



































4.6(b) RTS on F1, where N is the number of elements on each
peak.

4.6(c) DC on F1, where N is the number of elements on each
peak.

4.7(a) ARTS on F2, where N is the number of elements on each
peak.

4.7(b) RTS on F2, where N is the number of elements on each
peak.

4.7(c) DC on F2, where N is the number of elements on each
peak.

4.8(a) ARTS on CF1, where N is the number of elements on each
peak.

4.8(b) RTS on CF1, where N is the number of elements on each
peak.

4.8(c) DC on CF1, where N is the number of elements on each
peak.

4.9(a) ARTS on CF2, where N is the number of elements on each
peak.

4.9(b) RTS on CF2, where N is the number of elements on each
peak.

4.9(c) DC on CF2, where N is the number of elements on each
peak.

4.10(a)RTS on F1 with window_size = 15, where VN is the
variance of the number of elements on each peak over ten
random runs.

4.10(b)RTS on F1 with window_size = 20, where VN is the
variance of the number of elements on each peak over ten
random runs.

4.10(c)RTS on F1 with window_size = 25, where VN is the
variance of the number of elements on each peak over ten
random runs.

4.11(a)RTS on F2 with window_size = 15, where VN is the
variance of the number of elements on each peak over ten
random runs.

4.11(b)RTS on F2 with window_size = 20, where VN is the
variance of the number of elements on each peak over ten
random runs.
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4.11(c)RTS on F2 with window_size = 25, where VN is the
variance of the number of elements on each peak over ten
random runs.

4.12(a) ARTS on F1 with KT = 15, where AN is the average
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runs.
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CHAPTER -1

1. Introduction

1.1 Decision Making in Engineering Design

Decision making is the principle task in engineering design [Starkey (1992)]. The advent of
new technologies, especially computer based tools, has helped designers to design a product
more efficiently. The new technologies are mostly useful in automating routine tasks
involved in the design process. Decision making is still very much left to the designers. The
ever growing competition in the market place and increasing expectation of the users are
adding many more dimensions to the design decision making process. Thus decision making
is becoming increasingly complex. With the advancement in technology the demography of
the work force is also changing. Designers with many years of experience in one area are
becoming an extinct species. When facing the realities of increasing complexity, some
designers with relatively less experience find decision making difficult. The designers often
face a hard dead line in which to produce an efficient design that has improved functionality
and reduced costs. The nature of the challenge varies according to the stage of a design. A
design process generally starts at the conceptual level, and that stage is known as
conceptual design. Conceptual design is very abstract and approximate, but determines a
framework for the design. This stage of design process involves knowledge from different
aspects of a design, and can be considered the most innovative stage in the design process.
Once the general framework is identified, the next stage is preliminary design. Preliminary
design is less abstract and more detailed than the conceptual stage. As a result of the

1



preliminary design, an approximate design solution is selected, and subsequently fine tuned
during the next detailed design stage. Detailed design involves rigorous design analysis that

fine tunes the preliminary design.

At every stage of a design process, the designer has to select one solution from a number of
alternatives [Smith and Browne (1993)], and thus an initial design is optimised. The design
process can be described as a divergent-convergent phenomenon. At the initial divergence
stage of a design many alternative solutions are generated. The designer then converges to
(selects) only one solution, and this stage of the design is known as the convergence stage.
The designer’s decision in one stage of a design can significantly influence the outcome of
the next stage of the design. A wrong decision at one stage of a design can eventually
produce a final design solution with low performance [Sherwin (1982)]. With the increasing
complexity in the marketplace, design decision making is becoming much more difficult.
Designers are often expected to evaluate a design from many different considerations and
then select the best suited solution. These criteria may be contradictory to each other. Some
of the criteria can be quantitative whereas others can be qualitative in nature. Time
available for the decision making is continuously reducing due to market competition. Thus,
designers often have to deal with a vast amount of information for decision making within a

short period of time which may cause cognitive overload.

Decisions made by a designer during the design process can be divided into three
categories: Fundamental, Intermediates and Minors [Starkey (1992)]. Fundamental
decisions are the most important decisions among the three. This category of decisions is
absolutely crucial for the success of the design project. The fundamental decisions
determine the principal components of a design which form a foundation. Other non

fundamental decisions are developed from this foundation to fine tune the design. The



intermediate and minor types of decisions are less important than the fundamental decisions.
Minors are relatively unimportant decisions that have little effect upon the design

performance. The minor decisions are most often concerned with design details.

Design can also be considered to represent a process that begins with a recognition of the
need and the conception of an idea to meet this need [Balachandran (1993)]. Thus, in design
decision making the main aim of the designer is to find a design solution that meets or
closcly meets the performance requirements of the design, while satisfying all the
constraints. That defines a concept of ‘optimum design’ as a design that is feasible and also
superior to a number of other feasible alternative designs. There are two ways to obtain an
optimum design: through an iterative process or by solving an optimisation problem. The
iterative process improves a design by repeated modifications. The design variables are
changed one at a time. Designers often use their previous experience to decide changes in
the design variables. They may easily improve a design involving few variables. If the design
involves many variables this can pose a great challenge to the human designer, especially if
he or she needs to considerv variable interaction. If the designer does not have prior
knowledge about thé design the iterative process can simply become a trial and error
exercise. Thus the iterative approach can be very time consuming and tedious. On the other
hand, the second approach (i.e. solving an optimisation problem) can simultaneously
determine all the design variables so as to satisfy a set of constraints and optimise a set of
objectives. To solve an optimisation problem a computable design model is required. Many
aspects of a design process can be represented by a formal model and are thus computable.
On the other hand, some of the required designer’s knowledge can be very abstract and
complex, and thus can not be formalised. A design therefore can involve computable or

quantitative formal knowledge as well as qualitative or abstract knowledge. In the absence



of a formal model of the design process or at least a partial model, the iterative approach

may often become the only choice.

Designers typically require much information for design decision making. Information is
collected from the laws of physics, | previous experiences, available literature, logical
deductions and designers’ intuition. Some of the information may be imprecise and
ambiguous, whereas some may be precise and structured. The designer often faces a
challenge to manipulate this combination of precise and imprecise information in order to
reach a decision. To achieve good decisions, the designers must be able to take an overview
of the possible alternative actions at any point in the design process. The designers can then
predict the results of more than one selected course of action. The predictions can be
heavily influenced by various other industrial factors and also the market environment. For
example, predictions about a design action can be affected by the impact of that decision on
the manufacturing organisation responsible for implementing that decision and on the end
user (that is the customer). The impact of the decision on the overall market (that is the
market environment within which the industry operates) also needs to be assessed. With the
dynamic nature of the industrial and market environment in many cases it becomes almost
impossible to predict the outcome of a decision very precisely. Design decisions that use
precise information from historical data, scientific evidence, etc. can be said to be virtually
certain. The decisions that involve designers’ knowledge, intuition and judgement involve a
certain degree of uncertainty. Uncertainty can also be caused due to the complex dynamic
interactions within the industry, between the industry and the market environment,
imprecision involved in the designers’ knowledge and vagueness involved in the designers’
language. It is observed that designers often use their higher level knowledge and
intelligence to perform the decision making even in the presence of high uncertainty

[Balachandran (1993), Tong and Sriram (1992), Suh (1990), Green (1992), Coyne et. al.



(1990)]. The research reported in this thesis tries to address some of the issues involved in
design decision making. The adaptive search manager is a systematic approach to provide
relevant information to the designer so that the decision making can be facilitated and

cognitive overload can be minimised.

The research reported in this thesis is intended to provide a framework for the development
of a design decision support system for the preliminary design stage of a gas turbine blade
cooling system. The system is developed to provide relevant information concerning
alternative design solutions to the designer. The information is utilised by the designer to
select one design solution for the cooling system. The preliminary design stage involves a
coarse model of the cooling system, so the selected design is approximate and would need
fine tuning in the detailed design stage. The objective of this exercise is to rapidly identify
the most interesting design direction [Parmee (1993), Parmee(1994)] that is then utilised in

the detailed design stage.

1.2 Engineering Design Decision Support

Chandrasekaran (1990) describes a design problem as a search problem in a large space for
objects that satisfy multiple constraints. An object in the design space is equivalent to an
acceptable value of a design variable. Only a very small number of objects in this space
constitute satisfying, not to mention optimal, solutions. In order to make design decisions,
practical strategies that radically shrink the search space are needed. A good design decision
support tool can assist a designer in the search space reduction. The first step towards the
search space reduction is to separate the information required for a design into two
categories: formal and non-formal. The information obtained from the laws of physics,
design catalogues, and design archives is structured and probably computable. Thus the

information can be considered as contributing towards formal knowledge. The designer’s



experience, intuition and judgement can be very abstract, unstructured and incomplete, thus

they constitute the non-formal knowledge.

It is observed that engineering designers can often handle formal and non-formal knowledge
separately. There are many numerical optimisation techniques [Goldberg (1989), Fonseca
and Fleming (1995), Srinivas and Deb (1995), Pham and Yang (1993a) and (1993b)] that
can be used for design decision making. Numerical optimisation techniques consider formal
knowledge only. Yang and Sen (1994) describe an interactive multiple objective decision
making procedure. The process describes a multiobjective preliminary design problem as a
non-linear vector maximisation problem. The technique defines the design model using
some computabie functions. The methodology 1s a learning-oriented interactive technique
that supports the designer in easily searching for preferred solutions following an adaptive
approach. The technique allows designer’s preferences to be progressively articulated with
the generation of efficient design solutions. Through designer interaction the technique also
makes sure that no unacceptabie solution is selected as a preferred design. Numerical
optimisation methods can provide the designer with multiple preferred solutions and thus
reduce the search space for the designer. Design decision making with non-formal
knowledge can be a very difficult task. Many attempts have been made to represent non-
formal knowledge as production rules [Balachandran (1993), Coyne et. al. (1990), Green
(1992), Tong and Sriram (1992)]. Production rules can then be used with a Knowledge
Based System to provide support in design decision making. Balachandran (1993) identified
the following major advantages of knowledge based systems:

a. Knowledge based systems provide a flexible environment which can

incorporate designers’ knowledge, heuristics and rules of thumb;
b. Knowledge based systems allow symbolic as well as numeric manipulation of

information; and



c. They have the ability to reason using the knowledge explicitly incorporated

within them.

Knowledge based systems model a design problem using qualitative knowledge. Thus the
system is capable of providing a qualitative evaluation of a design. The designer then uses
only the evaluation information in decision making and thus faces minimal cognitive
overload. Designs often require both qualitative (that can be considered as knowledge
based) and quantitative (that is numerical) computation. Thus a collaboration among
different types of programs (knowledge based, algorithmic, symbolic and numerical) written
in different languages is essential for effective design decision support [Balachandran

(1993)].

Knowledge based systems attempt to represent the qualitative knowledge involved in a
design process. Fuzzy Expert Systems [Durkin (1994)] have made the task easier by
modelling the knowledge using a language closer to that of the designer. Quality of the
decision support provided by a knowledge based system depends on the quality of
knowledge embedded in the system. Knowledge is formalised from expert designers using a
knowledge elicitation technique. It is observed that there is always a gap between the
designers' knowledge and the knowledge extracted from the designers using a knowledge
elicitation technique. The reason is that the designers think differently when they try to
express the strategy followed during a previous design decision [Dreyfus and Dreyfus
(1986), Bapi and Denham (1996), Bapi et. al. (1996)]. There is always a mismatch between
implicit thinking (when a decision is taken) and explicit thinking (when the designer tries to
express the reasoning behind the decision). Thus knowledge based systems can never

capture the complete knowledge. A knowledge based system along with other numerical



optimisation techniques can support a design decision making process, but the final decision

needs to be taken by a human designer.

The research presented in this thesis initially uses a numerical technique such as a genetic
algorithm and a hill climbing hybrid to identify multiple “good” design solutions for the
turbine blade problem. The hybrid system starts with many randomly generated possible
design solutions and this can be viewed as the divergence stage of the design process. Then
the search converges to multiple “good” design solutions. The sensitivity of each of the
“good” designs is calculated. A fuzzy expert system qualitatively evaluates these designs
considering the manufacturability, choice of materials and designer’s special preferences as
three different criteria. The multiple design options along with the relevant quantitative and
qualitative information are presented to the designer for the final selection. Thus the

divergent-convergent design process is completed with the designer’s participation.

1.3 The Adaptive Search Manager

Engineering design often involves several objectives. True engineering design solutions are
not necessarily the global optimum as described by some mathematical simulation with
respect to one criterion [Parmee (1994), Parmee and Denham (1994)]. Often designer
interaction is required to take many different criteria into account. In the case of multimodal
design problems there may be quite different design solutions that perform quantitatively
similar, but have large differences in their degree of multi-criteria satisfaction. Criteria may
include manufacturability, choice of materials, maintainability, reliability, specific customer
requirement, designer’s special preferences, etc., many aspects of which can be gualitative
in nature. Integrating all of these criteria into one comprehensive evaluation function is
difficult and at times misleading. If the criteria are quantitative in nature a multiobjective

genetic algorithm can be utilised [Goldberg (1989), Fonseca and Fleming (1995), Srinivas






ii) design solution sensitivity
1ii) design variable sensitivities
1v) constraints sensitivity

v) qualitative ratings of the “good” design solutions

ASM uses a hybrid system of an Adaptive Restricted Tournament Selection (ARTS) [Roy
and Parmee (1995) and (1996), and Roy et. al. (1996a)] based GA and a knowledge based
local hill climbing technique to identify multiple “good” design solutions (multiple sub-
optima) with respect to the amount of coolant mass flow. By identifying multiple “good”
designs the novel hybrid search technique considerably reduces the quantitative design
search space for the designer. Sensitivity information concerning the neighbourhoods of the
“good” designs is obtained using Taguchi’s methodology. The method is capable of
providing nearly accurate sensitivity information about the neighbourhoods provided that no
interaction between variables can be assumed within local regions. A local region is defined
by the tolerance on each dimension and Taguchi’s orthogonal matrix. The methodology
provides a computationally inexpensive way of calculating the sensitivities. The designs are
then qualitatively evaluated using a fuzzy expert system to ascertain qualitative ratings in
terms of manufacturability, choice of materials and designer’s special preferences. The
developed qualitative evaluation system utilises domain knowledge concerning inter-variable
preferences, intra-variable preferences and heuristics. Inter-variable preferences are
combined with intra-variable preferences using a concept of compromise [Roy et. al.
(1995a)]. The concept of compromise has been defined as “reducing the severity of the
negative effect of one variable on the final qualitative rating”. This novel knowledge
representation technique has helped to cover the entire design space with a small number of

rules.
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One part of the memory is static i.e. it holds the expert knowledge regarding several
qualitative aspects of the design thereby providing a qualitative model of the design
problem. The other part is dynamic retrieving information during the adaptive search design
process. The system interacts with the models of the design environment that evaluate every
single design solution both quantitatively and qualitatively. An Adaptive Search Manager
interface has been developed using the Xview facility in the UNIX system. The interface
provides flexibility to change the boundaries of the design variables and that of the
constraints at the beginning of a search process. The design manager is used as a decision

support tool where the final selection of a design option is left to the designer.

Information about the “good” design solutions is then presented to the designer. The overall
objective is to provide as much relevant information as possible to the designer for the
decision support. The decision support utilises the knowledge of many experts and at the
same time can enhance the knowledge of some inexperienced designers. The presentation of
relevant information concerning the “good” designs also helps in minimising any cognitive
overload on the designer. The approach developed in this thesis is expected to result in the
achievement of optimal engineering solutions [Parmee and Denham (1994), Parmee et. al.

(1994)] at the preliminary design stage.

1.4 Overview of the Thesis

The thesis is divided into eight chapters. This chapter introduces principal issues in
engineering design decision making. Then, Chapter 2 narrates the development of a
preliminary design model of a gas turbine blade cooling system. The physics and the domain
knowledge involved in the development are also elaborated. The model has been developed
in collaboration with Rolls Royce plc. The chapter describes all the terminology used in the

model development, the inputs and outputs of the model and finally the constraints on the



model. A step-by-step description of the model development describes the physics and the
iterative process involved in the design. Some parts of the model reflect design practice (not
necessarily Rolls Royce’s current practice) present in the industry. The chapter concludes

with some insight into the nature of the model in unconstrained and constrained situations.

The adaptive search manager uses an adaptive search technique to partially represent the
divergent-convergent phenomenon in the design. The adaptive search technique is a hybrid
comprising of a Genetic Algorithm based search and a knowledge based local hill climbing
method. The type of the genetic algorithm used is known as a multimodal genetic algorithm.
Chapter 3 introduces multimodal genetic algorithms. The chapter starts with a brief
description of genetic algorithms including the basic principles and the theory. Then the
chapter describes how a variant of the genetic algorithm can be used to locate multiple sub-
optima in a multimodal function. The chronological development of multimodal genetic
algorithm is discussed. The discussion identifies the limitation of existing multimodal genetic
algorithms in the case of real life problems. Characteristics of real life problems are

discussed and the challenge presented by real life problems is defined.

Chapter 4, describes a novel multimodal genetic algorithm that is suitable for real life
problems. The developed technique is known as adaptive restricted tournament selection.
The chapter describes the algorithm and the different issues involved in the technique. A
comparison of the technique is performed with two other recent multimodal genetic
algorithms. The comparison is performed on test functions and the results are presented and
discussed. A further analysis of the developed technique is performed to understand the
effects of a critical parameter on the performance of the technique. Results from the analysis
are presented and discussed. Next, the adaptive restricted tournament selection technique is

applied to the turbine blade cooling system design problem in order to identify multiple
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“good” design solutions. A design is considered “good” if the performance of the design is
better than similar (that is closer in terms of the design variables) designs. The chapter
describes in detail the steps involved in the application. The characteristics of the technique
that help to bandle the issues involved with real life problems are discussed. Some
improvements that are adopted in the search technique to reduce the total design time are
also explained. Knowledge gathered during the search process and the designers’ prior
knowledge concerning the design variables are utilised by a Knowledge Based Hill Climber
to fine tune the important design variables of the “good” designs. The chapter describes the
rationale behind using such a hill climbing technique along with the multimodal genetic
algorithm based search. The principle and the methodology behind the hill climbing
technique are presented. This chapter explains how the hybrid of the multimodal genctic
algorithm based search and the hill climbing works for the cooling system design problem.
Once the hybrid search technique identifies several “good™ designs, further fine tuning of the
designs are performed using a stochastic local hill cimbing technique. The stochastic hill

climbing algorithm 1s also presented in the chapter.

The “good” designs are next analysed for design sensitivity information. Chapter 5 describes
the sensitivity analysis method developed for this research. The analysis is performed in a
neighbourhood of a design solution. Taguchi’s orthogonal matrix and the tolerances on the
design variables define the neighbourhood of a design solution. It is assumed that the
neighbourhood can be approximated as a small region where there is no or very little
interaction among the design variables. Taguchi’s methodology, a technique for
experimental design, is followed to calculate three categories of sensitivity information:
design solution sensitivity, design variable sensitivity and constraint sensitivity. The use of
Taguchi’s methodology enables the calculation of sensitivity information with a very small

number of the cooling system model evaluations. The chapter starts with a brief
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introduction to design of experiments and Taguchi’s technique. The principle behind
Taguchi’s orthogonal matrix is discussed. The chapter then describes the development of an
orthogonal matrix that is suitable for the design problem. The use of this orthogonal matrix
to define different categories of sensitivity information are presented in the next section. The
neighbourhood of each design solution is checked for interaction. The sensitivity
calculations are accepted only if there is no significant interaction between the design
variables within the region. The sensitivity information is close to reality if the minimal
interaction assumption is correct. In order to validate this notion, Taguchi’s methodology
based sensitivity calculation result is compared with the sensitivity analysis using an

exhaustive search. The comparison results are presented and discussed.

Chapter 6 presents the qualitative evaluation of the design solutions. The “good” designs
are evaluated for different qualitative criteria: manufacturability, choice of material and
designer’s special preferences. The evaluation technique uses a fuzzy expert system to
obtain three qualitative ratings (that is three crisp numbers) for the three criteria. The
chapter introduces the concepts of fuzzy logic and fuzzy expert systems. Different
components of a fuzzy expert system are also discussed. A description of the Qualitative
Evaluation System developed for the design problem is also given. The chapter explains
different components of the system and discusses the principal issues involved. A novel
knowledge representation technique is developed that guarantees the evaluation of any
possible design solution with a reasonably small number of rules. Knowledge is first
separated into several categories and then integrated using a concept of compromise. The
chapter provides a detailed description of the knowledge representation technique and also
discusses the motivation behind the approach. The qualitative evaluation system uses
FuzzyCLIPS, a fuzzy logic version of CLIPS (developed by NASA). FuzzyCLIPS is a fuzzy

expert system shell from National Research Council, Canada. The terminology and syntax
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used in the examples follow FuzzyCLIPS standards. The chapter also discusses how to
integrate the FuzzyCLIPS based qualitative evaluation system with the adaptive search
technique mentioned before. Finally, the chapter is concluded with the description of the

validation procedure for the qualitative evaluation system.

The adaptive search manager identifies several “good” design solutions, and then retrieves
some additional quantitative and qualitative information about the designs. The muitiple
“good” designs along with the additional information are presented to the designer through
an adaptive search manager interface. This information supports the designer in design
decision making. The adaptive search manager is executed with different conditions (that is
unconstrained and constrained) and with different settings for the design variable ranges and
the constraints. Repres'entative results from these experiments are reported in Chapter 7. It
is difficult to validate a system involving real life problems. The resuits from the experiments
are validated by an expert and a user from Rolls Royce. A questionnaire (Appendix I) is
prepared to assist in the validation. The chapter concludes with a description of the

evaluation procedure adopted for the adaptive search manager.

The final chapter, Chapter 8, provides a detailed discussion on the results reported in the
previous chapter and also on the techniques developed in this thesis. The chapter also

presents the conclusions from the research and the scope of future research.

The thesis assumes that the reader has some preliminary background in engineering design,
genetic algorithms and fuzzy expert systems. An attempt has been made to briefly introduce
engineering design decision making, genetic algorithms, Taguchi’s methodology and fuzzy
expert systems before or in the relevant chapters. For a detailed study on any one of these

topics a comprehensive list of references is provided in the thesis.
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CHAPTER -2

2. The Development of a Preliminary Design Model of a

Turbine Blade Cooling System

2.1 Introduction

In order to maximise gas turbine engine performance and efficiency, turbine blades need to
operate in an environment where the gas temperature is as high as possible. This
temperature often exceeds the operational limits of the turbine blade materials. To ensure
component integrity whilst operating at high gas temperatures blade materials are cooled to
safe operating temperature levels by passing relatively cool air through them and, in more
extreme cases, over them in the form of films. A small portion of the compressor exit
airflow is utilised to cool the blades (Figure 2.1). The temperature of this cooling air
depends on the compressor pressure ratio and on the flight Mach number and temperature.
The sacrifices for the blade cooling include loss of work (and some loss of efficiency) due to
the portion of the air taken from the compressor exit. Thus one of the objectives of the
Adaptive Search Manager (ASM) is to try to minimise the amount of airflow (hence
referred to as coolant flow) required for the blade cooling. In general, however, these losses
are much smaller than the gains associated with operating the engine at much higher turbine

inlet temperature than would be possible without the blade cooling.









