical analytical procedure after the sample 

preparation stage suggests that contamination post-preparation of samples is 

unlikely to be the cause for the presence of As v in the other fish samples. A 

survey using HG-AAS, with an experimental LOD of 11.3 Jlg rl, did not detect 

97 



any reducible forms of arsenic, confirming the absence of inorganic:arsenic forms 

in the fish samples. 

The preliminary study of all fish types was carried out in order to identify one 

that would be appropriate as a candidate reference material providing a suitably 

high extraction efficiency for arsenic species in measurable quantities. It was 

decided that plaice met the criteria of merit based upon it having a relatively high 

level of arsenic combined with the best enzymatic extraction efficiency seen for 

all fish types under investigation. The processed plaice samples were, therefore, 

carried forward to undergo homogeneity and stability studies. 

3.3.2 Homogeneity and stability studies 

Having identified plaice as being the most suitable fish to go forward for a 

feasibility study 20 kg of the filleted fish was bought from the Plymouth fish 

market, frozen and sent to the IRMM for preparation. A flowchart for the 

preparation of the fish can be seen in Figure 3-2. Homogeneity and stability 

studies were carried out using instrumental conditions, chemicals and 

chromatographic conditions as previously described in Section 3.2.1., 3.2.2 and 

3.2.3. 

The risk of in-homogeneity exists for any material prepared in any manner. There 

are two types of homogeneity that are of importance. The first is the within-bottle 

homogeneity, which dictates the minimum sample intake for which the 
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established· uncertainty remains valid, The second is the between-bottle (between­

unit) homogeneity. To establish within~bottle homogeneity it is advantageous to 

take small sample sizes so that between portion effects can be quantified. For 

between-bottle homogeneity tests it is more·practicable to take an optimal sample 

size to minimize analytical variation 159
. The homogeneity of the plaice was 

determined using measurements of total arsenic and AsBet. The most relevant 

quality when analyzing for in-homogeneity is the repeatability of the method 

rather than the accuracy. A prerequisite for this is that all samples are measured 

on the same day, with the same instrument and by the same operator. 

The plaice samples were prepared using the digestion methods described in 

section 3.2.5. Sample weights taken for homogeneity studies were in the range of 

0.25 - 1.0 g. Within-unit in-homogeneity is more readily detected with lower 

sample sizes. The results for within-bottle homogeneity comprised 5 sub-samples 

from 2 bottles at weights of 0.25 g, 0.5 g and 1.0 g (30 samples in total). For 

between-bottle homogeneity samples of 0.5 g and 1.0 g were taken in triplicate 

from I 0 bottles. Using STATGRAPHICS Plus 2.1, the ANOV A table 

decomposed the variance of the two components, a between-group component 

and a within-group component. The F-ratio is a ratio of the between-group 

estimate to the within-group estimate. Since the p-value of the F -test was greater 

than 0.05 there was not a significant difference between the means of the 

variables at the 95% confidence interval. This confirmed the absence of 

measurable in-homogeneity. The results are presented in table 3-5. The lowest 

sample size tested for homogeneity was 0.25 g and this must be stipulated, should 
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the material go forward for full certification. This will become the lowest 

recommended sample size for analysis, as homogeneity cannot be guaranteed 

below this amount 

Table 3-SWithin and between - bottle homogeneity for total As and AsBet in plaice 

Within bottle - CVV.AJ Within bottle - CVV.Ai Between bottle - CVV.AJ 

Bottle 1 Bottle 2 0.5gll.Og 

Total As 2.4 2.3 1.7 I 1.9 

F-ratio 2.3 0.28 1.1 I 1.4 

p-value 0.14 0.76 0.39 I 0.25 

TotalAsBet 2.5 2.1 2.0 I 1.7 

F-ratio 2.2 0.92 1.7 I 1.7 

p-value 0.16 0.43 0.17 I 0.15 

The purpose of stability studies is to check that the value of a certified property 

does not change significantly during transportation, storage conditions or over the 

time scale in which the CRM is likely to be used. In order to detect stability 

problems it is usual to check the material using small batches prepared in the 

same manner as is intended for the actual CRM and test over a time scale, usually 

of up to three years. However, in feasibility studies it is not practicable to wait 

this length of time before proceeding with full certification exercises. Therefore, 

if no significant change in the material is detected by stability studies carried out 
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for an initial six-month period then full certification may be approved. Whilst 

assessing the material for stability over time it is also necessary to assess the 

stability of the material in likely storage conditions. Conditions that are usually 

regarded as having the potential to cause instability in biological materials are 

light, temperature and the presence of moisture leading to degradation of the 

material by microbial action. It is, therefore, necessary to design a study that tests 

the material over time and in various storage conditions, taking into account 

temperature, exposure to light and moisture content. In this study, material was 

stored in hermetically sealed dark brown glass bottles negating the need to study 

effects of light degradation. 

The samples were assessed for an initial period of 0 - 7 months, at intervals of 

two weeks for the first two months and monthly for the last five. Any degradation 

was thought most likely to occur within the first few weeks. The time frame 

reflects that assumption with more frequent assessment in the initial period in 

order to provide a fairly accurate life-time of the material should any degradation 

become apparent. The studies were carried out at three temperatures: + 4°C, + 

20°C and+ 40°C with samples stored at- 20°C serving as a reference 144
• These 

temperatures were chosen as it was thought that microbial action (most critical 

temperature being 40°C) and thermal degradation would be the most likely 

mechanisms for alteration and destabilization of the biological material. 

The stability study was designed to test for total arsenic and AsBet content. 

Spiking experiments with standard species were performed in order to identify 
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potential losses or transformation of species during the study. Moisture content 

was determined by placing pre-weighed material in an oven at 85°C until a stable 

weight was obtained. All data reported was corrected for moisture content The 

'total' arsenic content was measured directly by ICP-MS and the determination of 

AsBet (this being the major species identified in the plaice) was performed by 

anion exchange HPLC-ICP-MS. Three sub-samples were taken at each 

temperature. 

The results for the stability of arsenic are given in graphic and tabular form in 

Figure 3-7 and Table 3-6. They were calculated from the data obtained using the 

standard equations of 160
: 

RT=XT I X_w0c 
UT= {(CVl +CV -20°C 

2
)

112
• RT} I lOO 

RTrepresents the mean XT of three replicates at temperature T (+4°C, +20°C and 

+40°C)divided by the mean X -2o0c of the three replicates at -20°C.UT represents 

the uncertainty on RT. CV is the coefficient of variance. In the case of ideal 

stability the ratios RT should be 1.0. However, in practice, there will be random 

variations due to the variation on the measurement. The results obtained 

demonstrate this. However, in all cases the expected value of 1.0 is obtained 

within RT ±UT and on this basis it can be concluded that there is no instability 

over 7 months of time or at temperatures of +4°C, +20°C or +40°C. 

102 



1.3 

1.2 

1.1 

1.0 

0.9 

0.8 

0.7 

l ~ ~ ~ Id: 

~ ~ 
r :1: [1. 

0 2 3 4 5 6 7 

Time (months) 

Figure 3-7 Stabili~ study of 'total' As in plaice at temperatures set at 4°C, 20 °C and 40 °C 
(baseline set at -20 C values) to identify any changes over time. 
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Table 3-6 Stability stud!, of total As in plaice. Values of RT % UT over a 7-month period at 
temperatures of 4°C, 20 C and 40 °C (baseline set at -20 °C values). 

Time in months Temp C Rr±Ur 

As 0.5 0.980 ± 0.02 

1 1.032 ± 0.04 

1.5 0.981 ± 0.02 

2 +4 1.032 ± 0.03 

3 1.010 ± 0.02 

4 1.013 ± 0.02 

5 1.018 ± 0.02 

7 1.003 ± 0.03 

0.5 0.992±0.02 

I 1.032 ± 0.04 

1.5 0.998 ± 0.02 

2 +20 1.031 ± 0.04 

3 1.021 ± 0.03 

4 1.017 ± 0.02 

5 1.006 ± 0.01 

7 1.009 ± 0.01 

0.5 0.974 ± 0.03 

1 1.030 ± 0.04 

1.5 0.985 ± 0.03 

2 +40 1.038 ± 0.04 

3 1.020 ± 0.03 

4 1.005 ± 0.04 

5 0.998 ± 0.01 

7 1.006 ± 0.02 
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Stability studies were also carried out on AsBet in plaice in a similar manner to 

that of the stability studies for total arsenic. The results are summarized in Figure 

3-8 and Table 3-7. Stability is confirmed in that the value of 1.0 is obtained 

within the uncertainty range. The uncertainty obtained for total arsenic is, in 

general, less than that obtained for AsBel This may be accounted for by greater 

precision in calculations on data obtained by direct ICP-MS measurement 

compared with the data collected for AsBet which was via HPLC-ICP-MS. 
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Figure 3-8 Stability study of AsBet in plaice at temperatures set at 4°C, 20 °C and 40 °C (baseline set 
at -20 °C values) to identity any changes over time. 
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Table 3-7 Stability studJ: of AsBet in plaice. Values of Rr ± U1 over a 7-montb period at 
temperatures of 4°C, 20 C and 40°C (baseline set at-20°C values). 

Time in months Temp C Rr±Ur 

As Bet 1 0.998 ±0.03 

1.5 0.997 ± 0.05 

2 +4 1.001 ± 0.01 

3 1.020±0.02 

4 1.034 ±0.06 

5 1.002 ±0.03 

7 1.036 ± 0.04 

I 1.022 ± 0.05 

1.5 0.990±0.04 

2 1.025 ± 0.03 

3 +20 1.023 ± 0.03 

4 0.982 ±0.04 

5 1.016 ± 0.02 

7 1.03 ± 0.04 

1 1.008 ± 0.06 

1.5 0.971 ± 0.07 

2 1.037 ± 0.04 

3 1.024 ±0.03 

4 +40 0.962 ± 0.05 

5 0.989 ± 0.02 

7 1.009 ± 0.04 
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The plaice material was found to meet the criteria required for a sample to go 

forward as part of an inter-laboratory arsenic speciation comparison for the 

production of a series of certified reference materials. 

3.4 Inter-laboratory comparison of arsenic and selenium species in all 

candidate reference materials 

3.4.1 Instrumentation 

ICP-MS measurements were performed using a VG Plasmaquad (2+, TJA 

Solutions, Winsford, Cheshire, UK), using the conditions described in Table 3-1, 

Section 3.2.1. Isotopes of mass 75 for arsenic and 77, 78 and 82 for selenium 

were used for recording measurements. A Perkin Elmer series 410 high pressure 

pump (Perkin Elmer, CT, USA) was used for control of eluent flow rates. A 

Rheodyne 7125 injection valve (Rheodyne, CA, USA) was used for column 

loading of sample digests. pH readings were taken using a 3010 pH meter 

(Jenway, Ltd., Essex, UK). Chemical and Reagents 

3.4.2 Chemicals and reagents 

All commercial chemicals were of analytical grade and used without further 

purification. Sodium selenate, sodium selenite, D,L-selenomethionine, D,L­

selenocystine, arsenous acid (assay - 99.95-100.05 % purity), arsenic acid, 
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dimethylarsinic acid, (Sigma-Aidrich Chem. Co., Poole, Dorset, UK), 

arsenobetaine (BCR, Retieseweg, Belgium) monomethylarsonous acid (kindly 

donated by Dr. A. Moreda-Pineiro, University Santiago de Compostela, Spain) 

were used as stock solutions of 1000 Jlg mr1 in terms of the element. They were 

stored in the dark at 4°C. Solutions of the compounds for daily use were prepared 

by appropriate dilution from the stock solutions using Milli-Q water (Milli-pore, 

Bedford, MA, USA). 

The CRMs used in this study were DORM-2 (National Research Council), Rice 

flour NIES 10 c (National Institute for Environmental Studies, lbaraki, Japan) 

Wheat flour 1567 a (NIES), and soil 'Montana' 2710 (NIES). A selenium­

enriched yeast sample (Phanna Nord, Denmark) was used as a reference material 

for selenium determination. 

Eluent solutions were prepared using Na2S04, H3P04, pyridine, and ~C03, 

methanol, NH3 (0.91 sp. gr.), HCOOH and CH3COOH (Sigma-Aidrich). 

All plastic/glassware was soaked in HN03 (10%, v/v) for a minimum of24 hours 

and rinsed thoroughly with de-ionized water prior to use. 
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3,4.3 Chromatographic conditions 

Arsenic speciation of candidate1material fiSh, rice and chicken 

Anion exchange HPLC was carried out using a column (250 x 4.6 mm) packed 

with Hamilton PRPX100 10 l.l.lll resin (Phenomenex, UK) with a guard column 

(50 x 4.6 mm) of the same material. The mobile phase employed a step gradient 

elution using a solution of 5 mM and 50 mM Na2S04 at pH I 0.2, adjusted with 

cone. NH3• The programme for elution is given in Table 3-3, Section 3.2.3. An 

eluent flow rate of 1.2 ml min"1 was used throughout. A loop volume of20 f.d was 

used for sample loading of fish and rice and a loop volume of 100 ~1 was used for 

the chicken samples. 

Cation-exchange HPLC was carried out using a Partisil column sex 10 (250 X 

4.6 mm, Phenomenex) packed with a silica gel of 10 j.Ull particle size with a 

guard column (50 x 4.6 mm) of the same material. The mobile phase employed a 

20 mM pyridine solution adjusted to pH 3 with HCOOH (98%, v/v) as an 

isocratic elution 148 with a flow rate of 1.2 ml min"1 used throughout. 

Selenium speciation of candidate.reference material yeast and wheat 

Anion exchange HPLC was carried out using an IC Sep AN 1 column (250 x 4.6 

mm, Phenomenex) packed with a 5 l.l.lll styrene - divinylbezene polymer resin 

with quaternary ammonium functional groups together with a guard column (50 x 

4.6 mm) of the same material. The mobile phase, modified from work by Madsen 

109 



et al. 116 employed was a step gradient elution using a solution of 10 mM and 50 

mM N14HC03 + 10% MeOH at pH 5, adjusted with glacial CH3COOH. The 

program for elution is given in Table 3-8. A flow mte of 1.0 ml min"1 was used 

throughout. A loop volume of 100 J.ll was used for sample loading of yeast and 

wheat candidate reference materials. 

Table 3-8 Elution programme for anion-exchange HPLC of selenium species in yeast and wheat 
candidate reference materials using a IC Sep ANI column. 

Concentration 0-3 mins 3-JOmins 10-15 mins 

10 mM Nl4HC03 + 10% MeOH 100% 0% 100% 

adjusted to pH 5 

50 mM NRtHC03 + 10% MeOH 0% 100% 0% 

adjusted to pH 5 

Arsenic speciation for candidate reference material 'soil' 

For the speciation of arsenic in soil, anion exchange HPLC was carried out using 

a column (250 x 4.6 mm) packed with Hamilton PRPX100 10 J.1ffi resin 

(Phenomenex, UK) with a guard column (50 x 4.6 mm) of the same material. The 

mobile phase employed a step gmdient elution, modified from a method 

developed by Thomas et al. 161 using a solution of 2 mM and 50 mM H3P04 at 

pH 6, adjusted with cone. NHJ. The programme for elution is given in Table 3-9. 
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A flow rate of 1.2 ml min"1 was used throughout A loop volume of 20 J.d was 

used for sample loading of the soil candidate reference material. 

Table 3-9 Elution programme for anion excbange HPLC of arsenic species in soil using a 
Hamilton PRP X I 00 column. 

Concentration 0-3 mins 3-6 mins 6-15 mins 

2 mM H3P04 (adjusted to pH 6) lOO% 0% lOO% 

lOO% 0% 

3.4.4 Sample preparation procedures 

3.4.4.1 Microwave digestion for 'totar elemental concentration of arsenic 

in fish, rice, chicken and soil and selenium in yeast and wheat 

Microwave bombs were pre-cleaned with 3 ml 69% v/v HN03 (Aristar, Fisons) 

on medium power for 2 mins. Samples of approximately 0.5 g (all sample types) 

were accurately weighed into the bombs and HN03 (cone., 3ml) and H202 (37% 

v/v, lml) were added. The bombs were loosely capped and left overnight to allow 

easily oxidizable material to be destroyed. After predigestion, the bombs were 

swirled gently, sealed tightly and micro waved on medium power for l - 2 mins, 

or until the sample was a clear colour with no residue (indicating a completed 

digest). The samples were transferred quantitatively into volumetric flasks and 
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made up to volume with deionized water. The samples and matrix matched 

standards were spiked with indium to give a final concentration of 100 J.Lg r' In 

which acted as an internal standard prior to analysis by ICP-MS using the 

conditions described in Table 3-1. 

3.4.4.2 Enzymolysis extraction of arsenic (in fash, rice and chicken) and 

selenium (in yeast and wheat) species 

Fish and chicken 

Samples of approximately 1.0 g of tissue were accurately weighed together with 

0.1 g trypsin (Sigma-Aldrich, Dorset, UK) and approximately 20 rni ~HC03 

(0.1 M, pH 8). The solutions were homogenized in a 'Potter' homogenizer, 

transferred to polyethylene centrifuge tubes and placed in a shaking water bath at 

37"C for a minimum of 4 hours. The samples were centrifuged at 2500 rpm (fish) 

and14500 rpm (chicken) for 20 min and the supematant transferred quantitatively 

to volumetric flasks made up to volume with the ~HC03 buffer. The samples 

and standards were spiked with caesium to give a final concentration of 100 J.lg r' 

Cs that acted as an internal standard prior to analysis by ICP-MS. 

Rice 

Samples of approximately 1.0 g of tissue were accurately weighed together with 

0.1 g cellulase (Sigma-Aldrich, Dorset, UK) and approximately 20 rni 

CH3COO~ (0.1 M, pH 5). The solutions were homogenized in a 'Potter' 
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homogenizer, transferred to polyethylene centrifuge tubes and placed in a shaking 

water bath at 37°C for a minimum of 4 hours. The samples were centrifuged at 

2500 rpm for 20 min and the supematant transferred quantitatively to volumetric 

flasks made up to volume with the CH3COONH.t buffer. The samples and 

standards were spiked with caesium to give a final concentration of 100 J.lg r 1 Cs 

that acted as an internal standard prior to analysis by ICP-MS. 

Yeast 

Samples of approximately 0.25 g of tissue were accumtely weighed together with 

0.025 g protease (Sigma-Aldrich, Dorset, UK) and approximately 20 ml 

NH.tHC03 (0.1 M, pH 8) 133
• The solutions were homogenized in a 'Potter' 

homogenizer, transferred to polyethylene centrifuge tubes and placed in a shaking 

water bath at 37"C for a minimum of 4 hours. The samples were centrifuged at 

2500 rpm for 20 min and the supematant tmnsferred quantitatively to volumetric 

flasks made up to volume with the NH.tHC03 buffer. The samples and standards 

were spiked with caesium to give a final concentration of 100 J.lg r1 Cs which 

acted as an internal standard prior to analysis by ICP-MS. 

Wheat 

Samples of approximately 1.0 g of tissue were accurately weighed together with 

0.1 g trypsin (Sigma-Aldrich, Dorset, UK) and approximately 20 ml NH.tHC03 

(0.1 M, pH 8). The solutions were homogenized in a 'Potter' homogenizer, 

transferred to polyethylene centrifuge tubes and placed in a shaking water bath at 
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37°C for a minimum of 4 .hours. 'The samples were centrifuged at 14500 rpm for 

20 min and the supematant transferred quantitatively to volumetric flasks made 

up to volume with the NH.tHC03 buffer. The samples and standards were spiked 

with caesium to give a final concentration of lOO flg r1 Cs which acted as an 

internal standard prior to.analysis by ICP-MS. 

To obtain mass balance data the residues from the enzyme extraction procedures 

were prepared for 'total" arsenic or selenium determination by the microwave 

digestion method described above. 

3.4.4.3 H3P04 microwave extraction for arsenic speciation in soil 

For the determination of arsenic species in the soil samples an H3P04 microwave 

modified extraction procedure, originally developed by Thomas et al. 
161 

was 

used. A Synthewave 402 focused microwave system (Prolabo, Fontenay-sous­

Bois, France) was used for the extraction procedure. Samples of 0.25 g were 

accurately weighed into the digester flask and 25 ml of l M H3P04 was added. A 

borosilicate glass rod stirrer was inserted which was computer controlled. The 

flalik was placed in the cavity of the microwave digester and processed at a power 

of 45 W (equivalent to l20°C) for 20 mins. The solution was allowed to cool and 

transferred into a polyethylene centrifuge tube. The procedure was repeated as a 

washing cycle and added to the sample solution. The samples were then 

centrifuged at 2500 rpm for 15 min and the supematant transferred quantitatively 
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to 50 ml volumetric flasks and made up to volume with I M H3P04. From this 

solution, 2.5 ml was transferred into a 25 ml volumetric flask and made up to 

volume with Milli-Q water (overall x2000 dilution) for chromatographic and 

direct ICP-MS analysis. The samples and matrix matched standards were spiked 

with indium to give a final concentration of I 00 ~g r' In which acted as an 

internal standard prior to analysis. 

3.5 Results and Discussion 

When participating in inter-laboratory comparisons one of the most important 

analytical features is the traceability of the calibration solutions. A primary As203 

standard, available commercially with a purity of 99.9%, was prepared and used 

throughout to calibrate results obtained when determining arsenic content. Where 

standards of the species, eg. AsBet, were used they were calibrated against the 

primary standard prior to use to confirm their concentrations. For quality control 

purposes method validation was confirmed using CRMs. A variety of CRMs 

have been used in order to match as closely as possible the matrix under 

investigation. 
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3.5.1 Results for total arsenic and arsenic species in fish, rice, chicken and 

soil candidate reference materials 

The results, obtained for different sample matrices are summarized in Table 3-10. 

