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ABSTRACT 

MAGNETIC FIELD SENSOR UTILIZING MAGNETO IMPEDANCE IN 
THIN FILM MULTI-LAYERS 

Since the discovery of the Magneto Impedance (MI) effect in 1994 there has been a global 
increase in the research devoted to understanding the effect. In certain magnetic materials, the 
impedance change, often referred to as the MI ratio, is in the range of 50 to I 00% for an excitation 
current in the MHz frequency range for external magnetic fields of a few Oe. The use of thin film 
multilayer structures allows the increase of sensitivity and the reduction of size for MI effect to be 
integrated with micro magnetic sensor technologies. 

In the present work, we explain the origins of the Ml effect and its versatile nature for the 
development of sub nano Tesla magnetic field sensors. The matrix like nature of the MI effect allows 
a variety of Ml characteristics to be implemented in a thin film, which allows the structure to be 
tailored for maximum sensitivity in the chosen field sensing application. 

In the case of a simple transverse magnetic anisotropy, the diagonal components of the MI 
matrix are symmetric and the off diagonal components are anti-symmetric with respect to the de 
longitudinal field. The asymmetry in the Ml behaviour can be related to either a certain asymmetric 
arrangement of the de magnetization (crossed an isotropy), or a contribution to the measured voltage 
due to the ac cross-magnetization process, which is represented as an off-diagonal component. 

These asymmetrical characteristics are useful in producing linear bi-directional field sensors 
without DC biasing. In attempt to find optimal film systems with respect to relative impedance 
change, sensitivity, linearity, operational frequency range, and dimensions, thin film multi-layers, 
consisting of a magnetic I conductor I magnetic material configuration were fabricated. Variations in 
magnetic compositions, geometries, structures and magnetic configurations (transverse, longitudinal or 
cross anisotropy) and additional insulations layers were produced. 

Planar coil thin film multi-layers were constructed to utilize the more magnetic complex 
asymmetric characteristics of the MI effect. An experimental configuration was developed in order to 
measure all components of the Ml matrix within the thin films and standardise their sensitivity using 
the Ml ratio. 

Two sub nano Tesla magnetic field sensors were developed during the course of this work 
based on the fabricated thin films. The first sensor concentrates on utilizing two asymmetrical 
Magneto Impedance (AMI) elements combined differentially. The sensor is driven by a sinusoidal 
current of 90 MHz biased with a de bias current. For AMI film element of Smm long, 40J,!m wide and 
having an isotropy angle of 45° the field detection resolution is in the magnitude of I f.l Oe for both ac 
and de for fields of~ 20e magnitude. The maximum response speed is in the order()[ I MHz. The use 
of MI to the measurement low frequency fields such as bio-medical signals drove the design of the 
second sensor. 

Extensive research was undertaken to improve the phase noise of the oscillator and sensitivity 
of the detection mechanism using novel RF techniques to improve the sensitivity at high frequencies, 
and secondly a method to improve the low frequency sensitivity by AC biasing the M/ element with a 
magnetic field. 

A thin film multi layer Ml sensor was produced based on the measurement of the modulation 
of the incident reflected power due to an external AC magnetic field. Direct field measurement 
performance at I kf-lz produced a resolwion rJ{3. 7 3 x 10-7 Oe. AC biased pe1jormance at 5kHz of a 
20Hz field was a resolution r~f 5.27 x 10·6 Oe, and at 10/-lz of 9.33 x /(}'6 Oe. With continued 
improvement of the electronic components utilized in this novel method of Magneto Impedance sensor 
presented in this work, the possibility of measuring bio magnetic signals of the human body at room 
temperature becomes a distinct reality. 
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Chapter I. 111/roduc/ion 

Chapter 1. Introduction 

Miniature magnetic-sensor technology is a rapidly growing industry. Sensitive and 

rapid-response sensors are in great demand for advanced intelligent measurement and control 

systems. This demand has been satisfied in some areas by magneto-resistance (MR), giant 

magneto-resistance (GMR), fluxgate and other technologies [I ]-[3]. A relatively new 

magnetic sensor technology based on the Magneto Impedance (MI) effect has the potential to 

overtake some of the other emergent sensor systems in term of performance and low cost (4]­

[6]. M! sensors combine such desirable characteristics as high sensitivity, miniature size, fast 

response, and low power consumption, which make them unique in the magnetic sensor 

family. 

The M! sensmg perfommnce is based on large changes in the complex-valued 

impedance at high frequencies under the application of a DC (or low frequency) magnetic 

field [7]. The ratio of the percent change of the impedance, called the M! ratio, reaches the 

value up to 150% at Ml-lz frequencies in amorphous micro wires having circumferential (or 

helical) anisotropy. The characteristic magnetic fields required to cause this impedance 

change are in the range of 1-5 Oe. Then, the M! sensitivity is at least one order of magnitude 

higher than that of GMR materials. However, the Ml-wires have much greater dimensions: 

I 0-50 micron in diameter and a few mm in length. With decreasing sensor-element size, the 

maintenance of ultra high sensitivity becomes a problem. Special thin-film structures have 

been proposed to be employed to improve the M! performance in miniature elements 

(thickness < I J.lm, in-plane size < 200 J.lm and length < 5000 J.lm) [8]-[9]. The basic structure 

consists of two outer soft magnetic layers separated by a non magnetic highly conductive 

layer. The system with amorphous magnetic layers allows the M! ratio to be increased up to 

several hundred percents. The present work jitrlher advances Jlvll in multi-layers 

investigating structures with different magnetic aniso/ropy with the purpose /o oplimise the 

A11 characteristics with respect to sensitivity, linearity and element size; and to integrate the 

./(tbricated M/ elements into a .1pecially designed high frequency oscillation circuit which 

constitutes a magnetic sensor. 

In electrically uniform materials subjected to a DC magnetic field, Ml originates from 

the dependence of the skin depth on the transverse pem1eability. In multi-layer structures 

having a highly conductive inner film, a very large change in impedance can occur at quite 
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low frequencies when the inductance caused by the outer magnetic layers becomes 

sufficiently high. This results in multi-fold enhancement of the M! ratio and a considerable 

extension of the operational frequency range. Furthermore, special types of magnetic 

an isotropy can be realized in layered systems [I 0]. In this work, much attention is drawn to 

cross-anisotropy films which exhibit asymmetric M! characteristics. This feature is crucially 

important to obtain a linear voltage response with enhanced sensitivity, without requiring 

large power consumption, and is of particular interest for magnetic-sensor applications. 

The importance of the anisotropy to the M! effect has been understood from the onset 

of Ml research. The amorphous ferromagnetic microwires were the first materials which 

demonstrated a wide variety of the M! field behaviors tor the different magnetic anisotropies. 

For films, the required an isotropy could be established by sputtering in the presence of a large 

magnetic field of certain orientation. Annealing frequently helps to establish the required type 

of the anisotropy and domain structure, as internal stresses and other defects caused by the 

sputtering process may result in unexpected magnetic structures. In this work films with 

different anisotropies are considered: transverse, longitudinal and crossed. The case of the 

crossed anisotropy is more complicated, involving considerable modifications of M! under the 

DC bias current and it makes it possible to realize linear sensing without using external bias 

fields. 

The M! effect is investigated utilizing RF techniques based on measurements of S­

parameters with the help of a HP vector analyzer. For the development of a miniature 

magnetic sensor, the M! element has to be integrated within a high frequency circuit. 

Achievements were made in active reduction of the oscillator noise and the AC biasing of the 

M! element which allowed the measurement of low frequency magnetic fields to a number of 

orders of magnitude smaller than previously developed techniques. The achieved sensitivities 

are the order of 10-7 Oe for high frequency fields and 10·5 Oe for low frequency fields in the 

order of I 0 1-lz. 

The work is organised as follows. Chapter 2 begins by reviewing some of the essential 

physical properties of ferromagnetism, as this topic covers the magnetic state of materials 

used in the thin films investigated in this thesis. The intrinsic magnetisation of ferromagnetic 

metals through the discussion of phenomenology of magnetic anisotropy of various types will 

be introduced. Secondly, the domain structure of thin films and movement of domain walls 

will be illustrated. 
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Some simple single domain models of reversible and irreversible magnetization will 

be illustrated based on the Stoner-Wohlfarth model. In order to develop a background 

understanding of the Magneto Impedance (M I) effect, a quasi-static model for susceptibility 

as a response to a small AC easy-axis driving field in the presence of an arbitrary DC 

magnetic field applied in the transverse direction will be presented. This configuration is 

typical of the Magneto Impedance effect, and the corresponding susceptibility is referred to as 

transverse (with respect to the DC field and AC current creating the driving field). It will then 

be further elaborated to include the frequency dependence and contribution of domain wall 

movements to the effective transverse susceptibility. 

Chapter 3 provides a review of underlying physical effects for M! in magnetic/metallic 

multi-layers, by modelling the impedance of a single layer thin film for arbitrary frequencies 

including the case of a strong skin effect. 11 is then shown that the case of multi-layer 

structures having a highly conductive inner film is different in that a very large change in 

impedance can occur at lower frequencies when the skin effect is not essential. This can result 

in a large enhancement of the M! ratio and a considerable extension of the operational 

frequency range into the lower frequency band compared to single layer films. The versatility 

of the multi-layer will be illustrated through the development of different magnetic 

configurations through inducement of specific anisotropies in the magnetic layers. Through 

the introduction of a coil to the multi-layer, cross magnetisation or off-diagonal impedances 

can be measured, making possible the investigation of the full surface impedance tensor. 

Practical estimations of the effect of the sample dimensions on Ml are made before the 

introduction of Asymmetrical Magneto Impedance (AMI) in both dynamical and static 

configurations. 

Chapter 4 atms to provide background information on the general manufacturing 

processes involved in the production of thin-films and the methods utilized in this work to 

produce the thin film multi-layers possessing the required properties (alloy composition, 

geometry, magnetic anisotropy). Firstly, the concept of sputtering as the means of depositing 

the material is introduced. Next, the means of shaping the thin film to desired dimensions and 

structure are discussed through the use of masks and etching. Lastly, inducing anisotropy in 

the thin tilm is discussed, whether during the sputtering process or post manufacturing with 

heat or current annealing treatments. 
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Chapter 5 outlines the experimental method and measurements undertaken on the thin 

film multi-layers produced during the course of this work. The chapter begins by giving 

fundamental background information on the many methods of measuring the complex 

impedance of a network, before giving a description of the experimental configuration and 

method used in the measurements presented. Our experimental investigations cover NiFe I Au 

I NiFe multi-layers including that with integrated planar coil, amorphous CoFeB I CuI CoFeB 

multi-layers, multi-layers with additional insulation layers, including full variations in 

geometry and dimensions. 

Chapter 6 will continue discussing the experimental process; this time shifting our 

attention to the special magnetic configuration of static crossed anisotropy that can be created 

in multi-layer thin films, which produces asymmetrical Ml in the presence of a bias current. 

Furthermore, the possibility of obtaining asymmetry is investigated in multi-layers with an 

additional planar coil sputtered around the film. 

Chapter 7 will present a review on several types of magnetic sensors, which are based 

on different physical principles. It aims to demonstrate that a sensor based on the Ml effect 

would be extremely versatile, as it combines the many attributes of other sensors, and would 

be suitable from general field sensing to resolutions down to I o-7 Oe which typically would 

require the use of sophisticated sensing techniques, such as a SQUID magnetometer. It also 

presents a review of historical Ml sensors and their technologies. 

Chapter 8 will be devoted to the development of novel high sensitivity MI sensors and 

reporting of their results. Throughout the course of the work it will be shown that Magneto 

Impedance has the potential to be a very sensitive magnetic transducer in an electronic sensor 

device. However, the transfer of theoretical measurements into a practical commercial 

sensing device that can produce a superior performance to current industrial sensors in a 

number of critical areas is an ongoing challenge. Beginning with theoretical modelling of 

oscillators and power detection devices, including their sources of noise and limitations, a 

stage by stage development process of two Magneto Impedance sensing devices, each 

designed to operate with a different magnetic anisotropy multi-layer will be presented. 

Detailed measurements of their performance and operation will be illustrated, leading to the 

presentation of results in which the magnitude, resolution and frequency of AC and DC 

magnetic fields measured set new benchmarks for a Magneto Impedance sensing device. 
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Chapter 2. Background research 

This chapter provides a review of some of the essential physical properties of 

ferromagnetism, as this topic covers the magnetic state of materials used in the thin films 

investigated in this thesis, such as the 3d-metal crystals of iron, nickel and cobalt or 

amorphous ferromagnetic alloys. It begins by investigating the intrinsic magnetization of 

ferromagnetic metals through the discussion of phenomenon of magnetic anisotropy, 

including any differing properties of the thin film compared to a bulk material such as shape 

anisotropy. The domain structure of thin films and movement of domain walls are illustrated. 

Atler the ferromagnetic review, some simple single domain models of reversible and 

irreversible magnetization are illustrated based on the Stoner-Wohlfarth model. To develop a 

background understanding of the Magneto Impedance (MI) effect, a quasi-static model for 

susceptibility as a response to a small AC easy-axis driving field in the presence of an 

arbitrary DC magnetic field applied in the transverse direction is presented. This configuration 

is typical of the Magneto Impedance effect, and the corresponding susceptibility is referred to 

as transverse (with respect to the DC tield and AC current creating the driving field). It is next 

elaborated to include the frequency dependence and contribution of domain wall movements 

to the effective transverse susceptibility. 
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2.1 Choice of Magnetic units 

In a course of study of magnetism it is necessary to consider basic magnetic quantities 

and the units in which they are expressed, ways of making magnetic measurements, theories 

of magnetism, and the magnetic behaviour of materials. The study of the subject is 

complicated by the unfortunate existence of three systems of units in magnetism and several 

other systems of units which are variants of these. 

The three main unit systems are the Oaussian or COS system and two MKS unit 

systems, the Sommerfeld convention and the Kennelly convention; these are shown in the Fig 

2.1 below. Each of these unit systems has certain advantages and disadvantages. The COS 

and MKS systems of magnetic units have different philosophies. The COS system took an 

approach based on magneto-statics and the concept of the magnetic pole, while the MKS 

system takes an electrodynamics approach to magnetism based on electric currents. The COS 

system uses a combination of e.m.u (electromagnetic units) and e.s.u. (electrostatic units) and 

the MKS system uses the SI (Systeme International d'Unites, or International System of 

Units). 

In this thesis, it has been chosen to express the various magnetic quantities using the 

centimetre, gram, second (COS) unit system rather than metre, kilogram, second (MKS) units 

system. This choice has been made due to the majority of the published works on Magneto 

Impedance being expressed through the COS system, and through the process of background 

reading and study during this PhD of these publications; this system has been adopted as the 

norm. 

The table below illustrates how the quantities of magnetism are expressed in the 

different magnetic systems and how their naming conventions differ. The value of the 

permeability of free space,,u0 in the MKS system is given as 4Jr x 10-7 Weber I Ampere 

meter. 

However there is no common agreement as to how the basic relation of the field 

equation, B should be written in the MKS system and three other forms exist. The variant 

illustrated in the table is the most commonly used form the field equation. 
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MKS MKS cos 

Quantity (Sommerfeld) (Kennelly) (Guassian) 

Field H A m- 1 A m- 1 Oersteds 

Induction B Tesla Tesla Gauss 

Magnetization M Am· 1 emu cc· 1 

Intensity of I Tesla 

magnetization 

Flux <1> Weber Weber Maxwell 

Moment m A m2 Weber meter Emu 

Pole strength p Am Weber emu cm ·I 

Field equation 8 = p 0 (H +M} 8 = p0 H +I 8 = H+4JTM 

Energy of moment E=-p0m·H E=-m·H E=-m·H 

(in free space) 

Torque on moment T = p 0mxH T=mxH T=mxH 

(in free space) 

Figure 2.1 Principle unit ~ystems currently used in magnetism, .fi·om [8}. 
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2.2 Phenomenology of magnetic anisotropy 

Magnetic materials tend to display a directional dependence of their properties, and 

this is a consequence of their magnetic anisotropy. This tenn simply means that the magnetic 

properties depend on the direction in which they are measured; a thorough knowledge of 

anisotropy is thus the key to understanding the magnetic material. 

There are several kinds of anisotropy: Crystal anisotropy (also called 

magnetocrystalline anisotropy), shape anisotropy, stress anisotropy and work induced 

anisotropy such as by magnetic annealing. 

2.2.1 Crystalline anisotropy 

If a single crystal sample is cut in the form of a disc with axis parallel to the plane 

{ 11 0}, this sample will then have the directions of the form (1 oo), (11 o) and (111) as 

diameters, as shown in Fig. 2.2 for the plane (1 T 0). The measurements of the magnetization 

curves along these diameters, in the plane of the disc, will then give information about three 

important crystallographic directions. For example Iron is used as an illustration, which has a 

body-centred cubic structure. For Iron, the magnetization curves show that saturation can be 

achieved with quite low fields in the (1 00) direction, in the range of a few tens of Oersteds, in 

comparison to the other directions which required hundreds of Oersteds to saturate. 

Accordingly, (I 00) direction is called the "easy direction" of magnetization. This in turn tells 

us that the domains in demagnetized iron are spontaneously magnetized to saturation in 

directions of the fom1 (1 00) then a possible domain structure for a demagnetized crystal disc 

cut parallel to (001) is shown in Fig. 2.3 (a). Simplified, it has four kinds of domains, 

magnetized parallel to four of the six easy directions, namely [0 10], [100], [o T 0 )and [T 00). 

10 
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[I 11] 

[ 11 0] 

y 

' ' ' ' ' ' ' ' ' ' ' 

[001] 

0 

Figure 2. 2 

Iron. 

!/Ius/ration of principle ctystallographic axes in a single crystal of 

If a field is now applied in the [010] direction, the [010] domain will grow in volume 

by the mechanism of domain-wall motion, as shown in Fig. 2.3 (b). Continued application of 

the field eliminates all but the favoured domain and the crystal is now saturated. This 

saturation has been accomplished by the application of a low field required for domain wal l 

movement. This illustrates that generally the direction of easy magnetization of a crystal is 

the direction of spontaneous domain magnetization in the demagnetized state. [2] 

In order to saturate iron in a (11 0) direction, fairly high fields in the order of hundreds 

of Oersteds are required. For this orientation of fie ld. the domain structure changes as shown 

in Fig. 2.4. Domain wall motion in a low field occurs until there are only two domains left 

(with the same projection of the magnetisation onto the field direction, Fig. 2.4 (c), each with 

the same potential energy. The only way in which the magnetization can increase further in 

the direction of the field is by rotation of the M_,. vector of each domain until it is parallel 

with the applied field. This process is called domain rotation. Domain rotation typically 

requires fairly high fields, because the tield is then acting against the force of the crystal 
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anisotropy, which is fairly strong. Crystal anisotropy may therefore be regarded as a force 

which tends to bind the magnetization to certain directions of a CI)'Stal. When the rotation 

process is complete (Fig. 2.4 d), the domain wall in (c) disappears and the crystal is saturated. 

Because the applied field must do work against the anisotropy force to turn the 

magnetization vector away from an easy direction, there must be energy stored in any crystal 

in which Ms points in a non-easy direction. This is called the crystal anisotropy energyUK. 

This can be expressed in terms of a series expansion of the direction cosines of M s relative 

to the crystal axes. In a cubic crystal, let M s make angles a,b,c with the crystal axes, and let 

a"a1 ,a1 be the cosines ofthese angles, then 

(2.1) 

where K0 ,KpK1 ... are constants for a particular material and are expressed in 

ergs/cm3
. The higher order terms generally are not needed, and sometimes K 1 is so small that 

it can be neglected. The first term, which is K 0 , is independent of angle and is usually 

ignored, because there normally is only an interest in the change in the energy U K when the 

vector M s rotates from one direction to another. 

When K, is zero, the direction of the easy magnetization is determined by the sign 

ofK,. I r K, is positive, then V lOO < UIIO < u,,,, and (1 00) is the easy direction because u K IS 

a minimum when M s is in that direction. If K, is negative, u,,, < u,IO < UIOO and (Ill) IS 

the easy direction of magnetization. When K 1 is not zero, the easy direction is determined by 

the values of both K 1 and K 1 . 

12 



Chapter 2. Background research 

(a) M010 = 0 (b) Moto > 0 

[0 10] H 

[00 I] 
-------. [100] 

Figure 2.3 Changes in the domain structure of a crystal of iron by external field 

H in the direction [0 I 0]. 

[0 I 0] [ 11 O] 

, , 

• 

,,;5'~ 
.--~ [100] 

[00 I] (a} M11 0 = 0 

Figure 2. -1 Changes in the domain structure of a crystal of iron by external field 

H in the direction [1 1 0]. 
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In certain kinds of crystals, such as hexagonal closed packed crystals of cobalt, the 

anisotropy can be considered to be uniaxial, that is the hexagonal c axis is the easy direction 

of magnetization and any direction in the basal plane is found to be equally hard. Under these 

circumstances the an isotropy energy U K depends on only a single angle, the angle B between 

the vector M s and the c axis. Therefore, 

U K, K' 2 B K' 4 B K = 0 + I COS + 2 COS + ... (2.2) 

However, it is customary to write the equation for U K in hexagonal crystals in powers 

of sin B. Putting cos2 B = I - sin 2 B into Eq. (2.2), it is shown that 

(2.3) 

When K 1 is positive andK2 >-K10 the energyUK has a minimum forB=O, and the 

c axis is the easy axis of magnetization. A crystal with a single axis, along which the 

magnetization points can either be up or down, is referred to as a uniaxial crystal. Its domain 

structure in the demagnetized state is particularly simple, as shown in Fig. 2.5 

Easy 
axis 

I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 

I 
I 
1 He 
I 

.:. 
; 

I 
I 
I 
I 

H" 

H ll 

Figure 2. 5 Domain structure of a uniaxial c1ystal, magnetization loops for fields 

applied parallel and pe1penclicular to the anisotropy axis n K. 
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The energy U K will have a minimum for 0 = 90° if K 1 is negative and K 2 <I K1 I I 2, or 

if K1 is positive and K 2 < -K1 • The basal plane is then the easy plane of magnetization and 

the caxis is the hard axis ofmagnetization. 

Referring to Fig. 2.5, the field H" is known as a coercive field, and the field H K is 

known as the anisotropy field. Typically, H •. >>He. In the opposite case, the magnetisation 

in the parallel configuration ( H 11 nk) will flip by irreversible rotational process at the 

field H = H K • The magnitude of the anisotropy field can be most conveniently detennined by 

the magnetization of a uniaxial crystal when the field is applied in a direction at right angles 

to the easy axis. The rotational processes of magnetisation in uniaxial crystals will ow be 

illustrated briefly. When the field is strong enough to rotate M.1. away from the easy axis by an 

angleO, the anisotropy energy is found from Eq. (2.3) and the Zeeman energy (energy of a 

magnetic body in an external field) is: 

(2.4) 

The condition for the minimum (maximum) total energy is 

2K1 sin OcosO + 4K2 sin] OcosO-lvf.JI cosO = 0 (2.5) 

One solution of this equation is cos 0 = 0, which describes the saturation along the 

field. The other solution is found from: 

(2.6) 

which describes the intern1ediate case and approach to saturation at sin 0 =I . The 

external field needed to reach saturation corresponds to the an isotropy field H K and is 

expressed as: 
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HK = 2KI +4K, 
Ms 

(2.7) 

If K 2 is small, the magnetization curve becomes a straight line as shown in Fig. 2.5 

H .1 nk with the anisotropy field, 

H 
_ 2K

1 
K-

Ms 
(2.8) 

A more detailed approach to the magnetisation behaviour when the field is applied at 

an arbitrary angle with respect to the an isotropy axis is carried out in section 2.4. 

In amorphous materials, this intrinsic crystal anisotropy is not preserved, since the 

crystal field rapidly averages to "zero" on a macroscopic scale owing to the absence of the 

long-scale atomic ordering. On a local scale, it can be assumed that there is some "crystalline" 

anisotropy because of interactions between nearest neighbours, which will be, however, very 

short range, and therefore the average macroscopic crystal anisotropy is close to, or equal to, 

zero. In this case, other types of magnetic an isotropy should be considered. 

2.2.2 Shape anisotropy 

The shape anisotropy results from the demagnetising fields that occur within a 

magnetised material of a finite size due to the existence of magnetic poles at the boundaries. 

The shape of the sample has the effect of creating directions in which it is easier to magnetise 

the sample, and this is governed by the demagnetising field, H, which in the material points 

in the opposite direction to the magnetization. For instance, a smaller field is required to 

magnetise a long cylindrical magnetic rod along its length, because of the smaller 

demagnetising field, compared to the magnetic field required to magnetise the rod along a 

diameter. If this is considered in terms of magnetic poles, the strength of the demagnetising 

field depends upon the separation between these opposite magnetic poles. The poles generated 

at the ends of a rod are much further apart, giving rise to a small demagnetising field, whereas 

the magnetic poles will be much closer together when the rod is magnetised across its 

diameter, thus producing a larger demagnetising field. The demagnetising field depends 
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solely on the magnetization and the demagnetising factor, and is expressed, for a uniformly 

magnetized object of ellipsoidal shape which creates a uniform internal demagnetizing fie ld, 

as: 

(2.9) 

Where Nd is the demagnetising factor tensor that is mainly dependent on the shape of 

the body, and M is the magnetization vector. 

General ell ipsoid 

Prolate spheroid 

Oblate spheroid 

Figure 2.6 Ellipsoids, from [2]. 

Calculations of demagnetizing factors for general ell ipsoids shown in Fig. 2.6 have 

been made in [7]. The general ellipsoid has three unequal axes 2a, 2b , 2c and a section 

perpendicular to any axis is an ellipse. Of more practical interest are the special cases of the 

prolate spheroid, formed by rotating an ellipse about its major axis 2c ; then a= b , resulting 

in a rod or cylinder shape for c>>a, and the oblate spheroid formed by rotating about the 

minor axis 2a, with b = c with a limiting shape of a thin disc for a<<b. If the magnetization 

is along the ellipsoid axis then NcJ is a diagonal tensor with N a, N hand N c being particular 
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values for magnetization along the a, b or c axes. For any ellipsoid, the 

condition Na + N, +Ne = 41T is true. [2]. 

as, 

The demagnetization factor of a prolate spheroid a = b * c, with c I a = r is expressed 

(2.1 0) 

41T-N 
Na = N, = 2 '" (2.11) 

When r is very large, as in the case of a very long cylinder, then 

N = N, ""21T 
" 

(2.12) 

N,."" 
4~ {ln2r -I) (2.13) 
r-

As r approaches infinity N,. approaches zero. 

For the demagnetization factor of the oblate spheroid a * b = c, with c I a = r , 

N = 4m·
1 

[ 1-f,S. _1 ~] 
a ( ' ) 2 Sill , r--1 r -I r 

N 
_ ,, _ 41T- N" 

h - ",. - 2 

When r is very large (approximation of a thin disc), then 

As r approaches infinity N, and N,. approach zero. 
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The shape an isotropy has an importance in thin films. If magnetisation goes out of the 

film plane, there can be a significant demagnetization field according to Eq. (2.16). Then, the 

magnetization usually lays in-plane for a film in the absence of perpendicular crystal 

anisotropy [3]. In general, a thin film can be approximated by the oblate ellipsoid; this allows 

one to determine approximately the demagnetising factors for a thin film system. 

Using Eq. (2.14), and some typical values for the size of a thin film used as sensor 

elements of a= !.5,um and c = 200J.Un gtvmg r = 133.3 the demagnetising 

factor, N" = 12.56601 and in the plane of the film is Nh = Ne = 2.2657 X I o-J. 

Hence the easy-axis is in the plane of the film, whilst the hard axis is perpendicular to 

the plane of the film. This means that any competing anisotropy, or an applied field, must 

overcome the demagnetising field that is nearly equal to the magnetic induction 4n M Eq. 

(2.9), in order to rotate the magnetization out of the plane of the film. 

It is therefore important to be aware of the shape an isotropy in the design process of 

thin films in situations where the in-plane dimensions of the film approach the thickness of 

the film, by reducing the width of the sample for example, since the in-plane demagnetising 

field will no longer be negligible. [8] 
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2.2.3 Stress anisotropy 

When the state of magnetization of a magnetic material is altered by an external 

magnetic field, it also experiences a change in its physical dimensions, provided that part or 

all of the magnetization process occurs by magnetization rotation as opposed to domain wall 

displacement. This change in dimension gives rise to a strain that is referred to as the 

magnetostriction 'A, Eq. (2.18) 

). = /::,./ 
I 

(2.18) 

Where I is the length of the sample before the applied field and h./ is the change in 

length along the magnetization caused by the applied field. The magnetostriction is due to the 

spin-orbit coupling which is also responsible for the Magneto crystalline anisotropy and they 

are both intrinsically related [2). This type of magnetostriction is known as longitudinal or 

linear magnetostriction. The magnetostrictive strain 'A. increases as a function of applied field 

up to the point of magnetic saturation and is known as the saturation magnetostriction, 'A.,. lt is 

detined as the fractional change in length between the demagnetised state and the 

magnetically saturated state. The reason is that the crystal lattice inside each domain is 

spontaneously deformed in the direction of the domain magnetization and its strain axis 

rotates with the rotation of the domain magnetization. The magnetostrictive strain can have 

values which are either positive, negative, or in some cases, nearly zero depending upon the 

composition of the material. This means that, on application of a magnetic field, a positively 

magnetostrictive material will elongate in the direction of the magnetization caused by the 

applied field, whereas it will contract if it is negatively magnetostrictive. It is found that A., is 

anisotropic for crystalline materials and is therefore defined relative to the crystal axis along 

which the magnetization lies. In case of isotropic magnetostriction (as in amorphous 

materials) a simple expression relates the magnetostrictive elongation changes with the 

magnetization direction governed by the applied magnetic field: 

(2.19) 
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Here () is the angle between the easy magnetization axis and the direction of the 

applied field. The maximum magnetostrictive strain has the value of 1.5A5 as the spontaneous 

strain in the domain and will occur when the magnetization is rotated through 90° from 

magnetic saturation. 

An important effect that is related to the magnetostriction is the inverse 

magnetostrictive or magnetoelastic effect. A stress applied to a ferromagnetic material will 

afTect the direction of the domain magnetization through the magnetostriction. The preferred 

directions for the magnetization induced by stress depend on the sign of As and the type of 

stress. For materials with A5>0 the magnetization will rotate so as to lie along the direction of 

the uniaxial tensile stress, whereas it will lie perpendicular to a uniaxial compressive stress. 

The reverse is tme for materials with A5<0. 

These effects are important to consider when inducing magnetic anisotropy into a thin 

film sample through heat treatments. 
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2.3 Domain structure in thin films 

A ferromagnetic material usually consists of domains m any bulk material in the 

absence of external fields. The arrangement or configurations of the domains in the sample 

depend on a number of different factors. However, without the presence of external fields, 

domain structures are configured primarily to reduce the magneto static energy that is 

associated with the stray field emanating from the magnetic sample. This section will give an 

overview of domains in uniaxial crystals and thin films, general domain wall structure and 

domain wall motion. 

Firstly it is necessary to g1ve an explanation for the formation and relative 

arrangement of domains in any given specimen. It has been found that magneto static energy 

plays a primary role. 

2.3.1 Domain structure of uniaxial crystals 

Consider a large single crystal of a uniaxial substance. Suppose it is entirely one 

domain, spontaneously magnetized parallel to the easy axis, as shown in Fig. 2.7 (a). Then the 

free poles form on the ends, and these poles are the source of a large H field. The magneto 

static energy of the crystal is(Ij8JT) J H 1dv, evaluated over all space where His appreciable. 

This considerable energy can be approximately halved, if the crystal splits into two domains 

magnetized in the opposite directions as in Fig. 2.7 (b), because this brings north and south 

poles closer together to one another, thus decreasing the spatial extent of the H field. If the 

crystal splits into four domains as in Fig. 2.7 (c), the magnetostatic energy again decreases, to 

about one-forth of its original value, and so on. But this division into smaller and smaller 

domains cannot continue indelinitely, because each wall formed in the crystal adds energy. 

Eventually an equilibrium domain size will be reached. 

A still larger reduction in magnetostatic energy will result if the unlike poles on each 

end of the crystal are "mixed" more. This can be done if the domain walls become curved 

rather than flat, although still parallel to the easy axis as shown in Fig. 2.8 (a). A section of 

such a crystal parallel to the easy axis will show straight lines separating the domains, and a 

section normal to the easy axis will show curved lines. Curvature of the walls increases the 

wall area, and this type of domain structure is therefore found mainly in very thin Cl)'Stals. In 

thick crystals, wall curvature involves too much extra wall energy, and another method of 
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reducing magnetostatic energy is favoured, as shown in Fig. 2.8 (b). Here spike-shaped 

domains of reversed magnetization are formed at the surface. This has the desired effect of 

producing a fine mixture of opposite poles on the end surfaces without adding too much wall 

energy, because the spike domains are short. However, there is a discontinuity in the normal 

component of M.,. on the walls of the spike domains, and free north poles must form there. 

These interior poles are the source of a H field and therefore contribute to the magnetostatic 

energy. The number and size of the spike domains wi ll be such as to balance the reduction in 

main magnetostatic energy due to the surface poles against the increase in wall energy and in 

magnetostatic energy due to interior poles. 

N N S S 

M 

1 
Ms 

S S N N 

(b) 

N s N s 

I 1 I 

s N s N 

vvv 
(c) 

Easy 
Axis 

Figure 2. 7 Divisions into domains to reduce magneloslalic energy (iKnoring 

closure domains). 
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Figure 2.8 Curved walls and swface spike domains. 

2.3.2 Domain wall structure 

Domain walls are the interface between regiOns 111 which the spontaneous 

magnetization has different directions. At or within the wall the magnetization must change 

direction. An assumption could be made that the change of direction of magnetization would 

be abrupt, occurring from one atom to the next as shown in Fig. 2.9. A row of atoms is shown 

parallel tax , with the 180° domain wall lying in theyz plane; the easy axis is±y. But the 

exchange energy in a ferromagnet is a minimum only when adjacent spins are parallel. 