A preliminary design model of the cooling system has been developed in collaboration with
Rolls Royce pic. (Bristol, UK) and Plymouth Engineering Design Centre. The model is
developed considering one dimensional, single pass coolant flow. This represents a
computationally inexpensive mathematical model of the blade cooling system. The model
includes a film cooling mechanism (Figure 2.2) and involves twelve design variables. This
Turbine Blade COoling system Model (TBCOM) also uses scveral constants known as
design parameters. The values of the constants have been set by the design experts from
Rolls Royce plc., but may not represent the current practice in the company. TBCOM also
includes three non-linear constraints, ASM utilises the model to provide quantitative

evaluation of the cooling system performance.

This chapter explains the terminologies used in the model development, describes step-by-
step development of the model, and finally gives some light on the nature of the model in

unconstrained and constrained situations.

2.2 Nomenclatures used in the Model Development

The list of nomenclature used in the model development is presented below. Some of the
symbols are standard engineering terms, but others are specific to this thesis. Please refer to
Figure 2.3 for the general arrangement of the coolant flow with film cooling.

A: Cross sectional area of passage

Cs  Coefficient of discharge

Cp: Specific heat at constant pressure

C..  Specific heat at constant volume

d: Hydraulic diameter

dth:  Wall thickness

h: Heat transfer coefficient









hpc:  high pressure compressor
r: radial passage

W wall

2.3 Constants used in the Model:

Like many other design models TBCOM involves several constants known as design
parameters. The design parameters are selected by experts from Rolls Royce from their
experience and knowledge in the area. This helps to limit the complexity of the model by
fixing the values of some variables. One such example is the number of film holes

(designated by Ny). The design parameter values with their respective nomenclature are:

1. Heat transfer coeff. (gas side), h, = 3000.0 W/ m? K
2. Gas side temperature, T, = 1500.0 K
3. Ratio of specific heats, vy = 1.36

4. Mass flow (high pressure compressor), Wy, = 84.85 Kg/s

5. Radial cooling hole exit pressure, Pc; = 460000.0 N/m?

6. Number of blades, N, = 78

7. Wall temperature (gas side) for initial calculations, Ty,= 1250.0 K

8. Radial passage length, ;= 0.0406 m

9. Specific heat at constant pressure, C, = 993.0

10. One of two factors for heat transfer coefficient, F = 0.01855

11. Gas constant, R =287.0

12. Distance from film cooling hole exit/Effective slot width of film, Xg= 10
13. Mach Number, Mach = 0.6

14. Number of film holes, Ny = 30

15. Initiai outside temperature, Twe = 1500.0 K
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16. Maximum radial passage area, A, < 2.75E-05 m’
17. Bounds on radial coolant flow heat transfer coefficient,

100.0W / m*K{h_(4000.0W / m*K
18. Check on metal temperature, 1000.0K(T,,(1500.0K

19. For the film cooling section, heat transfer coefficients are the same for the film side
and the gas side, that is:
hf = hg

20. For the film cooling section, the perimeter ratio, Ry= 1.0

2.4 Nomenclature for the Model Input and Output

Twelve design variables are input to TBCOM and there are four outputs. The principle
objective is to mimimise mass flow (designated by W,,) through the radial passage of the
blade. Constraints are set on the other three outputs, that is each output should lie within a
predefined range of values. The nomenclature for the inputs and outputs are as follows:
INPUTS:
1. Type of geometry, Geom
There are three discrete types of geometry involved: plane, ribbed and pedestal.
2. Coefficient of discharge (radial passage), Cy
The value of Cg4 varies within a range according to the type of geometry.
3. Heat transfer coefficient factor (radial passage), Fhc
The value of Fhc varies within a range according to the type of geometry.
4. Inlet temperature, Tc, (K)

5. Wall thickness, dth (m)

6. Thermal conductivity of the blade material, k., (wK/ m )

7. Pressure ratio (between inlet and outlet of radial passage), R,
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where R, = Pc, / Pcs.
8. Perimeter ratio (radial passage), R,
where R =S,/ S, .
9. Film hole diameter, df (m)
10. Coefficient of discharge (film hole), Cy¢
11. Heat transfer coefficient factor (film hole), F¢
12. Pressure ratio (film), Ry

where R;s = (Pc, - Pcy) / (Pe, - Pey) .

QUTPUTS:
1. Coolant mass flow (radial passage), W.. (Kg/s)
2. Coolant mass flow (film hole), W ¢ (Kg/s)
3. Metal temperature (gas side), Tw, (K)

4. Metal temperature (film side), Twr(K)

2.5 Model Development

The model is developed considering coolant flow through the radial passage of a turbine
blade and the flow through film holes. The coolant air passes through the film holes and
spreads over the blade as a thin film of cooler air, and thus provides additional cooling to
the blade. The model development uses the basic principles of physics, but some of the
design parameters are set from domain knowledge. This section describes the step-by-step

procedure followed to establish a relation between the input variables and the outputs.

2.5.1 Calculation of the relationship between the Mass Flow and the Pressure Ratio
The first task in the model development is to establish a general relation between a fluid

mass flow (that is the cooiant flow in this case) and the pressure differential that drives the
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fluid. The relationship between mass flow and pressure ratio for an idealised, steady, one

dimensional, compressible flow can be calculated as follows:

The steady flow energy equation (SFEE) may be expressed as:

2 2
Q'+h1'+%+Z|=W'+h£+%+Zz ..... (2.1)

where,
Q' = heat transfer
W' =work done
h; " and h; * = enthalpy
V, and V; = velocity
z, and z; = energy due to elevation
If the flow 1s brought to rest isentropically over an infinitesimally small distance then,
dQ'=dW'=0
dz = negligible
V,=0 (thusdV=1YV,)
dh ' =C.dt
where C, = specific heat at constant pressure
t = static temperature

Hence the SFEE (equation (2.1)) reduces to:
VZ
C,dt+ d(TJ =0 . (2.2)

Integrating equation (2.2) gives:

2
C, —t2)+%=0 ..... 2.3)

For an adiabatic process T, = T, = t,, where T, and T, are stagnation temperatures (that is

the summation of static and dynamic temperatures).
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Substituting T for t, in equation (2.3) and rearranging gives:
0.5
vo=2c(n-5)] 2.4)

An expression for velocity can also be obtained from mass flow continuity as:

W=pd¥ (2.5)

where, p = density of the coolant
A = flow cross sectional area

And from the perfect gas relationship:

P
== 2.6
P (2.6)

where, p = static pressure
R = universal gas constant
From equations (2.5) and (2.6):

v WRt

Ap
Equating equations (2.4) and (2.7), and generalising V), T, and t, by V, T and t in equation
(2.4):

WRt

e c(r-o1" L (2.8)

Rearranging the equation (2.8) in terms of temperature ratio:

Wj;/? ) [zc,, G _ 1)]0'5 ..... 2.9)

G, is a function of the universal gas constant, R; where R can be expressed as:
R=C,-C,

Substituting for the ratio of specific heats, y = C,/C,, gives:

Substituting for C, from equation (2.10) in equation (2.9) gives:
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RE_[ake (7 )

Rearranging the above equation gives:

Pl;f {R(iy_ngj(%_]ﬂm ..... @11

Further, for an adiabatic process:

£y = const.

ol

Therefore, using the perfect gas relationship from equation (2.6), gives:

y-1

T (P
L (_J £ (2.12)
L \p

where, P = stagnation pressure

Substituting for T/t in equation (2.11) gives:

0.5

wiT _| 2y (EJT (£J7_1 213)
Ap R(y -D\p P
Further,
WT WAT(PY'
AP 4p \p
=)
Ry -D\p p F
Hence,
wiT _| 2 ]_(EJTY [EJ? ..... (2.14)
AP Ry -1) 14 P

This ideal relationship can form the basis for a more general one which may be expressed in

terms of two arbitrary stations as follows:
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0.5

-y =
WNT 2 | (RY(RY (2.15)
AC,P | R(y =1) P, F

[N

where, P\/P; is the pressure ratio which controls the system mass

flow, W.

2.5.2 Calculation of Blade Temperature Considering Radial Coolant Flow

The basic equations that represent blade heat transfer and coolant flow are derived from a
‘steady-state’ heat balance and from momentum and continuity considerations. Consider the
heat flow to and from an elemental length & of a blade a distance / from the root of the
blade. As the coolant passes up the blade it increases in temperature which reduces the
cooling effectiveness, so that the blade temperature increases from the root to the tip. There
is some conduction of heat along the blade to and from the small element &/ due to this
temperature gradient along the blade. Turbine blades are generally made of low thermal
conductivity alloys thus the conduction term would be small and is therefore neglected here
[Cohen et. al. (1987), and Hill and Peterson (1992)]. The heat balance equation for the

radial passage that also includes the effect of matenals 1s given by:

kw Sgr + Scr
thgr]r(‘r[:g' - ng) = dth 2 [r(ng - Tm:) = hchcrlr(]:vc - TC) = Wchp(TCS - Tcl)
..... (2.16)
An initial value of h.,can be calculated from:;
S, 7. -T
h,=h g (—g—i) ..... (2.17)
¢ SC’ (TWC‘ - Tc)
And an initial value of W, can be calculated as:
W;ipc
W, =0.003x N (2.18)

b

This enables the flow cross sectional area (radial) to be calculated as follows:
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e

A= (FF x [LOSJ[ C*BDM ..... (2.19)
H h,,

where,
FF = Fx Fhe
2978E - 03 x T¢**

k= 00y (2.20)

1+( . ]
Tc
~ 1488E - 06 x Tc'? @.21)

Te+1104 77 '

(for imitial value assume Tc¢ = Tc,)

Using the equation (2.15) and the driving pressure ratio in the radial passage, coolant mass

flow, W,,, can be recalculated:

2 I+y 03

WL_,=A"C"PCI 2y Pc, 7_ Pe )| (2.22)
Ic, Ry -D|\ Pc, Pc,

And hence h,, is recalculated as:

8
hc,zFFx( ’fwjx@f;) ..... (2.23)
T &

Equation (2.23) lead to the calculation of metal temperature (gas side), T.,. Rearranging the

equation (2.16):

[1+H2—H1>‘H2)T +(Hl— A1 ]Tcl

HI+H3)*® H1+ H3
T, = e (2.24)
1+ H2 - +
Hl+H3 Hl+H3
where,
He—te (2.25)

hy (S, /S.,)
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Step Number

Task

Equation

Comment

Step 1

estimate W,

2.18

based on the limiting value of flow
off-take  from the engine
compressor.

Step 2

estimate T,

based on material property
limitation, suggested 1500.0 K.

Step 3

calculate h,,

2.17

Step 4

calculate A,

2.19

check the value,

if within the limiting value of A,
go to Step 5. If not within the
limiting value of A, then W, =
W, * 0.99 and go back to Step 4.

Step 5

calculate W,

2.22

Step 6

calculate h,

2.23

compare h., value from Step 6
with Step 3,

if within tolerance then proceed to
check whether h., lies within the
acceptable range, if yes then
proceed to Step 7 otherwise reset
the T., and h. values and go to
Step 4.

If the wall temperature calculation
reaches a steady state then only
accept, if not equal then go back
to Step 4.

Step 7

calculate T,

224

check the value,
if within the acceptable limit then
accept. If not within the limit and
if W, has not been changed
previously, change W,

W =W, * 1.01.

Step 8

calculate Tc

2.30

Step 9

recalculate k

2.20

Step 10

recalculate p

2.21

reset Ty, and h., values and go to
Step 4. If the wall temperature
calculation reaches a steady state
then only accept.

Table 2.1: The cooling system design procedure used in TBCOM.

30




A

H2 — crcr

_ZPIQ,CF .r(2.26)
S,=3545x4, . (2.27)
[, = 0.0406(the value in meter) .. (2.28)

k 1 1

= = —|l+=! ... 2.29

dhxh 2| S, (2:29)

A

cr

From equations (2.16), (2.25) and (2.26) Tc can be recalculated as:

_mn
Hl

Tc (L, -To)+Te, .. (2.30)

where the temperature balance along the radial passage length is approximated as:
Tc; - Tey = 2(Te - Tey)
1.e. the approximation assumes the temperature rise in the second half of passage

length is equal to that in the first half.

The values of W, and T, are calculated following an iterative design process. The cooling

system design procedure used in the TBCOM is described in Table 2.1.

2.5.3 The Introduction of a Film Cooling Mechanism to the Model

A film cooling mechanism is used in order to achieve a more effective cooling in the turbineA
blade. A portion of the coolant passing through the radial passage 1s bled through film holes
and provides a film of the coolant over the blade. This film is cooler and thus enhances the

cooling effect.

The coolant temperature (Tc), as calculated from the previous section, provides the film

hole entry temperature of the coolant, thus:
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Te,=Te . 2.31)

The total film cross sectional area is calculated from:
1 )
A, = Nfzﬂ(df) ..... (2.32)

And the pressure ratio across a film hole:

Pc, Pc, Pc [Pc
Pc, Pc, Pc

B - Pc,

Hence, referring to equation (2.22), the coolant flow through the film holes, W.r can be

calculated as:

, 1oy A\ 05

= it d
W, A,C, Pc, 2y Py v _(Pe)ym oyl (2.34)
Tc, R(y =1)| \ Pc, Pc,

The cooling side heat transfer coefficient, h.r is determined as:

’ k W::f().s
h, = FF'x F 2 (2.35)

where, k and p are evaluated from equations (2.20) and (2.21) with Te = (Tc; + Tcs:)/2.0,

and for the initial calculation Tca = Tc;,

FF’ is a constant and FF' = Fyx F.

Then, intermediate metal temperature (along the film hole), Tusy 15 calculated:
Hlx HZJ

A 7 L
Hl+H3)* Hi+H3)
ATxH2 _H=x 13

(1+H2—

wfi

1+ H2 -
Hl+H3 HI+H3
where,

-t (2.37)
i (Sg,/Sc,) ..... .
h_.S 1

H2=-ZL9/ ..(2.38)
2chCp

Scf B Nf XTTX df ..... (239)
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I, =50xdf . (2.40)

dth, =dthf20 (2.41)
k 1 1
H=—>— x—|1+—= (2.
dth, <, x 5 5 (2.42)
S,

This enables the temperature of the coolant at the film cooling exit to be calculated:

| 2H,

Tc., =
3 Hl

(T, -Tp)+Te, .. (2.43)

An iterative calculation follows to determine the final value of Tcs. In order to determine
the blade wall temperature on the film-cooled side, Ty, film cooling effectiveness, g is

calculated as:

4Cy ) (5
6,=066-00092x| RWAx——x X, | x|—=—| .. (2.44)
W, Ic,
where,
0.5
RWA = Mach x Pc{ Y ] ..... (2.45)
Rxt,
y -1 2
t,=T,/11.0+ 20 x Mach ....(2.46)

This allows the calculation of the film temperature, Ty, as follows:

I,=T,-¢,(L,-Tce,) .. (2.47)

And finally, the blade wall temperature downstream of the film, Ty is calculated from:

2
(1+H2—2”1XH2J1} +[H1— Al ]Tcl
+

H3 Hl+ H3
T:qf = Hl XH2 Hl XH3 ..... (248)
1+ H2- +
Hl+H3 Hl+H3
where,
h,,
Hl = h” .....(2.49)
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o (2.50)

H3 =
dth x h,

it is assumed that S,¢/S.c= 1.0 and H2, S.; and I, are
calculated as per equations (2.26), (2.27) and (2.28)

respectively.

2.5.4 Design Model Constraints

There are three constraints involved in the design model primarily to ensure the designs do
not cross material and flow limits. In order for a design to be acceptable the following
constraints must be satisfied:

1. The blade wall temperature on the gas side, 1200.0K(7,, (1300.0K .

2. The blade wall temperature on the film side, Tyr< 1300.0 K.

3. The flow ratio, W./W.> 0.8.

2.6 Nature of the Model in Unconstrained and Constrained Situations

TBCOM is a computer model of a multidimensional real life design problem. Although
some of the design parameters are set by intuition and experience there is little prior
knowledge concerning the nature of the problem. In order to better understand the problem
domain and to aid engineering judgement concerning the results achieved it is desirable to
have some idea of the nature of the problem. This also helps to define the search

methodology to be used with the model.

In an attempt to obtain some information regarding the shape and the nature of complexity
involved in the model, a few designs or points are selected from different regions of the
total design space. The design space is defined by all possible combinations of the design

variables. Investigation into the model is performed by passing hyperplanes through the
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points. In each case two design variables are varied within their acceptable ranges while
keeping other design vanables constant. Figures 2.4 to 2.6 exhibit the contour plots from
three different hyperplanes. The figures show both unconstrained and constrained fitness
situations, where the fitness is defined as the inverse of the coolant mass flow. The
constrained fitness is implemented using a penalty function (defined in the next chapter).
The hyperplanes can only provide some insight into the multi-dimensional problem. It is
observed that the shape of the constrained fitness plots can be different from the
unconstrained one. This is mainly due to the use of the penalty function. The type of
geometry (Geom) introduces discreteness in the design space, apart from that the presence

of non-linearity is also observed.

2.7 Verification of the model

TBCOM is verified by an expert and a user from Roll Royce. The checking mainly
concentrates on the equations derived from the laws of physics. The model also involves
certain amount of designers’ experience as values of some design parameters. In order to
verify whether the design parameter values are representative several design solutions are
verified by the expert and the user. They check whether the combination of design vanables
(the combination represents a design solution) and the fitness (that is the inverse of coolant
mass flow) correspond to their understanding about the problem. The design parameter
values are changed to fine tune the model till the expert and user are fully satisfied of the

results of TBCOM.

The next chapter introduces several existing techniques to obtain multiple solutions from a
multimodal fitness landscape. The developed technique, a hybrid of a GA based search and
a hill climber, which addresses some of the issues with real life problem optimisation and

search is described in chapter 4.
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CHAPTER -3

3. Identification of ‘good’ solutions using Genetic Algorithms

3.1 Genetic Algorithms

Genetic Algorithms (GAs) [Goldberg (1989)] are adaptive computation methodologies
which may be applied to solve search and optimisation problems. They are based upon
genetic and evolutionary principles of biological organisms. Biological organisms maintain
their presence in the world over many generations by ‘evolving' or reproducing new
members while some from the existing population die to make room for the younger. This
natural selection is performed with a very simple rule of nature, 'survival of the fittest'.
Charles Darwin and Alfred Wallace in 1858 independently presented an idea of natural
selection. The idea was simple, elegant, and offered a scientific explanation for the

complexity, diversity and rules of nature.

Darwin observed that living organisms generally reproduce many offspring but the
population tends to remain constant rather than growing exponentially. He noticed the
diversity of the organisms present in a population and concluded that despite the presence
of natural forces such as resource limitations, disease and predation, some organisms perish.
Only the organisms best suited for the environment can survive and proceed to the next
generation. These fitter organisms reproduce or 'evolve’ new members and thus pass on
their 'good’ characteristics (i.e. those that helped them to survive) to the next generation.

This natural phenomenon helps the organisms to adapt with the change in environment and
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survive. This also helps to produce, over generations, the best suited offspring for an
environment. The evolution by natural selection works by the accumulation of small positive

changes in the population.

Later research in genetics has shown that DNA stores all the 'instructions' that define
different characteristics of an organism. Thus, there is a mapping between the organism's
genetic materials (genotype) and its physical characteristics (phenotype). Physical
characteristics of an organism can also be influenced by the environment. Sometimes the
relationship between the genotype and phenotype can be very complex. The part of DNA
that produces a characteristic is called a 'gene’ and the possible alternatives that can occur in
the section are known as the gene's 'alleles’. For example, there is a gene for hair colour with
black, brown and white alleles. A number of DNA strings are stored in a 'chromosome’

within any living cell.

Parts of the parents’ DNA combine to form new DNA for their children. Thus
characteristics are passed from parents to children. ‘Good' features of parents can be
brought together in a single individual by this ‘crossover' of genetic material through sexual
reproduction. The opposite phenomenon is also true: 'bad' features can come together while
the 'good' features are not transmitted. However, the 'survival of the fittest' rule of nature
favours the survival of children with the 'good' characteristics and enables them to
reproduce, thus passing on the combined 'good' characteristics. Children can also have
unique characteristics that are totally different from their parents. These unique
characteristics can come from a sudden change in the child's DNA. The reasons for this
phenomenon can vary from some errors in the natural process, to environmental effects.

This process of sudden change is termed 'mutation’.
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The very brief introduction to natural evolution offered above highlights features of natural
selection and genetics that are a direct motivation for evolutionary computation. In reality,
nature 1s very complicated and many things are still unknown. The intention is to glean
some ideas from nature and utilise them to solve search and optimisation problems. One
such attempt are genetic algorithms (GAs). Genetic algorithms use a direct analogy of
natural phenomenon. GAs work with a ‘population’ of organisms or ‘individuals', each
representing a probable solution to a given problem. The problem that needs to be solved
serves as the environment. To apply GAs to a problem, two things are essential: a genetic
coding for the problem variables and a measure of fitness implemented by a mathematical
model of the system called 'fitness function'. The fitness function assigns a numeric value to
each solution according to its performance. All possible solutions to the problem describe a
‘search space’ that has to be investigated by GAs. Fitter individuals (represented by
parameter sets) are allowed to survive and reproduce into the next generation by 'crossover'
and 'mutation’ allows the introduction of random change. New individuals (children) of the
next generation share some features taken from each "parent’. The new generation contains a
higher proportion of the characteristics possessed by the good members of the previous
generation whilst lower performance individuals have a lesser probability of survival. As a
result, over many generations, good characteristics are spread throughout the population,
being mixed and interchanged with other good characteristics as they go. By favouring the
fitter individuals, the most promising or interesting areas of the 'search space’ are explored.
This ‘exploitation’ of the good features results in increasingly fit individuals. It is also
observed that bad features can combine to produce good features. Good features can also
be created by random mutation of the parameter sets which allows the discovery of
previously unknown good features. Thus, at least during the initial stages of a search the

GA goes through an 'exploration’ phase. An efficient GA will converge to an optimal or
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near optimal solution to the problem. If the problem is multimodal (i.e. more than one
optimal solution exists), the GA can be modified to identify the most, if not all, of these
solutions. The ‘power” of the GA comes from its dynamics which result in robust behaviour.
In general GAs can quickly identify solutions close to the global optimum. On the other
hand, some specialised techniques suitable for particular problems can out-perform GAs by
identifying the global optimum quicker. For example, a classical hill climbing algorithm may
identify the optimum quicker than GAs on a unimodal or monotonic search space. Often a
hybrid of GAs and a classical search or optimisation algorithm may perform better than

either working alone.