The results for 'total' elemental levels were determined directly using ICP-MS, 

with the introduction of 4% N2 into the nebulizer gas flow when analyzing for 

arsenic. The results for the speciation of the elements were determined by anion 

exchange HPLC-ICP-MS, followed by integration of the peaks obtained using 

Mass Lynx computer software. Table 3-11 presents the results obtained for the 

CRMs used for each sample type under investigation for arsenic and arsenic 

species. The recoveries, shown in Table 3-12, were determined by spiking 

experiments with x2 and x4 the expected amount of the species present in the 

original sample. This was achieved by the drop-wise addition of the spiking 

solution in 2 ml of solvent for 1 g of sample allowing a minimum of 16 h contact 

time in controlled conditions for temperature and light. Following this, any 

remaining solvent was evaporated to dryness under a gentle stream of nitrogen. 

The spiked samples were then prepared in an identical manner to that of the non­

spiked samples. Table 3-12 also gives the LODs for each of the species detected 

in the various samples, which were dependent on the method employed. 
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Table 3-l 0 Results for sample types in determination of total arsenic and species. Results given in mg kg -• as the element. 

Fish 

Total As 

38.9±0.66 

(2.6%) 

Total As 

Extract 

39.7±0.42 

(1.6%) 

MMA DMA As Bet 

39.0 ± 0.81 

(3.2%) 

Rice 0.185 ± 0.0041 0.177 ± 0.0074 0.0934 ± 0.0089 0.0342 ± 0.0022 0.0344 ± 0.0026 0.0124 ± 0.0074 

(2.3%) (3.9%) 

Chicken 0.157± 0.0066 0.158 ± 0.0054 

(4.1%) (3.2%) 

Soil 

IPL 1 

Soil 

Mix2 

634±36 

(5.3%) 

2274± 55 

(2.3%) 

• RSD in parentheses 

646 ± 14 

(2.1%) 

2178 ± 67 

(2.9%) 

(9.0%) 

5.11 ± 0.19 

(3.4%) 

49.8±2.2 

(4.2%) 

(6.1%) 

515 ± 15 

(2.8%) 

2068 ± 86 

(3.9) 

(7.2%) (5.6%) 

0.0768 ± 0.0039 0.0697 ± 0.0027 0.0293 ± 0.0020 

(4.8%) (3.6%) (6.6%) 

32.8 ± 1.5 

(4.6%) 

33.3 ± 1.0 

(2.9%) 



Table 3-11 CRMS used for total element and species for sample types under investigation for arsenic. Results given in mg kg'
1 
as the element. 

DORM-2 

(fish samples) 

DORM-2 

(chicken samples) 

NIES IOc 

(rice samples) 

Montana 2710 

(soil samples) 

18.78 ± 0.84 

(1.8) 

18.1 ± 0.79 

(1.7) 

0.149 ± 0.0031 

(0.8) 

587±7.9 

(0.5) 

Total 

extract 

17.9±0.82 

(1.8) 

0.149 ± 0.0068 

(4.6) 

516 ± 16 

(1.4) 

'RSD in parentheses 

0.0383 ± 0.0056 

(5.8) 

482±32 

(2.6) 

0.0662 ± 0.0056 

(3.4) 

3.06± 0.26 

(3.4) 

MMA 

0.0315 ± 0.0028 

(3.5) 

DMA 

0.0250 ± 0.0035 

(5.6) 

As Bet 

16.44± 0.87 

(2.1) 

15.36 ± 1.5 

(4.1) 

Certified 

value 

18.0 ± 1.1 As 

16.4 ± 1.1 AsBet 

18.0± 1.1 As 

16.4 ± 1.1 AsBet 

0.15 

626±38 



Table 3-12 LOOs for all samples.under investigation for arsenic speciation. Results in ~~kg"1 as 
the element. Recoveries calculated· from spiking experiments with x2 and x4 expected species 
concentrations; 

AsBet BMA MMA A Recoveries 

Fish 0.56 0.42 0.89 0.96 0.64 100±4% 

Chicken 0;92 0.69 1.78 1.01 0.82 100±5% 

Rice 0.86 0.49 0.22 0.54 0.37 97±5% 

Soil 0.13 0.23 0.20 0.27 95±4% 

DORM-2' 0.46 0.32 0.69 0.71 0.53 100±5% 

The results obtained for the plaice sample are summarized in Table 3-10 with 

those from the CRM, DORM-2, being given in Table 3-11. The plaice used for 

this analysis comprised material that had been processed by IRMM. The total 

arsenic content was determined to be 38.9 ± 0.66 mg kg-1
, dry weight. The 

moisture content was less than 1%. Enzyme digestion of the material gave a 

complete recovery of the arsenic present (1 00% ). AsBet was determined to be the 

only arsenic compound present giving a statistically comparable concentration to 

that found for the total arsenic. The chromatograms of the arsenic standards and 

that of the sample obtained by anion exchange HPLC-ICP-MS can be seen in 

Figures 3-9 and 3-10 (Figure 3-9 has been reproduced from Figure 3-3 for ease of 

comparison). 
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Figure 3-9 Chromatogram obtained using anion-exchange HPLC-ICP-MS of arsenic standards 
at250 11g 1"1, l=AsBet; 2=DMA; 3=MMA; 4=Asv. Conditions shown in Table 3-3. 
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Figure 3-10 Chromatogram of plaice usmg aruon-exchange HPLC-ICP-MS (conditions shown in Table 3-

3). Peak I =AsBet 
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The results obtained for total arsenic in the CRM. DORM-2, were 18.78 ± 0.84 

mg kg-1 and for AsBet were 16.44 ± 0.87 mg kg-1
• These results are in agreement 

with the values for which it is certified. The certified values are given in Table 3-

11. 

While it is widely acknowledged that much research has been carried out on the 

chemical forms of arsenic in marine fauna and flora, relatively little is known 

about the species present in foods of terrestrial origin. Rice was included in this 

study as it is one of the most important foodstuffs and is consumed daily by 

millions of people around the planet. Arsenic-contaminated drinking water has 

been responsible for cases of chronic arsenic poisoning 6• However, the long-term 

use of arsenic-contaminated groundwater to irrigate crops, especially paddy fields 

has resulted in elevated arsenic concentrations in the soil 162
• Measuring the 

uptake of arsenic by rice plants will give an indication of the biochemical cycling 

of arsenic and the risks posed for consumers. The use of CRMs by analysts in this 

area is essential to validate methodology and results. 

The result obtained for the total amount of arsenic in the rice sample was 0.185 ± 

0.0041 mg kg-1
• The levels of arsenic found in terrestrial foodstuffs are 

commonly found to be within this range 163
• The speciation analysis demonstrated 

the presence of Asv, As111
, DMA and MMA. As111 accounted for 57% of the total 

arsenic present. Taking As111 and As v together, as the inorganic component, 

accounted for 70% of the total. A study carried out by Heitkemper et al. 164 on a 

number of different rice types concluded that the inorganic arsenic could account 
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for between 11 and 91% of the total arsenic found. The higher amount was found 

in wild rice as opposed to long grain rice. 

Chromatograms obtained for the speciation of the rice using anion exchange 

HPLC-ICP-MS can be seen in Figures 3-11 and 3-12. Figure 3-11 gives the 

elution pattern of four arsenic standards under consideration demonstrating that 

good resolution was obtained. Figure 3-12 shows the species present in the rice 

sample. The chromatogram of the arsenic standards in Figure 3-11 showed a 

slight decrease in retention times to the standards obtained in Figure 3-9 although 

the chromatographic conditions were identical. This phenomenon may be 

accounted for by the loss of functional groups on the stationary phase depending 

on how often the column has been used and the type of sample matrices 

introduced. The use of a guard column, with regular replacement, can prolong the 

life-time of a column. Calibration for each experiment prior to analysis of 

samples and regular checks throughout, ensured that an alteration of retention 

times and resolution over the lifetime of the column did not have a deleterious 

effect on the data collected. 

122 



"' ..._ 

~ 
0 u 

"' ..._ 

~ 
0 
u 

3 
11100 

t4000 

UDDI 

toO DO 

1 
2 

1000 

4 
sooo 

4000 

2000 

... ... , .. . .. ... ... ... . .. . .. 
Time (s) 

Figure 3-11 Chromatogram obtained using anion-exchange HPLC-ICP-MS of arsenic standards 
at 250 J.lg r•: 1 = AsBet; 2 = DMA; 3 = MMA; 4= As V (conditions shown in Table 3-3). 
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Figure 3-12 Chromatogram of rice sample by anion-exchange HPLC-ICP-MS (conditions shown 
in Table 3-3). Peaks: I, DMA; 2, MMA; 3, Asv/Asm. 
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As previously discussed~ identification was based partly on the matching of 

retention times of species with that of known standards but also more importantly 

with spiking experiments to account for matrix effects in shifting of retention 

times. The first peak in the sample chromatogram (Figure 3-12) showed 

undeniable signs of broadening and matched· the AsBet and DMA standard range. 

Spiking experiments indicated that the peak was due to DMA. In addition, due to 

the eluent pH conditions (pH 1 0.2) employed here for anion-exchange HPLC it 

was found that As111 underwent on-column oxidation and therefore eluted as As v. 

Due to the uncertainty surrounding the identification and quantification of the 

species found, cation-exchange HPLC was subsequently employed. The 

chromatograms of the arsenic standards by cation-exchangeHPLC at pH 3 can be 

seen in Figure 3-13 and the sample in Figure 3-14. Under these conditions it was 

found that MMA and As v eo-eluted with the solvent front, neither having any 

affinity for the stationary phase due to their anionic character. The peaks assigned 

to As111 and DMA can clearly be seen. By mathematical manipulation of the data 

from both sets of peak integrations (cation and anion), it was possible to calculate 

concentrations for the As111
, Asv, DMA and MMA found. Unfortunately, the 

confidence limits for rice were larger than for other samples suggesting the 

introduction of errors, possibly as a result of de-convolution of data. However, it 

must be considered that where species concentrations are particularly low, as in 

this case, uncertainty in the data will be magnified. 
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Figure 3-14 Chromatogram of rice sample by cation-exchange HPLC-ICP-MS using a Partisil 
SCX 10 column and 20 mM pyridine eluent at pH 3. Peaks: I, Asv!MMA; 2, As

01
; 3, DMA. 
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The rice flour CRM used to validate the experimental method gave wt indicative 

value for 'total' arsenic wtd not a certified amount and hence gave no prior 

indication of the species likely to be present. However, the experimentally 

obtained value for total arsenic in the CRM was in agreement with the stated 

value and a mass balwtce of the species identified and quantified gave a similar 

amount. This suggested that the mathematical mwtipulations did not adversely 

affect the results. 

The presence of the four arsenic species in the rice was not unexpected as it is 

known that vegetation will take up arsenic and speciated arsenic from the 

surrounding soil wtd water. It is also known that biomethylation of inorganic 

arsenic to MMA and DMA is known to occur in terrestrial plwtts as a 

detoxification pathway. The distribution of arsenite and arsenate in the rice was 

found to be in a ratio of approximately 2:1 with MMA at a similar level to 

arsenate wtd DMA an order of magnitude lower. Abedin et al. 165 have shown 

that inhibition of arsenate uptake in the presence of phosphate occurs whereas 

arsenite transport is unaffected. This is indicative of plants having differing 

uptake mechanisms for the two forms of inorganic arsenic, the result being that 

plants will take up arsenite and arsenate in amounts that do not necessarily reflect 

the environmental level of each. It is also known that redox conditions in the soil, 

the presence of humic substances 166 wtd other elements together with micro­

organism activity will have an effect on the bioavailability wtd type of arsenic 

species present. Research by Y wtg et al. 167 has demonstrated that As v in soils 

containing a high level of FC203 with a concomitant low pH is less bio-available. 
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The presence ofMMA and DMA in the rice may be attributed to its uptake from 

the surrounding environment or as a metabolite within the rice as a detoxification 

route for inorganic arsenic. Without information regarding the arsenic species 

present in the vicinity that the rice was grown in, one can only speculate on the 

ratios obtained here for the inorganic arsenic available and as to whether the 

MMA and DMA were exogenously or endogenously derived. 

During the rearing of the chicken for this study, the addition of fishmeal to the 

chicken feed was kept below 1% as it can detract from the overall taste of the 

chicken on human consumption. Any As111 and As v present in the chicken feed or 

water supply will be absorbed via the gastro-intestinal tract, methylated via s­

adenosylmethionine and excreted as MMA and DMA. However, an average 

urinary metabolite distribution of inorganic arsenic, MMA and DMA is 

approximately 20 : 15 : 65 (in humans) 168 suggesting that not all inorganic 

arsenic is transformed. As111 was added to the drinking water of the chickens, with 

the controlled supervision of a veterinary surgeon, in the expectation that it would 

increase the total amount of arsenic accumulated and give rise to a variety of 

arsenic species in the chicken sample. It was calculated that the chickens received 

a total of approximately 1.9 mg As111 in this way over their short and happy life­

time and ensured that they did not suffer or die from arsenic poisoning! 

The results obtained for the chicken material gave total values of 0.157 mg kg"
1 

as dry weight, which lie well within the limit of 1 mg kg"1 (dry weight) allowable 

for arsenic in foodstuffs 169
• The chromatograms using anion exchange HPLC-
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ICP-MS of arsenic standards and the chicken sample can be seen in Figures 3-15 

and 3-16. Speciation analysis demonstrated the presence of AsBet which 

accounted for approximately 16% of the total arsenic found. Two other 

methylated forms of arsenic, DMA and MMA, were also found to be present and 

accounted for 40 and 44% of the total arsenic, respectively. No inorganic arsenic 

was detected. Chromatograms of arsenic standards and the chicken sample by 

cation-exchange HPLC are shown in Figures 3-17 and 3-18 confirming species 

identification. 

The presence of DMA and MMA may be accounted for by the uptake of 

inorganic arsenic from the water supply being metabolized via a detoxification 

pathway with subsequent methylation of the arsenic occurring. The presence of 

AsBet is more difficult to explain. Although AsBet is thought to be the fmal 

product in the arsenic cycle, it is thought not to be formed de novo from ingested 

inorganic arsenic 14• Any production by symbiotic organisms would not be 

expected to be seen in the muscle tissue of the chicken. In recent years it has been 

standard practice to administer fishmeal in chicken feed. Fishmeal can contains 

high levels of AsBet. Although the amount of fishmeal was kept below 1% to 

avoid the distinctive taste of fish in chicken meat, it is possible that AsBet may 

still have been accumulated and/or have been present in other feeds administered 

and given up to the day of slaughter. 
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Figure 3-15 Anion-exchange HPLC-ICP-MS of arsenic standards for determination of arsenic in 
chicken. Peaks I, AsBet; 2, DMA; 3, MMA; 4, Asv, 50 j1g r' each. Conditions shown in Table 3-
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Figure 3-16 Anion-exchange HPLC-ICP-MS, using conditions shown in Table 3-3, of chicken 
sample demonstrating species present. Peaks: I, AsBet; 2, DMA; 3, MMA. 
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Figure 3-17 Cation-exchange HPLC-ICP-MS, using a Partisil SCX 10 column and 20 mM 
pyridine eluent at pH 3, of arsenic standards. Peaks: l, MMA; 2, As

111
; 3, DMA; 4, AsBet. 
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Figure 3-18 Cation-exchange HPLC (conditions as above) of chicken sample. Peaks: l, MMA; 2, 

DMA; 3, AsBet. 
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As it was the most concentrated. the last of the materials tested for total arsenic 

and speciated arsenic was the soil. Two types of soil were entered for the CRM 

feasibility study, IPL 1 and IPL mix 2. Various samples of soil were collected 

from sites in France known to be contaminated with arsenic. It was decided that 

IPL 1 would contain a artificially polluted mixture of As0 
.. MMA and DMA due 

to the lack of these species being found in the natural soil samples and IPL mix 2 

consisted of a mixture of soils from four different sites. 

In the preparation of the soil samples for analysis a closed microwave digestion 

method utilizing HN03 and H2Ch was employed for total 'available· arsenic 

determination. Due to the nature of soil, usually possessing high levels of 

silicates, HF digestion is a more commonly employed technique. However, the 

use of HN03 in this case was used to obtain 'available' arsenic from a safer 

chemical mixture which was easier to handle. Experiments on the CRM showed 

that the results obtained gave satisfactory recoveries of the arsenic spikes and 

extraction of the original arsenic. The results for the CRM Montana 2710 soil 

sample gave totals of 587 ± 7.8 mg kg"1 which were within the experimental 

limits of error having a certified value of 626 ± 38 mg kg"1
• Using spiking 

experiments to determine recoveries, a value of 95 % was obtained for the CRM 

as well as the soil samples under investigation. Determination of extraction 

efficiency based on the level of arsenic certified to be present in the CRM alone 

gave a value of 94 % suggesting that using HN03 as opposed to HF did not 

adversely affect the experimental outcome. It also indicated that neither the CRM 
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nor the soil samples studied contained arsenic intrinsically bound m larger 

fractions to a silica matrix. 

The results obtained for the soils gave total arsenic levels of 634 ± 36 mg kg"1 for 

mix 1 and 2274 ±55 mg kg" 1 for mix 2. The speciation of arsenic in these two 

soil samples by anion exchange HPLC-ICP-MS demonstrated the presence of 

As v, As m, MMA and DMA in mix 1 and the presence of As v and Asm only in 

mix 2. The chromatograms of the arsenic standards used can be seen in Figure 3-

19 and the chromatogram of soil mix 1 and mix 2 can be seen in Figures 3-20 and 

3-21, respectively. Baseline resolution of the standard and sample peaks was 

obtained together with excellent peak shape. 

The species identified in soil mix 1 was in keeping with the sample preparation of 

these soils at the Institute Pasteur de Lille, France and subsequently at IRMM. As 

mentioned previously, mix 1 was artificially enhanced with Asm, DMA and 

MMA, although these species were found to be at much lower levels than the 

indigenous As v. Mix 2 had a much higher total level of arsenic with it being 

predominantly in the form of As v. These results might suggest that most of the 

As m that may have been originally present had been oxidized to As v during the 

extraction procedure. However, the modified procedure used, previously 

developed by Thomas et al. 155 was rigorously tested for this phenomenon. The 

optimum conditions arrived at, which have been recreated here, avoid this 

problem. 
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Figure 3-19 Chromatogram of arsenic standards by anion-exchange HPLC with phosphoric acid 
mobile phase, conditions shown in Table 3-9, for soil analysis: I = Asm; 2 = DMA; 3 = MMA; 4 

= Asv, 250 j.lg r1
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Figure 3-20 Chromatogram by anion-exchange HPLC-ICP-MS (conditions shown in Table 3-9) 
ofsoiiiPL mix I. Peaks: I, Asm; 2, DMA; 3, MMA; 4, Asv. 
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Figure 3-21 Cbromatognun by anion-exchange HPLC-ICP-MS, conditions shown in Table 3-9, 
of soil mix 2. Peaks: I, As01

; 2, Asv. 

Other, more acceptable reasons for the predominance of arsenate over arsenite 

include the physical and chemical conditions of the soil, micro-organism ~tivity 

and the presence of other elements in their various oxidation states. Research 

carried out by Bohari et al. 170 suggested that As v was the predominant arsenic 

compound found in soil with As111 and MMA being minor components and DMA 

only being found in one soil sample. The varying levels of arsenic found in the 

two soil mixes is not unprecedented. Background levels of arsenic in soil have, 

on average, been reported as being in the region of 7 mg kg-
1 9 

whereas levels in 

contaminated areas have been reported as high as 3000 mg kg-
1 171

. 
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3.5.2 Results for total selenium and selenium species in yeast and wheat 

candidate reference materials 

The remaining samples in this study, wheat and yeast, were analyzed for total 

selenium and selenium species. Techniques using aqueous extractions have 

proved to be successful in liberating free or weakly bound inorganic selenium 

and selenoamino acids 172• However, where selenium is incorporated into protein 

structures enzymolysis has proved to be more effective 133
• For the extraction of 

selenium from wheat, a brief experimentally based comparison between ceUulase 

and trypsin was made. The results demonstrated that trypsin gave the best 

extraction efficiency and was, therefore, the preferred enzyme. For the yeast, 

protease is well established as the enzyme of choice. The results for total 

selenium and selenium species in wheat and yeast are shown in Table 3-13. 

Table 3-13 Results for determination of total selenium and species in yeast and wheat. Results 
given in mg kg -t as the element. 

Total Se Total Se SeMet in enzyme SeCys in enzyme 

HN03 Enzyme extract extract extract 

Wheat 0.652 ± 0.034 0.674 ± 0.031 0.413 ±0.020 0.202 ± 0.011 

(4.9%) (4.4%) (4.6%) (5.1%) 

Yeast 1091 ± 69 1037 ±58 988 ±55 ND• 

(6.0%) (5.3%) (5.3%) 

RSD given in parentheses 
• ND = not detected 
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Table 3-14 CRMS used for total element and species for sample types under investigation for selenium. Results given - c. g. 
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Table 3-IS WDs for wheat and yeast samples under investigation for selenium species. Results 
given in J.lg k.g'1 as the element. Recoveries calculated from spiking experiments with x2 and x4 
expected species concentrations. 

