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Adaptive Search and The Preliminary Design of Gas Turbine Blade Cooling Systems 

Rajkumar Roy 

ABSTRACT 

This research concerns the integration of Adaptive Search (AS) technique such as the 

Genetic Algorithms (GA) with knowledge based software to develop a research prototype 

of an Adaptive Search Manager (ASM). The developed approach allows to utilise both 

quantitative and qualitative information in engineering design decision making. A Fuzzy 

Expert System manipulates AS software within the design environment concerning the 

preliminary design of gas turbine blade cooling systems. Steady state cooling hole geometry 

models have been developed for the project in collaboration with Rolls Royce plc. The 

research prototype of ASM uses a hybrid of Adaptive Restricted Tournament Selection 

(ARTS) and Knowledge Based Hill Climbing (KBHC) to identify multiple "good" design 

solutions as potential design options. ARTS is a GA technique that is particularly suitable 

for real world problems having multiple sub-optima. KBHC uses information gathered 

during the ARTS search as well as information from the designer to perform a deterministic 

hill climbing. Finally, a local stochastic hill climbing fine tunes the "good" designs. Design 

solution sensitivity, design variable sensitivities and constraint sensitivities are calculated 

following Taguchi's methodology, which extracts sensitivity information with a very small 

number of model evaluations. Each potential design option is then qualitatively evaluated 

separately for manufacturability, choice of materials and some designer's special preferences 

using the knowledge of domain experts. In order to guarantee that the qualitative evaluation 

module can evaluate any design solution from the entire design space with a reasonably 

small number of rules, a novel knowledge representation technique is developed. The 

knowledge is first separated in three categories: inter-variable knowledge, intra-variable 

knowledge and hewistics. lnter-vaiiable knowledge and intra-variable knowledge are then 

integrated using a concept of compromise. Information about the "good" design solutions is 

presented to the designer through a designer's interface for decision support. 
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CHAPTER-I 

1. Introduction 

1.1 Decision Making in Engineering Design 

Decision making is the principle task in engineering design [Starkey (1992)]. The advent of 

new technologies, especially computer based tools, has helped designers to design a product 

more efficiently. The new technologies are mostly useful in automating routine tasks 

involved in the design process. Decision making is still very much left to the designers. The 

ever growing competition in the market place and increasing expectation of the users are 

adding many more dimensions to the design decision making process. Thus decision making 

is becoming increasingly complex. With the advancement in technology the demography of 

the work force is also changing. Designers with many years of experience in one area are 

becoming an extinct species. When facing the realities of increasing complexity, some 

designers with relatively less experience find decision making difficult. The designers often 

face a hard dead line in which to produce an efficient design that has improved functionality 

and reduced costs. The nature of the challenge varies according to the stage of a design. A 

design process generally starts at the conceptual level, and that stage is known as 

conceptual design. Conceptual design is very abstract and approximate, but determines a 

framework for the design. This stage of design process involves knowledge from different 

aspects of a design, and can be considered the most innovative stage in the design process. 

Once the general framework is identified, the next stage is preliminaty design. Preliminary 

design is less abstract and more detailed than the conceptual stage. As a result of the 



preliminary design, an approximate design solution is selected, and subsequently fine tuned 

during the next detailed design stage. Detailed design involves rigorous design analysis that 

fine tunes the preliminary design. 

At every stage of a design process, the designer has to select one solution from a number of 

alternatives [Smith and Browne (1993)], and thus an initial design is optimised. The design 

process can be described as a divergent-convergent phenomenon. At the initial divergence 

stage of a design many alternative solutions are generated. The designer then converges to 

(selects) only one solution, and this stage of the design is known as the convergence stage. 

The designer's decision in one stage of a design can significantly influence the outcome of 

the next stage of the design. A wrong decision at one stage of a design can eventually 

produce a final design solution with low performance [Sherwin (1982)]. With the increasing 

complexity in the marketplace, design decision making is becoming much more difficult. 

Designers are often expected to evaluate a design from many different considerations and 

then select the best suited solution. These criteria may be contradictory to each other. Some 

of the criteria can be quantitative whereas others can be qualitative in nature. Time 

available for the decision making is continuously reducing due to market competition. Thus, 

designers often have to deal with a vast amount of information for decision making within a 

short period of time which may cause cognitive overload. 

Decisions made by a designer during the design process can be divided into three 

categories: Fundamental, Intennediates and Minors [Starkey ( 1992)]. Fundamental 

decisions are the most important decisions among the three. This category of decisions is 

absolutely crucial for the success of the design project. The fundamental decisions 

determine the principal components of a design which form a foundation. Other non 

fundamental decisions are developed from this foundation to fine tune the design. The 
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intermediate and minor types of decisions are less important than the fundamental decisions. 

Minors are relatively unimportant decisions that have little effect upon the design 

performance. The minor decisions are most often concerned with design details. 

Design can also be considered to represent a process that begins with a recognition of the 

need and the conception of an idea to meet this need [Balachandran (1993)]. Thus, in design 

decision making the main aim of the designer is to find a design solution that meets or 

closely meets the performance requirements of the design, while satisfying all the 

constraints. That defines a concept of 'optimum design' as a design that is feasible and also 

superior to a number of other feasible alternative designs. There are two ways to obtain an 

optimum design: through an iterative process or by solving an optimisation problem. The 

iterative process improves a design by repeated modifications. The design variables are 

changed one at a time. Designers often use their previous experience to decide changes in 

the design variables. They may easily improve a design involving few variables. If the design 

involves many variables this can pose a great challenge to the human designer, especially if 

he or she needs to consider variable interaction. If the designer does not have pnor 

knowledge about the design the iterative process can simply become a trial and error 

exercise. Thus the iterative approach can be very time consuming and tedious. On the other 

hand, the second approach (i.e. solving an optimisation problem) can simultaneously 

determine all the design variables so as to satisfy a set of constraints and optimise a set of 

objectives. To solve an optimisation problem a computable design model is required. Many 

aspects of a design process can be represented by a formal model and are thus computable. 

On the other hand, some of the required designer's knowledge can be very abstract and 

complex, and thus can not be formalised. A design therefore can involve computable or 

quantitative formal knowledge as well as qualitative or abstract knowledge. In the absence 
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of a fonnal model of the design process or at least a partial model, the iterative approach 

may often become the only choice. 

Designers typically require much infonnation for design decision making. Infonnation is 

collected from the laws of physics, previous experiences, available literature, logical 

deductions and designers' intuition. Some of the infonnation may be imprecise and 

ambiguous, whereas some may be precise and structured. The designer often faces a 

challenge to manipulate this combination of precise and imprecise infonnation in order to 

reach a decision. To achieve good decisions, the designers must be able to take an overview 

of the possible alternative actions at any point in the design process. The designers can then 

predict the results of more than one selected course of action. The predictions can be 

heavily influenced by various other industrial factors and also the market environment. For 

example, predictions about a design action can be affected by the impact of that decision on 

the manufacturing organisation responsible for implementing that decision and on the end 

user (that is the customer). The impact of the decision on the overall market (that is the 

market environment within which the industry operates) also needs to be assessed. With the 

dynamic nature of the industrial and market environment in many cases it becomes almost 

impossible to predict the outcome of a decision very precisely. Design decisions that use 

precise infonnation from historical data, scientific evidence, etc. can be said to be virtually 

certain. The decisions that involve designers' knowledge, intuition and judgement involve a 

certain degree of uncertainty. Uncertainty can also be caused due to the complex dynamic 

interactions within the industry, between the industry and the market environment, 

imprecision involved in the designers' knowledge and vagueness involved in the designers' 

language. It is observed that designers often use their higher level knowledge and 

intelligence to perform the decision making even in the presence of high uncertainty 

[Balachandran (1993), Tong and Sriram (1992), Suh (1990), Green (1992), Coyne et. al. 
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(1990)]. The research reported in this thesis tries to address some of the issues involved in 

design decision making. The adaptive search manager is a systematic approach to provide 

relevant information to the designer so that the decision making can be facilitated and 

cognitive overload can be minimised. 

The research reported in this thesis is intended to provide a framework for the development 

of a design decision support system for the preliminary design stage of a gas turbine blade 

cooling system The system is developed to provide relevant information concerning 

alternative design solutions to the designer. The information is utilised by the designer to 

select one design solution for the cooling system The preliminary design stage involves a 

coarse model of the cooling system, so the selected design is approximate and would need 

fine tuning in the detailed design stage. The objective of this exercise is to rapidly identifY 

the most interesting design direction [Parmee (1993), Parmee(1994)] that is then utilised in 

the detailed design stage. 

1.2 Engineering Design Decision Support 

Chandrasekaran ( 1990) desc1ibes a design problem as a search problem in a large space for 

objects that satisfY multiple constraints. An object in the design space is equivalent to an 

acceptable value of a design variable. Only a very small number of objects in this space 

constitute satisfying, not to mention optimal, solutions. In order to make design decisions, 

practical strategies that radically shrink the search space are needed. A good design decision 

support tool can assist a designer in the search space reduction. The first step towards the 

search space reduction is to separate the information required for a design into two 

categories: formal and non-formal. The information obtained from the laws of physics, 

design catalogues, and design archives is structured and probably computable. Thus the 

information can be considered as contributing towards formal knowledge. The designer's 
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experience, intuition and judgement can be very abstract, unstructured and incomplete, thus 

they constitute the non-formal knowledge. 

It is observed that engineering designers can often handle formal and non-formal knowledge 

separately. There are many numerical optimisation techniques [Goldberg (1989), Fonseca 

and Fleming (1995), Srinivas and Deb (1995), Pham and Yang (l993a) and (1993b)] that 

can be used for design decision making. Numerical optimisation techniques consider formal 

knowledge only. Y ang and Sen (1994) describe an interactive multiple objective decision 

making procedure. The process describes a multiobjective preliminary design problem as a 

non-linear vector maximisation problem The technique defines the design model using 

some computable functions. The methodology is a learning-oriented interactive technique 

that supports the designer in easily searching for preferred solutions following an adaptive 

approach. The technique allows designer's preferences to be progressively articulated with 

the generation of efficient design solutions. Through designer interaction the technique also 

makes sure that no unacceptable solution is selected as a preferred design. Numerical 

optimisation methods can provide the designer with multiple preferred solutions and thus 

reduce the search space for the designer. Design decision making with non-formal 

knowledge can be a very difficult task. Many attempts have been made to represent non­

formal knowledge as production rules [Balachandran (1993), Coyne et. al. (1990), Green 

(1992), Tong and Sriram (1992)]. Production rules can then be used with a Knowledge 

Based System to provide support in design decision making. Balachandran ( 1993) identified 

the following major advantages of knowledge based systems: 

a. Knowledge based systems provide a flexible environment which can 

incorporate designers' knowledge, heuristics and rules of thumb; 

b. Knowledge based systems allow symbolic as well as numeric manipulation of 

information; and 
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c. They have the ability to reason using the knowledge explicitly incorporated 

within them. 

Knowledge based systems model a design problem using qualitative knowledge. Thus the 

system is capable of providing a qualitative evaluation of a design. The designer then uses 

only the evaluation information in decision making and thus faces minimal cognitive 

overload. Designs often require both qualitative (that can be considered as knowledge 

based) and quantitative (that is numerical) computation. Thus a collaboration among 

different types of programs (knowledge based, algorithmic, symbolic and numerical) written 

in different languages is essential for effective design decision support [Balachandran 

(1993)]. 

Knowledge based systems attempt to represent the qualitative knowledge involved in a 

design process. Fuzzy Expert Systems [Durkin (1994)] have made the task easier by 

modelling the knowledge using a language closer to that of the designer. Quality of the 

decision support provided by a knowledge based system depends on the quality of 

knowledge embedded in the system Knowledge is formalised from expert designers using a 

knowledge elicitation technique. It is obse1ved that there is always a gap between the 

designers' knowledge and the knowledge extracted from the designers using a knowledge 

elicitation technique. The reason is that the designers think differently when they try to 

express the strategy followed during a previous design decision [Dreyfus and Dreyfus 

(1986), Bapi and Denham(l996), Bapi et. al. (1996)]. There is always a mismatch between 

implicit thinking (when a decision is taken) and explicit thinking (when the designer tries to 

express the reasoning behind the decision). Thus knowledge based systems can never 

capture the complete knowledge. A knowledge based system along with other numerical 
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optimisation techniques can support a design decision making process, but the final decision 

needs to be taken by a human designer. 

The research presented in this thesis initially uses a numerical technique such as a genetic 

algorithm and a hill climbing hybrid to identifY multiple "good" design solutions for the 

turbine blade problem. The hybrid system starts with many randomly generated possible 

design solutions and this can be viewed as the divergence stage of the design process. Then 

the search converges to multiple "good" design solutions. The sensitivity of each of the 

"good" designs is calculated. A fuzzy expert system qualitatively evaluates these designs 

considering the manufacturability, choice of materials and designer's special preferences as 

three different criteria. The multiple design options along with the relevant quantitative and 

qualitative information are presented to the designer for the final selection. Thus the 

divergent-convergent design process is completed with the designer's participation. 

1.3 The Adaptive Search Manager 

Engineering design often involves several objectives. Tme engineering design solutions are 

not necessarily the global optimum as described by some mathematical simulation with 

respect to one criterion [Parmee (1994), Parmee and Denham (1994)]. Often designer 

interaction is required to take many different criteria into account. In the case of multimodal 

design problems there may be quite different design solutions that perform quantitatively 

similar, but have large differences in their degree of multi-criteria satisfaction. Criteria may 

include manufacturability, choice of mate1ials, maintainability, reliability, specific customer 

requirement, designer's special preferences, etc., many aspects of which can be qualitative 

in nature. Integrating all of these criteria into one comprehensive evaluation function is 

difficult and at times misleading. If the criteria are quantitative in nature a multiobjective 

genetic algorithm can be utilised [Goldberg (1989), Fonseca and Fleming (1995), Srinivas 
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and Deb (1995)]. The research repmied in this thesis attempts to obtain multiple "good" 

design solutions based on the most impmiant quantitative criteria. Sensitivities of each of 

these design solutions are then calculated. The "good" design solutions are qualitatively 

evaluated for other less well defined crite1ia. The final decisions are left to the designer. 

Figure 1.1: The Adaptive Search Manager. The figure exhibits different components of the 

system and how they interact with each other. 

An Adaptive Search Manager (AS M) (Figure 1.1) is developed by integrating a Genetic 

Algorithm (GA) [Goldberg (1989)] , an Adaptive Search technique, with Knowledge Based 

Software. The ASM comprises of a fuzzy expert system manipulating GA software within 

the design environment of the preliminary design of gas turbine blade cooling systems. A 

steady state cooling hole geometry design model has been developed for the research in 

collaboration with Rolls Royce PLC. The model can evaluate a cooling system design 

solution quantitatively. ASM is an integrated system which consists of a fuzzy expert system 

manipulating the adaptive search technique and interacting with a dynamic memory. ASM 

extracts the following information fi'om the search process for the turbine blade problem, 

which is then processed and presented to the designer: 

i) multiple "good" design solutions 
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ii) design solution sensitivity 

iii) design variable sensitivities 

iv) constraints sensitivity 

v) qualitative ratings of the "good" design solutions 

ASM uses a hybrid system of an Adaptive Restricted Tournament Selection (ARTS) [Roy 

and Parmee (1995) and (1996), and Roy et. al. (1996a)] based GA and a knowledge based 

local bill climbing technique to identifY multiple "good" design solutions (multiple sub­

optima) with respect to the amount of coolant mass flow. By identifYing multiple "good" 

designs the novel hybrid search technique considerably reduces the quantitative design 

search space for the designer. Sensitivity information concerning the neighbourhoods of the 

"good" designs is obtained using Tagucbi's methodology. The method is capable of 

providing nearly accurate sensitivity information about the neighbourhoods provided that no 

interaction between variables can be assumed within local regions. A local region is defined 

by the tolerance on each dimension and Tagucbi's ortbogonal matrix. The methodology 

provides a computationally inexpensive way of calculating the sensitivities. The designs are 

then qualitatively evaluated using a fuzzy expert system to ascertain qualitative ratings in 

terms of manufacturability, choice of materials and designer's special preferences. The 

developed qualitative evaluation system utilises domain knowledge concerning inter-variable 

preferences, intra-variable preferences and heuristics. Inter-variable preferences are 

combined with intra-variable preferences using a concept of compromise [Roy et. al. 

(1995a)]. The concept of compromise has been defined as "reducing the severity of the 

negative effect of one va1iable on the final qualitative rating". This novel knowledge 

representation technique has helped to cover the entire design space with a small number of 

rules. 
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One part of the memory is static i.e. it holds the expert knowledge regarding several 

qualitative aspects of the design thereby providing a qualitative model of the design 

problem The other part is dynamic retrieving information during the adaptive search design 

process. The system interacts with the models of the design environment that evaluate every 

single design solution both quantitatively and qualitatively. An Adaptive Search Manager 

interface has been developed using the Xview facility in the UNIX system The interface 

provides flexibility to change the boundaries of the design variables and that of the 

constraints at the beginning of a search process. The design manager is used as a decision 

support tool where the final selection of a design option is left to the designer. 

Information about the "good" design solutions is then presented to the designer. The overall 

objective is to provide as much relevant information as possible to the designer for the 

decision support. The decision support utilises the knowledge of many experts and at the 

same time can enhance the knowledge of some inexperienced designers. The presentation of 

relevant information concerning the "good" designs also helps in minimising any cognitive 

overload on the designer. The approach developed in this thesis is expected to result in the 

achievement of optimal engineering solutions [Parmee and Denham (1994), Parmee et. al. 

(1994)] at the preliminary design stage. 

1.4 Overview of the Thesis 

The thesis is divided into eight chapters. This chapter introduces principal issues in 

engineering design decision making. Then, Chapter 2 narrates the development of a 

preliminary design model of a gas turbine blade cooling system. The physics and the domain 

knowledge involved in the development are also elaborated. The model has been developed 

in collaboration with Rolls Royce plc. The chapter describes all the terminology used in the 

model development, the inputs and outputs of the model and finally the constraints on the 
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model. A step-by-step description of the model development describes the physics and the 

iterative process involved in the design. Some parts of the model reflect design practice (not 

necessarily Rolls Royce's current practice) present in the industry. The chapter concludes 

with some insight into the nature of the model in unconstrained and constrained situations. 

The adaptive search manager uses an adaptive search technique to partially represent the 

divergent-convergent phenomenon in the design. The adaptive search technique is a hybrid 

comprising of a Genetic Algorithm based search and a knowledge based local hill climbing 

method. The type of the genetic algorithm used is known as a multimodal genetic algorithm. 

Chapter 3 introduces multimodal genetic algorithms. The chapter starts with a brief 

description of genetic algorithms including the basic principles and the theory. Then the 

chapter describes bow a variant of the genetic algorithm can be used to locate multiple sub­

optima in a multimodal function. The chronological development of multimodal genetic 

algorithm is discussed. The discussion identifies the limitation of existing multimodal genetic 

algorithms in the case of real life problems. Characteristics of real life problems are 

discussed and the challenge presented by real life problems is defined. 

Chapter 4, describes a novel multimodal genetic algorithm that is suitable for real life 

problems. The developed technique is known as adaptive restricted tournament selection. 

The chapter describes the algorithm and the different issues involved in the technique. A 

comparison of the technique is performed with two other recent multimodal genetic 

algorithms. The comparison is performed on test functions and the results are presented and 

discussed. A further analysis of the developed technique is performed to understand the 

effects of a critical parameter on the performance of the technique. Results from the analysis 

are presented and discussed. Next, the adaptive restricted tournament selection technique is 

applied to the turbine blade cooling system design problem in order to identify multiple 
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"good" design solutions. A design is considered "good" if the performance of the design is 

better than similar (that is closer in terms of the design variables) designs. The chapter 

describes in detail the steps involved in the application. The characteristics of the technique 

that help to handle the issues involved with real life problems are discussed. Some 

improvements that are adopted in the search technique to reduce the total design time are 

also explained. Knowledge gathered during the search process and the designers' prior 

knowledge concerning the design variables are utilised by a Knowledge Based Hill Climber 

to fine tune the important design variables of the "good" designs. The chapter describes the 

rationale behind using such a hill climbing technique along with the multimodal genetic 

algorithm based search. The principle and the methodology behind the hill climbing 

technique are presented. This chapter explains how the hybrid of the multimodal genetic 

algorithm based search and the hill climbing works for the cooling system design problem 

Once the hybrid search technique identifies several "good" designs, further fine tuning of the 

designs are performed using a stochastic local hill climbing technique. The stochastic hill 

climbing algorithm is also presented in the chapter. 

The "good" designs are next analysed for design sensitivity information. Chapter 5 describes 

the sensitivity analysis method developed for this research. The analysis is performed in a 

neighbourhood of a design solution. Taguchi's orthogonal matrix and the tolerances on the 

design variables define the neighbourhood of a design solution. It is assumed that the 

neighbourhood can be approximated as a small region where there is no or very little 

interaction among the design variables. Taguchi's methodology, a technique for 

experimental design, is followed to calculate three categories of sensitivity information: 

design solution sensitivity, design variable sensitivity and constraint sensitivity. The use of 

Taguchi's methodology enables the calculation of sensitivity information with a very small 

number of the cooling system model evaluations. The chapter starts with a brief 
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introduction to design of experiments and Taguchi's technique. The principle behind 

Taguchi's orthogonal matrix is discussed. The chapter then describes the development of an 

orthogonal matrix that is suitable for the design problem The use of this orthogonal matrix 

to define different categories of sensitivity information are presented in the next section. The 

neighbourhood of each design solution IS checked for interaction. The sensitivity 

calculations are accepted only if there is no significant interaction between the design 

variables within the region. The sensitivity information is close to reality if the minimal 

interaction assumption is correct. In order to validate this notion, Taguchi's methodology 

based sensitivity calculation result is compared with the sensitivity analysis using an 

exhaustive search. The comparison results are presented and discussed. 

Chapter 6 presents the qualitative evaluation of the design solutions. The "good" designs 

are evaluated for different qualitative criteria: manufacturability, choice of material and 

designer's special preferences. The evaluation technique uses a fuzzy expert system to 

obtain three qualitative ratings (that is three c1isp numbers) for the three criteria. The 

chapter introduces the concepts of fuzzy logic and fuzzy expert systems. Different 

components of a fuzzy expert system are also discussed. A description of the Qualitative 

Evaluation System developed for the design problem is also given. The chapter explains 

different components of the system and discusses the principal issues involved. A novel 

knowledge representation technique is developed that guarantees the evaluation of any 

possible design solution with a reasonably small number of rules. Knowledge is first 

separated into several categories and then integrated using a concept of compromise. The 

chapter provides a detailed description of the knowledge representation technique and also 

discusses the motivation behind the approach. The qualitative evaluation system uses 

FuzzyCLIPS, a fuzzy logic version of CLIPS (developed by NASA). FuzzyCLIPS is a fuzzy 

expert system shell from National Research Council, Canada. The terminology and syntax 
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used in the examples follow FuzzyCLIPS standards. The chapter also discusses how to 

integrate the FuzzyCLIPS based qualitative evaluation system with the adaptive search 

technique mentioned before. Finally, the chapter is concluded with the description of the 

validation procedure for the qualitative evaluation system. 

The adaptive search manager identifies several "good" design solutions, and then retrieves 

some additional quantitative and qualitative information about the designs. The multiple 

"good" designs along with the additional information are presented to the designer through 

an adaptive search manager interface. This information supports the designer in design 

decision making. The adaptive search manager is executed with different conditions (that is 

unconstrained and constrained) and with different settings for the design variable ranges and 

the constraints. Representative results from these experiments are reported in Chapter 7. It 

is difficult to validate a system involving real life problems. The results from the experiments 

are validated by an expert and a user from Rolls Royce. A questionnaire (Appendix I) is 

prepared to assist in the validation. The chapter concludes with a description of the 

evaluation procedure adopted for the adaptive search manager. 

The final chapter, Chapter 8, provides a detailed discussion on the results reported in the 

previous chapter and also on the techniques developed in this thesis. The chapter also 

presents the conclusions from the research and the scope of future research. 

The thesis assumes that the reader has some preliminary background in engineering design, 

genetic algorithms and fuzzy expert systems. An attempt has been made to briefly introduce 

engineering design decision making, genetic algorithms, Taguchi's methodology and fuzzy 

expert systems before or in the relevant chapters. For a detailed study on any one of these 

topics a comprehensive list of references is provided in the thesis. 
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CHAPTER-2 

2. The Development of a Preliminary Design Model of a 

Turbine Blade Cooling System 

2.1 Introduction 

In order to maximise gas turbine engine performance and efficiency, turbine blades need to 

operate in an environment where the gas temperature is as high as possible. This 

temperature often exceeds the operational limits of the turbine blade materials. To ensure 

component integrity whilst operating at high gas temperatures blade materials are cooled to 

safe operating temperature levels by passing relatively cool air through them and, in more 

extreme cases, over them in the form of films. A small portion of the compressor exit 

airflow is utilised to cool the blades (Figure 2.1 ). The temperature of this cooling air 

depends on the compressor pressure ratio and on the flight Mach number and temperature. 

The sacrifices for the blade cooling include loss ofwork (and some loss of efficiency) due to 

the portion of the air taken rrom the compressor exit. Thus one of the objectives of the 

Adaptive Search Manager (ASM) is to try to minimise the amount of airflow (hence 

refen-ed to as coolant flow) required for the blade cooling. In general, however, these losses 

are much smaller than the gains associated with operating the engine at much higher turbine 

inlet temperature than would be possible without the blade cooling. 
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Figure 2.l(a): At-a-glance: a large twin-spool turbofan engine [Cohen et. al. (1987)]. 

vane 

• H.P. cooling air 

0 L.P. cool ing air 

Turbine 
Blade 

Figure 2.1(b): A section showing the cooled high-pressure turbine stage [Hill and Peterson 
(1992)]. 
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Figure 2.2: The general anangement of five-pass cooling of a turbine rotor blade [Hill and 
Peterson ( 1992)]. 
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A preliminary design model of the cooling system has been developed in collaboration with 

Rolls Royce plc. (Bristol, UK) and Plymouth Engineering Design Centre. The model is 

developed considering one dimensional, single pass coolant flow. This represents a 

cornputationally inexpensive mathematical model of the blade cooling system. The model 

includes a film cooling mechanism (Figure 2.2) and involves twelve design variables. This 

Turbine Blade COoling system Model (TBCOM) also uses several constants known as 

design parameters. The values of the constants have been set by the design experts from 

Rolls Royce plc., but may not represent the current practice in the company. TBCOM also 

includes three non-linear constraints. ASM utilises the model to provide quantitative 

evaluation of the cooling system performance. 

This chapter eKplains the terrninologies used in the model development, describes step-by­

step development of the model, and finally gives some light on the nature of the model in 

unconstrained and constrained situations. 

2.2 Nomenclatures used in the Model Development 

The list of nomenclature used in the model development is presented below. Some of the 

symbols are standard engineering terms, but others are specific to this thesis. Please refer to 

Figure 2.3 for the general arrangement of the coolant flow with film cooling. 

A: Cross sectional area of passage 

Cd: Coefficient of discharge 

Cp: Specific beat at constant pressure 

Cv: Specific heat at constant volume 

d: Hydraulic diameter 

dtb: Wall thickness 

h: Heat transfer coefficient 
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Figure 2.3: A schematic diagram showing the general arrangement of the 
coolant flow through a turbine blade with a film cooling mechanism. Where, 

1: cooling air inlet, 2: film cooling passage inlet, 3: cooling air exit and 
3 ': film cooling hole exit. 

20 



HI: Parameter group for heat balance equation 

H2: Parameter group for heat balance equation 

H3: Parameter group for heat balance equation 

k: Thermal conductivity 

l: passage length 

M: Mach number 

N: Number of.. 

Pc: Cooling air pressme 

R: Gas constant 

Se: Cooling side perimeter 

Sg: Gas side effective petimeter 

Tc: Cooling air temperature 

W: Mass flow 

XF: Distance from film cooling hole exit I Effective slot width of film 

y: Ratio of specific heats 

f..!: Dynamic viscosity 

Subscript: 

1: cooling air inlet 

2: film cooling passage inlet 

3: cooljng air exit 

3': film cooling hole exit 

b: blade 

c: coolant 

f: film 

g: gas 
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hpc: high pressure compressor 

r: radial passage 

w: wall 

2.3 Constants used in the Model: 

Like many other design models TBCOM involves several constants known as design 

parameters. The design parameters are selected by experts ftom RoUs Royce from their 

experience and knowledge in the area. This helps to limit the complexity of the model by 

fixing the values of some variables. One such example is the number of film holes 

(designated by Nr). The design parameter values with their respective nomenclature are: 

1. Heat transfer coeff. (gas side), hg = 3000.0 w/m2 K 

2. Gas side temperature, Tg = 1500.0 K 

3. Ratio of specific heats, y = 1.36 

4. Mass flow (high pressure compressor), Whpc = 84.85 Kgjs 

5. Radial cooling hole exit pressure, Pc3 = 460000.0 N /m 2 

6. Number of blades, Nb = 78 

7. Wall temperature (gas side) for initial calculations, Twg= 1250.0 K 

8. Radial passage length, I,= 0.0406 m 

9. Specific heat at constant pressure, Cp = 993.0 

10. One of two factors for heat transfer coefficient, F = 0.01855 

11. Gas constant, R = 287.0 

12. Distance from film cooling hole exit/Effective slot width of film, XF = 10 

13. Mach Number, Mach= 0.6 

14. Number of film holes, Nr = 30 

15. Initial outside temperature, Twgt = 1500.0 K 
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16. Maximum radial passage area, A,;,~ 2.75E-05 m2 

17. Bounds on radial coolant flow heat transfer coefficient, 

lOO.OW I m2K(hc,(4000.0W I m2 K 

18. Check on metal temperature, 1000.0K(Twc(1500.0K 

19. For the film cooling section, heat transfer coefficients are the same for the film side 

and the gas side, that is: 

hr= h8 

20. For the film cooling section, the pe1imeter ratio, R,r = 1.0 

2.4 Nomenclature for the Model Input and Output 

Twelve design variables are input to TBCOM and there are four outputs. The principle 

objective is to minimise mass flow (designated by Wcr) through the radial passage of the 

blade. Constraints are set on the other three outputs, that is each output should lie within a 

predefined range of values. The nomenclature for the inputs and outputs are as follows: 

INPUTS: 

I. Type of geometry, Geom 

There are three discrete types of geometry involved: plane, ribbed and pedestal. 

2. Coefficient of discharge (radial passage), Cdr 

The value of Cdr varies within a range according to the type of geometry. 

3. Heat transfer coefficient factor (radial passage), Fhc 

The value of Fhc varies within a range according to the type of geometry. 

4. Inlet temperature, Tc1 (K) 

5. Wall thickness, dth (m) 

6. Thermal conductivity of the blade material, kw ( wK/ m3 ) 

7. Pressure ratio (between inlet and outlet of radial passage), Rp 
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where RP= Pet I Pc3. 

8. Perimeter ratio (radial passage), R. 

where R, = Sgr I Sec . 

9. Film hole diameter, df(m) 

10. Coefficient of discharge (film hole), Cif 

11. Heat transfer coefficient factor (film hole), Fr 

12. Pressure ratio (film), Rpr 

where Rpr = (Pet - Pcz) I (Pet - Pc3) . 

OUTPUTS: 

I. Coolant mass flow (radial passage), Wcr (Kg/s) 

2. Coolant mass flow (film hole), W,r (Kg/s) 

3. Metal temperature (gas side), Twg (K) 

4. Metal temperature (film side), Twr(K) 

2.5 Model Development 

The model is developed considering coolant flow through the radial passage of a turbine 

blade and the flow through film holes. The coolant air passes through the film holes and 

spreads over the blade as a thin film of cooler air, and thus provides additional cooling to 

the blade. The model development uses the basic principles of physics, but some of the 

design parameters are set from domain knowledge. This section describes the step-by-step 

procedure followed to establish a relation between the input variables and the outputs. 

2.5.1 Calculation of the relationship between the Mass Flow and the Pressure Ratio 

The first task in the model development is to establish a general relation between a fluid 

mass flow (that is the coolant flow in this case) and the pressure differential that drives the 
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fluid. The relationship between mass flow and pressure ratio for an idealised, steady, one 

dimensional, compressible flow can be calculated as follows: 

The steady flow energy equation (SFEE) may be expressed as: 

Q, h' Vr W' h' V~ + +-+z = + 2 +-+z2 
I 2.0 I 2.0 

..... (2.1) 

where, 

Q ' = heat transfer 

W ' = work done 

h1 ' and h2 ' = enthalpy 

V 1 and V 2 = velocity 

z1 and z2 = energy due to elevation 

If the flow is brought to rest isentropically over an infinitesimally small distance then, 

dQ' = dW' = 0 

dz = negligible 

db'= c dt p 

where Cp = specific heat at constant pressure 

t = static temperature 

Hence the SFEE (equation (2.1)) reduces to: 

Integrating equation (2.2) gives: 

2 

Cp(tl -tJ+ ~I = 0 

..... (2.2) 

..... (2.3) 

For an adiabatic process T1 = Tz = tz, where T1 and T2 are stagnation temperatures (that is 

the summation of static and dynamic temperatures). 
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Substituting T, for t2 in equation (2.3) and rearranging gives: 

..... (2.4) 

An expression for velocity can also be obtained from mass flow continuity as: 

W=pAV 

where, p = density of the coolant 

And from the perfect gas relationship: 

p = _!!_ 
Rt 

A = flow cross sectional area 

where, p = static pressure 

From equations (2.5) and (2.6): 

V= WRt 
Ap 

R = universal gas constant 

..... (2.5) 

..... (2.6) 

..... (2.7) 

Equating equations (2.4) and (2.7), and generalising V~, T1 and t 1 by V, T and tin equation 

(2.4): 

WRt = [2c ( T _ t)]o.s 
Ap p 

..... (2.8) 

Reananging the equation (2.8) in tenns of temperature ratio: 

..... (2.9) 

CP is a function of the universal gas constant, R; where R can be expressed as: 

Substituting for the ratio of specific heats, y = Cp/Cv, gives: 

c =!!!.___ 
p r -1 

..... (2.1 0) 

Substituting for Cp from equation (2.10) in equation (2.9) gives: 
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WR..fi = [ 2Ry ( T _ 1)]
0

.

5 

Ap r -1 t 

ReaiTanging the above equation gives: 

w..JT _ [ 2r (r)(r -l)]o.5 

Ap R(y -1) t t 

Further, for an adiabatic process: 

P r = const. 
p 

Therefore, using the perfect gas relationship from equation (2.6), gives: 

where, P = stagnation pressure 

Substituting for Tit in equation (2.11) gives: 

w..JT 2r P -~ P 7 

[ 
y-1[ y-1 :J0.5 

AP= R(y-l)(p-J (p-J -l 

Further, 

w..JT _ w..JT(PJ-I ------
AP Ap p 

Hence, 

w..JT 2y P ----;-- P --y 

[ [ 

1-y l 2] 0.5 
AP= R(y-1) l-(PJ (PJ 

..... (2.1 I) 

..... (2.12) 

..... (2.13) 

..... (2.14) 

This ideal relationship can form the basis for a more general one which may be expressed in 

terms of two arbitrary stations as follows: 
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W..ft _ 2y I ~ 7 ~ --; 

[ [ 

1-r l 2] 
0
·
5 

ACd~- R(y-1) -(~) (~) ..... (2.15) 

where, P1/P2 is the pressure ratio which controls the system mass 

flow, W. 

2.5.2 Calculation of Blade Temperature Considering Radial Coolant Flow 

The basic equations that represent blade heat transfer and coolant flow are derived from a 

'steady-state' heat balance and from momentum and continuity considerations. Consider the 

heat flow to and from an elemental length 81 of a blade a distance I from the root of the 

blade. As the coolant passes up the blade it increases in temperature which reduces the 

cooling effectiveness, so that the blade temperature increases from the root to the tip. There 

is some conduction of heat along the blade to and from the small element 81 due to this 

temperature gradient along the blade. Turbine blades are generally made of low thermal 

conductivity alloys thus the conduction term would be small and is therefore neglected here 

[Cohen et. al. (1987), and Hill and Peterson (1992)]. The heat balance equation for the 

radial passage that also includes the effect of materials is given by: 

..... (2.16) 

An initial value of he, can be calculated from: 

..... (2.17) 

And an initial value ofWcr can be calculated as: 

..... (2.18) 

This enables the flow cross sectional area (radial) to be calculated as follows: 
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= [ X(___!____)( ~;8JJ0
1

9 Acr FF o.8 
f.1 her 

where, 

FF= Fx Fhe 

k = 2.978£- 03 x Te 05 

1 +(2~0) 

1.488£- 06 x Te 15 

f.l= 
Te + 110.4 

(for initial value assume Tc = Tc1) 

..... (2.19) 

..... (2.20) 

..... (2.21) 

Using the equation (2.15) and the driving pressure ratio in the radial passage, coolant mass 

flow, Wen can be recalculated: 

..... (2.22) 

And hence her is recalculated as: 

h = FF x (___!____) x ( J¥!>;
8
) 

er 0.8 A0.9 
f.1 er 

..... (2.23) 

Equation (2.23) lead to the calculation of metal temperature (gas side), Twg· Rearranging the 

equation (2.16): 

( l+H2-HlxH2)r +(HI- H12 )re 
HI+H3 g Hl+H3 I 

Twg = [ + H
2 

_ HI X H2 + HI X H3 
..... (2.24) 

Hl+H3 Hl+H3 

where, 

..... (2.25) 
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Step Number Task Equation Comment 

Step 1 estimate Wcr 2.18 based on the limiting value of flow 
off-take fi·om the engine 
compressor. 

Step 2 estimate Twg based on material property 
limitation, suggested 1500.0 K. 

Step 3 calculate her 2.17 

Step 4 calculate A:r 2.19 check the value, 
if within the limiting value of A:r. 
go to Step 5. If not within the 
limiting value of A:r. then Wcr = 
W,r * 0.99 and go back to Step 4. 

Step 5 calculate W,r 2.22 

Step 6 calculate h,r 2.23 compare her value from Step 6 
with Step 3, 
if within tolerance then proceed to 
check whether her lies within the 
acceptable range, if yes then 
proceed to Step 7 otherwise reset 
the T wg and her values and go to 
Step 4. 
If the wall temperature calculation 
reaches a steady state then only 
accept, if not equal then go back 
to Step 4. 

Step 7 calculate Twg 2.24 check the value, 
if within the acceptable limit then 
accept. If not within the limit and 
if Wcr has not been changed 
previously, change W,r: 

Wcr = Wcr * 1.01. 

Step 8 calculate Tc 2.30 

Step 9 recalculate k 2.20 

Step 10 recalculate 11 2.21 reset T wg and her values and go to 
Step 4. If the wall temperature 
calculation reaches a steady state 
then only accept. 

Table 2.1: The cooling system design procedure used in TBCOM. 
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..... (2.26) 

Scr = 3.545 X .JA:: ..... (2.27) 

lr = 0.0406(the value in meter) ..... (2.28) 

H3 -- k.. 1 I I 
X- +-

dth X hg 2 Sgr 
..... (2.29) 

scr 

From equations (2.16), (2.25) and (2.26) Tc can be recalculated as: 

..... (2.30) 

where the temperature balance along the radial passage length is approximated as: 

i.e. the approximation assumes the temperature rise in the second half of passage 

length is equal to that in the first half. 

The values of Wcr and T wg are calculated following an iterative design process. The cooling 

system design procedure used in the TBCOM is described in Table 2.1. 

2.5.3 The Introduction of a Film Cooling Mechanism to the Model 

A film cooling mechanism is used in order to achieve a more effective cooling in the turbine 

blade. A portion of the coolant passing through the radial passage is bled through film holes 

and provides a film of the coolant over the blade. This film is cooler and thus enhances the 

cooling effect. 

The coolant temperature (Tc), as calculated from the previous section, provides the film 

hole entry temperature of the coolant, thus: 
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Tcz = Tc ..... (2.31) 

The total film cross sectional area is calculated from: 

..... (2.32) 

And the pressure ratio across a film hole: 

..... (2.33) 

Hence, referring to equation (2.22), the coolant flow through the film holes, Wcr can be 

calculated as: 

..... (2.34) 

The cooling side heat transfer coefficient, her is determined as: 

( 
k )[ w 

0

·

8 J hcf = FF' X J-10.8 A~09 ..... (2.35) 

where, k and 11 are evaluated from equations (2.20) and (2.2I) with Tc = (Tc2 + Tc3.)/2.0, 

and for the initial calculation Tc3• = Tc2, 

FF' is a constant and FF' = Frx F. 

Then, intermediate metal temperature (along the film hole), Twrm is calculated: 

( I+H2-HlxH
2)r +(Hl- Hl

2 Jrc 
Hl + H3 g HI + H3 2 

Twfm = I + H
2 

_ HI X H2 + HI X H3 
..... (2.36) 

Hl+H3 HI +H3 

where, 

..... (2.37) 

..... (2.38) 

..... (2.39) 
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11 =5.0xdf ..... (2.40) 

dth f = dth/2.0 ..... (2.41) 

..... (2.42) 

This enables the temperature of the coolant at the film cooling exit to be calculated: 

..... (2.43) 

An iterative calculation follows to determine the final value of Tc3•• In order to determine 

the blade wall temperature on the film-cooled side, T wr, film cooling effectiveness, Er is 

calculated as: 

( 
A C Jo.s ( T ]

0
·
6 

6 f = 0.66-0.0092 X RWA X cf df X XF X _g 

Wcf Tc3. 

where, 

( J
0.5 

RWA =Mach x Pc
3 
_r_ 
R X tg 

This allows the calculation of the film temperature, Tr, as follows: 

..... (2.44) 

..... (2.45) 

..... (2.46) 

..... (2.47) 

And finally, the blade wall temperature downstream of the film, Twr is calculated from: 

..... (2.48) 

where, 

..... (2.49) 
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..... (2.50) 

it is assumed that Sgt!Scr= 1.0 and H2, Scr and 1, are 

calculated as per equations (2.26), (2.27) and (2.28) 

respectively. 