The next section discusses the basic principles of GAs and gives a brief summary of the
present theoretical understanding of the process. GAs have been applied to many different

areas of engineering, science and economics.

3.1.1 Basic Principles

GAs are used to find the optimum solution (or solutions) to a problem. There are many
types of genetic algorithms, each suitable for a separate category of problems. The most
commonly used simple GA can be represented as shown in Figure 3.1. The simple GA starts
by randomly selecting an initial population of probable solutions. The GA iterates for a fixed
number of generations or until it satisfies a stopping criterion. During each generation, the
simple GA performs a fitness proportionate selection. The selection mechanism follows the
‘survival of the fittest’ law to determine which of the chromosomes of the current
population are represented in the following population. The next operation is ‘crossover’,
generally the principle genetic operation of the GA. The crossover operator combines the

genetic information of a pair of parent chromosomes to produce a pair of offspring
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chromosomes (children). The proportion of the population selected for ‘crossover’ is
known as the crossover rate or crossover probability. Mutation is the second genetic
operator of the GA. The mutation operator acts upon single chromosomes chosen at
random from the population. The operator randomly selects a position within the
chromosome, and the allele value of the gene at the position is altered. The proportion of
the total number of genes in the population selected for mutation is known as the mutation
rate or mutation probability. Mutation probability is generally kept much smaller than the
crossover probability. Also there are two prerequisites for a GA application: defining a
suitable ‘coding’ (representation) and a fitness function for the problem. The principle issues

involved in a GA operation are described as follows.

3.1.1.1 Coding or Problem Representation

GAs are expected to identify the best possible solution or solutions to a problem. It is
assumed that a potential solution to the problem can be represented as a set of parameters
or problem variables. These parameters represent genes and are combined to form a string
of values which represents a chromosome and describes a probable solution to the problem.
Most GA applications use fixed-length, fixed-order bit strings to encode a probable
solution. The usc of a binary alphabet for the string is most common for a number of
reasons. The first reason is ‘historical’, GA research started with the binary representation
and later others followed the same path. Many people are also comfortable in using the
binary representation simply because much of the GA theory and research finding are based
on the representation [Mitchell (1996)]. Other possibilities include vectors of real numbers
[Davis (1991)], or using an alphabet of many characters. The research reported in this thesis
uses a fixed-length binary chromosome; but variable-length chromosomes are appropriate

for many problems [Goldberg et. al. (1993)].



For some problems, a simple parametric representation may not be sufficiently flexible to
fully describe a possible solution. For example, consider the problem of designing the most
cost effective design for a transport system. The solution to this problem may be bus
services, rail services or flights. The representation of each of these transport systems
requires a different set of parameters, and thus a simple parametric description is not
applicable for this design problem. The structured GA (stGA) [Dasgupta and McGregor
(1991)] utilises redundancy within the chromosome to allow search in such problem
domains. The chromosomes of the stGA represent hierarchical structures from which the
parameter sets are derived. The hierarchical structure of the chromosome can handle a
combination of discrete and continuous variables. High level genes are mostly responsible
for discrete design decisions, activating or deactivating lower level genes accordingly. The
lower level genes can represent another discrete variable or a continuous variable. The leaf
nodes of the hierarchical structure provide a parametric description for each of the design
solutions. Thus, generally the higher level genes determine the overall description of the
solution whilst the lower level genes determine the parameter set that describes a particular
example of the overall structure. For example, in the above transport system design
problem, a single high level gene could determine which of the transport systems the
chromosome would describe. A set of lower level genes would describe relevant parameter
set for the selected transport system. The hierarchical structure shown in Figure 3.2, for
example, can be encoded by the chromosomal structure, stC = (pi, p2, P11, Piz» P13, P21» D225
Pi21, P122, P21, P21z, P2ia). The two highest level genes (py, p2) determine which of the
second level genes are active and contribute to the final parameter set. Similarly, the second
level genes determine which parts of the third level genes are active. The turbine blade
problem is encoded using a structured chromosome and thus it uses the stGA approach. If

the hierarchy is complex and multi-level, there can be very high amount of redundancy in a
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structured chromosome. The high redundancy can hinder the efficiency of stGA search

[Parmee (1996)].

The representation of a problem in the chromosome is referred to as the 'genotype’. A
fitness function evaluates the information contained in the chromosome and provides a
fitness rating, referred to as the 'phenotype’ of the problem. The mapping between the

genotype and the phenotype is crucial for the success of a GA.

3.1.1.2 Fitness Function

Application of GAs to a search or optimisation problem requires that a fitness function be
used to evaluate the individual solutions. The fitness function can be considered as a model
of the problem. The fitness function may involve just one criterion or a combination of many
criteria. GAs that handle multicriteria problems are termed as ‘multiobjective GAs’. In this
case several fitness functions each defining one criteria can also be used with a
multiobjective GA [Goldberg (1989)]. Many search or optimisation problem domains
involve constraints. If a possible solution to the problem violates any constraint (non-
feasible), the fitness of the solution is degraded according to a penalty function. The use of a
penalty function helps the GA search to concentrate in the regions of the search space that
satisfy the constraints (feasible regions). On the other hand, the application of the penalty
function changes the shape of the fitness landscape (Figure 3.3). Thus, selecting an
appropriate penalty function is very important for constrained optimisation or search

problems.

Some knowledge about the nature of the fitness function can help in designing the GA.

Often the information is lacking in real life multidimensional problems. Presence of highly
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non-linear constraints implemented using the penalty functions along with many independent
variables, and complex relations between them make the problem very difficult to
comprehend. This poses a great challenge to the GA search. In case of real life problems the
GA has hardly any prior knowledge concerning the nature of the fitness landscape. In these
cases, it is also difficult to validate the best solution(s) achieved by the GA. Research
reported herein concentrates on establishing a more confident approach to handle the search

or optimisation task for real life problems.

3.1.1.3 The Mechanics of Selective Reproduction

The selection mechanism determines which of the chromosomes of the present population
are represented in the following population. Typically, the selection process follows the
‘survival of the fittest’ rule. Thus, those chromosomes of high fitness prosper at the expense
of those chromosomes with low fitness. The simplest and most common type of the fitness
proportionate selection is known as roulette-wheel selection [Goldberg (1989)]. In case of a
fixed size population of n number of solutions (say), the fitness proportionate selection
assigns each solution, i, a probability of selection p;. The probability is determined
according to the fitness of the solution and the total fitness of the population:

i

n
2/

j:

Ps; =

The selection scheme chooses a total of n number of solutions or individuals for
reproduction, according to the probability distribution (ps,). The method selects solutions
through n number of simulated spins of a roulette wheel. The wheel contains # slots, one
cach for the solutions. The width of each slot is directly proportional to its respective pg.
Thus the individuals with higher fitness values are likely to be selected more than those with

lower fitnesses. There are many alternatives to this selection strategy. Two popular
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alternative methodologies are 'tournament selection’' and ‘stochastic remainder selection’.
Tournament sclection [Brindle (1981), Goldberg and Deb (1991)] is sensitive to the relative
rather than the absolute fitnesses. There are different types of tournament selection.
Generally, the tournament selection holds » number of tournaments, where n is the
population size, to select » individuals. The tournament selection randomly chooses two (or
may be more) individuals for the tournament and the fittest one is selected. This type of
selection mechanism is found to be more effective for multimodal fitness function
optimisation [Harik (1995), Roy and Parmee (1996)]. Stochastic remainder selection
[Brindle (1981), Booker (1982)] is a variant of the roulette wheel selection algorithm which
guarantees that a chromosome will receive at least the integer part of its expected number
of offspring, and the population is sorted according to the fractional parts of the expected
number of offspring. The remainder of the strings needed to fill the population are drawn

from the top of the sorted list.

Elitism [De Jong (1975)}] is a concept that complements the selection technique used by the
GA. Elitism ensures that the best individual present in one generation is passed on to the
-next generation. The concept is implemented as follows:
Let A’ (1) be the best individual generated up to time t. If a'(t+1) be the best
individual present in a population at time t+1, and a’(1+1) is worse than
A'(1), then A"(1) replaces one of the chromosomes of the new population -

either the worst or a randomly selected chromosome,

Thus the GA never loses the previously found fit individual. This concept is generic and any
standard selection method can be changed to be elitist. The new population as produced by

a selection mechanism is then used in the reproductive phase.
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The reproductive phase starts by randomly pairing the individuals present in the new
population. For each couple (parents), crossover is determined by a fixed probability p. ,
known as the crossover probability. Crossover produces two new individuals, known as
children. The children then proceed to the mutation stage. The parents directly proceed to
the mutation stage if they are not crossed (that is with a probability of 1-p.). This allows
each individual a chance of passing on its genes without the disruption due to crossover.
There are many varieties of crossover mechanisms for example, single-point crossover
[Goldberg (1989)], two-point crossover [Cavicchio (1970), Goldberg (1989)], uniform
crossover [Syswerda (1989)] and order based crossover [Goldberg (1985), Syswerda
(1991a) and Davis (1991)]. Single-point crossover is the simplest of all. For a fixed size
chromosome of length /, in single-point crossover one of /-1 possible crossing sites is
randomly selected. The crossing sites are between a chromosome's neighbouring bits. This
produces two 'head' segments and two 'tail' segments. The tail segments are swapped
between the parents to produce two new individuals or children (Figure 3.4). The following
pseudo code demonstrates an implementation of the single point crossover operation.
procedure single_point_crossover
begin

P, := the first parent chromosome;

P, := the second parent chromosome,

cross_point = random( 0, chromosome_length - 1);

for i := 0 to cross_point - 1 do

begin

child,[i} = P,[i];
child,[i] = P,[i];

end
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Parent1:001011|010 Child1: 001011101
=
Parent2:111001|101 Child2:111001010

Figure 3.4: An example of one-point crossover. The children are produced by randomly
dividing the parents at the positions denoted by the vertical lines and exchanging the ‘tail’

parts of the parental genetic material.

Individual 1: 10110100010 = NewlIndividual1: 10111100010
T

Figure 3.5: An example of mutation operation. One individual produces a new individual

by flipping the bit at the arrow position (selected randomly).

Individual1:101|1100|1011 = New Individual 1: 10100111011

Figure 3.6: An example of inversion operation. One individual produces a new individual
by reversing the order of the bits between the two randomly selected positions as denoted

by the vertical lines.
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for 1 := cross_point to chromosome_length - 1 do
begin

childi[i] = Py[i];

childy[i] = P,[i];
end

end

In two-point crossover, two crossing sites are randomly selected, and the parents exchange
the segment in between the two crossing sites. Uniform crossover is radically different from
the previous two types of crossover. Each child is created by randomly copying some bits or
genes from one parent and filling the remaining positions from the other parent. Therefore
children contain a mixture of genes from each parent. The number of effective crossing
points is not fixed, but averages to //2 (where / is the length of a chromosome). In case of
order based crossover, it is not the values of the genes that are exchanged, but the order in
which they appear. The children have genes that inherit ordering information from each

parent. This avoids the generation of children that violate the problem constraints.

The second genetic operator is mutation. Unlike crossover, mutation acts upon single
chromosomes chosen at random from the population. For every individual undergoing
mutation, a random bit position or locus is selected, and the allele value of the gene at that
locus is altered (Figure 3.5). The following pseudo code explains an implementation of the
mutation operation using binary representation:

procedure binary_mutation

begin
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i :=random (0, population_size - 1),

j :=random (0, chromosome_length - 1);
Ci:=the i ’th chromosome of the population,
Chl=1-G[;

end

Sometimes another genetic operator known as inversion is introduced after mutation
[Holland (1975)] (Figure 3.6). Inversion is a reordering operator inspired by a similar
operator in biology. Inversion works by reversing the order of genes between two randomly
chosen positions within the chromosome. The technique has been applied with some success
to ‘ordering problems’ such as the DNA fragement-assembly problem [Parsons et. al.
(1995)]. However, the benefits of inversion to GAs are not very clear yet and therefore

needs more systematic experimentations and theoretical studies [Mitchell (1996)].

The most widely used reproduction strategies used in standard GA replace the entire
population at once, and are known as ‘generational reproduction strategies’. Steady state
reproduction [Whitley (1989), Syswerda (1991b)] is a significant departure from the
standard GA. In the ‘steady state’ GA, children enter the parent population immediately
after they are produced and are available for reproduction at once. There is therefore the
opportunity to exploit a promising chromosome immediately. Syswerda (1991b) compared
reproduction in ‘generational’ and ‘steady-state’ genetic algorithms. It is observed that, in
many cases the ‘steady-state’ GA converges more rapidly than the ‘generational’ GA. The
standard generation of selection, crossover, mutation and inversion is replaced and a pair of
chromosomes are randomly chosen from the population crossed over, mutated and inverted

with some probability condition, and put back into the population often replacing the worst
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chromosomes. The following pseudo code expresses the general structure of a ‘steady state’
GA.
procedure steady_state_GA
begin

t:=0;

initialise_population POP(t);

evaluate POP(1),

while (not stopping_condition) do

begin
1:=random (0, population_size - 1);
J :=random (0, population_size - 1);
C, := ith member of POP(t);
C, :=jth member of POP(t);
if (random (0, 1) <= proberossover ) then crossover C, and C;;
if (random (0, 1) <= probyuuior ) then mutate C, [optional];
if (random (0, 1) <= probuyuuion ) then mutate C;, [optional];
if (random (0, 1) <= probimesion ) then invert C, [optional];
if (random (0, 1) <= probigersion ) then invert C, [optional];
copy C, to the worst member present in POP(t);
copy C; to the second worst member present in POP(t);

end

end

Users of the ‘generational’ GAs often provide a guarantee that the best member in the

current population will be present in the next. This is not necessary with the ‘steady-state’
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GAs, since often (that is depending on the strategy often used for the replacement) they
automatically grant elitist status to a// good members of the population, Research work
presented in this thesis uses the concept of a steady state GA to develop a genetic algorithm

suitable for multimodal function optimisation.

3.1.2 Theory

Genetic Algorithm applications have been developed with both binary and non-binary
representations. The effectiveness of the representation is very problem specific. That
means, some problems are suited for binary representation, whilst others are suited to non-
binary representation [Wolpert and Macready (1995)]. The behaviour of the GA has been
described in terms of binary representation. The theory, known as the Building Block
Hypothesis and the Schemata Theorem, describes the working of the GA as the processing
of several binary templates or schemata. In an attempt to describe the GA with binary or
non-binary representation, a Multary Theory of GA has been proposed [Field (1996)]. The
theory introduces a concept of key schemata and extends the present binary operators to

multary equivalents. The theory is very recent and needs more investigation.

3.1.2.1 Building Block Hypothesis and Schemata Theorem

The schemata theorem concerns the GA processing of schemata, binary templates that
match a set of chromosomes. A schema is a binary string of total length / defined over three
alphabets {0,1,#}, where # is a wildcard equivalent to either 0 or 1. For example, the
schema #00#100 may represent {0000100, 0001100, 1000100, 1001100}. The schema is
also characterised by its order and defining length. The number of non wildcard characters
(that is 0 and 1) present in a schema defines the order of the schema. The order and length

of a schema determine the number of chromosomes the schema can match. Defining length
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is the distance between a schema's outermost, non wildcard character positions. For
example, the schema mentioned above is 7 bits long, is of the order 5, written as
o(#00#100) = 5, and has a defining length of 5, written as 8(#00#100) = 5. Fitness of a

schema is defined as the average fitness of the chromosomes that it represents.

Goldberg (1989) suggested that some schemata are interesting and would help in the GA
search. These schemata represent characteristics of a particular problem and are known as
Building Blocks. The building blocks are low order, short defining length, and highly fit
schemata. The survival of the fittest strategy for the selection helps to propagate
chromosomes that are members of highly fit schemata. Also the shorter defining length
schemata are less disrupted due to crossover and the low order schemata are less likely to
be destroyed due to mutation. Thus, the building blocks can survive from generation to
generation and are processed by GAs. Holland (1992) estimated that while a GA processes
n number of chromosomes in a geperation, it actually processes on the order of #3 building

blocks or useful schemata. This phenomenon is described as implicit parallelism.

The schemata theorem provides a measure of how many chromosomes of a schema H can
survive in the next generation (represented as m(H, t+/)) given the distribution of the
present generation (given as m(H, t)). The following equation determines the value of m(H,
t+1):

m(H,t+1)> m(H,t).(f(TH)].(l —pc.%—o(m.pm) . (3.1

where f{H) is the fitness of H in generation ¢, f  is the mean fitness of the chromosomes in
generation f, and p. and p. are crossover and mutation probabilities. This inequality is

known as the Schema Theorem [Holland (1975)]. The theorem describes the expected
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variation in the number of samples of a given ma from one generation to the next, given its

fitness, defining tength, and order.

Thus according to the schema theorem, short, low order, or highly fit schemata is expected
to survive and prosper within the populations of the GA, whilst long, high order, or poorly
fit schemata does not. Goldberg (1983 and 1989) defined these short, low order and highly
fit schema as building blocks, and stated his building block hypothesis as "building blocks
combine to form better strings”. That means during the GA search building blocks
recombine to produce fitter building blocks that lead to the fittest solution. The theorem
also states that by decreasing either p. or p.;, an increased use or exploitation of the better
schemata can be achieved. And by increasing either p. or pn, an increased sampling or
exploration of the search space is achieved. As a rule the GA is expected to maintain a
delicate balance between exploitation and exploration. But some time a trade off can be

influenced by the nature of a particular problem to which the GA is being applied.

3.2 Identification of multiple sub-optima using multimodal genetic

algorithms

3.2.1 Diversity versus useful diversity

Maintaining the population diversity is a major issue in GA search. Early convergence in a
GA search can lead to a local sub-optimum, and thus attempts have been made in the past
to stop quick convergence of the GA. A diverse search by the GA allows exploration of
larger part of the search space in order to converge on a better, single solution. While doing
a diverse search, the GA also explores different sub-optima. The three main reasons for a

quick convergence of the GA are: selection pressure. selection noise and operator
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disruption. In case of a finite population GA, use of the ‘survival of the fittest’ promotes
high fitness individuals in the population. This introduces a selection pressure towards
higher fitness individuals. In case of identically fit individuals the GA randomly selects one,
thus there is a variance in the selection process. These variance results in selection noise, by
which some fitter individuals are randomly thrown out of the population. The use of
crossover, mutation and inversion can sometimes destroy the building blocks for higher

fitness individuals this is known as operator disruption.

One method of increasing the exploration by the GA is to reduce selection pressure and
increase operator disruption. Operator disruption can be increased either by appropriate
tuning or the introduction of more disruptive operations. This type of exploration is not
necessarily useful, for example a very high mutation rate can lead to a random search. A
useful diversity should explore the good building blocks [Goldberg and Richardson (1987)).
An exploration can be called useful if it exploits the genotypic information present in the
population to search through the interesting areas of the search space. The usefiu/

exploration should be goal directed.

Diversity is utilised in search either to achieve the global optimum or to maintain multiple
sub-optima in the final population. In case of multimodal functions these two goals can be
dependent on each other. An exploratory GA search that tries to identify the global best in a
muitimodal function often encounters many local optima. Similarly, a GA search that tries
to maintain many sub-optima is likely to do a useful exploration in the search space and thus
also likely to find the global optimum in a multimodal function. The GA suitable for
muitimodal function optimisation is called the multimodal GA. Techniques used to achieve

the useful exploration for the multimodal GA are generally termed as the niching methods.
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This thesis concentrates on developing a multimodal GA technique that can maintain diverse
individuals in a finite population. The GA is also expected to be suitable for real life
problems. When applied to the turbine blade problem (TBCOM), the technique is expected
to identify a number 'good' designs. The good designs provide a choice to the designer and
thus can help in the design decision making. The next section discusses the chronological

development of different techniques used for the maintenance of diversity in a GA search.

3.2.2 Chronological development of multimodal genetic algorithms: a survey of
literature

Getting multiple sub-optima or “good” solutions from a genetic search falls in the realm of
maintaining diversity in population. The earliest work reported on maintenance of
population diversity is Cavicchio’s dissertation [Cavicchio (1970)]. As a method of
preserving population diversity or variance he introduced a number of preselection schemes.
The best selection scheme says: if a child is better (in terms of fitness) than the worse
parent then replace the parent by the child for the next generation. Cavicchio assumed a
parent as the closest member in the population to its child. This assumption may not be valid
in case of many multimodal functions. Thus, the preselection scheme as described by

Cavicchio suffers from high replacement error [Mahfoud (1992)].

De Jong’s dissertation [De Jong (1975)] presented his model of multimodal function
optimisation based on what is called the crowding factor or simply the crowding model. The
crowding model was inspired from the ecological phenomenon that similar species compete
with each other for survival whilst sharing a limited amount of resource. Different species
live in different groups or niches, and thus dissimilar species do not compete among each

other. The competition for survival to the next generation is local rather than global. The
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model implements the above phenomenon by using only a fraction of the population (termed
as the generation gap) to reproduce for the next generation. The same fraction of the
population die to accommodate the newly produced individuals due to a finite population
size. Preferably the most similar individuals (according to the Hamming distance) are
replaced. The replaced individuals are selected from a small sample randomly taken from the
population, where the size of the sample is defined by the crowding factor. The more similar
an individual becomes to other individuals in the population, the more it experiences a
heavier selection pressure [De Jong (1975)]. This early work is limited to maintaining
diversity of species present in the initial population; however it cannot discover new species
or niches. The model also suffers due to stochastic errors introduced in case of low

crowding factor.

Application of parallel sub-populations to evolve multiple solutions from a genetic
algorithm was attempted by Grosso (1985). In his study he used some degree of
communication between sub-populations to allow good building blocks to spread, but that
caused reduced diversity and eventual convergence on one global peak. Without such
communi.cation the technique becomes equivalent to running a GA several times with a
smaller population. Elo (1994) presents a genetic algorithm with a dynamic division
mechanism conceived on the Connection Machine-2 for multimodal function optimisation
problems. The technique dynamically divides the population into an increasing aumber of
sub-populations to allow specialisation on different maxima as discovered during the search
process. This method allows the GA search to adapt to the topology of different multimodal
optimisation problems. Without defining the control parameters explicitly, the dynamic
nature of the algorithm enables divisions to occur appropriately when the maxima are

discovered during the search process. Thus the method is flexible and requires very little
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knowledge about the fitness landscape. The use of parallel genetic algorithms to obtain

multiple sub-optima from a multimodal function is a very promising area of research.

