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A _ DIGITAlL FILTER/ESTIMATOR HFOR

THE CONTRQL 0OF ILLARGE SHIPFPS

IN CONFINED WATERS

M. J. DOVE

ABSTRACT

Reronautical and marine casualty statistics indicate that the human
being, when under stress or at times of peak load, can be a poor
co-ordinator of the information available to him, particularly when
that information is from a number of different spurczs, es 1s oftan the
tase in modern shipe. Integratien and co-ordinstion cof infsrretion end
its wuseful application in a closed loop feedbtack sysi=n czn reduce the
rrobability of accident as has already been deponstated in the case of
automatic landing systems for aircraft,

This thesis describes the developnent of a digital filter/estimator for
use in conjunction with an cptimal controller in the sutoratic guidan:ze
of large ships in the approaches to a port.

A non-linear matheratical model of a ship is develioped and validated by
tomparisan with data from an actual ship. The model is then used in
digital computer simulations of the passage Gf a twin screw c¢ar ferry
into the Port aof Plymouth. The simulations cshow that the contrel and
guidance system is5 capable of safely navigating the vessel slong trne
predetermined track through noisy measurements of pasition, course and
speed.

A reduced non-linear digital simulation model is then wused in the
design of & minimum variance filter suitable for installation in a
physical model of the car ferry, Tests with this physical model
confirm the wearlier full scale digital coaputer simulations, showing
that a minimum variance filter is capable of giving very gocd estinmates
of the measured states, even though the wamezsurement subsystems are
unable to give accurate inforonation because of noise. In the event of
a malfunction of one or more of these measurement systems it is shouwn
that the filter continues to give good estimates of all the states.,
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CHAPTER 1.

EXISTING PILOTAGE METHODS.

1.1 Introductian.,

There can be little doubt that the aoverall standards of safety at sea
are high, particularly with the traditicnal maritime nations.
Cockcroft (1981) states that of a total of 22,600 ships, over 1000 grass
registered tons, trading in 1979, 9400 were from the traditional
maritime nations. He goes on to say that during the operiod 1977-79
these countries lost 1& ships out of a total of 189 worldwide losses,
Thus the traditional maritime nations ran 41.59 per cent of the ships
and .incurred only 8.4 per sent of the laosses., This does suggest that
high .standards are not wuniversal and there may be considerable
resentment among operators of high standard ships when casualties to
sub-standard vessels result in the implementation of measures, such as
marine traffic management systems, which give rise to increased

operating costs.

Huuéver this does not alter the fact that the total number of incidents
is small compared with the number of vessels in service. Cockcroft
(1978) states that during the periocd 1972-7& for ships over 10,000 grt,
the ratio of cellisiaons to total numbers is 0.64%, whilst Fujii (1982)
gives the probability of headeon collision in the Dover Strait as

0.008%. This figure is increased to 0,3% in the Uraga Strait af Japan,









Visibility 1Is a major factor in the working of a port and whilst the
number of accidents may not increase in poar visibility this may be due
to 2 decrease in the number of vessel movements, leading to lass of
garnings for bath the port and the ship operator. The cost of an
accident will also increase as the ship'é size 1increases. Net only
will the cost due to loss of earning capacity be greater, but the cost
of repair or replacement will increase. Environmental aspects must
also be cansidered. These may include the spillage of large quantities
of <crude o0il at, or near, the approaches to a port, or an explosion on
board a ship berthed near the centre of a densely populated area. The
social costs of an accident might even exceed the cost of repair or
replacement. Stratteon and Silver (1970) report that the settlement of
three amillion pounds in the Torrey Canyon case was less than the total

expense incurred in pollution clearance alang the Cornish coastline.

Safety, cost and the environment, are the main factors which have led
to a greater degree of control over the movement of ships in confined
waters. The reasons for increased control are well documented in, for
exanmple, the Proceedings of the International Symposium on Vessel
Traffic Services (1981) and may be summarised as :-
1. The requirement to use port facilities as economically as
possible;
2. The limitations brought about by the increas:ed size.and draft
of ships when compared with channel widths and depths;

3. The limitations of weather including fog and poor visibility.

Marine Traffic Control Systems (M,T.C) are being develaped and used in

many af the World’'s ports, The development af a shipborne automatic



control system to be used in the npilotage phase of a vaoyage would
complement M.T.C. and improve its efficiency by allowing ships to be
berthed automatically in all weather conditions., GSafety factors would
be improved and hence the <costs of damage, and probably insurance,
would be reduced, whilst helping to dispel opublic unease over the
social and pollution problems resulting from a callision or grounding
in the approacheé to a port. This thesis is concerned with the design
of such a systen. In particular it concentrates on the problem of
obtaining the best possible vaiues of the measured statés to be uséd as

-

inputs to an optimal controller,

{1,2 Traditional Methods of Pilotage

In the process of bringing a vessel safely to her berth great emphasis
is placed upon the skills of the Master and pilot; these skills are the
traditional ones of seamanship and ship handling., The ship is conned
along the buoyed channel and, provided the speed 1is kept below an
acceptable limit (normally defined by the harbour authority), provided
she is kept within the buoyed channel, and provided the necessary
action is taken to avoid collision, safe pilotage and berthing will
take place. The experienced navigator does not often need to perfornm
the practice of "putting her on the chart" within the confines of the
port, as knowledge of his position relative to buoys and landmarks will
normally be sufficient. During the pilotage the experienced man relies
heavily on transits. He watches the jackstaff in the bows and
estimates the rate of swing of the vessel against the sky-line. He

knows that when 3 particular pylon and chimney stack, say, are in line



it is time to start applying helm to go round the next bend, and so on,
He is aware of the characteristics of the vessel and knows how to

allow for the direct influences of wind, sea and tide.

The safe berthing af a VLCC involves not only the last few hundred
metres of approach. In order to give sufficient time to secure all
tugs and leave a safety margin before moderate braking must commence it
is important that the berthing pilot should take aver the ship at
consideraﬁly more than a mile from the berth, and at a speed of about
four knots. The figures quoted here are for berthing a super tanker at
the Esso 0il Terminal, Fawley, Southampton, but they are typical of
the requirements of any port where an estuarial phase exists, Ideally
the pilot will then attempt 'to stop the ship abeam aof the jetty and
move her bodily alaongside, keeping her parallel to the jetty
throughaut. In opractice, however, corrections have to be made for
quite substantial swings and overshoots; and to obtain max.imum
directional control with the rudder docking 1is normally commenced
against the flow of the tide, so that on a flood tide the ship will

have tg be turned before berthing.

The ‘increasing size of tankers and bulk carriers has made the judgement
of speeds and distances for the final berthing phase progressively more
difficult. It is well known that the momentum possessed by even a very
slokly moving VLCC 1is very large. Yo reduce this momentum it is
necessary to decrease the sideways velocities, However, the human eye
cannot perceive very slow motions. Van Manen and Hoaft (1970) suggest
that the smallest yaw velpocity the eye can detect {s about | minute of

arc/second; an analysis of ship manoeuvrability experiments on



full-scale vessels shaows that they move so slawly during berthing that
a fair amount of the accompanying alterations in acceleration and
velocity are not perceptible to the man on the bridge. Thus, sone
information is not available to the pilot due to his own physialogical

limitations.

To meet the need +for much more accurate infgrmation on sideways
velocities a version of Dappler radar, known as SAMI (Speed of Approach
Measurement Indicator), has been developed by the Royal Radar
Establishment. With the aid of this sensor, which is capable of
measuring rates down to 0.015 m/s or 0.03 knats, a consistent reduction
in the wvelocity of impact has been achiaved. At Fawley far example,
the jetty fenders had been designed to absorb impacts of up to 0.1 a/s
with the ship parallel tec the jetty. Pilats naw aim to arrive at
speeds of less than 0,06 m/s, and in most cases speeds less than 0.03

m/s are achieved.

Although Dappler speed measurements are available from the jetty the
pilot still requires an overall picture, In practice he must rely upon
the ship's officers and crew for intormation from revolution indicator,
compass, log, radar, telegraph and rudder indicator, but there is still
a strain upon him and the possibility exists that too many things will
claim hig attention at one time. That there have been so few accidents
invaolving VLCC's is a tribute to the ability of the pilaots invelved,

rather than the control system employed.



1.3 The Case for Automatic Pilotage

The existing methods have evolved over a qreat jength of time, and in
the main the complicated process of pilotage and berthing is carried
out without the aid of a great deal aof sophisticated aquipment{ There
is no denying, however; that impressive improvements in berthing have
been brought about by the wuse of Doppler radar. This serves to
highlight the weaknesses of the traditional methods when applied to
large ships and when one considers that a major factor in ship and
aircraft casualties is human error (The Panel an Human Error in
Merchant Marine Safety (1974) showed that 85% of all marine collisions
were due to humaa error) it becomes apparent that shipping must be
controlled in the berthing and estuaral phases of a vayage. In the
majority of cases this control is being exercised through the auspices
of a port navigation service, which exists primarily to pass
information ta the ship. ‘In the past this iqformatinn has largely been
advice, such as the number of vessels maving in the channel, the tugs
available, or the berth allocated. More recently navigational data has
been supplied, for exadple, from a shore-based radar system, and
increasingly t6ere is & movement towards a greater degree of control
from ashore. Marine traffic control systems are showing that, although
much of the equipment is still of & provisional character, the
shore-based direction of large ships is not only feasible but
straightforward, and the port navigation services have the capacity to

fulfil tasks of this nature.

In the context of automatic pilotage a control system is defined as a

device which cantrocls the flaw of energy oar information within the



system in such a manner as to achieve optimal performance. The systenm
may be completely automatic as in the automatic steering devices found
in most modern ships or it may include the human operataor as part of
the system, as in manual steering systems. There may also be & mixture
aof the two and in this context XKoyama (1972) has predicted impraovements
to the course keeping and handling qualities of an wunstable ship by

adding subsidiary automatic control to manual steering.

A common argument against any form of autopatic navigation is that it
Wwill further reduce the individual’'s right to freedom of the seas. In
commercial terms this may be seen as a conflict between the traditicnal
role of the mariner and the organisation he serves. Fu(ther, it is
suggested that the traditional methods allow the navigator maximum
flexibity. For example, if a tug's wire parts he can resort to a
contingency pilan involving, say,; main engines and an anchaor. What |is
perhaps ignaored in these arguments is that the ship iis part of a very
complex transportation system, with the needs af organization, of

necessity, restricting the role of the mariner.

Further, while no automatic control system could claim to be as
adaptable as the human controller, pravided the degree of reliability
is approaching 100% a much more precise and consistent process would be
achieved by automatic means. In the case of system failure there would
always be the need for the navigator to "manually override“; thus the
introduction of automatic control would make the existing flexible
system the last rather than the first resort, so that the safety factor

would be impraved.



A note of caution needs to be introduced at this point however,
Non-automatic piloting calls for <considerable experience. With the
advent of shipbourne automatic systems, where does the human gain his
experience? As a relatively inexperienced npavigator will he be
satisfactory as a fall back in the event of system failure? The answer
to the second of these questions is probably no, although reports from
the 1982 Falklands Campaign suggest that the British seafarer has lost
none of His traditional skills, in spite of the autamatic control
systems and electronic aides at his disposal. The ansQer to the first
of these questions seems to be bound up with developments in ship
mangeuvring simulators. The growing interest in training mariners
under the circumstances which may <confront them on board ship, may
further be strengthened by the training of pilots for an automatic era,
and would certainly have an offshoot in improved training programmes in
which ships® officers, pilots, and the shore-based port navigation
service staff could be invalved, thus leading to improved confidence in

and reliability on the port navigation service.

Reference has already been made to the traditiconal skills of ship
handling and seamanship and to the interpretation placed by the
experienced navigator on transits, buoys, landmarks, tides and winds,
The control engineer would lock upon the pilctage from a different
angle, He wouid visualise the ship as a mﬁlti—laop feedback systenm,
considering errors in position and velocity. To minimize these oerrors
he would seek to measure rate af change of position (linear velacity),
course error and rate of change of heading (angular velocity), together

with along-track and off-track position errors, using these parameters

~{0-



toc keep the ship an a desired track. But in effect the ship‘s officer
is doing the same thing. In look{ng for position errors he has only fn
glance at buoys or other navigational marks to know whether the ship is
on track. When pasition errars are detected the helmsman is ordered to
alter course to correct this error. For his part the helmsman, ance
given a course to steer, detects errors in this course and caorrects

accordingly.

There are, of course many problems to be considered when developing a
completely new system. The cost of design and development will be
high, and production costs, initially at least, will reflect these high
development c&sts. The incremental benefits to be derived from such a
system are, it would argued, very small, since standards are already
high, and may not justify the expense. However it must be pointed out
that the fitting of advanced electronic navigation systems has led to
substantial savings in ‘time and fusel costs. The +¢itting of an
automatic pilotage system would then help to minimise delays in the
approaches to a part; probably reduce insurance costs, and the cost df
the system would be a small fraction of the cost of the ship together

with the value of her cargo.

Safety and reliability may be taken together and here one can draw upon
the experience and developments in the agro-space industry.
Reliability today 1is extremely high; taking a navigation satellite as
an .example it is designed to have a life of at least ten vyears. In
automatic landing systems fail safe devices are fitted so that the
praobability of error is considered a factor of ten better than the

probability of the aircrew making an error.

-11-



The overall performance of the system might be limited by the inputs

from the sensors, as many navigation aids have limitations when used in

confined waters. For example a marine radar may only have a bearing
error of one degree, while Decca Hi-fix may experience distortion of
the grid near metal objects and doppler radar is slightly affected by
reduced visibility, 0Off-shore these are all acc9ptabfe errors, but in
the final s;ages of pilotage the sensor errors may lead to unacceptable
system errors, unless some method of wminimising random errors is

incorparated.

No system can be completely reliable, aithough modern integrated
systems using Kalman Filter techniques are able to accept partial
failure, especially in the measurement sub-systems. Thus a fall-back
or stand-by system would have to be incorported. This might consist of
8 second or alternative cystem, but is more likely to be a manual
override. This brings one to the human aspects. Lack of experience
will be increased by the use of a reliable automatic system, but there
is also the job satisfaction of the navigator to be considered., [t is
certainly true to say that he would not get the same sense of
achievement from supervising an automatic system as he would from using

the existing methads,

None of these problems is insurmountable, but they do suggest that the
transition to an automatic system would take place over a period of
several years. Both Holder (1973} and ZIuidwegq (1970} suggest that
automation at sea is on the increase. Among the interrelated factors

which contribute to the continued development in this area they list



the difficulties in retaining qualified persconnel in sufficient
numbers, the growing need for optimal operation of ships, increasing
traffic dens?ty and ship size, and advances in technoiﬁy. This
auther (1974) has suggested that marine traffic control systems (MTC)
could be further improved by the develapment af automatic systems far
the pilotage of large ships. Any increase in contfol in congested
waters will not be developed rapidly, easily or inexpensively, but
there would appear to be no other long term alternative. The
Conference on Mathematical Aspects of Marine Traffic (1979) highlighted
same of the oproblems and suggested some methods to overcome thenm.
These include Traffic Routing Schemes, Vessel Traffic Services and the

use of improved navigation systems, both ashore and afloat.

1.4 The Present Work

The aim of this project was to design an optimal filter/estimator as
part of an automatic track and heading control system, to be wused in
large ships in the approaches to a port. In this context the port
approaches were defined as the area between the pilotage station and
the vessel’s berth, It did not include the process of herthing the
vessel. The work was part of a larger research project carried ocut by
a small team at Plymouth Polytechnic, The research was directed
_tawafds,passfble cantrol and gquidance systems which' might be used
rather than the human and environmental problems which would have to be
salved before a ship could be automatically -berthed in a manner similar

to the automatic landing of an aircraft.

The work of Kalman and Koepcke (1958), Joseph and Tou (19411, and

-13-



Gunckel and Franklin (1963) reduced a given optimal contrel probles to
two separate optimisation problems, and became known as the Separation
Principle. [Its most striking feature is that the feedback cantrol gain
matrix is independent of all statistical parameters in the problenm,
whereas the optimal +filter 1is independent of the matrices in the
perfarmance measure. Thgs provided a natural breakdown of work as
indicated in Figure 1.4, At the start of thev project the two
researchers, R.S5.Burns and ther auther of this thesis, developed
suitable mathematical wmodels for wuse in the computer simulations.
R.S.Burns (1984} then concentrated on the design of an optimal
cantrollier whilst the author’'s work was directed towards the best

estimate of the state vector using minimum variance techniques.

Chapters %ﬁ-describe the linear, guasi-linear, and non-linear

mathematical madels developed for wuse in the digital coamputer

simulations using the Polytechnic’Pride 850 digital computer. During

the period of the research a Prime 9950 was added. After a brief survey
of navigational sensors Chapter 4 describes the use of variance as an
indication of random errors. This leads to the requirement for mininum
variance filters. The design procedure for the minimum variance filter

is described in Chapters 4 and 8.

-14-






"physical” model of the car ferry. This "physical" model was fitted
with an optimal controller and estimator and tests were carried out on

a reservoir. Details and results are given in Chapters 8 and 7.

Results from the digital computer simulations and “physical® nodel
tests are discussed in Chapters 7 and 9. These show that bath the
computer and actual nmodels correctly simulate the passage of a large
ship in the approaches to a port and that the combination of an optimal
tilter and controller, together with correctly chosen sensars can be
used to automatically control the vessel so that it follows the correct

track in to, or out of harbour,

-{&6-



CHAPTER 22

THE LINEAR MATHEMATICAL MODEL.

2.1 Introductian

From. the early 1940°'s feedback contral theory was given a straong
impetus by optimization theory, as developed by Kalman and Bucy (1941},
The.appraach relied heavily wupan the matrix foramulation of ‘“state
variables" and advanced presentation aof control and estimation theory

requires an understanding of this viewpoint.

Most formulations of the control and estimation problem ‘implicitly
contain multipie inputs and outputs and are referred to as
multi-variable systems. Consideration was given here toc the problem of
obtaining such a mathematical model, or models, of the ship's mation
through the responses of this system to external stimuli. The
mathematical models used were thus required to be in state space form
if optimal control and sstimation techniques were to be emplayed and if

on-line computer cantrol was to be implemented.

The canstant +{orward speed linear model was based upon the work of
Iuidweg (1970). This chapter describes its development. -However, in
restricted waters it 1is necessary to allow for variation in forward
speed and large alterations of course. Chapter 3 goes on ta describe
how a quasielinear model, based upon non-dimensional hydrodynamic
coefficients and incoerporating the surge equation, Was developed. Fronm
this quasi-linear model emerged the full non=linear madel. The work

included formulation of the continuous state equations (tise invariant

- 17_



tor the linear model and time variant +{for the quasi- and -non-linear
madels} together with the techniques used to obtain the solutions in
discrete time. The time variant nature of the qguasi-linear and
non-linear models required computation of the discrete state transitiaon
matri» at each scampling instant. Open loop simulations were carried
out for all three models. The results obtained were  compared with

actual ship data based upon a Mariner class hull.

2.2 Co-ordinate-Systems and Sign Conventions

Within the confines of a port the heave, pitch and roll notions were
considered sufficiently small for their influence on sway, surge and
yaw to be negligible. It was then assumed that the ship’'s centre of
gravity was constrained to a horizontal plane, to be referred to as the
plane of motion and that the longitudinal and lateral axes remained in

this plane at all times.

Two right-handed co-ordinate systems were used, the first with respect
to the ship (x,,ys) the secand with respect to the sea bed (x5,ye ).
These are shown in Ffigure 2.1, and the paositive directicons are as
indicated. The origin of the ship co-ordinate system was assumed tao be
at the ship’'s centre of gravity. The axes of the earth co-ordinate
system are as 1illustrated in Figure 2.! to conform with standard
navigational practice, i.e. the %, axis corresponds to the direction of

True North. The positive directions are as given in Figure 2.1

- lB_






the lateral and anqula( movements are considered in the development of
the linear model. The linear equations are retained by assuming that
the transverse and angular velocities and accelerations of the ship are
with respect to the water, plus the effects of rudder. <This author

(1977)>.

In modelling disturbance inputs such as wind, waves, current and depth
of water it was assumed that in the approaches to a port:-
{i) Wave excitation can'be ignored; -
(i) Accelerations of current and wind are small enough
to be neglected;
(iii) The deépth of water is such that the mathematical

model is not affected.

Techniques employed in obtaining expressions for hydrodynaaic forces
are well covered in the literature, for example Lewison (1973). The
identities of Y and N can be found by linearising them as first order
approximations using Taylor's series expansion. The second and third

parts of equation (2.1) may then be re-written as:-

MY+ BUE = Yok 4 Yoy o+ YeF 4 Yer 4+ YoBa 4 Vove 4 Y v,

—

"

-
i

= Nov + Nov + Ner + Ner + NgBa + Nove + NyaVe

Rearranging the above equations and expressing thea in matrix form

gives:-









is the base from which the quasi- and non-linear models were develaped.

fg such it is included here for completeness.

- 23-



CHAFTER =

NMON=LINEAR MATHEMATICAL MODELS

3.1 The Guasi-Linear Model

The linear equations of maotion i2;2) only include the first terms of
the Taylor erxpansion. They do not therefore make allowance for
alterations of course or speed and are of limited use when considering
the movement of a ship in the approaches to a port where large heading
and speed changes must take place if the vessel is to successfully
navigate the buoyed channel. However the linear model has been
extensively used by researchers such as luidweg (1970) and Bech (1972).

It was therefore .decided to continue along these lines by assuming
that the vessel would follow a straight track during each sample time.
[+ =cample times were Lkept small it was reasoned that the linear
equations could then be extended to incorporate the .surge equation and
thus wmake allowance for variations in forward speed. Because the
forward speed appears in the state transition matrix however, this is

no longer canstant and has to be recalculated after each sample time.

To allow for forward speed and to incorporate engine revolutions the

state, control and disturbance vectors are now defined as:-
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1 = Ba u; = 8p W, = U

X2 = Ng Uz = Np Ha = Ve

Xs = H W3 = Ug
LJ

Xg = U = % WHay = VO-

g = ¥

Xa = Vv = ¥

e = \’f

The equations for surge, sway and yaw can then be written:-

mi - arv = Xl + Xulutue) + Xana  + Kpa (3.1
my £ omru = Yo¥ 4 Y {vtve) + YEP ¢ Yer + Yg8a + Yana ¢ YoV (3.2)
Ler = KoV # Noveve) + Nef + Ner + NgBa + Nana  + Nugve  (3.3)

From (3.1)
U= Xafa + Xau + Xov + Kurue + Kusu (3.4}

The notation followed here is to give a suffix according to the
position in the state vector, i.e. X, relates to Ba the first state
vector and is here given suffix 1, Xe relates to r} the eighth state

vector, and so on.