2.5.4 Design Model Constraints 

There are three constraints involved in the design model primarily to ensure the designs do 

not cross material and flow limits. In order for a design to be acceptable the following 

constraints must be satisfied: 

1. The blade wall temperature on the gas side, 1200.0K(Twg (1300.0K. 

2. The blade wall temperature on the film side, Twr< 1300.0 K. 

3. The flow ratio, Wc/Wcr'?. 0.8. 

2.6 Nature of the Model in Unconstrained and Constrained Situations 

TBCOM is a computer model of a multidimensional real life design problem Although 

some of the design parameters are set by intuition and experience there is little prior 

knowledge concerning the nature of the problem In order to better understand the problem 

domain and to aid engineering judgement concerning the results achieved it is desirable to 

have some idea of the nature of the problem This also helps to define the search 

methodology to be used with the model. 

In an attempt to obtain some information regarding the shape and the nature of complexity 

involved in the model, a few designs or points are selected from different regions of the 

total design space. The design space is defined by all possible combinations of the design 

variables. Investigation into the model is performed by passing hyperplanes through the 
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Figure 2.4(a): A contour plot of the unconstrained fitness from the hyperplane-1 through 
TBCOM; the values ofRp and Rs are varied within their ranges whereas other variables 

remain constant. The other variables are : (Geom: 3, Cdr: 0.23, Fhc: 3.2, Tcl: 781.0, dth: 
0.00082, kw: 28.0, df: 0.0003, Cdf: 0.62, Ff: 1.5, Rpf: 0.25). 
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Figure 2.4(b): A contour plot of the constrained fitness (where the fitness is set to 0.0 in 
case any constraint is violated) from the hyperplane mentioned above; the values of Rp and 

Rs are varied within their ranges whereas other variables remain constant. 
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Figure 2.5(a): A contour plot of the unconstrained fitness from the hyperplane-2 through 
TBCOM; the values of Cdr and Fhc are varied within their ranges whereas other vatiables 
remain constant. The other variables are: (Geom: 1, Tcl: 793.0, dth: 0.002340, kw: 24.0, 
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Figure 2.5(b): A contour plot of the constrained fitness (where the fitness is set to 0.0 in 
case any constraint is violated) from the hyperplane mentioned above; the values of Cdr and 

Fhc are varied within their ranges whereas other variables remain constant. 
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TBCOM; the values of Cdf and Rpf are varied within their ranges whereas other variables 
remain constant. The other variables are: (Geom: 2, Cdr: 0.44, Fhc: 2.0, Tcl : 744.0, dth: 
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Figure 2.6(b): A contour plot of the constrained fitness (where the fitness is set to 0.0 in 
case any constraint is violated) from the hyperplane mentioned above; the values of Cdf and 

Rpf are varied within their ranges whereas other vatiables remain constant. 

37 



points. In each case two design variables are varied within their acceptable ranges while 

keeping other design variables constant. Figures 2.4 to 2.6 exhibit the contour plots from 

three different hyperplanes. The figures show both unconstrained and constrained fitness 

situations, where the fitness is defined as the inverse of the coolant mass flow. The 

constrained fitness is implemented using a penalty function (defined in the next chapter). 

The hyperplanes can only provide some insight into the multi-dimensional problem. It is 

observed that the shape of the constrained fitness plots can be different from the 

unconstrained one. This is mainly due to the use of the penalty function. The type of 

geometry (Geom) introduces discreteness in the design space, apart from that the presence 

of non-linearity is also observed. 

2.7 Verification ofthe model 

TBCOM is verified by an expert and a user from Roll Royce. The checking mainly 

concentrates on the equations derived from the laws of physics. The model also involves 

certain amount of designers' experience as values of some design parameters. In order to 

verify whether the design parameter values are representative several design solutions are 

verified by the expert and the user. They check whether the combination of design variables 

(the combination represents a design solution) and the fitness (that is the inverse of coolant 

mass flow) correspond to their understanding about the problem. The design parameter 

values are changed to fine tune the model till the expert and user are fully satisfied of the 

results of TBCOM. 

The next chapter introduces several existing techniques to obtain multiple solutions from a 

multimodal fitness landscape. The developed technique, a hybrid of a GA based search and 

a hill climber, which addresses some of the issues with real life problem optimisation and 

search is described in chapter 4. 
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CHAPTER- 3 

3. Identification of 'good' solutions using Genetic Algorithms 

3.1 Genetic Algorithms 

Genetic Algorithms (GAs) [Goldberg (1989)] are adaptive computation methodologies 

which may be applied to solve search and optimisation problems. They are based upon 

genetic and evolutionary principles of biological organisms. Biological organisms maintain 

their presence in the world over many generations by 'evolving' or reproducing new 

members while some from the existing population die to make room for the younger. This 

natural selection is performed with a very simple rule of nature, 'survival of the fittest'. 

Charles Darwin and Alfred Wallace in 1858 independently presented an idea of natural 

selection. The idea was simple, elegant, and offered a scientific explanation for the 

complexity, diversity and rules of nature. 

Darwin observed that living orgamsms generally reproduce many offspring but the 

population tends to remain constant rather than growing exponentially. He noticed the 

diversity of the organisms present in a population and concluded that despite the presence 

of natural forces such as resource limitations, disease and predation, some organisms perish. 

Only the organisms best suited for the environment can survive and proceed to the next 

generation. These fitter organisms reproduce or 'evolve' new members and thus pass on 

their 'good' characteristics (i.e. those that helped them to survive) to the next generation. 

This natural phenomenon helps the organisms to adapt with the change in environment and 
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survive. This also helps to produce, over generations, the best suited offspring for an 

environment. The evolution by natural selection works by the accumulation of small positive 

changes in the population. 

Later research in genetics has shown that DNA stores all the 'instructions' that define 

different characteristics of an organism Thus, there is a mapping between the organism's 

genetic materials (genotype) and its physical characteristics (phenotype). Physical 

characteristics of an organism can also be influenced by the environment. Sometimes the 

relationship between the genotype and phenotype can be very complex. The part of DNA 

that produces a characteristic is called a 'gene' and the possible alternatives that can occur in 

the section are known as the gene's 'alleles'. For example, there is a gene for hair colour with 

black, brown and white alleles. A number of DNA strings are stored in a 'chromosome' 

within any living cell. 

Parts of the parents' DNA combine to form new DNA for their children. Thus 

characteristics are passed from parents to children. 'Good' features of parents can be 

brought together in a single individual by this 'crossover' of genetic material through sexual 

reproduction. The opposite phenomenon is also true: 'bad' features can come together while 

the 'good' features are not transmitted. However, the 'survival of the fittest' rule of nature 

favours the survival of children with the 'good' characteristics and enables them to 

reproduce, thus passing on the combined 'good' characteristics. Children can also have 

unique characteristics that are totally different from their parents. These unique 

characteristics can come from a sudden change in the child's DNA. The reasons for this 

phenomenon can vary from some errors in the natural process, to environmental effects. 

This process of sudden change is termed 'mutation'. 
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The very brief introduction to natural evolution offered above highlights features of natural 

selection and genetics that are a direct motivation for evolutionary computation. In reality, 

nature is very complicated and many things are still unknown. The intention is to glean 

some ideas from nature and utilise them to solve search and optimisation problems. One 

such attempt are genetic algorithms (GAs). Genetic algorithms use a direct analogy of 

natural phenomenon. GAs work with a 'population' of organisms or 'individuals', each 

representing a probable solution to a given problem The problem that needs to be solved 

serves as the environment. To apply GAs to a problem, two things are essential: a genetic 

coding for the problem variables and a measure of fitness implemented by a mathematical 

model of the system called 'fitness function'. The fitness function assigns a numeric value to 

each solution according to its performance. All possible solutions to the problem describe a 

'search space' that has to be investigated by GAs. Fitter individuals (represented by 

parameter sets) are allowed to survive and reproduce into the next generation by 'crossover' 

and 'mutation' allows the introduction of random change. New individuals (children) of the 

next generation share some features taken from each 'parent'. The new generation contains a 

higher proportion of the characteristics possessed by the good members of the previous 

generation whilst lower performance individuals have a lesser probability of survival. As a 

result, over many generations, good characteristics are spread throughout the population, 

being mixed and interchanged with other good characteristics as they go. By favouring the 

fitter individuals, the most promising or interesting areas of the 'search space' arc explored. 

This 'exploitation' of the good features results in increasingly fit individuals. It is also 

observed that bad features can combine to produce good features. Good features can also 

be created by random mutation of the parameter sets which allows the discovery of 

previously unknown good features. Thus, at least during the initial stages of a search the 

GA goes through an 'exploration' phase. An efficient GA will converge to an optimal or 
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near optimal solution to the problem If the problem is multimodal (i.e. more than one 

optimal solution exists), the GA can be modified to identify the most, if not all, of these 

solutions. The 'power' of the GA comes from its dynamics which result in robust behaviour. 

In general GAs can quickly identify solutions close to the global optimum. On the other 

hand, some specialised techniques suitable for particular problems can out-perform GAs by 

identifying the global optimum quicker. For example, a classical hill climbing algmithm may 

identify the optimum quicker than GAs on a unimodal or monotonic search space. Often a 

hybrid of GAs and a classical search or optimisation algorithm may perform better than 

either working alone. 

The next section discusses the basic principles of GAs and gives a brief summary of the 

present theoretical understanding of the process. GAs have been applied to many different 

areas of engineering, science and economics. 

3.1.1 Basic Principles 

GAs are used to find the optimum solution (or solutions) to a problem There are many 

types of genetic algorithms, each suitable for a separate category of problems. The most 

commonly used simple GA can be represented as shown in Figure 3.1. The simple GA starts 

by randomly selecting an initial population of probable solutions. The GA iterates for a fixed 

number of generations or until it satisfies a stopping criterion. Dming each generation, the 

simple GA performs a fitness proportionate selection. The selection mechanism follows the 

'survival of the fittest' law to determine which of the chromosomes of the current 

population are represented in the following population. The next operation is 'crossover', 

generally the principle genetic operation of the GA. The crossover operator combines the 

genetic information of a pair of parent chromosomes to produce a pair of offsp1ing 
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start GA 
t := 0; I * start with an initial time*/ 
initpopulation P (t); / *initialize a usually random population of individuals*/ 
evaluate P (t); I * evaluate fitness of all initial individuals of population *I 
while not done do / *test for termination criterion (time, fitness, etc.) *I 

t := t + 1; / *increase the time counter*/ 
P' : = selectparents P (t); I* select a sub-population for offspring production *I 
crossover P' (t); I* recombine the "genes" of selected parents*/ 
mutate P' (t); / *perturb the mated population stochastically [optional]*/ 
invert P' (t); I* invert the mated population stochastically [optional]*/ 
evaluate P' (t); I* evaluate it's new fitness*/ 
P :=survive P,P' (t); I* select the survivors from actual fitness*/ 

do 
end GA. 

Figure 3.1: A general description of a simple Genetic Algorithm using pseudo code. 

Figure 3.2: An example of the hierarchical structure in a structured chromosome. 
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chromosomes (children). The proportion of the population selected for 'crossover' is 

known as the crossover rate or crossover probability. Mutation is the second genetic 

operator of the GA. The mutation operator acts upon single chromosomes chosen at 

random from the population. The operator randomly selects a position within the 

chromosome, and the allele value of the gene at the position is altered. The proportion of 

the total number of genes in the population selected for mutation is known as the mutation 

rate or mutation probability. Mutation probability is generally kept much smaller than the 

crossover probability. Also there are two prerequisites for a GA application: defining a 

suitable 'coding' (representation) and a fitness function for the problem. The principle issues 

involved in a GA operation are described as follows. 

3.1.1.1 Coding or Problem Representation 

GAs are expected to identifY the best possible solution or solutions to a problem. It is 

assumed that a potential solution to the problem can be represented as a set of parameters 

or problem variables. These parameters represent genes and are combined to form a string 

of values which represents a chromosome and describes a probable solution to the problem. 

Most GA applications use fixed-length, fixed-order bit strings to encode a probable 

solution. The use of a binary alphabet for the string is most common for a number of 

reasons. The first reason is 'historical', GA research started with the binary representation 

and later others followed the same path. Many people are also comfortable in using the 

binary representation simply because much of the GA theory and research finding are based 

on the representation [Mitchell (1996)]. Other possibilities include vectors of real numbers 

[Davis ( 1991 )], or using an alphabet of many characters. The research reported in this thesis 

uses a fixed-length binary chromosome; but variable-length chromosomes are appropriate 

for many problems [Goldberg et. al. (1993)]. 
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For some problems, a simple parametric representation may not be sufficiently flexible to 

fully describe a possible solution. For example, consider the problem of designing the most 

cost effective design for a transport system The solution to this problem may be bus 

services, rail services or flights. The representation of each of these transport systems 

requires a different set of parameters, and thus a simple parametric description is not 

applicable for this design problem. The structured GA (stGA) [Dasgupta and McGregor 

( 1991)] utilises redundancy within the chromosome to allow search in such problem 

domains. The chromosomes of the stGA represent hierarchical structures from which the 

parameter sets are derived. The hierarchical structure of the chromosome can handle a 

combination of discrete and continuous variables. High level genes are mostly responsible 

for discrete design decisions, activating or deactivating lower level genes accordingly. The 

lower level genes can represent another discrete variable or a continuous variable. The leaf 

nodes of the hierarchical structure provide a parametric description for each of the design 

solutions. Thus, generally the higher level genes determine the overall description of the 

solution whilst the lower level genes determine the parameter set that describes a particular 

example of the overall structure. For example, in the above transport system design 

problem, a single high level gene could determine which of the transport systems the 

chromosome would describe. A set of lower level genes would describe relevant parameter 

set for the selected transport system. The hierarchical structure shown in Figure 3.2, for 

example, can be encoded by the chromosomal structure, stC = (p1, pz, P11, p12, p13, Pz1, Pzz, 

p121, pm, p211, pm, Pm). The two highest level genes (p1, Pz) determine which of the 

second level genes are active and contribute to the final parameter set. Similarly, the second 

level genes determine which parts of the third level genes are active. The turbine blade 

problem is encoded using a structured chromosome and thus it uses the stGA approach. If 

the hierarchy is complex and multi-level, there can be very high amount of redundancy in a 
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structured chromosome. The high redundancy can hinder the efficiency of stGA search 

[Parmee ( 1996)]. 

The representation of a problem in the chromosome is referred to as the 'genotype'. A 

fitness function evaluates the information contained in the chromosome and provides a 

fitness rating, referred to as the 'phenotype' of the problem The mapping between the 

genotype and the phenotype is crucial for the success of a GA. 

3.1.1.2 Fitness Function 

Application of GAs to a search or optimisation problem requires that a fitness function be 

used to evaluate the individual solutions. The fitness function can be considered as a model 

of the problem. The fitness function may involve just one criterion or a combination of many 

criteria. GAs that handle multicriteria problems are termed as 'multiobjective GAs'. In this 

case several fitness functions each defining one criteria can also be used with a 

multiobjective GA [Goldberg ( 1989)]. Many search or optimisation problem domains 

involve constraints. If a possible solution to the problem violates any constraint (non­

feasible), the fitness of the solution is degraded according to a penalty function. The use of a 

penalty function helps the GA search to concentrate in the regions of the search space that 

satisfY the constraints (feasible regions). On the other hand, the application of the penalty 

function changes the shape of the fitness landscape (Figure 3.3). Thus, selecting an 

appropriate penalty function is very important for constrained optimisation or search 

problems. 

Some knowledge about the nature of the fitness function can help in designing the GA. 

Often the information is lacking in real life multidimensional problems. Presence of highly 
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Figure 3.3(a): A plot of the unconstrained fitness from a hyperplane through the 

Turbine Blade problem (TBCOM), where only two variables Rp and Rs are vatied 

keeping others constant. The other variables are:: (Geom: 3, Cdr: 0.23, Fhc: 3.2, Tcl: 
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Figure 3.3(b): A plot of the constrained fitness from the above mentioned hyperplane. 
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non-linear constraints implemented using the penalty functions along with many independent 

variables, and complex relations between them make the problem very difficult to 

comprehend. This poses a great challenge to the GA search. In case of real life problems the 

GA has hardly any prior knowledge concerning the nature of the fitness landscape. In these 

cases, it is also difficult to validate the best solution(s) achieved by the GA. Research 

reported herein concentrates on establishing a more confident approach to handle the search 

or optimisation task for real life problems. 

3.1.1.3 The Mechanics of Selective Reproduction 

The selection mechanism detennines which of the chromosomes of the present population 

are represented in the following population. Typically, the selection process follows the 

'survival of the fittest' rule. Thus, those chromosomes of high fitness prosper at the expense 

of those chromosomes with low fitness. The simplest and most common type of the fitness 

proportionate selection is known as roulette-wheel selection [Goldberg (1989)]. In case of a 

fixed size population of n number of solutions (say), the fitness proportionate selection 

assigns each solution, i, a probability of selection p5,. The probability is detennined 

according to the fitness of the solution and the total fitness of the population: 

Ji 
Ps; =-,-~-

Lf) 
)=I 

The selection scheme chooses a total of n number of solutions or individuals for 

reproduction, according to the probability distribution (PsJ The method selects solutions 

through n number of simulated spins of a roulette wheel. The wheel contains n slots, one 

each for the solutions. The width of each slot is directly proportional to its respective Psr 

Thus the individuals with higher fitness values are likely to be selected more than those with 

lower fitnesses. There are many alternatives to this selection strategy. Two popular 
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alternative methodologies are 'tournament selection' and 'stochastic remainder selection'. 

Tournament selection [Brindle (1981), Goldberg and Deb (1991)] is sensitive to the relative 

rather than the absolute fitnesses. There are different types of tournament selection. 

Generally, the tournament selection holds n number of tournaments, where n is the 

population size, to select n individuals. The tournament selection randomly chooses two (or 

may be more) individuals for the tournament and the fittest one is selected. This type of 

selection mechanism is found to be more effective for multimodal fitness function 

optimisation [Harik (1995), Roy and Parmee (1996)]. Stochastic remainder selection 

[Brindle (1981 ), Booker (1982)] is a variant of the roulette wheel selection algorithm which 

guarantees that a chromosome will receive at least the integer part of its expected number 

of offspring, and the population is sorted according to the fractional parts of the expected 

number of offspring. The remainder of the strings needed to fill the population are drawn 

from the top of the sorted list. 

Elitism [De Jong (1975)] is a concept that complements the selection technique used by the 

GA. Elitism ensures that the best individual present in one generation is passed on to the 

next generation. The concept is implemented as follows: 

Let A' (t) be the best individual generated up to timet. If a' (t+ 1) be the best 

individual present in a population at time t+ 1. and a' (t+ 1) is worse than 

A'(t), then A'(t) replaces one of the chromosomes of the new population -

either the worst or a random(y selected chromosome. 

Thus the GA never loses the previously found fit individual. This concept is generic and any 

standard selection method can be changed to be elitist. The new population as produced by 

a selection mechanism is then used in the reproductive phase. 
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The reproductive phase starts by randomly pairing the individuals present in the new 

population. For each couple (parents), crossover is detennined by a fixed probability Pc , 

known as the crossover probability. Crossover produces two new individuals, known as 

children. The children then proceed to the mutation stage. The parents directly proceed to 

the mutation stage if they are not crossed (that is with a probability of 1-pc). This allows 

each individual a chance of passing on its genes without the disruption due to crossover. 

There are many varieties of crossover mechanisms for example, single-point crossover 

[Goldberg (1989)], two-point crossover [Cavicchio (1970), Goldberg ( 1989)], uniform 

crossover [Syswerda (1989)] and order based crossover [Goldberg ( 1985), Syswerda 

(l99la) and Davis (1991)]. Single-point crossover is the simplest of all. For a fixed size 

chromosome of length /, in single-point crossover one of I-I possible crossing sites is 

randomly selected. The crossing sites are between a chromosome's neighbouring bits. This 

produces two 'head' segments and two 'tail' segments. The tail segments are swapped 

between the parents to produce two new individuals or children (Figure 3.4). The following 

pseudo code demonstrates an implementation of the single point crossover operation. 

procedure single_point_crossover 

begin 

P1 :=the first parent chromosome; 

P2 :=the second parent chromosome; 

cross_point =random( 0, chromosome_length - I); 

fori := 0 to cross_point- I do 

begin 

end 

child1[i] = Ni]; 

child2[i] = P2[i]; 
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HEAD TAIL 

Parent 1 : 0 0 1 0 1 11 0 1 0 Child 1: 0 0 1 0 1 1 1 o 1 

Parent 2: 1 1 1 0 0 111 0 1 Child 2: 1 1 1 0 0 1 0 1 0 

Figure 3.4: An example of one-point crossover. The children are produced by randomly 

dividing the parents at the positions denoted by the vertical lines and exchanging the 'tail' 

parts of the parental genetic material. 

Individual 1: 1 0 1 1 0 1 0 0 0 1 0 :::::> New lndividual1: 1 0 1 1 1 1 0 0 0 1 0 
t 

Figure 3.5: An example of mutation operation. One individual produces a new individual 

by flipping the bit at the arrow position (selected randomly). 

Individual 1: 1 0 111 1 0 0 11 0 1 1 :::::> New Individual 1: 1 0 1 0 0 1 1 1 0 1 1 

Figure 3.6: An example of inversion operation. One individual produces a new individual 

by reversing the order of the bits between the two randomly selected positions as denoted 

by the vertical lines. 
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end 

fori := cross_point to chromosome_length- I do 

begin 

end 

child1 [i] = P2[i]; 

child2[i] = P1[i]; 

In two-point crossover, two crossing sites are randomly selected, and the parents exchange 

the segment in between the two crossing sites. Uniform crossover is radically different from 

the previous two types of crossover. Each child is created by randomly copying some bits or 

genes from one parent and filling the remaining positions from the other parent. Therefore 

children contain a mixture of genes from each parent. The number of effective crossing 

points is not fixed, but averages to l/2 (where I is the length of a chromosome). In case of 

order based crossover, it is not the values of the genes that are exchanged, but the order in 

which they appear. The children have genes that inherit ordering information fi·om each 

parent. This avoids the generation of children that violate the problem constraints. 

The second genetic operator is mutation. Unlike crossover, mutation acts upon single 

chromosomes chosen at random from the population. For every individual undergoing 

mutation, a random bit position or locus is selected, and the allele value of the gene at that 

locus is altered (Figure 3.5). The following pseudo code explains an implementation of the 

mutation operation using binary representation: 

procedure binary_mutation 

begin 

52 



end 

i :=random (0, population_size- 1); 

j :=random (0, chromosome_length - l ); 

C :=the i 'th chromosome of the population; 

C[i] = 1 - C;[i]; 

Sometimes another genetic operator known as inversion is introduced after mutation 

[Holland (1975)] (Figure 3.6). Inversion is a reordering operator inspired by a similar 

operator in biology. Inversion works by reversing the order of genes between two randomly 

chosen positions within the chromosome. The technique has been applied with some success 

to 'ordering problems' such as the DNA fragement-assembly problem [Parsons et. al. 

(1995)]. However, the benefits of inversion to GAs are not very clear yet and therefore 

needs more systematic experimentations and theoretical studies [Mitchell (1996)]. 

The most widely used reproduction strategies used in standard GA replace the entire 

population at once, and are known as 'generational reproduction strategies'. Steady state 

reproduction [Whitley (1989), Syswerda (199Ib)] is a significant departure from the 

standard GA. In the 'steady state' GA, children enter the parent population immediately 

after they are produced and are available for reproduction at once. There is therefore the 

opportunity to exploit a promising chromosome immediately. Syswerda ( 1991 b) compared 

reproduction in 'generational' and 'steady-state' genetic algorithms. It is observed that, in 

many cases the 'steady-state' GA converges more rapidly than the 'generational' GA. The 

standard generation of selection, crossover, mutation and inversion is replaced and a pair of 

chromosomes are randomly chosen from the population crossed over, mutated and inve1ted 

with some probability condition, and put back into the population often replacing the worst 
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chromosomes. The following pseudo code expresses the general structure of a 'steady state' 

GA. 

procedure steady_state_GA 

begin 

end 

t := 0; 

initialise_population POP(t); 

evaluate POP(t); 

while (not stopping_condition) do 

begin 

end 

i :=random (0, population_size- I); 

j :=random (0, population_size- I); 

C1 := ith member of POP(t); 

C2 := jth member of POP(t); 

if (random (0, I) <= probcrossover) then crossover C1 and Cz; 

if (random (0, I) <= probmlllaJion ) then mutate C 1 [optional]; 

if (random (0, I)<= probmlllaJion) then mutate C2 [optional]; 

if(random (0, I)<= prob;nversion) then invert C1 [optional]; 

if (random (0, I)<= prob;nversion) then invert Cz [optional]; 

copy C1 to the worst member present in POP(t); 

copy C2 to the second worst member present in POP(t); 

Users of the 'generational' GAs often provide a guarantee that the best member in the 

current population will be present in the next. This is not necessary with the 'steady-state' 
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GAs, since often (that is depending on the strategy often used for the replacement) they 

automatically grant elitist status to all good members of the population. Research work 

presented in this thesis uses the concept of a steady state GA to develop a genetic algorithm 

suitable for multimodal function optimisation. 

3.1.2 Theory 

Genetic Algorithm applications have been developed with both binary and non-binary 

representations. The effectiveness of the representation is very problem specific. That 

means, some problems are suited for binary representation, whilst others are suited to non­

binary representation [Wolpert and Macready (1995)]. The behaviour of the GA has been 

described in terms of binary representation. The theory, known as the Building Block 

Hypothesis and the Schemata Theorem, describes the working of the GA as the processing 

of several binary templates or schemata. In an attempt to describe the GA with binary or 

non-binary representation, a Multary Theory of GA has been proposed [Field (1996)]. The 

theory introduces a concept of key schemata and extends the present binary operators to 

multa1y equivalents. The theory is very recent and needs more investigation. 

3.1.2.1 Building Block Hypothesis and Schemata Theorem 

The schemata theorem concerns the GA processing of schemata, binary templates that 

match a set of chromosomes. A schema is a binary string of total length I defined over three 

alphabets {0,1,#}, where # is a wildcard equivalent to either 0 or I. For example, the 

schema #00#100 may represent {0000100, 0001100, 1000100, 1001100}. The schema is 

also characterised by its order and defining length. The number of non wildcard characters 

(that is 0 and I) present in a schema defines the order of the schema. The order and length 

of a schema determine the number of chromosomes the schema can match. Defining length 
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is the distance between a schema's outermost, non wildcard character positions. For 

example, the schema mentioned above is 7 bits long, is of the order 5, written as 

o(#00#100) = 5, and has a defining length of 5, written as 8(#00#100) = 5. Fitness of a 

schema is defined as the average fitness of the chromosomes that it represents. 

Goldberg ( 1989) suggested that some schemata are interesting and would help in the GA 

search. These schemata represent characteristics of a particular problem and are known as 

Building Blocks. The building blocks are low order, short defining length, and highly fit 

schemata. The survival of the fittest strategy for the selection helps to propagate 

chromosomes that are members of highly fit schemata. Also the shorter defining length 

schemata are less disrupted due to crossover and the low order schemata are less likely to 

be destroyed due to mutation. Thus, the building blocks can survive from generation to 

generation and are processed by GAs. Holland (1992) estimated that while a GA processes 

n number of chromosomes in a generation, it actually processes on the order of n3 building 

blocks or useful schemata. This phenomenon is described as implicit parallelism. 

The schemata theorem provides a measure of how many chromosomes of a schema H can 

survive in the next generation (represented as m(H, t+ 1)) given the distribution of the 

present generation (given as m(H, t)). The following equation determines the value of m(H, 

t+ 1): 

> (f(H)J - 8(H)-m(H,t+l)_m(H,t). -- .(1 Pc· o(H).pm) 
f 1-1 

... (3.1) 

where j(H) is the fitness of H in generation t, f ' is the mean fitness of the chromosomes in 

generation t, and Pc and Pm are crossover and mutation probabilities. This inequality is 

known as the Schema Theorem [Holland (1975)]. The theorem describes the expected 
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variation in the number of samples of a given ma from one generation to the next, given its 

fitness, defining length, and order. 

Thus according to the schema theorem, short, low order, or highly fit schemata is expected 

to survive and prosper within the populations of the GA, whilst long, high order, or poorly 

fit schemata does not. Goldberg ( 1983 and 1989) defined these short, low order and highly 

fit schema as building blocks, and stated his building block hypothesis as "building blocks 

combine to form better strings". That means during the GA search building blocks 

recombine to produce fitter building blocks that lead to the fittest solution. The theorem 

also states that by decreasing either Pc or Pm, an increased use or exploitation of the better 

schemata can be achieved. And by increasing either Pc or Pm, an increased sampling or 

exploration of the search space is achieved. As a rule the GA is expected to maintain a 

delicate balance between exploitation and exploration. But some time a trade off can be 

influenced by the nature of a particular problem to which the GA is being applied. 

3.2 Identification of multiple sub-optima using multimodal genetic 

algorithms 

3.2.1 Diversity versus useful diversity 

Maintaining the population diversity is a major issue in GA search. Early convergence in a 

GA search can lead to a local sub-optimum, and thus attempts have been made in the past 

to stop quick convergence of the GA. A diverse search by the GA allows exploration of 

larger part of the search space in order to converge on a better, single solution. While doing 

a diverse search, the GA also explores different sub-optima. The three main reasons for a 

quick convergence of the GA are: selection pressure. selection noise and operator 
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disruption. In case of a finite population GA, use of the 'survival of the fittest' promotes 

high fitness individuals in the population. This introduces a selection pressure towards 

higher fitness individuals. In case of identically fit individuals the GA randomly selects one, 

thus there is a variance in the selection process. These variance results in selection noise, by 

which some fitter individuals are randomly thrown out of the population. The use of 

crossover, mutation and inversion can sometimes destroy the building blocks for higher 

fitness individuals this is known as operator disruption. 

One method of increasing the exploration by the GA is to reduce selection pressure and 

increase operator disruption. Operator disruption can be increased either by appropriate 

tuning or the introduction of more disruptive operations. This type of exploration is not 

necessarily useful, for example a very high mutation rate can lead to a random search. A 

useful diversity should explore the good building blocks [Goldberg and Richardson (1987)]. 

An exploration can be called useful if it exploits the genotypic information present in the 

population to search through the interesting areas of the search space. The useful 

exploration should be goal directed. 

Diversity is utilised in search either to achieve the global optimum or to maintain multiple 

sub-optima in the final population. In case of multimodal functions these two goals can be 

dependent on each other. An exploratory GA search that tries to identifY the global best in a 

multimodal function often encounters many local optima. Similarly, a GA search that tries 

to maintain many sub-optima is likely to do a useful exploration in the search space and thus 

also likely to find the global optimum in a multimodal function. The GA suitable for 

multimodal function optimisation is called the multimodal GA. Techniques used to achieve 

the useful exploration for the multimodal GA are generally termed as the niching methods. 
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This thesis concentrates on developing a multimodal GA technique that can maintain diverse 

individuals in a finite population. The GA is also expected to be suitable for real life 

problems. When applied to the turbine blade problem (TBCOM), the technique is expected 

to identify a number 'good' designs. The good designs provide a choice to the designer and 

thus can help in the design decision making. The next section discusses the chronological 

development of different techniques used for the maintenance of diversity in a GA search. 

3.2.2 Chronological development of multimodal genetic algorithms: a survey of 

literature 

Getting multiple sub-optima or "good" solutions from a genetic search falls in the realm of 

maintaining diversity in population. The earliest work reported on maintenance of 

population diversity is Cavicchio's dissertation [Cavicchio (1970)]. As a method of 

preserving population diversity or variance he introduced a number of preselection schemes. 

The best selection scheme says: if a child is better (in terms of fitness) than the worse 

parent then replace the parent by the child for the next generation. Cavicchio assumed a 

parent as the closest member in the population to its child. This assumption may not be valid 

in case of many multimodal functions. Thus, the preselection scheme as described by 

Cavicchio suffers from high replacement error [Mahfoud (1992)]. 

De Jong's dissertation [De Jong (1975)] presented his model of multimodal function 

optimisation based on what is called the crowding factor or simply the crowding model. The 

crowding model was inspired from the ecological phenomenon that similar species compete 

with each other for survival whilst sharing a limited amount of resource. Different species 

live in different groups or niches, and thus dissimilar species do not compete among each 

other. The competition for survival to the next generation is local rather than global. The 
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model implements the above phenomenon by using only a fraction of the population (te1med 

as the generation gap) to reproduce for the next generation. The same fraction of the 

population die to accommodate the newly produced individuals due to a finite population 

size. Preferably the most similar individuals (according to the Hamming distance) are 

replaced. The replaced individuals are selected from a small sample randomly taken from the 

population, where the size of the sample is defined by the crowding factor. The more similar 

an individual becomes to other individuals in the population, the more it experiences a 

heavier selection pressure [De Jong (1975)]. This early work is limited to maintaining 

diversity of species present in the initial population; however it cannot discover new species 

or niches. The model also suffers due to stochastic errors introduced in case of low 

crowding factor. 

Application of parallel sub-populations to evolve multiple solutions from a genetic 

algorithm was attempted by Grosso (1985). In his study he used some degree of 

communication between sub-populations to allow good building blocks to spread, but that 

caused reduced diversity and eventual convergence on one global peak. Without such 

communication the technique becomes equivalent to running a GA several times with a 

smaller population. Elo ( 1994) presents a genetic algorithm with a dynamic division 

mechanism conceived on the Connection Machine-2 for multimodal function optimisation 

problem~. The technique dynamically divides the population into an increasing number of 

sub-populations to allow specialisation on different maxima as discovered during the search 

process. This method allows the GA search to adapt to the topology of different multimodal 

optimisation problems. Without defining the control parameters explicitly, the dynamic 

nature of the algorithm enables divisions to occur appropriately when the maxima are 

discovered during the search process. Thus the method is flexible and requires very little 
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knowledge about the fitness landscape. The use of parallel genetic algorithms to obtain 

multiple sub-optima from a multimodal function is a very promising area of research. 

Goldberg and Richardson ( 1987) introduced what they called as the sharing method. In the 

sharing scheme, fitness is shared as a single resource among similar individuals. Fitness of 

an individual element of population is derated due to the presence of similar elements in the 

population. The concept of sharing is implemented by defining a sharing function, share( d) 

as shown below, where d is a measure of dissimilarity between two elements of the 

population : 

share( d)= 1-(-d-Ja, when d :::; Sshare 

Sshare 

=0 d > Sshare 

... (3.2) 

where, sshare is defined as the dissimilarity threshold and a is a constant to determine the 

shape of the sharing function. An individual is compared with each member of the 

population to calculate the sharing function values. Summation of all the values due to 

individual members of the population defines the total sharing function value for the 

individual. The fitness of an individual is degraded by the total sharing function value, and 

the new fitness, F ', can be described as follows : 

F' = F~i~/hare(d)i, where N =population size ... (3.3) 

Goldberg et. al.(l992) have discussed the strengths and weaknesses of the above fitness 

sharing mechanism for optimisation of multimodal functions. Performance of the sharing 

scheme is very much dependent on the value of sshare· Determination of an appropriate value 

for sshare is a difficult task and is dependent on prior knowledge concerning the nature of the 
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problem Further work has been perfmmed in the same direction by Oei et. al. (1991), 

where they use tournament selection with a continuously updated sharing technique. The 

method updates the fitness (or calculates the shared fitness) with respect to the new 

population distribution as it is being developed. The technique claims to promote and 

maintain multiple sub-populations over many generations. But the technique is also 

dependent on prior knowledge regarding the fitness landscape. In an attempt to handle 

multimodal deceptive functions, Goldberg et. al. ( 1992) used fitness scaling and the new 

fitness sharing scheme. Yin and Gerrnay (1993) presented their implementation of a faster 

genetic algorithm with the sharing scheme using a clustering technique. The clustering 

method is used to identifY different niches present in the population. Niche count (that is the 

number of elements present in a niche) is used to degrade fitness of individuals present in 

the niche; thus sharing is local within one niche. Performance of the technique depends on 

the clustering method used. Setting of parameters for the clustering algorithm needs some 

trials and prior knowledge. The clustering algorithm also enforces an artificial shape (in this 

case spherical) to the niches, that may not necessarily be the natural shape for some niches. 

Jelasity and Dombi ( 1995) described a niching technique called GAS. The technique 

dynamically creates a sub-population structure (they call it taxonomic chart) using a radius 

function instead of a single radius value, and a 'cooling' method similar to simulated 

annealing. The GAS algmithm uses a steady state GA and a high-level algorithm responsible 

for creating and maintaining the taxonomic chart. The technique allows the population to 

grow up to a limit and then to die off to reduce the population size to the starting level. The 

technique introduces a new function called speed of a species, that determines the radius 

function. It is not very clear how the technique would perform in case of multidimensional 

problems. The paper also does not elaborate on the computational complexity of the 

technique. 
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In an attempt to model naturally occuning Niche and Species fonnation, Davidor (1991) 

developed a GA model called ECO GA, which uses a steady-state GA and is based on local 

and computationally inexpensive operators. In ECO-GA, the population of strings is held on 

a 2-D grid having its opposite edges connected together in such a way that each grid 

element has 8 adjacent elements. Initially individuals are placed at random, one on each g1id 

point. ECO-GA randomly selects one grid element, and defines an 8-element sub-population 

around it, thus defining a sub-population of9 elements. This definition implements implicitly 

parallel and overlapping sub-populations. A steady-state GA is applied with the population 

size of 9. Two individuals are selected probabilistically from the sub-population according 

to their relative fitnesses, and genetic operators are applied on them to produce two new 

individuals. The newly created individuals are probabilistically put back to the same grid 

positions depending on the relative fitnesses of the opponents (that is the already existing 

individuals at the two grid points). That means the children are more likely to stay in the 

vicinity of their parents. The smallness of the size of the sub-population helps the GA to 

converge very quickly. The technique works based on local convergence which is quick, 

and assumes that the global optimum can be obtained by the interaction of locally optimised 

individuals. It is not clear how the search is restricted due to the exploitation of only locally 

'good' schema. The implicitly parallel overlapping sub-populations evolve locally but 

infonnation migrates from one g~id to adjacent grid elements because of the overlap. The 

technique intends to explore the search space in order to identity the global optimum in a 

multimodal function. The paper has presented some results with a standard one dimensional 

problem, but it is not clear how the technique would perform in higher dimensions. Further 

investigation is necessary for a better understanding of the strengths and weaknesses of the 

technique. 
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Mahfoud (1992) performed a detailed study on the different niching techniques, especially 

the crowding methods. Outcome of the study was an improved variant of the crowding 

technique called the Detenninistic Crowding (DC) [Mahfoud (1994) and (1995a)]. During 

his experiments with different crowding methods, Mahfoud found that by choosing 

members randomly for reproduction, and then providing the selection pressure by only 

replacing a parent with a fitter child better performance can be achieved. To determine 

which of the possible parent-child pairing should be used in comparing the parents to their 

children (that is either (parent !-child I and parent2-child2) or (parent 1-child2 and parent2-

childl)), the total of the parent-child similarities (in terms of the Euclidean distance) for 

each of the two possible combinations are determined. The parents-children pairing that has 

the highest total similarity is used to determine if the child should replace the parent. The 

replacement is only possible if the child is fitter than the parent. Detenninistic crowding has 

been applied on two-class and multi-class test problems. In case of multi-class problems it is 

apparent some peaks dominate over others. Due to crossover interactions among niches 

some peaks also assist each other to migrate to other peaks. It is observed that the number 

of population elements present in one class is proportional to the sum of the width of the 

base of its peak and the widths of the bases of all peaks it dominates. Dominated peaks 

disappear after some generations unless their assisting peaks are removed beforehand. 

Although the method performs better than crowding, it is not clear if multiple solutions can 

be maintained for many generations using this method. The loss of some dominated peaks is 

a major limitation in case of real life multimodal problems, because there is always a 

possibility of losing some interesting peaks that are dominated by few others. Another 

limitation of DC is that it does not guarantee that the final population shall be distributed 

only among the peaks. This also limits the application of DC in real life problems, because in 

that case it is not clear whether what is returned fi·om the algorithm is at least a sub-peak or 
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not. Cedeno et. al. (1995) developed the concept of multiniche crowding (MNC) in a 

genetic algorithm that permits one to simultaneously find several peaks of a multimodal 

function. In MNC both the selection and replacement steps are modified with a concept of 

crowding. The idea is to remove the selection pressure due to the fitness proportionate 

selection (FPR) whilst maintaining the diversity in the population. The method works with 

local mating and replacement strategy while allowing for some competition for population 

slots among the niches. In multiniche crowding the FPR is replaced by a crowding selection, 

where each member of the population has equal chance to mate in the next generation. First, 

an individual is selected either sequentially or at random The partner for mating is selected 

from a random sample taken from the population (the size of the sample is defined by the 

crowding selection group size (C,)). The MNC uses a replacement policy called worst 

among the most similar. In order to select an individual from the population for 

replacement by a child, crowding factor groups (the number of groups are defined by the 

crowding factor (Cr)) are defined by randomly selecting s (called as the crowding factor 

group size) number of individuals from the population per group. Next, one individual from 

each group is identified that is phenotypically the most similar to the child; and this 

constitutes a list of individuals ready for the replacement. The child replaces the lowest fit 

individual in the list. It is wo11h noting that the child could possibly have a lower fitness than 

the individual being replaced. The technique is applied on several test functions and also to 

determine the sequence of all nucleotide in a DNA molecule, from restriction-fragment data. 