Goldberg and Richardson (1987) introduced what they called as the sharing method. In the
sharing scheme, fitness is shared as a single resource among similar individuals. Fitness of
an individual element of population is derated due to the presence of similar elements in the
population. The concept of sharing is implemented by defining a sharing function, share(d)

as shown below, where 4 i1s a measure of dissimilarity between two elements of the

population :
d a
share(d) = 1—( J ,when d < Sgue ..(3.2)
Sshare
=0 d > Sshare
where, s,,,,, 15 defined as the dissimilarity threshold and « is a constant to determine the

shape of the sharing function. An individual is compared with each member of the
population to calculate the sharing function values. Summation of all the values due to
individual members of the population defines the total sharing function value for the
individual. The fitness of an individual is degraded by the total sharing function value, and

the new fitness, F ’, can be described as follows :

N
F'= F/Zshare(d),- , where N = population size ... (3.3)
i=1

Goldberg et. al.(1992) have discussed the strengths and weaknesses of the above fitness
sharing mechanism for optimisation of multimodal functions. Performance of the sharing

scheme is very much dependent on the value of s

share’

Determination of an appropriate value

for s

share

is a difficult task and is dependent on prior knowledge concerning the nature of the
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problem. Further work has been performed in the same direction by Oei et. al. (1991),
where they use tournament selection with a continuously updated sharing technique. The
method updates the fitness (or calculates the shared fitness) with respect to the new
population distribution as it is being developed. The technique claims to promote and
maintain multiple sub-populations over many generations. But the technique is also
dependent on prior knowledge regarding the fitness landscape. In an attempt to handle
multimodal deceptive functions, Goldberg et. al. (1992) used fitness scaling and the new
fitness sharing scheme. Yin and Germay (1993) presented their implementation of a faster
genetic algorithm with the sharing scheme using a clustering technique. The clustering
method is used to identify different niches present in the population. Niche count (that is the
number of elements present in a niche) is used to degrade fitness of individuals present in
the niche; thus sharing is local within one niche. Performance of the technique depend;s on
the clustering method used. Setting of parameters for the clustering algorithm needs some
trials and prior knowledge. The clustering algorithm also enforces an artificial shape (in this
case spherical) to the niches, that may not necessarily be the natural shape for some niches.
Jelasity and Dombi (1995) described a niching technmique called GAS. The technique
dynamically creates a sub-population structure (they call it taxonomic chart) using a radius
Junction instead of a single radius value, and a ‘cooling’ method similar to simulated
annealing. The GAS algorithm uscs a steady state GA and a high-level algorithm responsible
for creating and maintaining the taxonomic chart. The technique allows the population to
grow up to a limit and then to die off to reduce the population size to the starting level. The
technique introduces a new function called speed of a species, that determines the radius
Sfunction. It is not very clear how the technique would perform in case of multidimensional
problems. The paper also does not eclaborate on the computational complexity of the

technique.,
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In an attempt to model naturally occurring Niche and Species formation, Davidor (1991)
developed a GA model called ECO GA, which uses a steady-state GA and is based on local
and computationally inexpensive operators. In ECO-GA, the population of strings is held on
a 2-D gnid having its opposite edges connected together in such a way that each grid
element has 8 adjacent elements. Initially individuals are placed at random, one on each grid
point. ECO-GA randomly selects one grid element, and defines an 8-element sub-population
around it, thus defining a sub-population of 9 elements. This definition implements implicitly
parallel and overlapping sub-populations. A steady-state GA is applied with the population
size of 9. Two individuals are selected probabilistically from the sub-population according
to their relative fitnesses, and genetic operators are applied on them to produce two new
individuals. The newly created individuals are probabilistically put back to the same grid
positions depending on the relative ﬁtnessés of the opponents (that is the already existing
individuals at the two grid points). That means the children are more likely to stay in the
vicinity of their parents. The smallness of the size of the sub-population helps the GA to
converge very quickly. The technique works based on local convergence which is quick,
and assumes that the global optimum can be obtained by the interaction of locally optimised
individuals. It is not clear how the search is restricted due to the exploitation of oniy locally
‘good’ schema. The implicitly parallel overlapping sub-populations evolve locally but
information migrates from one grid to adjacent grid elements because of the overlap. The
technique intends to explore the search space in order to identify the global optimum in a
multimodal function. The paper has presented some results with a standard one dimensional
problem, but it is not clear how the technique would perform in higher dimensions. Further
investigation is necessary for a better understanding of the strengths and weaknesses of the

technique.
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Mahfoud (1992) performed a detailed study on the different niching techniques, especially
the crowding methods. Outcome of the study was an improved variant of the crowding
technique called the Deterministic Crowding (DC) [Mahfoud (1994) and (1995a)]. During
his experiments with different crowding methods, Mahfoud found that by choosing
members randomly for reproduction, and then providing the selection pressure by only
replacing a parent with a fitter child better performance can be achieved. To determine
which of the possible parent-child pairing should be used in comparing the parents to their
children (that is either (parent1-child1 and parent2-child2) or (parent!-child2 and pafent2-
child1)), the total of the parent-child similarities (in terms of the Euclidean distance) for
each of the two possible combinations are determined. The parents-children pairing that has
the highest total similarity is used to determine if the child should replace the parent. The
replacement is only possible if the child is fitter than the parent. Deterministic crowding has
been applied on two-class and multi-class test problems. In case of multi-class problems it is
apparent some peaks dominate over others. Due to crossover interactions among niches
some peaks also assist each other to migrate to other peaks. It is observed that the number
of population elements present in one class is proportional to the sum of the width of the
base of its peak and the widths of the bases of all peaks it dominates. Dominated peaks
disappear after some generations unless their assisting peaks are removed beforehand.
Although the method performs better than crowding, it is not clear if multiple solutions can
be maintained for many generations using this method. The loss of some dominated peaks is
a major limitation in case of real life multimodal problems, because there is always a
possibility of losing some interesting peaks that are dominated by few others. Another
limitation of DC is that it does not guarantee that the final population shall be distributed
only among the peaks. This also limits the application of DC in real life problems, because in

that case it is not clear whether what is returncd from the algorithm is at least a sub-peak or



not. Cedeno et. al. (1995) developed the concept of multiniche crowding (MNC) in a
genetic algorithm that permits one to simultaneously find several peaks of a multimodal
function. In MNC both the selection and replacement steps are modified with a concept of
crowding. The idea is to remove the selection pressure due to the fitness proportionate
selection (FPR) whilst maintaining the diversity in the population. The method works with
local mating and replacement strategy while allowing for some competition for population
slots among the niches. In multiniche crowding the FPR is replaced by a crowding selection,
where each member of the population has equal chance to mate in the next generation. First,
an individual is selected either sequentially or at random. The partner for mating is selected
from a random sample taken from the population (the size of the sample is defined by the
crowding selection group size (C;)). The MNC uses a replacement policy called worst
among the most similar. In order to select an individual from the population for
replacement by a child, crowding factor groups (the number of groups are defined by the
crowding factor (Cy)) are defined by randomly selecting s (called as the crowding factor
group size) number of individuals from the population per group. Next, one individual from
each group is identified that is phenotypically the most similar to the child; a_nd this
constitutes a list of individuals ready for the replacement. The child replaces the lowest fit
individual in the list. It is worth noting that the child could possibly have a lower fitness than
the individual being replaced. The technique is applied on several test functions and also to
determine the sequence of all nucleotide in a DNA molecule, from restriction-fragment data.
The method works well for the test functions using the given set of crowding parameters.
The paper does not comment concerning the quality of the solutions achieved. The
parameters are set by trial and error and the paper also does not mention possible effects of
the crowding parameters’ values on the search. In a recent work, Miller and Shaw (1996)

have introduced the Dynamic Niche Sharing for multimodal function optimisation. The
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technique is developed to be faster than the previous sharing method. The dynamic niching:
uses a greedy approach to identify peaks present in the population in every generation.
Individuals are categorised according to the peak it belongs to (that is if within the oy
radius of the peak). If an individual does not belong to any peak, it is categorised as ‘non-
peak’. Thus every individual belongs to a niche (or category), and the fitness of the
individual is degraded by the size of its niche (niche count). Thus every individual within a
dynamic niche has their raw fitness degraded equally. This means that there is no incentive
to maintain distance between individuals within a dynamic niche. This allows the dynamic
niching to explore the regions around the peaks of the niches more thoroughly than standard
sharing. The overall performance of the technique is found to be better than the sharing
technique and DC on a test function. It is not clear how efficient the technique would be for
multidimensional problems. Setting a value for the o, would require prior knowledge about

the problem, and that also restricts the use of the technique for real life problems.

In real life problems, some time the model evaluation can be very expensive, and thus a
smaller population size is used. All the techniques mentioned above try to maintain multiple
peaks in one population. That means, in case of fixed sized population the identification of a
number of peaks is restricted by the size of the population. An alternative approach called
the Sequential Niche Technique, was proposed by Beasly et. al. (1993) where peaks are
identified one at a time. This generalised technique allows unimodal function optimisation
methods to be extended to identify all optima and sub-optima of multimodal problems. The
research implements the concept with a standard genetic algorithm. The method involves
multiple runs of a GA but uses knowledge obtained from previous runs to avoid re-
searching the regions of the problem space where peaks (optima or sub-optima) have

already been identified. Whenever one peak is located, in subsequent runs, region around
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the peak (defined by a niche radius) is depressed by applying a fitness derating function.
That helps the search in concentrating in other interesting areas and thus identifying multiple
peaks. The algorithm is dependent on the right selection of the niche radius. The use of the
niche radius imposes a shape to the niches (in this case spherical). In case of problems
where the maxima are not evenly distributed, the fixed size of the niche radius would
underestimate the size of some niches whereas overestimating the size of others. An
inappropriate selection of the niche radius can introduce false peaks, and that can misguide
the search. Sequential niching can also offset a peak’s location as a consequence of the
fitness deration. The artificial shape may not match with the natural shapes of some niches.
Prior knowledge concerning the problem would be helpful in determining a workable niche
radius. This is a similar limitation as with the fitness sharing technique. In the fitness sharing
method fitness landscape is modified every time an individual is evaluated, whereas in the
sequential niche technique the fitness landscape remains static during one run. Thus the
sequential niche technique overcomes the problem of exponential scaling of its fitness
landscape. Another major limitation of the technique is that it does not allow transfer of the
building block information to find one solution from another. This can restrict the GA’s
search capability in some applications, Mahfoud (1995b) compared other niching techniques
with the sequential niching. The paper supports the above mentioned weaknesses of the
sequential niching. It is also shown that, fitness sharing or DC performs better than the

sequential niching over a wide range of functions.

The immune system model for pattern matching was first developed by Stadnyk (1987). The
model could achieve niching by lowering the number of antigens used in computing the
fitness of each population element. Smith et. al. (1993) implemented an immune system

model along with a GA in order to develop a GA which can search for diverse and co-
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operative populations. It is observed that the model exhibits an implicit fitness sharing which
can be useful for multimodal function optimisation. The area of research is relatively new
and needs further investigation before it can be useful for multidimensional multimodal real
life problems. In a very recent work Darwen and Yao (1996) compared the fitness sharing
technique with the above mentioned implicit sharing. The authors used a realistic letter
classification problem for the comparison. It is observed that the implicit fitness sharing
searches the optima more comprehensively even when those optima belong to smaller hills,
and also when the population is not large enough to form the species at each optima. In case
of implicit sharing the individual closest to a peak is rewarded even if it’s not particularly
close to it and when another individual is almost as close. That means in case of implicit
sharing there is greater relative selection pressure for the nearer individual and that helps in
the better exploration. Whereas in case of fitness sharing the niching radius o, means the
closest individual to a peak shares its payoff with all other individuals that are almost as
close. In the case of small population the tendency of comprehensive peak coverage

degrades the performance of the implicit sharing more than the fitness sharing.

Parmee et. al. (1994) and Parmee (1996) describe a method of maintaining diversity and
reinforcing the natural clustering (niching) tendencies of the GA by appropriate tuning of
crossover and mutation probabilities. A shared near neighbour clustering algorithm is used
after some pre set number of generations to further define the naturally occurring clusters
present in the population. The clustering method does not impose any artificial shape on the
niches present in a population. The method is suitable for rapid identification of ‘good’
regions in a problem space as opposed to the identification of individual optima. In this
respect the technique is being developed to provide information to the engineer concerning

high-performance regions of a complex, multidimensional search space [Parmee (1995)].
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The technique requires no prior knowledge concerning the modality of the fitness

landscape.

An improved tournament selection method for multimodal functions called the Restricted
Tournament Selection (RTS) is developed by Harik (1994) and (1995). The technique is
based on the principle of local competition, that is a tournament among similar individuals
(according to a distance metric). The method creates a new population as in a steady state
GA [Syswerda (1991b)]. Before an individual is allowed to the next generation it is placed
into tournament with the closest {according to the distance metric) individual present within
a random sample of the population. The size of the sample is kept fixed and is termed as the
window size. This form of tournament selection should restrict an entering individual from
competing with others, which are too different from it. For an individual, if the closest sub-
optimum is selected in the random sample, the individual competes with the sub-optimum
and fails to replace it. Thus, if the window size is big enough the replacement error is
reduced. Therefore after the peaks are identified, the underlying distribution of the
population is expected not to change for a long time. The procedure is dependent on the
probability of a peak present in the sample taken from the population. This restricts the
number of peaks the algorithm can maintain depending on the size of the window. That
means the size of the window is determined using prior knowledge concerning the modality
of the fitness landscape. RTS has been successfully applied to some multimodal test
functions. The presence of a dominance factor in RTS is demonstrated in the next chapter.
It is observed that in a prolonged run some peaks start dominating others. Thus RTS can
not achieve a steady state of distribution and it carries the risk of losing some peaks. RTS
can delay complete dominance of some peaks over others. But because of the presence of

the dominance factor, distribution of individuals on several peaks changes. A steady
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distribution can be achieved by using a very large window size. The dominance factor
becomes prominent when some dominating individuals start occupying a major part of the
population. In case of real life problems, without any prior knowledge concerning the
location and the number of peaks present, it becomes almost impossible to determine when
to stop the GA so that the population is distributed among the peaks. Stopping early may
mean converging to individuals which are not peaks. But delayed stopping can also lose

some peaks because of the dominance factor.

3.2.3 Limitations of the previous research for real life problems
Real life problems can pose some additional challenge than test functions. Test functions
can be made very complex, but as a test function is developed with a goal in mind (say one
wants to develop a multimodal two dimensional test function), it is easier to get some idea
about the nature of the problem. Real life problems are difficult mainly because of the lack
of prior knowledge. The techniques mentioned in the previous section are mostly tested on
test functions. The main reason is that it is easier to visualise and measure the performance
of an algorithm on test functions. Most of the techniques determine the search parameters
assuming prior knowledge concerning the search space. Performance of the techniques is
measured in terms of population distributions on known peaks. Only a few techniques are
applied to real life problems, where the validation of the techniques is extremely difficult. A
real life problem may be considered to have the following characteristics:

a) There is not much prior knowledge regarding the shape of the search space.

b) No prior knowledge regarding the performance and location of the optimum

and sub-optimum points in the search space.

The lack of prior knowledge invites some difficulties for a multimodal GA search, such as:

70




a) The determination of search parameter values becomes extremely difficult in
the absence of prior information regarding the modality of the search space.

b) It is very difficult to identify the state at which the GA distributes the
population on the peaks.

c) The validation of the results obtained from the GA search becomes quite
difficult because of the lack of knowledge concerning the quality and location of

the peaks.

The next chapter describes the Adaptive Restricted Tournament Selection, a multimodal GA
technique suitable for real life problems. The technique i1s compared with RTS and DC using
some test functions. A hybrid of the multimodal GA technique and a local hill climber is

used to identify multiple ‘good’ designs for the turbine blade design problem (TBCOM).
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CHAPTER - 4

4. Adaptive Restricted Tournament Selection

4.1 Introduction

Genetic Algorithms (GA) and other adaptive search techniques such as simulated annealing
and tabu search [Reeves (1993)] have been successﬁllly-applied to many optimisation
problems where the aim is to identify the global optimum solution. Many real life problems
require the identification of several “good” solutions (that is multiple sub-optima) in
addition to the global optimum. Multimodal GAs identify several sub-optima present in a
problem space. Research presented in this chapter attempts to add another methodology to

the list of the multimodal GA techniques.

Engineering design often involves several objectives. A true engineering solution is not
necessarily the global optimum with respect to one criterion [Parmee (1994), Parmee and
Denham (1994)]. Often the final design needs to be selected by the designer considering
many different criteria. In the case of multimodal design problems there may be quite
different design solutions that perform similarly with respect to one criterion but these
designs can have large differences in the degree of satisfaction of other criteria. Both the
quantitative and qualitative aspects of criteria related to say, manufacturability, cost,
maintainability, robustness and customer preferences should be taken into consideration.
Integrating all of these criteria into one comprehensive evaluation function is difficult and

may prove misleading. If the criteria are quantitative in nature one way of handling the
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situation is to use multiobjective genetic algorithms with parero optimality [Goldberg
(1989)]. An attempt is made here to identify muitiple “good” design solutions in terms of
the most important and quantitative criterion and then to evaluate them qualitatively in
terms of other criteria. The research has developed a multimodal GA technique called

‘Adaptive Restricted Tournament Selection’.

Adaptive Restricted Tournament Selection (ARTS) [Roy and Parmee (1995) and (1996)]
identifies multiple sub-optima in a multimodal fitness landscape, where each sub-optimum
represents a design option. The technique is an improvement over Restricted Tournament
Selection (RTS) [Harik (1994) and (1995)]. In RTS a window (that is a fixed size sample)
is defined to identify the closest point from a newly generated individual. A tournament is
performed between the newly generated individual and the closest point before one of them
can enter the next generation. The size of the window limits how many peaks or sub-optima
may be represented in the final population. Without knowing how many peaks are present in
the fitness landscape it is difficult to decide the size of the window. Thus RTS requires prior
knowledge about the problem. In real life problems information about the modality of the
fitness landscape is not available. In order to handle real life problems, ARTS uses a shared
near neighbour clustering method [Jarvis and Patrick (1973)] to define the closest point for
a newly generated individual. For every generation this method identifies clusters of points
present in the population. For each newly generated individual the closest point in the
generation is determined by finding the closest point of the closest cluster present in the
population. Thus the necessity for a fixed size window and prior knowledge about the

problem (as in case of RTS) are eliminated in ARTS.

ARTS is compared with two recent multimodal GA techniques, RTS and Determunistic

Crowding (DC) [Mahfoud (1992) and (1994)]. This chapter presents and discusses the
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results. A study on the effects of the clustering parameters on the performance of ARTS is
also presented. A hybrid of an ARTS based GA and a local knowledge based hill climbing
technique is used in the Adaptive Search Manager (ASM) [Roy et. al. (1996a)]. Finally a
stochastic local hill climber algorithm is used to fine tune the designs selected by the ASM.

The chapter also describes both the hill climbing techniques.

4.2 The Shared Near Neighbour Clustering Method

The shared near neighbour clustering method [Jarvis and Patrick (1973)] is a nonparametric
clustering technique incorporating the concept of similarity based on the sharing of near
neighbours. The technique is simple to implement and computationally inexpensive (except
in case of very high dimensional problem). The clustering methodology is applicable to a
wide class of practical problems involving large sample size and high dimensionality [Jarvis
and Patrick (1973)]. The method is particularly suitable as an analysis tool when little prior

knowledge about the problem space is available.

4.2.1 The Similarity by Sharing of Near Neighbours

Let {x;, x> ..., x»} be a set of parametric data vectors in an L dimensional Euclidean vector
space. The task is to divide these n data points into M number of clusters (where M is
unknown), where each group can be considered as a cluster of points. Two data points are
considered similar if their respective X number of nearest neighbours match. The value of K
defines the size of a nearest neighbour list for each point. The similarity measurement is
valid only if the tested points themselves also belong to the common neighbourhood. This
avoids the possibility of clustering a small and relatively isolated number of points with a
high density group. The similarity measure has its own built-in automatic scaling. This
means that where points are widely spread, the neighbourhood (that is the volume

containing K nearest neighbours) expands. If the points are tightly positioned the
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neighbourhood shrinks. Thus the clustering technique does not depend on a globally fixed
distance threshold. There is possible interactive control of the clustering by specifying K and
the number of shared neighbours that is regarded as sufficient (K7) for the clustering. KT is

known as the similarity threshold.

Lable Table Neighbourhood Table

The point itself (zeroth neighbour)
Th ighb

e nearE:?l neighbour kth nearest

“I"_ 2nd nearest neighbour [ neighbour

| 1101

IstLable [ 1] 1
2nd Lable ] 1] [ 11

mhLable  [4] T 1] L[ ]34

Figure 4.1: The near neighbour and the lable table. All the entnes are integer numbers.

4.2.2 The Clustering Algorithm
The clustering algorithm using the above mentioned concept of similarity can be described
as follows:

Step 1: For each point of the data set {x;, x;, ..., Xa}, K nearest neighbours (in
this research they are defined using the Euclidean distance) are listed in an
increasing order of the distance. The data point is regarded as its own
zeroth neighbour.

Step 2: An integer label table of length n, with each entry initially set to the first
entry of the corresponding neighbourhood list is devcloped (Figure 4.1).

Step 3. All possible pairs of the neighbourhood lists are tested as follows: replace
both label entries by the smaller of the two existing entries if both zeroth

neighbours (that are the points being tested) are found in both the
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neighbourhood lists, and at least the KT neighbour matches exist between
the two lists. Also, all appearances of the higher label (throughout the
entire label table) are replaced with the lower label if the above test is
positive.

Step 4: The clusters with the K and KT values are now indicated by identical
labelling of the points belonging to the clusters.

Step 5: Recalculation of the clusters with new values of K and KT can be carried
out simply by returning to step 2 until a desired criterion is satisfied. The
first selection of K should be the largest the clustering would ever require

so that the original vector data need not be recalled.

Thus by settiﬁg K and KT equal one can achieve the tightest clustering possible. Although
Euclidean distance is mentioned in Step 1, the method is by no means restricted to this
measure and any suitable measure can be used. In general the clustering does not impose a
shape to the clusters, but with a relatively large value of K the clustering will tend to
produce globular bias. The computational complexity of calculating the near neighbourhood
table is of the order of (n)’L + C(K) operations, where C is a relatively small factor to allow
for the extra overhead of testing for all K near neighbours for each point. With little
improvement in the algorithm, only nr(n-/)/2 distance measures are necessary for the

clustering. The clustering algorithm is integrated with thc ARTS based GA technique.