Where a double suffix appears the toefficient relates to the derivative’
aof the appropriate state. For example suffix 88 relates ta the
derivative of the weighth state. Coefficients relating to the

disturbance vector are given the suffix such as wl, w2 according to
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their position in the disturbance matrix.

From (3.2)

v o= 715,‘ + ¥Y2na + Yau + Yav + Yor + Yaar + Ywav + Ywava (3.9)
Fram (3.4)
F = NySa + Nana + Nav + Naov + Ner + Nuavet Noavg {3.6)

The dimensionalised hydrodynamic coefficients are cbtained by
multiplving the non-dimensionalised coefficients by the appropriate
combinations of forward speed, length and water density. The
apprapriate dimensionalising factor for each coefficient is given in
Appendix 4. The terms such as X, Y, and N were obtained in the process

of re-arrangement. They are defined in Appendix 2.

It is now necessary to eliminate u, v and r from the right-hand side of
each of the equations (3.4), (3.5} and (3.6), then after suitable
re-arrangement and combination with weguations (2,3) and (2.4) the
equation set 1s given by equation set (3.7). The terms K, L, M were
obtained in the process of re-arrangement and elimination. They are
defined in Appendix 2 and all the computer subroutines wused 1in the

rearrangement process are listed in ARppendix 7.

-2&-






3.2 Computation of Discrete Transitiecn Hatrices

Equation (3.7) is a set of tirst order differential equations and 1is
represented in matrix form as:-

R(t) = Fx(t) + Beu(t) + Bpwit) (3.12)
For work wusing a digital computer this equation set must be converted
to its discrete form, namely a set of difference qua?iuqugivgn by: -

. v T
fktl) = eFTx(k) + (e T-Bg u(DdT + [er " -Og witidtT + (3.13)
_— h - Qe = ' Joib

-

o (=]
ar
xlk+l} = Axlk) + Bulk) + Ewlk) (3.14)
where R = efr
T
and chT-'L,choL= (EFr'I)F_lﬁ

— - — <

T
|
EF(T—'B:G—Ddat: (_gi'r_l)F__lGD .

T
R

Far general applications the'expunéﬁtial matrix may be evaluated by a

-Cz

o
[}
N

digital computer prograam based on the fallowing arrangement of the &, B

and C matrices.

A =1 +FT + (FT12/2 + ..o, + (ETIC-1/(U-1) + (ETIEAY
= (1 + FT{L « FT/200 + FT/3(0 + ..., +
{Frroa-23{1 + (FT/d-n) a f/OI 0] (3.15)
Bo= Tl ¢ FT2[1 ¢ FT/3(L + ouvenn +

(Frra-2} {1+ Fr/a-n]a « Fr/Oh]) B ‘ (3.14)
The solutien for C is similar to that of B, with Gp in place of G..
Starting with the innermost factor the number of terms, L'y of the

series approximation must be decided beforehand. As equations {(3.15)
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and {3.18) are very similar, the computer evaluation aof both series

can be combined in a single routine.

In calculating the values of the A, B and C matrices the non-
dimensionalised hydrodynamic coefficients are first of all caonverted to
their dimenstonalised equivalents. These are then used to calculate E,
Ge and Gp in the state space equatians. Equations (3.15) and (3.16)
are then used to abtain the A, B and £ matrices which form the basis of
the mathematical wmodel of the ship. The conputer routine for
canverting from cantiauous to discrete time is attributed to Cadzaw and

‘Marten {1970},

‘3.3 The Nan-Linear Model

For the purposes of this research project it was hoped that the
quasi-linear wmodel would he sufficient. 'Indeed the result of the apen
loop test runs given in chapter S show some compatability with actual
ship data. Closer examination however shows that, particularly in a
tight turn, the quasi-linear model results did not always compare
favourably with the data available from similar tests carried cut with
an actual ship. The ship chosen for the early simulatian work was -uf
the Mariner Class since much work has been done on this hull form and
1t was possible to compare computer simulation results with full scale

data which was readily available from a very comprehensive study by

Morse and Price (1941).

Abkowitz (19464) suggests that the Taylar ewpansion of hydrodynamic



out., The equations were used to model the ship and

forces and moments should be expanded to include terms up to the third
arder whereas Strom-Tejsen (1943} has made a detailed study of the
impartant non-linear terms and recommended including rv?, v3, 6v2 and
6 terms, the first tera‘being the most important. Lewison (i973) and
Gill (1978) (1977), both included non-linear terms in the equatians,
although Thom (1980) pointed out that the type and number of the higher

order terms are still under discussian.

Taking 1into account the results of open loop tests on the quasi-linear
model together with the above references i1t was decided to include
non-linear terms in the equations. By including terms in v®, r2, 8,2
and na® in the ¥ equation, and terms in v3, rv2, Ba> and Bav® in the Y
and N equations it was found that digital computer simulations wusing
the hydrodynamic coefficients for a Mariner hull compared well with the
data given by Horse and Price (i96t). Results of the Open Loop Tests
on the non-linear model and comparisons with the Morse and Price data

are given in Chapter 3.

It was still assumed however that course and speed were constant during
each sample time, the <state transition, contral and disturbance
matrices being recalculated during this period, and then wused in the
next set of calculations, Whilst these calculations presented no
difficulty in the digital computer simulations wusing the Prime main
frame computer, they did pose problems when designing a suitable filter
for ipstallation in the physical model. These non-linear eduations
then formed the "basis for most of the computer simulation work carried
olso in
‘A the computer

simulation of the ship in the optimal filter. The equations of motian
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thern become: -

ml - omry = Xad + Xufutuc) + Xauu® + Kuwut? + Toovie Toor ¢ Tsssﬁz
+ Yununa  + Faana? + Xugu, (3.17)
MV 4+ mru = Yov + Y {veve) + Yor + Yor + Yg6€ + Y n, + vavs
- L3 - 3 vl S
t Veuu TV + YegaBp # Y  Bov + YV v {3.18)
Lar = Nov # No(vive) + Niro # Ner ¢ NgS o+ Nena + N "
- a = LI
t Ny, rv + Nass%a" Ne. BvZ + N v, (3.19)
where X, = (1/2)X,,, Y;m_= t1/76)X%,,, and similarly for other terms in
£,Y, and N.

Using the same process as that wused 1in the deyelqpment of the

quasi—-linear model the state equations become:-

Ba = (-1/Ta)8a + (1/Ta)6p (3.20)
fa = (-1/Twdna + (1/Twinp (3.21)
X = u ' (3.22)
u = X, 8a t x;nn'+ Xq + X v + Xgf + XualUo + Xustgq {3.23)
v o= (3.24)
V. = B.Ba + Byngt Bou + Bev + Bgr + Buzve + Buavg {3.25)
N = (3.26)
r = C.Ba+ Cafa * Coui + Cgv + Cof + Cuzv, + Cuavg (3.27)

The X, B, and C coefficients are summarised in Appendix 3. As wWith



gquasi-linear terms of equation set (3.7) they are derived from the
hydrodynamic coefficients of the vessel. Equations {3.20) to (3.27)

can then be expressed in matrix form as:-

8]=-1/T,0 0 0 0 0 o O7[8]+
na |0 /T, 0 0 0 0 0o olln
k[0 o0 o 1 0 0 0 0ffx

ul [X, Xy 0 Xa 0 X, 0 Xg||u

[1/Ta0 18 +70 o 0 07 u] {3,28)
0 vﬁi n ¢ 0 0 0‘ Ve

¢ 0 Xy, 0 wy O | va

0 0 0 0 0 0 lv]

00 © By © B[

0 0 ¢ 0 9 ¢

o0 [0 €y 0 Ty,

Equation set {3.28) represents the form used in computer simulations
using data to represent a Mariner hull and later a twin screw car
ferry. The hydrodynamic coefficients for the car ferry were obtained
by carrying out a series of tests on a four metre model loaned from the
National Maritime [nstitute in Feltham, London. Five models were used

in the research programme. These were the quasi-linear and non-linear



computer models hased upon data from a full scale Mariner hull, a fuli
scale non-linear model of the car ferry, a reduced non-linear computer
model of the physical car ferry model, and the physical car ferry mudel
itself, For ease of reference these have been given the names of sonme

of the ships in which the author served. They are:-

TRELEVEN: fluasi-linear full scale computer model of Mariner class
hull

VIGILANT: Non- linear $ull]l scale computer modei of Mariner class
hull

TREMAYNE Non-linear full scale computer model of twin screw car
ferry
HEATHMORE: Non-linear reduced computer model of car ferry model

CENTAUR: Physiical model of twin screw car ferry.
In the Open Loop Tests of Chapter 5 the data is compared with data from
the USS COMPASS ISLAND, a Mariner Class ship which was in service with

the United States Navy.

3.4 The Reduced Nopn-Linear Mddel

In the design of a suitable filter and controller for the physical
model (CENTAUR} it became necessary to simplify the eight state
mathematical model. This wag mainly due to the memory limitations in
the micro- computer to be used. A further restriction was the need to
recalulate the state transition, disturbance and control matrices
during each sample time. First thoughts were to consider those states

to be measured in the Centaur model, namely heading, yaw rate, forward
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and lateral accelerations. However this posed prohlems in obtaining a
suitable set of eguations to be used on the computer model in the
filter. Eventually it was decided to use forward and lateral
velocities in place of the accelerations. In practice velacities would
he ohtained by integratian. Duer to the very small time constants
involved the rudder and main engine models were ignared so that §a and

Na made up the control vector.

This led to the foilowing reduced model:-

4= [xy X 0 XJf] * [ KBal* [¥w ¥ 0[] {3.29)
v Bo By 0 Bgf|v B, 8,[nn 0 0 0 0 {lu of
+ 0 0 01| 0 0 0 0 0 0 (lve
[r] LCe Co 0 Cy|r] . Cy [0 0 Cun  Cuglvel

In the use of Kalman Filter techniques a mathematical model of the
system is required in the filter, The wmodel ~given 1rn equation set
(3.29) (HEATHMORE), was also the basis of the computer mpdel used in
the Kalman Filter in the physical model (CENTAUR), The X, B, and €

coefficients are the same as those used in equation set {3.28),

3.9 Discrete Form of the Equations.

Using equations (3.19) and(3.16)the continuous time set of first order
ditferential equations (3.20) to (3.27) are transformed in to discrete
time difference equations. These equations are sat out far ease of

reference as -

Salktl) = A, Bpik) + B, 850k) (3.30)
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Na(k+1) = Atk + By nglk) (3.31)

x{k+1) = Agmpnalk) + Ayx (k) + Ay ulk) + Bying (k) + Cypuctk) +
€ o (k) (3.32)
Ulk+1) = Aganpalk) + A qu(k) + Boong(k) + Co U k) + CaqU (k!
(3.33}
| - ylkeld = AgBptk) + A y(k) + Agvik) + Aggrikl + B8y (k)
# Cgy v k) + Cgavg (k) ' (3.34)
vik+1) = A8, k) + A vIiK) + Agr(k) + B, S, (k)
+ Cp Ve bk + L v, (k) (3.359)

WPkt = Ay 6, (k) + Ay vik) + AL B KD + Al rik) + B, 8, (ki

+ Cagve (k) + T v (k) (3.36)
rik+l) = nmcntk)+-ﬂuv(k)+-ﬂnr(k)+ Bg,By (k)

+ CgaVelk) + Lgovatk) (3.37)
Equations (3.30) to {3.37) now make up the matrix equation (3.14}.

All eight equations are used in the full scale computer simulations

discussed in Chapters 5, & and 7. O0Only equations (3.32), (3.33),
(3.34) and (3.37), in slightly amended form were used in the reduced

non-linear model of equation sets (3.29} and {B.1).
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CHAPTER 4

INTEGRATED NAVIGATION SYSTEMS

4.1 Brief Survey of Marine Electronic Navigation Systems.

The development of modern electronic navigation systems dates from the
period 1939-45. [t was to meet the exacting demands af World War LI,
writes Fennessy (1979}, that & dramatic phase of deveLopmenf took
place. This development was to form the basis of many of ‘the systems
in use today, Jones (1973), 1in a Duke of Edinburgh Lecture_tn the
Institute of Navigation, outlined a number of systems which were
developed in America, Germany and the United Kingdom, seme of which
were the forerunners of today's navigation aids. The direct
measurement of range using electro-magnetic waves depends upon accurate
measurement of the time taken for the radio signal to travel fram
transmitter to receiver. Prior to the development of frequency
standards and atomic oscillatars such measurement for a ship-share
system was impractical and hence the early systems tended to nmeasure
the difference in the time of arrival of two radio signals and thus
position fixes were related to hyperbolic position lines. The Loran
system was an early example of a hyperbolic position fixing system.
Loran A was developed in the U.S.A. and was in use during World War II.
In the United Kingdom Naval scientists developed what was to be ‘known
as the Decca Navigator; this was used by ships in D-Day landings of &

June 1944, The Decca Navigator transmits continugus waves with the
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on-board receiver measuring the phase difference between the two radio
signals. Both were in commercial wuse shortly after the end af
hastilities. Since 1945 the wuse of navigation aids has steadily
increased; whilst in the period since 1970, with the appearance of

mini-computers and micropracessors, the growth has been more
spectacular, This has been paralleled by decreasing costs due mainly

to strides in semi-conductor technoclogy.

A number of individual systems are now available to the commercial
operator, and esach has its advantages and disadvantages. The 0Omega
system, for example, provides  world — wide coverage, but 1is
insufficiently agcurate for inshore navigation. The Decca Navigator is
sufficiently accurate for coastal navigatian, but accuracy falls off
with increasing range, due mainly to skywave interference. Furthermare
each chain covers a relatively small area; hence a large number of
Decca cthains would be necessary to cover all the world's coastal areas,
whereas the Transit Satellite System is sufficiently accurate for
survey work, but the éime between satellite passes makes it unsuitable

for coastal navigation.

A typical fit in a British Merchant Ship would comprise a gyro compass
with autopilot and repeater compasses, electromagnetic, pressure and/or
Doppler log, Decca MNavigator, Loran C together with Omega and/or the
Transit Satellite Navigation System. This would give the navigator
reasonable woarld-wide coverage and sufficient accuracy. Radar and a
direction finder would also be fitted (these are legal requirements in
British ships over 1600 gruss‘registered tons), It is likely that an

Automatic Radar Plotting Aid would also be included.
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The Decca MNavigator is a hyperbolic position fixing system providing
accurate fixes for coastal navigation., The system is organised into
thains, each comprising a master and usually three slave transmitters,
providing a coverage of up to at least 240 nautical miles from the
master transmitter. There are now same 30 operational chains
throughout the world. Decca transmissions are between 70 and 130kHz.
The system is still regarded by many as the nmost accurate, widely
fitted system for inshore use but it has limited world-wide coverage

and accuracy does fall off with range.

Loran € operates at 100kHz. It is a pulsed Hyberbnlic system managed
and operated by the U.S. Coast Guard, with ground wave coverage aver
large parts of the .northern hemisphere, It is the primary civil
navigation system for the U.S. cecastal confluence zone. The system is
organised into chains and one station, the master, transmits first in a
sequence. Each slave station (there are up to four in a chain) is
synchronised with the master and transmits at a precise interval after
the master. This coding delay, which is different for each slave in
the chain, ensures that the signals from transmitters arrive everywhere

in the coverage area, in a known sequence.

Omega is a very low frequency hyperbolic system which now provides
continuous global coverage for ships and aircraft. Coverage 1is 'nat
only global but is also redundant with more than the minimum required
signals available at any locatieon. Receivers range from simple phase
comparison units to fully automatic receivers whichlread out latitude

and longitude.
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The Navy Navigation Satellite System, or Transit, was developed
initially far the U.S5. Navy., It became available to non-military users
tn 1967. Each satellite transmits at 150 and 400MHz and the shipboard
receiver measures Doppler shift to determine the relative velocity
between satellite and receiver. Use is made of hyperbalic navigatian
and transferred position line oprinciples to determine the ship’s
position so0 that only a single satellite is required for a fix. A
single frequency receiver is adequate for most marine navigational
purposes, but for highly accurate position fixing a dual frequency
receiver i1s required. Such uses include hydrographic survey, land
survey and the accurate peositioning of aff-shore platforms. For marine
coastal navigation the limitation of Transit 1is the time interval
between satellite passes, which can be several hours in some parts of

the world.

The advent of Navstar or Global Positioning System (G.P.5.) may well
make all other pesition firxing systems redundant as this satellite
based system promises %to give world wide cover with a high degree of
accuracy. The state gf develapment is described by Cook (1983} who
suggests positional errors of - less than 20 metres will be achieved.
Henderson and Strada (1980} give qetails of a small scale sea trial in
which a mean distance between the GPS solution and the navigator's plot
¢f 23.3 metres was claimed for passages in and out of San Diegoc Naval
Base in the United States. However, serious questions have been raised
in the U.S5.A. concerning GPS implementation and O0'Sullivan (1982)
states that it will be well into the 1990°s before commercial users are

allowed access.,
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There is then no single system in operation which will meet the
requirements for a world-wide coverage with the required accuracy.
Sage and Luse (1983) give the deficiencies for three systems, namely
Transit, Omega and Loran. [n the Transit satellite system for exanmple
the 1interval between fixes varies from 0.5 to 12 hours according to
geographical position, Omega has a fix accuracy of only 2 to 4
nautical miles(rms), Thus while both of these systems give worldwide
coverage they are both unsuitable for coastal navigatien or pilotags.
Other systems such as Laoran C and the Decca Navigator give good
accuracy at the centre of the chain, but the accuracy degrades with
distance ;nd time of day. These poiints serve to illustrate how the
shipowner has often teen left with a difficult choice when choosing
suitable navigation aids. To further-cumplic#te the problem the choice
has often been governed by palitical and fimancial considerations,

rather than an sound technological judgements,

S8ingie system deficiencies have led to the development of integrated
systems of which there are now several on the market. For example Sage
and Luse (1983) describe the use of a Kalman Filter to combine Omega
and Transit, or Omega and Loran C in an improvement af fix accuracy,
while Racal have recently announced a combined Decca Navigator, Loran
C, Omega and Transit receiver., Most of these systems wuse filtering
techniques to reduce measurement and disturbance errors. Before
proceeding further it is necessary therefore to define the errars to be

encountered in navigation fixes,
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4.2 Systematic Errors

The measured values of position and velocity will bhe contaminated with
noise, which may have been generated in the transmitter, receiver ar in
the propagating mediunm. The total error, made up of sysfeMaiic and
random components is then defined as the difference between the

measured and true values.

Systematic errors are constrained by some physical law and may be
expressed as a mathematical function of appropriate variables. The
simplest systematic errors are constant functiens such as improper lane
entry in the Decca Navigator, or an unccrrected error in the gyro
cnﬁpéss. More complex systematic errors, such as the propagation
errors in the Omega system, are functions of time, atmospheric

conditions and the relative positions of tramsmitter and receiver.

The correction of systematic errors is governed by knowledge of the
physical law affecting the system. They may be removed by either
applying a correction to the erroneous display, as in the gyro compass
error, or calibrating the display, as would be the case in hydrographic
survey work. For the wvast majority of navigatianal purposes the
systematic errors may be approximated and generalised for a large area
or for a long time pericd. An example of this is the fixed error
correction charts produyced for the Decca Navigator., For accurate
navigational fixing and hydrographic survey waork the systematic errars
must be applied more rigorously and re-calibration of instruments must

be undertaken at frequent intervals,
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4.3 Random Errors

Random errors arise from such causes as minute-to-minute changes in
a.tmospheric conditiong, short term phase changes in the equipment and
errars in readings, They do not obey any physical law and can anly be
defined by the laws of probability. For navigational systems it is
dssumed that the distribution of randam errors about the true value is
Gaussian. The Decca Navigateor Co. Ltd. (1976} state, for example, that
an analysis of observations at monitor stations has shown that the
randem errors -are disposed about the mean value in a very similar
manner to the Gaussian distribution. The same reference goes .on to
state that 95% of aobservations are within twice the standard deviation,
whilst the decca distribution contains 73% of observations within the
standard deviation. This means that fewer large errors appear 1in the
tails of the Decca distribution than in the Gaussian, although for

statistical warking a normal distribution is assumed.

Positioen fixing systems, hy definition, require the «crossing of at
least two position lines, A statistical treatment is then used which
indicates the area around a fix in which the mavigator can state that
he is in with some predetermined level of certainty. Standard
deviations are then used to produce an error ellipse, a diamond of
error or a circle of probable error, The error ellipse is the most
accurate, but the root mean square error criterion is now widely used

for individual system erraors.









problem can be stated in terms of minimising the variance, which has
led to the use of minimum variance or Kalman-Bucy filters. These have
been developed extensively for aerospace, and latterly marine,
navigation since the publication of the original work by Kalman and

Bucy (1%61).

During the 1950 s control engineering had developed to the point that
state space techniques implemented in the statistieal enviranment of
"maximum likelihood" had yielded complementary mix type filters with
variable gains. A detailed analysis showed that the performance af the
conplementary mix filters was ténding asymptaotically to a level of
performance that was estimated to be an order of magnitude below that
required in the Control and Guidance subsystem for the Apollo

programme,

From the information theory viewpoint it became obvious that to achieve
improvements of an order of magnitude it was necessary to supply the
control process with significantly more information; to allow the
tontrol process to operate on information gathered during real-time
operation rather than to operate only on assumptions made by the design
engineer prior to the process; to remaove limitations cn the informatian
processing power of the control process by allowing almost unlimited
real-time computing power; and to maintain the maximum likelihoad

nature of the cantrol process.

The Kalman Filter algarithm and engineering opractices that are

inseparable from the filter meet all the above requirements and was
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successfuly implemented on the Apollo project. The theory took
tangible form tn 1940 and a Kalman Filter was in operational use in
19463. Further developments saw its use in long range missiles, later
still in military aircraft, and then in medium and short range
missiles. The techniques have now been developed for commercial
systems and are finding increasing use in marine vehicles, bath for
general navigation in Integrated Navigation Systems and in specialist
vessels for such uses as hydrographic survey, Grimble et al (1980 b
and c} describe the use of Kalman filtering technigques in dynamic

ship-positioning systems used in the off-shore oil industry.