The method works well for the test functions using the given set of crowding parameters. 

The paper does not comment concerning the quality of the solutions achieved. The 

parameters are set by uial and error and the paper also does not mention possible effects of 

the crowding parameters' values on the search. In a recent work, Miller and Shaw (1996) 

have introduced the Dynamic Niche Sharing for multimodal function optimisation. The 
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technique is developed to be faster than the previous sharing method. The dynamic niching 

uses a greedy approach to identify peaks present in the population in every generation. 

Individuals are categorised according to the peak it belongs to (that is if within the cr,h 

radius of the peak). If an individual does not belong to any peak, it is categorised as 'non­

peak'. Thus every individual belongs to a niche (or category), and the fitness of the 

individual is degraded by the size of its niche (niche count). Thus every individual within a 

dynamic niche has their raw fitness degraded equally. This means that there is no incentive 

to maintain distance between individuals within a dynamic niche. This allows the dynamic 

niching to explore the regions around the peaks of the niches more thoroughly than standard 

sharing. The overall performance of the technique is found to be better than the sharing 

technique and DC on a test function. It is not clear how efficient the technique would be for 

multidimensional problems. Setting a value for the cr,h would require prior knowledge about 

the problem, and that also restricts the use of the technique for real life problems. 

In real life problems, some time the model evaluation can be very expensive, and thus a 

smaller population size is used. All the techniques mentioned above try to maintain multiple 

peaks in one population. That means, in case of fixed sized population the identification of a 

number of peaks is restricted by the size of the population. An alternative approach called 

the Sequential Niche Technique, was proposed by Beasly et. al. ( 1993) where peaks are 

identified one at a time. This generalised technique allows unimodal function optimisation 

methods to be extended to identify all optima and sub-optima of multimodal problems. The 

research implements the concept with a standard genetic algorithm. The method involves 

multiple runs of a GA but uses knowledge obtained from previous runs to avoid re­

searching the regions of the problem space where peaks (optima or sub-optima) have 

already been identified. Whenever one peak is located, in subsequent runs, region around 
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the peak (defined by a niche radius) is depressed by applying a fitness derating function. 

That helps the search in concentrating in other interesting areas and thus identii}ring multiple 

peaks. The algorithm is dependent on the right selection of the niche radius. The use of the 

niche radius imposes a shape to the niches (in this case spherical). In case of problems 

where the maxima are not evenly distributed, the fixed size of the niche radius would 

underestimate the size of some niches whereas overestimating the size of others. An 

inappropriate selection of the niche radius can introduce false peaks, and that can misguide 

the search. Sequential niching can also offset a peak's location as a consequence of the 

fitness deration. The artificial shape may not match with the natural shapes of some niches. 

Prior knowledge concerning the problem would be helpful in determining a workable niche 

radius. This is a similar limitation as with the fitness sharing technique. In the fitness sharing 

method fitness landscape is modified every time an individual is evaluated, whereas in the 

sequential niche technique the fitness landscape remains static during one nm. Thus the 

sequential niche technique overcomes the problem of exponential scaling of its fitness 

landscape. Another major limitation of the technique is that it does not allow transfer of the 

building block information to find one solution from another. This can restrict the GA's 

search capability in some applications. Mahfoud (1995b) compared other niching techniques 

with the sequential niching. The paper supports the above mentioned weaknesses of the 

sequential niching. It is also shown that, fitness sharing or DC performs better than the 

sequential niching over a wide range of functions. 

The immune system model for pattern matching was first developed by Stadnyk ( 1987). The 

model could achieve niching by lowering the number of antigens used in computing the 

fitness of each population element. Smith et. al. ( 1993) implemented an immune system 

model along with a GA in order to develop a GA which can search for diverse and eo-
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operative populations. It is observed that the model exhibits an implicit fitness sharing which 

can be useful for multimodal function optimisation. The area of research is relatively new 

and needs further investigation before it can be useful for multidimensional multimodal real 

life problems. In a very recent work Darwen and Yao (1996) compared the fitness sharing 

technique with the above mentioned implicit sharing. The authors used a realistic letter 

classification problem for the comparison. It is observed that the implicit fitness sharing 

searches the optima more comprehensively even when those optima belong to smaller hills, 

and also when the population is not large enough to form the species at each optima. In case 

of implicit sharing the individual closest to a peak is rewarded even if it's not particularly 

close to it and when another individual is almost as close. That means in case of implicit 

sharing there is greater relative selection pressure for the nearer individual and that helps in 

the better exploration. Whereas in case of fitness sharing the niching radius cr,h means the 

closest individual to a peak shares its payoff with all other individuals that are almost as 

close. In the case of small population the tendency of comprehensive peak coverage 

degrades the performance of the implicit sharing more than the fitness sharing. 

Parmee et. al. (1994) and Parmee (1996) describe a method of maintaining diversity and 

reinforcing the natural clustering (niching) tendencies of the GA by appropriate tuning of 

crossover and mutation probabilities. A shared near neighbour clustering algorithm is used 

after some pre set number of generations to further define the naturally occurring clusters 

present in the population. The clustering method does not impose any artificial shape on the 

niches present in a population. The method is suitable for rapid identification of 'good' 

regions in a problem space as opposed to the identification of individual optima. In this 

respect the technique is being developed to provide information to the engineer concerning 

high-performance regions of a complex, multidimensional search space [Parmee (1995)]. 
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The technique requires no prior knowledge concerning the modality of the fitness 

landscape. 

An improved tournament selection method for multimodal functions called the Restricted 

Tournament Selection (RTS) is developed by Harik (1994) and (1995). The technique is 

based on the principle of local competition, that is a tournament among similar individuals 

(according to a distance metric). The method creates a new population as in a steady state 

GA [Syswerda (199lb)]. Before an individual is allowed to the next generation it is placed 

into tournament with the closest (according to the distance metric) individual present within 

a random sample of the population. The size of the sample is kept fixed and is te1med as the 

window size. This f01m of tournament selection should restrict an entering individual from 

competing with others, which are too different fiom it. For an individual, if the closest sub­

optimum is selected in the random sample, the individual competes with the sub-optimum 

and fails to replace it. Thus, if the window size is big enough the replacement error is 

reduced. Therefore after the peaks are identified, the underlying distribution of the 

population is expected not to change for a long time. The procedure is dependent on the 

probability of a peak present in the sample taken fiom the population. This restricts the 

number of peaks the algorithm can maintain depending on the size of the window. That 

means the size of the window is determined using prior know ledge concerning the modality 

of the fitness landscape. RTS has been successfully applied to some multimodal test 

functions. The presence of a dominance factor in RTS is demonstrated in the next chapter. 

It is observed that in a prolonged run some peaks start dominating others. Thus RTS can 

not achieve a steady state of distribution and it carries the risk of losing some peaks. RTS 

can delay complete dominance of some peaks over others. But because of the presence of 

the dominance factor, distribution of individuals on several peaks changes. A steady 
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distribution can be achieved by using a very large window size. The dominance factor 

becomes prominent when some dominating individuals start occupying a major part of the 

population. In case of real life problems, without any prior knowledge concerning the 

location and the number of peaks present, it becomes almost impossible to determine when 

to stop the GA so that the population is distributed among the peaks. Stopping early may 

mean converging to individuals which are not peaks. But delayed stopping can also lose 

some peaks because of the dominance factor. 

3.2.3 Limitations of the previous research for real life problems 

Real life problems can pose some additional challenge than test functions. Test functions 

can be made very complex, but as a test function is developed with a goal in mind (say one 

wants to develop a multimodal two dimensional test function), it is easier to get some idea 

about the nature of the problem. Real life problems are difficult mainly because of the lack 

of prior knowledge. The techniques mentioned in the previous section are mostly tested on 

test functions. The main reason is that it is easier to visualise and measure the performance 

of an algorithm on test functions. Most of the techniques determine the search parameters 

assuming prior knowledge concerning the search space. Performance of the techniques is 

measured in term.~ of population distributions on known peaks. Only a few techniques are 

applied to real life problems, where the validation of the techniques is extremely difficult. A 

real life problem may be considered to have the following characteristics: 

a) There is not much prior knowledge regarding the shape of the search space. 

b) No prior knowledge regarding the performance and location of the optimum 

and sub-optimum points in the search space. 

The lack ofp1ior knowledge invites some difficulties for a multimodal GA search, such as: 
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a) The determination of search parameter values becomes extremely difficult in 

the absence of prior information regarding the modality of the search space. 

b) It is very difficult to identify the state at which the GA distributes the 

population on the peaks. 

c) The validation of the results obtained from the GA search becomes quite 

difficult because of the lack of knowledge concerning the quality and location of 

the peaks. 

The next chapter describes the Adaptive Restricted Tournament Selection, a multimodal GA 

technique suitable for real life problems. The technique is compared with RTS and DC using 

some test functions. A hybrid of the multimodal GA technique and a local hill climber is 

used to identify multiple 'good' designs for the turbine blade design problem (TBCOM). 
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CHAPTER- 4 

4. Adaptive Restricted Tournament Selection 

4.1 Introduction 

Genetic Algorithms (GA) and other adaptive search techniques such as simulated annealing 

and tabu search [Reeves (1993)] have been successfully applied to many optimisation 

problems where the aim is to identify the global optimum solution. Many real life problems 

require the identification of several "good" solutions (that is multiple sub-optima) in 

addition to the global optimum Multimodal GAs identify several sub-optima present in a 

problem space. Research presented in this chapter attempts to add another methodology to 

the list of the multimodal GA techniques. 

Engineering design often involves several objectives. A true engineering solution is not 

necessarily the global optimum with respect to one criterion [Parmee ( 1994 ), Parmee and 

Denham ( 1994)]. Often the final design needs to be selected by the designer considering 

many different criteria. In the case of multimodal design problems there may be quite 

different design solutions that perform similarly with respect to one criterion but these 

designs can have large differences in the degree of satisfaction of other criteria. Both the 

quantitative and qualitative aspects of criteria related to say, manufacturability, cost, 

rnaintainability, robustness and customer preferences should be taken into consideration. 

Integrating all of these criteria into one comprehensive evaluation function is difficult and 

may prove misleading. If the criteria are quantitative in nature one way of handling the 
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situation is to use multiobjective genetic algorithms with pw·eto optimality [Goldberg 

( 1989)]. An attempt is made here to identify multiple "good" design solutions in terms of 

the most important and quantitative criterion and then to evaluate them qualitatively in 

terms of other criteria. The research has developed a multimodal GA technique called 

'Adaptive Restricted Tournament Selection'. 

Adaptive Rest1icted Tournament Selection (ARTS) [Roy and Parmee (1995) and (1996)] 

identifies multiple sub-optima in a multimodal fitness landscape, where each sub-optimum 

represents a design option. The technique is an improvement over Restricted Tournament 

Selection (RTS) [Harik (1994) and (1995)]. In RTS a window (that is a fixed size sample) 

is defined to identify the closest point from a newly generated individual. A tournament is 

performed between the newly generated individual and the closest point before one of them 

can enter the next generation. The size of the window limits bow many peaks or sub-optima 

may be represented in the final population. Without knowing how many peaks are present in 

the fitness landscape it is difficult to decide the size of the window. Thus RTS requires prior 

knowledge about the problem In real life problems information about the modality of the 

fitness landscape is not available. In order to handle real life problems, ARTS uses a shared 

near neighbour clustering method [Jarvis and Patrick (1973)] to define the closest point for 

a newly generated individual. For every generation this method identifies clusters of points 

present in the population. For each newly generated individual the closest point in the 

generation is detennined by finding the closest point of the closest cluster present in the 

population. Thus the necessity for a fixed size window and prior knowledge about the 

problem (as in case ofRTS) are eliminated in ARTS. 

ARTS is compared with two recent multimodal GA techniques, RTS and Deterministic 

Crowding (DC) [Mabfoud (1992) and (1994)]. This chapter presents and discusses the 
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results. A study on the effects of the clustering parameters on the performance of ARTS is 

also presented. A hybrid of an ARTS based GA and a local knowledge based hill climbing 

technique is used in the Adaptive Search Manager (ASM) [Roy et. al. (1996a)]. Finally a 

stochastic local hill climber algorithm is used to fine tune the designs selected by the ASM. 

The chapter also describes both the hill climbing techniques. 

4.2 The Shared Near Neighbour Clustering Method 

The shared near neighbour clustering method [Jarvis and Patrick ( 1973)] is a non parametric 

clustering technique incorporating the concept of similarity based on the sharing of near 

neighbours. The technique is simple to implement and computationally inexpensive (except 

in case of very high dimensional problem). The clustering methodology is applicable to a 

wide class of practical problems involving large sample size and high dimensionality [Jarvis 

and Patrick (1973)]. The method is particularly suitable as an analysis tool when little prior 

knowledge about the problem space is available. 

4.2.1 The Similarity by Sharing of Near Neighbours 

Let {x1, x2, ... , Xn} be a set of parametric data vectors in an L dimensional Euclidean vector 

space. The task is to divide these n data points into M number of clusters (where M is 

unknown), where each group can be considered as a cluster of points. Two data points are 

considered similar if their respective K number of nearest neighbours match. The value of K 

defines the size of a nearest neighbour list for each point. The similarity measurement is 

valid only if the tested points themselves also belong to the common neighbourhood. This 

avoids the possibility of clustering a small and relatively isolated number of points with a 

high density group. The similarity measure has its own built-in automatic scaling. This 

means that where points are widely spread, the neighbourhood (that is the volume 

containing K nearest neighbours) expands. If the points are tightly positioned the 
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neighbourhood shrinks. Thus the clustering technique does not depend on a globally fixed 

distance threshold. There is possible interactive control of the clustering by specifying K and 

the number of shared neighbours that is regarded as sufficient (K7) for the clustering. KT is 

known as the similarity threshold. 

Lable Table Neighbourhood Table 

1st Lable 

2nd Lable 

nth Lable 

The point itself (zeroth neighbour) 

The nearest neighbour 

2nd nearest neighbour 
kth nearest 
neighbour 

n 

Figure 4.1: The near neighbour and the lab le table. All the entries are integer numbers. 

4.2.2 The Clustering Algorithm 

The clustering algorithm using the above mentioned concept of similarity can be described 

as follows: 

Step 1: For each point of the data set {x~, x2, ... , x.}, K nearest neighbours (in 

this research they are defined using the Euclidean distance) are listed in an 

increasing order of the distance. The data point is regarded as its own 

zeroth neighbour. 

Step 2: An integer label table of length n, with each entry initially set to the first 

entry of the corresponding neighbourhood list is developed (Figure 4.1 ). 

Step 3: All possible pairs of the neighbourhood lists are tested as follows: replace 

both label entries by the smaller of the two existing entries if both zeroth 

neighbours (that are the points being tested) are found in both the 
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neighbourhood lists, and at least the KT neighbour matches exist between 

the two lists. Also, all appearances of the higher label (throughout the 

entire label table) are replaced with the lower label if the above test is 

positive. 

Step 4: The clusters with the K and KT values are now indicated by identical 

labelling of the points belonging to the clusters. 

Step 5: Recalculation of the clusters with new values of K and KT can be carried 

out simply by returning to step 2 until a desired criterion is satisfied. The 

first selection of K should be the largest the clustering would ever require 

so that the original vector data need not be recalled. 

Thus by setting K and KT equal one can achieve the tightest clusteting possible. Although 

Euclidean distance is mentioned in Step I, the method is by no means restricted to this 

measure and any suitable measure can be used. In general the clustering does not impose a 

shape to the clusters, but with a relatively large value of K the clustering will tend to 

produce globular bias. The computational complexity of calculating the near neighbourhood 

table is of the order of (n/ L + C(K) operations, where C is a relatively small factor to allow 

for the extra overhead of testing for all K near neighbours for each point. With little 

improvement in the algorithm, only n(n-1)12 distance measures are necessary for the 

clustering. The clustering algorithm is integrated with the ARTS based GA technique. 

4.3 Adaptive Restricted Tournament Selection 

4.3.1 The Algorithm 

Adaptive Restricted Tournament Selection (ARTS) is an improved multimodal GA 

algorithm ARTS identifies a number of sub-optimum points in a search space without any 

prior knowledge concerning the modality of the fitness landscape. Thus ARTS is suitable 
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for real life problems. The sub-optimwn solutions can be considered as "good" solutions. A 

formal definition of a "good" solution for this thesis is given below: 

Let us assume a search space S and an objective function f (that assigns a real 

number to any member ofS). 

f: S -+R" 

Without loss of generality. let us assume that the goal is to maximise with respect to 

f A neighbourhood of an element i of the search space S is defined by the resolution 

on each dimension. For any i E S, N(i) ~ S is the neighbourhood of i in S. Where i 

can be considered a "good" solution or a sub-optimum member of the search space 

s if: 

f(i) 2' fOJ for all j E N(i) 

The algoritlun is used with a steady state GA [Syswerda (199lb)]. In every generation, 

there are n (where, n = population size) nwnber of iterations and in every iteration two 

individuals are selected at random (they are termed as parents). Two new individuals, 

children, are created by crossover between the parents. The population is clustered every 

generation using the shared near neighbour clustering technique [Jarvis and Patrick ( 1973)]. 

The clustering is performed with respect to the Euclidean space (that is the parameter 

space), clustering time is therefore independent of the model evaluation time. The clustering 

is controlled by the two parameters, K and KT. The tightest possible clustering is achieved if 

the values of K and KT are set equal for the clustering. The clusters are considered as niches 

present in the population. For a newly generated individual (a child) the closest element in 

the population is found by finding the closest element of the closest cluster present. The 

closest cluster is identified according to the Euclidean distances between a child and the 

cluster centroids. With a relatively large value of K (in this case K > L) the shape of the 

clusters can be given some globular bias, that is necessary to make the cluster centroid 

calculations more meaningful. Each child competes with the closest individual found in the 
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population. The number of individuals present in the closest cluster is equivalent to the 

window size in RTS, but here the number of elements is determined adaptively according to 

the distribution of elements in the population. Thus ARTS does not need any prior 

knowledge concerning how many peaks are present in the problem space. The algorithm 

can be described as follows: 

--------

Step 1 :Initialise population. gen = 0 

Step 2: Cluster population. Find the centroids of the clusters, num = 0 

Step 3 : Randomly select two individuals (say, P 1 and P2) 

Apply the GA operators (Crossover and may be Mutation) on P 1 and P2 

to generate Cl and C2 

For Cl: 

Select the closest cluster (according to the Euclid. dist. between Cl 

and the cluster centroids) 

Find the closest individual (say, Cl') fimn the closest cluster 

Jffitness(Cl) ~fitness( Cl') then replace Cl' by Cl in the 

population 

For C2: 

Select the closest cluster (according to the Euclid. dist. between C2 

and the cluster centroids) 

Find the closest individual (say, C2 ') fi-om the closest cluster 

If fitness(C2) ~fitness( C2') then replace C2' by C2 in the 

population 

num = num + 1 

Jfnum < POPSIZE go to Step 3 

Step 4 : gen = gen + 1 

If gen < MAXGEN go to step 2. 
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The technique is applied here on a number of one dimensional multimodal test functions. 

ARTS identifies and maintains all the peaks present in those functions. ARTS is also 

successfully applied to the turbine blade problem within the Adaptive Search Manager. 

4.3.2 ARTS and the GA Search 

The principle behind ARTS is local competition while using the pool of building blocks 

present in the population. It is observed during the empirical trials with different multimodal 

test functions that ARTS exploits schema information at its initial stages of a run (i.e. the 

first few hundred generations). Once the population elements are dist1ibuted among the 

peaks a steady state is achieved where the competition is entirely local. During the initial 

stages of a run when the population is quite diverse the clustering algorithm tends to form 

wider clusters thus introducing some replacement errors in the ARTS search (clustering 

enw). This causes a delayed convergence on the peaks. At the steady state of distribution, 

when the population is distributed among the peaks the clustering algorithm identifies the 

niches correctly. This helps to restrict the tournament within each niche and thus eliminates 

the dominance problem (that is discussed in the previous chapter) as seen in the case of 

RTS. A simple genetic algorithm (SGA) [Goldberg (1989)] converges to a global optimum, 

whereas ARTS can maintain multiple peaks. ARTS also continues to search (even in later 

generations) a larger space by crossover between different niches present at the steady state 

of population distribution. 

4.4 A Comparative Study of ARTS, RTS and DC 

ARTS, RTS and DC have been tested on four test functions, among which two are sine 

functions (termed as F I and F2) as used by Harik ( 1994) and ( 1995), and the other two are 
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class functions (termed as CFI and CF2) as used by Mahfoud ( 1994). Same test parameters 

are used for all the three experiments. The test parameters are as follows: 

Population size = 100 

Maximum generation = 500 

Crossover type = One point crossover 

Crossover probability= 1.0 

Mutation probability= 0.0 

Window size for RTS = 20 

Kfor shared near neighbour clust. in ARTS= 15 

KT for shared near neighbour clust. in ARTS= 15 

Tests were performed on a Sun Spare I 0 computer with the same seed value for the random 

number generator. ARTS, RTS and DC have been tested for the distribution of population 

elements on the peaks. An individual (i.e. a population element) having a fitness of at least 

99% of a peak value is considered to be on the peak. 

4.4.1 The Two Dimensional Test Functions 

The four two dimensional test functions used for the tests are described below: 

Function Fl 

This is a sine function that has five equally spaced peaks of equal height within a range 

[0,1]. The function is defined as f(x) = sin6(5rrx) (Figure 4.2). The five peaks have equal 

height of 1.0 at x = 0.1, 0.3, 0.5, 0.7, and 0.9. 

Function F2 

This sine function is defined on [0, I], having five unevenly spaced unequal peaks. The 

function is defined as f(x) = e·2In2((x-o I)IOS)''2sin6(5rr(x314
- 0.05)) (Figure 4.3). This function is 
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Figure 4.2: Function Fl 
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Figure 4.3: Function F2 
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Figure 4.5: Function CF2 
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used in testing the ability of a multimodal GA to distribute its final population on different 

sub-optima. 

Function CFl 

This is a class function where the first class is twice as fit as the other three classes (Figure 

4.4). The classes are equally spaced. DC has been observed to have the dominance problem 

with this function [Mahfoud (1994)]. In this case the peak belonging to the first class is 

called the dominating peak, and that dominates its less fit neighbour the second peak. 

Function CF2 

CF2 (Figure 4.5) is a modification of the class function CFI where the fourth class has also 

been made to be dominating. The first and fourth classes are equally fit but twice as fit as 

the second and the third. It is observed that when DC is applied to this problem one weaker 

class assists another weaker class for migration. In absence of the assistance (that is when 

one class is completely migrated) the weaker class is no longer dominated. 

4.4.2 The Comparison Results 

Results of the experiments are shown in Figures 4.6 to Figure 4.9. In the case of function Fl 

(Figure 4.6), ARTS can maintain ail the five peaks. The population is distributed among the 

peaks upon reaching a steady state of population distribution. ARTS takes some time to 

attain the steady state. This can be attributed to the clustering error involved at the initial 

stages of the run. On the other hand RTS shows the dominance effect by losing the third 

peak at around 400 generations. A steady state is only maintained over a few generations. 

DC achieves a steady state in its population distribution after some generations, but it is 

observed that the final population is not distributed among the peaks only. A consequent 

trial with F2 also exhibits similar performances of ARTS, RTS and DC. On the class 
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Figure 4.6(a): ARTS on Fl , where N is the number of elements on each peak. 
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Figure 4.6(b): RTS on Fl , where N is the number of elements on each peak. 
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Figure 4.7(a): ARTS on F2, where N is the number of elements on each peak. 
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Figure 4.7(b): RTS on F2, where N is the number of elements on each peak. 
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Figure 4.7(c): DC on F2, where N is the number of elements on each peak. 
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Figure 4.8(b): RTS on CFl, where N is the number of elements on each peak. 
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Figure 4.8(c): DC on CFl, where N is the number of elements on each peak. 
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Figure 4.9(a): ARTS on CF2, where N is the number of elements on each peak. 
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Figure 4.9(b): RTS on CF2, where N is the number of elements on each peak. 
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Figure 4.9(c): DC on CF2, where N is the number of elements on each peak. 
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function CFI, DC and RTS also exhibit the dominance problem RTS never achieves a 

steady distribution among the peaks whereas, ARTS takes about 250 generations to achieve 

the steady state. However, once the distribution is achieved all the members of the 

population are distributed on the peaks. In the case of function CF2, DC performs as 

expected [Mahfoud ( 1994)], that is, two peaks dominate the other two. RTS also exhibits 

the dominance factor on this function, i.e. the two fitter peaks dominate the other two 

peaks; whilst ARTS performs consistently well as before. From these experiments it is 

evident that, ARTS has avoided the problem of dominance and can distribute its population 

among the peaks once it reaches the steady state. ARTS achieves this without any prior 

knowledge about the modality of the search space. 

To analyse further, RTS has also been tested on functions Fl and F2 with three different 

window sizes 15, 20 and 25. In each case ten random runs are performed. The variance of 

the number of elements on each peak is presented in Figures 4.10 and 4.11. The figures 

show that, RTS cannot attain a steady state of population distribution on the peaks and in a 

few cases peaks are totally lost after some generations. Figure 4.10 exhibits that for function 

Fl the search is less robust with a smaller window size (i.e. there is a higher variance). On 

the other hand a larger window size of 25 introduces more stability to the search (i.e. 

smaller variance). Figure 4.11 also shows that for function F2 the performance of the search 

is improved using a higher window size. The larger window size of 25 helps to maintain all 

the peaks for a longer period. 

4.5 A Study on the Effects of the Clustering Parameters, K and KT, on 

ARTS 

The shared near neighbour clustering technique is controlled by the two parameters K and 

KT. It is important to understand the effect(s) of the two parameters on the ARTS based 
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Figure 4.10(a): RTS on Fl with window_size = 15, where VN is the variance of 

the number of elements on each peak over ten random runs. 
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Figure 4.10(b): RTS on Fl with window_size = 20, where VN is the valiance 

of the number of elements on each peak over ten random 1uns. 
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Figure 4.10(c): RTS on Fl with window_size = 25, where VN is the vatiance of 

the number of elements on each peak over ten random runs. 
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Figure 4.11(c): RTS on F2 with window_size = 25, where VN is the variance of the 

number of elements on each peak over ten random tuns. 
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GA search. In order to study the effect, the ARTS based search is performed with different 

values of KT whilst keeping K constant. The value of KT is varied from 15 to 8, while K is 

kept at 15. The study is performed on both F1 and F2 functions. When K and KT are the 

same, that is when they are both 15, the tightest possible clusters are produced. Reducing 

the value of KT from 15 results in less tight clusters. Ten random runs are performed for 

each combination of K and KT. The average and variance of the number of elements present 

on each peak with KT equal to 15 and 8 only are plotted in Figures 4.12 to 4.15. The 

experiments show that in all the cases ARTS is found to have achieved a steady state of 

population distribution and the performances are similar. The value of K does not affect the 

clustering significantly, and generally K is fixed at 15 with a population size of 100. The 

value of K is suitable to provide the necessary globular bias to the clustering. 

4.5.1 Chi-square-like performance test for different values of KT 

ARTS is tested with different values of KT for the clustering. The value of K is kept the 

same. The final population distributions on the peaks of F1 and F2 with the tightest 

clustering (that is K and KT are set equal) are used as the benchmarks. For each function, 

KT is varied from 15 to 8 and the population distribution is noted for 500 generations, while 

the value of K is kept fixed at 15 only. The experiments use the GA parameters as 

mentioned in the section 4.4. The final population distributions (that is at generation 500) 

with KT from 14 to 8 are compared with the benchmark distributions. The chi-square-like 

performance statistic is used to determine how far the final population distributions (that is 

with KT from 14 to 8) differ from the respective benchmark distribution. This measures the 

effect of different values of KT on the performance of ARTS based GA search. The chi­

square-like measure [Deb and Goldberg (1989), Miller and Shaw (1996)], given below, 

returns a positive number that decreases as the two distributions become closer; it returns 0 

if the distJibutions are identical. 
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Figure 4.14(b): ARTS on F2 with KT= 15, where VN is the variance of the 

number of elements on each peak over ten random runs. 
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Figure 4.15(a): ARTS on F2 with KT= 8, where AN is the average number of 

elements on each peak over ten random mns. 
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Figure 4.15(b): ARTS on F2 with KT = 8, where VN is the vruiance of the 
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q (X- J-L· J2 Chi-square-like perfonnance measure = L 1 1 

i =I a i 
... ( 4.1) 

The chi-square-like performance metric measures the deviation of the actual distributions of 

individuals, Xi, from the benchmark distribution mean lli on all the i peaks (there are total q 

number ofpeaks). The variable Xi represents the actual number of individuals on the peak i. 

The average and the standard deviation of the number of individuals on the ith peak in the 

benchmark distribution are denoted by lli and cri respectively. The smaller the chi-square-

like performance measure the closer are the two distributions. Tables 4.1 and 4.2 present 

the benchmark distributions for the functions Fl and F2 respectively. 

Peak Number Ill 0"1 

I 19.1 4.07 

2 21.4 3.40 

3 19.8 3.49 

4 20.0 2.75 

5 19.7 4.11 

Table 4.1: The benchmark population distribution on the peaks ofF! (where the peaks are 

counted from the left in figure 4.2). Here K and KT are kept equal at 15. 

Peak Number Ill 0"1 

1 15.8 3.29 

2 20.5 4.17 

3 20.0 5.29 

4 23.5 3.34 

5 18.2 2.44 

Table 4.2: The benchmark population distribution on the peaks ofF2 (where the peaks are 

counted from the left in figure 4.3). Here K and KT are kept equal at 15. 
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Ten random runs are performed for every combination of K and KT. Experiments are 

performed for both the functions, Fl and F2. The average and standard deviation (SD) of 

the chi-square-like statistic over the ten runs for each combination of K and KT are 

presented in Tables 4.3 and 4.4. It is clear from Table 4.3 that in all the seven cases for the 

function Fl, the average chi-square-like measures are quite small and of similar value. The 

corresponding standard deviations are also reasonably small. These show that for function 

Fl, in terms of attaining the steady state ARTS search is robust to changes in KT. Also 

Table 4.4 exhibits a similar trend for the function F2. It is observed that in Table 4.4 the 

average and standard deviation tend to increase with decreasing values of KT, but they are 

still quite low. Very loose clustering is performed when KT is set to 8. This introduces more 

clustering error in the search. Though the search attains steady state of distribution, the final 

distribution can vary from the benchmark. This is observed from the fact that the standard 

deviation of the chi-square-like measure is higher. Thus, in terms of attaining the steady 

state the performance of ARTS based GA can be considered as reasonably robust with 

different values of KT, while K remains constant. 

K KT Chi-Square-Like measure 

Average SD 

15 14 2.2331 0.9888 

15 13 2.4290 0.9404 

15 12 2.5381 0.4660 

15 11 3.1692 1.2363 

15 10 3.1449 1.3300 

15 9 2.3134 0.8427 

15 8 2.4611 1.2041 

Table 4.3: The chi-square test results for the function F 1 with different values of KT. 
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K KT Chi-Square-Like measure 

Average SD 

15 14 2.0436 0.5623 

15 13 2.0472 0.9137 

15 12 3.3653 1.0135 

15 11 2.8944 1.0590 

15 10 4.2240 1.5466 

15 9 4.0833 1.4650 

15 8 3.9397 2.1321 

Table 4.4: The chi-square test results for the function F2 with different values of KT. 

4.6 The Identification of "Good" Design Solutions using ARTS 

The developed technique, ARTS, is applied on the twelve dimensional turbine blade cooling 

system design problem The problem involves three non-linear constraints. The objective is 

to identify several sub-optima or in other words multiple "good" design solutions present in 

the constrained design space. 

4.6.1 Genetic Encoding of the Design Variables 

The turbine blade problem includes three types of geometry for the cooling passage. Types 

of geometry determine the ranges for the coefficient of discharge (Cdf) and the factor for 

beat transfer coefficient (Fhc). A structured chromosome approach [Dasgupta and 

McGregor (1991)] is implemented using binary encoding. The structure ofthe chromosome 

is shown in Figure 4.16. Every variable is defined by a maximum value, a minimum value, a 

resolution and a design tolerance. Every variable is represented by an eight bits long string. 
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4.6.2 The Constrained Optimisation 

The turbine blade cooling system design involves three non-linear constraints. Any new 

technique should be able to handle this constrained optimisation task. Michalewicz ( 1995) 

has listed several techniques for constrained optimisation. The most popular technique uses 

penalty functions, where the fitness (that is the inverse of coolant mass flow through the 

radial passage) of a solution is degraded if it violates any constraint. The problem uses three 

linear penalty functions for the three constraints. The penalty functions (Figure 4.17) help 

the GA to concentrate search in the feasible regions of the search space. 

4.6.3 ARTS for the Design Problem 

ARTS is applied to the turbine blade design problem to identity multiple "good" design 

solutions. The solutions are presented to the designer by ASM for design decision suppo11. 

ARTS uses the shared near neighbour clustering technique to cluster the elements or design 

solutions present in every population. The clustering time depends on the total number of 

elements to be clustered. As an ARTS based GA run progresses, some duplicate solutions 

are produced. In order to reduce the clustering time a clustering list is developed by 

eliminating the duplicate designs from every generation. Thus the clustering list changes its 

size and becomes smaller as the run progresses. The clustering list is used to identity smaller 

clusters present in the population. In an initial attempt [Roy and Parmee ( 1996)], the two 

control parameters of the clustering technique, K and KT, were set equal but proportional 

to the size of the clustering list. That helped to achieve the tightest clustering possible. In a 

later development, an attempt has been made to integrate a knowledge based hill climbing 

technique (KBHC) with ARTS. KBHC is discussed in detail in the next section. KBHC 

works on every generation and tries to improve the "good" designs (that is the best design 

of each cluster) utilising designers' prior knowledge and information extracted from the 

clusters. Designers' prior knowledge represents a heuristic concerning the contribution of 
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The Structured Chromosome 

{ 1 2 3 4 56 7 8 9 10 1112 13 14 1516 17 1819 20 21 22 23 24 25 26 27 28 29 30 3132 33 34} 

~~ 
Geometry 

Variables for 
Geomeny = 1 

Variables for 
Geometry= 2 

Variables for 
Geometry= 3 

Figure 4.16: The structured chromosome that is used for the design problem, 

where 1, 2, 3, 4 .. . are gene (each gene represents one design variable and is 

represented by a binaty string) nwnbers. 

cons] = 1.0 
cons2 = 1.0 
cons3 = 1.0 

;; penalty factor for constraint one 
;; penalty factorfor constraint two 
;; penalty factor for constraint three 

Jfviolationl > 150.0, cons] = 0.0 
Else cons] = 1.0- (1.0/150.0) *violation] 

Jfviolation2 > 150.0, cons2 = 0.0 
Else cons2 = 1.0- (l.0/150.0)*violation2 

Ifviolation3 > 0.4, cons3 = 0.0 
Else cons3 = 1.0- (l.0/0.4)*violation3 

constrained_jitness = unconstrained_Jitness *cons 1 *cons2 *cons3 I 10.0 

Figure 4.17: The penalty functions used for the problem, where violation 1, violation2 

and violation3 represent the amounts of constraint violation for the three constraints. 
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individual variables to the fitness. Data within a cluster also provides some information 

about the relative contribution of the design variables towards fitness within the 

neighbourhood. If a cluster contains very few designs, some designs are randomly generated 

around the best design of the cluster. These designs are then used to obtain the cluster 

information. For every cluster, the method learns about the best design using the cluster 

information, uses designer's existing knowledge and identifies the most contributing 

variables. The technique assumes that variables are independent. At first, real-number bill 

climbing is performed only on the three most contributing variables. If KBHC cannot 

improve the designs for some generation, the next set of three most contributing variables 

are bill climbed. Then if KBHC does not improve the designs for some generations the hill 

climbing is stopped. 

Every design belongs to the hill of a local peak and KBHC tries to climb up to that peak. 

Thus KBHC is a local hill climbing technique. The method only searches in limited 

directions thus it cannot guarantee to identify the local peak, but it can climb up the hill 

deterministically. The technique is very quick, and may improve the best design in each 

cluster. Thus it is acceptable to apply the technique every generation. Whenever KBHC is 

successful the improved design replaces the best design of the cluster and its duplicates in 

the population. This improved population is then reclustered to provide information for the 

next generation. 

It is important that the search attains a steady state to distribute the design solutions on 

different sub-optima. In the initial attempt, whether the ARTS based GA has attained a 

steady state was determined by checking the average fitness of the population every 

generation. If the average fitness remained unchanged for a certain number of generations it 

was assumed that the GA has attained a steady state [Roy and Parmee (1996)]. This steady 
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state criterion is found to delay the ASM run and does not contribute to the search at the 

later stage of a run. Thus the criterion is not very suitable for industrial applications. In 

order to achieve "good" designs within a reasonable time, the steady state criterion has been 

changed. The ASM now maintains three lists of "good" designs for the three geometry 

types. The lists are of fixed size and the sizes are determined heuristically. A list is updated 

under the following circumstances: 

a) If the list is not of full size: the list is updated until the list attains the full size. 

b) The lists are updated every generation only if a better design is found outside the 

neighbourhoods of the designs in the lists, but within the same geometry type. 

The neighbourhood of a design is defined by the tolerances on each dimension. 

The better design replaces the worst design in the list. 

c) If a better design lies in the neighbourhood of a design from the list, the better 

design replaces the design in the list. 

If all the three lists are not updated for some generations it is assumed that the search has 

reached steady state. Thus, the objective of the search is redefined as 'only five best designs 

are required from each geomelly type' (that is a total of 15 designs using an initial 

population of 120). KT is assigned 90% of the value ofK. This smaller value of KT (that is 

smaller than K) provides bigger clusters. The clusters provide information for the KBHC 

search. Once the GA reaches a steady state, the best solution in each cluster is considered 

as a potential "good" solution. In an attempt to reduce the run time of ASM for the turbine 

blade problem following improvements are also introduced: 

A. An Effective Crossover Technique: The structured chromosome used to 

represent the problem results in a large amount of redundancy in a chromosome 

(in this case there is about 66% redundancy present in the chromosome). If the 

one-point crossover position is selected within the redundant areas of the parent 
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chromosomes, the children produced would not be different from their parents. 

This makes the crossover ineffective on some occasions and thus prolongs the 

search. An effective crossover technique is developed that prevents crossover in 

the redundant regions of the parent chromosomes. The crossover position is 

selected at least within the active regions of a parent chromosome. This 

improves the effectiveness of the crossover technique, and thus ASM run time is 

reduced [Wade et. al. (1994)]. 

B. During an ARTS based GA search some duplicate solutions are produced in 

the population. Thus, randomly selecting two individuals fi·om the population 

may mean selecting duplicate chromosomes as parents. Mating of identical 

chromosomes cannot produce any new schema; and as a result the effectiveness 

of the reproductive stage is reduced. In order to avoid the selection of two 

similar chromosomes as parents, they are selected from the cluster list, whilst 

the cluster list is developed from the population after eliminating the duplicate 

designs [Eshelman and Schaffer (1991)]. 

The potential "good" design solutions were validated by randomly checking the fitness of 

many solutions from the neighbourhood. It was observed that, although the fitnesses looked 

very promising most of them were actually not local optima. The solutions achieved were 

found to be close to the local optima. This difficulty can be attributed to the inefficiency of 

the GA and KBHC hybrid to exactly locate a sub-optimum, specially if the problem is 

complex and multidimensional. At the end a stochastic local hill climbing algorithm 

(described in section 4.8) is also applied on each potential "good" solution to ensure that 

the local peak is attained. 
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4.7 The Knowledge Based Hill Climbing Technique 

A Knowledge Based Hill Climbing (KBHC) technique is developed to be used with the 

Adaptive Search Manager (ASM) [Roy et. al. (1996a)]. The KBHC technique learns from 

the cluster information gathered by the ASM, uses prior knowledge of expetts, and 

detenninistically performs a limited hill climbing. The objective is to improve upon a design 

with a very small number of trials. The technique assumes that the clusters represent the 

neighbourhoods of the design solutions, and that there is very little interaction between the 

design variables. KBHC works with the principle ofBayes' Theorem. The theorem provides 

a learning framework that identifies the interesting variables to hill climb. The hill climbing 

is limited within a type of the geometry. The technique is applied every generation on the 

best design of each cluster. KBHC is stopped if it cannot improve the designs for a few 

generations. 

4.7.1 Learning from a Single Data Set using Bayes' Theorem 

It is assumed that a designer considers a finite list of models for the design task; where each 

model represents one variable, { M1, M 2, ... , Mk } , to constitute an exclusive and exhaustive 

set of possible probability models for the problem. It is further assumed that, before any 

data is obtained, the designer assigns prior probabilities, { P(MI), P(M2), ... , P(Mk)}, (prior 

probability represents designer's heuristic knowledge about the problem and is represented 

as the degree of belief) to these models, where 0 ::; P(M;) ::; I; i = l, 2, ... , k , k is the 

number of variables and 

.... (4.1) 
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Each probability model defines a probability distribution over the possible data that may be 

obtained. In particular, if the acquired data set is denoted by D, the probabilities of the data 

as defined by each of the alternative models are given by the conditional probabilities 

{ P(D/Mt), P(D/Mz), ... , P(D/Mk) } . 

Considering in terms of the { Mt, Mz, ... , Mk }, for a given D, the above quantities are often 

referred to as the likelihood of the M;'s given D. 