Se Met SeCys Recoveries 

Yeast 1.03 3.12 94±4% 

wheat 4.08 4.89 92±5% 

NBS 1576a 3.96 3.54 99±4% 

(CRM- wheat) 

Various methods for the separation and determination of selenium compoWlds 

have been reported in the literature that include ion exchange, reversed phase and 

ion-pairing chromatography 80
• 

92
, as discussed in Chapter 1. The choice of 

species studied by these techniques has been predominantly dictated by the 

availability of commercial standards such as selenate, selenite, SeMet and SeCys. 

The major selenoamino acid found in humans is selenocysteine 40
, of which 

SeCys is the dimer. Unfortunately, selenocysteine is extremely unstable therefore 

unavailable commercially and in-house synthesis has also proved to be fruitless. 

The separation of selenium compounds in this study has been based on anion-

exchange chromatography. A step gradient elution programme was required to 

elute the Se VI anion, which possesses a doubly negative charge at the pH 

conditions employed (pH 5). In addition to this, its size and charge density give it 

a high affinity for the stationary phase. Step gradients are sometimes Wldesirable 
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60 as they may increase the analysis time due to an equilibration stage being 

required and can adversely affect the baseline stability and in turn the LODs; the 

latter being of concern when low levels of species are present. The chromatogram 

of the selenium standards used is shown in Figure 3-22 and that of the wheat 

sample in Figure 3-23. The baseline instability can be seen quite clearly in Figure 

3-23, the wheat sample. Having determined experimentally that no inorganic 

selenium species were present in the sample it was decided that an isocratic 

programme using only the lower concentration eluent could safely be employed 

when analyzing the sample material. This allowed for greater precision when 

quantifying the data obtained. The RSD calculations on data obtained for 

speciation by HPLC-ICP-MS are similar to those obtained from direct ICP-MS 

measurements for total selenium content. 
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Figure 3-l:Z Chromatogram of selenium standards, 100 J.lg r', by anion-exchange HPLC, 
conditions shown in Table 3-8: Peaks: I, SeCys; 2, SeMet; 3, SeiV; 4, Se VI. 
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Figure 3-23 Chromatogram of wheat sample by anion-exchonge HPLC-lCP-MS, conditions 
shown in Table 3-8. Peaks: 1, SeCys; 2, SeMet 
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The results for wheat, summarized' in Table 3-13, gave a total selenium 

concentration of 0.652 ± 0.034 mg kg-1 with an extraction efficiency of 94% 

using trypsin as the enzyme. 'Fhe speciation analysis of the wheat flour by anion 

exchange HPLC-ICP-MS demonstrated the presence of SeMet and SeCys in an 

approximate ratio of2: 1. The results obtained for the CRM 1576 a (NBS) gave a 

similar distribution of Se Met and SeCys although the total selenium content was 

determined to be 1.091 ± 0.010 mg kg"1
, which was in agreement with the 

reference value for this material. The distribution of SeMet and SeCys in the 

wheat was expected as SeMet is the most abundant selenium compound found in 

plants. 

The discussion in Chapter 1 highlighted the need for selenium-enriched diets to 

supplement the low naturally occurring levels of selenium in foodstuffs. A 

particular example of wheat was chosen to demonstrate the effects of human 

selenium intake when it was grown in seleniferous soils as opposed to soils with 

low selenium levels. Wheat grown in seleniferous soils is an extremely useful 

way to remedy low selenium diets as many people rely on wheat, or similar 

cereals, as a staple food source 173
• Plants differ in their ability to accumulate 

selenium in their tissues and according to the amounts present it is possible to 

classifY them as hyper-accumulators (accumulation in the range hundreds to 

several thousands mg kg-1
, dry weight), intermediate accumulators (up to 1000 

mg kg"1
) and non-accumulators (less than lOO mg kg"1

) 
114

• Hyper-accumulators 

are thought to protect themselves from the toxic effects of selenium by 

reducing the intracellular content of SeMet and SeCys, which would 
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otherwise be incorpomted into proteins with a damaging effect on the 

plant, by accumulating selenium in non-protein selenoamino acids such as 

Se-methylselenocysteine (CH3SeCH2CH(NH2)COOH) and SeCystathionine 

(COOH(NH2)CHCH2CH2SeCH2CH(NH2)COOH). The low level of selenium 

found in this wheat sample suggests that it is a non-accumulator. The presence of 

the selenium in the wheat as organic selenium is of interest in research regarding 

the anti-carcinogenic properties attributed to selenium. Although it is not clear in 

which chemical fonn, or combination of forms, selenium has its most effective 

anti-carcinogenic effect, it is known that organic selenium species are less toxic 

to humans than inorganic forms and hence more suitable for inclusion into the 

diet with less risk of accidentally induced toxic symptoms. 

The final sample in this study was a selenized yeast. The results are summarized 

in Table 3-13 for the sample, Table 3-14 for the material used as a reference to 

validate the methodology and LODs are presented in Table 3-15 together with 

extraction recoveries. Once again. as no inorganic selenium was detected using a 

step gradient elution programme, analysis of the organic selenium was 

performed with an isocmtic mobile phase of I 0 mM NJWIC03 + I 0% MeOH at 

pH 5. The results obtained for the sample of yeast under investigation gave a total 

selenium content of 1091 ± 69 mg kg"1 by HN03 microwave digestion and a total 

of 1037 ±58 mg kg"1 by protease digestion. 

The chromatograms of the selenium standards and yeast sample are presented in 

Figures 3-24 and 3-25, respectively. By the matching of retention times with 
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known standards, the only compound identified in the speciation of the yeast was 

SeMet at a concentration of 988 ± 55 mg kg-1
. As observed previously, an 

improvement in the resolution of the standards, SeCys and Se Met, can be seen in 

Figure 3-24 over that of Figure 3-22. This was attributed to replacement of the 

column packing material between the wheat and yeast experiments. 

The extraction efficiency was determined to be 94%. The Pharma Nord yeast, 

although not a CRM, used for method validation bad a reference value of 1300 

mg kg-1 for 'total' selenium (manufacturer - Pharma Nord, Vejle, Denmark). 

Again, SeMet was the only compound identified in this material at a 

concentration of 1098 ± 168 mg kg-1
• This is slightly lower than the mean 

reference value but does fall within the limits obtained for total selenium analysis 

when taking into account 95% confidence limits. The results obtained for the 

yeast sample are in keeping with other research which has demonstrated that 

Se Met is the most abundant compound found in yeast 174
• 
36

• 
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Figure 3-24 Chromatogram of selenium standards, I mg 1"1
, by anion-exchange HPLC-ICP-MS, 

conditions shown in Table 3-8. Peaks: I, SeCys; 2, SeMet. 
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Figure 3-25 Chromatogram of yeast sample by anion-exchange HPLC-ICP-MS, conditions 
shown in Table 3-8. Peak = SeMet 
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At the time of writing, the results obtained for 'total' selenium and selenium 

species in yeast from the other participating labomtories in this feasibility study 

were available and are shown in Table 3-16. 

Table 3-16 Results from participating laboratories for 'total' selenium and SeMet in the yeast 
sample 147

- Lab no. 1 = Plymouth 

Lab no. Total Se STDev SeMet STDev 

Mgkg"1 as Se Mg kg"1 as SeMet 

1 1090.077 2.569 2434.655 150.131 

2 1101.761 3.117 1455.875 28.461 

3 1452.500 3.563 2133.588 7.124 

4 1540.167 33.234 

5 1351.375 1.237 

6 1121.683 35.214 2167.883 16.075 

7 1266.667 9.428 2318.000 98.524 

8 1451.433 0.896 2598.433 106.396 

9 1418.667 53.504 

10 596.750 2.475 

11 186.746 2.621 

12 1352.625 10.076 1927.625 8.662 

l3 1416.833 108.187 204.702 1.336 
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The results obtained by Lab. 1 (Plymouth) are comparable with the results 

obtained by other participants leading to greater confidence in the overall analysis 

for selenium and selenium species in yeast. SeMet was found to be the 

predominant species·present. 

Since the work of Clark et al. 41 on the use of selenized yeast for cancer 

chemoprevention, the development of selenium supplements has grown in 

popularity. In a review by Spallholz 41
, it is well-documented that both the 

bioavailability and toxicity of selenium are closely related to the type of selenium 

species present . In respect to humans, organic selenium compounds are regarded 

as being less toxic than inorganic forms. The high levels of organic selenium 

relative to that of inorganic levels of selenium found in yeast has directed 

research towards yeast as a dietary supplement. 

3.6 Conclusions 

The preliminary survey of a variety of fish types was undertaken to identify one 

sample that would go forward into a feasibility study to assess its suitability in 

becoming a reference material, certified for arsenic and arsenic species. For this 

purpose, a fish sample containing a number of species, without having to 

artificially introduce any, would have been preferred. However, all the fish 

samples investigated (plaice, monk, hake, haddock, cod, coley, pollack and 

whiting) demonstrated the presence of AsBet as the major compound. In light of 

this, the fish chosen was plaice as it contained an appropriate amount of arsenic 
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as AsBet and the digestion with trypsin proved to be the most successful in terms 

of extraction efficiency. The 'total' arsenic concentration in the plaice was 

determined as 39.5 ± 1.7 mg kg-1 with 38.7 ± 2.7 mg kg-1 being in the form of 

AsBet. The enyzme extraction efficiency was determined as being 98%. 

Homogeneity and stability studies performed on the plaice, after processing by 

IRMM, indicated that sample units were homogenous, within and between unit, 

at a sample weight not less than 0.25 mg and that the material was stable within 

the temperature range of 4°C to 40°C and a time-scale ofO to 7 months. 

An intra-laboratory and inter-laboratory comparison was carried out on six 

sample matrices (fish, rice, chicken, soil, wheat and yeast) as part of a feasibility 

study for future production of reference materials certified for arsenic and 

selenium species. Speciation analyses of all materials in this feasibility study 

have been presented together with the CRMs employed for method validation. 

Primary standards were used, where available, for quality control and assurance 

purposes in the traceability of measurements. These results will be presented, at a 

later date, in a technical meeting to be organized by the project coordinators with 

the data from all other participating laboratories for statistical evaluation. 

However, the results for the speciation of the yeast material from participating 

laboratories were available at the time of writing and have been presented here. 

Comparison of the inter-laboratory results for yeast showed that values obtained 

by the Plymouth partners were in agreement with the majority of participants, 

with the notable exceptions of laboratories 10 and 11. Overall, the inter-
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laboratory comparison of the results for the yeast sample indicate that a high 

standard of laboratory analysis and practice has been adhered to with excellent 

method validation and quality assurance. 

Results from the fish, rice, chicken, soil, yeast and wheat demonstrated the 

effective use of HN03/H202 microwave digestion techniques for determination of 

'total' elemental concentrations together with efficient enzymolysis extraction 

procedures for species determination, whilst maintaining the integrity of the 

species. Extraction efficiencies were between 92-100% for all sample types 

investigated. The use of ICP-MS for determination of arsenic and selenium was 

proficient, providing results with excellent precision and, in the case of yeast, 

excellent accuracy. For speciation analysis, the use of a variety of HPLC methods 

coupled with ICP-MS provided optimum resolution between species in the same 

matrix and, in the case of soil, this was exceptional. Corroborative evidence 

obtained by the use of anion and cation-exchange chromatography for species 

identification and determination (in fish, rice and chicken) proved highly 

beneficial. 

The use of different methodologies in different laboratories with independent 

calibration should lead to results for these materials, if in agreement, that will 

have a low uncertainty and no operationally-defined limits on the subsequent use 

of the material as a CRM. 
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As previously stated, speciation analysis can focus on the clear identification of a 

specific chemical species or form of an element and its quantification. The 

preparation and certification of a variety of environmentally and biologically 

relevant materials for total element and species concentrations is required in order 

to facilitate laboratory analysis where the accuracy of a result for a trace element 

in a sample may be assessed by the parallel analysis of a certified reference 

material with a matrix composition and concentration that closely matches that of 

the sample analyte. 
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4 The extraction and speciation of selenium compounds in bio­

natured nutrients 

4.1 Introduction 

The essential trace element of selenium, which humans obtain from their diet, 

largely from cereals, fish, poultry and meat, plays a crucial role in many 

biological activities. While current research 44 has implicated selenium as an anti­

carcinogen, it has also become.apparent that dietary intake in some regions of the 

world is falling. This is predominantly due to the consumption of food grown in 

areas of low natural abundance of selenium in the soil 173
• It has become 

increasingly popular for companies to make selenium supplements available for 

human consumption in order to redress the balance. Current UK dietary reference 

values are set at 75 J.lg and 60 J.lg daily for men and women, respectively 2
• 

Research studies carried out by Clark et al. 175 have shown that the use of 

supplementation with selenium (as selenized yeast) substantially decreased the 

incidence of cancers, in particular prostate cancers (63% decrease), colorectal 

cancers (58% decrease) and lung cancers (46% decrease) with an overall 

reduction in mortality by 50%. The Bonelli study, presented at the Annual 

Research Conference of the American Institute for Cancer Research in 

Washington DC, 1998 120
, reported a statistically significant reduction of 

metachronous adenomas of the large bowel through intervention with 200 J.lg 
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daily of selenium as L-selenomethionine. At present the PRECISE trial 

(Prevention of Cancer through Intervention with Selenium), a randomized, 

placebo-controlled, double-blind study using selenized yeast as the active 

supplement, is in progress 120
• If it confirms the findings of the Clark and Bonelli 

studies it may have a significant impact for the future of public health policy­

making 120
• However, the use of selenium supplements raises issues surrounding 

which selenium species or combination of species confers anti-carcinogenic 

properties. 

Selenomethionine is the principal form of selenium found in plant-based foods 

and is thought to be efficiently absorbed and stored in the body 176
. Inorganic 

selenium is generally excreted more rapidly and is thought to be more toxic than 

selenomethionine 177
• However, studies of the chemical form of selenium in 

supplements demonstrates a wide variety of compounds present, ranging from 

simple inorganic sodium selenite and sodium selenate and organic 

selenomethionine to the more complex derivatives found in selenium-enriched 

yeasts 54
• In a study carried out by B'Hymer and Caruso 131

, brands were found to 

have near label values for total selenium content but dramatically different 

profiles for the actual chemical form of the selenium in the supplement. One 

brand appeared to contain all inorganic selenium and another, despite claims of 

being only selenomethionine, contained greater than 50% inorganic selenium. 

The form of selenium most effective in providing anti-oxidant defense and anti­

carcinogenic properties is not specified although it is thought that the absorption 

and bioavailability conform to the following trend 178
: 
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selenomethionine > selenium yeast > selenate > selenite 

It is known that different types of yeast demonstrate a variety of selenium species 

54
• 

44 and that selenium supplements do not always contain the form specified by 

the manufacturers 131
• There is also a dearth of information regarding proportions 

of organic to inorganic selenium in many foodstuffs. Although it is well­

documented that selenomethionine is more easily absorbed than inorganic forms 

of selenium and provides a more stable selenium profile in the body, its 

bioavailability when compared to other selenium species is still in doubt 49
• 

Bio-natured nutrients, an alternative to the commercially available selenium 

supplements and selenized yeast, can be used to combine a particular nutrient 

with its native food constituents. In this way, each nutrient is matched to an 

appropriate food and is delivered into the body with the components, or eo­

nutrients, with which it is associated. By doing this, it is thought that absorption 

in the gastrointestinal tract will be increased and its bioavailability in the body 

improved. The latest foods to be developed, based on this technology, are a 

selenium-enriched yeast and a probiotic bacteria, Lactobacillus bulgaricus, for 

the supplementation of selenium in the diet. 

The aim of the following study was to identify and quantify the selenium species 

present in two samples of novel, previously unstudied, bio-natured nutrients in 

order to assist in establishing an understanding of the absorption and 
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bioavailability of the novel selenium compounds; these nutrients being: i) a 

selenized yeast from a new process and: ii) a probiotic bacteria-based dried milk 

sample (Biogurt~. Specific interest was directed towards extraction efficiencies 

involving a number of established and new sample preparation procedures and 

the need to retain species integrity. Selenium speciation was perfonned using 

methodology based upon anion-exchange HPLC coupled with ICP-MS detection. 

The selenized yeast material, previously validated as part of an inter-laboratory 

feasibility study for a candidate reference material (Chapter 3), was used as the 

reference for method validation purposes. 

Speciation analysis requires that the endogenous selenium species are extracted 

without modification of their chemical fonn or disturbance to the equilibrium 

existing between the various species present. To achieve this, a number of 

extraction techniques were compared for overall extraction efficiency and for 

species stability using recovery values from spiking with selenium standards. 

Comparison between the techniques and evaluation of results should highlight the 

most effective sy11tem for speciation extraction. From this, separation and 

detection using hi-dimensional ion-exchange HPLC-ICP-MS will provide 

qualitative and quantitative infonnation regarding the selenium species present in 

the yeast and Biogurt® samples. 
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4.2 Experimental 

4.2.1 Instrumentation 

ICP-MS measurements were performed usmg a VG Plasmaquad 2+ (TJA 

Solutions, Winsford, Cheshire, UK), using the operating conditions described in 

Table 1-l. A Perkin Elmer series 410 high pressure pump (Perkin Elmer, CT, 

USA) was used for control of the chromatographic eluent A Rheodyne 7152 

injection valve (Rheodyne, Cotati, CA, USA) together with a I 00 J.d volume 

sample loop was used for on-column sample introduction. pH readings were 

taken using a 3010 pH meter (Jenway, Ltd., Essex, UK). 

Table 4-1 ICP-MS operating conditions for the determination of 'total' selenium and selenium 
species in yeast and Biogurt~ by HPLC-ICP-MS, using isotopes 77, 78 and 82. 

ICP-MS 

Parameters 

Plasma Quad 2+ 

V -groove nebulizer 

Double-pass, water cooled Scott type spray chamber 

Fassel torch - 1.5 mm bore injector 

Nebulizer flow rate 0.81 I min. 

Coolant gas flow rate 13.1 1 min'1 

Auxiliary gas flow rate 0.81 min'1 

Forward power 1350W 

Dwell time 500ms 
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4.2.2 Scanning eledron microscopy 

A JEOL JSM 6100 electron microscope (Oxford Instruments, Oxford, UK) 

interfaced with an Oxford CT 1500 cryo-trans low tempemture station (Oxford 

instruments) was used to view yeast cell structure. 

4.2.3 Chemicals and reagents 

All commercial chemicals were of analytical grade and used without further 

purification. Sodium selenate, sodium selenite, selenomethionine and 

selenocystine (Sigma Aldrich Chem. Co., Poole, Dorset, UK) were used as stock 

solutions of 1000 J.lg mr1 as the element. They were prepared using Milli-Q water 

(Milli-pore, Bedford, MA, USA) and stored in the dark at 4°C. Solutions of the 

compounds for daily use were prepared by appropriate dilution from the stock 

solutions. Methanol (Fisher Chemicals), 25% tetramethylammonium hydroxide 

(TMAH) in MeOH and 25% potassium hydroxide in MeOH (Sigma Aldrich) 

were used in the preparation of solutions for extraction procedures. Cellulase, 

protease type XIV, trypsin and pancreatin (Sigma-Aldrich) were used for 

enzymatic extraction procedures. Buffer solutions were prepared from 

ammonium hydrogen carbonate and ammonium acetate (Sigma-Aldrich). 

Hydrochloric acid (Fisher Chemicals) was used for digestion procedures and 

neutralization ofKOH solutions. 
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4.2.4 Chromatographic conditions for selenium speciation 

Anion-exchange chromatography 

Experiments using anion-exchange HPLC were carried out using a Dionex AS 11 

column (250 x 4.1 mm, Dionex) packed with a 10 lllll styrene - divinylbezene 

polymer resin with quarternary ammonium functional groups together with a 

guard column (50 x 4.1 mm) of the same material. The mobile phase used was a 

step gradient elution employing a solution of 10 mM and 50 mM NH4HC03 + 

10% MeOH at pH 5, adjusted with CH3COOH. The program for elution is given 

in Table 4-2. An eluent flow rate of 1.0 ml min"1 was used throughout. 

Table 4-2 Elution programme for anion-exchange HPLC of selenium species using a Dionex AS 11 
column 

Concentration 0-3 mins 3- JOmins 10-15 mins 

10 mM NHJIC03 + 10% MeOH 100% 0% 100% 

(adjusted to pH 5) 

50 mM NHJIC03 + 10% MeOH 0% 100% 0% 

(adjusted to pH 5) 

Cation-exchange chromatography 

Cation-exchange HPLC was carried out using a Partisil SCX 1 0 column (250 x 

4.6 mm, Phenomenex) packed with a silica gel of 10 J.Ull particle size with a 

guard column (50 x 4.6 mm) of the same material. The mobile phase employed 

156 



an isocmtic elution using 20 mM pyridine solution adjusted to pH 3 with 

HCOOH (98%, v/v) and with an eluent flow mte of 1.0 ml min-
1 

being used 

throughout. 