4.5 The Kalman Filter.

The precise form of the information supplied to the Kalman Filter is:-

i} A knowledge of the system error sources. Whereas camplementary
filters attempt to minimise the effect of error sources, termed
state-variables, the model reference filter attempts to identify the
coefficients of terms in an error model and calculate, hence

nullify, their effect.

iil A knowledge ﬁf the dynamical vrelationship between errar
sources, The concept which made the Kalman Filter implementable
where more general methods had failed was the decision to enfarce
linearity an the error dynamics. In other words the dynamical
relationship between error sources is assumed to be expressible in

terms of a2 set of first-order linear differential equations.
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iii) ] knéwledge of the form and the magnitude of random
uncertainties within the system being controlled, The two
categories of uncertainties are randanm disturiﬁces which modify the
state of the system, sametimes termed "system noise" or “plant
noise", and random noise which corrupte observation of the state of
the system and is wusually termed "measurement  noise", The
information about the magnitude and form of system and measurement
noise is presented continuously to the filter in the form of arrays
whose diagonal terms contain a measure of the expected magnitude of
the random effects (variances) and whose off-diaganal terms contain
a measure of the expected dependence or correlation of the error
sources on one-another (covariancel, These arrays are termed

covariance matrices.

Thus a great deal of information is being supplied to the control

process and it is not surprising that a process which 1is capable of

capitalising on this information produces significantly bhetter results

than those previously available. Kalman was able to capitalise on the

information with a process that is both maximuer likelihood and

implementable in real-time using reasonable computing pawer.

The Mature of the Kalman Filter

Scovell et al (1980) describe the filter as a model reference, linear,

simultaneous minimum variance, infinite memaory, recursive, digital

estimation technique, They explain these terms as:-

i) Model reference. The filter is characterised by containing a

-47-



dynamical model of systam errors.

ii) Linear. This model is expressible as a set of first-order

linear differential equations.

tii)  Simultaneous minimum variance. Kalman originally termed the

procedure that he developed "maximum likelihood" and constrained the

random effects to be normally distributed, sometimes termed
Gaussian. He then invoked a theorem which states that the minimunm
variance procedure operating on Gaussian random effects is maximuam

likelihood and went on to develaop a minimum variance procedure.

The term "Simultanecus” is included to indicats that Kalman phrased
the optimisation procedure in such a way that each of the error
terms (state variables} receives equal weighting, and that when
information arrives which helps the filter deduce an improved
estimate of the state of the system, the deduction is applied with

equal vigour to each of the state variables.

ivl Infinite Memory. The Kalman Filter has the ability to remember
its past mistakes, and when new infarmation arrives the
re-assessment of the values of the state-variables is made not only
in the light of the new measurements, but also in the light of every
previous measurement, The Kalman Filter is therefore termed

“infinite memory".

v} Recursive. The power of the Kalman Filter lies very largely in

the oproperty that all the information required to make an optimal
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estimate at any instant is contained in a single set of variables

which is updated recursively.

vi} Digital. The nature of the equations that require to be

processed are such that a digital computer is essential.

From the above it is seen that the Kalman Filter takes the form 6f a

single set of equations implemented in a digital computer and used in a

recursive fashion.

4.7 The Kalman Filter Equatiaons

The theory of the Kalman-Bucy  filter 1is now well established, faor
example Medditch (1969) and Mattin (1982), and only the equations used
in this research program are stated here. The system simulation and
the Kalman filter have been modelled using their discrete forms. The
system model is defined by the equations:-

x(k+h)

Alk+l kix (k) B (k+l,klulk) + Clk+l,k)w(k) (4.1)

Z(k+l) = Hik+t)xlk+l) + w(k+l) (4f2)"'
Where x 1is the state vector; u is the control vector; w is :;;
disturbance vector; z is the measurement vector; v is the nmeasurement

noise and k=0,1...., is the discrete time index. In addition Alk+l, k)

is the state transition matrix; Blk+1,k} is the control transition

matrixy Clk+l,k) is the disturbance transition matrix and H{(k+i) is the
measurement matrix. The term (k+l,k}) means calculated at time k and
used in the interval k to k+l, The terms w(k) and yv{k) are Gaussian

noise sequences with the following first and second moments:-
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efgeni] = o E [ um )]
Efet)] =0 'Ef[_v(k)xT(mﬂ

and where Bu. is the Dirac function. The two processes are tonsidered

Hskm

MBxm

independent of each other and hence

E[v1uﬂ A:tk\]::.o ,lThe state estimate R (k+1/k+1) is obtained by
calculating the predicted state X(k+1/k) fran

Xtk+t/k) = Alk+l, k)R (k7Kk) + Bik+1,k)utk) (4,3)
and then calculating the estimated state at the instant {k+1} using

Rk+1/k+1) = X(k+17K) + 5(k+1)[;(‘k+1‘)—_Htk+1)2(.k+1/k)] ‘ (4.4)

[t should be noted here that the mathematical model used in the filter
does not include the disturbances, ar the disturbance transitiion
matrix, However Clk+1,k) together with the disturbance noise

covariance matrix N both appear in the filter gain equatiions below.

The Kalman gain matrix K(k+l) is abtained first by calculating the
predicted error covariance matrix given by

Blk+lyk) = ACk+1,KIP(K/KIAT (k+1,k) + Clk+L, KIN(KICT (k1 ,k) (4.5)
tor some initial error covariance P{k/k), and then calculating the

Kalman filter gain fram

-1

Kfk+1) = f(k+1/k)ﬂ](k+l)[ﬁ+k+1)Etk+1/klﬂj(k+l) + ﬂ(k+lﬂ {4.4)
Finally the error covariance matrix is obtained using
Plk+l/k+1) = L_I_-L(bkﬂ)ﬂ(kﬂ)]f'(k‘ﬂ/k) {4.7)

The above equations are used iteratively to obtain the state estimate
at any future sampling time, given the initial state and errar

covariance, together with the measurement and disturbance noise
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4.8 Kalman Filter for a Non-Linear Ship Model

As the chip is a non-linear system the mathematical model used in the
filter must be non-linear. It was assumed throughout that the course
and speed of the vessel were constant during each sample time, with the
new values ‘being calculated during each sample period. These values
were then assumed constant for the next sample period. This assuampticn
allowed the linear Kaiman filter theory to be applied, but it did aean
that the transition matrices and filter gains had to be recalculated
during each sample interval, This posed no problems during the
computer simulations using the Prime main frame computer, but it did
present difficulties during the later stages of the work when designing
the software for the Texas Instruments microprocessor used in the
actual model (CEMTAUR) in tests on a reservoir. These problems will be

dealt with in the chapter concerned with the physical model tests.

In addition to minimising variance the Kalman filter concept implies
that the disturbance noise.is white with zero means. WHind and tide
are taken to be made up af a fixed quantity with a random error
superimposed. The random error then has a zero mean over the period of
each passage in to and out of harbaur, It will be shown that the
addition and removal of the fixed values, referred to as mean values in
the text, has little or no effect upon the filter capabilities. 1In the

computer simulations typical values for Plymouth Sound were assumed.

The covariance matrix for the measurement noise was obtained from the
standard deviations aof the Sensars uéed in the various tests, For the

computer simulations it was assumed that a rudder angle indicator and
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revolution counter were available, together with a hyperbolic position
finting system, a doppler log to measure forward and lateral speeds,
with a gyro compass and rate gyro to give heading and angular velocity.
The measurement noise was assumed to have zero mean. Random number
generataor subroutines were used to obtain the measurement and

disturbance random noise values used in the simulation,

There are two critical factars in the design of the optimal filter,
firstly the modelling of the filter itself, i.e. how gaod is the model
of the ship used in the filter, and ;ecundly the values calculated for
the matrix K(Kk+1). The mathematical model used in the filter software
was derived from the ship’'s hydro-dynamic coefficients, which were
obtained from published ship data, or, in the case of the physical
model, by undertaking tank tests at the WNational Maritime Institute.
Subroutines were then wused to calculate the transition matrices from

the data. These are described in Appendix 7.
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CHaPTER S

OFEN LOOF TESTS

5.1 Introduction

This Chapter describes work undertaken to test the validity of the
mathematical model used in the digital computer simulations. This was
achieved by carrying out simulations of the full scale trials for a
known vessel and comparing the results with data available from actual
full scale trials. The ship chosen for this early simulation work was
of the Mariner Class since much work has been done on this hull form
and it was possible to compare computer simulation results with full
scale data which was readily available. Non- dimensional hydrodynanic
coefficients for the Mariner ship wused in the study are given in
Apeendix 4, whilst general data is given in Appendix 3. The values are
based upon results from captive model tests by Strom-Tejsen (1943),
Suarez (1963) and Brown and Alverstad (1974), The full scale
manoeuvring data for the Mariner was obtained fram a very comprehensive

study by Morse and Price (19461},

The objective of the Morse and Price programme was to -accumulate and
analyse full scale data on the manoeuvring motians of the USS COMPASS
ISLAND, a converted Merchant Ship of the Mariner Class. The task of
the Compass Island was the evaluation aof navigatian equipment in the

United States development of the Folaris submarines.

Three types of manoeuvre were carried ogut in the computer simulation
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and in each case the results were compared witth those available from
the full scale tests on the USS5 COMPASS ISLAND. The types of manoeuvre

Wwere: -

(i) Turning Circles;

(ii) Kempt Zig-lag Manoeuvres;

(iii} Dieudonne Spiral Manoeuvres,

9.2 Turning Circles.,

Turning circles are used to determine the effectiveness of the rudder
to produce " steady-state turning <characteristics. The method of

pertorming each manoeuvre was as follows:-

(i) Steady on appraoach speed and heading directly into the wind
(ii) tLay rudder over at maximum rate to specified value with no
avershoot

{iii) Continue in turn for wup to S840 degrees from the initial

heading, at which time the run is terminated.

A number of computer simulations were carried out using a forward speed
gf 7.717m/s (1S knots}). 1In each case the ship was turned to port and
tao starboard with the position cn-ardinafes recorded. For each set af
conditions data was recorded for the linear full-scale computer model
(URCHIN), the gquasi— linear full-scale camputer model (TRELEVEN), and
the non-linear full-scale computer model (VIGILANT). As each of these
simulations used the hydrodynamic coefficients of COMPASS ISLAND the

four sets of data, including COMPASS ISLANd, were then plotted with
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common axes for comparison with the Morse and Price (1941) data for the

USS COMPASS 1SLAND, These results are shown in Figures 5.1 and 5.2.

3.3 Kempf lig-Zagq Manaceuvres

This manoeuvre provides a qualitative measure of the effectiveness of
the rudder to initiate and check changes of heading. .Hence the degree
of avershoot of the heading angle curve ({i.e. the ratio of amplitude of
heading curve to ,amplitude of ‘demanded rudder angle) and the phase

between the two peak values are indicative of the dynamical stability

and manoeuvrability of the ship,

The simulation runs were carried out at initial approach speeds of
7.717m/s (15 knots) and 3.1446m/s (10 knots) and rudder angles of 20
degrees, At the start of Each‘simulatinn the demanded rudder angle was
set to +20 degrees (Port) and the heading was checked every 5 seconds,
with the computer program modified sa that the demanded rudder changed
to -20 degrees (Starboard) as soon as the heading angle amplitude
exceeded the rudder angle amplitude. The process was then repeated
several times to give the zig-zag manoeuvres illustrated in Figures

5.3, and 5.4.

5.4 Dieudonpne Spiral Test

This manoeuvre is used to provide a qualitative measure of course
stability +for surface cships, The ship executes a large rudder
deflection to one side, say 23 degrees to starboard, The rudder is

then held in this peosition ‘until a constant angular velocity is
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recorded. The rudder angle is then reduced to say 20 degreeg starboard
and held until a steady angular velocity is recorded. The process is
repeated throughout the range of rudder angle from 235 degrees starboard
to 25 degrees wport and then fram 25 degrees port back to 25 degrees
starboard, The resulting plot of demanded rudder angle against

constant yaw rates constitute the Dieudonne Spiral Test.
The simulation was performed at approach speeds of 7.7i7m/s {15 knots)
and 2.5723m/s (Sknots}. The results for the linear and gquasi—linear

model are shown in Figures 5,3 and 5.4.

5.5 Discussion of Results - Linear and Buasi-linear Models.

Figures 5.1, 5.2, 5.4, 5.5 and 5.6 show a comparison between linear,
quasi-linear and actual vessels for turning circles, zig-zag manoeuvre
and Dieudonne Spiral ‘tests. In the turning circle tests it is seen
that the linear model turns much tighter than the actual ship. For the
spiral test it is immediately apparent that at rudder angles beyond 4
or 35 degrees the linear model becomes extremely inaccurate in a steady
turn situatiaon. In the real ship the rate of turn tends asymtotically
towards a maximum value af about 0.9 degrees/second and this value
tannot be extended, whatever rudde? angle i's applied. The linear madel
can however, in théory, have a higher and higher rate of turn, the more
the rudder angle is increased. The real ship is also seen toc have a
small rate of turn when the rudder is amidships. This is a normal
effect in single screw vessels due to the paddle wheel effect of the

propetller. This feature 1is only simulated with the guasi- and nan-

linear models.
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This shows then why only small rudder angles may be used for a linear
model 14 reasonable accuracy is to be maintained. When subjected to a
20°/207 zig-zag manoeuvre, it is guite surprising to note that there is
better agreement between the simulation and the real result than would
be expected. Figure 3.4 shows the results from the zig-zag manoceuvre,
as compared with the real ship. The yaw rate of the model reaches a
higher value of some 1,5 degrees per second which is above the maximum
value for the real ship, and because of this higher rate the overshaot
is . much greater, being about 8 degrees more than the real ship. For
the first turn, however, the overshoat is only about 5 degrees more for
the simulation than for the real ship, since the simulation is starting
fram zero and does-not have so much time for the yaw rate to increase.
It is interesting to note that the frequencies of the two results are
almost exactly the same. The real ship is seen tc oavershoot more to
part than to starboard, again due to propeller side thrust. When
comparing the results obtained from the quasi—linea? model with those
from the actual ship, it will be seen that during turning circle
manpeuvres the simulated Mariner hull turned in a tighter circle,
producing a greater speed reduction and increased yaw-rate. This was
not unexpected since similar results for a linear model have been
obtained by Eda (1965). However when turning to port the quasi-linear

model turns tighter than the linear model,

To make the yaw-rate closer to that of the real ship, additional terms
must be included in the yaw equation. Abkowitz (1964) suggests that
the Taylor expansion of hydrodynaﬁic forces and moments should be
expanded toc include termskup to the 3rd order. Strom-Tejsen (1945) has

made a detailed study of the impartant non-linear terms and recommends
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including rv3, v3  Qv® and B> terms, the first term being the most

important.

0n comparisan with the real ship the propeller side thrust and moment
terms Y. and N. were high and could afford to be reduced. These had
the effect of making the ship turn tighter in a port-hand turn and less
tight in a starboard-hand one, The results from the Kempf 1Iig-Iag
manoeuvre shown in Figure 3.4 are better than expected. The periodic
time for model and ship are almost identical, The effect of the
propeller side thrust is to produce different positive and negative

~avershoot angles.

As with the turning circle manpeuvres discussed earlier, the Epira]
tests show the steady yaw-rate cf the model is approximately double
that of the actual ship, but a distinct improvement an the linear
model. The intersection of the curves with the x-axis gives the rudder
angle necessary for the vessel to travel in a straight line, For
COMPASS ISLAND, between 0 and 1.5 degrees of starboard rudder were
necessary, but for the model the value was 3 degrees, due to Y, and N,
being too high. The hysterisis laop phenaomenon, although clearly
evident in the actual ship results, did not show itself in the
simulation.  Taking all tests together however it is seen that even
with the quasi- linear model the resuits fall short of those for the

real ship,

In a gsimulated 20 degree port rudder turn the steady state forward
velocity was 3.357 m/s, ar a 57% reduction of speed. During a similar

manoeuvre, the USS COMPASS ISLAND settled down to a forward velocity of
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5.13 m/s, or a 34% speed reduction. Due to the tightness of the turn
the. lateral velocity v and ‘hence the drift angle, is greater than that
of real ship., This increased angle of attack is the reason far the
artificially low forward velocity. Strom-Tejsen (19435) recom@ends the
use of u? and u® to be of majuf importance in the x-equation, together

with v3, r2 and B2 terms which he suggests are of lesser importance.

9.6 Discussion of Results Non-Linear Model.

Figures 3,1 and 5.2 illustrate that even the quasi-linear model has its
limitations. Reference has already been made to the full non-linear
model. Figures 5.1, 5.2, 5.3, 5.7, 5.8 and 5.9 show the results of
turning circle and zig-zag tests carried out an the full non-linear
computer model using the hydrodynamic coefficients for the Mariner
hull., Data from these open loop tests is now compared with data

available fraom the USS COMPASS ISLAND tests.

Figure 3,1 shows turning circles for an approach speed of 7.717m/s (15
knots) with 20 degrees of rudder applied at the ‘Execute Point’'. For
the turn to starboard both the real ship and the computer model turned
in a circle of diameter close to 1000 metres. There is a great deal of
similarity, and a considerable improvement over the quasi-linear
turning circle, for the same appreach speed and rudder angle. The non-
linear full scale computer modei (VIGILANT) settled down to a canstant
lateral speed af  0.9m/s compared with 0.83m/s for COMPASS ISLAND,
Figqure 5.8, whereas the yaw-rate peaks at 0.B4 degrees/second after 0.4
minutes for VIGILANT compared with 0,82 degrees/second after 0.7

minutes for COMPASS [SLAND. (Figure 5.9). Figures 5.1 and 5.7 show
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that the times to complete a turn of 340 degrees and the steady-state
forward speeds are comparable. Applying 20 degrees of port rudder at
the same initial approach speed aof 7.717m/s (15 knots) again shows
marked similarity between the cemputer model and the actual ship., In
particular it must be noted that the final forward speed is much closer
to the actual value for the non-linear than the quasi —linear model,

thus justifying the inclusion of the non-linear terms.

For the 10 degree rudder angles COMPASS ISLAND turned tighter than the
VIGILANT to starboard, but VIGILANT turned tighter to port, perhaps
lndicating that the force and moment terms used for the single screw
propeller were not quite as effective at the reduced rudder angle.
However, lateral —speed, vyaw-rate and forward speed transients snd

steady-state values were again comparable.

Turning now to the Kempf IZig-lag results (Figure 5.3), at an initial
approach speed of 13 knots VIGILANT peaks at 30 degrees to paort and 23
degrees to starboard, with COMPASS ISLAND peaking at 32 degrees to
starboard and 28 degrees to port with a periudic_time af 3 minutes for
TREMAYNE and 3.35 minutes for COMPASS ISLAND. At a 10 krot initial
approach speed YIGILANT peaked at 28 degrees to part and 25 degrees to
starboard with a periodic time aof 4.15 minutes, whereas COMPASS ISLAND
peaked at 27 degrees to port and 25 degrees toc starboard with a

periodic time of 4.5 mfnutes.
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9.7 Conclusions

It has already been stated that the linear model was inadequate for the
work undertaken, and that the quasi—linear model shawed certain
limitations. For the non-linear model (VIBILANT) there were still some
discrepancies, particularly at the lower speeds and rudder angles.
Looking at the results overall however there was sufficient similjarity
to justify using this model in the computer simulations using the main
trame computer. It must be born in mind that this thesis is concerned
with the wuse of filter techniques to minimise noise. As such, one aof
the criteria is to produce a good replica of the system in the filter,
It must also be pointed out that no allowance was made for shallow

water effects in any mathematical model.

Finally the errors in the measurements made in the USS COMPASS ISLAND
have to be considered. Position was plotted using a Dead Reckoning
Tracer and forward speed measurements were obtained from the
electro-magnetic log. Although an inertial system was used there would
have to be some instrumentation error., OQOther factors which have to be
considered are the wind and tide, which although minimal would have
some effect. Each of these would contribute to larger differences
between actual and computer model readings at slower speeds and smaller

rudder angles. This is baorne out by the experimental results,

Taking all these points into consideration and looking at the Open loop
Tests as a whale there is sufficient similarity to justify use of the
non - linear model in the main frame computer simulations which formed a

major part of the thesis. Once a reasonable mathematica! model of the
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ship was established this was used both to simulate the ship and as the
mathematical model of the ship in the Kalman Filter, As lang as the
two models were reasgnably correct they would satisfy the requirements

of the research programme,
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CHAPTER &

DIGITAL E0MPUTER SIMULATIONS

6.1 Introduction

The erxperimental work described in this chapter involved digital
computer simulations wusing the mathematical models described in
Chapters 2 and 3. As & result of the open loop tests described in
Chapter 5, it was then decided to use only the full non-linear models,
With the acquisition of a physical scale model of a twin screw car
ferry it was decided to concentrate the digital computer simulations on
a full scale version of the car ferry model so that- comparisons could
be made. The bulk of the wark was therefore carried out using this
computer model (TREMAYNE in accordance with the nomenclature defined in
Chapter 3). However, the series of tests began with the Mariner hull
used in the open loop tests. Using this hull form & natural bridge
from open to closed loop tests was established. Again wusing the

nomenclature of Chapter 3 the non—linear mathematical model of a

Mariner hull was named VIGILANT,.

Initially the cantroller fitted was a simple proportional plus
derivative heading controller, Later simulaticns involved the optimal
track and heading caontroller developed by Burns (1%984), This is

described in Appendix 9.

The OQOptimal Filter, which uses the equations described in Chapter 4,

takes as inputs the measured values of the state wvector, z(k+l},
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together with the previous value§ of the cantral vector, u(k). It
produces a best estimate of the state vector X(ktl1/k+l) which then
becomes the input to the controller, which in ‘turn provides the
demanded values af rudder angle and engine revolutions to guide the
vessel automatically along a pre-defined track stored in the computer
memory. The pasition of the vessel, together with her heading and
speed are thus control led simultaneously and automatically.
Essentially there are three modes of operatien to be considered.
Knowledgé of the statistical nature of the measurement errors together
with data relating to wind and tide are used in the Kalman Filter to
provide best estimates of the state vectar. This is the navigation
mode where the system is being used to provide the operator with more
accurate position and velaocity data than he would expect from using the
individual measurement <systems on their own. This information can he
displayed upon a graphics terminal on the bridge, or at any remate
position or it may be fed directly to the digital controlier, which
compares the estimated values with data stored in the computer memary
and computes the necessary control in terms ef rudder action and/or
engine activity to minimise the errors. This is the fully automatic

track keeping mode which is employed in this thesis.