4.3 Adaptive Restricted Tournament Selection

4.3.1 The Algorithm
Adaptive Restricted Tournament Selection (ARTS) is an improved multimodal GA
algorithm. ARTS identifies a number of sub-optimum points in a search space without any

prior knowledge concerning the modality of the fitness landscape. Thus ARTS is suitable
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for real life problems. The sub-optimum solutions can be considered as “good” solutions. A
formal definition of a “good” solution for this thesis is given below:

Let us assume a search space S and an objective function f (that assigns a real

number to any member of S).

f:§->FR

Without loss of generality. let us assume that the goal is to maximise with respect 1o

| A neighbourhood of an element i of the search space S is defined by the resolution

on each dimension. For any i € §, N(i) < § is the neighbourhood of i in S. Where i

can be considered a “good” solution or a sub-optimum member of the search space

Sif:

J) 2 f4) for all j € N(i)

The algorithm is used with a steady state GA [Syswerda (1991b)]. In every generation,
there are n (where, n = population size) number of iterations and in every iteration two
individuals are selected at random (they are termed as parents). Two new individuals,
children, are created by crossover between the parents. The population is clustered every
generation using the shared near neighbour clustering technique [Jarvis and Patrick (1973)].
The clustering is performed with respect to the Euclidean space (that is the parameter
space), clustering time is therefore independent of the model evaluation time. The clustering
is controlled by the two parameters, K and K7. The tightest possible clustering is achieved if
the values of K and KT are set equal for the clustering. The clusters are considered as niches
present in the population. For a newly generated individual (a child) the closest element in
the population is found by finding the closest element of the closest cluster present. The
closest cluster is identified according to the Euclidean distances between a child and the
cluster centroids. With a relatively large value of K (in this case X > L) the shape of the
clusters can be given some globular bias, that is necessary to make the cluster centroid

calculations more meamngful. Each child competes with the closest individual found in the
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population. The number of individuals present in the closest cluster is equivalent to the
window size in RTS, but here the number of elements is determined adaptively according to
the distribution of elements in the population. Thus ARTS does not need any prior
knowledge concerning how many peaks are present in the problem space. The algorithm
can be described as follows:
Step 1 : Initialise population, gen = 0
Step 2 : Cluster population. Find the centroids of the clusters, num = 0
Step 3 : Randomly select two individuals (say, Pl and P2)
Apply the GA operators (Crossover and may be Mutation) on Pl and P2
to generate Cl and C2
For Cl:
Select the closest cluster (according to the Euclid. dist. between Cl
and the cluster centroids)
Find the closest individual (say, C1’) from the closest cluster
If fitness(C1) > fitness( C1' } then replace C1' by CI in the
population
For C2 :
Select the closest cluster (according to the Euclid. dist. between C2
and the cluster centroids )
Find the closest individual (say, C2') from the closest cluster
If fitness(C2) = fitness( C2' ) then replace C2' by C2 in the
population
num = num + 1
If num < POPSIZE go 1o Step 3
Step 4 : gen = gen + |

If gen < MAXGEN go to step 2.
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The technique 1s applied here on a number of one dimensional multimodal test functions.
ARTS identifies and maintains all the peaks present in those functions. ARTS is also

successfully applied to the turbine blade problem within the Adaptive Search Manager.

4.3.2 ARTS and the GA Search

The principle behind ARTS is local competition while using the pool of building blocks
present in the population. It is observed during the empirical trials with different multimodal
test functions that ARTS exploits schema information at its initial stages of a run (i.e. the
first few hundred generations). Once the population elements are distributed among the
peaks a steady state is achieved where the competition is entirely local. During the initial
stages of a run when the population is quite diverse the clustering algorithm tends to form
wider clusters thus introducing some replacement errors in the ARTS search (clustering
error). This causes a delayed convergence on the peaks. At the steady state of distribution,
when the population is distributed among the peaks the clustering algorithm identifies the
niches correctly. This helps to restrict the tournament within ecach niche and thus eliminates
the dominance problem (that is discussed in the previous chapter) as seen in the case of
RTS. A simple genetic algorithm (SGA) [Goldberg (1989)] converges to a global optimum,
whereas ARTS can maintain multiple peaks. ARTS also continues to search (even in later
generations) a larger space by crossover between different niches present at the steady state

of population distribution.

4.4 A Comparative Study of ARTS, RTS and DC

ARTS, RTS and DC have been tested on four test functions, among which two are sine

functions (termed as F1 and F2) as used by Harik (1994) and (1995), and the other two are
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class functions (termed as CF1 and CF2) as used by Mahfoud (1994). Same test parameters
are used for all the three experiments. The test parameters are as follows:

Population size = 100

Maximum generation = 500

Crossover type = One point crossover

Crossover probability = 1.0

Mutation probability = 0.0

Window size for RTS = 20

K for shared near neighbour clust. in ARTS = 15

KT for shared near neighbour clust. in ARTS = 15
Tests were performed on a Sun Sparc 10 computer with the same seed value for the random
number generator. ARTS, RTS and DC have been tested for the distribution of population
elements on the peaks. An individual (i.e. a population element) having a fitness of at least

09% of a peak value is considered to be on the peak.

4.4.1 The Two Dimensional Test Functions

The four two dimensional test functions used for the tests are described below:

Function F1
This is a sine function that has five equally spaced peaks of equal height within a range
[0,1]. The function is defined as f(x) = sin°(5mx) (Figure 4.2). The five peaks have equal

height of 1.0 at x =0.1,0.3,0.5,0.7,and 0.9.

Function F2
This sine function is defined on [0,1], having five unevenly spaced unequal peaks. The

function is defined as fix) = e ™ * VO8O 26n0(Sn(x™ - 0.05)) (Figure 4.3). This function is

80










used in testing the ability of a multimodal GA to distribute its final population on different

sub-optima.

Function CF1

This is a class function where the first class is twice as fit as the other three classes (Figure
4.4). The classes are equally spaced. DC has been observed to have the dominance problem
with this function [Mahfoud (1994)]. In this case the peak belonging to the first class is

called the dominating peak, and that dominates its less fit neighbour the second peak.

Function CF2

CF2 (Figure 4.5) 1s a modification of the class function CF1 where the fourth class has also
been made to be domunating. The first and fourth classes are equally fit but twice as fit as
the second and the third. It is observed that when DC is applied to this problem one weaker
class assists another weaker class for migration. In absence of the assistance (that is when

one class is completely migrated) the weaker class is no longer dominated.

4.4.2 The Comparison Results

Results of the experiments are shown in Figures 4.6 to Figure 4.9. In the case of function F1
(Figure 4.6), ARTS can maintain all the five peaks. The population is distributed among the
peaks upon reaching a steady state of population distribution. ARTS takes some time to
attain the steady state. This can be attributed to the clustering error involved at the initial
stages of the run. On the other hand RTS shows the dominance effect by losing the third
peak at around 400 generations. A steady state is only maintained over a few generations.
DC achicves a steady state in its population distribution after some generations, but it is
observed that the final population is not distributed among the peaks only. A consequent

tnal with F2 also exhibits similar performances of ARTS, RTS and DC. On the class
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function CF1, DC and RTS also exhibit the dominance problem. RTS never achieves a
steady distribution among the peaks whereas, ARTS takes about 250 generations to achieve
the steady state. However, once the distribution is achieved all the members of the
population are distributed on the peaks. In the case of function CF2, DC performs as
expected [Mahfoud (1994)], that is, two peaks dominate the other two. RTS also exhibits
the dominance factor on this function, i.c. the two fitter peaks dominate the other two
peaks; whilst ARTS performs consistently well as before. From these experiments it is
evident that, ARTS has avoided the problem of dominance and can distribute its population
among the peaks once it reaches the steady state. ARTS achieves this without any prior

knowledge about the modality of the search space.

To analyse further, RTS has also been tested on functions F1 and F2 with three different
window sizes 15, 20 and 25. In each case ten random runs are performed. The variance of
the number of elements on each peak 1s presented in Figures 4.10 and 4.11. The figures
show that, RTS cannot attain a steady state of population distribution on the peaks and in a
few cases peaks are totally lost after some generations. Figure 4.10 exhibits that for function
F1 the search is less robust with a smaller window size (1.e. there is a higher variance). On
the other hand a larger window size of 25 introduces more stability to the search (ie.
smaller variance). Figure 4.11 also shows that for function F2 the performance of the search
is improved using a higher window size. The larger window size of 25 helps to maintain all

the peaks for a longer period.

4.5 A Study on the Effects of the Clustering Parameters, K and KT, on

ARTS

The shared near neighbour clustering technique is controlled by the two parameters K and
KT. It is important to understand the effect(s) of the two parameters on the ARTS based
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GA search. In order to study the effect, the ARTS based search is performed with different
values of KT whilst keeping K constant. The value of KT is varied from 15 to 8, while K is
kept at 15. The study is performed on both Fi and F2 functions. When K and KT are the
same, that is when they are both 15, the tightest possible clusters are produced. Reducing
the value of KT from 15 results in less tight clusters. Ten random runs are performed for
each combination of K and KT. The average and variance of the number of elements present
on each peak with KT equal to 15 and 8 only are plotted in Figures 4.12 to 4.15. The
experiments show that in all the cases ARTS is found to have achieved a steady state of
population distribution and the performances are similar. The value of K does not affect the
clustering significantly, and generally K is fixed at 15 with a population size of 100. The

value of K 1s suitable to provide the necessary globular bias to the clustering.

4.5.1 Chi-square-like performance test for different values of KT

ARTS is tested with different values of KT for the clustering. The value of K is kept the
same. The final population distributions on the peaks of F1 and F2 with the tightest
clustering (that is K and KT are set equal) are used as the benchmarks. For each function,
KT is varied from 15 to 8 and the population distribution is noted for 500 generations, while
the value of K is kept fixed at 15 only. The experiments use the GA parameters as
mentioned in the section 4.4. The final population distributions (that is at generation 500)
with KT from 14 to 8 are compared with the benchmark distributions. The chi-square-like
performance statistic i1s used to determine how far the final population distributions (that is
with KT from 14 to 8) differ from the respective benchmark distribution. This measures the
effect of different values of KT on the performance of ARTS based GA search. The chi-
square-like measure [Deb and Goldberg (1989), Miller and Shaw (1996)], given below,
returns a positive number that decreases as the two distributions become closer; it returns 0

if the distributions are identical.
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The chi-square-like performance metric measures the deviation of the actual distributions of
individuals, X;, from the benchmark distribution mean p; on all the i peaks (there are total q
number of peaks). The variable X; represents the actual number of individuals on the peak i.
The average and the standard deviation of the number of individuals on the ith peak in the
benchmark distribution are denoted by p; and o; respectively. The smaller the chi-square-
like performance measure the closer are the two distributions. Tables 4.1 and 4.2 present

the benchmark distributions for the functions F1 and F2 respectively.

Peak Number i ol
1 19.1 | 4.07
2 21.4 ] 340
3 19.8 | 3.49
4 20.0 | 2.75
5 19.7 | 4.11

Table 4.1: The benchmark population distribution on the peaks of F1 (where the peaks are

counted from the left in figure 4.2). Here K and KT are kept equal at 15,

Peak Number By o]

1 15.8 |3.29
2 20.5 | 4.17
3 20.0 |5.29
4 23.5 [3.34
5 18.2 [2.44

Table 4.2: The benchmark population distribution on the peaks of F2 (where the peaks are

counted from the left in figure 4.3). Here K and KT are kept equal at 15.
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Ten random runs are performed for every combination of K and KT. Experiments are
performed for both the functions, F1 and F2. The average and standard deviation (SD) of
the chi-square-like statistic over the ten runs for each combination of K and KT are
presented in Tables 4.3 and 4.4. It is clear from Table 4.3 that in all the seven cases for the
function F1, the average chi-square-like measures are quite small and of similar value. The
corresponding standard deviations are also reasonably small. These show that for function
Fl1, in terms of attaining the steady state ARTS search is robust to changes in KT. Also
Table 4.4 exhibits a similar trend for the function F2. It is observed that in Table 4.4 the
average and standard deviation tend to increase with decreasing values of KT, but they are
still quite low. Very loose clustering is performed when KT is set to 8. This introduces more
clustering error in the search. Though the search attains steady state of distribution, the final
distribution can vary from the benchmark. This is observed from the fact that the standard
deviation of the chi-square-like measure is higher. Thus, in terms of attaining the steady
state the performance of ARTS based GA can be considered as reasonably robust with

different values of KT, while K remains constant.

K KT | Chi-Square-Like measure
Average SD

15 14 2.2331 0.9888

15 13 24290 0.9404

15 12 2.5381 0.4660

15 11 3.1692 1.2363

15 10 3.1449 1.3300

15 9 23134 0.8427

15 8 2.4611 1.2041

Table 4.3: The chi-square test results for the function F1 with different values of KT.
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K KT | Chi-Square-Like measure
Average SD

15 14 2.0436 0.5623

15 13 2.0472 09137

15 12 3.3653 1.0135

15 11 2.8944 1.0590

15 10 42240 1.5466

15 9 4.0833 1.4650

15 8 3.9397 2.1321

Table 4.4: The chi-square test results for the function F2 with different values of KT.

4.6 The Identification of “Good” Design Solutions using ARTS

The developed technique, ARTS, is applied on the twelve dimensional turbine blade cooling
system design problem. The problem involves three non-linear constraints. The objective is
to identify several sub-optima or in other words multiple “good” design solutions present in

the constrained design space.

4.6.1 Genetic Encoding of the Design Variables

The turbine blade problem includes three types of geometry for the cooling passage. Types
of geometry determine the ranges for the coefficient of discharge (Cdf) and the factor for
heat transfer coefficient (Fhc). A structured chromosome approach [Dasgupta and
McGregor (1991)] is implemented using binary encoding. The structure of the chromosome
is shown in Figure 4.16. Every variable is defined by a maximum value, a minimum value, a

resolution and a design tolerance. Every variable is represented by an eight bits long string,.
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4.6.2 The Constrained Optimisation

The turbine blade cooling system design involves three non-linear constraints. Any new
technique should be able to handle this constrained optimisation task. Michalewicz (1995)
has listed several techniques for constrained optimisation. The most popular technique uses
penalty functions, where the fitness (that is the inverse of coolant mass flow through the
radial passage) of a solution is degraded if it violates any constraint. The problem uses three
linear penalty functions for the three constraints. The penalty functions (Figure 4.17) help

the GA to concentrate search in the feasible regions of the search space.

4.6.3 ARTS for the Design Problem

ARTS is applied to the turbine blade design problem to identify multiple “good” design
solutions. The solutions are presented to the designer by ASM for design decision support.
ARTS uses the shared near neighbour clustering technique to cluster the elements or design
solutions present in every population. The clustering time depends on the total number of
elements to be clustered. As an ARTS based GA run progresses, some duplicate solutions
are produced. In order to reduce the clustering time a clustering list is developed by
eliminating the duplicate designs from every generation. Thus the clustering list changes its
size and becomes smaller as the run progresses. The clustering list is used to identify smaller
clusters present in the population. In an initial attempt [Roy and Parmee (1996)], the two
control parameters of the clustering technique, K and KT, were set equal but propertional
to the size of the clustering list. That helped to achieve the tightest clustering possible. In a
later development, an attempt has been made to integrate a knowledge based hill climbing
technique (KBHC) with ARTS. KBHC is discussed in detail in the next section. KBHC
works on every generation and tries to improve the “good” designs (that is the best design
of each cluster) utilising designers’ prior knowledge and information extracted from the

clusters. Designers’ prior knowledge represents a heuristic concerning the contribution of
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individual variables to the fitness. Data within a cluster also provides some information
about the relative contribution of the design variables towards fitness within the
neighbourhood. If a cluster contains very few designs, some designs are randomly generated
around the best design of the cluster. These designs are then used to obtain the cluster
information. For every cluster, the method learns about the best design using the cluster
information, uses designer’s existing knowledge and identifies the most contributing
variables. The technique assumes that variables are independent. At first, real-number hill
climbing is performed only on the three most contributing variables. If KBHC cannot
improve the designs for some generation, the next set of three most contributing variables
are hill climbed. Then if KBHC does not improve the designs for some generations the hill

climbing is stopped.

Every design belongs to the hill of a local peak and KBHC tries to climb up to that peak.
Thus KBHC is a local hill climbing technique. The method only searches in limited
directions thus it cannot guarantee to identify the local peak, but it can climb up the hill
deterministically. The technique is very quick, and may improve the best design in each
cluster. Thus it is acceptable to apply the technique every generation. Whenever KBHC is
successful the improved design replaces the best design of the cluster and its duplicates in
the population. This improved population is then reclustered to provide information for the

next generation.

It is important that the search attains a steady state to distribute the design solutions on
different sub-optima. In the initial attempt, whether the ARTS based GA has attained a
steady state was determined by checking the average fitness of the population every
generation. If the average fitness remained unchanged for a certain number of generations it

was assumed that the GA has attained a steady state [Roy and Parmee (1996)]. This steady
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state criterion is found to delay the ASM run and does not contribute to the search at the
later stage of a run. Thus the criterion is not very suitable for industrial applications. In
order to achieve “good” designs within a reasonable time, the steady state criterion has been
changed. The ASM now maintains three lists of “good” designs for the three geometry
types. The lists are of fixed size and the sizes are determined heuristically. A list is updated
under the following circumstances:
a) If the list is not of full size: the list is updated until the list attains the full size.
b) The lists are updated every generation only if a better design is found outside the
neighbourhoods of the designs in the lists, but within the same geometry type.
The neighbourhood of a design is defined by the tolerances on each dimension.
The better design replaces the worst design in the list.
¢) If a better design lies in the neighbourhood of a design from the list, the better

design replaces the design in the list.

If all the three lists are not updated for some generations it is assumed that the search has
reached steady state. Thus, the objective of the search is redefined as ‘only five best designs
are required from each geomenry type’ (that is a total of 15 designs using an initial
population of 120). KT is assigned 90% of the value of K. This smaller value of KT (that is
smaller than K) provides bigger clusters. The clusters provide information for the KBHC
search. Once the GA reaches a steady state, the best solution in each cluster is considered
as a potential “good” solution. In an attempt to reduce the run time of ASM for the turbine
blade problem following improvements are also introduced:

A. An Effective Crossover Technique: The structured chromosome used to

represent the problem results in a large amount of redundancy in a chromosome

(in this case there is about 66% redundancy present in the chromosome). If the

one-point crossover position is selected within the redundant areas of the parent
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chromosomes, the children produced would not be different from their parents,
This makes the crossover ineffective on some occasions and thus prolongs the
search. An effective crossover technique is developed that prevents crossover in
the redundant regions of the parent chromosomes. The crossover position is
selected at least within the active regions of a parent chromosome. This
improves the effectiveness of the crossover technique, and thus ASM run time is

reduced [Wade et. al. (1994)].

B. During an ARTS based GA search some duplicate solutions are produced in
the population. Thus, randomly selecting two individuals from the population
may mean selecting duplicate chromosomes as parents. Mating of identical
chromosomes cannot produce any new schema; and as a result the effectiveness
of the reproductive stage is reduced. In order to avoid the selection of two
similar chromosomes as parents, they are selected from the cluster list, whilst
the cluster list is developed from the population after eliminating the duplicate

designs [Eshelman and Schaffer (1991)].

The potential “good” design solutions were validated by randomly checking the fitness of
many solutions from the neighbourhood. It was observed that, although the fitnesses looked
very promising most of them were actually not local optima. The solutions achieved were
found to be close to the local optima. This difficulty can be attributed to the inefficiency of
the GA and KBHC hybrid to exactly locate a sub-optimum, specially if the problem is
complex and multidimensional. At the end a stochastic local hill climbing algorithm
(described in section 4.8) is also applied on each potential “good” solution to ensure that

the local peak is attained.
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4.7 The Knowledge Based Hill Climbing Technique

A Knowledge Based Hill Climbing (KBHC) technique is developed to be used with the
Adaptive Search Manager (ASM) [Roy et. al. (1996a)]. The KBHC technique learns from
the cluster information gathered by the ASM, uses prior knowledge of experts, and
deterministically performs a limited hill climbing. The objective is to improve upon a design
with a very small number of trials. The technique assumes that the clusters represent the
neighbourhoods of the design solutions, and that there is very little interaction between the
design variables. KBHC works with the principle of Bayes” Theorem. The theorem provides
a learning framework that identifies the interesting variables to hill climb. The hill climbing
is limited within a type of the geometry. The technique is applied every generation on the
best design of each cluster. KBHC is stopped if it cannot improve the designs for a few

generations.

4.7.1 Learning from a Single Data Set using Bayes’ Theorem

It is assumed that a designer considers a finite list of models for the design task; where each
model represents one variable, { Mj, M, ..., M }, to constitute an exclusive and exhaustive
set of possible probability models for the problem. [t is further assumed that, before any
data is obtained, the designer assigns prior probabilities, { P(M,), P(M2), ..., P(My)}, (prior
probability represents designer’s heuristic knowledge about the problem and is represented
as the degree of belief) to these models, where 0 < P(Mj) < 1, i = 1,2, .., k, ks the
number of variables and

P(M,) + P(My) + ... + (M) = 1. CR))
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Each probability model defines a probability distribution over the possible data that may be
obtained. In particular, if the acquired data set is denoted by D, the probabilities of the data
as defined by each of the alternative models are given by the conditional probabilities

{ P(D/M)), P(D/'My), ..., P(D/M) }.
Considering in terms of the { M;, My, ..., Mk }, for a given D, the above quantities are often

referred to as the likelihood of the M;’s given D.

After considering an exclusive and exhaustive set of probability models the designer
specifies a set of prior probabilities. Assuming that the design variables are independent, for
an actually obtained data D, univariate linear regression analysis coefficient, b, can provide a

measure of the likelihood. Thus:

b
P(D Mj) =—= ...(4.2)
2bj

J=1

The designer may now wish to revise the prior probabilities in the light of the information

provided by the data. Expressed mathematically, the designer would wish to calculate the

probabilities for the alternative models, conditional now on having the observed data D:
{P(M,/D), P(M./D), ..., P(M/D)},

The mathematical result that expresses these posterior probabilities in terms of the prior

probabilities and the likelihood is defined by Bayes’ Theorem. The theorem for the situation

under consideration can be stated as follows:

BAYES' THEOREM (in the discrete form): If {M;, M, ..., M} are an exclusive and
exhaustive set of probability models, and the prior probabilities {P(M,), P(My), ..., P(My)}
and likelihood {P(D/M,), P(D/M,), ..., P(D/My)} are specified such that P(D) > 0, then the

posterior probabilities are given by [Lloyd (1984)]:
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4.7.2 The Methodology

The hill climbing methodology can be described as follows:

1. ASM produces clusters of design solutions each generation, and KBHC obtains
information from these clusters. The clusters need to have a minimum number of designs in
order to provide meaningful information. If a cluster does not have a minimum number of
designs then some solutions are generated randomly in the neighbourhood of the best

solution, where the neighbourhood is defined by the resolution on each variable.