Therefore, the wall of Fig. 2.9 would have a large exchange energy associated with it, because 

the spins are anti para llel. This exchange energy can be decreased if the 180° change in spin 

direction to take place gradually over N atoms, so that the angle~ between adjacent spins, 

equal to Jrj N, has some smal l value, for examp le~ = 30° for 6 atoms. The total exchange 

energy is then reduced because it varies as ~2 rather than~ . 
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Figure 2.9 An infinitely thin 180° wall. 

Domain 2 

But, the spms within the wall under going this rotation are pointing in non easy 

directions. so that the crystal anisotropy energy within the wall is higher than it is in adjoining 

domains. While the exchange energy tries to make the wall as wide as possible, in order to 

make the angle rjJ between adjacent spins as small as possible, the anisotropy energy tries to 

make the wall thin , in order to reduce the number of spins pointing in the non easy direction. 

(The hypothetical wall in Fig. 2.9 has no extra anisotropy energy) . 

As a result of this competition the wall has a certain finite width and a certain 

structure. Also the wall has certain energy per unit area of its surface, because the spins in it 

are not quite parallel to one another and not parallel to an easy axis. The fi rst theoretical 

examination of the structure of a domain wall was made by Bloch in 1932, and domain walls 

with the magnetization rotating in the plane of the wall are often called Bloch walls, to 

distinguish them from the types of domain walls in thin fi lms where magnetization may rotate 

in the plane transverse to the wall plane. 
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2.3.3 Domain walls in thin films 

The magnetization m thin films lies in the plane of the film, because a huge 

demagnetizing field H 11 ( = 4JTM.1. ""I OkOe) would act normal to the plane of the film if Ms 

were turned in that direction. Domains in the film extend completely through the film 

thickness, and the walls between them are mainly of the 180° kind, roughly parallel to the 

easy axis of the film. 

However, two new kinds of domain walls can exist in thin films. The first is called a 

Nee/ wall, because it was first suggested on the theoretical grounds by Neel in 1955. 

Ordinary walls such as those found in bulk materials can also exist in thin films; they are then 

specitically called Bloch walls to distinguish them from Nee I walls. 

Nee I showed that the energy per unit area y of a Bloch wall is not a constant of the 

material but depends also on the thickness of the specimen, when the thickness is less than a 

few thousand angstroms. The magnetostatic energy of the wall then becomes appreciable, 

relative to the usual exchange and anisotropy energy. Free poles are formed where the wall 

intersects the surface, as indicated in Fig. 2.1 0 where only the central spin in the wall is 

shown; when the specimen thickness 1 is of the same order of magnitude as the wall 

thickness c5, the tie Id created by these poles constitutes appreciable magnetostatic energy. To 

calculate this energy Neel approximated the actual wall, a non-uniformly magnetized 

rectangular block in which the spins continuously rotate from the direction+ y to - y, by a 

uniformly magnetized elliptic cylinder. This is shown in Fig. 2.10 (b); its major axis c IS 

infinite. When magnetized along the a axis, its demagnetizing coefficient is 

N = 4nb 
" a+b 
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and when magnetized along b , 

N 
_ 4w 

I> -
a +b 

The magnetostatic energy density of the wall is then, 

(2.2 1) 

(2.22) 

This must be multip lied by o to obtain the magnetostatic energy per unit area of the 

wall in the yz plane : 

_ 21ro2A(~ 
r,,,H- ' +o 

., 
erg/cm- (2.23) 

This energy is neglig ible when I I o is large, as in bulk specimens, but no when it is of 

the order of unity or less. 
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Figure 2. 10 (a) cross section of 180° Bloch lva/1 in thin .film. (b) Elliptic cylinder 
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When the film thickness 1 is small, the magnetostatic energy of the wall can be 

reduced if the spins in the wall rotate, not about the wall normal x, but about the film 

normal z. The result is a Neel wall. Free poles are then formed, not on the tilm surface, but 

on the wall surface, and spins everywhere in the film, both within the domains and within 

walls, are parallel to the film surface a shown in Fig. 2.11 

Again approximating the wall by an elliptic cylinder and find that its magnetostatic 

energy IS 

_ 2m8M.~ 
Y.,,,,v - I + 8 erg/cm2 (2.24) 

The ratio ofmagnetostatic energies of the two kinds of wall is then 

Ym<,/1 8 
(2.25) 

This expression states that the magnetostatic energy of a Neel wall is less than that of 

a Bloch wall when the film thickness 1 becomes less than the wall thickness 8. This is not 

exact just because of assumptions in its derivation, but also because 8 varies with film 

thickness, it is necessary to calculate the total wall energy r, which contains magnetostatic, 

exchange, and anisotropy terms. Including these terms, it can be seen that the total energy of 

a Neel wall, as well as the magnetostatic energy, is less than that of a Bloch wall when the 

film is very thin, less than about 500 A. The widths of Bloch and Neel walls also vary in 

different ways with film thickness: the thinner the film, the narrower the Bloch wall and the 

wider the Neel wall. 
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Figure 2.11 Structure of a Nee/ wall. (a) Section parallel to film swface. (b) Cross 

section ofwa/1. 

The second new kind of wall observed in thin films is the cross tie wall, first seen by 

Ilubert. It consists of a special kind of Nee! wall. crossed at regu lar intervals by Nee! wall 

segments. Its energy is less than that of a Bloch wall of a Nee! wall in a ce11ain range of film 

thickness; the cross tie wall therefore constitutes a transition form between Bloch walls of 

very thick fi lms and the Nee! walls of very thin films. 

Lts structure is shown in Fig. 2. 12, a Nee! wall is shown, separating two oppositely 

magnetized domains. It is not a normal Nee! wa ll because it consists of segments of opposite 

polarity; these have formed in an attempt to mix the nor1h and south poles or the wall surface 

more closely and thus reduce magnetostatic energy. 

The regions within the wall where the polarity changes. marked with small circles. and 

where the magnetization is normal to the film surface, are called Bloch wall segments. 
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However, this hypothetical wall would have a very large energy, because the fie lds 

due to the poles on the wall, sometimes called stray fie lds, are anti parallel to the domain 

magnetization in the regions opposite the Bloch lines marked A. As a result, spike walls form 

in these regions, as shown in Fig. 2. 12 (b), and the stray fields close in a clockwise direction 

between the cross ties. 

'---- <::::::::: : ~ : -:::"><'<::::::: :.;;; __./ 
Ms 
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~ 
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Figure 2.12 Sections parallel to film surface of (a) hypothetical eel wall with 

·ections of opposite polarity, and (b) cross-tie wall. 
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2.4 Model of the magnetization process 

After giving a general overview of the basic properties of a ferromagnetic material, 

simple models of the magnetization processes can be described. 

In order to analyse the magnetization dynamics in ferromagnetic films, it is required to 

establish the equilibrium magnetic structure, which can be done through the minimisation of 

the free energy of the thin film sample. The total magnetic energy is made up of a number of 

different terms from the anisotropic properties of the material and external fields. The 

following energy terms are considered to make important contributions: magnetocrystalline 

energy, U K , magnetostatic energy from shape an isotropy, U,11 , magneto elastic energy 

associated with stress anisotropy, Ume, and energy due to an external magnetic field, H, U 11 • 

U f = U K + U,ll + U,e + U 11 (2.26) 

The first three terms constitute the effective anisotropy which defines the equilibrium 

direction of the magnetization inside domains in the absence of the external fields. The 

equilibrium magnetization in the case of a single domain film structure with the effective 

uniaxial anisotropy by minimising the total energy with respect to the magnetization angle 

(known as Stoner-Wohlfarth model) will be considered next. This was shown before in 

section 2.2.1 for the specific case of a perpendicular applied field with respect to the easy 

axis. To obtain more general results, a model of an oblate spheroid as the approximation of 

the shape of a thin film will be used. 
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H 
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Figure 2. 13 Direction of magnetization with respect to applied.fleld and easy axis. 

As shown in the figure above, The a axis is the hard axis and c is an easy axis of 

magnetization. Rotation occurs in plane. a is defined as the angle between H and the easy axis 

and B as the angle between M8 and the easy axis, the anisotropy energy is given by 

the Zeeman energy is 

U11 =HM , cos(a - B) 

and the total energy is 

U = UK + U H = K, sin 2 B- HMs cos( a- B) 

The equi librium position of 111[_, is given by 

dU = 2K sin Bcos B- HM, sin(a- B)= 0 
dB 11 

and the magnetization resolved in the field direction is given by 

M= Ms cos( a -B) 
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Suppose the field is normal to the easy axis, so that a is 90°. Then, 

2K,. sinOcosO = HMs cosO and M= MssinO 

therefore, 

2 K. ( J'vl / !vf.~) = HMs 

Put 1l;f I M_,. =m, reduced magnetization. Then, 

m= H(Ms 12K,.) 

(2.32) 

(2.33) 

(2.34) 

This shows that the magnetization is a linear function off/, with no hysteresis. 

Saturation is achieved when H = H K = 2K. I lvl, or the an isotropy field, as shown in Eq. (2.9) 

previously. If h =reduced field= HI H K = HM, I 2K,., then m= h when a is90°. 

For the general case Eq. (2.30) and (2.31) may now be written 

sin OcosO -hsin( a- 0) = 0 

m=cos(a-0) 

(2.35) 

(2.36) 

Suppose now that the field is along the easy axis (a = 0 ), and that Hand M both point 

along the positive direction of the axis. Let H be reduced to zero and then increased in the 

negative direction (a = 180°). Although Hand M are now anti-parallel which leads to 

increase in energy, the magnetisation will not flip because of the existence of the energy 

barrier. A certain amount of the negative field is needed to realise the magnetisation flip from 

the position with 0 = 0 to 0 = 180°. To find this critical value, the solution to Eq. 2.35 can 

be used which describes all the energy extremums. The critical field is found from the 

condition that the local energy minimum (metastable state) becomes unstable, which is 

governed by the sign of the second derivative. 

If d 1U /d0 1 is positive, the equilibrium is stable; if it is negative the equilibrium is 

unstable; if it is zero, a condition of stability is just changing to one of instability. 
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Thus the critical field is found by setting 

d
1
U , . 1 ( ) --, =cos- 0-sm 0+ hcos a -0 = 0 

do-
(2.37) 

Simultaneous solutions of Eq. (2.35) and (2.37) lead to the following equations, from 

which the critical field h,. and the critical angle 0'", at which the magnetization will flip, may 

be calculated: 

h2 I 3 . 2 2LI = --sm u. ,. 4 <" 

(2.38) 

(2.39) 

When a = 180°, he = I, or H = H K. The hysteresis loop is then rectangular, as shown 

in Fig. 2.14. 

The reduced magnetization m as a function of reduced field h for an intermediate 

angle, say a= 20° is calculated as follows. For positive values ofh, the anglcOwill vary 

between 0 and 20°. For selected values of 0 in this range, corresponding values of hand 

m are found from Eq. (2.35) and (2.36). When his negative, a = 180°- 20° = 160°, and Eq. 

(2.39) gives the critical value 0'" at which the magnetization will flip. Values of hand m are 

again found from Eq. (2.35) and (2.36), with a equal to 160°, for selected values of 0 in the 

range 0 to 0'" . 
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Figure 2. I 4 shows hysteresis loops calculated for various values of a . In general, 

these loops consist of reversible and irreversible portions and therefore that reversible and 

irreversible changes in magnetization can occur by domain rotation as well as by domain wall 

motion. The portion of the total change of m due to irreversible jumps varies from a 

maximum at a = oo to zero at a = 90°. The critical value of reduced fie ld he , at which the 

M s vector flips from one orientation to another, decreases from 1 at a= 0 to a minimum of 

0.5 at a= 45° and then increases to l again as a approaches 90° ; these critical values a re 

equal to any two values of a, such as 20° and 70°, symmetrically located about a = 45°. 

On the other hand, the reduced intrinsic coercivity he, (the value of h which reduces m to 

zero) decreases from I at a= 0° to zero at a= 90°. For values of a between 0 and 90°, 

cyclic variat ion of H in a fixed direction has a curious result: Ms makes one complete 

revolution per cycle, although it does not rotate continuously in the same direction 

1.0 

0.5 

m o.o 

-0.5 

-1.0 

-1.0 0 

h 
1.0 

Figure 2. 1-1 Rotational hysteresis loops for uniaxia/ anisotropy (a angle 

between field and easy axis). 
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2.5 Further magnetic properties 

The previous sections had described general models of the magnetic properties for 

static fields. This approach will be further developed to produce a quasi-static model for the 

magnetization change (which is described in terms of the susceptibility) due to a small AC 

field applied in the direction of the easy magnetization, and in the presence of a DC magnetic 

field of arbitrarily magnitude along the hard axis. This configuration is typical of the magneto 

Impedance effect as will be explained later. At this stage, it is intended to demonstrate the 

behaviour of the susceptibility as a function of the hard axis field. 

2.5.1 Linear model for the easy-axis magnetization in the presence of the 

orthogonal field 

To illustrate the behaviour of the quasi-static magnetization m= zHu,·, where % IS 

the susceptibility, caused by a small easy axis driving field H.,,. in the presence of a hard axis 

tield H"', a development of the previous model has been employed. By considering a single 

layer film having a transverse anisotropy along its width which may have anti-parallel 

domains with 180° domain walls. The equilibrium magnetization with the angle {}0 with 

respect to nk is set by the balance of the transverse an isotropy and. the hard axis field, which is 

then changed by applying H.,, as shown in Fig. 2.15 To simplify the model, it is assumed 

that there is no domain wall bowing caused by the field H,". Additionally it is assumed that 

the magnetization process occurs purely by moment rotation. 
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Easy Axis 

HK 

Hex 
Hard Axis 

Figure 2.15 Simplified domain model used to illustrate the susceptibility with 

respect to Hac in a magnetic layer of a thin film. 

The transverse susceptibility (wi th respect to the film length and H~x ) under the 

conditions of these assumptions can be written as: 

aMac x=--
, aH," 

(2.40) 

Where the change in the transverse magnetization M"' is simply the oscillation of the 

magnetization vector M0 in the transverse direction, due to the field Hac, described by the 

varia tion in the angle () = 00 - 80( Hac.) (see Fig. 2.15). Considering this change to be small , in 

the linear approximation the magnetization Mac is expressed as 

(2.4 1 ), 
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which defines the transverse susceptibility: 

(2.42) 

The equilibrium angle 00 of the magnetization vector M 0 is determined from Eq. 

(2.30) with the anisotropy angle a = 1r I 2 

sin 00 = HH.,, Het < H K = 2K, I M 0 ; 

K 

sin00 =1, Het?.HK 

(2.43) 

To find the changes in 8 when a small field H"'" is applied, a linear equation for the 

energy minimisation will be considered. The total energy in the presence of the two 

orthogonal fields is written as 

(2.44) 

Minimising Eq. (2.44) with respect to 8 obtains the following expression 

auo =H .. sinOcosO+H sinO-H cos0=0 ao n uc et 
(2.45) 

Substituting 0 = 00 -50 into Eq. 2.45 gives 

(2.46) 

Expanding Eq. (2.46) in series of '60, and taking the linear terms aller some algebraic 

manipulation, the following is obtained: 

(2.4 7) 
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Substituting Eq. (2.47) together with the solution for the equilibrium angle B, ... Eq. 

(2.43) into Eq. (2.42) completes the problem of :finding the transverse susceptibility: 

(2.48) 

(2.49) 

Figure 2.16 shows the field plot of the transverse susceptibility calculated from Eq. 

(2.48) & (2.49). Due to the simplicity of the model the susceptibility diverges as Her 

approaches H K (which is equal to I 0 Oe in the present calculation) but it is clear that there is 

a significant change in transverse susceptibility which occurs in the presence of the hard axis 

field nearly equal to the anisotropy field. 
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Figure 2. 16 Illustration to show the effect of a hard CL\ is .field on the easy cccis 

susceptibility. 
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This shows an ideal model within which the approach to HK is not possible to 

determine, however, this model shows a very steep change in the permeability when the 

orthogonal field of the order of the an isotropy field is applied. In reality the peak value in the 

susceptibility will be defined by imperfections like the distribution of the an isotropy axes, and 

relaxation processes. 

2.6 Magnetization dynamics 

This section will consider the effects of dynamic magnetization. Firstly the effects of 

eddy currents are considered. These not only affect the operation of many kinds of magnetic 

devices and machines; they also influence magnetic measurements. It is therefore important 

that the nature of eddy currents be understood. Secondly the velocity of magnetization 

change by domain wall motion will be considered, including the internal friction or damping 

of magnetic materials, due to the oscillatory motion of domain walls. Finally the ctTcct of the 

domain wall motion and oscillation to be developed to produce the frequency dependence of 

the transverse susceptibility of a thin film. 

2.6.1 Dynamic susceptibility due to wall motion 

Magnetization dynamics can occur by domain wall motion and I or rotation. In some 

specimens and in certain ranges of applied field, only one mechanism is operative; in others 

both operate. In this section only the wall motion mechanism and other factors that influence 

wall velocity will be examined. 

Let a field H be applied parallel to a 180° wall and to the Ms vector in one of the 

adjacent domains. The field then exerts a force per unit area, or pressure, on the wall equal to 

21-/Ms. Suppose that, when H = 0, the wall is initially located at a potential energy 

minimum. Then the equation of motion of the wall per unit area is 

(fx fJ dr 2A m--, + -+ax = 1,H 
dr dt · 

(2.51) 

where x describes the position of the wall. 

If H is a weak alternating field, the wall will oscillate back and forth about its initial 

position. The first tem1 in this equation, the mass per unit area m of the wall and its 
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acceleration, represents the inertia of the wall, or the resistance of the spins to sudden rotation. 

This term is not usually important. The second term represents the resistance to motion which 

is proportional to velocity, and p is accordingly called the viscous damping parameter which 

can be due to eddy currents or spin relaxation. The third tem1 m represents the force due to 

material imperfections such as micro stress or inclusions, and a is related to the shape of the 

potential-energy minimum in which the wall is located. The value of a determines the field 

required to move the wall out of the energy minimum and the ensemble of a values for the 

whole specimen determines the coercive force He, which is required for extensive wall 

movement. 

The solution of Eq. (2.51) for a small alternating field H = h exp(- jmt) is of the fom1 

X= 2AI, h 
a- jwp 

Here the first term in (2.51) is neglected. 

The wall displacement x is related with the susceptibility as X= (xM, I d) I h, where 

2d is the domain size. The initial domain wall susceptibility is determined by, 

Ml 
xo=-·'­

ad 

Then, the dynamical domain wall susceptibility is expressed as 

M 2 I da x0 

x= , =-....:.::.... __ 
1- jwfJ I a l- jml m, 

Where Eq. (2.52) is used for the initial susceptibility. 

(2.52) 

(2.53) 

The parameter w, =a I p = M, 1 Id .(0 p is the relaxation time for domain damping. 

Considering that in metallic ferromagnetics the main source of relaxation is related with the 

eddy currents, it can be calculated for a particular domain structure and sample geometry. 

The damping effect of eddy currents on wall mobility can be understood from a simple 

model. Local wall displacements generate eddy currents circulating in and near a moving 
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domain wall , which creates the fi eld H"" as shown in Fig. 2.17. This field is in the opposite 

direction to the applied field H 0 to move the waUs, because the true field actually acting on 

the wall is now less than H 0
, the velocity of the wall is now less than it would be if the eddy 

currents did not exist, i.e. the wall motion is clamped. 

2d 

Figure 2. 17 Micro eddy currents associated with a moving domain wall. 

Now considering the dynamic petmeabili ty for thin fil m geometry with stri pe domain 

structure following the model developed in [9]. The domains cross the entire fi lm periodically 

with spacing 2d as shown in Fig. 2.1 7. The dynamical magnetic susceptibility Xm, due to 

domain wall movements taking into account the eddy current damping is defined from, 

(2.54) 

Where < ..... > indicates averaging over the volume larger than the domai n spacing, 

x~ .. is the static domain wall susceptibil ity, H 0 is an external driving field, and H is the 

total microscopic field including H"" generated by the eddy currents. It assumed that the 

domain wall shifts as a whole under the influence of the averaged fi eld < 1-1 > . 
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It can be shown that Eq. (2.55) results in the same frequency dependence as obtained 

from Eq. (2.51) but gives the explicit form of the relaxation frequency 

and where, 

1- j w/ , 
I w,"' 

11 

4coth[(2n + l)Jrd] 
2a 

(2.55) 

(2.56) 

(2.57) 

It can be seen that with increasing frequency beyond the characteristic frequency of 

the domain wall relaxation WJ11, the susceptibility value is greatly reduced. The estimation 

for an amorphous film of a few microns thickness gives the value of the domain relaxation 

frequency in the range of I OOkHz. Therefore, for MI-Iz frequencies the wall motion becomes 

strongly damped and the main contribution to the permeability will be due to rotation which 

in general is characterised by much faster relaxation. 

2.6.2. Dynamic permeability due to magnetisation rotation. 

In general, the rotational susceptibility is found from the solution of Lanadu-Lifshitz 

equation for the magnetization dynamics. In the case of a small AC magnetic field causing the 

rotation, a liner approximation is used which is further simplified for the local relationship 

between the magnetisation and the field (neglecting non uniform exchange effects). Even in 

this case for arbitrary angle between the DC magnetisation and anisotropy, this equation is 

rather complicated. It will result in a frequency dependent non-diagonal tensor (X"'' )[9]. 

This leads to a description of the effective transverse permeability J1~1 that comprises 

of X.tv. and some components of x "'' [9]. In the case of a stripe domain structure in the 

presence of a hard axis field H,", the effective transverse permeability is expressed as, 
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4JT = (QI + QM + jT(J))(Ql + jT(J))- (1)2 

x,, (Q . )(Q . ) ' 
1 + jT(J) 2 + jT(J) - (U-

I, 

QI =yHK(hCOSifi+COS2(a-l{l)), 

Q 2 =Q11 +QAPQM =y4;r/vl,, h=H,,/HK, 

Q 11 = yH K(hcosl{l +cos2(a -1{1)). 

(2.58) 

(2.59) 

Here r is a spin relaxation parameter, y is the gyro magnetic constant and If/ is the 

angle between the equilibrium magnetization and external field H, . .,. For 

oJ = 0 and a= ;r I 2 expression (2.59) reduces to the static value given by Eq. (2.48) and 

(2.49). 

The relaxation frequency for the rotational processes estimated for CoSiB amorphous 

alloys is in the range of 30-60 MHz. Therefore, this contribution will be dominant at 

frequencies of tens of MHz. 

In the intermediate frequency range, both contributions originated by wall motion and 

moment rotation should be considered. Regarding the dependence of the permeability upon an 

external DC magnetic field applied in the hard direction, the behaviour can be quite 

complicated in this frequency range. 

Typically, the static domain permeability x0 
dw shows a peak at zero field whereas 

the rotational permeability peaks at H" close to the anisotropy field [9]. It means that with 

increasing frequency the field plots of the permeability will typically change from those 

having a central peak to plots with two symmetrical peaks situated at the anisotropy field. 

Further increase in frequency moves the peaks towards even higher fields due to the effect of 

relaxation. 
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Chapter 3. Magneto Impedance in thin films 

When a ferromagnetic material carrying a low intensity, high frequency alternating 

current is subjected to an external magnetic field, it may exhibit a sharp change in its 

electrical Impedance with the relative change running into more than one hundred percent. 

This effect is known as the Magneto Impedance (MJ) or the Giant Magneto Impedance (GMI) 

effect. In an electrically unifom1 material, the changes in the Impedance are a consequence of 

the AC current redistribution in the presence of the external magnetic field Hex due to changes 

m the static magnetic structure of the material and its dynamic 

permeability J.l,1 .Correspondingly, relatively high frequencies are essential to insure that the 

skin effect is strong and the current is not uniform across the conductor. Typically, the MI 

effect is larger and more sensitive if the external field Hex causes the directional changes in 

the static magnetisation. Then a magnetic system with transverse anisotropy with respect to 

the AC current and Hex is needed to realise a large and sensitive M I. In this case, the effective 

permeability of the material in the direction of the field produced by the current is most 

sensitive with respect to Hc.x as was demonstrated in Section 2.6. 

Since its discovery in 1994 [I ,2] in amorphous micro wires, the Ml effect has been 

extensively researched due to its importance for developing new types of high performance 

magnetic field sensors [3-6], the variety of MI materials has increased significantly, including 

amorphous films, magnetic/metallic multi-layers and nanocrystalline materials in the form of 

wires, ribbons and film [7-12]. MI in film systems is of a particular interest mainly because 

of miniaturisation and compatibility with integrated circuit technology. MI sensors developed 

in this work mainly utilize layered film systems. 

This chapter begins by modelling the Impedance of a single layer thin film for 

arbitrary frequencies including the case of a strong skin effect. The Impedance is then 

considered in the next development of thin films, the multi-layer, which allows the 

development of different magnetic configurations through inducement of specitic anisotropies 

in the magnetic layers. 
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Through the introduction of a coil to the multi-layer, cross magnetisation or off­

diagonal impedances can be measured, making possible the investigation of the full surface 

Impedance tensor. Practical considerations of the samples dimensions on the Impedance are 

considered, before the introduction of Asymmetrical Magneto Impedance (AMI) in both 

dynamical and static configurations. 

3.1 Magneto Impedance in a single layer magnetic conductor 

Firstly, a general analysis of the MI (Magneto Impedance) effect in a simple single 

layer ferromagnetic conductor with a transverse magnetisation (with respect to the applied 

current direction) will be considered. The process will be considered in the configuration of 

an AC current and DC external magnetic field being parallel to one another. 

When an alternating current i = i 0 exp(- j OJI) flows through a magnetic conductor, it 

generates a transverse magnetic field, which in turn causes a corresponding magnetisation. 

When the frequency of this applied current is large enough it causes the current to flow near 

the surface of the material, which reduces the effective cross-sectional area of the material. A 

mathematical description of the skin effect has been obtained from classical electrodynamics. 

For a fiat conductor carrying a sinusoidal alternating current, the penetration or skin depth, o, 
is given by the well known expression: [13] 

0 c 
m - ~ 2lf(iJO"Jf_., 

(3.1) 

Where a is the conductivity of the magnetic medium and ~Y is the effective transverse 

permeability. Equation (3.1) is strictly valid for a material with scalar type of the 

permeability p. However, it can be generalised for certain cases of tensor;./, for example, 

when it is of a quasi-diagonal form in the coordinate system with the z-axis along the current. 

This case can be realised in films with transverse anisotropy and transverse domain structure 

with respect to the z-direction. 
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At low frequencies when the skin effect is weak in the magnetic conductor, the change 

in transverse magnetisation generates an additional inductive voltage V~. across the conductor, 

where R is the DC resistance of the conductor: 

V= RI +V I. (3.2) 

In the case of a transverse domain structure, the current induced magnetisation is due 

to domain motion and magnetisation rotation. Both these contributions to the transverse 

permeability may be large, which results in relatively large values of the induced voltage. 

Moreover, both magnetisation processes can be sensitively affected by H"'. However, as the 

frequency increases and the skin effect becomes stronger and more effective in the magnetic 

conductor, the current is distributed near the surface of a conductor, changing the total voltage 

V including both the resistive and inductive components. The current distribution is governed 

not only by the shape of the conductor and frequency but also the transverse magnetization 

dependency on H,x. As a result, the total voltage can show a large magnetic response. The 

change in an AC voltage with the application of the field can be analysed in tern1s of the field 

dependence of the complex Impedance, 

Z = R(w,p({u,H, . .r))+ JX(w,p(w,Hc,)) (3.3) 

At low frequencies, when the skin effect is negligible, the tirst order term in an 

expansion ofZ(w) in powers of frequency is responsible for the voltage field dependence. 

This term is represented by an internal inductance, which is proportional to the static 

transverse permeability. When the skin effect is strong, the total Impedance including 

resistance R and reactance X, is field dependant through the penetration depth. 
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Figure 3.1 Transverse domain structure in a single layerjilm. 

For the simple geometry of the thin fi lm shown in Fig. 3. 1, the Impedance can be 

calculated for any frequency. without neglecting the skin effect, in the case of homogeneous 

magnetisation changing linearly with the AC magnetisation field, as [13] 

Z = R,l · jkl coth(jkt) 

k=(l+J) 
51/1 

Where Rdc is the DC resistance, and I the thickness of the conductor. 

(3.4) 

lt follows from expressions (3.1) and (3.4) that the total Impedance of a magnetic 

conductor again is dependent upon the effective permeability, controlled through the skin 

depth. For films with a transverse domain structure as in Fig. 3.1 the effective permeability 

arises from two contributions: domain wall movement and rotation of the domain 

magnetization. These processes typically have a different dependence on the external 

magnetic field. The domain processes are more efficient at zero Hex which causes the fi lm to 

be uniformly magnetized along its length. On the other hand, the rotational processes are 
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stronger at Hex of the order of the anisotropy field as was explained in section 2.6.2. These 

contributions also have a different frequency behavior. 

At low frequencies, the domain wall movement dominates the permeability, whereas 

at higher frequencies the domain wall movement is strongly damped by microscopic eddy 

currents, and the magnetisation rotation contribution becomes dominant. This may result in 

different field behavior of the Impedance which has a single peak at zero field for lower 

frequencies and two symmetrical peaks at the an isotropy field for higher frequencies. 

In early works, sensitivities of 8%/ Oe and a maximum change of around 65% have 

been reported in [14] for a CoFeB magnetic layer of dimensions 4~tm thickness, 300J..im width 

and I Omm length. 

3.2 Magneto Impedance in multi-layer films 

As shown in the last section, m electrically uniform materials subjected to a DC 

magnetic field, the Ml effect originates from the dependence of the skin depth on the 

transverse pem1eability. Therefore, for thin films with the thickness of less than a few 

microns, very high frequencies (towards the GHz range) would be needed to obtain noticeable 

change in the Impedance. 

In multi-layer structures having a highly conductive inner film, a very large change in 

Impedance can occur at lower frequencies when the inductance caused by the outer magnetic 

layers becomes sulliciently high in comparison with the DC resistance of the inner layer. 

This can result in a large enhancement of the MI ratio and a considerable extension of the 

operational frequency range into the lower frequency band compared to single layer films. 

Although the magnetic layers are made of the same ferromagnetic alloy material, it is 

possible to create a different magnetic anisotropy within each layer. In particular, the 

configuration when the anisotropy axes are directed at an angle ±a to the z axis, respectively 

for the upper ( x > 0) and lower ( x < 0) magnetic layers. 

Through the variation of the angle± a , special types of magnetic an isotropy can be 

realized in layered systems [IS -17]. Multi-layers with a transverse an isotropy ±a =90° can 
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produce an antisymmetric response manifested through the measurement o f off-diagonal 

terms in the surface Impedance tensor. Crossed-anisotropy films exhibit asymmetric Ml 

characteristics (with respect to Hex) in the presence of DC bias current!, which induces a 

circulatory magnetic field H 6 (x > 0) = - H , (x < 0). All these specia l MJ characteristics are 

important to improve the sensor linearity. 

Jn these sections, a symmetrical three-layer film model has been considered that 

re flects all the essential features of MI behaviour in multi-layered materials. Within this 

model, diffe rent magnetic configurations can be d iscussed. 

The magnetic mul ti-layer consists of an inner conductive lead (labelled C) of a 

thickness 2 d1 and two identical magnetic layers (F) of a thickness d2 along the x-axis. The 

layers are parallel to they~ plane having a width b (y-axis) and length I (z-axis). An external 

DC magnetic field or sense field Hex is applied para llel to the .z-axis. Additiona lly, a DC bias 

current Ih can be also used to modify the static magnetic structure. A schematic diagram of 

this model is illustrated in Fig. 3.2. 

(a) 
(b) F 

c 

F 
1 

• X 
I 
I 

i 
I 
I 
I 1 

____ LJ_ ~~--
I 
I 

: 
I 
I 
I 

b 

- --· y 

Figure 3.2 Schematic drawing of 3-layer Ml film sho·wing principal directions and 

quantities used. (a) general 1 iew, (b) cross-section of the .film. 
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3.2. 1 Impedance of a 3-layer film with transverse anisotropy 

The first model to be investigated is the impedance of the 3-layer structure shown in 

Fig. 3.2, when it is excited by an alternating current i = i0 exp(- jOJt) flowing along the z-axis. 

The magnetic anisotropy is set so that a = 90° in the magnetic layers, leading to a transverse 

anisotropy in respect to the applied sense field H,_,. 

The layer thickness d, and d2 are such that the skin effect can be neglected. An 

assumption can be made that if the inner lead conductivity er, is considerably higher than the 

conductivity cr2 of the magnetic layers, in combination when their respective film thickness 

satisfyingcr,d, >> cr2d 2 , that the current can be considered to mainly flow in the conductive 

lead. 

With that assumption, the expression for the Impedance can be written in the form 

0 m<l> 
Z=R ... -J-., 

Cl 

I 
Where R

111 
= is the resistance of the inner conductor, 

2cr1d 1b 

(3.5) 

<l> is the total transverse magnetic flux generated by the driving current i in the 

magnetic layers, and c is the velocity of light. If the film is treated as infinitely long in they 

and z directions (neglecting edge effects), then the AC magnetic field h within the magnetic 

layers can be considered uniform. 

(3.6) 

Where ~ is the AC permeability tensor. In general, the field h has x- and y­

components due to the tensor forn1 of the pern1eability. The value of the y-component is 

related to the current asl h,. I= 2m, and the relation between h,. and h, is determined from 
- cb · 

the condition that the normal magnetic flux is zero (i.e.,(.i/h), = 0); accordingly, 
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...... -hdl _d2nil ...... = J.l.,_ ,. 2 = J.l,.,, 2 --, ·· · ·· eh 
(3.7) 

2 
- J.lxy 
J.ll'l' = J.l )ry' + 

· · · J.lxx -I 

After using (3. 7), the Impedance can be written in the form, 

(3.8) 

Where o
1 
= ~ c is the skin depth in the metallic inner layer. 