4.2.5 Sample preparation procedures 

HN03 microwave digestion for 'total' selenium determination in samples 

Microwave bombs (Savillex, Minetonka, Minnesota, USA) were pre-cleaned 

with 3 ml 69% v/v HN03 (Primer, Fisons, Loughborough, UK) in a Perfecto 800 

W microwave (DeLonghi, Italy) oven on medium power for 2 mins. Samples of 

approximately 0.25 g were accumtely weighed into the bombs and 4 mi HN~ 

(69%, v/v) together with 1 ml H202 (37%, v/v) were added. The bombs were 

loosely capped and left overnight to allow easily oxidised material to be 

destroyed. After predigestion, the bombs were swirled gently, sealed tightly and 

microwaved on medium power for 1 - 2 mins, or until the sample was a clear 

colour with no residue (indicating a completed digest). The samples were 

transferred quantitatively to volumetric flasks and made up to volume with 2% 

HN03 giving an ovemll dilution of x2000. The samples and standards were 

spiked with indium to give a final concentmtion of 100 llg r• Indiurn (In), which 

acted as an internal standard, prior to analysis by ICP-MS using the conditions 

described in Table 4-1. The internal standard was used to correct for instrumental 

drift (sample viscosity effects, mass tmnsport, etc.) over the analysis period. 
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Eleven extraction procedures for the determination of selenium species were 

evaluated using the 'new processed' selenized yeast sample (referred to as yeast 

A from here onwards) and the Biogurt® sample together with the previously 

analyzed candidate reference material, selenized yeast from Pharma Nord 

(Pharma Nord, Vejle, Denmark), acting as a reference material. To date, there are 

no commercially available CRMs for selenium species in yeasts. The Pharma 

Nord selenized yeast which has been extensively measured and also has a 

concentration of selenium similar to that of the yeast sample under investigation, 

suitably fits the validation requirements for this study. 

Enzymolysis extraction procedures 

I. Samples of approximately 0.25 g were accurately weighed together with 

0.025 g protease XIV (Sigma-AJdrich, Dorset, UK) and approximately 20 ml 

NRtHC03 (O.l M, pH 8). The solutions were homogenized in a 'Potter' 

homogenizer, transferred to polyethylene centrifuge tubes and placed in a 

shaking water bath at 37°C for a minimum of 4 hours. The samples were 

centrifuged at 2500 rpm for 20 min, the supematant transferred quantitatively 

to volumetric flasks and made up to volume with the NH.tHC03 buffer. 

Samples and standards were spiked with caesium to give a final concentration 

of l 00 llg r1 Cs that acted as an internal standard prior to analysis. Cs was 

used instead of In due to the change in pH conditions and reduced solubility 

for In at pH 8. Protease type XIV, a non-specific protease which breaks 

peptide bonds of any protein present in the sample, results in anJino acid 
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information only. The buffer employed was NH.tHC03 (0.1 M, pH 8) as the 

optimum activity of protease type XIV is at pH 8 133
• 

2. Samples of approximately 0.25 g were accurately weighed together with 

0.025 g cellulase (Sigma-Aldrich, Dorset, UK) and approximately 20 ml 

CH3COONH.t (0.1 M, pH 5). The solutions were homogenized in a 'Potter' 

homogenizer, transferred to polyethylene centrifuge tubes and placed in a 

shaking water bath at 3'PC for a minimum of 4 hours. The samples were 

centrifuged at 2500 rpm for 20 min, the supernatant transferred quantitatively 

to volumetric flasks and made up to volume with the CH3COONH.t buffer 

giving a final dilution of x2000. Samples and standards were spiked with 

caesium to give a final concentration of I 00 Jlg r 1 Cs that acted as an internal 

standard prior to analysis. 

3. Samples of approximately 0.25 g were accurately weighed together with 

0.025 g pancreatin (Sigma-Aldrich, Dorset, UK) and approximately 20 ml 

NH.tHC03 (0.1 M, pH 8). The solutions were homogenized in a 'Potter' 

homogenizer, transferred to polyethylene centrifuge tubes and placed in a 

shaking water bath at 3'fC for a minimum of 4 hours. The samples were 

centrifuged at 2500 rpm for 20 min, the supematant transferred quantitatively 

to volumetric flasks and made up to volume with the NH.tHC03 buffer. 

Samples and standards were spiked with caesium to give a final concentration 

of 100 Jlg r 1 Cs that acted as an internal standard prior to analysis. Pancreatin 
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contains a mixture of enzymes including amylase, trypsin, lipase, 

ribonuclease and protease. 

4. The final enzyme extraction procedure employed trypsin. Samples of 

approximately 0.25 g were accurately weighed together with 0.025 g trypsin 

and approximately 20 m1 NI-4HCO:J (0.1 M, pH 8). The solutions were 

homogenized in a 'Potter' homogenizer, transferred to polyethylene 

centrifuge tubes and placed in a shaking water bath at 31'C for a minimum of 

4 hours. The samples were centrifuged at 2500 rpm for 20 rnin, the 

supematant transferred quantitatively to volumetric flasks and made up to 

volume with the NI4HC03 buffer. Samples and standards were spiked with 

I 00 ~ r1 Cs that acted as an internal standard prior to analysis. Trypsin is an 

enzyme that will break peptide bonds next to specific amino acids, namely 

arginine and lysine. This results in polypeptides being broken into shorter 

chains. 

MeOH:H20 extraction procedures 

5. Samples of approximately 0.25 g were accurately weighed into polyethylene 

centrifuge tubes to which 10 m1 MeOH:H20 solution (75:25) was added. The 

samples were placed in an ultrasonic bath for 40 min, centrifuged at 3000 rpm 

for 15 rnin and the supematant transferred to round-bottomed flasks. The 

procedure was repeated twice more and the washings were combined in the 

flasks (total of 30 ml). The samples were taken to dryness by rotary 

evapomtion at 40°C. Sample residues, following rotary evapomtion, were re-
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dissolved in Milli-Q water and transferred quantitatively into volumetric 

flasks and made up to volume with an overall dilution of x2000. Samples and 

standards were spiked with 100 1-1g r1 Cs that acted as an internal standard 

prior to analysis. 

6. The above MeOH:H20 extraction technique was repeated using sample 

material that had been freeze-dried prior to use. 

HCI digestion procedure of samples 

7. Samples of approximately 0.25 g were accurately weighed into polyethylene 

centrifuge tubes to which 35 ml 0.01 M HCl (pH 2) was added. Hydrochloric 

acid at pH 2 was chosen as it closely mimicked the pH found in the human 

stomach. They were placed in a shaking water bath at 3 7°C for a minimum of 

4 hrs then centrifuged with the supematant being transferred quantitatively to 

volumetric flasks and made up to volume in HCl (0.01 M, pH 2). Samples 

and standards were spiked with I 00 1-1g r 1 In that acted as an internal standard 

prior to analysis. 

8. Multi-step extraction procedure using enzymolysis techniques (protease) and 

MeOH 

The following extraction technique comprised three stages of extraction and 

analysis 

• to accurately weighed samples, of approximately 0.25 g, in polyethylene 

centrifuge tubes 25 ml 0.1 M NRtHC03 (pH 8) was added. They were placed 
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in a shaking water bath at 3~C for a mmunum of 4 hrs. Following 

centrifugation at 3000 rpm for 15 min, the supernatants were transferred 

quantitatively to volumetric flasks and made up to volume with the NH.tHC03 

buffer with a final dilution ofx2000. Samples and standards were spiked with 

100 Jlg r 1 Cs that acted as an internal standard prior to analysis. 

• to the residues from the first stage, 0.025 g protease was added together with 

35 ml 0.1 M NH.tHC03 and placed in a shaking water bath at 3~C for a 

minimum of 4 hrs. Following centrifugation, the supematants were 

transferred to volumetric flasks and made up to volume with the Nl4HC03 

buffer. Samples and standards were spiked with lOO Jlg r 1 Cs that acted as an 

internal standard prior to analysis. 

• To the residues from the second stage, a solution of 10 ml MeOH:H20 75:25 

was added and the samples placed in an ultrasonic bath. for 40 min, then 

centrifuged at 3000 rpm for 15 min and the supematant transferred to round­

bottomed flasks. The procedure was repeated twice more and washings were 

combined in the flasks (total of 30 rnl). The samples were taken to dryness by 

rotary evapomtion at 40°C. Sample residues, following rotary evaporation, 

were re-dissolved in Milli-Q water and transferred quantitatively into 

volumetric flasks. Samples and standards were spiked with 100 Jlg r• Cs that 

acted as an internal standard prior to analysis. 
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9. Potassium hydroxide (KO H), 25% v/v, in MeOH solution. 

Samples of approximately 0.25 g were accurately weighed into polyethylene 

centrifuge tubes to which 35 ml 0.1 M NRtHC03 (pH 8) was added. They 

were placed in a shaking water bath at 3'f>C for a minimum of 4 hrs, then 

centrifuged with the supernatant being decanted to waste. To the residues, 3 

ml KOH 25% in MeOH was added and sonicated at 70°C for 4 hours. The 

solutions were neutralized with 3 ml HCl (50% v/v), transferred 

quantitatively to volumetric flasks and made up to volume with Milli-Q 

water. Samples and standards were spiked with 100 J.Lg r• Cs that acted as an 

internal standard prior to analysis. 

I 0. Tetra-methylammonium hydroxide (TMAH), 25 % v/v, in MeOH 

Samples of approximately 0.25 g were accurately weighed into polyethylene 

centrifuge tubes to which 35 ml 0.1 M NH.tHC03 (pH 8) was added. They 

were placed in a shaking water bath at 3'f>C for a minimum of 4 hrs, then 

centrifuged with the supematant being decanted to waste. To the residues, 3 

ml TMAH 25% in MeOH was added and sonicated at 70°C for 4 hours. The 

solutions were neutralized with HCl (50% v/v, 3 ml), transferred 

quantitatively to volumetric flasks and made up to volume with Milli-Q 

water. Samples and standards were spiked with 100 J.Lg r• Cs that acted as an 

internal standard prior to analysis. 
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11. Multi-step extraction procedure usmg HCl and protease enzymolysis 

techniques. 

The foUowing extraction technique comprised two stages of extraction and 

analysis. 

• Samples of approximately 0.25 g were accurately weighed into polyethylene 

centrifuge tubes to which 35 ml 0.01 M HCl (pH 2) was added. They were 

placed in a shaking water bath at 3'fJC for a minimum of 4 hrs. The solutions 

were neutralized by the addition ofO.lM NaOH (approximately 3 ml). 

• To this solution, protease was added and the samples placed in a shaking 

water bath as before for a minimum of 4 hrs. The samples were centrifuged 

and the supernatant transferred quantitatively to volumetric flasks. Samples 

and standards were spiked with 100 ~g 1'1 Cs that acted as an internal standard 

for the analysis. 

Mass balance calculations 

The nitric acid microwave digestion technique, previously described, was used 

for the determination of any remaining selenium in residues following the various 

extraction procedures for the purposes of mass balance calculations. 
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4.3 Results and discussion 

The results obtained from the extraction procedures detailed, are shown in Table 

4-3. All results are given in mg kg·• as the element. Extraction efficiencies were 

calculated based upon the 'total' selenium HN03 microwave digest values 

obtained and are shown in Table 4-4, together with mass balance data. The yeast 

sample obtained from Pharma Nord was not subjected to all extraction 

procedures as the selenium content was adequately retrieved by enzymolysis 

using either protease XIV or trypsin, following which, it was successfully 

analyzed by HPLC-ICP-MS for species determination. 

The use of enzymolysis techniques for the extraction of selenium from biological 

samples without species conversion is frequently reported in the literature. A 

method developed by Gilon et al. 133 using protease with > 90% extraction 

efficiencies of the total selenium has been widely used by workers 179
• 

180
• 

Protease, a proteolytic enzyme, is capable of breaking peptide bonds of any 

protein present in a sample. This allows measurement of selenoamino acids but 

with the subsequent loss of information concerning, if present, any original 

selenium-containing proteins 181
• 

The results obtained in this study when using protease gave 90% extraction 

efficiencies for the selenized yeast samples obtained from Pharma Nord. 

However, the results obtained for yeast A and the biogurt were 19% and 15%, 

respectively, compared with the 'total' selenium values determined by the HN03 
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digest (nominal values specified by the manufacturers for yeast A are 1000 mg 

kg"1 and for Biogurt® 2000 mg kg-1
). The remaining selenium was found to be 

present in the residue. In view of this, enzymes were tested whose site of activity 

on the sample matrix may provide an alternative digestion process and hence, an 

improved extraction of the selenium species. 
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Table 4-3 Total selenium detennination by aU extraction techniques. Results given in mg kg-
1 
as 

the element, Se, and RSDs in parentheses. 

Extraction technique PharmaNord yeast Yeast A Biogurt® 

HN03 microwave - T 1282 ± 24 (1.02) 984 ± 12 (0.6) 1980 ± 95 (2.5) 

Protease- T 1157 ± 73 (3.5) 190 ± 5.1 (1.6) 301± 27 (4.6) 

Rz 123 ±6 837±41 (2.7) 1640 ± Ill (3.5) 

CeUulase- T 771 ± 35 (2.5) 123 ± 14 (5.9) 743 ±46 (3.3) 

R 466±25 632± 14 (1.2) 1055 ± Ill (3.2) 

Pancreatin - T ~ 117 ± 4.5 (2.1) 411 ± 11 (1.5) 

Trypsin- T 1305 ± 92 (3.7) 109 ± 6.7 (3.4) 352 ± 42 (6.1) 

MeOH:HzO- T 390 ± 19 (2.6) 141 ± 0.85 (0.3) 411 ± 30 (3.8) 

R 782 ±49 616 ± 22 (1.9) 1666 ± 87 (2.9) 

MeOH:HzO- T NP 140 ± 16 (6.1) 527 ± 25 (2.5) 

Freeze-dried - R 513±29(3.01) 1380 ± 1.9 (0.07) 

HCI- T NP 74.9 ± 5.5 (4.1) 1405 ± 79 (3.1) 

R 305 ± 5.1 (0.9) 42.6 ± 1.1 (1.5) 

Stage i) NHJ{C03 - T 180 ± 3.5 (1.1) 70.5± 6.1 (4.5) 1222 ± 102 (4.3) 

Stage ii) protease - T NP 174± 16 (4.6) 44.8 ± 2.7 (3.5) 

Stage iii) MeOH:H20 - T NP 3.08 ± 039 (7.3) 53.6 ± 7.1 (6.6) 

R 278 ± 12 (2.4) 219 ± 22 (5.1) 

KOH- T NP 714 ± 60 (4.7) 237 ± 22 (5.1) 

TMAH- T NP 789 ± 74 (5.4) 292 ± 29 (5.6) 

HCI + protease - T 1191 ± 108 (4.7) 74.9 ± 2.6 (3.5) 934± 80 (4.6) 

R 87±6 491 ± 29 (3.1) 155 ± 27 (9.4) 

1 T- totals in solution 
2 R- totals in residues, by HN03 microwave digestion, from individual techniques 
3 NP -not perfonned 
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Table 4-4 Extraction efficiencies and mass balance data for samples under investigation. Results 
are given in mg kg"1 as the element, Se. 

Extraelion Mass balance, 

ejjiciencies, % % •• 

PharmaNord Yeast A Biogurl® PharmaNord Yeast A Biogurl® 

Protease 

90±4.6 19±0.73 15 ± 1.9 99±5 104±6 98± 12 

Cellulase 60± 1.6 12 ± 1.5 38±3.9 96±5 77±4 91 ± 10 

Pancreatin 

NP 12 ±0.6 21 ± 1.4 NP NP 

Trypsin 

102±8.9 11 ± 0.8 18 ±2.8 102 ± 8.9 NP NP 

MeOH:HzO 

30±2.0 14±025 21 ± 2.4 91 ±6 77±3 105 ± 11 

MeOH:HzO 

Freeze-dried NP 14 ± 1.8 27 ±2.4 66±6 96±6 

HCI 

NP 7.2 ± 1.4 71 ± 7.1 39 ±I 73 ± 8 

Stage i) NH,JIC03 

14 ±2.5 7.3±0.70 62 ±7.7 53 ±4 77 ± 11 

Stage ii) protease 

NP 18 ± 1.8 2.1 ±0.24 

Stage iii) 

MeOH:HzO 0.3 ±0.04 2.7 ± 0.51 

NP 

KOH 

NP 73 ±7.3 12 ± 1.6 NP NP 

TMAH 

NP 80±8.9 11 ± 2.1 NP NP 

HCI + protease 

93 ± 10 7.6 ± 0.4 47 ±6.0 99±6 58±4 55±7 

• NP ~ not performed 
•• Mass balance = (enzyme totals + residue totals) I totals by HN~ digests * I 00 
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A cellulase extraction was performed which proved to be less successful for the 

Phanna Nord yeast, yielding only 60% of the selenium; cellulase gave poor 

extraction efficiencies (12%) for yeast A, as had the protease, which gave an 

extraction efficiency of 19%. Although cellulase targets cellulose cell walls 

which are found only in plant tissue, cellulase was considered due to the 

ambiguity surrounding the classification of yeasts. It was thought that cellulase 

may release any selenium species trapped in the cell walls of the samples as 

results obtained following the protease extraction suggested that most of the 

selenium remained in the insoluble residue. 

The use of cellulase was not expected to be effective for the Biogurt® as this 

material was bacterial in nature. Despite this, the extraction of selenium from the 

biogurt using this enzyme gave a 38% efficiency. Although this is considerably 

low and would not provide a representative picture of the selenium species in the 

Biogurt®, it is more than twice the extraction efficiency obtained when using 

protease. The reason for this is unclear as although bacteria possess cell walls in 

addition to cell membranes they are analogous rather than homologous to that of 

plant cells. Bacterial cell walls largely contain peptidoglycan, polymers of 

modified sugars cross-linked by polypeptides, as opposed to plant cell walls 

which are constructed of cellulose. 

Enzymolysis using trypsin proved to be effective for the extraction of selenium in 

the Pharma Nord yeast yielding 100% of the selenium present However, the 

extraction efficiencies for yeast A and Biogurt® were found to be 11 and 1 8%, 
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respectively. Similar results were obtained when employing pancreatin for the 

two materials. The PharmaNord yeast was not tested using pancreatin as it 

contains a mixture of enzymes including protease and it was, therefore, 

considered that the extraction efficiency would prove to be satisfactory. 

Mass balance calculations demonstrated that the remainder of the selenium from 

the cellulase and protease extraction procedures was to be found in the solid 

residue. Determination of the selenium content in the residues following 

pancreatin and trypsin digestion was not carried out as similar patterns of 

extraction efficiencies were seen with these enzymes leading to the supposition 

that the non-extractable selenium remained in the residue. 

In response to the poor extraction efficiencies obtained for yeast A and Biogurt® 

using enzymes, methods were considered that might shatter the cell walls of the 

material to release the cell contents which might, therefore, enhance the 

extraction process. Commencing with the Pharma Nord yeast and yeast A 

samples, which were supplied in powder form, the samples were soaked in a 

sucrose solution to assess the activity of the yeasts. The Pharma Nord yeast 

responded by producing a gas, presumably C02, and gave off a characteristic 

yeast aroma When viewed by light microscopy, budding of the cells was 

visualized indicating a live yeast sample. For yeast A, in similar circumstances, 

no activity was noted. Following on from this, the samples were soaked in water 

to attempt re-hydration prior to freezing with liquid N2 (boiling point @ -196°C) 

in order to assist in fracturing the cell walls. The two yeast samples were viewed 
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by electron microscopy before and after freezing in liquid N2 to assess any 

apparent changes in the integrity of the cell walls. It was discovered that yeast A 

cells were already fractured prior to freezing and that the Pharma Nord yeast cells 

remained intact throughout. It was subsequently revealed that the cell walls of 

yeast A bad been destroyed during the manufacturing process by the addition of 

papain, an enzyme capable of breaking down cell walls, at the broth stage. 

Figures 4-1 and 4-2 show the scanning electron micrographs obtained for the two 

yeast samples following freezing. 

Figure 4-1 Yeast A viewed by scanning electron microscopy (see section 4.2.2.) following liquid 
nitrogen freezing. 
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Figure 4-l Phanna Nord yeast viewed by scanning electron microscopy (see section 4.2.2.) 
following liquid nitrogen freezing. 

Electron rnicroscopy of the Biogurt® sample gave no indication of the structure 

of the cells before or after freezing by liquid N2. In light of these results no 

further work was carried out with liquid N2. 

MeOH:H20 extraction of selenium compounds from a yeast matrix has been 

reported by Pedersen and Larsen 182. The research carried out suggests that this 

technique is of limited use with extraction efficiencies of 15 - 20% being 

reported. However, due to the poor extractions obtained from the enzymolysis 

experiments for yeast A and biogurt a MeOH:H20 extraction (procedures 5 and 

6) was employed to see if the samples were more amenable to this than enzyme 

extraction. The solutions were prepared with the material as supplied from the 

manufacturers and following freeze-drying at -60°C under vacuum (a slower 

process than freezing by liquid N2 whereby the crystal structure of the ice may 
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pierce the cell walls precipitating the release of cell contents). A 30% extraction 

of the total selenium content was obtained for the Pharma Nord yeast which was 

an improvement on the previously reported research 182
• The general distribution 

of selenium in yeast samples has been studied 174 with approximately 10% being 

water-soluble and the remaining selenium being present in a bound form. Of this 

fraction it is thought that 50% of the selenium is probably bound to proteins or 

other large organic molecules. The improved extraction in this case, may arise 

from the selenium being compartmentalized in amounts that vary according to the 

sample type. Unfortunately, the extraction of selenium from yeast A and 

Biogurt® using MeOH:H20 was 14% and 21%, respectively, supporting the 

research findings of Pedersen and Larsen 182. The experimental results obtained 

with the addition of freeze-drying of the material gave a slightly better extraction, 

at 27%, for the Biogurt®. However, no improvement was seen for yeast A. 

Analysis of the sample residues following MeOH:H20 by HN03 microwave 

digestion demonstrated the presence of the remaining selenium for Pharma Nord 

yeast and the Biogurt® but not all of the selenium in yeast A was accounted for. 