A further mode af operation would involve an autamatic hazard avoidance
system so that the computer automatically assesses the risk aof
collision with other vessels and passes thé appropriate instructions to
the controller so that the correct avoiding action can be taken. This
final mode of operation is not included in the present study but is the
subject of other research projects in Plymouth Polytechpic, Davis

(19813, Davis, Dave and Stockel (1982), Colley, <Curtis and Stockel



(1984).

A simplified algorithm of the complete digital computer simulation is
given in Figqure 6.1, with an overall block diagram for control and
guidance in Figure &4.2. Detailed flawcharts are given in Appendix 4,
together with detailed explanations of -the digital computer

simulations.

b,2 The VIGILANT Model with Propaortional plus Derivative Controller.

In the digital computer simulations it was necessary to simulate not
only the mathematical model of the ship, but also the function of the
on - board computer. In essence this on board computer would be
dedicated to performing the functions of a digital controller and an
optimal filter. Essentially these latter functions were carried aut by
using subroutines PDCON, or OPTCON for the controller and OPTFIL for
the filters, with the Kalman Filter gainn calculations using subroutine
KBFLTR. The process of obtaining the transition matrices used in the
equations representing the ship, was carried out using subroutine NAB.
Details of each of these subroutines is given in Appendices 7 and 9.
As the mathematical model of the ship is an essential part of the
tilter these values are also required in the filter. At this stage it
is assumed that the values calculated for use in the mathematical nmodel

can also be used in the filter.
In these initial runs, using only a proportional plus derivative simple

heading controller, the intention was to bridge the gap fram open to

closed loop tests, whilst setting the digital simulations to work,
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The information concerning the magnitude and form of the disturbance
and measurement noise 1is presented to the filter in the form of
matrices whose leading diagonal terms contain a measure of the expected
.magnitude of the random effects, 1i.e. the wvariances, and whose
aff-diagonal terms contain a measure of the expected dependance or
correlation ot the errar sources on one another, These are the

covariance matrices M and N.

Initially 1t was assuﬁed that each of the eight states in the
measurement vector was measured by an independent measurement system,
This was realistic in terms of rudder angle and engine revolutions.
However there would be correlatiaon between the x and y co-ordinates aof
pasition as in practice position would probably be measured using a
hyperbolic position fixing system. fis the hyperbolic co-ardinates
would then have to be converted to cartesian co-ordinates an error in
the x co-ordinate would affect the measured value of the y co-ordinate.
Similarly yaw rate would be measured in a marine auto pilot by using
error rate damping rather than using a rate gyro to obtain velocity
feedback. However for the purposes of the runs in these and other
tests it was assumed that each component of the state vector was
measured independently, with forward and lateral velccities being
measured separately by independent Doppler sonar logs. A rate gyro was
used to measure yaw rate, a gyro compass to give heading, with rudder
indicatars and engine revolutien counter being mounted on the bridge
and separate systems to measure the % and y co-ordinates of position.
Thus the measurement noise co-variance matrix M consists of the
measurement system wvariances in its leading diagonal and zeros in all

the off diagonal positions.
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Figure 4.3 shows a run where the standard deviations are taken as
typical of ship fitted systems, namely rudder angile and engine
revolutions 0002 rad or rad/s, position 23.0 metres, speed 0.025 /s,
heading 0.017 rad and yaw rate 0.017 rad/s, These are referred to as
standard cenditicns and are listed in Table 4.1. True, measured and
tiltered results are plotted on the same axes. Far the ship track plot
it is seen that the filtered track coincides with the true track,
cutting through the measured track, which was produced by wusing a
random number generator to calculate values about the given s#andard
deviation. Similarly the forward and lateral speeds, each plotted
against time, show the true and filtered values very close and cutting
through the measured values. Rudder angle, course angle and yaw rate
plots show similar results. Figure 4.3 only serves to indicate that
the filter 1is effective, given, for the nmoment, the limitations

indicated in the text.

For the remaining runs in this series onl& the ship track is plotted.
In Figure 6.4 the mean values of tide and wind are removed. First
comparisons of Figure 4.3 and 6.4 suggest that there is no difference
in the two track plots, but on closer examination it is szeen that the
tracks do not exactly coincide, suggesting that the removal af the mean
values changes only the track followed over the ground, This was to be
expected as the controller is only regquired to correct heading erraors.
But in each <case the filtered and true tracks are co-incident,
confirming that the filter will minimise noise although, in this case,
the presence aof mean values of disturbances does not affect the
functioning of the filter, In Figure 6.5 the disturbance and

measurement noise values have each been increased by a factor of 5 to
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show the effect of filtering very naisy signals. dOnce again the true
and filtered tracks coincide, and although the measurement plot is
rather wunrealistic it does indicate that the filter is effective in
gxtreme conditions. In Figure 6.4 the-measurement noise is reduced to
one fifth of the figures given previously, but the disturbance noise
remains high, although the mean values of the disturbance all remain at
zero. In Figure 4.7 both the measurement and disturbance noise
matrices are low (0.2 of the values guoted for Figure 4.3). Comparing.
Figures 6.4 and 6.7 it is seen that the fluctuations of the measured
track are reduced in both cases, whilst the removal of large
disturbance fluctuations does not affect the filtering, although it
does of course alter the track followed by the craft. Comparing Figure
6.4 with Figure 4.7 however it is seen that the filtered tracks are
very similar, shaowing that the track over the ground is controlled by,
amongst other things, the disturbance effects and is unaffacted by high
or low disturbance noise values, Similarly comparison of Figure 4.7
with Figure 6.8 suggests that the track over the graund ig unaffected
by the degree or amount of measurement naise. Figures 6.4 to 4.8 show
that the filter 1is capable of providing good estimates of position
thraough very noisy measurements when the disturbance noise has zero

mean conditions.

In Fiqures 4.9 through to 4.12 the mean values of disturbance naoise are
returned. These are a mean current of 0.6469 a/s (1.3 knots) in
direction 3.65 radian (209 degrees) clockwise from true north, with a
mean wind speed of 10.29 m/s (20 knaots) in a direction 3.929 radian
(223 degrees) from north., All directions are taken as away fram the

ship. Comparison of Figure 6.5 with Figure 6.9 where disturbance and
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measurement noise are both high suggest that the mean values affect the
track over the ground, but do not affect the filtering. Similarly the
effect of reducing the measurement noise, as in Figure 4.10, does not
atffect the filtering. 1In Figure 6.1! the random disturbance noise is
zero, whilst the measurement noise is high. In this run the true and
filtered tracks diverge slightly as the run progresses, whereas if a
low level of random disturbance noise is re-introduced -(Figure &4.12)

then the divergence of true and filtered tracks is less marked.

To summarise, Figures é&.4 through to 6.12 indicate that the Kalman
Filter is capable of operating through noisy measured values and will
have its greatest effect upon the nmeasurement noise. Larg; values of
random disturbance noise dao not affect the position plot, while 'the
presence of mean values of the disturbances do not decrease the effect
af the filter. Alternatively, the disturbances can be looked upon as
having mean values with suﬁerimposed random fluctuations, thus allowing
the Kalman Filter theary to be applied. Grimble, Patton and Wise
{1280b) suggest that the wind can be modelled as a disturbance signal
and a white noise signal, whilst Medditch (1969} refers to a Gaussian
white sequence with a mean value. The mean values can then be treated
as a separate disturbance input to the random values used in the filter
calculations. In Figures 4.13 and &4.14 the mean values, randam
disturbance naoise and measurement noise are all returned to the normal
values wused in Figure 6.3. In Figure 6.13 the Kalman Filter gain is
only recalculated for every 10 sample times (30 seconds in real tinme),
whilst in Figure &.14 the gain 1s recalculated after 50 sampling

intervals (230 seconds of real time). [t is <¢een that there is no
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significant difference between these +runs and the first run in this
series (Figure 4.3}, suggesting that the gain ot the filter does not
have to be recalculated during each sample time. This fact was to be
of significant use later when the physical model software was heing

develaoped.

Figure 6.15 illustrates the situation when the off-diaganal terms (3,5)

-

and (3,3) of the measurement covariance matrix are given small values
to simulate cross- correlation between the x and the y position

measurements.

5.3 The TREMAYNE Model with Optimal Controller

Once the validity of the filter had been established using the Mariner
hull characteristics and a simpie controller, the next stage was to
change to the madel of a twin screw car ferry, with optimal controller,
to simulate such a vessel approaching the Port of Plymouth and moving
along the navigable channel into the harbour. Since this thesis was
concerned wth the automatic pilotage of large ships it was intended
that the ship followed, automatically, a predetermined track, the
co-ordinates of which would be held in an on-board computer. It has
already been stated that the car ferry madel used was defined by the
physical model, CENTAUR, used in later tests on a reservoir, and hence
the TREMAYNE model is defined by the non-dimensionalised ccefficients
derived for CENTAUR and scaled up appropriately to represent a full
sized ship such as the QUIBERON, a French car ferry which, at the tinme

of the research, was regularly using Plymouth. (See Frontispiece).
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Since the vessel is to be automatically piloted along the predetermined
path, this implied that a track controller was to be used. In fact the
optimal controller was both a track and a heading controller.  As these
two requirements could at times conflict the optimal weightings were
such that the track caontrol dominated, except at times when an
alteration of course became necessary, when the weightings were changed

sa that the heading control predominated.

In all these later digital computer simulations an outline chart of
Plymouth Scund was drawn using subroutine PLYM, which is described in
Appendix &, This gives the oposition of the breakwater and the
principal buoys which outline the navigable channel. The vessel was
assumed to be at or close to the demanded track, at its southerly end,
at the commencement of each run, with the completion being to the East
of Drake’s Island. In Figures 4.16 to 6.22 the demanded values are
plotted in black, the measured values in green,the true values in blue
and the estimated values in red, Figure &.16 shows a run with the
normal set of measurement noise standard deviations referred toc in
Table 4.1. Hitherto the values of the transition matrices used in the
mathematical model to simulate the ship were also used in the Fi;ter
calculations. For the remaining simulations these values Wwere
calculated twice for each sample time; firstly rn_the mathematical
'model of the ship when the true values of the state and control vectors
were used in the calculations, secondly in the filter calculations. In
the latter case only those states available, i:e the estimated and
measured values were used, thus adding to the realism of the simulation
and allowing the mathematical model used faor the ship itsel$ to differ

from the mathematical model used in the filter, In Figure 6.16 the
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values of the Halman filter gains were recalculated only when the
caurse error exceeded 30 degrees. As with previous runs the true and
filtered tracks are almost co-incident with the vessel following very
closely the recommended track for deep draft vessels in the approaches
to the port. Figure 4.17 illustrates the situatiaon when -speed
measurement noise is increased, The forward and lateral speed graphs
showed this noise with the filtered values unchanged from the previous
run., The track plot was identical to that of Figure 6.14 showing no
deterioration of the filtered track, aor of any of the states plotted
out. In Figure 4,18, where the position standard deviations were
increased to 200 metres to simulate a night time approach using the
Decca Navigator, the Kalman Filter gains were still only re-calculated
when the course error exceeded 30 degrees. In this case, although the
measured track was somewhat wunrealistic, the filtered values stiil

followed closely the true values.

Leaving aside the mean values of wind and tide, Figure 4.19 illustrates
a run where the random fluctuations of these gquantities were increased,.
The current standard deviations were increased to 0.5 knots and 30
deqrees, thus simulating a bad weather approach to the port. By
comparison with the standard conditions of Figure 4.1é6 there are
greater variations in the speeds, yaw rate and heading, but in all
cases the true and es{imated values are very close., Bearing in mind
that both the wind and the tide are from a south westerly direction the
track plot does show the vessel off-track during the second and third
legqs, with the filtered track dangerously claose to the starboard side

of the navigable channel. However, during the fourth leg fhe ship is

seen to be returning to the demanded track, with the filtered values
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again close to the true values. Figure 6.20 shows the situation in a
night approach in bad weather with the filtered track rather more in
error, although still follawing the true ‘track, In this run the
position standard deviation was increased tov200 metrés and the speed
standard deviatfon to 2 m/s again showing the ability of the filter to
output signals which would enable the optimal caontroller to effectively

guide the vessel along the predetermined track.

Turning now to the mathematical model used-in the filter and looking at
a typical graph of some of the elements in the continuous time matrix,
F (Figure 4.21) it is seen that these elements are reasonably constant
except 1in an alteration of course. It will be shown later, when
deriving the filter equations far use in the Centaur model, that the
elements are largely functions of forward speed, lateral speed and yaw
rate, in which <case they would be expected to change‘whenevér speed
and/or heading changes. All the coefficients are shown in Equation set
3.28 and are defined in Appendix 3. It is seen from the plots that the
values do change at the alter course points but most values remain

reasonahly constant between alterations of course and speed.

Fiqures &4.22  and 4.23 show the results when errors appear in the
transition matrix. In Figure 6.22 the A matrix is scaled by a {factar
of 1.1 at time k = 30, For the first two legs of the passage the
track keeping is as good as for previous runs, but during the second
leg the true and filtered tracks are seen to diverge. At the start of
the fourth leq the true and filtered tracks are again co-incident,
because the state, control and disturbance matrices in the filter are

regaining their correct values. In Figure 4.23 the A matrix is scaled
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by a factor ot 1.3 after 50 sampling periods. The variations are much
greater as would be expected, showing clearly that the filter requires

to model the actual system accurately.

These results, together with others carried out earlier, showed quite
cledrly that {f the state, control and disturbance matrices were not
trequently updated the accuracy of the mathematical model used in the
filter was reduced and the efficiency af the filter fell off rapidly.
Moreover, it was found unnecessary to recalculate the filter gains
during every sampling instant. This i'n turn suggested that the fiiter
itself might not be necessary, ‘but later work with the physical model

showed this was not sa.

6.4 Summary

A full analysis aof the mainframe digital computer simulations -with
emphasis on the filter gdains is given in Chapter 7, but the results
gilven in this chapter show that the Kalman {filter was able to give
accurate estimates of the eight states given very noisy conditiaons,
provided the mathematical model of the ship in the filter was accurate,
The results further showed that the random disturbance had little or no
effect on the filter and fixed values of wind and tide di:d not degrade
the ability of the filter to feed accurate estimates of the states to

the optimal controller.









































































































CHAPTER 7

DIGITAL COMPUTER SIMULATIONS

DISCUSSION OF RESULTS

7.1 Qualitative Discussion of the Kalman filter Bains,

Before analysing the factors which govern the Filtér gains same
qualitative comments are made. In a system where there was no
measurement or disturbance noise the model states would be in line with
thqse of the vessel and the filter gains would be zero. If there was
disturbance noise and nbo measurement noise, any difference hetween ship
and model would be due to the perturbations of the system caused by
random disturbance naoise inputs. Without measurement naise the
measured values would be correct leading to high filter gains. In this
situation the input to the filter reflects the random perturbations due
to disturbance. THe high filter gains would approach vunity as the
output from the filter would only be required to add the disturbance
effects to the model. Even if z small amount of measurement noise wWas
present the filter gains would still be high, The Icantinuing
assumption is made, of course, that there is ne correlation between
individual measurement systems and reference is then only made to the
leading diagonal terms of the filter gain matrix. Even if a small
amogunt of measurement noise is present the {ilter gains would be

expected to approach unity.

If now the measurement noise was high and the disturbance naoise low the

model states would be correct, but the measurements incorrect, leading
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to low filter gains sc that each output component from the filter would
only make a small change to its appropriate model state, In the full
scale digital simulations described.in the previous chapter there are
four disturbance components whereas the measurement vector has eight
elements, corresponding tc the eight states, but the foregoing does
suggest that if the ratio of disturbance noise to measurement noise is
high the #ilter gains will be high, but if the ratie is small, the
gains will be low. As some measurement noise values are high and
others low this suggests that the elements of the gain matrix may

differ widely.

7.2 Analysis of the Kalman Filter Gains.

Before attempting any quantitative analysis of the gains cbtained in
the digital computer simulations, the matrix equations wused in the
filter calculations are restated in algebraic form. The first computer
equation defines the intermediate or predicted system error covariance
matrix given by:-

Plket/kd = Atk+ L, RIPER/KIAT (k41 k) + CUk+1, kINGRICT (k41 k) (7.1
P{k/k) is the system error covariance matrix which has been calculated
during the previous sampling instant. In the full scale models it is
an 8#8 matrix. During each set of calculations an intermediate wvalue
P(k+1/k} is vcalculated from equation 7.1 using the state transitiaon
matrix A(k+l,k) and its transpose, the disturbance transition matrix
L{k+1,k) its transpose and the disturbance noise covariance matrix N(k)

in addition to P(k,k).

This predicted error covariance is then used in the calculation of the
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.Kalman Filter gain matrix K(k+l)} as follaws:-

Kik+t) =_P(k+l,k)‘H_‘(k+l)[ﬁ(kﬂ)E(k%-l/k)i_*(kﬂ)+_!'_I(k+1)]—' (7.2)
The filter gains therefore depend upon the previious values of the errar
covariance matrix, the state and disturbance transition matrices, the
measurement matrix H{(k+l) and 1its +transpose, the disturbance noise
tovariance matrix and the measurement noise covariance matrix Mik+!).
Finally a new value P(k+1/k+1) is obtainaed fraom:-

Plk+1/k+1) =['1—.}_((k+1)¢|1(k+l)jf(k+1/-k) ) (7.3)
This new valpe of the error covariance matrix is then available for the

-

next set of filter calculations.

Unless otherwise stated the figures quoted in this section refer to the
standard set of conditions set out in Table 6.1 and described in
Chapter 4. Table 7.1 and 7.2 gives values fnf:predicted system erraor
covariance matrix at the beginnihg and towards the end of a run where
the filter gain was calculated for each value of the sample time, and
the model matrices were re-calculated in a similar manner. It can be
seen from this table that the elements vary from such large numbers as
24.88, PKP1¢3,3) at beginning of the run tao 0.0000000327, PKP{ {8,2) at
the end of the run. [t can also be seen that the majority of terms in
the matrix are small numbers or zerc (typically about 73% are less than
1}, brought about by the small numbers in the A and € matrices. #s the
elements of the C matrix are mainly very small numbers themselves the
contribution of -the disturbance noise covariance matrix N tends to be
minimised, but including the term C*N#CT in equation 7.1 acknowledges
the deterioration in knowledge of the states that accur due to the
atfect of randam disturbances in each sample time.

The calculation of the filter gains (equation set 7.2) 1included a



matriv inversion. H, and hence H', were taken as identity matrices and
P(ktl/k) was thus effectively added ta the measurement noise covariance
matrix M, after which the matrix inversion took place. To test the
validity of the matrix inversion the original and inverted matrices

were multiplied together to give the identity matrix.

When the inverted matrix is multiplied, effectively, by P(k+l/k} to
give the filter gain matrix then the leading diagonal terms are close
to 1 for low ﬁeasurement noise values and much smaller +for high
measurement noiseé values, with the great majority of the off-diagonal
terms «close to zero, (Table 7.3). When the position standard
deviations were increased to 200 metres (to simulate a winter’'s night
approach using the Decca Nav;gator), then the (3,3) and (3,3) eleaents
of the filter gains were further decreased by a factor of 64, It is
interesting to note that this corresponds to a 62.5 factor of increase

for the appropriate covariance term in M. Typical values of the filter

gains are given in Table 7.4.

Increase in M(3,3) 2002/232 = 54
= Increase in M{(3,5)

K(3,3} faor 23 metres SO

0.0040246536

K{3,3) for 200 metres SO 0.00006342497

Ratio 63.48

K(5,3) for 25 metres SD 0.004536094

K(3,3) for 200 metres SD 0.00008394379

Ratio 34
These figures confirm the statements made in 7.1 namely that the filter

gains depend largely upon the measurement noise, being low for noisy



signals and high for low values of measurement noise, although the

disturbance noise does have to be taken into consideration.

The results of Chapter &6 showed quite clearly the ahility of the filter
ta take nolsy signals fram the eight measured states and provide best
estimates which were close to the true values. It has to be btorne in
mind that the results of simulation are usually better than those
achievable 1in the real world. This is principally due tao the
similarity between system dynamics, noise colourations and other.
tactors contained both in the Kalman filter equations and the
simulation models, a difficult situation to avoid with the normal lack
of knpwledge of real-world dynamics and stochastic processes. However
some differences were obtained by wusing only true wvalues in the
simulation models and either estimated or measured values in the filter

equations,

Another problem was the need to transform between gp-ordinate systems,
In effect three co-ordinate systems were used. The first two were
related toc the ship and the earth respectively, and when plotting the
ship's track relative to earth it was necessary to transform the x and
y co-ordinates relative to the ship axes tao earth axes, This was
unrealistic in that an electronic position fixing system would almost
certainly give position co-ordinates in some hyperbolic systenm. These
would then have to be transformed to cartesian co-ordinates relative to
the earth, Again this was a limitation of the simulation employed.
However rudder angle, speed and yaw rate were measured relative to the
ship axes 'whilst heading was one of the links between the two

co-ordinate systems,




A third co-ordinate system was used to define track errar. A way point
was defined and the position error related to the distance along track
and the distance off track (track error), This latter system was

primarily to simplify the optimal controller.