2. Univariate Regression Analysis :
To find the univanate regression coefficient:
Vi =aj +bi¥; ..(4.5)

where, i =1, 2, ..., n; n being the number of variables.

m m m
XY~ 2 Xy LYy [m
] j=l =1

b = L=t . .(4.6)
m n
> x;)‘- - Z.rj m

Jj=1 Jj=1

aj =i —bi%; (47
and, m = number of data.

m

Residual (error) sum of squares = SSR; =}, (y; —j»,-j)z ....(4.8)

i=1
where, ¥,,71,....V;m are obtained by substituting the x
value for each observation into the least-squares

lines: ¥, =a, +b,x,,....y,, =a,+bx,, .

i

Estimated Standard Deviation = Se; = iR; ....(4.9)
m—
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Se;

m y) m 2
Z x,-j— qu m
j=1 U=l

(4.10)

Estimated standard deviation of the statistic b; = Sb; =

The probability distribution of the standardised variabie:

_bi-B

t.
T Sh

(A1)

is the t distribution with m-2 degrees of freedom.

For each variable the calculation s performed in the following sequence:

a) Calculate b;

b) Calculate t;

¢) Get the critical value of t; from standard table for 95% confidence interval and (m-
2) degrees of freedom.

d) In order to conclude that there is a linear relation between a design variable and the
fitness, the converse of this research hypothesis, the null hypothesis, needs to be
rejected. The logic is similar to the mathematical method of proof by contradiction.
Thus if the nﬁll hypothesis (HO: B = 0) is rejected the b; value can be used as the
measure of likelihood. Otherwise, the model does not appear to satisfy a useful
way of predicting the dependent variable. The null hypothesis is rejected if t; >

Leritical OF b < ~tenitical-
3. The Designers’ Knowledge: The pre-probability represents designers’ heuristic

knowledge about the contribution of individual variables to the fitness. The probability is

represented as the designers’ degree of belief.
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The knowledge based hill climbing learns from the designs in a cluster and also uses some
prior knowledge from the designer. The probability of individual variable to be the most
contributor for the fitness is initially given by the designer from his experience. Following
assumptions are made;

a) The designer has some prior knowledge about the important variables. This

information is not necessarily true in local regions.

b) The cluster data alone cannot provide enough information about the
neighbourhood of the design because they are too small in number. There is
uncertainty involved regarding any information retrieved from the data. This can

be considered as a degree of disbelief.

¢) Information gathered from the cluster data and the designers’ prior
knowledge can provide a more realistic assessment of a local region in the

search space.

4) The values of the posterior probability, P(Mi/D), are used to identify the six most

contributing variables.

5) To start with, a deterministic real number hill climbing is performed on the first three
most contributing variables. The hill climbing starts in the best direction and then climbs

other directions in the order.

6) After few generations KBHC becomes less effective because the three variables achieve
their optimum value. If KBHC is not successful for a few generations, then the second set

of three of the six most probable variables are hill climbed. KBHC is then stopped if it fails
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to improve the designs for few generations. After the hybrid of ARTS based GA and KBHC
attains a steady state of population distribution, the GA search is stopped. Finally, a

stochastic local hill climbing is applied on the “good” designs for fine tuning.

4.8 The Stochastic Local Hill Climbing Technique

A stochastic local hill climbing algorithm is used to identify the sub-optimum solution
present on the hill of a probable “good” design solution. The local search is again limited to
a type of geometry of a potential “good” design solution. The search is performed on the
constrained fitness (that is the inverse of the coolant mass flow through the radial passage)
landscape. The neighbourhood of a design solution 1s defined by the resolutions on the
design variables. The hill climbing algorithm is a local random walk technique. The
algorithm can be described as follows:
For every best individual in the final cluster (CB):
count = 0
Best item = CB
DO
Randomly generate one individual (N) from the neighbourhood
of the Best item
If (Fitness(N) > Fitness(Best item)) THEN
Best item = N
count = (0
Else count = count + 1
Until count = MAXcount
The algorithm tries to climb up the hill of a design. The algorithm stops searching if it

cannot find a suitable solution within MAXcount number of trials. Thus it is not guaranteed
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that the algorithm will locate the sub-optimum. The hill climbing is stochastic in nature and
thus may involve many model evaluations. It is observed that, the algorithm does improve a
potential design solution and thus make it at least closer to the sub-optimum as defined by

the model.

4.9 Validation of the hybrid search

The effectiveness of the hybrid search (ARTS + local hill climbing) is also validated with
TBCOM. Results from several runs of the search are presented to an expert and a user from
Rolls Royce. They checked whether the search mechanism can identify multiple ‘good’
design solutions (from different areas of the design space) within reasonable time. The first
steady state criterion (section 4.6.3) was changed following the feedback from the

validation.

4.10 Summary

This chapter discusses the developments of ARTS based GA technique for real hfe
problems. The chapter also presents a knowledge based hill climbing and a stochastic local
hill climbing technique, that are used in conjunction with ARTS for the turbine blade
problem. ARTS is compared with RTS and DC, and the results are presented and discussed.
Experiments are performed to analyse the effects of KT, a control parameter, on ARTS. A
hybrid of ARTS and the knowledge based hill climbing is applied to the turbine blade
problem to identify multiple “good” designs. The stochastic local hill climbing technique
helps to fine tune the “good” designs. Modifications and enhancements to suit the hybrid
algorithm to the turbine blade problem are also described. The next chapter presents how
sensitivity information concerning the “good” designs is obtained using Taguchi’s

methodology.
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CHAPTER -5

5. Sensitivity Analysis of Engineering Designs

5.1 Introduction

Information concerning sensitivity of engineering designs can be essential for engineering
decision making. Sensitivity analysis provides the information on the performance of a
design when there is some minor change in the values of the design variables. Sensitivities
of a design can be defined in terms of design solution sensitivity, design variable sensitivity
and constraint sensitivity. The design solution sensitivity means sensitivity of a design
solution performance within a defined neighbourhood. The design variable sensitivity is the
effect of each design variable on the design solution performance within a defined
neighbourhood. Violations of constraints within the neighbourhood of a design define the
constraint sensitivity of the design. The study described here is performed with the steady
state twelve dimensional computer model of the Rolls Royce turbine blade problem
(TBCOM). The sensitivity analysis module is an integral part of the Adaptive Search
Manager (ASM). Once an ARTS based GA search identifies multiple ‘good’ design
solutions the sensitivity analysis is performed on each of these designs. The sensitivity
mformation is presented to the designer in order to assist in the design decision making. The
chapter defines a sensitivity index for the design solutions, a measure of design variable

sensitivities and different categories of constraint sensitivity.
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The study of the effect of varying independent variables (in this case the design variables) on
a dependent variable (that is the coolant mass flow from TBCOM) requires the relationship
between the dependent and independent variables to be known. An empirical method,
known as design of experiments, is some times used to establish such relationship. For an
empirical study all possible combinations of the values of the independent variables (also
known as factors) are required to define the relationship using a statistical technique. This
method of exhaustive trials is known as full factorial experiments. In many cases, it is too
expensive to run a full factorial experiment, for example a multidimensional real life design
problem. In this situation, a fractional factorial experiment can be performed where a
fraction of the full factorial experiments is considered. The price of running a fractional
factorial experiment is the loss of some information regarding the independent variables and
their relation to the dependent variable. Taguchi advocates a systematic approach and has
developed several standard orthogonal matrices to define the fractional factorial
experiments [Phadke (1989), Roy (1993)]. The use of the orthogonal matrices involves the
least amount of information loss, especially if the variables do not interact with each other.
In order to avoid an exhaustive search for the sensitivity analysis, Taguchi’s orthogonal
matrix and the tolerances on the design variables have been utilised to define the
neighbourhood of a design solution [Roy et. al. (1995b) and (1996b)]. This neighbourhood
is called the tolerance space. Considering the worst case variability {Emch and Parkinson
(1993)], the worst combinations of the design variables within the tolerances to satisfy the
design constraints are expected. The sensitivity calculations are performed within the
tolerance space of a design solution. Taguchi’s methodology is followed to calculate the
effect of each variable on the performance of a design solution (the performance here is
measured by coolant mass flow x 107, as calculated by the model). The designs are also
tested for constraint criticality [Sundaresan et. al. {(1993)]. Depending upon the extent of

constraint satisfaction within the neighbourhood of a design solution, different categories of
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constraint sensitivity can be defined as constraint satisfied, statistically active constraint,
quasi-active constraint, peak-active constraint and constraint not satisfied. The definitions of
these categories are given in section 5.5. The three types of sensitivity information are

essential before one design is selected out of many design solutions.

Taguchi’s methodology assumes no interaction between variables. Thus the analysis can be
very reliable provided there is no or very little interaction among the design variables in the
neighbourhoods of the design solutions. One way of checking for the presence of
interactions is to validate the additivity principle in the region. The additivity principle
assumes that the resuit of each experiment is the superposition of the single factor effects
plus the error due to this assumption and any repetition of the tests. A comparison between
the technique and an exhaustive search based sensitivity analysis is presented with more than
100 design solutions where the neighbourhoods of the design solutions maintain the

additivity principle.

The research presented in this chapter demonstrates the applicability of Taguchi’s
methodology for an approximate sensitivity analysis. The methodology needs a very small
number of model evaluations (experiments) and is thus suitable for multi dimensional real
life problems. The technique is also suitable for performing in the integrated environment of

ASM.

5.2 Sensitivity Analysis

The sensitivity analysis of the turbine blade cooling hole system design includes three
components: calculating the design solution sensitivity, the design variable sensitivities and
the constraint sensitivity. The sensitivities are calculated in the neighbourhood of a design

solution. The neighbourhood is defined by a suitable orthogonal matrix and the tolerances
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of the design variables. The orthogonal matrix is expected to provide reliable information
about the neighbourhood provided there is no or very little interaction among the design
variables [Phadke (1989), Roy (1993), Roy et al. (1994)]. The three types of sensitivities

are described below:

Design Solution Sensitivity:
A measure of the variation of design fitness in the neighbourhood of a design solution is
defined as the design solution sensitivity. In this case the design fitness is determined by

coolant mass flow x 10° through the radial passage.

Design Variable Sensitivity:
This 1s defined as the effect of a design variable on the design fitness within a
neighbourhood of the design. The effects due to the interaction (if any) between variables

are not considered.

Constraint Sensitivity:

The constraint sensitivity can be described as criticality of constraints (violations) in the
neighbourhood of a design solution. According to the criticality five categories of constraint
sensitivity have been defined: constraint satisfied, statistically active constraint. quasi-

active constraint, peak-active constraint and constraint not satisfied (section 5.5).

5.3 Taguchi’s Orthegonal Matrix

Taguchi’s orthogonal matrix comes from the concept of Latin Squares that has been known
in mathematics for thousands of years [Phadke (1989)]. Recently it has become popular as a
tool for design of experiments [Phadke (1989), Sundaresan et. al. (1993), Roy et. al

(1994), Roy and Cave (1996a) and (1996b)]. Variable levels are orthogonal, i.e. they are
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represented proportionately (equal number of times) in any two columns of the matrix.
Where the levels of a variable are defined as possible values of the variable, they are
discrete, and there can be two or more levels of a variable. For example, inlet temperature
can have three levels: high, medium and Jow. The smallest orthogonal matrix (that is
designated as L,) designs four experiments for three variables (these are the factors) with
two levels each (Table 5.1). The scheme combines all factor levels with the same number of
other factor levels. For example, in Table 5.1, B2 (i.e. the second level of the design
variable B) is tested together with Al and C2 in row 2 and variable settings A2 and C1 in
row 4. The average of the corresponding test results R2 (that is the result of the second
experiment, the second row) and R4 is different from the overall mean p of all test results.
The difference is due to the influence of B2, known as the “factor effect” (b2). Taguchi’s
methodology depends on the principle of additivity. If a neighbourhood maintains the
additivity principle, factor effects due to the different levels of a design variabie should

nullify each other {Phadke (1989)].

Experiment ' Variables Result
A B C
1 1 1 ] R1
2 1 2 2 R2
3 2 1 2 R3
4 2 2 1 R4
mean u

Table 5.1: Standard L, Orthogonal Matrix. The matrix consists of three variables (A, B and

C) with two levels each (denoted by 1 and 2).
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For example, considering the L, orthogonal matrix as shown in Table 5.1, the result R2 for
the second experiment can be expressed as :
R2 =p+al+b2+c2+e
where, al is the difference between the overall mean
u and the average result of all the tests which
involved Al. Similarly b2 and c2 are also defined.

¢ is the associated error.

The additivity principle assumes that the effects of different levels of a variable should
cancel each other. Thus assuming the additivity principle holds in the neighbourhood:

al +a2=bl+b2=cl+c2=0

Using the above assumption it is possible to calculate the effects of individual levels for each
design variable as follows:
Average result of all tests which involved Al,
m(Al)=% {(u+al+bl +cl+el)
+(u+al +b2+c2+e2)}
(from the Ist and 2nd expeniments in Table 5.1)
where, el and e2 are errors associated with the
1st and 2nd experiments in Table 5.1.
=k (u+2al)+% (bl +b2)+ Va(cl +c2) + %2 (el +e2)

=(u+al)+% (el +e2) (from the equations above)

Ignoring the error part, the effect of Al can be expressed as :

al =m(Al)-p
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Similar procedures are followed to calculate the effect of other levels for all the variables.
This model can only work efficiently if the additivity principle holds and there is no
interaction between variables. For detailed discussion about different types of interactions
refer to Phadke (1989) or Roy (1993). Often the additivity requirement limits the use of the
orthogonal matrix for designing experiments. If there is an interaction between two
variables, the resulting deviation from the mean p will be falsely added to another variable,

which can affect the conclusions considerably.

The neighbourhood of a design solution is defined using tolerances on design variables and
Taguchi’s orthogonal matrix. The tolerance space of any design solution is ideally defined
as all worst combinations of design variables (considering the worst-case variability).
Taguchi’s orthogonal matrix is a fractional factorial strategy so that fewer experiments are
required to perform an approximate calculation of the sensitivities. Thus the tolerance space
is defined using the orthogonal matrix that is then used as the basis for the sensitivity
calculations. Calculation of the factor effects following Taguchi’s methodology provides the

design vanable sensitivity information.

5.4 Developing the Taguchi’s Orthogonal Matrix for the Problem

Developing an orthogonal matrix for a problem requires some knowledge about the nature
of the problem. There are some standard orthogonal matrices defined by Taguchi [Taguchi
(1986)]. Often a standard orthogonal matrix can be modified to work with the real life
problem. In order to select a standard orthogonal matrix and then modify it the following
information about the problem is required:
a) Number of Factors (i.e. the number of design variables) to be studied .

For the turbine blade problem the sensitivity calculation is limited to one

geometry only, thus
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Total no. of variables = 11

b) Levels associated with each design variable:
L (LOW), M (MEDIUM), H (HIGH)
The levels are defined by defining the tolerance on each design variable as:
L=M-A
H=M+A
where, the variable can be expressed as M * 2.

Experts use domain knowledge to determine the tolerances on the design variables.

¢) Interaction between variables is not considered, because it is assumed that a small

neighbourhood of a design solution can be approximated with an additive model.

d) Ranking of the design variables according to the ease of changing their levels is
determined heuristically in the decreasing order as follows:

Rs, kw, Cdf, dth, Cdr, Fhc, Rp, df, Ff, Rpfand Tcl.

5.4.1 Degrees of Freedom Calculation

The first step in constructing an orthogonal matrix to fit the turbine blade problem is to
count the total degrees of freedom. It tells the minimum number of experiments (in this case
the model evaluations) that must be performed to study all the chosen factors. To begin
with, one degree of freedom is associated with the overall mean regardless of the number of
design variables to be studied. The number of degrecs of freedom associated with a factor is
equal to one less than the number of levels for that factor. This is because only two
comparisons are required in case of a 3-level design variable. Thus the total degrees of

freedom for the problem can be estimated as :
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Degrees of Freedom

Factor (Design Variable)

1

Overall mean

=22

1Hx@3-1)

All variables (11)

23

Total:

That means, at least 23 experiments (model evaluations) are required to estimate the effect

of each factor.

Column

13

12

11

10

Exp. No.

10
11

12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27

Table 5.2: L,,(3"), a standard orthogonal matrix. The matrix consists of 13 variables with 3

levels each. The matrix suggests 27 experiments in total.
120




5.4.2 Selecting a Standard Orthogonal Matrix

Taguchi has tabulated 18 basic orthogonal matrices [Taguchi (1986)], which are called
standard orthogonal matrices. The most common technique is to select one of these
standard matrices and then modify it to suit the problem. The selected matrix should have
the number of rows at least equal to the degrees of freedom required for the problem. The

number of columns of a matrix represents the maximum number of factors that can be

Exp. No. Column
1 2 3 4 5 6 7 3 9 10 11 12 13

1 G. | EL IL. Dy A; | BL F H; L K, C.
2 G, 1E L D | 2w | By | Fx | Hu |Ju | Xy | Cu
3 Gy | EL I Dy Ay | By Fy Hy Ju Ky | Cy
4 G Ev | In Dy | AL By Fr Hy Iu Ku | Cy
5 G |Ev [Iv |Du |Am [Bu |Fu [ Hu | Ju Ky [ Co
3 G. |Ew |1w |Dw |An |Bx | Fa |H 1) | X | Cu
7 Gr. | Eq Iy Dy | AL | BL Fp Hy Ju Ky | Cu
8 G. | Ex |1n | Dn |Aw |Bu |Fx |H |Jh |K. | Cq
9 G |Ex [1s | Dx | An | Ba | Fn | Hw | Jx | Ku | Cy
10 Gu | EL I Dy AL | Bu Fy H; 1Y Ky | G
11 Gy |E. |y | Du | Au | By FL Hy | Jq K. | Cu
12 Gu |E. | 1w IDs |Ax |B. |Fx |Ha |1 |Ku | Cx
13 Gu [Em | | Do |AL [Buw |Fx [Hy [Ju Ki | Cu
14 Gu |Ev |Iu [DL |Am | By Fy Hy | Kn | G
15 Gu [ Em | In Dy Ay | BL Fu H;. I Ky | Cu
16 Gu | En |1, | Dw |A. | Bu |Fu |Hs 1) | Ky | Cy
17 Gu |Eu | LI Dy | Au | Bu FL H Im Ky | Cu
18 Gu | Ex I Dy |As | BL Fum Hu Ju Ky C.
19 Gy | EL | Dy | AL | By Fu Hy Ju Ku | Co
20 Gy [EL |ly [Duw |Am | B Fy [Hy |1 Ki | Cm
21 Ga |E. |1y |Du |A8 | By |E. | Ha |Ju | K. | Cu
22 Gy |Ex | 1L Dy | AL | By Fu Hu I Ky | Cy
23 Gu | Ev |h 1Dx | Aw | B | Fa | Bx |Iw X |G
24 Gy |Euw | IL Dy Ay | By FL H Ju Ky | Cu
25 Gy | Ex Inm D AL | By Fu Hy T Ky Cu
26 Gy | Ey Ty Dy Ay | BL Fy Hp Ju Ky | Cu
27 G | Ex Im Dy A | Bu Fr Hwm 1y Ky | G

Table 5.3: The orthogonal matrix used for the sensitivity analysis, where A = Cdr, B = Fhe,
C=Tcl,D=dth, E =kw, F=Rp, G=Rs, H=df, 1=Cdf, J = Ff, K = Rpf. The three

subscripts L, M, and H mean Low, Medium and High levels.
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studied using that matrix. In addition, in order to use a standard orthogonal matrix directly,
one must be able to match the number of levels of the factors with the numbers of levels in
the columns of the matrix. The smallest possible matrix is selected to save the number of

model evaluations.

Considering the minimum number of experiments required, the number of variables and the
number of levels per variable, a standard matrix L,;(3'") (Table 5.2) has been selected for
the problem. The matrix defines 27 experiments, it has 13 columns and the factors (that is
the design variable) have three levels each. As there are only 11 design vanables in the
problem, the 12th and the 13th column of the matrix are left empty (Table 5.3). This does
not destroy the orthogonality of the matrix. The design variables are placed in the columns
according to the ranking of the design variables considering the ease of changing their

levels.

5.5 Use of Taguchi’s Orthogonal Matrix

Definition 5.1: Tolerance Space

The Tolerance Space (TS) around a design solution can be defined as a set of points where
each point represents a possible combination of the design variables with the tolerances
associated with them. The points are selected using the Taguchi’s orthogonal matrix (OM).
Each design variable of a design solution can have an upper and a lower value defined by its
tolerance. Thus the three levels of each variable can be represented as g (the variable value),
gu (the upper level, that is g + tol.) and gl (the lower level, that is g - tol.). In Figures 5.1-
5.5 dashed rectangles represent the tolerance space in 2 dimensions (as in case of full
factorial, that is all possible combinations). The design solution lies at the centre of the
dashed rectangle and is marked by a larger circle. It is assumed that each design solution is

expressed as:
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dg = [ Xigs Xogs X3gs ceeeere  Xmg | € DS (5.1
where:
X : design variable
d : design solution as vector of m design variables
DS : the design space
m : no. of design variables
and the tolerance space assoctated with it can be expressed as:
TS(d)={d:d e DS||d-dg| < Ad}™
where:

tolerances on each vanable= Ad=[Ax;, Ax;,

Definition 5.2 : Vertex Space

Vertex Space (VS) consists of all possible design solutions or options (all worst case
combinations) of the tolerance space (TS) except the design solution (d,). Thus VS can be
formally represented as:

VS(dy) =TS - { d, } (53)

Definition 5.3 : Design Solution Sensitivity
Once the tolerance space (the neighbourhood) is defined, in order to measure sensitivity of
the design solution a Sensitivity Index (SI) is defined as follows:

SI= l where, n = signal to noise ratio [Phadke (1989)] ...(5.4)

Considering the task of the optimisation is to reduce coolant mass flow rate, the problem
can be considered as a “Nominal-the-Best™ type [Phadke (1989)]. Thus the Signal to Noise

ratio is defined as:
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designs. This corresponds to the fact that the unconstrained design space is very likely to be
monotonic. It is observed that Rp is the most sensitive variable in the neighbourhoods of the
designs. The other sensitive variables are: Rpf, Fhc and Cdr. Some variations in the
qualitative ratings are also observed. The designer considers all the information to select
one design from the list. The constrained search (results are presented in section 7.2.2) is
more complex: more generations are required to attain the steady state. According to the
expert and the user the designs identified by ASM are “good” and representative of the
constrained design space. The designs are from different positions in the space, and thus
provide several design options. The fitness (that is the inverse of the coolant mass flow
through the radial passage) of designs from plane type geometry varies considerably from
that of pedestal or ribbed type geometries. The designs from the pedestal type geometry
(Geom: 3) have the highest fitness. Within the plane geometry the design solution sensitivity
varies from 55.26 to 81.07. That shows although the designs can be “good” in terms of
coolant mass flow criterion (i.e. less coolant flow), performance can differ considerably in
terms of the sensitivity. Less sensitive designs are preferred by the designers. The most
sensitive variables for plane type geometry are: Rp, Fhc, Rpfand Cdr. The designs from the
plane type geometry have the same qualitative rating for the cost of matenal. Some
differences are observed in the ratings for cost of manufacture and designer’s special
preference. The designs from the second type of geometry, the ribbed type, are similar in
fitness but the design solution sensitivity varies from 64.01 to 73.19. The major contributing
variables are again Rp, Fhe, Cdr and Rpf. The qualitative ratings are found to be similar. So
the designer mainly uses the sensitivity information to compare designs. The designs are
generally less sensitive than that of the plane geometry type. These designs are less suitable
than the plane geometry designs in terms of cost of manufacture and cost of material. The
first constraint on the metal temperature seems very hard and it is violated in the

neighbourhoods of the designs. Fitnesses of the designs with the pedestal type geometry
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have higher fitness than the others. The design solution sensitivity varies from 61.46 to
64.18, 1.e. less sensitive than the designs with plane or ribbed type of geometry. Once again
Rp, Cdr, Fhe and Rpf are the most sensitive design variables. The first constraint is also
violated in the neighbourhoods of the designs. It is observed that the ratings for the
qualitative criteria largely vary among the designs. Thus the qualitative information can play
a significant role to compare between two designs. The neighbourhood of the fifteenth
design violates the additivity principle, thus the sensitivity calculation is not performed and
the values are set to zero. That means there is a significant interaction between the design
variables within the neighbourhood. Designers are often not interested in a design from a
highly interactive region of the design space. The mix of quantitative and qualitative

information provides support to the designers for the design decision making.

