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A DIGITAL FILTER/ESTIMATOR ~OR 

THE CONTROL OF LARGE SHIPS 

IN CONFINED WATERS 

M. J. DOVE 

ABSTRACT 

Aeronautical and marine casualty statistics indicate that the human 
being, when under stress or at times of peak load, can be a poor 
co-ordinator of the information available to him, parti:ularly w~en 

that information is from a number of different source:, as !S often t~e 

cb;e i~ ~odern ship~. Integration a~d co-or~ination :f i~7:icotiun 
its useful application in_ a closed loop feedtack syste~ :an redu:e 
probability of accident as has already been de~onstatsd in the case 
automatic landing systems for aircraft. 
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This thesis describes the development of a digital filter/estimator for 
use in conjunction with an optimal controller in tne auto~atic guidan:e 
of large ships in the approaches to a port. 

A non-linear rnatheffiatical model of a ship i; ~eveloped and validated by 
comparison with data from an actual ship. The model is then used in 
digital computer simulations of the passage of a twin screM car ferry 
into the Port of Plymouth. The simulations sho" that the control and 
guidance system is capable of safely navigating the vessel along t~e 

predetermined track through noisy measurements of position, course and 
speed, 

A reduced non-linear digital simulation model is then used in the 
design of a minimum variance filter suitable for installation in a 
physical model of the car ferry. Tests with this physical mod:! 
confirm the earlier full scale digital computer simulations, showing 
that a minimum variance filter is capable of giving very good estimat:s 
of the measurej stat;s, even though the measurement subsystems are 
unable to give accurate information because of noise. In the event of 
a malfunction of one or more of these measurement systems it is shown 
that the filter continues to give good estimates of all the states, 
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ABSTRACT 

Aeronau tic al and marine casualty statistics indicat e that the human 
being, when under stress or at times of peak load, can be a poor 
co-ordinator of the information available to him, particularly when 
tha t information is from a number of differen t sources, as is often the 
case in modern ships . Integration and co-ordination of information and 
its useful application in a closed loop feedback system can reduce the 
probability of accident as has already been demonstated in the case of 
automatic lan ding systems for aircraft. 

This thesis describes the development of a digital filter / estima t or for 
use in conjunction with an optimal controller in the auto atic guidance 
of large ships in the approaches to a port. 

A non-linear ma the matica l mode l of a ship is developed and validated by 
comparison with data from an actual ship. The model is then used in 
digital computer si mu lations of the passage of a tMin screw car ferry 
into the Port of Plymouth. The simulations shoM that the control and 
guidance system is capab l e of safely navigating the vessel along the 
predetermined track through noisy measurements of position, course and 
speed. 

A reduced non- linear digital simulation model is then used in the 
design of a m1n1mum variance filter suitab le for installation in a 
physical model of the car ferry. Tests with this physical mode l 
confirm the earlier full sca le digital computer simulations, showing 
that a minimum variance filter is capable of givi ng very good estimates 
of the measured states, even though the measuremen t subsystems are 
unable to give accurate information because of noise. In the event of 
a malfunction of one or more of these measurement systems it is shown 
that the filter continues to give good estimates of all the states . 
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CHAPTER 1. 

E X I S T I N G P I L 0 T A·G E M E T H 0 D S • 

1.1 Introduction. 

There can be little doubt that the overall standards of safety at sea 

are high, particularly with the traditional maritime natians. 

Cockcroft<·1981l states that of a total of 22,600 ship~, over 1000 gross 

registered tons, trading in 1979, 9400 were from the traditional 

maritime nations. He goes on to say that during the period 1977-79 

these countries lost 16 ships out of a total of 189 worldwide losses. 

Thus the traditional mariti,me nations ran 41 .. 59 per cent of the ships 

and i·ncurred ani y 8. 4 per sent of the !.asses.. This does suggest that 

high standards are not universal and. there may be considerable 

resentment among operators of high standard ships when casualties to 

sub-standard vessels result in the implementation of measures, such as 

marine traffic management systems, which give rise to increased 

operating costs, 

However this does not alter the fact that the total number of incidents 

is small compared with the number of vessels in service. Cockcroft 

<19781 states that during the period 1972-76 for ships over 10,000 grt, 

the ratio of collisions to total numbers is 0.64Z, whilst Fujii <19821 

gives the probability of head•on collision in the Dover Strait as 

O.OOBZ. This f:igure is increased to 0.3% in the Uraga Strait of Japan. 
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Fig.l.l Incidents in the Port of Harwich in 1976 . 

In the approac hes to a po r t, however 1 a different picture starts to 

emerge. In an analysis of marine accidents in ports and harbours the 

National Ports Council (19761 concludes that two thirds of ship 

collisions occur in port and harbour areas. Figure 1. 1 s hows the 

location of incidents in the port of Harwich in 1976 whilst figures 1.2 

and 1.3 give the locations of reported groundings and collisions in the 

Humber for the period 1969-79 . Coldwell (1981) shows that there are 

100 traffic move•ents per day in the Humber Seaway 1 resulting in either 

a collision 1 or a collision with a floating mark, or a grounding, at 

least .once a week. Fujii an d Shiobara (19711 have analysed a nu•be r of 

collisions. In the case of 654 collisions to all sizes of vessel they 
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report that 30.47. take place in Straits , 44 . 6'l. in harbours , and 257. in 

th e open sea. 

1969- 1979 

Fig . 1. 2 Groundings in the Humber Seaway (1969-1979) 

/969- 1979 

Fig . 1. 3 Collisions in the Humber Seaway (1969-1979> 
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Visibility is a major factor in the worki·ng of a port and whi 1st the 

number of accidents may not increase in poor visibility this may be due 

to~ decrease in the number of vessel movementJ, leading to loss of 

earnings for both the port and the ship operator. The cost of an 

accident will also increase as the ship's size increases. Not only 

will the cost due to loss of earning capacity ·be greater, but the cost 

of repair or replacement wil.l increase. Environment~! aspects must 

also be considered. These may include the spillage of large quantities 

of crude oil at, or near, the approaches to a port, or an explosion on 

board a ship berthed near the centre of a densely populated area. The 

social costs of an accident might even exceed the cost of repair or 

replacement. Stratton and Silver !1970) report that the settl·ement of 

three million pounds in the Torrey Canyon case was less than the total 

expense incurred i;n pollution clearance along the Cornish coastline. 

Safety, cost and the environment, are the main factors which have led 

to a greater degree of control over the movement of ships i.n confined 

waters. The reasons for incr~ased control are well documented in, for 

example, the Proceedings of the International Symposium on Vessel 

Traffic Services <1981) and may be summarised as :-

1. The requirement to use port facilities as economically as 

possible; 

2. The limitations brought about by the increas·e.d size and draft 

of ships when compared with channel widths and depths; 

3. The limitations of weather including fog and poor visibility. 

Marine Traffic Control Systems !M. T.Cl are being developed and used i·n 

many of the Worl·d's ports. The development of a shipborrie automatic 
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control system to be used in the pilotage phase of a voyage would 

complement M.T.C. and improNe its effici•ency by allowing ships to be 

berthed automatically in all weather conditions. Safety factors would 

be improved and hence the costs of damage, and probably insurance, 

wou·ld be reduced, whilst helpi:ng to dispel publi·c unease over the 

social and pollution problems resulting from a collision or grounding 

in the approaches to a port. This thesis is concerned with the design 

of such a system. In particular it concentrates on the problem of 

obtaining the best possible values of the measured stat~s to be used as 

inputs to an optimal controller. 

1.2 Traditional Methods of Pilotage 

In the process of bringing a vessel safely to h~r berth great emphasis 

is placed upon the skills of the Master and pilot; these skills are the 

traditional ones of seamanship and ship handHng. The ship is conned 

along the buoyed channel and, provided the speed is kept below an 

acceptable limit !normally defined by the harbour authority), provided 

she is kept within the buoyed channel, and provi·ded the necessary 

action is taken to avoid colUsion, safe pilotage and berthing will 

take place. The experienced navigator does not often need to perform 

the practice of "putting her on the chart" within the confines of the 

port, as knowledge of his position relative to buoys and landmarks will 

normally be sufficient. Duri.ng the pilotage the experi·enced man relies 

heavily on transits. He watches the jackstaff in the bows and 

estimates the rate of swing of the vessel against the sky-line. He 

knows that when a particular pylon and chimney stack, say, are in line 
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it is time to jtart applying helm to go round the next bend, and so on. 

He is aware of the characteristics of the vessel and knows how t~ 

allow for the direct infl'uences of wind, sea and tide. 

The safe berthing of a VLCC involves not only the last few hundred 

metres of approach. In order to give sufficient time to secure all 

tugs and leave a safety margin before moderate braking must commence it 

is important that the berthing pilot should take over the ship at 

considerab·ly more than a mile from the berth, and at a speed of about 

four knots. The figures quoted here are for berthing a super tanker at 

the Esse Oil Terminal, Fawley, Southampton, but they are typical of 

the requi·rements of any port where an estuarial phase eMists. Ideally 

the pilot will then attempt 1o stop the shi•p abeam of the jetty and 

move her bodily alongside, keeping her parallel to the jetty 

throughout. In practice, however, corrections have to be made for 

quite substantial swings and overshoots, and to obtain maximum 

directional control with the rudder docking is normally commenced 

against the flow of the tide, so that on a flood tide the ship will 

have to be turned before berthing. 

The i•ncreasing size of tankers and bul.k carriers has made the judgement 

of speeds and distances for the final berthing phase progressively more 

d.tff~cult. It is well known that the momentum possessed by even a very 

slowly moving VLCC is very large. To reduce this momentum it is 

necessary to decrease the si•deways veloci·ties. However, the human eye 

cannot perceive very slow motions. Van Manen and Hooft 11970) suggest 

that the smallest yaw velocity the eye can detect is about 1 minute of 

arc/second; an analysis of ship manoeuvrability experiments on 
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full-scale vessels shows that they move so slowly during berthing th•t 

a f.air amount of the accompanying a•lterations i'n acce}erati-on and 

velocity are not perceptible to the man on the bridge. Thus, some 

information i's not available to the pilot due to his own physiologi•cal 

I imitations. 

To meet the need for much more accurate information on sideways 

velocities a version of Doppi·er radar, known as SAI'Il (Speed of Approach 

Measurement Indicator) 1 has been developed by the Royal Radar 

Establishment. With the aid of this sensor, which is capable of 

measuring rates down to 0.015 m/s or 0.03 knots, a consistent reduction 

in the velocity of impact has been achJ*ved. At Fawley for example, 

the jetty f.enders had been designed to absorb ~mpacts of up to 0_.1 m/s 

with the ship parallel to the jetty. Pilots now ai-m to arrive at 

speeds of less than 0.06 mls, and in most cases speeds less than 0.03 

m/s are achi~ved. 

Although Doppler speed measurements are available from the jetty the 

pilot still requires an overall picture. In practice he must rely upon 

the ship's officers and crew for information from revol,ution indicator, 

compass, log, radar, telegraph and rudder indicator, but there i-s still 

a strain upon him and the possibility exists that too many things will 

claim his attention at one time. That there have been so few accidents 

involving VLcc·s is a tribute to the ability of the p.ilots invol-ved, 

rather than the control system employed. 
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1.3 The Case for Automatic Pitotage 

The existing methods have evolved over a great l•ength of. time, and in 

the main the complicated process of pilotage and berth1ng is carried 

out without the aid of a great deal of sophisticated equipment. There 

is no denying, however, that impressive improvements in berthing have 

been brought about by the use of Doppler radar. Thi·s serv.es to 

highli'ght the weaknesses of the traditionai methods when applied to. 

large ships and when one considers that a major factor in ship and 

aircraft casuaities is human error (The Panel on Human Error i:n 

Merchant Marine Safety (1976) showed that B5Z of all marine collisions 

were due to human error) it becomes apparent that shipping must be 

controlled in the berthing and estuaral phases of a voyage. In the 

majority of cases this control is being exercised through the auspices 

of a port navigati,on service, which exists primarily to pass 

information to the ship. ·In the past this information has largely been 

advice, such as th• number of vessel~ movi:ng in the channel, the tugs 

avail·able, or the berth allocated. More recently navigational data has 

been supplied, for example, from a shore- based radar system, and 

increasingly there is a movement towards a greater degree of control 

from ashore. Mari'ne traffic control systems are showin~ that, although 

much of the equipment is still of a provisional character, the 

shore-based direction of large ships is not only felsible but 

straightforward, and the port navigation services have the capacity to 

fulfil tasks of this nature. 

In the context of automati·c pilotage a control system is defined as a 

device which controls the flow of energy or information within the 
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system in such a manner as to achi:eve optimal performance. The system 

may be completely automatic as in the automatic steering devices found 

in most modern ships or it may include the human operator as part of 

the system, as in manual steering systems. There may also be a mixture 

of the tw~ and in this context Koyama <1972) has predicted improvements 

to the course keeping and handling qualities of an unstabl.e ship by 

adding subsidiary automatic control to manual steering. 

A common arg~ment against any form of automatic navigation is that it 

will f.urther reduce the individual's right to freedom of the seas. In 

commercial terms this may be seen as a conflict between the traditional 

role of the mariner and the organisation he serves. Further, it i.s 

suggested that the traditional methods allow the navigator maximum 

flexibity. For example, if a tug's wire parts he can resort to a 

contingency pian involving., say, main engines and an anchor. What is 

perhaps igMored i·n these arguments is that the ship i·s part of a very 

complex transportation system, with the needs of organization, of 

necessity, restricting the role of the mariner. 

Further, while no automatic control system cou~d claim to be as 

adaptable as the human controller, provided the degree of reliability 

is approaching 100% a much more precise and consistent process would be 

achieved by automatic means. In the case of system failure there would 

always be the need for the navigator to "manually override".; thus the 

introduction of automatic control would make the existing Hexibl.e 

system the last rather than the first resort, so that the safety factor 

would be improved. 
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A note of caution needs to be introduced at this point however. 

Non-automatic piloting calls for considerable experience. With the 

advent of shipbo~rne automatic systems, where does the human gain his 

experience? As a relatively inexperienced navigator wil·l he be 

satisfactory a~ a fa11 back i'n the event of system failure? The answer 

to the second of these questions is probab·ly no, although reports from 

the 1982 Falktands Campaign suggest that the British seafarer has l·ost 

none of his traditioMal skills, in spite of the automatic control 

systems and electronic aids at his disposal. The answer to the first 

of these questions seems to be bound up with developments in ship 

manoeuvring simulators. The growing interest in training· mariners 

under the circumstances which may confront them on board ship., may 

further be strengthened by the training of pilots for an automati.c era, 

and would certainl·y have an offshoot in improved training programmes in 

which ships' officers, pilots, and the shore-based port navigation 

service staff could be involved, thus leading to improved confidence in 

and reliabili'ty on the port navigation service. 

Reference has already been made to the traditional skills of shi•p 

handling and seamanship and to the interpretaUon placed by the 

experienced navigator on transits, buoys, landmarks, tides and winds. 

The control engineer would look upon the pilotage from a different 

angle. He would visualise the ship as a multi-loop feedback system, 

considering errors in position and velocity. To minimize these errors 

he would seek to measure rate of change of position (linear velocity), 

course error and rate of change of heading <angular velocity), together 

with along-track and off-track position errors, using these parameters 
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to keep the ship on a desi•red track. But. in effect the shi,p 's oHicer 

is doing t~e same thing. In looking for position errors he has only to 

glance at buoys or other navigational marks to know whether the shi·p is 

on track. When position errors are detected the helmsman is ordered to 

alter course to correct this error. For hi·s part the helmsman, once 

given a course to steer, detects errors in this course and corrects 

accordingly. 

There ar~ of cours~ many problems to be considered when developing a 

completely new system. The cost of design and development will be 

high, and production costs, initially at least, will reflect these high 

development costs. The incremental benefits to be derived from such a 

system are, it would argued, very small, since standards are already 

hi,gh, and may not justify the expense. However it must be pointed out 

that the fitting of advanced electronic navigation systems has led to 

substantial savings in time and fuel costs. The fitt~ng of an 

automatic pilotage system would then help to mi,nimise delays in the 

approaches to a port; probably reduce insurance costs, and the cost of 

the system would be a small fraction of the cost of the ship together 

with the va~ue of her cargo. 

Safety and reliability may be taken together and here one can draw upon 

the experience and developments in the aero-space industry. 

Reli·ability today is extremely hi·gh; taking a navigation satellite as 

an example it is designed to have a life of at least ten years. In 

automatic landing systems fail safe devices are fitted so that the 

probability of error is considered a factor of ten better than the 

probability of the aircrew making an error. 
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The overall performance of the system might be limited by the inputs 

from the sensors, as many navig~tion aids have limitations when used in 

confined waters. For example a marine radar may only have a bearing 

error of one degree, whi'le Decca Hi-fix may experience distortion of 

the grid near metal objects and: doppler radar is slightly affected by 

reduced visibility. Off-shore these are all acceptable errors, but in 

the final stages of pilotage the sensor errors may le~d to unacceptable 

system errors, unless some method of minimising random errors i.s 

i-ncorporated, 

No system can be completely reliable, although modern integrated 

systems using Kalman Filter techniques are able to accept partial 

faUure, especially in the measur-ement sub-systems. Thus a fall-back 

or stand-by system .would have to be i·ncorported. Jhis might consist of 

a second or alternative system, but is more likely to be a manual 

overri·de. This brings one to the human aspects. Lack of experience 

will be increased by the use of a reliable automatic system, but there 

is also the job satisfacti-on of the navigator to be consi·dered, It is 

certainly true to say that he would not get the same sense of 

achievement from supervisi•ng an automatic system as he would from using 

the ex.isting methods. 

None of these problems is insurmountable, but they do suggest that the 

transition to an automatic system would take plac• over a period of 

several years. Both Holder 11975> and Zuidweg 11970) suggest that 

automation at sea is on the increase, Among the interrelated factors 

which contribute to the continued development in this area they list 
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the difficulties in retaining qua:J'if.i.ed personnel in sufficient 

numbers, the growing need for optimal operation of ships, increasing 

traffic density and ship size, and advances in 
er 

technolgy. 
1\ 

This 

author!1974l has suggested that marine traffic control systems !MTCl 

could be further improved by the development of automatic systems for 

the pilotage of large ships. Any increase in control in congested 

waters will not be developed rapidly, easily or inexpensivel·y, but 

there wou~d appear to be no other long term alternative. The 

Conference on Mathematical Aspects of Marine Traffic !1979) highlighted 

some of the problems and sugQested some methods to overcome them. 

These include Traffic Routi·ng Schemes, Vessel Traffic Services and the 

use of improved navigation systems, both ashore and af'l.oat. 

1.4 The Present Work 

The aim of this project was to design an optimal filter/estimator as 

part of an automatic track and heading control system, to be used in 

large ships in the approaches to a port. In this context the port 

~pproaches were defined as the area between the pil·otage station and 

the vessel's berth. It did not include the process of berthing the 

vessel. The work was part of a larger research project carried out by 

a small team ~t Plymouth Polytechnic. The research was directed 

towa~ds poss~ble control and guidance systems which· might be used 

rather than the human and environmen~al problems ~hich woul~ have to be 

solved before a ship could be automatically berthed in a manner similar 

to the automatic landing of an aircraft. 

The work of Kalman and Koepcke !1958!, Joseph and Tou <1961), and 

-13-



Gunckel and Frankli'n 11963) reduced a given optimal control problem to 

two separate optimisation probl'ems, and became known as the Separation 

Principle. Its most striking feature is that the feedback control gain 

matrix is independent of all statistical parameters in the probl•em, 

whereas the optimal filter is independent of the matrices in the 

performance measure. This provided a natural breakdown of work as 

indicated in Figure 1.4. At the start of the project the two 

researchers, R.S.Burns and the author of this thesis, de.v.!iloped 

suitable mathematical models for use in the computer simulations. 

R.S.Burns 11984) then concentrated on the design of an optim~l 

controller whil·st the author's work was directed towards the best 

estimate of the state vector usi'ng mi'nimum variance jechniques. 

Chapter~ 2/!> describe the linear, quasi-linear, and non-linear 

mathematical models developed for use in the digital computer 

simulations using the Polytechnic Prime 850 digital computer. During 

the period of the research a Prime 9950 was added. After a brief survey 

of navigational sensors Chapter 4 describes the use of variance as an 

indication of random errors. This leads to the requirement for minimum 

variance filters. The design procedure for the minimum variance filter 

is described in Chapters 4 and B. 
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STEERING J SHIP 1 GEAR & t------~1 11-----, 

ENGINES 

MATHEMATICAL MODELLING CARRIED 
OUT BY BOTH RESEARCHERS 

X (k + 1) 

----------------------------------------------------------
u(k) 

DESIGN OF OPTIMAL 
CONTROLLER (R.S. BURNS) 

DESIGN OF OPTIMAL 
FILTER (M.J. DOVE) 

I SENSORS I 

z(k + 1) 

I l x(k+l) I I .....____ CONTROLLER ~--'---~--11 FILTER ~~--.-J 

Fiq.1.4 Division of Work 

A description of the work carried out using the various full scale 

computer model simulations is given in Chapters 5 and 6. Work started 

with a linear model of a Hariner hull and was developed through 

quasi-linear to non-linear full scale computer models using the Mariner 

hull and a twin screw car ferry. A full analysis of resulfs is given, 

showing the need for a non-linear computer model in this type of 

simulation wor k. 

The complex "eight state " full scale computer model of the car ferry 

was then simplified to a "four state" model and tested in computer 

simulations. The f i lter software was then developed for use in a 
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"physical" model of the car ferry. This "physica1" model was fitted 

with an optimal controller and estimator and tests were carri~d out on 

a reservoir. Details and results are given in Chapters 8 and 9. 

Results from the digi,tal computer simulations and "physical" model 

tests are discussed in Chapters 7 and 9. These show that both the 

computer and actual models correctly simulate the passage of a large 

ship in the approaches to a port and that the combination of an optimal 

filter and controller, together with correctly chosen sensors can be 

used to automatically control the vessel so that it follows the correct 

track in to, or out of harbour. 

-lb-



CH AlP TER 2 

T H E L I N E A R M A T H E M A T I C·A L M 0 D E L 

2.1 Introduction 

From the early 1960's feedback control theory was given a strong 

impetus by optimization theory, as developed by Kalman and Bucy-<1961), 

The approach relied heavily upon the matrix formulati-on of "state 

variables" and advanced presentation of control and estimation theory 

requires an understanding of this viewpoint. 

Most formulations of the control and estimation probl·em implicitly 

contain multiple inputs and outputs and are referred to as 

multi-variable systems. Consideration was given here to the problem of 

obtaining such a mathematical model, or models, of the ship's motion 

through the responses of this system to external stimuli. The 

mathematic~! models used "ere thus required to be in state space form 

if optima1 control and estimation techniques were to be employed and if 

on-line computer control was to be implemented. 

The constant forward speed linear model was based upon the work of 

Zuidweg <1970!. This chapter describes its development. However, in 

restricted waters it is necessary to allow for variation in forward 

speed and large alterations of course. Chapter 3. goes on to de'scri·be 

how a quasi-linear model, based upon non-dimensional hydrodynamic 

coefficients and incorporating the surge equation, was developed. From 

this qua.si-·1 in ear model emerged the full non-! in ear model. The work 

included formulation of the continuous st~te equations <time invariant 
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for the I in ear model and time variant f.or the quasi- and -non-1 in ear 

models) together Nith the techniques used to obtain the solutions in 

discrete time. The time variant nature of the quasi-linear and 

non-l-i-near models required computation of the discrete state transition 

matrix at each sampling instant. Open loop simulations were carried 

out for all three models. The results obtained were· compared with 

actual ship-data based upon a Mariner class hull. 

2.2 Co-ordinate-Systems and Sign Conventions 

Within the confines of a port the heave, pitch and roll moti'ons were 

considered suffi-ciently small for their influence on sway, surge and 

yaw to be negligible. It was then assumed that the ship's centre of 

gravity was constrained to a horizontal plane, to be referred io as the 

plane of motion and that the longitudinal and lateral axes remained in 

this plane at all times. 

Two right-handed co-ordinate systems were used, the f~rst with respect 

to the ship (x~ ,y .• ) the second with respect to the sea bed <xa,Yo ) • 

These are shown in Figure 2.1, and the positive directions are as 

indicated. The origin of the ship co-ordinate system was ass~med to be 

at the ship's centre of gravity. The axes of the earth co-ordi'nate 

system are as illustrated in Figure 2.1 to conform with standard 

navigational practice, i.e. the Xa axi.s corresponds to the direction of 

True North. The positive directions are as given in Figure 2.1 
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Fig.2.1 Co-ordinate Systems 

2.3 Develooment of the Linear Model 

It is con venient to describe the motion in ter~s of a moving system of 

axes coincident with the mass centre of the hull as illustrated in 

Figure 2.1 . This gives rise to an Eulerian set of equations of moti on 

which may written in the form:-

. 
mu mvr = X 

. 
mv + mur = Y (2. 1l 

l,.r = N 

For deep water conditions it is then assu•ed that the forward speed of 

the vessel is constant and the X equation can be discarded. Thus only 
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the lateral and angular movements are considered in the development of 

the I i·near model. The I i near equat'i ons are re.tai ned by assumi'ng that 

the transverse and angular velocities and accelerati:ons of the ship are 

with respect to the water, plus. the effects of rudder. <Thi-s author 

(1977)). 

In modelling disturbance inputs such as wind, waves., current and depth 

of water it was assumed that in the approaches to a port:-

(i) Wave excitation can ·be ignored; 

(ii) Accelerations of current and wind are small enough 

to be neg~ected; 

(.i i i ) The d~pth of water i·s such that the mathematical 

model is not affected. 

Techniques employed in obtaining expressions for hydrodynamic forces 

are well covered in the li-terature, for example Lewison <19}3). The 

identities of Y and N can be found by lineari'sing them as first order 

approximations using Taylor's series expansion. The second and third 

parts of equation <2.!) may then be re-written as:-

Rearranging the above equations and expressing them in matrix form 

gives:-
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(2. 2) 

Where, 

and, 

r 2 ;I = rm-y V - y r J -l [y] 
~3J -Nv 1.-Nr N 

2.4 The Steering Gear and Main Engine Models 

The steering gear and main engine were both modelled by first order 

differential equations. For the steering g~ar, if So is the demanded 

rudder angle and SA the actual rudder angle, then:-

(2. 3) 

where T~ is the closed-loop time constant of the steering gear. 

Similarly, for the main engine, if n0 is the demanded engine speed and 

nA the actual speed, then, 
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nA = <no- nAl / TN ( 2. 4) 

where TN is the closed loop time constant of the main engines. 

2.5 Ship and Earth Axes 

The forward and lateral components of velocity relative to the ship ' s 

reference system are u and v. They may be related to the y axis of the 

earth ' s reference system by:-

Ya = u sinv + v cos'f' (2. 5) 

If~ is small then <2 .5 1 beco111es:-

Ya = u~ + V (2. 6) 

2.6 State Space Formulation of the Linear Model 

Equations (2.21, <2.31 and <2 . 61 are now combined and expressed in 

state space form as:-

. 
SA = -1/T .. 0 0 0 0 SA + 1/T,. So + 0 0 tl (2. 7) 

. 
F:z, V F:z:z F:z::s 0 0 V 0 G:z:z G::s:z 

• r F::s, F::s:z F::s::s 0 0 r 0 G:s:z G:s:s 

. 
'P 0 0 0 0 ~ 0 0 0 

0 0 0 u 0 Yo 0 0 0 

Equation <2.71 is the form of the state variable equation fo r the time 

varying linear system. 

i<U = l!<tl + Es!!<tl + !i.;~<tl <2. 8) 

The linear equat ion <2./l was not used in the coaputer simulations, but 
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is the base from Mhich the quasi-and non-linear models ~ere developed. 

As such it is included here for completeness. 
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CHAPTER 3 

NON-LINEAR MATHEMATICAL MODELS 

3.1 The Quasi-Linear Model 

The linear equations of motion 12.21 only include the first terms of 

the Taylor expansion. They do not therefore make allowance for 

a,lterations of course or speed and are of limited use when considering 

the movement of a ship in the approaches to a port where large heading 

and speed changes must take place if the vessel is to successfully 

navi~ate the buoyed channel. However the linear model has been 

extensively used by researchers such as Zui·dweg (1970) and Bech (.1972). 

It was therefore decided to continue along these Unes by assuming 

that the vessel would fol.low a straight track during each sample time. 

If sample times were kept small it was reasoned that the linear 

equations .could then be extended to incorporate the .surge equation and 

thus make allowance for variations in forward speed. Because the 

forward speed appears i·n the state transition matrix however, this is 

no longer constant and has to be recalculated after each sample time. 

To allow for forward speed and to incorporate engine revolutions the 

state, control and disturbance vectors are now defined as:-
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X , = SA u l = So "'• = Ue 

x2 = nA u2 = no "'2 = Ve 

X:s = X "'" = Uo.. 

. 
X4 = u = X H4 = VC.. 

x., = y 

x .. = V = y 

X7 = 
"'" . 

X a = r = 
"'" 

The equations for surge, sway and yaw can then be written:-

• X.; u X.,(u+uel XnnA mu - mrv = + + + X.,J:i"" ( 3. I l 

mv + mru = v~v + Yv(V+Vcl + v:. r + Yrr + y g&A + YnnA + v ...... vo.. (3. 2) . 
N~V I. r = + Nv(V+Vcl + N;.r + Nrr + N,sS'A + NnnA + Nvo-V~ ( 3. 3) 

From (3.1) 

(3. 4) 

The notation followed here is to gi-ve a suffix according to the 

position in the state vector, i.e.), relates to iA the first state 

vector and is here given suffix 11 ~a relate~ to r, the eighth state 

vector, and so on. 

Where a double suffix appears the coefficient relates to the derivat·ive 

of the appropriate state. For example suffi-x 88 relates to the 

derivative of the eighth state. Coefficients relating to the 

disturbance vector are given the suffix such as wl, w2 according to 
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their position in the disturbance matrix. 

From ( 3. 2) 

v = y l SA + Y 2nA + Y 4U + v .. v + Yar + Year + Y w2V + Yw4VQ. ( 3. 5) 

From ( 3. 4) 

r = N tO A + N2nA + N.,v + N.,,.v + Nar + N .. 2vc:+ N ..... Vo. (3. 6) 

The di·mensionalised hydrodynam~c coeff.icients are obtained b.y 

multiplying the non-dimensionalised coefficients by the appropriate 

combinations of f.orward speed, length and water density. The 

appropriate dimensionalising factor for each coefficient is given in 

Appendix 4. The terms such as X, Y, and N were obtained in the process 

of re-arrangement. They are defined in Appendix 2. 

It is now necessary to eliminate u, v and r from the right-hand side of 

each of the equations (3.4l, (3.5) and (3.6>, then after suitable 

re-arrangement and combination with equations (2.3) and !2.4> the 

equation set is given by equation set (3.7). The terms K, L, M were 

obtained in the process of re-arrangement and elimination. They are 

defined in Appendix 2 and all the computer subroutines used in the 

rearrangement process are listed in Appendix 7. 
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&A = - 1/T ... 0 0 0 0 0 0 0 ~A + 

nA 0 -1/T N 0 0 0 0 0 0 nA 

x 0 0 0 0 0 0 0 X 

u 0 K2 0 K. 0 Kb 0 0 u 

. 
0 0 0 0 0 0 0 y y 

. 
l 1 V l2 0 L. 0 Lb 0 La V 

"t 0 · o 0 0 0 0 0 'V 

r Mt M2 0 H. 0 Hb 0 Me r 

1/T,.. 0 

r.:J 
+ 0 0 0 0 u. .. (3 . 7) 

0 1/T N 0 0 0 0 V c. 

0 0 0 0 0 0 ~ 

0 0 K .. t 0 K,.:s 0 V: 

0 0 0 0 0 0 

0 0 0 L,.2 0 L ... 

0 0 0 0 0 0 

0 0 0 H .. 2 0 M,.. 

The v alues of x .. , y .. , u .. and v .. on the earth ' s reference a xi s system 

may be found at the (k+llth inst ant by the relationships:-

x .. !k +ll = x .. (k l + [ x<k+ll- xik fl cos [y!k+t'l] 

- [ y ( k + 1 l - y ( k l J I!H n L"V ( k + 1 l J 

y .. (k +l ) = y .. <kl + [y <k +l) - y ( k >] cos('f"Ck +ll] 

+ [ x !k+ll - X ( k ~ sin[~ !k +l l] 

u .. (k +ll = u ( k+ 1) cos['f! k +1 l) - v(k+1lsin ['Y!k +1 l) 

v .. (k +1 ) = V ( k+ 1) cos['t !k +1 >1 + u(k+ll sin'["Y !k+1l] 
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3.2 Computation ·Of Discrete Transition Matrices 

Equ~tion (3.71 is a set of first order differential equations and is 

represented in matrix form as:-

( 3. 12 I 

For work using a digital computer this equation set must be converted 

to its discrete form, namely a set of difference equations given by:-

20_kttl = E_Tilll + f.:F<T-'t>G(.uj_!ld't + l:F<r-"t>QC)w_!_!ld"i:, (3,131 
0 0 

or 

where A = eF r 

dild 
T 

B = 1 e F ( T - ,_, ~c d 't = 
0 

C = f~F < r-1:> ~od't: = 
0 

(eF'-IIF-•G 
- -- _c 

-·.------··. ---;,.J 

For general applications the exponential matri·x may be evaluated 

( 3. 14 I 

by a 

digital computer program based on the following arrangement of the~.~ 

and.]; matrices . 

..a= 1 +IT + !£TI 2 /2 + ...... + <ETIL-lf(L-1> + !fTILfl.: 

= <] +IT(!.+ fT/2!! + FT/3(1 + + 

{fT/ <L-21) t1 + (.£T I <L-1>) <I + fT /LI) »}I 

i = T<! + fT/2(1 + fT/3!1 + ...... + 

{FTt<L-21} {1 + ffrt<L'-1>) <~ + fT/LIJijl Gc 

(3. 151 

( 3. I b I 

The solution for f is similar to that of ~. with !!J> in place of §:. 

Starting with the innermost factor the number of terms, ~. of the 

series approximation must be decided beforehand. As equati·ons (3.151 
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and (3.16) are very similar, the computer evaluation of bo.th series 

can be combined in a single routine. 

I n c a I c u I a ti, n g the v a I u e s of the B , & and I mat r i c e s the non­

dimensionalised hydrodynamic coefficients are first of all converted to 

their di·mensionalised equivalents. These are then used to cal•culate f, 

Gc and §.g in the state space equations. Equations (3.15> and (3.16) 

are then used to obtain the!, I and~ matrices ~hich form the basis of 

the mathematical model of the ship. The computer routine for 

converting from continuous to discrete time is attributed to Cadzow and 

·Marten (1970). 

3.3 The Non-Linear Model 

For the purposes of this research project it was hoped that the 

quasi-linear model would be sufficient. 'Indeed the result of the open 

loop test runs given in chapter 5 show some compatabili.ty with actua1 

ship data. Closer examination however shows that, particularly in a 

tight turn, the quasi-linear model results did not a1ways compare 

favourably with the data available from similar tests carri,ed out with 

an actual ship. The ship chosen for the early simulation work was of 

the Mariner Class since much work has been done on this hull form and 

i't was possible to compare computer simulation results with full scale 

data which was readily available tram a very comprehensive study by 

Horse and Pri·ce (1961). 

Abkowitz (1964> suggests that the Taylor expansion of hydrodynami·c 
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forces and moments should be expanded to include terms up to the third 

order whereas Strom-Tejsen (1965) has made a detail.ed study of the 

important non-linear terms and recommended i·ncluding rv 2 • v3 , 6v 2 and 

i 3 terms, the first term being the most important. Lewison (1973) and 

Gill (1976) 11977), both included non-linear terms in the equations, 

although Them (1980) pointed out that the type and number of the higher 

order terms are still under discuss~on. 

Taking into account the results of open loop tests on the quasi-li·near 

model together with the above references it was decided to include 

non~linear terms in the equations. By including terms in y2 

' 

and N equations it was found that digital computer sirnulations using 

the hydrodynamic coeffi·cients for a Mariner hull compared well with the 

data given by Norse and Price (1961). Results of the Open Loop Tests 

on the non-linear model and comparisons with the Morse and Price data 

are given in Chapter 5. 

It was still assumed however that course and speed were constant during 

each sample time, the state transition, control and disturbance 

matri·ces being recal.culated during thi.s period, and then used in the 

next set of calculations. Whilst these calculations presented no 

difficulty in the digital computer simulations usi•ng the Prime main 

frame computer, they did pose problems when designi·ng a suitable filter 

for installation in the physical model. These non-linear equations 

then formed the ·basi·s for most of the computer simulation work carried 
ol'oo ~n 

out. The equations were used to model the ship and 'I\ the computer 

simulation of the ship in the optimal filter. The equations of motion 
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then become:-

mu - mrv = XGU + Xu<u+uel + XuuUL. + XuuuU, " .. -x ... -. s + • v v v + ~ ~ r + ili " 2 

~ 
+ Y"n-. + Y '>J..,...,v 

I.r = N-.v + Nv !v+v.._l + N~r + N.r + N5 b~ + N ... n .. + 'N, .. ·? 
'l. 

+ N,.,rv' + Nt.56 'bA + N&.vSv 2 + Nv..:'a 

( 3. Ill 

(3. 18) 

( 3. 19) 

where f._= (l/2lX_..u, T ....... = (l/6lX ••• and similarly for other terms i•n 

X,'l, and N. 