A review of the mass balance for yeast A in most of the extraction techniques 

demonstrated similar findings. Occasionally this phenomenon was seen for 

Biogurt® as well, most particularly where HCl extraction has been used, 

including the sequential extraction by HCl and protease. One reason for poor 

mass balance results may be due to loss of analyte to walls of the containers. This 

conjecture does not account for the fact that yeast A is, in general, more 

susceptible to losses than the Biogurt®. Factors involved that could account for 
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the differences between the two samples may include matrix interferences in the 

plasma The use of internal standards and matrix-matched standards were used, as 

far as was practicable, to reduce these effects. 

A review of the results obtained for yeast A and Biogurt® samples in extraction 

procedures 7 (HCI, pH 2 digestion) and 8 (multi-step extraction using: I, 

~HC03; 2, protease; and 3, MeOH:H20) demonstrated a 71% extraction 

efficiency for the biogurt sample where the solution pH was strongly acidic 

(procedure 7, pH 2). Where ~C03 has been used, prior to the introduction of 

an enzyme (procedure 8, stage i) the extraction efficiency was 62%. Research 

carried out by Emteborg et a/, 183 demonstrated that extraction of selenium 

species from a sample of white clover improved with the addition of0.28 M HCI 

(to a MeOH:H20 50:50 extractant) from 28.5% to 36.7%, and even more so with 

the use of 4% NH3 in place of the HCI, to obtain a 47.6% extraction efficiency. It 

is thought that making samples alkaline libemtes selenoamino acids from 

possible protein-binding sites 184. In this instance, it appeared that both acidic and 

alkaline conditions improved the libemtion of selenium species from the 

Biogurt® matrix. Unfortunately, this phenomenon was not seen for yeast A. 

Where HCl or ~HC03 have been used alone the extraction efficiency 

decreased to single figures. The introduction of protease in the second step of 

procedure 8 brought the extraction efficiency for yeast A to a similar level (I9%) 

as that reported in procedure I. 
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The extraction techniques discussed so far did not completely solubilize the yeast 

A or Biogurt® matrix. Procedure 8 was devised to utilize this effect in providing 

information on the distribution differently-bound selenium in the samples. 

However, with only 53% of yeast A and 77% of the Biogurt® yeast being 

recovered, this mass balance discrepancy lead to a larger uncertainty in the data 

obtained following this multi-step procedure. 

Following the first stage of extraction using 0.1 M NH.tHCDJ, approximately 

60% of the selenium was extracted from the Biogurt®. The results for yeast A 

yielded only 7% of the available selenium. The second stage, using protease, 

gave similar results for yeast A (18%, compared with 19%) as was seen 

previously using this enzyme. The Biogurt® results showed a much lower 

extraction (2%, compared with 15%), probably as a consequence of the relatively 

high extraction from stage one (62%). The MeOH:H20 extraction, being the third 

stage, gave poor results for both samples. 

In the case of Biogurt® for this sequential extraction procedure, most of the 

selenium was seen following the first stage of extraction using NH4HC03 at pH 8 

(62%). This was one of the highest extraction efficiencies of selenium seen for 

Biogurt® in any of the procedures considered. This suggested that the extractable 

selenium was predominantly water-soluble. Addition of enzymes appeared to 

have a suppressive effect where aqueous solutions were used reducing the overall 

extraction efficiency of the selenium. 
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The yeast A sample yielded the most selenium following the protease extraction 

(stage two) which was in keeping with the results obtained for the initial protease 

extraction technique (procedure 1). The Pharma Nord yeast subjected to the same 

sequential extraction procedure gave an extraction of 14% of the total selenium 

after the first stage (Nf4HC03, O.lM, pH 8) indicating that this sample also 

required the use of the protease enzyme for release of the available selenium, 

where efficient extractions had previously been recorded following procedure 1. 

The two-step procedure using 0.01 M HCl followed by a protease digest was 

chosen as this closely mimicked gastrointestinal conditions in humans. The 

results showed a highly efficient extraction for the Pharma Nord yeast at 93%. 

However, the extractions for yeast A were 7.6% and 47% for the Biogurt®. Mass 

balance calculations show a large discrepancy giving rise to uncertainty in the 

results obtained. 

Further extraction methods utilized KOH (25%) in MeOH and TMAH (25%) in 

MeOH which gave complete solubulization of yeast A and the Biogurt® sample. 

Results for extraction efficiencies were 73 and 80%, respectively, for the yeast 

sample and 12 and 11% for the Biogurt®. The poor extraction obtained for the 

Biogurt® using KOH and TMAH is unclear. Workers that have reported the use 

of TMAH for the extraction of selenium species from yeast noted that there was 

degradation of the organic selenium species initially present to that of inorganic 

selenium, most probably selenite 181
• In this experiment, anion-exchange 

chromatography demonstrated the presence of selenite and selenate in yeast A, 
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following extraction with TMAH and KOH, by the matching of retention times 

with that of standards using HPLC-ICP-MS. A chromatogram of four selenium 

standards is shown in Figure 4-3. A chromatogram of yeast A following 

extraction using TMAH is shown in Figure 4-4 demonstrating the presence of 

selenite and selenate. Chromatograms of yeast A following KOH extraction were 

similar to the one shown for TMAH extraction and are therefore not reproduced 

here. In view of the poor extraction efficiency of selenium in the Biogurt® 

sample and that species conversion was shown to occur in yeast A, no speciation 

determination was carried out for the Biogurt® sample. The high alkalinity of the 

TMAH and KOH appears to cleave the selenium from the organic molecule to 

give the bare inorganic ions. 
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Figure 4-3 Chromatogram of 4 selenium standards, I 00 11g r1
, employing a Dionex AS 11 anion­

excharuze HPLC column using the conditions described in Table 4-2. Peaks: I= Secys; 2 = SeMet; 
3 = Se111; 4 =Se VI. 
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Figure 4-4 Chromatogram of yeast A following selenium extraction by TMAH employing a 
Dionex AS 11 anion-exchange HPLC column using the conditions described in Table 4-2. Peaks: 
1 = SeiV; 2 =Se VI. 

The two-step procedure usmg 0.01 M HCl followed by a protease digest 

(procedure 11), despite the limited extraction efficiencies (yeast A, 7.6% and 

Biogurt®, 47%), it was calculated that the extractant of yeast A should contain 76 

mg kg-1 of selenium and for the Biogurt®, 940 mg kg-1 of selenium. Although the 

extractants might not provide an overall accurate reflection of the whole sample, 

investigations into the species present were embarked upon. The two extracts, 

together with the Pharma Nord yeast, were introduced onto a Dionex AS 11 

anion-exchange column, using the chromatographic conditions described in Table 

4-2, for the purposes of speciation determination. No inorganic selenium was 

detected in any sample and, therefore, further analysis was carried out using an 

isocratic elution programme employing 10 mM NRtHC03 + 10% MeOH 
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adjusted to pH 5 with an eluent flow rate of 1.0 ml min"1
• A chromatogram of 

selenium standards is shown in Figure 4-5. Chromatograms of yeast A, Biogurt® 

and Phanna Nord yeast extracts are shown in Figures 4-6, 4-7 and 4-8, 

respectively. Both yeast A and the Biogurt® sample under investigation gave a 

peak with a retention time similar to SeCys whilst the Pbarma Nord yeast gave a 

single peak matching the retention time of the SeMet standard. 
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Figure 4-5 Chromatogram selenium standards, 50 J.1g 1"1
, employing a Dionex AS 11 anion· 

exchange HPLC column using the conditions described in Table 4-2. Peaks: I= SeCys; 2 = SeMet 
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Figure 4-6 Chromatogram of yeast A following extraction by HCI and protease (procedure I I) 
employing a Dionex AS 11 anion-exchange HPLC column using the conditions described in 
Table 4-2. Peak I ascribed to SeCys. 
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Figure 4-7 Chromatogram of biogurt following extraction by HCI and protease (procedure I I} 
employing a Dionex AS 11 anion-exchange HPLC column using the conditions described in 

Table 4-2. Peak I ascribed to SeCys. 
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Figure 4-8 Chromatogram of Pbarma Nord yeast following extraction by HCI and protease 
(procedure! I) employing a Dionex AS 11 anion-exchange HPLC colwnn using the conditions 
described in Table 4-2. Peak I ascribed to SeMet. 

Research carried out by Bird et al. 174 demonstrated that where two methods of 

extraction had been compared, the first where yeast was added to water and 

shaken at 85 - 90°C for 1 h and the second where protease had been used in a 

similar manner to that reported by Gilon et al. 133 and also used in this work, the 

speciation profile for the yeast differed. Both extraction methods demonstrated 

the presence of the same species (inorganic selenium, SeCys, SeMet and 

methylselenocysteine) but where protease had been used SeMet became the most 

dominant form. In the work presented here, the Pharma Nord yeast was found to 

contain SeMet as the major selenium-containing compound. The predominance 

of Se Met in the presence of protease suggests that Se Met is compartmentalized in 
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yeast within selenium-containing proteins of which 90% was extractable using 

protease. 

These results suggested that the types of yeast (Phanna Nord yeast and yeast A) 

possessed some similarities in that they both required the use of protease to 

liberate selenium indicating the presence of selenium-containing proteins. 

However, the significant differences seen in the efficacy of the enzyme extraction 

suggested that the compartmentalization of the selenium in the two yeasts was 

substantially different from one another. Most of the selenium in yeast A (ranging 

from 37- 85%) appeared to remain in the residue in a non-extractable form. 

Quantification of the peaks gave the results that are shown in Table 4-5. 

Table 4-5 Results for the speciation of selenium in the three samples under investigation. Results 
given in mg kg·• as the element 

Total Total 

HCI and protease SeCys SeMet 

Pharma Nord yeast 1282 ± 24 1191 ± 108 1005 ± 71 

Yeast A 984 ± 12 74.9±2.6 1.59 ± 0.43 

Biogurt® 1980 ± 95 934 ± 80 5.25 ±0.92 
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The results obtained for the quantification of selenium by HPLC-ICP-MS 

demonstrated a poor mass balance for the yeast A and Biogurt® samples, with 

only 2% of the selenium in yeast A and less than l% in the Biogurt® being 

accounted for. One way to check recovery of the selenium species injected onto 

the column was by evaluation of the peak areas obtained by flow-injection (FI)­

ICP-MS compared with the area of the peaks obtained using anion-exchange 

HPLC-ICP-MS. Standards of SeCys and SeMet gave similar peak areas for both 

techniques as did the Pharma Nord yeast sample. However, the peaks obtained by 

FI-ICP-MS for yeast A and Biogurt® were significantly larger than those 

obtained using HPLC-ICP-MS. This suggested that the selenium species in these 

samples were strongly retained by the column. Lack of complete recovery of 

species due to on-column retention was also reported by Bird et al. 174 but only 

by 10-20% of the expected amount. Strongly acidic compounds may be retained 

on an anion-exchange column and, therefore, further investigations were carried 

out using a cation-exchange Partisil SCX l 0 HPLC system with the conditions 

described in Section 4.2.4. A chromatogram of SeCys and SeMet standards 

together with the yeast A and Biogurt® samples is shown in Figure 4-9. 
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Figure 4-9 Chromatogram of the yeast A and Biogurt® samples and SeCys and SeMet standards 
by cation-exchange HPLC-ICP-MS using a Partisil SCX 10 column (250 x 4.6 mm) and a 20 mM 
pyridine eluent adjusted to pH3. Peaks: I = yeast A; 2 = Biogurt®; 3 = SeCys standard, I mg 1"

1
; 

4 = SeMet standard, I mg 1"1• 

The chromatogram shown in Figure 4-9 using cation-exchange conditions 

demonstrates the lack of resolution between the samples and standards. This can 

be explained by the zwitterionic character of the selenoamino acids and that 

under the pH conditions employed (pH 3) they will possess cationic groups and, 

therefore, have a limited affinity for the stationary phase. Although optimization 

has not been achieved here it can be seen that the yeast A and Biogurt® samples 

do not match the retention times of either of the standards used. Where anion-

exchange chromatography was performed (Figures 4-5 to 4-8) the yeast A and 

Biogurt® samples appeared to elute with a similar retention time to that of 
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SeCys. However, the cation-exchange chromatography points towards the 

possibility that the samples may not contain SeCys or SeMet but other, 

chemically similar, amino acids. Comparison of peak areas by Fl-ICP-MS and 

cation-exchange HPLC-ICP-MS also demonstrated the effect on-column of 

retention of sample analyte. 

4.4 Conclusions 

Research 131 has shown that yeast-based selenium food supplements can 

demonstrate a significant variety in the selenium species present with some 

brands showing generally low recoveries of any fonn of selenium, and may have 

matrix problems which make effective extraction difficult. Work carried out by 

Gilon, et al. 133 has demonstrated the efficacy of enzyme-based extractions using 

protease. In the work presented here, it was found that the selenium content, in 

the form of SeMet, was adequately extracted from the Pharma Nord yeast using 

protease which yielded 90% of the 'total' selenium content. However, the 

determination of 'total' selenium and selenium species in the yeast A and 

Biogurt® samples proved to be quite problematic. A variety of extraction 

methods were employed with limited success. Methods that avoided species 

conversion and with the highest extraction efficiencies were found to be: i) the 

use of protease for yeast A and: ii) the use of 0.01 M HCl for the Biogurt®. 

Speciation of these samples by anion and cation-exchange HPLC-ICP-MS was 

hampered, partly because of the limited extraction efficiencies of the samples and 
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by the retention of the analyte on-column and by the lack of standards available 

for matching of retention times. 

Limitations may be imposed on the extraction techniques commonly available 

where identification of selenium species in these new, to be commercially 

available, bionutrients are studied. At present, the only selenium value obtainable 

is that of 'total' selenium using a HN03/H202 microwave digestion procedure. 

The retention of species information by 'softer' extraction processes appears to 

reduce the overall extraction efficiency with subsequent loss of information. The 

results obtained from this study seriously place in doubt the availability of the 

organo-selenium species in the yeast A and Biogurt® samples, for which they are 

supposedly designed to deliver. 

Further work, with the aim of· achieving a successful extraction for 'total' 

selenium and selenium species for yeast A, needs to continue with investigation 

into the use of p-gluconase, a specific yeast enzyme, although not available 

commercially, but which may promote a successful extraction. Consideration of 

the use of cell-permeabilizing surfactants to enhance cell wall degradation with 

procedures already used in this study may prove rewarding for extraction of 

selenium species in both the yeast A and Biogurt® samples. 
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S Speeiation of arsenic and selenium using high performance 

liquid chromatography with inductively coupled plasma mass 

spectrometry and electrospray mass spectrometry. 

5.1 Introduction 

Numerous instrumental methods have been developed for the separation, 

identification and determination of arsenic and selenium species. The most 

widely reported techniques have relied on high performance liquid 

chromatography together with inductively coupled plasma mass spectrometry 

(HPLC-ICP-MS) 92
• The chemistries of arsenic and selenium readily allow for 

ion-exchange mechanisms to be employed. Control of the mobile phase by choice 

of competitive ion, its concentration and pH conditions can lead to the successful 

resolution by ion-exchange chromatography of a number of organic and 

inorganic arsenic and selenium species, individually 132
• 

185 and simultaneously 

186
• Ion-pairing reversed phase chromatography is an alternative chromatographic 

mechanism that has often been employed, providing good separation of a number 

of arsenic and selenium species 187
• 

188
• However, species identification using 

these methods relies on the matching of retention times of analyte peaks with that 

of known standards. Due to the numerous fonns and complexity of the analytes 

of interest and possible matrix interferences, eo-elution of species may lead to 

erroneous results despite the use of an element specific detector. The availability 

of standards may also place limitations on the efficacy of the procedure. A case in 
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point is that of arsenoribofuranosides (arsenosugars), which have been known to 

eo-elute with AsBet, DMA and MMA under cation and anion-exchange HPLC­

ICP-MS conditions 189
• 

110
• 

116
• 

HPLC-ICP-MS has been used with success where materials have been widely 

studied and well-characterized. However, when analyzing materials that are new, 

or materials where total elemental concentrations are recorded but no information 

regarding the species is given and where standards are unavailable for peak 

identification, it would seem prudent to find instrumental techniques that can 

provide corrobomtive evidence to support that obtained by HPLC-ICP-MS. 

Research using molecular specific techniques such as electrospmy ionization 

mass spectrometry (ESMS) has enhanced the capability of characterizing 

previously unidentified species 190
• The complementary use of element specific 

ICP-MS together with molecular specific ESMS following HPLC separation of 

the analytes of interest provides greater confidence in the assignment of species 

identified. 

The electrospmy process is a means of obtaining gas-phase ions from solution for 

the purpose of analysis by mass spectrometry. This is achieved by applying a 

strong electric field to a liquid passing through a capillary tip. An electric field is 

genemted by applying a potential difference between the capillary tip and the 

counter electrode. ESMS can produce and detect positive and negative ions 

depending on the polarity of the electrodes. The choice will reflect on the 

experimental conditions used and in which mode the best results are obtained. 
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For data collection, ESMS analyzers can be used in the full-scan mode or 

selected ion monitoring (SIM) mode, depending on analytical requirements. The 

full scan mode will measure ions across a given mass range providing evidence 

of all molecular ions present and their abundance; selected ion monitoring looks 

at a limited number of ions dependent on the mass/masses selected by the 

operator. The full scan mode is particularly useful when attempting to identifY 

previously unreported compounds. However, the mass spectrum obtained can be 

highly complex with difficulties arising where there is suppression of the analyte 

signal by concomitant matrix ions 191
• Using the SIM mode can reduce the effects 

of this problem. However, it can be extremely time-consuming unless there is 

some prior knowledge of the analytes of interest allowing the operator to select 

appropriate masses. The use of the tandem MS (mass spectrometry - mass 

spectrometry, MSMS) mode of ESMS provides essential information on 

molecular structure that can be used to characterize compounds. The MSMS 

function allows fragment patterns, by collision induced dissociation (CID}, of 

parent molecular ions to be obtained. Fragmentation pathways are, in part, 

determined by the strength of the bonds which are to be broken and the stability 

of the product (daughter) ions. Fragment patterns are likely to be exclusive to a 

particular molecule and, therefore, explicitly distinguish between the analyte of 

interest and any other ion possessing the same molecular mass. Purification of the 

target analyte has also assisted in the identification of compounds by ESMS 113 

by the reduction of matrix interferences. 
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The work presented here is based on the use of complementary HPLC-ICP-MS 

and HPLC-ESMS in the separation and identification of various arsenic species 

in extrants from a common brown seaweed, Fucus spiralis (IAEA-140, 

International Atomic Energy Agency, Belgium) and a kelp powder, Ascophyllum 

nodosum, (Queenswood Health Foods, Bridgewater, UK) available as a health 

supplement. A selenized yeast sample extrant (Pharma Nord, Vejle, Denmark) 

was subjected to the same techniques enabling identification of the selenium 

species present. 

Marine algae were chosen for the study as they are known to contain 

arsenosugars 21 and they may form a significant part of the human diet, 

particularly in Eastern cultures such as the Japanese. It is also noted that marine 

algae constitute the basis of some Western vegetarian health supplements. 

Arsenosugars are considered to be essentially non-toxic forms of arsenic. 

However, research by Le el al. 192 suggested that arsenosugars could be converted 

by humans to the more toxic form of DMA, which is a suspected carcinogen. 

Research towards the identification and characterization of arsenosugars in 

biological samples is, therefore, vital to our further understanding of metabolic 

pathways and potential mechanisms of toxicities. 

A selenized yeast sample was chosen for investigation due to the scientific 

interest propagated by the work of Clark el al. 47 where selenized yeast 

supplements were shown to reduce the incidence of some cancers by as much as 

50%. The anti-carcinogenic effect of selenium is now known to be species 
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dependent and hence, the characterization and identification of the selenium 

species present in yeast has been at the forefront of research. The complementary 

use of HPLC with ICP-MS and ESMS can provide substantive evidence on the 

species present The selenized yeast sample chosen (Pharma Nord) had 

previously been extensively investigated as part of a CRM feasibility study 

(Chapter 3). Although the predominant species identified, by all the external 

participating laboratories, was that of SeMet, this was mainly based upon their 

comparison with known available standards taken through an HPLC separation 

technique with element-specific detection. Hence, when a material is assessed 

for suitability as a CRM, corroborative evidence of the species present by ESMS 

can be, not only advantageous, but critical for future users. 

A HPLC method for the speciation of arsenic and selenium compounds, 

compatible with both ICP-MS and ESMS detection was developed. This allowed 

direct comparisons to be made between the two techniques enhancing their 

complementary nature and abilities. As the most effective use of the electrospray 

process is achieved when ions are pre-formed in solution, an ion-exchange 

chromatographic system using a volatile mobile phase was the system of choice. 

Optimum HPLC conditions that were compatible with both ICP-MS and ESMS 

were achieved using an ammonium hydrogen carbonate solution with 10% 

methanol. Species identification using HPLC-ICP-MS was based upon the 

matching of peak retention times with that of known standards with further 

confirmation of species identity being obtained from ESMS data. Further 

characterization of species was obtained by the use of HPLC-ESMS in the 
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MSMS mode. Solid phase extraction (SPE) techniques were also considered in 

order to separate the bulk matrix from samples prior to analysis using ESMS and 

method development in this area was undertaken. 

5.2 Experimental 

5.2.1 Speciation of arsenic compounds using HPLC-ICP-MS and HPLC­

ESMS 

5.2.1.1 Instrumentation 

ICP-MS measurements were performed using a VG PlasmaQuad 2+ (f.J.A. 

solutions, Winsford, Cheshire, UK), using conditions as described in Table 5-1. 