0.00673 0.0 -0.0118 =-0.00355 0.05902 0.01569 -0.00217 -0.00037
0.0 0.00673 0.00328 0.00151 0.00002 0.00001 0.0 0.0
-0.00181 0.00528 0.00249 0.04669 -0.53231 -0.10927 -0.18566 -0.02907
-0.00355 0.00151 4.446975 0.91377 ~0.24973 -0.059465 -0.10611 -0.01672
0.05902 0.00002 -0.53231 -0,24973 34.745358 8.42338 14.58034 2.30938
0.01569 0.00001 -0.10927 -0.05965 8.42338 2.35974 5.22462 0.82947
-0.00217 0.0 -0.185486 -0.10611 14.58034 3T.22463 17.42164 2.561498

-0.00057 9.0 -0,02907 -0.014672 2.30938 0.82947 2.61496 0.415641

Table 7.1 Predicted Error Covariance (PKP1) at Start of Run
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0.00673
0.0

-0. 00555
0.00146
0.06177
0.01679
-0.00224

~0.00061

Table 7.2

0.00192 -0,00002 -0.00001

4.69605 0.21 0.02091

0.92003 0.12624 0.028B3

0.12824 34.7166 8.3%009

0.02823 8.39009 2.33397

0.6874 14.01015 5.11094

0,01119 2.26452 0,8280¢4

-0.00146 0.06177 Q.01679 -0.00224

0.0

0.12139

0.046874

14,01015

3.11093

18.00821

2.76437

Predicted Error Covariance (PKFl) at End of Run

0.99937

0.0

0.35409

~0.01621

-3.38426

0.00004

-0.00012

Table 7.3

-0.00293 -0.00002

0.0 0.0 0.00001
0.0 0.0 0.0

0.04763 -0.00002 -0.05528
0.93403 0.0 0.00086
0,.02807 0.00434 4.88049
0.0008% 0.00049 ©.92181
0.0 0.0 0.0

0.0 0.0 0,00003

Typical Kalman Filter Gains
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0.0

0.00223

0.000938
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CHAFPTER 8

DESIGN OF A MINIMUM VARIANCE

FILTER FOR THE PHYSICAL MODEL

8.1 Introduction

Prior to installing the optimal filter and controller in the physical
madel (CENTAUR) it was decided to simulate them using the mainframe
camputer, In accaordance with the nomenclature of Chapter 3 the
computer model of the physical car ferry model was named HEATHMORE.
Restrictiaons were 1imposed by the instrumentation packaqe installed in
the meodel, which consisted of three accelerometers, a gyro and a vyaw
rate gyro, but eventually the reduced non-linear model of equation set

(3.29) was decided upon.

Limitations of the Texas Instruments microcomputer memary necessitated
medification of the computer programs, leading ta considerable
simplification in the optimal contraller and optimal filter, Like all
previous mainframe simulations the FORTRAN language was used, but the
programs were converted to BASIC for use in the on board computer, in
which they were finally burned into an EPROM chip. As with the
instrumentation package these decisions were governed by the hardwarg

available

8.2 Development of the Discrete Reduced Non-Linear Model

With the same disturbances as for the full scale models, namely wind

-125-



and current companents along the ship % and y axes, the set of four
first order differential equations to represent.-the made! in continuaus
time were given in equation sat 63.29). As with the previaus
simulations, measurements were taken at discrete time intervals leading
to a set of first arder difierence equatians relating the states at aone

instant to the states at some other instant. These are expressed as:-

rl-l(k+1)- = -A11 A;z 0 qu,- ﬁu‘(k)- + ’_Bll Bl:‘-‘n(k)
vik+l) Rz, Aaz O Aza |V(k) B.zx Bas alk)
. 1
ppikel)| [0 0 Axs Asaflytk) 0 0
_f'“’.*‘l)_J hAq: Aq: 0 Aqq_l L.-r(’k)_l ) .BA1 Bq‘z
+[Cis Ciz 0 0 Tluctkd] (8.1)

0 0 Czs Coaf|ualk)

¢ 0 0 0 v (K)

0 0 Cas Casif| vatk)

This in turn led to the following mathematical madel in the filter:-

[utket) = (s Az 0 A2 [uwekd] + [ Bay ByolfBm ks (8.2)
viktl) [ A2y Rzz 0 Azaffvikl| | Bzy Bazfnaci

| [0 0 s asaflvio| o o

rike)] | Asr Raz 0 n.,.._:chk)_ | Bay Bag]

The various caompanents of the A, B and £ matrices were obtained from

their continuous time equivalents in eguation set 3.2% using the

methods described in Chapter 3, and employing subroutine NAB.
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8.3 The HEATHMOBRE HModel

To simplify the physical model tests it was decided to undertake then
under conditians of zero, or near zera disturbance, but to overcome the
practical programming praoblems gmall values of disturbance noise
covarijances were used in the filter calculations. Calculation of the
filter gains involves an iterative process, and a test for non-
convergency has hitherto been used. In the HEATHMORE tests this
process was followed for only the first set of filter calculations.
Thereafter the values were calculated only once for each sampling
interval. It has already been shown in Chapter & that the filter gains
remain reasonably constant for a given run. It was therefore reasoned

that this assumpticon did not reduce the effectiveness of the filter.

In laboratory tests the accelerometers gave very noisy signals "~ whereas
the gyro compass and the yaw rate gyro noise values were Low; In the
simulations the standard deviations were treated in a similar wmanner.
Bearing 1in mind that the forward and lateral velocities in the CENTAUR
model would be ohtained by integrating the measured forward and lateral
accelerations, the appropriate standard deviations in the HEATHMORE
simulations were initially kept high (lm/s), whilst those of the third

and fourth state vector were set low (9.017 rad and 0.00399 rad/s).

Four tests were carried nﬁt under these conditions to test the validity
of the filter model and the need to re-calculate the Ffilter gains
during each sampling period. These are illustrated in Figures B.1 to
8.4 inclusive. In Figure 8.5 the +filter gains and the transitiaon

matrices for the filter are re-calculated during each sample time. In



addition to plotting each state against time, a2 set of position plots
for true, measured and filtered values are shown. As wWwith earlier
graphs the demanded values are in black, the measured values: in green
with the true valiues in blue and the #iltered values in red. Position
values are calculated in the same way as for the full - scale

simulations,

The ship was initially stationed 4 metres to the right of the initial
demanded position with an initial forward speed of 0.75 m/s, with zero
lateral speed, heading and yaw rate; After 546 seconds {(the sampling
interval was | second}! the demanded heading was changed to + 90
degrees, Fram Figure 8.1 it is seen that, in spite of the very noisy
position signals the filtered track followed closely the true track,
with a slight overshoot, but after 35 seconds the system anticipated
the alteration course (the helm over position) and the rudder wWas
driven to starboard 5o that the vessel started te move around to her
new track. At this point the contreller was a heading cantroller and
continued to be so until the heading error was reduced to less than 30
degrees, when the track controller again dominated. Dﬁring the test
run, and in spite of the very noisy speed measurements, it is seen that
the schip settles down te her new course and track with only a very
small overshoot, Turning now to the speed time graphs it is seen that
again the filtered and true values are very close, and close to the
demanded value for the forward speed. During the turn the vessel's
forward speed decreased and the lateral speed increased, although the
latter is shown as neg&tive on the lateral speed plot because of the
sign convention adaopted. Similarly, the «course angle and yaw rate

plots give good correlaticon between true and filtered values.
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In Figure B,2 the filter gains are calculated only at the commencement
of the run. Comparison of Figures 8.1 and 8.2 shows no difference in
the plots. [In Table 8.1 a comparisan of gains 1is wmade at the
beginning, middle and end of a run where they are calculated for each
sampling interval. Comparisans show that AK({1,1) and AK(2,2) remain as
very small numbers throughout, AK(3,3} decreases from 1,141 to 0.02485
to 0.005921, uhi}st AK (4,4} remains as a small number., This is in
keeprné with the qualitative conclusions af the previous chapter. Far
AKt4,4} the small value is attributed to the low ratio between
disturbance and measurement noise. A single calculation of the filter
gains, together with a constant § matrix used in the optimal F{lter was
to bHe a significant factor in the software development in CENTAUR;
where the re-calculation of all the relevant matrices with the sampling

time of | second was impossible using the available hardware,.

8.4 Simplification of the Filter Mathematical Model

. . ki
In the full-scale computer simulations a z:xgﬁawgﬂﬁh{ of 5 seconds was

used. This was mainly due to the requirement that the duration of the
sampling 1interval should be approximately one tenth of the dominant
time constant of the controlled object, Zurdgeq (1970} quates the
daminant time caonstant for the Mariner hull as 56.52 seconds and uses a
sample time of 3.65 seconds. For the physical model of the car ferry a
sample time was reduced toc 1 second, primarily to comply with the ane
tenth rule guoted abave, but also for practical purposes concerned with
the model itself. It was felt that a sample time of say 5 seconds

would be too large and allow ton few measurements in a model run, which
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was limited to around 2 wminutes by 'such factors as the need to
re-charge the model batteries at freguent intervals., Bearing all these
factors in mind a sample time of | second was chosen. This meant that
all the on-—bhaoard computer calculations would have to be completed
within one secand, so that each value was available for the next set of
calculations. This presented difficulties iin the microcomputer ta be’
installed in the physical model so that simplification of controller
and filter design was necessary in order tao complete each sat of

calculations in the sample time.

The process of calculating the state, control and disturbance matrices
is in itself a lengthy process demanding a great deal of .computing
time. Once the sampling time of | second had been fixed far the
CENTAUR model it was necessary to ensure that all necessary
calculations were completed within that time interval. Mention of the
difficulties was made in Chapter 3, page 33, for the values af these
matrices would reqguire .recalculation for each sampling interval and
early laboratory tests using the wmicroprocessor to be installed in
CENTAUR showed that it was incapable of undertaking all the recurrent
calculations within one second, Details aof these calculations are
given in Appendix 7, where the appropriate mainframe computer
subroutine MAB is discussed. Referring to equations 3.15 and 3.1& it
is seen that A, B and C are again obtained by using a power series and
the number of terms, L', -of the series approximation is decided
be{nrehand.. A valug of 20 was used in the mainframe computation in
order to ensure the power series equations were sufficiently accurate,
First thoughts were to reduce the calculation time in the microcomputer

by reducing the number of terms. Figures 8,3A and 8.38 shaow the plots
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for a reduction in L° to 5 and ! respectively., Only when the number af
terms decreases below 35 does the accuracy of the track plot degrade
sufficiently to cause concern. It must be pointed ogut that these
figures only apply to the filtgr model, that is the full calculations

still took place in connection with the model of the ship.

With the calculation times still over one second 1t was decided to
attempt a further simplification of the equations governing the A and B
matrices. By plotting values of the components in the matrices against
forward speed and vyaw rate Burns (1984) showed that there was a
linear relatiaonship between the matrix compaonent and either ar both of
the states referred to abnve; with the rudder angle being an additional
consideration in the control matrix. For the HEATHMORE and CENTAUR

models the equations are shown in Table 8.2,

The equations are set out in the form in which they were used in the
computer programs. AR is the 4#4 state transition matrix whilst BB is
the 4#2 control transition matrix. The disturbance transition matrix
is not used in the filter calculations. Figure 8.4 shows the result of
these changes to the calculations of the A and B matrices in the
tilter. The {filtered values of speed (forward and lateral) follaw
closely their respective true values whilst heading and yaw rats were
less coincident, with the measured values. This in turn led to a track
plot which showed the vessel rather too far to the left of the demanded

track when the alteration of caourse commenced.

This condition had already shown up in Figure 8.3B. It <confirms that

as the A and B matrices in the filter become dissimilar to the A and B



matrices tn the ship, the true and filtered tracks diverge because the

true and filtered headings diverge.

It has to be remembered that position is not a state in the reduced
models, and is calculated from speed and heading, which are states, so
that any discrepancy in either of these would cause errars in the track
plat, From the data available it was clear that the filter was
aperating correctly through the noisy speed signals, but rather 1less

efficiently for the low noise heading and yaw rate measurements,

In the gualitative discussion of Chapter 7 (Section 7.1) it was
reasoned that a filter gain approaching wunity would‘ be required if
there was disturbance noise but no measuremént noise. But this assumed
the +filter mode! was an accurate representation of the system. If the
filter model differed ¢from the real! model the error might be minimised,
although not eliminated by using an artificially high gain in the
appropriafe position in the #ilter gain matrix. To test the theory a
filter gain of 1.0 was assigned to each of the relevant components of
the gain matrix, AK(3,3) and AK(4,4). This did not change the track
plot as can be seen when comparing Figures 8.4 and 8.4A. Furthermore,
when the normal filter calculations were re-introduced (Figure B.35)
there was no difference to any of the filtered states when compared
with the standard conditions of Figure 8:1. -This led ta further
consideration of the Kalman Filter gains and to the' possibility of
using state plus state estimation feedback to the optimal contraller.
Figure 8.4 shows the result of these changes to the calculation of A

and B in the filter.



The. high noise values associated with the accelerameters and the low
noise of the gyro-compass and yaw-rate gyroc led in turn to
consideration of whether the low noise signals could be fed directly tao
the contraoller (state feedback) leaving only the noisy signals to be
prnce;sed in the filter. Before making these modifications all four
measured states were used as inputs to the cantraoller as a "contraol”
experiment. This is 1illustrated in Figure 8.6 which shows that
although the true and filtered tracks are very close the vesse]l does
not follow the demanded track, indicating the need for {filtering the

measured states prior to their use as inputs to the optimal controller.

Turning now to consideration of state plus state estimaticn feedback,
Grimble {1980a) suggests that the assumption in many industrial control
problems is that none of the states can be measured directly, in which
case the Kalman Filter has the same dimensions as the plant state space
description, often Eesulting in such a high order controller so0 that
the scheme is impracticable, He goes on to suggest that this is often
unrealistic since some state variables can be measured with & high
degree of accuracy. This is the case with the system used in CENTAUR.
The concept of measurable and unmeasurablie state referred to by
Brimble is not follawed here, but rather the subset of high noise
states is fed to the filter. In the mainframe digital simulations
using the HEATHMORE model no attempt was made to modify the filter, but
fram Figure 8.7 it was seen that there was a substantial improvement
over the oprevious case when measured signals were fed directly to the
controller. Although the speed noise values Hhave been increased in

Figqures 8.4 and B.7 the state plus state estimation feedback compares



favourably with Figure 8.1 when only filtered values were fed back to

the controller.

Traditicnally the mariner has been very dependent upaon his instruments.
Without an accurate chronometer for example it is impossible to obtain
a fix using the well=-proven methods of astro-navigation, and without a
campass all sense of directian is socon lost when out of sight aof land,
Whilst chronometers and compasses were reliable the lass of heading
information in the approaches to aport could be disastrous. However
one of the functions of a Kalman filter is the ability to produce an
estimate of an wunmeasurable state, sa that in the event af a
malfunction of one or more of the measurement sub-systems an estimate
of that state can still be given. Thus an approach would not have to
be aborted in the event of say a gyro breakdaown during the passage into

a port,

Figure 8.8 shows the effect of a gyro compass reading remaining at zero
throughout a run. Although the measured values contain anly the
superimposed gyro noise the vessel follaws thé correct path and the
estimated wvalues of position, speed, heading and yaw rate remain close
to the true values. Particularly interesting is the course angle-time

graph which shows the filter giving a reading clase to the true course.

In Figure 8,9 a gyro malfunction takes place after 49 seconds, whilst
the yaw rate gyro develops a fault after 95 secands. In Figure 8,10
the  lateral speed measurement fails at 653 secoends and the rate gyro at

95 seconds. These points are marked A and B respectively an Ffigures
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8.9 and 8,140, In both of these cases the filtered track is seen to
follow closely the true track although after the second measur;ment
system failure of Figure 8.9 the two tend to diverge from the demanded
track towards the end of the Figure 8.10 run. Whilst these results are
not conclusive they do indicate the ability of a four-state system to
accept 2 malfunction of one of the measurement sub-systems without
degrading the overall performance of the system, whereas with errors in
two measurement sub-systems the system was still capable of automatic
track keeping although the system perfarmance did start to fall off

after the rate.gyro ceased to function,

In Fiqures 8.8 and 8.9 the gyro was made to function incorrectly
because it was reasoned that the loss of a low noise measurement would
be more harmful to system performance than the loss of the high noise
accelerometers, Furthermore the loss of the gyro would have the
greatest effect upan the harbour approach and without an integrated
system using Kalman filter technigues could lead tao the vessel

grounding in the Fairway.

8.8 dOptimal Filter Specification for CENTAUR

The mainframe simulations carried out on the reduced non-linear car
ferry model confirmed the earlier conclusions (Chapter &) that the
recalculation. of the +¢ilter gains for each sanmple ﬁeriod was
unnecessary and that the values need only be calculated once far a
given run ar series of runs. [t was also confirmed that the
mathematical madel of the ship used in khe filter needed to be a good

representation of the plant and would need fregquent wupdating because
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same of the elements aof the A and B matrices were dependent upaon
time-varying values., However it was opossible to obtain a linear
retatiaonship as in - frdﬁﬂe'ﬁ"l g.2. Finally by feeding the mneasured
values of heading and yaw rate directly to the controller it was seen
that the automatic track keeping capabilities of the vessel were not

impaired.

These conclusions led to the following specifications for the filter

software in the physical model:-

i) Using standard deviations obtained in physical model tests the
filter gain matrix will be calculated off-line. These values to be
used throughout a set of runs but arrangements to be made to change

them prior to any individual run.
ii) The equations of Table 2 are to be wused te recalculate the
state and control transition matrices for use ia the filter

calculations,

iii) Allaw choice of state or state estimation feedback for each of

the measured states.
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Table 8.1

a) Gains at Beginning of Run (AK Matrix)

¢.1078E-03

0.0000E 00

0.0000E 00

0.0000E 00

b} .Gains in Middle aof Run

0. 4940E-03
-0, 4343E-04
-0.4917E-09%

0.8463E~07

c)
0. 6477E-07
-0.4435E-08
0.1014E-96

0.3026E-08

Comparison

9. 0000E 00
0.2394E-19
-0.9769E-13

=0,2385E-19

=0.4382E-068
0.3814E-07
0.4319E-06

-0.743SE-08

Gains at End

-0.4435E-08
0.3037E-04
-0.6946E-08

-0,2072E-09

gf Filter Gains

of Run

0.0000E Q0
-0, 3380E-09
0.1161E-01

0.3666E-09

1AK
-0.1701E-0C1
0.1493E-02
0.2483E-01

~0,2914E-03

0.3510E-03
-0.2403E-04
0.5921E-02

0.1840E-04

0.0000E 00

-0,1624E-14

0.6656E-08

0.1761E-14

Matrix)

0.5317E-02

-0,4470E-03

-0.5289E-02

0.9104E-04

{AK Matrix)

0.1901E-03

-0.1301E-04

0.2977E-03

0.8879E-03

for Fiqure 8.1




AA(1,1)=1.0-0. 081 #XHAT (1) -0, 021 #XHAT (4)
AA(L,2)=1,067 % XHAT(4)

AAL1,3)=0.0

AA(1,48)=0,014%XHAT (4)

AA(2,1)=~0,444096%XHAT (4}
AAR(2,2Y=0.995-0.1593785#XHAT(1)-2.05168#ABS(XHAT (4))
AA(2,3)20.0

AA(2,4)=0,05+0,028376%XHAT (11-0.02429*ABS (XHAT (4))
AA(3,1)=0,01575B%XHAT (4)
AR(3,2)=-0.01-0.1012484XHAT (1) +0.6B8684ABS (XHAT(4))
AA(3,3)=1.0

AA(3,4)=0.989-0. 195818#XHAT (1)
AR{4,1)=0,03377#XHAT (4}
AA(S,2)=-0.0295-0. 17164 #XHAT (1) +1.29186*#ABS (XHAT(4)}
AA(4,3J=6.0

AA(4,4r=0,967-0.35436*XHAT(1)

Where XHAT (1)

forward speed (estimated)

AHAT (4}

yaw rate (estimated)

Table 8:2A Linearised A Matrix

-138-



BB(1,1)=-0.03162674U(1)

BB (1,2)==0.000195+0.0000065%U(2)+0.000478+#ABS (XHAT(4))
BB(2,1)=-0,0195+0,071 189 ¢XHAT(1)-0.0045258%ABS (U(1))
BB(2,2)=0.0

BB(3,1)=0.017-0,0595064XHAT (11-0.001464%ABS(U(1))
BB(3,2)=0.0

BB (4,1)=0,0315-0. 1130267 «XHAT (1)

BB(4,2)=0.0

Where XHAT{(1} forward speed {estimated)

XHAT (4)

yaw rate (estimated?

Ui

rudder angle

Table B.2B Linearised B Matrig
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CHAPTER <2

THE PHYSICAL MODEL TESTS

9.1 Introduction

Early in the research programme a physical model of a twin screw car
ferry was borrowed from the National Maritime Igstitute. Tank tests
were carried out at the NHi to obtain the nan- dimensionalised
hydrodynamic coefficiants aof the model. These are illustrated in Figure
9.1. The model was then fitted out with propulsion unit, measurement
systems and finally the microprocessor for the optimal filter and
optimal <controller. Details of the model, together with its
hydradynamic coefficients are given in Appendices 4 and 5. Figures 9.3
and 9.4 show the internél layout of the instrumentation, microprocessor

and rudder controls, whilst Figure 9.3 shows the model afloat on

Crownhill Redervoir, Plymauth,

During sach test run the measured and filtered states, together with
posltion, were racorded in the on-board computer memory. These were
printed out on the conclusion of each run, Data was transferred to the
mainframe computer and for comparison purpases an identical simulation
run was performed using the HEATHMORE model. Where necessary CENTAUR

and HEATHMORE results were then plotted aon common axes,

The position co-ordinates were obtained from the filtered values of
speed and heading and can thus be compared with the estimated position

plots from the computer simulations, which were obtained in a similar



manner. Additionally the four states were each plotted against time.
In each case these were the states fed to the controller, in most cases
the filtered values, although in some cases where the measured values
of heading and vyaw rate were used as inputs to the contraller these

values are plotted on the appropriate graph.

Unless otherwise stated the HEATHMORE and CENTAUR models were identical
with the optimal filter in the physical model conforming to the
specifications written in Section 8.5 of the previous Chapter. The
Kalman filter gains were calculated off-line and burned into an Epram
thip, wWith a provision for changing any gain prior to a run. The
equations of Tablg 8.2 were used in- the recalculatien of the state
transition and contraol matrices in the filter and a choice of estimated

or measured state was provided for,

9.2 Details of Test Runs

The atloat tests were undertaken, in the wmain, in calm weather
conditions. A typical set of plats for these conditions 1is given in
Figqure 9.6, <and the photographs of Figure 9.2 show typical test runs
underway. Fram the track plot it is seen that both the simulated and
actual models follow the demanded track closely until the "helnm over"_
position is reacﬁed after 35 secands (0.38 minutes). At this paint the
course keeping control dominates. 42 seconds after the commencement of
the run the new demanded course comes inte operation and after 56
seconds the track control again dominates, In this run the filter
transition matrices were calculated frem the equations of Table 8.2,

all the «controller inputs were filtered and the filter gain matrix AK



was modified by making ARK(3,3) and AK)4,4) equal to |, All other
filter gains were as giveh in Table 9.1. Table 9.1 also gives a set aof
typical filter gains calculated during a simulation run. Comparison of
the filtered states shows remarkable similarity between the simulation
and model! gains. It must be remembered however that the physical model

gains were calculated off-line.