Using the same process as that used in the development of the 

quasi-linear model the state equ•tions become:-

( 3. 20) 

( 3. 21 ) 

X = U ( 3. 22) 

( 3. 23) 

y = V ( 3. 24) 

(3. 25) 

i' = r ( 3. 26) 

( 3. 27) 

The X, B, and C coefficients are summarised in Appendix 3. As with 
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quasi-linear terms of equation set (3.7) they are derived from the 

hydrodynamic coefficients of the vessel. Equations 13.20) to 13.27) 

can then be expressed in matrix form as:-

sA]= --1! T. o 0 I) 0 0 0 0 ·a. + 

n A o -1n,. 0 0 0 I) 0 0 n. 
X 0 0 0 0 0 0 0 X 

u X' XL 0 x .. 0 X~ 0 x, u 

y 0 0 0 0 0 0 0 y 

V B, B~ 0 B~ 0 B~ 0 B~ V 

"' I) I) 0 0 0 I) I) "+ 

r c, c,_ 0 c .. 0 '1. 0 c r 

I IT.._ 0 

l~ 
+ 0 0 I) 0 

r~ 
I 3. 28) 

0 'A. 0 0 0 0 V c. 

I 

l~ 
0 I) x .. , 0 x.,l I) 

0 0 0 0 0 0 

,o I) 0 B..,,. 0 s ... .,. 

0 0 0 0 0 0 

0 0 0 c ...... 0 c~ .. 

Equation set 13.28) represents the form used in computer simulations 

using data to represent a Mariner hull and later a twin screw car 

ferry. The hydrodynamic coefficients for the car ferry were obtained 

by carrying out a series of tests on a four metre model loaned from the 

National Maritime Institute in Feltham, London. Five modeh were used 

in the research programme. These were the quasi--linear and non-linear 
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computer models based upon data from a full scale Mari'ner hull, a full 

scale non-linear model of the ·car ferry, a reduced non-li•near computer 

model of the physical car ferry model'· and the physica1 car ferry model 

itself. For ease of refere~ce these have been given the names of some 

of the ships in which the atithor served. They are:-

TRELEVEN: 

VI.IHLANT: 

TREMAYNE: 

HEATHMORE: 

CENTAUR: 

Quasi-linear full scale computer model of Mariner cl·ass 

h u 11 

Non- linear fut.l scale computer model of Mari.ner cl.ass 

h u 11 

Non-linear full sca,le computer model of twin screw car 

ferry 

Non-linear reduced computer model of car ferry model 

Physical mode'! of twin screw car ferry. 

In the Open Loop Tests of Chapter 5 the data is compared with data from 

the USS COMPASS ISLAND, a Mariner Class ship which was in service with 

the U~ited States Navy. 

3.4 The Reduced Non Linear Model 

In the des~gn of a suitable filter and controller for the physical 

model ICENTAURJ it became necessary to simplify the eight state 

mathemat~cal model. This was mainly due to the memory limitations in 

the micro- computer to be used. A further restriction was the need to 

recalulate the state transition, disturbance and control matrices 

during each ~ample time. First thoughts were to cons~der those states 

to be measured in the Centaur model, namely headi·ng, yaw rate, forward 
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arid lateral acceterations. However this posed problems in obtaining a 

suitable set of e~uations t~ be used on the computer model i·n the 

filter. Eventually it was decided to use forward and lateral 

velocities in place of the accelerations. In practice velocities would 

be obtained by integration. Due to the very small time constants 

involved the rudder and mai·n engine models were ignored so that S.. and 

n,. made up the control vector. 

This led to the fol.l owing reduced model:-

X~ (I X, X~ rAr -x,., x ... ~ o 0 ( 3. 29) u = x .. + 

. a .. B~ 0 B' B ~ n" 0 0 0 0 V 

"1' 0 0 0 (I 0 0 (I 0 0 

. 
r . c .. c. 0 c . c. c 0 0 c..,,_ 

In the use of Kalman Filter techniques a mathematical model of the 

system i.s required in the filter. The mode~ given i·n· equation set 

( 3. 29) (·HEATHMOREl, was also the basi1s of the computer model used in 

the Kalman Filter in the physical model (CENTAURl. The X, B, and C 

coefficients are the same as those used in equation set (3.28). 

3.5 Discrete Form of the Equations. 

Using equations (3.15) and(3.1&)the continuous time set of first order 

differential equations (3.20) to (3.27) are transformed in to discrete 

time diffe~ence equations. These equati~ns are set out for ease of 

reference as :-

( 3. 30) 
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( 3. 31) 

X ( k + 1) A12,n 11 <kl + A'.~x(k) + A~·u<kl + B~l.:n'!>(·kl + C"",:uc.<kl + 

C~uo.<l:l (3,32) 

u(k+1) = A~l.n 11 <k) + A"'4u(kl + B.,.1 nJ>(I:) + C.,.,U._(kl + C~U,.(kl 

y ( k + 1 l = A 51 !)"' (·k l + A ss y ( k l + A 14 v ( k l + A 58 r ( k l + B 51 SJ> ( k l 

+ c52. v .. (k) + cs..,vo.(l:) 

v (·I:+ 1 l = A4, 6 111 <1:) + A 1.4 v ( k) + A~~~ r ( k) + B ~ ~ 11 ( U 

+ CQ.vc.<kl + CIAv .. <kl 

"'{>(k+1l = A11 b, (kl + A'l4 v(·k) + A71 i><kl + A~r<kl + B,,S!><·kl 

+ C,z.vc.(k) + c,,.vo.(k) 

r(k+1l = Ac;,1&' 4 (k-J + A"A v(kl + A'lll r (1:! + 881 &!:> (k) 

+ c 9:~-vc.<kl + cfr,.v ... <kl 

( 3. 33) 

( 3. 34) 

( 3. 351 

( 3. 36) 

( 3. 37) 

Equations (3.30! to (3.37! now make up the matrix equation (3.14!. 

All eight equations are used in the fu11 scale computer simulations 

discussed in Chapters 5 1 b and 7. Only equations (3.32) 1 (3.35), 

(3.36! and (3.37!, in slightly amended form were used in the reduced 

non-linear model of equation sets (3.29! and (8.11. 
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CHAPTER 4 

INTEGRATED NAVIGATION SYSTEMS 

4.1 Brief Survey of Marine Electronic Navigation Systems. 

T.he development of modern electronic navigation systems dates from the 

period 1939-45. It was to meet the ex act i.ng demands of World War I l ' 

writes Fennessy ( 1979) ' that a dramatic phase of devel·opment took 

place. This development was to form the basis of many of the systems 

i·n use today. Jones ( 1975) ' in a Duke of Edinburgh Lecture to the 

Institute of Navigation, outlined a number of systems which were 

dev~loped in America, Germany and the United Kingdom, some of which 

were the forerunners of today's navigation aids. The d ir ec t 

measurement of range usi:ng electro-magnetic waves depends upon accurate 

measurement of the time taken for the radio signal to travel from 

transmitter to receiver. Prior to the development of frequency 

standards and atomic oscillators such measurement for a ship-shore 

sy.stem was impractical and hence the early systems tended to measure 

the difference in the time ~f arrival of two radio signals and thus 

position fixes were related to hyperbolic position li·nes. The Loran 

system was an early example of a hyperbolic position fixing system. 

Loran A was developed in the U.S.A. and was in use during World War II. 

In the United Kingdom Naval scienti·sts developed what was to be known 

as the Decca Navigator; this was used by ships in D-Day landings of 6 

June 1944, The Decca Navigator transmits continuous waves with the 

-36-



on-board receiver measuring the phase difference between the two r~dio 

signals. Both were in commercial use shortly after the end of 

hostilities. Since 1945 the use of navigation aids has steadily 

i·ncreased; whilst in the period since 1970 1 with the appearance of 

mini-computers and microprocessors, the growth has been more 

spectacular. This has been parallel:ed by decreasing costs due ma~nly 

to strides in semi-conductor technology. 

A number of individual systems are now available to the commercial 

operator, and each has its advantages and disadvantages. The Omega 

system, for ex·ample, provides world- wide coverage, but is 

insufficiently accurate for inshore navigation. The Decca Navigator is 

sufficiently accurate for coastal navigation, but accuracy falls off 

with increasing range, due mainly to skywave i:nterference. Furthermore 

each chain covers a relatively small area; hence a large number of 

Decca chains would be necessary to cover all the world's coastal ·areas, 

whereas the Transit Satellite System is sufficiently accurate for 

survey work, but the time between satellite passes makes it unsuitable 

for coastal navigation. 

A typical fit in a British Merchant Ship would comprise a gyro compass 

with autopilot and repeater compasses, electromagnetic, pressure and/or 

Doppler tog, Decca Navigat6r, Loran C together with Omega and/or the 

Transit Satellite Navigation System. This would give the navigator 

reasonable world-wide coverage and sufficient accuracy. Radar and a 

direction finder would also be fitted (these are legal requirements in 

British ships over 1'600 gross registered tons), It is likely that an 

Automatic Radar Plotttng Atd would al.so be included. 
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The Decca Navi.gator is a hyperbolic position fixing system providing 

accurate fixes for coastal navigation. The system is organised i·nto 

chains, each comprising a master and usua•lly three slave transmitters, 

providing a coverage of up to at least 240 nautical miles from the 

master transmitter. There are now some 50 operational chains 

throughout the world. Decca transmissions are between 70 and 130kHz. 

The system is still regarded by many as the most accurate, widely 

fitted system for inshore use but it has limited world-wide coverage 

and accuracy does fall off with range. 

Loran C operates at lOOkHz. It -is a pu•lsed hyberbolic system managed 

and operated by the U.S. Coast Guard, with ground wave coverage over 

large parts of the northern hemisphere. It is the primary civil 

nav.igation system for the U.S. coastal confluence zone. "rhe system is 

organised into chains and one station, the master, transmi.ts first in a 

sequence. Each slave station (there are up to four in a chain) is 

synchronised with the master and transmits at a precise interval after 

the master. This coding delay, which is different for each slave in 

the chain, ensures that the signals from transmitters arrive everywhere 

in the coverage area, in a known sequence. 

Omega is a very low frequency hyperbolic system which now provides 

continuous global coverage for ships and aircraft. Coverage is not 

only global but is also redundant with more than the minimum required 

signals available at any location. Receivers range from si·mple phase 

comparison units to fully automatic receivers which read out latitude 

and longitude. 
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The Navy Navigation Satellite System, or Transit, was developed 

inlti.ally for the U.S. Navy. It became available to non-military users 

In 1967. Each satellite transmits at 150 and 400MHz and the shipboard 

receiver measures Doppler shif't to determine the relative velocity 

b~tween satellite and receiver. Use is made of hyperbolic navigation 

and transferred position line principles to determi·ne the ship's 

position so that only a single satellite is required for a fix. A 

single frequency receiver i.s adequate for most marine navigational 

purposes, but for highly accurate position fixing a dual frequency 

receiver is required. Such uses include hydrographic survey, land 

survey and the accurate positioning of off-shore platforms. For marine 

coastal navigation the limitation of Transit is the time interval 

between satellite passes, which can be several hours in some parts of 

the world. 

The advent of Navstar or Global Positioning System IG.P.S.> may we!.! 

make all other ~osition fixlnJ systems redundant as this satellite 

based system promises to give wor1d wide cover with a high degree of 

accuracy. The state of development is descri'bed by Cook 11983> who 

suggests positional errors of less than 20 metres will be achieved. 

Henderson and Strada 11980) give details of a small scale sea trial in 

which a mean distance between the GPS solution and the navigat9r's plot 

of 25.3 metres was claimed for passages In and out of San Diego Naval 

Base in the United States. However, serious questions have been raised 

in the U.S.A. concerning GPS impl.ementation and O'Sullivan 11982) 

states that it will be well into the 1990's be~ore commercial users are 

allowed access. 

-39-



There is then no sintle system in operation which wi.ll meet the 

requirements for a world-wide coverage with the required accuracy. 

Sage and Luse (1983l give the deficiencies for three systems, namely 

Transit, Omega and Loran. In the Transit satellite system for example 

the interval between fixes varies from 0.5 to 12 hours according to 

geographical position. Omega has a fi·x accuracy of only 2 to 4 

nautical miles(rmsl. Thus while both of these systems give worldwide 

coverage they are both unsuitable for coastal navigation or pilotage. 

Other systems such as Loran C and the Decca Navigator give good 

accuracy at the centre of the chain, but the accuracy degrades with 

distance and time of day. These poiints serve to illustrate how the 

shipowner has often been left wi.th a di.ffi,cult choice when choosing 

suitable navigation aids. To further complicate the problem the choice 

has often been governed by political and financial consi·derations, 

rather than on sound technological judgements. 

Single system defici·encies have led to the development of integrated 

systems of which there are now several on the market. For example Sage 

and Luse (1983l descr~be the use of a Kalman Filter to combi,ne Omega 

and Transit, or Omega and Loran C in an improvement of fix accuracy, 

while Racal have recently announced a combined Decca Navigator, Loran 

C, Omega and Transit receiver. Most of these systems use filtering 

techniques to reduce measurement and d·isturbance errors. Before 

proceeding further it is necessary therefore to define the errors to be 

encountered in navigation fixes, 
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4.2 Systematic Errors 

The measured values of position and velocity will be contaminated with 

noise, which may have been generated i•n the transmitter, receiver or in 

the propagating medium. The total error, made up of systematic and 

random components is then defi·ned as the difference between the 

measured and true values. 

Systematic errors are constrained by some physical law and may be 

expressed as a mathematical function of appropriate variables. The 

si·mplest systematic errors are constant functions such as improper lane 

entry in the Decca Navigator, or an uncorrected error i•n the gyro 

comp~ss. More complex systemati•c errors, such as the propagation 

errors in the Omega system, are functions of time, atmospheric 

conditions and the rel.ative positions of tramsmitter and receiver. 

The correction oj systematic errors i~ governed by knowledge of the 

physical law affecting the system. They may be removed by either 

applying a correction to the erroneous display, as in the gyro compass 

error, or calibrating the display, as would be the case in hydrographic 

survey work. For the vast majority of navigational purposes the 

systematic errors may be approximated and generalised for a large area 

or for a long time period. An example of this is the fix·ed error 

correction charts produced for the Decca Navigator. For accurate 

navigational fixing and hydrographic survey work the systematic errors 

must be applied more rigorously and re-calibration of instruments must 

be undertaken at frequent intervals. 
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4.3 Random E~ror~ 

Random errors arise from such causes as minute-to-minute changes in 

ac.tmospheric conditions, short term phase changes in the equipment and 

errors i'n readings. They do not obey any physicll law and' can only be 

defined by the laws of probability. For navigational systems it is 

assumed that the distribution of random errors about the true value is 

Gaussian. The Decca Navigator Co. Ltd. 1197&) state, for example, that 

an analysis of observati,ons at monitor stations has shown thlt the 

random errors ·are disposed about the mean value in a very similar 

manner to the Gaussian distribution. The same reference goes on to 

state that 95% of observations are within twice the standard deviation; 

whilst the Decca distribution contains 75% of observations within the 

standard deviation. This means that fewer large errors appear in the 

tails of the Decca distribution than in the Gaussian, although for 

statistical working a normal distribution is assum~d. 

Position fixing systems, by definition, require the crossing of at 

least two position lines. A statistical treatment is then used which 

indicates the area around a fix in which the navigator can state that 

he is in with some predetermined level of certainty. Standard 

deviations are then used to produce an error ellipse, a diamond of 

error or a circle of probable error. The error ellipse is the most 

accurate, but the root mean square error criterion is now widely used 

for individual system errors. 
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drms • j a2 + o2 

Figure 4.1 Relationship Between Error Ellipse and RMS Error 

Figure 4.1 !The Decca Navigator !1976ll, shows the computed position 

lines passing throug h the observation point P. The parallelogram formed 

by the displaced position lines would contain 68.26% x 68.267. = 46 . 6% 

of a large number of fixes taken at P. The circle drawn about P of 

radius equal to the r.m.s. error would contain approximately 68% of the 

plots, the exact percentage being dependent on the r at io of the major 

to the minor axis of the ellipse enclosed by the parallelogram. For 

the purposes of this research progr amme the root mean square error and 

the circle of error are used in connection with position fixing 

systems. Figure 4. 2 shows the variations in one lane of a Oecca 

Navigator for a night sample period. 
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Figure 4. 2 Variation of Decca Readings 

4.4 Integration of Navigation a l Data 

It ha s already been suggested that single system deficiencies have led 

to the development of integrated systems fo r world-wide use. In , shore, 

particularly in the approaches to a port, and in the development of 

off-shore energy resources, there is a much greater need for accurate 

navigational data, giving a further impetus to the development of 

int egrated systems. If it is assumed that the systematic errors can be 

allowed for then the requirement in an integrated system is to minimise 

in some way the random errors . A Gaussian distribution gives the best 

general fit for the spread of random errors and this implies a 

definition of these errors in terms of standard deviations or root mean 

square errors . As variance is the squ are of standard deviation the 
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problem can be stated in terms of minimising the variance, whi·ch has 

led to the use of minimum variance or Kalman-Bucy filters. These have 

been developed extensively for aerospace, and latterly marine, 

navigation· since the publication of the origina·l work by Kalman and 

Bucy <1961>. 

During ,the 1950 s control engineering had developed to the point that 

state space techniques implemented i•n the statistical environment of 

"maximum likelihood" had yiel·ded complementary mi.x type filters with 

variable gains. A detailed analysis showed that the performance of the 

complementary mix filters was tending asymptoti.cally to a level of 

performance that was estimated to be an order of magnitude below that 

required in the Control and Gu.j:dance subsystem for the Apollo 

programme. 

From the information theory viewpoint it became obvi.ous that to achi:eve 

improvements of an order of magnitude it was necessary to supply the 

control process with significantly more information; to all.ow the 

control process to operate on information gathered during real-time 

operation rather than to operate only on assumptions made by the design 

engineer prior to the process; to remove limitations on the information 

processing power of the control process by allowing almost unlimited 

real-time computing power; and to maintain the maximum likelihood 

nature of the control process. 

The Kalman Filter algorithm and engineering practices that are 

inseparable from the filter meet all the above requirements and was 
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successfuly implemented on the Apollo project. The theory took 

tangible form i•n 1960 and a Kalman Filter was in operational use in 

!963. Further developmen.ts saw its use in long range missiles, ·l.ater 

still in military aircraft, and then in medium and short range 

missiles, The techniques have now been developed for commercial 

systems and are finding increasing use in marine vehicles, both for 

general nav.igation in Integrated Navigation Systems and in specialist 

vessels for s~ch uses as hydrographi·c survey. Grimble et al (1980 b 

and cl describe the use of Kalman filtering techniques iin· dynam~c 

ship-positioning systems used in the off-shore oil industry. 

4.5 The Kalman Filter. 

The precise form of the information supplied to the Kalman Filter i·s:-

il A knowledge of the system error sources. Whereas complementary 

f·ilters attempt to minimise the effect of error sources, termed 

state-variables, the model reference filter attempts to identify the 

coefficients of terms in an error model and calculate, hence 

nullify, their effect. 

i i l A knowledge of the dynamical relationshi·p between error 

sources. The concept which made the Kalman Filter implementable 

where more general methods had fai l·ed wa.s the decision to enforce 

linearity on the error dynamics. In other words the dynamical 

relationship between error sources is assumed to be expressible in 

terms of a set of first-order linear differential equations. 
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iii) A knowledge of the form and the magnitude of random 

uncertainties within the system being controlled, The two 

~ 

categories of uncertainties are random distur~nces which modify the 

state of the system, someti·mes termed "system noise" or "plant 

noise'', and random noise which corrupts observation of the state of 

the system and is usually termed "measurement· noise". The 

information about the magnitude and form of system and m•asurement 

noise is presented continuously to the filter in the form of arrays 

whose diagonal terms contain a measure of the expected magnitude of 

the random effects (variances) and whose off-diagonal terms contain 

a measure of the expected dependence or correlation of the error 

sources on one-another (covariancel. These arrays are termed 

covariance matrices. 

Thus a great deal of information is being supplied to the control 

process and it is not surprising that a process which is capable of 

capitalising on this information produces significantly better results 

than those previously available. Kalman was able to capitalise on the 

information with a process that is both maximum likeli,hood and 

implementable in real-time using reasonable computing power. 

4.6 The Nature of the Kalman Filter 

Scovell et al (1980) describe the filter as a model reference, linear, 

simultaneous minimum variance, infinite memory, recursive, digital 

estimation technique. They explain these terms as:-

il Model reference, The filter is characterised by containing a 
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dynamical model of system errors. 

i i ) This model is expressible as a set of first-order 

linear differential equations. 

iiil Si.multaneous minimum variance. Kalman originally termed the 

procedure that he devel·oped 'maximum likelihood' and constrained the 

random effects to be normall'y distributed, sometimes termed 

Gaussian. He then invoked a theorem which states that the minimum 

variance procedure operating on Gaussian random effects i.s maximum 

likelihood and went on to devel·op a minimum variance procedure. 

The term 'Simultaneous' is included to indicate that Kalman phrased 

the optimisation procedure in such a way that each of the error 

terms !state variables) receives equal weighting., and that when 

information arrives which helps the filter deduce an improved 

estimate of the state of the system, the deduction is applied with 

equa·l vigour to each of the state variabl.es. 

ivl Infinite Memory. The Kalman Filter has the ability to remember 

its past mistakes, and when new information arrives the 

re-assessment of the values of the state-variables is made not only 

in the light of the new measurements, but also in the light of every 

previous measurement. The Kalman Filter is therefore termed 

'infi•nite memory'. 

vl Recursive. The power of the Kal.man Filter lies very largely in 

the property that all the informati•on required to make an optimal 
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estimate at any instant is contained in a single set of variab'les 

which is updated recursively. 

Vi ) Digital. The nature of the equ~tions that require to be 

processed are such that a digital computer is essenti-al. 

From the above it is seen that the Kalman Filter takes the form of a 

single set of equations impl'emented in a digita1 computer and used in a 

recursive fashion. 

4.7 The Kalman Filter Equations 

The theory of the Kalman-Bucy filter i•s now well establi,shed 1 for 

example Medditch (1969) and Mattin (1982) 1 and only the equations used 

in this research program are stated here. The system simu-lation and 

the Kalman filter have been modelled using their di.screte forms. The 

system model is defined by the equations:-

( 4. I l 

_f(k+ll = !j(k+llJi.(k+l) + _y(k+ll (4.2) 

Where ~ is the state vector; ~ is the control vector; ~is the 

disturbance vector; l is the measurement vector; ~ is the measurement 

noise and k=0 1 1 •••• 1 is the discrete time index. In addition !(k+l
1

k) 

is the state transition matrix; !(k+l,.k) is the control transi'tion 

matrix; _£:(k+l 1 k) is the disturbance transition matri·x and .!:!(k+ll is the 

measurement matrix. The term (k+l 1 k) means calculated at time k and 

used in the interval k to k+l. The terms ~(k) and ~(k) are Gaussian 

noi'se sequences with the following first and second moments:-
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E w ( kU. = 0 

E ~<kU = 0 

E[~l(k)~T(m.)J = ]Skm 

E'[_y.(kly_T<mil = ~Skm 

and where 8k. is th~ Dirac functton. The two proc~sses are consi·dered 

independent of each ·other and hence 

e[v<ml c./(1<.\) ':. 0 . .The state estimate :)( (•k+l/k+l) is obtained by 

calculati1ng the predicted state ;<k·+l/kl from 

x<k+ttk> = .fl.<k+l,k>i<klk> + ~<k+t,k>_!!<k> ( 4. 3) 

and then c~lculating the estimated state at the instant <k+ll using 

]<k+l/k+ll = ~(k+11kl + ~(k+ll(l<k+ll-,l:Hk+ll~<.k+llk>) ( 4. 4) 

lt shoul.d be noted here that the mathematical model used in the filter 

does not include the disturbances, or the disturbance transitiion 

matrix. However ~(k+1 1 kl together with . the disturbance noise 

covariance matrix J both appear in the filter gain equat!ions below. 

The Kalman gain matrix ~(k+ll is obtained first by calculating the 

predicted error covariance matrix given by 

£'(k+l 1 k) = _e(k+l 1 kl.f(k/k)~T(k+l 1 k) + .G_(k+l 1 k)~(k)CT(•k+1 1 k) ( 4. 5) 

for some initial error covariance .f!k/kl 1 and then calculating the 

Kalman filter gain from 

~ -L 
!; ( k +I ) = 1 ( k + 11 k) .!:LT ( k + 1 ) Ll:!'( k +I ) .f ( k + 11 k) HT ( k +I ) + !1 ( k + l D ( 4. 6) 

Finally the error covariance matrix is obtained using 

.e<k+11k+l) = [l-1<k+lll:!.!k+la.f'k+l/kl ( 4. 7) 

The above equations are used iteratively to obtain the state estimate 

at any future sampli<ng time, given the initial state and error 

covariance, together with the measurement and disturbance noise 
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covariances M and~~ the state, dist urbance and control matr i ces, and 

the measurement matri x . Figure 4.3 gives an overall bloc k diagram of 

the optimal filter . Detai ls of the computational aspects are given in 

Appendi x 7. 

x(k/k) 
z(k+l) 

Q(k+l/k+l) 

DELAY l 
~(k+l ,k) 

~(k/k) ,.-------...... 

~(k+l ,k) !i.( k+ l ,k) 

u(k) 
.!!_(k+l ,k) 

Fig ure 4 . 3 The Optimal Filter 

-5 1-



4.8 Kalman Filter for a Non-Linear Ship Model 

As the ship is a non-linear system the mathematical model used in the 

filter must be non-linear. It was assumed throughout that the course 

and speed of the vessel were constant during each sample time, with the 

new values being calculated during each sample period. These values 

were then assumed constant for the next sample peri.od. This assumption 

allowed the linear Kalman filter theory to be applied, but it did mean 

that the transition matrices and filter gains had to be reca~culated 

during each sample interval. This posed no problems duri;ng the 

computer simulations using the Prime main frame computer, but it did 

present difficulties during the l.ater stages of the work when designi·ng 

the software for the Texas Instruments microprocessor used i.n the 

actual model \CENTAURl in tests on a reservoir. These problems will be 

dealt with i•n the chapter concerned with the physical model tests. 

In additi.on to minimising variance,the Kalman filter concept implies 

that the disturbance noise is white with. zero means. Wind and tide 

are taken to be made up of a fixed quantity with a random error 

superimposed. The random error then has a zero mean over the peri·od of 

each passage in to and out of harbour. It will be shown that the 

addition and removal of the fixed values, referred to as mean values in 

the text, has little or no eff.ect upon the filter capabilities. In the 

computer simulations typical values for Plymouth Sound were assumed .. 

The covariance matrix for the measurement noise was obtained from the 

standard deviations of the sensors used in the various tests. For the 

computer simulations it was assumed that a rudder angle indicator and 
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~evolution counter were availabl.e, together with a hyperbolic position 

fixi'ng system, a doppler log to measure forward and lateral speeds, 

with a gyro compass and rate gyro to give heading and angular velocity. 

]he measurement nois~ was assumed to have zero mean. Random number 

generator subroutines were used to obtain the measurement and 

disturbance random noise values used in the si~ulation. 

There are two critical factors in the design of the optimal filter, 

firstly the modelling of the filter itself, i •. e. how good i.s the model 

of the ship used in the filter, and secondly the values calculated for 

the matri>: L_O:+Il. The mathematical model used in the filter software 

was derived from the ship's hydro~dynamic coefficients, whi•ch were 

obtained from published ship data, or, in the case of the physical 

model, by undertaking tank tests at the Nati:onal Maritime Institute. 

Subroutines were then used to calculate the transition matri:ces from 

the data. These are descrrbed in Appendix 7. 
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CHAPTER 5 

OPEN LOOP TESTS 

5.1 Introduction 

This Chapter describes work undertaken to test the validity of the 

mathematical model used in the digital computer simulations. This was 

achieved by carrying out simulations of the full scale tri.als for a 

known vessel and comparing the results with data available from actual 

full scale trials. The ship chosen for this early simulation work was 

of the Mariner Class since much work has been done on this hu11 form 

and it was possible to compare computer simulation results with full 

scale data which was readily available. Non- dimensional hydrodynamic 

coeflicients for the Mariner ship used in the study are given i·n 

Appendix 4 1 whilst general data is given in Appendix 5. The values are 
/ 

based upon results from captive model tests by Strom-Iejsen <1965! 1 

Suarez <1963! and Brown and Alverstad (1974!. The full scale 

manoeuvring data f.or the Mariner was obtained from a very comprehensive 

study by Morse and Price (1961!. 

The objective of the Morse and Price programme was to accumulate and 

analyse full scale data on the manoeuvring motions of the USS COMPASS 

ISLAND, a converted Merchant Ship of the Mariner Class. The task of 

the Compass Island was the evaluation of navigation equipment in the 

United States development of the Polaris submarines. 

Three types of manoeuvre were carried out in the computer simulation 
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and in each case the resul-ts were compared wi•th those available from 

the full scale tests on the USS COMPASS ISLAND. The typ~s of manoeuvre 

were:-

<il Turning Circles~ 

(ill Kempf Zig-Zag Manoeuvres~ 

(iii) Dieudonne Spiral Manoeuvres. 

5.2 Turning Circles. 

Turning circles are used to determine the effectiveness of the rudder 

to produce ·steady-state turning characteristics. The method of 

performing each manoeuvre was as follows:-

<il Steady on approach speed and heading directly into the wind 

(ill Lay rudder over at maximum rate to specified value wi.th no 

overshoot 

<liil Continue in turn for up to 540 degrees from the initial 

heading, at which time the run is termi·nated. 

A number of computer simulations were carried out usi•ng a forward speed 

of 7.717mfs <15 knots). In each case the ship was turned to port and 

to starboard with the position co-ordinates recorded. For each set of 

conditions data was recorded for the Ji:near full-scale computer model 

<URCH!Nl 1 the quasi-linear full-scale computer model <TRELEVENl, and 

the non--linear full-scale computer model <VIGILANTl. As each of these 

simu·Jations used the hydrodynamic coefficients of COMPASS ISLAND the 

four sets of data, includi·ng COMPASS ISLAND, were then plotted with 
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common axes for comparison with the Morse and Price 11961) data for the 

USS COMPASS ISLAND. These results are shown in Figures 5.1 and 5.2. 

5.3 Kempf Zig-Zag Manoeuvres 

This manoeuvre provides a qualitative measure of the effectiveness of 

the rudder to initiate and check changes of heading. Hence the degree 

of overshoot of the heading angle curve ·<i.e. the ratio of amp! itude of 

hea~i:ng curve to amplitude of demanded rudder angle) and the phase 

between the two peak values are indi·cative of the dynamical stabili.ty 

and manoeuvrability of the ship. 

The simu·lation runs were carried out at initial approach speeds of 

7. 717m/s 115 knots) and 5.1446m/s 110 knots) and rudder angles of 20 

degrees. At the start of each simulation the demanded rudder angle was 

set to +20 degrees <Portl and the heading was checked every 5 seconds, 

with the computer program modified so that the demanded rudder changed 

to -20 degrees <Starboard) as soon as the heading angle amplitude 

exceeded the rudder angle amplitude. The process was then repeated 

severa1 times to give the zig-zag manoeuvres illustrated i•n Figures 

5.3, and 5.4. 

5.4 Dieudonne Spiral Test 

This manoeuvre is used to provide a qualitative measure of course 

stability for surface ships. The ship 

deflect~on to one side, say 25 degrees to 

executes 

starboard. 

a large rudder 

The rudder is 

then held in this pos~tion until a constant angular velocity is 
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recorded. The rudder angle is then reduced to say 20 degrees starboard 

and held until a steady angular velocity i.s recorded. The process is 

repeated throughout the range of rudder angle from 25 degrees starboard 

to 25 degrees port and then from 25 degrees port back to 25 degrees 

starboard. The resulting plot of demanded rudder angle against 

constant yaw rates constitute the Dieudonne Spiral Test. 

The simulation was performed at approach speeds of 7.717m/s (15 knots•) 

and 2.5723m/s (5knotsl. The results for the linear and quasi-linear 

model are shown in Figures 5.5 and 5.6. 

5.5 Discussion of Results - Linear and Quasi-Li·near Models. 

Figures 5.1, 5,2, 5.4, 5.5 and 5.6 show a comparison between li,near, 

quasi-linear and actual vessels for turning ci·rcles, zig-zag manoeuvre 

and Dieudonne Spiral tests. In the turning circle tests it is seen 

that the linear model turns much tighter than the actual ship. For the 

spi~a1 test it is immediately apparent that at rudder ang'les beyond ·4 

or 5 degrees the linear model becomes extremely inaccurate in a steady 

turn situati·on. In the real ship the rate of turn tends asymtoti.cally 

towards a maximum value of about 0.9 degrees/second and this val·ue 

cannot be extended, whatever rudder angle is applied. The li·near model 

can however, in theory, have a higher and higher rate of turn, the more 

the rudder angle is increased. The real ship is also seen to have a 

small rate of turn when the rudder is amidships. This is a normal 

effect in single screw vessels due to the paddle wheel effect of the 

propeller. This feature is only simulated with the quasi- and non-

linear models. 
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This shows then why only small rudder angles may be used for a linear 

model if reasonabl-e accuracy is to be maintained. When subjected to a 

20°/20° zig-zag manoeuvre, it is quite surprising to note that there is 

better agreement between the simulation and the real result than would 

be expected. Figure 5.4 shows the results from the zig-zag manoeuvre, 

as compared with thw real ship. The yaw rate of the model reaches a 

higher value of some 1.5 degrees per second which is above the maxi.mum 

value for the real ship, and because of this higher rate the overshoot 

is· much greater, being about B degrees more than the re.a·l ship. For 

the fi;rst turn, however, the overshoot is only about 5 degrees more for 

the simulation than for the real ship, since the simulation is starting 

from zero and does-not have so much time for the yaw rate to increase. 

It is interesting to note that the frequencies of the two resu1ts are 

almost exactly the same. The rea1 ship is seen to overshoot more to 

port than to starboard, again due to propell·er side thrust. When 

comparing the results obtained from the quasi-linear model with those 

(rom. the actual ship, it will be seen that during turning circle 

manoeuvres the simulated Mariner hull turned in a tighter ci"rcle, 

producing a greater speed reduction and increased yaw-rate. This was 

not unexpected since similar results for a linear model have been 

obtained by Eda (19651. However when turning to port the quasi-linear 

model turns tighter than the linear model. 

To make the yaw-rate closer to that of the real ship, additional terms 

must be included in the yaw equation. Abkowitz (19641 suggests that 

the Taylor expansion of hydrodynamic forces and moments should be 

expanded to incl-ude terms up to the 3rd order. Strom-Tejsen (1965) has 

made a detailed study of the important non-linear terms and recommends 
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including rv 2
, V

3
, ~v 2 and 93 terms, the first. term being the most 

important. 

On comparison with the real ship the propeller side thrust and moment 

terms Y. and N. were high and could afford to be reduced. These had 

the effect of mal:i'ng the ship turn tighter in a port-hand turn and less 

tight in a starboard-hand one. The results from the Kempf Zig-Zag 

manoeuvre shown in Fi·gure 5.4 are better.than expected. The peri'odic 

time for model and ship are almost identical. The effect of the 

propeller side thrust is to produce different positive and negative 

overshoot angles. 

As with the turning circle manoeuvres discussed earlier, the spiral 

tests show the steady yaw-rate of the model i· s approximately double 

that of the actual ship, but a distinct i·mprovement on the linear 

model. The intersection of the curves with the x-axis gives the rudder 

angle necessary for th• ves~el to travel in a straight line. For 

COMPASS ISLAND, between 0 and 1.5 degrees of starboard rudder were 

necessary, but for the model the value was 3 degrees, due to Y. and N. 

being too high. The hysterisis loop phenomenon, a•lthough clearly 

evident in the actual ship results, did not show itself in the 

simulation .. Taking all tests together however it is seen that even 

with the quasi-linear model the resu•lts fall short of those for the 

real ship. 

In a simulated 20 degree port rudder turn the steady state forward 

velocity was 3.357 m/s, or a 57X reduction of speed. During a similar 

manoeuvre, the USS COMPASS ISLAND settled down to a forward velocity of 
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5.15 m/s, or a 34Z speed reduction. Due to the tightness of the turn 

the latera·J velocity v and hence the dri·ft angle, is greater than that 

of real ship. This increased angle of attack is the reason for the 

artificially l-ow forward velocity. Strom-Tejsen (19b5l recommends the 

use of U
2 and U 3 to be of major importance ~n the x-equation, t~gether 

with V
3

, r 2 and s~ terms which he suggests are of lesser importance. 

5.6 Discussion of Results Non-Linear Model. 

Figures 5.1 and 5.2 illustrate that even the quasi-linear model has its 

limitations. Reference has already been made to the f.u·il non-li·near 

model. Figures 5.1, 5.2, 5.3, 5.7, 5.8.and 5.9 show the results of 

turning circle and zig-zag tests carried out an the ful-l non-! inear 

computer model using the hydrodynamic coefficients for the Mariner 

h u 11 • Data from these open loop tests is now compared with data 

availabl>e from the USS COMPASS ISLAND tests. 