2lla
1
w 

Expression (3.8) shows that the M! ratio in the layered film can be very large even at 

relatively low frequencies when the skin effect is not substantial, and has a linear dependence 

The Impedance for the geometry shown in Fig. 3.2 can be calculated exactly 

for any frequency, without neglecting the skin effect [15-18] by solving the Maxwell 

equations in each layer and imposing proper boundary conditions and continuity conditions at 

the interfaces. However for a film of I ~un thickness with a 1d1 I a 2d2 ""50 (as for a 

CoSiB/Cu/CoSiB configuration of multi-layers with amorphous magnetic films), the 

approximate solution almost coincides with the exact one up to a frequency of I GI-Iz. 
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3.2.2 Surface Impedance tensor 

Considering a multi-layer film, shown in Fig. 3.2, in the presence of a small DC 

current sufficient to eliminate domain structure. In this case the pem1eability of magnetic 

layers has a general tensor form with non zero components f.iyz = f.izy *- 0 . It means that the 

circulatory magnetic field ( hy) induced by current will now produce not only the 

corresponding circulatory magnetisation (my) but also a longitudinal magnetisation (m z ) 

Therefore, the AC current i induces a voltage V! between the film ends (due to 

magnetisation my) and an additional coil voltage Vc caused by mz. Similarly, if the film is 

placed in a variable longitudinal field h,._, induced by a coil current ic, not only a longitudinal 

magnetisation is induced, but also a circulatory magnetisation contributing to V!, as shown in 

Fig. 3.3(c) The crossed magnetisation processes my(hz) and m~(hy) related to the voltages 

V!, V, are known as the inverse Wiedemann and the Matteucci eiTects [13], which typically 

are studied at low frequencies and require a helical type of an isotropy. With increasing 

frequency, the induced voltages become of the same order and are very sensitive to the 

longitudinal field, Hex which allows for some unusual field effects. 

The relationship between the generalized voltage ( V1 ,V") as response to excitation 

( i, i.) is conveniently described through the introduction of the surface Impedance tensor~ 

[15, 17, 20]. The tensor~, is described through a two dimensional matrix of so called 

diagonal and off-diagonal terms. It relates the variable electric e1 and magnetic h1 fields 

taken on the external surfaces x = ±d ( d = d 1 + d 2 ) • 
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(a) 

Yr ____ _, 

Figure 3. 3 Methods of A C 'o/tage excitation. 

Thus, 

eta =~ap (htx n)p, a , fJ = z, y , (3.9) 

Where n is a unit vector directed inside the film, while e1 and h1 are tangential to the 

surface. The voltage V1 is determined by the surface value of the longitudinal electric "field 

eJd) = e= (-d) and is related to the fie lds h, generated by the cun ent flowing in the sample 

i and h= = her by the current flowing in the coil i< via the surface Impedance tensor 

components ~ == and ~=' as follows: 
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(3.1 0) 

(3 .11) 

Where n1 is the number of turns per unit length in the excitation coil. 

The coil voltage V" is associated with the circulatory electric field e) d)= e,. (-d) and 

can be expressed as 

(3 .12) 

Where N1 is the number of turns in the detection coil. 

So generally two coils will be required, the excitation coil for producing he, and the 

pick-up coil for detection of Vc. Eq. (3.1 0) and (3.12) can be written in terms of currents i 

and ic 

(3 .13) 

Where the parameters A= h,.ji and B = h,.Ji,. are given by (3.11). 

The surface Impedance tensor can be easily found in the low-frequency 

approximation. Here by analysing ~ ,, and ~y: = ~ =.v components. The parameter ~,,or 

diagonal! mpedance is obtained by comparing Eq. (3 .8) and (3.13) where i" = 0: 

c 
~0 =---

41faldl 
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The off-diagonal component,.;--'", can be found by considering the coil voltage V'" 

induced by the film current i. This voltage is related to the longitudinal magnetic flux: 

(3.15) 

When comparing Eq. (3.15) and (3.13) taken with ic = 0 one can obtain 

V, . oxl 2/1 =.r 
.;-,.= = 2bN,Ai =-J c (3.16) 

ji=_.. = 11=.•·- 11~.-llx .. ./ll.u 

3.2.3 Exact solution of the surface Impedance tensor 

The calculation of ~ that is valid for any frequency is based on the solution of the 

Maxwell equations for the tields e and h, together with the equation of motion for the 

magnetisation vector M. The theoretical aspects of the problem can be very complicated and 

generally require approximations. 

Typically, a linear approximation with respect to the time-variable parameters e, h 

and m= M- Mo (where Mo is the static magnetisation) is used. On assuming a local 

relationship between m and h (m= x h), the problem is simplified to finding the solutions 

of Maxwell's equations with a given AC permeability tensor JL =I+ 4;rj, which corresponds 

to neglecting the exchange effects. 

Further assumptions about jJ are needed. The pem1eability depends on many factors, 

including the domain configuration, anisotropy and stress distribution, and the mode of 

magnetisation (domain wall motion or magnetisation rotation). These factors can be very 

complicated in real materials, making modelling very difficult. The problem is simplified if 

the domain structure is not considered (in practice, it can be eliminated by a proper DC bias) 

and if Mo is constant in the films. Then, /i is determined by the magnetic moment rotation 

and is independent of the position. 
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Furthermore, the tensor ji has a general fom1 that reduces to a quasi-diagonal form in 

the primed co-ordinate system with the axis z'IIMo , shown in Fig. 3.4. 

X 

Figure 3.4 Original xyz and primed xy'z' co-ordinate .1ystems. Using primed 

coordinates reduces the permeability tensor to quasi-diagonal form. 

In the case of a uniform precession of the total magnetisation vector M around M0 , 

the susceptibility tensor in the primed coordinates (x,y', z') is of the fom1 

-.ix,, 

~] (3.17) 

This form can be easily obtained from the linearised Landau-Lifshitz equation 

describing the magnetisation dynamics. The expressions for ;(p X 2 , ;c, depend on a specific 

magnetic configuration [16]. 

By restricting the consideration of magnetisation rotation dynamics only if the domain 

wall displacements are strongly damped. Then, (3.17) determines the permeability 

tensor ji = 1 + 4ll"i. To calculate the normalized parameters ji,)" and ji=-" which appear in 

expressions (3 .14) and (3 .16) for the Impedance components, the tensor f.l has to be written 

in the original coordinates x, y, z, which yields: 
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ji-'T =I+ 4n-xcos2 () 

ji=Y =-4n-xsinBcosB, 

4n-x2 
X= XJ- " 

- t + 4n-xl 

where () is the angle between the DC magnetisation Mo and the z axis. 

3.2.4 Magneto Impedance effect in practical samples 

(3.18) 

(3.19) 

For a practical multi-layer sample, the effect of' in-plane width on Ml has to be 

considered. If the edge effect is neglected (approximation of an infinite width), the magnetic 

flux generated by the current flowing along the inner lead is contined within the outer 

magnetic layers. In a realistic multi-layer of tinite width, the flux leaks across the inner 

conductor [ 18], [21 ], [22]. This process eventually results in the considerable drop in MI ratio, 

if the film width is smaller than some critical value depending on the transverse permeability 

and the thickness of the magnetic and conductive layers. This process is similar to that 

resulting in a drop in the efficiency of inductive recording heads [23], [24]. 

The effect of the flux leakage across the conductive layer is found to be 

described by an effective "AC demagnetising" factor g that reduces the permeability and 

makes it less sensitive to the DC field H,, when the film width b is decreased. In the low-

frequency approximation when the skin effect is neglected the parameter g is given by: 

(k)= I (l-(kA.)1 kbsinhkb J 
g (k1A) 2 kbsinhkb+2(k1J)2 (1-coshkb) 

(3.20) 

k
2 = lj A2

- k1
2, A2 = dld2ji!J', k1 =(I+ .i)/JI 
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For kb >>I (or bl ?.>>I) the function g tends to be unity. It means that the parameter 

b*=I/k plays the role of a critical width: for b<b* all the film dimensionsb, d 1 andd2 

influence the value of the Impedance. In the low- frequency limit, b* = ~d1 d2 jl_~~· . Typical 

parameters for the structures of interest are dl "'d2 "'0.1- 0.5pm, 2b,., I 0- 50 pm and 

f.l, ,., I 03
, for which b*,., 3 -15 pm is comparable to the half-width, which means that the size 

effects can not be neglected. 

Figure 3.5 shows the plots of the Impedance change vs. frequency with the film width 

h as a parameter for magnetic films with transverse anisotropy [18]. The function 

I(Z(H, .. )Ihas a maximum atH"' "'HK, associated with that for the rotational transverse 

permeability jJ_~:,.. Therefore, the introduced parameter gives the maximum Impedance change. 

The magnetic and electric parameters taken for the calculations correspond to amorphous 

CoFeSiB/Cu/CoFeSiB sputtered multi-layers [25], [26]. 

For a wide film (h> I 00 ~1m for d = 0.5 11111 orb> I 0 11m for d = 0.1 11m), the results 

are very close to those obtained for an infinite in-plane film. With decreasingb, the 

Impedance change ratio decreases substantially: for example, for 100 11m-wide films, l'lZ/Z 

reaches more than 300% at a frequency of 150 MHz, whereas its value is only about 70% for 

h = I 0 11111 at this frequency. The decrease in MI is stronger at lower frequencies where the 

critical width h* is larger. In the foregoing example, l'lZ/Z recovers up to 200% at a 

frequency of 900 MHz. As a result, the Impedance plots do not show flat regions for small 

values of b . 
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3.3 Asymmetrical Magneto Impedance (AMI) in multi-layer films 

The field behaviour of the surface Impedance tensor and therefore the voltage 

responses are associated with that of the permeability tensor. From Eq. (3.18) and (3.19) it 

follows that the permeability parameters ji,j, (diagonal) and ji=•· (off-diagonal) depend on the 

angle B of the static magnetisation M 0 . Therefore, in multi-layer structures with an 

asymmetric arrangement of M 0 with respect to H,., the Impedance will also show an 

asymmetric behaviour with respect to H,.x . This asymmetric response has been defined as the 

Asymmetric Magneto Impedance effect, or AMI. [15]-[17], [27]. 

AMI can be produced in multi-layer structures with cross-anisotropy in the presence 

of the DC bias current I h. 

However, the other important conclusion from section 3.2.3 is that the components of 

the surface Impedance tensor ; have a different synm1etry with respect to the DC 

magnetisation. The diagonal components do not change when the direction of Mo is reversed, 

whereas the ofT-diagonal components do. Therefore, AMI can also be found if the voltage 

response in Eq. (3.10) is represented by the combination of r;== and r;')., which is not 

associated with that for M 0 (H,x) [27]-[29]. 
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3.3.1 Dynamical AMI in multi-layer films with transverse anisotropy 

By considering the role that the off-diagonal component~=•· plays in producing 

asymmetry in the total voltage response Vr. According to Eq. (3.1 0), the ~=• contribution to 

V1 appears in the presence of the AC bias field h~,, produced by the coil current. As this 

asymmetry is produced only by the presence of an AC bias field it has been termed as 

dynamical AMI. 

Considering a film with a transverse anisotropy, smce this case does not have 

asymmetry in respect to M 0 (H,...). The transverse domain structure can be removed by the 

application of a small DC current inducing the transverse bias field H". Excitation is with 

both AC current and /-/,, induced by the coil around the film. Then, the total voltage is 

described by Eq. 3.19. In this form, the diagonal components are symmetric, and off-diagonal 

are asymmetric. As a result, the total voltage exhibits asymmetry because 

~== (/-/,...) = ~,,(-H ,_,},but ~ zy(H ex)= -~zy(-H ex)· 

Figure 3.6 shows plots of the real parts of ~ == and ~=Y vs. H ,, , at a frequency of 120 

MHz. The parameters used correspond to amorphous CoSiB/Cu/CoSiB multi-layers: 2d = 

I Dm and 2d 1 = d 2 . The field behaviour of the diagonal component ~ == is characterized by 

two symmetrical peaks when H~, is equal to 1.3 HK, shown in Fig. 3.6(a). However, the off­

diagonal component ~ , ... shown in Fig. 3.6b is anti-symmetric with respect to H ,., . Under the 

application of sufticient DC bias current/ h, the diagonal component shown in (a) is 

suppressed and the overall voltage response is anti-synm1etric as shown in (b) 
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3.3.2 Static AMI in multi-layer films with crossed anisotropy 

ln this section, AMI due to an asymmetric magnetisation reversal is discussed [ 15]­

[ 17], [27]. A particular magnetic configuration can be realized in the multi-layer structure by 

combining a crossed- anisotropy and DC bias current producing a circulatory bias fi eld H ,. 

The rotational magnetisation process is illustrated in Fig. 3. 7 as calculated from Stoner­

Wohlfarth model described in section 2.4. The magnetisation loops are given for different 

values of H h . 

J.o I a sa>l 

0.5 

0.0 

-0.5 

Hb/HK 0.5 

Hb/H~ 1 ~-~6 
Hb I HK}~-t ( 

• • I 
/ . 

/ : 
/ 

I 

A 
,/ H =0 

·-·-·-·' --- ----.--.-~ b 
-I.o~=====::d ... JJI___ ______ Hb I HK = 0.4 

" ,. 

-1.5 -1.0 -0.5 0.0 0.5 
H /HK ex 

1.0 
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Reversal of Mo by rotation is possible, since the magnetisation vector dw-ing its 

rotation is held parallel to the surface, without going tlu-ough high-energy demagnetisation 

states. It is seen that the DC bias causes a transition from a symmetric hysteresis curve to an 

asymmetric hysteretic one at a critical field H h = H* = H K cos a . 

The Impedance characteristics refl ect this behaviour as shown in Fig. 3.8. where the 

plots of ~::: vs. H"' are given in [ 16]. For Hh slightly larger than H *, the field sensitivity of 

the Impedance change is especially high, and the nominal change can be more than 100% fo r 

negative fields, when Hex is changed by only 0.1 H K • The other components of the 

Impedance tensor exhibit a similar behaviour. This type of static asymmetry will be 

investigated experimentally through the construction of crossed anisotropy multi-layers, it is 

practically easier to real ise than dynamical asymmetry as it does not required the planar coil 

to measure off diagonal components. 
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Chapter 4. Thin film technology 

This chapter provides background information on the general manufacturing processes 

involved in the production of thin films and the methods by which thin film multi-layers were 

prepared for this work. Firstly, the concept of sputtering as the means of depositing the 

material, which constitutes a film, is introduced, with further detail on the equipment required 

for the process. Next, the means of shaping the thin film to desired dimensions and structure 

are discussed through the use of masks and etching. Lastly, inducing anisotropy in the thin 

film is discussed, whether during the sputtering process or post manufacturing with heat or 

current annealing treatments. 

All thin films prepared in this work were manufactured at the CRIST (Centre for 

Information Storage Technologies) micro magnetic clean room at Plymouth University, 

which has sputtering and evaporating equipment such as two Nordiko NM2000 systems with 

deposition controlled down to several nanometres, eve ion milling system for dry etching, 

an OAI 500 mask aligner capable of resolving line widths down to 0.8 of a micron, optical 

lithography, annealing furnace, electron and optical microscopy, basic optical and microwave 

measurement equipment. 

71 



Chapter 4. Thin film technology 

4.1 Thin film fabrication methods 

As a general background to the manufacturing methods involved m thin film 

production an overview of the methods utilized are presented. There are a number of 

different industry standard processes that are available for the fabrication of thin-films, with 

the most common deposition technique being sputtering. Sputtering is the removal of 

material from a target to deposit it in the form of a condensed coating on a substratc. This 

process is carried out within a vacuum chamber that contains two electrodes, the target 

(cathode) and the substrate (anode). 

The close packed atoms at the surface layer of the target are subjected to a 

bombardment of high velocity atomic sized particles. The majority of these incident ion 

collisions agitate and free surface atoms, through the transfer of momentum. The sputtered 

target atoms are ejected and mobilise in straight lines to condense on the substrate surface. 

Some of the bombarding ions are reflected back and are neutralised, but may still have 

sufficient energy to reach the substrate were the film is being deposited. This can be a source 

ofsubstrate bombardment (back scattering) that can affect the resulting propetties ofthe film. 

Secondary electrons which are emitted either join the oscillating plasma gas, which causes the 

continuous ionisation of the gas needed to sustain the incident ions for sputtering, or they 

liberate their energy in the fom1 of heat on colliding with the substrate or other parts of the 

chamber. The process is schematically shown in Fig 4.1 (a) 

In order to obtain the fast moving atomic-sized patticles required for this process, the 

target is immersed in a "gas plasma" or "glow discharge" with a high negative voltage applied 

to its surface. An inert gas such as argon is introduced into the vacuum chamber at some 

specified pressure, and the gas particles are ionised in an electric field, which produces the 

plasma. The high negative voltage at the surface of the target attracts the ions from the 

plasma, creating the bombardment of high velocity particles necessary to free the target 

surface atoms. The process needs to take place in a vacuum so that the number of gas 

molecules between the target and substrate is low, hence reducing the chance of any collisions 

between the dislodged target atoms and gas molecules, which prevents condensation on the 

substrate. 
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Figure -1.1 Illustration of the spultering process at the target (a) , and film 

generation at the subs/rate (b). 

The condensation coefficient for a particular sputtered material is determined by 

several factors . These include the bonding energy between the atoms and the substrate, the 

substrate temperature and the rate of arrival of atoms at the substrate. The structure of the 

fi lm grown on the substrate is extremely sensitive to the deposition conditions. 

Once at the substrate, the sputtered atoms from the target jump around from one 

absorption site to another until they combine with another atom and become more stable and 

less mobile, or evaporate off. This process continues with the atoms combining to make 

larger groups that have even lower mobility, with their ability to jump around and thus 

evaporate becoming slimmer. As more atoms combine the nucleation stage of the thin-film 

growth begins, leading to the formation of quasi-stable " islands"' each consisting of tens or 

hundreds of atoms. These islands grow in size, eventually touching (coalescence stage). 

finally reaching continuity. During the coalescence stage the film will typically have hills and 
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valleys, and continuity of the film may not occur until an average film thickness of several 

hundred Angstroms is reached 

Other types of particles besides the target atoms can also bombard the substrate, which 

can affect the growth of the film. Unwanted neutral reflected atoms and gas particles have 

enough energy to sputter the film or become integrated into the film itself. These particles are 

a problem, as they cannot be manipulated by the use of electric or magnetic fields. In addition 

to these neutral particles, the substrate can also suffer bombardment from reflected gas ions. 

Control of these particles can be achieved by applying a bias to the substrate, leading to the 

technique of bias sputtering. All particles impinging on the substrate, including electrons, will 

liberate energy in the form of heat, increasing the temperature of the substrate which affects 

the mobility of the target atoms and hence the depositing film. The basic processes occurring 

at the surface ofthe substrate are shown in Fig. 4.1(b). 

The high energies involved in the sputtering process makes it a very reliable method 

of deposition, particularly for alloys. Film characteristics such as composition and 

homogeneity are critical for many thin-film applications, and sputtering offers a wider range 

of control over the thin film properties than any other deposition method. Physical properties 

such as grain structure, film stress, adhesion, step coverage, uniformity, and film composition 

can be varied in the sputtering process by controlling such parameters as sputtering pressure, 

temperature, power and substrate bias voltage. Although sputtering is one of the most 

versatile of all the deposition methods, its rates of deposition are relatively slow (50A-500A 

per minute), and the cost of the sputtering equipment is generally higher than for most other 

coating processes. 
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4.1.1 R.F. sputtering process 

For films produced locally in the CIUST facility, a Nordiko NM 2000 radio frequency 

(RF) magnetron sputtering system was used. A schematic diagram of the system is shown in 

Fig. 4.2. A picture of the actual system is shown in Fig. 4.3. The process information in this 

section is described from work initially carried out in [I], which served as a training 

document for CRIST in the operation of the equipment for manufacture of the films prepared 

in this work. 

Before sputtering can commence, the chamber is firstly evacuated by the rotary pump. 

When an adequate base pressure is achieved, the diffusion pump is used to evacuate the 

chamber to the higher vacuum required. RF sputtering is more widely used than DC 

sputtering, as it is more efficient and can be used to deposit insulators. If a low frequency 

alternating voltage was applied to the electrodes in a chamber the ions would still be mobile 

enough to complete a DC discharge at each electrode on each half cycle, requiring a source of 

secondary electrons at both electrodes to be sustained. With applied voltages at frequencies 

above 50 kHz and up to the MHz region the minimum pressure at which a discharge will be 

sustained is reduced. At these frequencies, electrons oscillate in the glow space, acquiring 

enough energy from the RF field to generate ionising collisions. In this respect the RF glow 

discharge is very different to the DC glow discharge as the dependence on secondary 

electrons is reduced and thus the breakdown voltage is lower. As RF can be coupled through 

non conductors, insulators can be sputtered. 
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Figure 4. 2 Schematic diagram illustrating the R. F. sputtering system. 
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Figure -1.3 Nordiko NM2000 sputtering system insta11ed in CRJST. 
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4.1.2 Substrate preparation 

In order to ensure the quality, reproducibility, and adhesion of the deposited films, 

substrate cleanliness is essential. Once removed from their packaging the substrates were 

thoroughly wiped with hot detergent (neutracon) using a soft clean room cloth to remove 

grease marks and any particle debris stuck to the surface. After rinsing in deionised water, the 

substrates were placed in an ultrasonic bath containing a hot solution of diluted detergent and 

cleaned for a further 15 minutes. After a final and thorough rinse, the substrates were dried 

with a Nitrogen gun and then examined under a microscope. If not completely clean, the 

cleaning process was repeated. Finally, the substrates are placed in an oven to dry at a 

temperature of 135°C for half an hour before being transferred to the sputtering chamber. 

Before deposition, the substrate was sputter etched to remove any contaminants that may still 

remain after the cleaning process. 
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4.2 Induced anisotropy 

Two different methods of inducing an an isotropy in the thin film sample are illustrated 

in this section, firstly during the deposition process, and secondly after the deposition process. 

lt is necessary to induce ditTerent types of anisotropy to allow different magnetic conditions to 

be produced in the thin films. It was used to produce the strongly defined transverse 

anisotropy in the multi-layers prepared for this work 

4.2.1 Magnetic anisotropy induced during the deposition process 

Inducing a uniaxial anisotropy by the application of a magnetic field parallel to the 

plane of the depositing film is a widely used technique. lt has been used successfully in thin 

tilm based works [2-4] where it has been preferable to align the domain magnetisation in a 

particular direction during the deposition. This removes the need to anneal the thin tilm in the 

presence of magnetic field at a much higher temperature to induce the required magnetic 

anisotropy. 

The origin of this uniaxial anisotropy is due to the directional ordering of like atom 

(e.g. Fe-Fe). This ordering process if undertaken during the deposition process occurs at an 

accelerated rate in comparison to magnetic annealing, even though the temperature of the 

depositing film is generally much lower in comparison. This is mainly due to the kinetic 

energies of the impinging sputtered atoms, which tend to be mobile at the surface of the film. 

This increased directional ordering makes it possible to induce much larger anisotropies in the 

depositing films, compared to conventional magnetic annealing were the directional ordering 

is not as high. Both transverse and longitudinal anisotropies in the films can be produced in 

this method. All of the layers of the thin film element can be sputtered in one cycle because 

the field direction is set to be constant for all layers. In order to induce a crossed anisotropy 

in a multi-layer thin film, the magnetic field is set at some angle with respect to the film 

length then the first lower magnetic layer and the conducting layer are sputtered. Next the 

thin film substrate is rotated so that the anisotropy of the upper magnetic layer is at an angle 

with respect to the previous lower magnetic layer. This means that all of the magnetic layers 

are not sputtered in one cycle and care must be taken to ensure conditions are maintained. 
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The magnetic field is usually provided by permanent magnets that are positioned on 

either side of the substrate or by a horseshoe type magnet arrangement. It is usual to shield the 

magnets by a grounded iron plate that prevents any stray tield from the pemmnent magnets 

from altering the plasma dynamics. The shielding also prevents the magnets themselves from 

being sputtered. lt is important that the applied field is parallel to the substrate surface and to 

minimize the number of !lux lines which intersect (are not parallel to) the surface of the 

substrate and the plasma discharge. If the applied field is sufficiently large and parallel to the 

substrate as shown in Fig. 4.4(a), then any secondary electrons on a collision path with the 

depositing film will be prevented by the magnetic field, thus reducing the electron 

bombardment of the substrate. In the situation were the field lines have a transverse 

component to the substrate, there is an increase in the density of electrons arriving in the 

proximity of the substrate, which will increase the chance of electron bombardment of the 

substrate [5]. Obviously the application of a magnetic field will alter the sputtering dynamics 

and the surface mobility of the sputtered atoms, and this generally means that the sputtering 

parameters need to be re-calibrated to account for this change. 

Stresses in thin films can also be extrinsically induced due to the differing thermal 

expansion coefficients of the film and substrate as the film/substrate system cools after the 

deposition and contracts by different amounts. A film, which is deposited onto a substrate that 

has a larger thermal expansion coefficient, will be placed in a state of compressive stress, 

whereas a substrate with a lower thennal expansion coefficient will place the deposited film 

in state of tensile stress. If the stress is either bi-axial or isotropic, a uniaxial perpendicular 

anisotropy may be induced, depending on the sign of the magneto restriction. For substrates 

and films with similar expansion coefficients that are deposited at low deposition 

temperatures, this problem is usually avoided. 
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Figure -1.-1 Illustration of (a) induced anisotropy during deposition, and (b) 

induced anisotropy through magnetic and current annealing. 
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Figure -1. 5 Picture of the CRJST magnetic annealing system. 
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4.2.2 Magnetic anisotropy induced after deposition 

Magnetic field annealing is a well-established method for inducing a uniaxial 

anisotropy in amorphous ribbons or films. It generally involves heating a magnetic sample 

below the Curie temperature, Tc, in the presence of a magnetic field that is sufficiently large 

to saturate the sample so as to ensure that a single domain exists. With the field annealing 

being carried out under a low vacuum, usually in a wire-wound furnace arrangement, such as 

illustrated in Fig. 4.4(b). A picture of a custom made annealing system used in the CRIST 

facility is shown in Fig. 4.5. The origin of this induced magnetic anisotropy has been 

attributed to the short-range directional ordering of atomic pairs (e.g. Fe-Fe). The high 

temperature allows atomic diffusion on a local scale so that a preferred orientation minimises 

the energy of the system of like atomic pairs and aligns them parallel with the magnetic field. 

This directional order is frozen in place as the sample is allowed to cool in the 

presence of the magnetic field giving rise to an easy axis direction that is parallel to the 

magnetic field. The domain structure for such a demagnetised sample displays a strong 

preference for the domain walls to lie parallel to the induced easy axis. lt has been found that 

the anisotropy induced by field annealing is not particularly strong in films [6]. But it has 

been found that the low anisotropy induced is sufficient to develop a well-defined domain 

structure. The uniaxial anisotropy induced by the field annealing is a reversible process; 

annealing the san1ple just above the Curie temperature in the absence of a magnetic field, will 

disorder the atomic pairs. 

It is impor1ant that the sample is fully stress relieved before the field annealing process 

rs undertaken, otherwise the stresses present will not allow a satisfactory field induced 

an isotropy to develop. The stress relief is commonly carried out at temperatures that are above 

the Curie temperature, but below the crystallisation temperature. The two steps are commonly 

performed in a single process, where the sample is first stress relieved at the upper 

temperature, and then magnetically annealed at the lower temperature for the required time. 

The effect of annealing is clearly illustrated in section 5.3.2 with NiFe I Au multi­

layers, the transverse anisotropy can be strongly defined in the films by use of the equipment 

of Fig. 4.5 after the sputtering process. 
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In the case of creating a crossed anisotropy in a multi-layer thin film, that is the 

anisotropy is crossed in the top layer with respect to that in the bottom layer, a special 

annealing process is required and would generally be carried out on individual elements of the 

substrate. Firstly a uniaxial transverse anisotropy is created in the thin film during the 

deposition process, then a combination of a weak longitudinal magnetic field and a DC 

current applied to sample under annealing, creating a helical type anisotropy [7-8]. The angle 

of anisotropy produced in the thin film can be varied by changing the magnitude of the 

applied DC current. This method was used by Stanley Electric Company Research and 

Design, Yokohama, Kanagawa 225, Japan, to produce the crossed anisotropy samples 

measured in this work. 
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4.3 Photolithography 

Photolithography is the process of transferring geometric shapes on a mask to the 

surface of the thin film. After the substrate has been deposited with the required materials and 

layers to make up the thin film, it is necessary to use a photolithography process to transform 

the layer or layers to the required shapes and dimensions to make the required element. This 

section will cover the photolithography processes used in the CRIST facility during the course 

of this work to produce thin film multi-layer with and without planar coils. 

4.3.1 Photo-mask plates 

The masks used for the photolithography process were designed for an in-contact 

mask aligner illustrated in Fig. 4.6(a), with a plate size of I 00 mm square. The lithography 

was central on the mask plate, designed to cover a 50 mm square substrate. The masks were 

made of extremely flat glass with an 800 A thick Chromium layer deposited on one side. The 

Chromium layer was patterned with the mask design using electron beam lithography. The 

beam size was 1.8 J.lm and could achieve a line width control of 0.3J.Im. The masks were 

manufactured at Rutherfords electron beam lithography facility (EBLF). 

The photo masks were designed to produce thin film structures of widths 200, 100, 50, 

20 and 10 microns and lengths of 5 and 2mm. Each thin film structure had a 2mm by 1.5mm 

rectangular connection (bonding) pad at each end. Additional photo masks were produced to 

enable to manufacture of a thin film micro coil which would be helically wrapped around the 

original thin film element. The helical micro coil was constructed from two Au thin-film 

structures to give 10 or 23 turns (for 2 and 5mm thin films, respectively) with a 50 J.lm turn 

width. The film thicknesses of the lower and upper coil structures were 0.245J.Im and 0.7 J.IITI 

respectively. The lower coil structure additionally featured two bonding pads for coil 

connection. The photo masks were designed during the work of [9], and arc illustrated in Fig. 

4.7. 
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4.3.2 Photo-resist process 

For the manufacture of the thin films and micro coils in this process the photo-resists 

used were exclusively positive so that the patterns designed on the masks were duplicated in 

photo-resist on the substrate. The photo-resist was used in two ways: 

I. 

2. 

As a covering mask so that the exposed regions could be etched (Fig. 

4.8 a-e) 

When hard baked the photo-resist was used as a planarising layer for 

step coverage or as insulation between metallization layers. The photo­

resist was hard baked at 250 °C for I hour, after which it could not be 

removed. 

The first stage is to spin the appropriate photo-resist for the required spin-on thickness 

to the substrate. Once the wafer is held onto the vacuum chuck the photo resist is dispensed 

onto the centre of the wafer through a filtered syringe. The spin speed is selected to be a 

constant 4000 rpm and the wafer is spun for at least 20 seconds to achieve optimum thickness 

uniformity across the substrate (Fig. 4.8 a). A Headway Research lnc AI-IT series Photo­

resist spinner was used (Fig. 4.6b). 

Once spun, the photo-resist is soft baked at I 00 "C on a hot plate placed in an air flow 

oven for I minute. This process dissociates any residual solvent contained in the resist. A 

post exposure and developing oven bake of 120 "C for 30 minutes was used to improve the 

photo-resist to substrate adhesion before a chemical etching stage. 

The photo-resist coated films were exposed to ultra-violet light using a Dage Precima 

in contact type mask aligner, illustrated in Fig. 4.6 (a). The substrate holder is floated using an 

air cushion so that the substrate and mask can be gently brought together, and their surfaces 

levelled. Once in contact and levelled, the air is turned off. After separation, the substrate 

can be moved by micrometers to align the mask and substrate features using an optical 

microscope. When aligned, the substrate and mask are held together by vacuum. The photo­

resist not masked by the pattern on the mask is then exposed (Fig. 4.8 b). In order to achieve 

optimum line definition, the exposure time of the photo-resist was determined experimentally. 

The ultra-violet exposure source is a 200 watt mercury lamp with a timed shutter. 
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Once exposed the substrate was developed for 30 seconds to reveal the photo-resist 

pattern of the same design as the mask lithography (Fig. 4.8 c). After developing, the 

substrate is thoroughly rinsed in deionised water and dried with the nitrogen gun prior to 

etching. 

After the film was etched (Fig. 4.8 d) the photo-resist was finally removed by a 

soaking in acetone, revealing the patterned geometry (Fig. 4.8 e). The substrate was then 

thoroughly rinsed and dried before the next process step. The substrate was soaked overnight, 

and/or submerged in heated photo-resist stripper or acetone when the resist proved difficult to 

remove. This could happen if the resist was partially baked during an ion milling or sputtered 

liti off process. 
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Figure -1.6 (a) Dage Precima in-contact mask aligner, (b) Headway Research Jnc 

AHT series Photo-resist spinner. 
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1.5mm 

I I •••• I I 

I I •••• I I -----

5mm 

2mm 

2mm 

5mm 

5mm 
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Figure -1. 7 Positive photo resist masksfrom [9]. 

89 

MJ element 

Connection 
pad 



Chapter 4. Thin fllm technology 

(a) Spin on photo-resist 

(b) Exposure 

(c) Patterned photo-resist after 
developing 

(d) Patterned film after etching 

(e) Patterned film with photo­
resist removed 

Figure -1. 8 Generalised photo resist manufacture process of thin films. 
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4.3.3 Etching techniques 

The samples were shaped using wet etching through the use of chemicals. Although 

cheap and simple to implement, wet etching is isotropic and so produces undercutting with 

poor line detinition, however this is suitable for forming structures where edge tolerances are 

not critical. A table of the chemical fommlation of the etchant used, and their operating 

temperatures are given in Fig. 4.9. Each etchant normally consists of an oxidising chemical 

and a chemical tor dissolving the resulting oxide. After etching, the substrate is rinsed with 

deionised water and then the photo-resist is stripped. After a further rinse the substrate is 

finally dried with the Nitrogen gun. 