ASM works with a real life problem, where there is less prior information concerning the
nature of the problem. Also the evaluation of ASM should represent the feelings of the
designers rather than definitive conclusions. Thus, during the evaluation of ASM an expert
and a user are requested to verify and validate different components of ASM. A
questionnaire helps the designers (i.e. the expert and the user) to validate the system. The
use of many open type questions helps the designers to express themselves better. Due to
limited available human resources ASM is evaluated only by an expert and a user. This
number is very small for any evaluation procedure. In order to minimise the effect of this
small number of ¢valuators, the feedback from the questionnaire is discussed with the
designers. An effort is made to obtain a consensus on the statement that expresses the views

of the designers in terms of the effectiveness of ASM as a design decision support approach.
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8.2 Conclusions

The feedback from the expert and the user suggests that the approach developed in ASM
can successfully support the design decision making in the preliminary design stage. Thus
the approach is effective for the real life multiobjective design problem. The approach
developed in ASM has provided a methodology to utilise both quantitative and qualitative
information in engineering design decision making. The approach can reduce the cognitive
overload of a designer. The final design decision is taken by the designer, and thus ASM
also provides the opportunity to utilise the value system of the designer in the design
process. There are three main components of ASM: the ARTS based GA and hill climbing
hybrid search technique, sensitivity analysis using Taguchi’s methodology and qualitative
evaluation using fuzzy expert system. The ARTS based GA and the knowledge based hill
climbing hybrid has added another tool to the list of multimodal GAs. The objective of the
search is to maintain peaks in the final population. The hybrid search method is suitable for
real life problems. The research presented in the thesis highlights some of the characteristics
of real life optimisation problems. The study has enhanced the understanding concerning the
issues involved in such optimisation. The limitation of the search technique is that there is
no guarantee that the search has visited all sub-optima in the search space. This can
sometimes severely damage the confidence of the designer in the decision support system.
The sensitivity analysis uses the well-established Taguchi’s methodology. The application is
novel and can be very useful for multidimensional real life problems. The limitation of the
application is that it assumes the neighbourhoods can be approximated by an additive
model. That may not be the case in many applications. The qualitative evaluation of designs
is performed using a fuzzy expert system. The fuzzy cxpert system utilises knowledge from
experts in the field. The adaptive search technique (i.e. the hybrid search) and the sensitivity
analysis modules are integrated with this fuzzy expert system to develop the integrated

ASM system. The knowledge representation technique developed in this thesis has made the
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integration possible. The technique represents the design thinking process, and guarantees
the evaluation of any possible design. Due to the novel knowledge representation technique,
the qualitative evaluation module requires a small number of fuzzy rules. The major
limitation of the module is that it cannot fully address the interaction between design
variables. Some definitive knowledge about the interaction can be represented as heuristics.
A generalised knowledge representation that can handle at least a limited amount of design
variable interaction (i.e. interaction among a small number of variables) is required for
industrial problems. Lack of an explanation facility is another limitation of the evaluation
system. The evaluation approach adopted for ASM is suitable for real life problems. It is
observed that in the industrial environment, and especially in life critical and sensitive
industries, it is important that the final validation is performed by human experts. Instead of
a crisp rating for the effectiveness of ASM, a statement is developed that expresses the
feelings of the designers. It is observed that such approach is more acceptable and effective

in evaluating a real life design decision support system.

8.3 Future Research Directions

The research reported in this thesis has also contributed to open new issues for research.
This section provides an outline to possible future research directions. There are several
aspects of the design decision support that needs further investigation. ASM uses a very
simple interface, and thus a major investigation is required to develop a suitable interface for
the decision support. The questions of human computer interaction need to be addressed in

that research.

One of the major issues that decide the acceptability of a design decision support system is
the confidence of the designers in the system. There is a need for better understanding of the

causes that can increase the confidence of the designer. The decision support system should
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address the issues to enhance designers’ confidence. One example can be developing a
search algorithm that can produce results with confidence within an acceptable time limit.
The penalty function, when used for the constrained optimisation, modifies the design
fitness landscape. A multimodal GA algorithm that handles constraints without penalty

functions would be very useful.

The knowledge representation technique developed in the thesis can only address very
limited interaction between design variables (i.e. using heuristic rtules). A further
investigation is necessary to develop a more generalised knowledge representation that can
efficiently handle interaction between the variables. One way of representing such
interaction is to use meta rules. It is observed that the designers face difficulty while
expressing their knowledge concerning the interactions. Research is necessary to extract the
interaction information also from other sources, such as past designs, physical modelling,
etc. Further development is required in fuzzy expert system research to develop the
explanation facility. The results from the qualitative evaluation should ideally be expressed
using linguistic expressions, but the expression needs to be short enough so that the
designer can comprehend the meaning. Further research in this area should develop

approximation techniques that can produce short but representative expressions.
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VALIDATION OF
THE ADAPTIVE SEARCH MANAGER (ASM)

Queslionnaire

Category of the Software: Research Prototype
Version of the ASM: .........ccoeeeieeiieenn,
Dated: .................. Time: .............

Serial Number: ................

INAME: oo e e e er e
OrganiSation: ...........occeeeeivieeeriee e eceee e et e

AAIESS: e

.....................................................................

Contact Telephone Number: .........cccccoiiiinniiiiinien.
Contact FAX Number: .........ccccooiiiirinieeee

|8 4 11 1 ORI

The information provided will only be used for academic and
research purposes. If you agree please tick the box: ]

Validation conducted by:
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PURPOSE OF THE VALIDATION:

The Adaptive Search Manager has been developed to solve real life design problems. ASM
is a design decision support tool suitable in the preliminary design stage for turbine blade
cooling systems. Validation of the tool is essential to assess its effectiveness and to provide
feed back for further development. ASM needs to be validated as a research prototype. The
questionnaire provides a structured procedure for the validation. If you do not want to
answer a question from the choice of answers given in the questionnaire please circle ‘other’
and answer in your own words.

MODULE 1
General issues

This section of the questionnaire tries to understand the general design practice involved in
your company, the work environment and your opinions concerning some general recent
issues in design activities. Please try to answer the questions considering your own
experience by circling only one answer (or more than one answers if specified in the
question);

Q. 1. Could you please briefly describe the nature of your involvement in the design
projects of the company?

Al

Q. 2: How much time (in days) in average do you spend on design related activities per
week?

A 2:

Q. 3: When you work in design related activities, which one of the following closely
describes the type of environment you work with?

A3
a. performing a design task on your own
b. performing a design sub-task as part of a small group of 4-5 people.
c. performing a small part of an overall design task as a member of a design
team, where there is one team leader.
d. other, please specify:

—_———
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Q. 4: Would it be possible to categorise the general nature of your design activities?

A 4
a. detailed design
b. preliminary design
c. creative or innovative design
d. design analysis
e. design evaluation
f. design activity management and co-ordination
g. developing tools that can be useful in design activities
h. no, it can not be categorised, because:

i. other, please specify:

Q. 5: In your day to day design activities which one of the following methods do you
normally follow?

A5

a. doing routine designs using previous designs from the archive

b. designing fresh from the first principles of physics involved in the
design problem

c. developing a design specification (that defines the task) first and then
carrying out step-by-step procedures for the design

d. developing a design specification and then distributing the task among
the group members

e. perform any design analysis task and pass the results to your group
leader

f. evaluate a design and give feedback directly to the designer

g. other, please specify:

Q. 6: How often in average you are given a new (that is when you have to start from the
Sfirst principle) design task?

A.6:
a: once a month
b. once in three months
d. once in six months
e. once a year
f. never
g. that is totally random
h. other, please specify:
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Q. 7. What are the different tools you use for your day to day design activities? Please
circle more than one answer if you wish.

AT

a. drafting board and pencil

b. pen and pencil for calculations and free hand drawings
c. digitiser

d. computer aided drafting package

e. computer aided design and analysis package

f. simple spreadsheet for calculations

g. project management software

h. other, please specify:

Q. 8: How would you generally improve the design that you are working on?

A8

a: blind trial and error

b. many iterations of educated guesses using previous knowledge

c. using a conventional optimisation algorithm

d. using expert opinion

f. using any optimisation package available in computer integrated design
tools

g. other, please specify:

Q. 9: In your day to day design activities which of the following would you consider to be
useful or can be useful for the activities. Please circle more than one answer if you wish.

A9

a. design handbooks and different component catalogues

b. a computer database with component details

c. a computer system that advises you as an expert

d. a computer system that advises you of different possible solutions to a
problem

e. guidance of an expert in the area

f. a novice designer, who can provide some fresh ideas

g. discussion with a small group of colleagues

h. a computer system that can provide relevant information concerning
several possible design solutions

h. discussion with a designer from a rival company

i. none of the above

j other, please specify:

Q. 10: Some companies have recently started to use computer systems that are expected to
assist their designers in their design decision making. The outcome of the implementation
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in terms of design improvements o¥ cost saving is not very clear yet. Considering a future,
more competitive market, do you think such a system should be implemented in your
company? Please describe your opinion and reasons behind it:

A.10:

MODULE 2
The design model

This section 1s more specific. Here we discuss several issues involved in the turbine blade
cooling system design model development. The adaptive search manager, a computer
system that assists in design decision making, uses a preliminary design model that is a good
mathematical approximation of the gas turbine blade cooling system. The model is
developed considering one dimensional and single pass coolant flow. The model includes
film cooling mechanisms and is limited to twelve design variables. The design model also
uses several constant design parameters (some of them are determmed from domain
experience). There are four outputs from the model. The principle task is to minimise the
coolant mass flow through the radial hole passage of a blade (that is one of the outputs).
The other three outputs constrain the design process. Please look at the designs achieved
from several runs of ASM and answer the following questions by circling only one answer
(or more than one answer if specified in the question):

Q. 11: Though the model is developed 1o represent the design problem. it needs to be
validated. Could you please comment on whether the results achieved from ASM runs
correspond to your engineering understanding about the design problem?

A ll:

Q. 12: One of the issues in developing an engineering design decision support tool is
flexibility. That is how easy is it to adapt the tool to search in different areas of the design
space? If you wanted to search different areas of the design space by setting different
ranges for the design variables. do you think you can do that easily with ASM? Please give
your commentis.

Al l2:
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Q. 13: While experimenting with ASM in different regions of the design space. have you
observed any infeasible solution in the results?

A 13:
a. YES
please give the reason(s) why you think the design is infeasible:

b.NO

Q. 14. A design process may be constrained by some criteria. The developed design model
is constrained by three output variables. The constraints are implemented by setting up a
range on each of these variables. If the outputs of a model evaluation goes beyond any one
of those ranges the design is considered to have violated the constraint. Changing the
ranges for the constraints may help to achieve different design goals. During your
experiments with ASM did you make changes with the ranges for the constraints?

A 14
a. YES
please specify the reason for your changes:

b.NO

MODULE 3
Performance of the ASM and the results achieved

This section of the questionnaire deals with general issues involved in ASM. The questions
are developed to understand the effectiveness of ASM as a design decision support tool. It
1s important that users of ASM gain a good understanding of the performance of the system
through extensive use. The ASM is a research prototype, so it should be assessed according
to its merit in terms of the techniques developed, and the quality of the results. Please run
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FUZZY RULES USED IN THE
ADAPTIVE SEARCH MANAGER

3

; ADAPTIVE SEARCH AND THE PRELIMINARY DESIGN OF
; GAS TURBINE BLADE COOLING SYSTEM

; This is the main rule base for the ADAPTIVE SEARCH MANAGER
; This is modified rule base after VALIDATION

: This file is used with FuzzyCLIPS 6.02A

; Rajkumar Roy

; Plymouth Engineering design Centre

; University of Plymouth

: Plymouth, PL4 8AA, UK

: Tel. : +44 (0)1752 233508

; FAX. : +44 (0)1752 233505

; Email : moy@plymouth.ac.uk or

; r.roy@ieee.org

DIRECTOR OF STUDIES : DR. IAN PARMEE, PEDC
; INDUSTRIAL COLLABORATOR : ROLLS ROYCE PLC.

;; Global variables ;;

( defglobal
7*cluster_number* = (}  ;:Global variable to store no of clusters
)

59

;; Inputs are : 7fztemplate - name of a fuzzy defiemplate

5 ?delta - precision of the value

i value - float value to be fuzzified

3 cf - confidence factor of the newly asserted fuzzy fact
5 Asserts a fuzzy fact for the fuzzy deftemplate. The fuzzy set is

5 a standard PI (as defined in FuzzyCLIPS) type (which is almost like

5 a normal distribution) centered on the value provided with zero

5 possibility at value+delta and value-delta. Note that it checks bounds

5 of the universe of discourse to generate a fuzzy set that does not

3 have values outside of the universe range.

PIIIRIAINNINNANNIINISNIIABNINNSINNNININNINIGNINALIIAINILIIIAINIIINNGGIIAGY

(deffunction PIfuzzify (?fztemplate ?delta ?value 7cf)
(bind Now (get-u-from 7fztemplate))
(bind ?high (get-u-to ?fztemplate))
(if (< Pvalue (+ ?low ?delta))
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then
(if (<= Mvalue ?low)
then
(assert-string
(format nil "(%s (Z %g %g)) CF %g" fztemplate 7low (+ Now 7delta) ?cf))
else
(assert-string

(format nil "(%s (Z %g %g)) CF %g" fziemplate ?value (+ ?value 7delia) 7cf)))

else
(if (> ?value (- ?high ?delia))
then
(if (>= ?value Thigh)
then
(assert-string
(format nil "(%s (S %g %g)) CF %g" fztemplate (- Thigh ?del1a)
thigh 7cf))
else
(asscri-string
(format nil "(%s (S %g %eg)) CF %g" ?fztemplate (- high ?delia)
Mvalue 7cf)))
else
(assert-string
(format nil “(%s (PI %g %g)) CF %g" fztemplate ?delta ?value 7cf))
)
)

................................................................................

232393393993799337029273229395393039833333599995933293952359333390393523199933933

; This is the section to define QUALITATIVE RATING (QR) of sclected designs

; QR-1 : Manufacturability

; QR-2 ; Choice of material

; QR-3 : Designer's special preference

; Design variables are defined according to domain knowledge
; A set of rules are defined to calculate the effectiveness

This forms a part of STATIC MEMORY

.................................................................................

................................................................................

93333793323799935992399335959359030353232323232222332323333333237557233333333%33

; Top level rules showing preferences about each variable.

Total knowledge has been represented in a

; hierarchical manner to help inlerpolation

; or extrapoiation with few rules. Heuristics

; has also been added. The three types of

; knowledge as represented :

; - preferences about each variable (deffacts of preferences)
; - intra variable preferences (rules)

R - heuristics (rules)

................................................................................
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(dth not VERY_LOW)
?fa <- (dth_pref-2 7)
»%eff<- (QR-2 7)

=>

(bind 7cf (get-cf ?a))
(bind pref (get-fs-x ?fa (1))
s(plot-fuzzy-value 1 + nil nil ?eff)

(if (> ?pref 0.9)
then
(assert (QR-2 BAD) CF cf))

(if (and (<= ?pref 0.9) (> ?pref 0.8))
then
(assert (QR-2 slightly_compromise BAD) CF ?cf))

(if (and (<= ?pref 0.8) (> 7pref 0.6))
then
(assert (QR-2 less_compromise BAD) CF 7cf))

(if (and (<= ?pref 0.6) (> Tpref (1.4)}
then
{assert (QR-2 compromise BAD) CF 7cf))

(if (<= 7pref 0.4)
then
(assert (QR-2 more_compromise BAD) CF ?cf))

(defrule rule-13

)

(declare (salience -70) (CF 0.9))
(HEURISTICS-3 NO)

(dth MEDIUM)

fa <- (dith_pref-3 7

2eff <- (QR-3 1

=>
(bind ?cf (get-cf 7fa))

2:(plot-fuzzy-value t + nil nil ?eff)
(assert (QR-3 VERY_GOOD) CF 1.0)

(defrule rule-14

(declare (salience -70) (CF 0.9))
(HEURISTICS-3 NO)

(dth not MEDIUM)

Ma <- (dth_pref-3 7)
leff<-(QR-3 7

=>
(bind ?cf (get-cf 7fa))

(bind ?pref (get-fs-x 7fa 0))
s:(plot-fuzzy-value t + nil nil 7eff)

(if (> pref 0.9)
214



then
(assert (QR-3 BAD) CF 7¢f))

(if (and (<= ?pref 0.9) (> pref 0.8))
then
(assert (QR-3 slightly compromise BAD) CF 7cf))

(if (and (<= ?pref 0.8) (> pref 0.6))
then
(assert (QR-3 less_compromise BAD) CF 7cf))

(if (and (<= ?pref (1.6) (> 7pref 0.4))
then
(assert (QR-3 compromise BAD) CF ?cf))

(if (<= 7pref 0.4)
then
(assert (QR-3 more_compromise BAD) CF 7cf))

(defrule rule-15
(declare (salience -80) (CF 0.5))
(HEURISTICS-3 NO)
(or (Rp LOW) (Rp above LOW))
fa <- (Rp_pref-3 7)
»leff<-(QR-37)

=>
(bind ?cf (get-cf ?fa))

;:(plot-fuzzy-value t + nil nii ?eff)
{assert (QR-3 GOOD) CF 1.0)
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(defrule rule-16

(declare (salience -80) (CF 0.5))
(HEURISTICS-3 NO)

(Rp below LOW)

fa <- (Rp_pref-3 ?)
leff<-(QR-37)

=>

(bind ?cf (get-cf 7fa))
(bind ?pref (get-fs-x Ma 0))
;;(plot-fuzzy-value t + nil nil ?eff)

(if (> 7pref 0.9)
then
(assert (QR-3 BAD) CF 7cf))

(if (and (<= ?pref 0.9) (> pref ().8))
then
(assert (QR-3 slightly_compromise BAD) CF 7¢cf))

(if (and (<= ?pref 0.8) (> ?pref 0.6))
then
(assert (QR-3 less_compromise BAD) CF 7cf))

(if (and (<= Tpref 0.6) (> 7pref 0.4))
then
(assert (QR-3 compromise BAD) CF 7cf))

(if (<= Tpref 0.4)

then
(assert (QR-3 more_compromise BAD) CF 7cf))

(defrule rule-17

)

(declare (salience -90) (CF ().8))
(HEURISTICS-3 NO)

(Rs VERY_LOW)

fa <- (Rs_pref-37)

5 leff <-(QR-37)

=>
(bind ?cf (get-cf 7fa))

s:(plot-fuzzy-value t + nil nil ?eff)
(assert (QR-3 VERY_GOOD) CF 1.0)

(defrule rule-18
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(declare (salience -90) (CF 0.8))
(HEURISTICS-3 NO)

(Rs LOW)

a <- (Rs_pref-3 7)
;7eff<-(QR-3 7

=>

(bind 7cf (get-cf 7fa))
s;(plot-fuzzy-value t + nil nil Yeff)
(assert (QR-3 GOOD) CF 1.0)

)

(defrule rule-19
(declare (salience -90) (CF 0.8))
(HEURISTICS-3 NO)
(Rs MEDIUM)
7fa <- (Rs_pref-3 7)
;i 2eff <- (QR-3 7)

=>

(bind 7cf (get-cf ?fa))
(bind ?pref (get-fs-x ?fa 0))
si(plot-fuzzy-value ( + nil nil ?¢ff)

(if (> 7pref 0.9)
then
(assert (QR-3 NOT_VERY_GOOD) CF cf))

(if (and (<= ?pref 0.9) (> Tpref 0.8))
then
(assert (QR-3 slightly_compromise NOT_VERY_GOOD) CF ?cf))

(if (and (<= ?pref 0.8) (> ?pref 0.6))
then
(assert (QR-3 less_compromise NOT_VERY_GOOD) CF ?cf))

(if (and (<= ?pref 0.6) (> 7pref 0.4))
then
(assert (QR-3 compromisec NOT_VERY_GOOD) CF 7cf))

(if (<= 7pref 0.4)
then
(assert (QR-3 more_compromise NOT_VERY_GOOD) CF 7cf))
)

(defrule rule-20
(declare (salience -90) (CF (1.8))
(HEURISTICS-3 NO)
(Rs below MEDIUM)
Ma <- (Rs_pref-37)
3leff<- (QR-3 )

=>

(bind ?cf (get-cf 7fa))
(bind ?pref (get-fs-x ?fa 0))
s;(plot-fuzzy-value t + nil nil 7eff)

(if (> 7pref 0.9)
then
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(assert (QR-3 BAD) CF cf))

(if (and (<= ?pref 0.9) (> 7pref 0.8))
then
(assert (QR-3 slightly_compromise BAD) CF 7cf))