Figure 5.1 shows turning circles for an approach speed of 7.717m/s !15 

knots! with 20 degrees of rudder applied at the 'Execute Point'. For 

the turn to starboard both the real sh~p and the computer model turned 

in a circl·e of diameter close to 1000 metres. There is a great deal of 

similarity, and a considerable improvement over the quasi-linear 

turning circle, for the same approach speed and rudder angle. The non­

linear full scale computer model (VIG•ILANTl settJ.ed down to a constant 

lateral speed of 0.9m/s compared with 0.85m/s for COMPASS ISLAND, 

Figure 5.8, where~s the yaw-rate peaks at 0.84 degrees/second after 0.6 

minutes for VIGILANT compared with 0.82 degrees/second after 0.7 

minutes for COMPASS ISLAND. !Figure 5.9), Figures 5.1 and 5. 7 show 
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that the times to complete a tu~n of 360 degrees and the steady-state 

forward speeds are comparable. Applying 20 degrees of port rudder at 

the same initia1 approach speed of 7.717m/s 115 knots) agai·n shows 

marked similarity between the computer model and the actual ship. In 

particular it must be noted that the final forward speed is much closer 

to the actual value for the non -1 i near than the quasi -..1 i near model, 

thus justifying the inclusion of the non-linear terms. 

For the 10 degree rudder angles COMPASS ISLAND turned tighter than the 

VIGILAN~ to starboard, but VIGiLANT turned tighter to port, perhaps 

i'ndi·cating that the force and moment terms used for the single screw 

propeller were not quite as effective at the reduced rudder angle. 

However, lateral speed, yaw-rate and forward speed transients snd 

steady-state values were again comparable. 

Turning now to the Kempf Zig-Zag results <Figure 5.3), at an initial 

approach speed of 15 knots VIGILANT peaks at 30 degrees to port and 25 

degrees to starboard, with COMPASS ISLAND peaking at 32 degrees to 

starboard and 28 degrees to port with a periodic time of 3 minutes for 

TREMAYNE and 3.35 minutes for COMPASS ISLAND. At a 10 knot initial 

approach speed VIGILANT peaked at 28 degrees to port and 25 degrees to 

starboard with a periodic time of 4.16 minutes, whereas COMPASS ISLAND 

peaked at 27 degrees to port and 25 degrees to starboard with a 

periodic ti·me of 4.5 minutes. 
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5.7 Conclusions 

It has already been stated that the linear model was inadequate for the 

work undertaken, and that the quasi -I i near model showed certain 

limitations. For the non-linear model (VIGILANTl there were still some 

discrepancies, particularly at the lower speeds and rudder angles. 

Looking at the results overall however there was suffi.cient si.miliarity 

to justify usi•ng this model in the computer simulations using the main 

frame computer. It must be born in mind that this thesis i.s concerned 

with the use of filter techniques to minimise noise. As such,one of 

the criteria is to produce a good replicJ of the system i·n the filter. 

lt must also be pointed out that no allowance was made for shall.ow 

water effects in any mathematical model. 

Finally the errors in the measurements made in the USS COMPASS ISLAND 

have to be considered. Position was plotted using a Dead Reckoning 

Tracer and forward sp~ed measurem~nts were obtai·ned from the 

el:ectro-magneU.c l·og. Although an i:nertial system was used there would 

have to be some instrumentation error. Other factors which have to be 

considered are the wind and tide, which although minimal would have 

some effect. Each of these would contribute to larger differences 

between actual and computer model readings at slower speeds and small•er 

rudder angles. This is borne out by the experimental results, 

Taking a11 these points into consideration and looking at the Open loop 

Tests as a whole there is sufficient similarity to justify use of the 

non- I i near mode.! in the main frame computer si mu! ations whi eh formed a 

major part of the thesis. Once a reasonable mathematical model of the 
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ship was established this was used both to simulate the ship and as the 

mathematical model of the ship in the Kalman Fi.lter. As l·ong as the 

two model's were reasonably correct they would satisfy the requirements 

of the research programme. 
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CHAPTER 6 

DIGITAL COMPUTER SIMULATIONS 

b. 1 lntroducti on 

The experimental work described in this chapter involved digital 

computer simulations using the mathematical model~ described in 

Chapters 2 and 3. As a result of the open loop tests described in 

Chapter 5, it was then decided to use only the full non-linear models. 

With the acquisition of a physi·cal seal e model of a twin screw car 

ferry it was dec.i.ded to concentrate the digital computer simulations on 

a full sc~le vefsion of the car ferry model so that comparisons could 

be made. The bulk of the work was therefore carried out ustng this 

computer model (TREMAYNE in accordance with the nomenclature defined in 

Chapter 3>. However, the series of tests began with the Mariner hull 

used in the open loop tests, Using this hull form a natural bridge 

from open to closed loop tests was established. Again using the 

nomenclature of Chapter 3 the non -linear mathematical model of a 

Mariner hull was named VIGILANT. 

Initially the controller fitted was a simple proportional plus 

derivative heading control.ler. Later simulations involved the optimal 

track and heading controller developed by Burns (198{), 

described in Appendix 9. 

This is 

The Optimal Filter, which uses the equations described in Chapter 4 1 

takes as inputs the measured values of the state vector, z(k+l) 1 
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together .. i t h the previous values of the control vector, 1!. ( k ) • it 

produces a best estimate of the state vector 1_(k+1/k+ll which then 

becomes the input to the control! er, which in turn provides the 

demanded values of rudder angle and engine revolutions to guide the 

vessel automatically along a pre-defined track stored in the computer 

memory. The position of the vessel, together with her heading and 

speed are thus controll·ed simultaneously and automatically. 

Essentially there are three modes of operation to be considered. 

Knowledge of the statistical nature of the measurement errors together 

with data relating to wind and tide are used in the Kalman Filter to 

provide best estimates of the state vector. "!:his is the navigation 

mode where the system is being used to provide the operator with more 

accurate position and velocity data than he would expect from using the 

individual measurement systems on their own. This information can be 

displayed upon a graphics terminal on the bridge, or at any remote 

position or it may be fed di·rectl'y to the dig'ital controller, which 

compares the estimated values with data stored in the computer memory 

and computes the necessary control in terms of rudder act.i.on and/or 

engine activity to minimise the errors. This is the fully automat~c 

track keeping mode which is employed in this thesis. 

A further mode of operation would involve an automatic hazard avoidance 

system so that the computer automaticalli assesses the risk of 

collision· with other vessels and passes the appropriate instructions to 

the controller so that the correct avoiding action can be taken. This 

final mode of operation is not included in the present study but is the 

subject of other research projects in Plymouth Polytechnic, Oavis 

(1981) 1 Davis, Dove and Stockel (1982), Colley, Curtis and Stockel 
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( 1984) • 

A simplified algorithm of the complete digital computer simulation is 

given in Figure 6. I, with an overall block diagram for control and 

guidance in Figure 6.2. Detailed flowcharts are given in Appendix 6 1 

together with detailed 

si mu! ati ons. 

explanations of .the digital computer 

6.2 Tha VIG·ILANT Model with Proportional plus Derivative Controller. 

In the digital computer simulatians it was necessary to simulate not 

only the mathematical model of t'he ship, but also the function of the 

on- board computer. In essence this an board computer would be 

dedicated to performing the functions of a digital controller and an 

optimal filter, Essentially these latter functions were carried out by 

using subroutines PDCON, or OPTCON for the controller and OPTFIL for 

the filters, with the Kalman Filter gai•n ca·lculations usi·ng subroutine 

KBFLTR. The process of obtaining the transition matrices used in the 

equations representi<ng the ship, was carried aut using subroutine NAB. 

Details of each of these subroutines is gi·ven in Appendices 7 and 9. 

As the mathemati•cal model of the ship is an essenti a·l part of the 

filter these values are also required in the filter. At this stage it 

is assumed that the values calculated for use in the mathematical model 

can also be used in the filter. 

In these initial runs, usi·ng only a proportional plus deriv.ative simple 

heading controller, the intention was to bridge the gap from open to 

closed loop tests, whilst sett·ing the digital simulatians to work. 
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The information concerni•ng the magnitude and form of the disturbance 

and measurement noise is presented to the filter in the form of 

matri.ces whose leading diagonal terms contain a measure of the expected 

magnitude of the random effects., i.e. the variances, and whose 

off-diagonal terms contain a measure of the expected dependance or 

correlation of the error sources on one another. 

covari ance matri:ces M and N. 

These are the 

Initially it was assumed that each of the eight states in the 

measurement vector was measured by an i·ndependent measurement system. 

This was realistic in terms of rudder angle and engine revolutions. 

However there woul·d be correlation between the x and y co-ordinates of 

position as in practice position would probably be measured using a 

hyperbolic position fixing system. As the hyperbolic co-ordinates 

would then have to be converted to cartesian co-ordinates an error i•n 

the x co-ordinate would affect the measured value of the y co-ordinate. 

Similarly yaw rate would be measured in a marine auto pilot by using 

error rate dampi·ng rather than using a rate gyro to obtain velocity 

feedback. However for the purposes of the runs in these and other 

tests it was assumed that each component of the state vector was 

measured independently, with forward and lateral velociti:es being 

aeasured separately by independent Doppler sonar logs. A rate gyro was 

used to measure yaw rate, a gyro compass to give heading, with rudder 

indicators and engine revolution counter being mounted on the bridge 

and separate systems to measure the x and y co-ordinates of position. 

Thus the measurement noise eo-variance matrix M consists of the 

measurement system variances in its leading diagonal and zeros in all 

the off diagonal positions. 
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Figure 6.3 shows a run where the standard deviations are taken as 

typical of ship fitted systems•, namely rudder angle and engine 

revolutions 0~02 rad or rad/s, position 25.0 metres, speed 0.025 mls, 

heading 0.017 rad and yaw rate 0.017 radfs. These are referred to as 

standard conditions and are listed in Table 6.1. True, measured and 

filtered results are plotted on the same axes. Far the ship track plot 

it is seen that the filtered track coincides with the true track, 

cutting through the measured track, which was produced by using a 

random number generator to calculate values about the given standard 

deviation. Similarl·y the forward and lateral speeds, each plotted 

against time, show the true and filtered values very c~ose and cutting 

through the measured values. Rudder angle, course angle ~nd yaw rate 

plots show similar results. Figure 6.3 only serves to indicate that 

the filter is effective, g·iven, for the moment, the limitations 

i•ndicated in the text. 

For the remaining runs in this series only the ship track is plotted. 

ln Figure 6.4 the mean values of tide and wind are removed. First 

comparisons of Figure 6.3 and 6.4 suggest that there is no difference 

in the two track plots, but on closer examinati.on it is seeh that the 

tracks do not exactly coincide, suggesting that the removal of the mean 

values changes only the track followed over the ground. This was to be 

expected as the cantrol.ler is only required to correct heading errors. 

But in each case the filtered and true tracks are co-incident, 

confirming that the filter will minimise noise although, in this case, 

the presence of mean values of disturbances does not affect the 

functionin.g of the filter. In Figure 6.5 the disturbance and 

measurement noise values have each been increased by a factor of 5 to 
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show the effect of filtering ~ery noisy signals. Once again the true 

and filtered tracks coincide, and although the measurement plot is 

rather unrealistic it do~s i.ndicate that the filter is effective in 

extreme conditions. In Figure 6.6 the measurement n~ise is reduced to 

one fifth of the figures given previously, but the disturbance noise 

remains high, although the mean values of the disturbance all remain at 

zero. In Figure 6.7 both the measurement and disturbance noise 

matrices ar~ low 10.2 of the values quoted for Figure 6.3). Comparing 

Figures 6. 6 and 6. 7 it is seen that the Huctuation.s of the measured 

track are reduced in both cases, whilst the removal of large 

disturbance fluctuations does not affect the filtering., although it 

does of course alter the track followed by the craft. Comparing Figure 

6.4 with Figure 6.7 however it is seen that the filtered tracks are 

very si mi I ar, showi•ng that the track over the ground is control! ed by, 

amongst other things, the disturbance effects and is unaffected by high 

or low disturbance noise values. Similarl'y comparison of Figure 6.7 

with Figure 6.9 suggests that the track over the ground is unaffected 

by the degree or amount of measurement noise. Figures 6.4 to 6.9 show 

that the filter is capable of providiing good estimates of position 

through very noisy measurements when the disturbance noise has zero 

mean conddions. 

In Figures 6.9 through to 6.12 the mean values of disturbance noise are 

returned. These are a mean current of 0. 66.9 m/s I I. 3 knots) i.n 

direction 3.65 radian 1209 degrees) clockwise from true north, with a 

mean wind speed of 10.29 m/s 120 knots) in a direction 3.929 radian 

1225 de~reesl from north. All directions are taken as away from the 

ship. Comparison of Figure 6.5 with Figure 6.9 where disturbance and 
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measurement noise are both high suggest that the mean values affect the 

track over the ground, but do not affect the filteri·ng. Similady the 

effect of reducing the measurement noise, as in Figure 6. 10, does not 

affect the filtering. In Figure 6.11 the random disturbance noise is 

zero, whilst the measurement noise is hi·gh. In this run the true and 

filtered tracks diverge slightly as the run progresses, whereas i.f a 

Jaw level of random disturbance noise is re-introduced (Figure 6.121 

then the divergence of true and filtered tracks is less marked. 

To summarise,, Figures 6.4 through to 6.12 i·ndicate that the Kalman 

Filter is capable of operating through noisy measured values and will 

have its greatest effect upon the measurement noise. Large values of 

random disturbance noise do not affect the posiUon plot, while 'the 

presence of mean values of the disturbances do not decrease the effect 

of the filter. Alternatively, the disturbances can be looked upon as 

having mean values with superimposed random fluctuati•ons, thus allowing 

the Kalman Fil'ter theory to be applied. Grimble, Patton and Wise 

(19BObl suggest that the wi·nd can be modelled as a disturbance signal 

and a white noise signa·!, whilst Medditch (19691 refers to a Gaussian 

white sequence with a mean value. The mean values can then be treated 

as a separate disturbance input to the random va·lues used in the f·il ter 

cakulations. In Figures 6.13 and 6.14 the mean values, random 

disturbance noise and measurement noise are all returned to the normal 

values used in Figure 6 •. 3. In Figure 6.13 the Kalman Filter gain is 

on! y recal•culated for every 10 sample times (50 seconds in· real ti.mel, 

whilst in Figure 6.14 the gain is recalculated after 50 sampling 

intervals (250 seconds of real time). It is seen that there is no 
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significant difference between these runs and the first run in this 

series (Figure 6.31, suggesting that the gain of the filter does not 

have to be recalculated during each sample time. This fact was to be 

of significant use later when the physical model software was being 

developed. 

Figure 6.15 illustrates the situation when the off-diagonal terms (3,51 

and (5 1 31 of the measurement covariance matrix are given small values 

to simulate cross- correlation between the x and the y posi'tion 

measurements. 

6.3 The TREMAYNE Model with Optimal Controller 

Once the validity of the filter had been established using the Mariner 

hull characteristics and a simple controller, the next stage was to 

change to the model of a twin screw car ferry, with optimal controller, 

to simulate such a vessel approaching the Port of Plymouth and moving 

along the navigable channel into the harbour. Since this thesis was 

concerned wth the automatic pilot~ge of large ships it was intended 

that the ship followed·, automatically, a predetermined track, the 

co-ordinates df which would be held in an on-board computer. It has 

already been stated that the car ferry model used was defined by the 

physical model, CENTAUR, used in l·ater tests on a reservoir, and hence 

the TREMAYNE model is defined by the non-dimensionalised coelficients 

derived for CENTAUR and scaled up appropriately to represent a full 

sized ship, such as the QU·IBERON, a French car ferry which, at the time 

of the research, was regularly using Plymouth. (See Frontispiece). 
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Since the vessel is to be automatically pi·loted al•ong the predeter'mi:ned 

path, this implied that a track controller was to be used. In fact the 

optimal controller was both a track and a heading controller. As these 

two requirements could at times conflict the optimal weightings were 

such that the track control dominated, except at times when an 

alteration of course became nece•sary, whan the weightings were changed 

so that the heading control predominated. 

In all these later digital computer simulations an outli·ne chart of 

Plymouth Sound was drawn usi:ng subroutine PLYM, which is described in 

Appendix 6. This gives the position of the breakwater and the 

principal buoys which outli·ne the navigabl·e channel. The vessel was 

assumed to be at or close to the demanded track, at its southerly end, 

at the commencement of each run, with the completion being to the East 

of Drake's Island. In Figures 6.1.6 to 6.22 the demanded va·lues are 

plotted in black, the measured va.Jues in green,the true values in blue 

and the estimated values in red. Figure 6.16 shows a run with the 

norma·! set of measurement noise standard deviations referred to in 

Table 6.1. Hitherto the values of the transition matrices used in the 

mathematical model to simulate the ship were also used in the fi Iter 

c a·l c u 1 at i on s. For the remaining simulations these values were 

calcul.ated twice for each sample time; firstly i·n the mathematical 

model of the ship when the true values of the state and control vectors 

were used in the calculations, secondly in the filter calculations. In 

the latter case only those states available, i;e the estimated and 

measured values were used, thus adding to the realism of the simulation 

and all.owing the mathematical model used for the ship itself to differ 

from the mathematica•l model used in the fi Iter. In Figure 6.16 the 
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values of the Kalman filter gains were recalculated only when the 

course error exceeded 30 degrees. As with previous runs the true and 

filtered tracks are almost co-incident with the ve.ssel following very 

closely the recommended track for deep draft vessels in the approaches 

to the port. Figure 6.17 illustrates the situation when speed 

measurement noise is increased. The forward and lateral speed graphs 

showed this noise with the f i 1 tered val'ues unchanged from the previous 

run. The track plot was ident1cal to that of Figure 6.16 showing no 

deterioration of the filtered track, or of any of the states plotted 

out. In Figure 6,1•8 1 where the position standard deviations were 

increased to 200 metres to simulate a night time approach using the 

Decca Navigator, the Kalman Filter gains were still only re-calculated 

when the course error exceeded 30 degrees. In this case, although the 

measured track was somewhat unrealistic, the filtered val·ues still 

followed closely the true values. 

Leaving aside the mean values of wind and tide, Figure 6.19 illustrates 

a run where the random fluctuations of these quantities were increased. 

The current standard deviations were increased to 0.6 knots and 30 

degrees, thus simulating a bad weather approach to the port. 'By 

comparison with the standard conditions of Figure 6.16 there are 

greater variations in the speeds, yaw rate and heading, but in all 

cases the true and estimated values are very close. Bearing in mi·nd 
,-

that both the wind and the tide are from a south westerly direction the 

track plot does show the vessel off-track during the second and third 

legs, with the filtered track dangerously close to the starboard side 

of the navigable channel. However, during the fourth leg the ship is 

seen to be returning to the demanded track, with the filtered values 
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again close to the true values. Figure 6.20 shows the situation in a 

night approach in bad weather with the filtered track rather more in 

error, although still f~llowing the true track. In this run the 

position standard deviation was increased to 200 metres and the speed 

standard deviation to 2 m/s agai'n showing the ability of the filter to 

output signals which would enable the optimal controller to effectively 

guide the vessel along the predetermi:ned track. 

Turning now to the mathematical model used·in the filter and looking at 

a typical graph of some of the elements in the continuous time matrix, 

F ~Figure 6.21! it is seen that these elements are reasonably constant 

except i·n an alterati~n of course. It wi 11 be shown 1 at er, when 

derivi·ng the fi Iter equations for use in the Centaur model, that the 

elements are largely functi-ons of forward speed, lateral speed and yaw 

rate, in which case they would be expected to change whenever speed 

and/or heading changes. All the coe~ficients are shown in Equation set 

3.28 and are defined in Appendix 3. It is seen from the plots that the 

values do change at the alter course points but most values remain 

reasonably constant between alterations of course and speed. 

Figures 6.22 and 6.23 show the results when errors appear in the 

transition matrix. In Figure 6.22 theE matrix is scaled by a factor 

of 1.1 at time k =50. For th• first two legs of the passage the 

track keeping is as good as for previous runs, but during the second 

leg the true and filtered tracks are seen to diverge. At the start of 

the fourth leg the true and filtered tracks are again co-incident, 

because the state, control and disturbance matrices in the filter are 

regaining their correct values. In Figure 6.23 the! matrix is scaled 
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by a factor of 1.5 after 50 .sampling periods. The variations are much 

greater as would be expected, showing clearly that the filter requires 

to moael the actua1 system accurately. 

These results, together with others carri·ed out earlier, showed quite 

clearly that if the state, control and disturbance matrices were not 

frequently updated the accuracy of the mathematical model used in the 

filter was reduced and the efficiency of the filter fel.l off rapidl·y. 

Moreover, it was found unnecessary to recalculate the filter gains 

during every sampling. instJnt. This i•n turn suggested that the filter 

i.tself might not be necessary, but later work with the physical model 

showed this was not so. 

6.4 Summary 

A futl analysis of the mainframe digital computer simulations with 

emphasis on the filter gains is given in Chapter 7, but the resu1ts 

gi•ven in this chapter show that the Kalman filter was able to give 

accurate estimates of the eight states given very noisy conditions, 

provided the mathematical model of the ship in the filter was accurate. 

The results further showed that the random disturbance had little or no 

effect on the filter and fixed values of wind and tide di•d not degrade 

the ability of the filter to feed accurate estimates of the states to 

the opti•mal controller. 
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al Measure ment Noise Standard Deviation 

Rudder Angle 0 . 002 rad 

Engine Revolutions 0 . 002 rad/s 

Position 25 met re s 

Speed 0. 025 m/s 

Heading 0 . 017 rad 

Yaw Rate 0 . 00399 rad/ s 

b l Disturbance Noise Standard Deviations 

Current Speed 

Curr ent Direction 

Wind Speed 

Curr ent Direction 

0.2 m/s (0.39 knotsl 

0 . 35 rad !20 degrees) 

3 . 0 m/s (5.83 knots) 

0.35 rad (20 degrees) 

cl Disturbance Mean Values 

Current Speed 

Current Direction 

Wind Speed 

Wind Direction 

0.669 m/s (1.3 kn ots) 

3.665 rad !209 degrees) 

10.29 m/s (2 0 knots ) 

3 .927 rad (225 degr ees) 

All directions were ta ken as away from the s hip . 

Table 6.1 Standard Conditions for Disturbance and Measurement Noise 
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CALCULATIONS INVOLVING MATHEMATICAL MODEL 
OF SHIP~DISTURBANCES 

SIMULATION OF MEASUREMENT PROCESS 

FILTER CALCULATIONS TO PRODUCE BEST 
ESTIMATE OF STATE VECTOR ~{k+l/k+l) 

b. 

CONTROLLER CALCULATIONS TO OBTAIN 
CONTROL VECTOR u{k) 

PLOTTING CALCULATIONS 

N 

~ PLOT GRAPH~ 
PRINT DATA 

( END 

FIG 6.1 Algorithm Of Digital Computer Simulation 
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CHAPTER 7 

DIGITAL COMPUTER SIMULATIONS 

D I S C U'S S I ON 0 F R E S U L T S 

7.1 Qualitative Discussion of the Kalman Fi Iter Gains. 

Before analysing the factors which govern the filter gains some 

qualitative comments are made. ~n a system where there was no 

measurement or di~turbance noise the model states wou·ld be in line with 

those of the vessel and the filter gains woul•d be zero. If there was 

disturbance noise· and no measurement noise, any difference between ship 

and model would be due to the perturbations of the system caused by 

random disturbance noise inputs. Without measurement noise the 

measured values would be correct l·eading to high filter gains. In thi•s 

situation the input to the filter refl~cts the random perturbations due 

to di.sturbance. The high filter gains woul.d approach unity as the 

output from the filter would only be required to add the di·sturbance 

effects to the model. Even if a small amount of measurement noise was 

present the filter gains would still be high. The continuing 

assumpti•on is made, of course, that there is no correlation between 

individual measurement systems and reference is then only made to the 

leadi•ng diagonal terms of the filter gain matrix. Even if a small 

amount of measurement noise is present the filter gains would be 

expected to approach unity. 

If now the measurement noi:se was high and the disturbance noise low the 

model states would be correct, but the measurements incorrect, leading 
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to low filter gains so that each output component from the filter would 

only make a sma11 change to its appropriate model state. In the full 

scale digital simulations described-in the previous chapter there are 

four disturbance components whereas the measurement vector has eight 

elements, corresponding to the eight states, but the foregoing does 

suggest that if the ratio of disturbance noise to measurement noise is 

hi·gh the filter gains will be high, but if the ratio is sma·ll, the 

gains will be l·ow. As some measurement noise values are high and 

others low this suggests that the elements of the gain matrix may 

differ widely. 

7.2 Analysis of the Kalman Filter Gain~. 

Before attempting any quantitative analysis of the gains obtained in 

the digital computer simulati·ons, the matrix equations used in the 
. . 

filter cal·culations are restated in a·l•gebraic form. The f·i·rst computer 

equation defines the i·ntermediate or predicted system error covari.ance 

matrix given by:-

£' !k+l/kl =_a !k+l, klf !k/kl·i.'" !k+l, kl + ~ !k+l, k >B !kl£,:!1:+1, kl !7 .I> 

.f!k/k) is the system error covariance matrix whtch has been calculated 

during the previous sampling instant. In the full scale models it is 

an B•B matrix. During each set of ca~culations an intermediate value 

~(k+l/k) is calcul·ated from equation 7.1 using the state transition 

matrix _B(k+l ,k) and its transpose, the disturbance transiti:on matrix 

J;_(k+l,k) its transpose and the di·sturbance noise covariance matrix _M(k) 

in addition to £'!k. 1 k). 

This predicted error covariance is then used in the ca•lculation of the 
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Kalman Filter gain matrix fCk+ll as follows:-

l ( k+ I ) = £' ( k +I ' HH T ( k + I ) [:!!< k+ I ) f ( k + I/ k ) !!_T ( k +I ) +..!:! ( k + I ) ] - ' ( 7. 2) 

The filter gains therefore depend upon the previ'ous values of the error 

covariance matrix, the state and disturbance transition matrices, the 

measurement matrix HCk+ll and its transpose, the disturbance noise 

covariance matrix and the measurement noise covariance matrix MCk+ll. 

Finally a new value Pl·k+l/k+ll is obtained from:-

.f < k + 11 k + I l = [ .! -t I k + I .l ll < k + I J .f I k + ll k l ( 7. 3) 

This new value of the error covariance mat~ix is then available for the 

next set of filter calculations. 

Unless otherwise stated the figures quoted in this section refer to the 

standard set of conditions set out in Table 6. I and described in 

Chapter 6. a. ' Table 7.1 and 7.2 gives values for predicted system error 
" 

covariance matrix at the beginning and towards the end of a run where 

the filter gain was calculated for each value of the sample time, and 

the model matrices were re-calculated in a simil·ar manner. lt can b.e 

seen from this tab.le that the elements vary from such large numbers as 

24.88, PKP113,3l at begi.nning of the ~un to 0.0000000327, PKPI 18 1 2) at 

the end of the run. lt can also be seen that the majority of terms in 

the matrix are small numbers or zero <typically about 75X are less than 

I l 1 brought about by the small numbers in the .fr and J; matrices. As the 

elements of the f matrix are mainly very small numbers themselves the 

contri'bution of the di·sturbance noise covariance matrix ! tends tti be 

minimised, but i·ncluding the term f•.!:'•f_T in equation 7.1 acknowledges 

the deterioration in knowledge of the states that occur due to the 

effect of random disturbances in each sample time. 

The calculation of the filter gai'ns (equation set 7.2) included a 
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matrix inversion. ~, and hence .[', were tal: en as identi t,y matrices and 

flk+l/kl was thus effectively added to the measurement noise covariance 

matrix ~. after which the matrix inversion took place. To test the 

validity of the matrix inversion the original and i·nverted matrices 

were multiplied together to give the identity matrix. 

When the inverted matrix is multiplied, effectively, by flk+l/kl to 

give the filter gain matrix then the leading diagonal terms are close 

to 1 for low measurement noise values and much smaller for high 

measurement noise values, with the great majority of the off-diagonal 

terms close to zero, !Table 7.3). When the position standard 

deviations were increased to 200 metres lto simulate a winter's night 

approach using the Oecca Navigator), then the 13. 1 3) and 15,5) el·ements 

of the f·ilter gains were further decreased by a factor of 64. It i.s 

interesting to note that this corr~sponds to a 62.5 factor of increase 

for the appropriate covariance term in M. Typi•cal values of the filter 

gains are given in Table 7.4. 

Increase i~n Ml3,3l = 2002/252 = 64 

= Increase in M I 5 , 5) 

K I 3, 3 l for 25 metres SO = 0.004026536 

K I 3, 3l for 200 metres SO = 0.00006342497 

Ratici = 63.48 

K I 5, 5l for 25 metres 50 = 0.004536094 

K I 5, 5) for 200 metres so = 0.00008394379 

Ratio = 54 

rhese figures confirm the statements made i•n 7. I ~amely that the filter 

gains depend largely upon the measurement noise, being low for noisy 
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signals and high for low values of measurement noise, although the 

disturbance nofse does have tti be taken into consideration. 

The results of Chapter 6 showed quite clearly the ability of the filter 

to take noisy signals from the eight measured states and provi·de best 

estimates which were close to the true values. It has to be borne in 

mi·nd that the results of simulation are usua'ily better than those 

achievable i·n th~ real wor·ld. This is principally due to the 

si-milarity between system dynamics:, noise colourations and other 

factors contained both in the Kalman filter equations and the 

simulation models, a difficult situation to avoid with the normal lack 

of knDw~edge of real-world dyn~mics and stochastic processes. However 

some differences were obtained by using only true values in the 

simulation models and either estimated or measured values in the filter 

equations. 

Another problem was the need to tr.ansform between co-ordinate systems. 

In effect three co-ordi:nate systems were used. The first two were 

rel·ated' to the ship and the earth respectively, and when plotting the 

ship's track relative to earth it was necessary to transform the x and 

y co-ordinates relative to the ship axes to earth axes. This was 

unrealistic in that an electroni'c positi•on fixing system would· almost 

certainLy give position co-ordinates in some hyperbolic system. These 

would then have to be transformed to cartesian co-ordinates relative to 

the earth. Again this was a limitation of the simulation emptoyed. 

However rudder angle., speed and yaw rate were measured· relative to the 

ship axes ·whilst heading was one of the links between the two 

co-ordinate systems. 
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A third co-ordinate system was used to define track error. A way point 

was defined and the position error rel&ted to the distance along track 

and the distance off track (track error), This latter system was 

primarily to simplify the optimal controlle~. 

6. 00673 0.0 -0.0118 -0.00355 0.05902 0.01569 -0.00217 -0.00057 

0.0 0.00673 0.00528 0.00151 0.00002 0.00001 o.o 0.0 

-0.00181 0.00528 0.00249 0.04669 -0.53231 -6.10927 -0. 18566 -0.02907 

-o .. oo355 0.00151 4.66975 0.91377 -0.24973 ,-0,05965 -0.10611 -0.01672 

0.05902 0.00002 -0.53231 -0.24973 34.74558 8.42338 14.58034 2.30938 

0.01569 0.00001 -0.10927 -0.05965 8.42338 2. 35.974 5.22462 0.82947 

-0.002.17 0.0 -0. 18566 -0.10611 14.58034 5.22463 17.42164 2.61496 

-0.00057 0.0 -0.02907 -0.01672 2.30938 0.82947 2.61496 0.41641 

Table 7.1 Predicted Error Covariance (PKP1l at Start of Run 
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0.00673 o.o -0.00555 -0.00146 0.06177 0.01679 -0.00224 -0.00060 

o.o o,oo673 0 .. 00669 0.0019-2 -0.00002 -0.00001 0.0 0.0 

-0.00555 -0.00669 24.97807 4.69605 0. 21 0.03091 0.12139 0.01989 

0.00146 0.00192 4.69605 0.92003 0.12624 0.0283 0.06874 0.01119 

0. 061 77 -0.00002 0. 21 0.12624 34.71.66 8.39009 14.01015 2.26452 

0.01679 -0.00001 0.03091 0.02823 8.39009 2.33597 5.11093 0.82806 

-0.00224 0.0 0.12139 0.6874 14.01015 5.11094 18.00821 2.76437 

-0.00061 0.0 0 •. 01989 0.0111'9 2.26452 0.82806 2.70437 0.44931 

Table 7.2 Predicted Error Covariance IPKP1l at End of Run 

0.99937 o.o o.o 0.0 0.0 0.00001 0.0 -0.00003 

0.0 0.9941 0.0 o.o 0.0 0.0 0.0 0.0 

0.35409 -0.36601 0.00403 0.04763 -0.00002 -0.05528 -0.00003 0.02809 

-0.01621 0.01831 o.ooo47 0.93403 0.0 0.00089 0.0 -0.00008 

-3.38426 -0.00295 -0.00002 0.02807 0.00454 4.88049 0.00223 -0.03996 

0.20291- -0.00038 0.0 0.00089 0.00049 0.92181 0 .. 00095 0.13599 

0.00004 0.0 0.0 0.0 0.0 0.0 0.99971 0.00173 

-0.00012 0.0 0.0 o.o 0.0 0.00003 0.0001 0.99929 

Table 7.3 Typical Kalman Filter Gains 
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CHAPTER 8 

DESIGN OF A 

FILTER FOR 

8.1 Introduction 

MINIMUM VARIANCE 

THE PH Y S I C A·L M 0 DE L 

Prior to installing the optimal filter and controller in the physical 

model !CENTAUR) it was decided to simulate them using the mainframe 

computer. In accordance with the nomenclature of Chapter 3 the 

computer model of the physical car ferry model was named HEATHMORE. 

Restrictions were ~mposed by the instrumentation package installed in 

the model, which consisted of three accelerometers, a gyro and a yaw 

rate gyro, but eventually the reduced non-linear model of equation set 

!3.29) was decided upon. 

Li.mitations of the Texas Instruments microcomputer memory necessitated 

modification of the computer programs, leading to considerab'l•e 

simplification in the optimal controller and optimal filter. Like a11 

previous mainframe simulations the FORTRAN ·language was used, but the 

programs were converted to BASIC for use in the on board computer, in 

which they were finally burned into an EPROM chip. As with the 

instrumentation package these decisions were governed by the hardware 

available 

8.2 Development of the Discrete Reduced Non-Linear Model 

With the same disturbances as for the full scale models, namely wind 
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and current components a~ong the ship x and y axes, the set of four 

first order differential equations to represent-the model in continuous 

time were gi·ven in equation set 13.291. As with the previous 

simulations, measurements were taken at discrete time intervals leading 

to a set of fi:rst order difference equations relati•ng the states at one 

i:nstant to the states at some other instant. These are expressed as:-

= A, , A,, 0 A,4 u·( k l + 8,, 8 , ,, t·" '] A,, A,, 0 A24 V ( kJ 8·2, 822· A ( k) 
I 

I k +I l 0 0 A,, A34 I 'f'lk) 0 0 

A., Ao2 0 Aoo r l·k l B., , 8.2 

+ c .. c,, 0 0 u c ( k )• I 8. I l 

0 0 

0 0 0 0 

0 0 

This i·n turn led to the following mathematical model in the filter:-

= A, , A," 0 A,. I U ( k) + B, , B,, 

~·''j 18. 2-) 

A,, A22 0 A2o I 
V ( k) 821 822 n A I k l 

'' 
I k +I l , 0 0 A.,, A,. : '/' ( k ) 0 0 

A., Ao2 0 Aoo , r I k l B •, e., 

The various components of the B, ] and~ matrices were obtained from 

their continuous time equivalents i·n equation •et 3.29 using the 

methods described in Chapter 3, and employing subroutine NAB. 
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8.3 The HEATHMORE Model 

To simplify the physica.l model tests it was decided to undertake them 

under conditions of zero, or near zero disturbance, but to overcome the 

practi•cal programming problems small values of disturbance noise 

covariances were used in the filter calculations. Calculation of the 

filter gains involves an iterative process, and a test for non-

convergency has hitherto been used. In the HEATHMORE tests this 

process was followed for only the first set of filter cal·culations. 

Thereafter the val.ues were calculated only once for each sampling 

interval. It has alr~ady been shown in Chapter 6 that the filter gatns 

remain reasonably constant for a given run. It was therefore reasoned 

that this assumption did not reduce the effectiveness of the filter. 

In laboratory tests the accelerometers gave very noisy sign•ls whereas 

the gyro compass and the yaw rate gyro noise val•ues were l.ow. In the 

simulations the standard deviations were treated in a similar manner. 

Bearing in mind that the forward and lateral velocities in the CENTAUR 

model would be obtained by integrating the measured forward and lateral 

accelerations, the appropriate standard deviations in the HEATHHORE 

simulations were initially kept high (lm/s), whilst those of the third 

and fourth state vector were set low (0.017 rad and 0.00399 rad/sl. 

Four tests were carried out under these conditions to test the validity 

of the filter model and the need to re-calculate the filter gains 

during each sampling period. These are illustrated in Figures B. I to 

8.4 inclusive. In Figure 9,5 the filter gains and the transition 

matrices for the f.ilter are re-calcul.ated during each sample time. In 
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addition to plotti·ng each state against time
1 

a set of position plots 

for true, measured and filtered values are shown. As with earlier 

graphs the demanded values are in black, the measured values in green 

with the true val'ues in blue and the filtered values in red. Position 

values are calculated in the same way as for the full- scale 

simulations. 