A similar run, but with the models initially offset by four metres s
illustrated in Figure 9.6A. Again both the simulated and actual moadels
pull in ¢ram their original positions, then follow similar paths until
they each settle down close to the new demanded track. Looking at the
forward speed plots of Figures 9.6 and 9.6A, there was same concern at
the simulation model's increase after the turn was conpleted.
Similarly the }lateral speeds of the simulation showed increases towards
the end of the run. When the simulation run was repeated (Figure 9.7)
with the simulation model filter transition matrices being recalculated
tor each value of k (using the subroutines described in ARppendix 7) the
torward speed settled down after the turn to starboard. These
differences are explained by the simplification techniques used in the
saftware and the difference between simulation and real models by the
differences in the mathematical models used in the filters. Camparison
between Fiqures 9.6 and 9.7 showed the similarity, in all other
respects between simulated and actual models, and the differences serve
to illustrate the problems of producing an accurate computer model of
ship for use in the Xalman Filter calculations. However it can he seen
from Tables 9.2 and 9.3 that the values of the state control matrix
{AA} and the control transition matrix (BB}, using the simplification

technique (Table 8.2), do not differ greatly from those cbtained



using the full software routines,

The run illustrated in Figure 9.8 took place under windy conditions
with some gqusts during the duration of the test. The runm is included
to give an indication of the ability of the system to operate ia such
conditions, although the wind strength was probably egquivalent, under
scaled conditions, to winds up to Force 8 or mare. Towards the end of
the run the wind strength increased and the rudder servas were unable
effectively to control the vessel, but the results show the ¢filter
continuing to operate successfully. In this test the simulated mogel
used the linearised filter equations to obtain the transition matrices,

with AK{3,3) and AK(4,4) of the filter ga?n matrix each changed to {,0.

For control purposes a test run where all the measured values were fed
to the controller was carried gut. Results from this run are shoun in
Table 9.4. MWith forward speed between +1,0 a/s and -2.0 n/s and with
lateral speeds varying between 0 and -12.0 m/s the requirement for
filtering, at least in the speed measurements, Was clearly
demonstrated. These results were not plotted because of the wide
variations in speed. A sideways speed of 12 a/s (24 knots) from a

model maving at 0.75 m/s was obviously a major errar.

In another test run (Figure 9.9) with a breeze at 45 deqrees to the
initial and final tracks the "helm over" was delayed +from 33 to 42
seconds after commencement of the run and the track change ta 36
seconds after commencement of the run. Dther.changes were the wuse of
the measured values of heading and yaw rate giving the state feedback

terms whilst the filtered values of speed gave the state estimation
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terms. Prior to the turn the track plots were similar, but after
completing the turn the actual model is seen toc diverge from the

demanded track. -

Comparison of this set of results with those given in Figure 9.8
suggests that the use af state— feedback of heading and yaw rate
together with state-estimated feedback of the noisy speed signals was a
valid .proposition. An interesting point to note here is the increase
in measured values of speed with time., This was toc be expected for
speed measurements were obtained by integrating the accelerometer
outputs. Even so the filtered values compare favourably with the
computer. model estimated values demonstrating once more the ability of

the filter to successfully operate under adverse conditions.

Staying with the concept of partial filtering Figure 9.10 shows the
results of a straight run with the filter gains as in Table 9.1 and the
filtered speeds and wunfiltered heading and yaw rate as inputs to the
controller. In this experiment the filter gains for AK(3,3) and A(4,4)
were set at 1. Starting from a position 5 metres to the right of ‘the
gemanded traﬁk the actual model is seen to overshoot before starting to
returq to track at the end of the run, This oscillating motion is seen
in the forward speed and course angle graphs whereas the computer meodel
motion” is damped down much mare effectively. A zimilar run (Figure
.11} with the vessel offset by 5 metres to the left of the demanded
track at the commencement of the test run, but with all the estimated
values fed to the controller, showed no aovershoot af either real or
computer model tracks. Comparisan of Figure 9.8 through to 9.11

suggest that, with the measurement systems installed in the vessel,



there is little difference between feeding back only the estimated
values or by using a combination of filtered and measured states, but

that the tuning of the controller is an important feature,

9.3 Analysis of CENTAUR Results

As wWith the computer simulations described in previous chapters the
test runs carried out with the actual model demonstrate the ability of
the optimal filter to oprovide wuseful estimated values from noisy
measurement systems, Camputer memory in the on-board microprocessor
precluded test runs in .excess oaof two minutes, but the results
illustrated here show guite clearly that the combination of an optimal
filter with an optimal controller guides the vessel effectively along,
or cluse..tu, a predetermined track. In comparing the filtered
HEATHMORE and CENTAUR tracks it must be remembered that the computer
simulations took place under the ideal conditions of ns wind or tide,

assumed the vessel was in deep water and without any effects ¢rom a

nearby bank., Although test canditions on the reservair were as near to

ideal as possible no allowance was made for any movement of the water;
or passible bank effects when the model came close to the side of the
reservoir, as it did during the i{nitial leg of many of the runs,
particularly when it overshot the demanded track, It must also be
pointed out that noc allowance was made for air movement which, however
slight, waould if both model and wind had been scaled to full size, have
represented a considerable wind strength. However these small effects
did indicate an ability of the filter toc deal with changing disturbance

patterns.
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A further factor which must be emphasised ﬁaS'the need to simplify the
filter and controller in order to meet the constraints of the hardware
available. [Initially it was hoped to use a shore-mounted Doppler Sonar
positian measuring system, but when costs dictated the use of an
on-board simple inertial navigation system, which Was already
available, it was shown that the filter was able to deal adequately
with the very noisy signalé from the accelerometers. As can be seen
from Table 9.4 the errors in the acceleraometer increased rapidly aver

the period of each test run.

Mention has frequently been made of the limitations of the ctomputer
memory. Whilst other micropraocessors were available, space in the
actual model was at a premium, These factors were in no small way the
reasons why simplifications were carried out but the results given here

indicate that the simplifications were justified.
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a) Kalman Gains For CENTAUR Filter (AK Matrix)
0.00006816  4.478E-09 -0.0000912 -0.0000644
7.874E-08 S.174E-12 -1.059E-07 -7.442E-08

-4,443E-09 -2.93E-13 0.01189 4,.323E-09

-1.099€E-98 -7.226E-13 1.314E-018 1.039€-08

B) Typical Kalman Gains For HEATHMORE Filter (AX Matrix)
0.5784234E-04 -0.44746441E-07  0.4847B45E-02 0.5620660E-06
-0.2283896E-03 0.1747490E-08 -0.1914155£-03 -0.2219289€-07
0.6128203E-03 -0,4742605E-08  0.1133931E-01 0.5954870€E-07

0.14274616E-05 -0.1104826E-08 0.11946500E-03 0.1387233E-07

c) Typical Standard Deviations For Measurement Systems

=0.0253202130 -0.0435431213 -0,0004024084622 -0.00332354214

TABLE 9.1 Comparison of Filter Gains Used in HEATHMORE and CENTAUR
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a) Btate Transition Matrix

0.94684997E 00
0.1107663E-02
-0.6346549E-04

-0.1352967E-03

b) State Control Matrix

=0.1307270E-03
0.3484306E-01
-0.28398756E-01

-0.3470808E-01

TABLE 9.2

~0.2755902E-02

0.8723849E 00

-0.8781582E-01

-0.14815462E GO

0.3029091£-03

0.1753552E-06

-0.3740591E-08

-0.1953357E-07

3.8 Matrin

(AA Matrix in Filter)

0.0000000E 00
0.0000000E 00
0.1000000E 01

0.0000000E 00

in Filter)

-0.4347411E-04
0.2699842E-01
0.8383893E 00

0.6942202E 00
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a) State Transition Matrix (AA Matrix in Filter)

0,94658080E 00 -0.1173969E-01 0.0000000E 00 -0.1540B72E-03
0.4907031E-02  0.83B4499E 00 0.0000000E 00  0,2833132E-01
-0, 1733371E-03 -0.87432446E-01 0.1000000E 01 0.8246310E 00

-0.3714682E-03 -0.1393437E 00 0.0000000E 00 0.6695514E 00

b} State Control Matrix

-0.3974045E-03 0Q.3103B37E-03
0.4019890E-01 0.0000000E 00
-0.3294753E~01 0Q.0000000E 00

-0,4337422E-01  0.00000900E 00

TABLE 9.3 Typical Transition Matrices - Full Software Routines
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TIME FORWARD SPEED LATERAL SPEED HEADING YAW RATE

Sec. m/s m/s Deg. m/s
0 0.639 -0.127 0.52 4,28
5 0.540 -0.143 1.49 2.52
10 0.802 -0.215 -14.12 -3.43
15 0,533 -1.091 -16.55 0.97
20 -0.713 -2.947 -14.95 3.13
23 -0.773 -4.145 -24.12 -3.95
30 -0.879 -4,877 -30.33 0.17
33 -1.270 -3.494 -38.42 g8.04
40 -1.162 -4.265 -37.18 4,23
43 -1.871 -8.918 -39.24 9.11
30 -1.413 -8.711 -42.353 -0.44
33 -1.084 -8.849 -50.42 -3.38
&0 -1;370 -9.400 -57.33 10.65
65 ~1.784 -11,047 -559.63 9.22
70 -1.496 -11.253 -44.70 3.87
75 -1.489 -11.846 -47.03 2.23
80 -1.098 -12.009 -44.99 1.78

Table 9.4 Measured States Fed to the Cantroller in Contral Run
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CHAPTER 10O

CONCILUSIONS AND RECOMMENDATIANS

10,1 Discussion of Results

This research project has been aimed at designing and developing a
suitable digital filter for wse in <conjunction with an optimal
controller so that a large ship can be automatically guided along the
correct channel into, or out of, a gpert. This entailed extensive
mathematical maodelling using the state— space concepts largely

associated with control engineering and resulted in a non-linear model
which compared very favourably when turning circle and zig-zag tests

were compared with those of a full-size vessel,

In the simulations which followed it was shown that the optimal filter
would have enabled a twin-screw car ferry tao be brought into Plymauth
automatically, even though the measurement systems were, in some cases,
extremely noisy. In all cases it Was assumed that the vessel’s
demanded engine revoluticns were constant: It was also assumed that
there were no ather wvessels in the fairway or likely to cause
disruptiaon tul the planned passage. Under these circumstances the
Fesults clearly show that the eight filtered states, give an extremely
accurate inﬁut to the controller. Within the sampling interval .of 5
seconds all relevant calculatiaons were carried out, and hence the data
was updated 12 times in each minute. Na officer of the watch would be
able to undertake observations this frequently, or with the same

precision. He would therefore be forced to err on the side of safety,
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In the system under test the filtered and true tracks are remarkably
similar and follow very closely to the recommended track for deep draft
vessels in the approach to the poart. Certainly they are well within
the limits imposed by the width of the navigable channel showing
clearly that the full system, using measurements from widely fitted
navigation aids, has the potential to guide the vessel automatically

along the predetermined track,

The reduced non-linear cumputer_mudel was used to simplify thelsystem
bearing in mind the limitations imposed by thne physrcal model . Using
the +full capabiljties of the filter, with transition matrices being
calculated for each sampling period, the system was shown to navigate

accurately through very noisy conditions,

Finally it was shown that the optimal filter for the reduced naon-linear
car ferry model (HEATHMORE) worked effectively when installed in the
physical medel (CENTAUR). 1In a series af test runs -carried gut on
Crownhill Reserveir, it was ©&Shown that CENTAUR 'was pulled into the
demanded track, the helm was then automatically put over at the
appropriate time and the vessel came round to the new track at 990
degrees to the original. Computer simulations and test runs showed
that without the wuse oaf the filter the control system was unable to
keep the vessel on her demanded track, although 1in some runs the
heading and yaw rate were unfiltered, giving a degree of control
compatible with the fully filtered system., The photographs in Figure
9.2, whicﬁ were taken during test runs under full filtered control,

shaow how effectively the model was controlled.
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10.2 Conclusions

A comprehensive digital simullation of a ship’'s dynamics has been sat up
and used to observe the time daomain response of a ship in the
approaches to a port when the associated track control system employed

an optimal digital estimator/filter in conjunction with an optimal

—4

contraoller. he simulation was then wused in the design of an optimal
filter for installaticn in a physical model of & car ferry. Tests
undertaken with the physical model £hen confirmed the results obtained
in the digital simulations, leading to a proposed automatic guidance
system for use in the approaches to a port. Use of this system would
make it possible to improve the safety standards in the approaches to a
port particularly in conditions of bad weather, making 1t opossible to
enter harbour in conditigns when the prudent Master would hitherto have
remained "hove to" outside the port limits., In the case of a car ferry

this -would improve the service offered ta the passenger and enable

already tight schedules to be adhered to more efficiently.

Throughout the research it has been assumed that the ship was under
automatic control! using a closed loop feedback system. Operated purely
in the open loop navigation made using say a digital display to give
along-track and off=track positions and velocities together with an
analogue display to show ownship’s position relative to the
surroundings (and other ships) data would be continuously available to
the Master, thus providing an important additicn to the safety of the

ship aperating in restricted waters and narrow waterways.
Impaortant factors to emerge +from research may be summarised as
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follows: -

i) The mathematical model aof the ship used i{n the filter needs ta

be an almost identical replica of the real vessel.

it} Using state-space methods and assuming the state variables are
constant during each sampling period means the equation can be
treated as linear, during each sampie period, This allaows the
lineqr Kalman Filter theory to be-applied, but it does mean that
extensive calculations to obtain new transition matrices have to be
completed  during geach sample time and this imposes severe
restrictions on the microprocessor ta be used. However this
restriction need not apply in a ship-+fitted systam, or in any

situation where a more pawerful microcomputer is available,

iii) Re-calculation of the filter gains need not take place during

each sample time. However, filter gains do change as the transition
matrices change so that re-calculation at least during course and

speed changes is desirable.

ivi Whilst no simplification of the +filter gain equations 1is
possible the state and control transition matrices used in the
filter can be derived from the linear equatians which wauld have ta
be ocbtained for any given model. These equations are principaltly

functions of speed, yaw rate and rudder angle.

v) The filter was able to handle disturbances with non-zero means.
Correlation bhetween individual disturbances ar individual

measurements was alsc acceptable provided the correlation was small.
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For example an x position measurement could not be completely

independent of a y position measurement.
vi) Limited tests showed the ability af the reduced simulation
model to faollow the carrect track with faults in up to 2 of the 4

measurement sub-systems.

19.3 Future Research

Kalman Filter techniques are now being used extensively in marine
applications, oparticularly in the positioning of specialist vessels
warking in the ﬁffshore ail industry and in hydrographic survey work.
Much still needs to be done in connection with the physical model
however. The present work assumes a set of linearised equations for
re-calculatiaons of the state transition and contral matrices in the
filter. This was necessary due to the limitatians of the on - board
micro-computer, It was also shown that the mare accurate heading and
yaw rate signals could be sent directly to the contraller, leaving only
the more noisy signals to be filtered. Although this was classified as
state plus state-estimation feedback no effort was made to change the

filter equations, so that the +filter gain and the state transition

matrices were stiill 4 * 4 matrices,

By suitable partitioning of the matrices of equation set 8.2 it should
be possible to reduce the filter mathematical model, thus allowing the
reduction of the time taken in the full calculations of the A and B

matrices, and a reintroduction of subroutine NAB, and in turn the use

of & subroutine KBFLTR to recalculate the filter gains at least during
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alterations of course and speed,

An alternative 1is to consider the direct measurement of the vessel's
parameters using system ddentification methads together with open loop

tests to improve the mathematical model of the car ferry to he used in

the filter.

Another possibility would be to enhance the computer facility in the
model to allow for a large memory with a faster speed.

Further work will eniail the design and development of a system ta be
installed in one of the craft attached to the Faculty of Maritime
Studies. A more powerful microprocessor will be wused and after
development of the appropriate software in the laboratory, the
hardware/software package will be interfaced with electronic position
fixing systems, already installed in the vessel, to give an autamatic
track keeping systenm, These include Radar, Doppler Sonar, Decca

Navigator and Decca Hi-fix electronic position fixing system.

Further work will entail the addition of a hazard- avaidance system.
Davis (1981) and Colley et al (1984) have undertaken extensive research
programmes to investigate the behaviour of shipping 1in hazardous
situations, These computer simulations have involved the mathematical
modeiling of the International Requlations for Avoidance of Collision
at Sea. This work will lead to the addition of an automatic hazard-
avoidance system to the automatic track keeping system so that the
vesse]l will be guided automatically along some predetermined track, but

will also undertake the correct avoiding action when risk of collisian
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and/or graunding exists.

All of this work will be brought together by the Ship Dynamics and
Control Résearch Group at Plymouth Polytechnic in an integrated

research programme with the following aims:-

i) Imprave mathematical modelling using System [dentification
Technigques and opep loop tests on marine craft available, Real time
methods ﬁf system mathematical model identification and parameter
estimation, without the need for physical model testing, will bhe
investigatad, thus briinging together identification, optimal control

and estimation techniques - Burns, Dove and Beouncer (1982),

i1} Investigate the further use of GState plus State Estimation

Feedback to the Contreller

iii) Development of a complete track and hazard avoidance contraller
for installation 1in a suitable marine vehicle. Investigation will
also be carried out to ensure that the system stability and
integrity remain high when one or @gre navigation aids become

ingperative,

10.4 Concluding Remarks

The operators of today’'s gcean- going and specialist vessels have
several electronic aids available. The traditional role of each
navigation aid has been one of a stand-alagne unit with the mariner, by
his experience and training, co-ordinating the data fram all the

sources available to him in order to optimise vessel nperfarmance. As
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casualtf statistics indicate however, when under stress or at times .of
peak waork load, he is a paoor ca-=ardinatar of the information available
to him, particularly ‘when that information is from a number of
different sources. Furthermore the application of microelectronics ta
ships has been progressing for many years so that the traditional role

of the mariner referred to in Chapter 1 has been changing.

Microelectronics has also been a tontributing factor to the <changing
pattern of the navigation equipment, and the Kaiman Filter techniﬁues
used throughout this project have found a variety of uses in marine
navigation, Dove (1977) suggests the use af Kalman Filter technigues
at sea and four recent papers highlight the recent develapments in this
area. Daniel (1984) points out their wuses in the off—shore ail
industry where dynamic positioning of survey and supply ships is an
important illustration of the use of caontrol technolegy tc maintain a
staticnary position. Grover—Brown and Hwang (19841 give details of the
use of ‘Kalman Filter techniques for precision geodesy whilst Liang et
al (1984) describe the cperational features and certain software and
hardware configuration of a low-cost marine integrated navigation
system designed to enhance navigational accuracy, operational
reliability and position reporting efficiency of marine vessels. This
system uses Kalman Filter techniques. Danson and Kibble (1984) are
concerned with the precise navigation of a vessel in the pileotage and
berthing stages of a voyage. These papers highlight the so-called
"media technology" including satellite communications, which is
bringing about a revolution in the mode of ship aperatiaons, In the
field of modern marine operations there is a need to bring together the

new Information Technolagy, which combines the disciplines of computing
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and telecommunications, with modern control engineering technigues and

naval architecture.

This research programme has, it is hoped, made some small contributian
to the developments in this area by apélying some of these techniques
to the problem of automatically piloting a ship in the approaches to a
port, an area where the mariner is likely to be at maximum stress and

where there is maximum probability of collision and/or grounding.

The need far impravement to the control of large ships in the
approaches to a port was highlighted in a recent Department of Tranport
Report (19840 of a Court of Inquiry on the collision of the car ferries
European Gateway and Speedlink Vanguard off Harwich in December 1982,
when each Master believed the other would alter caourse to let him past.

The report goes on to state, "It is our belief that this collision
occurred because of a degree of aver camplacency on the bridge of both
vessels in the performance of what may have appeared routine and
unexacting navigatian," New traffic arrangementé have now been
introduced in the Harwich deep- water channel where the collision
occurred, but if the Eurcpean Gateway had heen in the correct position
in the deep water channel such a collision might naot have happened,
One of the functions of the system developed in this research is to

ensure that each ship is in the correct position at the correct tinme.
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APFENDI X 1

NOTATION

a)  Matrices and Vectors

A " Discrete State Transitian Matrix
B Discrete Control Matrix

£ Discrete Disturbance Matrix

D Discrete Reverse Transition Matrix
E Discrete Reverse Control Matrix
F Continuous Time System Matrivy
Ge Continuous Time Cantrol Matrix
b Continuous Time Disturbance Matrix
H Measurement Matrix

K Kalman Gain Matrix

x| Covariance of Measurement Noise
il Reverse Time State Vector

N Covariance aof Disturbance Noise
N’ Residual Vector

P State Error Covariance Matrix

2 State Error Weighting Matrix

R Control Weighting Matrix

r Desired State Vector

§ Feedback Gain Matrix

u Control Vector
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v Command Matrix
¥ Noise Vectaor
- W Ricatti Coefficient Matrix
o Disturbance Vector
g State Vector
2 Best Estimate aof State Vectoar
z Measured State Vector

b) 8Bcalar Symbols

A,B,C State Equation Coefficients

I. Moment of Inertia About I Axis (kg mz)
Performance Index

kyi Integer Counters

Length of Ship Between Perpendiculars (n)

Number of Terms in Power Series

Mass af Ship (kg)

Na,Np Actual and Demanded Engine Speeds (rad/s)

Total Mament Applied to Ship (Nm)

N Ny Yaw Hydrodynamic Coefficients

etc.

r,r Angufar Velocity and Acceleration of Ship about I Axis

Sampling Time Interval (s)

Time (s}
Tn Time constant of Main Engines (s)
Tr Time constant of Rudder Servo (s)
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u Track Velocity (m/s)

u Forward Velocity of Ship {(m/s)
Ue,Ue Forward Components of Wind and Current Velocities (m/s)
v Lateral Velpcity of Ship (m/s)
VayVe Lateral Components of Wind and Current Velocities (m/s)

Xu,Y¥asyZs Ship Related Cartesian Ca-aordinates (m!

X Total Force on Ship in Faorward Direction (N)

X.,%-, Surge Hydrodynamic Coefficients

etc.

Xoy,YosZo Earth Related Cartesian Co-ordinates (m)

Y Total Lateral Force on Ship (N}

Your¥ry Sway Hydrodynamic Coefficients
C\'.(_

t} Greek Symbols

B ,ii Transpose of Augmented State Transition Matrix and
Best Estimate

Ba, 8o Actual and Demanded Rudder Angles (rad)

e Density of Water (kg/mx)

#’Afku Actual and Demanded Heading of Ship (rad)
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APPENDIX 2.