A Perkin-Eimer 410 high pressure pump (Perkin-Eimer, Norwalk, CT, USA) was 

used for control of the eluent flow rate. A Rheodyne 7125 injection valve 

(Rheodyne, Cocati, CA, USA) with a 20 Jll sample loop was used for sample 

introduction by HPLC-ICP-MS and a 200 J.1l sample loop for HPLC-ESMS. 

Nitrogen, 4% v/v, for the reduction of ArCI+ interferences on m/z 75, was added 

via a Signal series 850 gas blender (Signal, Camberley, Surrey) to the nebulizer 

gas flow. 
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Table 5-l ICP-MS operating conditions for the determination of 'total' arsenic and species in 
sample extracts of marine algae using HPLC-ICP-MS, using rn/z 75 for arsenic measurement. 

ICP-MS 

Parameters 

Plasma Quad 2+ 

V -groove nebulizer 

Double-pass, water cooled Scott type spray chamber 

Fassel torch- 1.5 mm bore injector 

Argon plasma- 4% N2 added for direct total As determination to 

the nebulizer gas flow 

Nebulizer flow rate 

Coolant gas flow rate 

Auxiliary gas flow rate 

Forward power 

Dwell time 

0.811 min"1 

13.11 min"1 

0.81 min"1 

1350W 

500ms 

ESMS measurements were performed using a quadrupole ion trap (QIT) mass 

spectrometer with an electrospray ionization (ESI) interface (ThermoQuest 

Finnegan Mat LCQ, San Jose, CA, USA) using the conditions described in Table 

5-2. The 'positive ion· mode was used throughout. Readings for pH were taken 

using a 3010 pH meter (Jenway, Ltd., Essex, UK). A portable membrane vacuum 

system (Vacuubrand GmbH & Co., Werthim, Germany) was used for solid phase 

extraction (SPE) work. 
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Table 5-:Z Instrwnental operating parameters for the identification of arsenic species present in 
marine algae using direct injection ESMS and HPLC-ESMS. 

lnstrumenJ 

LCQESMS 

Operaling conditions 

Spray voltage- 4.5kV 

Spray current- sample dependent 

Capillary temperature - 220°C 

Capillary voltage, 13.98 V 

Lens voltage, -14.98 V 

Octapole I offset, -0.88 V 

Octapole 2 offset, -10.54 

5.2.1.2 Chemicals and reagents 

Gas flow rates 

Direct injection 

Sheath- 18 I min"1 

Auxiliary- 0 l min"1 

HPLC 

Sheath - 18 I min"1 

Auxiliary- 0.3 l min"1 

Chemicals were of analytical grade unless otherwise stated. All lab-ware was 

soaked in HN03 {10% v/v) for a minimum of 24 hours and rinsed thoroughly 

with MilliQ water (Millipore, Bedford, MA, USA) prior to use. Stock solutions 

of arsenobetaine (AsBet) (BCR CRM 626, IRMM, Belgium), 

monomethylarsonic acid (MMA) (kindly donated by Dr. A. Moreda-Pineiro, 

University Santiago de Compostela, Spain}, dimethylarsinic acid (DMA) and 

sodium arsenate (Sigma-Aldrich, Poole, Dorset, UK) at 1000 mg r' as the 

element were stored at 4°C in the dark. Standards were prepared daily from the 

stock solutions. Cellulase (Sigma-Aldrich) was used in the sample digestion 

procedure for the extraction of arsenic species. The mobile phase eluent was 

prepared using ammonium hydrogen carbonate (Sigma-Aldrich) and methanol 

(Fisher Chemicals). 
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5.2.1.3 HN03 digestion for total element determination 

Microwave bombs (Savillex, Minetonka, Minnesota, USA) were pre-cleaned 

with 3 m1 69% v/v HN03 (Primer, Fisons, Loughborough, UK) in a Perfecto 800 

W microwave oven (DeLonghi, Italy) on medium power for 2 rnins. Samples of 

approximately 0.25 g were accurately weighed into the bombs and 4 m1 HN03 

(69%, v/v) together with 1 ml H202 (37%, v/v) were added. The bombs were 

loosely capped and left overnight to a1low easily oxidised materia] to be 

destroyed. After predigestion, the bombs were swirled gently, sealed tightly and 

microwaved on medium power for 1 - 2 mins, or until the sample was a clear 

colour with no residue (indicating a completed digest). The samples were 

transferred quantitatively to 500 m1 volumetric flasks and made up to volume 

with 2% HN03 giving an overall dilution of x2000. The samples and standards 

were spiked with indium to give a fmal concentration of 100 11g r 1 
Indium (In) 

which acted as an internal standard prior to analysis by ICP-MS using the 

conditions described in Table 5-1. The internal standard was used to correct for 

· instrumental drift (sample viscosity effects, mass transport, etc.) over the analysis 

period 
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5.2.1.4 Enzymatic digestion procedures for extraction of arsenic species 

from marine algae 

Samples of approximately 0.5 g were accurately weighed together with 0.05 g 

cellulase and approximately 40 ml CH3COO~ buffer (0.1 M, adjusted to pH 5 

using CH3COOH). The suspensions were homogenized in a 'Potter' 

homogenizer, transferred to polyethylene centrifuge tubes and placed in a shaking 

water bath at 37"C for a minimum of 4 hours. Following enzymolysis digestion, 

the samples were centrifuged at 2500 rpm for 20 min, the supernatant transferred 

quantitatively to volumetric flasks and made up to volume with the CH3COO~ 

buffer. The samples and standards were spiked with caesium to give a final 

concentration of 100 J.lg r 1 Cs which acted as an internal standard prior to 

analysis by ICP-MS. 

5.2.1.5 Chromatographic conditions for the determination of arsenic 

species using HPLC-ICP-MS and HPLC-ESMS 

The chromatographic system consisted of a column (250 x 4.6 mm I.D.) packed 

with Hamilton PRP XlOO, a strong anion-exchange polymeric based resin of 10 

J.1ffi diameter, with a guard column (50 x 4.6 mm I.D.) of the same resin. The 

mobile phase was 10 mM NHtHC03 with 10% MeOH at pH 10 (adjusted with 

NH3 solution). The eluent flow rate used throughout was 1 ml min"1
, with a 20 J.ll 

sample loop for HPLC-ICP-MS, and by using a post-column splitter, a flow rate 

of 150 J.ll min"1 with a 200 J.ll sample loop was used for HPLC-ESMS. 
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5.2.1.6 Solid Phase Extraction (SPE) techniques 

Method development using anion, cation and reversed phase SPE extraction 

cartridges was employed. Optimum conditions, in tenns of analyte response 

determined using HPLC-ICP-MS, were found using 'Strata' anion exchange SPE 

cartridges (Phenomenex, Cheshire, UK). The cartridges were conditioned with 

MeOH (1 ml) followed by Milli-Q H20 (5 ml). Sample extracts (1 ml) from the 

enzyme digestion procedure were introduced onto the SPE cartridge and the 

retained analytes were then eluted with Nli!HC01 (20 mM, pH 10, 1 ml). This 

solution was evaporated gently to dryness on a hot plate and re-dissolved in 200 

J.d of H20. 

The Fucus sp. sample extracts, following anion SPE, were further purified by 

fraction collection subsequent to introduction onto the Hamilton PRP X100 

anion-exchange column. The fractions were collected at times considered suitable 

for obtaining analytes from resolved chromatographic peaks as detennined 

following HPLC-ICP-MS of the extract for the particular column eluent system 

used. The fraction collection program is shown in Table 5-3. 
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Table S-3 Fraction collection programme for Fucus sp. samples using a Hamilton PRP XIOO 
anion-exchange column with a mobile phase of 10 mM ~HC03 + I 0"/o MeOH. Flow rate of I 
ml min"1 and a sample loop volume of200 111. 

Fraction Collection time (s) 

1 120-180 

2 200-240 

3 240-300 

4 330-420 

Fractions were collected from the repeat injection of l 0 samples onto a Hamilton 

PRP XlOO column through a 200 J.d loop using the conditions described in 

section 1.2.1.5. The collected fractions were gently evaporated to just dryness at 

approximately 50°C on a hot plate and re-dissolved in 0.5 ml of MeOH with 

CH3COOH (I%, v,v) for analysis by direct injection ESMS. For HPLC-ESMS 

analysis the collected fractions were again evaporated to dryness and re-dissolved 

in 0.5 ml of the mobile phase. For validation purposes, experiments were 

performed on standards, using the same conditions that had been applied to the 

samples, to ensure no species inter-conversion occurred during the SPE and on-

column fractionation procedures that might have given rise to erroneous results. 

5.3 Results and discussion 

To commence the investigation of the marine algae an anion-exchange HPLC 

method was developed, based on the work of Madsen et al. 116 which was 

compatible with both ICP-MS and ESMS. In Madsen's work, a Hamilton PRP 
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XlOO anion-exchange column was used for both HPLC-ICP-MS and HPLC­

ESMS. The mobile phase used for HPLC-ICP-MS was a 20 mM NI-4H2P04 

solution adjusted to pH 5.6 with aqueous NH3, whereas for HPLC-ESMS analysis 

the mobile phase was a 20 mM ~HC03 + 10% MeOH solution adjusted to pH 

10.3 with aqueous NH3. Volatile buffers are necessary in ESMS for the 

evaporation of the solvent leading to the presence of gas phase ions and hence, 

the change in mobile phases between ICP-MS and ESMS. The addition ofMeOH 

plays a significant role in ESMS signal stability and sensitivity 191 which is 

attributed to the improved ion yield from charged MeOH droplets relative to 

charged water droplets. In this work, 10 mM NRtHC03 + 10% MeOH adjusted 

to pH 10.2 with NH3 was found to be suitable for both ICP-MS and ESMS 

detection of arsenic species. This both simplified and allowed direct comparison 

of chromatographic results from the coupled ICP-MS and ESMS system. The 

lower concentration of ~HCOJ used assisted in reducing suppression of 

analyte signal due to concomitant ions in ESMS. Addition of organic solvents to 

the mobile phase are also known to reduce polyatomic interferences in ICP-MS 

70 

Anion-exchange HPLC-ICP-MS analysis was initiated with the study of readily 

available arsenic standards. Figure 5-l demonstrates the typical retention times 

for standards of AsBet, DMA, MMA and Asv. 
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Figure 5-1 A typical chromatogram of arsenic standards, 250 J.Lg 1"1 each, using a Hamilton PRP 
XIOO anion-exchange HPLC-ICP-MS (colwnn dimensions of 250 x 4.6 mm 1.0.). The mobile 
phase used was 10 mM ~HC03 with 10"/o MeOH at pH 10. Peaks: I = AsBet; 2 = DMA; 3 = 
MMA;4=Asv. 

Analysis of arsenic standards was then performed using HPLC-ESMS in the 

positive ion mode. Electrospmy can been used in the negative 193 or positive 191
• 

116 ion modes for the characterization of arsenosugars, other organic arsenic-

containing compounds and inorganic arsenic. The work of Pergantis et al. 193 

demonstrated an improved sensitivity in analyte signal in the negative ion mode. 

However, the work of Madsen et al. 116 successfully applied anion-exchange 

chromatogmphy coupled with ESMS in the positive ion mode for the detection 

and characterization of some arsenosugars present in a marine algae. The positive 

mode is most frequently reported for the detection and identification of organic 

arsenic compounds but suffers in that it cannot detect inorganic arsenic. 
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A chromatogram, shown in Figure 5-2, demonstrates the retention time of AsBet, 

DMA and MMA standards obtained using this method. The chromatogram was 

obtained by overlaying the selected ion monitoring (SIM) spectra of m/z 179, 139 

and 141 (M+W ions of AsBet, DMA and MMA, respectively). 

l 
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Time(min) 

Figure 5-2 HPLC-ESMS of arsenic standards at 1000 llS r' with retention times in parentheses, 
given in mins: I, AsBet (4.65); 2, DMA (5.68); 3, MMA (8.85). SIM mode with chromatograms 

overlaid ofmlz 179, 139 and 141. 

Although the same experimental conditions were used for both HPLC-ICP-MS 

and HPLC-ESMS, it can be seen that the retention times obtained for the 

standards by ESMS are significantly different from those obtained by ICP-MS. 

The retention times are shown in Table 5-4 and differ by approximately 1 min in 
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each case. The shift in elution times may be accounted for by the differences in 

the sample introduction train between the two techniques. This must be taken into 

considemtion when making comparisons between the techniques for species 

identification. 

Table 5-4 Comparison of retention times of arsenic standards using HPLC-ICP-MS and HPLC­
ESMS under the same chromatographic conditions (as descnOed in Section 5.2.1.5) 

Retention times Retention times 

HPLC-ICP-MS HPLC-ESMS 

As Bet 3.32 4.35 

DMA 4.14 5.38 

MMA 8.09 8.85 

The probability that eo-eluting species with the same molecular ions may be 

present in a sample cannot be overlooked and due to the significant shift in 

retention times of the arsenic species between the two techniques, further 

confirmation that the presence of ions at m/z 179, 139 and 141 corresponded with 

the expected M+W molecular ions for AsBet, DMA and MMA was obtained by 

employing MSMS. The fragmentation patterns of MMA, DMA and AsBet 

obtained using MSMS are shown in Figures 5-3, 5-4 and 5-5, respectively. 
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Figure 5-3 MSMS fragmentation pattern of MMA (M+H'" ion 141) using the ESMS conditions 

shown in Table 5-7. 
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Figure 5-4 Fragmentation pattern ofDMA ( M+H'" ion 139) using the ESMS conditions shown in 

Table 5-7. 
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Figure S-S Fragmentation pattern of AsBet (M+H'" ion 179) using the ESMS conditions shown 

in Table 5-7. 

The structures of AsBet, DMA and MMA together with their identified 

fragmentation patterns, that correspond to the experimentally obtained results by 

MSMS 194, are shown in Figure 5-6. 
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Figure 5-6 Structures of MMA, DMA and AsBet together with identified fragment pathways 
194 

using mass spectrometric analysis. 
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Reviewing the peaks obtained by HPLC-ICP-MS for standards of AsBet, DMA 

and MMA, which identify the presence of elemental arsenic, together with the 

molecular peaks of equivalent mass obtained by HPLC-ESMS and the 

fragmentation patterns seen by MSMS, there is overwhelming evidence for the 

species purity of the standards. The use of HPLC-ICP-MS and HPLC-ESMS as 

complementary techniques to one another in this way demonstrates their 

capability in providing information for species identification and verification in 

new materials or where further identification and characterization of species may 

be required. Knowledge of predicted fragmentation pathways for molecular ions 

obtained by using MSMS may prove vital where new materials are under 

investigation for identification and characterization of species, particularly where 

there is a lack of available standards for peak identification using HPLC-ICP-MS. 

Having established optimum experimental conditions for HPLC-ICP-MS and 

HPLC-ESMS and the legitimacy of the procedure for species separation and 

identification, work with the marine algae samples was pursued. SPE techniques 

using on-column fraction collections were investigated for bulk matrix removal 

from samples prior to analysis using ESMS. Optimum conditions are given in 

section 5.2.1.6. Speciation retention and subsequent elution was verified using 

ICP-MS. However, the results following purification and fractionation techniques 

proved unsuccessful. One of the reasons for this was indicated by the loss of 

analytes of interest together with removal of the matrix leaving the analyte signal 

close to the limit of detection, as shown by ICP-MS response. Enzymatically 

digested sample extracts with no matrix removal or purification were, therefore, 
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introduced onto the HPLC column coupled with ESMS for analysis as described 

in section 5.2.1.5. 

'Total' concentrations of arsenic present in the two marine samples, Fucus 

spiralis and Ascophyllum nodosum, under investigation were detennined 

following HN03 and enzymolysis digestions using direct ICP-MS. The results are 

given in Table 5-5. The 'total' arsenic concentration from the enzyme digestions 

are given together with their extraction efficiencies, which were calculated as a 

ratio of the total concentrations obtained from the HN03 digests. The results are 

given with 95% confidence intervals and are in agreement with the given values. 

Table 5-S ' Total' As detennined in HN()fH20 2 and enzymolysis extracts of Fucus sp. and 
Ascophyllum nodosum using ICP-MS. Results are given in mg kg"1 as the element 

Fucussp. Ascophyllum nodosum 

HN03 acid digest 43.2 ± 1.0 47.6 ± 1.1 

Enzyme digest 34.6±2.8 36.7±2.5 

Enzyme extraction efficiency 80±7% 77±6% 

Certified reference value 44.3± 2.1 44.0 ± 1.71 

LOD(3 xSD) 0.0028 NA' 

' reference value only 
2 not available 

Cellulase was used for the digestion of the algae giving an extraction efficiency 

of approximately 80%. This was considered to be an acceptable level in light of 

research using the more common MeOH or MeOH-H20 extraction techniques 

that report efficiencies ranging from 20% 195 to > 85% 113
• The use of cellulase 

breaks down the cell wall releasing cellular contents with no inter-conversion of 

species. 
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Preliminary arsenic speciation studies on enzyme extracts of the algae were 

perfonned using HPLC-ICP-MS. Separation and detection of arsenic species by 

HPLC-ICP-MS, with ICP-MS being an element-specific detector, provided 

evidence of arsenic-containing compounds together with their respective elution 

times. The matching of retention times with that of known standards was 

employed for peak identification. It is known that matrix effects can alter 

retention times of standards and, therefore, spiking experiments with standards 

were carried out to confirm species by this technique. However, when analyzing 

marine algae, the likelihood of arsenosugars being present is exceptionally high 

for which there are no commercially available standards. This precluded the 

matching of retention times with standards for any unidentified peaks. The 

possibility of eo-eluting species with that of standards could also not be excluded. 

Figure 5-7 (a repeat of Figure 5-1, provided for direct comparison) demonstrated 

the typical retention times for the available standards of AsBet, DMA, MMA and 

Asv. Figure 5-8 shows the chromatogram of Fucus sp. and Figure 5-9 that of 

Ascophyllum nodosum obtained using HPLC-ICP-MS. Comparison of the 

retention times with that of standards demonstrated that the first peak in Figure 5-

8 eluted with a similar time to that of AsBet. However, it is known and well­

established 196 that marine algae contain arsenosugars that elute with, or close to, 

the solvent front as does AsBet when using anion-exchange chromatography. 
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Figure 5-7 A typical chromatogram of arsenic standards, 250 M r• each, using a Hamilton PRP 
X lOO anion-exchange HPLC-JCP-MS (column dimensions of 250 x 4.6 mm l.D.). The mobile 
phase used was 10 mM ~HC03 with 10% MeOH at pH 10. Peaks: l = AsBet; 2 = DMA; 3 = 

MMA;4=Asv. 
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Figure S-8 A chromatogram of the CRM IAEA-140 (seaweed), using a Hamilton PRP X lOO 
anion-exchange HPLC-ICP-MS (column dimensions of 250 x 4.6 mm I.D.). The mobile phase 
used was 10 mM ~HC03 with 100/o MeOH at pH 10. Peaks 1-4 nominally assigned prior to 

identification. 
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Figure 5-9 A chromatogram of Ascophyllum nodosum, using a Hamilton PRP XlOO anion­
exchange HPLC-ICP-MS (column dimensions of250 x 4.6 mm l.D.). The mobile phase used was 
10 mM NHtHC0

3 
with 10% MeOH at pH 10. Peaks 1-3 nominally assigned prior to 

identification. 

A poorly resolved second peak may tentatively be ascribed to DMA and the third 

peak did not match any of the standards used and, therefore remained 

unidentified. The very small fourth peak may be attributed to inorganic arsenic. 

The chromatogram obtained for the Ascophyllum nodosum sample (Figure 5-9) 

showed the first peak eluting with a similar time to that of the AsBet standard. 

The second and third peaks did not closely match the elution times of any 

standard. 

By using the same chromatographic system for HPLC-ESMS it was possible to 

examine peaks where arsenic-containing species were known to elute, as 

demonstrated by HPLC-ICP-MS, and obtain complementary molecular 

infonnation leading to characterization of the compound. This was particularly 
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useful for arsenic-containing compounds that did not match retention times of 

that of known standards when using HPLC-ICP-MS, or where eo-elution is 

known to exist (arsenosugars with AsBet). 

The HPLC-ESMS chromatogram obtained from the Ascophyl/um nodosum 

sample is shown in Figure 5-10. The electrospray process measures all molecular 

ions in a sample and, therefore, the chromatogram obtained did not give any well-

defmed peaks that might have corresponded to the peaks seen using HPLC-ICP-

MS. There was evidently a broad, high background level of eluting molecular 

ions, probably attributable to the presence of the matrix. 
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Figure 5-10 Chromatogram obtained of the Ascophyllum nodosum sample using ESMS with the 

conditions described in section 5.2.1.5 and Table 5-2. 
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However, observation of m/z 329 in the SIM mode, shown in Figure 5-11, 

provided evidence of a peak, having a similar elution time to that of AsBet (as 

seen in Figure 5-2 using HPLC-ESMS), which was attributed to the arsenosugar, 

previously identified by Edmonds and eo-workers 18
• 

19
, the structure for which is 

shown in Figure 5-12. This supported the findings by other workers that marine 

algae contain arsenosugars that may elute, under certain conditions, from a 

chromatographic column at a similar time to that of AsBet 
196
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Figure 5-11 Chromatogram obtained of the Ascophyllum nodosum sample using ESMS in the 
SIM mode at m/z 329 with the conditions described in section 52.1.5 and Table 5-2. (peak apex 

time given - 4.9) 
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Figure S-12 Structure of the arsenosugar, commonly found in marine algae, having a M+W 329 

mass units 116
• 

A more detailed study of the Fucus sp. sample was undertaken for identification 

of arsenic species present within the sample matrix. A HPLC-ESMS 

chromatogram obtained from the Fucus sp. sample is shown in Figure 5-13. 