The ship was initi.ally stationed 4 metres to the right of the initi.al 

demanded position with an initial forward speed of 0.75 m/s, with zero 

lateral speed, heading and yaw rate. Alter 56 seconds (the sampling 

tnterval was I second) the demanded heading was changed to + 90 

degrees. From Figure 8. I it is seen that, in spite of the very noi.sy 

position signals the fil·tered track followed closely the true track, 

with a slight overshoot, but after 35 seconds the system anticipated 

the alteration course (the helm over position) and the rudder was 

driven to starboard so that the vessel started to move around to her 

new track. At this point the controller was a heading controller and 

continued to be so untfl the heading error was reduced to less than 30 

degrees, when the track controller again dominated. During the test 

run, and in spite of the very noisy speed measurements, it is seen that 

the ship settles down to her new course and track with only a very 

small overshoot. Turning now to the speed time graphs it is seen that 

again the fi.ltered and true values are very close, and close to the 

demanded value for the forward speed. During the turn the vessel's 

forward speed decreased and the lateral speed ~ncreased, ilthough the 

latter is shown as negative on the lateral speed plot because of the 

sign convention adopted. Similarly, the course angle and yaw rate 

plots give good correlation between true and filtered values. 
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In Figure 8.2 the filter gains are calculated only at the commencement 

of the run. Comparison of Fiqures B. 1 and 8.2 shows no difference in 

the plots. In Table 8.1 a comparison of gai·ns is made at the 

beginning, middle and end of a run where they are calculated for each 

sampling interval. tomparisons show that AK<1,1l and AK<2,2l remain as 

very small numbers throughout, AK<3,3) decreases from 1.161 to 0.02485 

to 0.005921, whilst AK<4,4l remai·ns as a small number. This is in 

keeping with the qualitati·ve conclusions of the previous chapter. For 

AK<4,4) the sma•ll val·ue i•s aHrilbuted to the low ratio between 

disturbance and measurement noise. A single calculation of the fil·ter 

gains, together with a constant j matrix used i·n the optima1 filter was 

to be a significant factor in the software development in CEN~AUR, 

where the re-calculation of all the rel-evant matrices with the sampling 

time of I second was impossible using the available hardware. 

8.4 Simplification of the Filter Mathemati1cal Model 

In the full-scale computer simulations a n':~\}~:;{~At of 5 seconds was 

used. This was mainly due to the requirement that the duration of the 

sampling interval should be approximately one tenth of the domi•nant 

time constant of the controlled object. Zui·dwfg ( 1970) quotes the 

domi·nant time constant for the Mariner hull as 56.52 seconds and uses a 

sample time of 5.65 seconds. For the physical model of the car ferry a 

sample time was reduced to I second, primarily to comply with the one 

tenth rule quoted above, but also for practical purposes concerned with 

the model itself. lt was felt that a sample time of say 5 seconds 

would be too large and allow too few measurements in a model run, which 
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was limited to around 2 minutes by such factors as the need to 

re-charge the model batteries at frequent intervals. Bearing· all these 

factors in mind a sample time of I second was chosen. This meant that 

all the on-board computer calculations would have to be completed 

within one second·, so that each value was avai labl·e for the next set of 

calculations. This presented difficulties i<n the microcomputer to be 

installed in the physical model so that simplificati·on of controller 

and filter design was necessary ~n order to complete each set of 

calculations in the sample t-ime. 

The process of calculating the state,. control and disturbance matr~ces 

is in itself a lengthy process demanding a great deal of computing 

time. Once the sampling time of second had been fixed for the 

CENTAUR model it was necessary to ensure that a 11 necessary 

calculations were completed within that time interval. Mention of the 

difficulties was made in ·Chapter 3, page 33, for the values of these 

matrices would require recalculation for each sampling interva1 and 

early laboratory tests using the microprocessor to be installed in 

CENTAUR showed that it was incapable of undertaking all the recurrent 

calculations within one second. Details of these calculations are 

given in Appendix 7, where the appropriate mainframe computer 

subroutine NAB is discussed. Referring to equations 3.15 and 3.16 it 

is seen that B, J and~ are again obtained by using a power series and 

the number of terms, L ·, of the seri.es approximation is decided 

beforehand. A value of 20 was used in the mainframe computation in 

order to ensure the power series equations were sufficiently accurate. 

First thoughts were to reduce the calculation time in the microcomputer 

by reducing the number of terms. Figures 8.3A and 8.38 show the plots 
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for a reducti·cin in L' to 5 and 1 respectively. Only when the number of 

terms decreases below 5 does the accuracy of the track plot degrade 

sufficiently to cause concern. It must be pointed out that these 

figures only apply to the filter model, that is the full calculations 

still took place in connection with the model of the ship. 

With the calculation times still over one .second it was decided to 

attempt a lurther simplification of the equations governing the a and ~ 

matrices. By plbtting values of the components in the matrices against 

forward speed and yaw rate Burns (1984l showed- that there was a 

linear relationship between the matrix componen.t and either or both of 

the states referred to above, with the rudder angle being an additional 

consideration in the control matrix. For the HEATHMDRE and CENJAUR 

models the equations are shown i•n Table 8.2. 

The equations are set out in the form in which they were used in the 

computer programs. AA is the 4*4 state transition matrix whilst BB is 

the 4*2 control transition matrix. The disturbance transi·ti.on matrix 

is not used in the filter ca1culaU.ons. Figure 8.4 shows the result of 

these changes to the calculations of the ! and~ matrices in the 

filter. The filtered v•lues of speed (forward and lateral) follow 

closely their respective true values whilst heading and yaw rate were 

l·ess coincident, with the measured values. This in turn led to a track 

plot which showed the vessel rather too far to the left of the demanded 

track when the alteration of course commenced. 

This condition had already shown up in Figure 8.38. It confirms that 

as the .! and _l mat r i c e s i n the f i I t er become d i ss i m i I a r to the A and B 
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matrices i'n the ship, the true and filtered tracks diverge because the 

true and filtered headings diverge. 

It has to be remembered that positi·on is not a state in the reduced 

models, and is calculated from speed and heading, which are states, so 

that any discrepancy in either of these would cause errors i.n the track 

pI ot. From the data available it was cl.ear that the filter was 

operating correctly through· the noisy speed signals, but rather l•ess 

efficiently for the l.ow noise heading and yaw rate measurements. 

In the qualitative discussion of Chapter 7 (Section 7.1) it was 

reasoned that a fi.Jter gain approaching unity would be required if 

there was disturbance noise but no measurement noise. But this assumed 

the filter model was an accurate representation of the system. If the 

filter model differed from the real model the error might be minimised, 

although not eli.minated by using an artificially high gain in the 

appropriate position in the filter gain matrix. To· test the theory a 

filter gain of 1.0 was assigned to each of the rel:evant components of 

the gain matrix, AKC3,3l and AKC4,4l. This did n~t change the track 

plot as can be seen when comparing Figures 8.4 and 8.4A. Furthermore, 

when the normal filter calculations were re-introduced CFigure 8.5) 

there was no difference to any of the filtered states when compared 

with the standard condi ti•ons of Fi•gure 8. 1. This led to further 

consideration of the Kalman Filter gains and to the possibility of 

using state plus state estimation feedback to the optimal controller. 

Figure 8.4 shows the result of these changes to the calculation of A 

and! in the filter. 
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The high noise values associated with the accelerometers and the low 

noise of the gyro- compass and yaw- rate gyro led in turn to 

consi·deration of whether the low noise signals could be fed directly to 

the con t r o 1 1 er (state feedback I 1 ea vi n g on 1 y the no i s y si g n a 1 s to be 

processed in the fil.ter. Before making these modific~ti•ons all four 

measured states were used as inputs to the cofttroller as a "control" 

experiment. This is illustrated in Figure 8.6 which shows that 

although the true and filtered tracks are very close the vessel does 

not follow the demanded track, indicattng the need for filtering the 

measured states prior to thetr use as i·nputs to the optimal controller. 

Turning now to consideration of state plus state estimation feedback, 

Grimble (!980al suggests that the assumphon in many in_dustrial control 

problems is that none of the states can be measured directly, in which 

case the Kalman Filter has the same dimensions as the plant state space 

description, often resulting in such a high order controller so that 

the scheme is impracticab·l,e. He goes on to suggest th.at this i's often 

unrealistic since some state variables can be measured with a high 

d•gree of accuracy. This is the case with the system used i·n CENTAUR. 

The concept of measurable and unmeasurable state referred to by 

Grimble is not foJ.Jowed here, but rather the subset of high n6ise 

states is fed to the filter. In the mainframe digital simul·ations 

using the HEATHMORE model no attempt was made to modify the filter, but 

from Figure 8.1 it was seen that there was a substantial improvement 

over the previous ca~e when measured signals were fed directly to the 

controller. Although the speed noise val•ues have been increased i·n 

Figures 8.6 and B. 7 the state pl'us state estimation feedback compares 
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favourably with Figure 8.1 when only filtered values were fed b.ack to 

the controll·er. 

Traditionaily the mariner has been very dependent upon his instruments. 

Without an accurate·chronometer for example it is impossible to. obtain 

a fix using the well-proven methods of astro-navigation, and without a 

compass all sense of direction is soon lost when out of sitht of land. 

Whilst chronometers and compasses were reliable the loss of head·i·ng 

i•nformation in the approaches to a •port could be disastrous. However 

one of the functions of a Kalman filter is the ability to produce an 

estimate of an unmeasurable state, so that in the event of a 

malfunction of one or more of the measurement sub-systems an estimate 

of that state can still be given. Thus an approach would not have to 

be aborted in the event of say a gyro breakdown during the passage into 

a port. 

Figure 8.8 shows the effect of a gyro compass reading remaining at zero 

throughout a run. Althou~h the measured values contain only the 

superimposed gyro noise the vessel follows the correct path and the 

estimated values of position, speed, heading and yaw rate remain cl·ose 

to the true values. Particularly interesting is the course ang~e-time 

graph which shows the filter giving a reading close to the true course. 

In Figure 8.9 a gyro malfunction takes place after 65 seconds, whilst 

the yaw rate gyro develops a fault after 95 seconds. In Figure 8. 10 

the lateral speed measurement fails at 65 seconds and the rate gyro at 

95 seconds. These points are marked A and B respecti·vely on Figures 
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B. 9 and 8.10. In both of these cases the filtered track is seen to 

follow closely the true track although after the second measurement 

system failure of Fi'gure 8.9 the two tend to diverge from the demanded 

track towards the end of the Figure 8.10 run. Whilst these results are 

not conclusive they do indicate the ability of a four-state system to 

accept a malfunction of one of the measurement sub-systems without 

degrading the overall performance of the system, whereas with errors i·n 

two measurement sub-systems the system was still capabl·e of automatic 

track keeping although the system performance did start to fall off 

after the rate- gyro ceased to function. 

In Figures 8.8 and 8.9 the gyro was made to function incorrectly 

because it was reasoned that the loss of a low noise measurement would 

be more harmful to system performance than the loss of the htgh noise 

accel·erometers. Furthermore the loss of the gyro would have the 

greatest effect upon the harbour approach and without a~ integrated 

system using Kalman filter techniques could lead to the vessel 

ground~ng in the Faitway. 

B.S" Optimal Fi Her Specification for CENTAIJR 

The mainframe simulations carried out on the reduced non-linear car 

ferry model confirmed the earlier conclusions !Chapter 6) lhat the 

recalculation of the filter gai•ns for each sample period was 

unnecessary and that the values need only be calculated once for a 

given run or series of runs. It was also confirmed that the 

mathematical model of the ship used in the filter needed to be a good 

representation of the p•lant and would need frequent updating because 
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some of the elements of the A and! matrices were dependent upon 

time-varying values. Hbwever it was possible to obtain a linear 

relationshi·p as in I ·1·"\ · 8-, 
. \O.ble.: " . '"" Finally by feeding the measured 

values of heading and yaw rate directly to the cohtroller it was seen 

that the automatic track keeping capabilities of the vessel were not 

impaired. 

These conclusi'ons led to the following specifications for the filter 

software in the physical model:-

il Using standard deviations obtained in physical model tests the 

filter gain matrix will be calculated off-line. These values to be 

used throughout a set of runs but arrangements to be made to change 

them prior to any individual run. 

ii) The equations of Tabl·e 2 are to be used to recalculate the 

state and control transition matrices for use in the filter 

calculations. 

iiil Allow choice of state or state estimation feedback for each of 

the measured states. 
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Tab1e8.1 

a l Gains at Beginning of Run (AK Matrix) 

0. 107BE~03 O.OOOOE 00 O.OOOOE 1)0 O.OOOOE 00 

O.OOOOE 00 0.2384E-19 -0.3380E-09 -0.1624E-14 

O.OOOOE 00 -0.9769E-13 0.11HE-01 0.6656E-08 

O.OOOOE 00 ~o.25B5E-19 0.3666E-09 0.1761E-14 

bl .Gains in Middle of Run (AK Matrix) 

0 .. 4940E-05 -0.4342E-06 -0.1701E-01 0.5317E-02 

-0.4343E-06 0.3814E-07 0.1495E-02 -0.4670E-03 

-0.4917E-05 0.4319E-06 0.2485E-01 -0.5289E-02 

0.8465E-07 -0.7435E-08 -0.2914E-03 0.9104E-04 

cl Gains at End of Run (AK Matrix) 

0.6477E-07 -0.4435E-08 0.3510E-03 0.1901E-03 

-0.4435E-08 0.3937E-04 -0.2403E-04 -0.1301E-04 

0.101·4E-06 -0.6946E-08 0.5921E-02 0.2977E-03 

0. 3026E-08 -0. 2072E-09 0. 1640E-04 0. 8879E-05 

Comparison of Filter Gains for Figure 8.1 
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A A < I 1 I l = I • 0-0. 0 4 I *X HAT Cl l -0 • 0 21 *X HAT ( 4 l 

AAII 1 2l=1.067tXHAT14l 

AA< 11 ,3 l =0. 0 

AAII 1 4)=0.014tXHAT14l 

AA<2,.1l=-0.446096tXHATI~l 

AAI2,2l=0.995-0. 1593785tXHATIIl-2.051•68tABSIXHATI4ll 

AA 121.3) =0.0 

AAI2 1 4l=0.05+0.028376tXHATIIl-0.02429tABS<XHAT1·4ll 

AA13.,1l=0.015758•XHAT14) 

AA ( 3 1 2) = -0. 0 1-0. I 0 124 81 X HAT I I ) +0. 68 68t A 85 <X HAT I 4) ) 

AAI3 1 3)=1.0 

AA<3. 1 4l=0.989-0.195818tXHATIIl 

AAI4, ll=0 •. 033771XHATI4l 

AA< 4 1 2) =-0. 0295-0. I 71641 X HAT ( I) +I • 29186 tABS (X HAT < 4) ) 

AAI4 1 3l=O.O 

AA 14 1 4! =0. 967-0. 35436•XHAT <I) 

Where XHATII) =forward speed (estimated·! 

XHAT14) = yaw rate (estimated) 

Table 8.2A Linearised A Matrix 
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88<1,1l=-0.0316267+U!1l 

88(1 ,2l=~0.000195+0.0000065tU!2l+0.000478tABS<XHAT(4)) 

88!2,1)=-0.0~95+0.071189+XHAT!1l-0.004S258tA8S!U!1)) 

88(2,2)=0.0 

B a< 3, 1 l =O. o 1 7 -o. 05 9506 tX HAT < 1 l -o. oo 14 64 +ABS < u < u l 

88<3,2)=0.0 

88 <4,.1) =0. OH5-0.1130267tXHAT ( 1) 

88!4,2)=0.0 

Where XHAf(1) = forward speed <estimated) 

XHAT!4) = yaw rate (estimated·) 

U<ll =rudder angle 

Table 8.28 Linearised 8 Matri~ 
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CH:APTER 9 

THE PHYS I CA·L MODEL TESTS 

9.1 Introduction 

Early in the research programme a physical model of a twin screw car 

ferry was borrowed from the Nationa·l Maritime Inst.itute. Tank tests 

were carri·ed o~t at the NMI to obtain the non- dimensional ised 

hydrodynamic coefficients of the model. These are illustrated in Figure 

9.1. The model was then fit·ted out with propulsi•on unit, measurement 

systems and finally the microprocessor for the optimal filter and 

optimal controller. Details of the model 1 together with its 

hydrodynamic coefficients are given in Appendi·ces 4 and 5. Figures 9.3 

and 9.4 show the internal layout of the i·nstrumentation·, microprocessor 

and rudder controls, whi.lst Figure 9.5 shows the model afloat on 

Crcwnhlll Renrvcir, Plymc~th. 

During each test run the measured and filtered states, together with 

pomlticn, ware recorded in the on-board comp~tar memory. These were 

printed out on the conclusion of each run. Data was transferred to the 

mainframe computer and tor comparison purposes an identical simulation 

run was performed using the HEATHMDRE model. Where necessary CENTAUR 

and HEATHMDRE results were then plotted on common axes. 

The position co-ordinates were obtained from the filtered values of 

speed and heading and can thus be compared with the estimated position 

plots from the computer simulations, which were obtained in· a similar 
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manner. Additionally the four states were each plotted against time. 

[n each case these were the states fed to the controller, in most cases 

the filtered values, although in some cases where the measured values 

of headi'ng and yaw rate were used as inputs to the controller these 

values are plotted on the appropriate graph. 

Unless otherwise stated the HEATHMDRE and CENTAUR models were identi.cal 

with the optimal filter in the physica·l model conforming to the 

specifications written in Section 8.5 of the previous Chapter. The 

Kalman filter gains were calculated off-line and burned into an Eprom 

chip, wi'th a provision for changing any gain prior to a run. The 

equations of Table 8.2 were used in the recalculatitin of the state 

transition and control matrices in the filter and a choi'ce of estimated 

or measured state was provided for. 

9.2 Details of Test Runs 

The afloat tests were undertaken, in the mai·n, in calm weather 

conditions. A typica·J set of plots for these conditi.ons is given in 

F~gure 9.6, and the photographs of Figure 9.2 show typical test runs 

underway. From the track plot it is seen that both the simulated and 

actual models follow the demanded track closely until the 'helm over' 

position is reached after 35 seconds (0.58 minutes). At this point the 

course keepi'ng control dominates. 42 seconds after the commencement of 

the run the new demanded course comes into operation and after 56 

seconds the track control again dominates. In this run the filter 

transition matrices were calculated from the equations of Table 8.2, 

all the controller inputs were filtered and the filter gain matrix AK 
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was modified by making· AK!3,3> and AK>4,4) equal to 1. All other 

filter gains were as given in Table 9.1. Table 9.1 also gives a set of 

typical filter gains calculated during a simul.ation run. Comparison of 

the fi I tered states shows remarkable similarity between the simul.ation 

and model gains. it must be remembered however that the physical model 

gains were calculated off-line. 

A similar run, but with the models initially offset by four metres is 

illustrated tn Figure 9.6A. Again both the simulated and actual models 

pull in from their 6rigina1 positions, then foll.ow similar paths until 

they each settl·e down close to the new demanded track. Looking at the 

forward speed plots of Fi.gures 9.6 and 9.6A, there was some concern at 

the simulation model's increase after the turn was completed. 

Similarly the lateral speeds of the simulation showed increases towards 

the end of the run. When the simulation run was repeated !Figure 9.7> 

with the simulation model filter transition matrices being recalculated 

for each value of k (using the subroutines de~cri•bed i•n Appendix 7) the 

forward speed settled down after the turn to starboard. These 

differences are explained by the simplification techniques used in the 

software and the difference between simu1ati•on and real models by the 

differences in the mathematical models used in the filters. Comparison 

between Figures 9.6 and 9.7 showed the similarity, in all other 

respects between simulated and actual models, and the differences serve 

to illustrate the problems of producing an ac~urate computer model of 

ship for use in the Kalman Filter calculations. However it can be seen 

from Tables 9.2 and 9.3 that the values of the st~te control matrix 

!AA> and the control transition matrix !BB>, using the simplification 

technique !Table 8.2>, do not diff•r greatly from those obtained 
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using the full software routines. 

The run il.lustrated i·n Figure 9.8 took place under windy conditions 

with some gusts during the duration of the test. The run is included 

to give an indication of the ability of the system to operate in such 

conditi~ns, although the wind strength was probably equivalent, under 

scaled conditions, to winds up to Force 8 or more. Towards the end of 

the run the wind strength increased and the rudder serves were unable 

effectively to control the vessel, but the results show .the filter 

conti,nuing to operate successfully. In this test the simulated model 

usad the linearised filter equations to obtlin the transition matrices, 

with AK(3 1 3l and AK(4 1 4l of the filter gain matrix each changed to 1.0. 

For control purposes a test run where all the measured values were fed 

to the controller was carried out. Results from this run are shown in 

Table 9.4. With forward speed between +1.0 mls and -2.0 m/s ~nd with 

lat.era·l speeds varying between 0 and -12;0 m/s the requirement for 

filtering, at least in the speed measurements, was clear·ly 

demonstrated. These results were not plotted because of the wide 

variations in speed. A sideways speed of 12 m/s (24 knots! from a 

model moving at 0.75 m/s was obviously a major error. 

In another test run (Figure 9.9! with a breeze at 45 degrees to the 

initial and final tracks the "heJ·m over" was delayed from 35 to 42 

seconds after commencement of the run and the track change to 56 

seconds after commencement of the run. Other changes were the use of 

the measured values of heading and yaw rate gi.ving the state feedback 

terms whilst the fi.Jtered values of speed gave the state e•timation 
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terms. Prior to the turn the track plots were similar, but after 

completing the turn the actual model is seen tb diverge from the 

demanded track·. 

Comparison of this set of resu~ts with those g,iven in Figure 9.8 

suggests that the use of state-feedback of heading' and yaw rate 

together with state-estimated feedback of the noisy speed signals was a 

valid proposition. An interesting point to note here is the i'ncrease 

in measured values of speed with time. This was to be expected for 

speed measurements were obtained by integrating the accelerometer 

outputs. Even sa the filtered values compare favourably with the 

computer model estimated values demonstrating once mare the abtlity of 

the filter to successfully operate under adverse conditions. 

Staying with the .concept of partial filtering Figure 9.10 shows the 

results of a straight run with the filter gains as in Table 9.1 and the 

filtered speeds and unfiltered heading and yaw· rate as inputs to the 

controller. In this experiment the filter gains fo~ AK<3,3l and A<4,4l 

were set at I. Starti·ng from a position 5 metres to the right of the 

demanded track the actual model is seen to overshoot before sta'rting to 

return to track at the end of the run. This oscillating motion is seen 

in the forward speed and course angle graphs whereas the computer model 

motion· is damped dawn much more effectively. A similar run <Figure 

9.11) with the vessel offset by 5 metres to the left of the demanded 

track at the commencement of the test run, but with all the estimated 

values fed to the controller, showed no overshoot of either real or 

computer model tracks. Comparison of Figure 9.8 through to 9.11 

suggest that, with the measurement systems installed in the vessel 1 
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there is little difference between feeding back only the estimated 

values or by using a combination of filtered and measured states, but 

that the tuning of the controller is an important feature. 

9.3 Analvsis of CENTAUR Results 

As with the computer simulations described in previous chapters the 

Y test runs carried out with the actual model demonstrate the ability of 

the optima1 filter to provide useful esti:mated values from noisy 

measurement systems. Computer memory in the on"board microprocessor 

precluded test runs in excess of two minutes, b~t the results 

illustrated here show quite clearly that the combination of an optimal 

filter with an opti,mal controller guides the vessel effectively along, 

or close to, a predetermi·ned track, In comparing the filtered 

HEATHMORE and CENTAUR tracks it must be remembered that the computer 

simulations took place under the ideal conditions of no wind or tide, 

assumed the vessel was i'n deep water and without any_ effects from a 

nearby bank. Although test conditions on the reservoir were as near to 

ideal as possible no allowance was made for any movement of the wateri 

or possible bank effects when the model came close to the side of the 

reservoi'r, as it did during the i:ni.tial leg of many of the runs, 

parUcul arl y when it overshot the demanded track, It must also be 

pointed out that no allowance was made for air movement which, however 

slight, would if both model and wind had been scaled to fu·ll size, have 

represented a considerable wind strength. However these small effects 

di·d indicate an ability of the f.ilter to deal with changing disturbance 

patterns, 

-157-



A fufther factor which must be emphasised was the need to simplify the 

filter and controller in order to meet the constraints of the hardware 

available. Initially it was hoped to use a shore-mounted Doppler Sonar 

position measuring system, but when costs dictated the use of an 

on-board simple inertial navigation system, which was already 

availab·le,, it was shown that the filter was able to deal. adequately 

with the very noisy signals from the accelerometers. As can be seen 

from Table 9.4 the errors in the accelerometer increased rapidly over 

the period of each test run. 

Mention has frequently been made of the limitati'ons of the computer 

memory. Whilst other microprocessors were available, space in the 

actual model was at a premium. These factors were in no small way the 

reasons why simplifications were carried out but the results given here 

indicate that the simplifications were justified. 
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a) Kalman Gains For CENTAUR Filter !AK Matrix) 

0.00006816 

7.876E-08 

-4.443E-09 

-I. 099E-08 

4.478E-09 -0.0000912 

5. 174E-12 -I. 058E-07 

-2.93E-13 0.01189 

-7.226E-13 1.516E-08 

-0.000064.4 

-7.442E-08 

4.325E-09 

1.039E-08 

b) Typical Kalman Ga·ins For HEATHMORE Filter !AK Matrix) 

0.5784234E-04 -0.4476441'E-07 0.4847845E-02 0.562~660E-06 

-0.2283896E-05 0.1767490E-08 -0. 1914155E-03 -0.2219289E-07 

0.6128203E-05 -0.4.742605E-08 0.1133951E-OI 0.5~54870E-07 

O.I427616E-05 -0.11'04826E-08 0.1196500E-03 0.1387233E-07 

c) Typical Standard Deviations For Measurement Systems 

-0.0253202130 -0.0435451213 -0.000602608622 -0.00552354216 

TABLE 9.1 Compari·son of Filter Gains Used i·n HEATHMORE and CENTAUR 
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al State Transition Matrix <AA Matrix in Filter) 

Q,9684997E 00 -0.2755902E-02 

0.1107663E-02 0.8723B69E 00 

-Q.6346549E-04 -0.8781582E-01 

-0.1552967E-03 -0.1615462E 00 

O.OOOOOOOE 00 

O.OOOOOOOE 00 

O.IOOOOOOE 01 

O.OOOOOOOE 00 

bl State Control Matrix <~B Matrix in Filter) 

-0.1307270E-03 0.3029091,E-03 

0.3486306E-01 0.1753552E-06 

-0.2839876E-01 -0.574059tE-08 

-0.5470808E-01 -0.1953357E-07 

-0.4347411E-04 

0.2699B42E-01 

0. 83838.93E 00 

0.6942202E 00 

TABLE 9.2 Typical Transition Matrices- Simplified Linear Method 
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a•) State Transition Matrix (AA Matrix in Filter) 

0.9658080E 00 -0.1173969E-OI O.OOOOOOOE 00 -0.1540872E-03 

0.4907031E-02 0.8386499E 00 O.OOOOOOOE 00 0.2855152E-Ol 

-0.1733371·E-03 -0.8743246E-Ol O.lOOOOOOE 01 0.8246310E 00 

-0.3714682E-03 -0. 1593637E 00 O.OOOOOOOE 00 0.6695514E 00 

b) State Control Matrix 

-0.3976045E-03 

0.4019890E-OI 

-0.3296753E-OI 

-0.6337422E-01 

0.31'03837E-03 

O.OOOOOOOE 00 

O.OOOOOOOE 00 

O.OOOOOOOE 00 

TABLE 9.3 Typical Transition Matrices- Full Software Routines 
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TIME FORWARD SPEED LATERAL SPEED 

Sec. m/s m/s 

0 0.639 -0. 127 

5 0.560 -0.143 

10 0.802 -0.215 

1.5 0.535 -1.091 

20 -0.715 -2.967 

25 -0.775 -4.145 

30 -0.879 -4.877 

35 -1. 270 -5. 690 

40 -1. 162 -6.265 

45 -1..8 7·1 -8.918 

50 -!.. 413 -8. 711 

55 -1.084 -8.86.9 

60 -1.370 -9.400 

65 -1.786 -11.047 

70 -1.496 -11 .. 253 

75 -1.489 -11.846 

80 -1. 098 -12.009 

HEADING 

Deg. 

0.52 

1. 40 

-1'4.12 

-16.55 

-14.95 

-24.12 

-30.53 

-38.62 

-37. 18 

-39.24 

-42.53 

-50.42 

-57.35 

-55.63 

-46.70 

-47.03 

-46.99 

YAW RATE 

m/s 

4.28 

2.52 

-3.63 

0.97 

5. 13 

-3.95 

0. 17 

8.04 

4.23 

9. 11 

-0.46 

-3.38 

10.65 

9.22 

3.67 

2.23 

1. 78 

Tab·le 9.4 Measured States Fed to the Controller in Control Run 
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Fig 9.1 NMI Tests 
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Fig 9.2 Reservoir Tests 
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Fig 9.3 Measurement Systems (Top) 

Microprocessor (Bottom) 
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Fig 9.4 Rudder Controls 

Fig 9.5 Model Underway on Reservoir 
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CHAPTER 10 

CONCLUSIONS AND RECOMMENDATIONS 

10. 1 Di sctissi,on of Results 

This research project has been aimed at designing and developing a 

suitab·le digital filter for use i.n conjunction with an optimal 

controller so that a large ship can be automatically guided along the 

correct channel into, or out of, a port. This entailed extensive 

mathemati ea! modelling using the state- space concepts largely 

associated with control engineeri·ng and resulted in a non-linear model 

which compared very favourably when turning circle and zig-zag tests 

were compared' with those o'f a full~size vessel. 

In the simulations whi.ch followed it was shown tha~ the optimal fil.ter 

woutd have enabled a twin-screw car ferry to be brought into Plymouth 

automatically, even though the measurement systems were, in some cases, 

extremely noisy. In all cases it was assumed that the vessel's 

demanded engine revolutions were constant. It was also assumed that 

there were no other vessels in the fairway or likely to cause 

disruption to the planned passage. Under these circumstances the 

results clearly show that the eight filtered states, give an extremely 

accurate input to the controller. Within the sampling interval .of 5 

seconds all relevant calculations were carr.i,ed out, and hence the data 

was updated 12 times in each minute. No officer of the watch would be 

able to undertake observations this frequently, or with the same 

precision. He would therefore be forced to err on the side of safety. 
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In the system under test the filtered and true tracks are remarkab•ly 

similar and fallow very closely to the recommended track for deep draft 

vessels in the approach to the port. Certai-nly they are well wHhim 

the limits imposed by the width of the navigable channel showing 

clearly that the full system, using measurements from widely fitted 

navigati·on aids, has the potential-to guide the vessel automatically 

along the predetermined track. 

The reduced non-linear computer model was used to simplify the system 

bearing in mind the limitations imposed by the physical mod~!. Using 

the full capabilities of the filter, with transition matri-ces being 

calculated for each sampling period, the system was shown to navi·g•te 

accurately through very noisy conditions. 

Finally it was shown that the optimal filter for the reduced non-linear 

car ferry model IHEATHMDRE) worked effectively when install·ed in the 

physical model ICEN~AUR). In a series of test runs carried out on 

Crownhill Reservoir, it was shown that CENTAUR ·was pu11ed into the 

demanded track, the helm was then automati-cally put over •t the 

appropriate time and the vessel came round to the new track at 90 

degrees to the origi'nal. Computer simulations and test runs showed 

that without the use of the filter the control system was unabl·e to 

keep the vessel on her demanded track, although in some runs the 

heading and yaw rate were unfiltered, giving a degree of control 

compatible with the fully filtered system. The photographs in Figure 

9.2, which were taken during test runs under full filtered control, 

~how how effectively the model was control.led. 
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10 •. 2 Conclusions 

A comprehensive digital simulat.ion of a ship's dynamics has been set up 

and used to observe the time domain response of a ship in the 

approaches to a port when the associated track control system employed 

an optimal digital estimator/filter in conjunction with an optimal 

controll:er. The jimulation was then used in the design of an optimal 

filter for installation in a physical model of a car ferry. Tests 

undertaken with the physical model then confirmed the results obtained 

in the digital simulations, leading to a proposed· automatic guidance 

system for use in the approaches to a port. Use of this system would 

make it possible to improve the safety standards in the approaches to a 

port part i c u 1 a r 1 y i n con d i t i on s of bad weather , m a k i n g i t p os si: b 1 e to 

enter harbour in conditions when the prudent M~ster would hitherto have 

remained "hove to'' outside the port limits. In the case of a car ferry 

this ·would improve the service offered to the passenger and enable 

already tight schedules to be adhered to more efficiently. 

Throughout the research it has been assumed that the ship was under 

automati•c control using a closed loop feedback sy.stem. Operated purely 

in the open loop navigation mode using say a digital display to give 

along-track and off-track positions and velocities together with an 

analogue display to show ownship's position relative to the 

surroundings (and other ships! data .would be continuously available to 

the Master, thus providing an important addition to the safety of the 

ship operating in restricted waters and narrow waterways. 

lmportan.t factors to emerge from research may be summarised as 
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'· 

follows:,-

.il The mathematical model of t.he ship used in the filter needs to 

be an almost identical replica of the real vessel .. 

ii.) Using state-space methods and assuming the state variables are 

constant during each sampling period means the equation can be 

treated as linear, during each sample period. This all·ows the 

linear Kllman Filter theory to be ·applied, but it does mean thlt 

extensive calculations to obtain new transition matrices have to be 

camp I et ed. during each sample time and this imposes severe 

restrictions on the microprocessor to be used. However this 

restriction need not .apply in a ship- fitted .system, or in any 

situation where a more powerful microcomputer is available. 

iiil Re-calculation of the filter gains need not take place during 

each sample time. However, filter gains do change as the transition 

matrices change so that re-calculation at least during course and 

speed changes is desirable. 

ivl Whilst no simplificati·on of the filter gain equations is 

possible the state and control transition matrices used in the 

filter can be derived from the li•near equations whi·ch would have to 

be obtai.ned for any given model. These equations are principally 

functions of speed, yaw rate and rudder angle. 

vl The filter was able to handle disturbances with non-zero means. 

Correlation between individua'l disturbances or individual 

measurements was also acceptable provided the correlati.on was small. 
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For example an x position measurement could not be completely 

independent of a y position measurement. 

vi) Limited tests showed the ability of the reduced simulation 

model to follow the correct track with faults i·n up to 2 of the 4 

measurement sub-systems. 

10.3 Future Research 

Kalman Filter techniques are now being used extensivel-y in marine 

applications, particulady in the positioning of specialist vessel's 

working in the offshore oil industry and tn hydrographic survey work. 

Much still needs to be done in connection with the physical model 

however. The present work assumes a set of linearised equations for 

re-cal.culations of the state transition and control matrices in the 

filter. This was necessary due to the limitations of the on- board 

micro-computer. It was also shown that the more accurate heading and 

yaw rate signals could be sent directly to the controller, leaving only 

the more noisy signals to be filtered. Although this was classifi-ed as 

state plus state-estimation feedback no ef1ort was made to change the 

filter equations, so that the filter gain and the state transition 

matrices were still 4 * 4 matrices. 

By suitable partitioning of the matrices of equation set 8.2 it should 

be possible to reduce the filter mathematical model, thus allowing the 

reduction of the time taken in the full calculations of the A and !. 

matrices, and a reintroduction of subroutine NAB, and in turn the use 

of a subroutine KBFLTR to recalculate the filter gains at least during 
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alterations of course and speed. 

An alternative is to consider the direct measurement of the vessel's 

parameters using system ·identification methods together with open loop 

tests to improve the mathematical model of the car ferry to be used in 

the filter. 

Another possibility would be to enhance the computer facility in the 

model to allow for a large memory with a faster speed. 

Further work will entail the design and development of a system to be 

installed in one of the craft attached to the Faculty of Mariti·me 

Studies. A more powerful microprocessor will be used and after 

development of the appropriate software in the laboratory, the 

hardware/software package wil.l be interfaced with electronic position 

fixing systems, already i'nstalled in the vessel, to give an automatic 

track keeping system. These include Radar, Doppler Sonar, Decca 

Navigator and Decca Hi-fix electronic position fixing system. 

Further work will entail the addition of a hazard- avoidance system. 

Davis (1981! and Colley et al U984l have undertaken extensive research 

programmes to investigate the behaviour of shipping in hazardous 

situations. These computer simulations have involved the mathematical 

modelling of the International Regulations for Avoidance of Collision 

at Sea. This work will lead to the addition of an automatic hazard­

avoidance system to the automatic track keeping system so that the 

vessel wi 11 be guided automatically along some predetermined track, but 

wil.l also undertake the correct avoiding action when risk of collision 
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and/or grounding eMists .. 

All of this work will be brought together by the Ship Dynamics and 

Control R~search Group at Plymouth Polytechnic in an integrated 

research programme with the followi-ng aims:-

il Improve mathemati-cal modelling using System Identification 

Techniques and open loop tests on marine craft available. Real time 

methods of system mathematical model identification and parameter 

estimation, without the need for physical model testing, will be 

investigated, thus brtnging together identification, optimal control 

and estimation techniques- Burns, Dove and Bouncer (1982), 

iil Investigate the further use of State plus State Estimation 

Feedback to the Controller 

iiil DeveJ.opment of a complete track and hazard avoidance controller 

for installation i.n a suitable marine vehicle. Investigation will 

a·Jso be carried out to ensure that the system stability and 

integrity remain high when one or more navigation ai·ds become 

inoperative. 

10.4 Concluding Remarks 

The operators of today's ocean- going and specia,list vessels have 

several electronic aids available. The t~aditional role of each 

navigation aid has been one of a stand-al-one unit- with the mariner, by 

his experience and training, co-ordinating the data from all the 

sources available to him in order to optimise vessel performance. As 
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casualty stit,istics indicate however, when under stress or at times .of 

peak work load, he is a poor co~ordinator of the information available 

to him, particularly ·when that information is from a number of 

different sources. Furthermore the application of microelectronics to 

ships has been progressing for many years so that the traditional role 

of the mariner referred to in Chapter I has been changing. 