After considering an exclusive and exhaustive set of probability models the designer 

specifies a set of prior probabilities. Assuming that the design variables are independent, for 

an actually obtained data D, univariate linear regression analysis coefficient, b, can provide a 

measure of the likelihood. Thus: 

b· 
P(D/M;)=-k-1 -

Lhj 
J=l 

.... (4.2) 

The designer may now wish to revise the prior probabilities in the light of the information 

provided by the data. Expressed mathematically, the designer would wish to calculate the 

probabilities for the alternative models, conditional now on having the observed data D: 

{P(Mt!D), P(Mz/D), ... , P(MJD)}, 

The mathematical result that expresses these posterior probabilities in terms of the prior 

probabilities and the likelihood is defined by Bayes' Theorem. The theorem for the situation 

under consideration can be stated as follows: 

BA YES' THEOREM (in the discrete form): If {M~, M2, ... , Mk} are an exclusive and 

exhaustive set of probability models, and the prior probabilities { P(Mt), P(Mz), ... , P(Mk)} 

and likelihood { P(D/M1), P(D/M2), ... , P(D/Mk)} are specified such that P(D) > 0, then the 

posterior probabilities are given by [Lioyd (1984)]: 
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P(M· jD)=P(D/ M;)P(M;) h . 1 2 k , P(D) w ere, 1 = , , ... , . .... (4.3) 

and, 

P(D) = P(D!M,).P(M,) + P(D/M2).P(M2) + ... + P(D/Mk).P(Mk) .... (4.4) 

Initial 
Probabilities 

Bayes' 
Theorem 

Revised 
Probabilities 

Data 

Figure 4.18: The fundamental principle of the Bayesian paradigm. 

What distinguishes the Bayes' theorem from other statistical approaches is that, prior to 

obtaining the data, the statistician considers his degrees of belief for the possible models 

and represents them in the form of probabilities [Lloyd (1984)]. Once the data is obtained, 

the theorem enables the statistician to calculate a new set of probabilities, which represent 

revised degrees of belief in the possible models, taking into account the new information 

provided by the data. For a given set of possible models, the fundamental process 

underlying Bayesian approach is summarised schematically in Figure 4.18. 
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4. 7.2 The Methodology 

The hill climbing methodology can be described as follows: 

I. ASM produces clusters of design solutions each generation, and KBHC obtains 

information from these clusters. The clusters need to have a minimum number of designs in 

order to provide meaningful information. If a cluster does not have a minimum number of 

designs then some solutions are generated randomly in the neighbourhood of the best 

solution, where the neighbourhood is defined by the resolution on each variable. 

2. Univariate Regression Analysis : 

To find the univariate regression coefficient: 

}i;=a;+h;f; 

where, i = I, 2, ... , n; n being the number of variables. 

m m m I 
L.Xij Yij - I Xij I Yij m 
j=l j=l J=l 

b; = 2) 
I x] -[I xi] m 
;=I ;=I 

a; =Ji; -b;"i; 

and, m = number of data. 

m 
Residual (error) sum of squares= SSR; = I (Yij- Yij l2 

j=l 

.... (4.5) 

.... (4.6) 

.... (4.7) 

.... (4.8) 

where, .vi! ,_v,2 , •.. ,_v,m are obtained by substituting the x 

value for each observation into the least-squares 

Estimated Standard Deviation = Se; = ~ SSR; 
m-2 
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Estimated standard deviation of the statistic bi = Sbi = r====S=e=i ===:=':"" 

~ xv -[ I>u)
2 

~ 
J=l J=l In 

.... (4.10) 

The probability distribution of the standardised variable: 

b·- f3 
t· =-'--

1 Sb· 
I 

.... (4.11) 

is the t distribution with m-2 degrees of freedom. 

For each variable the calculation is performed in the following sequence: 

a) Calculate bi 

b) Calculate ti 

c) Get the critical value ofti from standard table for 95% confidence interval and (m-

2) degrees of freedom. 

d) In order to conclude that there is a linear relation between a design variable and the 

fitness, the converse of this research hypothesis, the null hypothesis, needs to be 

rejected. The logic is similar to the mathematical method of proof by contradiction. 

Thus if the null hypothesis (HO: ~ = 0) is rejected the bi value can be used as the 

measure of likelihood. Otherwise, the model does not appear to satisfY a useful 

way of predicting the dependent variable. The null hypothesis is rejected if ti > 

tcritical or ti < -tcritical· 

3. nze Designers' Knowledge: The pre-probability represents designers' heuristic 

knowledge about the contribution of individual variables to the fitness. The probability is 

represented as the designers' degree of belief. 
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The knowledge based hill climbing learns from the designs in a cluster and also uses some 

prior knowledge from the designer. The probability of individual variable to be the most 

contributor for the fitness is initially given by the designer from his experience. Following 

assumptions are made: 

a) The designer has some prior knowledge about the important vmiables. This 

information is not necessarily true in local regions. 

b) The cluster data alone cannot provide enough information about the 

neighbourhood of the design because they are too small in number. There is 

uncertainty involved regarding any information retrieved from the data. This can 

be considered as a degree of disbelief. 

c) Information gathered from the cluster data and the designers' prior 

knowledge can provide a more realistic assessment of a local region in the 

search space. 

4) The values of the posterior probability, P(M;/D), are used to identifY the SIX most 

contributing variables. 

5) To start with, a deterministic real number hill climbing is performed on the first three 

most contributing variables. The hill climbing starts in the best direction and then climbs 

other directions in the order. 

6) After few generations KBHC becomes less effective because the three variables achieve 

their optimum value. If KBHC is not successful for a few generations, then the second set 

of three of the six most probable variables are hill climbed. KBHC is then stopped if it fails 
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to improve the designs for few generations. After the hybrid of ARTS based GA and KBHC 

attains a steady state of population distribution, the GA search is stopped. Finally, a 

stocbastic local hill climbing is applied on the "good" designs for fine tuning. 

4.8 The Stochastic Local Hill Climbing Technique 

A stochastic local bill climbing algorithm is used to identify the sub-optimum solution 

present on the bill of a probable "good" design solution. The local search is again limited to 

a type of geometry of a potential "good" design solution. The search is performed on the 

constrained fitness (that is the inverse of the coolant mass flow through the radial passage) 

landscape. The neighbourhood of a design solution is defined by the resolutions on the 

design variables. The hill climbing algorithm is a local random walk technique. The 

algorithm can be described as follows: 

For evety hest individual in the final cluster (CB): 

count= 0 

Best item = CB 

DO 

Randomly generate one individual (N)fi"Oin the neighbourhood 

of the Best item 

If (Fitness(N) > Fitness(Best item)) THEN 

Best item= N 

count= 0 

Else count = count + 1 

Until count = MAXcount 

The algorithm tries to climb up the bill of a design. The algorithm stops searching if it 

cannot find a suitable solution within MAXcount number of trials. Thus it is not guaranteed 
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that the algorithm will locate the sub-optimum The hill climbing is stochastic in nature and 

thus may involve many model evaluations. It is observed that, the algorithm does improve a 

potential design solution and thus make it at least closer to the sub-optimum as defined by 

the model. 

4.9 Validation of the hybrid search 

The effectiveness of the hybrid search (ARTS + local hill climbing) is also validated with 

TBCOM. Results from several runs of the search are presented to an expert and a user from 

Rolls Royce. They checked whether the search mechanism can identify multiple 'good' 

design solutions (from different areas of the design space) within reasonable time. The first 

steady state criterion (section 4.6.3) was changed following the feedback fi·om the 

validation. 

4.10 Summary 

This chapter discusses the developments of ARTS based GA technique for real life 

problems. The chapter also presents a knowledge based bill climbing and a stochastic local 

bill climbing technique, that are used in conjunction with ARTS for the turbine blade 

problem ARTS is compared with RTS and DC, and the results are presented and discussed. 

Experiments are performed to analyse the effects of KT, a control parameter, on ARTS. A 

hybrid of ARTS and the knowledge based bill climbing is applied to the turbine blade 

problem to identify multiple "good" designs. The stochastic local hill climbing technique 

helps to fine tune the "good" designs. Modifications and enhancements to suit the hybrid 

algorithm to the turbine blade problem are also described. The next chapter presents how 

sensitivity infonnation concerning the "good" designs is obtained using Taguchi's 

methodology. 
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CHAPTER-S 

5. Sensitivity Analysis of Engineering Designs 

5.1 Introduction 

Information concerning sensitivity of engineering designs can be essential for engineering 

decision making. Sensitivity analysis provides the information on the performance of a 

design when there is some minor change in the values of the design variables. Sensitivities 

of a design can be defined in terms of design solution sensitivity, design variable sensitivity 

and constraint sensitivity. The design solution sensitivity means sensitivity of a design 

solution performance within a defined neighbourhood. The design variable sensitivity is the 

effect of each design variable on the design solution performance within a defined 

neighbourhood. Violations of constraints within the neighbourhood of a design define the 

constraint sensitivity of the design. The study described here is perfmmed with the steady 

state twelve dimensional computer model of the Rolls Royce turbine blade problem 

(TBCOM). The sensitivity analysis module is an integral part of the Adaptive Search 

Manager (ASM). Once an ARTS based GA search identifies multiple 'good' design 

solutions the sensitivity analysis is performed on each of these designs. The sensitivity 

information is presented to the designer in order to assist in the design decision making. The 

chapter defines a sensitivity index for the design solutions, a measure of design variable 

sensitivities and different categories of constraint sensitivity. 
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The study of the effect of varying independent variables (in this case the design variables) on 

a dependent variable (that is the coolant mass flow from TBCOM) requires the relationship 

between the dependent and independent variables to be known. An empirical method, 

known as design of experiments, is some times used to establish such relationship. For an 

empirical study all possible combinations of the values of the independent variables (also 

known as factors) are required to define the relationship using a statistical technique. This 

method of exhaustive trials is known as full factorial experiments. In many cases, it is too 

expensive to run a full factorial experiment, for example a multidimensional real life design 

problem. In this situation, a fractional factorial experiment can be performed where a 

fraction of the full factorial experiments is considered. The price of running a fractional 

factorial experiment is the loss of some information regarding the independent vmiables and 

their relation to the dependent variable. Taguchi advocates a systematic approach and has 

developed several standard orthogonal matrices to define the fractional factorial 

experiments [Phadke (1989), Roy (1993)]. The use of the orthogonal matrices involves the 

least amount of information loss, especially if the variables do not interact with each other. 

In order to avoid an exhaustive search for the sensitivity analysis, Taguchi's orthogonal 

matrix and the tolerances on the design variables have been utilised to define the 

neighbourhood of a design solution [Roy et. al. (1995b) and (1996b)]. This neighbourhood 

is called the tolerance space. Considering the worst case variability [Emch and Parkinson 

(1993)], the worst combinations of the design variables within the tolerances to satisfY the 

design constraints are expected. The sensitivity calculations are performed within the 

tolerance space of a design solution. Taguchi's methodology is followed to calculate the 

effect of each variable on the performance of a design solution (the performance here is 

measured by coolant mass flow x I 03
, as calculated by the model). The designs are also 

tested for constraint criticality [Sundaresan et. al. (1993)]. Depending upon the extent of 

constraint satisfaction within the neighbourhood of a design solution, different categories of 
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constraint sensitivity can be defined as constraint satisfied, statistically active constraint, 

quasi-active constraint, peak-active constraint and constraint not satisfied. The definitions of 

these categories are given in section 5.5. The three types of sensitivity information are 

essential before one design is selected out of many design solutions. 

Taguchi's methodology assumes no interaction between variables. Thus the analysis can be 

very reliable provided there is no or ve1y little interaction among the design variables in the 

neighbourhoods of the design solutions. One way of checking for the presence of 

interactions is to validate the additivity principle in the region. The additivity principle 

assumes that the result of each experiment is the superposition of the single factor effects 

plus the eiTor due to this assumption and any repetition of the tests. A comparison between 

the technique and an exhaustive search based sensitivity analysis is presented with more than 

I 00 design solutions where the neighbourhoods of the design solutions maintain the 

additivity principle. 

The research presented in this chapter demonstrates the applicability of Taguchi's 

methodology for an approximate sensitivity analysis. The methodology needs a very small 

number of model evaluations (expe1iments) and is thus suitable for multi dimensional real 

life problems. The technique is also suitable for performing in the integrated environment of 

ASM. 

5.2 Sensitivity Analysis 

The sensitivity analysis of the turbine blade cooling bole system design includes three 

components: calculating the design solution sensitivity, the design variable sensitivities and 

the constraint sensitivity. The sensitivities are calculated in the neighbourhood of a design 

solution. The neighbourhood is defined by a suitable orthogonal matrix and the tolerances 
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of the design variables. The orthogonal matrix is expected to provide reliable infonnation 

about the neighbourhood provided there is no or very little interaction among the design 

variables [Phadke (1989), Roy (1993), Roy et al. (1994)]. The three types of sensitivities 

are described below: 

Design Solution Sensitivity: 

A measure of the variation of design fitness in the neighbourhood of a design solution is 

defined as the design solution sensitivity. In this case the design fitness is determined by 

coolant mass flow x I 03 through the radial passage. 

Design Variable Sensitivity: 

This is defined as the effect of a design variable on the design fitness within a 

neighbourhood of the design. The effects due to the interaction (if any) between variables 

are not considered. 

Constraint Sensitivity: 

The constraint sensitivity can be described as criticality of constraints (violations) in the 

neighbourhood of a design solution. According to the criticality five categories of constraint 

sensitivity have been defined: constraint satisfied. statistically active constraint. quasi­

active constraint. peak-active constraint and constraint not satisfied (section 5.5). 

5.3 Taguchi's Orthogonal Matrix 

Taguchi's orthogonal matrix comes fiom the concept of Latin Squares that has been known 

in mathematics for thousands of years [Phadke ( 1989)]. Recently it has become popular as a 

tool for design of experiments [Phadke (1989), Sundaresan et. al. (1993), Roy et. al. 

(1994), Roy and Cave (1996a) and (1996b)]. Variable levels are orthogonal, i.e. they are 
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represented proportionately (equal number of times) in any two columns of the matrix. 

Where the levels of a va1iable are defined as possible values of the variable, they are 

discrete, and there can be two or more levels of a variable. For example, inlet temperature 

can have three levels: high, medium and low. The smallest orthogonal matrix (that is 

designated as L4) designs four experiments for three variables (these are the factors) with 

two levels each (Table 5.1). The scheme combines all factor levels with the same number of 

other factor levels. For example, in Table 5.1, B2 (i.e. the second level of the design 

variable B) is tested together with A 1 and C2 in row 2 and variable settings A2 and C 1 in 

row 4. The average of the corresponding test results R2 (that is the result of the second 

experiment, the second row) and R4 is different from the overall mean J.l of all test results. 

The difference is due to the influence of B2, known as the "factor effect" (b2). Taguchi's 

methodology depends on the principle of additivity. If a neighbourhood maintains the 

additivity principle, factor effects due to the different levels of a design variable should 

nullify each other [Phadke (1989)]. 

Experiment Variables Result 

A B c 

1 I 1 I RI 

2 I 2 2 R2 

3 2 1 2 R3 

4 2 2 I R4 

mean J.l 

Table 5.1: Standard L4 0Jthogonal Matrix. The matrix consists of three variables (A, Band 

C) with two levels each (denoted by 1 and 2). 
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For example, considering the 14 orthogonal matrix as shown in Table 5.1, the result R2 for 

the second experiment can be expressed as : 

R2 = 11 + a 1 + b2 + c2 + e 

where, al is the difference between the overall mean 

11 and the average result of all the tests which 

involved A I. Similarly b2 and c2 are also defined. 

e is the associated error. 

The additivity principle assumes that the effects of different levels of a variable should 

cancel each other. Thus assuming the additivity principle holds in the neighbourhood: 

al+a2=bl+b2=cl+c2=0 

Using the above assumption it is possible to calculate the effects of individual levels for each 

design variable as follows: 

Average result of all tests which involved A I, 

m( A I) = Y, { (11 + a I + b I + c I + e I) 

+ (11 + a 1 + b2 + c2 + e2) } 

(from the I st and 2nd experiments in Table 5 .I) 

where, e I and e2 are errors associated with the 

1st and 2nd experiments in Table 5.1. 

= Y, (211 + 2al) + Y, (b1 + b2) + Y, (cl+ c2) + Y, (el + e2) 

= (11 + a I ) + Y, ( e 1 + e2) (from the equations above) 

Ignoring the error part, the effect of A I can be expressed as : 

a1 = m(AI) -11 
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Similar procedures are followed to calculate the effect of other levels for all the variables. 

This model can only work efficiently if the additivity principle holds and there is no 

interaction between variables. For detailed discussion about different types of interactions 

refer to Phadke (1989) or Roy (1993). Often the additivity requirement limits the use of the 

orthogonal matrix for designing experiments. If there is an interaction between two 

variables, the resulting deviation from the mean fl will be falsely added to another variable, 

which can affect the conclusions considerably. 

The neighbourhood of a design solution is defined using tolerances on design variables and 

Taguchi's orthogonal matrix. The tolerance space of any design solution is ideally defined 

as all worst combinations of design variables (considering the worst-case variability). 

Taguchi's orthogonal matrix is a fractional factorial strategy so that fewer experiments are 

required to perform an approximate calculation of the sensitivities. Thus the tolerance space 

is defined using the orthogonal matrix that is then used as the basis for the sensitivity 

calculations. Calculation of the factor effects following Taguchi's methodology provides the 

design variable sensitivity information. 

5.4 Developing the Taguchi's Orthogonal Matrix for the Problem 

Developing an orthogonal matrix for a problem requires some knowledge about the nature 

of the problem There are some standard orthogonal matrices defined by Taguchi [Taguchi 

(1986)]. Often a standard orthogonal matrix can be modified to work with the real life 

problem In order to select a standard orthogonal matrix and then modifY it the following 

information about the problem is required: 

a) Number of Factors (i.e. the number of design vatiables) to be studied . 

For the turbine blade problem the sensitivity calculation is limited to one 

geometry only, thus 
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Total no. of variables= 11 

b) Levels associated with each design variable: 

L (LOW), M (MEDIUM), H (HIGH) 

The levels are defined by defining the tolerance on each design va1iable as: 

L=M-t. 

H=M+t. 

where, the variable can be expressed as M ± "'. 

Experts use domain knowledge to determine the tolerances on the design variables. 

c) Interaction between variables is not considered, because it is assumed that a small 

neighbourhood of a design solution can be approximated with an additive model. 

d) Ranking of the design variables according to the ease of changing their levels IS 

determined heuristically in the decreasing order as follows: 

Rs, kw, Cdf, dth, Cdr, Fhc, Rp, df, Ff, Rpf and Tc I. 

5.4.1 Degrees of Freedom Calculation 

The first step in constructing an orthogonal matrix to fit the turbine blade problem is to 

count the total degrees of freedom It tells the minimum number of experiments (in this case 

the model evaluations) that must be performed to study all the chosen factors. To begin 

with, one degree of freedom is associated with the overall mean regardless of the number of 

design variables to be studied. The number of degrees of freedom associated with a factor is 

equal to one less than the number of levels for that factor. This is because only two 

comparisons are required in case of a 3-level design variable. Thus the total degrees of 

freedom for the problem can be estimated as : 
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Factor (Design Variable) Degrees of Freedom 

Overall mean 

All variables (11) I I X (3 - I) = 22 

Total: 23 

That means, at least 23 experiments (model evaluations) are required to estimate the effect 

of each factor. 

Exp. No. Column 
1 2 3 4 5 6 7 8 9 10 11 12 13 

1 I I I I I I I I I I I I I 

2 I I I I 2 2 2 2 2 2 2 2 2 

3 I I I I 3 3 3 3 3 3 3 3 3 
4 I 2 2 2 I I I 2 2 2 3 3 3 
5 I 2 2 2 2 2 2 3 3 3 I I I 

6 I 2 2 2 3 3 3 I I I 2 2 2 

7 I 3 3 3 I I I 3 3 3 2 2 2 

8 I 3 3 3 2 2 2 I I I 3 3 3 

9 I 3 3 3 3 3 3 2 2 2 I I I 

10 2 I 2 3 I 2 3 I 2 3 I 2 3 

11 2 I 2 3 2 3 I 2 3 I 2 3 I 

12 2 I 2 3 3 I 2 3 I 2 3 I 2 
13 2 2 3 I I 2 3 2 3 I 3 I 2 
14 2 2 3 I 2 3 I 3 I 2 I 2 3 
15 2 2 3 I 3 I 2 I 2 3 2 3 I 

16 2 3 I 2 I 2 3 3 I 2 2 3 I 

17 2 3 I 2 2 3 I I 2 3 3 I 2 

18 2 3 I 2 3 I 2 2 3 I I 2 3 
19 3 I 3 2 I 3 2 I .3 2 I 3 2 

20 3 I 3 2 2 I 3 2 I 3 2 I 3 
21 3 I 3 2 3 2 I 3 2 I 3 2 I 

22 3 2 I 3 I 3 2 2 I 3 3 2 I 

23 3 2 I 3 2 I 3 3 2 I I 3 2 

24 3 2 I 3 3 2 I I 3 2 2 I 3 

25 3 3 2 I I 3 2 3 2 I 2 I 3 

26 3 3 2 I 2 I 3 I 3 2 3 2 I 

27 3 3 2 I 3 2 I 2 I 3 I 3 2 

Table 5.2: L27(3 13
), a standard orthogonal matrix. The matrix consists of 13 variables with 3 

levels each. The matrix suggests 27 experiments in total. 
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5.4.2 Selecting a Standard Orthogonal Matrix 

Taguchi has tabulated 18 basic orthogonal matrices [Taguchi (1986)], which are called 

standard orthogonal matrices. The most common technique is to select one of these 

standard matrices and then modifY it to suit the problem The selected matrix should have 

the number of rows at least equal to the degrees of freedom required for the problem. The 

number of columns of a matrix represents the maximum number of factors that can be 

Exp.No. Column 

1 2 3 4 5 6 7 8 9 10 11 12 13 

1 GL EL IL DL AL BL FL HL h KL CL 
2 GL EL IL DL AM BM FM HM IM KM CM 
3 GL EL IL DL AH BH FH HH JH Kn Cn 
4 GL EM JM DM AL BL FL HM IM KM Cn 
5 GL EM JM ~ AM BM FM Hn In Kn CL 
6 GL EM JM ~ An Bn Fn HL h KL CM 
7 GL En In ~ AL BL FL HH In KH CM 
8 GL En In Dn AM BM FM HL h KL Cn 
9 GL En In Dn An Bn Fn HM JM KM CL 
10 GM EL JM ~ AL BM Fn HL IM Kn CL 
11 GM EL JM ~ AM Bn FL HM ln KL CM 
12 GM EL JM DH An BL FM Hn h KM Cn 
13 GM EM In ~ AL BM Fn HM In KL Cn 
14 GM EM In ~ AM Bn FL Hn h ~ CL 
15 GM EM In ~ An BL FM HL JM Kn CM 
16 GM EH IL DM AL BM FH HH h KM CM 
17 GM En IL ~ AM Bn FL HL IM Kn Cn 
18 GM En IL ~ An BL FM HM In KL CL 
19 Gn EL In DM AL Bn FM HL IH KM CL 
20 Gn EL In ~ AM BL FH HM h Kn CM 
21 Gn EL In DM An BM FL Hn IM KL Cn 
22 Gn EM IL ~ AL Bn FM HM h Kn Cn 
23 GH EM IL Dn AM BL Fn Hn IM KL CL 
24 Gn EM IL Dn An BM FL HL In KM CM 
25 Gn En IM DL AL Bn FM Hn IM KL CM 
26 Gn En IM DL AM BL FH HL ln KM Cn 
27 Gn En JM ~ An BM FL HM h Kn CL 

Table 5.3: The orthogonal matrix used for the sensitivity analysis, where A = Cdr, B = Fbc, 

C = Tc 1, D = dth, E =kw, F = Rp, G = Rs, H = df, I = Cdf, J = Ff, K = Rpf. The three 

subscripts L, M, and H mean Low, Medium and High levels. 
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studied using that matrix. In addition, in order to use a standard orthogonal matrix directly, 

one must be able to match the number of levels of the factors with the numbers of levels in 

the columns of the matrix. The smallest possible matrix is selected to save the number of 

model evaluations. 

Considering the minimum number of experiments required, the number of variables and the 

number of levels per variable, a standard matrix L:n(3 13
) (Table 5.2) has been selected for 

the problem The matrix defines 27 experiments, it has 13 columns and the factors (that is 

the design variable) have three levels each. As there are only 11 design variables in the 

problem, the 12th and the 13th column of the matrix are left empty (Table 5.3). This does 

not destroy the orthogonality of the matrix. The design variables are placed in the columns 

according to the ranking of the design variables considering the ease of changing their 

levels. 

5.5 Use ofTaguchi's Orthogonal Matrix 

Definition 5.1: Tolerance Space 

The Tolerance Space (TS) around a design solution can be defined as a set of points where 

each point represents a possible combination of the design variables with the tolerances 

associated with them The points are selected using the Taguchi's orthogonal matrix (OM). 

Each design variable of a design solution can have an upper and a lower value defined by its 

tolerance. Thus the three levels of each variable can be represented as g (the variable value), 

gu (the upper level, that is g + tol.) and gl (the lower level, that is g- tol.). In Figures 5.1-

5.5 dashed rectangles represent the tolerance space in 2 dimensions (as in case of full 

factorial, that is all possible combinations). The design solution lies at the centre of the 

dashed rectangle and is marked by a larger circle. It is assumed that each design solution is 

expressed as: 
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dg = [ X!g' X2g' XJg, ......... , Xmg ] E DS .... (5.1) 

where: 

x : design variable 

d : design solution as vector of m design variables 

DS : the design space 

m : no. of design variables 

and the tolerance space associated with it can be expressed as: 

where: 

tolerances on each variable = b. d = [ !l x1• !l x2, ... b. Xm ]rs 

.... (5.2) 

Definition 5.2: Vertex Space 

Vertex Space (VS) consists of all possible design solutions or options (all worst case 

combinations) of the tolerance space (TS) except the design solution (dg). Thus VS can be 

formally represented as: 

VS( dg) = TS - { dg } .... (5.3) 

Definition 5.3 : Design Solution Sensitivity 

Once the tolerance space (the neighbourhood) is defined, in order to measure sensitivity of 

the design solution a Sensitivity Index (SI) is defined as follows: 

I 
SI=-

1] 
where, 17 =signal to noise ratio [Phadke (1989)] .... (5.4) 

Considering the task of the optimisation is to reduce coolant mass flow rate, the problem 

can be considered as a ''Nominal-the-Best" type [Phadke (1989)]. Thus the Signal to Noise 

ratio is defined as: 
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2 

17 = 1 0 log10 J.1
2 

(j 

where: 

and 

Yi = Y~o Y2, ...... .... , Yn 

= coolant flow for different designs. 

.... (5.5) 

n = no. of designs considered by the orthogonal matJ.ix 

Definition 5. 4 : Design Variable Sensitivity 

Taguchi's methodology is followed to calculate the effects of the different levels (on the 

coolant mass flow) for each design variable in the tolerance space. Assuming that the 

additivity principle is valid in the tolerance space of the design solution, summation of the 

three factor level effects for each design vatiable gives the error. The error calculated for an 

individual variable is subtracted from its level effects and then the absolute values are 

considered. The maximum of these three new effects defines the design variable sensitivity. 

For example, considering the orthogonal matrix shown in Table 5.1 , sensitivity of the 

variable C can be mathematically expressed as: 

Sensitivity of the vatiable C = max {lcl-EI, lc2-EI, lc3-EI} .... (5.6) 

where, E =error = (cl + c2 + c3)/3.0 

Similarly effects of the other variables are calculated. Critical design variables can be 

identified by ranking them according to this design variable sensitivity. 
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Assumption 5.1 : 

Constraints are assumed to be monotonic with respect to all design variables in the 

tolerance space. That means the maximum constraint value will occur at one of the corner 

points [Sundaresan et. al. ( 1993)]. 

The Design 

;············:·F Solutioo 

x28 1· .. ·0 · ... ·l feasible region 

X2g1 • ....•..... .. ...•...•••.•.• 

Figure 5.1: Constraint Satisfied. 

constraint 

F
TheDesign 
Solution 

x2 :············.- · . . . 
x28 ~ ..• ·0 · .... j feasible region 

: ' i 
X2g1 : .•..... . . .. : •• . . . . .... . . . : 

Figure 5.2: Statistically Active Constraint. 

Definition 5.5 : Constraint Satisfied 

An ith inequality constraint (Ci) is considered to be satisfied when the value of the 

constraint is negative at all worst case combinations (VS) as well as at the design solution 

(Figure 5.1). 
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constraint feasible region 

Figure 5.3: Quasi- Active Constraint. 

For dg E DS, ci constraint is satisfied if 

1) C(dJ < o.o 

2) '\Id E TS(dg) s.t.C (d) < 0.0 .. .. (5.7) 

Definition 5. 6 : Statistically Active Constraint 

An ith inequality constraint (C) is considered to be statistically active when the value of the 

constraint is zero (that is the point is on the constraint boundary) at least at one worst 

combination (VS) of design variables and negative at the design solution as well as at the 

remaining worst combinations (VS) of design variables (Figure 5.2). 

So, for dg E DS, C constraint is statistically active if 

1) 3d EVS(dg)s.t.C;(d) = 0.0 

' ' 
3) '\Id EVS(dg)-{d}s.t.C;(d ) < 0.0 .. .. (5.8) 

Definition 5. 7 : Quasi - Active Constraint 

An ith inequality constraint (C) is considered to be quasi - active when the value of the 

constraint is positive (that is the constraint is violated) at least at one worst combination 
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(VS) of design variables and negative at the design solution. At the remaining worst 

combinations (VS) of design variables, value of constraint can be either zero or negative 

(Figure 5.3). 

So, for dg e DS, C; constraint is quasi - active if 

2) C;(dg) < 0.0 

constraint 

The Design 
Solution 

x
28 

: ••• - - - - - -j feasible region 
: ' . 
: ' : 

X2g! ~-· ······- -· ··-- · -- - - · --·: 

Figure 5.4: Peak - Active Constraint. 

X2gu ---·········:··n 
x2g - . - -6 -- - -j feasible region . . 

' . 
X2g! ---------· ______________ : 

constraint 

Figure 5.5: Constraint Not Satisfied. 
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Definition 5. 8 : Peak - Active Constraint 

An ith inequality constraint (C) is considered to be peak - active when value of the 

constraint is zero at the design solution and positive at least at one worst case combination 

(VS) of design variables (Figure 5.4). 

So, for dg E DS, ci constraint is peak - active if 

1) Ci(dg) = 0.0 

2) ?Jd EVS(dg)s.t.C;(d) > 0.0 .... (5 .10) 

Definition 5.9: Constraint Not Satisfied 

An ith inequality constraint (C) is considered to be not satisfied when value of the 

constraint is positive at the design solution. The neighbourhood is not checked for this case 

(Figure 5.5). 

So, for dg E DS, Ci constraint is not satisfied if 

1) Ci(dg) > 0.0 .... (5.11) 

5.6 Applying the Technique to the Turbine Blade Problem 

The sensitivity analysis technique based on Taguchi's methodology has been successfully 

applied to the real life turbine blade cooling system design problem. The sensitivity analysis 

works as an integral part of ASM. The methodology is based on the assumption that there is 

very Little or no interaction among the variables in the tolerance space (TS) of the design 

solutions. The turbine blade cooling system model development assumed no interaction 

between the design va~iables, so the technique is expected to be effective for the 

application. The sensitivity analysis only considers the tolerance space around a design 

solution, so it is more probable that the small region (the neighbourhood) can be 

approximated using an additive model. A ptimi knowledge about the interactions is not 

available in the majority of the real life problems. An attempt has been made to check for 
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the interactions in the tolerance spaces of the design solutions. One way of checking for the 

interactions is to validate the additivity principle. Validity of the additivity principle in a 

tolerance space increases the confidence on the sensitivity calculations for that region. 

The basis of the sensitivity calculations, the orthogonal matrix, allows the examination of 

only a small number of design solutions (in this case 27 model evaluations only) rather than 

all 3 11 possible evaluations (that is in case of 11 design variables with 3 levels each) within 

the neighbourhood of a design solution for the sensitivity calculation. Though in this case 

the technique is very reliable, the sensitivity analysis results should only be used to compare 

two design solutions rather than to define their absolute sensitivity values. The use of the 

signal-to-noise ratio to calculate the design solution sensitivity index is a measure of the 

robustness of the solution within its neighbourhood. The information concerning individual 

design variable sensitivity is very useful for engineering design decision suppmt, because it 

determines the criticality of the different va1iables in the tolerance space of the design 

solution. A designer often selects design solutions that satisfy constraints, but that may not 

be enough, as the criticality of constraints in the neighbourhood also plays a major role in 

engineeting decision making. 

5.6.1 Checking for the Additivity Principle 

The additivity principle defines the output of a design solution as the summation of the 

different variable level effects and the mean output of its neighbourhood. It is assumed that, 

a variable A has three levels 1, 2 and 3; the effect of the level 1 in the tolerance space of A 

is a' 1 and can be defined as: 

a' l = al- ER .... (5.12) 

where, al =factor effect oflevell of the vatiable A, 
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calculated as described in section 5.5. 

ER= error= (al + a2 + a3)/3.0 

(this is because if the additivity principle is satisfied al 

+ a2 + a3 should be equal to zero) 

Once the effects of individual variable levels are calculated, the most contributing level for 

each variable is defined as the level having the largest absolute effect. An experiment or a 

design solution is defined consisting of all the most contributing design variable levels. The 

output of this experiment is predicted by adding the variable level effects with the mean 

output in the tolerance space. A validation experiment is conducted by calling the turbine 

blade cooling system model with the set of design variable level values as the input. If the 

difference between the predicted output and the validation expetiment output is within an 

acceptable range (that is the difference is less than or equal to 5%), the additivity model is 

considered to be a good approximation of the reality in the tolerance space, that is the 

additivity principle is valid in the region. Every "good" design solution is first tested for the 
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Figure 5.6: The comparison between Taguchi's methodology based sensitivity analysis and 

the sensitivity analysis based on an exhaustive search for Geometry 1. 
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additivity principle. If the additivity principle is valid in its tolerance space the sensitivity 

calculation results are considered as reliable, othetWise, one option is to perfmm an 

exhaustive search in the area, and then calculate the sensitivities. 
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Figure 5.7: The comparison between Taguchi ' s methodology based sensitivity analysis and 

the sensitivity analysis based on an exhaustive search for Geometry 2 . 
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the sensitivity analysis based on an exhaustive search for Geometly 3. 
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5.6.2 Comparing Taguchi's Methodology and an Exhaustive Search Based Sensitivity 

Analysis 

The sensitivity calculation results are considered to be reliable if there is no or vety little 

interaction among design variables in the tolerance space of a design solution. In order to 

validate this notion, Taguchi's methodology based sensitivity calculation result is compared 

with the sensitivity analysis using an exhaustive search. More than 100 design solutions 

whose tolerance spaces satisfy the additivity principle are used for the comparison. The 

design solution sensitivities calculated from the two methods are plotted separately for each 

geometry (Figures 5.6-5.8). The Figures 5.6-5.8 show a vety high level of correlation 

between the two sets of design solution sensitivities. Thus the figures confirm the 

hypothesis that Taguchi' s methodology is vety effective (that is comparable to an 

exhaustive search based method) if there is no interaction or very little interaction among 

design variables. The figures also show within one geometry some design solutions can have 

very high design solution sensitivities with respect to the others. 

5.7 Validation of the sensitivity analysis 

The sensitivity analysis is validated by the expe11 and the user from Rolls Royce. Results 

from several individual analysis are presented to the expert and the user. Every 'good' 

solution identified by the hybrid search method is tested for the additivity principle before 

the analysis is perf01med. It is observed that the study described in the previous section 

increased confidence of the expert and the user on the results of the analysis. They also 

check whether the design variable sensitivities conespond to their general understanding 

about the problem If a result does not conespond to their understanding, the solution is 

further analysed, and that may improve the general understanding of the problem. 
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5.8 Summary 

The research presented in the chapter describes a method of obtaining sensitivity 

information concerning a design solution. The sensitivity is calculated within the 

neighbourhood of the design. Three types of sensitivity information are defined: design 

solution sensitivity, design variable sensitivity and constraint sensitivity. Taguchi' s 

methodology is introduced to perform the sensitivity analysis with a small number of model 

evaluations. Results from the analysis are useful provided there is no serious interaction 

between the design variables within the neighbourhood of the design. The sensitivity 

information facilitates comparison of two designs, and thus helps in design selection. The 

next chapter discusses a method of measuring (qualitatively) the effectivenesses of a design 

with respect to three different qualitative criteria. 
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CHAPTER-6 

6. Qualitative Evaluation of Engineering Designs 

6.1 Introduction 

This chapter discusses a method of qualitative evaluation of the designs as obtained from 

the hyb1id search desciibed in chapter 4. The design solutions are qualitatively evaluated 

using a fuzzy expert system to find out the qualitative ratings of a design in terms of 

manufacturability, choice of mate1ials and designers ' special preferences. The fuzzy expert 

system is implemented using a fuzzy logic version of CLIPS (developed by NASA) called 

FuzzyCLIPS [FuzzyCLIPS User's Guide (1994)]. Some aspects of manufacturability, 

choice of material and special preferences (of the customer or the designer) can be 

qualitative in nature. Qualitative ratings that represent these criteria are calculated using 

fuzzy logic. The qualitative evaluation system is integrated within the 'Adaptive Search 

Manager' (ASM). The tasks of ASM are to identify different "good" design solutions 

(chapter 4), perform the sensitivity analysis (chapter 5), and qualitatively evaluate the 

designs. This method of qualitative evaluation realised through fuzzy logic involves fuzzy 

modelling or linguistic modelling [Sugeno and Yasukawa (1993)]. In order to develop the 

integrated system it is necessary to ensure that the qualitative evaluation system can 

evaluate any design fi:om the search space. A novel knowledge representation technique 

[Roy et. al. (1995a) and (1996c)] is developed where the domain knowledge is first defined 

in terms of inter-vaiiable preferences, intra-variable preferences and heuristics. The inter­

vaiiable preferences are combined with the intra-vatiable preferences using a concept of 
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compromise. The concept of compromise is defined as "reducing the seve1ity of the 

negative effect of one variable on the final qualitative rating" . This method of knowledge 

separation and then integration has helped to cover the entire design space utilising a small 

number of rules. 

This chapter briefly introduces fuzzy logic and fuzzy expert systems before discussing the 

development of the qualitative evaluation system. The novel knowledge representation 

technique is discussed in detail The chapter concludes with the validation of the system 

6.2 Fuzzy Logic 

Traditional set theory requires the arbitraty placement of some so11 of threshold, at which 

an object abruptly changes from belonging to one set to its complement. In early 60 's, Lotfi 

Zadeh published a paper outlining a 'fuzzy set theory' [Zadeh ( 1965)] . He proposed graded 

memberships in sets, which is to say that an element could be, say, 20% element of set A 

and 80% element of A' (i.e. complement of A). For example, if ambient temperature is 25 

°C, for many people it is medium temperature whereas others may consider that as hot. 

Thus, the temperature can be represented as having memberships of 60% in the medium set 

and 40% in the hot set. The terms, medium and hot, are referred to as fuzzy terms. The logic 

tool for representing and manipulating fuzzy terms is called fuzzy logic. At that time the 

concept was very radical, and even many did not accept the idea at all. The idea of fuzzy 

logic showed first indications of success only after almost two decades of research. Now 

there are many applications of fuzzy logic in engineering problems [Mendel (1995)] . Expert 

systems [Durkin (1994)] have been the most obvious recipients of the benefits of fuzzy 

logic, since their application domain is often inherently fuzzy. Expert systems that utilise 

fuzzy logic concepts are termed fuzzy expert systems. The research presented in this thesis 

uses a fuzzy expert system to develop the qualitative evaluation system 
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It is seen that engineering designers often evaluate a design hemistically utilising their past 

knowledge. On many occasions they do not think in terms of precise values of the design 

att:Iibutes. The knowledge they use in many cases represents their intuition and feeling 

[ Oksala ( 1994)]. Thus the designers very often use somewhat "fuzzy'' concepts about the 

design task to evaluate a design; and often when they are asked to express their knowledge 

they use several "fuzzy" terms to define different design attributes. A design attribute or a 

design variable that is expressed through some "fuzzy" terms is known as linguistic 

variable (e.g. ambient temperature), whereas the "fuzzy" terms are called the vatiable's 

linguistic values (e.g. medium and hot). The range of possible values of a linguistic variable 

is called the variable's universe of discourse. A production rule [Durkin (1994)] is termed 

fuzzy rule if it uses linguistic vatiables and fuzzy tenns. It is worth noting that the 

'fuzziness' introduced above does not necessarily arise from enors or uncertainties. Even if 

the experts are all equally reputable, it does not follow that they will always agree. This 

fuzziness is an impmtant aspect of the problem that cannot be modelled using ordinary sets, 

but they can be modelled using fuzzy sets. The description of a fuzzy set is presented in the 

next section. 

6.2.1 Fuzzy Sets and the Representation 

A fuzzy set assigns membership values between 0 and 1 that reflect more naturally a 

member 's association with the set. The mapping between elements of the fuzzy set and 

values in the interval [0, 1] defines a membership function for the fuzzy set. To represent a 

fuzzy set for a problem, it is required to define the membership function. The membership 

function actually represents peoples' intuition and opinion concerning the fuzzy set. 

Multiple opinions, which often can be contradictory, can be accommodated by taking an 

average of the opinions, and that can be represented in the fuzzy set. For example, Figure 
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6.1 describes the fuzzy variable 'height' by three fuzzy sets called short, medium and tall. 