Three peaks are discernable above the baseline. Having taken into account the 

shift in retention times (see Table 5-4) between the techniques, the peaks may be 

considered representative of the first three peaks seen using HPLC-ICP-MS of 

the Fucus sp. sample (Figure 5-8). 
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Figure 5-JJ Chromatogram obtained of Fucus sp. using anion-exchange HPLC-ESMS with the 

conditions described in Section 5.2.1.5. 

However, the complexity of chromatograms obtained by HPLC-ESMS is 

adequately demonstrated when viewing the mass spectrum obtained ofprotonated 

molecular ions by their mass/charge (m/z) ratio. A m/z spectrum corresponding to 

the second peak (retention time 5.64 min) is shown in Figure 5-14. A nwnber of 

spectral peaks can be seen indicating the presence of a variety of molecular ions 

that have the same chromatographic elution times. Unlike ICP-MS, which is an 

element specific detector, all molecular ions amenable to the electrospray process 

are measured in the sample matrix, including the solvent. Although not the most 

dominant in the spectrum, the molecular ions at peaks m/z 241, 329 and 409 that 

correspond to known arsenic-containing·compounds and can be clearly seen. The 

M+W ion seen at m/z 241 has previously been identified by McSheehy et al. 
110 
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and the M+H'" molecular ions at m/z 329 and 409 by Edmonds and eo-workers 
18

• 

19• Using the SIM mode, the chromatogram shown in Figure 5-15, confirms that 

the masses 241, 329 and 409 eo-elute. 

100 

409 

241 

329 

m/z 

Figure 5-14 ESMS spectrum of middle peak (RT 5.64 min) of the Fucus sp. chromatogram using 
anion-exchange HPLC-ESMS with the conditions described in Section 5.2.1.5. 
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Figure 5-lS SIM chromatograms of the 3 arsenic species identified in middle peak of the Fucus 
sp. sample demonstrating retention times using anion-exchange HPLC-ESMS with the conditions 
descn'bed in Section 5.2.1.5. 

The middle peak seen in Figure 5-13 has a retention range of 5.1 - 6.3 min with a 

peak maximum of 5.64 mins (fable 5-6). The molecular ions of 241, 329 and 

409, although certainly present within the time range, show peak apices in the 

SIM mode with slightly longer elution times (shown in Figure 5-15) than the 

peak maximum. This suggests that they are only some of the eluting species 

contributing to the middle peak. 
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Table 5-6 Peak times for Fucus sp. sample using HPLC-ESMS. Retention range and peak points 
are obtained in the full ESMS mode. Time is given in minutes. 

Peak] Peak2 Peak3 

Retention range (time) 4.0-4.8 5.1-6.3 6.8-7.8 

Peak maximum (time) 4.36 5.64 7.34 

The third peak, with a retention range of 6.8 - 7.8 min and a peak maximum at a 

time of 7.34 min, in the chromatogram of the Fucus sp. using HPLC-ESMS 

(Figure 5-13), was shown to contain a M+W molecular ion at mass 483, which 

corresponds with an arsenosugar also previously identified by Edmonds and eo-

workers 18
• 

19
• A chromatogram, using the SIM mode, of this peak is shown in 

Figure 5-16. This compound may account for the unidentified third peak obtained 

by HPLC-ICP-MS of the Fucus sp. sample (Figure 5-13) having taken into 

account the shift in retention times of species between the techniques of HPLC-

ICP-MS and HPLC-ESMS. 
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Figure 5-16 SIM of rnlz 483 in the Fucus sp. sample demonstrating retention time using anion­
exchange HPLC-ESMS with the conditions described in Section 52.1.5. 

Due to major matrix elution and broad. high level background in the solvent front 

region, no arsenic-compounds were identified in the first peak obtained by 

HPLC-ESMS. However, using the SIM mode to look at mass 179, no peak was 

seen corresponding to this elution time or to any other time in the chromatogram. 

This suggests that peak l seen in the Fucus sp. sample by HPLC-ICP-MS (Figure 

5-8) contains an arsenic-containing compound other than AsBet that co-elutes 

with this standard. 
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In all the sample cbromatograms shown using HPLC-ESMS, the M+W ion 

signals for the proposed masses of arsenic-containing compounds do not appear 

solely at their characteristic retention times but elsewhere in the chromatogram. 

These signals may be produced by matrix compounds with the same M+W m/z 

value. Moreover, these ions may account entirely for the peak obtained where the 

suspected arsenic-containing compounds are thought to elute. In the case of real 

samples, the probability that an extract contains a matrix component of the same 

molecular mass is too great to ignore. The use of MSMS, where fragment 

patterns of the parent molecule can be studied, may provide more conclusive 

evidence of the actual molecular structure. By applying MSMS techniques it is 

possible to analyze product ions resulting from the collision induced dissociation 

(CID) of the parent ion. However, interpretation of the mass spectra is not always 

easy to achieve, particularly when confronted by previously unidentified 

compounds. A priori knowledge on the expected nature of the compound and an 

understanding of the expected molecular structures present can provide 

invaluable assistance. With this in mind, the structures of previously identified 

arsenic-containing compounds 18
• 

19
• 

110 having the same mass as those identified 

in this study are shown in Figure 5-17. The structure of the compound at mass 

241 is shown in Figure 5-18. 
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Figure S-17 Structures of three arsenosugars commonly found in marine algae 116 

OH 

Figure S-18 Structure of compound at m/z 241 110
, 3-[5'-deoxy-5'-(dimethylarsinoyl)-13-

ribofuranosyloxy]-2-hydroxypropylene glycol. 

The structures of the three arsenosugars contain a common dimethylarsinoyl 

ribofuranosyl moiety at mass 237. Fragmentation patterns of the parent molecule 
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by MSMS should reveal the characteristic structures of these compounds. A 

common fragmentation pattern for arsenosugars is shown in Figure 5-19. 
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Figure 5-19 Characteristic fragmentation pattern ofan 'arsenosugar' 
57

. 

Tandem MS techniques, to fragment parent ions, were applied to the arsenic-

containing molecular ions identified in the Fucus sp.sampie. The fragmentation 

spectrum obtained for the molecular M+H'" ion at rnlz 329 is shown in Figure 5-

20. The mass at 347 can be accounted for by a molecule of H20 hydrating the 

original M+H'" parent molecule. The characteristic arsenosugar fragments at 

masses 237 and 165 are visible. The masses at 285 and 213 may be attributable to 
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loss of CH2 and OH groups as the molecule fragments. This molecule was, 

therefore, assigned as 3-[5 · -deoxy-5' -( dimethylarsinoyl)-jl-ribofuranosyloxy ]-2-

hydroxypropylene glycol (Figure 5-14, a). 

329 

347 

237 
165 

285 

213 

.. 
mlz 

Figure 5-20 Tandem MS ofmlz 329 in the Fucus sp. sample using anion-exchange HPLC-ESMS 
with the conditions described in Section 52.1.5. 

The tandem ESMS spectrum of the M+W ion at rn/z 483 is shown in Figure 5-

21. The rn/z fragment at mass 237 is characteristic of an arsenosugar and 

dominates the spectrum. The parent ion at rn/z 483 is also appreciably large. The 

lack of other ions suggests that the fragmenting voltage was not optimized in this 

case to provide the best structural evidence of the molecule. However, the 

information can be attributed to the presence of the arsenosugar, 3-[5'-deoxy-5'-
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(dimethylarsinoyl)-J3-ribofuranosyloxy]-2-hydroxypropyl-2,3-dihydroxypropyl 

phosphate (Figure 5-17, c). 
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Figure 5-21 Tandem MS fragment pattern of compound at rnlz 483 using anion-exchange HPLC-
ESMS with the conditions described in Section 5.2.1.5. · 

The protonated molecular ion at rn/z 409, that is frequently reported in the 

litemture 113
, has been assigned as an arsenosugar. The fragments at m/z 237 and 

165, shown in Figure 5-22, support this assignment. The other peaks in the 

spectrum are more difficult to assign and may be from the loss of 0, OH and C 

groups with rearmngements also occurring. The molecule at M+W 409 was 

assigned as 3-[5' -deoxy-5 · -( dimethylarsinoyl)-13-ribofuranosyloxy ]-2-

hydroxypropyl hydrogen sulphate (Figure 5-17, b). 
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Figure 5-22 Tandem MSMS of compound at rnfz 409 using anion-exchange HPLC-ESMS with 
the conditions described in Section 5.2.1.5. · 

The SIM at m/z 241, whose structure is shown in Figure 5-18, may be 

attributable to the arsenic compound 4-dimethlyarsinoyl-2,3-dihydroxybutanoic 

acid, recently reported by McSheehy, et al 110
• The fragments obtained in the 

MSMS spectrum (Fig 5-23) support this view as loss of 46 mass units at 195 

represents a protonated carboxylic acid group and 121 represents the 

dimethylarsinoyl moiety. The loss of 30 mass units from 195 to 165 indicates the 

loss of a CHOH group present in the carbon chain of the molecule 
110

• 
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Figure S-23 MS-MS of M+W 241 using anion-exchange HPLC-ESMS with the conditions 
described in Section 5.2.1.5. 

A short summary of the results obtained using HPLC-ICP-MS, which 

demonstrate the presence of arsenic-containing compounds in the Fucus sp. and 

Ascophyllum nodosum samples, and the results using HPLC-ESMS together with 

MSMS techniques providing molecular information suggest that the wrresolved 

peak 2 (Figure 5-8) of the Fucuc sp. sample, using HPLC-ICP-MS, contains three 

compounds assigned as 4-dimethlyarsinoyl-2,3-dihydroxybutanoic acid (M+H'" , 

241 ), 3-[5' -deoxy-5' -( dimethylarsinoyl)-P-ribofuranosyloxy]-2-hydroxypropyl 

hydrogen sulphate (M+H'" , 409) and 3-[5'-deoxy-5'-(dimethylarsinoyl)-P­

ribofuranosyloxy]-2-hydroxypropylene glycol (M+H'" , 329). The third peak was 

assigned as 3-[5' -deoxy-5' -( dimethylarsinoyl)-P-ribofuranosyloxy ]-2-
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hyd.roxypropyl-2,3-dihydroxypropyl phosphate (M+W , 483). No arsenic-

containing compound was adequately identified for peak l, although the absence 

of AsBet was confirmed. The investigations carried out on the Ascophyllum 

nodosum sample demonstrated the presence of an arsenosugar, m/z 329, having a 

similar retention to that of AsBet, which supports the findings of Gallagher et aJ 

1
%, stating that marine algae contain arsenosugars that eo-elute with AsBet 

5.3.1 Speciation of selenium compounds using HPLC-ICP-MS and HPLC-

ESMS 

5.3.1.1 Instrumentation 

See section 5.2.1.1. 

Table S-7 Instrumental operating parameters for the identification of selenium species present in 
yeast using direct injection ESMS and HPLC-ESMS. 

JnstrumenJ 

LCQESMS 

Operating conditions 

Spray voltage- 4.5 kV 

Spray current -sample dependent 

Capillary temperature - 220°C 

Capillary voltage, 9.95 V 

Lens voltage, -45.43 V 

Octapole I offset, -5.71 V 

Octapole 2 offset, -6.62 
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Gas flow rates 

Direct injection 

Sheath- 18 I min-1 

Auxiliary-0 I min-1 

HPLC 

Sheath- 18 I min-1 

Auxiliary - 0.3 I min-1 



5.3.1.2 Chemicals and reagents 

Chemicals were of analytical grade unless otherwise stated. All lab-ware was 

soaked in HN03 (10% v/v) for a minimum of 24 hours and rinsed thoroughly 

with MilliQ water (Millipore, Bedford, MA, USA) prior to use. Stock solutions 

of selenomethionine (SeMet), selenocystine (SeCys), sodium selenate and 

sodium selenite (Sigma-Aldrich, Poole, Dorset, UK) at I 000 mg r• as the element 

were stored at 4°C in the dark. Standards were prepared daily from the stock 

solutions. Protease (Sigma-Aldrich) was used for sample digestion procedures. 

Mobile phase eluents were prepared using ammonium hydrogen carbonate, 

ethanoic acid (Sigma-Aldrich) and methanol (Fisher Chemicals). 

5.3.1.3 HN03 digestion for total element determination 

Microwave bombs (Savillex, Minetonka, Minnesota, USA) were pre-cleaned 

with 3 ml 69% v/v HN03 (Primer, Fisons, Loughborough, UK) in a Perfecto 800 

W microwave oven (DeLonghi, Italy) on medium power for 2 mins. Samples of 

approximately 0.25 g were accurately weighed into the bombs and 4 ml HN03 

(69%, v/v) together with I ml H202 (37%, v/v) were added. The bombs were 

loosely capped and left overnight to allow easily oxidised material to be 

destroyed. After predigestion, the bombs were swirled gently, sealed tightly and 

microwaved on medium power for 1 - 2 mins, or until the sample was a clear 

colour with no residue (indicating a completed digest). The samples were 

transferred quantitatively to volumetric flasks and made up to volume with 2% 
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HN03 giving an overall dilution of x2000. The samples and standards were 

spiked with indium to give a final concentration of I 00 J.1g 1"1 Indium (In) which 

acted as an internal standard prior to analysis by ICP-MS using the conditions 

described in Table 5-l, section 5.2.1.1. The internal standard was used to correct 

for instrumental drift (sample viscosity effects, mass transport, etc.) over the 

analysis period. 

5.3.1.4 Enzymatic digestion procedure for extraction of selenium species in 

yeast 

Samples of approximately 0.25 g were accurately weighed together with 0.025 g 

protease and approximately 40 ml Nf4HC03 buffer (0.1 M, pH 8). The 

suspensions were homogenized in a 'Potter' homogenizer, transferred to 

polyethylene centrifuge tubes and placed in a shaking water bath at 37"C for a 

minimum of 4 hours. Following enzymolysis digestion, the samples were 

centrifuged at 2500 rpm for 20 min, the supernatant transferred quantitatively to 

volumetric flasks and made up to volume with the ~HC03 buffer. The samples 

and standards were spiked with caesium to give a final concentration of 100 J.lg 1"1 

Cs which acted as an internal standard prior to analysis by ICP-MS. 
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5.3.1.5 Chromatographic conditions for the determination of selenium 

species using HPLC-ICP-MS and HPLC-ESMS 

The chromatographic system consisted of a Dionex AS ll column (250 x 4.1 mm 

i.d.) packed with a strong anion-exchange polymeric based resin of 10 !liD 

diameter with a guard column (50 x 4.1 mm i.d.) of the same material. The 

mobile phase was a step-gradient of 10 mM NI-4HC03 with 10% MeOH at pH 5 

(adjusted with glacial CH3COOH) and 50 mM NI-4HC03 with 10% MeOH at pH 

5 (adjusted with glacial CH3COOH). The elution program is given in Table 5-8. 

The eluent flow rate used throughout was 1 ml min-1
, with a 20 Ill sample loop 

for HPLC-ICP-MS, and by using a post-column splitter, a flow rate of 150 Ill 

min-1 with a 200 Ill sample loop was used for HPLC-ESMS. 

Table S-8 Elution program for selenium speciation using HPLC-ICP-MS 

l 0 mM NlLtHC03 

(adjusted to pH 5) 

50 mM NHtHC03 

(adjusted to pH 5) 

0-5 min 

100% 

0% 

5-9min 

0% 

100% 
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100% 

0% 



5.4 Results and discussion 

The techniques used for the elucidation of arsenic-containing compounds in a 

marine algae were applied in a similar manner for the identification of selenium­

containing compounds in the yeast sample. Protease was the enzyme of choice 

for extraction of species due to its efficiency, and also its successful use is 

frequently reported in the literature 197
• 

174
• However, one of the disadvantages 

encountered with the use of proteolytic enzymes is that infonnation surrounding 

the original protein is lost and therefore other extraction techniques may be used 

to avoid this effect 1 1 1
• 

Total concentrations of selenium in the yeast sample extracts were determined 

following HN03 and enzymolysis digestions using direct ICP-MS. The results are 

given in Table 5-9. The totals from the enzyme digestions are given together with 

their extraction efficiencies, which were calculated as a ratio of the total 

concentrations obtained from the HN03 digests. The results are given with 95% 

confidence intervals and are in agreement with the reference values. 
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Table S-9 Total selenium in HNOy'H20 2 and enzyme digests of yeast using ICP-MS. Results are 
given in mg kg"1 as the element 

Total Se Extraction efficiencies 

HN03 acid digest 1282 ± 33 100±5% 

Enzyme digest 1158 ±99 90±8% 

Reference value 1300 

LOD (3 x SD) 0.0041 

Speciation studies of selenium in yeast were performed by HPLC-ICP-MS prior 

to verification by HPLC-ESMS, using the conditions described in sections 5.2.1.1 

and Table 5-7. Chromatographic conditions employed are described in Section 

5.3.1.5 and Table 5-8. A typical chromatogram of selenium standards using 

HPLC-ICP-MS is shown in Figure 5-24 and that of the yeast sample in Figure 5-

25. 
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Figure 5-14 Typical chromatogram of Se standards by anion-exchange HPLC-ICP-MS as 
described in Section 5.3.1.5 and Table 5-8. Peak I, SeCys at I mg 1"1; Peak 2, SeMet at I mg 1"
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Figure 5-15 Chromatogram of yeast sample by anion-exchange HPLC-ICP-MS as descn"bed 
above. 
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The chromatogram of the yeast sample (Figure 5-25) suggested that the major 

peak seen corresponded to SeMet, having a similar elution time to that of the 

SeMet standard, and that a small peak of SeCys was also present. Analysis by 

HPLC-ESMS was employed for comparison of the peaks obtained in order to 

confirm their identity. 

One of the advantages to working with selenium compounds is that selenium has 

6 isotopes. The characteristic isotopic pattern can be used to assist in identifying 

selenium compounds present in a spectrum, without prior knowledge of the 

expected compound. The six isotopes together with the ratios of their natural 

abundance are shown in Table 5-10. Figure 5-26 demonstrates the presence of the 

isotopic pattern in SeMet based on its M+H'" monoisotopic mass of 198. 

Table 5-10 Selenium isotopes and their natural abundance 

Se isotope Natural abundance, % 

74 0.9 

76 9.1 

77 1.5 

78 23.5 

80 50 

82 9.0 
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Figure 5-26 SeMet profile by ESMS, using the conditions descn"bed in table 5-7, demonstrating 
the characteristic isotopic pattern of a selenium-containing compound. 

A standard of SeCys based on its M+W monoisotopic mass of 337 is shown in 

Figure 5-27 which demonstrates the isotopic pattern that identifies a compound 

possessing a selenium-selenium bond in a m/z spectrum. 

235 



., 
u 

~ 
§ 
~ 
~ ·p 

..!!! 
~ 

'"' .. 
., 

" .. 
,. 
"' 

" 337 .. .. 
.. 
.. .. .. 
.. 

335 
" .. 339 

" 
10 

333 

,,, I .dl J l ' 
., ., '"' ... ... ,., ,., 

"" "" ... ... ... .. ... ... ... ... ... .... ... ... .., 

mlz 

Figure S-27 SeCys centroid profile in a mlz spectrum, using the conditions described in table 5-7, 
demonstrating the expected selenium-selenium bond isotopic pattern 

When analyzing standards by HPLC-ESMS, a similar phenomenon was seen for 

the selenium species as was seen for the arsenic, i.e. that the elution times are 

slightly prolonged to those obtained by HPLC-ICP-MS, again probably due to the 

differences in the sample introduction train. Chromatograms by HPLC-ESMS for 

the selenium standards and yeast sample are shown in Figures 5-28 and 5-29, 

respectively. The chromatogram of the yeast sample (Figure 5-25) is limited in 

supplying information due to the high presence of matrix ions. However, if the 

SIM mode is used to pick out m/z 198 and 337, the SeMet and SeCys peaks can 

be seen. This chromatogram is shown in Figure 5-30. The altered elution times 
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are comparable to elution times for the SeCys and SeMet standards using HPLC-

ESMS. 
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Figure 5-28 SeMet and SeCys standards in SIM mode using anion-exchange HPLC-ESMS with 
the conditions described in section 5.3.1.5. and Tables 5-7 and 5-8. 
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Figure 5-29 Chromatogram of yeast sample extract using anion-exchange HPLC-ESMS with the 
conditions described in section 5.3.1.5. and Tables 5-7 and 5-8. 
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Figure 5-30 Yeast sample extract in SIM mode by HPLC-ESMS ESMS, using the conditions 
described in section 53.1.5. and Tables 5-7 and 5-8, demonstrating the response against retention 
times at mass 337 and 198. 
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The use of MSMS to observe the fragmentation patterns of the SeMet and SeCys 

standards was undertaken; the structures for which are shown in Figure 5-31. The 

fragmentation spectra by MSMS of these compounds are shown in Figures 5-32 

and 5-33, respectively, and are consistent with their chemical structures. 

o,.,_ J:2 

_...se ,.....,_ 1 T "" 'Se 1 'OH 
OH NH2 

Selenomethionine Selenocystine 

Figure 5-31 Structures of the two selenium compounds under investigation 
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Figure 5-32 Tandem ESMS, using the conditions described in Table 5-7, of SeMet standard 
demonstrating the fragmentation pattern of the molecule. 