UASI—-IL INEAR MODEL COEFFIENTS

Equation set (3,7) represents the guasi-linear faorm of the mathematical
model used in the main frame computer simulations. The terms K, L, and

M were obtained in the process of rearrangement and are defined below,

a) K Coefficients

Kz = Xn

m - X
Ke = X

m o= Xa
Ke = me

m - X“
Kvul. = Kq

b) L Coefficients

L. = Y, + YEE N'
! - YBB Nea
Y, = 5
m - Yo
Yee = Yo
mo- Y,

Ny = Ng

I = N,
Neo = N &
: I. - N:
L2 = Y—i + YEE Nz
1 = Yan Noo
Yz = Yn
m - Y,
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Nz = Ng

I - N:
La = Yﬂ
1 = YEB Nba
Ya = —-mr
M - Yv.
Le = Y, + YogNg
1 - YBE Né:b
Yo = Yx
n - Y&
Ne =z Nz
I'L - N'.
Le = Yﬁ + YEE -NE
I - Yas Noo
YE = Yq-
m - Y
Na = ‘Nv
Te - N»
LHZ = Yuz + YEEN 2
1 - YeeNg,
sz = Y
an = Nb

LHR = Yuﬂ + YBENHQ
1 - YesNgs

¥na = Yoo,

¢) M Coefficients

M. = NJ + N== Yl
1 = Nbb YBB
Mz = Nz + N”2
1 = Nbb Yaa
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Ma

Mo

He

]

]

N Y
—_—- 4
L - Nbb Yae

N, + N ¥
e _tao (g
{ - Nbb Yga

Ng + N Y
B o4 lg
1 = NabVag

&uZ,* Nbb Y-z

1t - Nbevgg

qu + Nbb Y_4

1 - Nﬁﬁvea
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AFPENDIX 3

NONM-LINEAR MODEL COEFFICIENTS

Equation set (3,28) represents the non linear form of the mathematical
model used in the main frame computer simulations., The ¥, B, and C,
coefficients were aobtained from the non dimensionalised hydradynanmic

derivatives,

al X Coeffients

£H = T S_?___ Teg =172 L~
m - X
Xz = $onu + ¥opn ng Tin = 172 Xon
m - Xa
Xa = X, + Tou + T, . uz Xoo = 1/2 %,
m - Xg _
oo = 176 Xuua
Xo = Yyuv + ar Tov =172 X,
m - Xa ’
Xa = X..r T =172 X,
m - X
anz le

xu3= K,.,:;

b} B Coefficients

B[ = Yl + YEE Nl
1 - YEB N_bb

[}

Yo = _Yg+ Vgge 8.2 Y, = 1/6 Y.
Pa——pY —;5&— $8¢ 868

Yea = Y&

Ny 1/6 N

5&s 868§

[
=

+
L=
kg

N

=|
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Nbb = Ni
[z - N

Bz = Yo, + ¥ N-
1 - Yoo Ngso

Y2 = Vnn N4

m =Y

Nz = Hﬁn Oa

[z = N;

Bq = Yq

1 - YEE Nbb

Bb = Yﬁ + YﬁgNa
1 - Yse Nbg

1/2

Yo =Y, + T ourv + T o vz » Yoovz * ?ivaAv

m - Ye

N@ = &1.+ ﬂ,v,rv + vavvz + NﬁllSAV

Iz - N}

Bs = Yg + Yﬁﬂ Ng
t - Yaa Nbé
Ya = YC
m - Yo
Ne = N,
Iz - N;

Bn2= L-z

Bn4= Luq

t) £ Coefficients
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vvvv

Vey w

N;vv
vav
Ntvv

1/4

1/4

174

174

= 1/6

176

Yan

Nnn

Yrvv
vav

Y'vv

erv
vav
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C, = N, + Nee YI
I = Naoso Yas

€z = Ng + Neo Yo

1 = Nooe Yaa
Ca = Nee Ya
l - Nbb Yaa
Cs = Ng + Nego Ya
1 = Néé YEE
Ca = NE + =£ Y
I = NooYas
Cn2= sz
cw4= H~4
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APPENDI X 4

HYDRODYNAMIC DERIVATIVES

The various hydrodynamic derivatives which appear in the equaticns of
mation have numerical values which depend wuwpon the gecmetry of the
ship. This involves calculating forces and moments acting upon a given
ship with constant forward velocity and also when lateral and angular

velocity exist,

The hydrodynamic coefficients for the Mariner hull were taken f{from
pubfished papers such as Morse and Price (1961). For the physical
model of the car ferry tests were carried out at the National Maritime
Institute’s towing tank at Teddington, London, after which apen loop
tests were undertaken at Plymouth, At Teddington the model was towed
along the tank at various angles of attack to the model path. A
dynamometer measured the forces and moments experienced by the model,
These were plotted against spsed, ac&eleratinn, engine revalutions and
angle of attack to obtain the derivatives. The tank testing techniques
and the open loop tests involving turning circles, spiral tests and zig-
zag manceuvres are described in Abkowitz (1964). The non -dimensional
coefficients together with the dimensionalising factors are given in

this appendix.
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| verevarive CAR FERRY HULL | MARINER HULL DIMENSIONALISING

FACTORS

X's 0.0 0.0 0.5¢0 L u*

X 0.0 0.0 0.5eL> {us2m

X 76.1783 # ~6000.0 *

X -0,000426 -0.00042 0.5elu

X wu ~1486.16 * -1860.436 * 0.5¢ L

X wun -450.1888 * -272.047 #

X un -39448.78 * -15155.799 *

X' 0.0 0.0

X' -0.015 | -0.0012 0.5 pLug

X e 0.0 0.0

L -0.00617 ~0.008988 0.5 L’

X'ee 0.0 0.00018 0.50L"

X s -0.00221 -0.,000948 0.5 L ub

X 7339.8 # 21855.5 #

* Dimensionalised Coefficient




DERIVATIVE CAR FERRY HULL | MARINER HULL  |DIMENSIGNALISING

FACTORS

Ve 0.003418 0.00255 0.5t u®

Y an 0.0 2104,307 *

v 0.0 0.0

Y. 0.0 0.0

vy -0.0098475 -0.0116 0.5¢ L u

Yoo -0.007583 -0.00748 0.50 L

Yo, 0.0004926 0.0022 0.5¢L%u

Y, -0.0001348 -0.000086 0.50L

Ve 0.0 0.0

Y'va -0.0870 -0.0116 0.5 g L u,

Yuun 0.441178 -0.080782 0.5eL /u

Yo, 0.022934 0. 15354 0.5eL>/u

Y sss -0.0009569 -0.00082 0.5¢L u*

Y5 0.0 0.011894 0.5¢L"

* Dimensianalised Coefficient
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DERIVATIVE CAR FERRY HULL | WARINER HOLL  |DIMENSIONALISING

FACTORS

N's ~0,0016011 =0, 001274 0.50LC u*

N o 0.0 169291, 5

N 0.0 0.0

N 0.0 0.0

N -0. 0043535 -0. 002345 0.5¢ Cu

N'y -0.000230 -0.000227 0.5¢ L%

N, -0.002143 -0.00166 0.5 gL du

N, -0. 0006952 ~0..000437 0.5 %

N e ~0..007200 0.0 0.5 B, L ug

N'va ~0.002600 -0.002635 0.50, L u,

N vn -0.0326335 0.0146341 0.5¢L fu

N oy -0.047235 -0.05483 0.5¢L"/u

N'6eo 0.0007421 0.00041 0.5¢ L u*

N'g oe 0.0 -0. 00489 0.5¢L°

¥ Dimensionalised Coefficient
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APFENDIX S

GENERAL DATA

FOR MODELS

URCHIN
TRELEVEN TREMAYNE HEATHMORE
VIGILANT CENTAUR
LENGTH (m) 160.9 150.0 3.419
BEAM (m) 23.17 24.8 0.565 .
DRAFT {m) 9.07 3.9 0.134
DISPLACEMENT (kg) 17062900.90 14400000.0 166.4
BLOCK COEFFICIENT 0.6 0.64 0.54
PROPELLOR TYPE RIGHT HAND . TWIN SCREW - TWIN SCREW
SINGLE SCREW CONTRA CONTRA
MOMENT OF I[NERTIA I; 36.8113 24,36393 149,8937
ABOUT MASS CENTRE %107 C %107 ¥10°7
RUDDER TIME CONSTANT 2 2 -
" ENGINE TIME CONSTANT 2 2 -
SAMPLE TIME {s) 3 .9 )
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AFPPENDI X &

THE COMPUTER PROGRAMS

A 6.1 MHainframe SimMulations - Master Seqment

To facilitate opraogramming the simulation models were divided into a
master segmemt and a series of subroutines. All the mainframe
programming was undertaken in .FORTRAN IV. The master segment was
altered slightly depending upon the desired simulation. The version
given in this appendix simulates the passage of a twin screw car ferry
into the Port of Plymouth, [t was the full-scale non-linear model
referred tao as Tremayne in the main text. -A detailed flow chart is

given in :Figure A&.!

The following variables are used:-

AK(8,8) Kalman Filter Gain Matrix
B(8,2) State Control Matrices
c(g,4: Disturbance Matrix
DELTO(250) Actual rudder angle
DELTM(250) Measured rudder angle
DELTE(250) Estimated rudder angle
DELTD(250) Demanded rudder angle
F8,8) Continuous Transition Matrix
G(8,4) Forcing Matrix
H(8,8) Measurement Matrix

RNO (2307, RNM(250) Actual, measured, estimated
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RNE(250), RND(250)
PSIO(250), PSIM(250)
PSIE(250), PSID(250)
918,8), R{2,2)
RO(250), RM(250),

RE (250) ,

RMINS (250)

SDR(8), SDA(4)

ui2)
USHIP(250), UN.(250),

UE (2504 ,

VSHIP(230), VM(250),
VE(250)

XOLD (8}, XNEW(8)

X0{250), Y0(250)
XM(250), YM(250)
XE(250), YE{250)
XD(250), YD(250)

I0LD¢B), INEW(B)

and demanded rudder angles.

Actual, measured, estimated

and demanded heading.

Weighting matrices used in controller.
Actual, measured and

estimated yaw rates

Time in Minutes

Standard deviatién for measurement and disturbance
noise

Contral Vector

Actual, measured and estimated

:oﬁpunents af ship's speed alaong Fore and Aft
line

Actual , measured and estimated

lateral ship speeds

Values of state vector at beginning

and end of each sample time

Actual ship’'s position

Measured position

Estimated position

Demanded position

Measured values of state vector at beginning

and end of each sample period
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START

READ IN INITIAL CONDITIONS AND CONTROL PARAMETERS

I
!

FLOT OUTLINE CHART OF PLYMOUTH SOUND USING SUBROUTINE PLYM

CALCULATE A and B MATICES USING SUBROUTINE NAB
AND ITS ASSOCIATED SUBROUTINES

CALCULATE VALUE OF STATE VECTOR AT TIME (K+1}

ADD MEASUREMENT NOISE TO STATE VECTOR
TO PRODUCE MEASURED VALUE OF STATE

CALCULATE BEST ESTIMATE OF STATE VECTOR
USING SUBROUTINES DPTFIL AND KBFLTR

|

CALCULATE CONTRGL VECTOR USING SUBROUTINE OPTLCON
AND ITS ASSOCIATED SUBROUTINES '

L

ALTER COURSE/SPEED IF REQUIRED

|

PLOTTING CALCULATIONS

NO

AL

PLOT GRAPHS
PRINT DATA

Figure A6.] Overall Flaw Chart
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C SHIP OPTIMAL CONTROL SIMULATION PROGRAM SHIP CO-0ORDS. . ...
c PLUS OPTIMAL FILTER (KALMAN-BUCY)

c FOR FULL SI1ZE SHIP
c .
Cc

REAL#4 A(8,8), AA(B,8), AK(8, 8), AXHT(8); AXBU(8), AX(8),
B(8, 2), BB(8, 2). BBU(8), BU(8),
CWU(B), CC(8, 41,C(8, 4),

DRUDD(250), DELTO (250}, DELTM(250), DELTD(2%0),
DELTE(250),

F(8,8)

F41X(250), F42X(250), F44X(250), F46X(250),
F48X (250),

F&a1Y(250), F&2Y(250), FLAY(250), FA&LY (250),
F&8Y(250)

FB1N(250)., FB2N(250), FB4AN (250}, FBAN(250),
FB8N(250),

6(8, &), QU8 2),

H{B.8), HXN(8),

PS10(250), PSIM(250), PSIE(250), PSID(250),
a8, 8),

RND (250), RNE (250}, RNM{250), RNO(250),
RO(250), RE(250), RM(250), RMINS(250), R(2, 2),
5(2,8), SDR(8), SDA(4),

T(250), _
U(2),U0(250), UE(250), UM(250), USHIP(250),
UW(200, 4), USHID(250),

VO (250), VM(250), VE(250), VSHIP (250, VFOR (2, 500),
V(200, 8),

W8, 8), WUS(200, 4), WP1(8, 8), WU(4), WUM(4),
XOLD(B), XNEW(8), XHAT(8), XHAT1(8), XHAT2(8),
X0(250), XD(250), XE(250), X(250),

YO(250), YD(250), YE(25Q), YM(250),

ZDLD(B), ZNEW(B), Z1(8), Z2(8)., ZDIFF(8),

REAL KZ(8)

COMMON RIN(8, 500), YOUT (8, 250)

% o e Ok ok W %k ok

%

% %k % 3 ok e ok A sk o3k ok de ok kot e sk %k %

c
C PLOT PLYMOUTH SOUND
c
CALL PLYM(START, DELTA)
c
c
C READ IN CONTROL PARAMETERS
c
READ {5, 101 )N, NX, NG, NB, NC, NM, IFIN, MODE. TSAMP
101 FORMAT(SIS,F10. 9)
C
C READ IN IP, IM, & INITIAL VALUE FOR K
c
IP=NC
IM=N
K=1
c
C CALCULATE STATE TRANSITION MATRIX
c .

CALL MATRED(F, N, N}
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OO0 0O0O0O0O0000

OO0

sNeNsNs NNy

noon

s NeNsNsRe NN

o000

CALL MATRED(G,N,NG)

CALL TRNMAC(F. G, AA, BB, CC, N, NG, NB, TSAMP)
CALL MATRED(G. N, N)

CALL MATRED(R, NB, NB)

READ IN H MATRIX

CALL MATIDN(H. N)

XOLD=EXISTING STATE

XNEW=PREDICTED STATE AFTER TSAMP SECONDS

CONVENTION: XOILD(1)=DELTA X0LD(2)=NA XOLD(3)=X0
XOLD(4)=U XOLD(5)=Y0 XOLD(6)=V
XOLD(7)=PS1 XoLp(8)=R

INITIAL CONDITIONS FOR STATES AND BEST ESTIMATE OF STATES

CALL MATRED(XOLD, M, NX)
CALL MATEQL ( XHAT, XOLD, N, NX)

X0, YO, U0, VO=POSITION AND VELOCITY RELATIVE TO REFERENCE
CO-ORDINATE SYSTEM

INITIAL POSITION OF SHIP ON REFERENCE CDORDINATE SYSTEM

READ(3, 103) XC(1),Y0(1),PSIO(1),U0(1),Vv0(]1},RO(1)
103 FORMAT (46F10. 5)

.DETERHINE RICCATI FEEDBACK MATRIX AND COMMAND MATRIX

CALL RICAL(F.@, GU, AA, BB, O, R, S, W, XD, YD, VFOR; TSAMP
%, N: NB. NM. NN, IFIN)

NPLOT=175

NPLOTI1=NPLOT+1

NPLOT2=NPLOT+2

T(1)=0.0

UVEL=SART( (XOLD(4) ##2)+(XAOLD (&) ##2))

READ IN DISTURBANCE VECTOR WITH STANDARD DEVIATIONS
WU (1)=UCURRENT (MEAN)

WU(2)=VECTOR ANGLE ALPHA(MEAN)

WU(3)=UAIR (MEAN)

WU(4)=VECTOR ANGLE PHI (MEAN)

CALL MATRED (WU, NC., NX)
CALL MATRED (WUS, 200, 4, 400)

CORRECTION FACTORS FOR DISTURBANCE NOISE
CD1=1.0
CD2=CD1

CD3=1.0
CD4=CD3
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DISTURBANCE NOISE STANDARD DEVIATIONS

Oooo0n

Spe(1)=0. 2#CD1
SDQ(2)=0. 35#CD2
-8DQ@(3)=3. O*#CD3
SDQ(4)=0. 35+#CD4

CORRECTION FACTORS FOR MEASUREMENT NOISE

o000

Ci=1.
ca2=1.
C3=1.
C4=1.
CS=1.
Cos=1.
C7=1.
C8=1.

e NeNoRoeNeNoNoNal

c .
C READ IN MEASUREMENT NOISE WITH STANDARD DEVIATIONS
c

CALL MATRED(V, 200, 8, 400)

SDR(1)=0, 002#C1
SDR(2)=0. 002#C2
SDR(3)=235. 0#C3
SDR(4)=0. 25#C4
SDR(5)=25. O#CS
SDR(6)=0. 25#Cé
SDR(7)=0. 017#C7
SDR {B)=0. 00399+#C8

C INITIAL CONDITIONS FOR MEASURED VALUES OF STATE VECTOR

ZOLD<1)=X0LD(1)+V (1, 1)#C1
Z0LD(2)=X0LD(2)+V (1, 2)#C2
ZOLD(3)=X0LD(3)+V(1, 3)#C3
Z0LD(4)=X0LD(4)+V (1, 4)#C4
ZOLD(5)=XOLD(35)+V{1, 5)#C5S
ZOLD(&6)=XDLD(6)+V (1, 4)#(CH
ZOLD(7)=X0LD(7)+V(1, 7)%#C7
I0LD(8)=X0LD(8)+V(1,8)#C8

SET CONSTANTS TO CONVERT SCALES

aooOn

RADCON=57. 2957795
REVCON=30/3. 14159

XM(1)=X0(1)
YM(1)=Y0(1)
XE(1)=X0(1)
YE(1)=Y0(1)
PSIO(1)=XOLD(7)#RADCON
PSIM(1)=Z0LD(7)#RADCON
PSIE(1)=X0LD(7)#RADCON




OoOn0n

oo0 O

(s NeNg!

RO(1)=X0LD{8) #RADCON
RM(1)=ZOLD(8) #RADCON
RE(1)=X0LD(S)#RADCON
USHIP (1)=X0OLD(4)
USHID(1)=RIN(4, 1)
UM(1)=Z0LD(4)
UE(1)=XHAT(4)

VSHIP (1)=XOLD(&)
VM(1)=Z0LD(&)
VE(1)=XHAT2(&)
RNO(1)=X0OLD(2) #REVCON
RNM(1)=Z0LD(2)#REVCON
RNE ( 1)=XHAT (2) +REVCON
RND(1)=U{2)#REVCON
PSID(1)=RIN(7, 1) *RADCON
RMINS(1)=0. 0

T(1)=0. 0

UCURM=WU(1)
ALPHM =WU(2)
UAIRM=WU(3)
PHIM=WU(4)

START SIMULATION

DO 10 K=1, NPLOT
KK=(K/50) =50

UVEL=SQRT({XOLD(4)##2)+(XOLD{(A)#n#2))
COMPONENTS OF UCURRENT AND UAIR IN X AND Y DIRECTIONS

GAMMA=X0OLD(7) - ( (ALPHM+WUS (K, 2) )#CD2)+1. 370794
WU (1)=(UCURM+UWUS (K, 1) Y#SIN(GAMMA ) #CD1

UW(K, 1)=WU(1)

WUM( 1 )=UCURM#SIN(GAMMA) #CD1

WU (2)=(UCURM+WUS (K, 1) ) #COS (GAMMA) #CD1

UW (K, 2)=WU(2)

WUM(2)}=UCURM#COS(GAMMA) #CD1

ANG={ (PHIM+WUS (K. 4))#CD4)-X0OLD(7)
WU(3)=(UAIRM+WUS(K, 3) ) #COS (ANG ) #CD3+XOLD(4)
UW K, 3)=WU(3)

WUM(3)=UAIRM#COS(ANG) #CD3+X0OLD(4)
WU(4)=(UATIRM+WUS (K, 3) ) #SIN(ANG ) #CD3+X0OLD(6)
UW(K, 4)=WU(43)

WUM(4)=UAIRM®SIN(ANG) #CD3+X0OLD(&)
UA=SART{WU(3) #x2+WU (4 ) ##2)

CALCULATE THE SYSTEM DISCRETE-TIME MATRICES A AND B
CALL NAB (A, B, C, N, NX, NG, NB, NC, IFIN, K, LOOP., T, WUM,

&TSAMP, XOLD, UVEL., UA, F41X, F42X, FA44X, F44X, F48X, WU, UD1, UD2,
&Fb61Y, F&2Y, FLAY, F&6Y, F&EY, FB1IN, FB2N, FBAN, FRBS&N, FBE8N)






DRUDD(K)=U(1)
DELTD(K)=U(1)#RADCON
DELTO(K)=XOLD( 1 ) #RADCON
DELTM(K+1)=ZNEW(1 ) #RADCON
DELTE(K+1)=XHAT2(1)#RADCON
! USHIP(K)=X0OLD(4)

i USHID(K)=RIN(4, K)
UM(K+1)=ZNEW(4)
UE(K+1)=XHAT2(4)
VSHIP(K)=X0OLD(&)
VM(K+1)=ZNEW( &)
VE(K+1)=XHAT2(&)
RNO(K)=(X0OLD(2) #+REVCON)
RNM(K+1)={ZNEW(2)#*REVCON)
RNE(K+1)=(XHAT2(2)#REVCON)
RND(K) =(¢U(2)#*REVCON)
PSID(K)=RIN(7. K)#RADCON
RMINS(K)=T(K)/50. 0
T(K+1)=T(K)+TSAMP

c

¢ SPECIFY OUTPUT VECTOR AND UPDATE STATE VECTOR

C
DO 20 I=1,8
YOUT(I,K)=XOLD(I)
XOLD(I)=XNEW(I)
XHAT({I)=XHAT2(I)
ZOLD(TI)=ZNEW(1)