When multiple fuzzy sets are defined on the same universe of discourse, the fuzzy literature 

short medium tall 

1.0 

l 
~A(x) 0.5 

0.0 L-----L------lL-------~-------
100 130 160 190 

Height in cm (x) --~ 

Figure 6.1 : Fuzzy sets used for the fuzzy variable "height". 

often refers to them as fuzzy subsets. This thesis uses only 'fuzzy set' in order to represent 

both single and multiple fuzzy sets, and to reduce confusion. Figure 6.1 shows a person of a 

height of 115 cm is a member of short persons' group with a membership value of0.7, and 

at the same time a member of medium persons' group with a value of 0.2. Thus, a single 

object is considered a partial member of multiple sets. This property can model ambiguities 

in human thinking, and thus utilised in fuzzy expert systems. A formal representation of a 

fuzzy set [Durkin (1994)] can be described as follows: 

Let U be the universe of discourse and A is a fuzzy set defined on it. Further 

assume there is a discrete set of U elements {x1. X2, .... . , Xn}. The fuzzy set A 

defines a membership function J.l A (x) that maps the elements X; of U to the 

degree of memberships in [0, 1]. For a discrete set of elements, a convenient 

way of representing a fuzzy set is through the use of a set of ordered pairs: 
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During conversation, humans often add more vagueness to a statement by using adverbs 

such as very, slightly, or somewhat. For example, it could be said: 'Hany is ve1y tall'. Here, 

very is the adverb used with the fuzzy tetm tall. This extra adverb is called a modifier or a 

hedge. A hedge mathematically modifies an existing fuzzy set account for some added 

adverb. For example, if the membership function values for the fuzzy tetm tall is 

represented by y , then the values for very tall can be expressed as y 2
. 

6.3 Fuzzy Expert Systems 

In simple terms, a fuzzy expert system is an expert system that uses fuzzy logic instead of 

Boolean logic. In other words, a fuzzy expett system is a collection of membership 

functions and fuzzy rules that are used to reason about data. Unlike conventional expett 

systems, which are mainly symbolic reasoning engines, fuzzy expert systems are oriented 

towards numerical processing. 

The rules in a fuzzy expert system are usually of a form similar to the following: 

if x is high and y is low 

then z is very high 

where x and y are input variables (names for known data values), and z is an output variable 

(a name for a data value to be computed). The linguistic tetms used with the variables are 

high, low and ve1y high. The adverb ve1y is a hedge and is used to modify the high fuzzy set 

of the variable z. Most tools for working with fuzzy expert systems allow more than one 

conclusion per rule. The research described in the thesis uses FuzzyCLIPS (a fuzzy expert 

system development tool). Thus, fi·om now onwards discussions and examples are presented 

in FuzzyCLIPS terminology. FuzzyCLIPS can handle inexact concepts, fuzziness and 

uncertainty. Uncertainty occurs when one is not totally cettain about a piece of information. 
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This uncertainty is generally expressed as a degree of certainty using a certainty factor. 

Uncertainties associated with a fact and any fuzzy rule can be represented in FuzzyCLIPS. 

6.3.1 Fuzzy Inference 

The fuzzy inference technique is used to evaluate a set of relevant fuzzy mles given some 

information. The already existing information is stored as fuzzy sets in a facts list. The rule 

evaluation depends on a number of factors, such as whether or not fuzzy variables are found 

in the antecedent or consequent part of a mle, whether a rule contains multiple antecedents 

or consequents, and whether a fuzzy fact being asserted has the same fuzzy variable as an 

already known fuzzy fact. If a fuzzy mle has only one antecedent then the mle is termed 

'simple'. Whereas, if a rule contains more than one antecedent it is called a 'complex' m le. 

Fuzzy mles are stored as fuzzy associations [Durkin (1994)]. Fuzzy inference attempts to 

establish a degree of belief in a mle's consequent given available evidence on the mle's 

antecedent. The task is to map the antecedent fuzzy set information to the consequent set 

information. The inference technique establishes a modified fuzzy set from information 

about a related fuzzy set. The methodology to establish the relation categmises the 

inference technique mostly into: max-min inference and max-product inference. The 

research described in this thesis uses the max-min type inferencing. If the antecedent part of 

a fuzzy rule matches or pattially matches already existing information, the rule is fired and 

the conclusion (a fuzzy fact) is asserted in the facts list. In case an assetted fuzzy fact has 

the same fuzzy variable as an already present fuzzy fact in the fact list, the asserted fact is 

modified according to a principle of global contribution [Durkin (1994)]. The global 

contribution becomes very useful when a fuzzy expert system works with many rules 

deciding only about one fuzzy variable. Each fuzzy rule can assert a fuzzy fact about the 

variable and finally all of them unite together to give a final conclusion. 
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6.3.2 The Max-Min Fuzzy Inference Technique 

The max-min inferencing technique can be easily described in case of a simple fuzzy rule. 

The general structure of a simple fuzzy rule can be shown as follows: 

If A Then C CFr 

A' CFr 

where: 

A: the antecedent of the rule 

A': the matching fact in the fact tist 

C: the consequent of the rule 

c·: the actual consequent calculated 

CFr: the certainty factor of the rule 

CFr: the certainty factor of the fact 

CFc: the certainty factor of the conclusion 

If A and Care two fuzzy sets, then A' must be a fuzzy fact with the same fuzzy variable as 

specified in A in order for a match to occur and the rule to be placed on the agenda. Rules 

are sequentially executed or fired from the agenda. In addition, while values of the fuzzy 

variables A and A' represented by their respective fuzzy sets (say Fa and F' a) do not have 

to be equal, they must overlap. In case the fuzzy fact and the antecedent of the rule match, 

it is shown in Zadeh ( 1973) that the antecedent and the consequent of such a rule are 

connected by the fuzzy relation: 

where: 

R =Fa*Fc .... (6.1) 

Fa: a fuzzy set denoting the value of the fuzzy antecedent pattern 

Fe: a fuzzy set denoting the value of the fuzzy consequent 
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Figure 6.2: The Max-Min co.rnpositional rule of fuzzy inference. 

The research desctibed in this thesis calculates the membership function of the relation R as 

follows: 

f..lR(u, v) = min(J..lF (u),J..lF (v)), 
a c 

V(u,v) eUxV .... (6.2) 

The calculation of the conclusion depends upon the compositional rule of inference [Zadeh 

(1973)], which is described as follows: 

F' - F' oR c- a .... (6.3) 

where, Fe' is a fuzzy set denoting the value of the fuzzy object of the consequent. The 

membership function of Fe' is calculated as follows: 

J..lF•(v) = maxu eu(min(,uF (u),,uR(u, v))) 
c a 

.... (6.4) 

which can be simplified to: 

J..lF •(v) = min(z, J..lF (v)) 
c c 

.... (6.5) 

where, z = max(min(,uF ' (u),J..lF (u))) 
a a 

The certainty factor of the conclusion is a product of the certainty factor of the rule, the 

matching fact from the fact list, and the asserted fact. The certainty factor can be 

represented as: CFc = CFr * CFr * CFar, where CFar is the certainty factor associated with 
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the asserted fact (that is in the consequent). The max-min inferencing technique is presented 

in the Figure 6.2, and the figure shows how simply the conclusion is clipped off or truncated 

at the z value. The research reported in this thesis also uses complex rules with multiple 

antecedents. In such case, conclusions due to each antecedent and the conesponding fact 

are united to f01m the conclusion for the entire rule. The confidence factor for the 

conclusion is defined as the product of the rule confidence factor and the minimum 

confidence factor among the antecedents. 

6.3.3 Defuzzification 

The result of a fuzzy inference process is a fuzzy fact, specifying a fuzzy distribution of a 

conclusion. However, in some applications such as in the research elaborated in this thesis, 

only a single crisp value is required as the conclusion. So a single point that represents the 

fuzzy distribution needs to be selected. The process of representing a fuzzy distribution or 

fuzzy set by a crisp value or a single point is known as defuzzification. The most popular 

method of defuzzification is known as the centre of gravity method. The method takes the 

centre of gravity of the whole set as the representative single point of the set. The centre of 

gravity method has the advantage of smoothly varying output. Another method is known as 

mean of maxima, which concentrates on the values where the possibility distribution 

reaches a maximum. In a real life application this method may produce less smooth output, 

but the method is quicker due to fewer floating point calculations. The research presented in 

this thesis uses the centre of gravity type defuzzification technique, and that can be formally 

expressed as: 

f (x.f(x)) .dx 
, (x eU) 

X = ...:...._---:----f f(x) .dx 
.... (6.6) 

(xeU) 

where, x' is the recommended, crisp value, and U is the universe of discourse. 
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For each shaded subsection above, the area and centre of gravity is calculated according to the shape 
identified (i.e. triangulm; rectangular or trapezoidal). The centre of gravity of the whole set is then 
determined as follows: 

Figure 6.3: The "centre of gTavity" type defuzzification process. 

The qualitative evaluation system developed in this thesis using FuzzyCLIPS defines a fuzzy 

set by a set of points which are considered to be connected by straight line segments. Thus 

the integral becomes a simple summation: 

n 
L,xf.Ai 

, i= l X = .;.___;;;....___ 
n 

.... (6.7) 

'f.Ai 
i=l 

where, the whole distribution is divided into n number of parts, each having Ai 

amount of area and the centre of gravity at x' j. 
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Figure 6.3 illustrates the principle of the centre of gravity type defuzzification method. It is 

shown in future sections that the method is further used in implementing a concept of 

compromise for the turbine blade design problem 

Quantitative 
Value of 
Design 
Variables 

,..-----

F 
u 
z 
z 
I 
F 
I 
E 
R 

L 

Qualitative Evaluation Module 

.. ~ ....... --.. . . . . . . . , . . , ' , 
' , , STATIC MEMORY ' ' , . 

' ' 
. 

FUZZY RULES . 
' . 
' . . . . . 

' . . . . 
' ' ' ' ' ' I 

~ ~ FUZZY INFERENCE ENGINE 

' ' . . . 
' . , . . . . , 

' ' , 
' ' 

, 
' ' 

, . , . 
' . . . . . . . ...... ___ .. . .. . 

-
D 
E 
F 
u 
z 
z 
I 
F 
I 
E 
R 

Figure 6.4: The Qualitative Evaluation System (QES). 

6.4 The Qualitative Evaluation System 

Qualitative 
Evaluations 
(crisp ratings) 
of a Design 

The qualitative evaluation system (QES) (Figure 6.4) is a fuzzy expert system developed 

using FuzzyCLIPS. QES evaluates the turbine blade cooling system design solutions with 

respect to three different qualitative critetia. The criteria are manufacturability, cost of 

material and designers ' special preferences. QES takes variable values of each design 

solution as inputs and outputs three qualitative ratings for the design, that is an individual 

rating for each criterion. The fuzzy expert system has three components, the fuzzifier, the 

fuzzy inference engine and the defuzzifier. The knowledge is stored in a fuzzy rulebase, 

which is used by QES. Three sets of rules are used for the three ctiteria. QES considers the 

rulebase as the static memory. The system transforms crisp values of each design vmiable 

into a fuzzy representation. These representations are then processed using the fuzzy rules 

(domain specific) and a fuzzy inference engine (domain independent) to determine the 

qualitative ratings of the design solution. Initially the qualitative ratings m·e expressed using 
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a fuzzy set. A crisp value for the rating is obtained through the centre-of-gravity type 

defuzzification. The tasks involved in the system development are described below. 

6.4.1 Fuzzification of Design Variables 

The fuzzification of the design variables is performed in two stages. During the first stage of 

the fuzzification each variable range is divided into five sub ranges, and expressed using 

some linguistic terms (also known as primary terms). The variable range is the universe of 

discourse for the variable. The linguistic terms used for the design vatiables are determined 

through an interview and discussions with the representatives from Rolls Royce. The fuzzy 

(deftemp/ate kw ;definition of fuzzy variable 'kw' 

18 33 wKJmA3 

( 

) 

) 

(VERY_LOW (18 1) (20 1) (22 0)) 

(LOW (20 0) (22 1) (24 0)) 

(MEDIUM (23 0) (26 1) (28 0)) 

(HIGH (27 0) (29 1) (3 1 0)) 

(VERY_HIGH (30 0) (33 1)) 

Figure 6.5(a): The Deftemplate Construct for Thermal Conductivity (kw). 

1.0 
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Function 
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Thermal Conductivity (kw) • 

Figure 6.5(b): Fuzzy Deftemplate for Thermal Conductivity (kw). 
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Thermal Conductivity (kw) .,. 

Figure 6.6: Fuzzification of Thermal Conductivity (kw). 

representation of the design variables and the qualitative rating (or the effectiveness) are 

then expressed in FuzzyCLIPS syntax called Deftemplate Construct [FuzzyCLIPS User 

Guide (1994)]. The Deftemplate representation for the thermal conductivity (kw) is shown 

in Figure 6.5. Several linguistic expressions are used to represent the variable. In Figure 

6.5(a) the thermal conductivity (kw) in wK./m3 is expressed with the primary terms like 

MEDIUM, LOW, HIGH etc. Each of these linguistic terms is then expressed as a triangular 

or trapezoidal shaped fuzzy set. The triangular or trapezoidal shaped fuzzy sets are easier to 

understand by the designers. It is also observed that designers can easily relate the simple 

triangular and trapezoidal representations to their understanding of the problem, and thus 

can modify them easily. For example, MEDIUM has been expressed as a list of (23 0) (26 

1) (28 0), where the left value in each pair of brackets is the value of kw and the right value 

is the corresponding value of the membership function (Figure 6.5(b)). The next stage in the 

fuzzification transforms the crisp value of each design variable (as obtained from the hybrid 

search method described in chapter 4) into a fuzzy set using the FuzzyCLIPS defined 

functions (in this case S and Z functions) as shown in Figure 6.6. The spread of the fuzzy 

set is defined by the resolution on the design variable. 
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6.4.2 The Knowledge Representation 

Knowledge is the essence of any expert system. The knowledge base or the rulebase for the 

system is developed using fuzzy rules and facts. The fuzzy rules are nothing but production 

mles [Durkin (1994)] integrated with fuzzy set concepts. The knowledge embodies 

qualitative aspects of the design problem in terms of rnanufacturability, choice of materials 

and designers' special preferences. An integration of QES with the decision support tool 

(that is ASM) demands qualitative evaluation of any design solution retrieved dming the 

first stage of ASM's operation. This means that it is necessruy to guarantee that the 

knowledge base can cover the entire design space. To develop such a system with a 

minimum number of rules, a novel knowledge representation is adopted. The knowledge is 

separated into three categories: Inter-variable Knowledge, Intra-variable Knowledge and 

Heuristics. Inter-variable and intra-variable knowledge is integrated by a concept of 

compromise. This approach allows the development of a knowledge base that can cover the 

entire problem space with a few rules. Three sets of mles concerning the intra-variable 

knowledge for the three different criteria are developed. The present system includes 38 

fuzzy rules in total and a function that asserts fuzzy facts to represent the inter-variable 

knowledge (Appendix- 11). 

6.4.2.1 The Design Thinking Process 

The integration of an adaptive seru·ch and a fuzzy expert system with the ASM has posed a 

challenge in terms of knowledge representation. The task is to develop a complete but 

small knowledge base for the 12 dimensional problem. In order to find the right knowledge 

representation a deeper understanding concerning the design thinking process is necessaty. 

The design thinking process involved in the qualitative evaluation of a design solution is 

complex [Smith and Browne (1993), Oksala (1994)]. Designers generally respond to 

complexity by decomposing the whole system into parts. During the discussion with the 
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designers on the turbine blade problem the following observations have been made for any 

one qualitative criterion: 

a) Designers can confidently give a rating for a design solution based upon 

their past experience. 

b) Designers' knowledge is not complete and they find it difficult to define a 

rating for an unseen design solution. The designer then starts decomposing 

the problem into smaller dimensions even to a single dimension. 

c) The designer decomposes the problem using some knowledge concerning 

the relative impottance of different design variables for the criterion. 

d) It is much easier for the designer to provide a qualitative rating for a 

design solution which consists of a small number of design variables. 

e) The designer tries to obtain an overall rating by considering some idea 

about interaction between variables. Often the information concerning 

interaction between design variables is simplified to relative importance of 

the variables for the criterion. 

The better understanding of the underlying cognitive process for the design evaluation task 

provides the motivation for the knowledge representation technique. Here the knowledge is 

represented concerning the individual vatiables for each criterion. The knowledge is 

separated into three categories: inter-variable and intra-variable knowledge and heUiistics. 

The designer 's idea about the interaction among design vatiables is implemented in the 
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knowledge integration process using a concept of compromise. The concept of comprorrrise 

incorporates the notion of relative importance of design variables and an idea of condoning 

the negative evaluations from a less important design variable. The decomposition of the 

evaluation task and then the integration of the evaluations into an overall rating has helped 

to develop a complete but small knowledge base for the task. Heuristic rules are used to 

incorporate the designers past experiences. 

6.4.2.2 The Inter-variable Knowledge 

Considerations like manufacturability, choice of materials and some special preferences for a 

design solution dictate the relative importance of a variable. While evaluating a design for a 

criterion, the important variables contribute to the conclusion, whereas the least important 

variables are ignored. For example, if a turbine blade cooling system design is evaluated for 

cost of material the wall thickness (dth) becomes the most important variable. Whereas, 

Cdr, Fhc, Tc 1 etc. are the least imp011ant variables for the criterion. A design is evaluated as 

bad or not good, if the design does not conform to requirements of an impm1ant design 

variable (later defined as intra-variable knowledge). This negative effect on the design 

evaluation is condoned or compromised in case of less important variables. Thus, the degree 

of compromise depends on the relative importance of a variable. The most important 

variable cannot be compromised. This inter-variable knowledge is represented by ranking 

each design variable between 0 and 1 for each criterion. If ranking is high that means less 

compromise is allowed and alternatively low ranking means higher degree of cornprorrrise is 

possible. The function that implements the inter-variable knowledge is shown below: 

(de.ffunction Irzter _ Var_Preferences 0 

;; COST OF MANUFACTURING ;; 

(assert (Geom_pref1 (0.8 0) (0.8 1) (0.8 0)) CF 0.8) 

(assert (Cdr_pref1 (0.3 0) (0.3 1) (0.3 0)) CF 0.8) 

(assert (Fizc_pref1 (0.3 0) (0.3 1) (0.3 0)) CF 0.6) 

(assert (Jc1_pref1 (0.3 0) (0.3 1) (0.3 0)) CF 0.6) 

(assert (dtlz_pref1 (0.8 0) (0.8 1) (0.8 0)) CF 0.8) 

(assert (kw_pref1 (0.4 0) (0.4 1) (0.4 0)) CF 0.9) 

(assert (Rp_prefl (0.3 0) (0.3 1) (0.3 0)) CF 0.8) 

(assert (Rs_pref 1 (0. 3 0) (0. 3 1) (0. 3 0)) CF 0. 6) 
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) 

(assert (df_pref-1 (0.8 0) (0.8 1) (0.8 0)) CF 0.8) 

(assert (Cdf_pref-1 (0.4 0) (0.4 1) (0.4 0)) CF 0.6) 

(assert (Ff_pref-1 (0.4 0) (0.4 1) (0.4 0)) CF 0.6) 

(assert (Rpf_pref-1 (0.3 0) (0.3 1) (0.3 0)) CF 0.8) 

;; COST OF MATERIAL ;; 

(assert (Geom_pref-2 (0.5 0) (0.5 1) (0.5 0)) CF 0.8) 

(assert (Cdr _pref-2 (0. 3 0) (0. 3 1) (0. 3 0)) CF 0. 8) 

(assert (Fhc_pref-2 (0.3 0) (0.3 1) (0.3 0)) CF 0.6) 

(assert (J'c1_pref-2 (0.3 0) (0.3 1) (0.3 0)) CF 0.8) 

(assert (dth_pref-2 (0.9 0) (0.9 1) (0.9 0)) CF 0.9) 

(assert (kw_pref-2 (0. 7 0) (0. 7 1) (0. 7 0)) CF 0.8) 

(assert (Rp_pref-2 (0.5 0) (0.5 I) (0.5 0)) CF 0.8) 

(assert (Rs_pref-2 (0.3 0) (0.3 I) (0.3 0)) CF 0.9) 

(assert (df_pref-2 (0.3 0) (0.3 1) (0.3 0)) CF 0.8) 

(assert (Cdf_pref-2 (0.4 0) (0.4 1) (0.4 0)) CF 0.6) 

(assert (Ff_pref-2 (0.4 0) (0. 4 1) (0.4 0)) CF 0. 6) 

(assert (Rpf_pref-2 (0.5 0) (0.5 1) (0.5 0)) CF 0.8) 

;; DESIGNER'S SPECIAL PREFERENCE;; 

(assert (Geom_pref-3 (0.8 0) (0.8 1) (0.8 0)) CF 0.8) 

(assert (Cdr_pref-3 (0.5 0) (0.5 1) (0.5 0)) CF 0. 7) 

(assert (Fhc_pref-3 (0.8 0) (0.8 I) (0.8 0)) CF 0.8) 

(assert (J'c1_pref-3 (0. 7 0) (0. 7 1) (0. 7 0)) CF 0. 7) 

(assert (dth_pref-3 (0.9 0) (0.9 1) (0.9 0)) CF 0.9) 

(assert (kw_pref-3 (0.8 0) (0.8 1) (0.8 0)) CF 0.8) 

(assert (Rp_pref-3 (0.6 0) (0.61) (0.6 0)) CF 0.8) 

(assert (Rs_pref-3 (0. 7 0) (0. 7 I) (0. 7 0)) CF 0. 8) 

(assert (df_pref-3 (0.9 0) (0.9 1) (0.9 0)) CF 0.8) 

(assert (Cdf_pref-3 (0.5 0) (0.5 1) (0.5 0)) CF 0. 7) 

(assert (Ff_pref-3 (0.8 0) (0.8 1) (0.8 0)) CF 0.8) 

(assert (Rpf_pref-3 (0.6 0) (0.6 I) (0.6 0)) CF 0.8) 

The rankings are obtained from the designers. For each criterion, the designers are asked to 

rank the variables and also include the confidence factors for their decisions. The 

information presented in the thesis reflects designers ' knowledge and experience with the 

design problem. Once the rankings are decided, the function shown above asserts fuzzy 
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facts in the FuzzyCLIPS facts list. Three different sets of facts are introduced in the fact list 

for the three criteria. Each fact contains a confidence factor that represents the confidence 

on the variable ranking. These facts are utilised for the knowledge integration. 

6.4.2.3 The Intra-variable Knowledge 

According to different qualitative critetia each variable has a preferred value, say for 

example, the blade wall thickness (that is the vruiable dth) should be very low to reduce the 

cost of material but this may not be suitable from manufacturability considerations. Thus 

from a cost of material point of view, preference for the wall thickness (dth) is VERY_LOW 

but the preference is VERY_IDGH from manufacturability point of view. In a design 

solution, whenever the wall thickness falls within the VERY_IDGH range (previously 

mentioned as requirements of the variable) the design is qualitatively rated as 

VERY _GOOD from the manufacturability consideration. If the wall thickness is "not" 

VERY_IDGH then the qualitative rating is determined by compromising BAD according to 

the inter-vruiable preference of the wall thickness from manufacturability consideration. The 

expression "not" is the hedge or the modifier used in conjunction with the fuzzy term 

VERY_IDGH. This knowledge is also retrieved from the designers through interviews and 

detailed discussions. Conflicts in opinion between the designers are resolved by dialogue. 

Rules 9 and 10 as shown below exhibit the intra-variable knowledge representation for the 

wall thickness ( dth) fi:om the manufacturability consideration, where QR-1 is the qualitative 

rating. 

(defrule ru/e-9 

(declare (salience -50) (CF 0. 7)) 

(HEURISTICS-1 NO) 

(dth VERY_HIGH) 

?fa<- (dth_prefl ?) 

=> 

(bind ?cf(get-cf ?fa)) 
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(assert (QR-1 VERY_GOOD) CF 1.0) 

) 

(defrule rule-10 

) 

(declare (salience -50) (CF 0. 7)) 

(HEURISTICS-I NO) 

(dth not VERY_f!IGH) 

?fa<- (dth_prefl ?) 

=> 

(bind ?cf (get-cf ?fa)) 

(bind ?pref (get-fs-x ?fa 0)) 

(if(> ?pref0.9) 

then 

(assert (QR-1 BAD) CF ?cj)) 

(i.f(and (<= ?pref0.9) (> ?pref0.8)) 

then 

(assert (QR-1 slightly_compromise BAD) CF ?cj)) 

(tf(and (< = ?pref 0.8) (> ?pref0.6)) 

then 

(assert (QR-1/ess_compromise BAD) CF ?cj)) 

(if(and (<= ?pref0.6) (> ?pref0.4)) 

then 

(assert (QR-1 compromise BAD) CF ?cj)) 

(if(<= ?pref0.4) 

then 

(assert (QR-1 more_compromise BAD) CF ?cj)) 

6.4.2.4 The Concept of Compromise 

The literal meaning of compromise is "to settle (a dispute) by making concessions". The 

same concept of concession is implemented as "reducing the severity of the negative effect 

of one individual variable on the final qualitative rating" (Figure 6. 7). The inter-vruiable 

knowledge determines the degree of compromise possible on every variable. Different 

degrees of compromise are described as slightly_compromise, less_compromise, 

compromise and more_compromise (Figure 6.8). If the inter-variable rating for a variable is 

more than 0.9 that variable is not compromised. QES uses the min-max type fuzzy 
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"Reducing the Severity of some Negative Conclusions" 

1.0 ······------ - -------

BAD 
(y = f(x)) 

Membership 
Function 

compromise 
BAD 

i 

(y = f(x) * 0.5) 

10 30 

Design_Effec 

Figure 6.7: The Concept of Compromise. 

Modifier Name Modifier Description 

slightly _compromise y * 0.9 

less_compromise y * 0.7 

compromise y * 0.5 

more_compromise y * 0.3 

Figure 6.8: The descriptions of different compromise modifier used, where y 
denotes the corresponding membership function. 

"before compromising Medium " 

Medium Good 
1.0 

i 
Jl(X) 

60 
Design_Effec 

"after compmmising Medium " 

Medium 

Compromise : 
Medium • 

, .. . . 

Design_Effec 

Good 

60--+ 72 

Figure 6.9: The effect of compromise: the design effectiveness is increased by 
compromising the "Medium" (relatively negative conclusion) fuzzy set. 
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inference mechanism as used in FuzzyCLIPS. The fuzzy inference mechanism works on the 

principle of global contribution to the facts list. That means when a new fact is assetted 

about a variable any previous fact about the variable gets replaced by a different fact that is 

a union of the two facts. Once all relevant rules are fired fuzzy representations of the 

qualitative ratings are obtained. The centre of gravity type defuzzification method is used to 

obtain c1isp values for the three qualitative ratings. In the defuzzification process the crisp 

value is obtained depending on the area covered by the final fuzzy fact. The concept of 

compromise is implemented by reducing the area due to the negative conclusions (Figure 

6.7). The method uses a multiplication modifier. Reducing the area at one end pushes the 

crisp value towards the other end. Thus by reducing the area covered due to the negative 

conclusions the ctisp value obtained for the qualitative rating can be pushed towards the 

positive conclusion end (that is a higher qualitative rating can be obtained ) (Figure 6.9). In 

other words the severity of the negative conclusions is reduced. Thus the cmTesponding 

variable is compromised (to a different degree). This novel but simple method of knowledge 

integration has helped to develop a knowledge base that covers the entire design space but 

uses a small number of fuzzy rules. Three different qualitative ratings are obtained for the 

three criteria. The present system includes 38 fuzzy rules and a function that asserts fuzzy 

facts to represent the inter-variable knowledge (Appendix - 11). 

6.4.2.5 Heuristic Rules 

Heuristics are the most common way of expressing domain knowledge. The inter-variable 

and intra-variable knowledge and the method by which they are integrated can evaluate any 

solution in the design space. Even then, some definite heuristics from the designer are 

included. These are mostly about some specific cases where the designer is definite about 

the conclusion. If any design solution matches with any one of the heuristic mles, previous 

conclusions are discarded and only the heuristic is used for the conclusion. Three different 
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sets of heuristic rules are used for the three criteria (i.e. manufacturability, cost of material 

and designers ' special preferences). One sample heuristic rule for the designers' special 

preference criterion is shown below. 

) 

(defrule rule-37 ;; heuristics-6 

(declare (salience -450) (CF 0. 7)) 

(Cdr VERY_LOW) 

(dth HIGH) 

(Rp VERLHIGH) 

(Rs VERY_LOW) 

(dfB!G) 

(Rpf VERY_H!GH) 

?fa<- (QR-3 ?) 

?he <- (HEURISTICS-3 NO) 

=> 

(printout t crlj) 

(printout t "The design has satisfied Heuristic-6 (Designer's Special Pref erence) :: " crlj) 

(printout t " Cdr : VERY_LOW" crlj) 

(printout t " dth : HIGH" crlf) 

(printout t " 

(printout t " 

(printout t " 

(printout t " 

(printout t crlj) 

(retract ?fa) 

(retract ?he) 

(assert (HEURISTICS-3 YES)) 

(assert (QR-3 GOOD) CF 1. 0) 

Rp : VERY_HIGH" crlj) 

Rs : VERY_ LOW" crlj) 

df : BIG" crlj) 

Rpf : VERY_HIGH " crlj) 

6.4.3 Building the System 

Now that the fuzzy sets and rules are defined, the next task is to build the system. This task 

involves coding of the fuzzy sets, and rules and selection of proper fuzzy logic procedures. 

Max-min type fuzzy inferencing and centre of gravity type defuzzification are selected for 

the development. An additional task involves the integration of the ARTS based hybrid GA 

search with QES in the Adaptive Search Manager environment. Coding involved in QES 
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development is developed following FuzzyCLIPS nomenclature and the procedures used 

are selected from the available FuzzyCLIPS functions. The ARTS based hybrid GA search 

technique is implemented in "C" language, and involves many stmctures to define the 

principle components of the search technique. Thus the next task of integrating the search 

technique with QES demands data handling fi:om and to "C" structures by the Adaptive 

Search Manager. The methodology involved in mirroring "C" structures in FuzzyCLIPS for 

the integration can be summarised as follows: 

1. Classes and instances in FuzzyCLIPS are defined to mirror "C" structures 

using CLIPS Object Oriented Language (COOL). 

2. "C" functions are written to extract data from FuzzyCLIPS instances. 

3. "C" functions are written to be used in FuzzyCLIPS to extract data fi·om 

"C" structures. 

4. UserFunctions(), a FuzzyCLIPS function, is modified to accommodate 

the change and then FuzzyCLIPS is recompiled. 

QES evaluations are presented along with other details of the selected designs through an 

adaptive search manager (ASM) inte1jace. The interface provides an access to the linguistic 

term definitions used for the design variables and the fuzzy knowledge base. This flexibility 

helps the designer to adapt the system quickly to any new situation and also to add any new 

criterion if necessary. 

6.4.4 Validating the System 

Any expert system needs to be validated in order to check the validity of the conclusions. 

Validation of QES has been performed by experts from Rolls Royce plc. Several cases are 

verified to check whether the conclusions conf01m to the expectations of the experts [Satre 

and Massey ( 1991 ), Massey et. al. ( 1991)] . In an early attempt only one qualitative rating 
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was obtained for all the three criteria [Roy et. al. (1995a) and (1996c)]. During the 

validation separate ratings are given for each qualitative criterion, i.e. manufacturability, 

cost of material and designers' special preferences. As a prut of the validation process, the 

knowledge base is verified in detail and accordingly few rules are modified by the expetts. 

The linguistic terms used with the variables are kept unaltered. Often contradictory opinions 

are resolved amicably through discussions. This validation process requires few iterations. It 

is obsetved that, while defining the intra-variable knowledge that some variables can have 

an indirect effect on a criterion. The fuzzy rules are developed using only the direct effect 

consideration. It is generally agreed that the validation process also contributes towards a 

better understanding of the problem 

6.5 Summary 

The chapter presents a method of evaluating engineering designs with respect to a 

qualitative criterion. The methodology uses a fuzzy expert system that provides three crisp 

ratings for a design solution considering three different qualitative criteria. The chapter 

btiefly introduces the concepts of fuzzy logic and fuzzy expert systems. The research 

describes the development of a qualitative evaluation system using a novel knowledge 

representation technique. The technique helps to integrate the system with the hybtid search 

technique (ARTS based GA search and bill climbing). The system is capable of evaluating 

any possible design using a small number of rules. Finally the validation procedure for the 

qualitative evaluation system is desctibed. The next two chapters present the results 

obtained using ASM, discussion on the results and finally the conclusions. 
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CHAPTER-7 

7. Results and Evaluation 

7.1 ASM and Design Decision Support 

ASM is used as a decision support tool for the turbine blade cooling system design problem. 

ASM presents multiple "good" design solutions for the problem to the designer. lt is 

necessary that the infonnation provided by ASM is evaluated before the system can be used 

in practice. The evaluation process can be divided into two categoties: verification of the 

results and validation of the approach adopted in ASM. The objective of the verification 

stage [Satre and Massey (1991 )] is to check the quality of the results achieved using ASM. 

It is important to verify whether the quantitative and qualitative information concerning the 

design solutions conforms to the understanding of the expert designers. The real life design 

problem (TBCOM) does not provide prior knowledge concerning possible "good" designs: 

how good can they be and where are they located? In absence of such knowledge, it is very 

difficult to judge the quality of the results automatically (that is using a computerised 

verification method). The validation of the design decision support approach is also 

essential to identifY bow well the system can suppmi a designer in his or her needs. A 

numerical measurement of the overall success of ASM is impossible. Thus ASM needs to be 

evaluated qualitatively. The evaluation is performed by an expert designer, and a user. Many 

1uns of ASM are performed to obtain information at different conditions, and the results are 

used in the evaluation process. The next section describes different parameters used in the 

search process and presents some representative results from the runs. 
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7.2 Results 

Some representative results are reported from typical ASM runs. Results obtained from 

ASM at different conditions are used to evaluate the system The hybrid of ARTS based 

search and the knowledge based hill climbing stops if the search attains a steady state. The 

research defines two different definitions of the steady state: 

1. A steady state is achieved if the average fitness (that is the inverse of the 

coolant mass flow through the radial passage) of the population per 

generation remains unchanged for 100 generations. 

2. Alternatively, the search is considered to have attained a steady state if the 

search cannot find any new sub-optimum for 100 generations. In this case, a 

list of sub-optima is maintained. The list is of a fixed size and is updated 

every generation. If the search fails to update the list for 1 00 generations 

then it is assumed the search has reached a steady state. 

It is worth noting that, the first steady state condition was used in Roy and Parmee ( 1995) 

and (1996). Later, in order to reduce the run time of ASM the second steady state definition 

is used. The results using the second definition are used for the evaluation purpose and are 

presented in this section. The design solutions in the designs ' list are considered "good" 

designs as identified by ASM. Many runs of ASM are performed with different ranges for 

the design variables and the constraints, and the results are presented to the expert and the 

user to evaluate the system A sample of the results is presented in this section. Each design 

solution is represented by twelve values for the design variables (i.e. Geom, Cdr, etc.). The 

quantitative information about the "good" designs includes the fitness of a design and the 

sensitivity information. The fitness is the inverse of the coolant mass flow through the 

radial passage. The sensitivity analysis is limited within the geometry type (Geom) of a 

design solution. The design solution sensitivity shows the vaiiation of the design solution 
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performance within the neighbourhood. The higher the sensitivity value the more sensitive is 

the design. In this case the performance of a design solution is the amount of coolant mass 

flow through the radial passage. The design variable sensitivity values are rounded to the 

nearest integer values. The eleven values for the design variable sensitivities (that is for the 

eleven design variables except the geometry) exhibit how critical each design variable is 

within the neighbourhood of a design solution. The higher the sensitivity value the more 

sensitive is the design variable. The constraint sensitivity is determined for the three 

constraints individually. The qualitative information contains three qualitative ratings 

considering the three criteria: manufacturability, choice of materials and designers ' special 

preferences. The higher the rating, the more effective the design solution is from the 

qualitative criterion point of view. The quantitative and qualitative information is presented 

to the designer as decision support. The information helps the designer to compare between 

the designs, as a result the designer selects the most appropriate design. 

ARTS based GA search uses two control parameters, K and KT, for the clustering. The 

value of K is set to be one fifth of the cluster list size. The value of KT is set to be 90% of 

the value of K In order to maximise the diversity of the initial population, the design space 

is divided into 24 equal hyper spaces, then individuals are produced randomly from each 

hyper space in equal numbers. The total number of individuals in a population is 120. The 

binary string for one individual is 272 bits Long. The search process uses one point 

crossover with probability 1.0 but no mutation or inversion. All the trial runs use the same 

seed for the random number generator. The runs are performed under identical computing 

conditions. Each design variable is defined by an upper bound (top), a lower bound 

(bottom), a resolution (res), a tolerance (to!) and a pre-probability (pre_prob) for the 

knowledge based hill climbing. There are three possible types of internal geometry for the 

cooling passage: plane, ribbed and pedestal, and geometry type determines the ranges for 
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the design variables: Cdr and Fhc. The three non-linear inequality constraints are also 

defined with a maximum and a minimum limit. The ranges for each design variable or each 

constraint can be altered by a designer at the beginning of an ASM run. The results shown 

in this section use the default settings for the design variables and the constraints. The 

default values of the design variables and the constraints are presented below. The design 

variables and the constraints assume the same nomenclature and units as mentioned in 

chapter 2. 

THE DEFAULT SETTINGS OF THE DESIGN VARIABLES: 

Design Variable: Geom 
top= 3 
bottom= 1 
res= 0.5 
tol = 1.0 
pre_prob = 0. 00 

Design Variable: Cdr-1 
top= 0.75 
bottom= 0.60 
res= 0.01 
tol = 0.02 
pre_prob = 0.1 

Design Variable: Cdr-2 
top= 0.6 
bottom= 0.4 
res= 0.01 
tol = 0.02 
pre_prob = 0.1 

Design Variable: Cdr-3 
top= 0.4 
bottom= 0.2 
res= 0.01 
tol = 0.02 
pre_prob = 0.1 

Design Variable: Fhc-1 
top= 1.6 
bottom= 1.0 
res= 0.1 
tol = 0.1 
pre_prob = 0.1 

Design Variable: Fhc-2 
top= 3.0 
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bottom= 1.3 
res=Oo1 
tol = 002 
pre_prob = 001 

Design Variable: Fhc-3 
top= 3.2 
bottom= 108 
res= 001 
tol = 002 
pre_prob = 001 

Design Variable: Tc 1 
top= 800 
bottom= 700 
res= 1 
tol = 200 
pre_prob = 0008 

Design Variable: dth 
top= 000025 
bottom= 0000075 
res= 0000001 
tol = 0000005 
pre_prob = 0016 

Design Variable: kw 
top= 33 
bottom= 18 
res= 100 
tol = 200 
pre_prob = 001 

Design Variable: Rp 
top= 1.6 
bottom= 1.05 
res= 0001 
tol = 0003 
pre_prob = 002 

Design Variable: Rs 
top= 1.50 
bottom= 0050 
res= 0001 
tol = 0005 
pre_prob = 0012 

Design Variable: df 
top= 000004 
bottom = 0 0 000 l 
res= 0000005 
tol = 0000005 
pre_prob = 0 0 04 
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Design Vatiable: Cdf 
top= 0.75 
bottom= 0.6 
res= 0.01 
tol = 0.02 
pre_prob = 0.04 

Design Variable: Ff 
top= 1.6 
bottom= 1.0 
res= 0.1 
tol = 0.1 
pre_prob = 0.02 

Design Variable: Rpf 
top= 0.4 
bottom= 0.2 
res= 0.01 
tol = 0.02 
pre_prob = 0.04 

THE DEFAULT SETTINGS OF THE CONSTRAINTS: 

Constraint - 1: 
CIMAX = 1300.0 
ClMIN = 1200.0 

Constraint - 2: 
C2MAX = 1300.0 
C2MIN = 0.0 

Constraint - 3: 
C3MAX = 100000.0 
C3MIN= 0.8 

7.2.1 Results: unconstrained search 

The unconstrained search is performed by setting the constraints' upper limits to vety large 

numbers and lower limits to zero. The alterations are performed through an interactive 

session at the beginning of the ASM mn. The run uses the second steady state condition. 