Material 

Permalloy 

(NiFe) 

Chromium 

Copper 

Gold 

Figure 4. 9 

Etch Composition 

2 parts Orthophosphoric acid 

2 parts Nitric acid 

I part Nickel Nitrate solution 

I 0 parts de-ionised water 

0.025kg Ammonium Ceric 

Nitrate 

ISm I Nitric acid 

85ml de-ionised water 

0.2kg 

Persulphate 

Ammonium 

11 ml de-ionised water 

Sml concentrated sulphuric 

acid 

400g Potassium Iodide 

IOOg Iodine 

400ml de-ionised water 

Table of wet etchants. 
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4.4 Fabrication of magnetic I conductive I magnetic layered films 

In this section the exact stages of the processes developed in sections 4.1 to 4.3 will be 

described for the production of three layer magnetic I conductive I magnetic layered films 

with different types of anisotropy that were prepared for this work. The descriptions of the 

processes and methods in this section where adapted from the work carried out in [I] which 

served as reference manuals for the production of this type of thin films during the course of 

this work. 

The substrates that were used in the RF magnetron deposition for the materials of the 

layered films were 50mm2 CMS quality glass microscope slides having a thickness of 0.8mm. 

These inexpensive slides are produced by a glass floating procedure. They have annealing 

and softening points of 535°C and 720°C. The base pressure attained in the sputtered 

chamber before the process was started was 2x 1 o-7 bar, and the Ar gas pressure during the 

sputtering process was kept at 4.5x 10-3 m bar. Each of the magnetic I conductive I magnetic 

material layers were sputtered consecutively to a thickness of 0.5 microns in the same 

continuous vacuum conditions, where the deposition rates for Nife and Au for example were 

2.35 Als and 5. 75 Als respectively. The rates differed for each composition of magnetic and 

conductive material used. The total layer thickness was 1.5 microns. NiFe and CoSiB were 

chosen for the composition of the magnetic layers and Au was used for the conductive layer. 

4.4.1 Transverse layered films 

A substrate holder with an in-plane magnetic field of 60 Oe was used to induce an 

easy axis direction during film deposition. To induce a transverse anisotropy, the magnetic 

field was applied in the transverse direction with respect to the elements length. 

After deposition the layers were patterned by conventional photolithography methods 

described in section 4.3 with an in-contact mask aligner with a ultra-violet exposure source. 

To produce the norn1al open magnetic structure, the photo-masks shown in Fig. 4. 7 were 

utilised to produce multi-layers with widths of200, I 00, 50, 20 and 10 microns and lengths of 

5 mm and 2 mm. 
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Chemical etching was used for both the magnetic layers and Au conduction layers in 

the fabrication of the layer structures. Au was used rather than Cu for the conduction layer in 

the structure because it was found to be more reliable and produced a much higher quality 

edge detinition when chemically etched. lt also produced the correct bonding surface to 

connect the multi-layer to its measuring cell using an Au bonder that was present in the 

CRJST facility. 

The first photo mask used produced a positive photo-resist pattern of the completed 

layer structures with their connection pads on the surface of the layers. Both the upper 

magnetic and the Au conduction layers were chemically etched to this pattern as shown in 

Fig. 4.1 0 (a). After etching the upper magnetic layer, the remaining magnetic material pattern 

acted as a mask for etching the Au conductive under layer. For the final etching process a 

second photo-mask was required shown in Fig. 4.7. This mask produced a positive photo­

resist pattern that only covered the multi-layer and not the connecting pads. During the final 

chemical etching process the lower magnetic layer was etched to this shape and the upper 

magnetic layer on top of the connection pads was removed, as shown in Fig. 4.1 0 (b). 

To create closed and castellated structures, as illustrated in Fig 5.17, a slightly more 

complex method was required. The lower magnetic layer and conductive layers were 

sputtered together. Then the conductive layer was etched to a smaller thickness than the 

overall width with the normal mask. Instead of etching the lower magnetic layer to this 

pattern, a new magnetic layer is sputtered on top of the pre-etched conductive layer. This 

enables the magnetic layers to overlap the conductive layer. If a larger mask dimension, for 

example the 200~tm width is used to etch the magnetic layers, the overlap remains and the 

magnetic circuit is closed. The top magnetic layer is etched as usual to reveal the conductive 

layer for the contacts. Further more if a larger castellated mask is used to etch the magnetic 

layers; the closed then open magnetic circuit structure can be produced. To add an Ai]02 

insulation layer, it was simply sputtered to the required depth between the magnetic and 

conductive layers and shaped using photolithography and etching as normal. 

As chemical etching is isotropic, a certain amount of undercutting (over-etching) and 

profile roughness was expected after each stage. Any undercutting that had occurred to the 

upper magnetic layer during the first etch process was masked against further undercutting 
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during the second photo-lithography process. Here, the second photo-resist layer covered the 

undercut edge of the upper layer. On completion of all etching processes of the layer 

structures the undercutting was found to be <2 microns and have an average profile roughness 

of <1 micron. Although not as accurate as the dry etching process, chemical etching proved 

to be as fast and generally reliable. With comparatively large sizes of the Ml structures used 

in the course of this work, multi-layer widths of 20 microns and above, the undercutting and 

profile roughness were considered to be acceptable. 

The transverse anisotropy for the manufactured layer films with 200 microns widths 

was accurately defined by the field direction within which the sputtering was carried out. 

However measurements of the longitudinal impedance of the samples with widths less than 

200 microns (I 0 - 1 00) showed that the anisotropy is directed along its length in spite of the 

fact that sputtering was carried out in a strong transverse or crossed magnetic field of 60 Oe. 

This is clearly illustrated in Fig. 5.12 for a 1 0011m NiFe I Au sample in chapter 5. 

This effect is most probably associated with the resulting mutual stress between the 

substrate and film layers during the sputtering process. After them1al treatment of the 

finished samples, the transverse were established in the same directions as the strong 

magnetic field as desired in the sputtering process. In order to decrease the dispersion of the 

transverse anisotropy direction all of the multi-layers were annealed in a strong transverse 

magnetic field of I 00 Oe after the sputtering process. 

The annealing system has a small vacuum chamber within which the wafer or 

individual multi-layer can be fixed securely. The chamber was evacuated down to a base 

pressure of 50 mTorr. The vacuum chamber is placed in an in-plane magnetic tield with field 

strength of I 00 Oe at its centre. The chamber would take approximately 2 hours to reach an 

annealing temperature of 450 oc and a similar time to cool back down to room temperature. 

Once the heating was removed the vacuum was kept until the chamber had cooled down to 

room temperature. After annealing, the wafer was diced manually using a diamond scriber 

into individual samples. 
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(a) 

(b) 

NiFe 
u 

Photo-resist 

~ 
MI element Au connection 

pad 

Figure -1.10 Photo resist manufacture process of an open structure NiFe I A 11 I NiFe 

multi-layer thin film. 
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4.4.2 Layered films with an helical micro coil 

This section will discuss the additional processes that are involved to add a helical 

planar micro coil to the layered structure. The helical micro coil is added to a layered film 

with transverse anisotropy to enable the measurement of off-diagonal components of the 

surface impedance tensor. It is much more complicated to construct due to the number of 

layers and sputtering processes required to create the structure, only a limited number of 

successful thin films were able to be produced during the course of this work. 

The helical coil multi-layer was constructed from a NiFe I Au I NiFe layered film 

core, with a thin-film micro coil wound helically around the core, along its length. Both the 

core and coil layers were deposited by means of RF sputtering. All sputtering conditions 

where the same as transverse layer process as shown in section 4.4.1, in the presence of a 

strong transverse magnetic tield of 60 Oe. The final sample was annealed in the presence of a 

strong transverse magnetic field of 100 Oe to establish a transverse anisotropy. Cured photo 

resist was used to isolate the lower and upper coil structures from the core layers. The NiFe I 

Au I NiFe central layers were 5mm long, 50 microns in width, and had a total thickness of 1.5 

microns. The helical microcoil around the multi-layer was constructed from two Au thin film 

structures to give 23 turns over a 5mm length with a 50 micron turn width. The film 

thicknesses of the lower and upper coil structures were 0.245 microns and 07 microns 

respectively. 

The Fig. 4.11 (a) through 4.11 (f) show schematic cross-sections of the NiFe I Au I 

NiFe element and helical coil structures at key stages of fabrication, the schematics are 

arranged so that the layers are viewed along the length of the sample, through the centre of its 

width. 
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(a) Lower Au coil layer 

(b) Al20 3 fill layer 

(c) Lower photo-resist 
isolation layer 

(d) NiFe/Au/NiFe MI 
Sandwich layers revealing 
Au bonding pads 

(e) Upper photo-resist 
isolation layer 

(f) Upper Au coil layer 

Figure -1.11 ll/ustration of the photo resist manufacture process of a multi-layer 

thin .film with planar coil, neglecting underculting. 

Positive photo resist was used for every lithographic stage so the photo mask design 

was replicated in the photo resist once patterned. The sequence of the photo-masks used for 

fabricating the layered film and helical micro coil is shown in Fig. 4. 12 (a) through 4 .12 (e). 

Chemical etching was used for fabricating all metal layer structures of the sample. Again, Au 

was used for the conductor layer as it proved to be more reliable during the etching process 

and produced better edge definition. 
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Bonding 5mm 
pads 

111'"~ l 
(a) (b) (c) 

MI element 

'"'''""''" 

(d) (~ 

Figure -1.12 Positive photo resist masks for planar micro coil mam!facture [9}. 

The first photo mask used in the fabrication process, shown in Fig. 4.12 (a) was used 

to produce the lower micro coi l structure shown in Fig. 4. 11 (a). Here, a 240nm thick layer of 

Au w ith a Snm Cr adhesion layer was deposited, patterned and chemically etched to the 

geometry shown. After etching the Au and Cr, the patterned substrate was placed back into 

the sputtering chamber where a further 245nrn of Ah03 was deposited . The photo resist was 

then removed revealing the lower microcoil pattern w ith the Ah03 layer filling the gaps 

between each element of the lower micro coil structure as shown in Fig. 4.11 (b). 

This AhOJ 'lift off process helped provide a more planar surface fo r the first isolation 

layer. For the next layer, AZ 1813 photo resist was spun and patterned on the substrate using 

photo mask in Fig. 4. 12 (b). The photo resist was then ha rd baked to form the lower isolation 

layer. Once hard baked the AZ 1813 photo resist shrinks to an approximate thickness of I 

micron and provides a planerising isolation layer over the fi rst micro coil structw-e, shown in 

Fig. 4. 11 (c). Gentle inclines are formed at the photo resist edges that enable subsequent 

sputtered layers to traverse them more readily, maintaining good mechanical and electrical 

continuity. This was important for both the layer structure and the upper micro coil structure 

that were constructed above and over the isolation layers. 
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The NiFe I Au I NiFe layers were next to be deposited, patterned and etched to form 

the core. Using the photo mask in Fig. 4.12 (c), a positive photo resist pattern of the layered 

core with its connection pads was produced on the surface of the layers. Both the upper NiFe 

and the Au layers were then chemically etched to this pattern. The upper NiFe layer behaves 

as a mask tor the Au under layer. To etch the lower NiFe layer of the film, a second photo 

mask was required as shown in Fig. 4.12 (d). This mask produced a positive photo resist 

pattern that only covered the core of the sample. Whilst etching the lower NiFe layer to fom 

the layer core, the upper NiFe layer that had remained on top of the connection pads after the 

first etching process was removed, revealing the Au bonding pads. The resulting structure is 

shown in Fig. 4.11 (d). The undercutting from the chemical etching process was found to be 

in the same limits as with the original layer only samples. 

Above the core layers a second isolation layer was required. Here, the photo mask and 

processing used was the same as for the lower isolation layer. Other than its bonding pads, 

the layer core was then completely encapsulated between the upper and lower isolation layers 

as shown in Fig. 4.12 (e). Finally, the upper micro coil layers of Au and Cr were deposited to 

a thickness of 500 nm and 200nm respectively. 

These layers were then patterned and etched to produce the upper micro coil structure 

using the photo-mask in Fig. 4.12 (e) to produce the cross sectional pattem shown in Fig. 4.12 

(f). The end of each part of the upper micro coil structure connected to those of the lower 

micro coil structure to torm a helical micro coil and the layered core. In the case of the lower 

micro coil layer, its thickness was kept small to maximise the effect of the subsequent 

isolation and planarising layers. Whereas, for the upper micro coil layer, its thickness made 

large enough to ensure that good continuity was achieved at the edges over which each of the 

layers traversed. For the upper micro coil structure a thick Cr adhesion layer was used to 

cover and protect the exposed Au of the lower micro coil and the core structures chemically 

etching the upper micro coil Au layer. 
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As the process of sputtering and photolithography was learnt during the course of this 

work, numerous attempts were required to produce a range of different multi-layers in which 

to measure the range of characteristics of Magneto Impedance effect produced by the 

theoretical analysis. Transverse multi-layers in the standard dimensions of 200, I 00, 50, 20 

and IOJlm were produced with NiFe and CoSiB magnetic layers and Au conductive layers. 

Fur1her more, NiFe I Au multi-layers with insulation separation layers and NiFe I Au multi­

layers with closed and castellated structures were also produced. Due to the manufacturing 

complexity a competitively few number of successful planar coil multi-layers were produced. 
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Chapter 5. Experimental measurement techniques of the Impedance in 
film systems and Magneto Impedance effect of transverse anisotropy multi­
layers 

This chapter outlines the experimental measurement techniques and the resulting 

measured results undertaken on the thin film multi-layers manufactured locally in the CRIST 

facility, and supplied by Stanley Electric Company Research and Design, Yokohama, 

Kanagawa 225, Japan. 

The chapter begins by giving some fundamental background information on a method 

of measuring the complex Impedance of a multi-layer thin film, before giving a description of 

the experimental configuration and techniques used in the measurements presented. 

In attempt to find optimal film systems with respect to relative Impedance change, 

sensitivity, linearity, operational frequency range, and dimensions, a number of candidate 

structures have been investigated varying in composition (Nife I Au I NiFe, CoSiB I Au I 

CoSiB and CoFeB I Cu I CoFeB), magnetic configuration (transverse, longitudinal or cross 

anisotropy), geometry and dimensions. The effect of additional insulating layers between the 

inner conductor and outer magnetic layers have been considered as well. Measurements are 

taken over a range of frequencies from I to I 00 MHz. In this chapter measurements on films 

having a transverse anisotropy will be undertaken (with respect to the external field and AC 

current). The case of a more magnetically complicated systems, as those with a cross 

anisotropy will be described in Section 6. 
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5.1 Fundamental principles of network analysis 

This work will be concentrating on measuring the Impedance of the multi-layer thin 

films through characterisation of their effect on the amplitude and phase of swept frequency 

and swept power test signals. This measurement technique is called vector network analysis; 

the introductory information in this section is derived from [I, 2]. 

As the excitation intensity is small, the systems are considered to be linear, so the 

systems can only alter the waveform of the signals passing through them by altering the 

amplitude and phase relationships of the spectral components that make up the signal. Any 

sinusoid applied to the input of the thin film multi-layer will also appear at the output, and at 

the same frequency. In its fundamental form, network analysis involves the measurement of 

the complex-valued reflection and transmission coefficients of waves that travel along 

transmission lines. Using optical wavelengths as an analogy, when light strikes a clear lens 

(the incident energy), some of the light is reflected from the lens surface, but most of it 

continues through the lens (the transmitted energy) as illustrated in Fig. 5.1 (a). If the lens has 

mirrored surfaces, most of the light will be retlected and little or none will pass through it. 

While the wavelengths are different for RF and microwave signals, the principle is the 

same. Network analyzers accurately measure the incident, reflected, and transmitted energy, 

e.g., the energy that is launched onto a transmission line, retlected back down the 

transmission line toward the source (due to impedance mismatch), and successfully 

transmitted to the terminating device (such as an antenna) as shown in Fig. 5.1 (b). For 

certain geometry, the reflection/transmission coefficients will uniquely depend on the surface 

Impedance of the sample under study. In our case the thin film multi-layer will have a 

complex-valued surface Impedance (of tensor form in general) that will be determined by 

materials, dimensions, geometry, magnetic properties and frequency (skin depth). 
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(a) 
Light 

Reflected 

Thin Film 

Reflected (b) 

Figure 5.1 Light ray analogy to high .frequency device characterisation. 
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5.1.1 Representation oflmpedance measurements 

The amount of reflection that occurs when characterizing a device depends on the 

Impedance that the incident signal "sees." Since any Impedance can be represented with real 

and imaginary parts (R+jX or G+jB), they can be plotted on a rectilinear grid known as the 

complex Impedance plane. Unfortunately, an open circuit appears at infinity on the real axis, 

and therefore cannot be shown. 

The polar plot is useful because the entire Impedance plane is covered. However, 

instead of plotting Impedance directly, the complex reflection coefficient is displayed in 

vector form. The magnitude of the vector is the distance from the centre of the display, and 

phase is displayed as the angle of vector referenced to a flat line from the centre to the right­

most edge. The drawback of polar plots is that Impedance values cannot be read directly from 

the display. 

Since there is a one-to-one corTespondence between complex Impedance and 

reflection coefficient, the positive real half of the complex Impedance plane can be mapped 

onto the polar display. The result is the Smith chart as illustrated in Fig. 5.2. 

All values of reactance and all positive values of resistance from 0 to infinity fall 

within the outer circle of the Smith chart. On the Smith chart, loci of constant resistance 

appear as circles, while loci of constant reactance appear as arcs. Impedances on the Smith 

chart are always normalized to the characteristic Impedance of the component or system of 

interest, usually 50 ohms for RF and microwave systems and 75 ohms for broadcast and 

cable-television systems. A perfect tem1ination appears in the centre of the Smith chart. 

For our measurements, the Smith chart allows us to plot the values of Impedance of 

the thin lilm over a range of frequencies in one graphical form; the second important function 

is to allow the calculation of the required complex conjugate to match the Impedance at a 

cer1ain frequency to 50 n. 
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Figure 5.2 lllustration of a Smith chart representation of Impedance (S11) on a 

Hewlett-Packard 8753£ Vector Network Analyser. 
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5.1.2 Power transfer conditions 

A perfectly matched condition must exist at a connection between two devices for 

maximum power transfer into a load, given a source resistance of Rs and a load resistance of 

Rt. This condition occurs when Rt = Rs, and is true whether the applied signal is a DC 

voltage source or a source of RF power. When the source Impedance is not purely resistive, 

maximum power transfer occurs when the load Impedance is equal to the complex conjugate 

of the source Impedance. 

At higher frequencies, wavelengths are comparable to or smaller than the length of the 

conductors in a high-frequency circuit, and power transmission can be thought of in terms of 

travelling waves. 

When the transmission line is tem1inated in its characteristic Impedance, maximum 

power is transferred to the load, and no reflected signal occurs. When the termination is not 

equal to the characteristic Impedance, that part of the signal that is not absorbed by the load is 

reflected back to the source. When the transmission line is terminated in a short circuit (which 

can sustain no voltage and therefore dissipates zero power), a reflected wave is launched back 

along the line toward the source. The reflected voltage wave must be equal in magnitude to 

the incident voltage wave and be 180 degrees out of phase with it at the plane of the load. The 

reflected and incident waves are equal in magnitude but travelling in the opposite directions. 

If the transmission line is terminated in an open-circuit condition (which can sustain 

no current), the reflected cun·ent wave will be 180 degrees out of phase with the incident 

current wave, while the reflected voltage wave will be in phase with the incident voltage wave 

at the plane of the load. This guarantees that the current at the open will be zero. The reflected 

and incident current waves are equal in magnitude, but travelling in the opposite directions. 
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5.1.3 Network characterisation 

In order to completely characterize an unknown linear two-port system such as the 

multi-layer thin film it is necessary to make measurements under various conditions and 

calculate a set of parameters. Since it is diffic ult to measure total current or voltage at higher 

frequencies. S-parameters are generally measured which represent the ratio of incident 

voltage to refl ected or transmitted voltage as illustrated in Fig. 5.3. They are relatively simple 

to measure and do not requi re connection of undesirable loads to the device. The parameters 

al> a2 represent incident voltages of port I and port 2 of the system, and bl>b2 represent the 

re flected voltages at port 1 and port 2 of the system, respectively . 

Incident Transmitted 

Transmitted Incident 

Figure 5.3 Measuring S-Parameters of a 2 port system. 
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The number of S-parameters for a given system is equal to the square of the number of 

ports. For example, a two-port system has four S-parameters. The numbering convention for 

S-parameters is that the first number following the S is the port at which energy emerges, and 

the second number is the port at which energy enters. Therefore S21 is a measure of power 

emerging from Port 2 as a result of applying an RF stimulus to Port I. When the numbers are 

the same (e.g. S 11 ), a reflection measurement is indicated. Forward S-parameters are 

determined by measuring the magnitude and phase of the incident, reflected, and transmitted 

signals when the output is tem1inated in a load that is precisely equal to the characteristic 

Impedance of the test system. 

The multi-layer film Impedance is related to the S- parameters by the following: 

(5.1) 

(5.2), 

where Z =I~" I 2b, I is the tilm length, b is in-plane width, and Z0 = SOQ is the 

characteristic Impedance of the measurement system. 

In the measurement of the Magneto Impedance effect of thin film multi-layers, which 

can have a tensor form as explained in Chapter 3, the longitudinal Impedance typically is 

measured using S 11 parameter, whereas the off-diagonal Impedance (film system with a 

mounted coil) is more convenient to measure using the S21 parameter. 
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5.2 Experimental configuration and measurement 

The surface Impedance tensor in the thin film multi-layers including both diagonal and 

off diagonal components is measured by means of a Hewlett-Packard 8753E Vector Network 

Analyser that is configured in two separate operating modes, depending on the component of 

Impedance to be measured. One port operation for S 11 parameter measurement and two port 

mode for S21 parameter measurement 

All samples are measured through connection to a specifically designed RF broadband 

Impedance matching measuring cell. The Network Analyser has two ports that are configured 

in the following way; port I produces the AC excitation current i = i0 exp(- jmt) if connected 

to the sample or AC excitation field h," if connected to the planar coil around the sample. 

Correspondingly, port 2 measures the voltage over the sample V1 or the coil V,. depending on 

the configuration. This method is used to measure the off-diagonal component ~r_r, through 

the forward transmission parameter S21 • Additionally the network analyser can operate in a 

single port mode where the port I measures the S 11 or reflection coetlicicnt of the current 

i = i0 cxp(- jmt) applied to the sample. This method is not proper to use for the measurements 

of the off-diagonal Impedance since the reflection from the coil would give some additional 

contribution which is difficult to separate. 

In order to characterise the effect of magnetic properties on the sample Impedance it is 

necessary to sweep both the frequency of excitation and the magnitude and direction of the 

external tield. The analyser is only able to change the frequency of the current that it can 

apply to the sample; therefore, the external field must be produced by an additional device. 

The magnetic tield H.,, is produced by a coil driven by a function generator and power 

amplifier. The operating processes of the analyser and function generator are synchronised by 

a computer programme written using VEE software, which is a Hewlett-Packard 

programming language. The frequency is scanned over 11 discrete point to cover an initial 

starting frequency a stop frequency and 9 equal divisions between those frequencies, for 

example I MHz. I OMI-Iz, 20MHz, etc up to I OOMHz. 
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The magnetic fi eld is driven in both positive and negative directions to produce a 

hysteresis plot. The function generator is utilised as a programmable stepwise DC source to 

provide the field scans. The S21 or S11 values obtained from one frequency scan, are saved in 

the analysers memory in the form of a column consisting of 11 points, that correspond to one 

particular value of Hex . T he tota l value matrix consists of columns of frequency (f) eo-

ordinate points and rows of fie ld co-ord inate points ( Hex ). T his information is transferred to 

a PC at the end of the measurement and converted into an Excel spreadsheet for easy analysis. 

The measured sample is placed onto an open-type cell made o f copper-coated 

fibreglass printed circ ui t board (PCB), which has the following parameters: 1.8mrn thickness, 

designated H in the illustration, average dielectric constant of c: = 4.5, and 30 11m thickness of 

copper on each side, designated T in the illustration. The width of the PCB track, usually the 

parameter to be resolved. is designated W in the illustration. These parameters can be used to 

ca lculate a son broadband match, which is required to minimise the effect of frequency on 

the measurement system itself. By considering the measurement cell as a microstrip 

transmission line as shown in Fig. 5.4, the Impedance of the str ip line Zo is approximately 

given by the fo llowing equation. 

Z 87 I ( 5.98H ) Ol 
0 = n 1ms 

~c:, + 1.41 0.8W +T 
(5.3) 

w 
,:=====::::;~~ T 

ErofPCB H 

Figure 5. -1 Micro strip parameters of measurement cell. 
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The c01mection stripes were etched on one side of the PCB and the other was kept 

copper coated for the transmission line ground plane. All connection stripes were etched as 

W = 2.8mm wide after calculation to provide Impedance in the order of 50-0hms over a wide 

range of frequencies. 

In measurement situations in which a DC bias was applied to sample, for example in 

the case of asymmetrical Magneto Impedance, blocking capacitors are required to prevent any 

DC bias current from entering the analyser, which could cause dan1age. The cell has input 

and output 3.5mm SMA connectors that are connected to the analyser via 3.5mm coaxial 

cables using 3.5nml to type-N adapters. The microwave track including the cables and the 

adapters were calibrated for both the two-port and one-port measurements accordingly over 

different frequency ranges, and saved as calibration ratios that are selected in the main 

programme before measuring. 

Transmission Fwd 

.____,:> 
si I 
~ 

Refl ected Fwd 

+V 

Gnd 

Measurement Cell 

si I 

z = Zo l+S,, 
l -S11 

Port 1 

Lmpedance Model 

Agilent 33120A ...... Computer 
Function gen. (f) 

(b) 

DC 0-IOOmA 
Data 

(c) Ampl ifier 
HP 8753E 
Network 
Analyser 

DC 0-3A (a) 

S-Parameters 

~----------- ----~ 

(d) ~ ~ 
Measuring 

Cell 

------+-----
(e) 

Constant 25n 
Current Source 

Figure 5.5 lllustration of the experimental configuration used to measure the 

Impedance ofthinfilm samples. 
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Figure 5.6 Actual experimental .\JISfem apparatus. 
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5.3 Measurement of the Magneto Impedance effect in transverse anisotropy 

multi-layers in the freguency range of 1 to 100 MHz 

To measure the diagonal component of Impedance of the samples the I-IP8753 was 

configured to produce a frequency sweep consisting of 11 points distributed in the frequency 

range of 1-100 Ml-lz. The function generator was also configured to produce an output that 

has been calibrated to produce field strength of± 50 Oe in 1000 equal steps in the large 

driving coil ( H,., ). In order to detem1ine the effect of an additional transverse bias field H h 

in some multi-layers, for each set of I I frequency measurements an increasing DC bias 

current was applied. 

During the course of this work, one of the aims was to produce multi-layer thin films 

to experimentally confirm the theoretical predictions of very large Magneto Impedance effect 

in thin films with which would be important for sensor design. Initially, work began with the 

measurements of NiFe I Au multi-layers with transverse anisotropy. These systems were 

previously investigated in Ref. [4-9] and demonstrated very promising results. A number of 

multi-layers were fabricated of this composition with different dimensions to get further 

improvements on sensitivity and possible size reduction. Any effective performance increase 

of a secondary annealing process external to the manufacturing process was investigated by 

measuring NiFe /Au thin films pre and post annealing. In particular, annealing can be used to 

establish a required anisotropy as described in Chapter 4. 

By taking reference from the improvement in performance of Magneto Resistive heads 

through changes to their multi-layer structure, closed and castellated loop magnetic flux 

configurations were created to measure if any additional performance could be transferred to 

Magneto Impedance thin film multi-layers. 
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With the effect of manufacturing, variations of basic in-plane structures established, 

experimentation in material composition of the multi-layer samples could be investigated. As 

described in Eq. (3.5) to (3.8) of chapter 3, the difference in the conductivity ofthe inner lead 

and the magnetic layers can affect the way in which the excitation current tlows in the multi­

layer structure, the effective permeability of the magnetic layer will also alter with magnetic 

composition. Both of these factors are able to directly intluence the magnitude of the Magneto 

Impedance effect in the multi-layer. Further more, an insulating layer can be added between 

the inner lead and the magnetic layer to further intluence the way in which the excitation 

current lows in the multi-layer structure and is also investigated. 

Magneto Impedance ratio will be defined as 

Mf% =(I Z 1-1 ZHmax I) 
I z""'a' I 

(5.4), 

where I Z11 "'"' I is the magnitude of Impedance at the highest field strength used in that 

measurement, and the sample is considered to be magnetically saturated. 

This ratio is used as means of eliminating an Impedance offset, consisting of the DC 

resistance of the multi-layer structure, which can alter with changes in the structure and 

composition of the multi-layer and the Impedance of the measurement cell itself~ which alters 

with frequency. In the results of Fig. 5.7 show how this offset increases with frequency. 
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5.3.1 Magneto Impedance in NiFe I Au I NiFe multi-layers with transverse 

anisotropy 

Firstly, a simple symmetrical 3-layer film systems ofNiFe /Aul NiFe with open-loop 

magnetic flux configuration and with no insulation layer are considered. Variations in length 

and width of the in-plane dimensions of the multi-layer will be presented for a number of 

samples over the frequency range. Transverse anisotropy was induced during the sputtering 

process and the samples were annealed to relax any stress. 

The results on Ml in similar film systems have been previously reported in [4-9] 

demonstrating rather large variations. This is due to the effect of the measurement method, the 

sample quality, deviations of the anisotropy from the transverse direction, and also geometry. 

Therefore it is necessary to provide experimental results for a wide range of sample 

configurations all measured trom the same experimental setup and method, to allow a direct 

comparison of the Ml ratio. 

Figure 5. 7 demonstrates the magnitude of Impedance measured of a I OOtnn in-plane 

width, 5mm length NiFe multi-layer in which a transverse anisotropy was established during 

the deposition and with further stress relaxation by annealing. As frequency increases the 

magnitude of the overall Impedance increases greatly even at zero field. This can not be 

attributed to the increase in Impedance with frequency since when the field is small the film 

Impedance is dominated by the DC resistance of the inner layer (see Eq. (3.5) in Chapter 3. 

The reason for this increase is the influence of the measurement cell itself which has greater 

inductive contributions. 
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Figure 5. 7 Plots of IZI Impedance vs. magnet ic field in 5mm NiFe I Au I iFe 

multi-layer with JOOpm in-plane width, 1 to -IOMHz (a), 50 to IOOMHz (b) . 
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Figure 5.8 Plot of lvfl ratio vs. magnetic field in 5mm NiFe I Au /NiFe multi-layer 

with 1 OOpm in-plane width, 1 to -IOMHz (a}, 50 to 1 OOMHz (b). 
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These samples show typical two-peak Impedance dependence to magnetic field of the 

longitudinal component of Impedance t;:: when magnetic layers have a transverse an isotropy 

[3 - 8]. This is attributed to the behaviour of the rotational permeability as illustrated in 

Chapter 2, Fig. 2.16. In comparison to the magnitude of Impedance plots IZI, the Ml ratio 

shown in Fig. 5.8 is able to easily illustrate the greatest change of Impedance; this is essential 

for finding the most sensitive frequency of excitation for any particular material, dimension 

and geometry. 

This sample displays two well defined peaks at ± H Kat lower frequencies, the 

an isotropy is around I 0 Oe but with increasing frequency the peak shifts to higher fields 

which could be due to the effect of relaxation in combination with the anisotropy dispersion. 

The sensitivity to external field increases with frequency due to a larger inductive contribution 

from the magnetic layers to the total Impedance (compare with Eq. (3.5) from Chapter 3) 

reaching a peak at 80 MHz for this geometry and dimensions. A maximum 40% change in 

Impedance is observed in this sample. 

With the reduction of the sample width by two to 50J.Lm, as shown in Fig. 5.1 0, two 

interesting features are observed. A higher frequency of excitation current is required to 

establish a useful MI effect. This is due to the film edge effect resulting in the flux leakage 

through the inner layer as explained in Chapter 3. When the current frequency is below 50 

MHz, the Ml ratio is smaller than 20%. Additionally, the demagnetisation effect due to 

reduced width produces distortions in the linearity at low fields which is most evident at 

frequencies greater than 50 MHz. The sensitivity to external field increases with frequency as 

before, reaching a peak at I 00 MHz for this geometry and dimension. A maximum 35% 

change in Impedance is observed in this sample, due to flux leakage and the demagnetisation 

effects. 
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Figure 5. I 0 Plot of MI ratio vs. magnetic field in 5mm NiFe I Au /NiFe multi-layer 

·with 50,um in-plane width, /to .:/OMHz (a), 50 to JOOMHz (b). 
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Figure 5.11 Plot of M1 ratio vs. magnetic field in 5mm NiFe I Au /NiFe multi-layer 

·with 20J.1m in-plane width 1 to -10/vfHz (a), 50 to 1 OOMHz (b). 
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With a further reduction of the sample width down to 20~-tm, the in-plane edge effects 

have an even stronger influence on the magnetic response. The transverse response is 

severely degraded and not clearly defined even for an excitation frequency of I OOMHz, and 

the sensitivity is severely reduced to only 3% for this geometry and dimensions. 

5.3.2 Effect of sample annealing on Magneto Impedance in NiFe I Au I 

NiFe multi-layers 

The next samples will be used as to show experimentally the efTect of annealing on the 

NiFe I Au I NiFe multi-layers after the manufacturing process. The results of a 100~-tm in­

plane width 5mm long sample are illustrated. 