Microelectroni,cs has also been a contributing factor to the changing 

pattern of the navigation equipment, and the Kalman Filter techniques 

used throughout this project have found a variety of· uses in marine 

navigation. Dove !1977l suggests the use of Kalman Filter techniques 

at sea and four recent papers highlight the recent developments in this 

area. Daniel ( 1984') points out their uses in the off- shore oil 

industry where dynamic positioning of survey and supply ships is an 

important illustration of the use of control technology to maintain a 

stationary positi'on. Graver-Brown and Hwang <1984) gi've details of the 

use of ·Kalman Fil'ter techniques for precision geodesy whilst Liang et 

al <1984) describe the operational features and certain software and 

hardware configuration of a low- cost marine integrated navigation 

system designed to enhance navigational accuracy, operational 

reliability and position reporting efficiency of marine vessels. This 

system uses Kalman Filter techniques. Danson and Kibble (1984l are 

concerned with the precise navigation of a vessel in the pilotage and 

berthing stages of a voyage. These papers high! ight the so- called 

"media technology" including satelli·te communications, which is 

bringing about a revolution in the mode of ship operations. In the 

field of modern marine operationd there is a need to bring together the 

new Information Technology, which combines the di,scip:l ines of computing 
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and telecommunications, with modern control engineering techniques and 

naval arch·i tecture. 

This research. programme has, it is hoped, made some small contribution 

to the deve~opments in this area by applying some of these techniques 

to the problem of automatically pil.oting a ship in the approaches to a 

port, an area where the mariner is likely to be at maximum str~ss and 

where there is maximum probability ·Of collision and/or ~rounding. 

The need for improvement to the control of large ships in the 

approaches to a port was highlighted in a recent Department of Tranport 

Report (19841 of a Court of Inquiry on the collision of the car ferries 

European Gateway and Speedlink Vanguard off Harwich in December 1982, 

when each Master believed the other would alter course to let him past. 

The report goes on to state, "It is our belief that this collision 

occurred because of a degree of over complacency on the bridge of both 

vessels i:n the perf.ormance of what may have appeared routine and 

unexacting navigation." New traffic arrangements have now been 

introduced in the Harwich deep- water channel where the collision 

occurred, but if the European Gateway had been in the correct position 

in the deep water channel such a collision might not have happened. 

One of the functions of the system developed i·n this research is to 

ensure that each ship is in the correct position at the correct time. 
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APPENDIX 1 

N'OTAT I ON 

a·) Matrices and Vectors 

A Discrete State Transition Matrix 

~ Discrete Control Matrix 

~ Discrete Disturbance Matrix 

] Discrete Reverse Transition Matrix 

! Discrete Reverse Control Matrix 

£ Continuous Time System Matrix 

~ Continuous Time Control Matrix 

~ Continuous Time Disturbance Matrix 

] Measurement Matrix 

f Kalman Gain Matri~ 

11 Covariance of Measurement Noise 

~· Reverse Time State Vector 

n Covariance of Disturbance Noise 

]' Residual Vector 

f State Error Covariance Matrix 

g State Error Weighting Matrix 

B Control Weighting Matrix 

L Desired State Vector 

~ Feedback Gain Matrix 

!! Control Vector 
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~ Command Matrix 

~ Noise Vector 

Ji. Ricatti Coefficient Matri>: 

~ Disturbance Vector 

2 State Vector 

i Best Estimate of Stlte Vector 

~ Measured St~te Vector 

bl Scalar Symbols 

A, B, C 

I • 

J 

k ' i 

L 

L' 

m 

N 

etc. 

State Equati,on Coefficients 

Moment of Inertia About Z Axis !kg m2 ) 

Performance Index 

Inte~er Counters 

Length of Ship Between Perpendiculars (m) 

Number of Terms in Power Series 

Mass of Ship !kg l 

Actual and Demanded Engine Speeds (rad/s) 

Total Moment Applied to Ship !Nml 

Yaw Hydrodynamic Coefficients 

r,f Angular Velocity and Acceleration of· Sh·ip about Z Axis 

T Sampling Time Interval (sl 

t Ti'me (s) 

TN lime constant of Mai,n Engines !sl 

TR Ti,me constant of Rudder Serve !sl 
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U Track Velocity lm/sl 

u For~ard Velocity of Ship lm/sl 

u.,uc Forward' Components of Wind and Current Velocities lm/sl 

v Lateral Velocity of Ship lm/sl 

v.,~c Lateral Components of Wind and Current Velocities (m/sl 

~.,y.,z. Ship Related Cartesian Co-ordinates lml 

I Total Force on Ship in Forward Direction 1Nl 

Xu,Xr, Surge Hydrodynamic Coefficients 

etc. 

Xo,Yo,zo Earth Related Cartesian Co-ordinates lml 

y Total Lateral Force on Ship 1Nl 

Sway Hydrodynami·c Coeff.i•cients 

cl Greek Symbols 

"' ~· p Transpose of Augmented State Transition Matrix and 

Best EsUmate 

Actual and Demanded Rudder Angles lradl 

e Density of Water lkg/m 3 l 

Actua'l and Demanded Heading of Ship lradl 
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APPENDIX 2. 

Q U:A S I -L I NEAR M 0 DEL C 0 E F F I ENT S 

Equation set (3,71 represents the quasi-linear form of the mathematical 

model used in the main frame computer si.mulat~ons. The terms K, L, and 

M were obtained i·n the process of rearr~ngement and are defined below. 

a) K Coefficients 

K2 = ___!.,__ 
m - X· .. 

K4 = __.1..._ 
m· - x .... 

K., = ___!!lL._ 
m - X • .... 

Kwl = K4 

Kw3 = ~ 
m - X.;. 

b) L Coeff i·c i ent s 

L, = Y, + Yea N, 
I - Yea N,., 

L2 = Y; + Yea Nz 
I - Yea N,, 

Y, = Y!i 
m - Y· 

~ 

Yea = Y.;. 
m - Y· ... 

N, = N, 
lz. - N· • 

N,., = N.:.. 
1._ - N· .. 

v~ = Y 
m - Y \r 
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N2 = N 
I --.:. N· ,. 

L. = y 

- Yea N.,., 

v. = -mr 
m - V,;, 

L., = Y~o + Y1111N,:, 
1 - Yea N.,, 

v., = yl£. 
m - V· V 

N., ____1:!,_ 
1-z. - N;. 

la = ylil + Y.lillil •Ne 
1 - Yea N.,., 

Y.e = __l:r_ 
m - Y· ..... 

Na = 'N• 
I.._ - N· ,. 

lw2 = v .. ~ + YlilliiNt1ii: 
l - YaaN.,., 

y"2 = v, 

N"2 = N., 

lw4 = v .. ~ + Y t:u:~Nas 
l - YaeN.,., 

...,". = ~ 
m - Y· ..., 

N"• = N~ .. 
I'Z. - N:. ,. 

c) M Coefficients 

M, = NI + Nag V I 
1 - N,, Yea 

1'12 = N.;;: + Ng~.: 
1 - N.,., Yea 

-AS-



M. = NCI~ y5 
1 - N.,., Yas 

M., =· N.:. + Ngg Ys 
1 - N.,., Yes 

Me = Nlil + N~g y!i 
1 - N.,., Yes 

Mw2 = N.,;: + Nas Y.,;;: 
1 - N.,., Yea 

Mw4 = N~~:~! + Ngg v.,5 
1 - N.,.,Yaa 
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APPENDIX 3 

NON-LINEAR MODEL COEFFICIENTS 

Equation set 13.28) represents the non linear form of the mathematical 

model used in the main frame computer si•mulations. The X, B, and C, 

coefficients were obtained from the non dimensionalised hydrodynamic 

derivatives, 

a·) X Coeffients 

X , = u.u;:,._ 
m - X;. 

X &'S = 1/2 X o;;s 

X2 = XunU + X cc nA Xnn = 1/2 Xnn 
m - X.:. 

x4 = X,. + x,,.u + x,,.,.u 2 

m - X.:. 
Xuu = 1/2 Xuu 

fuuu = 1/6 Xuuu 

x .. = Xnv + mr Xvv = 1/2 Xvv 
m - Xu 

X a = ..k.r. T,, = 1/2 X,, 
m - X. 

u 

x .. 1= K~, 

x ... ..,= Kw:s 

b) B Coefficients 

B, = yl + yil§ NI 
1 - Yea N6a 

Y, = Y, + Yi~s. ~e2 
m - Y· V 

Yea = y; 
m - yi3 

N, = Na + FT H& SA 2 

I z - N;.. 
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N.,., = N· ---'-'-"'-
I z - N; 

B2 = y-:1. + y ~HI N, 
I - Yaa N.,., 

y2 = VC" ne 
m - Y:, 

N., = Nee na 
l z - N; 

B. = v. 
- Yaa N.,., 

v. = -mr 
m - y~ 

B., = v_.. + Y lii!IN "-
I - Yaa N.,., 

v .. = Y,. + 'rc:.::.:rv + 'r,.,.,.v"" . Y..::.::.:¥ 2 . 'f'~,.,.Sev 
m - v~ 

Yrvv = 116 Yrvv 

V..,..,.., =· 1/6 Y..,..,.., 

Ytlvv = 116 Yavv 

N .. = N,. + "fl"cv:.:rv + lil,.,.,.v 2 t NlinleV 
lz - N~ 

W,....,.., = 116 N,....,.., 

Rvvv = 116 Nvvv 

lil'~vv = 1/6 Ng..,..,. 

Be = yll + Yu Ng 
I - Yea N.,., 

Ya = ~ 
m - y~ 

Ne = ____!:L;_ 
l z - N; 

8..,2= L"., 

8..,.4= L". 

cl C Coefficients 
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c. = NI t Ngt.! V, 
l - N .. ., Yaa 

c, = N;;: t Ngg y2 
l - N .. ., Yaa 

c. = Ngs v. 
- N .. ., Yaa 

c .. = N,:, t Nas Y,:, 
l - N .. ., Yaa 

Ca = N11 t Ntil~ y~lil 
l - N.,.,.Yaa 

Cw:;,= Mw2· 

Cw4= Mw4 
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APPENDIX 4 

HYDRODYNAMIC DERIVATIVES 

The various hydrodynamic derivatives ~hich appear in the equations of 

motion have numerical values ~hich depend upon the geometry of the 

ship. This involves cakulating forces and moments acting upon a gi'ven 

ship ~ith constant for~ard velocity and also when lateral and angular 

velocity exist. 

The hydrodynamic coefficients for the Mariner hull were taken from 

published papers such as Morse and Price 11961). For the physi·cal 

model of the car ferry tests were carried out at the National Maritime 

Institute's towing tank at Teddington, London, after which open loop 

tests were undertaken at Plymouth. At Teddington the model ~as to~ed 

along the tank at various angles of attack to the model path. A 

dynamometer measured the forces and moments experienced by the model. 

These were plotted agai·nst speed, acceleration, engine revolutions and 

angle of attack to obtain the deri.vatives. The tank testing techniques 

and the open loop tests involving turning circles, spiral tests and zig­

zag manoeuvres are described in Abkowitz 11964). The non- dimensional 

coefficients together ~ith the dimensionalising factors are given in 

this appendix. 
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DER l VA!T I VE CAR FERRY HULL MARINER HULL DIMENSIDNALISING 
FACTORS 

X' s o.o o.o l. • o. 5 e L u 

X," o.o 0.0 
~ 

0. 5 e L (u/211'") 

X' u 76.1783 • -6000.0 * 
X' u -0.000426 -0.00042 0.5e.L'"u 

X 'uu -1446.16 * -1860.436 * 0. 5 C. L~ 

X'uuu -450.1888 • -272.047 * 
X' un -39468.78. -15155.799. 

X,~ 0.0 0.0 

X' u. -0.015 -0.0012 0.5 
... 

Co. L u 0. 

X' va 0.0 0.0 

X'vv -0.00617 -0.008988 0. 5 e_L 
... 

X' rr 0.0 0.00018 0. 5 CL 
.. 

X 'ss -0.00221 -0.000948 
.. .... 

o.5 eL u 

X·' nn 7339.8 * 21855.5 * 

* Dimensionalised Coefficient 
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DERIVATIVE CAR FERR.Y HULL MARINER HULL DIME~SIONALISING 
FACTORS 

:a. :a. 
Y'a 0.003418 0.00255 o.5eL u 

Y'nn 0.0 2104.307 * 
y· 

u 0.0 0.0 

y· 
u o.o o.o 

Y'v -0.0098675 -0.0116 
~ 

o.5eL u 

y·_, -o. oo7.583 -0.00748 
~ 

0.5e_L 

v·, o,ooo4926 0.0022 
l 

0.5e_L u 

Y', -0.0001368 -0.000086 o. 5 e L"' 

v·u. 0.0 0.0 

-0.0116 
:L. v·.., .. -0.0870 o.5 ec.L u ... 

1. 
Y'vvv -0.44117.8 -0.080782 0 .. 5 ~ L /u 

Y'rvv 0. 022934 o. 15356 
~ 

o .. seL tu 

Y'su 
~ 1. 

-0.0.00956.9 -0.00082 o.5eL u 

y '' vv 
0.0 0.011896 o.5eL'-

• Dimensionalised Coefficient 
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DERIVATIVE CAR FERRY HULL MARINER HULL .DIMENSIONALISING 
FACTORS 

N's -0.0016011 ~o.OOI274 
"3 .. 

o.5eL u 

N'nn 0.0 -169291.5 

N' u 0.0 0.0 

N'u 0.0 0.0 

N'. -0.0043535 -0.002365 
3 

0.5eL u 

N'. -0.000230 -0.000227 "' 0. 5 tl 

N', -0.002143 -0.00166 0. 5 e,L1- 4.l. 

N', -0.0006952 -0 .. 000437 
$ 

0.5e_L 

l 

N'u• -0 •. 007200 0.0 0. 5 e.._L Ua. 
: 

N'.,.. -0.002600 -o .. oo2635 
l 

o.se._L:u.._ 

N'.,..,..,. -0.0326335 0.016361 
l 

0 .. 5 e_L /u 

N ',. ...... -0.047235 -0.05483 
.. 

o.se_L tu 

N, &u 0.0007421 0.00041 
J, 

0.5e_Lu 
~ 

.) 

N.', ...... 0.0 -0.00489 0.5 e_L 

I 

* Dimensionali.sed Coefficient 
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A,PPENDIX 5 

GENERAL DATA FOR MODELS 

URCHIN: 
TRELEVEN TREMAYNE HEATHMORE 
VIGILANT CENTAUR 

LENGTH (m l 160.9 150.0 3.419 

BEAM (ml 23. 17 24.8 o. 565 . 

DRAFT (m) 9.07 5.9 0. 134 

DISPLACEMENT (kg) 17062900.0 14400000.0 166.4 

BLOCK COEFFICIENT 0.6 0.64 0.64 

PROPELLOR TYPE RIGHT HAND TWIN SCREW TWIN SCREW 
SINGLE SCREW CONTRA CONTRA 

MOMENT OF INERTIA I z 36.8115 24.36395 149.8937 
ABOUT MASS CENTRE •10" t10" t10" 

RUDDER TIME CONSTANT 2 2 -
ENGINE TIME CONS,TANT 2 2 -
SAMPLE TIME ( sl 5 5 1 
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APPENDIX 6 

THE COMPUTER PROGRAMS 

A 6.1 Mainframe Si~ulations- Master Segment 

To facilitate programming the simulation models were divided into a 

master segmemt and a series of subroutines. All the mainframe 

programming was undertaken in . FORTRAN IV. The master segment was 

altered slightly dependi·ng upon the desired simulation. The version 

given i'n this appendix simulates the passage of a twin screw car ferry 

into the Port of Pl'ymouth. It was the full- seal e non-! in ear model 

referred to as Tremayne i·n the main text. -A detailed flow chart is 

given in ·Figure A6.1 

The following variables are used:-

AK <8 1 8 l 

B (8 I 2) 

c (814·) 

DELT0<250l 

DELTM<250l 

DELTE<250l 

DELTD<250l 

F<8,8l 

G < 8,6 l 

H<8,8l 

RNO (250) I RNM<250) 

Kalman Filter Gain Matri•x 

State Control Matrices 

Disturbance Matrix 

Actual rudder angle 

Measured rudder angle 

Estimated rudder angl.e 

Demanded rudder angle 

Continuous Transition Matrix 

Forcing Matrix 

Measurement Matrix 

Actual, measured, estimated 
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RNE!250) I RN0!250) and demanded rudder angles. 

PSI0'(250l, PSI M <250) Actual, measured, estimated 

PSIE<250J, PSID <250l and demanded heading. 

Q<8,8) I R<2,2) 

R0<250) I RM'(250J I 

RE (250) I 

Rt11NS<250l 

SDR<SJ, SOQ(4J 

U<2J 

Weighting matrices used in controller. 

Actual, measured and 

estimated yaw rates 

Ti:me in Minutes 

Standard deviation for measurement and disturbance 

noise 

Control Vector 

USHIP <250), UN<250l, Actual, measured and estimated 

UE ( 250·) I components of ship's speed along Fore and Aft 

line 

VSHIP<250J, Vt1(250l, Actual, measured and estimated 

VE<250J 

XOLD<SJ, XNEW<SJ 

X0<250l, Y0<250J 

XM (250) I Yt1<250J 

XE (250) I v.E <250J 

XD <250) I v.o <250J 

ZOLD<SJ, ZNEW<SJ 

l·ateral ship speeds 

Values of state vector at beginning 

and end of each sample time 

Attual ship's position 

Measured position 

Estimated position 

Demanded position 

Measured values of state vector at beginning 

and end of each sample period 
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( ST·ART 

I 
r READ IN INITI'AL CONDITIONS AND CONTROL PARAMETERS I 

I 

I PLOT OUTLINE CHART OF PLYMOUTH SOUND USING SUBROUTINE PLYM I 
I 

CALCULATE A and B MATICES USING SUBROUTINE NAB 
AND ITS ASSOCIATED SUBROUTINES 

T 
CALCULATE VALUE OF STATE VECTOR AT TIME <K+ll 

1 
ADD MEASUREMENT NOISE TO STATE VECTOR 

TO PRODUCE MEASURED VALUE OF STATE 

1 
CALCULATE BEST ESTIMATE OF STATE VECTOR 

USING SUBROUTINES OPTFIL AND KBFLTR 

I 
CALCULATE CONTROL VECTOR USING SUBROUTINE OPTCON l 

AND ITS ASSOCIATED SUBROUTINES I' 
I 

[ ALTER COURSE/SPEED IF REQUIRED I 
I 

[ PLOTTING CALCULATIONS I 

Nn ~ T 

~PLOT GRAP~ 
PRINT DATA 

T 

END 

Figure Ab.l Overall FloH Chart 
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C SHIP OPTIMAL CONTROL S'IMULATION PROGRAM SHIP CO-ORDS. , , .. 
C PLUS OPTIMAL FILTER <KALMAN-BUCY> 
C FOR FULL SIZE SHIP 
c 
c 

REAL*4 A(S,SJ,AA<B,B>.AK<B~B>~AXHT<B>iAXBUCB>~AX<B>·I 
* B (81 2>1 BB CBI 2) I BBU<Bh BU<B>I 
* cwuca>~ cccs~ 4l~ cca, 4>·~ 
* DRUDD ( 250) I DEL TO (250) I DELTM<250) I DEL TD ( 250) I 
* DELTEC250l~ 
* FC81 Bh 
* F41X<2SO>~F42XC250>~F44X<250>~F46XC250ll 
* F4BX<250ll 
* F61YC250>~F62YC250l,F64YC250liF66YC250ll 

* F6BY<250l 
* FB1N.C250l~ F82NC250ll F84NC250)1 F86N<250ll 
* F88NC2SO>~ 
* GC8,6l~GUC8~2>~ 
* HC8, 8l1 HXNC8l1 
* PSIOC2SO>~ PSIMC250>~ PSIEC250ll PSIDC250ll 
* 0<8, Sh 
* RND<250l~RNE<250l,RNMC250l~RNOC250ll 
* R0<250l,REC250>~RM<250>~RMINS<250l~R<2.2l, 
* S<2~ 8l1 SDRC8l1 SDOC4), 
* TC250) I 
* U<2> I U0(250ll UE<250), UMC250), USHIPC250), 
* UW<200~ 4), USHIDC250), 
* VO < 250 l, VM ( 250 l, VE < 250), VSHIP < 250l, VFOR < 21 500'>, 
* VC200, Bl, 
* WC8,8liWUS<200,4.)1WP1(8,8),WU<4>~WUMC4l, 

* XOLDC8l.XNEWC8l,XHAT<B>,XHAT1C8>,XHAT2<8), 
* XOC250l,XD<250l,XE<250l,XMC250), 
* YOC250), YDC250), YEC250), YMC250>, 
* ZOLD<8>, ZNEWCS), Zl<8l1 Z2C8), ZDIFFC8), 

REAL KZC8) 
COMMON RIN<8~500>~YOUT<8~250l 

c 
C PLOT PLYMOUTH SOUND 
c 

c 
c 

CALL PLYMCSTART,DELTA> 

C READ IN CONTROL PARAMETERS 
c 

READ<5, 101 lN, NX, NG •. NB. NC1 NM1 IFIN1 MODE, TSAMP 
101 FORMAT<9I5~F10. S> 

c 
C READ IN IP.IM1& INITIAL VALUE FORK 
c 

c 

IP=NC 
IM=N 
K=l 

C CALCULATE STATE TRANSITION MATRIX 
c 

CALL MA~RED<F,N,NJ 
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CALL MATRED<G,N.NG> 
CALL TRNMAC<F, G. AA• BB, CC, N, NG,·NB, TSAMP> 
CALL MA~RED<G.N,N> 
CALL. MATRED<R,NB.NB> 

c 
C READ IN H MATRIX 
c 

c 
c 

CALL MATIDN<H, N·> 

C X.OLD=EXISTING STATE 
C XNEW=PREDICTED STATE AFTER 
C CONVENTION: XOLD<1l=DELTA 
C XOLD<4>=U 
C XOL.D<7>=PSI 
c 
c 
c 

TSAMP SECONDS 
XOLD<2>=NA 
XOLD<S>=YO 
XOLD<B·>=R 

XOLD<3l=XO 
XOLD<6>=V 

c 
c 

INITIAL CONDITIONS FOR STATES AND BEST ESTIMATE OF STATES 

CALL MATRED<XOLD,N.NX> 
CALL MATEGL<XHAT, XOLD,N,NX> 

c 
C XO,YO,UO,VO=POSITION AND VELOCITY RELATIVE TO REFERENCE 
C CO-ORDINATE SYSTEM 
c 
C INITIAL POSITION OF SHIP ON REFERENCE COORDINATE SYSTEM 
c 

READ ( 5, 103 > XO < 1 >, YO < 1 ) , PS I 0 < 1 ) , UO < 1 >, VO < 1 ) , RO < 1> 
103 FORMAT <6F10. 5> 

c 
C DETERMINE RI.CCATI FEEDBACK MATRIX AND COMMAND MATRIX 
c 

c 

CALL RICAL(F,G,GU,AA,BB,Q,R,S,W,XD,YD,VFOR,TSAMP 
&,N,NB.NM,NN, IFINl 

NPLOT=175 
NPLOTl=NPLOT+l 
NPLOT2=NPLOT+2 
T<l>=O.O 
UVEL=SGRT<<XOLD<4>**2l+<XOLD<6>**2>> 

C READ IN DISTURBANCE VECTOR WITH STANDARD DEVIATIONS 
C WU<1>=UCURRENT<MEAN> 
C WU<2>=VECTOR ANGLE ALPHA<MEAN> 
C WU<3>=UAIR<MEANl 
C WU<4l=VECTOR ANGLE PHI<MEAN> 
c 

CALL MATRED<WU.NC,NXl 
CALL MATRED<·WUS, 200, 4, 400) 

c 
C CORRECTION FACTORS FOR DISTURBANCE NOISE 
c 

CD1=1.0 
CD2=CD1 
CD3=1.0 
CD4=CD3 
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c 
C DISTURBANCE NO.ISE STANDARD DEVIATIONS 
c 

c 

SDG<1>=0.2*CD1 
SDG(2)=0. 3S*CD2 

-SDG<3,)=3. O*CD3 
SDG<4>=0. 3S*CD4 

C CORRECTION FACTORS FOR MEASUREMENT NOISE 
c 

c 

C1=1. 0 
C2=1. 0 
C3=1. 0 
C4=1.0 
CS=l. 0 
C6=1.0 
C7=1. 0 
CS=l. 0 

C READ IN MEASUREMENT NOISE WITH STANDARD DEVIATIONS 
c 

c 

c 

CALL MATRED(V,200,S,400) 

SDR<1>=0.002*C1 
SDR<2>=0.002*C2 
SDR<3>=2S.O*C3 
SDR<4>=0. 2S*C4 
SDR<S>=25.0*C5 
SDR(6)=0.25*C6 
SDRC7)=0.017*C7 
SDR<B>=0.00399*CB 

C INITIAL CONDITIONS FOR MEASURED VALUES OF STATE VECTOR 
C· 

c 

ZOLD< 1 >=XOLD< 1 )+V< 1, 1 >*Cl 
ZOLD<2>=XOLD<2>+V(1,2>*C2 
ZOLD<3>=XOLD<3)+V(1,3>*C3 
ZOLD<4>=XOLD<4>+V(1. 4>*C4 
ZOLD<5.>=XOLD<5>+V(1,5>*CS 
ZOLDC6>=XOLD(6)+V(1,6>*C6 
ZOLD<7>=XOLD<7>+V<1,7>*C7 
ZOLD<S>=XOLD<S>+V<l,S>*CS 

C SET CONSTANTS TO CONVERT SCALES 
c 

c 
c 

RADCON=57. 2957795 
REVCON=30/3. 14159 

XMC1J=X0<1> 
YM<l>=YO(l) 
XE< 1 >=XO< 1) 
YE<1>=Y0(1) 
PSIO<l>=XOLD<7>*RADCON 
PSIMC1>=ZOLD{7>*RADCON 
PSIE<1>=XOLD<7>*RADCON 
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c 
c 

c 

ROC 1 >=XOLDCB'l*RADCON. 
RMC1>=ZOLD<B>*RADCON 
REC1l='XOLD<B>*RADCON 
USHIP<1>=XOLD<4> 
USHID< 1 >=R'IN<4, 1 > 
UMC1l=ZOLD<4> 
UEC1>=XHAT<4l 
VSHIPC1>~XOLD<6> 

VM<1>=ZOLD<6> 
VEC1>=XHAT2<6> 
RNOC1>=XOLDC2lii-REVCON 
RNMC1>=ZOLDC2l*REVCON 
RNEC1l=XHATC2l*REVCON 
RNDC1l=U<2>*REVCON 
PSIDC1l=RINC7, 1l*RADCON 
RMINSC1l=O.O 
TU l=O. 0 

UCURM=WUC 1 > 
ALPHM =WUC2) 
UAIRM=WUC3l 
PHIM=WU<4> 

C START SIMULATION 
c 

c 

c 

DO 10 K=1.NPLOT 
KK=CK/50)*50 

UVEL=SQRTCCXOLDC4>**2l+CXOLD(6)**2l) 

C COMPONENTS OF UCURRENT AND UAIR IN X AND V DIRECTIONS 
c 

c 

GAMMA=XOLD<7>-<<ALPHM+WUSCK.2>>*CD2)+1. 570796 
WUC 1 >=<UCURM+WUSCK, 1 > >*SINCGAMMA>*CD1 
UW<K. 1 >=WU< 1 > 
WUM<1>=UCURM*SIN<GAMMA>*CD1 
WU<2>= <UCURM+WUSCK, 1) >*COS <GAMMA) *CD1 
UWCK.2>=WU<2> 
WUMC2l=UCURM*COSCGAMMA>*CD1 
ANG=CCPHIM+WUSCK,4>>*CD4l-XOLDC7l 
WUC3l~<UAIRM+WUSCK, 3) >*COS<ANGl*CD3+XOLD<4> 
UWCK,3l=WUC3> 
WUMC3l=UAIRM*COSCANGl*CD3+XOLD<4> 
WUC4l=CUAIRI'I+WUSCK.3ll*SINCANG>*CD3+XOLDC6> 
UWCK,4>=WUC4> 
WUM< 4 >=UA·IRM*SIN CANG > *CD3+XOLD< 6) 
UA=SQRTCWUC3>**2+WU<4>**2l 

C CALCULATE THE SYSTEM DISCRETE-TIME MATRICES A AND B 
c 

c 
c 

CALL NABCA,B,C,N,NX,NG,NB,NC, IFIN.K.LOQP,T,WUM, 
S.TSAMP, XOLD, UVEL, UA, F41X, F42X, F44X, F46X •. F48X, WU, UD1. UD2, 
S.F61Y,F62Y,F64Y,F66Y,F68Y,F81N,F82N,F84N.F86N,FBBN> 
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C COMPUTE OPTIMAL CONTROL LAW 
c 

c 

CALL OPTCONCXHAT,K,S,VFOR,UD1,UD2,U,N,NB,NX,NN,TSAMP 
+,DRUDD,MODE,ABCER,CERROR,XE,YE,RIN7,YI,XI, XHATS> 

C SIMPLE P+D HEADING CONTROLLER 
c 
c 
C CALCULATE X<K+l>=A+X<K>+B*U<K>+C•W<K> USING SHIP AXES 
c 

c 

CALL MATMULCAX,A,XOLD,N,N,NX> 
CALL MATMULCBU,B,U,N,NB,NX> 
CALL MATADDCAXBU,AX,BU.N,NX> 
CALL MATMULCCWU,c,wu,N,NC,NX> 
CALL MATADDCXNEW,AXBU,CWU,N,NX1 

C CALCULATE Z<K+l>=H<K+l)*X<K+l)+V<K+l) USING SHIP AXES 
c 

c 

CALL MATMULCHXN,H,XNEW,N,N,NX> 
ZNEW<8>=HXNC8)+VCK+l,S>*C8 
ZNEWC7>=HXN(7)+CVCK+1,7>*C7) 
ZNEW<6>=HXNC6)+VCK+1,6>*C6 
ZNEWC4>=HXN<4>+VCK+1,4>•C4 
BETA=ATANCZNEWC6)/ZNEW<4>> 
ZNEWC~>=HXN<~>+<V<K+l.~)*CS> 
ZNEWC3>=HXNC3>+<V<K+1,3>*C3> 
ZNEWC2>=HXN<2>+VCK+1,2)*C2 
ZNEW< 1 >=HXN< 1 >+V<K+l, 1 >*Cl 
CALL OPTFIL{AA,BB,CC,BU,H,U,Z,N,NB,NC,NX,IP,IM, 

*XHAT2,XHAT,XHATl, K,CERROR,V,ABCER,RADCON) 

C CALCULATE SHIP'S ACTUAL POSITION ~ VELOCITY 
c 

XDELT=XNEWC3>-XOLD<3> 
YDELT=XNEW<S>-XOLD<~> 

XDELMzZNEWC3>-ZOLD<3> 
YDELM=ZNEW<S>-ZOLDC5) 
XDELE=XHAT2<3>-XHATC3) 
YDELE=XHAT2C5>-XHAT<5> 
XO<K+l>=XO<K>+XDELT•COS<XOLD<7>>-YDELT*SINCXOLD<7>> 
YOCK+l>=YO<K>+YDELT•COS<XOLD<7>>+XDELT*SINCXOLDC7)) 
XM<K+1>=XM<K>+XDELM*COS<ZOLD<7>>-YDELM+SIN<ZOLD<7>J 
YM<K+l>=YM<K>+YDELM*COSCZOLD<7>>+XDELM+SINCZOLDC7)) 
XECK+1>=XE<K>+XDELE•COSCXHAT<7>>-YDELE+SIN<XHATC7)) 
YE<K+l>=YE<K)+YDELE*COSCXHATC7))+XDELE+SIN<XHATC7)) 
PSIOCK+l)=XNEWC7>*RADCON 
PSIM<K+1>=ZNEW<7>*RADCON 
PSIE<K+l>=XHAT2<7>*RADCON 
UOCK+l>=XNEW<4>+COSCXNEWC7>>-XNEWC6)*SIN<XNEW<7>> 
VOCK+l>=XNEWC6>*COS<XNEW<7>>+XNEW<4>*SIN<XNEW<7>> 
ROCK+l>=XNEW<B>*RADCON 
RN<K+l>=ZNEWCS>•RADCON 
RECK+l>=XHAT2<8>*RADCON 
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. ' 

c 

DRUDDCK>=UC1l 
DEL-r:D C K > =U,C 1 > *RADCON 
DEL")':OCK>=XOLDC1l*RADCON 
DEL TM < K+.1 > =ZNEW ( 1 l*RADCON 
DELTECK+l>=XHAT2C1l*RADCON 
USHIPCKl=XOLDC4l 
USI-11-DCK l=R INC4, K > 
UI'ICK+1J =ZNEW C 4') 
UECK+1l=XHAT2C4l 
VSHIPCKl=XOLDC6> 
VI'ICK+1l=ZNEWC6l 
VECK+U=XHAT2C6l 
RNOCKl=CXOLDC2l*REVCON> 
RNI'I.C K+ 1 l = < ZNEW ( 2 l *REVCON) 
RNEC.K+1l=<XHAT2C2>*REVCONl 
RNDCKl =tU(2l*REVCONl 
PSIDCKl=R•INC7, Kl*RADCON 
RI'IINSCK>=T<Kl/60.0 
TCK+ll=TCKl+TSAMP 

C SPECIFY OUTPU~ VECTOR AND UPDATE STATE VECTOR 
c 

c 

DO 20 1=1,8 
VOUTCI,Kl=XOLDCil 
XOLDCI l=XNEWC I> 
XHATCI>=XHAT2CI) 
ZOLDCI l=ZNEWCI l 

20 CONTINUE 
10 CONTINUE 

C END OF .SIMULATION 
c 

c 
C PLOT SHIP TRACK 
c 

c 

XDCNPLOT1 >=0. 0 
XDCNPLOT2>=200.0 
VDCNPLOTll=O.O 
VDCNPLOT2>=200.0 
XOCNPLOTl>=O. 0 
XOCNPLOT2>=200.0 
YOCNPLOTll=O.O 
VOCNPLOT2l=200. 0 
XI'ICNPLOT1 >=0. 0 
XI'ICNPLOT2>=200. 0 
VI'ICNPLOT1 >=0. 0 
VI'ICNPLOT2>=200.0 
XECNPLOT1>=0.0 
XECNPLOT2>=200. 0 
VECNPLOTl>=O.O 
VECNPLOT2l=200.0 

CALL NEWPENC1) 
CALL LINE<VD,XD,NPLOT, 1, 12,2> 
CALL LINE<VM,XI'I,NPLOT, 1.0,0) 
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c 

CALL NEWPENC2> 
CALL LINE<YO.XO.NPLOT,l, 12.3~ 
CALL NEWPEN<3> 
CALL LINECYE,XE,NPLOT, 1, 12, 1) 
CALL NEWPENC1) 

C PLOT ACTUAL RUDDER ANGLE 
c 

c 

CALL PLOTC50: O, 1.0,-3) 
CALL SCALECRM·INS, 20. Q, NPLOT, 1) 
CALL SCALECDELTM •. 10. OoNPLOTol> 
DELTO<NPLOT1>::l:DELTMCNPLOT1) 
DELTO<NPLOT2>=DELTM<NPLOT2> 
DELTE<NPLOT1>=DELTM<NPLOT1> 
DELTE<NPLDT2l=DELTMCNPLOT2> 
CALL AXIS<O. 0.0.0. 15HTIME IN MINUTES.-15, 

&20. O, o, O, RMINSCNPLOT1), RMINS<NPLOT2> l 
CALL AXISCO. 0.0.0,23HRUDDER ANGLE IN DEGREES,+23, 

8.10. 0,90.0,DELTMCNPLOT1l.DELTM<NPLOT2ll 
CALL LINE<RMINS,DELTM,NPLOT,1,0,0> 
CALL NEWPEN<3> 
CALL LINE<RMINS,DELTE.NPLOT,1, 10,3) 
CALL NEWPEN(2l 
CALL LINE<RMINS,DELTO,NPLOT, 1, 10, 1) 
CALL NEWPEN<1> 
CALL SYMBOL<2. 0.9. 5,0. 25, 12HRUDDER ANGLE,O.O, 12) 

C PLOT DEMANDED RUDDER ANGLE 
c 

c 

CALL PLOTCO. O, 15.0,-3) 
CALL SCALECRMINS,20.0,NPLOT, 1> 
CALL SCALE<DELTD, 10.0,NPLOT, 1) 
CALL AXISCO. o.o.o, 15HTIME IN MINUTES,-15, 

8c20.0,0.0,RMINSCNPLOT1l,RMINS<NPLOT2)) 
CALL AXIS<O. 0.0.0,23HRUDDER ANGLE IN DEGREES,+23, 

8c10.0,90.0,DELTD<NPLOT1>,DELTDCNPLOT2>> 
CALL SCALE<DELTD, 10.0,NPLOT, 1) 
CALL LINE<RMINS,DELJD,NPLOT, 1, 10,5) 
CALL SYMBOL<2.0,9. 5.0.25,21HDEMANDED RUDDER ANGLE, 

8.0.0.21) 

C PLOT LATERAL SPEED 
c 

CALL PLOTC25.0,-15.0,-3) 
CALL SCALE<RMINS.20.0,NPLOT, 1> 
CALL SCALECVE, lO.O,NPLOT, 1) 
VSHIPCNPLOTll=VECNPLOTl) 
VSHIPCNPLDT2>=VECNPLOT2> 
VM<NPLOT1 >=VE<NPLOT1 > 
VM<NPLOT2>=VECNPLOT2> 
CALL AXISCO. 0.0.0. 15HTIME IN MINUTES,-15, 

8c20.0,0.0,RMJNSCNPLDT1l,RMINS<NPLOT2)) 
CALL AXISCO. 0.0.0,22HLATERAL SPEED IN M/SEC,+22, 

&10.0,90. Q,VM<NPLOT1>,VM<NPLOT2>> 
CALL LJNE<RMINS,VM,NPLOT,l,O.O> 
CALL NEWPEN<3> 
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c 

CALL LINE<RMINS, VE, NPLOT. L 10, 3) 
CALl;. NEWPENC2l 
CALL LINE<RMINS, VSHJP, NPLOT, 1, 10. 1 > 
CALL NEWPEN<l> 
CALL SVMBOL<2. o, 9, 5, 0. 25. 21HLATERAL SPEED OF SHIP, 0. O, 21) 

C PLOT YAW RATE 
c 

c 

CALL PLOTlO. O, 15.0.~3> 
CALL SCALE<RMINS,20.0.NPLOT, 1> 
CALL SCALE<RM, 10. O.NPLOT, 1> 
ROCNPLOTl >=RMCNPLOT1 > 
ROCNPLOT2>=RMCNPLOT2> 
RE< NPLOT 1 ) =RM ( NPLOT 1 J 
RECNPLOT2l=RM<NPLOT2> 
CALL AXIS10. 0.0. o, 15HTIME IN MINUTES.-15, 

8c20.0,0.0,RMINSCNPLOT1J,RMINSCNPLOT2>> 
CALL AXISCO. 0.0.0,22HVAW RATE IN DEG/SECOND,+22, 

8c10. O, 90. o, RMCNPLOTU, RM<NPLOT2)) 
CALL LINECRMINS,RM,NPLOT.1,0,0J 
CALL NEWPENC3> 
CALL LINECRMINS,RE,NPLOT, 1, 10.3) 
CALL NEWPENC2> 
CALL LINECRMINS,RO,NPLOT, 1, 10, 1) 
CALL NEWPEN < 1 > 
CALL SYMBOLC2. 0.9. 5,0, 25.8HYAW RATE.O. 0,8) 

C PLOT COURSE ANGLE 
c 

c 

CALL PLOTC25.0,-15. 0,-3) 
CALL SCALECRMINS.20.0,NPLOT, 1> 
CALL SCALECPSIM. 10.0,NPLOT, 1) 
PSIOCNPLOTl >=PSH1CNPLOT1 > 
PSIOCNPLOT2J=PSIM<NPLOT2l 
PSIECNPLOT1 >=PSII'ICNPLOTl) 
PSIECNPLOT2l=PSIMCNPLOT2> 
PSIDCNPLOT1J=PSII'ICNPLOT1> 
PSIDCNPLOT2J=PSIMCNPLOT2> 
CALL AXISCO. 0.0. O, 15HTIME IN MINUTES.-15. 