The results from a typical ASM run are presented. The ASM run is completed after 203 

generations. The run produces 5 "good" designs from geometry one, five from geometry 

two and five from geometiy three. The fifteen "good" designs are then presented to the 
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One of the GOOD solutions is:: (Geom: 3, Cdr: 0.31. Fhc: 3.2. Tc1: 798. dth: 
0. 00096, kw : 32. Rp: 1.1 0, Rs: 0. 70. df: 0. 00040, Cdf: 0. 62, Ff: 1. 3, Rpf: 0. 21) 

Outputs are:: (Wcr : 0.000791, Wcf: 0.000822. Twg: 1299.98, Twf: 
1100.19) 

Itemfitness = 1264.332 

Design Solution sensitivity = 63.56 
Design Variable sensitivity :: (Cdr: 51. Fhc: 63, Tc1: 6, dth: 3. 

kw: 4, Rp: 130, Rs: 10, df: 2, Cdf : 6, Ff: 3, Rpf: 37) 
Constraints sensitivity: 

CONS-1 : Quasi-Active Constraint 
CONS-2 : Constraint satisfied 
CONS-3 : Quasi-Active Constraint 

Qualitative Rating of the solution = 
COST OF MANUFACTURE : 62.97 
COST OF MATERIAL : 30 .44 
DESIGNER ' S SPECIAL PREFERENCE : 54. 28 

One of the GOOD solutions is :: (Geom: 3. Cdr: 0.29. Fhc: 3. 2. Tc1: 749, dth: 
0. 00080, kw: 30, Rp : 1. 09, Rs: 0. 70, df: 0. 00035, Cdf: 0. 70, Ff: 1. 6, Rpf: 0. 20) 

Outputs are:: (Wcr: 0.000782, Wcf: 0.000694. Twg: 1299.98. Twf: 
1080. 82) 

Itemfitness = 1279.149 

Design Solution sensitivity = 65.84 
Design Variable sensitivity:: (Cdr: 54, Fhc : 63, Tc1: 4. dth: 3, 

kw: 6, Rp: 144, Rs: 10, df: 1. Cdf: 7, Ff: 2. Rpf: 25) 
Constraints sensitivity: 

CONS-1 : Quasi-Active Constraint 
CONS-2 : Constraint satisfied 
CONS-3 : Quasi-Active Constraint 

Qualitative Rating of the solution = 
COST OF MANUFACTURE : 58.43 
COST OF MATERIAL : 64 .48 
DESIGNER ' S SPECIAL PREFERENCE 47 . 99 

Figure 7.1: The Adaptive Search Manager Interface. 

designer through the ASM interface (Figure 7.1) for the final decision. The "good" designs 

are shown below: 

DESIGN: 1 

One of the GOOD solutions is :: (Geom: 1, Cdr: 0.61, Fhc: 1.4, Tc1: 776, dth: 0.00250, kw: 31, Rp: 1.05, 
Rs: 1.50, df: 0.00035, Cdf: 0.67, Ff: 1.5, Rpf: 0.22) 

Quantitative Information: 
Fitness= 1990.185 
Design Solution ensitivity = 56.72 
Design Variable en itivity :: (Cdr: 18, Fhc: 14, Tc 1: 3, dth: l, kw: 1, Rp: 94, Rs: 4, df: 0, 

Cdf: 1, Ff: 2, Rpf: 25) 
Constraints sensitivity: 

CONS-1 :Constraint satisfied 
CONS-2 : Constraint satisfied 
CONS-3 : Constraint satisfied 

Qualitative Information: 
Qualitative Rating of the solution: 

COST OF MANUFACTURE: 64.74 
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COST OF MATERIAL: 55.26 
DESIGNER'S SPECIAL PREFERENCE: 31.53 

DESIGN: 2 
One of the GOOD solutions is:: (Geom: 11 Cdr: 0.601 Fhc: 1.01 Tcl: 8001 dth: 0.002501 kw: 181 Rp: 1.051 

Rs: 1.501 df: 0.000101 Cdf: 0.741 Ff: 1.31 Rpf: 0.20) 
Quantitative Information: 

Fitness= 2283.391 
Design Solution sensitivity= 55.57 
Design Variable sensitivity :: (Cdr: 11 , Fhc: 12, Tc 1: 2, dth: 1, kw: 1, Rp: 84, Rs: 1, df: 0, 

Cdf: 1, Ff: 1, Rpf: J6) 
Constraints sensitivity: 

CONS-1 : Constraint satisfied 
CONS-2 : Constraint satisfied 
CONS-3 : Constraint satisfied 

Qualitative Information: 

DESIGN: 3 

Qualitative Rating of the solution: 
COST OF MANUFACTURE: 63.24 
COST OF MATERIAL: 55.26 
DESIGNER'S SPECIAL PREFERENCE: 15.81 

One of the GOOD solutions is :: (Geom: 11 Cdr: 0.601 Fhc: 1.11 Tc1: 7971 dth: 0.002501 kw: 281 Rp: 1.051 
Rs: 1.501 df: 0.000101 Cdf: 0.741 Ff: 1.1 I Rpf: 0.20) 

Quantitative Information: 
Fitness= 2258.755 
Design Solution sensitivity= 55.63 
Design Variable sensitivity :: (Cdr: 11, Fhc: 13, Tc 1: 2, dth: 1 I kw: 1, Rp: 85, Rs: 3, df: 0, 

Cdf: 1, Ff: 1, Rpf: 16) 
Constraints sensitivity: 

CONS-1 :Constraint satisfied 
CONS-2 : Constraint sati tied 
CONS-3 : Constraint satisfied 

Qualitative Information: 

DESIGN: 4 

Qualitative Rating of the solution: 
COST OF MANUFACTURE: 63.24 
COST OF MATERIAL: 55.26 
DESIGNER'S SPECIAL PREFERENCE: 15.81 

One of the GOOD solutions is:: (Geom: 1, Cdr: 0.601 Fhc: l.11 Tc1: 8001 dth: 0.002501 kw: 281 Rp: 1.051 
Rs: 1.501 df: 0.000 l 01 Cdf: 0. 741 Ff: 1.1 I Rpf: 0.20) 

Quantitative Information: 
Fitness= 2277.903 
Design Solution sensitivity = 55.57 
Design Variable sensitivity :: (Cdr: 11 , Fhc: 12, Tcl: 2, dth: 1, kw: 1, Rp: 84, Rs: 1, df: 0, 

Cdf: 1, Ff: 1, Rpf: 16) 
Constraints sensitivity: 

CONS-I :Constraint satisfied 
CONS-2 : Constraint satisfied 
CONS-3 : Constraint satisfied 

Qualitative Information: 

DESIGN: 5 

Qualitative Rating of the solution: 
COST OF MANUFACTURE: 63.24 
COST OF MATERIAL: 55.26 
DESIGNER'S SPECIAL PREFERENCE: 15.81 

One of the GOOD solutions is :: (Geom: 1, Cdr: 0.601 Fhc: 1.1 I Tc 1: 8001 dth: 0.002501 kw: 181 Rp: 1.051 
Rs: 1.501 df: 0.000101 Cdf: 0.741 Ff: 1.1~ Rpf: 0.20) 

Quantitative Information: 
Fitness = 2278.954 
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Design Solution sen itivity = 55.56 
Design Variable sensitivity :: (Cdr: 11, Fhc: 12, Tc1: 2, dth: 1, kw: 1, Rp: 84, Rs: 1, df: 0, 

Cdf: 1, Ff: 1, Rpf: 16) 
Constraints sensitivity: 

CONS-I : Constraint satisfied 
CONS-2 : Constraint satisfied 
CONS-3 : Constraint satisfied 

Qualitative Information: 

DESIGN: 6 

Qualitative Rating of the solution: 
COST OF MANUFACTURE: 63.24 
COST OF MATERIAL: 55.26 
DESIGNER'S SPECIAL PREFERENCE: 15.81 

One of the GOOD solutions is:: (Geom: 2, Cdr: 0.40, Fhc: 1.8, Tcl: 800, dtb: 0.00250, kw: 18, Rp: 1.05, 
Rs: 1.50, df: 0.00020, Cdf: 0.61, Ff: 1.5, Rpf: 0.20) 

Quantitative Information: 
Fitness= 3366.266 
Design Solution sensitivity= 55.73 
Design Variable ensitivity :: (Cdr: 11 , Fbc: 8, Tc1: 1, dth: 1, kw: I , Rp: 57, Rs: 1, df: 0, 

Cdf: 1, Ff: I, Rpf: 11) 
Constraints sensitivity: 

CONS-I :Constraint satisfied 
CONS-2 : Constraint satisfied 
CONS-3 : Constraint satisfied 

Qualitative Information: 

DESIGN: 7 

Qualitative Rating of the solution: 
COST OF MANUFACTURE: 56.65 
COST OF MATERIAL: 15.81 
DESIGNER'S SPECIAL PREFERENCE: 55.25 

One of the GOOD solutions is :: (Geom: 2, Cdr: 0.40, Fbc: 1.8, Tcl: 800, dth: 0.00250, kw: 20, Rp: 1.05, 
Rs: 1.50, df: 0.00020. Cdf: 0.72, Ff: 1.0, Rpf: 0.20) 

Quantitative Information: 
Fitness= 3365.623 
Design Solution ensitivity = 55.73 
Design Variable sen itivity :: (Cdr: 11 , Fhc: 8, Tc1: 1, dth: I, kw: 1, Rp: 57, Rs: 1, df: 0, 

Cdf: l, Ff: l , Rpf: 11) 
Constraints sensitivity: 

CONS-I :Constraint satisfied 
CONS-2 : Constraint satisfied 
CONS-3 : Constraint satisfied 

Qualitative Information: 

DESIGN: 8 

Qualitative Rating of the solution: 
COST OF MANUFACTURE: 56.65 
COST OF MATERIAL: 15.81 
DESIGNER'S SPECIAL PREFERENCE: 27.64 

One of the GOOD solutions is:: (Geom: 2, Cdr: 0.40, Fbc: 1.7, Tcl: 800, dtb: 0.00250, kw: 18, Rp: 1.05, 
Rs: 1.50, df: 0.00010, Cdf: 0.66, Ff: 1.5, Rpf: 0.20) 

Quantitative Information: 
Fitness = 3371.235 
Design Solution sensitivity= 55.74 
Design Variable sensitivity:: (Cdr: 11, Fhc: 8, Tc1: 1, dth: 1, kw: I, Rp: 57, Rs: I, df: 0, 

Cdf: 1, Ff: 1, Rpf: 11) 
Con traints sensitivity: 

CONS-I : ConStraint atisfied 
CONS-2 : ConStraint satisfied 
CONS-3 : Constraint satisfied 

Qualitative Information: 
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DESIGN: 9 

Qualitative Rating of the solution: 
COST OF MANUFACTURE: 56.65 
COST OF MATERIAL: 15.81 
DESIGNER'S SPECIAL PREFERENCE: 18.25 

One of the GOOD solutions is:: (Geom: 2, Cdr: 0.40, Fbc: 1.3, Tc1: 800, dtb: 0.00250, kw: 18, Rp: 1.05, 
Rs: 1.50, df: 0.00020, Cdf: 0.72, Ff: 1.0, Rpf: 0.20) 

Quantitatice Information: 
Fitness = 3394.035 
Design Solution sensitivity= 55.78 
Design Variable sensitivity:: (Cdr: 11, Fhc: 8, Tcl: 1, dtb: 1, kw: 1, Rp: 57, Rs: 1, df: 0, 

Cdf: 1, Ff: 1, Rpf: 11) 
Constraints sensitivity: 

CONS-1 : Constraint satisfied 
CONS-2 : Con traint satisfied 
CONS-3 : Constraint satisfied 

Qualitative Information: 

DESIGN: 10 

Qualitative Rating of the solution: 
COST OF MANUFACTURE: 56.65 
COST OF MATERIAL: 15.81 
DESIGNER'S SPECIAL PREFERENCE: 27.64 

One of the GOOD olutions is :: (Geom: 2, Cdr: 0.40, Fhc: 1.8, Tc l: 800, dth: 0.00250, kw: 28, Rp: 1.05, 
Rs: 1.50, df: 0.00025, Cdf: 0.68, Ff: 1.3, Rpf: 0.20) 

Quantitative Information: 
Fitness= 3363.944 
De ign Solution ensitivity = 55.74 
Design Variable ensitivity :: (Cdr: 11, Fbc: 8, Tcl: 1, dtb: 1, kw: 1, Rp: 57, Rs: 1, df: 0, 

Cdf: 1, Ff: 1, Rpf: 11) 
Constraints sensitivity: 

CONS-1 :Constraint satisfied 
CONS-2 : Constraint satisfied 
CONS-3 : Constraint satisfied 

Qualitative Information: 

DESIGN: 11 

Qualitative Rating of the solutjon: 
COST OF MANUFACTURE: 56.65 
COST OF MATERIAL: 15.81 
DESIGNER'S SPECIAL PREFERENCE: 37.81 

One of the GOOD solutions is:: (Geom: 3 , Cdr: 0.20, Fbc: 1.8, Tcl: 799, dtb: 0.00250, kw: 20, Rp: 1.05, 
Rs: 1.50, df: 0.00015, Cdf: 0.74, Ff: 1.2, Rpf: 0.20) 

Quantitative Information: 
Fitness= 6664.488 
Design Solution sensitivity = 57.12 
Design Variable sensitivity :: (Cdr: 11, Fbc: 4, Tc I: I, dth: 0, kw: I, Rp: 29, Rs: 1, df: 0, 

Cdf: 0, Ff: 0, Rpf: 5) 
Constraints sensitivity: 

CONS-I : Constraint satisfied 
CONS-2 : Constraint satisfied 
CONS-3 : Constraint satisfied 

Qualitative Information: 
The design has satisfied Heuri tic-3 (Cost of Material): 

Geom: THREE 
Tcl: VERY_ HIGH 
dth: VERY_ HIGH 
kw: VERY_HIGH or VERY_LOW 
Rs: VERY_ HIGH 

Qualitative Rating of the solution: 
COST OF MANUFACTURE: 58.46 
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COST OF MATERIAL: 8.61 
DESIGNER'S SPECIAL PREFERENCE: 54.70 

DESIGN: 12 

One of the GOOD solutions is :: (Geom: 3, Cdr: 0.20, Fhc: 1.8, Tc I: 800, dth: 0.00250, kw: 26, Rp: 1.05, 
Rs: 1.50, df: 0.00015, Cdf: 0.74, Ff: 1.3, Rpf: 0.20) 

Quantitative Information: 
Fitness= 6681.801 
Design Solution sensitivity= 57.04 
Design Variable sensitivity:: (Cdr: 11, Fhc: 4, Tcl: 1, dth: 0, kw: 1, Rp: 29, Rs: l , df: 0, 

Cdf: 0, Ff: 0, Rpf: 5) 
Constraints sensitivity: 

CONS-1 : Constraint satisfied 
CONS-2 : Constraint satisfied 
CONS-3 : Constraint satisfied 

Qualitative Information: 

DESIGN: 13 

Qualitative Rating of the solution: 
COST OF MANUFACTURE: 58.46 
COST OF MATERIAL: 15.81 
DESIGNER'S SPECIAL PREFERENCE: 54.70 

One of the GOOD solutions is:: (Geom: 3, Cdr: 0.20, Fhc: 1.8, Tc1: 799, dth: 0.00250, kw: 19, Rp: 1.05, 
Rs: 1.50, df: 0.00035, Cdf: 0.74, Ff: 1.2, Rpf: 0.20) 

Quantitative Information: 
Fitnes = 6664.893 
Design Solution sensitivity= 57.12 
Design Variable sensitivity:: (Cdr: 11, Fhc: 4 , Tc l: 1, dth: 0, kw: I, Rp: 29, Rs: 1, df: 0, 

Cdf: 0, Ff: 0, Rpf: 5) 
Constraints sensitivity: 

CONS-1 :Constraint satisfied 
CONS-2 : Constraint satisfied 
CONS-3 : Constraint satisfied 

Qualitative Information: 

DESIGN: 14 

The design has satisfied Heuristic-3 (Cost of Material) : 
Geom: THREE 
Tcl: VERY_HIGH 
dth: VERY_ HIGH 
kw: VERY_HIGH or VERY_LOW 
Rs: VERY_HIGH 

Qualitative Rating of the solution: 
COST OF MANUFACTURE: 60.00 
COST OF MATERIAL: 8.61 
DESIGNER'S SPECIAL PREFERENCE: 53.44 

One of the GOOD solutions is :: (Geom: 3, Cdr: 0.20, Fhc: 1.8, Tcl: 800, dth: 0.00250, kw: 18, Rp: 1.05, 
Rs: 1.50, df: 0.00040, Cdf: 0.69, Ff: 1.6, Rpf: 0.20) 

Quantitative Information: 
Fitness = 6684.441 
Design Solution sensitivity= 57.04 
Design Variable sensit ivity :: (Cdr: 11, Fhc: 4, Tc1: 1, dth: 0, kw: 1, Rp: 29, Rs: 1, df: 0, 

Cdf: 0, Ff: 0, Rpf: 5) 
Constraints ensitivity: 

CONS-1 : Constraint satisfied 
CONS-2 : Constraint satisfied 
CONS-3 : Constraint satisfied 

Qualitative Information: 
The design has satisfied Heuristic-3 (Cost of Material): 

Geom: THREE 
Tcl: VERY_HIGH 
dth: VERY _HIGH 
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DESIGN: 15 

kw: VERY_HIGH or VERY_LOW 
Rs: VERY _HIGH 

Qualitative Rating of the olution: 
COST OF MANUFACTURE: 62.97 
COST OF MATERIAL: 8.61 
DESIGNER'S SPECIAL PREFERENCE: 52.30 

One of the GOOD solutions is:: (Geom: 3, Cdr: 0.20, Fhc: 1.8, Tc1 : 799, dtb: 0.00250, kw: 26, Rp: 1.05, 
Rs: 1.50, df: 0.00030, Cdf: 0.74, Ff: 1.2, Rpf: 0.20) 

Quantitative Information: 
Fitness= 6662.703 
Design Solution sensitivity= 57.13 
Design Variable sensitivity :: (Cdr: 11, Fhc: 4 , Tc I: I, dtb : 0, kw: 1, Rp: 29, Rs: 1, df: 0, 

Cdf: 0, Ff: 0, Rpf: S) 
Constraints sensitivity: 

CONS-1 : Constraint atisfied 
CONS-2 : Constraint satisfied 
CONS-3 : Constraint satisfied 

Qualitative Information: 
Qualitative Rating of the solution: 

COST OF MANUFACTURE: 58.46 
COST OF MATERIAL: 15.81 
DESIGNER'S SPECIAL PREFERENCE: 56.98 

7.2.2 Results: constrained search 

The constrained search is performed with the default settings of the three constraints. The 

constraints are implemented using the penalty functions desctibed in chapter 4. The mn uses 

the second steady state condition. The results from a typicalmn of ASM are presented. The 

ASM mn is completed after 383 generations. The mn produces 5 "good" designs from 

geometry one, five from geometry two and five from geometry three. All these fifteen 

"good" designs are then presented to the designer through the ASM interface for the final 

decision. The results are shown below: 

DESIGN: 1 
One of the GOOD solutions is:: (Geom: 1, Cdr: 0.61, Fhc: 1.6, Tc1: 768, dtb: 0.00135, kw: 27, Rp: 1.05, 

Rs: 0.68, df: 0.00025, Cdf: 0.60, Ff: 1.3, Rpf: 0.37) 
Quantitative Information: 

Fitness= 636.269 
Design Solution sensitivity = 59.10 
Design Variable sensitivity:: (Cdr: 57, Fhc : 142, Tc1: 12, dtb: 4 , kw: 4, Rp: 287, Rs: 13 , 

df: 2, Cdf: 11 , Ff: 3, Rpf: 46) 
Constraints sensitivity: 

CONS-1 : Quasi-Active Constraint 
CONS-2 : Constraint satisfied 
CONS-3 : Constraint satisfied 

Qualitative Information: 
Qualitative Rating of the solution: 

COST OF MANUFACTURE: 56.97 
COST OF MATERIAL: 55.26 
DESIGNER'S SPECIAL PREFERENCE: 60.25 
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DESIGN: 2 
One of the GOOD solutions is:: (Geom: 1, Cdr: 0.61, Fhc: 1.6, Tc1: 702, dth: 0.00150, kw: 28, Rp: 1.07, 

Rs: 0.74, df: 0.00040, Cdf: 0.70, Ff: 1.2, Rpf: 0.22) 
Quantitative Information: 

Fitness= 639.949 
Design Solution sensitivity = 73.32 
Design Variable sensitivity:: (Cdr: 51 , Fhc: 117, Tc l : 15, dth: 3, kw: 5, Rp: 368, Rs: 15, 

df:3 , Cdf: 17,Ff: IO,Rpf:69) 
Constraints sensitivity: 

CONS-1 : Quasi-Active Constraint 
CONS-2 : Constraint satisfied 
CONS-3 : Constraint satisfied 

Qualitative Information: 

DESIGN: 3 

Qualitative Rating of the solution: 
COST OF MANUFACTURE: 63.00 
COST OF MATERIAL: 55.26 
DESIGNER'S SPECIAL PREFERENCE: 57.45 

One of the GOOD solutions is:: (Geom: 1, Cdr: 0.61, Fhc: 1.6, Tc1: 702, dth: 0.00150, kw: 30, Rp: 1.06, 
Rs: 0.69, df: 0.00035, Cdf: 0.60, Ff: 1.2, Rpf: 0.22) 

Quantitative Information: 
Fitness = 642.226 
Design Solution sensitivity = 81.07 
Design Variable sensitivity:: (Cdr: 51, Fhc: 124, Tcl: 17, dth: 3, kw: 6, Rp: 433, Rs: 16, 

df: 3, Cdf: 21 , Ff: 11 , Rpf: 69) 
Constraints sensitivity: 

CONS-I :Quasi-Active Constraint 
CONS-2 : Constraint satisfied 
CONS-3 :Constraint satisfied 

Qualitative Information: 

DESIGN: 4 

Qualitative Rating of the solution: 
COST OF MANUFACTURE: 58.68 
COST OF MATERIAL: 55.26 
DESIGNER'S SPECIAL PREFERENCE: 56.71 

One of the GOOD solutions is:: (Geom: 1, Cdr: 0.61, Fhc: 1.6, Tcl: 705, dth: 0.00150, kw: 30, Rp: 1.06, 
Rs: 0.69, df: 0.00035, Cdf: 0.61, Ff: 1.4, Rpf: 0.22) 

Quantitative Information: 
Fitness = 646.875 
Design Solution sensitivity = 81.07 
Design Variable sensitivity:: (Cdr: 51, Fhc: 123, Tcl: 17, dth: 3, kw: 6, Rp: 430, Rs: 16, 

df: 3, Cdf: 21, Ff: 11 , Rpf: 68) 
Constraints sensitivity: 

CONS-I : Quasi-Active Constraint 
CONS-2 : Constraint satisfied 
CONS-3 : Constraint satisfied 

Qualitative Information: 

DESIGN: 5 

Qualitative Rating of the solution: 
COST OF MANUFACTURE: 58.68 
COST OF MATERIAL: 55.26 
DESIGNER'S SPECIAL PREFERENCE: 56.71 

One of the GOOD solutions is:: (Geom: 1, Cdr: 0.60, Fhc: 1.6, Tcl: 705, dth: 0.00148, kw: 32, Rp: 1.06, 
Rs: 0.67, df: 0.00040, Cdf: 0.63, Ff: 1.3, Rpf: 0.21) 

Quantitative Information: 
Fitness= 651.386 
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Design Solution sensitivity = 81.06 
Design Variable sensitivity:: (Cdr: 34, Fhc: 128, Tc l : 19, dth: 2, kw: 6, Rp: 432, Rs: 11, 

df: 3, Cdf: 22, Ff: 12, Rpf: 72) 
Constraints sensitivity: 

CONS-I :Quasi-Active Constraint 
CONS-2 : Constraint satisfied 
CONS-3 : Constraint satisfied 

Qualitative Information: 

DESIGN: 6 

Qualitative Rating of the solution: 
COST OF MANUFACTURE: 62.96 
COST OF MA TERlAL: 55.26 
DESIGNER'S SPECIAL PREFERENCE: 56.35 

One of the GOOD solutions is:: (Geom: 2, Cdr: 0.41, Fhc: 3.0, Tcl: 766, dth: 0.00136, kw: 33, Rp: 1.07, 
Rs: 0.82, df: 0.00010, Cdf: 0.65, Ff: 1.2, Rpf: 0.25) 

Quantitative Information: 
Fitness = 1156.894 
Design Solution sensitivity= 72.97 
Design Variable sensitivity:: (Cdr: 42, Fhc: 58, Tc1: 7, dth: 2, kw: 5, Rp: 202, Rs: 11, 

df: l , Cdf: 8, Ff: 4, Rpf: 33) 
Constraints sensitivity: 

CONS-I :Quasi-Active Constraint 
CONS-2 : Constraint satisfied 
CONS-3 : Constraint satisfied 

Qualitative Information: 

DESIGN: 7 

Qualitative Rating of the solution: 
COST OF MANUFACTURE: 19.04 
COST OF MA TERlAL: 15.81 
DESIGNER'S SPECIAL PREFERENCE: 57.27 

One of the GOOD solutions is :: (Geom: 2, Cdr: 0.40, Fhc: 3.0, Tcl: 779, dth: 0.00125, kw: 31, Rp: 1.07, 
Rs: 0.73, df: 0.00025, Cdf: 0.66, Ff: 1.2, Rpf: 0.21) 

Quantitative Information: 
Fitness= 1178.030 
Design Solution sensitivity= 73.19 
Design Variable sensitivity:: (Cdr: 28, Fhc: 65, Tcl: 9, dth: 2, kw: 4, Rp: 203, Rs: 8, 

df: 2, Cdf: 9, Ff: 5, Rpf: 40) 
Constraints sensitivity: 

CONS-1 :Quasi-Active Constraint 
CONS-2 : Constraint satisfied 
CONS-3 : Constraint satisfied 

Qualitative Information: 

DESIGN: 8 

Qualitative Rating of the so lution 
COSTOFMANUFACTURE: 19.04 
COST OF MATERIAL: 15.81 
DESIGNER'S SPECIAL PREFERENCE: 59.90 

One of the GOOD solutions is:: (Geom: 2, Cdr: 0.41, Fhc: 3.0, Tc1: 767, dth: 0.00135, kw: 33, Rp: 1.07, 
Rs: 0.83, df: 0.00010, Cdf: 0.72, Ff: 1.1, Rpf: 0.26) 

Quantitative Information: 
Fitness = 1153.228 
Design Solution sensitivity = 72.88 
Design Variable sensitivity:: (Cdr: 42, Fhc: 57, Tcl: 7, dth: 2, kw: 5, Rp: 203, Rs: 11 , 

df: 1, Cdf: 8, Ff: 4, Rpf: 32) 
Constraints sensitivity: 

CONS-1 :Quasi-Active Constraint 
CONS-2 : Constraint satisfied 
CONS-3 : Constraint satisfied 

Qualitative Information: 
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DESIGN: 9 

Qualitative Rating of the solution: 
COST OF MANUFACTURE: 19.04 
COST OF MA TERlAL: 15.81 
DESIGNER'S SPECIAL PREFERENCE: 57.35 

One of the GOOD solution is:: (Geom: 2, Cdr: 0.41, Fhc: 3.0, Tc1: 767, dth: 0.00135, kw: 33, Rp: 1.09, 
Rs: 0.83, df: 0.00015, Cdf: 0.65, Ff: 1.5, Rpf: 0.20) 

Quantitative Information: 
Fitness = 1148.681 
Design Solution sensitivity= 64.01 
Design Variable sensitivity:: (Cdr: 43, Fhc: 59, Tcl: 5, dth: 3, kw: 5, Rp: 161, Rs: 9, 

df: 1, Cdf: 6, Ff: 2, Rpf: 27) 
Constraints sensitivity: 

CONS-1 :Quasi-Active Constraint 
CONS-2 : Constraint satisfied 
CONS-3 : Constraint satisfied 

Qualitative Information: 

DESIGN: 10 

Qualitative Rating of the solution: 
COST OF MANUFACTURE: 19.04 
COST OF MATERIAL: 15.81 
DESIGNER'S SPECIAL PREFERENCE: 57.06 

One of the GOOD solutions is:: (Geom: 2, Cdr: 0.41, Fhc: 3.0, Tcl: 767, dth: 0.00133, kw: 33 , Rp: 1.07, 
Rs: 0.83, df: 0.00010, Cdf: 0.61, Ff: 1.5, Rpf: 0.26) 

Quantitative Information: 
Fitness= 1153.209 
Design Solution ensitivity = 72.88 
Design Variable sensitivity:: (Cdr: 42, Fhc: 57, Tc1: 7, dth: 2, kw: 5, Rp: 203, Rs: 11, 

df: 1, Cdf: 8, Ff: 4, Rpf: 32) 
Constraints sensitivity: 

CONS-I : Quasi-Active Constraint 
CONS-2 : Constraint satisfied 
CONS-3 : Constraint satisfied 

Qualitative Information: 

DESIGN: 11 

Qualitative Rating of the solution: 
COST OF MANUFACTURE: 19.04 
COST OF MATERIAL: 15.81 
DESIGNER'S SPECIAL PREFERENCE: 57.35 

One of the GOOD solutions is:: (Geom: 3, Cdr: 0.27, Fbc: 3.2, Tc1: 748, dth: 0.0011 8, kw: 32, Rp: 1.1 0, 
Rs: 0.70, df: 0.00025, Cdf: 0.69, Ff: 1.5, Rpf: 0.21) 

Quantitative Information: 
Fitness= 1265.239 
Design Solution sensitivity= 64.09 
Design Variable sensitivity :: (Cdr: 58, Fhc: 62, Tc1: 6, dth: 4, kw: 5, Rp: 129, Rs: 10, 

df: 2, Cdf: 6, Ff: 3, Rpf: 37) 
Constraints sensitivity: 

CONS-I :Quasi-Active Constraint 
CONS-2 : Constraint satisfied 
CONS-3 :Con traint satisfied 

Qualitative Information: 

DESIGN: 12 

Qualitative Rating of the solution: 
COST OF MANUFACTURE: 19.04 
COST OF MATERIAL: 15.81 
DESIGNER'S SPECIAL PREFERENCE: 56.23 

One of the GOOD solutions is:: (Geom: 3, Cdr: 0.26, Fhc: 3.2, Tc1: 728, dth: 0.00118, kw: 32, Rp: 1.10, 
Rs: 0.71, df: 0.00035, Cdf: 0.60, Ff: 1.3, Rpf: 0.21) 
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Quantitative Information: 
Fitness = 1266.621 
Design Solution sensitivity = 64.18 
Design Variable en itivity :: (Cdr: 60, Fbc: 61, Tc I: 5, dtb: 4, kw: 5, Rp: 129, Rs: I 0, 

df: 2, Cdf: 6, Ff: 3, Rpf: 36) 
Constraints sensitivity: 

CONS-I : Quasi-Active Constraint 
CONS-2 : Constraint satisfied 
CONS-3 : Con traint satisfied 

Qualitative Information: 

DESIGN: 13 

Qualitative Rating of the solution: 
COST OF MANUFACTURE: 58.43 
COST OF MATERIAL: 15.81 
DESIGNER'S SPECIAL PREFERENCE: 56.91 

One of the GOOD solutions is:: (Geom: 3, Cdr: 0.22, Fhc: 3.2, Tcl: 733, dtb: 0.00123 , kw: 33, Rp: 1.05, 
Rs: 0.50, df: 0.00035, Cdf: 0.68, Ff: 1.1, Rpf: 0.26) 

Quantitative Information: 
Fitness= 1336.613 
Design Solution sensitivity= 61.46 
Design Variable sensitivity:: (Cdr: 71 , Fbc: 53, Tcl: 7, dtb: 3, kw: 6, Rp: 132, Rs: 10, 

df: 1, Cdf: 4, Ff: 2, Rpf: 30) 
Constraints sensitivity: 

CONS-I : Qua i-Active Constraint 
CONS-2 : Constra int satisfied 
CONS-3 : Constraint satisfied 

Qualitative Information: 

DESIGN: 14 

The design has satisfied Heuristic-! (cost of manufacture): 
Geom: THREE 
Cdr: VERY_LOW 
dtb: MEDIUM 
Rs: VERY_LOW 
df: BIG 

Qualitative Rating of the solution: 
COST OF MANUFACTURE: 70.00 
COST OF MATERIAL: 15.81 
DESIGNER'S SPECIAL PREFERENCE: 57.74 

One of the GOOD solutions is:: (Geom: 3, Cdr: 0.27, Fbc: 3.2, Tcl: 748, dtb: 0.00096, kw: 32, Rp: 1.10, 
Rs: 0.70, df: 0.00025, Cdf: 0.69, Ff: 1.5, Rpf: 0.21) 

Quantitative Information: 
Fitness = 1265.009 
Design Solution sensiti vity = 64.09 
Design Variable sensitivity :: (Cdr: 58, Fbc: 62, Tc I: 6, dtb: 4, kw: 5, Rp: 129, Rs: I 0, 

df: 2, Cdf: 6, Ff: 3, Rpf: 37) 
Constraints sensitivity: 

CONS-I :Quasi-Active Constraint 
CONS-2 : Constraint satisfied 
CONS-3 : Constraint satisfied 

Qualitative Information: 

DESIGN: 15 

Qualitative Rating of the solution: 
COST OF MANUFACTURE: 19.04 
COST OF MATERIAL: 30.44 
DESIGNER'S SPECIAL PREFERENCE: 52.27 

One of the GOOD solutions is:: (Geom: 3, Cdr: 0.20, Fbc: 3.2, Tcl: 724, dtb: 0.00116, kw: 32. Rp: 1.07, 
Rs: 0.50, df: 0.00010, Cdf: 0.74, Ff: 1.1, Rpf: 0.21) 

Quantitative Information: 
Fitness = 1339.368 
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Design Solution sensitivity= 0.00 
Design Variable sensitivity :: (Cdr: 0, Fhc: 0, Tcl: 0, dth: 0, kw: 0, Rp: 0, Rs: 0, df: 0, 

Cdf: 0, Ff: 0, Rpf: 0) 
Constraints sensitivity: none 

Qualitative Information: 
Qualitative Rating of the solution: 

COST OF MANUFACTURE: 39.47 
COST OF MATERIAL: 15.81 
DESIGNER'S SPECIAL PREFERENCE: 54.70 

7.3 The Evaluation of ASM 

The ASM approach is developed for a real life design problem Presently the system works 

with the turbine blade cooling system design problem, but the approach is generic and can 

be applied to other similar applications with small changes. Without prior knowledge 

concerning the nature of a real life problem, it is virtually impossible to automate the 

evaluation process for such a system like ASM. Due to the limited resources, ASM is 

evaluated by one expert (that is an expert designer) and a user (that is a designer). The 

expert and the user evaluate the system based on their expe1ience, judgement, and personal 

satisfaction. It is almost impossible to obtain a crisp number representing the degree of 

success of ASM. The evaluation approach tries to express the overall feeling of the expert 

and the user using a set of linguistic expressions or statements. The evaluation approach 

involves two stages: verification of the results and validation of the approach. The next two 

sections describe the principal issues involved in the verification and the validation 

processes. 

7.3.1 Verification of the Results 

The objective for the verification of the results is to check whether the quantitative and 

qualitative information concerning the design solutions conforms to the understanding of 

the expert designers. The expert and the designer take part in every stage of the verification. 

The verification process can be divided into three stages: 
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a) Verification of the design solutions 

This stage of the verification first involves manual checking of the mathematical 

model for the preliminary design of the cooling system (TBCOM). The checking 

mainly concentrates on the equations derived from the laws of physics. The 

model also involves certain amount of designers' experience. The expeti 

decides the values of the design parameters. In order to verify whether the 

design parameter values are representative several design solutions are verified 

by the expert and the user. They check whether the combination of design 

variables (the combination represents a design solution) and the fitness 

correspond to their understanding about the problem. 

b) Verification of Sensitivity Information 

The "good" design solutions identified by the hybtid search method are tested 

for the additivity principle. The sensitivity values of a design are accepted only if 

the additivity principle is valid in the neighbourhood of the design. The study 

presented in chapter 5 shows that in the case where the additivity principle is 

valid in a neighbourhood, the sensitivity calculations are very close to 

exhaustive search based results. If the additivity principle is not valid in a 

neighbourhood the sensitivity values are set to zero. The expeti and the user are 

found to be confident on the sensitivity results provided the additivity principle 

is valid in the neighbourhoods. They also check whether the design variable 

sensitivities conespond to the general understanding about the problem In 

some cases the information does not con·espond to the designer's 

understanding, this is mainly due to their lack of knowledge concerning the part 

of the design space. In such cases a through analysis is performed on the results. 
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c) Verification of the Qualitative Infmmation 

The qualitative information involves three ratings for the three qualitative 

criteria: manufacturability, choice of materials, and designer's special 

preferences. The qualitative information is verified by the expeti and the user: 

first by checking the fuzzy rules for individual criterion. For each design, they 

check whether the qualitative ratings con·espond to their understanding of the 

problem If not, the designers perform an investigation to identify any possible 

reason behind the results. In case the designers are not confident on the results 

they suggest modifications to the fuzzy mle base. 

7.3.2 Validation of the approach adopted in ASM 

ASM represents an approach towards design decision support in the preliminary design 

stage. It is necessary to evaluate the effectiveness of such an approach in engineering design 

decision making. The validation of ASM has involved group and individual meetings and a 

final validation by a questionnaire. A thorough understanding about the design environment 

is necessaty to develop the questionnaire. In the context of this thesis, a questionnaire is 

defined as a set of questions [Bradburn and Sudman (1979)] developed to qualitatively 

evaluate the different components of ASM and the overall approach. Once the questions are 

answered the feedback is discussed with the respondents (the expert and the user). Any 

conflict is resolved through mutual discussion. The discussion developes a statement 

expressing the qualitative evaluation by consensus. 

To develop the questionnaire the natme of the problem, the organisation and the existing 

work practice are researched using a series of pilot interviews [Oppenheim (1992)] with the 

expert and the user at Rolls Royce. Before the questions are worded the following decisions 

are made about the questionnaire [Oppenheim (1992)]: 
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a) The method of approach to respondents 

The two respondents are selected by Rolls Royce. They have contributed during 

the development of ASM with their specific technical knowledge. The Rolls 

Royce expertise is utilised in the model development as well as for the 

development of the knowledge base for the qualitative evaluation. Preliminaiy 

discussions with the expert and the user also contributed towards a broad 

requirement specification for the design decision supp011. The expe11 and the 

user could easily validate a resea~·ch prototype of ASM due to their familiarity 

with the problem The development of the questionnaire addresses the issue of 

any possible biases (due to the familiarity) by broadening the aspects covered by 

the questions. The purposes of the questionnaire and of each module of the 

questionnaire are explained at the beginning of each section (Appendix- 1). The 

questions are also set to fit in the available time frame in an industrial 

environment. ASM is a research prototype in the present form The respondents 

are requested to evaluate the system from a research prototype point of view. 

The questionnaire is answered separately by the two respondents. Later the 

feedback is discussed with them. As the evaluation is performed by only two 

respondents, the issues of confidentiality and anonymity do not arise very much. 

The feedback from the questionnaire is used for academic purposes only. 

b) The build up of the question sequence 

The sequence of the questions is very important for the evaluation. The 

questionnaire is divided into five modules. The first module is about the general 

issues covering the design environment and the work practice, and the module 

contains ten questions. The second set of questions is about the design model, 

and has only four questions. The next module is intended to understand the 
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overall feeling of the respondents concerning the perfonnance of ASM and the 

results achieved. There are eleven questions in this module. The fourth module 

asks for any general remarks. The final and the fifth module is optional, and the 

respondents are asked to assess their personal strengths and weaknesses. The 

purpose of this module is to gather some information about the respondents so 

that their comments can be evaluated in right perspective. Every module starts 

with a broad question, which is then gradually made more specific in subsequent 

questions. The process is called funnelling, which is a standard practice in 

similar applications. The broad questions at the beginning of a module prepare 

the ground for the subsequent questions. 

c) The type of question 

The questionnaire uses both the 'closed' or pre-coded answer and 'open' or 

free-response type of questions. A 'closed' question is one in which the 

respondents are offered a choice of alternative replies. They are requested to 

tick the chosen answer(s) in the written questionnaire. The pilot interviews help 

to develop the 'close' type questions and answers. The type of questions allows 

less freedom of expression, and thus sometime can be less informative. On the 

other hand, the questions are easy to answer and the answers can also be 

compared easily. Often the pre-coded answers can help the respondents to think 

in the required direction. 

' Open' or free-response type questions are not followed by any kind of choice, 

and the answers have to be written in full. The amount of space left in the 

questionnaire Limits the size of the answers. The main advantage of the 'open' 

questions is the freedom it gives to the respondents. Once they have understood 
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the intent of the question they can express themselves freely. Thus their ideas 

and feelings can be recorded in their own language. On the other hand, the 

answers can also involve some personal emotion and biases. Free-response 

questions are often easy to ask, difficult to answer, and still more difficult to 

analyse. The questionnaire developed for ASM evaluation uses some 'open' 

type questions. The open questions can put fmward the true feelings of the 

respondents. The responses are then discussed in a meeting before any form of 

conclusive remark is developed. 

Many iterations are required to finalise the content and the wordings of the questions for the 

questionnaire. A number of meetings with the expert and the user help to construct the 

questions. Once the questionnaire is answered by both the expert and the user, the feedback 

is discussed with the designers, misunderstandings if any are cleared. The discussion 

develops a statement to express the feelings of the expert and the user concerning the 

effectiveness of ASM as the design decision support tool. 

7.3.3 Summary of the Feedback using the Questionnaire 

A research prototype of ASM is validated in Rolls Royce by the expert and the user. The 

designers (i.e. the expeti and the user) are requested to run the system as they like with 

different settings for the variables and the constraints. Then they evaluate the results and the 

effectiveness of ASM as a design decision support tool for the problem After few weeks of 

trials with ASM, the designers are asked to provide their feedback individually through the 

questionnaire (mentioned in section 7.3.2). The expert is directly involved in turbine blade 

cooling system design activities in Rolls Royce. The other evaluator, the user, is a user of 

CAD systems and is knowledgeable in artificial intelligence applications in design. It is 
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observed that the responses reflect the backgrounds of the designers. The questionnaire 

responses are then discussed with the designers. 