During sputtering the sample was exposed to a strong transverse magnetic tield in the 

range of 60 Oe, which generally aligns the anisotropy of the sample. After the sputtering 

process, the sample cools and internal stresses from the material and the substrate have 

resulted in a movement of the easy anisotropy axis to the length of the sample. This produces 

a longitudinal an isotropy. Figure 5.12 shows the Ml ratio vs. magnetic tield for 'as-fabricated' 

samples. It is seen that they have completely different behaviour as compared with that seen 

in Fig. 5. 7 to 5.1 0. The one-peak behaviour is typical of a longitudinal an isotropy [3]. It gives 

evidence that although, during the deposition a strong magnetic field was applied to set the 

anisotropy, its direction in 'as-produced' samples does not necessarily coincide with the 

direction of the tield. The longitudinal an isotropy is not typically desired since it can be seen 

from Fig. 5.12 both the Ml ratio and sensitivity are smaller than in the case of transverse 

anisotropy tilms. Also there is not much of an improvement in Ml characteristics with 

increasing frequency. Therefore, further post-production treatments are needed to obtain tilms 

with high MI ratios. This problem occurs when the in-plane size is smaller than I OO~Lm, which 

is important for producing miniature thin films for sensor applications. 

After manufacturing the sample wafer was annealed in a high vacuum annealing 

furnace, which was developed atler the production of the multi-layers illustrated in Fig. 5.7 to 

5.1 0. This provided an improvement in performance to the existing annealing technique used 

previously. The device is shown in Fig. 4.5 of chapter 4. The sample is slowly brought up to 

and beyond the Curie temperature in a vacuum oven, whilst being exposed to a large 

transverse magnetic field, then slowly brought back down to room temperature. Cooling in 
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the presence of the transverse field reduces the effects of the tensile stresses between the 

substrate and material system. After this annealing process, the samples from the wafer 

showed a very accurate transverse in-plane magnetization structure in respect to the length of 

the sample, as the peaks are much sharper than in the previous samples shown in Fig. 5.7, 

which would be consistent with lower dispersion of an isotropy angle through out the material 

of the sample. Additionally, a lower anisotropy field of about 7 Oe was achieved. As a result a 

higher MI ratio with a maximum of 55% was observed. These results are shown in Fig. 5.13. 
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Figure 5.12 Plot of Ml ratio vs. magnetic field in 5mm NiFe I Au l OOp in-plane 

width multi-layer, pre annealing, /to 40MHz (a). 50 to JOOMHz (b). 
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Figure 5. 13 Plot of M! ratio vs. magnetic fie ld in 5mm NiFe I A u 1 OOp in-plane 

width multi-layer a.fier high vacuum annealing, 1 to -IOMHz (a). 50 to 1 OOMH:: (b). 
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5.3.3 Magneto Impedance in NiFe I Au I NiFe multi-layers with insulation 

layers 

We will now consider NiFe I Ab02 I Au I Ab02 I NiFe multi-layers with open-loop 

magnetic flux configuration with an insulation layer of Ab02 between the magnetic and 

conductor layers. The Ab02 has a thickness of a few nanometers. The insulation layers were 

proposed for use in multi-layers in [12] for further improvements of the Ml behaviour due to 

better separation of magnetic layers to prevent diffusion between the layers which would 

equalise the conductivity of the layers. 

This multi-layer displays two well defined peaks at ± H, at lower frequencies, the 

anisotropy is around I 0 Oe but with increasing frequency the peak shifts to higher fields 

which could be due to the effect of relaxation in combination with the anisotropy dispersion. 

The sensitivity to external field increases with frequency due to a larger inductive contribution 

from the magnetic layers to the total Impedance as shown by Eq. (3.5) from Chapter 3. The 

Ml ratio peaks at 60MHz with some reduction with further increase in frequency. The 

maximum Ml ratio for this system with insulation layer was improved to 75%. Even on 

reduction of the length to 2mm the peak MI ratio was still very high in the range of 40% at 60 

MHz, as illustrated in Fig. 5.15. 

Figure 5.16 illustrates a small sample of 2mm length and 50!1m in-plane width; 

however with the additional insulation layer, the general properties remain the same as the 

larger in-plane width samples, the edge effects are not present, which is a significant 

improvement on a non insulated NiFe I Au system of the same dimensions. The peak Ml 

ratio is only slightly reduced to 30% at I OOMHz. The magnitude of the Ml ratio is in the 

order of the 5mm by I 0011m in-plane width NiFe I Au multi-layer of Fig. 5.10 illustrating that 

the insulating layer significantly reduces the effect of demagnetizing and shape effects on 

very narrow magnetic structures which is important for producing smaller, more sensitive 

multi-layers. 
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Figure 5. 1-1 Plot of MI ratio vs. magnetic field in 5mm NiFe I A/20 2 I Au lOOp in­

plane width multi-layer, 1 to -IOMHz (a), 50 to 1 OOMHz (b). 
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Figure 5.15 Plot of Ml ratio vs. magnetic .field in 2mm NiFe I Al20 2 I Au 

lOOp in-plane width multi-layer, lto -IOMH:: (a) , 50 to JOOMJJ::. (b). 
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Figure 5.16 Plot ofMJ ratio vs. magnetic field in 2mm NiFe I AI202 I Au 50f1 in­

plane width multi-layer, lto -IOMHz (a}, 50 to JOOMHz (b). 
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5.3.4 Magneto Impedance in NiFe I Au I NiFe multi-layers with different 

structures 

In this section NiFe /Au NiFe multi-layers with closed or castellated loop magnetic 

flux configurations, at a fixed dimension and no insulation layer are considered. All samples 

had the following dimensions, layer thickness 0.5 11m, 5 mm length and 1 0011m in-plane 

width. 

Closure strips Castellations ...__ 

t..... . . . -L. .. . 
f£. • •• 

Open Magnetic 
Structure 

. . ·-' . 

Closed Magnetic 
Structure 

. . -- ' I . ~ .... I 

Castellated Magnetic 
Structure 

Figure 5.1 7 NiFe I Au I NiFe magnetic layer flux configurations. 
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The open loop magnetic flux configuration illustrated in Fig 5.17 was the normal 

configuration of the magnetic layers measured previously in this work and in Ref. [4-9], 

where the magnetic layer dimensions are the same as the conducting layer. With the closed 

magnetic flux configuration magnetic structure, the two magnetic layers are joined to produce 

a complete magnetic circuit, by simply not etching away the NiFe layers to the same 

photolithography mask as the conduction layer. With the castellated magnetic flux 

configuration, the NiFe layers have an additional shape added to them, on both the top and 

bottom layers, they are still closed, but small sections are removed, to give a "castellated 

effect", similar to the tops of a castle tower. 

The multi-layers displays two well defined peaks at ± H Kat lower frequencies, the 

anisotropy is around 7 Oe but with increasing frequency the peak shifts to higher fields which 

could be due to the effect of relaxation in combination with the anisotropy dispersion. The 

sensitivity to external field increases with frequency due to a larger inductive contribution 

from the magnetic layers to the total Impedance. The characteristics of the closed loop 

illustrated in Fig. 5.18 are similar to an open loop system. However, there is a small distortion 

on the linear region, which is not present in the open structure. The peak M! ratio of 45% is 

comparable to the open loop system. The characteristics of the castellated system are 

illustrated in Fig. 5.19. Again it is similar open structure; the castellated loop has produced a 

larger distortion in the linear region at 2.50e. This distortion increases in magnitude with 

frequency until it is quite pronounced at 1 OOMHz. 

Changing the magnetic flux configuration of the magnetic structure, did not increase 

the sensitivity of the multi-layer film structure, and created negative effects to the linearity of 

the response. Therefore for highest linear sensitivity the open loop magnetic flux 

configuration is preferred. 
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Figure 5.18 Plot of M! ratio vs. magnetic field in 5mm NiFe I Au 1 OOp in-plane 

width closed loop multi-layer, /to -IOMHz (a), 50 to JOOMH:: (b). 
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Figure 5.19 Plot of M! ratio vs. magnetic field in 5mm NiFe I Au 1 OOp in-plane 

width ea tel/ated loop multi-layer, 1 to -IOMHz (a) , 50 to 1 OOMHz (b). 
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5.3.5 Magneto Impedance in multi-layers with alternative soft magnetic 

materials 

The multi-layer structures used in these measurements use alternative soft magnetic 

layers in comparison to NiFe. Two alternative types arc presented in this section, 

Co1o.2Fe7.8B22 which were supplied by StanJey Electric Company Research and Design, 

Yokohama, Kanagawa 225, Japan. and CoSiB manufactured locally in CRJST. Similar 

results ha e been shown with other amorphous magnetic layered materials and have presented 

in Ref. [13 to14]. 

The thin fi lms prepared by Stanley Electric Company consisted of two outer magnetic 

layers with a Co7o.2Fe7.8B22 composition and a Cu inner lead sputtered onto a glass substrate. 

Each layer thickness is 0.5f.lm and the in-plane width of the sample is 50~Lm . The uniaxial 

transverse anisotropy was induced during the sputtering process, and was enhanced with a 

heat annealing treatment. No insulation layer was present in these samples. ln order to 

increase the length of the sample within a small area, the sample was sputtered in a serpentine 

configuration, as shown in Fig. 5.20. 

··············· Cu layer 
---- • CoFeB upper layer / 
- .. - CoFeB lower layer .. / z, I 

0l _./ .... . AA 
H~ -----_.: .• :~<~--;;;;;:: 

/ ... ··nK ~/# 
/ -· ·-·: .. 7 0 ·- • • ~/ 

/h b ........ 
Transverse 
An isotropy 
Sample 

Figure 5.20 Transverse film structure and principle quantities and directions. 

ample in-plane view. 
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The serpentine geometry multi-layer displays two well defined peaks at ± H Kat lower 

frequencies, the an isotropy is around I 0 Oe but with increasing frequency the peak shifts to 

higher fields of around 15 Oe, which could be due to the effect of relaxation in combination 

with the anisotropy dispersion. The sensitivity to external field increases with frequency due 

to a larger inductive contribution from the magnetic layers to the total Impedance as with the 

NiFe multi-layer samples. The MI ratio peaks at 50MHz, as illustrated in Fig. 5.21, before 

reducing with any further frequency increase. The most apparent difference between the 

materials is the significant increase in peak MI ratio. The MI ratio shown in Fig. 5.21 is nearly 

240% at 50MHz, which is over four times more sensitive than NiFe/Au multi-layers 

illustrated in Fig. 5.10 through 5.19. This makes this configuration of magnetic material very 

sensitive at low frequencies, due to a sensitive change of permeability and much larger 

difference in conductivity (about 50) compared to around I 0 of NiFe I Au between the 

magnetic and conductor layers as shown in Eq. (3.5.) through (3.8) 
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Figure 5.21 Plot of Ml ratio vs. magnetic field in Co7o.2Fe 1.8Bn I Cu serpentine 

50J1.m in-plane width multi-layer, /to .JOMHz (a), 50 to JOOMHz (b). 
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The second amorphous thin films consisted of two outer magnetic layers with the 

composition CoSiB and Au inner lead sputtered onto a glass substrate. These samples use 

SiB to make the composition amorphous. Each layer thickness is 0.51-im. The transverse 

anisotropy was induced during the sputtering process, and was enhanced with a high vacuum 

heat annealing treatment. No insulation layer was present in these samples. 

The 5mm length and I OOum in-plane width sample displays two well defined peaks 

at± H K, the an isotropy is surprisingly small around 3 Oe and does not vary significantly with 

increasing frequency. This is smaller than that in the previous CofeB multi-layer. The 

anisotropy dispersion is extremely low in these samples leading to very sharp narrow peaks. 

The sensitivity to external field increases with frequency due to a larger inductive contribution 

from the magnetic layers to the total Impedance as with the NiFe multi-layer samples. The 

Ml ratio reaches a peak at 50MHz with only slight reductions as frequency increases, as 

illustrated in Fig. 5.22. The maximum Ml ratio for these dimensions is 120%, making it three 

times more sensitive than a NiFe I Au samples shown in Fig. 5.10 through 5.19. As a 

consequence of the low anisotropy field and dispersion the Ml ratio changes with a high 

gradient (MI% I Oe) around 40% per Oe making the sample very sensitive to small increases 

in external tield. The peak Ml ratio is less than the previous CoFeB multi-layer (240%), but 

the gradient of MI ratio is much higher in the CoSiB multi-layers due to the low an isotropy 

field, making the sample sensitive to small changes of tield, which is an important factor for 

sensors systems. On reduction of the width to S01-1m the peak MI ratio is reduced significantly 

to a peak value of 50% at I 00 MHz, as illustrated in Fig. 5.23. The edge effect reduces with 

increasing frequency, as indicated by the continuous rise in Ml ratio with frequency. Figure 

5.24 illustrates a short, wide sample of 2mm by 2001-1m in-plane width, and the general 

characteristic shape returns to the sharp peaks of the I OOum in-plane width sample. The peak 

MI ratio is only slightly reduced to a maximum of I 00% at 50MHz. Figure 5.25 illustrates 

another 2mm sample, but with a further reduction of in-plane width to I 001-1m, it displays a 

peak MI ratio of 40% at 70MHz. The peak magnitude of Ml ratio in this 2mm 1 OO~tm sample 

is in the order of a 5mm by I 001-1m NiFe sample, illustrating that the CoSiB magnetic 

composition in combination with Au conductive layer is significantly more sensitive than 

NiFe, even when the dimensions of the thin film are reduced, this is mainly due to the 

increase in conductivity ratio between the CoSiB I Au compared to the NiFe I Au. This is 

important for producing miniature, sensitive multi-layer systems. 
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Figure 5.22 Plot of M! ratio vs. magnetic fie ld in 5mm CoSiB I Au JOOp in-plane 

width multi-layer, 1 to -IOMHz (a), 50 to IOOMHz (b). 
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Figure 5.23 Plot of M! ratio vs. magnetic field in 5mm CoSiB I Au 501' in 

plane width multi-layer, 1 to -IOMHz (a), 50 to /OOMHz (b). 
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Figure 5.2-1 Plot of M! ratio vs. magnetic field in 2mm CoSiB I Au 200p in 

plane width multi-layer. I to -IOMH::: (a), 50 to 1 OOMH::: (b). 
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Figure 5.25 Plot of lv/1 ratio vs. magnetic .field in 2mm CoSiB I Au lOOp in 

plane width multi-layer, 1 to -IOMHz (a), 50 to 1 OOMHz (b). 
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It has been shown how different dimensions, geometries and materials can affect the 

sensitivity of the multi-layer film to an external field. By using a longer, wider in-plane 

width thin film multi-layer which has been annealed after manufacture in an accurate vacuum 

method, a higher Ml ratio can be achieved. 

A lower anisotropy field is preferred in order to increase the gradient of the MI ratio, 

making the tin film more sensitive to smaller changes in external field. The larger dimensions 

are able to create an accurate homogenous anisotropy in the sample; the sample also suffers 

from less demagnetization fields and edge effects. 

Additionally an insulating layer between the magnetic and conductive layers helps 

contain the flow of the current inside the conductor, which reduces the resistivity in the 

system. Further more the use of specific soft magnetic materials is able to increase the change 

of permeability in the sample and greatly increase the difference in conductivity between the 

magnetic and conducive in layer. 

All of these factors combined are able to produce a magnetic transducer that is very 

sensitive to external magnetic fields when under the application of alternating current of a 

specific frequency, making the MI effect useful as a magnetic field sensing device and in 

reducing the size of the thin film for incorporation into integrated circuit (I C) technologies. 
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Chapter 6. Asymmetrical Magneto Impedance in crossed anisotropy multi­
layers and multi-layers with integrated coil 

This chapter continues the experimental Magneto Impedance measurements 

undertaken on the thin film multi-layers with a specific anisotropy and multi-layers with an 

integrated coil. The samples were manufactured locally in the CRIST facility, and supplied by 

Stanley Electric Company Research and Design, Yokohama, Kanagawa 225, Japan. 1-lere 

asymmetrical Impedance behaviour (with respect to applied magnetic field) is highlighted, 

which can be obtained in multi-layers with crossed anisotropy subjected to a DC bias current. 

Asymmetric and near linear MI behaviour is also obtained in multi-layers with a transverse 

anisotropy subjected to a small AC field produced by a planar coil integrated into tilm system. 

6.1 Static Asymmetric Magneto Impedance in crossed anisotropy 

Co1o.2Fe1.sB ,2/ Cu multi-layers 

The field behaviour of the Impedance is governed by the DC magnetic structure as 

explained in Chapter 3. IL was then proposed theoretically that in multi-layers with an 

asymmetric arrangement of the magnetisation with respect to H,., the Impedance will also 

show an asymmetric behaviour. Such asymmetric DC magnetisation process can be realised 

in multi-layers with a crossed anisotropy in the presence of a DC bias current I h (see Chapter 3 

for details). A similar magnetic configuration has been realised in the bilayer (without inner 

conductor) MI film with crossed an isotropy [I, 4-6] and wire with helical an isotropy induced 

by torsion stress [2] or annealing under torsion stress [3]. 

The multi-layer structures used in these measurements consisted of two outer magnetic 

layers with composition Co70.2Fe7.sB22 and Cu inner lead sputtered onto a glass substrate. 

Each layer thickness is O.S~tm. Firstly uniaxial transverse anisotropy was induced during the 

sputtering process under a large uniform field of 200 Oe. The crossed anisotropy as shown in 

Fig. 6.1 was induced into the sample by current annealing in the presence of small 

longitudinal field. 
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This resulted in the anisotropy easy axes n K having an angle ±a with respect to the 

fi lm long direction (z-axis). A ltering the magnitude of the applied current could vary the angle 

of anisotropy a. Two types of sample where prepared, firstly a straight mult i-layer of length 

5mm with a width of 401-lm and a of 15, 30 and 45 degrees and a serpentine confi guration 

which was the san1e as the previous transverse samples illustrated in chapter 5, wi th an a of 

66° measured by DC hysteresis loops. 
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Figure 6. 1 Crossed anisotropy film structure, principle quantities and directions. 
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Firstly, a sample in a serpentine configuration was investigated which allows an 

accurate measurement of the DC magnetization process. The an isotropy ax is in the upper and 

bottom layers (designated as n K in Fig 6.1) are at approximately 67° to the z-axis in this 

sample, which was estimated from DC hysteresis loops in the presence of a bias current l h as 

shown in Fig. 6.2 The hysteresis of the sample was measured by using a pickup coil wow1d 

around the glass substrate of the sample (50 turns, 3mm diameter), and an identical 

compensation coil wrapped around a plain glass substrate connected to a differential 

amplifier. The effect of the appl ication of l b is to cause a shift in the loop towards negative 

fi elds (or positive. depending on the appl ied direction of I b) and decrease the overall 

hysteresis area. The anisotropy angle is found from the shifting fi eld, which is given by 

H b tan a = I b tan a I 2b (b is the film width). 
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Figure 6.2 Schematic diagram of experimental conji~uration to measure the DC 

hysleresis loops of a crossed anisotropy sample with a DC hias current as a 

pararneter and to ident(fy the angle of anisolropy a. The hysteresis loops are sh(fied in 

the presence of I b. 
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Figure 6.3 demonstrates the impedance vs, field behavior in this sample without a bias 

current I b. In this case the reversible magnetization process remains symmetric, and the 

impedance characteristics of the serpentine sample resemble that of a transverse anisotropy 

samples with two symmetrical maxima. 

However, the peaks are not pronounced at lower frequencies since it appears that both 

the domain and rotational processes give contributions to the impedance behavior. As the 

frequency is increased and the rotation component of permeability becomes dominant the 

maxima are clearly seen. 

The Ml ratio as a function of frequency has two maxima about 35% at 20 MHz and 

about 30% at 70 MJ-Iz. Such frequency behavior of the impedance should be attributed to a 

complicated dynamic magnetization process involving both domain wall displacements and 

magnetization rotation. 
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After a DC bias is applied to the sample, the reversal of magnetisation becomes 

asymmetric with respect to external field, due to the additional transverse bias field as seen in 

Fig. 6.2 and described in Section 3.3.2. The impedance plots for this case are shown in Fig. 

6.4. For sufficiently large values of the bias current (1 b = 25mA in Fig. 6.4) the impedance 

behaviour is characterised by a sharp increase seen near zero external field which should be 

attributed to the domain wall formation and a sharp increase in the domain permeability. As a 

result, the impedance has two maxima, one of which is enhanced and the other is strongly 

suppressed. 

Such behaviour is most effective in the frequency region of 20-40 MHz. With 

increasing frequency, the two maxima becomes of a comparable magnitude. It is not quite 

clear why there is almost no hysteresis in MI behaviour. The maximum MI ratio for I 0 MHz 

is nearly 50% and it increases up to more than 90% tor 30 MHz. 
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The second set of measurements, were carried out on the straight samples of 5mm 

length and 40pm in width, with varying angles of anisotropy a. The Ml ratio vs. external 

field for these samples is shown with frequency as a parameter in Figs. 6.5 to 6.7. As before 

the bias field produces an asymmetrical magnetisation reversal in the samples leading to 

asymmetrical magnetisation plots with a sharp increase near zero field. 

As a is decreased the MI ratio increase to 125% at a= !5° while its 75% at a= 30°. 

It is interesting to notice that for a= 45°(Fig. 6.7) the transition to the higher peak occurs 

almost instantly producing highly sensitive characteristic. Rotational contributions are quite 

suppressed until 50MHz, the MI ratio is 55% at I OOMI-Iz. However, such a jump in the MI 

plot would be appropriate only for special switch type sensors. For the purpose of field 

measurements, the characteristics seen in Figs. 6.5 and 6.6 would be preferable. 
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6.2 Dynamical asymmetric off-diagonal Magneto Impedance in transverse 

anisotropy multi-layers with planar coil 

The off diagonal component of impedance either q ')' or qF as described in chapter 3 

can contribute to the voltage measured across the film and can produce its asymmetry with 

respect to the field direction without the need to induce a crossed anisotropy in the sample 

during manufacture. To distinguish this type of asymmetry from that discussed above it is 

referred to as dynamical asymmetry since it does not require a special DC magnetic 

configuration and can be obtained in the presence of an AC bias field which would mix 

together the diagonal and off diagonal components of the impedance tensor. This asymmetry 

occurs since the off-diagonal impedance is anti-symmetric with respect to the DC 

magnetization; where as the diagonal impedance is symmetric. It means that the off-diagonal 

response itself may be used tor sensor design since it may have almost a linear behaviour at 

some field interval. In this section the off-diagonal response of a transverse anisotropy NiFe I 

Au I NiFe multi-layer with planar coil is illustrated. The sample has a dimension of 5mm 

length, 50 J.UTI width, and a 1.5jlm total thickness. The helical micro coil has 23 turns with a 

50 jlm width. The manufacturing process of the sample is described in Chapter 4. 

The off-diagonal impedance is measured when the film is excited by AC current and 

the response is taken from the coil as explained in Chapter 3 9 (Fig. 3.3). In this case it is 

convenient to measure the forward transmitted power or .5'11 parameter which will be the ratio 

of the power picked by the helical micro coil around the multi-layer film to the AC power 

applied to the multi-layer film by the network analyser as described in Section 5.2. 

The sample was measured from I to I OOMHz with a DC bias current of 0 to SOmA. 

Without the bias current the diagonal response is very small as shown in Fig. 6.8 due to 

averaging over the transverse domains with the opposite magnetisation. With increasing DC 

bias the off-diagonal impedance increases. The DC bias which induces the transverse 

magnetic field eliminates domain structure which is a mandatory condition to get a 

substantially high off-diagonal response. The absolute value of the off-diagonal impedance 

increases almost I 0 times in the presence of I 0 mA bias field as seen in Fig. 6.9. However, if 

the bias current is further increased of more than 25 mA, the off-diagonal response decreases 

(Figs. 6.1 0, 6.11 ). 
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Figure 6.10 Plot oft he off diagonal impedunce magnitude vs. magnetic field of the 

NiFe I Au planar coil sample with a bias current of 25mA 1 to ./OMHz (a). 50 to 

JOOMHz (b). 
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Figure 6. 11 Plot of the off diagonal impedance magnitude vs. magnetic field of the 

NiFe I A u planar coil sample with a bias current of -IOmA I to -IOMHz (a), 50 to 

IOOMH: (b). 
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This behaviour or the off-diagonal response can be illustrated considering a realistic 

domain structure shown in Fig. 6.12. Without a bias current, the contribution to the total off­

diagonal response from the transverse domains wi th the opposite magnetisation is nulled, 

smce 111 neighbouring domains the off-diagonal impedances have opposite signs being 

proportional to the transverse magnetisation. In this case only areas with closure domains may 

be responsible for the coil voltage. 

Figure 6. 12 Stripe Domain structure of a fi lm with transverse anisotropy. 

The situation will change with the presence of a bias field . For H/1 ::1:- 0 , domains with 

the same direction of magnetization as H, will grow, resu lting in an uncompensated 

averaging. In add ition, at a sufficient value of H , the sample wil l become a single domain 

state. As a result, the effect of H , significantly increases the orf-cliagonal response. However, 

ror larger values ofH/1 the field sensitivity decreases due magnetostatic hardness increase. 
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In the case of a transverse anisotropy, the magnitude of the off-diagonal impedance 

has to be symmetrical with respect to the field, whereas the real and imaginary pm1s of this 

impedance (shown in Figs. 6.13 and 6.14) has to be anti-symmetrical with a linear portion in 

some field interval ±H. There are some deviations from this behaviour which could be 

attributed to difficulties in this sample due to the large number of steps in the fabrication 

process. Very probably, the anisotropy has deviations from the transverse direction because 

the insulation layer acts as lamination which is known to change the domain structure. 

Nevertheless, the real and imaginary parts of the off-diagonal impedance demonstrate the 

field characteristics which could be easily adjusted to get a desired linear response in both 

field directions. 

It should be noticed that in all the cases the magnitude of the off-diagonal 

impedance I Z I is also very small compared to the measured values of the usual impedance. 

One reason for this is that the measurements are taken from a nearly pure inductive source 

such as the very small planar coil, the DC resistive component of which is very small, around 

I 0 mn. Because of this, the results are presented as the actual impedances rather than the 

standard Ml ratio. 
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This work has demonstrated that film samples with a special crossed anisotropy and 

samples with an integrated coil are useful in tailoring the MI response with the specific 

purpose of obtaining linear characteristics with increased sensitivity. In the case of a crossed 

anisotropy samples, the linear bi-directional response can be obtained by using two identical 

tilms with an opposite DC current bias connected by differential amplifier. This process 

increases the directionality of field detection at the cost of reduction in magnitude of field 

detection. A good linear characteristic can be typically obtained in a certain range of 

frequencies and bias currents. 

Samples with an integrated coil are able to go one further stage and produce a bi­

directional response using one sample. However, in the present work such a response was 

obtained only for a very particular frequency of operation and applied bias current, as there 

was a difficulty to induce a proper transverse anisotropy during the manufacturing process, as 

the AbOJ insulation layers could create inclusions into the NiFe. Furthem1ore, at microwave 

frequencies the matching of the very small complex impedance planar coil as a current source 

into a 50!1 system would be complex. In general, even thought two samples are required a 

crossed anisotropy multi-layer presents a better option as a magnetic field sensor transducer, 

as illustrated in detail in chapter 8. 
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Chapter 7 Magnetic and Magneto Impedance sensors overview and comparison 

Chapter 7 Magnetic and Magneto Impedance sensors overview and 

comparison 

Recent developments in the fields of computer peripherals, infonnation apparatus, 

mechatronics such as: automobiles and industrial robots, power electronics, medical 

electronics, and industrial measurements require new high performance micro magnetic 

sensors to detect localized weak magnetic flux. [1,2] 

This chapter will give a brief overview of several types of widely used magnetic 

sensors. The sensors are based on a large variety of different physical principles; the overview 

will highlight their particular physical characteristics and field detection magnitudes to allow 

comparison with a sensor based on the Magneto Impedance etiect. These physical effects 

have been developed into sensors such as: search-coil magnetometer (inductive coil), Hall 

sensor, magneto-resistive (MR) and giant magneto-resistive (GMR) sensors, flux gate sensor, 

and super conducting quantum interference device (SQUID). 

Various sensor technologies are currently needed since it is difficult to meet every 

industrial requirement utilising a single field sensing effect. Therefore the choice of an 

underlying physical principle is determined by specific conditions of magnetic field 

measurements such as the sensitivity and the detection range and the other properties such as 

physical dimensions, response speed, and power consumption of the sensor. 

After the overview of the technology of the general magnetic sensor in use today, the 

aim is to demonstrate that a sensor based on the Magneto Impedance effect would be 

extremely versatile, as it combines the many attributes of other sensors and would be suitable 

for general field sensing ranges (I0-3Tesla and 10-6Tcsla) to near SQUID resolutions (<10"9 

Tesla but at room temperature). 

A detailed historical review of the development and current sensor technology based 

on Magneto Impedance follows the magnetic sensor overview. 
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Chapter 7 Magnetic and Magneto Impedance sensors overview and comparison 

7.1 Magnetic sensor overview 

The field detection range is the primary parameter of any magnetic field sensor, its 

range of detection must be suitable for the field being measured and the sensitivity must be 

high enough to ensure an accurate measurement within the range. Fig7.1 illustrates the types 

of magnetic sensor technology available and their detectable field ranges [I]. A sensor based 

on the Magneto Impedance effect is more suited for measurement of fields of a smaller 

magnitude or larger fields to a high sensitivity. It is not suitable for measurement of fields 

above I 0 Oe, so the comparative review will concentrate on effects that can measure the 

smaller magnitude of detectable fields. 

Magnetic Sensor Technology Detectable Field Range (Oe) 

Search Coil Magnetometer 

Flux Gate Magnetometer 

Optically Pumped Magnetometer 

Nuclear Procession Magneto meter 

SQ Ul D Magnetometer 

Hall Effect Sensor 

(Giant) Magneto Resistive Magnetometer 

Magneto Diode 

Figure 7.1 
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Magnetic field sensor detection ranges 
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Chapter 7 Magnetic and Magneto Impedance sensors overview and comparison 

From Fig 7.1, it can be seen that SQUIDs, or Superconducting Quantum Interference 

Devices, are used to measure extremely small magnetic fields in the range of 10·10 to 10·4 Oe. 

They are currently the most sensitive vector magnetomcters known being, with noise levels as 

low as 3 .fTHz-05
• These magnetometers require cooling with liquid helium to a temperature 

of 4.2 K, or with liquid nitrogen to 77 K, to operate. Hence the packaging requirements to use 

them are rather stringent both from a the1mal-mechanical as well as magnetic standpoint 

making them impractical for everything but the most sensitive field detection requirements [I, 

2]. 

Some exotic sensors shown in the table, such as Optically Pumped and Nuclear 

Procession are quite complicated in execution due to the physical property they are based on 

and can be used only for the speci fie types of field detection, often in laboratories and medical 

applications. For example, optically pumped magnetometers use alkali metals from the first 

column of the periodic table such as cesium and potassium. To detect a field a cell containing 

the gaseous metal is polarized (or pumped) by exposure to light of a very specific wavelength. 

The light depopulates one electron energy level in the gas by pumping the electrons to a 

higher energy level. These electrons spontaneously decay to both energy levels, and 

eventually, a lower energy level is fully populated. Next, the cell is "depolarized" by shifting 

the electrons in the lower energy level back to their original position using lower wavelength 

RF power. The energy required to repopulate this energy level varies with the ambient 

magnetic field, according a principle called the Zeeman effect. Therefore, the frequency of the 

depolarizing RF power corresponds to the magnetic field value [I, 3]. 

The basic search-coil magnetometer is based on Faraday's law of induction, which 

states that the voltage induced in a coil of turns N is proportional to the changing magnetic 

field in the coil. This induced voltage creates a current that is proportional to the rate of 

change of field H,.,. The sensitivity of the search-coil is dependent on the permeability, j1 of 

the core and the area S and number of turns of the coil. The voltage induced in the coil, V, is 

given by: 

(7.1) 
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Chapter 7 Magnetic and Magneto Impedance sensors overview and comparison 

Because search-coils work only when they are in a varying magnetic field or moving 

through one, they cannot detect static (DC) or slowly changing fields. They can be 

constructed to enable the detection of small fields at a compromise of dimensions. However 

they are inexpensive and easily manufactured are utilised in many industrial applications [I]. 

A fluxgate magnetometer is similar in construction to search coil, but adds a drive coil 

and magnetic core. The basic principle is to compare the drive-coil current needed to saturate 

the core in one direction as opposed to the opposite direction. The difference is due to the 

external field. Full saturation is not necessary; any nonlinearity will do. As the core 

approaches saturation, the signal picked up in the sense coil will show the nonlinearity. Under 

the application of a sine-wave to the drive coil, the sense coil would detect harmonics of the 

fundamental frequency; increasing in strength relative to the fundamental as the core becomes 

more saturated. A square wave can also be applied to the drive coil and asymmetries in the 

sense coil output indicate the presence of an external field. The technology of tluxgate 

magnetometers have been highly developed to include planar integrated circuit devices and 

highly sensitive fluxgates used in space missions such as CLUSTER and the Pioneer Venus 

Orbiter [I, 4]. 

The Giant Magneto Resistance Effect (GMR) is a quantum mechanical effect observed 

in thin film structures composed of alternating ferromagnetic and nonmagnetic metal layers. 

The effect causes a significant decrease in resistance from the resistance of when there is no 

field present to when a field is applied. In the zero field state, the magnetization of adjacent 

ferromagnetic layers are anti parallel due to a weak anti-ferromagnetic coupling between 

layers, when a field is applied the magnetization of the adjacent layers align. The spin of the 

electrons of the nonmagnetic metal align parallel or anti parallel with an applied magnetic 

field in equal numbers, and therefore suffer less magnetic scat1ering when the magnetizations 

of the ferromagnetic layers are parallel. Under the application of a DC drive current, the 

change of resistance can be measured and the field can be detected. Some developments of 

GMR include increased multilayer stacks and Spin valve. Both advancements use two or 

more (in the case of multilayer stacks) ferromagnetic layers are separated by a very thin non 

magnetic spacer. Spin-valve GMR is the configuration that is most industrially useful, as it is 

used in hard-drives[ I, 5]. 
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7.1.1 Sensor technology conclusions 

After completing the overview of the types of sensors developed from different types 

or physical properties or magnetic field detection, they can be categorized by the different 

parameters that are associated with them as shown in Fig. 7.2. The sensors which utilize a 

DC cun·ent source are mainly based on quantum effects, whereas those with an AC current 

source are based on classical electrodynamics. 