8c20. O, 0. O, RMINSCNPLOTl l, RMINSCNPLOT2l l 
CALL AXISCO. 0.0. 0.23HCOURSE ANGLE IN DEGREES,+23, 

8c10.0,90.0,PSIMCNPLOT1J,PSIMCNPLOT2J) 
CALL LINE<RMINS,PSIM.NPLOT, 1,0,0) 
CALL LINE<RMINS,PSID.NPLOT, 1, 10.2) 
CALL NEWPENC3J 
CALL LINECRMINS.PSIE,NPLOT, 1, 10.3) 
CALL NEWPENC2> 
CALL LINECRMINS.PSIO,NPLOT, 1.10,1> 
CALL NEWPEN<1> 
CALL SVMBOLC2.0,9. 5.0.25, 12HCOURSE ANGLE.O. O, 12> 

C PLOT F MATRIX VARIATION WITH TIME 
c 
C X ELEMENTS 
c 
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c 

CALL PLOTCO. O, 15.0,-3> 
CALL SCALE.CRMINS, 20, Q, NPLOif, 1 > 
CALL SCALECF41X, 10.0.NPLOT, 1) 
CALL SCALECF42X, 10.0.NPLQT, 1) 
CALL SCALEC:F44X, 10. Q, NPLQT, 1 > 
CALL SCALECF46X, 10.0.NPLOT, 1> 
CALL SCALECF48X, 10.0,NPLQT, 1) 
CALL AXISCO. 0.0. o, t5HTIME IN MINUTES,-15, 

&20. 0.0. O.RMINSCNPLOt1>.RMINSCNPLOT2>> 
CALL AXIS CO. Q, 0. O, 1'9HF MATRIX X ELEMENTS, +19, 

&10. O. 90. O, F41X < NPLO:rl), F41X CNPLOT2>) 
CALL LINEC·RMINS,.F41X. NPLQT, 1, 10, 1 > 
CALL LINE~RMINS.F42X.NPLQT, 1, 10.2) 
CALL LINECRMINS,F44X.NPLOT, 1.10,4> 
CALL LINECRMINS,F46X.NPL0To 1.10.5> 
CALL LINECRMINS.F48X.NPLOT; 1, 10.6) 
CALL SYMBOLC2. 0.9. 5,0. 25. 19HF MATRIX X ELEMENTS.O. O, 19) 

C PLOT X AGAINST TIME 
c 

c 

CALL PLOTC25.0,-15.0,-3> 
CALL SCALECRMINS.20.0.NPLOT.1> 
CALL SCALECXM. 10.0.NPLOT.1> 
XO C NPLOT1 ) =XM ( NPLOT1 ) 
XOCNPLOT2>=XM<NPLOT2) 
XECNPLOT1>=XMCNPLOT1> 
XECNPLOT2>=XMCNPLOT2) 
XDCNPLOT1>=XMCNPLOT1> 
XDCNPLOT2>=XMCNPLOT2> 
CALL AXISCO. 0.0. o, 15HTIME IN HINUTES.-15, 

&20.0.0.0,RMINSCNPLOT1>.RHINSCNPLOT2>> 
CALL AXISCO, 0.0. o, t4HX CO-ORDINATES,+14, 

llc10.0,90.0,XH<NPLOT1>.XHCNPLOT2>> 
CALL LINECRHINS.XH.NPLOT. 1,0,0) 
CALL LINECRMINS.XD.NPLOT, 1, 10,2> 
CALL NEWPEN<3> 
CALL LINECRMINS,XE,NPLOT, 1,10.3> 
CALL NEWPEN<2> 
CALL LINECRMINS,XO,NPLOT, 1. 10. 1) 
CALL NEWPEN<1> 
CALL SYMBOLC2.0.9. 5.0. 25, 14HX CO-ORDINATES,O.O, 14> 

C PLOT V AGAINST TIME 
c 

CALL PLOT<O. o, 15. O, -3 > 
CALL SCALECRMINS,20,0.NPLOT. 1> 
CALL SCALECYM, 10.0,NPLOT, 1> 
YOCNPLOT1>=VMCNPLOT1> 
VOCNPLOT2>=VMCNPLOT2> 
VECNPLOT1>=VMCNPLOT1) 
VECNPLOT2>=VMCNPLOT2> 
YDCNPLOT1>=VMCNPLOT1> 
YDCNPLOT2>=VMCNPLOT2> 
CALL AXISCO. 0.0. o, 15HTIME IN MINUTES.-15. 

&20. 0.0. O,RMINSCNPLOT1>,RMINSCNPLOT2>> 
CALL AXISCO. 0.0.0. 14HY CO-ORDINATES.+14o 
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c 

&10. O, 90. O, YMCNPI.!.OTl>, VM<NPLOT2> > 
CALL 'LiNECRMINS, YM •. NPLOT, 1..10, 1) 
CALL LINE<RMINS.~D.NPLOT, 1, 10,2) 
CALL NEWPEN<3> 
CALL LINECRMINS,YE,NPLOT.l, 10,3> 
CALL NEWPEN<2> 
CALL LINE<RMINS, YO, NPLOT, 1. 10; 1) 
CALL NEWPEN<l> 
CALL SYMBOLC2. 0.9. 5.0. 25, 14HY CO-ORDINATES.O.O, 14) 

C PLOT FORWARD SPEED 
c 

c 
c 

c 

CALL PLOT(25.0,-15.0,-3) 
CALL SCALECRMINS,20.0,NPLOT,1) 
CALL SCALE CUM, 10. o, NPLOT, 1 > 
USHIPCNPLOT1>=UMCNPLOT1> 
USHIP<NPLOT2>=UM<NPLOT2> 
UE C NPLOT1.> =UM ( NPLOT1 ) 
UECNPLOT2>=UMCNPLOT2) 
USHJDCNPLOT1>=UMCNPLOT1> 
USHJ.DCNPL0172>=UM<NPLOT2> 
CALL AXISfO. O.O.O, 15HTIME IN MINUTES,-15, 

&20. O.O.O,RMINSCNPLOT1>,RMINSCNPLOT2>> 
CALL AXIS.CO. O, 0. o, 19HFORWARD SPEED CM/S), +19, 

&10. O, 90. Q, UMCNPLOT1 ), UMCNPLOT2>) 
CALL LINECRMINS, UM, NPLOT, h O, O> 
CALL LINECRMINS,USHJD,NPLOT, 1, 10, 1) 
CALL NEWPENC3> 
CALL LINECRMINS.UE,NPLOT, 1, 10,3> 
CALL NEWPENC2) 
CALL LINECRMINS, USHJP, NPLOT, 1. 10, 1) 
CALL NEWPENC1) 
.CALL SYMBOLC2.0.9. 5,0.25, 13HFORWARD SPEED,O.O, 13) 

CALL PLOTC12. 0.0. 0.999) 

CALL EXIT 
END 
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A 6.2 Subroutine PLYM• 

At the beginning o1 the master segment this subrouti•ne is called to 

draw an outline chart of Plymouth Sound, including the main 

na~igational marks and buoys. 

Variables are:-

START 1 DELTA Initial and incremental values for graph piotti·ng 

A 6.3 Matrix Package 

Subroutine MATADD was used to add a substract two matrices, to produce 

the i·dentity matrix, MATINV to invert a matrix and MATMUL to multiply 

two matrices together, MATONE pr6duces a one's matrix whilst MATPRN is 

used to print out data in rows and columns, with MAJRED used to read in 

data in matrix _form, whilst MATSCL is used to multiply a matrix by a 

scalar, MATRNS t6 transpose a matrix and MATZER to produce a matri•x of 

0 's. 
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c 
C SUBROUTINE TO PLOT PLYMOUTH SOUND 
c 

SUBROUTINE PLYMCSTART,DELTA) 
c 

DIMENSION FF1 ( 152>, FF2( 152), Fi=:J ( 152), FF4( 1'52), FF5( 12>, FF&(1'l.) 

DIMENSION FF7 ( 152), FFB ( 152), TR1 ( 4), TR2 ( 4 )., FF9 ( 152), FF 10 ( \'S"l) 

DIMENSION STX < 12>, STY< 12 >, PTX < 12>, PTY < 12> 
DIMENSION TR:J<4>,TR4<4>,TR5<4>,TR6(4),TR7C4>,TR814> 
DIMENSION XTOP(4),YTOP(4),XSIDE<4>,YSIDE~4) 
REAL LH1C7>.LH2<7> 

c 
C ************ CHECKING A ************** 
c 
c 
c *************************************** 
c 
c 
C THIS SUBROUTINE PLOTS PLYMOUTH SOUND 
c 

c 

CALL PLOTS(O,O, 16) 
CALL FACTOR<O. 5> 

C START IS THE ORIGIN, DELTA IS THE NO OF DATA UNITS 
8F AXIS 

c 

c 

START=O.OO 
DELTA=200.0 

C READ IN CO-ORDS FOR WESTERN SI·DE OF PLYMOUTH SOUND 
c 

READ< 5, 501 > <FF1 CM>, FF2CM), M=1, 104 > 
501 FDRMATC10F8.2> 

c 

PER CM. 

C ************** CHECKING B **************************** 
c 
c 
c ****************************************************** 
c 
c 
C READ IN CO-ORDS FOR EASTERN SIDE OF PLYMOUTH SOUND 
c 

READ(5, 502> <FF:J<N>. FF4CN),.N=l, 1:34) 
502 FORMAT<.10F8. 2> 

c 
c **************** 
C ***********READ IN CO-ORD FOR NORTHCOASTl************* 
c 
c 

READC,S, 50:3) CFF7(N), FFB<N> •. N=l, 28) 
503 FORMATC10FB.2> 

C ************** CHECKING Z**************** 
c *******************·********************** 
c 
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c ***** 
C **********NORTHCOAST2 ************** 
c 
c 
c 

READ ('5• 503> CFF9CN), FFlOCN> .• N=l, B> 
C **************** CHECJ.HNG 3 *********************·* 
c 
c 
c 
c ***********************************"*************** 
c 
C OPEN GRAPH PLOT~ER FILE 
c 

CALL PLOTCO.O, 1.0,-3) 
CALL AXISCO.O.O.O, 1BHX-AXIS 200.00M,-30.37.3,0.0. 

*START. DELTA> 
CALL AXISCO.O,O.O, 1BHY-AXIS 200.00M,+30.25.9.90.0, 

*START, DEL TA>. 
C ****** BOUNDARY DRAWING ************ 

C **** THIS PLOTS THE TOP BOUNDARY 
c 

c 

XTOPCl>=O.O 
YTOP<1>=51BO.O 
XTOPC2>=7460.0 
YTOPC2>=51BO.O 
XTOPC3>=START 
YTOPC3>=START 
XTOPC4J=DELTA 
YTOP<4>=DELTA 
CALL LINECXTOP.YTOP.2, 1,0,0) 

****" 

c **** 
c 

THIS PLOTS THE RIGHT SI,DE BOUNDARY 

c 

XSIDEC 1>=7460. 0 
YSIDEC1J=51BO.O 
XSlDEC2J=7460.0 
YSIDE(2J=O.O 
XSIDEC3J=START 
YSIDEC3J=START 
XSIDEC4J=DELTA 
YSIDEC4>=DELTA 
CALL LINECXSIDE.YSIDE.2, t.O,OJ 

******* 

C *************** END BOUNDARY DRAWING ****************** 
c 

c 
c 

CALL SYMBOLCl. 0.24.9.0. 5, 14HPLYMOUTH SOUND,O.O, 14) 

C ****************** CHECKING 4 ********************* 
c 
c 
c **·*******************************·****************** 
c 
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C THIS PLOTS THE WESTERN SIDE OF PLYMOUTH SOUND 
c 

FF1<105l=START 
FF2<105l=START 
FF1(106l=DELTA 
FF2(106l=DEL'tA 
CALL LINECFFl. FF2, 104, 1. O, 0) 

C ****************** CHECKING 5 ********************* 
c 
c 
c **************************************************** 
c 
C THIS PLOTS THE EASTERN SIDE OF PLYMOUTH SOUND 
c 

FF3<135l=START 
FF4<135l=START 
FF3C136l=DELTA 
FF4C136l=DELTA 
CALL LINE<FF3,FF4. 134, 1.0.0) 

C ************** CHECKING 6 *************************** 
c 
c 
c ***************************************************** 
c 
C ******* THIS PLOTS NORTHCOASTUc2 ********* 
c 
c 

FF7(29l=START 
FFB<29l=START 
FF7C30l=DELTA 
FFBC30l=DEL TA 
CALL LINE<FF7. FFB, 28, 1, O, 0·) 

C **************** CHECKING 7 ************************ 
c 
c 
c **************************************************** 

FF9C9>=START 
FF10C9l=START 
FF9C 10l=DELTA 
FF10C10l=DELTA 
CALL LINE<FF9,FF10.B, 1.,0,0) 

C **************** CHECKING 8 ************************ 
c 
c 
c **************************************************** 
c 
C THIS PLOTS THE BREAKWATER 
c 

READ< 5, 503 > <FF5 <I), FF6 <I>, 1=1, 8 > 
FF5<9l=START 
FF6C9l=START 
FF5(10l=DELTA 
FF6<10l=DEL TA 
CALL LINE<FF5.FF6,8, 1.0.0) 

C **************** CHECKING 9 ************************ 
c 
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c 
c **********************************·***************·*** •C 
C THIS PLOT~ DRAKES ISLAND 
c 

READC5 •. 504·J CFF7<Mh FFBCI-0 .• M=l, 50) 
504 FORMATC10F8.2J 

FF7 <51) =SiT ART 
FFB C 5U =ST:ART 
FF7C52J=DELTA 
FFBC52J=DEI!.TA 
CALL LINECFF7,FF8,50, 1,0,0) 

C Z*************** CHECKING 99 ************************ c 
c 
c ********************************·******************** c 
C THIS PLOTS STARBOARD HAND BUOYS 
c 

READ(5,505}(STXCKJ,STV(KJ,K=1,6J 
505 FORMATC10FB.2> 

CALL NEWPENC2) 
STXC7J=START 
STYC7J=START 
STX<B>=DELTA 
STY<B>=DELTA 
CALL LINECSTX,STY,6,1,-1, 1> 

C **************** CHECKING 10 ******************** c 
c 
c ****************·********************************** c 
C THIS PLOTS THE PORT HAND BUOYS 
c 

READ< 5, 506 >< PTX C..JJ, PTY ( J), J=l, 5) 
506 FORMATC10F8.2) 

PTXC6J=START 
PTVC6>=START 
PTXC7>=DELTA 
PTVC7J=DELTA 
CALL NEWPENC3) 
CALL LINECPTX,PTY,5, 1,-1,2> 

C **************** CHECKING 11 ****************** c 
c 
c ********************************·*************** c 
C THIS PLOTS POSITIONS OF LIGHTS 
c 

READC5,507JCLH1CL>,LH2(L),L=1,4) 
507 FORMATC10F8.2J 

LH1C5>=START 
LH2<5>=START 
LH1C6)=DELTA 
LH2C6>=DELTA 
CALL LINE.CLHl, LH2, 4, 1, -1. 14> 
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C *************** CHECKING 12 ******************'** c 
c 
c **********************-************************** c 
C PLO~ RECOMMENDED TRACK FOR DEEP DRAUGHT VESSELS 
c 

RETURN 
END 
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SUBROUTINE MATADDCA,B,C,N,M,NN> 
c 
C MATADD A=B+C 
c 
C N IS THE NUMBER OF ROWS IN B AND C 
C M IS THE NUMBER OF COLUMNS IN B AND C 
c 

REAL*4 A<N,M>,BCN,M),CCN,M> 
DO 10 1=1,N 
DO 10 ,J=i. M 
A<I,,J)=BCI,,J)+CCI,.,J) 

10 CONTINUE 
RETURN 
END 

SUBROUTINE MATEQLCA,B.N,M,NN> 
c 
C MATEQL A=B 
c 
C N IS THE NUMBER OF ROWS 
C M IS THE NUMBER OF COLUMNS 
c 

REAL*4 A<N,M>,BCN,M> 
DO 10 1=1,N 
DO 10 ,J=1,M 

10 A<J,,J>=B<I,,J> 
RETURN 
END 

SUBROUTINE MATIDNCA,N,NN> 
c 
C MATIDN PRODUCES A UNITY ·MATRIX A 
c 
C N IS THE NUMBER OF ROWS AND COLUMNS 
c 

REAL*4 ACN,N> 
DC 10 l=1,N 
DC 10 ,J= 1., N 
A< I, ,J)=O. 0 

10 CONTINUE 
DC 20 I=l.N 
A<I,I>=l.O 

20 CONTINUE 
RETURN 
END 
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SUBROUTINE MATlNV<A,N,NA,NN> 
REAl*4 A<NA, N l, PIVOT< 20·>, IPIVO;J" < 20), INDEX <20, 2> 
EQUIVALENCE ( IROW, JROW>, ( ICOLUM, JCDLUM'>, <AMAX, T, SWAP> 
IF<N-1 > 10. 5, 10 

5 AT=A( 1, 1 > 
AU, 1 >=1. /AT 
RETURN 

10 DETERM=l. 0 
15 DD 20 J=1.N 
20 IPIVOT<.J·>=O 
30 DD 550 1=1. N 
40 AMAX=O.O 
45 DD 105 J=1,N 
50 IF<IPIVOT<Jl-1l60, 105.60 
60 DO 100 K=l. N 
70 IF<IPIVDT<Kl-1l80, 100,740 
80 IF<ABS(AMAXl-ABS(A(J,Klll85, 100,100 
85 IRDW=J 
90 ICDlUM=K 

.95 AMAX=A(J,Kl 
100 CONTINUE 
105 CONTINUE 
110 IPIVOT<iCOlUM>=IPIVDT<ICOlUM>+1 
130 IF(IROW-ICOLUMl140,260, 140 
140 DETERM=-DETERM 
150 DO 200 l=1,N 
160 SWAP=A<IROW,ll 
170 A<IROW,Ll=A<ICOlUM.Ll 
200 A<ICOLUM,Ll=SWAP 
260 INDEX(!, 1l=IROW 
270 INI>EX(I,2l=ICOLUM 
310 PIVOT<I>=A<ICOLUM, ICOLUMl 
320 DETERM=-DETERM*PIVOT<I> 
330 A<ICOLUM, ICOLUM>=1.0 
340 DO 350 L=1,N 
350 A<ICOLUM,ll=A<ICOLUM,Ll/PIVOT(l) 
380 DO 550 L1=1, N 
390 IF<L1-ICOLUM>400.550.400 
400 T=A<L1, ICOLUM> 
420 A<L1, ICOLUM>=O.O 
430 DO 450 L=1,N 
450 A(L1,L>=A<L1.Ll-A<ICOLUM.Ll*T 
550 CONTINUE 
600 DO 710 I=l. N 
610 L=N+1-I 
620 IF<INDEX<L, 1l-INDEX(L,2ll630.710,630 
630 JROW=INDEX<L• 1> 
640 JCOLUM=INDEX<L,2l 
65.0 DO 700 K=1, N 
660 SWAP=A(K,JROWl 
670 A<K,JROW>=A<K,JCOLUM> 
700 A< K, JCOLUM·> =SWAP 
710 CONTINUE 
740 RETURN 

ENI> 
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SUBROUTINE MATMU~CA,B.C,N,M,L,NNJ 
c 
C MATMUL A=B*C 
c 
C N IS NUMBER OF ROWS IN B 
C M IS NUMBER OF COLUMNS IN B AND ROWS IN C 
C L IS NUMBER OF COL\:JMNS IN C 
c 

c 

REAL*4 ACN,Ll,B<N;MJ,C(M,Ll 
DO 10 1·=1, N 
DO 10 K=l,L 
A< I, Kl=O. 0 
DO 10 J=l,M 

10 A (I. K l =A< I. K l +B < I. J l itC ( J, K l 
RETURN 
END 

SUBROUTINE MATONECA,N,M,NNl 

C PRODUCES A ONE'S MATRIX 
c 

c 

REAL*4 A(N,Ml 
DO 10 I=1,N 
DO 10 J=l. M 

10 A< I, Jl=l. 0 
RETURN 
END 

SUBROUTINE MATPRNCA,N,M.NN,NAME> 

C PRINTS OUT MATRIX A 
c 
C N IS NUMBER OF .ROWS 
C M IS NUMBER OF COLUMNS 
c 

REALit4 A(N, M)., NAME<2> 
WRITE<6,30) 
WR ITE<.6, 40 >NAME ( 1 l, NAME< 2 >, N, M 
DO 10 I=J,N 
WR1TEC6,20l<A<I,Jl,J=l,Ml 

10 CONTINUE 
20 FORMATC1X,BE14. 7) 
30 FORMAT< I I> 
40 FORMATC12H REAL MATRIX,3X.2A4,10X, I3.3H X, I3//) 

RETURN 
END 
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c 

c 

SUBROUTINE MATRED<A, N, M, NN·) 

REAL*4 A<N.M> 
DD 10 I=i.,N· 

10 READ<5, 20> <A (I, .J), .J=1• M> 
20 FORMAT<BF10. 0) 

RETURN 
END 

SUBROUTINE MATRNS<A,B,N,M,NN> 

C A=TRANSPDSE OF B 
c 

c 

REAL*4 A(M, N·), B<N, M·) 
DO 10 I=1,M 
DO 10 .J=l,N 
A(I,.J>=B(.J, I) 

10 CONTINUE 
RETURN 
END 

SUBROUTINE MATSCL<A, s, B, N, M. NN> 

C N IS NUMBER OF ROWS,M NUMBER OF COLUMNS 
c 

c 

REAL*4 A(N,M>.B<N,M> 
DO 10 I=l,N 
DD 10 .J=1.M 
A ( I' .J ) =S* B ( I I .J ) 

10 CONTINUE 
RETURN 
END 

SUBROUTINE MATZER<A, N. M, NN·> 

REAL*4 A(N, M·) 
DD 10 I=1,N 
DD 10 .J=l,M 
A< I, .J)=O. 0 

10 CONTINUE 
RETURN 
END 
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APPENDIX 7 

THE MAIN SUBROUTINES 

A7.1 Subroutine NAB 

This part of the program contr~ls the calculation of the discrete time 

state, control and disturbance matrices used in the mathematical model 

of the ship. The routine is called twice tor each value of the 

sampling time. In the first instant it is used to evaluate the 

equation which represents the ship; in the second it is used in the 

filter. Starting with the non-dimensional hydrodynamic coefficients 

NAB calls subroutine DIMEN to dimensionalise· the coefficients that 

correspond to the ship's forwar~ speed. Next subroutine CALXBC is used 

to compute the coefficients X, B and C used in equation set 3.28 and 

defined in Appendix 3. From these subroutines FMAT and GMAT are used 

to form the F and G cont-inuous time matrices of equation set 3.12. It 

should be noted that G appears as an 8 * 6 matrix in the computer 

subroutine, whereas it is in fact made up of the two matrices Gc and 

Go. After conversion to discrete time form in subroutine TRNMAC the 

discrete time tran~ition matrices are available for calculations 

involvin; the mathematical model of the ship. Figure A7. 1 gives the 

inter-relationship of NAB with its own subroutines. 
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c START ) 

l READ IN, XP , YP, ANP, RO, AL, AM, TAUR, TAUM, ZI J 

CALL DIMEN TO COMPUTE DIMENSIONALISED HYDRODYNAMIC 
COEFFICIENTS FROM NON DI MENSIO NALISED FORM 

CALL CALXBC TO CO MPUTE X, 8 and C 
VALUES IN THE EQUATIO NS OF MOTION 

CALL FMAT TO CALCULATE THE CONTINUOUS TIM E STATE 
TRANSITION MATRIX F 

CALL GMAT TO CAL CULATE THE CONTINUOUS TIME 
FORC ING MATRIX G 

CA LL TRNMAC TO CONVERT THE CONT INUOUS TIME MATRICES F 
AND G TO THEIR DISCRETE TIME EQUIVALENTS A, 8 and c 

RETURN 

Figure A 7. 1 Mo du le Dependenc y Chart and Flowchart for Subroutin e NAB 
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Vari·ables used in add.ition to those aJ·ready defined are:-

XP!14>, YPC1'4>, ANP!14> 

RO 

AL 

AM 

TAUR, TAUN 

Z I 

The non-dimensionalised 

X, Y and• N coefficients 

Density cif Water 

Length of Ship 

Mass of Ship 

Time constants' of rudder 

and engine respectively 

Moment of Inertia of ship 
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c 

SUBROUTINE NAB<A,B,C,NiNX.NG,NB,NC.NN, IFIN,K,LOOP.~.WUM. 
S.TSAMP, XOLD, UVEL. UA,.F4lX, F42X, F44X, F46X, F48X, WU, UDl1 UD21 
S.F61 Y1 F62Y,.F64Y~ F66Y, F68Y,.F81·N, F82N, F.84NI F86N1 F88N> 

C THIS SUBROUTINE COMMENCES WITH "f:HE NON DIMENSIONALISED 
C HYDRODVNAMIC_COEFFIC.IENTS AND_ CALCULATES THE CONTINUOUS 
C TIME STATE AND FORCINOMATRICES. IT THEN CALLS TRNMAT TO 
C CONVERT THESE TO THE DISCRETE HMEMATRICES A 3c B 
c 
c 

c 

c 

REAL*4 A<8,8>-~B<8,2),C(8,4),F(818),G(8,6>~ 
* F41X<250), F42X<250->~ F44X<250h F46X(250), 
* F48X ( 250) • .F61 Y<250·) I F62Y<250h F64Y(250) I 
* FF66Y(250), F68Y<2SO>~ F81N<250), F82N<250>~ 
* F84N ( 250) I F86N ( 250) I F88N ( 250), 
* R<250h 
* ANP<14>.XP<1'4hYP<14>-~ 
* XOLD<8>~T<250),WUt250>~WUM<250) 

IF<K-1>6,6,7 
6 READ<5~ 101>RO,AL~AM,TAUR~TAUN~ZI 

IFII'I=IFIN+1 
NX=l 

C READ IN NONDIMENSIONALISED HYDRODYNAMIC DERIVATIVES 
C USING I'IATRED AND PRINT VALUES USING MATPRN 
C CONVENTION: 
C XP<l>=XDELT' YP < 1 >=YDEL T' 

YP<2>=YNN 
YP<3>=YU' 
YP<4>=YUDOT' 
YP<5>=YV' 
YP<6>=YVDOT' 
VP<7>=VR' 
YP<8>=YRDOT' 
YP<9>=YUA' 
YP < 1 0) =YVA ' 
YP< 11 >=YVVV' 
YP< 12>=YRVV' 
YP< i3>=YDDD' 
YP<14>=YDVV' 

ANP<1>=NDELT' 
ANP<2>=NNN 
ANP(3)=NU' 
ANP<4>=NUDOT' 
ANP<S>=NV' 
ANP<6>=NVDOT' 
ANP<7>=NR' 
ANP<8>=NRDOT' 
ANP (9 >=NUVA' . 
ANP ( 1 0 ) =NVA I 

ANP ( 11 ) =NVW I 

ANP<12>=NRVV' 
ANP<13>=NDDD' 
ANP < 14>=NDW' 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

c 

c 
c 
c 

XP<2>=XN' 
XP<3>=XU' 
XP<4>=XUDOT' 
XP ( 5) =XUU·' 
XP<6>=XUUU' 
XP<7>=XUN' 
XP<8>=XRDOT' 
XP<9>=XUA' 
XP<10>=XVA' 
XP ( 11) =XVV' 
XP < 12>=XRR' 
XP ( 13) =XDD' 
XP< 14>=XNN' 

CALL MATRED<XP, 14, 1.28) 

CALL MATRED<YP. 141 1.28> 

CALL MATRED<ANP.141 1128> 

C COMPUTE DlMENSIONALISED HYDRODYNAMIC DERIVATIVES 
C THAT CORRESPOND TO SHIP FORWARD VELOCITY UVEL 
c 

7 CALL DIMEN(RO,AL,XP,YP,ANP,UVEL,XOLD.UA, 
S.XDELT,XN,XU,XUDOT, XUU,XUUU,XUN,XRDOT,XUA,XVA,XVV, XRR, 

- S.XDD, XNN, 
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c 
c 

&VDELT.YNN.YU.YUDOT.YV.YVDOT.YR.YRDOT.YUA,YVA.YVVV,YRVV, 
&YDDD. YDVV,­
&ANDELT.ANNN.ANU.ANUDOT,ANV.ANVDOT.ANRoAIIIRDOT.ANUA,ANVAo 
&ANVVVoANRVVoANDDD,ANDVV> 

C COMPUTE X,B AND C COEFFICIENTS 
c 

c 
c 

CALL CALXBCCAM,ZI,XOLD,UVEL,WU,UD1.UD2,K.WUM, 
&XN,XU,XUDO~.XUU,XUUU. XUN.XUA.XVA,XVV.XRRiXDD.XNN, 
S.YDELT.YNN,YV,YVDOT,YR.YRDOT,YUA,YVA,YVVV,YRVV,YDDD.YDVV, 
S.ANDELT,ANNN,ANV.ANVDOT,ANR,ANRDOT,ANUA,ANVA,ANVVV,ANRVV, 
S.ANDDD,ANDVV.Xl,X2,X4,Xb, XB,XU3,XU5, 
&Bl,B2.B4,Bb,BB,BU4,BU6, 
&Cl,C2,C4.C6,CB,CU4,CU6> 

C COMPUTE F MATRIX 
c 

c 

c 

CALL FMAT< TAUR, TAUN. _Xl, X2, X4, X6, XB, XOLD, 
&Bl.B2.B4.Bb.BB.Cl,C2,C4.C6,CS,F.N> 

F41XCK>=FC4. 1) 
F42X<K>=FC4.2) 
F44X.<K>=FC4, 4> 
F46XCK>=FC4,6) 
F4BX<K>=FC4,8) 
F61YCK>=FC6, 1) 
F62YCK>=FC6,2> 
F64YCK>=FC6,4) 
F66YCK>=FC6,6> 
F6BYCK>=FC6.8) 
FBlN<K>=FCB. 1) 
FB2NCK >=FC Bo-2) 
FB4NCK>=FCB,4> 
FB6NCK>=FCB,6> 
FBBNCK>=FCB,B> 

C COMPUTE G MATRIX 
c 

c 
c 

CALL GMATCTAUR,TAUN,XU3,XU5, 
&BU4,BU6,CU4,CU6,Q,N,NG,NN> 

C COMPUTE DISCRETE TIME STATE TRANSITION MATRIX ACT> 
C AND DISCRETE TIME FORCING MATRIX B<T> 
c 

c 
CALL TRNMAC<F,Q,A,S,C.N,NG,NB,TSAMP,NN> 

4 RETURN 
END 
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A 7.2 Subroutines DIMEN. CALXBC, FMAT, ·GMAT 

These have been discribed i:n the previ·ous section. 

already defined are:-

RA2 

XDELT I XN, xu, XUDOT 

XUU, XUUU, XUN, XRDOT 

XUA 1 XVA 1 XVV 1 XRR 

XDD 1 XNN 

YDEL T I YNN I vu I YUDOT 

YV, ~VDOT 1 YR 1 YRDOT, 

YUA I YVA I YVVV I 

YRVV I YDDD I YDVV 

Air density 

Dimensionalised X coefficients 

Dimensionalised y coefficients 

ANDELT 1 ANNN, ANU 1 ANUDOT Di·mensionalised N coefficients 

ANN, ANUDOT 1 ANR, ANRDOT, 

ANUA, ANVA 1 ANVVV 1 ANRVV, 

ANDDD 1 ANDVV 

Variables not 

UCOR2 Correction for propeller action 

Xl etc, Yl etc 1 

ANI etc 81 etc 1 Cl 

etc 

Coefficients of X, Y and N equations 

defined in Appendix 3 
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SUBROUTINE DIMEN<RO,AL, XP.YP,ANP,UVEL,XOLD,UA, 
&XDELT,XN,XU,XUDOT,XUU,XUUU,XU~,XRDOT,X0A, XVA,XVV,XRR,XDD 

I XNN. 
&YDELT,YNN,YU,YUDOT.YV,YVDOT,YR,YRDOT,YUA,YVA,YVVV,YRVV,Y 

DDD, YDVV, 
ScANDEL T, ANNN, ANU, ANUDOT, ANV1 ANVDOT, ANR •. ANRDOT, ANUA, ANVA, A 

NVVV, 

c 
c 

&ANRVV,ANDDD,ANDVV> 
DIMENSION XP<14>,YP<14>.ANP<14>,XOLD<B> 

C X DIMENSIONALISED HYDRODYNAMIC DERIVATIVES 
C FOR NON-LINEAR MODEL 
c 

c 

c 

R02=0. 5*RO 
RA2=0. 5*1. 28 

XDELT=XP<l>*R02*AL**2*UVEL**2 
XN=<XP<2>•R02*AL**3*7. 752·>1<2. *3. 14159> 
XU=XP<3> 
XUDOT=XP(4)*R02*AL**3 
XUU=XP(5) 
XUUU=XP<6> 
XUN=XP<7> 
XRDOT=O.O 
XUA=XP<9>*RA2*AL**2*UA 
XVA=O.O 
XVV=XP<11>*R02*AL**2 
XRR=XP<12)*R02*AL**4 
XDD=XP ( 13·) *R02*AL**2*UVEL**2 
XNN=XP<14> 

C V DIMENSIONALISED HYDRODYNAMIC DERIVATIVES 
C FOR NON-LINEAR MODEL 
c 

) 

c 

YDELT=YP<1>*R02*AL**2*UCOR2 
YNN=YP<2> 
YU=O.O 
YUDOT=O.O 
YV=VP(5)*RD2*AL**2*UVEL 
YVDOT=VP<6>*R02*AL**3 
YR=YP<7>*R02*AL**3*UVEL 
YRDOT=VP<B>*R02*AL**4 
YUA=O.O 
YVA=YP<10>•RA2*AL**2*UA 
VVVV=<VP<11)*R02*AL**2)/UVEL 
YRVV=<VP<12>*R02*AL**3)/UVEL 
YDDD=VP<13>*RD2*AL**2*UCOR2 
YDVV=YP ( 14) itR02*AL *·*2 

C N DIMENSIONALISED HYDRODYNAMIC DERIVATIVES 
C FOR NON-LINEAR MODEL 
c 
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c 

ANNN=ANPC2l 
ANU=O.O 
AN~DOT=O.O 

ANV=ANP'( 5 l *RD2*AL **3*UVEL 
ANVDOT=ANPC6l*RD2*AL**4 
ANR=ANP·< 7 > *RD2*AL **4*UVEL 
ANRDOT=ANP ( 8 > *RD2*AL *·*5 
ANUA=ANPC9l*RA2*AL**3 
ANVA=ANPC10l*RA2*AL**3*UA 
ANVVV= < ANP < 11 > *RD2*AL **3·> /UVEL 
AI\IRVV=CANP<12>*RD2*AL**4l/UVEL 
ANDDD= ANPC13l*RD2*AL**3*UCDR2 
ANDVV=ANPC14l*RD2*AL**3 