It is observed that both the designers agree the ASM approach is effective for the design 

decision support. It is mentioned that there is a scope to expand the preliminary design 

model to include other design variables consideting the overall turbine design and 

economics. It is expected that the model will grow with experience. The user is found to 

have some difficulty in utilising the information provided by ASM to select a design. During 

the discussion, it is identified a user of ASM would require some domain specific 

knowledge and experience to use the system effectively. The feedback also mentions 

possible expansion of the fuzzy-rule base to include more cases from past experiences of 

other experts in the area. In general the expert and the user has expressed their intention to 

include ASM in their design activities as a decision support tool. It is mentioned that the 

interface of ASM needs improvement in terms of presentation and flexibility before the 

system can be used in a production environment. Considering the feedback and after the 

discussion the following statement is developed as a representative of the designers ' 

perception on the effectiveness of the ASM approach in design decision support: 

The approach developed in ASM is effective for design decision support, 

especially in the case of a preliminary design of a turbine blade cooling 

system. The approach sometimes helps the designer to select a design 

outside the existing limits of the design problem. Although effective use 

of the system needs some domain knowledge and experience, ASM 

reduces the cognitive overload of a designer. Implementation of ASM in 

a production environment requires improvement of the intelface in terms 

of presentation and flexibility. 
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CHAPTER-8 

8. Discussion and Conclusions 

8.1 Discussion 

The thesis presents the development and application of ASM to the turbine blade cooling 

system design problem. The attempt uses an adaptive search technique and a knowledge 

based system to provide relevant information for design decision support. The developed 

approach in the thesis allows to utilise both quantitative and qualitative information in the 

design decision making. The hybrid of ARTS based GA search and local hill climbing and 

the sensitivity analysis provides the quantitative information. The qualitative information for 

the decision making is provided by the qualitative evaluation of the 'good' designs. During 

the evaluation of ASM by Rolls Royce expe1ts it is observed that successful utilisation of 

the quantitative and qualitative information requires some domain specific knowledge and 

experience. On the other band, it is also noticed that the information presented by ASM 

reduces the cognitive overload of a designer. The ASM interface allows the designer to 

change the existing boundaries of the design problem, and thus ASM sometimes may 

suggest novel 'good' designs. 

The design model, TBCOM is developed for the preliminary design of the cooling system 

The model is a coarse representation of the design problem. From the study mentioned in 

chapter 2 and also the experience fi·om mnning ASM several times, it is observed that in an 

unconstrained situation TBCOM is most probably monotonic in nature. The presence of 

181 



discontinuities is also observed in the unconstrained design space. In a constrained situation 

the space changes considerably, and becomes quite complex for the search technique. As 

mentioned in chapter 3, the use of penalty functions also introduces some additional 

complexity to the design space. It is also observed that the design space involves some 

nonlinearity (chapter 3). TBCOM is a computational model of the real life design problem. 

Thus the model does not provide any ptior knowledge concerning the quality and location 

of the sub-optimum peaks. The absence of prior information in TBCOM poses some 

challenge for an adaptive search technique. 

Chapter 4 shows that an ARTS based GA search successfully identifies and maintains all the 

peaks in the case of the test functions. The search technique distributes the population on 

the peaks and attains a steady state of distribution. ARTS does not need ptior knowledge 

concerning the modality of the fitness landscape. When compared with RTS and DC, ARTS 

performed better in terms of maintaining the population on the peaks. It is observed that, 

ARTS takes a little longer to disttibute the population on the peaks than RTS and DC. This 

can be attiibuted to the clusteting enor at the initial stages of a mn. Fw1her study on the 

effect of KT on ARTS shows that a change in KT can delay the attainment of the steady 

state distribution. A cbi-square-like measure test is performed with seven different values of 

KT for the functions Fl and F2. The test exhibits that, for the function Fl the average 

measures are quite similar. The corresponding standard deviations are also reasonably small. 

That means for the function Fl the final population distributions are similar. It is observed 

that on the function F2, the average and the standard deviation tend to increase with 

decreasing values of KT, but they are still very low. A hybtid of ARTS and a knowledge 

based bill climbing is next applied to the cooling system design problem The design 

problem is encoded using a structured chromosome. The representation helps to 

accommodate the discontinuities due to the three types of coolant bole internal geometries. 
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On the other hand, the chromosome contains a large amount of redundancy. In the case of a 

large multidimensional problem the redundancy can become a hindrance to the search 

process. The constraints in TBCOM are implemented using three linear penalty functions. 

The type of and the values in the penalty functions are selected as a preference after a 

number of trials with other penalty functions. ARTS produces some duplicate solutions in 

the population and maintains them The cluster list is developed after eliminating the 

duplicate solutions. This helps to reduce the cluster list size as the search progresses and 

thus reducing the clustering time for every generation. The application of the cluste1ing 

technique along with the elimination of duplicate solutions helps in avoiding the dominance 

problem, and thus assist in attaining a steady state of population distnbution. The search 

uses an effective crossover technique that prevents crossover in the redundant regions of the 

parent chromosomes. The technique improves the effectiveness of the crossover and thus 

reduces ASM run time. In a further attempt to reduce ASM run time, the parent 

chromosomes are selected from the cluster list. This avoids selecting duplicate solutions as 

parents, and thus increases the effectiveness of the reproductive stage of ARTS. A 

knowledge based hill climbing tries to improve the best design in each cluster for every 

generation. The search is stopped after it satisfies a steady state criterion. The first steady 

state criterion is satisfied if the average fitness of the population remains unchanged for 100 

generations. It takes longer to satisfy this criterion. Thus a second c1i terion is defined, that 

stops the search quicker while achieving satisfactory results. According to this criterion, the 

search is stopped if it cannot find better sub-optimum solutions for 100 generations. A fixed 

size list of "good" design is maintained every generation for each geometry. The size of the 

list is selected purely from individual preference. 

The knowledge based hill climbing is developed to exploit information from the clusters 

produced every generation. The hill climbing is performed on selected dimensions. The 
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dimensions are selected by utilising infonnation from the clusters along with designers' prior 

knowledge about the problem The designers' prior knowledge is global in nature, thus not 

necessarily true in ce1iain local regions. On the other hand, information from clusters 

involves some uncertainty, because the quality of the information depends on the sampling 

within a cluster. The two levels of unceiiain information are combined using Bayes' 

theorem. It is expected that the new infonnation is more certain than either one of the two. 

The information from the clusters is retrieved by a series of univariate linear regression 

analyses. Thus the search assumes that the region within a cluster can be approximated by a 

linear and additive model. Depending on the size of a cluster this assumption may become 

ve1y strong, and thus can reduce the effectiveness of the hill climbing. The method involves 

deterministic hill climbing, and thus uses a small number of model evaluations. On the other 

band, because of the limited search the method cannot guarantee to reach the peak of a hill. 

KBHC reaches close to a peak with small number of model evaluations. 

A stochastic hill climbing tries to fine tune the designs obtained from the hybrid search 

towards the sub-optima. The technique improves designs but requires many model 

evaluations. Due to the stochastic nature of the search it cannot be guaranteed that the 

search would achieve the sub-optima within a reasonable number of model evaluations. 

The "good" design solutions are then analysed for sensitivity information. The thesis 

presents (chapter 5) an approximate sensitivity analysis for the turbine blade problem. 

Taguchi's methodology based on the orthogonal matrix can provide a maximum amount of 

information about the neighbourhood of a design solution. The technique is effective if there 

is no or very little interaction between the design variables. The turbine blade cooling 

system assumed no interaction between the design variables (unconstrained), so the 

technique is expected to be effective for the application. The sensitivity analysis only 
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considers the tolerance space around a design solution, so it is more probable that the small 

region can be approximated using an additive model. The methodology to check the validity 

of the additivity principle in the tolerance space of a design solution adds more confidence 

to the results. Figures 5.6-5.8 confirm the hypothesis that Taguchi's methodology is very 

effective (comparable to an exhaustive search based method) if there is no interaction or 

very little interaction among the design variables. The figures also show within one 

geometry some design solutions can have very high design solution sensitivities with respect 

to others. The analysis is performed within the neighbourhood of a design. The basis of the 

sensitivity calculations, the orthogonal matrix, requires the examination of only a small 

number of design solutions. In this case only 27 model evaluations are required rather than 

all 311 possible evaluations (that is in tbis case of 11 design variables with 3 levels each). 

Though in this case the technique is very reliable, the sensitivity analysis results should only 

be used to compare two design solutions rather than as absolute sensitivity values. The use 

of the signal-to-noise ratio to calculate the design solution sensitivity index is a measure of 

the robustness of the solution within its neighbourhood. The information concerning 

individual design variable sensitivity is also very useful for engineering design decision 

support. The design variable sensitivity determines criticality of the different variables in the 

tolerance space of the design solution. A designer often selects design solutions that satisfY 

constraints. But that may not be enough, the criticality of constraints in its neighbourhood 

also plays a major role in the decision making. The constraint sensitivity provides an overall 

idea concerning the constraint violations in the neighbourhood of a design. 

ASM also retrieves qualitative information concerning the designs. Each design is evaluated 

to obtain qualitative ratings for three criteria: manufacturability, choice of material and 

designer's special preferences. The ctiteria were selected by the expert designer fl-om Rolls 

Royce. Any other similar criteria can be easily included. The results presented in the 

185 



previous chapter exhibit that the design fitness (quantitative) and the qualitative ratings are 

independent of each other. Once again, the qualitative ratings are suitable for comparison 

between two designs. The knowledge separation and then the knowledge integration using 

the concept of compromise guarantee that ASM can evaluate any design solution from the 

entire design space. ASM uses a reasonably small number of fuzzy rules. On the other hand, 

the knowledge representation technique is restricted in representing any inter variable 

interaction. Some definitive knowledge about interactions can be incorporated as hew-istics. 

A more generalised stmcture of knowledge representation would be necessruy for highly 

interactive design problems. Another limitation of ASM is that the fuzzy expert system does 

not have any explanation facility. It would be very useful for the designers to know why 

certain decisions are made. It is noticed that any fuzzy expert system presently lacks this 

capability. This is still an open area for further research. The crisp rating obtained for a 

criterion is not the best way of representing qualitative information about any design 

solution. Use of appropriate linguistic terms (that is using some linguistic approximation 

method or similar approach) to express the information can be more effective for the 

designers. This particular area needs further investigation. 

The results presented in chapter 7 are the representative of the results obtained from the 

ASM. During experimentation it is obsetved that, the best solution identified by ARTS and 

the knowledge based hill climber hybrid system is always at least equal or better than a 

simple GA application on the problem The new technique identifies multiple "good" design 

solutions from TBCOM design space. The search does not require p1ior knowledge 

concerning the modality of the design space. The "good" solutions can be further screened 

by setting up a threshold on the fitness of the solutions. Section 7 .2.1 presents results from 

unconstrained search. The fifteen designs as suggested by ASM are "good" designs and are 

from different regions in the design space. The design solution sensitivity is similar in all the 
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designs. This corresponds to the fact that the unconstrained design space is very likely to be 

monotonic. It is observed that Rp is the most sensitive variable in the neighbourhoods of the 

designs. The other sensitive variables are: Rpf, Fhc and Cdr. Some variations in the 

qualitative ratings are also observed. The designer considers all the information to select 

one design from the list. The constrained search (results are presented in section 7 .2.2) is 

more complex: more generations are required to attain the steady state. According to the 

expert and the user the designs identified by ASM are "good" and representative of the 

constrained design space. The designs are from different positions in the space, and thus 

provide several design options. The fitness (that is the inverse of the coolant mass flow 

through the radial passage) of designs from plane type geometry varies considerably fi·om 

that of pedestal or ribbed type geometries. The designs from the pedestal type geometry 

(Geom 3) have the highest fitness. Within the plane geometry the design solution sensitivity 

varies from 55.26 to 81.07. That shows although the designs can be "good" in terms of 

coolant mass flow criterion (i.e. less coolant flow), performance can differ considerably in 

terms of the sensitivity. Less sensitive designs are preferred by the designers. The most 

sensitive variables for plane type geometry are: Rp, Fhc, Rpf and Cdr. The designs from the 

plane type geometry have the same qualitative rating for the cost of material. Some 

differences are obse1ved in the ratings for cost of manufacture and designer's special 

preference. The designs from the second type of geometry, the ribbed type, are similar in 

fitness but the design solution sensitivity varies from 64.01 to 73.19. The major contributing 

variables are again Rp, Fhc, Cdr and Rpf. The qualitative ratings are found to be similar. So 

the designer mainly uses the sensitivity information to compare designs. The designs are 

generally less sensitive than that of the plane geometry type. These designs are less suitable 

than the plane geometry designs in terms of cost of manufacture and cost of material. The 

first constraint on the metal temperature seems very hard and it is violated in the 

neighbourhoods of the designs. Fitnesses of the designs with the pedestal type geometry 
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have higher fitness than the others. The design solution sensitivity varies from 61.46 to 

64.18, i.e. less sensitive than the designs with plane or ribbed type of geometry. Once again 

Rp, Cdr, Fhc and Rpf are the most sensitive design variables. The first constraint is also 

violated in the neighbourhoods of the designs. It is observed that the ratings for the 

qualitative criteria largely vary among the designs. Thus the qualitative information can play 

a significant role to compare between two designs. The neighbourhood of the fifteenth 

design violates the additivity principle, thus the sensitivity calculation is not performed and 

the values are set to zero. That means there is a significant interaction between the design 

variables within the neighbourhood. Designers are often not interested in a design from a 

highly interactive region of the design space. The mix of quantitative and qualitative 

information provides support to the designers for the design decision making. 

ASM works with a real life problem, where there is less prior information concerning the 

nature of the problem Also the evaluation of ASM should represent the feelings of the 

designers rather than definitive conclusions. Thus, during the evaluation of ASM an expert 

and a user are requested to verify and validate different components of ASM. A 

questionnaire helps the designers (i.e. the expert and the user) to validate the system. The 

use of many open type questions helps the designers to express themselves better. Due to 

limited available human resources ASM is evaluated only by an expert and a user. This 

number is very small for any evaluation procedure. In order to minimise the effect of this 

small number of evaluators, the feedback from the questionnaire is discussed with the 

designers. An effort is made to obtain a consensus on the statement that expresses the views 

of the designers in terms of the effectiveness of ASM as a design decision support approach. 
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8.2 Conclusions 

The feedback from the expert and the user suggests that the approach developed in ASM 

can successfully support the design decision making in the preliminary design stage. Thus 

the approach is effective for the real life multiobjective design problem. The approach 

developed in ASM has provided a methodology to utilise both quantitative and qualitative 

information in engineering design decision making. The approach can reduce the cognitive 

overload of a designer. The final design decision is taken by the designer, and thus ASM 

also provides the opportunity to utilise the value system of the designer in the design 

process. There are three main components of ASM: the ARTS based GA and hill climbing 

hybrid search technique, sensitivity analysis using Taguchi's methodology and qualitative 

evaluation using fuzzy expert system. The ARTS based GA and the knowledge based hill 

climbing hybrid has added another tool to the list of multimodal GAs. The objective of the 

search is to maintain peaks in the final population. The hybrid search method is suitable for 

real life problems. The research presented in the thesis highlights some of the characteristics 

of real life optimisation problems. The study has enhanced the understanding concerning the 

issues involved in such optimisation. The limitation of the search technique is that there is 

no guarantee that the search has visited all sub-optima in the search space. This can 

sometimes severely damage the confidence of the designer in the decision support system. 

The sensitivity analysis uses the well-established Taguchi's methodology. The application is 

novel and can be very useful for multidimensional real life problems. The limitation of the 

application is that it assumes the neighbourhoods can be approximated by an additive 

model. That may not be the case in many applications. The qualitative evaluation of designs 

is performed using a fuzzy expe11 system. The fuzzy expert system utilises knowledge from 

experts in the field. The adaptive search technique (i.e. the hybrid search) and the sensitivity 

analysis modules are integrated with this fuzzy expert system to develop the integrated 

ASM system. The knowledge representation technique developed in this thesis has made the 
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integration possible. The technique represents the design thinking process, and guarantees 

the evaluation of any possible design. Due to the novel know ledge representation technique, 

the qualitative evaluation module requires a small number of fuzzy rules. The major 

limitation of the module is that it cannot fully address the interaction between design 

variables. Some definitive knowledge about the interaction can be represented as heuristics. 

A generalised knowledge representation that can handle at least a limited amount of design 

variable interaction (i.e. interaction among a small number of variables) is required for 

industrial problems. Lack of an explanation facility is another limitation of the evaluation 

system The evaluation approach adopted for ASM is suitable for real life problems. It is 

observed that in the industrial environment, and especially in life critical and sensitive 

industries, it is important that the final validation is performed by human experts. Instead of 

a crisp rating for the effectiveness of ASM, a statement is developed that expresses the 

feelings of the designers. It is observed that such approach is more acceptable and effective 

in evaluating a real life design decision support system. 

8.3 Future Research Directions 

The research reported in this thesis has also contributed to open new issues for research. 

This section provides an outline to possible future research directions. There are several 

aspects of the design decision support that needs further investigation. ASM uses a very 

simple interface, and thus a major investigation is required to develop a suitable interface for 

the decision support. The questions of human computer interaction need to be addressed in 

that research. 

One of the major issues that decide the acceptability of a design decision support system is 

the confidence of the designers in the system. There is a need for better understanding of the 

causes that can increase the confidence of the designer. The decision support system should 
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address the issues to enhance designers' confidence. One example can be developing a 

search algorithm that can produce results with confidence within an acceptable time limit. 

The penalty function, when used for the constrained optimisation, modifies the design 

fitness landscape. A multimodal GA algorithm that handles constraints without penalty 

functions would be very useful. 

The knowledge representation technique developed in the thesis can only address very 

limited interaction between design variables (i.e. using heuristic rules). A further 

investigation is necessary to develop a more generalised knowledge representation that can 

efficiently handle interaction between the variables. One way of representing such 

interaction is to use meta rules. It is observed that the designers face difficulty while 

expressing their knowledge concerning the interactions. Research is necessary to extract the 

interaction information also from other sources, such as past designs, physical modelling, 

etc. Further development is required in fuzzy expert system research to develop the 

explanation facility. The results from the qualitative evaluation should ideally be expressed 

using linguistic expressions, but the expression needs to be short enough so that the 

designer can comprehend the meaning. Further research in this area should develop 

approximation techniques that can produce short but representative expressions. 
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VALIDATION OF 
THE ADAPTIVE SEARCH MANAGER (ASM) 

Questionnaire 

Category of the Software: Research Prototype 

Version of the ASM: ............................... . 

Dated: .................. Time: ............ . 

Serial Number: ............... . 

Name: ......................................................................... . 

Organisation: .............................................................. . 

Address: ..................................................................... . 

Contact Telephone Number: ....................................... . 

Contact FAX Number: ............................................... . 

Email: ........................................................................ . 

The information provided will only be used for academic and 
research purposes. If you agree please tick the box: D 

Validation conducted by: 
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PURPOSE OF THE VALIDATION: 

The Adaptive Search Manager has been developed to solve real life design problems. ASM 
is a design decision support tool suitable in the preliminary design stage for turbine blade 
cooling systems. Validation of the tool is essential to assess its effectiveness and to provide 
feed back for further development. ASM needs to be validated as a research prototype. The 
questionnaire provides a structured procedure for the validation. If you do not want to 
answer a question from the choice of answers given in the questionnaire please circle 'other' 
and answer in your own words. 

MODULE I 

General issues 

This section of the questionnaire tries to understand the general design practice involved in 
your company, the work environment and your opinions concerning some general recent 
issues in design activities. Please try to answer the questions considering your own 
experience by circling only one answer (or more than one answers if specified in the 
question): 

Q. 1: Could you please briefly describe the nature of your involvement in the design 
projects of the company? 

A. 1: 

Q. 2: How much time (in days) in average do you spend on design related activities per 
week? 

A.2: 

Q. 3: When you work in design related activities. which one of the following closely 
describes the type of environment you work with? 

A. 3: 
a. performing a design task on your own 
b. performing a design sub-task as part of a small group of 4-5 people. 
c. performing a small part of an overall design task as a member of a design 

team, where there is one team leader. 
d. other, please specify: 
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Q. 4: Would it be possible to categorise the general nature ofyour design activities? 

A.4: 
a. detailed design 
b. prelimina1y design 
c. creative or innovative design 
d. design analysis 
e. design evaluation 
f. design activity management and co-ordination 
g. developing tools that can be useful in design activities 
h. no, it can not be categorised, because: 

i. other, please specify: 

Q. 5: In your day to day design activities which one of the following methods do you 
normally follow? 

A. 5: 
a. doing routine designs using previous designs from the archive 
b. designing fresh from the first principles of physics involved in the 

design problem 
c. developing a design specification (that defines the task) first and then 

canying out step-by-step procedures for the design 
d. developing a design specification and then distributing the task among 

the group members 
e. perform any design analysis task and pass the results to your group 

leader 
f. evaluate a design and give feedback directly to the designer 
g. other, please specify: 

Q. 6: How often in average you are given a new (that is when you have to start from the 
first principle) design task? 

A. 6: 
a: once a month 
b. once in three months 
d. once in six months 
e. once a year 
f. never 
g. that is totally random 
h. other, please specify: 
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-----------------------------------------------------------------------

Q. 7: What are the different tools you use for your day to day design activities? Please 
circle more than one answer if you wish. 

A. 7: 
a. drafting board and pencil 
b. pen and pencil for calculations and free hand drawings 
c. digitiser 
d. computer aided drafting package 
e. computer aided design and analysis package 
f. simple spreadsheet for calculations 
g. project management software 
h. other, please specify: 

Q. 8: How would you general~y improve the design that you are working on? 

A. 8: 
a: blind trial and eiTor 
b. many iterations of educated guesses using previous knowledge 
c. using a conventional optimisation algorithm 
d. using expert opinion 
f. using any optimisation package available in computer integrated design 

tools 
g. other, please specify: 

Q. 9: In your day to day design activities which of the following would you consider to be 
useful or can be useful for the activities. Please circle more than one answer if you wish. 

A. 9: 
a. design handbooks and different component catalogues 
b. a computer database with component details 
c. a computer system that advises you as an expert 
d. a computer system that advises you of different possible solutions to a 

problem 
e. guidance of an expert in the area 
f. a novice designer, who can provide some fresh ideas 
g. discussion with a small group of colleagues 
h. a computer system that can provide relevant information concerning 

several possible design solutions 
h. discussion with a designer from a rival company 
i. none of the above 
j other, please specify: 

Q. 10: Some companies have recently started to use computer systems that are expected to 
assist their designers in their design decision mahng. The outcome of the implementation 
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in te1ms ofdesign improvements or cost saving is not very clear yet. Considering a future, 
more competitive market, do you think such a system should be implemented in your 
company? Please describe your opinion and reasons behind it: 

A. 10: 

MODULE2 

The design model 

This section is more specific. Here we discuss several issues involved in the turbine blade 
cooling system design model development. The adaptive search manager, a computer 
system that assists in design decision making, uses a preliminary design model that is a good 
mathematical approximation of the gas turbine blade cooling system. The model is 
developed considering one dimensional and single pass coolant flow. The model includes 
film cooling mechanisms and is limited to twelve design variables. The design model also 
uses several constant design parameters (some of them are determined from domain 
experience). There are four outputs from the model. The principle task is to minimise the 
coolant mass flow through the radial hole passage of a blade (that is one of the outputs). 
The other three outputs constrain the design process. Please look at the designs achieved 
from several runs of ASM and answer the following questions by circling only one answer 
(or more than one answer if specified in the question): 

Q. 11: Though the model is developed to represent the design problem. it needs to be 
validated. Could you please comment on whether the results achieved from ASM runs 
cmTespond to your engineering understanding about the design problem? 

A. 11: 

Q. 12: One of the issues in developing an engineering design decision support tool is 
flexibility. That is how easy is it to adapt the tool to search in different areas of the design 
space? lf you wanted to search different areas of the design space by setting different 
ranges for the design variables. do you think you can do that easily with ASM? Please give 
your comments. 

A. 12: 
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Q. 13: While experimenting with ASM in different regions of the design space. have you 
observed any infeasible solution in the results? 

A 13: 
a. YES 

please give the reason(s) why you think the design is infeasible: 

b. NO 

Q. 14. A design process may be constrained by some criteria. The developed design model 
is constrained by three output variables. The constraints are implemented by setting up a 
range on each of these variables. lf the outputs of a model evaluation goes beyond any one 
of those ranges the design is considered to have violated the constraint. Changing the 
ranges for the constraints may help to achieve different design goals. During your 
experiments with ASM did you make changes with the ranges for the constraints? 

A 14: 
a. YES 

please specifY the reason for your changes: 

please give your comment(s) on the ease of changing the ranges: 

b. NO 

MODULE3 

Performance of the ASM and the results achieved 

This section of the questionnaire deals with general issues involved in ASM. The questions 
are developed to understand the effectiveness of ASM as a design decision support tool. It 
is important that users of ASM gain a good understanding of the performance of the system 
through extensive use. The ASM is a research prototype, so it should be assessed according 
to its merit in terms of the techniques developed, and the quality of the results. Please run 
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ASM several times with different random number seeds, examine the results and then 
answer the following questions: 

Q. 15: How do you think a computer based decision support system can help you in 
design? Please categorise major areas of help that can be provided by such tool. 

A. 15: 

---------------------------------------------------------------------------------------------

Q. 16: One way a design decision support tool can be useful is to identify the best design 
in the entire design space. Is that approach acceptable for your design practice? 

A. 16: 
a. YES 

b. NO 

please explain the approach you think is more useful to you instead: 

Q. 17: Often when you are designing a product, design lead time is ve1y important in terms 
of design cost. That is why computer based design tools are being introduced to reduce the 
lead time. The success of ASM depends on how it fits within time constraints of the 
designers. In your opinion, how does the run time necessary for ASM fit into the overall 
time constraint for the turbine blade cooling system design? 

A. 17: 

Q. 18: ASM has been developed to identify multiple 'good' solutions in tenns of coolant 
mass flow. It is important to validate ASM in terms of this capability. Is ASM capable of 
identifying meaningfully different 'good' design solutions? Please give your opinion based 
on observations and personal judgement. 
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A. 18: 

Q. 19: Assume you are given the task of designing the cooling system for a turbine blade. 
It is general practice to look for designs with a minimum amount of coolant mass flow. Is 
that information enough for you to decide the values of different design variables involved 
in the design process (that is selecting a design) ? 

A. 19: 
a. YES 

b. NO 
please mention the other categories of information you would like to have 
in order to make the right selection: 

Q. 20: ASM is a research prototype, and thus its successful development to a complete 
decision support tool very much depends on your feed back. ASM identifies several 'good' 
design solutions and then calculates sensitivity information for each design. A qualitative 
rating is also obtained in order to assess how a design qualifies with respect to certain 
qualitative criteria. Considering your observations and expectations, could you please 
answer the following questions: 

Q. 20(a): What is your opinion regarding the usefulness of the extra 
information in helping you to design the cooling system? 

A. 20(a): 

Q. 20(b): The sensitivity information for a design describes three categories of 
sensitivity information: design solution sensitivity, design variable sensitivity and 
constraint sensitivity. From your experience in design, what is your general 
opinion regarding the utility of the three categories of sensitivity information for 
the design task? 

A. 20(b): 
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Q. 20(c): Do you think the qualitative ratings for a design conform to your 
understanding about the details and functionalities of the design ? 

A. 20(c): 
a. YES 
b. NO 
c. I am not sure 
d. other, please describe your opinion: 

Q. 21: It is possible that you are already using some computer based design tools or tools 
that help you in design. If you wanted to enhance your capability in tenns of design 
flexibility and efficiency, would you consider using a system such as ASM in addition to 
your existing methods? 

A. 21: 
a. Yes, I would like to add ASM to my tool kit 
b. I would prefer to use ASM instead of some of my present tools. 

Please specify the tools you would like to replace: 

c. No. 
Please specify the reason: 

d. other, please specify: 

Q. 22: In case you decide to include the use of ASM in your regular design practice 
(otherwise please mention NIA in the answer), how easily you think you can integrate the 
system with your existing practices? Please write a couple of sentences to describe your 
view. 

A. 22: 

Q. 23: Please consider any one set of results, and select the best design. If you can not 
select one from the information presented or you are not happy about the quality of the 
designs then please circle NO, otherwise YES Please attach the results. 
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A. 23: 
a. YES 

Please mention your choice: -------------------------------------

Please explain the reason for the selection: 

b. NO 

Please explain the reason: 

Q. 24: Please mention your confidence level on ASM as a rating between 0 and 100. A 
confidence level of 100 means absolute confidence. 

A. 24: 

Q. 25: If you are requested to validate future versions of ASM would you like to take part 
in the validation? 

A. 25: 
a. YES 
b. NO 
c. I am not sure at the moment 
d. other, please specify: 
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MODULE4 

General Remarks 

Please write any general remarks you wish to make, and mention if you have any suggestion 
for further development of the system Also describe the aspect(s) of ASM you like and/or 
dislike the most. 

MODULES 

Self assessment of the users 

This section of the questionnaire is optional. The sole purpose of this module is to gather 
some information about you so that your comments may be evaluated in the right 
perspective. In case you do not feel comfortable in answering any pa11 of this module please 
ignore it. If you are happy to answer a question, please tick the appropriate box. 

Q. I : Design of turbine blade cooling system: 

A. 1: 
Best Worst 

Knowledge 1 2 3 4 5 

Experience 1 2 3 4 5 

Q. 2: Assessment of prototype system: 

A. 2: 
Best Worst 

Knowledge 1 2 3 4 5 

Experience 1 2 3 4 5 
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Q. 3: Use of computers for design decision support: 

A. 3: 
Best Worst 

Knowledge 1 2 3 4 5 

Experience 1 2 3 4 5 

Q. 4: Use of CAD systems: 

A. 4: 
Best Worst 

Knowledge 1 2 3 4 5 

Experience 1 2 3 4 5 

Q. 5: Artificial Intelligence techniques: 

A. 5: 
Best Worst 

Knowledge 1 2 3 4 5 

Expmience 1 2 3 4 5 

many thanks for your contribution 
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FUZZY RULES USED IN THE 
ADAPTIVE SEARCH MANAGER 

;; ASM_know.clp ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

' 

ADAPTIVE SEARCH AND THE PRELIMINARY DESIGN OF 
GAS TURBINE BLADE COOLING SYSTEM 

This is the main rule base for the ADAPTIVE SEARCH MANAGER 

This is modified rule base after VALIDATION 

This file is used with FuzzyCLIPS 6.02A 

Rajkumar Roy 
Plymouth Engineering design Centre 

University of Plymouth 
Plymouth, PL4 8AA, UK 

Tel.: +44 (0)1752 233508 
FAX. : +44 (0) 1752 233505 
Email : rroy@plymouth.ac.uk or 

r.roy@ieee.org 

DIRECTOR OF STUDIES: DR. IAN PARMEE, PEDC 
INDUSTRIAL COLLABORATOR : ROLLS ROYCE PLC. 

;;; Rajkumar Roy (c) 1996, Uni Plyrn ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;; Global variables ;; 
( defglobal 

?*cluster_number* = 0 ;;Global variable to store no of clusters 

' 
;; Deffunction Plfuzzify ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
.. 
" 
;; Inputs are : ?fztemplate - name of a fuzzy deftemplate 
;; ?delta - precision of the value 
;; ?value -float value to be fuzzified 
;; ?cf -confidence factor of the newly asserted fuzzy fact 
.. 
" .. 
" .. 
" .. 
" .. 
" .. 
" .. 
" .. 
" 

Asserts a fuzzy fact for the fuzzy deftemplate. The fuzzy set is 
a standard PI (as defined in FuzzyCLIPS) type (which is almost like 
a normal distribution) centered on the value provided with zero 
possibility at value+delta and value-delta. Note that it checks bounds 
of the universe of discourse to generate a fuzzy set that does not 
have values outside of the universe range . 

'"'""" "'" ""","" "' ""' "'"'"', '","",,"' "'""," '," ", 

(deffunction Plfuzzify (?fztemplate ?delta ?value ?cf) 
(bind ?low (get-u-from ?fztemplate)) 
(bind ?high (get-u-to ?fztemplate)) 
(if(< ?value(+ ?low ?delta)) 
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else 

?high ?cf)) 

?value ?cf))) 

then 
(if(<= ?value ?low) 

then 
(assert-string 

(format nil "(%s (Z %g %g)) CF %g" ?fztemplate ?low(+ ?low ?delta) ?cf)) 
else 

(assert -string 
(format nil "(%s (Z %g %g)) CF %g" ?fztemplate ?value(+ ?value ?delta) ?cf))) 

(if{> ?value (-?high ?delta)) 
then 

else 

(if(>= ?value ?high) 
then 

(assen-string 
(format nil "(%s (S %g %g)) CF %g" ?fztemplate (-?high ?delta) 

else 
(assert-string 

(format nil "(%s (S %g %g)) CF %g" ?fztemplate (-?high ?delta) 

(assert-string 
(format nil "(%s (PI %g %g)) CF %g" ?fztemplate ?delta ?value ?cf)) 

,, ,,,,,,,,,,,,,,,,, ,,,,,, ,,, ,,,,, ,,,,,,,,,,' ''''''''' ''' ''''''''' ,, ',,,,,,,,,, 

; This is the section to define QUALITATIVE RATING (QR) of selected designs 

QR-1 : Manufacturability 
QR-2: Choice of material 
QR-3 : Designer's special preference 

Design variables are defined according to domain knowledge 

A set of rules are defined to calculate the effectiveness 

This forms a pan of STATIC MEMORY 

"""" """ "", "',",,","""'"', ""'' """ "'",," "'""" "'"' 

;;;;;;;;;;;;;;;;;defining rules for qualitative assessment ;;;;;;;;;;;;;;;;;;;; 

'" '''" '',''' ''"' '''''' J,",'' ''" '''','' '',, "''" ',,,.,"",".'''' ''''' 

Top level rules showing preferences about each variable. 

Total knowledge has been represented in a 
hierarchical manner to help interpolation 
or extrapolation with few rules. Heuristics 
has also been added. The three types of 
knowledge as represented : 

-preferences about each variable (deffacts of preferences) 
- intra variable preferences (rules) 
-heuristics (rules) 

"', '," '" '" '"" '" "'" '" ""' """ '" "' """, '" '" "" """'"," "' 

;;;;;;;inter variable preferences;;;;;;; 
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(deffunction Inter_ Var_Preferences O 

;;MANUF ACTURABILITY ;; 

(assert (Geom_pref-1 (0.8 0) (0.8 1) (0.8 0)) CF 0.8) 
(assert (Cdr_pref-1 (0.3 0) (0.3 1) (0.3 0)) CF 0.8) 
(assert (Fhc_pref-1 (0.3 0) (0.3 1) (0.3 0)) CF 0.6) 
(assert (Tcl_pref-1 (0.3 0) (0.3 1) (0.3 0)) CF 0.6) 
(assert (dth_pref-1 (0.8 0) (0.8 1) (0.8 0)) CF 0.8) 
(assert (kw_pref-1 (0.4 0) (0.4 1) (0.4 0)) CF 0.9) 
(assert (Rp_pref-1 (0.3 0) (0.3 1) (0.3 0)) CF 0.8) 
(assert (Rs_pref-1 (0.3 0) (0.3 1) (0.3 0)) CF 0.6) 
(assert (df_pref-1 (0.8 0) (0.8 1) (0.8 0)) CF 0.8) 
(assert (Cdf_pref-1 (0.4 0) (0.4 1) (0.4 0)) CF 0.6) 
(assert (Ff_pref-1 (0.4 0) (0.4 I) (0.4 0)) CF 0.6) 
(assert (Rpf_pref-1 (0.3 0) (0.3 1) (0.3 0)) CF 0.8) 

;; CHOICE OF MATERIAL ;; 

(assert (Geom_pref-2 (0.5 0) (0.5 1) (0.5 0)) CF 0.8) 
(assert (Cdr_pref-2 (0.3 0) (0.3 1) (0.3 0)) CF 0.8) 
(assert (Fhc_pref-2 (0.3 0) (0.3 1) (0.3 0)) CF 0.6) 
(assert (Tc1_pref-2 (0.3 0) (0.3 1) (0.3 0)) CF 0.8) 
(assert (dth_pref-2 (0.9 0) (0.9 I) (0.9 0)) CF 0.9) 
(assert (kw_pref-2 (0.7 0) (0.7 1) (0.7 0)) CF 0.8) 
(assert (Rp_pref-2 (0.5 0) (0.5 1) (0.5 0)) CF 0.8) 
(assert (Rs_pref-2 (0.3 0) (0.3 I) (0.3 0)) CF 0.9) 
(assert (df_pref-2 (0.3 0) (0.3 1) (0.3 0)) CF 0.8) 
(assert (Cdf_pref-2 (0.4 0) (0.4 1) (0.4 0)) CF 0.6) 
(assert (Ff_pref-2 (0.4 0) (0.4 1) (0.4 0)) CF 0.6) 
(assert (Rpf_pref-2 (0.5 0) (0.5 1) (0.5 0)) CF 0.8) 

;; DESIGNER'S SPECIAL PREFERENCE ;; 

(assert (Geom_pref-3 (0.8 0) (0.8 1) (0.8 0)) CF 0.8) 
(assert (Cdr_pref-3 (0.5 0) (0.5 1) (0.5 0)) CF 0.7) 
(assert (Fhc_pref-3 (0.8 0) (0.8 1) (0.8 0)) CF 0.8) 
(assert (Tc1_pref-3 (0.7 0) (0.7 I) (0.7 0)) CF 0.7) 
(assert (dth_pref-3 (0.9 0) (0.9 1) (0.9 0)) CF 0.9) 
(as ert (kw_pref-3 (0.8 0) (0.8 1) (0.8 0)) CF 0.8) 
(assert (Rp_pref-3 (0.6 0) (0.6 1) (0.6 0)) CF 0.8) 
(assert (Rs_pref-3 (0.7 0) (0.7 I) (0.7 0)) CF 0.8) 
(assert (df_pref-3 (0.9 0) (0.9 1) (0.9 0)) CF 0.8) 
(assert (Cdf_pref-3 (0.5 0) (0.5 1) (0.5 0)) CF 0.7) 
(assert (Ff_pref-3 (0.8 0) (0.8 I) (0.8 0)) CF 0.8) 
(assert (Rpf_pref-3 (0.6 0) (0.6 1) (0.6 0)) CF 0.8) 

;;;;;;; intra variable preferences;;;;;;; 

;;;;;;;;;;;;;;;; Geom ;;;;;;;;;;;;;;;;;;;; 

;;;;;; MANUFACTURABILITY criteria;;;;;;; 

( defrule rule-! 
(declare (salience -10) (CF 0.8)) 
(Geom ONE) 
?fa <- (Geom_pref-1 ?) 
;;?eff <- (QR-1 ?) 
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=> 

(bind ?cf(get-d?fa)) 
;;(plot-fuzzy-value t +nil nil ?eff) 
(as ert (QR-1 VERY_GOOD) CF 1.0) 
(assert (HEURISTICS-I NO)) 

(defrule rule-2 
(declare (salience -10) (CF 0.8)) 
(HEURJSTICS-1 NO) 
(Geom not ONE) 
?fa<- (Geom_pref-1 ?) 
;;?eff<- (QR-1 ?) 

=> 

(bind ?cf (get-cf ?fa)) 
(bind ?pref (get-fs-x ?fa 0)) 
;;(plot-fuzzy-value t +nil nil ?eff) 

(if(> ?pref 0.9) 
then 
(assert (QR-1 BAD) CF ?et)) 

(if(and (<= ?pref0.9) (> ?pref0.8)) 
then 
(assert (QR-1 slightly_compromise BAD) CF ?cf)) 

(if(and (<= ?pref0.8) (> ?pref0.6)) 
then 
(assert (QR-1 less_compromise BAD) CF ?cf)) 

(if (and ( <= ?pref 0.6) (> ?pref 0.4)) 
then 
(assert (QR-1 compromise BAD) CF ?cf)) 

(if(<= ?pref0.4) 
then 
(assert (QR-1 more_compromi e BAD) CF ?et)) 

;;;;;; CHOICE OF MA TERlAL criteria ;;;;;;; 

(defrule rule-3 
(declare (salience -20) (CF 0.6)) 
(Geom ONE) 
?fa<- (Geom_pref-2 ?) 
;;?eff <- (QR-2 ?) 

=> 

(bind ?cf(get-cf?fa)) 
;;(plot-fuzzy-value t +nil nil ?eff) 
(assert (QR-2 VERY_GOOD) CF 1.0) 
(assert (HEURlSTICS-2 NO)) 

(defrule rule-4 
(declare (salience -20) (CF 0.6)) 
(HEURlSTICS-2 NO) 
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(Geom not ONE) 
?fa<- (Geom_pref-2 ?) 
;;?eff <- (QR-2 ?) 

=> 

(bind ?cf (get-cf ?fa)) 
(bind ?pref(get-fs-x ?fa 0)) 
;;(plot-fuzzy-value t +nil nil ?eff) 

(if(> ?pref 0.9) 
then 
(assert (QR-2 NOT_VERY_GOOD) CF ?cf)) 

(if(and (<= ?pref0.9) (> ?pref0.8)) 
then 
(assert (QR-2 slightly_compromi e NOT_ VERY _GOOD) CF ?cf)) 

(if (and (<= ?pref 0.8) (> ?pref 0.6)) 
then 
(assert (QR-2less_compromise NOT_ VERY_GOOD) CF ?cf)) 

(if (and(<= ?pref 0.6) (> ?pref 0.4)) 
then 
(assert (QR-2 compromise NOT_VERY_GOOD) CF ?cf)) 

(if ( <= ?pref 0.4) 
then 
(assert (QR-2 more_compromise NOT_ VERY _GOOD) CF ?cf)) 

;;;;;; SPECIAL PREFERENCES criteria ;;;;;;; 

;; None;; 

;;;;;;;;;;;;;;;;; Cdr ;;;;;;;;;;;;;;;;;;;; 

;;;;;;;;; MANUFACTURABILITY criteria;;;;;;;;;; 

(defrule rule-5 
(declare (salience -30) (CF 0.8)) 
(HEURISTICS-I NO) 
(Cdr VERY_IDGH) 
?fa<- (Cdr_pref-1 ?) 
;;?eff <- (QR-1 ?) 