Inductive 
Fluxgates 

coil 
(parallel or GMR sensor Ml sensor 
orthogonal) 

Applied current: AC or DC AC AC DC AC 
Principle of detection: 
resistance (R) or V V R R or V 
induced voltage ('v}_ 
Direction of Measured field 
with respect to the tangential tangential tangential tangential 
sensor surlace 
Direction of applied current tangential (in 
with respect to the NIA the orthogonal- tangential tangential 
sensor surface gated) 

longitudinal for 
the parallel- longitudinal in longitudinal, 

An isotropy type with respect gated and the free layer circumferential 
to the current or field NIA circumferential and transverse (transverse) or 
drive direction (transverse) for in the pinned helical 

the orthogonal- layer (crossed) 
gated 
longitudinal 

Measured field direction 
for the parallel-

transverse to longitudinal, 
gated and 

with respect to the NIA 
transverse lor 

the free layer transverse or 
an isotropy axis 

the orthogonal-
anisotropy axis crossed 

gated 
Field drive direction with NIA tangential N/A Tangential 
respect to the samj)le surface 

Field drive direction with 
longitudinal in longitudinal, 

respect to the anisotropy axis 
N/A the parallel- NIA transverse or 

gated crossed 

Figure 7. 2 Main parameters (lefi column) determining the sensing mechanisms 

[7]. 

171 



Chapter 7 Magnetic and Magneto Impedance sensors oven•iew and comparison 

From Fig. 7.2, it can be concluded that the Ml sensors can satisfY the greatest number 

of parameters, which provide the ability to measure a wide variety of the field dependencies. 

The key parameters to a magnetic field sensor are highlighted in bold (left column). The MI 

sensors combine many features from others: AC excitation from the inductive coil sensor and 

fluxgates (but of much higher frequency, in the order of tens to hundreds of MHz), different 

polarizations of the AC excitation from the fluxgates, anisotropy from the MR and GMR, 

multi-layer structure (for multi-layer Ml films) from the GMR. However, it may resemble the 

other sensors in terms of properties; it does not share their physical principles. 

Chapter 3 has shown that the anisotropy of the sample plays a determining role in the 

forming of the MI tield dependence, which can be further modified by the application of a DC 

bias field. Additionally, the applied AC excitation in the presence of a magnetic conductor 

give rise to the surface impedance tensor, which allows the measurement of diagonal or off­

diagonal components. Therefore through a combination of an isotropy, bias field, different 

AC excitation and measuring methods results in various Ml field dependencies. This huge 

range of field dependencies combined with the high sensitivity of the effect make GMI 

suitable for many current industrial applications. 
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7.2 Magneto Impedance sensor historical review 

The basic requirements for a sensor based around a Magneto Impedance element is, to 

be able to produce the required excitation and bias signals to drive the sample, measure the 

change of voltage over the sample and calculate the change of magnitude (and direction) of 

the applied field from the corresponding voltage. 

In an electronic sensor, the Magneto Impedance effect can be considered as a 

modulation of the amplitude of the applied excitation voltage by the variation of the 

impedance due to an external field. At RF frequencies this applied voltage is generally 

considered in the forn1 of an applied power in decibels (dB) or milli-decibels (dBm). If the 

external field is constant (DC) then the voltage (power) will reduce by a constant amount. If 

the external field is time dependant, for example a sinusoid, then the applied power will be 

subjected to amplitude and phase modulation with the envelope generated by the time 

dependant wavefonn of the external magnetic field. Measurement of this change requires the 

recovery of the envelope from the carrier with a process called demodulation. This leaves a 

constant value for the DC field and the waveforn1 of the time dependent field. From this the 

magnitude of the external field can be calculated from the transfer function of field vs. 

impedance of the sample. The specification or complexity of the MI sensor is dependant on 

the resolution, magnitude, range and frequency of field to be measured. Since its discovery in 

1994, sensor design has developed from the need to design electronic equipment simply to 

observe the effect in magnetic materials, (which after fut1her understanding of the effect has 

been replaced with the use of network and spectrum analysers), to sensors based on the effect 

for commercial applications, provided by the design of cheap low power MI sensors that can 

be integrated into existing electronic systems [8], or electronic systems that seek to measure a 

very specific application of Ml. This section will take a historical approach to explain how 

different designs have tried produce an Ml effect based magnetic field sensor. The primal)' 

investigations into Ml magnetic sensors have mainly been carried out by Professor Mohri and 

his research group at the University ofNagoya, Japan. 

His research has concentrated on the development of the MI-IC or Magneto 

Impedance Integrated Circuit, which is now in mass production for the use in mobile phones 

as a basic directional sensing and movement device. 
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7.2.1 Ml sensor with sinusoid based oscillator 

Chapter 3 has shown that a high frequency source of current is required to be applied 

to the multi-layer thin film in order to observe the effect. For all models, this is considered to 

be generated by, i = i0 exp(- j M) which is a constant amplitude and frequency, single 

ham10nic sinusoid, in the MHz region. Generation of this perfect waveform in electronics is 

not possible, but various techniques have been undertaken to try to produce the highest 

approximation to this signal as possible. The stability of a sinusoidal oscillator is quantified 

by the measurement of the phase and amplitude noise of the source. This noise reduces the 

resolution of the sensor because it modifies the amplitude and frequency of the excitation 

signal. This will be interpreted by the measurement system as a change of impedance, and 

therefore a change of external field. In general, amplitude noise causes a more significant 

problem to a Ml sensor, as the small variations in amplitude that are generally detected as a 

change in external field. In a good circuit design, amplitude noise can be removed by using 

automatic level control systems, or by passing the signal through a limiting amplifier, which 

are often built into IC based sinusoidal oscillators. 

Phase noise, often quoted in dBc/ Hz represents the equivalent noise power that would 

be received in a I Hz filter when the oscillator is modulated by an external system. In this 

case, the modulation would come from the change of impedance of the M! sample. Phase 

noise decreases with increased frequency of modulation, so generates the most noise for 

external fields in the kHz region or below. All oscillators generate harmonics of the base 

frequency that also must be removed before the excitation is applied to the Ml sample, this 

can be achieved by conventional low pass filtering. The first observational electronic circuits, 

[9] simply used a basic FET resonance oscillator to produce the excitation and some balanced 

bridge configuration to measure the resulting change in voltage of the sample. The Ml 

sample itself is included as a frequency-setting element in the oscillator. This approach leads 

to very high instability. The circuit is useful only as a basic etfect observation system, which 

allowed the development of the theoretical aspects of the effect. In the same year, the first 

measurements of a differential sensor utilising the crossed magnetisation process to produce 

asymmetrical Ml where undertaken. The effect was described as the double M! effect, and 

was used to produce a basic bi-direction linear response [10]. 
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A small improvement on the circuit was presented in [11] when an oscillator based on 

Colpins topography or configuration constructed from discrete components was used to 

provide the excitation, however the design sti ll integrated the M! sample as a frequency 

setting component (L 1 in Fig. 7.3), which is related to its inductance. As this inductive 

component would vary with the applied external fie ld, the excitation frequency being applied 

to sample would also alter, this illustrates that the circuit shown in Fig. 7.3 is inherently 

unstable. 

+5V 

L1 
SMT_IND 

Q1 

BC547B 

R1 
1k0 C1 

SMT_CAP 

01 

1N4148 

C2 
SMT_CA 

R3 
1k0 

>J GMI Out 

C3 
SMT_CAP 

Figure 7. 3 Schematic of Colpitis oscillator for producing sinusoidal excitation. 

The equation for the frequency of resonance of the circuit above is given he re as: 

(7.2) 
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The reason to initially include the M! sample in the circuit is to reduce the problems 

associated with radio frequency constraints on the rest of the circuit including connecting 

leads and PCB tracking. 

An improvement was made to the circuit to maintain stability by adding a negative 

feedback path from the output of the oscillator to the sample by means of magnetic bias 

through a coil [ 12]. This feedback voltage applies a longitudinal external field to the sample 

providing an offset value; this means the bias field will always try to match the output of the 

system. This technique can provide very stable DC field detection, but the frequency 

response of the system is reduced, as the bias field will be slow to react and settle to the new 

value. This compromises the AC response in favour of a stable DC response. 

Claims of field detection of a sinusoid with a magnitude"' I o-6 Oe at I kHz within a 

shielded box, with 32,000x averaging in a dual coil differential system was reported in [ 13]. 

However, the measured waveform was distorted and did not produce an accurate signal, but 

was an important result for basic Ml sensors. 
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7.2.2 Ml sensor with CMOS pulse based oscillator 

In 1997, the research group of Prof. Mohri began to experiment with a new form of 

excitation, in preference to a sinusoidal oscillator used in previous experiments. After 

discussing the sensitivity of the Ml sensor within industry the Nagoya research group began 

to concentrate on developing a small, low cost, low power consumption sensor that would be 

able to be integrated easily into existing technologies. An oscillator based on the Colpitis 

oscillator, is quite large in topology and requires a reasonable amount of current to operate 

making it difficult to integrate into small scale integrated circuits (I C). Realising that the key 

to MI was the application of a high frequency current to the sample, the Nagoya group began 

to experiment with the application of pulses of current to the sample [14]. A pulse train 

consists of two components, a Root Mean Squared (RMS) value based on the amplitude of the 

signal and frequency of pulses, and a rise and fall time of the actual pulse, which can be made 

to be extremely fast in the order of IOns. It is this second component that generates the high 

frequency change of current which produces the Ml effect in the sample. The rise time 

provides an increasing field, and the fall time provides a decreasing field. The field produced 

in this manner is similar to a half duty cycle of a sinusoid field. It can be described more 

accurately from [15]. 
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The driving function /(I) is approximated by the Gaussian function, / 0 exp(- t 2 jtg), 

With t0 = JI(t)dt/ 10 .{;. 

Then Jl(t)has the form, in a single layer film, thickness t: 

(7.3) 

Z = R.~, · jkt coth(jkt) (7.4) 

c 

£5., = ~2l[OJO"flef (7.5) 

The integral in Eq. (7.3) quickly converges at I w I> Ijt 0 • If w0 = Ijt 0 corresponds to a 

strong skin effect (t / t5., (w0 ) >> I). the considerable contribution to the voltage response arises 

from the integration over the frequencies of the order of w0 , where the impedance increases 

as Za~wf.1,1 . 

This means that for a short current pulse, /0 << 21[(t/(r ap,1 , the voltage response 

depends essentially on the magnetic properties. 

A CMOS - IC based sensor for a single Ml sample primarily consists of a chip 

containing six inverters. A sharp pulse of current with -3d8 point of IOnS width is obtained 

in the power line of the multi-vibrator using just two ofthe six gates of the CMOS chip and a 

resistor and capacitor. The pulse is applied to the sample and is measured through a diode 

and low pass filter to produce a quasi-DC demodulated signal. The same strong negative 

feedback is applied using a feedback coil as with the previous Colpitis oscillator approach. 

The power consumption of the circuit is proportional to the oscillation frequency, f.,", which 

is the rate at which the pulse occurs. The small power consumption of 0.5W can be obtained 
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for .1;,". of 250Hz due to extremely low duty cycle of the signal train. This low power 

consumption was one of the main goals of the development of the technology. Field detection 

resolutions of I0-60eequal the results produced by the previous oscillator technology [14] so 

the circuit maintains the sensitivity of M I. 

The CMOS technology has continued to be developed by the Nagoya group, leading 

to the introduction of the synchronous rectification circuit [ 15] to replace diode rectitication, 

as shown in Fig. 7.4. 

Diode rectification is essentially a non-linear operation due to the voltage transfer 

function variation of the diode, with temperature and applied current so it could introduce 

instabilities in the circuit. The diode switch on voltage also poses problems for passing small 

signals, such as those measured from the coil. Essentially the pulse waveform is an entirely 

positive signal, except for digital ringing or noise, which produces some small negative 

voltage in the order of m V. The sinusoidal signal excitation required half wave rectification 

to remove the mirror envelope on the 2"d cycle of the sinusoidal current. This is not required 

for pulse excitation, so the synchronous rectifier simply "chops" the coil waveform to include 

only the signal due to magnetic response, removing ringing and other distortions. As the 

signal is passed into an integrator to produce a quasi-DC value, the area under the voltage 

waveform is important, so any extra signals must be minimised. The process is controlled by 

utilising a pulse generated from the same process producing the excitation signal, so the 

signals are synchronous. The width of the control pulse is set by the using a variable resistor. 

The same lie Id resolution is claimed as the previous sensor, 10-6 Oe but the temperature 

stability is increased to 0.6% of the full-scale value for an operating temperature of room 

temperature to 80°C. 
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Vdd 

o, 03 
o .. Q2' Q], ~· Qy 
Or;• 01 : 74AC04 ; 
Ampl. : AD524 ~ 
Analog Switch : 74HC4066 ; 
RI : 5.1 kQ ~Rl; 3 kQ ; 
RJ: 200 0 ; R8 : 3 kfl ; 
R~· R5: 51 kO ; 
R6• R7 : 2 k!J : 
c,. c~. c), C4, Cs: 100 pF 

control 

Figure 7 . ..f Schematic of a d(!Jerentia/ CMOS-JC with synchronous rectification. 

The latest development from the Nagoya group in patinership 'v\rith Aichi Steel is the 

development of the Ml-IC. This is the same CMOS-IC circuit shown in Fig 7.4, but it has 

successfully been miniaturised and integrated into an IC package. According to the data sheet 

published in 2002 [1 6], the device operates from a single MI wire san1ple with planar coils to 

bias and measure the external field. The device will be avai lable in both single axis (x) and 

dual axis (x,y) configurations specifically developed for ea11hs field detection as a compass. 

The synchronous rectification has been replaced with a sample and hold device for better peak 

detection. The linear output from the IC is des igned to be sampled by an ADC to allow 

simply integration into other electronic systems. The specifications are as follows: 

Field detection range of ± 0.2mT( ± 20e ), with a resolution of4mV/JiT , frequency 

detection of AC fields up to 1 kHz and a maximum power consumption of 1 OOm W. 

This chip represents a large advance for the field of Ml sensors for simple commercial 

industrial operations, and may replace GMR or fltD<gates in some areas. A huge and 

comprehensive list of potential application areas has been published by the Nagoya research 
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group in [6], the development of MI-IC may allow these applications to be realised. Most 

importantly, this chip has already been integrated into mobile phones in the Asian market to 

provide a basic compass facilities and interactive controls based on movement. 

However, the limiting factor of the noise generated by CMOS-IC pulse excitation 

means that it will never be suitable for extremely small magnitude, in the order of nano Telsa 

measurements, which GMI has the potential to realise. 
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Chapter 8. Magneto Impedance sensor design and technology 

It has been shown that the Ml effect has the potential to be a very sensitive magnetic 

transducer in an electronic sensor device. However, transferring theoretical measurements 

into a practical commercial sensing device that can produce a superior performance to current 

sensors in a number of critical areas is a challenge. 

The development of the Ml-IC sensor [I] by the Aichi steel and Prof. K. Mohri's 

research group, has commercialised one aspect of magnetic field sensing. A miniature low 

power IC can be incorporated into many electronic devices to provide basic magnetic field 

sensing for direction of the earths magnetic tield and low frequency AC fields. However the 

technology is limited by the pulsed excitation method of producing the high frequency driving 

current, and the basic means of demodulating pulsed current to obtain the modulating 

magnetic field. 

The pulse contains a very large number of harmonics spread throughout the spectrum, 

not just multiples of the carrier. This generates unwanted harmonic noise in the modulating 

spectrum of the pulse which masks the wanted modulating signal of the external field. This 

noise ultimately reduces the resolution and magnitude of small field detection of the pulse 

excitation method. Additionally, the frequency of the pulse train develops an RMS or 

constant DC value of voltage to the M! sample. This produces a transverse DC bias field in 

the sample, which depending on the anisotropy can cause the MI effect to be weakened. If a 

DC bias field is required, the variation of the pulse train frequency is limited resulting in a 

lack of control in the applied DC bias field. 
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The negative feedback method of biasing the sample with the output of the sensor 

allows the system to become stabilised at the expense of frequency response to the external 

field as it is limited by the bandwidth of the amplifier. Additionally, driving an inductive load 

to ground has complicated frequency dependant variables which are not designed into the 

system, as it relies on a simple resistor to control the value of applied current and hence field. 

The demodulation technique is based on simple diode or switching to remove the 

negative noise pulses on the modulated pulse signal, after that a simple resistor and capacitor 

network is used to hold the peak value of the pulse so it can be measured by the output 

amplifier. This method is limited due a number of factors including the forward voltage loss 

on the diode, the voltage loss over the internal resistance of the switch and the bandwidth of 

the switch itself, it needs to be able to pass the high frequency pulse characteristics through it 

to preserve the modulating envelope. This further limits the frequency response of the 

system. The capacitor and resistor network has a time constant, and a frequency of applied 

signal higher or lower than this will not fully charge the network, and hence the peak value is 

not maintained, the so called voltage droop of the network describes the loss of current while 

before the next current pulse charges it again. Therefore the system can only be accurate at 

one frequency range of operation. 

The aim of this course of work was to investigate means of producing magnetic field 

detection methods to identify the ultimate resolution and magnitude of field detection utilising 

the MI effect. This chapter illustrates the methods and technology required to achieve a sub­

mmo Tesla resolution and magnitude (10"6 Oe) of external AC field, from 10Hz to over 

IOOMHz and DC field detection. After identifying the limitations of pulsed excitation, the 

work was carried out with the use of sinusoidal excitation and Radio Frequency (RF) design 

criteria. 

The use of sinusoidal excitation of this type was proposed simultaneously in early 

works of Ref [10-11]. The experimental configuration utilizes a low phase noise oscillator 

working in the range of 370MHz and a phase shifted differential combination method to 

provide catTier suppression to allow the measurement of the modulating external field signal. 

The method in this current work measures the renected power produced by the modulating 

external field signal on the carrier as a means of carrier suppression. 
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8.1 Practical design considerations 

In a perfect electrical system the oscillator would be a pure sinusoidal tone with no 

variations in frequency, amplitude or phase or harmonics. When this sinusoid is applied to a 

MI element any variations in the sinusoid would be due to modulation of the external field. In 

practice this is not possible and the unwanted variations are added to the system as noise 

which limits the magnitude and resolution of field detection. 

A practical oscillator suffers from both, higher harmonics and also stochastic 

fluctuations in amplitude and frequency, which are called noise. Since the noise spectrum of 

an oscillator around the oscillation frequency always has sidebands, as shown in Fig 8.1, it is 

possible to describe the signal with noise by the following expression: 

V(t) == [A0 +a(l)]cos[w,l +~(/)] (8.1) 

Where a(l)and ~(/)are random signals. a(l), describes the AM noise, ~(I) is called 

phase noise and d~/ dl FM noise. The use of the tern1 phase noise is only meaningful when 

the maximum phase deviation does not exceed 21l rad. In the vector diagram, Fig. 8.1 (b), the 

noise-free carrier is represented by a vector of constant length which rotates with a constant 

velocity and the noise by an extra vector with varying amplitude and phase with respect to the 

original signal. The component of the latter which lies in the direction of the carrier vector 

describes the AM noise and the orthogonal component the FM noise. 

Usually it is assumed that the total noise power is small compared with the power at 

the central frequency.!;.. A common measure for the noise at a certain frequency f., in the 

sideband is then the power in the bandwidth 8f == .!;. -I,,, divided by the bandwidth 

8f taken in dB units relative to the carrier wave power (referred to as dBc ), or 

Oscillator noise ratio== P(.t;,) [dBcl Hz] 
ru;.)8f 
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Pose FM Noise 

(1)~"·· · ····· · · ·. . .. ' f 
········~/AM 

fosc f 
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Figure 8. 1 Oscillator noise: (a) spectrum; (b) vector diagram. 

This is specified for AM and FM separately. Usually the noise is measured in one 

sideband so it should correctly be called the single-sideband oscillator noise ratio. For FM 

noise another measure is commonly used, the root mean sq uare frequency deviation !1/~~..,,s, 

that is the root of the average quadratic frequency deviation in a specified bandwidth divided 

by that bandwidth. A similar definition holds for !1tAw;. Here too the di stance from the 

carrier frequency must be specified. The re lation with the FM noise power where ~. 11 is the 

power of the FM deviation and F._. is the carrier power is, 

( /1 A. . ) 2 = ( /ifR.I/S ]

2 

= 2 ~-AI 
'f'RM.\ f. p 

·111 c 

(8.3) 

The sources of noise in practical osci llators originate from: noise in the active element; 

noise in the bias current to the active element; and noise in the lossy parts of the passive 

ci rcuit, which are thermal noise based. [2] - [7] 
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Not only the noise around the oscillation frequency but also low frequency nmse 

sources are important. The low frequency noise sources owing to the non-linear properties of 

the active element, are up converted to the sidebands of the oscillator. The up conversion is 

related to the modulation sensitivity, that is the extent to which the oscillation frequency 

depends on the bias current. Any oscillator which is modulated via the bias current is also 

sensitive to the noise in the bias cuJTent. The I If noise in the bias current and the active 

clement arc therefore important quantities to understanding the amount of noise in the 

oscillator as a whole. For the purpose of improving the sensitivity of a MI based magnetic 

field sensor the reduction of I If and thermal noise of the bias current of the oscillator is 

critical to performance. 

When the AC carrier signal is modulated by the external magnetic field in the Ml 

element, means of recovering that modulation information are required in the sensing device 

in order to determine the quantities of the external field. The noise of this recovery element 

will represent the minimum present in any detection circuit. 

The limits of operation in a perfect sinusoidal source and detection system would be 

thermal noise, which is a number of magnitudes higher than any intrinsic magnetic noise 

produced by the MJ element itself. Further more, the up conversion of low frequency I If 

and thermal noise within the oscillator produces many magnitudes higher noise than then 

minimum thermal noise of the perfect system. Therefore in order to produce the highest 

sensitivity of MI sensor it is critical to reduce the phase noise of the oscillator to a minimum 

and reduce the limits of the system to thermal noise, which can be achieved by careful 

component selection, low noise circuit design and good engineering practice. 
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8.2 Practical implementation of a sinusoidal source and detection 

In this section the methods of producing a low noise sinusoidal source for a portable 

device will be discussed. In this case a portable device is defined as requiring a small size, 

low power, low cost sinusoidal source. The oscillator will then be used as the current source 

for application to a Magneto Impedance element in order to generate the skin effect within the 

sample. Simple commercial devices were improved in performance by the application of 

novel electronic techniques to reduce the effect of noise at source. The circuits were 

manufactured, tested and phase noise measured using a Rhode and Schwarz FSU 600Hz 

spectrum analyser (I Hz measurement bandwidth, -158dBm noise floor) with embedded 

phase noise software. 

8.2.1 Oscillation circuits 

Two different oscillation technologies were evaluated, an advanced Colpitt's oscillator 

Integrated Circuit (I C) the Maxim 2605 and a surface acoustic wave (SAW) based IC that was 

embedded into a simple transmitter device designed for shm1 range RF communications, the 

Radiometrix 433MHz TX2 . 

MAX2605 to 2609 are compact, high-performance intennediate-frequency (IF) 

voltage-controlled oscillators (VCOs) designed specifically for demanding portable wireless 

communication systems. They combine monolithic construction with low-noise, low-power 

operation in a tiny 6-pin SOT23 package. Each device covers a range of carrier frequency 

generation. 

These low-noise VCOs feature an on-chip varactor and feedback capacitors that 

eliminate the need for external tuning elements, making the MAX2605-MAX2609 ideal for 

portable systems. Only an external inductor is required to set the oscillation frequency. In 

addition, an integrated differential output buffer is provided for driving a mixer or prescaler. 

The buffer output is capable of supplying up to -8dBm (differential) with a simple 

power match. It also provides isolation from load impedance variations. 
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Three different implementations of this circuit were manufactured and tested. Firstly 

the differential output were combined to produce a single output signal which was butTered 

for two MI elements trom a single source. Secondly the differential signals were no combined 

an just buffered separately to produce a dual output capable of driving two M! elements from 

a single source. Thirdly passive low pass filters were applied to reduce the harmonic 

composition of the output sinusoidal excitation before it was combined differentially for a 

single output. 

Commonly, the circuits were voltage regulated to 3.3V DC by an Analog TPS79133 

voltage regulator. A Maxim 600 I voltage reference was applied to the frequency voltage 

control pin of the Maxim 2605 to keep the sinusoidal frequency constant. An inductor was 

selected to produce an output frequency of between 40 and 85MHz, which covered the range 

of highest M! ratio of the M! elements to be used with this current source. The signals are 

combined or buffered using Maxim 2470 high speed operation amplifiers. 

The outputs are matched to 50Q impedance using the appropriate matching network 

component values specified in the VCO datasheet for the output frequency. The buffers are 

matched to 50 n using a resistor; a blocking capacitor is used to remove the DC component, 

which could cause an unwanted transverse field to be generated in the sample. The sinusoidal 

sources were connected to external devices by using SMA connectors. Figs. 8.2 to 8.4 

illustrate the schematic of the circuits. 
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Figure 8.3 Maxim 2605 differential outputs. 
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The PCBs were designed to reduce the RF effects of stray capacitance and inductance 

at this re latively low frequency of 45 to I OOMHz. Track widths and component placement 

were carefull y considered as well as the use of a large low inductance ground plane. Fig. 8.5 

illustrates the PCB layout at increased size for detai l. 

..-

.0 .......... 

-u ......... 

..-
ro .......... 

Figure 8.5 PCB implementation of (a) non differential output, (b) d(fferential 

output an (c) non d(fferential output with low passfilters. 
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The Radiornetrix TX2 transmitter module is a hvo stage, SAW controlled FM 

transmitter operating between 2 and 6 V and is available in 433.92MHz and 418.00 MHz 

versions. The 433.92 MHz can deliver +9 dBm from a 5V supply at 12mA, the module 

physically measures 12 x 32 x 3.8 mm. Its functional schematic is shown in Fig. 8.6 
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I 
RF out (2) ~JJMHzband V 

8~ 
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TXD (5) --f~~ss Rter ~ order LPF 
~ bufter ~ -

t=L. 
+10~m @SV 
433.92MHz 

S.IIIN-stabilsed ~ 1 00K osdllator 

RF gnd (1) 0 VOLT (4) 

nb 

Figure 8.6 Function block diagram of the transmitter module. 

This makes the Radiometrix device ideal for portable applications, and to drive an MI 

element at a higher excitation current frequency. As the oscillator is a plug-in module it 

required very little additional components in order to complete the oscillator circuit. Analog 

devices TPS791 0 I was used to provide a regulated 5V supply to the Radiometrix module, the 

device is designed to receive digital data to frequency modulate onto the carrier. As this was 

not required the digital circuit was connected to 5V to maintain constant carrier amplitude. 

The circuit was connected to other devices by means of a SMA connector as before. The 

circuit and PCB layout is shown in Fig. 8.7. 
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Figure 8. 7 Radiometrix module (a) schematic, (b) PCB layout. 
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8.2.2 Reduction of 1/f noise in oscillator circuits 

Any low frequency noise that is present on the DC power supply of the oscillator will 

be up conver1ed in the oscillator through its bias current, increasing the sideband noise, as 

shown in the previous section. Even by selecting the best voltage regulators and decoupling 

capacitors, the effect cannot be significantly reduced and an active approach is required. 

Many voltage regulators have excessrve levels of output norse including voltage 

spikes from switching circuits and high flicker noise levels from unfiltered references. 

Ordinary three-terminal regulators will have several hundred nanovolts per root-hertz of white 

noise and some reference devices exceed one microvolt per root-hertz. DC to DC converters 

and switching regulators may have switching products ranging into the millivolt range 

covering a wide frequency spectrum. 

The traditional approach to reducing such noise products to acceptable levels could be 

so called the "brute force" approach - a large-value inductor combined with a capacitor or a 

clean-up regulator inserted between the noisy regulator and load. 

The active approach to noise reduction is based on the fact that the noise voltage is 

many orders of magnitude below the regulated voltage, even when integrated over a fairly 

wide bandwidth. For example, a I 0 volt regulator might exhibit I 0 ~tV of noise in a 10 kHz 

bandwidth - six orders of magnitude below I 0 volts. Naturally, the noise current that flows in 

a resistive load due to this noise voltage is also six orders of magnitude below the DC. By 

adding a tiny resistor, R, in series with the output of the regulator and assuming that a circuit 

somehow manages to reduce the noise voltage at the load to zero, the noise current from the 

regulator may be calculated as v;, I R . If the resistor is I 0 then, in this example, the noise 

current will be IO.uV/10= lOpA. 

197 



Chapter 8. Magneto Impedance sensor design and technology 

If a current-sink can be designed to sink this amount of AC noise current to ground at 

the load, no noise current will flow in the load. By amplifYing the noise with an inverting 

transconductance amplifier with the right amount of gain, the required current sink may be 

realized. The required transconductance is simply -I I R where R is the tiny series resistor. 

The following circuit illustrated in Fig. 8.8 is designed for filtering the 5 volt supply 

used on the Radiometrix module and is based on the design produced by Wenzel associates 

inc. The shunt will greatly reduce white noise, spurious signals, and line-related signals on the 

power supply; the attenuation can exceed 40 dB with careful construction. The values are not 

critical except that the gain of the amplifier should be very near the ratio of the transistor 

emitter resistor to the series shunt resistor. In this case the gain is 14.3 which is close to the 

15Q of the emitter. The OPA21 is a dual low noise operational amplifier that is used to 

measure the shunt noise. It is dual so either two supplies can be provided or in can be 

cascaded to further reduce the noise. 
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8.2.3 Measurement of phase noise in the implemented oscillator circuits 

Firstly the Maxim 2605 oscillator circuits were measured using a spectrum analyzer. 

The sinusoidal current frequency was set to I OOMHz using an external inductor on the circuit. 

The first devices to be tested were the differential and non-differential buffered 

outputs with no low pass fi lters. They had very similar results illustrating the differential 

combination was not required. The phase noise performance was at a offset of 1 kl-fz -50 

dBc I Hz, fa lling to -120 dBc I Hz at I MHz offset from the carrier. This complies with the 

datasheet specification of the phase noise measured by Maxim. Ham1onics at 200 and 

300MHz are visible in the spectrum at around -90 dBc I Hz. The output power directly 

measured into the spectrum analyzer was 6 dB m at a I MHz offset the noise level is over 

120 dBm lower than the carrier as shown in Fig. 8.9. 
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Figure 8.9 Phase noise of a Maxim 2606 differential output VCO at JOOMHz. 
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By adding the low pass filters to the Maxim 2606, before they were combined 

differentially, had a small effect on reduci ng the in band phase noise. The phase noise 

performance was at a offset of 3 kJ-lz -60 dBc I Hz, fa ll ing to -1 30 dBc I Hz at I MHz offset 

from the carrier. Harmonics at 200 and 300MHz are visible in the spectrum at around -

95 dBc I Hz. The output power directly measured into the spectrum analyzer was 6 dBm at a 

I MHz offset the noise level is over 130 dB m lower than the carrie r as shown in Fig. 8.10 
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Figure 8. 10 Phase noise of a Maxim 2606 d(fferential owput VCO at IOOMHz with 

lml' passfilters. 

The magnitude of the phase noise limits the minimum resolution and magnitude of the 

modulating magnetic fie ld in the MI e lement. This oscillator would be suitable for high 

sensitivity measurements of modulating fie lds of 1 MHz of higher where the sideband of the 

oscillator noise is reduced to the levels of the general system noise. 
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Secondly, the 433Mhz Radiometrix module was measured with and without the 

cascaded active noise reduction DC power supply. The output power directly measured into 

the spectrum analyzer was 6.6 dBm, the harmonics at 866 and 1.20Hz are visible in the 

spectrum at around -60 dBc I Hz as shown in 8.11. 
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Figure 8.11 Output .spectrum of the -133MHz Radiometrix module. 

The phase noise performance without the noise reduction power supply was many 

orders better than the Maxim 2606 VCO. This is due to SAW filtering and basic Phase Lock 

Loop (PLL) provided on the module. However, the device costs approximately ten times the 

price of the Maxim 2606 and has a much larger package. At a offset of 300 Hz the phase 

noise is -100 dBc I Hz (50 dB improvement), fa lling to -140 dBc I Hz at I Ml-lz offset from 

the carrier, and less than -150 dBc I Hz at large offset frequencies a shown in Fig. 8.12. 

These excellent results are primarily due to the extremely low noise floor of the spectrum 

analyser; in most conventional systems a -120 d Bm noise floor is common. However the 

important result is that high sensitivity measurements can be made on lower frequency 

magnetic fields than was possible with the Maxim VCO as the sideband noise is dramatically 

reduced. 
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Figure 8.12 Phase noise of the 433MHz Radiometrix module. 

By introducing the active noise reduction power supply a slight reduction in phase 

nOise is observed at higher frequencies, it is primarily designed to reduce low frequency 

noise, which cannot easily be measured on the spectrum analyzer as it is very sensitive and 

cannot lock correctly at such low measurement bandwidths. However even at I KHz around 

5 dB reduction in noise is created as shown in Fig. 8. 13. The low frequency improvement will 

be better illustrated when the device is used for low frequency fie ld measurements. 
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Figure 8. 13 Phase noise of the 433MHz Radiometrix module with active noise 

reduction power supply. 

8.2.4 Detection and demodulation methods 

Two different power detection and demodulation devices were evaluated, Linear 

technologies L T5507 which is based directly on a Schottky diode peak detector and an 

Analog e lectronics AD8307 which is based on logari thmic amplifier teclmology. 