RETURN 
END 
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c 

c 
c 

SUBROUTTlNE CALXBC CAM. ZI. XOLD, UVEL, WU, UDl. UD2, K, WUM, 
1XN, XU. XUDOT •. XUU, XUUU, XUN,XUA,XVA, XVV, XRR.XDD,XNN, 
2YDEL T, YNN, YV, YVDOT, YR. YRDOT, YU~u YVA, YVVV, YRVV, YDDD, YDVV, 
3ANDELT, ANNN, ANV, ANVDOTf, ANR, ANRD.OT, ANUA, ANVA, ANVVV, ANRVV, 
4ANDDD.ANDVV,X1, X2.X4,X6,XB,XU3,XU5, 
5Bl.B2,B4,B6,BB,BU4,BU6, 
6Cl,C2,C4,C6.CB,CU4,CU6) 

REAL*4 XOLD<Bl,WUC4J,WUMC4) 

C X COEFFICIENTS 
c 

c 

c 

XUDOTM=AI'I-XUDOT 

X1=<XDD*XDLD<1ll/XUDOTM 
X2i::: < < XUN*UVEU + < XNN*XOLD < 2 > l l /XUDOTM 
X4=<XU+XUU*XOLD<4l+XUUU*XOLD<4>**2l1XUDOTM 
X6=<XVV*XDLD<6l+AM*XDLD<Bll/XUDOTM 
XB= ( XRR*XDLD-< 8 > ) /XUDOTI'I 
XU3=<XU+XUU*WU<ll+XUUU*WU<1>**2l/XUDOTI'I 
XU5=XUA/XUDOTM 

C Y COEFFICIENTS 
c 

c 

c 

YVDOTM=AI'I-YVDOT 

Y1=<YDELT+YDDD*XOLD<1 l**2l /YVDOTI'I 
Y2=<YNN*XOLD<2ll/YVDOTM 
Y4=<-AI'I*XOLD<Bll/YVDOTI'I 
Y6=< YV+YRVV*XDLD<B·> *XOLD<6) +YWV*XOLD< 6 l **2+YDVV*XOLD< 1) 

1 *XOLD<6ll/YVDOTI'I 
VB=YR/YVDOTM 
YBB=YRDOT/YVDOTM 
YU4=<YV+YRVV*XOLDlBl*WU<2l+YVVV*WUC2l**2+YDVV*XDLD<U* 

* WU<2ll/YVDOTM 
YU6=YVA/YVDOTM 

C N COEFFICIENTS 
c 

c 

c 

ANRDOI=ZI-ANRDOT 

AN1=<ANDELT+ANDDD*XOLDC1l**2l/ANRDOI 
AN2=<ANNN•XOLD<2>>1ANRDOI 
AN4=0.0 
AN6=CANV+ANRVV*XOLD<B>*XDLD<6l+ANVVV*XOLDC6l**2+ANDVV 

* *XOLD< U 
1 *XOLDC6ll/ANRDOI 

AN66=ANVDOT/ANRDOI 
ANB=ANR/ANRDOI 
ANU4=CANV+ANRVV*XDLD<B>*WU(2)+ANVVV*WU<2>**2+ANDVV 

* *XOLD<l> 
&*WU(2) l/ANRDOI 

C * EDA'S TERM 
c 
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ANU6=<ANVA+ANUA*WUC3ll/ANRDOI 
c 
C * DISTURBANCE CONTRO~ TERMS 
c 

c 

c 

TC=<XU3*XUDOTMl*WUM<1> 
TA=~<xUA*WUMC3ll 
TP=<XUN*UVELl+CXNN*XOLD<2ll 
UD2=<TC+TAl/TP 

ANC=-<ANU4*ANRDOil*WUM<2> 
ANA=-<ANVA+ANUA*WUM<3ll*WUMC4l 
ANR=CANDE~T+ANDDD*XOLDC1l**2l 

UDl=CANC+ANAl/ANR 

C B COEFFICIENTS 
c 

c 

c 

BDEN=1.0-YBB*AN66 

B1=CY1+YBB*AN1l/BDEN 
B2=CY2+YBB*AN2l/BDEN 
B4=<Y4l/BDEN 
Bb=CYb+YBB*ANbl/BDEN 
BB=<YB+YBB*ANBl/BDEN 
BU4=<YU4+VBB*ANU4l/BDEN 
BUb=CYUb+YBB*ANUbl/BDEN 

C C COEFFICIENTS 
c 

c 

c 

CDEN=1.0-ANbb*Y88 

Cl=CAN1+ANbb*Y1l/CDEN 
C2=CAN2+AN66*Y2l/CDEN 
C4=<AN66*Y4l/CDEN 
C6=<AN6+AN66*Y6l/CDEN 
CB=<ANB+AN66*Y8l/CDEN 
CU4=CANU4+AN66*YU4l/CDEN 
CU6=CANU6+AN66*YU6l/CDEN 

RETURN 
END 
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c 

c 

SUBROI:J;riNE FMAT<TAUR, :Y:AUN, X!, X2, X4, X6, X8, XOLD, 
(Bt,B2,B4,B6,B8,Cl,C2,C4,C6,C8,F,N,NN~ 

REAL*4 F<N,N>,XOLD<B> 
CALL MATZER·(F, N, N, NN> 
F<.l, 1 >=<-1. O>ITAUR 
F(2, 2>=< -1. 0 > /TAUN 
F(3, 4>=1. 0 
F<4, l>=Xl 
F(4,2>=X2 
F<4,4)=X4 
FC4,.6>=X6 
F<4.8>=X8 
F(5, 6>=1. 0 
F(6, 1 >=B1 
F(6,2>=B2 
F(6,4)=B4 
F<6,,6)=B6 
F<6.B>=B8 
F(7,8)=1. 0 
F<S, 1 >=Cl 
F<B,2>=C2 
F<S,.4)=C4 
F(8,6)=C6 
F(S,S>=CB 

RETURN 
END 
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c 

c 

SUBROUTINE GMAT<TAUR,TAUN,XU3.XU5, 
1BU4, BU6, CU4, CU6, G, N> NG, NN·> 

REAL*4 G<·N, NG> 
CALL MATZER(G,N,NG,NN> 
G< 1, 1 >=1. 0/TAUR 
G<2, 2>=1. 0/TAUN 
G(4,3>=XU3 
G(4,5>=XU5 
G(6,4>=BU4 
G(6,6>=BU6 
G<B,4>=CU4 
G(8,6>=CU6 

RETURN 
END 
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A 7.3 Sub rout i'ne TRNMAC 

A description of the method used to obtain the discrete transition 

matrices was given in Chapter 3 1 section 3.2; equations \3.15) and 

<3. 16) describe the computations which take p1ace whenever thi,s 

subrout~ne is called. 

Variables called and not already defined are:-

POWER 

ST(l 1 Jl 

FPOWR 

!NHGA (J 1 Kl 

BUD <8 1 6) 

Number of terms of the series approximation given b~ 

equations (3.15) an'd (3.16) 

FT in equations (3.15) and (3.16) 

<L-1) 1 (L-2) 1 etc in equations (3.15) and (3.16) 

FT I (L-1) 1 FT I <L-2) etc in equations (3.15) and (3.16) 

Discrete time transform of 8(8 1 61, This is then 

split into 8(8 1 2) and C(8 1 ~) 
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SUBROUTINE TRNMACCF.G.A,B,C,N,NG,NB,TSAMP,NN> 
.c 
C EVALUAiTES DISCRETE Sl':ATE TRANSITION MATRIX A<T> . . 

C AND DISCRETE FORCING MATRICES BCT> AND CCTJ 
c 

.REAI.:.*4 ST<B, 8), FCB> Bh ACB, 8)., INTEGACB, 8> 
REAL*4 BUDC8.6),GC8.6>,BC8,2),C·(8,4) 
REAL INTEGA 
IN:Y:EGER POWER 
NORMFT=O.O 
DO 1 I=l,.N 
DO 1 .J=l,N 
STCI,.J>=FCI,.J>*TSAMP 

1 A< I, .J)=STC I, .J) 
POWER=50 
DO 7 I=2,POWER 
FPOWR=POWER-I+2 
DO 5 .J=l,N 
D03K=1,N . 

3 INTEGAC.J,.K)=AC.J, K)/FPOWR 
5 INTEGAC.J,.J>=INTEGAC.J,.J)+1.0 

CALL MATMULCA,ST, INTEGA,N,N,N,NN> 
7 CONTINUE 

DO 9 .J=l,N 
AC.J,.J>=AC.J,.J)+l.O 
DO 9 K=1,N 

9 INTEGA<.J,K>=TSAMP*INTEGAC.J.K) 
CALL MATMULCBUD,INTEGA,G,N,N,NG,NN> 

c 
C *SPLIT BUDC8,6> INTO 8(8,2> AND C<B,4> 
c 

c 
c 

DO 10 I=1,N 
DO 10 .J=1,NB 

10 B<I,.J>=BUD<I,.J> 
DO 20 I=1,N 
DO 20 .J=3,NG 
K=.J-2 

20 CCI,K>=BUDCI,.J> 

RETURN 
END 
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A 7.4 Subroutine OPTFIL 

This subroutine performs two main functions. It models the ideal 

system, that is one with no disturbances or measurement noise, and 

calls subroutine KBFLTR from which the Kalman filter gains are 

obtained. The output is then the best estimate of the state vector 

which is used as input to the optimal controller. Figure A 7.2 gives a 

flowchart for this subroutine. The variables used and not already 

defined are as listed below:-

AA<B,Bl 1 88(8 1 21 

XHAT (8) I XHATI (8) I XHAT2 (8) 

A8CED 

. CED 

Z I 

ZDIFF 

AK<B,Bl 

Transition matrices used in filter 

equations 

Previous, predicted and final.estimates 

of state vector 

Absolute value of course error in degrees 

Course error in degrees 

Predicted measured state 

Measurement Residual 

Kalman filter gain matrix 
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( START ) 

CALL NAB TO CALCULAJE A, 8 MATRICES IN FI.LTER CALCULATIONS I 

CALCULATE PREDICTED STATE VECTOR XHATI 
XHATI = A•XHAT + BtW 

MULTIPLY PREDICTED STATE BY MEASUREMENJ MATRIX 
TO G·IVE PREDICTED MEASUREMENT STATE 

Z I = HtXHATI 

' 

' 
SUBfRACT PREDICTED MEASURED STATE FROM MEASURED ' 

VECTOR TO GIVE MEASUREMENT RESIDUAL 
ZDIFF = ZNEW - Zl 

I CALL SUBROUTINE KBFLTR TO CALCULATE KALMAN FILTER GAIN 

MULTIPLY ZDIFF BY FILJER GAIN MATRIX AK AND ADD RESULT 
TO PREDICTED STATE TO OBTAIN ESTIMATE XHAT2 

XHAT2 = XHATI + AKtZDIFF 

( RETURN 

Figure A 7.2 FJ.ow Chart for Subroutine OPTFIL 
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, 

, c 

SUBROUTINE OPTFIL(AA,BB,CC,BU,H,U,Z,N,NB,NC,NX,IP,IM, 
*XHAT2,XHAT,XHAT1 ,K,CERROR,V,ABCER,RADCON) 

C This Subroutine calculates the Best Estimate of the STATE VECTOR. 
C It solves the equations below & calls KBFLTR. 
C KBFLTR calculates the Steady State Kalman-Bucy Filter Gain Matrix K(k+l 
c 
C xhat(k+l/k)=A(k+l,k)*xhat{k/k)+B(k+l,k)*u(k) 
C xhat(k+l/k+l)•xhat(k+l/k)+K(k+lll z(k+l)-H{k+l)*xhat(k+l)] 
c 
C XHAT=xhat{k/k) XHATl =xhat{k+l/k) · XHAT2=xhat(k+l/k+l) 
c 

c 

REAL*4 V(N,NX) 
REAL*4 AA(N,N),BB(N,NB),CC(N,NC),BU(N,NX),H(N,N),Z(N,NX) 
REAL*4 U(NB,NX),XHAT(N,NX),XHATl(N,NXL·XHAT2(N,NX) 
REAL*4 AK(8,8),KZ(8,1) 
REAL*4 AXHT(8,1) 
REAL*4 Zl(8,l),Z2(8,l),ZDIFF(8,1) 

C CALCULATE AA,BB,CC MATRICES 
c 

c 

ABCED=ABCER*RADCON 
CED=CERROR*RADCON 
UVELE=SQRT{(XHAT(4)**2)+(XHAT(6)**2)) 
IF (K.GT.l)GOTO 2 
NK=K+l 
CALL NAB(AA,BB,CC,N,NX,NG,NB,NC,NN,IFIN,NK,LOOP,T,WUM, 

*TSAMP,XHAT,UVELE,UA,F4iX,F42X,F44X,F46X,F48X,WU,UDl,UD2, 
*F61Y,F62Y,F64Y,F66Y,F68Y,F81N,F82N,F84N,F86N,F88N) 

GO TO 3 
2 IF (ABCED.LT.l.O)GOTO 3 

CALL NAB(AA,BB,CC,N,NX,NG,NB,NC,IFIN,K,LOOP,T,WUM, 
*TSAMP,XHAT,UVELE,UA,F41X,F42X,F44X,F46X,F48X,WU,UD1,UD2, 
*F61Y,F62Y,F64Y,F66Y,F68Y,F81N,F82N,F84N,F86N,F88N) 

C XHATl=A*XHAT+B*U 
c 

c 

3 IF(K.EQ.49) CALL MATSCL(AA,l .l,AA,N,N,NN) 
CALL MATMUL(AXHT,AA,XHAT,N,N,NX) 
CALL MATMUL(BBU,BB,U,N,NB,NX) 
CALL MATADD(XHATl,AXHT,BBU,N,NX) 

C Zl =H*XHATl 
c 

CALL MATMUL(Zl,H,XHATl ,N,N,NX) 
c 
C ZDIFF=ZNEW-Zl 
c 

c 

CALL MATSCL(Z2,-l.O,Zl ,N,NX) 
CALL MATADD{ZDIFF,ZNEW,Z2,N,NX) 

C CALCULATE K( k+l) using KBFLTR 
c 

CALL KBFLTR(AA,CC,H,AK,N,NC,NX,IP,IM, K,V,SDQ,SDR) 
c 
C XHAT2=XHATl+AK*ZDIFF 
c 

CALL MATMUL( KZ,AK,ZDIFF,N,N,NX) 
CALL MATADD(XHAT2,KZ ,XHATl ,N,NX) 
RETURN 
END 
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Appendix A 7.5 Subroutine KBFLTR 

This subroutine is called from OPTFIL and used to update the error 

covariance matrix together with the filter gain matrix AK. The action 

of the filter is described fully in Chapter 4 ' se.cti on 4.6. The 

software routines used in subroutine KBFLTR are due to MacKi,nnon !1972) 

and Healey et al !197Sl, 

algorithm. 

Figure A 7.3 gives the Kalman filter 

Variables used and not already defined are:-

CR !8, 8 l 

CQ! 4, 4 l 

PK !8, 8 l 

PKPI !8,8! 

Disturbance noise covariance matrix 

Measurement noise covariance matrix 

Error covariance Matrix 

Predicted Error Covariance Matrix 
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SET AL TS 1 1 TERM 1 1 PRNT 

I 
SET UP INITIAL VALUES OF DISTURBANCE COVARIANCE MATRIX N 

AND MEASUREMENT COVARIANCE M 

1 
SET UP INITIAL CONDITIONS FOR STATE X AND STATE 

ERROR COVARIANCE MATRIX p 

I 
I 

CALCULATE THE PREDICTION ERROR COVARIANCE MATRIX 
DUE TO MEASUREMENT AND DISTURBANCE NOISE 

PKP1 = A*PK*AT + CfCQfCT 

I 
CALCULATE THE KA LMAN-BUC Y FILTER GAIN ( Kl 

I' AK = · ~ KP 1*HT[H*PKP1*HT+CRJ
1 

I 
CALCULATE NEW VALUE FOR STATE ERROR COVARIANCE MATRIX P 

PK = [I- AK*H) PKP1 

HAS 
~ AIN MATRIX AK CONVERGED 

WITHIN LIMITS 
SET 

Figure A 7. 3 The Kalman Filter Algorithm 
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SUBROUTINE KBFL TR<A• c, H,,AK, N, NN, NC, NX, IP, IM, K, V, SDQ, SDRl 
C CALCULATES STEADY STATE KALMAN-BUC~ FILTER GAIN MAT 
RIX 
c 

REAL*B DHPHR < 8, 8 >, DPH < 9,,9 >, WKSPCE(64 > 
REAL*B DUN,IT<8, 8) 
REAL*4 RHPH < 8, 8 >, HPHR < 8, ,8') 
REAL *4 A <,N, N l, C < N, NC h H < N, N >, AK < N, N) 
REAL*4 PASTK<B, 8), PKCB, 8), PKP'l CB, BhCONVER <8,,8) 
REAL*4 RRfB, 8), SSJB, 8>, CT(4, 8), AT<8, 8), HTCB, Bl 
REAL*4 CCQ(8, 4), PA(B, 8), CQC<B, 8), APACB, 8),, PHCB, B>, HPH(8,,) 

REAL*4 AHAK<8,8J,AKHC8.8l,CQ(4,4l,CR<B,8l,AH(8,8l 
REAL*4 HKA<B.B>.HPPH<8.8l 
REAL*4 V<200.BJ,SDRC8l.SDQ(4l 

c 
WRITE< 1. 74> 

74 FORMAT<' KBF'l 
c 
c 
C READ IN ALTS, ITERM, IPRNT 
c 

ALTS=l. 0 
C IF<K.EQ. 1) ALTS=ALTS/100.0 

I TERM= lOO 
IPRNT=lOO 

c 
C KBFLTR REQUIRES A,C,H,CQ,CR SET ON ENTRY 
c 
C Initial Conditions f'or Covariances CQ(disturbance) 8c CR<Nois 
e) 

c 

c 

CALL MATZER<CR, IM,IM,NNl 
CR<1, 1l=SDR<1l**2 
CR<2,2l=SDR<2l**2 
,CR ( 3, 3 l =SDR < 3 > **2 
tR<4.4>=SDR<4>**2 
CR<5,5>=SDR<5>**2 
CR<6,6l=SDR<6>**2 
CR<7,7l=SDR<7l**2 
CRC8,8l=SDRCBl**2 

C STANDARD DEVIATIONS 'FOR WIND AND CURRENT 
c 
c 

c 

CALL MATPRN<CR, IM, IM,NN,BHCR 
CALL MATZER<CQ, IP, IP.NN> 
CQ(1,1l=SDQC1l**2 
CQC2,2l=SDQC2l**2 
CQ(3,3l=SDQC3l**2 
CQ(4,4l=SDQC4l**2 
CALL MATPRNCCQ, IP, IP,NN,BHCQ 

CL IS THE ITERATfON COUNTER,O-IPRINT 
c 

ICOUNT=O 
L=O 
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c 
c 
c 

FPZ=O.O 

C Read in Initial Conditions for CONVER 
c 

CALL MATIDN<CONVER,N,NN> 
c 
C Read in Initial Conditions for STATE VECTOR Covariance Matri 
X (p ( k/ k) 
c 

c 
c 

CALL MATIDN<PK, N, NN> 
IF<K. GT. 1> GO TO 299 

299 
c 

CALL MATPRN.<CR, IM, IM, NN, BHCR 
CALL MATPRN<CG, JP, IP,NN,BHCG 
CALL MATSCL<PK, 5.0.PK.N,N,NN> 
CONTINUE 
CALL MATPRN<PK,N,N,NN,BHPK 

c 
C Commence Iteration Loop 
c 

c 

300 CONTINUE 
DELS=O. 0 
IF<L-IPRNT> 320.310,320 

310 L=O 
320 CONTINUE 

C Calculate th.e Prediction Error Covariance Matrix<P<k+1/k)) 
c 
c 
C CGC=C*CG*CT CT=Transpose of C 
c 

c 

106 
cc 
c 

CALL MATMUL<CCG,C,CG,N, JP, JP,NN> 
CALL MATRNS<CT,C,N, IP.NN> 
CALL MATPRN.<CT, IP, N, NN, BHCT 
CALL MATMUL<CGC,CCG,CT,N, IP,N,NN> 
WRITE<!, 106) 
FORMAT< 1H , 'CGC CALCULATED I) 

CALL MATPRN<CGC,N,N,NN,BHCGC 

C APA=A*PK*AT 
c 

AT=Transpose of A 

CALL HATRNS<AT,A,N,N,NN> 
C CALL MATPRN<AT,I\i,N,NN,BHAT 
c 
C PKP1=P<k+1/k·> 
c 

CALL HATHUL<PA,PK,AT,N,N,N,NN) 
CALL HATMUL<APA,A,PA,N,N,N,NN> 

c CALL MATPRN<APA,N,N,NN,BHAPA 
CALL MATADD<PKPl,APA,CGC,N,N,NN> 
CALL HATPRN<PKP1,N,N,NN,BHPKP1 

c 
c Calcula.te the KALMAN-BUCY FILTER GAIN 
c 
c AK=K<k+l) PASTK=K<k> 
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c 
C HT=T~anspose of H 
c 

CALL MATRNS <HT, H. N, N, NN·> 
C CALL MATPRN<HT,N,N.NN,8HHT 
c 
C PH=PKPl*HT 
c 

CALL MATMULfPH,PKPl,HT,N,N,N,NN> 
c 
C PRINT PH MATRIX 
c 
c 
C HPH=H*PKPl*HT 
c 

CALL MATMUL<HPH,H,PH.N,N,N,NN> 
C CALL MATPRN<HPH,N,N,NN,8HHPH 
c 
C HPHR=<H*PKPl*HT>+CR 
c 

c 
c 

c 

98 
97 
107 

CALL MATADDCHPHR,HPH.CR,N. IM.NN> 
WRITE<!, 107) 

DO 98 I=1,N 
WRITE(1.97> <HPHR<I..J>,.J=l,N> 
CONTINUE 
FORMAT"C1X,8E14. 7> 
FORMAT<lH , 'HPHR CALCULATED'> 

C CHANGE TO DOUBLE PRECISION 
c 

c 

DO 10 11=1· N 
DO 20 I2=1. N 
DHPHR<Il, I2>=HPHR<I1, 12> 

20 CONTINUE 
10 CONTINUE 

IFAIL=O 
CALL FOlAAF<DHPHR,N,N,DtiNIT,N,WKSPCE,IFAIL> 

C RETURN TO SINGLE PRECISION 
c 

DO 30 Il=t,N 
DO 40 I2=1,N 
RHPH< I 1. I2>=DUN.JT( U, I2> 

40 CONTINUE 
30 CONTINUE 

C CALL MATINV<HPHR,N,N,NN> 
WRITE< 1. 108) 

108 FORMAT ( 1H I 'HPHR INVERTED,) 
IF<K.GT. 5> GO TO 93 
DO 95 I=l,N 
WRITE<1,94> <RHPH<I,.J>,J=t,N> 

95 CONTINUE 
94 FORMAT< JX, 8E14. 7) 

CALL MATMUL<HPPH,HPHR,RHPH,N,N,N,NN> 
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1.12 

113 
114 
93 

WR ITE ( 1 I 112 ) 
FORMAT ( 'HPHR*RHPH=IDN I) 

DO 113 I=l,N 
WRITEH, 114) <HPPH<I, .J), .J=t.N> 
CONTINUE 
FORMAT< !'X, BE14. 7> 
CONTINUE 
CALL MATMUL<AK,PH,RHPH,N,N,N,NN> 
WRITE ( 1. 109 > 

109 
c 

FORMAT< lH I 'AK CALCULATED') 

C Calculate P<k+1/k+1} 
c 
C AKH=AKitH 
c 

CALL MATMULCAKH,AK.H,N,N,N,NN> 
WRITE(l, 111) 

111 FORMAT<1H , 'AKH CALCULATED') 
c 
C AHAK.=AH-AKH 
c 

c 

110 

89 
88 

CALL MATIDN<AH,N,NN> 
CALL MATSCLCHKA.-1. O.AKH,N,N,NN> 
CALL MATADD<AHAK,AH,HKA,N,N,NN} 
CALL MATMUL<PK, AHAK, PKP1, N,.N, N, NN> 

WRITE< 1, 110) 
FORMAT< 1H I 'PK CALCULATED') 
DO 89 I=L N 
WRITEC1,88) (PK<I,.J>,.J=l.N> 
CONTINUE 
FORMAT< !X, 8F10. 5) 

C End 
c 

of FILTER calculations 

ICOUNT=ICOUNT+1 
L=L+l 

C TEST FOR NON-CONVERGENCE OF GAIN MATRIX K<K+l) 
DO 400 I=l,N 
TEST=PK<I, I> 
IF<TEST-FPZ> 400,400,350 

350 CONVER<I, I>=1. /SORT<TEST> 
400 CONTINUE 

CALL MATMUL<RR,CONVER,AK,N,N, IM,NN> 
DO 500 .J=l, IM 
DO 500 I=1,N 
TEST=RR(I,.J> 
IFCABS<TEST>-DELS> 500,500,450 

450 DELS=ABS<TEST> 
500 CONTINUE 

CALL MATMULCSS,CONVER,PASTK,N,N, IM,NN> 
DO 600 I=l,N 
DO 600 .J=1, IM 
TEST=RR(I.,.J)-SS<I,.J> 
IF< ABS <TEST> -AL 1'7S*DELS·> 600, 600, 620 

600 CONTINUE 
GO TO 800. 
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c 

620 lF<.ICOUNl-ITERM> 650,650.2500 
650 CONTINUE 

CALL MATEGL<PASTK,AK.N, IM.NN) 
IF<L-IPRNT> 300, 700, 300 

700 CONTI Nl:JE 
WRITE<6, 200) !COUNT 
CALL MATPRN<AK.N, IM,NN.8HAK(K) 
GO TO 300 

800 CONTINUE 

C WRITE KALMAN FILTER GAIN & SYSTEM COVARlANCE MATRICES 
c 

IF<K .. EQ. 1 l LOOP=O 
IF<K.LT.LOOP> GO TO 4 
LOOP=LOOP+20 
AL TS=AL TS*100. 
WRITE(6, 250> .AL TS, ICOUNT 
CALL MATPRN<AK.N, IM,NN,8HAK(Kl ) 
CALL MATPRN <PK, N, N, NN. 8HPK ) 

4 RETURN 
2500 CONTINUE 

WRITE<6, 280) ICOUNT 
RETURN 

200 FORMAT<///15X. 1.5. I ITERATIONS') 
250 FORMAT<I//lSX, 'K(K+l) GAIN MATRIX CONVERGED WITHIN '• E10 

. 4. 
1' PERCENT AFTER ', I 5, ' ITERATIONS'/ 
215X I I******************·*·******************************** 

********') 
280 FORMAT<I//15X, 'K<K+l> GAIN MATRIX FAILED TO CONVERGE WIT 

HIN '• 
1 IS. ' ITERATIONS' I 
215X. I**********·***************************************** 

********,) 
END 

~A61-



APPENDIX B 

MEASUREMENT AND DISTURBANCE 

NOISE MODELS 

AB.! Disturbance Noise 

In modelling wind and tide in the digita·l computer simulations it was 

assumed that the tests were carried out over a period of up to 15 

minutes during the vessel's passage into harbour. As the port chosen 

for the simulations was Plymouth the tide and wi·nd models were based 

upon in.formation for that port. From the tide tables the spring tide 

in the region of the Plymouth breakwater had a value of 1.3 knots 

(·0.669 m/sl in direction 046 degrees at 4 hours before high water on a 

specific day. These val.ues were taken as the means over the time of 

each run. It ~as then assumed th•t any turbulance was of a stochastic 

nature. 

Based upon the work of Zuidweg (19701 and Millars (19731, Burns (1984•) 

has developed a tidal model used in this work. The equatton is:-

(AB. I l 

(AB. 2 l 

For a sampling time of 5 seconds and tida•l time constant of 150 seconds. 

the following value for~ is suggsted 

-f. 
e '*' =0. 96 7 

For a sampl·e time of 6 seconds this 

with Cov (we (k,) 1 We (k,_l} = {.~'" 
changes to 0.961 

\ .lil.. 
\.I'# ll.. 

-A62-



where R. is a non-negative constant given by 

(AB. 4) 

If or. 
) 

the standard deviation of the current about its mean value, is 

taken as 0.5 m/s this gives a value of 0.01623 for R. 

Thus 

v. (•k+l) = 0.967v.(k) + w(k) (AB. 5 l 

Where w(k) has a mean value of Q,0669 m/s and a standard deviation of 

0.5 m/s, This was obtained from subroutine STANDEV with values of 

current magnitude over a 500 second period as inputs. A si i g h t 

modificati·on was obtained by usi.ng a first order filter when the 

discrete equation is re-written as 

v.(k+l) = AV'.<kl + B1•d.k l (AB. 6 l 

where 

UCURR = total ti d a 1 r at·e 

UCURS = random tidal rate 

UCURM = mean tidal rate 

ALPHA = total t Id a 1 direction 

ALPHS = random tidal direction 

ALPHM = mean U d'al direction 

UAIR = total wind speed 

UAIRS = random wind speed 

UAIRM = mean wind direction 

PH! = total wind direction 

PHIS = random wind direction 

PHI M = mean wind directLon 

The model was l.ater modified in the li·ght of experience. It was 
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reasoned that if a two- dimensional wi·nd gust had rectangular 

co-ordinates aligned wi.th the mean wind speed then the gust magnitude 

would cause the wind direction to change, in which case there would be 

a correlation between the statistical properties of magnitude and 

direction. This was established using a scaling factor which was 

formed by the ratio of the two standard deviations, that is the set of 

random numbers generated for the magnitude of the wind was sca~ed by 

the ratio of standard deviations to give their directions. A similar 

scaling was applied to the rate of the tidal stream. Based upon these 

figures the computer equtions used in subroutines WINCUR became 

UCURR<K+I.) = 0.606tUCURR<Kl + 0.394tWCURR<Kl 

ALPHS<K+Il = 0.36BtALPHS<Kl+0.632tWALPHA<Kl 

UAIRS<K+Il = 0.606tUAIRS(Kl + 0.394tWA!R(Kl 

PH!S(K+Il = 0.36BtPHIS(Kl + 0.632tWPHI (Kl 
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c 
c ********************************************** 
c 
C SUBROUTINE WINCURCWUS;N,Ml 
c 
C THIS SUBROUTINE CALLS A NAG ROUTINE 8c GENERATES DISTURBANCE 
C VARIATIONS ABOUT A MEAN VALUE. IT REQUIRES DISTURBANCE 
C STANDARD DEVIATIONS AS I-NPUT 
c 
C * WIND AND CURRENT GENERATION 
c 

REAL*B UCURR(300l,WCURRC300l,UCURSC300) 
REAL*B ALPHA<300), WALPHAC300), ALPHS'C300) 
REAL*B UAIRC300>, WMR<300), UAIRSC300l 
REAL*B PHI<300J,WPHIC300l,PHISC30.0> 
REAL*B UCURM,ALPHM,UAIRM,PHIM 
REAL*B GOSDDF 
REAL*4 WUSCN,M> 

CALL GOSCBF C 0·> 
UCURI1=0.0DO 
ALPHM=O.ODO 
UAIRI1=0.0DO 
PHIM=O.ODO 
UCURRCl>=UCURM 
ALPHAC1>=ALPH11 
UAIRC1>=UAIRM 
PHI C 1 >=PHIM 

DO 20 K=1,N 
WCURRCK>=GOSDDFCO.OD0.0.9457DO> 
WALPHA.CK>=WCURRCK>*CO. 4915DO/O. 9457DO> 
WAIRCK>=G05DDFCO.ODO, 5.6742DO> 
WPHICK>=WAIR<K>*C0.4915D0/5.6742DO> 

UCURSCK+1l=0.606DO*UCURS<K>+O. 394DO*WCURRCK> 
UCURRCK+1>=UCURSCK+1>+UCURI1 
ALPHSCK+1 >=0. 36BDO*ALPHS<K>+O. 632DO*WALPHAC·JO 
ALPHACK+l>=ALPHSCK+1)+ALPHI1 
UAIRSCK+1l=0.606DO*UAIRSCK)+0. 394DO*WAIRCK> 
UAIRCK+1>=UAIRSCK+l)+UAIRI1 
PHISCK+1>=0.368DO*PHISCK>+0.632DO*WPHICK> 
PHICK+1l=PHISCK+1>+PHIM 

WRITE (6, 101 >UCURR CK)' ALPHA <K) I UAIR CK) I PHI <K) 
WUSCK, 1l=UCURR<Kl 
WUSCK,2>=ALPHACK> 
WUSCK,3}=UAIRCK> 
WUSCK,4>=PHICK> 

20 CONTINUE 
101 FORMATC4Flo. 5> 

RETURN 
END 
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8.2 Measurement Noise 

In modelling the measurement noise the stand~rd deviations used were 

based upon those of actual sensors in use on board a typical ship. A 

random number generator ~as used to produce a set of noise values, 

based upon the standard deviations. These were in turn superimposed 

upon the true values of the state vector in accordance with the 

measurement equation 

z(k+l) = H~(k+1) + v(k+1) <AB. 11 l 

Whilst the vessel was seen to navigate successfully through this noise 

the actual val·ues would not, in practice, vary so rapidly. To improve 

the realism of the digital simulation it was then decided to introduce 

a first order filter, similar to that used for disturbance noise, so 

that the measurement noise vector at a discrete point (k+1) was related 

to the value at k i·n the following way 

v( (k+1) = Av(k·l + <1-Al N' (k) (AB. 12) 

Where N 1 (k) is the random number generated at the kth instant. The 

fi·lter did however reduce the standard deviations of the noise, as with 

the disturbance noi•se. Continuing the comparison with disturbances the 

val•ue of A in equationa 8.12 can be given by 
-"'fr<.. 

A = e_ 

where T is the sample time and T is a time constant given by 
t 

<AB. 13) 

as no information regarding the peaks of the deviati.ons from the means 
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was available, other than that they would be low frequency, it was 

deci.ded to use a value for A of 0.6. For a low frequency giving a time 

constant of 10 seconds and with the usual samre time of 5 seconds then 

A = ~ = 0.606 
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C SUBROUTINE NOISE<V.N,M! 
c 
C INSTRUMENT NOISE RANDOM· NOISE GENERATOR 
c 
C THIS SUBROUTINE CALLS A NAG ROUTINE ROUTINE Se GENERATES 
C MEASUREMENT NOISE. IT REQUIRES MEASUREMENT NOISE 
C STANDARD DEVIATIONS AS INPUT 
c 

REAL*B DEL<300!,REVC300), XOC300), USHIPC300> 
REAL*B YO ( 300 >, VSHIP C 300>, PSI C 300>, RC 300 > 
REAL*B GOSDDF 
REAUt4 VCN, M> 

* * * * * * * * * 

CALL G05CBFCO> 
DO 20 K=1,N 
DELCK>=G05DDFCO. OD0,0.002DO! 
REVCK!=G05DDFCO.OD0,0.002DO! 
XOCK!=G05DDF(O.OD0,200.000DO> 
USHIPCK!=G05DDFCO.ODO,O. 0250000! 
YOCK!=G05DDFCO.OD0,200. OOODO! 
VSHIP<K>=G05DDFCO.OD0,0.02500DO! 
PSI<K!=005DDFCO.ODO,O. 01700DO> 
RCK!=G05DDFCO.OD0.0.01700DO> 

VCK+1, 1!=0.6DO*VCK, 1!+0. 4DO*DEL<K> 
VCK+1 •. 2!=0~ 6DO*V<K, 2>+0. 4DO*REVCK> 
VCK+1,3>=0. 6DO*VCK,J>+O. 4DO*XOCK! 
VCK+1,4>=0. 6DO*VfK,4!+0. 4DO*USHIPCK! 
VCK+1, 5!=0. 6DO*V<·K, 5)+0. 4DO•YO.CK! 
VCK+1, 6!=0. 6DO*VC·K, 6)+0. 4DO*VSHIPCK! 
VCK+1,7!=0.6DO*VCK,7!+0.4DO*PSICK! 
VCK+1,8!=0. 6DO*VfK,8!+0.4DO*RCK! 

WRITEC6, 101 > VCK+1, 1 ), VCK+1, 2), VCK+1, 3), 
* VCK+1,4!,VCK+1, 5>.VCK+1,6),V(K+1,7),VCK+1,B> 

20 CONTINUE 
101 FORMATCBF10. 5! 

RETURN 
END 
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APPENDIX 9 

CONTROLLER DESIGN 

A9. 1 Proportional plus Derivative Control 

In the early simulations of Chapter 6 a simpl,e autopilot was used. 

This consisted of a proportion~! term, the actual heading of the ship, 

together with the velocity of the vessel. 

The demanded heading RIN(7 1 K'I was diHerenced with the best estimate of 

heading XHAT(7) to give the course error, CERROR, to which was applied 

the velocity feedback term. Gains used were for the proportional 

term and 30 for the velocity feedback term, giving, the followi,ng terms 

in the computer program:-

CERROR = RIN(7 1 KI - XHAT(71 

U(ll = -(CERRORI -30.0•XHAT(81 

The miinus sign on the right hand side of the control equation is to 

comply with the sign convention used, i.e., a negative rudder angle 

u(ll gives a positive yaw rate. 