=> 

(bind ?cf(get-cf?fa)) 
;;(plot-fuzzy-value t +nil nil ?eff) 
(assert (QR-1 GOOD) CF 1.0) 

(defrule rule-6 
(declare (salience -30) (CF 0.8)) 
(HEURISTICS-I NO) 
(Cdr not VERY_HlGH) 
?fa<- (Cdr_pref- 1 ?) 
;;?eff<-(QR-1 ?) 
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) 

=> 

(bind ?cf(get-cf?fa)) 
(bind ?pref(get-fs-x ?fa 0)) 
;;(plot-fuzzy-value t +nil nil ?eft) 

(if(> ?pref 0.9) 
then 
(assert (QR-1 BAD) CF ?cf)) 

(if (and(<= ?pref 0.9) (> ?pref 0.8)) 
then 
(assert (QR-1 slightly_compromi e BAD) CF ?cf)) 

(if(and (<= ?pref0.8) (> ?pref0.6)) 
then 
(assert (QR-11ess_compromi e BAD) CF ?cf)) 

(if(and (<= ?pref0.6) (> ?pref0.4)) 
then 
(assert (QR-1 compromise BAD) CF ?cf)) 

(if(<= ?pref0.4) 
then 
(assert (QR-1 more_compromise BAD) CF ?cf)) 

;;;;;;;;;CHOICE OF MATERIAL criteria;;;;;;;;;; 

;;NONE;; 

;;;;;;;;; SPECIAL PREFERENCES criteria ;;;;;;;;;; 

(defrule rule-7 
(declare (salience -40) (CF 0.9)) 
(HEURISTICS-3 NO) 
(Cdr VERY _LOW) 
?fa<- (Cdr_pref-3 ?) 
;;?eff <- (QR-3 ?) 

=> 

(bind ?cf (get-cf ?fa)) 
;;(plot-fuzzy-value t +nil nil ?eft) 
(assert (QR-3 VERY_GOOD) CF 1.0) 
(assert (HEURISTICS-3 NO)) 

(defrule rule-8 
(declare (salience -40) (CF 0.9)) 
(HEURISTICS-3 NO) 
(Cdr not VERY_LOW) 
?fa <- (Cdr_pref-3 ?) 
;;?eff <- (QR-3 ?) 

=> 

(bind ?cf(get-cf?fa)) 
(bind ?pref (get-fs-x ?fa 0)) 
;;(plot-fuzzy-value t +nil nil ?eff) 
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(if(> ?pref 0.9) 
then 
(assert (QR-3 NOT_VERY_GOOD) CF ?cf)) 

(if (and (<= ?pref 0.9) (> ?pref 0.8)) 
then 
(assert (QR-3 sligbtly_compromi e NOT_ VERY_GOOD) CF ?cf)) 

(if(and (<= ?pref0.8) (> ?pref0.6)) 
then 
(assert (QR-3 less_comprornise NOT_ VERY _GOOD) CF ?cf)) 

(if(and (<= ?pref0.6) (> ?pref0.4)) 
then 
(assert (QR-3 compromise NOT_ VERY _ GOOD) CF ?cf)) 

(if(<= ?pref0.4) 
then 
(assert (QR-3 more_comprornise NOT_ VERY _GOOD) CF ?cf)) 

;;;;;;;;;;;;;;;; Fbc ;;;;;;;;;;;;;;;;;;; 

;;;;;;;; MANUF ACTURABILITY criteria ;;;;;;;;;; 

;;;;;; No effect ;;;;; 

;;;;;;; CHOICE OF MATERIAL criteria ;;;;;;;;;; 

;;;;;; No effect ;;;;;; 

;;;;;;;;; SPECIAL PREFERENCES criteria ;;;;;;;;;;; 

;;;;;; No effect ;;;;;; 

;;;;;;;;;;;;;;; Tcl ;;;;;;;;;;;;;;;;; 

;;;;;;;;;;;;; MANUFACTURABILITY criteria;;;;;;;;;;; 

;;;;;;;;No effect ;;;;;;; 

;;;;;;;;;;;;; CHOICE OF MA TERlAL criteria ;;;;;;;;;;;;;; 

;;;;;;; No effect ;;;;;;; 

;;;;;;;;;;;;; SPECIAL PREFERENCES criteria ;;;;;;;;;;;;;;; 

;;;;;;;; No effect ;;;;;;; 

;;;;;;;;;;;;;;;; dth ;;;;;;;;;;;;;;;;;;;;; 

;;;;;;;;;;; MANUF ACTURABILITY criteria ;;;;;;;;;;;;;;;; 

(defrule rule-9 
(declare (salience -50) (CF 0. 7)) 
(HEURISTICS-1 NO) 
(dth VERY_HIGH) 
?fa<- (dth_pref-1 ?) 
;;?eff <- (QR-1 ?) 
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) 

=> 

(bind ?cf(get-cf?fa)) 
;;(plot-fuzzy-value t +nil nil ?eff) 
(assert (QR-1 VERY_GOOD) CF 1.0) 

(defrule rule-10 
(declare (salience -50) (CF 0.7)) 
(HEURISTICS-I NO) 
(dtb not VERY_HIGH) 
?fa <- ( dtb_pref-1 ?) 
;;?eff<- (QR-1 ?) 

=> 

(bind ?cf(get-cf?fa)) 
(bind ?pref(get-f1 -x ?fa 0)) 
;;(plot-fuzzy-value t +nil nil ?eff) 

(if(> ?pref0.9) 
then 
(assert (QR-1 BAD) CF ?cf)) 

(if (and(<= ?pref 0.9) (> ?pref 0.8)) 
then 
(assert (QR-1 sligbtly_compromi e BAD) CF ?cf)) 

(if(and (<= ?pref0.8) (> ?pref0.6)) 
then 
(assert (QR-1 less_compromise BAD) CF ?cf)) 

(if(and (<= ?pref0.6) (> ?pref0.4)) 
then 
(assert (QR-1 compromi e BAD) CF ?cf)) 

(if ( <= ?pref 0.4) 
then 
(assert (QR-1 more_compromise BAD) CF ?cf)) 

;;;;;;;;;;;;; CHOICE OF MATERIAL criteria ;;;;;;;;;;;;;;; 

( defrule rule-11 

) 

(declare (salience -60) (CF 0.8)) 
(HEURlSTICS-2 NO) 
(dtb VERY_LOW) 
?fa<- (dth_pref-2 ?) 
;;?eff <- (QR-2 ?) 

=> 

(bind ?cf(get-cf?fa)) 
;;(plot-fuzzy-value t +nil nil ?eff) 
(assert (QR-2 VERY_ GOOD) CF 1.0) 

( defrule rule-12 
(declare (salience -60) (CF 0.8)) 
(HEURlSTICS-2 NO) 
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(dth not VERY_LOW) 
?fa<- (dth_pref-2 ?) 
;;?eff <- (QR-2 ?) 

=> 

(bind ?cf (get-cf ?fa)) 
(bind ?pref(get-fs-x ?fa 0)) 
;;(plot-fuzzy-value t +nil nil ?eft) 

(if(> ?pref0.9) 
then 
(assert (QR-2 BAD) CF ?cf)) 

(if (and(<= ?pref 0.9) (> ?pref 0.8)) 
then 
(assert (QR-2 slightly_compromise BAD) CF ?cf)) 

(if (and(<= ?pref 0.8) (> ?pref 0.6)) 
then 
(assert (QR-2 less_compromise BAD) CF ?cf)) 

(if(and (<= ?pref0.6) (> ?pref0.4)) 
then 
(assert (QR-2 compromise BAD) CF ?cf)) 

(if ( <= ?pref 0.4) 
then 
(assert (QR-2 more_compromise BAD) CF ?cf)) 

;;;;;;;;;;;;; SPECIAL PREFERENCES criteria ;;;;;;;;;;;;;;; 

(defrule rule-13 
(declare (salience -70) (CF 0.9)) 
(HEURISTICS-3 NO) 
(dth MEDIUM) 
?fa<- (dth_pref-3 ?) 
;;?eff <- (QR-3 '!) 

=> 

(bind ?cf (get-cf ?fa)) 
;;(plot-fuzzy-value t +nil nil ?eff) 
(assert (QR-3 VERY_GOOD) CF 1.0) 

(defrule rule-14 
(declare (salience -70) (CF 0.9)) 
(HEURISTICS-3 NO) 
(dth not MEDIUM) 
?fa<- (dth_pref-3 ?) 
;;?eff <- (QR-3 ?) 

=> 

(bind ?cf (get-cf ?fa)) 
(bind ?pref (get-fs-x ?fa 0)) 
;;(plot-fuzzy-value t +nil nil ?eff) 

(if(> ?pref 0.9) 
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then 
(assert (QR-3 BAD) CF ?et)) 

(if (and(<= ?pref 0.9) (> ?pref 0.8)) 
then 
(assert (QR-3 slightly_compromise BAD) CF ?et)) 

(if(and (<= ?pref0.8) (> ?pref0.6)) 
then 
(assert (QR-3 less_compromise BAD) CF ?et)) 

(if (and(<= ?pref 0.6) (> ?pref 0.4)) 
then 
(assert (QR-3 compromise BAD) CF ?et)) 

(if(<= ?pref0.4) 
then 
(assert (QR-3 more_compromise BAD) CF ?et)) 

;;;;;;;;;;;;;;;;;;;kw;;;;;;;;;;;;;;;;;;; 

;;;;;;;;;;;; MANUFACTURABILITY criteria;;;;;;;;;;;;;; 

;;;;;;;No effect ;;;;;;; 

;;;;;;;;;;;;CHOICE OF MATERIAL criteria;;;;;;;;;;;;;; 

;;;;;;; No effect ;;;;;;;; 

;;;;;;;;;; SPECIAL PREFERENCES criteria;;;;;;;;;;;;;;; 

;;;;;;;;;;No effect ;;;;;;;;;;; 

;;;;;;;;;;;;;;;;;;; Rp ;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;;;;;;;; MANUFACTURABILITY criteria;;;;;;;;;;;;;;; 

;;;;;;;;;; No effect ;;;;;;;;; 

;;;;;;;;;;;;CHOICE OF MATERIAL criteria;;;;;;;;;;;;; 

;;;;;;;;;No effect ;;;;;;;;; 

;;;;;;;;;;;;; SPECIAL PREFERENCES criteria ;;;;;;;;;;;;;;;;;; 

(defrule rule-15 
(declare (salience -80) (CF 0.5)) 
(HEURISTICS-3 NO) 
(or (Rp LOW) (Rp above LOW)) 
?fa <- (Rp_pref-3 ?) 
;;?eff <- (QR-3 ?) 

=> 

(bind ?cf (get-cf ?fa)) 
;;(plot-fuzzy-value t +nil nil ?eft) 
(assert (QR-3 GOOD) CF 1.0) 

215 



(defrule rule-16 
(declare (salience -80) (CF 0.5)) 
(HEURISTICS-3 NO) 
(Rp below LOW) 
?fa <- (Rp_pref-3 ?) 
;;?eff <- (QR-3 ?) 

=> 

(bind ?cf (get-cf ?fa)) 
(bind ?pref (get-fs-x ?fa 0)) 
;;(plot-fuzzy-value t +nil nil ?eff) 

(if(> ?pref0.9) 
then 
(assert (QR-3 BAD) CF ?et)) 

(if(and (<= ?pref0.9) (> ?pref0.8)) 
then 
(assert (QR-3 slightly_compromise BAD) CF ?et)) 

(if(and (<= ?pref0.8) (> ?pref0.6)) 
then 
(assert (QR-3 less_compromise BAD) CF ?et)) 

(if(and (<= ?pref0.6) (> ?pref0.4)) 
then 
(assert (QR-3 compromise BAD) CF ?et)) 

(if(<= ?pref 0.4) 
then 
(assert (QR-3 more_compromise BAD) CF ?et)) 

;;;;;;;;;;;;;;;;;;; Rs ;;;;;;;;;;;;;;;;;;;;; 

;;;;;;;;;;;;;; MANUF ACTURABILITY.criteria ;;;;;;;;;;;;;;;;;;; 

;;;;;;; No effect ;;;;;;; 

;;;;;;;;;;;;;; CHOICE OF MA TERlAL criteria;;;;;;;;;;;;;;;;;; 

;;;;;;;;No effect ;;;;;;; 

;;;;;;;;;;;;; SPECIAL PREFERENCES criteria;;;;;;;;;;;;;;;; 

(defrule rule-17 
(declare (salience -90) (CF 0.8)) 
(HEURISTJCS-3 NO) 
(Rs VERY_LOW) 
?fa<- (Rs_pref-3 ?) 
;;?eff <- (QR-3 ?) 

=> 

(bind ?cf(get-cf?fa)) 
;;(plot-fuzzy-value l +nil nil ?eff) 
(assert (QR-3 VERY_GOOD) CF l.O) 

(defrule rule-18 
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(declare (salience -90) (CF 0.8)) 
(HEURISTICS-3 NO) 
(RsLOW) 
?fa <- (Rs_pref-3 ?) 
;;?eff <- (QR-3 ?) 

=> 

(bind ?cf (get-cf ?fa)) 
;;(plot-fuzzy-value t +nil nil ?eft) 
(assert (QR-3 GOOD) CF 1.0) 

(defrule rule-19 
(declare (salience -90) (CF 0.8)) 
(HEURISTJCS-3 NO) 
(Rs MEDIUM) 
?fa <- (Rs_pref-3 ?) 
;;?eff <- (QR-3 ?) 

=> 

(bind ?cf(get-cf?fa)) 
(bind ?pref (get-fs-x ?fa 0)) 
;;(plot-fuzzy-value t +nil nil ?eft) 

(if(> ?pref 0.9) 
then 
(assert (QR-3 NOT_ VERY _GOOD) CF ?et)) 

(if (and(<= ?pref 0.9) (> ?pref 0.8)) 
then 
(assert (QR-3 slightly_compromise NOT_ VERY _GOOD) CF ?et)) 

(if (and(<= ?pref 0.8) (> ?pref 0.6)) 
then 
(assert (QR-3 less_compromise NOT_ VERY _GOOD) CF ?et)) 

(if(and (<= ?pref0.6) (> ?pref0.4)) 
then 
(assert (QR-3 compromise NOT_ VERY _GOOD) CF ?et)) 

(if(<= ?pref0.4) 
then 
(assert (QR-3 more_eompromise NOT_VERY_GOOD) CF ?et)) 

(defrule rule-20 
(declare (salience -90) (CF 0.8)) 
(HEURISTICS-3 NO) 
(Rs below MEDIUM) 
?fa<- (Rs_pref-3 ?) 
;;?eff <- (QR-3 ?) 

=> 

(bind ?cf (get -cf ?fa)) 
(bind ?pref (get-fs-x ?fa 0)) 
;;(plot-fuzzy-value t +nil nil ?eft) 

(if(> ?pref0.9) 
then 
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(assert (QR-3 BAD) CF ?et)) 

(if (and(<= ?pref 0.9) (> ?pref 0.8)) 
then 
(assert (QR-3 slightly_compromise BAD) CF ?et)) 

(if(and (<= ?pref0.8) (> ?pref0.6)) 
then 
(assert (QR-3 less_compromise BAD) CF ?et)) 

(if(and (<= ?pref0.6) {> ?pref0.4)) 
then 
(assert (QR-3 compromise BAD) CF ?et)) 

(if(<= ?pref0.4) 
then 
(assert (QR-3 more_compromise BAD) CF ?et)) 

;;;;;;;;;;;;;;;;; df;;;;;;;;;;;;;;;;;;; 

;;;;;;;;;;;;;;; MANUFACTURABILITY criteria;;;;;;;;;;;;;;;; 

(defrule rule-21 
(declare (salience -100) (CF 0.9)) 
(HEURISTICS-I NO) 
(dfBIG) 
?fa <- ( df_pref-1 ?) 
;;?eff <- (QR-1 ?) 

=> 

(bind ?cf (get-cf ?fa)) 
;;(plot-fuzzy-value t +nil nil ?eft) 
(assert (QR-1 VERY_GOOD) CF 1.0) 

(defrule rule-22 
(declare (salience -100) (CF 0.9)) 
(HEURISTICS-I NO) 
(dfnot BIG) 
?fa <- ( df_pref-1 ?) 
;;?eff <- (QR-1 ?) 

=> 

(bind ?cf (get-cf ?fa)) 
(bind ?pref (get-fs-x ?fa 0)) 
;;(plot-fuzzy-value t +nil nil ?eft) 

(if(> ?pref0.9) 
then 
(assert (QR-1 NOT_ VERY _GOOD) CF ?cf)) 

(if (and(<= ?pref 0.9) (> ?pref 0.8)) 
then 
(assert (QR-1 slightly_compromise NOT_ VERY_GOOD) CF ?et)) 

(if (and(<= ?pref 0.8) (> ?pref 0.6)) 
then 
(assert (QR-1 less_compromise NOT_ VERY_GOOD) CF ?et)) 
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(if(and (<= ?pref0.6) (> ?pref0.4)) 
then 
(assert (QR-1 compromise NOT_ VERY _GOOD) CF ?et)) 

(if(<= ?pref0.4) 
then 
(assert (QR-1 more_compromisc NOT_VERY_GOOD) CF ?et)) 

;;;;;;;;;;;;;;;CHOICE OF MATERIAL criteria;;;;;;;;;;;;;;;;; 

;;;;;;;;; No effect ;;;;;;;;;; 

;;;;;;;;;;;;;; SPECIAL PREFERENCES criteria ;;;;;;;;;;;;;;;;; 

(defrule rule-23 
(declare (salience -110) (CF 0.7)) 
(HEURJSTICS-3 NO) 
(dfMEDIUM) 
?fa <- ( df_pref-3 ?) 
;;?eff <- (QR-3 ?) 

=> 

(bind ?cf (get -cf ?fa)) 
;;(plot-fuzzy-value t +nil nil ?eft) 
(assert (QR-3 GOOD) CF !.0) 

(defrule rule-24 
(declare (salience -110) (CF 0.7)) 
(HEURISTICS-3 NO) 
(dfBIG) 
?fa<- (df_pref-3 ?) 
;;?eff <- (QR-3 ?) 

=> 

(bind ?cf (get-cf ?fa)) 
(bind ?pref (get-fs-x ?fa 0)) 
;;(plot-fuzzy-value t +nil nil ?eft) 

(if(> ?pref0.9) 
then 
(assert (QR-3 NOT_VERY_GOOD) CF ?et)) 

(if (and ( <= ?pref 0.9) (> ?pref 0.8)) 
then 
(assert (QR-3 slightly_compromise NOT_VERY_GOOD) CF ?et)) 

(if (and (<= ?pref 0.8) (> ?pref 0.6)) 
then 
(assert (QR-3 less_compromise NOT_VERY_GOOD) CF ?et)) 

(if(and (<= ?pref0.6) (> ?pref0.4)) 
then 
(assert (QR-3 compromise NOT_VERY_GOOD) CF ?et)) 

(if(<= ?pref0.4) 
then 
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(ass en (QR-3 more_compromise NOT_ VERY _GOOD) CF ?et)) 

(defrule rule-25 
(declare (salience -110) (CF 0.7)) 
(HEURISTICS-3 NO) 
(elf SMALL) 
?fa <- ( df_pref-3 ?) 
;;?eff <- (QR-3 ?) 

=> 

(bind ?cf (get-cf ?fa)) 
(bind ?pref (get-fs-x ?fa 0)) 
;;(plot-fuzzy-value t +nil nil ?eft) 

(if(> ?pref0.9) 
then 
(assen (QR-3 BAD) CF ?et)) 

(if (and (<= ?pref 0.9) (> ?pref 0.8)) 
then 
(assen (QR-3 slightly_compromise BAD) CF ?et)) 

(if (and (<= ?pref 0.8) (> ?pref 0.6)) 
then 
(assen (QR-3 less_compromise BAD) CF ?et)) 

(if(and (<= ?pref0.6) (> ?pref0.4)) 
then 
(assen (QR-3 compromise BAD) CF ?et)) 

(if(<= ?pref0.4) 
then 
(assen (QR-3 more_compromise BAD) CF ?et)) 

;;;;;;;;;;;;;;;;;; Cdf;;;;;;;;;;;;;;;;;;;;; 

;;;;;;;;;;;;;;; MANUFACTURABILITY criteria;;;;;;;;;;;;;;;;;; 

(defrule rule-26 
(declare (salience -120) (CF 0.8)) 
(HEURISTICS-I NO) 
(CdfVERY_HIGH) 
?fa <- ( Cdf_pref-1 ?) 
;;?eff <- (QR-1 ?) 

=> 

(bind ?cf (get ·d ?fa)) 
;;(plot-fuzzy-value t +nil nil ?eft) 
(assert (QR-1 GOOD) CF 1.0) 

(defrule rule-27 
(declare (salience -120) (CF 0.8)) 
(HEURISTICS-I NO) 
(Cdfnot VERY_HIGH) 
?fa<- (Cdf_pref-1 ?) 
;;?eff <- (QR-1 '?) 
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=> 

(bind ?cf (get-cf ?fa)) 
(bind ?pref (get-fs-x ?fa 0)) 
;;(plot-fuzzy-value t +nil nil ?eft) 

(if(> ?pref0.9) 
then 
(assert (QR-1 BAD) CF ?cf)) 

(if (and(<= ?pref 0.9) (> ?pref 0.8)) 
then 
(assert (QR-1 sligbtly_compromise BAD) CF ?cf)) 

(if(and (<= ?pref0.8) (> ?pref0.6)) 
then 
(assert (QR-1 less_compromise BAD) CF ?cf)) 

(if (and(<= ?pref 0.6) (> ?pref 0.4)) 
then 
(assert (QR-1 compromise BAD) CF ?cf)) 

(if(<= ?pref0.4) 
then 
(assert (QR-1 more_compromise BAD) CF ?cf)) 

;;;;;;;;;CHOICE OF MATERIAL criteria;;;;;;;;;; 

;;;;;;;No effect ;;;;;;; 

;;;;;;;;;;; SPECIAL PREFERENCES criteria ;;;;;;;;;;;; 

(defrule rule-28 
(declare (salience -130) (CF 0.8)) 
(HEURISTICS-3 NO) 
(CdfVERY_LOW) 
?fa <- ( Cdf__pref-3 ?) 
;;?eff <- (QR-3 ?) 

=> 

(bind ?cf(get-cf?fa)) 
;;(plot-fuzzy-value t +nil nil ?eft) 
(assert (QR-3 VERY_GOOD) CF 1.0) 

(defrule rule-29 
(declare (salience -130) (CF 0.8)) 
(HEURJSTICS-3 NO) 
(Cdfnot VERY_LOW) 
?fa<- (Cdf__pref-3 ?) 
;;?eff <- (QR-3 ?) 

=> 

(bind ?cf (get-cf ?fa)) 
(bind ?pref (get-fs-x ?fa 0)) 
;;(plot-fuzzy-value t +nil nil ?eft) 

(if(> ?pref 0.9) 
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then 
(assert (QR-3 NOT_ VERY _GOOD) CF ?et)) 

(if (and (<= ?pref 0.9) (> ?pref 0.8)) 
then 
(assert (QR-3 slightly_compromise NOT_ VERY _GOOD) CF ?et)) 

(if (and (<= ?pref 0.8) (> ?pref 0.6)) 
then 
(assert (QR_3 less_compromise NOT_ VERY_GOOD) CF ?et)) 

(if(and (<= ?pref0.6) (> ?pref0.4)) 
then 
(assert (QR-3 compromise NOT_ VERY _GOOD) CF ?et)) 

(if(<= ?pref0.4) 
then 
(assert (QR-3 more_compromise NOT_ VERY _GOOD) CF ?et)) 

;;;;;;;;;;;;;;;;;; Ff;;;;;;;;;;;;;;;;;;;; 

;;;;;;;;;; MANUFACTURABILITY criteria;;;;;;;;;;;; 

;;;;;;; No effect ;;;;;;;; 

;;;;;;;;; CHOICE OF MATERIAL criteria;;;;;;;;;;;;; 

;;;;;;; No effect;;;;;;;; 

;;;;;;;;;; SPECIAL PREFERENCES criteria;;;;;;;;;;;;; 

;;;;;;;;No effect ;;;;;;; 

;;;;;;;;;;;;;;;;;;; Rpf;;;;;;;;;;;;;;;;;;;; 

;;;;;;;;;;; MANUFACTURABILITY criteria;;;;;;;;;;;;; 

;;;;;;;;No effect ;;;;;;; 

;;;;;;;;;;;CHOICE OF MATERIAL criteria;;;;;;;;;;;;;;; 

;;;;;;;No effect ;;;;;;; 

;;;;;;;;;;; SPECIAL PREFERENCES criteria ;;;;;;;;;;;;;;;; 

(defrule rule-30 
(declare (salience -140) (CF 0.5)) 
(HEURISTICS-3 NO) 
(or (Rpf LOW) (Rpf above LOW)) 
?fa<- (Rpf_pref-3 ?) 
;;?eff <- (QR-3 ?) 

=> 

(bind ?cf (get-cf ?fa)) 
;;(plot-fuzzy-value t +nil nil ?eft) 
(assert (QR-3 GOOD) CF 1.0) 

(defrule rule-31 
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) 

(declare (salience -140) (CF 0.7)) 
(HEURISTICS-3 NO) 
(Rpf below LOW) 
?fa <- (Rpf_pref-3 ?) 
;;?eff <- (QR-3 ?) 

=> 

(bind ?cf (get-cf ?fa)) 
(bind ?pref (get-fs-x ?fa 0)) 
;;(plot-fuzzy-value t +nil nil ?eff) 

(if(> ?pref 0. 9) 
then 
(assert (QR-3 BAD) CF ?d)) 

(if (and (<= ?pref 0.9) (> ?pref 0.8)) 
then 
(assert (QR-3 sligbtly_compromise BAD) CF ?cf)) 

(if(and (<= ?pref0.8) (> ?pref0.6)) 
then 
(assert (QR-3 less_compromise BAD) CF ?cf)) 

(if(and (<= ?pref0.6) (> ?pref0.4)) 
then 
(assert (QR-3 compromise BAD) CF ?et)) 

(if(<= ?pref0.4) 
then 
(assert (QR-3 more_compromise BAD) CF ?et)) 

;;;;;;;;;;;;;; some HEURJSTICS ;;;;;;;;;;;;;;;;; 

;;;; MANUFACTURABILITY ;;;; 

(defrule rule-32 ;; heuristics-! 
(declare (salience -400) (CF 0.9)) 
(Geom THREE) 
(Cdr VERY _LOW) 
(dth MEDIUM) 
(Rs VERY_LOW) 
(df BIG) 
?fa<- (QR-1 ?any) 
?he<- (HEURISTICS-I NO) 

=> 

(printoutt crlf) 
(printout t " 
(printout t " 
(printout t " 

The design has satisfied Heuristic-! (Cost of Manufacture)::" er! f) 
Geom : THREE" crlf) 

(printout t " 
(printout t " 
(printout t " 
(printout t crlf) 
(retract ?fa) 
(retract ?he) 
(assert (HEURISTICS-! YES)) 
(assert (QR-1 GOOD) CF 1.0) 

Cdr : VERY_LOW" crlf) 
dth : MEDIUM" cri f) 
Rs : VERY _LOW" cri f) 
df : BIG" er! f) 
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(defrule rule-33 ;; heuristics-2 
(declare (salience -410) (CF 0.8)) 
(Geom THREE) 
(dth VERY_LOW) 
(kw VERY _LOW) 
(Rs VERY_HIGH) 
(dfSMALL) 
?fa <- (QR-1 ?) 
?he<- (HEURJSTICS-1 NO) 

=> 

(printout t crlt) 
(printout t " 
(printout t " 
(printout t " 
(printout t " 
(printout t " 
(printout t " 
(printout t crlt) 

The design has satisfied Heuristic-2 (Cost of Manufacture)::" crlt) 
Geom :THREE" crlt) 

(retract ?fa) 
(retract ?he) 
(assert (HEURJSTICS-1 YES)) 
(assen (QR-1 BAD) CF 1.0) 

dth : VERY _LOW" cri f) 
kw : VERY _LOW" cri f) 
Rs : VERY _HIGH" crlf) 
df : SMALL" crlf) 

;;;;;;;CHOICE OF MATERIAL;;;;;; 

(defrule rule-34 ;; heuristics-3 
(declare (salience -420) (CF 0.8)) 
(Geom THREE) 
(Tc I VERY _HIGH) 
(dth VERY _HIGH) 
(or (kw VERY_HIGH) (kw VERY_LOW)) 
(Rs VERY _HIGH) 
?fa<- (QR-2 ?) 
?he <- (HEURJSTICS-2 NO) 

=> 

(printout t crlf) 
(printout t " 
(printout t " 
(printout t " 
(printout t " 
(printout t " 
(printout t " 
(printout t crlf) 
(retract ?fa) 
(retract ?he) 

The design has satisfied Heuristic-3 (Cost of Material) ::"cri f) 
Geom : THREE" crlf) 

(assert (HEURISTICS-2 YES)) 
(assen (QR-2 BAD) CF 1.0) 

(defrule rule-35 ;; heuristics-4 
(declare (salience -430) (CF 0.8)) 
(dth VERY _LOW) 
(kw MEDIUM) 
?fa<- (QR-2 ?) 

Tcl : VERY_HIGH" crlf) 
dth : VERY _HIGH" cri f) 
kw :VERY _HIGH or VERY _LOW" cri f) 
Rs :VERY _HIGH" crlf) 
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?he <- (HEURISTICS-2 NO) 

=> 

(printout t crlf) 
(printout t " 
(printout t " 
(printout t " 
(printout t crlf) 
(retract ?fa) 
(retract ?he) 
(assert (HEURISTICS-2 YES)) 
(assert (QR-2 GOOD) CF 1.0) 

The design has satisfied Heuristic-4 (Cost of Material)::" crlf) 
dth : VERY_LOW" crlf) 
kw : MEDIUM" crlf) 

;;;;;;;;;; DESIGNER'S SPECIAL PREFERENCE ;;;;;;;;;;;; 

(defrule rule-36 ;; heuristics-5 
(declare (salience -440) (CF 0. 7)) 
(Tcl VERY _HIGH) 
(dth VERY _LOW) 
(Rp VERY_HlGH) 
(dfSMALL) 
?fa <- (QR-3 ?) 
?he<- (HEURISTICS-3 NO) 

=> 

(printout t crlf) 
(printout t " 
(printout t " 
(printout t " 
(printout t " 
(printout t " 
(printout t crlf) 
(retract ?fa) 

The design has satisfied Heuristic-S (Designer's Special Preference)::" crlf) 
Tcl : VERY_HIGH" crlf) 
dth : VERY _LOW" cri f) 
Rp : VERY _HIGH" crlf) 
df : SMALL" crlf) 

(retract ?he) 
(assert (HEURISTICS-3 YES)) 
(assert (QR-3 NOT_ VERY _GOOD) CF 1.0) 

(defrulc rule-37 ;; heuristics-6 
(declare (salience -450) (CF 0.7)) 
(Cdr VERY_LOW) 
(dth HIGH) 
(Rp VERY_HIGH) 
(Rs VERY_LOW) 
(dfBIG) 
(RpfVERY _HIGH) 
?fa<- (QR-3 ?) 
?he<- (HEURISTICS-3 NO) 

=> 

(printout t crlf) 
(printout t " 
(printout 1 " 

(printout 1 " 

(printout t " 
(printout 1 " 

(printout t " 
(printout I " 

The design has satisfied Heuristic-6 (Designer's Special Preference) ::" crlf) 
Cdr : VERY_LOW" crlf) 
dth : HIGH" crlf) 
Rp : VERY _HIGH" crlf) 
Rs : VERY_LOW" crlf) 
df : BIG" crlf) 
Rpf : VERY_HIGH" crlf) 
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(printout t crlf) 
(retract ?fa) 
(retract ?he) 
(assert (HEURISTICS-3 YES)) 
(assert (QR-3 GOOD) CF 1.0) 

;;;;;;;;;;;;;;; ru1e to defuzzify QUALITATIVE RATINGS ;;;;;;;;;;;;;;;;; 

(defrule rule-38 ;; defuzzify Qualitative Ratings 
(declare (salience -500)) 
(QR-1 ?ali-I) 
(QR-2 ?all-2) 
(QR-3 ?all-3) 

=> 

(bind ?clnum (send [CL] get-clnum)) 
(bind ?qvalue-1 (moment-defuzzify ?all- I)) 
(bind ?qvalue-2 (moment-defuzzify ?all-2)) 
(bind ?qvalue-3 (moment-defuzzify ?all-3)) 

;; Cost of Manufacture 
;; Cost of Material 
;; Designer's Special Preference 

(printout t cri f) 
(printout t " 
(format t" 
(printout t crlf) 

Qualitative Rating of the solution=" crlf) 
COST OF MANUFACTURE: %3.2f' ?qvalue-1) 

(format t" COST OF MATERIAL: %3.2f' ?qvalue-2) 
(printout t cri f) 
(format t " DESIGNER'S SPECIAL PREFERENCE: %3.2f' ?qvalue-3) 
(printout t crlf crlf crlf) 

(if(<= ?*cluster_number* ?clnum) then 

(retract *) 
(assert (HEURISTICS-I NO)) 
(assert (HEURISTICS-2 NO)) 
(assert (HEURISTICS-3 NO)) 

(Inter_ Var_Preferences) 

(bind ?bestitem_inputs (send (send (nth$ ?*cluster_number* (send [CL] get-cldetails)) get­
bestitem) get-inputs)) 

(bind ?bestitem_outputs (send (send (nth$ ?*cluster_number* (send [CL] get-cldetails)) get­
bestitem) get-outputs)) 

(printout t "One of the GOOD solutions is :: (") 
(bind ?I 1) 
(while (<=?I ?*c!PA *)do 

(if(= ?I I) then 
(format t "Geom: %Old," (nth$ ?I ?bestitem_inputs))) 

(if(= ?I 2) then 
(formal t "Cdr: %03.2f, "(nth$ ?I ?bestitem_inputs))) 

(if(= ?I 3) then 
(format 1 "Fhc: %02.1 f, "(nth$ ?I ?bestitem_inputs))) 

(if(= ?I 4) then 
(format t "Tcl: %03d, "(nth$ ?I ?bestilem_inputs))) 

(if(= ?I 5) then 
(formal 1 "dlh: %06.5f, " (nth$ ?I ?beslitem_inputs))) 

(if(= ?I 6) then 
(formal t "kw: %02d, " (nth$ ?I ?bestitem_inputs))) 

(if(= ?I 7) then 
(formal t "Rp: %03.2f, "(nth$ ?I ?bestitem_inputs))) 
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(if(= ?I 8) then 
(format t "Rs: %03.2f," (nth$ ?I ?bestitem_inputs))) 

(if(= ?I 9) then 
(format t "df: %06.5f, "(nth$ ?I ?bestitem_inputs))) 

(if(= ?I I 0) then 
(format t "Cdf: %03.2f, "(nth$ ?I ?bestitcm_inputs))) 

(if(= ?I 11) then 
(format t "Ff: %02.1 f, "(nth$ ?I ?bestitem_inputs))) 

(if(= ?I 12) then 
(format t "Rpf: %03.21)" (nth$ ?I ?bestitem_inputs))) 

(bind ?I ( + ?I I)) 

(printout t cri f) 

(printout 1 " Outputs are :: (") 
(bind ?I I) 
(while (<=?I ?*cl NO*) do 

) 

(if(=?ll)then 
(formatt ''Wcr: %07.6f," (nth$ ?I ?bestitem_outputs))) 

(if(= ?I 2) then 
(format t "Wcf: %07.6f, "(nth$ ?I ?bestitem_outputs))) 

(if(= ?I 3) then 
(format t "Twg: %05.2f, "(nth$ ?I ?bestitem_outputs))) 

(if(= ?I 4) then 
(format t "Twf: %05.21)" (nth$ ?I ?bestitem_outputs))) 

(bind ?I(+ ?I I)) 

(printout t crlf) 
(printout t " ltemfitness = " ) 
(format! "%5.3f' (send (send (nth$ ?*cluster_number* (send [CL] get-cldetails)) get-bestitem) get­

itemfitness)) 
(printout t cri f) 
(bind ?bestitem_constraints (send (send (nth$ ?*cluster_number* (send [CL] get-cldetails)) get-

bestitem) get-cons_sensi)) 
(bind ?cons! (nth$ I ?bestitem_constraints)) 
(bind ?cons2 (nth$ 2 ?bestitem_constraints)) 
(bind ?cons3 (nth$ 3 ?bestitem_constraints)) 

(if(= ?cons I 10000) 
then 

else 

(printout t crlf" 
(printout t " 

(printout t crlf) 

CONSTRAINTS NOT SATISFIED" crlfcrlf) 
Sensitivity Analysis is not performed to this design .... " crlf) 

(format t" Design Solution sensitivity= %03.2f' (send (send (nth$ 
?*cluster_number* (send [CL] get-cldetails)) get-bestitem) get-sensitivity)) 

(printout t crlf) 
(bind ?bestitem_var_sensi (send (send (nth$ ?*cluster_number* (send [CL] get-cldetails)) 

get-bestitem) get-var_sensi)) 
(printout t" Design Variable sensitivity::(") 
(bind ?I I) 
(while (<?I ?*ciPA*) do 

(if(= ?I I) then 
(format t "Cdr: %Old," (nth$ ?I ?bestitem_var_sensi))) 

(if(= ?I 2) then 
(format t "fhc: %Old," (nth$ ?I ?bcstitem_var_sensi))) 

(if(= ?I 3) then 
(format t "Tcl: %Old," (nth$ ?I ?bestitem_var_sensi))) 

(if(= ?I 4) then 
(format t "dth: %0 Id, " (nth$ ?I ?bestitem_var_sensi))) 
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) 

(if(= ?I 5) then 
(fonnat t "kw: %Old," (nth$ ?I ?bestitem_var_sensi))) 

(if(= ?I 6) then 
(fonnat t "Rp: %Old, "(nth$ ?I ?bestitem_var_sensi))) 

(if(= ?I 7) then 
(format t "Rs: %Old," (nth$ ?I ?bestitem_var_seosi))) 

(if(= ?I 8) then 
(fonnat t "df: %Old," (nth$ ?I ?bestitcm_var_sensi))) 

(if(= ?I 9) then 
(format t "Cdf: %Old," (nth$ ?I ?bestitem_var_sensi))) 

(if(= ?110) then 
(format t "Ff: %Old," (nth$ ?I ?bestitem_var_seosi))) 

(if(= ?I 11) then 
(format t "Rpf: %Old)" (nth$ ?I ?bestitem_var_sensi))) 

(bind ?I ( + ?I I)) 

(printout I crlf) 
(printout t " Constraints sensitivity: "crlf) 

;; for the constraint ONE 
(if(= ?cons! I) then 

(printout t " 

(if(= ?cons I 2) then 
(printout t " 

) 
(if(= ?cons I 3) then 

(printout t " 

(if(= ?cons I 4) then 
(printout t " 

CONS-I : Constraint satisfied" cri f) 

CONS-I :Statistically Active Constraint" cri f) 

CONS-I :Quasi-Active Constraint" cri f) 

CONS-I :Peak-Active Constraint" crlf) 

;; for the constraint TWO 

(if(= ?cons2 I) then 
(printout t " 

) 
(if(= ?cons2 2) then 

(printout t " 
) 
(if(= ?cons2 3) then 

(printout t " 

(if(= ?cons2 4) then 
(printout I " 

CONS-2 : Constraint satisfied" cri f) 

CONS-2 :Statistically Active Constraint" cri f) 

CONS-2: Quasi-Active Constraint" cri f) 

CONS-2 : Peak-Active Constraint" crlf) 

;; for the constraint THREE 

(if(= ?cons3 I) then 
(printout t " 

(if(= ?cons3 2) then 
(printout t " 

) 
(if(= ?cons3 3) then 

(printout I " 
) 
(if(= ?cons3 4) then 

(printout t " 

CONS-3 : Constraint satisfied" cri f) 

CONS-3 :Statistically Active Constraint" cri f) 

CONS-3 : Quasi-Active Constraint" crlf) 

CONS-3 : Peak-Active Constraint" crlf) 

(Pifuzzify Geom 0.25 (nth$ I ?bestitem_inpuL~) 1.0) 
(Pifuzzify Cdr 0.005 (nth$ 2 ?bestitem_inputs) 1.0) 
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(Plfuzzify Fhc 0.05 (nth$ 3 ?bestitem_inputs) 1.0) 
(Plfuzzify Tcl 0.5 (nth$ 4 ?bestitem_inputs) 1.0) 
(Plfuzzify dth 0.000005 (nth$ 5 ?bestitem_inputs) 1.0) 
(Plfuzzify kw 0.5 (nth$ 6 ?bestitem_inputs) 1.0) 
(Plfuzzify Rp 0.005 (nth$ 7 ?bestitem_inputs) 1.0) 
(Pifuzzify Rs 0.005 (nth$ 8 ?bestitem_inputs) 1.0) 
(Plfuzzify df0.000025 (nth$ 9 ?bestitem_inputs) 1.0) 
(Plfuzzify Cdf 0.005 (nth$ I 0 ?bestitem_inputs) 1.0) 
(Plfuzzify Ff 0.05 (nth$ 11 ?bestitem_inputs) 1.0) 
(Plfuzzify Rpf0.005 (nth$ 12 ?bestitem_inputs) 1.0) 
(bind ?*cluster_number* (+ ?*cluster_number* I)) 
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