The L TC5507 integrates several functions to provide RF power detection over 

frequencies up to 1 OOOMHz. TI1ese functions include an internally compensated buffer 

amplifier, an RF Schottky diode peak detector and level shift amplifier to convert the RF 

signal to DC. The LTC5507 can be used as a self-standing signal strength measuring receiver 

for a wide range of input signals from - 34dBm to 14dBm for frequencies up to lOOOMHz. 

The L TC5507 can be used as a demodulator for AM and ASK modula ted signals with data 

rates up to 1.5MHz. In this application the LTC5507 can be used for detecting relatively high 

magnitude magnetic fields to high resolution with a maximum frequency of around L5MHz. 
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The AD8307 is the first logarithmic amplifier in an 8-lead (SOIC-8) package. It is a 

complete 500 MI-Iz monolithic demodulating logarithmic amplifier based on the progressive 

compression (successive detection) technique, providing an dynamic range of 92 dB to ±3 dB 

law-conformance and 88 dB to a tight± I dB error bound at all frequencies up to I 00 MI-Iz. It 

is extremely stable and easy to use, requiring no significant external components. A single­

supply voltage of2.7 V to 5.5 V at 7.5 mA is needed, corresponding to a power consumption 

of only 22.5 m W at 3 V. In this application the AD8307 can be used to detect large magnitude 

fields to very high resolutions or very small magnitude fields at any modulating frequency up 

to the carrier. 

For evaluation, both circuits were implemented on a single PCB sharing a common 

Analog TPS79133 as before. The L TC5507 requires a few capacitors to match the input 

frequency and to produce the peak detection; the AD8307 required an input matching 

network, which was calculated from the suggested data sheet values and some external 

capacitors to set the lower frequency demodulation cut off. The schematic and PCB layout is 

shown in Fig. 8.14 
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Figure 8.1-1 (a) Schematic of the LT5507 and AD8307detection circuits. (b) PCB 

layout. 
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8.3 Magnetic sensors utilizing Magneto Impedance 

After completion of the sinusoidal generation and detection circuits, they can be 

combined together with the Magneto Impedance elements produced during the course of this 

work to produce Magneto Impedance sensor devices. Two devices are presented which were 

developed to use different magnetic anisotropy multi-layers, firstly with two crossed 

anisotropy elements and secondly with a single transverse anisotropy sample. 

8.3.1 Sub-nano tesla differential magnetic field sensor utilizing Asymmetrical 

Magneto Impedance in multi-layer films 

In Chapter 6, static and dynamical asymmetrical Magneto Impedance was measured 

experimentally. Dynamical asymmetrical Magneto Impedance was shown to be more 

sensitive, but would present unusual complex impedance to the output of an oscillator and 

input to a detection device in comparison to son and would require complicated matching 

techniques. A similar bi-directional response could be obtained if two crossed anisotropy 

samples where combined differentially, as each sample is only sensitive in one particular field 

direction. 

Initially, this is illustrated by combining a copy of the measured sample data after it is 

reversed to be sensitive in the opposite direction to the original field, for a frequency of 40 

and 85MI-Iz. At 85MHz the differential response is around twice as large but the smaller 

anisotropy angle samples suffer from large distm1ions because the sensitive linear response 

does not exactly start at the zero field strength so distortion is created. This differential 

outputs are shown in Figs. 8.15 and 8.16 

This means the samples would not be able to be used to measure small fields due to 

non-linearity in the response but could be used for accurate measurements at a specific higher 

field measurement such as± 1 OOe. However, the a = 45°, the non-linearity is very small and 

could be easily corrected with a small longitudinal "tuning" DC bias to each sample to ensure 

the sensitive linear region begins at OOe. This would then produce a continuous linear 

response in both field directions. The response is smaller, but not by an order of magnitude, 

and could be corrected in a good sensor design. [9] 
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Figure 8. 15 Differential output of combined measured data of crossed an isotropy 

samples with different anisotropy angles at -IOMHz. 
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Figure 8. 16 Differential output of combined measured data of crossed anisotropy 

samples with d(fferenl anisotropy angles at 90MHz. 
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The sinusoidal based differential sensor design consists of the following stages, as 

illustrated in the block diagram in Fig. 8.17. (A) A Maxim 2605 Voltage Controlled Oscillator 

(VCO) configured into the differential output with low pass filters as described in section 

8.2.1, this was configured to give an excitation current frequency of 90 MHz by using an 

external inductor and voltage reference corresponding with the more sensitive combined 

differential output response shown in Fig. 8.16. 

All signal measurements were perfom1ed by the use of a HP4195A spectrum analyzer 

set to I OOkHz bandwidth with I OdB input signal attenuation. The VCO produces a sinusoid 

with amplitude of 1.45m V; the noise at the fundamental was measured as 40n V /"Hz. The 

ditTerential signals were combined in a pair of wide bandwidth amplifiers, (B), to provide the 

actual sinusoidal waveform. The amplitude of the waveform is 2.1m V and noise at the 

fundamental is 25nV/"Hz after the differential stages. This provided a pair of accurate 

excitation signals for the AMI samples. In order to decrease the effect of the harmonics of the 

signal, a pair of passive network low pass filters (C) with a -3dB point of I OOMHz were used 

to reduce the hannonic content. The signal is then further amplified in a pair of RF power 

amplifiers (D). The sinusoidal signal is increased in amplitude to 25m V (No load), with a 

noise of3~tV/"Hz. 

The measuring cell (H) consists of two close characteristic a = 45° crossed 

anisotropy elements, which are connected in parallel to ground. Each sample is driven by a 

separate sinusoidal output from the RF amplifiers and a feedback constant current source to 

produce the 25mA DC bias current required to produce the AMI effect. The AMI elements 

are biased oppositely to one another, making one sample sensitive to positive fields and the 

other sensitive to negative fields. When the samples are placed inside an AC longitudinal 

sensed field of± 200e, the change of impedance of the sample causes a modulation of the 

amplitude of the applied excitation signal. 

The small changes in impedance of the sample are measured by the L TC5507 power 

detector described in section 8.2.4 (E). The output is an offset DC level, based on the average 

amplitude of the signal, with a small variation which matches response of the sample 

measured on the I-IP8753E. This DC level is passed into a unity gain buffer amplitier (F) to 

ensure the current drive is sufficient for the instrumentation amplifier. 
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The responses are then combined differentially in the instrumentation amplifier (G), 

by inverting the signal on the negative input and adding it to the signal on the positive input, 

noise common to both inputs is removed. The resulting waveform is then amplified by l 0 to 

produce an output level suitable for further signal processing. 
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Figure 8. 17 Differential sensor block diagram. 

The sensor was built in both AC and DC coupled variants, as the L T5507 produces an 

average DC level based on the size of the power of the signal. for example the change of 

impedance doesn ' t reduce the Maxim input power to less than its minimum detection power, 

the unwanted DC component must be removed to allow just the AC variation to be processed 

and amplified . A DC coupled version allows a constant field (such as a permanent magnet) or 

average power of an AC signal to be measured. 

The sensor operation is essentially a combination of the Maxim 2605 VCO and the 

L TC5507 peak detector with some additional an1plification to produce a larger sinusoidal 

excitation current in the samples, and an instrumentation amplifier to combine the differential 

signals. The circuit diagran1, PCB layout and final circuits are illustrated in Figs. 8.18 to 8.19. 
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Figure 8. 18 Differential sensor schematic. VCO and peak detection circuits. 
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-rn ..._, 

Figure 8. 20 D(fferential sensors PCB lay out (a) actual size (b) completed circuits, 

(c) detailed PCB illustration top and bottom copper views. 

Figure 8.2 1 shows the output of the instrumentation ampli fier for a pair of samples 

with the anisotropy a = 45°. This closely matches the previous HP875JE measured data 

shown in Fig. 8.16 The differential response is near linear in the fi eld interval ± I Oe with 

loss of sensitivity around the zero point. This small distortion could be corrected with the 
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addition of a longitudinal magnetic bias applied to the substrate for each sample [l 0]. The 

output of the instrumentation amplifier was measured as ~600mVIOe for a gain of 10 with a 

noise magnitude of 1.226pVI--JHz DC coupled. The SNR was calculated as, SNR = 20log10 

(Voltage Signal I Voltage Noise). For I 00 kHz bandwidth this gives 20 log10 (600mV I 

387.7pV) = 63.8 dB. 

This con·esponds to a maximum effective resolution for AC and DC fields in of I ~L Oe 

for fie ld strengths of magnitude - 20e when the maximum change of impedance and 

therefore the maximum change of power occurs in the sinusoidal excitation current. For this 

sensor design, as the magnitude of applied external fi eld is reduced, the resolution is reduced 

correspondingly, making it useful for large field high resolution measurements, or small 

magnitude field detection. 
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8.3.2 AC biased sub-nano testa magnetic field sensor for low freguency 

applications utilizing Magneto Impedance in multi-layer films 

For the second sensor design a different specification of external magnetic field would 

be measured, namely extremely small magnitude (sub-nano Telsa) and low frequency (less 

than 20Hz). This was driven by the desire to use the sensitivity of Magneto Impedance for 

large signal bio-medical signal detection. In order to achieve this goal a significant 

improvement in the phase noise of the oscillator and detection methods of the sensor would 

have to be made. 

As the signal was of a small magnitude a single transverse anisotropy sample was 

utilized as a transducer with a DC bias to select the most sensitive operating point. Further 

more, in a significant improvement of the detection process, the sample would be matched to 

SOQ complex impedance at the DC bias operating point, and connected to an active isolator 

before de-modulation by a high dynamic range logarithmic amplifier. Additionally in order to 

improve the low frequency response of the sensor, the tield to be measured would be up 

converted using an injection AC biasing technique and lock-in amplifier. Therefore a 

I OHz signal could be up converted to I OkHz ±I OHz where the phase noise of the Oscillator is 

a number of magnitudes lower than at I OHz. After demodulation of the carrier signal by the 

logarithmic amplifier, as the injected AC modulating signal is known it can be amplified in an 

extremely accurate way by a lock-in amplifier to provide large gain. The resulting spectrum 

can then be measured on a spectrum analyser. 

For optimal sensor design, the Ml element was a multi-layered film with transverse 

anisotropy having two outer magnetic layers with composition NiFe, an Ab03 insulation 

layers and a Au inner made on glass substrate, with dimensions I = 5mm , d = 2.5 pm and 

b = 200pm. The outer layers and the inner lead are of thickness O.S~tm and the insulating 

layer is of 80 nm. The Ml element was hand picked for its performance at this frequency 

from numerous measured samples. The element dimensions were selected based on model 

analysis of flux leakage across the inner conductive layer due to edge effects and all the 

experimental results illustrated in Chapter 5. 
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The sample was characterized by utilizing a measurement system based on a Hewlett 

Packard HP87S3E network analyzer. The measurements were made for a frequency of 

433.7SMHz, and an external longitudinal DC field of ±SOOevaried over 10,000 steps giving 

a 0.0 IOe resolution. The san1ple was then DC biased using a permanent magnet (S Oe) to the 

most linear portion on the characteristic curve and the impedance was transformed to son by 

the use ofT-matching network at the bias point for utilization with the sensor design. Figure 

8.22 shows the measured impedance of the sensor element as a fu nction of DC field cantered 

at son. The impedance has an overall change of J3S% with a sensitivity of IS%/Oe and a 

linear behaviour in the fie ld interval -2.SOe and SOe. This characteristic itself is one of the 

best reported on Ml in multilayers of similar dimensions and composition. 
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Figure 8.22 Impedance of the multi layer film biased with SOe and matched to 

son. 
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The sensor front end system is in essence designed as a single frequency network 

analyzer to measure the magnitude of the incident reflected power produced by a mismatch in 

complex impedance between the source and load. This approach is novel in Magneto 

Impedance sensor technologies; all previous sensor systems do not couple the reflected or 

transmitted power for measurement. When impedance of the MI element matches the 

impedance of the source (500) the maximum amount of power is transferred to it. If the MI 

element is mismatched, some of the incident power is reflected back towards the source, this 

can be isolated, measured and converted to a change in applied longitudinal AC field. The 

incident power or carrier is produced by the Radiometrix Surface Acoustic Wave (SAW) 

filtered crystal oscillator circuit described in section 8.2.1 

The reflected power is separated from the incident power by means of a directional 

coupler based on an active op-amp design which provides a non-magnetic coupling approach 

for lower noise which was based on a design by Wenzel Inc. This design was modified and 

updated for new operational amplifier technologies to allow it to work at frequencies that 

would be utilized in this sensor. It was originally conceived for low frequencies below 

I OOMI-Iz where magnetic coupling approaches required large values and components, 

however since 1991 when the article was been published, operation amplitier technology has 

increased to allow-3dB bandwidths greater than433MHz making, with some careful RF 

design, the technology useful to this sensor design. 

Suitable for small signal applications, the active circulator is excellent for matching 

and tuning antennas, amplifiers, and oscillators. The purpose of the circulator is to absorb all 

energy entering a port and to pass that energy on to the next port. High reverse isolation 

ensures that the energy flows in one direction around the circulator and that the impedance of 

one port is not affected by the other ports. A traditional microwave circulator uses the non­

linear properties of ferrite immersed in a magnetic field whereas this circuit uses high speed 

operational amplifiers. For the circulator to work properly, each port must exhibit the 

characteristics of a Thevenin equivalent consisting of a 50 ohm resistor and a voltage source 

with a voltage twice as large as the voltage arriving at the previous port. 
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The factor of two makes up for the drop across the Thevenin resistance when a 50 

ohm load is connected. First, the 50 ohm resistance results from the two, l 00 ohm resistors 

leading to virtual grounds -that is points that are held at a .fixed voltage regardless of the 

current. 

The Thevenin voltage source is a little less obvious si nce the two I 00 ohm resistors 

are connected to two different voltages that average to the desired factor of two. Each op-amp 

amplifies the input signal by 3.236 which is applied to one of the resistors. A voltage divider 

drops this voltage down to 0.764 which is applied to the positive input of the next op-amp. 

Since the other resistor is connected Lo the feedback node of this op-amp, it sees the same 

0.764 size signal. The average of 3.236 and 0.764 gives the desired factor of two. The 

differential gain is set so that signals leaving a port terminated with 50 ohms will generate no 

output at the following port. 

A load impedance other than 50 ohms generates a reflection which is passed on to the 

next port. Crucially this means the active circulator working in an isolation mode will only 

transmit the mismatched power due to the Ml element varying from 50Q at the frequency of 

the variation, and the magnitude of power relating to the magnitude of variation. The 

unwanted carrier power is suppressed and the variation is amplified, as is illustrated in Fig. 

8.23 

fncident power is absorbed in matched load V incident 

7d~ 
vrenection -60dBm 

s 
AC field varies film impedance which modulates Vrcnection V incident • 

7d~ 
Impedance Variation v 

rencction 

Modulated reflected power 

Figure 8. 2 3 Amplification of modulated power due to active isolator technique. 
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By connecting the Radiometrix amplifier to the active circulator and applying a son 

termination the reduction in carrier power can be measured and is illustrated in Fig. 8.24, in 

this case the carrier is reduced by SOdB which is a number of magnitudes higher than a 

conventional magnetic circulator I isolator. 
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Figure 8. 2-1 Suppression of carrier ji·equency due to active isolator, original carrier 

power 6. 6dB. 

The active circulator circuit was made from Maxim 430S operational amplifiers and 

precision surface mount resistors; the circuit was connected to others by the standard SMA 

connectors. The schematic. PCB and actual circuit are illustrated in Fig. 8.2S. 

Additionally, the phase noise of the system with the SOn broadband termination 

compared to the SOQ matched Ml sample could be measured and compared on the spectrum 

analyser. The broadband terminator reduced the carrier signal by SOdB and the MI element 

by 4SdB , illustrating that the matching network was producing a close match to 50Q 

at433MHz . However the phase noise performance of the Magneto Impedance element was 

better than the broad band terminator by around 7 dB as the noise floor was - I20dBm 

compared to - 113c/Bmas is illustrated in Figs. 8.26 and 8.27. 
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Figure 8.25 Active isolator (a) schematic, (b) PCB layout and (c) actual circuit. 
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Figure 8.26 Phase noise of the active isolator systems, with the Radiometrix 

oscillator and a 50Q broadband terminator. 
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Figure 8.27 Phase noise of the active isolator systems, with the Radiometrix 

oscillator and a 50Q matched Magneto Impedance element. 
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The modulated reflected power is then demodulated by the AD8307 filtered, amplified 

and measured using a spectrum analyzer to find the signal-to-noise ratio of the modulated 

power to noise floor. The magnitude and resolution of field detection at that modulation 

frequency can then be determined by converting the power in dBm to aRMS voltage at son. 

The AC modulation current is produced by a solenoid with two coils, cal ibrated to 

0.38mA per Oe, driven by a higher frequency AC modulation current and a lower frequency 

AC field for measurement. At low frequencies (< 100Hz) the phase noise (lit) of the 

oscillator producing the carrier limits the performance of the sensor [I 0],[ 11] and has been 

shown in section 8.2.3 . A technique to overcome this problem is to firstly modulate the low 

freq uency AC field to be measured with a locally produced high frequency field (I to 5 kl-lz). 

The second local modulation field shifts the measurement field of interest to a higher 

frequency offset from the local modulation. This modulation field ideally needs to be higher 

in magnitude than lMI.-lz, however, it is d ifficu lt to drive extremely low currents at such 

higher frequencies into a large inductive, low resistance load, while maintaining a constant 

amplitude and phase of current. Therefore the system is running at an optimum level to 

maintain a precise stable driving current in the solenoids. The system is reviewed in Fig. 8.28 
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Figure 8.28 AC bias fOI·Iow.fi ·equency measurement system block diagram. 
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The oscillator of the lock-in amplifier was used to generate a sinusoidal signal of 

0.142V to 1 Jl V RMS at frequencies of I kHz, I 00 Hz and 20 Hz. This corresponds to an AC 

measurement field of 0.3 7 to 3 Jl Oe RMS in the solenoid. 

For a large field of 0.370e at I kHz a signal to n01se ratio (SNR) of 86dB was 

obtained, this corresponds to a resolution detection of 1.84 x I o-5 Oe. Reducing the field 

magnitude down to 3~L Oe decreased the signal to noise ratio to 18dB, corresponding to a 

resolution of detection of 3.73 x 10·7 Oe. At I 001-lz, the large field performance is reduced to 

a resolution of 8.14 X I 0"5 and the small field performance to 1.46 X I o-6 Oe this is confirmed 

by the small increase in phase noise of the oscillator over that bandwidth. Performance at 

50Hz is illustrated in Fig. 8.29 

However, by reducing the frequency to 20Hz a large change in perfomwnce is 

observed, large field resolution falls to 2.18 x I 0-4 Oe and the smallest magnitude of tield of 

measurement is 3.3 x I o·4 Oe with a signal to noise ratio of 13dB giving a resolution of 6.6 x 

I o-5 Oe. 

Under direct measurement sub-nano Tesla magnitude and resolution is only available 

at frequencies greater than I 00 Hz, due to the phase noise of the carrier generating oscillator. 

The upper limits of the demodulation resolution depend on the of the measurement circuit, so 

in this case in the magnitude of200MHz. 

However, this perfonnance is already several orders of magnitude more sensitive than 

the previous sensor design presented over a several magnitudes increase in bandwidth of 

operation, and recently published Magneto Impedance sensor technologies. The full table of 

results is presented in Fig. 8.30 
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Figure 8.30 Measurement results of direct external AC magnetic field modulation. 
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To improve the performance of the sensor for low frequency fields, the lock-in 

amplifier is used to produce fields of 5 kHz and 1 kHz at a magnitude of 0.370e, and an 

Agilent 33 120A is used to produce the measurement field at 20 and 1OHz for comparison 

with the direct measurement. Using an AC bias fie ld of 5 kHz, a 20Hz measurement field of 

magnitude 0. 186 Oe had a signal to noise ratio of 60 dB giving a resolution of I. 71 x 1 o-'~ Oe, 

small magnitude field detection was increased to 1.27 x 10"5 Oe with a resolution of4.78 x 10· 
6 Oe. 

Reducing the measurement field to 1OHz reduced the large field resolution to 2.0 I x 

I 0-4 Oe and small field magnitude detection to 1.35 x 10-5 with resolution to 5.27 x 10-6 Oe. 

Secondly, using an AC bias field of I kHz, a 20Hz measurement field of magnitude 

0.186 Oe had a signal to noise ratio of 56 dB giving a resolution of 2.59 x 10-4 Oe, small 

magnitude fi eld detection was 5.30 X I 0"5 Oe with a resolution of 1.86 X I 0"5 Oe. 

Reducing the measurement fi eld to I OHz reduced the large fie ld resolution to 2.71 x 

I 0-4 Oe and small field magnitude detection to 4.53 x I o-5 with resolution to 9.33 x I 0-6 Oe. 

A typical modulation spectrum of a 5 kHz AC bias with a 20Hz modulation spectrum 

(magnitude 2.58 x I o-2
) is illustrated in Fig. 8.3 1 A full table of the frequency measurement 

results are shown in Fig. 8.32. 
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Figure 8.3 1 Modulation spectrum of a 5 kHz AC bias signal with a 20 Hz 

measurement field and harmonics. 
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Figure 8.32 Measuremenl resulls of"an AC modulaled exlernal AC magnelicfield. 
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A thin-film Ml sensor was produced based on the measurement of the modulation of 

the incident renected power due to an external AC magnetic field. Direct field measurement 

performance at I kHz is a resolution of 3.73 x 10·7 Oe. AC biased performance at 5kHz of a 

20Hz field is a resolution of 5.27 X I 0"6 Oe, and at I OHz of 9.33 X I 0"6 Oe. The achieved low 

frequency magnetic field resolution is at least one order of magnitude higher than that 

reported for MI pulse-circuit elements. Provided that the phase noise of the oscillator at lower 

frequencies is suppressed and the measurements are taken in a magnetically screened room, 

the performance of the sensor could be fur1her improved, to the limits of intrinsic thermal 

noise present in any system, since the magnetic noise of the MI element is a number of orders 

of magnitude lower than the thermal noise. [ 12] 
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Chapter 9. Conclusions and future work 

This chapter aJms to underline the mam achievements of the present work and 

consider future work in continuation of this research area. 

The first stage of the research was dedicated to the understanding of magnetic 

properties of ferromagnetic materials and to the depth of knowledge required to study the 

origins of the Magneto Impedance effect. This course of guided reading provided strong 

foundation and is thoroughly presented in Chapter 2, illustrating the knowledge acquired. 

With this strong foundation, the study of magneto impedance effect could begin 

through acquisition of the various implementations of the theoretical effect presented in 

papers and reviews. The results of this review are presented in Chapter 3. 

In Chapter 4, in order to clarify and test the theoretical results, and also to produced 

Ml elements with improved characteristics, training was provided in high vacuum 

manufacturing techniques and a review of manufacturing methods was undertaken before 

beginning an extensive programme of manufacturing of thin films that were then utilized 

during the course of this work. 

With this in place, measurement of multi-layer samples with vanous types of 

materials, anisotropies, geometries and dimensions was carried out in order to produce 

sensitive, miniaturised thin films for sensor applications. The new combinations of materials, 

anisotropies and geometries produced exciting results in all areas. For Ml samples with a 

transverse anisotropy, which generally is the widest published body of work, Ml ratios of 

135% over a large useable fi'equency range of 500MHz in NiFe and CoSiB multi-layers, and 

Ml ratios of 240% in Co70.1Fe1.8Bn multi-layers over a useable fi'equency range of 50AH/z 

were presented. In particular, in conjunction with Stanley Electric Company R&D, sensitive 

static crossed an isotropy samples were produced, a relatively new field of published work, in 

which Ml ratios of 120% in Com.1Fe 7sBn multi-layers over a useable fi'equency range of 

50MHz were presented. The results of this crossed anisotropy study were published in [I], and 

the full range of results are presented in Chapters 5 and 6. 

With these results it was possible to tailor the response and produce samples for 

specific applications, which in turn could be used as sensitive magnetic transducers in 

electronic sensor circuits. A simple possible replacement Magneto Impedance thin-film 
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element for magneto resistive technologies was demonstrated, as a read head in longitudinal 

recording medium in [2]. For this purpose, the newly published crossed anisotropy multi­

layers results played an important role in achieving high sensitivity with respect to transverse 

external magnetic fields typical in longitudinal recording medium. 

An extensive study in magnetic sensor technology was undertaken to understand all of 

the available effects and specialised electronic techniques required to produce and measure 

them. Furthermore, a critical review of the current Magneto Impedance sensor pulse 

excitation technology was catTied out including manufacturing and experimental 

measurements of published electronic circuits. This review is fully illustrated in Chapter 7. 

From these reviews, the theoretical operation of oscillators and sinusoidal demodulators and 

detectors and their sources of noise were undertaken to further improve knowledge in these 

areas. 

In the final Chapter 8, two different sensor designs are presented, with the second 

significantly improving on the perfonnance of the first. The first sensor, which the results 

were presented in [3] concentrates on utilizing two asymmetrical Magneto Impedance (AMI) 

sensor elements combined differentially. The sensor is driven by a sinusoidal current of 90 

MHz biased with a DC current. For AMI film element of Smm long, 40pm wide and having 

anisotropy angle of 45° the field detection resolution is in the magnitude of I f1 Oefor both AC 

and DC forjields of- 20e magnitude. The maximum response speed is in the order of 1 MHz. 

These published results in themselves are equal in performance to the best previously 

published Magneto Impedance Sensors. 

After completion of the initial sensor, a shift in the use of Magneto Impedance to the 

measurement of low frequency fields was identified, primarily due to published results on 

magneto impedance sensors reaching resolutions and magnitude detection of large bio­

medical signals at higher frequencies. Firstly, extensive research was undertaken to improve 

the phase noise of the oscillator and sensitivity of the detection mechanism using novel RF 

techniques to improve the sensitivity at high frequencies, and secondly a method to improve 

the low frequency sensitivity by AC biasing the Jlvll element with a magnetic field. 

By taking the active 1/f noise reduction technique and applying it to nom1al portable 

commercial oscillator the phase noise was reduced to that of more expensive laboratory units. 

Using the concept of the active isolator and developing it to operate at higher frequencies, 

approaching that of traditional microwave circulators, a new method of carrier suppression 
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was utilised, which has scope for operation in many applications beyond areas of this work. 

By matching the Ml element to 50!1, the change of impedance could still be measured and 

utilised but now the element could easily and effectively be interconnected to standard RF 

equipment and measuring systems. By up converting a lower frequency field with a know 

modulating signal of a higher frequency it was possible to use lock in amplification 

techniques and other traditional signal processing techniques to improve the measurement 

performance external to the sensor itself. The combination of all these techniques in one 

sensor provided a leap forward that yielded several orders of magnitude improvement 111 

sensitivity compared to previously published MI based sensor measurements. 

A thin-film MI sensor was produced based on the measurement of the modulation of 

the incident renectcd power due to an external AC magnetic field. Direct .field measurement 

pe1:formance at 1kHz produced a resolution of 3. 73 x 10·7 Oe, AC biased pei:formance at 

5kHz of a 20Hz field is a resolution of 5.27 x 10·6 Oe, and at 10Hz of 9.33 x 10·6 Oe. The 

achieved low frequency magnetic field resolution is at least one order of magnitude higher 

than that reported for Ml pulse-circuit elements. 

Theoretical analysis of the noise in the system shows that direct improvement in 

performance could be produced provided that the phase noise of the oscillator at lower 

frequencies is suppressed and the measurements are taken in a magnetically screened room. 

The first stage of further work would be to design a system utilising laboratory based 

equipment for all stages of the sensor. At that stage it is considered to be a measurement 

system rather than a sensor unit. With continued improvement of the electronic components 

utilized in this novel method of Magneto Impedance sensor presented in this work, the 

possibility of measuring bio magnetic signals of the human body at room temperature 

becomes a distinct reality, beginning with detection of large particles in the human body 

before moving on to the large field components of the human heart. Further work is required 

in parallel on the thin film elements themselves, the present work needs to be extended to 

include new materials, dimensions and manufacturing techniques. Depending on application 

and the type of field to be measured, the thin film requires tailoring to that application, for 

instance the construction of arrays of sensors for mapping the vector rather than scalar 

magnitude of field. Development of a commercial Ml based sensor a specialised industrial 

application would be the best continuation of this current work. 
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CoFeB-Cu Layered Film With Crossed Anisotropy 
for Asymmetrical Magnetoimpedance 

Paul Delooze, Larissa V. Panina, Desmond J. Mapps, Kasuhiko Ueno, and Hiroyuld Sano 

Abstract-This paper reports experimental results on sensitive 
(up to 25%/0e) asymmetric magnetoimpedance (AMI) in mag­
net.idmetallic multilayers with crossed anisotropy, excited by a si­
nusoidal current (1-100 MHz) biased with a de current. The film 
structure having two outer magnetic layers Coro.l Fer .s Bll and 
Cu inner lead is made on a glass substrate using de sputtering. 
Each layer thickness is 0.5 J.llll. The magnetic anisotropy in the 
upper lit m is crossed with respect to that in the lower one, which is 
achieved by current annealing in a longitudinal magnetic field. The 
AMI characteristics are found by measuring the S11 microwave 
parameter using a HP8753 spectrum analyzer. The asymmetric 
behavior of the impedance is more pronounced at relatively low 
fret1uencies of about a few megahertz where the impedance-field 
characteristics are caused by domain-wall dynamics. The obtained 
results present a very good com1nomise on size, sensitivity, and lin­
earity. 

Index Terms-Asymmetry, crossed anisotropy, multilayers, 
magnetoimpedance. 

I. iNTRODUCfiON 

T HE RECENT increa ing interest in magnetoimpedance 
(MJ) in thin films is justi fied by sensor technology needs 

such as mm1aturizati on, and compatibility with integrated 
circuit technology. The Ml effect is based on the property 
of the high-frequency complex impedance changing enor­
mously under the application of a de (or lower frequency) 
magnetic fi eld. [I ] The impedance change ratio per Oersted 
in amorphous microwires is in the range of 10-100%/0e at 
megahertz frequencies [2], [3]. This sensitivity is at least one 
order of magnitude higher than that of giant magnetoresi tive 
(MR) materials. However, the Ml wires have much greater 
dimensions: 10-50 J.l.m in diameter and a few millimeters long. 
When decreasing the sensor element size, the maintenance of 
such high sensitivity becomes a problem. Special thin-film 
structures are employed to improve the MI performance in 
miniature elements (thickness < I ltm, in-plane size < 200 JLm, 
and length < 5000 J.l.m). 141 In principle, they consist of two 
outer magnetic layers and an inner highly conductive lead. The 
Ml ratio in the e systems has been proven to be much greater 
compared with that in a simi lar ferromagnetic single layer. For 
example, in CoFeSiB-Cu-CoFeSiB multilayers of evcral mi-
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Fig. I. (a) Film s tructure and principle quanti ties and directions. (b) Sample 
in-plane view. 

crometers thick, the impedance change ratio is more than 300% 
for a frequency of 10 MHz and a de magnetic field of about 
I 0 Oe. [5] Furthermore, pecial types of magnetic an isotropy 
can be realized in layered systems to improve sensitivity and 
linearity. The theoretical analysis predicts that cross-anisotropy 
films (magnetic anisotropy in the upper fi lm is crossed with 
respect to that in the lower one) exhibit asymmetric MI (AMI) 
characteristics. [6], [7] The concept of AMI was confim1ed for 
two-layer magnetic films [8]. This paper reports experimental 
results on sensitive AMl in three-layer films having two outer 
CoFeB magnetic layers with crossed anisotropy and Cu inner 
lead, excited by a sinusoidal current bia ed with a de current. It 
is demonstrated that AMI can be used to obtain a near-linear 
voltage response with enhanced cnsitivity, which is of a 
particular interest for magnetic sensor applications. 

ll. THEORY 

In magnetic/metallic multi layer [ ce Fig. I (a)], the large 
change in impedance occurs at frequencies, when the skin effect 
is not cs ential. The resistivity of amorphous CoFeB alloy is 
about 50 times larger than that of Cu, therefore, the resistance 
of the multilayer structure is mai nly detennined by the inner 
lead resistance R,,.. Then, the inductive term of the impedance 
which comes largely from the nux change in the magnetic 
layers can become dominant at relatively low frequencies. The 
expression for the impedance can be written in the form 

Z == R,. - j w if> / cl (I) 

where i == i0 exp(- jwt) is the ac current nowing along the 
inner lead (z direction), w is the frequency, and ii> is the total 
transverse (in-plane y direction) magnetic nux generated by the 
current i in the magnetic layers. The magnetic nux ii> is defined 
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Fig. 2. Theoretical impedance plots (nom1alized to the saturation value) for 
o = 50 • in single-domain films. The dashed lines show the generalization for 
equilibrium magnetization nip due 10 domain processes. 

via an average transverse penneability l~t - Then, the expression 
for the impedance reads [4] 

Z = R m ( 1 - 2j J.tt d~~2 ) (2) 

where d1 and d2 are the thickness of the inner lead a11d magnetic 
layers, respectively, and li1 is the skin depth in the inner lead. 
Expression (2) shows that depending on the value of tt1, the MI 
ratio in the sandwich fil m can be very large even at relatively 
low frequencies when li » d1 , d2. 

The impedance field behavior is detem1 ined by the fi eld de­
pendence of the ac transverse permeabi lity ttt , which depends 
on the equilibrium magnetization M 0 . We consider a case when 
the anisotropy axes in the ferromagnetic layers are di rected at 
an angle ±a to the z direction, respecti vely for the upper and 
lower magnetic layers, as shown in Fig. I (a). In this system, 
the magnetization process for M o as a function of the longi­
tudinal field (H ,"' 1J z ) exhibits asymmetry in the presence of 
de bias current h , which induces a circulatory field lh(x > 
0) = - Hb(x < 0) [6], [7]. Then, the penneability parameter 
and impedance also change differently for positive and negative 
H,.r. as shown in Fig. 2, where the theoretical impedance plots 
are given for single-domain layers (considering rotational mag­
netization processes only) for a = 50 °, Hb/ HT< = 0.3, HT< 
is the an isotropy fi eld. Thi behavior can be generalized for the 
case of the magnetic layers with domain structure considering 
that M o reverses at lower Hex due to the domain-wa ll motion, 
as shown by dashed lines. 