239 



248 

.. 

.. 
" .. 

265 

.. .. 303 

"' 

320 

mfz 

337 
I .. .. 

Figure 5-33 Tandem ESMS spectrum of a SeCys standard, using the conditions described in 
Table 5-7, demonstrating the fragmentation pattern of the molecule. 

The fragmentation spectra are consistent with those found by other workers 65
• 

198 

and represent the fragmentation of the amino acid functional groups from the 

molecule. The fragmentation pattern of the M+W ion at rn/z 198 in the yeast 

sample was found to be the same as that for the SeMet standard which confirmed 

that the major peak in the yeast sample was attributable to SeMet. No fragment 

pattern from the molecular ion at mass 337 in the yeast sample extract was 

obtained using MSMS. This was possibly due to the lower concentration of this 

analyte in the sample and that ESMS has a sensitivity of approximately xlOO 

lower than ICP-MS. 
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The results usmg HPLC-ICP-MS and HPLC-ESMS, together with MSMS, 

demonstrate the presence of selenium-containing compounds in the yeast sample 

with the predominant species being that of SeMet. 

5.5 Conclusions 

The use of HPLC-ICP-MS in conjunction with HPLC-ESMS as complementary 

techniques to one another has proved beneficial in the identification and 

characterization of species that may otherwise remain unidentified. or in need of 

corroborative evidence, when using each technique in isolation. The 

chromatographic method developed requires minimal sample preparation time 

and is compatible with both methods of detection. 

Sample analysis using HPLC-ICP-MS of arsenic species in the Fucus sp. CRM 

and the Ascophyllum nodosum demonstrated the presence of arsenic-containing 

compounds with a similar elution time to that of the AsBet standard used. Using 

HPLC-ESMS to provide complementary information, the eo-eluting peak in the 

Ascophyllum nodosum sample was identified as that of the arsenosugar (328 

mass units) 3-[ 5' -deoxy-5 '-( dimethylarsinoyl)-Jl-ribofuranosyloxy ]-2-

hydroxypropylene glycol. The eo-eluting peak, having a similar elution time to 

that of AsBet, in the Fucus sp. was not identified. However, information was 

obtained confirming the absence of AsBet. Further studies of the Fucus sp. 

sample using HPLC-ESMS and MS-MS techniques gave a wealth of information 

regarding a number of arsenic-containing compounds present. Characterization of 
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the species demonstrated the presence of three previously identified arsenosugars 

18• 19 supporting the research carried out by other workers in that arsenosugars 

form a major component of the arsenic found in marine algae 
196

• 

Selenium speciation using HPLC-ICP-MS together with the information obtained 

using HPLC-ESMS in the selenized yeast sample, a prospective CRM, has 

presented information that would otherwise be unavailable using HPLC-ICP-MS 

alone. The major selenium-containing peak in the yeast sample matched the 

elution time of the SeMet standard used in HPLC-ICP-MS. However, the 

molecular information obtained using HPLC-ESMS provided an added certainty 

of the species present This information is vital for materials that may be used as 

CRMs as the purpose of CRMs is to offer a route of validation for analytical 

procedures. Total elemental concentrations together with as much information as 

possible regarding species information will prove useful when analyzing 

materials of a similar nature. Where possible, materials being considered as 

CRMs for speciation analysis should also consider the use of ESMS to provide 

corroborative evidence of the 'actual' species present. 
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6 Conclusions and future work 

6.1 Conclusions 

Elemental speciation has become an essential component in the field of analytical 

science due to increased awareness of the varying nature of the species of the 

same element. Total elemental analysis is no longer adequate for the complete 

understanding of the biochemical impact of an element in its environment. 

Methodology designed to enable the separation, identification and quantification 

of elemental species has utilized instrumental techniques where elegant 

separation ·techniques have been hyphenated to sophisticated detectors according 

to requirements. The versatility obtained by the use of HPLC together with the 

low detection limit capabilities of ICP-MS, and their inherent compatibility, has 

played a significant role in the extensive number of speciation studies performed. 

However, for toxicological purposes, full speciation using HPLC may not always 

be necessary. Separation of relatively toxic from relatively non-toxic species may 

be sufficient for assessment and remediation. 

Work was undertaken that focused on the separation of relatively toxic from 

relatively non-toxic species of arsenic and selenium found in samples of 

.environmental importance, with particular emphasis placed upon the food chain. 

The aim was to develop a simple system that was efficient in separating, 

identifying and quantifying the species according to the broader screening 

characteristics of toxic versus less toxic whilst taking advantage of the their pi<.,. 

values in order to achieve this. A quick, cheap, low-pressure and portable method 
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allowing both selenium and arsenic species to be quantified, if present, in the 

same sample and at the same time using a suitable multi-element specific detector 

was developed. The arsenic species studied were inorganic As01 and Asv, which 

were broadly classified as relatively toxic, and AsBet and DMA, which were 

broadly classified as being relatively non-toxic. The selenium species 

investigated were inorganic Se1v and Se VI, which were broadly classified as 

relatively toxic, and SeMet, which were broadly classified as being relatively 

non-toxic. 

A range of mini-columns of different dimensions were packed with two types of 

anion-exchange resin and a series of experiments based upon optimization of 

conditions to achieve the above aims were performed. The conditions studied 

were eluent competitive counter ion type and concentration, eluent flow-rate, 

column length, pH (to manipulate pKa values) and sample injection volume. The 

preferred resolution was obtained using Hamilton PRP XlOO, 12-20 !lffi, resin. 

These column dimensions allowed suitable separation of species in the presence 

of competitive matrix ions from the sample digest without using unfavourably 

high back-pressures, thus allowing the use of a low-pressure pump to control the 

eluent flow-rate. A mobile phase of pH 10.2 created optimum conditions for 

major charge differences on the species resulting in adequate separation and 

resolution. Of the eluent competitive ion types studied; phosphate, phthalate and 

sulphate, for a range of concentrations, the most efficient for clearly separating 

both relatively toxic from relatively non-toxic arsenic and selenium species at the 

same time was found to be the sulphate counter ion at 10 mM concentration. 
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The optimum conditions of I 0 mM K2S04 aqueous mobile phase at pH I 0.2 with 

an eluent flow-rate of 1.25 ml min"1 using a lOO x 3 mm column packed with 

Hamilton PRP XIOO, I2-20 J.Lm, resin and a sample injection volume of IOO J.Ll 

were clearly demonstrated using standards, digests of certified reference 

materials (DORM-2 and TORT-2) and digests of marine samples (plaice and 

oyster). Separation of the arsenic and selenium species into their relative toxicity 

classification was achieved in under 7 minutes. The conditions studied show 

linearity up to 500 J.Lg 1"1 for the arsenic and selenium species, based upon their 

inorganic and organic forms. Arsenic and selenium species were extracted from 

all samples using trypsin for the marine samples and protease for the 

Selenoprecise®. Extraction efficiencies were generally over 90% compared with 

the total arsenic and selenium values determined using a HNOYH202 digest. 

Mass balance calculations were performed for the CRMs TORT-2 and DORM-2, 

the oyster and plaice samples and the Selenoprecise®. The mass balance results 

compare more than favourably with the certified and reference values based upon 

organic and inorganic arsenic and selenium calibration. 

The validity ofthis simple procedure for screening biota samples in terms of their 

arsenic and selenium toxicity was therefore demonstrated. Under the optimum 

conditions employed, limits of detection were determined to be in the range of2-

I 0 J.Lg kg"1 for organic and inorganic arsenic and selenium species. The results for 

the plaice, oyster and Selenoprecise® samples show that over 90% of both the 

arsenic and selenium is present in the relatively non-toxic organic forms. This 

rapid (under 7 mins) screening technique allows a suitable estimate of the 
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implications for human health to be made for the samples with regard to arsenic 

and selenium without resorting to full speciation techniques. 

To fully comprehend the biogeochemical cycling of elements in the environment 

it is imperative to identify and determine the species of these elements in 

conjunction with total element concentrations. To enable research in this vital 

field of science to progress, the preparation and certification of a variety of 

biologically and environmentally important materials for total element and 

species concentrations is required. The advantages of using the more complex 

HPLC methodology, where comprehensive separation and identification of 

species can be achieved using optimum chromatographic conditions, was 

demonstrated where samples of environmental importance were analysed as part 

of a feasibility study for the future production of CRMs. 

The work carried out, as one of the collaborating partners, in a European CRM 

feasibility study was performed using ion-exchange HPLC-ICP-MS for the 

separation and determination of arsenic species in fish, rice, chicken and soil 

samples and selenium species in yeast and wheat samples. The role of the 

University of Plymouth was to carry out a preliminary study on a variety of fish 

types (plaice, monk, hake, haddock, cod, coley, pollack and whiting) to screen for 

one fish type that would be suitable for inclusion in the feasibility study as a 

candidate reference material. The plaice sample was chosen as it was decided that 

it met the criteria of merit based upon it having a relatively high level of arsenic, 

determined at 38.7 ± 1.9 mg kg"1 present in the form of AsBet, combined with the 
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best enzymatic extraction efficiency, determined at 98% using trypsin, seen for 

all fish types under investigation. The presence of AsBet, as the major species 

seen in the plaice sample extract, was confirmed using HG-AAS and anion and 

cation-exchange HPLC-ICP-MS. Following processing by IRMM, homogeneity 

and stability studies were performed on the plaice sample as part of the 

certification process. Results for the plaice sample indicated that sample units 

were homogenous, within and between unit, at an amount not less than 0.25 mg 

and that the material was stable within the temperature range of 4-40°C and a 

time-scale of 0-7 months. 

The inter-laboratory comparison study for determination of arsenic and selenium 

species in all candidate sample materials was performed with optimized 

conditions for each sample using ion-exchange HPLC-ICP-MS. Enzymatic 

extraction techniques for the speciation of the new candidate reference materials 

were used throughout, with the exception of the soil samples. Trypsin was used 

for extraction of arsenic species in the fish and chicken samples, cellulase for 

extraction of arsenic species in the rice sample and H3P04 for the extraction of 

arsenic species in the soil sample. Protease was used for the extraction of 

selenium species in the yeast sample and trypsin for the extraction of selenium 

species in the wheat sample. Extraction efficiencies were determined to be in the 

range 92-100% demonstrating that the enzymes chosen were fit for purpose. 

The results obtained demonstrated the presence of AsBet as the major species in 

the fish sample, inorganic arsenic as the major species in the rice sample, organic 

248 



simple methylated species of DMA and MMA were present in the chicken 

sample and the presence of inorganic arsenic species, in particular arsenate, 

dominated the soil samples. The yeast sample showed the presence of selenium 

as SeMet and the wheat sample contained both SeMet and SeCys, with SeMet 

being the dominant species. The presence of the various arsenic and selenium 

species in the samples appeared to conform to species found in similar samples 

by other workers. The use of CRMs for method validation lent credibility to the 

exercise. Quantification of samples were in close agreement with the certified or 

reference values given for the CRMs. The success of the feasibility study will be 

decided when all participating laboratories have submitted their results. It is 

hoped that the materials under investigation will be suitable to go forward. in the 

near future, for full certification. 

The choice of selenium as a biologically important element, particularly in the 

human diet, was fully recognized following the clinical trial carried out by Clarke 

et al. 41 who demonstrated the efficacy of selenized yeast-based supplements in 

providing a degree of protection against carcinogens. Since this time, much 

research has been undertaken in order to identify the active form, or forms, of 

selenium that confer these anticarcinogenic properties. Research work, for the 

extraction of selenium species in two, new bio-natured nutrients, an alternative to 

the commercially available selenium supplements was undertaken. The sample 

types were a selenized yeast from a new process and a probiotic bacteria-based 

dried milk sample (Biogurt®). A variety of extraction methods were employed 

that included the use of enzymes, MeOH-based extractions and extraction with 
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KOH and TMAH. Fracturing of the cell walls of the sample materials was 

attempted by freezing in liquid nitrogen as an alternative method for releasing the 

cell contents. Examination of the samples, using scanning electron microscopy, 

following freezing showed no change in the cell structure and, therefore, did not 

enhance the extractability of selenium-containing compounds from the materials. 

Methods that avoided species conversion with the highest extraction efficiencies 

were found to be the use of protease for the yeast sample (19%) and the use of 

0.01 M HCl for the Biogurt® (71%).1nformation obtained from the speciation of 

these samples by anion and cation-exchange HPLC-ICP-MS was restricted due to 

the low extraction efficiencies obtained for the samples and that the 

chromatographic system was not fully optimized for resolution of the unknown 

compounds from the standards used. Validation of the methodology employed 

was obtained by the use of a well-studied yeast sample, available from Pbarma 

Nord, where enzymatic extraction using both protease and trypsin gave extraction 

efficiencies of 90-100%. The selenium was found as Se Met at 1005 ± 71 mg kg-1
, 

as the element, which compared favourably with the results obtained by 

HNOYH202 digestion. 

It is known that yeast-based selenium food supplements can demonstrate a 

significant variety in the selenium species present with some brands showing 

generally low recoveries of any form of selenium 131
, and may have matrix 

problems, which make effective extraction difficult The results from this study 
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seriously placed in doubt the availability of the organo-seleniwn species in the 

selenized yeast and Biogurt® samples, which they were designed to deliver. 

The use of HPLC-ICP-MS as a sophisticated analytical technique is undeniable. 

However, a drawback associated with ICP-MS, an element-specific detector, is 

the loss of structural information. The introduction of ESMS, which retains 

molecular information, has enhanced the performance characteristics of HPLC­

ICP-MS by its complementary use in the identification and characterization of 

previously unknown compounds. 

The identification of compounds by HPLC-ICP-MS has relied upon the 

matching of retention times of analyte peaks to that of known standards. 

Ambiguities can arise due to problems associated with eo-elution of compounds 

and where pure standards are not commercially available. The complementary 

use of HPLC-ESMS, where molecular information is retained, can overcome 

these problems and assist in the characterization of previously unidentified 

compounds. The use of HPLC-ESMS as complementary to that of HPLC-ICP­

MS was used for part of the work towards this thesis in the identification of 

selenium-containing compounds in yeast and for arsenic-containing compounds 

in two marine algae. The yeast sample was chosen for the biological importance 

of the form of selenium present, in terms of bioavailability and toxicity with 

relation to human health. The marine algae samples were chosen as they are 

known to contain arsenosugars, for which there are no commercially available 

standards, and that arsenosugars may eo-elute with known arsenic standards, i.e. 

AsBet and DMA, giving rise to potential errors in identification of species. 
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Development of an HPLC system that was compatible with ICP-MS and ESMS 

was undertaken so that comparisons between the two techniques could be made. 

Anion-exchange chromatography for the separation of arsenic and selenium 

compounds comprising an isocratic mobile phase of 10 mM ~HC03 + 10% 

MeOH, pH 10.2 for arsenic speciation and a gradient of 10-50 mM ~C03 + 

10% MeOH, pH 5.0 for selenium speciation was found to provide optimum 

conditions for use with both ICP-MS and ESMS detection. The volatile aqueous 

NH.tHC03 mobile phase and the presence of MeOH assisted in the formation of 

the gas phase ions. The presence of organic solvents is also advantageous for 

ICP-MS sample detection in the reduction ofpolyatomic interferences 70
. 

Analysis of the marine algae samples using HPLC-ICP-MS demonstrated the 

presence of arsenic-containing compounds in both samples. The first eluting peak 

in both samples was at a similar retention time to that of the standard, AsBel 

Further work using HPLC-ESMS identified this peak, obtained from the 

Ascophyllum nodosum sample extract, as the arsenosugar 3-[5'-deoxy-5'­

( dimethylarsinoyl)-P-ribofuranosyloxy ]-2-hydroxypropylene glycol (mass units, 

328). No arsenic-containing compound was identified for the peak in the Fucus 

sp. sample. However, the absence of AsSet was demonstrated using the SIM 

mode in ESMS at mass 179 (M+W ion of AsBet) where no peaks were seen. 

A full study of the Fucus sp. sample was undertaken. The presence of a number 

of previously identified arsenic-containing compounds 18
• 

19 when using HPLC­

ESMS together with tandem MS techniques, to obtain fragment pathways of the 
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parent molecule which assisted in the characterization of the arsenic-containing 

compounds, were found. The peaks obtained using HPLC-ESMS corresponded to 

the peaks obtained using HPLC-ICP-MS (having taken into account the shift in 

elution times due to differences in the sample introduction train between the two 

techniques) where the presence of arsenic was confirmed due to the element-

speciflcity of the ICP-MS detector. 

A similar complementary use of HPLC-ICP-MS and HPLC-ESMS was 

undertaken when investigating the yeast sample, a potential certified reference 

material. The major species in the yeast sample was identified as SeMet. This 

was confirmed by the matching of elution times with that of standards when 

using HPLC-ICP-MS and from the fragmentation pathways seen using HPLC­

ESMS in the tandem MS mode. The fact that element-specific and molecular­

specific information was obtained using both techniques provided essential 

speciation information, of particular use where materials are to be used as CRMs. 

The simplicity of the methodology was an asset when compared to other work. 

However, the limitations imposed upon the ESMS mode of action by matrix 

suppression were found to be unacceptable. The lack of seeing elemental ions in 

ESMS also contributed to limitations in species identification. 
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6.2 Future work 

Future work, utilizing low-pressure mini-column liquid chromatography as an 

initial, rapid screening method, for assessing the toxicological impact of an 

element and its species may include the development of methodology for a wider 

range of environmentally important samples and to include a broader range of 

arsenic and selenium species. This may be achieved by further method 

development of the system already devised and by the inclusion of cation-

exchange resins with optimization of chromatographic conditions. The use of 

resins for pre-concentration of samples to achieve lower limits of detection would 

be considerably useful for application in the study of waters and in the clinical 

application for the study of biological fluids. 

In the work described in chapter two, the DMA under investigation was assumed 

to be less toxic than the inorganic forms of arsenic with methylation of inorganic 

forms .being a detoxification pathway. However, research has come to light 

suggesting that MMA and DMA in the +Ill oxidation state are as cytotoxic as 

arsenite 199
• Further work towards the understanding of the stability of these 

compounds in the environment is needed together with the development in 

methodology capable of separating the +Ill from the +V oxidation state of the 

individual species. 

The ability of analytical chemists to continue developments in methodology for 

the production of CRMs that are certified for species as well as 'total' elemental 

concentrations is particularly relevant when considering samples of biological 
254 



and environmental importance. The ability to separate and identify arsenosugars 

present in marine algae samples is vital for progress to be made in understanding 

the biochemical cycling of these compounds, the nature of their toxicities and 

relationship to human health. Due to the diversity of functional groups possessed 

by different arsenosugars and that some algae contain large amounts of lipid­

bound arsenic, extraction procedures for obtaining the species may vary in their 

efficiencies. This makes the detennination of species present in a sample difficult 

to achieve with low uncertainties. Method validation cannot be applied 

successfully due to the lack of CRMs certified for arsenosugars and the lack of 

commercially available standards. However, operationally defined methods of 

detennination in candidate reference material may be a starting point for the 

inclusion of CRMs for arsenosugars to be made available commercially. Method 

development using HPLC-ICP-MS with the complementary technique of ESMS 

on a wide range of environmentally important samples will move forwards the 

possibility of full characterization and quantification of species present in a 

sample for use as certified reference materials. Work in the area of matrix 

removal, to minimize suppression of the analyte signal by concomitant ions, 

whilst keeping sample preparation to a minimum to make routine analysis 

possible, is required to facilitate and enhance the wealth of information that can 

be obtained. 

Work is the area of species extraction from the sample matrix needs to focus 

upon methods that are efficient and do not cause species conversion to take place. 

In areas where selenoprotein information is required, the use of extraction 
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procedures that do not cleave aminoacid groups is fundamental to success. This 

requires the use of either water/methanol-based extractions or enzymatic 

extractions with non-proteolytic action. The possibility of devising sequential 

extraction procedures will enable the researcher to obtain information regarding 

the partition of selenium compounds within a sample matrix. Optimization of 

these extraction procedures is necessary for their use to become part of routine 

laboratory practice. The development of effective extraction procedures for the 

analysis of selenized yeast cannot be over-emphasized due to the necessity in the 

identification of the specific forms of selenium that may have a direct influence 

on anticarcinogenic activity within the human body. 

Work in the separation. identification and determination of selenium compounds 

using chiral separations, isotope dilution techniques and ESMS instrumentation 

would further assist in understanding the absorption. metabolic fate and 

anticarcinogenic activity of selenium in foodstuffs or pharmaceutical preparations 

following consumption by the human population. In addition. the biochemistry of 

living organisms exhibits a strong enantioselectivity. Mammalian proteins are 

built exclusively of L-amino acids and research has suggested that the D-

selenocystine is one third as toxic as L-selenocystine 200
• Consequently, research 

on the biological activity of selenomethionine and the analytical control of 

selenium-containing supplements require access to methodologies that are able to 

perform optical resolution and determination of D,L-selenomethionine 

enantiomers. This has been achieved by HPLC on cyclodextrin columns which 

requires a derivatization step 201 and more recently by the use of chiral crown 

256 



ether columns that do not require derivatization of the enantiomeric forms of the 

analyte 202. 

It is crucial that analytical capabilities in the field of speciation continue to 

progress in order to appreciate, in greater detail, the effects of trace elements in 

the health of the general population. Coupled techniques, such as HPLC-ICP-MS 

and HPLC-ESMS, offer an attractive route towards this aim. Improved method 

development together with a wider choice of standards and CRMs for quality 

control and assurance will play an essential role in this. 
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