A9.2 The Optimal Controller 

The tracking or servomechanism problem is one of app'lying a control u 

to drive a ship so that its states follow a desired trajectory in some 

optimal sense. The regulator is a special case of the tracking 

problem, the desired trajectory being a zero state. In its continuous 
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form the quadratic cri teri·on to be minimised i,s 

J = ~:I {( K -R,) T Q(X-R,) +. uTRu))dt ( A9. 1) 

where R, is the desired value of the state vector. Kirk (.1970) has 

shown that constrained functional minimisation yields the matrix 

Riccati equations 

together with the reverse-time differential equations set 

(A9. 3) 

The boundary conditi·on is 

.!:~_.(t,) = 0 

and the optimal control 

(A9 .4) 

Discrete minimisation produces the recursive Riccati equati·ons together 

with the difference equation 

J:!(!'i-K)T) = .!)<T,KT)_!!!N-(K+1)T) + ~<T,KTI!i((N-(K+I)T) ( A9. 5) 

having the boundary condition 

J:!(N-1) = 0 

and the optimal control at the kth instant 

The deterministic optimal controller for a ship tracking system is 

shown in Figure A9.1 
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£j_gure A9.1 Th e Optimal Controller 

The predominant function of the quadratic performance criterion, 

equation !A9. 1l, is to minim ise the difference between the de si red 

states and the actual states. A second cost term in the criterion 

limits the magnitude of the control. Without this term, the criterion 

would be impractical, giving rise to infinitely large controls. 

The relativ e weighting of the elements in the diagonal Q matrix 

determines which of the states track to the greatest accuracy. The 

matrix R, is chosen so that the control u stays within the bounds of an 
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admissab'l·e set of control values. The relative values of 0 and Rare 

changed during al.terati·ons of course, when the course control 

dominates. During the remainder of each passage the track control 

dominates. For a tracking system of this type, an optimal control can 

only be found· if the des~red state trajectory is known beforehand. 

A9.3 Controller Subroutines 

The function of the optimal controller is undertaken by subroutine 

OPTCON. Prior to harbour passage however subroutine RICAL calculates 

the Riccatti Feedback matrix and the command matrix., whilst subrou~ine 

RICATI is used to obtain a discrete sol~tion of the matrix Riccatti 

Equation, RICAL also cal'ls subroutine TRACK to genera.te the reverse 

time diacrete tracking matrices. During the passage the optimal 

controller then continually updates the control by differencing VFOR 

with the product of the feedback gain matrix and the best estimate of 

state, so producing the optimal control. 

Vari~bles used i•n these subrout~nes and not previously defined are:-

VFOR<2,500l 

5(2,8) 

RIN<8,500l 

REVIN(8,,500l 

X I 1 Y I 

RIN7 

Command Matrix 

Feedback Gain Matrix 

Desired State Matrix 

Reverse time desired states 

Way points 

Desired heading along each leg of a passage 
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c 

SUBROUTINE OPTCONCXOLD.K.S.VFOR.UD1.UD2,U,N,NB,NX.NN, 
S.TSAMP, DRUDD. MODE •. ABCER, CERROR •. XO. YO, R IN7, VI, XI. X HATS) 

C * SUBROUTINE TO COMPUTE OPTIMAL CONTROL LAW 
c 

c 
c 

REAL*4 XOLDC8l.VFORC2,500liSC2,8J,SXC2J,UC2J,DRUDDC500l 
REAL*4 XOC250J,YOC250) 
COMMON RINC8.500l.YOUTC8,250l 

C * RECALULATE XOLDC5l USING CO-ORDINATE TRANSFORMATION 
c 

c 

c 

IFCK.GT.46> GO TO 21 
YI=2590.0 
XI=O.O 
RIN7=-0. 173076 
GO TO 22 

21 IFCK.GT. 79l GO TO 23 
YI=2290.974 
XI=1710. 378 
R·IN7=0. 7135 
GO TO 22 

23 IFCK.GT. 129> GO TO 24 
YI=3124.321 
XI=2673.084 
RIN7=1. 209397 
GO TO 22 

24 YI=4928.924 
XI=3355.213 
RIN7=0.0 

22 XHATS=XOLD C 5) 
XOLDC5l=CYOCKl-Yil*COSCRIN7l-CXOCKl-XIl*SINCRIN7l 

C * UOPT=VFOR-S*X 
c 
C * CHANGE TO COURSE-KEEPING 
C * IF COURSE ERROR EXCEEDS 20 DEGREES. 
c 

c 

WRITE< I, 101JXOLDC5> 
101 FORMATC'TERROR='F10. 5) 

CERROR=R·INC7, Kl-XOLDC7l 
ABCER=ABSCCERROR> 
IFCABCER.GT.O. 349) GOTO 18 
CALL MATMULCSX.S,XOLD,NB.N,NX.NN> 
UC1l=VFORCl.Kl-SXC1)+UD1 
GO TO 19 

18 UC 1 >=-CCERROR-30. O*XOLD.CBJ l+UD1 
19 U<2>=VFORC2,Kl-SXC2l+UD2 

U2UL=1. 5*RINC2,Kl 
U2LL=O. 5*RINC2,Kl 
IF<UC2l.GT.U2ULJ UC2l=U2UL 
IFCUC2l.LT.U2LLl UC2l=U2LL 

XOLDC5l=XHAT5 
IFCMODE> 1, 1, 2 
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c 
C MAXIMUM RUDDER ANGLE= +OR- 0.6RADIANS 
c 

c 

1 JFCU<1>.LT.0.610865) GOTO 3 
U<1>=0.610865 

3 CONTINUE 
IF<U<lt.GT. -0. 610865) GOTO 5 
U< 1>=-0. 610865 

5 CONTINUE 

c MAXIMUM RATE OF CHANGE OF RUDDER IS 2. 5DEG/SEC. 
c 
c 
c 
c 
c 

c 
c 

MAXRTE IS MAXIMUM RATE 
CURRTE IS CURRENT RATE 

MAXRTE=0.0436332313 
IF<K-1>12,12, 13 

OF CHANGE 
OF CHANGE 

12 CURRTE=UC1>1TSAMP 
IF<CURRTE.LT.0.0436> GOTO 14 
U<1>=0. 0436*TSAMP 

14 CONTINUE 
IFCCURRTE.GT. -0. 0436) GOTO 66 
U<1>=-0.0436*TSAMP 
GO TO 66 

OF 
OF 

13 CURRTE=<U<l>-DRUDD<K-1))/TSAMP 
IFCCURRTE .. LT. 0. 0436> GOTO 44 
UC 1 >=DRUDDCK-1>+<0. 0436*TSAMP) 

44 CONTINUE 
JFCCURRTE.GT. -0.0436) GOTO 66 
UC 1 >=DRUDD <·K-1 >-CO. 0436*TSAMP) 

66 CONTINUE 

2 RETURN 
END 
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c 

SUBROUTINE RICAL(F, G. GU, AA, BB, Q,•R, S, W1 
.&cXD1 VD1 VFOR1 TSAMP1•N1 NB, NM1rNN1 IFIN> 

C * SUBROUTINE CALCULA;J;ES THE RICCATI FEEDBACK MATRIX 
C * AND COMMAND MATRIX 
c 

c 

REAL*4 AA.<·B~B>.BB<·B~2>~G.<B~S>~R(212>1W(818)1WP1(8,8> 
REAL*4 S<2~ 8),F(8, 8), Q(8, 6>·1 GUC81 2>~ DC81 8), E(8, 8> 
REAL*4 REVINC81 500·), GTC21 8h RGTC21 B> 
REAL*4 RGTM<2~8>.UREV<8>.DM<B, 1l.EU(8, 1> 
REAL*4 OLDM<B>,VREVC2>~VFOR<2~500),C(8,4) 
REAL*4 XD<500)~VDC500> 

COMMON RlNC8~500>~VOUT<8~250> 

C * PUT W MATRIX TO TERMINALCNULL>VALUE 
DD 1'5 J=l~N 
DO 1•5 I=1, N 

15 W<I~J>=O.O 
c 

DO 10 11=11 IFIN 
CALL RICATICAA~BB,Q~R~s.W~WPl~TSAMPININB~NN> 

c 
C * UPDATE W MATRIX 
c 

DD 20 J=1~N 
DO 20 I=1~N 

20 w ( I I ,J) =WP 1 ( I. ,J) 

10 CONTINUE 
s ( 1 I 3 ) =-S ( 1 I 3 ) 
s ( 1 I 5 ) =-S ( 1. 5 ) 

C CALL MATPRN<S~NB,N,NN~6HS > 
C CALL MATPRNCW,N~N.NN,6HW > 

WRITE( 1 I 114) 
114 FORMAT<1H I 'OK') 

c 
C * DETERMINE GUC8X2> MATRIX FROM GC8X6> 
c 

DO 45 I=1~N 
DO 45 J=1~NB 

45 GU<I~J>=G<I~J> 
C * CALCULATE REVERSE TIME TRACKING MATRICES D AND E 

CALL TRACKCF,QU,R,Q,W,S~D~E~TSAMP~N~NBINN> 
C CALL MATPRN<D~N,N~NN~6HD > 
C CALL MATPRNCE,N,N,NN,6HE ) 
c 
C * GENERATE DESIRED STATES 
C * INITIALISE 
c 

CALL MATZER<RIN1N1 IFIN,NN> 
c 
C * RIN IS THE DESIRED STATE MATRIX: 
C RIN<l>= DELTD RIN<2>~ND 
C RIN<3>= XOD RIN<4>=UD 
C RIN<5>= VOD RIN<6>=VD 
C RIN<7>=PSlD RIN<8>=RD 
c 
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c 

RIN(2,1>=6.439 
RIN(3, 1)=0.0 
RIN<4, 1>=7. 717 
RIN<5, 1>=0.0 
RIN(7, 1)=-0. 173076 
XD( 1.>=0. 0 
YD<1>=2590.0 

C * S;"J:AGE ONE 

c 

DO 30 1=2,46 
RIN<2, 1>=6. 439 
RIN<4,I>=7.717 
RIN<3, I>=RIN<3, I-1>+RINC4, I>*~SAMP 

30 RIN<7, 1>=-0. 173076 

C * STAGE TWO 

c 

DO 32 1=47,79 
RIN<2, I>=6.439 
RIN<4, I·>=7. 717 
RIN<3, I>=RIN<3, I-1>+RIN<4, I>*TSAMP 

32 RIN(7, I>=0.7135 

C * S~AGE THREE 

c 

DO 34 1=80, 129 
RIN(2, I>=6. 439 
RIN<4, I>=7. 717 
RIN(3, I>=RINC3, I-U+RINC4, I>*TSAMP 

34 RIN<7, I>=1.209397 

C * STAGE FOUR 
DO 36 1=130, IFIN 
RIN<2, 1>=6.439 
RIN(4, 1>=7.717 
RIN(3, H=RIN<3, I-1 >+RIN(4, I >*TSAMP 

36 RIN<7, 1>=0.0 
DO 39 I=2, IF'IN 
XD<I>=XD<I-1>+RINC4, I>*TSAMP*COS<RIN(7, I>> 

39 YD<I>=VD<I-1>+RINC4, I>*TSAMP*SIN<RIN(7, I>> 
DO 41 .J=38, 46 
RIN<7 •. .J>=O. 7135 

41 CONTINUE 
DO 42 ..1=70,79 
RIN<7,.J>=1.209397 

42 CONTINUE 
DO 43 ..1= 116, 129 
RIN<7, .J·>=O. 0 

43 CONTINUE 
C WRITE<6,107) 
C 107 FORMAT<1H , 'DESIRED S~ATE MATRIX RIN'> 
C DO 37 .J=l,JFIN 
C WRITE(6, 108)..1, <RIN< I, .J·), 1=1, N> 
C 37 CONTINUE 
C 108 FORMAT< J5, lX• 8E14. 7 > 
c 
C * REVERSE TIME DESIRED STATES 

DO 40 -.1=1, IFIN 
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c 

NBACK=IFIN-<.J-1) 
DD 40 I=1,N 

40 REVIN< I, .J)=RIN< I. NBACK> 
WRITE< 6, 1'09 > 

c 109 
c 

FORMAT< 1H , 'REVERSE TIME DES I RED STATES REV IN ' > 
DO 38 -J=l,IFIN 

c 
c 38 
c 

WR nE <6. roe hi• <REV IN< I. J >. I=l. N > 
CONTINUE 

c 
c 

* REVERSE-TIME TRACKING USING THE DISCRETE EQUATION: 

c * 
M<K+1l=D<T>*MfK>+E(T)*UREVCK> 

INITIALISE AT TERMINAL TIME 
CALL MATRED<OLDM,N,NM,NN> 

c 
c 

CALL MATPRN<OLDM.N,NM.NN,6HMOLD 

C * CALCULATE -R**-l*G' 

c 

c 

c 

ONEM=-1.0 
CALL MATINV<R, NB, NB) 

CALL MATRNSCGT,GU,N,NB.NN) 
CALL MATMUL<RGT,R,GT,NB,NB,N,NN> 
CALL MATSCL<RGTM.ONEM.RGT,NB,N,NN> 

DO 60 K=l, IFIN 
DD 70 I=l.N 

70 UREVCI>=REVIN<I.K> 
CALL MATMULCDM,D,OLDM,N,N,NM,NN) 
CALL MATMUL(·EU, E, UREV, N, N, NM, NN> 
CALL MATADD<DLDM.DM,EU,N,NM.NN> 
CALL MATMULCVREV,RGTM,OLDM,NB,N,NM,NN> 
NFOR=IFIN-<K-1> 
DD 80 I=1,NB 

80 VFORCI,NFOR·>=VREV<I> 
60 CONTINUE 

C * RECALCULATE VFOR 
c 

DO 65 K=1,IFIN 
VFOR<1.K>=O.O 
VFORC2,K>=O.O 
DO 64 I=1,N 
VFORC1.K>=VFORC1,K>+S<1, I>*RINCI,K> 

64 VFORC2,K>=VFORC2,K>+SC2, I>*RINCI,K> 
65 VFOR(2,K>=VFORC2,K>+6.439 

c 
T=O.O 

C WRITEC6, 103> 
C DD 95 I=1• IFIN 
C WRITE<6, 104>T, VFOR< 1, I), VFOR<2• I.) 
C 95 T=T+TSAMP 
C 103 FORMAT<1H .3X'TIME<Sl',6X, 'RUDDER COMMAND',6X, 'ENGINE C 
OMMAND' > 
C 104 FORMAT<1H .3.<6X,E14. 7>> 
c 

RETURN 
END 
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SUBROUTINE RICATI <A. B. Q, R. s. W, WP!. TSAMP; N, NB.NN> 
c 
C *****DISCRETE SOLUTION OF THE MATRIX RICCATI EQUATION***** 
c 

c 
c 
c 
c 
c 
c 
c 
c 

REAL*4 PA<8,8),.8S(8,8>,BSM<B,8>,V<8,8~.VT<B,8>,VTW<B,B> 
REAL*4 VTWVC8.8),8(8,2),BTC2.8l,BTWC2,8),W(8,8),WP1(8,a> 
REAL*4 BTWBC2, 2>, R!2, 2), TR<2, 2>, TRB~WBC2, 2> 
REAL*4 A!B,S>,BTWA<2,8~.S<2,81,ST<B,2> 
REAL*4 STTC8.2>.STTRCB.2>.STTRSC8.8),Q(8,8>,QT(8,8> 

S=(T*R+B'*W*B>**-l*B'*W*A 
WHERE T IS A SCALAR,R A 2X2 

B A 8X2 
W A BXB 
A A BXB 
S A 2X8 

DIAGONAL MATRIX 
MATRIX 
SQUARE MATRIX 
SQUARE MATRIX 
MATRIX 

C * TRANSPOSE OF B MATRIX 
CALL MATRNS<BT,B,N,NB.NN> 

c 
C * PRODUCT OF B' AND W 

CALL MATMUL<BTW,BT,W.NB.N,N.NN) 
c 
C * PRODUCT OF BTW AND B 

CALL MATMUL<BTWB,BTW.B,NB.N.NB,NN> 
c 
C * PRODUCT OF SCALAR TSAMP AND MATRIX R 

CALL MATSCL<TR.TSAMP,R,NB.NB,NN> 
c 
C * ADD MATRICES TR AND BTWB 

CALL MATADD<TRBTWB,TR,BTWB.NB,NB,NN> 
c 
C * INVERT MATRIX TRBTWB 

CALL I"'ATINV<TRBTWB,NB.NB> 
c 
C * PRODUCT OF BTW AND A 

CALL MATMUL<BTWA.BTW,A,NB.N,N,NN> 
c 
C * COMPUTE S MATRIX 

c 
c 
c 
c 
c 

CALL MATMUL<S, TRBTWB, BTWA. NB, NB, N,.NN> 

WP1= ( T*Q+S '*T*R*S) + < A-B*S > '*W*<A-B*S) 
WHERE Q IS A BXB DIAGONAL MATRIX 
W,S,T,R,A AND B DEFINED EARLIER 

C * TRANSPOSE OF S MATRIX 
CALL I"'ATRNS!ST,S,NB.N.NN> 

c 
C * PRODUCT OF S' AND SCALAR TSAMP. 

CALL MATSCL<STT,TSAMP.ST,N.NB,NN> 
c 
C * PRODUCT OF STT AND R 

CALL I"'ATMUL<STTR,STT.R,N,NB,NB.NN> 
C * PRODUCT OF STTR AND S 

CALL MATMULCSTTRS.STTR,s,N,NB,N,NN> 
c 
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C * PRODUCT OF G AND. SCALAR ~SAMP 
CALL MA~SCLCGT,TSAMP,Q,N,N,NN) 

c 
C * ADD GT AND STTRS 

CALL MATADDCPA,QT,STTRS.N.N.NN) 
c 

ONEM=-1. 0 
c 
C * PRODUCT OF B AND S 

c 

CALL MATMULCBS.B,S,N,NB.N,NN1 
CALL MATSCLCBSM.ONEM,BS,N,N.NN> 
CALL MATADDCV,A,BSM,N,N,NN> 

C * TRANSPOSE OF V 
CALL MATRNSCVT,V,N,N,NN> 

c 
C * PRODUCT OF VT AND W AND V 

c 

CALL MATMULCVTW.VT.W,N,N,N,NN> 
CALL MATMULCVTWV.VTW,V,N,N,N,NN> 

C * NEW VALUE FOR W HATRIX=WPl 

c 
CALL MATADD<WPL PA, VTWV, N, N, NN> 

RETURN 
END 
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SUBROUTINE :t:RACINF, GU, R,.Q, W, S, D, E, TSAMP, N. NB,.NN> 
c 
C * THE SIJBROUTINE GENERATES THE REVERSE TIME DlSCREliE 
C + TRACKING MATRICES D AND E B'i' SOLVING THE EQUATION: 
C MDOT=FF+M+GG+RIN 
C WHERE, FF=<F-G+R++-1+G'+Wl' 
C GG=-0 
C R++-l+G'+W=S 
c 

c 

c 

REAL+4 F<·S, 8), GU(8, 2), R<2, 2>, 0(8, 8), W(8, 8)., S(2, 8) 
REAL+4 D<8, 8); E<8, 8), GM<S, 2>, GMS<S, 8), FGMS<8, 8') 
REAL+4 FF<8,8l,GG(8,Bl 

ONEI'I=-1.0 
CALL MATSCL(GM,ONEM,GU,N,NB,NN> 

C + PRODUCT OF ~G AND S 
CALL MATMUL<GMS,QM,S,N,NB.N,NN> 

c 
C * ADD F AND GMS 

CALL MATADD<FGMS,F,GMS,N,N,NN> 
. c 

C * FF IS TRANSPOSE OF FGMS 
CALL MATRNS<FF,FGMS,N,N,NN> 

c 
C * GQ IS -0 

CALL MATSCL<GG,ONEM,Q,.N,N~eNNl 
c 
C + USE REVMAT<REVERSE TRNMAT> TO FIND DISCRETE MATRI.CES D AND 

E 

c 
CALL REVMAT<FF, GG, D, E. N, N, TSAMP,_NN> 

RETURN 
END 
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SUBROU:TINE REVMAT<F,Q,A,B,N,NG,TSAMP,NN> 
c 
C EVALUATES DISCRETE STATE TRANSITION MATRIX A<T> 
C AND DISCRE~E FORCING ~ATRij B<T.) 
c 

c 

REAL*4 ST < e, e•>, F C e, e'>, A< e,.e >, INTEGAJe, e), B ce, e), G < e, e) 
REAL INTEGA 
INTEGER POWER 
NORMFT=O.O 
DO 1 1=1, N 
DO 1 .J'=l. N 
ST <I, .J) =F (I. .J) *TSAMP 

1 A< I, .1·> =ST < I. .J > 
POWER=50 
DO 7 I=2,POWER 
FPOWR=POWER-1+2 
DO 5 .J=l,N 
DO 3 K=l. N 

3 INTEGA<.J,K>=A(.J,K>IFPOWR 
5 INTEGA<.J, .J)=INTEGA<.J, .J)+1. 0 

CALL MATMULCA,ST, INTEGA,N,N,N,NN) 
7 CONTINUE 

DO 9 .J=l,N 
A<.J,.J>=A(.J,.J)+1.0 
DO 9 K=1,N 

9 INTEGA<.J,K>=TSAMP*INTEGAC.J,K) 
CALL MATMULC'B, INTEGA,G,N,N,NG,NN> 

RETURN 
END 
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A•P P E N D I X 1 0 

COMPUTER DETAILS 

A I 0. I Prime Mainframe Comguter 

Plymouth Polytechnic runs a dual-processor Prime computer system !Prime 

9950/850i with a total of 16 million bytes of memory, five 300 

million-byte di·SC drives and two 600 million-byte disc drives. Both 

processors have a line printer and magnetic tape facilities. The 

processors communicate with each other via a PRIMENET network, allowing 

resources to be shared between the processors, which run under control 

of th~ Prime operating system, PR·IMOS. Access to the system is 

currently by means of up to 164 terminal lines, and batch queues which 

allow jobs to be run independently of terminals. Networked connections 

to other computer systems will provide afcess to an increasing range of 

other computing services. 

The main c~mponents of the system are:-

Processor A 

Processor 8 

Ltne Printers 

Graph Plotter 

Prime 9950 with ~0 MB memory lx600, 3x300 MB disc 

Prime 850 with 6 MB memory lx600, 2x300 MB disc file 

storage 

I at 480 lines/mi:nute, 2 at 300 lines mi·nute 

CalComp 1039 plotter 

characters/second 
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Floppy disc 

Magnetic disc 

Digi.tiser 

Punch - 120 characters/second 

Two 8" industry-compatibl•e units 

Four dual-density nine-track units 

Ca!Comp digitiser with AO size di·gitising area. 

A10.2 Microcomputer 

The Texas Instruments 16 bit microcomputer used in the_physical model 

consisted of the following components:-

TM 990/10111 

TM 990/302 

MICROPROCESSOR 

SOFTWARE DEVE~OPMENT 

TM 990/201-43 MEMORY EXPANSION 

TM 990/1241 A-DID-A CONVERTER 
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APPLICATION OFiMUL;.TIVARIABLE SYSTEMS THEORY, OCTOBER 1982 

AUTOMATIC PILOTAGE OF LARGE SHIPS IN CONFINED WATERS - A MULTIVARIABLE APPROACH 

R.S. Burns, M.J. Dove,·T.H. Bouncer. 

Plymouth Polytechnic. 

INTRODUCTION 

The feasability of a guidance system for automatically controlling a large 

ship in the pilotage phase of a voyage is investigated. Identification, 

Optimal Control and Estimation Techniques are applied to a mathematical 

model of a vessel in the approaches to Plymouth. 

It is beyond question that the overaU standard of navigation at sea is very high indeed, and the 

probability of completing a voyage successfully must be very close to unity. However, (1), a brief 

summary of marine traffic accidents shows that the majority occur within congested waters, 

particularly within port limits. Congestion, coupled with the increased size and complexity of 

operation, tlas focussed attention on the control of pilotage and' berthing, for, not only must the 

safety and cost factors be considered, but also the environmental aspects of, say, the spillage of 

large quantities of crude oil at, or near, the approaches to a port. 

This paper investigates the possibili'ties of employing multivariable control theory to the problem 

of automatically piloting a large vessel in the approaches to a port. 

A discrete, time-varying non-linear model has been developed based upon eight system states, namely 

forward and· lateral pos i cion and velocity, heading, yaw-rate, rudder angle and engine speed. The 

model has two deterministic inputs - demanded rudder and engine speed plus four stochastic disturb­

ance inputs in the form of wind and current vectors. The measurements of the state vector, con­

taminated with random noise, are passed through an optimal, time-varying filter. 

The best estimate of the state variables are used by an adaptive optimal controller to compute 

those inputs (demanded rudder and engine speed) which minimise a given performance criterion. The 

dynamics of both the filter and controlier are updated frequently by a system identification 

algorithm that can be either based upon apriori knowledge of ·the hydrodynamic coefficients of the 

vessel, or by. on-line measurements of the state variables. 

Anoutline of the proposed system is given in Figure 1. 

71 



APPLICATION OF MUL TIVAAIABLE SYSTEMS THEORY. OCTOSE A 1982 

~IATHEMATICAL HODEL 

Equations of Motion 

The ship is considered to be a rigid body with three degrees of freedo~, in surge, sway and yaw. 

Ship motions in the other three degrees of freedom, roll, pitch and heave are considered small 

enough to be neglected. It is convenient to describe the motion in termS of a moving system of 

axes coincident with the mass centre of the hull as i-llustrated in Figure 2. This gives rise to 

a·n Eulerian set of equations of motion which may be written in the fOrm 

mu - mrv X 

mV ... mur y . . . . . . . . . . . . • . • . .•. • • . . . • . . . • . . . . . . . . . . . . • . . . . . . . . . . . . . . . • . . . . . . . . . • . . . . . . . . . . . ('l) 

I r N 
z 

Techniques employed in obtaining expressions for hydrodynamic forces and moments are well covered 

in the literature (2) and the usual method is to apply a Taylor series expansion. For applications 

such as course-keeping, where changes in rudder and heading angles do not usually exceed five 

degrees, a linear approximation, using only ~he first order terms in the expansion, is normally 

quite adequate. In a track-keeping situation where large changes in heading can be expected, it 

becomes necessary to include second and third order expansion terms. 

Surge Equation. The complete surge equation in dimensionalised form is 

r.nJ - mrv + u ) + X u2 + X u 3 + X v2 + X r2 + X · 2 + X un + X n 2 
c uu uuu vv rr 66c.:\ uu A nn A 

x.u + x (u 
u u 

u 
a 

••••.•.••..•• , • • • . . • • . . . . • • • • • • • . • • . • . • • . . . . ( 2) 

In the above equation a shorthand subscript and bar notation has been adopted, for instance 

X 
u 

ax 
~· 

x = I x = I [azxl 
uu uu \~ 

The dimensionalised hydrodynamic coefficients are obtained from the non-dimensional values in the 

usual manner 

X = (! p L2 U) X 1 
u u 

Sway and .Yaw Equations. The dimensionalised sway and yaw equations are 

mV + mur Y.v + Y (v + v ) + Y.t + Y r + Y n 2 + Y v 3 + Y rv 2 + Ynn'nA26A + Y n 26 3 
v v c r r nn A vvv rvv u nn666 A A 

+ Y & v2 • Y v 
6vv A va a 

( 3) 
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0 0 0 0 0 0 0 I 0 0 0 0 o 0 o 0 0 O,O,I,t,o·o,o 0,0,0 o o:o·o 0 o 0 

Steering Gear and Main Engine. These are both modelled by first order_linear differential 

equations 

6 oD 6 
A TR TR A 

o o o o o 0 o o o,o o o:o o o o o o o o o o o I I 0 0 o 0 0 0 0 0 0 0 o o o o o o o o o o o o o o o o o o o o o o o 0 0 o,o o o o,o o o o o 

nA 
1 - 1 

=- n T "A TN D N 

Where 6
0 

and n
0 

are the demanded rudder angle and demanded engine speed respectively. 

State Soace Fo~ulation 

(4) 

( 5) 

(6) 

Much attention was devoted to the choice of state variables in relationship to the tracking problem 

and the state vector was finally based on the ship body axes 

X T = ( 5 n >< u y 'J 'P r.) 
A A 

This state is affacted by the forcing vector 

Equations (5), (6), (2), (J) and (4) can be arranged in the following set 

6 - 1 6 
= TR A A 

-1 
"A 

=- n 
TN A 

X = U 

y = V 

·u = r 

1 _,._ 
TR 

1 _,._ 
TN 

50 

"n 

3 \) 
U4 C 

_,. B V 
uG a 
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The coefficients A, B, and C are aH time-varying and so, for example 

A1, therefore, is a function of the instantaneous total velocity U and rudder angle oA, 

Equation set (9) represent the time-varying state equations for the ship and are expressed by the 

state matrix vector differential equation 

X<t> (10) 

It is convenient to partition the G matrix in terms of the control forcing function 6A and nA and 

the disturbance forcing functions "c·' vc·• u
8 

and v
8 

so that 

(11) 

The corresponding discrete solution is 

X«K + l)T) a A<T, KTlX<KT) + B<T, KT)U(KT) + C<T,KT)W{KT) (12) 

MEASUREMENT AND FILTERWG 

Seoaration Principle 

This is an important feature of stochastic.optimal control theory that allows a given optimisation 

problem to be reduced into two problems whose solutions are known, namely an optimal filter in 

cascade with a deterministic optimal controller. 

The Measurement Process. The measured state Z<K + 1) is considered to contain noise V(K + 1), where 

V(K + 1) is a stationary gaussian process with convariance M. The measurement process is then 

represented by 

Z«K + l)T) = H< (K + l)T) X< (K + l)T) + V((K + l)T) (13) 

Estimation of the State Vector 

The Kalman filter used here is a recursive computational algorithm which remembers past data, 

receives future positions, and bases the estimate of the state upon a combination of past and 

present information. It should be noted however that this technique assumes the system is linear 

and the errors gaussian. As a ship constitutes a non-linear system, when parameters such as large. 

alterations of course and speed, shallow water effects, and trim are considered there must be some 

limitations to the technique. 

The filter-is characterised by containing a model of the ship and the equations are 
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X<CK + l)T) = A<T,KT)X(KT) + K«K + l)T)~((K+ l)T)- HHK + l)TlAcT,KTlX<KT>] 

The filter gain matrix K<K + l) and the two covariance matrices P<K + 1/K), P<K + 1/K + l) are 

governed by 

(14) 

K<<K + l)T) ~ P<K + 1/KlHT((K + l)T) G((K + llT)P(K + l/KlHT((K + l)T) + M<<K + l)T)]-
1 

(15) 

P<K + 1/K + l) = Q - K< (K + l)TlH< (K + l)T)J P<K + 1/K) 

In determining the value of the filter gain matrix consideration has to"be given to the control 

vectorU(KT) and its associated control matrix B<T,KT), A model of B<T,KT) is required in the 

filter and the complete fi-lter model is shown in Figure 3, leading to the overall filter equations 

as 

X<CK+l)!) = A<T,KTlXCK/K) + B<T,KT)U(KT) + K<<K + l)T) ~((K + l)T) - H<<K + l)T){A<T,KT)X(KT) 

•B<<T,KTlUCKTlTI ................................. (16) 

CONTROLLER DESIGN 

Stochastic Optimal Control 

The stochastic optimal control problem is to find a control U which causes the system 

X= g<X<tl. U<tl, ~l(tl ,tl 

to foUow an optimal trajectory X<-tl that minimises a performance criterion 

I
t! 

J = • h<X<tl. U<tl ,tldt 
to 

whi•lst being subjected to a measurement process 

z = f(X(t), V(t),t) 

Deterministic Optimal Control 

Tracking Problem with Quadratic Performance Criterion. The tracking or servomechanism problem is 

one of applying a control U to drive a ship so that its states follow a desired trajectory in some 

optimal sense. The regulator problem is a special case of the tracl:ing problem, the desired 

trajectory being a zero state. 
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Contintious Form. The qua4ratic criterion to be minimised is 

J R) + UT R u} dt o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o'o o o o o o .-, o (17) 

where R 1s the desired value of the state vector it can be shown (3) that constrained functio11al 

minimisation yields the matrix"Riccati equations 

\I (18) 

toget~er with the reverse-time differential equation set 

M 
-1 T T 

<F - G R G WJ M - Q R (19) 

The boundary condition is 

and the optimal control 

Uopt =-R-I GT <WX +M) (20) 

Di·screte Form. Discrete minimisation produces the recursive Riccati equations together with the 

difference eqUation 

M( (N-K)!) D<T,KT)f·1((N-,(K + tJTJ + [(T,KTJR(tN-(K + l)TJ ( 21) 

having the boundary condition 

M(N-1) = 0 

and the optim•l control at ,the Kth instant 

U -1 T 
(KT)opt = -S<<~HK + tJJTJX<KrJ - R G M<<N-(K + t)JTJ (22) 

The deterministic optiinal controller for a ship tracking system is shown in Figure, 4. 

IDENTIFICATION 

~ethod of Linear Least Squares 

Put J = 0,1,2,3, ... rK 
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.... 
If we differentiate with respect to j3 and· set a • we obtain the L.L.S. esc'-::.ate go-:-::: by 

aii(J(/J)l = 0 • 

A 

where 

p yr Z 
K 

-I 
[l = yry 
'K 

A recursive form of equation (23) is available, which has the form 

.... 

/3 K+! 
••••••••••••••••• 0 •.• ••.•••• ,., ••••••••• 0 •••••••••• 0 •••••• 

.... 
The pair of equations 24 and 25 enable revised estimates of the parameter matrix~ --· to :: 

(23) 

: :!4) 

25) 

A T ~ -
calculated from the prior estimate /3 K' based on a knowledge of Y and Z obtained ·by ==-'-sur~:::s 

made at the (K+l)th sampling instant. 

Cm!PUTER SU!ULATIOX 

The vessel chosen for the simulation was of the ~~riner Class. Good agreement betwe::: :ull-;"'~" 

test results and data obtained from the mathematical model was found with all standa=o =anc:~:s 

and Figure 5 shows a typical turning circle for 20 degree starboard rudder. The reco=~nde: :=•·:k 

for deep draught vessels into Plymouth Sound was selected as a suitable design speci:::::adc:: :::the 

automatic .guidance. system. This requires simultaneous control of ·the ship's· posit ice, :teacE~ ~:1d 

forward velocity and implementation of the matrix control equation (22) produces the o;:ima~ 

trajectory illustrated in Figure 6 when the desired forward speed is 7.717 m/s (15 k::::s); 

CONCLUSIONS 

Much work is still to be done before automatic guidance systems of the type describe~ :e~e =:: 

actually fitted to surface ships. Manufacturers are, however, already moving towarCs :=e 

replacement of conventional analogue auto-pilots with adaptive micrprocessor based mi~-um ~~=~~ 

course-keeping systems and the possibility exists that in the none to distant future :;. ::ew 

generation of auto-pilots with both course and track-keeping facilities will emerge. 
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NOTATION 

Matrices and Vectors 

A 
B 
c 
D 
E 
F 
G 
H 
K 
M 
M 

N 
N 

Discrete State Transition Matrix. 

Discrete Control Matrix. 

Discrete Disturbance Matrix. 

Discrete ReVerse Transition Matrix. 

Discrete Reverse Control Matrix. 

Continuous Time System Matrix. 

Continuous Time Forcing Matrix. 

~easurement Matrix. 

Kalman Gain Matrix. 

Covari~nce of Noise vector. 

Reverse Time State Vector. 

Covariance of Control Vector. 

Residual Vector. 

p 
Q 
R 
R 

s 
u 
V 
V 

N 
w 
X 
X 
y 
z 

Scalar Svmbols 

A,B,C 

m 

r 

T 

t 

State Equation Coefficients. U 

~oment of Inertia about z axis (kg m2). u 

Length of ship between perpendiculars (m). ua,uc 

Mass of ship (kg) . 

Actual and Demanded engine speeds (rad/s). v 

Total moment applied to ship (Nm) . 

Yaw hydrodynamic coefficients. 

Angular velocity of ship about z axis. 

Sampling time interval (s). 

Time(s). 

x,y,z 

X 

Covariance of State. Vector. 

State Error Weighting Matrix. 

Control Weighting Matrix. 

Desired State Vector. 

Feedback Gain Matrix. 

Control Vector. 

Command Matrix. 

Noise Vector. 

Riccati Coefficient Matrix. 

Disturbance Vector. 

State Vector. 

Best Estimate of State Vector. 

Combined State and Control Vector. 

Measured State Vector. 

Track velocity (m/s). 

Forward velocity of ship (m/s). 

Forward' components of wind and current 

velocities (m/ s). 

Lateral velocity of ship (m/s). 

Lateral components of wind and current 

velocities (m/s). 

Ship related orthogonal co-ordinates (m)·. 

Total force on ship in forward 

direction (N). 

Surge hydrodynamic coefficients. 

Time constant of main engines ( s). 

Time constant of rudder serve ( s) . X
0

,Y
0

,Z
0

Earth related orthogonal co-ordinates. 

J 

Interger counters. 

Performance Index. 

GREEK SYMBOLS .. 
/3,/3 Transpose of Augmented State Transition 

Matrix and best estimate. 
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Y Total lateral force on ship (N). 

Sway hydrodynamic coefficients. 

Actual and Demanded rudder angles (rad) . 

Density of water (kg/m3). 

Actual heading of ship (rad). 
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Figure 5 Turning Circle , 20° Starboard Rudder, 7 . 717 m/s. 
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Figure 6 Optimal Trajectory into Plymouth Sound . 
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