In thi s work, AMI was investigated in mult ilayered 
films havi ng two outer magnetic layers with composition 
Co70.2 Fe7.8 B22 and a Cu inner lead made on glass substrates 
using de sputteri ng. The sputter rates are 17 nm/min and 
50 nrnlmin, background pressure and Ar gas pressure are 
3 x 10- 5 Pa and 0.1 Pa, respectively. During the depo ition 
process, the temperature of the substrate is 35 °C, and a 
constant magnetic field of 200 Oe is applied in the transverse 
direction to the Ml element in order to add uniaxial anisotropy. 
Finally, a crossed anisotropy can be induced in the sample by 
current annealing in a longi tudinal fi eld at a temperature of 
215 °C. The value of the applied current and field can be varied 
to produce different angles of crossed an isotropy in the sample, 
in this case, 30 mA and 11 .8 Oe, respectively. The sample 
in-plane view and magnetic configuration is shown in Fig. I. 
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The anisotropy axis in the upper and bottom layers [desig­
nated as nK in Fig. I (a)] are at approximately 67° to the length 
direction (z axis), which was estimated from de hysteresis loops 
in the presence of a bias current Jb as shown in Fig. 3. The hys­
teresis of the sample was measured by using a pickup coil wound 
around the glass substrate of the sample (50 turns, 3-mm di­
ameter), and an identical compensalion coil wrapped around a 
plain glass substrate connecJed to a differential amplifier. The 
effect of the application of h is to cause a shift in the loop 
toward negative fields (or positive, depending on the applied 
direction of Tb) and decrease the overall hysteresis area. The 
anisotropy angle is found from the shifting field, which is given 
by Hb tan a = h tan a/2b (b is the fi lm width). 

Ul. M EASUREMENT AND R ESULTS 

In order to characterize the MI effect in the multilayer thin 
films, a measurement system was designed which is based on 
Hewlett Packard HP8753 network analyzer. The network an­
alyzer determines the way lhe sample under test modifies the 
signal flowing through it by using S-parameters (scattering pa­
rameters). 

The measuremems were made for frequencies of I to 
100 MHz, with an applied bias current h ofO to 100 mA and an 
external field Hex of ±50 Oe. The fi lm impedance is found via 
measuring the Su parameter (input reflection) and converting 
it to an equivalent parallel impedance. 



DELOOZ&t al.: CoFeB-Cu LAYERED FILM WITH CROSSED AN ISOTROPY FOR ASUMMETRICAL MAGNETOIMPEDANCE 3 

100 

•• 
•• 
'O 

~ 60 

~ ~0 

.9 
<;; •o 
Cl<: 

SE 
)0 

>O 

10 

·10 

-60 · :'0 4 0 

a 

·lO -~0 -10 10 :o )0 .40 !10 ~ 

Appli~d External Fi~ld H,. (0e} 

t.=25 mA 
Re\·erse Bins 

I,-25mA 

/ Differential 

Output 

- a ~ ~ ~ .w o w w ~ ~ ~ ~ 

Applied External Field H .. (Oe) 
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Fig. 4 shows how applying h to the sample modifies the 
asymm~trical response for frequencies of a few megahertz. 
Here, we introduce lhe MI ratio, defined as Ml = lOO% 
CIZI-IZsatD/IZsat l. where Zsat is the impedance measured at 
the maximal value of HP.r· 

When no bias current i applied, the response produces a 
single peak which is situated at the 0-0e fie ld point. The value 
of impedance rolls off until the saturation value is reached ( 16 
S1). A h is increased, the peak position is shifted to negative 
fields, whereas the change of impedance is suppressed for posi­
tive fields. This is consistent with the results of the de loop mea­
surements and with the theoretical plot shown in Fig. 2 (with 
dashed lines). Surprisingly, no hysteresis is seen in the experi­
ment. For h = 25 mA, the maximum MI ratio of SO% occurs 
at a fi eld strength of - 3.7 Oe with a sensitivity of 25%/0e be­
tween - 1.7 and -2.7 Oe. 

As the frequency of excitation is increased to around 30MHz, 
the following MJ characteristics are produced in the sample, as 
shown by Fig. 5. The response sti ll displays asymmetry, but the 
second peak is now present for positive fields. Additionally, the 
maximum MI ratio has increased to nearly 90%. 

This change in the characteristic response can be attributed 
to increa ing contribution of rotational effects to the ac perme­
abi lity J.Lt· 

fV. SENSOR 

AMI can be used to obtain a linear characteristic. For this 
purpose, it is required to combine the responses of two sam­
ples, each biased in oppos ite directions. It is essential that the 
response in one field directi on remains as suppressed as po -

sible. Additionally the transition point should begin at the 0-0 e 
point in both samples to produce a continuous response. This 
could be practically realized as the angle of anisotropy a field 
can be varied during manufacture in order to control the position 
of the peak. Using the 10-MI-Iz 25-mA response for both sam­
ples, the sensing element response in Fig. 6 can be produced. 
This response would allow high-resolution field measurements 
to be made in the range of ±3.7 Oe, with only a small reduction 
in the maximum MI ratio and loss of sensitivity around the 0 
field point. 
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Recent progress in thin-film magnetoimpedance (Ml) 
has raised a question of the application of this effect as 
sensi ng technology to magnetic recording. Normally, the 
Ml structures show the greatest sensitivity for magnetic 
fields applied in parallel with high frequency current [ 1-3]. 
This is in the direction orthogonal to that from the 
recording medium (4]. Therefore, the major step is to 
investigate how high frequency impedance of thin film 
materials changes in orthogonal fi elds. This paper considers 
the effect of a transverse magnetic field H 1 (with respect to 
the high frequency current) on the impedance of three-layer 
film having two outer CoFeB layers and an inner Cu lead. 
Each layer thickness is 0.5 microns and the film width is 50 
microns. In the case of a transverse an isotropy in magnetic 
layers, the MI behavior in a longitudinal fi eld H11 shows 
two maximums situated at ± H K, where H K is the 
anisotropy fie ld. The application of a transverse 
fie ld Ht originated from a de current flowi ng along wi th the 
high frequency one does not change the appearance of the 
MI characteristics suppressing the sensitivity to H 11 . As a 
result the impedance as a fu nction of Ht changes little 
when 1-1 11 is small, showing major variations around 

H 11 "'H K, as shown in Figure I (a). The situation is quite 
different for a cross anisotropy film in which the anisotropy 
in the upper film is crossed wi th respect to that in the lower 
film [5,6]. When no H, is applied, the impedance vs. H 11 
shows a single peak which is situated at the 0 field point. 
As H, is increased the peak position is shificd to negative 
fields, whereas the change of impedance is suppressed for 
positive fields. In this case the effect of the transverse 
magnetic field on impedance is the greatest at H11 =0, 
illustrated by Fig. I (b). 

In order to use the Ml element as a read head in 
longitudinal magnetic storage media, the sample must be 
orientated as shown by Fig. 2 (a). The z-axis, in which the 
high frequency current flows, lies perpendicular to the 
magnetic domains of the track. 'TI1e film length I in this 
direction would be limited by the track width. The film 
thickness d (along the x-axis) is parallel to the magnetic 
domains. Its dimensions would be limited by the size of the 
magnetic domains. On the other hand, the MI ratio 
decreases with decreasing d being only about 15% for d = 
0.1 cxm. The y-axi , which is along the width b of the Ml 
element, extends from the surface of the track. For given I 

'Corresponding author. Tel. : +44-1752-232599; fax : +44-1 752 232583; e-mail: l.panina@plymouth.ac.uk. 
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and d the value of b is limited by the demagnetising effect 
and a~ flux leakage (3]. Practical head design is beyond the 
scope of this paper. 
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The MI head would be biased by a constant DC current, 
shown as I b in Fig. 2, in order to set an operating poi nt wi th 
the highest gradient of H 11 = 0. When the head is over a 
magnetic domain. an intermediate value of the operating 
point impedance would be measured. This is because no 
magnetic fields emanate from the interior of the magnetis~d 

domain itself. As the Ml head passes over the domam 
walls that exist between oppositely magnetised domains, 
the field H, produced by uncompensated magnetic poles is 
equivalent to an additional current /1 in the MI element. . 

Depending on the direction of the transverse field, thts 
will add or subtract from the operating point current, 
causing an increase or decrease of the impedance. This 
would be measured in a synchronous system and converted 
to the corresponding information bit, shown by Fig. 2 (b). 
This system o f operation is very similar to that for the 
current magnetoresistive read heads [4] . 
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Fig. 2. (a) Geometry of the MI element for read head in 
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Fig. 3. MI ratio vs. I bat H1 = 0 with frequency of the driving 
current as a parameter. 

In order to characterize the effect of H 1 in the multi­
layer thin film, a measurement system was designed which 
is based on Hewlett Packard HP8753E network analyzer. 
The network analyzer determines the way the sample under 
test modifies the signal fl owing through it by usi ng S­
parameters (forward transmision parameters). The 
measurements were made for frequencies of I to I OOMHz, 
wi th an applied bias current, lh of 0.5 to 50mA and an 
external field H 11 of ± 50 Oe, to obtain the impedance 
saturation value Zsa1 (the impedance measured at the 
maximal value of H 11 ). Here we introduce the MI ratio, 
which is defined as MI = I 00%(1 Z 1- 1 Zsa1 1) / I Zsat 1- Th1s 
is required as the saturation impedance changes with 
frequency preventing a direct comparison between the 
values. As frequency is increased, the value of the initial 
M 1 ratio also increases, and conversely as the bias current 
is increased the Ml ratio drops, which reduces the 
impedance, as shown in fi g. 3. For a high frequency current 
in the range of 30-40 MHz the MI ratio fall s by 35% after 
the current is increased to 25mA and by 60% when it is 
increased further to 50mA. By setting the operating point 
to 25mA an onhogonal field of ±30e ( H, =I, 12b) 
produced by the media would cause a ±30% change in 
impedance in the sampl e. 

We conclude that crossed anisotropy multilayered films 
may have potential for magnetic recording applications in 
the fom1 of a sensit ive read head. All samples used in this 
paper were kindly provided by Stan ley Elect Co R&D. 
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Sub-Nano Tesla Resolution Differential Magnetic 
Field Sensor Utilizing Asymmetrical 

Magnetoimpedance In 
Multilayer Films 

Paul Del ooze, Larissa V. Panina, Desmond J. Mapps, Kasuhiko Ueno, and Hiroyuki Sa no 

Abstract-Asymmetrical magnetoimpedance (AM I) in mul­
tilayer thin films with cross anisotropy has been used for the 
development of a low noise, sensitive and quick response miniature 
magnetic sensor. The sensor is driven by a sinusoidal current of 
90 MHz biased wilh a de current. For an AMI film element of 
dimensions 5-mm long, 40-J.'m wide, and having an anisotropy 
angle of 45°, the field detection resolution is in the order of 1-J.' 
Oe for both ac and de fields of magnitude 1 Oe. The maximum 
response speed is in the order of 1 MHz. 

l11dex Terms-Crossed anisotropy, differential sensor, magne­
toimpedance, muJtilayers. 

L I TRODUCTION 

S ENSITIVE and quick response magnetic sensors are 
required for many industrial applications needing a fi eld 

detection re olution down to w-6 Oe (sub-nano Tesla range). 
A series of magnetoimpedance (MI) sensors utilizing pulse 
excitation of amorphous wires has been developed to achieve 
this target [I j . However, the MJ wire element has limitations 
in miniaturization, mass productivity and compatibility with 
integration technology. Thin-film technology is needed to avoid 
these limitation . Recent results on Ml in magnetic/metallic 
multilayers with cross anisotropy have demonstrated very 
high field sensitivity of the impedance change of more than 
30%-50%/0e, which i in the range of that in wires [2], [3]. 
Furthermore, by applying a de bias current, asymmetrical MI 
(AMI) can be realized wh ich is very useful for obtaining a linear 
sensor. In the present paper, we have developed a thin-film 
AMI sensor with estimated field resolution detection of w-6 

Oe. Additjonally the AMI in fi lms with different anisotropy 
angles and sensor performance are discussed as well. 

11. C ROSSED A NISOTROP Y SAMPLES 

For optimal sensor design, AMI was investigated in multilay­
ered fi lms consisting of two outer magnetic layers with compo-
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Fig. I. (a) Film slructure and principle quantities and directions. (b) Sample 
in-plane view. 

sit ion Co7o.2Fe7.8 8 22 and a Cu inner lead made on glass sub­
strates (see Fig. I). Each layer is 0.5 ftm thick and 5 mm long, 
produced by using a de sputtering technique. During the depo­
sition process, the temperature of the substrate is 35 °C, and a 
constant magnetic fi eld of 200 Oe is applied in the transverse di­
rection to the MI element in order to add uniaxial anisotropy. Fi­
nally, a cro sed anisotropy can be induced in the sample by cur­
rent annealing in a longitudinal field at a temperature of 2 15°C. 
The value of the applied current and field can be varied to pro­
duce different angles a, of crossed anisotropy in the sample 
(with respect to transverse direct ion as shown in Fig. I). Three 
variations of magnetic an isotropy, a = 15°, a = 30°, and 
a = 45°, and three variations of fil m width b = 40 Jt m, 

b =GO J.lm, and b = 110 Jt m were manufactured. The samples 
were characterized by utilizing a measurement system based on 
a Hewlett Packard HP8753E network analyzer. The measure­
ments were made for frequencies of 1- 100 MHz, with an ap­
plied bias current, h of 0 and 25 mA and an external field Hex 
of ±50 Oe varied over I 0 000 teps giving a 0.0 I Oe re olu­
tion. The film impedance is found via measuring the S11 pa­
rameter (input reflection) and convert ing it to equivalent parallel 
impedance [4]. 

The impedance field behavior of the sample is determined 
by the fi eld dependence of the ac tran ver e permeability 1£1 , 

which in turn depends on the equilibrium magnetization M0 . 

With crossed anisotropy and an additional transverse field Hb 
induced from the presence of the de bias currenl lb, the mag-
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netization process for Mo as a function of the longitudinal field 
(Hex Il l ) as shown in Fig. I, exhibits asymmetry [5]. Therefore, 
the permeabiHty parameter and impedance also changes differ­
ently for positive and negative Hex. 

When no bias current h is applied to the sample, the 
impedance versus H ex shows a shallow symmetrical response 
with only a small change of impedance. Applying h of 25 mA 
produces a higWy sensitive Mr response in one field direction 
and a flat response in the opposite direction. 

Then, by combining the two samples response's measured 
data obtained for opposed directions of h . using a computer a 
simulation of a near linear Ml characteristic can be obtained for 
certain anisotropy angles, as shown in Fig. 2. The best linearity 
and sensitivity (45% per I Oe) is achieved for o = 45°, b = 
40 1-Lm and a frequency of90 MHz. This makes this sample su it­
able for field sensing applications with maximum magnitude of 
±I Oe. However, without a suitable fonn of longitudinal mag­
netic bias, the fundamental AMl characteristic is insensitive to 
small magnitude fi elds (> 1 -m Oe). It should be noticed that as 
the width b is decreased from 110 to 40 ltm , the MI ratio is ob­
served to increase for all the samples. This very important result 
for sensor miniaturization is probably related to a better estab­
lished anisotropy due to the shape effect. 

ill. SENSOR DESIGN AND M EASUREMENT TECHNIQUES 

The proposed sensor design is based on a sinusoidal cur­
rent excitation biased with a de current. This is different from 
currently developed MI sensor circuits utilizing a CMOS-IC to 
produce a sharp pulse excitation. This pulse excitation method 
which combines low and high frequency hannonics (in effect , ac 
and de excitation) seems to be a very effective method: cheap, 
simple, low power consuming, making it suitable for portable 
designs. This sensor circuit with amorphous wires as Ml ele­
ments has a field resolution of 1 o-6 Oe, but only for ac field 
detection. Further improvements in field resol ution are ques­
tionable. The problems with these sensor circuits are related 
to utilizing a large number of harmonics and rather unstable 
low frequency bias, temperature deviations and digital ringing 
which all produce addit ional noise in the circuit limiting its res­
olution. Sinusoidal excitation ba ed on voltage controlled os­
cillators (VCOs) or temperature compensated crystal oscilla­
tors (TCXOs) have temperature compensation leading to highly 
stable, single harmonic signal sources. They are very low noise, 
in the order of 10 n V I JHz, but they are costly and require higher 
power consumption. To produce the AMI response in the sample 
it must be de biased with a constant current, which must remain 
stable as the impedance of the sample varies with external field. 
With pulse excitation U1is is generated with low frequency har­
monics (equivalent to therms value of the pulse train), which is 
difficul t to control. With a separate de supply based on a feed­
back constant current source, this bias current can be precisely 
set, increasing the sensors resolution. Again this introduces an 
additional cost and increased power consumption. With sinu­
soidal excitation, specialized Power and RF magnitude/phase 
detectors can be used to measure the effect of the change of 
impedance in the sample to a high resolution with low noise. The 
current technique with pulse excitation is to use synchronous 
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rectification and a peak hold circuit. This method experiences 
nonlinearity's due to switch ti ming and the time constant of 
hold circuit. It is necessary to use a differential based sensor as 
the AMI samples only experience a useful change of impedance 
in one field direction. The outputs of the two samples are sub­
tracted from one another to produce a response that is sensi­
tive in both field directions on a single axis. Additionally any 
noise that is common (and in phase) to both samples will be 
cancelled out during the di fferential process, enabling the de­
tection of fields to a higher resolution. 

IV. SENSOR IMPLEMENTATION 

The sinusoidal based differential sensor design consists of 
the following main stages, as shown in the block diagram in 
Fig. 3. All signal measurements were performed by the use of 
a HP41 95A spectrum analyzer set to I 00-kHz bandwidth with 
10-dB input signal attenuation. (A) A VCO, this was config­
ured to give an excitation voltage with a frequency of 90 MHz 
and amp)jtude of 1.45 mY; the noise at the fundamental was 
measured as 40 nV/JHz. The di fferential signal were com­
bined in a pair of amplifiers, (B), to provide the actual sinusoidal 
wavefonn. The amplitude of the waveform is 2.1 m V and noise 
at the fundamental is 25 nV/JHz after the differential stages. 
This provided a pair of accurate excitation signals for the AMI 
samples. In order to decrease the effect of the harmonics of the 
signal , it is passed through a pair of passive network low pass 
lilters (C) with a - 3-dB point of I 00 MHz. The signal is then 
fun her amplified in a pair ofRF power amplifiers (D). The sinu­
soidal signal is increased in amplitude to 25 mY (No load), with 
a noise of 3 tLV I JHz. This isolated buffer method of sinusoidal 
excitation experiences none of the problems of using the AMI 
sample as part of a Colpitts Oscillator or other multivibrator cir­
cuits [5]. 

The measuring cell (H) consists of two identical AMI ele­
ments, which are connected in parallel to ground. Each sample 
is driven by a separate sinusoidal output from the RF amplifiers 
and a de bias current source. The AMI elements are biased op­
positely to one another, making one sample sensitive to positive 
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Fig. 3. Block diagram of a sinusoidal based differential ensor and sample 
measuring cell. 

fields and the other sensitive to negative fields. When lhe sam­
ples are placed inside an ac longitudinal sense field of ±20 Oe 
at 120Hz, the change of impedance of the sample causes a mod­
ulation of the amplitude of the applied excitation signaL 

The small changes in impedance of the sample are measured 
by the power detector (E). The output is an offset de level, based 
on the average amplitude of the signal, wilh a small variation 
which matches characteristic response of the sample measured 
on the HP8753E. The response are then subtracted from one 
another in the instmmentation ampl ifier (G), by inverting the 
signal on the negative input and adding it to the signal on the 
positive input, noise common to both inputs is removed. The 
resulting waveform is then amplified by ten to produce an output 
level suitable for further signal processing. 

V R ESULTS 

Fig. 4 shows the output of the sensor' s instmmentation am­
plifier for a pair of matched samples with an anisotropy angle, 
a = 45°. This closely matches the previous computer sim­
ulation made from the HP8753E measurements as shown in 
Fig. 2. The differential response is near linear in the field in­
terval ± 1 Oe with expected loss of sensiti vity around the zero 
point. The output of the instrumentation amplifier was measured 
using the as "'GOO mV/Oe for a gain of 10 with a noise mag­
nitude of 1.226 ,LVIJ Hz (0.001 Hz component) and the noise 
floor of the sensor was of a similar magnitude. The resolution 
of the sensor can be defined by the signal-to-noise ratio (SNR). 
This shows how small an increment in output signal caused by 
an external fi eld can be before it is indistinguishable from the 
background noise of the sensor. The SNR was calculated as, 
SNR = 20 log10 (voltage signaUvoltage noise). For 100-kHz 
bandwidth, this gives 20 log10 (600 m V /387.7 JLV) = G3.8 
dB. This corresponds to a maximum effective resolution of I J.L 
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Pig. 4. Output of the instrumentatiun amplifier for a o = 45°, b = 40 11m 
sample with h = 25 m A and an excitation frequency of 90 MHz.. 

Oe for external ac and de fields with a magnitude in the order of 
I Oe. With further development, the loss of sensitivity to small 
magnitude external fields could be corrected with the addition 
of a longitudinal magnetic bias applied to lhe substrate for each 
sample either produced by an additional magnetic layer (7]. This 
would allow lhe high resolution of the sensor to be utilized for 
ub-nano Tesla magnitude measurements, as shown on Fig. 4 by 

the dotted line. 
In summary, we have developed a low-noise, highly sensi­

tive sensor circuit based on AM1. The high field resolution in 
a miniature sensor is achieved due to the high sensitivity and 
linearity of the fundamental AMI characteristics for a certain 
anisotropy angle in combination wilh the low-noise sinusoidal 
excitation and precise de biasing. 
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AC Biased Sub-Nano Tesla Magnetic Field Sensor 
for Low-Frequency Applications Utilizing 

Magnetoimpedance in Multilayer Films 
Paul Delooze, Larissa V. Panina, and Desmond J. Mapps 

Department of Communications and Electronic Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, U.K. 

A sensitive magnetic sensor based on the measurement of reHected incident power from magnetoimpedance (MI) multi layer-film el­
ement incorporated into 50 n matching network has been produced. The film system was fabricated by radio-frequency sputtering 
having two outer magnetic layers (NiFe), insulation layers (AI03 ) , and inner conductor Au. For optimized layer parameters, an Ml ratio 
of 135%, sensitivity 15%/0e, and linearity within - 2.5 and 5 Oe was obtained at a frequency of 434 MHz. An ac sense magnetic field 
applied to the M I element results in a small amplitude modulation signal due to the impedance variation, which can be measured on the 
carrier signaJ. For the sense field frequency of I kHz, the resolution of 3.73 X 10- 1 Oe was achieved. To improve the field resolution at 
lower frequencies (< lOO Hz), the use of an ac bias technique has been proposed. For a sense field of 20 and 10Hz with 5 kHz ac bias, 
field resolutions of 4.78 x 10- 6 Oe and 5.27 X 10- 6 Oe, respectively, have been obtained. 

Index Terms-AC bias, magnetoimpedance, multilayer, transverse anisotropy. 

I. INTRO DUCTION 

S ENSITIVE, high-frequency (ac) magnetic sensors are 
required fo r many industrial applications with the fi eld de­

tection magnitude and resolution down to 10- 6 Oe (sub-nano 
Tesla range). A series of magnetoimpedance (MI) sensors 
utilizing pulse excitation of amorphous wire has been devel­
oped to achieve this target [I]. However, the MI wire element 
has its limitations in miniaturization, mass produc tion, and 
compatibility with integrated technology. Ml e lements based 
on thin-film techno logy are needed to avoid these limitations. 
Results on Ml in magnetic/metallic multilayers with cross 
anisotropy have demonstrated very high field sensitivity in the 
same range as an Ml wire e lement [2]. Further studies have 
reported sensitivities in magnitude of I 0 n Oe at frequencies 
greater than I kHz [3], [4]. This resolution of detection puts 
GMI sensors in the range of re lati vely large bio magnetic 
signals such as magnetocardiography (rvO. I ftOe) which are 
normally measured by superconducting quantum interference 
dev ices (SQUIDs). Recent interest in Ml has concentrated on 
the measurement of low-frequency magne tic fie lds (< I 0 Hz) 
while maintaining the required sens itivity. In this paper, we dis­
cuss a technique to enable Ml for low-frequency fi e ld detection. 

11. EXPERI MENTAL CONFIGURATION 

A. Thin -Film Sensor Element 

For optimal sensor design, MT was investigated in multilay­
ered fi lms with transverse anisotropy, having two outer mag­
netic layers with composition NiFe, an AI03 insula tion layers 
and an Au inner made on glass substrate, with dimensions l = 5 
mm, d = 2.5 ~tm, and b = 200 ttm. T he outer layers and the 
inner lead are of thickness 0.5 /~m and the insulating layer is of 
80 nm. Fig. I shows an illustration of the sensor element struc-
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Fig. I. (a) Sensor e lement stmcture, (b) top view, and (c) Cltci tation and biasing 
quantities. 

ture a long with the excitat ion and biasing quanti ties. The ele­
ment was manufactured using radio-frequency (RF) sputtering. 
During the depos ition process the temperature of the substrate 
is 35 °C, and a constant magnetic fie ld of 200 Oe is applied 
in the transverse direc tion to the MI element in order to estab­
lish a un.iaxial transverse anisotropy. The e lement dimensions 
were selected based on model analysis of flu x leakage across 
the inner conductive layer due to edge effects. The flux leakage 
produces an effective ac demagnetiza tion factor that reduces 
permeabi lity making the sample less sensitive to external fie lds 
as the width is reduced [5]. The insulating layers such as Si02 

or Al03 between the conducting and magnetic layers typically 
help to improve the Ml effect [6] causing the drivi ng current 
ro fl ow only in the inner layer which enhances the MI ratio. l f 
NiFe and Au layers are sputtered on top of each other, the d if­
fusion processes evens out the resist ivity across the system and 
the current tends to be distributed more uniformly. The sample 
was characterized by utilizing a measurement system based on 
a Hewlett-Packard HP8753E network analyzer. The measure­
ments were made for a frequency of 433.75 MHz, and an ex­
ternal longitudinal de fie ld of ±50 Oe varied over I 0 000 steps 
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Fig. 2. Impedance of the film-system, biased with 5 Oe and matched to 50 0. 

giving a 0.01 Oe resolution. The film impedance is found via 
measuring the 8 11 parameter (input reflection) and converting 
it to equivalent parallel impedance. The sample was then de bi­
ased using a permanent magnet (5 Oe) to the most linear portion 
on the characteristic curve, and the impedance was transformed 
to 50 n by the use ofT-matching network at the bias point for 
uti lization with the sensor design. Fig. 2 shows the measured 
impedance of the sensor element as a function of de fi e ld cen­
tered at 50 Ohm. The impedance has an overall change of 135% 
with a sensitivity of 15%/0e and a linear behavior in the field 
interval - 2.5 Oe and 5 Oe. This characteristic itself is one of 
the best reported on MJ in multi layers of similar dimensions. 

B. Input Reflection Sensor 

The sensor measurement system illustrated in Fig. 3 is 
designed as a single frequency network analyzer to measure 
the magnitude of the incident refl ected power produced by a 
mismatch in complex impedance between the source and load. 
When impedance of the MI element matches the impedance of 
the source (50 11) the max imum amount of power is transferred 
to it. If the MI element is mismatched, some of the incident 
power is reflected back toward the source; this can be isolated, 
measured, and converted to a change in applied longitudinal ac 
field. The incident power or carrier is produced by a surface 
acoustic wave (SAW) filtered crystal oscill ator designed for low 
power, portable applications with an output of 7 dbm, phase 
noise of - 53 dBc at 10Hz, - 95 dBc at 100Hz, - 110 dBc at 
1 kHz. The reflected power is separated from the incident power 
by means of a directional coupler based on an active op-amp 
design which provides a nonmagnetic coupling approach for 
lower noise. With no external fi eld, the carri er is suppressed 
by 60 dB. An ac external field causes variation in the 50 n 
impedance of the sensor element, which is measured as an AM 
modulation on the suppressed carrier in the reflected incident 
power. This is then demodulated, filtered, amplified, and mea­
sured using a spectrum analyzer to find the signal-to-noise ratio 
(SNR) of the modulated power to noise floor. The magnitude 
and resolution of field detection at that modulation frequency 
can then be determ ined by converting the power in dBm to a 
root-mean-square (rms) voltage at 50 n. The ac modulation 
current is produced by a solenoid with two coils, calibrated to 
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Fig. 4 . Modulation spectrum of the carrier (434 MHz) wi th a I kHz and 50 Hz 
ex ternal field. 

0.38 mA per Oe, driven by a higher frequency ac modulation 
current and a lower frequency ac fi eld for measurement. At low 
frequencies (< I 00 Hz), the phase noise (1/f) of the oscillator 
producing the carrier limits the performance of the sensor [3], 
[4]. A technique to overcome this problem is to firstly modulate 
(chop) the low frequency ac field to be measured with a locally 
produced high-frequency fie ld ( I to 5 kHz). The second local 
modulation fi eld shi fts the measurement fi eld of interest to a 
h.igher frequency offset from the local modulation. This allows 
the measurement of the low frequency fi eld in the spectrum 
of the oscillator that is not affected by the phase noise. Fig. 4 
illustrates the modulation spectrum of a I kHz modulation 
fi eld and a 50 Hz measurement fi eld with no amplification. All 
measurements were taken in a nonmagnetically shielded room. 

IU. EXPERIMENTAL RESULTS 

A. Direct Measurements 

The oscillator of the lock-in amplifier was used to generate 
a sinusoidal signal of 0.142 V to I JL V rms at frequencies of I 
kHz, lOO Hz, and 20 Hz. This corresponds to an ac measure­
ment fi eld of 0.37 to 3 ~~oe rms in the solenoid. For a large field 
of 0 .37 Oe at I kHz, an SNR of 86 dB was obtained; this corre­
sponds to a resolution detection of 1.84 x I o-5 Oe. Reducing 
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the field magnitude down to 3 fLOe decreased the SNR to 18 dB, 
corresponding to a resolution of detection of 3.73 x 10- 7 Oe. 
At 100 Hz, the large field performance is reduced to a resolution 
of 8. 14 x 10- 5 and the small field performance to 1.46 x 10- 6 

Oe; this is confirmed by the small increase in phase noise of 
the oscillator over that bandwidth. However, on reducing the 
frequency to 20 Hz a large change in performance is observed, 
large field resolut ion falls to 2. 18 x 10- 4 Oe and the smallest 
magnitude of field of measurement is 3.3 x I o- 4 Oe with a SNR 
of 13 dB giving a resolution of 6.6 X I o- 5 Oe. Under direct 
measurement sub-nano Tesla magnitude and resolution is only 
available at frequencies greater than I 00 Hz, due to the phase 
noise of 1he carrier generating oscillator. 

B. AC Biased Measurements 

To improve the performance of the sensor for low-frequency 
fields, the lock-in amplifier is used to produce fields of 5 kHz 
and I kHz at a magnitude of 0.37 Oe, and an Agilent 33 120 A 
is used to produce the measurement field at 20 and I 0 Hz for 
comparison with the direct measurement. 

Using an ac bias fie ld of 5 kHz, a 20Hz measurement field of 
magnitude 0. 186 Oe had an SNR of 60 dB giving a resolution of 
1.71 x 10- 4 Oe, small magni tude field detection was increased 
to 1.27 x 10- 5 Oe with a resolution of 4.78 x 10- 6 Oe. Re­
ducing the measurement field to 10 Hz reduced the large fi eld 
resolution to 2.01 x 10- 4 Oe and small fie ld magnitude detec­
tion to 1.35 X I o- 5 with resolution to 5.27 X I o-6 Oe. Secondly, 
using an ac bia fi eld of I kHz, a 20 Hz measurement fi eld of 
magnitude 0.186 Oe had an SNR ratio of 56 dB givi ng a reso­
lution of 2.59 x 10- 4 Oe, small magnitude field detection was 
5.30 x 10- 5 Oe with a resolution of 1.86 x 10- 5 Oe. Reducing 
the measurement field to I 0 Hz reduced the large field resolu­
tion to 2.7 1 x 10- 4 Oe and small field magnitude detection to 
4.53 X I o- 5 with resolution to 9.33 X I o-6 Oe. A typical mod­
ulation spectrum of a 5 kHz ac bias with a 20 Hz modu lation 
spectrum (magnitude 2.58 x 10- 2 Oe) is illustrated in Fig. 5. 

The in troduction of the ac bias field for the modulation of 
lower frequency measurement fie lds has increased the perfor­
mance of small field detection by an order of magnitude for 
both 20 and I 0 Hz measurements. Detection of fie lds lower than 
I 0 Hz was possible but was limited by the 3 Hz band width of 
the spectrum analyzer. 

IV. CONCLUSION 

A thin-film M! sensor was produced based on the measure­
ment of the modulation of the incident reflected power due to 
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Fig. 5. Modulation spectrum of a 5 kHz ac bias signal with a 20 Hz 
measurement fie ld and harmonics. 

an external ac magnetic fi eld. Direct field measurement per­
fomlance at I kHz is a resolution of 3.73 x 10- 7 Oe, ac bi­
ased performance at 5 kHz of a 20 Hz field is a resolution of 
5.27 x 10- 6 Oe, and at 10Hz of9.33 x 10- 6 Oe. The achieved 
low-frequency magnetic field resolution is at least one order of 
magnitude higher than that reported for MI pul e-circuit ele­
ments. Provided that the phase noise of the oscillator at lower 
frequencies is suppressed and the measurements are taken in 
a magnetically screened room, the performance of the sensor 
could be further improved. 
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