(if (and (<= 7pref 00.8) (> ?pref 0.6))
then
(assert (QR-3 less_compromise BAD) CF 7cf))

(if (and (<= ?pref 0.6) (> pref 0.4))
then
(assert (QR-3 compromise BAD) CF 7cf))

(if (<= Tpref 0.4)

then
(assert (QR-3 more_compromise BAD) CF ?cf))

(defrule rule-21

)

(declare (salience -100) (CF 0.9))
(HEURISTICS-1 NO)

(df BIG)

Ma <- (df_pref-17)

leff <- (QR-1 7)

=>
(bind ?cf (get-cf ?fa))

si(plot-fuzzy-value t + nil nil 7eff)
(assert (QR-1 VERY_GOOD) CF 1.0)

(defrule rule-22

(declare (salience -100) (CF 0.9))
(HEURISTICS-1 NO)

(df not BIG)

7a <- (df_pref-17)

;7eff <- (QR-17)

=>

(bind ?cf (get-cf ?fa))
(bind ?pref (get-fs-x ?fa 0))
;i(plot-fuzzy-value t + nil nil 7eff)

(if (> 7pref 0.9)
then
(assert (QR-1 NOT_VERY_GOOD) CF 7cf))

(if (and (<= ?pref 0.9) (> ?pref 0.8))
then
(assert (QR-I slightly_compromise NOT_VERY_GOOD) CF 7¢cf))

(if (and (<= ?pref (.8) (> 7pref 0.6))
then
{assert (QR-1 less_compromise NOT_VERY_GOOD) CF 7cf))
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(if (and (<= Tpref 0.6) (> ?pref 0.4))
then
(assert (QR-1 compromise NOT_VERY_GOOD) CF 7cf))

{if {<= ?pref 0.4)
then
(assert (QR-1 more_compromisc NOT_VERY_GOOD) CF 7cf))

(defrule rule-23

)

(declare (salience -110) (CF 0.7))
(HEURISTICS-3 NO)

(df MEDIUM)

Ma <- (df_pref-3 7)

;;%eff <- (QR-3 7}

=>
(bind ?cf (get-cf 7fa))

s:(plot-fuzzy-value t + nil nil ?eff)
(assert (QR-3 GOOD) CF 1.0)

{defrule rule-24

(declare (salience -110) (CF 0.7))
(HEURISTICS-3 NO)

(df BIG)

Ma <- (df_pref-37)

;leff<- (QR-37)

=>

(bind ?cf (get-cf ?fa))
(bind ?pref (get-fs-x Ma ()))
;i(plot-fuzzy-value t + nil nil 7eff)

(if (> 7pref 0.9)
then
(assert (QR-3 NOT_VERY_GOOD) CF cf))

(if (and (<= ?pref 0.9) (> 7pref 0.8))
then
(assert (QR-3 slightly_compromise NOT_VERY_GOOD) CF 7cf))

(if (and (<= Tpref 0.8) (> 7pref 0.6))
then
(assert (QR-3 less_compromise NOT_VERY_GOOD) CF cf))

(if (and (<= ?pref 0.6) (> Tpref 0.4))
then
(assert (QR-3 compromise NOT_VERY_GOOD) CF 7cf))

(if (<= Tpref 0.4)
then
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(assert (QR-3 more_compromise NOT_VERY_GOOD) CF cf))
)

(defrule rule-25
(declare (salience -110) (CF 0.7))
(HEURISTICS-3 NO)
(df SMALL)
Ma <- (df_pref-37)
sleff<- (QR-37)

=>

(bind 7cf (get-cf ?fa))
{bind 7pref (get-fs-x 7fa 0))
s(plot-fuzzy-value t + nil nil Yeff)

(if (> 7pref 0.9)
then
(assert (QR-3 BAD) CF 7cf))

(if (and (<= ?pref 0.9) (> pref 0.8))
then
(assert (QR-3 slightly_compromise BAD) CF 7cf))

(if (and (<= ?pref 0.8) (> ?pref 0.6))
then
(assert (QR-3 less_compromise BAD) CF 7cf))

(if (and (<= ?pref 0.6} (> Tpref 0.4))
then
(assert (QR-3 compromise BAD) CF 7cf))

(if (<= pref 0.4)
then
(assert (QR-3 more_compromise BAD) CF 7cf))

(defrule rule-26
(declare (salience -120) (CF (1.8))
(HEURISTICS-1 NO)
(Cdf VERY_HIGH)
Ha <- (Cdf_pref-1 7)
nleff<- (QR-17)

=>

{(bind ?ef (get-f 7a))
si(plot-fuzzy-value t + nil nil ?eff)
(assert (QR-1 GOOD) CF 1.0)

)

{(defrule rule-27
(declare (salience -120) (CF 0.8))
(HEURISTICS-1 NO)
(Cdf not VERY_HIGH)
Ha <- (Cdf_pref-1 )
wleff<- (QR-1 7)
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=>

(bind ?cf (get-cf ?a))
(bind 7pref (get-fs-x ?a 0))
;(plot-fuzzy-value t + nil nil ?eff)

(if (> ?pref 0.9)
then
(assert (QR-1 BAD) CF 7cf))

(if (and (<= pref 0.9) (> ?pref 0.8))
then
(assert (QR-1 siightly_compromise BAD) CF 7cf))

(if (and (<= 7pref 0.8) (> ?pref 0.6))
then
(assert (QR-1 less_compromise BAD) CF ?cf))

(if (and (<= pref 0.6) (> Tpref 0.4))
then
(assert (QR-1 compromise BAD) CF 7cf))

(if (<= ?pref 0.4)
then
(assert (QR-1 more_compromise BAD) CF 7cf))

{defrule rule-28
(declare (salience -130) (CF (.8))
{(HEURISTICS-3 NO)
(Cdf VERY_LOW)
7a <- (Cdf_pref-37)
57eff<- (QR-37)

=>

{bind ?cf (get-cf 7fa))

si(plot-fuzzy-value ¢ + nil nil ?eff)

(assert (QR-3 VERY_GOOD) CF 1.0)
)

(defrule rule-29
(declare (salience -130) (CF 0.8))
(HEURISTICS-3 NO)
(Cdf not VERY_LOW)
Ma <- (Cdf pref-37)
32eff<- (QR-37)

=
(bind ?cf (get-cf 7fa))
(bind ?pref (get-fs-x ?fa 0))

s;(plot-fuzzy-value t + nil nil ?eff)

(if (> 7pref 0.9)
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then
(assert (QR-3 NOT_VERY_GOOD) CF cf))

(if (and (<= ?pref 0.9) (> ?pref (.8))
then
(assert (QR-3 slightly_compromise NOT_VERY_GOOD) CF 7cf))

(if (and (<= Tpref 0.8) (> ?pref 0.6))
then
(assert (QR_3 less_compromise NOT_VERY_GOOD) CF ?cf))

(if (and (<= pref 0.6) (> pref (1.4))
then
(assert (QR-3 compromise NOT_VERY_GOOQD) CF 7cf))

(if (<= ?pref 0.4)
then
(assert (QR-3 more_compromise NOT_VERY_GOOD) CF 7cf))
)
sessnams FEunninnninmg
;3530 MANUFACTURABILITY criteria 55555555555
305 N effect 55555555
sasns; CHOICE OF MATERIAL criteria ;355550000000
35 No effect 55555555
sasiss SPECIAL PREFERENCES criteria ;33535505000
s No effect 535505
e RPE 5500
s3smiss MANUFACTURABILITY criteria ;55555555555
s No effect 5555555
55535535 CHOICE OF MATERIAL criteria ;5555550550050
30 No effect 5555555
533 SPECIAL PREFERENCES criteria 3535355555535
(defrule rule-30
(declare (salience -140) (CF 0.5))
(HEURISTICS-3 NO)
(or (Rpf LOW) {(Rpf above LOW))
Ma <- (Rpf_pref-3 7)
n7eff <- (QR-3 7)
=>
{bind ?cf (get-cf ?fa))
;:(plot-fuzzy-value 1 + nil nil ?eff)
(assert (QR-3 GOOD) CF 1.0)
)
(defrule rule-31
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{declare (salience -140) (CF 0.7))
(HEURISTICS-3 NO)

(Rpf below LOW)

7fa <- (Rpf_pref-37)

5 leff <- (QR-3 7)

=>

(bind 7cf (get-cf 7fa))
(bind ?pref (ge1-fs-x fa 0))
;;(plot-fuzzy-value t + nil nil 7eff)

(f (> 7pref 0.9)
then
(assert (QR-3 BAD) CF 7c))

(if (and (<= 7pref 0.9) (> 7pref 0.8))
then
(assert (QR-3 slightly_compromise BAD) CF 7cf))

(if (and (<= 7pref 0.8) (> ?pref 0.6))
then
(assert (QR-3 less_compremise BAD) CF 7cf))

(if (and (<= 7pref 0.6) {> Tpref 0.4))
then
(assert (QR-3 compromise BAD) CF ?cf))

(if (<= Tpref 0.4)
then
(assert (QR-3 more_compromise BAD) CF ?cf))

)
S some HEURISTICS 535500000050
i MANUFACTURABILITY ;355
(defrule rule-32 ;; heuristics-1
(declare (salience -400) (CF 0.9))
(Geom THREE)
(Cdr VERY_LOW)
(dth MEDIUM)
(Rs VERY_LOW)
(df BIG)

fa <- (QR-1 Tany)
The <- (HEURISTICS-1 NO)

=>

(printout t crlf)

(printout t " The design has satisfied Heuristic-1 (Cost of Manufacture) ::" crif)
(printout t " Geom : THREE" crlf)

(printout t " Cdr : VERY_LOW" crlf)

(printout t " dth : MEDIUM" crlf)

(printout t " Rs :VERY_LOW" crlf)

(printout t " df : BIG" crlf)

(printout 1 crlf)

(retract 7fa)

(retract 7he)

(assert (HEURISTICS-1 YES))
(assert (QR-1 GOOD) CF 1.0)
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)

{defrule rule-33 ;; heuristics-2
(declare (salience -410) (CF 0.8))
(Geom THREE)
{dth VERY_LOW)
{kw VERY_LOW)
(Rs VERY_HIGH)
(df SMALL)
Ma<-(QR-17)
7he <- (HEURISTICS-1 NO)

=>

(printout t crlf)

(printout t " The design has satisfied Heuristic-2 (Cost of Manufacture) ::" crif)
(printout t " Geom : THREE" crlf)

(printout t * dth : VERY_LOW" crif)

(printout t " kw : VERY_LOW" crlf)

(printout t " Rs : VERY_HIGH" crlf)

(printout t " df : SMALL" crlf)

(printout 1 crlf)

(retract 7fa)

(retract 7he)

(assert (HEURISTICS-1 YES))
(assert (QR-1 BAD) CF 1.0)

(defrule rule-34 ;; heuristics-3
(declare (salience -420) (CF 0.8))
{Geom THREE)
(Tcl VERY_HIGH)
(dth VERY_HIGH)
(or (kw VERY_HIGH) (kw VERY_LOW))
(Rs VERY_HIGH)
Ma<-(QR-27)
?he <- (HEURISTICS-2 NO)

=>

{(printout t crlf)
(printout t " The design has satisfied Heuristic-3 (Cost of Material) ::" crlf)
(printout t " Geom : THREE" crlf)
(printout t " Tcl : VERY_HIGH" crlf)
(printout t " dih : VERY_HIGH" crlf)
(printout 1 kw :VERY_HIGH or VERY_LOW" crif)
(printout 1™ Rs : VERY_HIGH" crlf)
(printout 1 crlf)
(retract 7fa)
(retract 7he)
(assert (HEURISTICS-2 YES))
(assert (QR-2 BAD) CF 1.0)
)

(defrule rule-35 ;; heuristics-4
(declare (salience -430) (CF 0.8))
(dih VERY_LOW)
(kw MEDIUM)
Ha<-(QR-27)
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7he <- (HEURISTICS-2 NO)
=>

{printout t ¢rif)

(printout t " The design has satisfied Heuristic-4 (Cost of Material) ::" crif)
(printout 1 " dth : VERY_LOW" crlf)
{printout t " kw : MEDIUM" crif)

(printout t crlf)

(retract 7fa)

(retract ?he)

(assert (HEURISTICS-2 YES))
(assert (QR-2 GOOD) CF 1.0)

(defrule rule-36 ;; heuristics-5
(declare (salience -440) (CF 0.7))
(Tel VERY_HIGH)
(dth VERY_LOW)
(Rp VERY_HIGH)
(df SMALL)
Ma<-(QR-37)
%he <- (HEURISTICS-3 NO)

=>

(printout t crif)
(printout t The design has satisfied Heuristic-5 (Designer's Special Preference) ::" erlf)
(printout t " Tcl : VERY_HIGH" crlf)
(printout t dith : VERY_LOW" crlf)
(printout t " Rp : VERY_HIGH" crlf)
(printout t " df :SMALL" crlf)
(printout t crlf)
(retract 7fa)
(retract ?he)
(assert (HEURISTICS-3 YES))
(assert (QR-3 NOT_VERY_GOOD) CF 1.0)

)

(defrule rule-37 ;. heuristics-6
(declare {salience -450) (CF (.7))
(Cdr VERY_LOW)
(dth HIGH)
(Rp VERY_HIGH)
(Rs VERY_LOW)
(df BIG)
(Rpf VERY_HIGH)
a <- (QR-3?)
7he <- (HEURISTICS-3 NO)

=>

(printout t crlf)

(printout t " The design has satisfied Heuristic-6 (Designer's Special Preference) ::" crif)
{(printout t " Cdr : VERY_LOW" crlf)

(printout t " dth : HIGH" crif)

(printoutt " Rp : VERY_HIGH" crlf)

(printout t " Rs :VERY_LOW"¢rlf)

(printout t " df : BIG" crif)

(printout t " Rpf : VERY_HIGH?" crlf)
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(printout t crlf)

(retract 7fa)

(retract 7he)

{assert (HEURISTICS-3 YES))
(assert {(QR-3 GOOD) CF 1.0)

(defrule rule-38 .3; defuzzify Quatitative Ratings
(declare (salience -500))
(QR-1 7all-1)
(QR-2 7alt-2)
(QR-3 7all-3)

=

(bind ?clnum (send [CL] get-clnum))

(bind 7qvaiue-1 {moment-defuzzify ?ali-1)) ;; Cost of Manufacture

(bind 7qvalue-2 {moment-defuzzify ?ali-2)) ;; Cost of Material

(bind ?7qvalue-3 (moment-defuzzify ?all-3)) ;; Designer's Special Preference
(printout 1 crlf)

(printout t " Qualitative Rating of the solution = " crlf)

(format t ™ COST OF MANUFACTURE : %3.2f" Tqvalue-1)

(printout t crlf)

(format ¢ " COST OF MATERIAL : %3.2f" 7qvalue-2)

(printout 1 crif)

(format t " DESIGNER'S SPECIAL PREFERENCE : %3.2{" ?qvalue-3)

(printout t crlf crif crlf)
(if (<= T*cluster_number* ?clnum) then

(retract *)

(assert (HEURISTICS-1 NO))
(assert (HEURISTICS-2 NO))
{assert (HEURISTICS-3 NO))

(Inter_Var_Preferences)

(bind ?bestitemn_inputs {send (send (nthS 7*cluster_number* (send [CL] get-cldetails)) get-
bestitem) get-inputs))

(bind ?bestitem_outputs (send (send (nth$ ?*cluster_number* (send [CL] get-cidetails)) get-
bestitem) get-outputs))

(printout t " One of the GOOD solutions is :: ()
(bind 71 1)
(while ( <= 71 7*¢IPA*) do

(if (=7 1) then

(format t "Geom: %01d, " (nthS 71 ?bestitem_inputs)))
(if (=7 2) then

{format t "Cdr: %03.2f, " {nthS 71 ?hestitern_inputs)))
(if (=71 3) then

(format t "Fhe: %02.1f, " (nthS ?1 ?bestitem_inputs)))
(if (=N 4) then

(format t "Tcl: %03d, " (nth$ 7 ?bestitem_inputs)))
(if (= 71 5) then

{format t "dth: %06.5f, " (nth$ ?1 7bestitem_inputs)))
(if (=71 6) then

(format t "kw: %02d, " (nthS 71 Thestitem_inputs)))
{if =7 7) then

(format t "Rp: %03.2f, " (nth$ 71 ?bestitem_inputs)))
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(if =7 8) then

(format 1 "Rs: %03.2f, " (nth$ 21 7bestitem_inputs)))
(if (=71 9) then

(format t "df: %06.5f, " (nthS ?1 ?bestitem_inputs)))
(if (= 71 10) then

(format t "Cdf: %03.2f, " (nth$ 71 7bestitem_inputs)})
(if (=1 11) then

(format t "Ff: %02.1f, “ (nth§ 71 ?bestitem_inputs)))
(if (=71 12) then

(format t "Rpf: %03.2f)" (nth$ 71 Tbestitem_inputs)})

(bind 71 (+ 71 1))
)

(printout 1 crlf)

(printout t " Outputs are :: (")
(bind 7 1)
(while (<= P*cINO*) do

(if =7 1) then
(format t "Wcr: %07.6f, " (nth$ 71 ?bestitem_outputs)))
(if (= 71 2) then
(format t "Wcf: %07.6f, " (nth$ 71 ?bestitem_outputs)))
(if (=7 3) then
(format t "Twg: %05.2f, " (nth$ 21 7hestitem_outputs)))
(if (= 4) then
(format t "Twf: %05.2f)" (nthS 71 Tbestitemn_outputs)))
(bind 71 (+ 71 1))
)
(printout t crlf)
(printout t " Itemfitness =")
(format t "%5.3f" (send (send (nth$ ?*cluster_number* (send [CL] get-cldetails)) get-bestitem) get-
itemfitness))
(printout t crif)
{(bind 7bestitem_constraints (send (send (nth$ 7*cluster_number* (send [CL] get-cldetails)) get-
bestitem) get-cons_sensi))
(bind 7cons! (nth$ 1 7bestitem_constraints))
(bind 7cons2 (nth$ 2 ?bestitern_constraints))
(bind ?cons3 (nth§ 3 7hestitern_constraints))

(if (= 7cons1 10000)
then
(printout t crlf " CONSTRAINTS NOT SATISFIED" crlif crif)
(printout t * Sensitivity Analysis is not performed to this design...." crlf)
else
(printout 1 crlf)
(format t " Design Solution sensitivity = %03 .2f" (send (send (nth$
*cluster_number* (send [CL] get-cldetails)) get-bestitem) get-sensitivity))
(printout 1 crlf)
(bind ?bestitem_var_sensi (send (send (nthS ?*cluster_number* (send [CL] get-cidetails))
get-bestitemn) get-var_sensi))
(printout t " Design Variable sensitivity :: (")
(bind 71 1)
(while (<1 7*cIPA*) do
(if = 1) then
(format t "Cdr: %01d, " (nth$ ?I Toestitermn_var_sensi)))
(if (=71 2) then
(format t "Fhe: %01d, " (nth$ 71 ?bestitem_var_sensi)))
(if (=7 3) then
(format t "Tcl: %01d, " (nthS 7l ?bestitem_var_sensi)))
(if (= 71 4) then
(format t "dth: %01d, " (nth$ 7 ?bestitem_var_sensi)))
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(if (=71 5) then
(format t "kw: %01d, " (nth$ 71 7bestiltem_var_sensi)))
(if {= 1 6) then
(format t "Rp: %014, " (mh$ 1 7bestitem_var_sensi)))
(if (= 71 7) then
(format r "Rs: %01d, " (nth$ 7] ?bestitem_var_sensi)))
(if (= 71 8) then
(format t "df; %01d, " (nthS 71 Tbestitern_var_sensi)))
(if (= 71 9) then
(format t "Cdf; %01d, " (nth$ 71 ?bestitem_var_sensi)))
(if (= 71'10) then
(format t "Ff: %01d, " (mhS$ 71 7bestiterm_var_sensi)))
(if (=2 11) then
(format t "Rpf: %01d)" (nth$ N ?bestitem_var_sensi)))
(bind 7l (+ 71 1))
)
{printout t crlf)
(printout t " Constraints sensitivity: " crlf)
;; for the constraint ONE
(if (= 7consl 1) then

{printout t " CONS-1 : Constraint satisfied" crlf)
)
(if (= 7cons] 2) then

(printout t CONS-1 : Statistically Active Constraint" crif)
)
(if (= 7cons! 3) then

(printout t " CONS-1 : Quasi-Active Constraint” crif)
)
(if (= 7cons1 4) then

(printout t " CONS-1 : Peak-Active Constraint" crlf)
)

;; for the constraint TWO

(if (= 7cons2 1) then

(printout t " CONS-2 : Constraint satisfied" crlf)
)
(if (= 7cons2 2) then

(printout t CONS-2 : Staristically Active Constraint” crlf)
}
{if (= ?cons2 3) then

{(printout t CONS-2 : Quasi-Active Constraint” crlf)
)
(if (= Tcons2 4) then

{printout t " CONS-2 : Peak-Active Constraint” crlf)
)

;; for the constraint THREE

(if (= 7cons3 1) then

(printout t " CONS-3 : Constraint satisfied" crlf)
)
(if (= 7cons3 2) then

(printout t " CONS-3 : Statistically Active Constraint" crlf)
)
(if (= 7cons3 3) then

(printout t " CONS-3 : Quasi-Active Constraint"” crlf)
)
(if (= 7cons3 4) then

(printout t " CONS-3 : Peak-Active Constraint” crlf)
)

)
(PIfuzzify Geom 0.25 (nth$ 1 7bestitem_inputs) 1.0)
(Plfuzzify Cdr ().005 (nth$ 2 ?bestitem_inpuis) 1.0)
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{PIfuzzify Fhc 0.05 (nth$ 3 7bestitem_inputs) 1.0)
(Pifuzzify Tcl 0.5 (nth$ 4 7bestitem_inputs) 1.0)
(PIfuzzify dth 0.000005 (nth$ 5 ?bestitem_inputs) 1.0)
(PIfuzzify kw 0.5 (nth$ 6 ?bestitem_inputs) 1.0)
(PIfuzzify Rp 0.005 (nth$ 7 ?bestitem_inpuis) 1.0)
(PHuzzify Rs 0.005 (nth$ 8 ?bestitem_inputs) 1.0)
(Plfuzzify df 0.000025 (nth$ 9 Tbestitem_inputs) 1.0)
(Plfuzzify Cdf 0.005 (nth$ 10 ?bestitem_inputs) 1.0)
(PIfuzzify Ff 0.05 (nthS$ 11 ?bestitem_inputs) 1.0)
(PIfuzzify Rpf 0.005 (nth$ 12 ?bestitem_inputs) 1.0)
(bind ?*cluster_number* (+ ?*cluster_number* 1))
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