20 CONTINUE
10 CONTINUE

END OF SIMULATION

PLOT SHIP TRACK

anoon ann

XD(NPLOT1)=0.0
XD{NPLOT2)=200.
YD(NFLOT1)=0. 0
YD(NPLOT2)=200.
XO(NPLOT1)=0. 0
XO(NPLOTZ2)=200.
YO(NPLOT1)=0.0
YO(NPLOT2)=200,
XM(NPLOT1)=0.0
XM{NPLOT2)=200.
YM(NPLOT1)=0.0
YM(NPLOT2)=200.
XE(NPLOT1)=0.0
XE(NPLOTZ2)=200.
YE(NPLOT1)=0. 0
YE(NPLOT2)=200.

c 0o ©o o o O O O

CALL NEWPEN(1)
CALL LINE(YD, XD, NPLOT, 1, 12, 2)
CALL LINE(YM, XM, NPLOT. 1, 0. 0)
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CALL NEWPEN(2)
CALL LINE(YO. X0, NPLOT, 1, 12, 3)
| CALL NEWPEN(3)
i CALL LINE(YE. XE, NPLOT, 1,12, 1)
| CALL NEWPEN(1)
| C
C PLOT ACTUAL RUDDER ANGLE
c
CALL PLOT(50.0,1.0,~3)
CALL SCALE(RMINS, 20. 0, NPLOT, 1)
CALL SCALE(DELTM, 10. 0, NPLOT, 1)
DELTO(NPLOT1)=DELTM(NPLOT1)
DELTO(NPLOT2)=DELTM(NPLOT2)
DELTE(NPLOT1)=DELTM(NPLOTI)
DELTE (NPLOT2)=DELTM(NPLOT2)
CALL AX1S(0.0.0.0,15HTIME IN MINUTES, —15.
%20. 0, 0. 0, RMINS(NPLOT1), RMINS(NPLOT2))
CALL AX15(0. 0, 0.0, 23HRUDDER ANGLE IN DEGREES, +23,
%10. 0, 90. 0, DELTM(NPLOT1 ), DELTM(NPLOT2))
CALL LINE(RMINS, DELTM, NPLOT, 1,0, 0)
CALL NEWPEN(3)
CALL LINE(RMINS. DELTE,NPLOT, 1,10, 3)
CALL NEWPEN(2)
CALL LINE(RMINS, DEL.TO. NPLOT, 1, 10, 1)
CALL NEWPEN(1) _
CALL SYMBOL(2. 0, 9. 5, 0. 25, 12HRUDDER ANGLE, 0. 0, 12)
c
C PLOT DEMANDED RUDDER ANGLE
c
CALL PLOT(0.0.15.0,-3)
CALL SCALE(RMINS, 20. 0. NPLOT, 1)
CALL SCALE(DELTD, 10. 0, NPLOT, 1)
CALL AXIS(0.0,0.0, 1SHTIME IN MINUTES, -15,
%20. 0, 0. 0, RMINS(NPLOT1), RMINS(NPLOT2))
CALL AXIS(O. O, 0.0, 23HRUDDER ANGLE IN DEGREES, +23,
%10. 0, 90. 0. DELTD{(NPLOT1), DELTD(NPLOT2))
CALL SCALE(DELTD, 10. 0, NPLOT, 1)
CALL LINE(RMINS, DELTD, NPLOT, 1,10, 5)
CALL SYMBOL(2. 0.9. 5, 0. 25, 21HDEMANDED RUDDER ANGLE,
%0. 0, 21)

c
C PLOT LATERAL SPEED
c
CALL PLOT(25.0,-15.0,-3)
CALL SCALE(RMINS, 20. 0, NPLOT, 1)
CALL SCALE(VE, 10. 0, NPLOT, 1)
VSHIP (NPLOT1)=VE(NPLOT1)
VSHIP (NPLOT2)=VE(NPLOTZ)
VM{NPLOT1)=VE(NPLOT1)
VM{NPLOT2)=VE (NPLOT2)
CALL AXIS(0.0,0.0,15HTIME IN MINUTES, -15,
%20. 0, 0. O, RMINS(NPLOT1), RMINS(NPLOT2))
CALL AXIS(0. 0.0. 0, 22HLATERAL SPEED IN M/SEC, +22,
%10. 0, 90. 0, VM(NPLOT1), VM(NPLOT2))
CALL LINE(RMINS, VM, NPLODT, 1,0, 0)
CALL NEWPEN(3)
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CALL LINE{RMINS, VE, NPLOT. 1, 10, 3)
CALL NEWPEN(2)
CALL LINE(RMINS, VSHIP, NPLOT, {, 10, 1)
CALL NEWPEN(1) :
CALL SYMBOL (2. 0,9. 3,0, 25, 21HLATERAL SPEED OF SHIP, 0. 0,21}
C
C PLOT YAW RATE
C
CALL PLOT(0.0,15.0,-3)
CALL SCALE(RMINS, 20. 0. NPLOT, 1)
CALL SCALE(RM, 10. O, NPLOT. 1)
ROCNPLOT1 )=RM(NPLOT1)
RO(NPLOTZ2)=RM(NPLOT2)
RE(NPLOT1)=RM(NPLOT1)
RE(NPLOT2)=RM(NPLOT2)
CALL AXIS(0.0,0. 0, I1SHTIME IN MINUTES,-15,
%20. 0, 0. O, RMINS(NPLOT1.), RMINS(NPLOT2))
CALL AXIS(O. 0,0. 0, 22HYAW RATE IN DEG/SECOND, +22,
%10. 0, 70. O, RM{(NPLOT1). RMC(NPLOT2))
CALL LINE(RMINS, RM, NPLOT. 1, 0.0}
‘CALL. NEWPEN(3) '
CALL LINE(RMINS, RE,NPLOT. 1.,10.3)
CALL NEWPEN(2Z2)
CALL LINE(RMINS, RO, NPLOT, 1,10, 1)
CALL NEWPEN(1)
'CALL SYMBOL (2, 0, 9. 5, 0. 25, 8HYAW RATE, Q. 0, 8)
C
C PLOT COURSE ANGLE
c
CALL PLOT(25. 0, -15. 0, -3)
CALL SCALE(RMINS, 20. 0, NPLOT., 1)
CALL SCALE(PSIM, 10. 0, NPLOT. 1)
PSIO(NPLOT1)=PSIM{NPLOT1)
PSIO(NPLOT2)=PSIM(NPLOT2)
PSIE(NPLOT1)=PSIM(NPLOTI1)
PSIE(NPLOT2)=PSIM(NPLOT2)
PSID(NPLOT1)=PSIM(NPLAOTI)
PSID(NPLOT2)=PSIM(NPLOT2)
CALL AXIS(0.0.,0. 0, 1SHTIME IN MINUTES, -15,
%20. 0, 0. 0, RMINS(NPLOT1), RMINS(NPLOT2))
CALL AXIS(0. 0, 0.0, 23HCOURSE ANGLE IN DEGREES, +23,
&10. 0. 90. 0, PSIM(NPLOT1), PSIM(NPLOT2))
CALL LINE(RMINS, PSIM, NPLOT, 1,0,0)
CALL LINE(RMINS,PSID.NPLOT,1,10,2)
CALL NEWPEN(3)
CALL LINE(RMINS,PSIE. NPLOT, 1, 10,3}
CALL NEWPEN(Z2)
CALL LINE(RMINS,PSIO, NPLOT, i,10,1)
‘CALL NEWPEN(1)
CALL SYMBOL(2.0,%. 35,0. 25, 1ZHCOURSE ANGLE, 0. 0, 12)
c
C PLOT F MATRIX VARIATION WITH TIME
Cc
€ X ELEMENTS
C
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CALL PLOT¢0O. 0, 15. 0, -3)

CALL SCALE(RMINS, 20. 0, NPLOT, 1)

CALL SCALES(F41X,10. 0. NPLOT, 1)

CALL SCALE(F42X, 10. 0, NPLOT. 1)

CaLL SCALE(F44X, 10. O, NPLOT. 1)

CALL SCALE(F46X, 10. 0, NPLOT, 1)

CALL SCALE(F48X. 10. 0, NPLOT, 1)

CALL AXIS(0.0,0. 0, I1SHTIME IN MINUTES, -135,
&20. 0, 0. O, RMINS(NPLOT1 ), RMINS(NPLOTZ2})

CALL AXIS(0.0,0. 0, 19HF MATRIX X ELEMENTS., +19,
&10. 0, 20. 0, FA1X(NPLOT1}, F41X (NPLOT2))

CALL LINE(RMINS, F41X, NPLOT, 1, 10,1)

CALL LINE(RMINS, F42X, NPLOT. 1,10, 2)

CALL LINE(RMINS,F44X, NPLOT,. 1,10, 4)

CALL LINE(RMINS, F4&6X, NPLOT, 1,10, 5)

CALL LINE(RMINS, F48X, NPLOT, 1,10, 6)

CALL SYMBOL (2. 0.9. 5,0. 25, 19HF MATRIX X ELEMENTS, 0.0,19)

c
C PLOT -X AGAINST TIME
c
CALL PLOT(25.0,-15.0, -3)
CALL SCALE{(RMINS, 20. 0, NPLOT. 1)
CALL SCALE(XM. 10. 0, NPLOT, 1)
XO(NPLOT1)=XM(NPLOTI1)
XO(NPLOT2)=XM(NPLOT2)
XE (NPLOT1)=XM(NPLOT1)
XE (NPLOT2)=XM{NPLOT2)
XD(NPLOT1)=XM(NPLOT1)
XD(NPLOT2)=XM(NPLOT2)
CALL AXIS(0.0,0. 0, 1S5HTIME IN MINUTES., -15,
%20. 0, 0. 0, RMINS (NPLOT1), RMINS(NPLOT2))
CALL AXIS(0. 0,0. 0, 14HX CO—-ORDINATES, +14,
%10. 0. 90. 0, XM(NPLOT1 ). XM(NPLOT2))
CALL LINE(RMINS, XM, NPLOT. 1,0, 0)
CALL LINE(RMINS, XD, NPLOT. 1,10, 2)
CALL NEWPEN(3)
CALL LINE(RMINS, XE, NPLOT. 1,10, 3)
CALL NEWPEN(2)
CALL LINE(RMINS, XO, NPLOT, 1,10. 1)
CALL NEWPEN(1)
CALL SYMBOL(2.0,9.5,0. 25, 14HX CO-ORDINATES. 0. 0, 14)
c
C PLOT Y AGAINST TIME
(o

CALL PLOT¢O. 0,13. Q. -3)

CALL SCALE(RMINS. 20. 0. NPLOT. 1)

CALL SCALE(YM, 10. O, NPLOT, 1)
YO(NPLOT1)=YM(NPLOT1)
YO(NPLOT2)=YM(NPLOT2)
YE(NPLOT1)=YM(NPLOT1)
YE(NPLOT2)=YM(NPLOT2)
YD(NPLOT1)=YM(NPLOT1)
YD(NPFLOT2)=YM(NPLOT2)

CALL AXIS(0.0.,0.0, 15HTIME IN MINUTES, -15,
%20. 0, 0. 0, RMINS(NPLOT1 ), RMINS(NPLOT2))
CALL AXIS(0. 0.0. 0. 14HY CO-ORDINATES, +14,
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%10. 0, 90. 0, YM(NPLOT1), YM(NPLOT2))

CALL
CALL
: CALL
, CALL
1 CALL
1 CALL.
| CALL
CALL

c

C
CALL
CALL
CALL

CALL
CALL

CALL
CALL
CALL
CALL
CALL
CALL
CALL
LaLL

| CALL

CALL
END

'LINE (RMINS, YM. NPLOT, 1, 10, 1)
LINE(RMINS, YD, NPLOT, 1, 10, 2)

NEWPEN(3)

LINE(RMINS; YE, NPLOT, {1, 10, 3)

NEWPEN(2)

LINE(RMINS, YO, NPLOT, 1, 10; 1)

NEWPEN(1)

SYMBOL (2. 0, 9. 5, 0. 25, 14HY 'CO-ORDINATES., 0. 0, 14)

C PLOT FORWARD SPEED

PLOT(25. 0, -15. 0, ~3)
SCALE(RMINS, 20. 0, NPLOT, 1)
SCALE (UM, 10. O, NPLOT, 1)

USHIP (NPLOT1)=UM(NPLOT1)
USHIP (NPLOT2)=UM(NPLOT2)
UE(NPLOT1)=UM(NPLOT1)
UE (NPLDT2)=UMINPL.OTZ2)
USHID(NPLOT1)=UM(NPLOT1)
USHID(NPLOT2)=UM(NPLOT2)

AX15¢(0. 0, 0. 0, 1SHTIME IN MINUTES, -15,

&20. 0, 0. 0, RMINS(NPLOT1), RMINS(NPLOT2))

AXIS(0. 0,0. 0, 19HFORWARD SPEED (M/S), +19,

%10. 0, 0. 0, UM(NPLOT1 ), UM(NPLOT2))

LINE{RMINS, UM, NPLOT, 1. 0, O)
LINE(RMINS, USHID, NPLOT. 1, 10, 1)

NEWPEN{3)

LINE(RMINS, UE, NPLOT, 1, 10, 3)

NEWPEN(2)

LINE(RMINS, USHIP, NPLOT, 1, 10, 1)

NEWPEN(1)

SYMBOL (2. 0, 9. 5, 0. 25, 13HFORWARD SPEED, 0. 0, 13)
PLOT(12. 0, 0. 0, 999)

EXIT

-A27-



A b,2 SBubroutine PLYM

At the beginning of the master segment this subroutine is called to
draw an outline chart oaf Plymouth Sound, including the main
navigational marks and buoys.

Variables are:-

START, DELTA Initial and incremental values for graph plotting

R 6.3 Matriy Packaqge

Subroutine MATADD was used to add 2 substract two matrices, to produce
the 1tdentity matriz, MATINV to invert a matrix and MATMUL to multiply
two matrices together, MATONE produces a one’'s matrix whilst MATPRN is
used to print out data in rows and columns, with MATRED used to read in
data in matrix form, whilst MATSCL is used to multiply a matrix by a
scalar, MATRNS to transpose a matrix and MATZER to praduce a matrix of

s,
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SUBROUTINE TO PLOT PLYMOUTH SOUND

Oonn

SUBROUTINE PLYM(START., DELTA)

C
DIMENSION FF1(152).FF2(152).FFB(ISE):FF4(I52).FF5(12).FFLQﬂ
i DIMENSION FF7{(152), FFB(152), TR1(4), TR2(4), FF3(152), FF10(\$2)
DIMENSION STX(12),8TY(12),PTX(12),PTY(12)
DIMENSION TR3(4). TR4{(4), TRG(4), TR4{(4), TR7(4), TRB(4)
DIMENSION XTOP(4),Y¥YTOP(4), XSIDE(4), YSIDE(4)
REAL LM1{(7), LH2(7)
C
C #afsandratdt CHECKING A #3488 403404
c N
C
i 22T TR ST T PR T TR Y
C
C
C THIS SUBROUTINE PLOTS PLYMOUTH SOUND
C
CALL PLOTS(0,0:.1862
CALL FACTOR(O. 5}
C

€ START 1S THE ORIGIN, DELTA IS THE NO OF DATA UNITS PER CM.
OF AXIS .
c :
START=0. 00
DELTA=200. 0
L
C READ IN CO-ORDS FOR WESTERN SIDE OF PLYMOUTH SOUND
Cc
READ (S5, S01) (FF1{M), FF2(M), M=1, 104)
501 FORMAT(10F8B. 2)

ittt ittt CHECKING B 463483045 $r 45 46 38 10403036 30 35 40 46 SE40 30 SE 3H S 46 41 4 038

TR R 63 3 R 48 130 40 S0 40360 36 30 3 $E 30 3030 636 3E 3638 40 31 3630 30 3 30 40 6400 HE 300 SHF

READ IN CO-0ORDS FOR EASTERN SIDE OF PLYMOUTH SOUND

OoOOnODOaO0O0n

READ (3, 502) (FF3(N}, FF4(N), N=1, 134)
S02 FORMAT(10F8.2)

FE 4 235 36 S8 3 40 3F 40 41 95 36 3695 4F
#Edai et #READ IN CO-0ORD FOR NORTHCOAST 1 #4636 3 4698 38 3530 3 45 38

O0O0O0On

READ (3, 503) (FF7 (N}, FFB(N), N=1, 28)
903 FORMAT(10F8. 2)
C tedirpriepd sttt CHECKING 7810363t 64 5 B 202588
C SR SR S AR 3 S0 FE AR A 1 1 B B ISR R I
c
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oOOo0O0O0O00O0

c
C
€

o0 o0

s NeNeNsNsNsRy!

#EXRE
#RErREFeEENORTHCOAST2  #344630 30 3 46 20 40 440 3 3038

READ (5, 503) (FF9(N), FF10(N).N=1, 8)
sttt CHECKING 3 #48484030 3404630 340 3 3040 3030 20 4040 30 40

OIS 3 I S T ST 3 I S R4 I S SR TR 3 1
DPEN GRAPH PLOTTER FILE

CALL PLDT¢0.0,1. 0,32

CALL AXIS(0.0.0.0, 1BHX-AXIS 200. O0OM, =30, 37. 3, 0. O:
#START, DELTA)
CALL AXIS(0.0,0. 0, 1BHY-AXIS 200. OOM, +30, 25. 9, 90. O,

#5TART. DELTA}.
##titeE BOUNDARY DRAWING 364833t 4446040 3 30204

#a#4  THIS PLOTS THE TOP BOUNDARY L s

XTOP(1)=0.0

YTOP(1)=5180.0
XTOP(2)=7460. 0
YTOP(2)=5180.0
XTOP(3)=START

YTOP (3)=START

XTOP (4)=DELTA

YTOP (4)=DELTA

CALL LINE(XTOP,. YTOP.2,1.0,0)

L2 2 THIS PLOTS THE RIGHT SIDE BOUNDARY ta gt s L

XSIDE(1)=7460.0
YSIDE(1)=5180.0
XSIDE(2)=7460. 0

YSIDE(2)=0. 0

XSIDE(3)=START

YSIDE(3)=START

XSIDE(4)=DELTA

YSIDE (4)=DELTA

CALL LINE(XSIDE, YSIDE.2,1.0,0)

Hirdsa ettt END BOUNDARY DRAWING 45503536368 2040 3 35 3636 030 0 0 46
CALL SYMBOL (1. 0,24, 9,0. 3, 14HPLYMOUTH SOUND. 0. 0, 13)

AHERFREREGERERESEE CHECKING 4  #404536 3030 0t R 05 030 403 30 38

FH AR I 030 6 4 30 I8 R 0 SR IR TR R R S R R RN NS
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OoOOn OOoOO0O00000n

sNeNeNsNeNeRE

THIS PLOTS THE WESTERN SIDE OF PLYMOUTH SOUND

FF1{(105)=START
FF2(103)=5START
FF1(106)=DELTA
FF2(1046)=DELTA
CALL LINE(FF1.,FF2,104,1,0,0)
#E gt gt CHECKING 5 3383484036 54040 8 3 540 40 0 30 363

436303 23 400 S0 TE I 0 4F 4530 30 TE 30 HE I LA S S S B R R R SR

THIS PLOTS THE EASTERN SIDE OF PLYMOUTH SOUND

FF3(133)=5TART
FF4(135)=START
FF3(136)=DELTA
FF4(13&4)=DELTA
CALL LINE(FF3.FF4,134,1.0,0)
it stttk CHECKING & 1464648 34 11 3045 48 46 36 35 10 3448 2 0 30 30 40 36 30 3 30 30 30 48

46 3030 30 36 35 35 3430 35 36 35 36 3 45 360 3F 5138 35 36 35 38 35 9 36 635 36 3535 3 36 46 30 38 48 46 36 35 45 38 36 36 6 24 3 AL

9 I THIS PLOTS NORTHCDASTI1&Z2  #itdtititibsd

FF7¢(29)=START
FFB8(29)=START
FF7¢{30)=DELTA
FFB8(30)=DELTA :
CALL LINE(FF7,FF8,28, 1,0, 0)
ettt aadidd CHECKING 7 4484040340 2030 404040 4030 30 dH 0 S 403030 3

THE S48 4 46 3 SRR 4SS0 30 40 3 S AR 2 A S T S S S S S 2
FF?(?)=5TART
FF10(2)=8TART
FF?(10)=DELTA
FF10(10)=DELTA
CALL LINE(FF2,FF10,8:1,0,0)
W gt sttt CHECKING 8 #4545 #3365 365040 4030104030 6 S 303036

LA S IR 2 2 S LT S A R
THIS PLOTS THE BREAKWATER

READ(5, DO3) (FFS(I),FF&(1), I=1,8)
FF3(9)=8TART
FF&4(9)=5TART
FFS(10)=DELTA
FE&4¢(10)=DELTA
CALL LINE(FF5, FF&, 8. 1,0.0)
WAt s e CHECKING 9 5446 35 340 461 40 304640 SH 30 45 46 30 4630 20 3 03
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C
G B 2 B I BRI 1 R I R B I B S 2 I S it

iC

C THIS PLOTS DRAKES ISLAND

-C

READ (35, 504) {FF7 (M), FF8(M), M=1, 30)
504 FORMAT(10F8. 2)
FF7(31)=START
FF8{51)=START
FF7{52)=DELTA
FF8(S52)=DELTA
CALL LINE(FF7,FF8, 50, 1,0,0)
C Z#diidpsainadiiet CHECKING 9F #3456 08 40 0 40 8 S 30 5 214040 40646 30
C
C
C 3 e S 360 e S S A S SR S B SRR S S I 1S A S A I IR
C
C THIS PLOTS STARBODARD HAND BUOYS
C .
READ (5, 503) (STX(K), STY(K). K=1, &)
505 FORMAT(10F8. 2)
CALL NEWPEN(Z2)
STX(7)=START
BTY(7)=8TART
STX(8)=DELTA
STY(9)=DELTA
CALL LINE(STX.,STY.A:,1,-1,1)
C e 22 2222 t-X- 222X CHECKING 10 638 2025 S 45 46 10 0 3 35 40 4R 35 6 SR 3R 620 3F
[
G
C 836403640 4 20 45 6 30 30 45 35 35 30 36 5 4 46 3 36 36 36 35 4638 38 31 45 3 30 3E 3 25 96 26 4H 1830 $ 10 3 36 20 dE $E 36 30 44
C
C THIS PLDTS THE PORT HAND BUDYS
C
READ({( S, SO&)Y(PTX(J).PTY(J),J=1,5)
506 FORMAT(10FB. 2)
PTX(&)=5TART
PTY(&)=START
PTX(7)=DELTA
PTY(7)=DELTA
CALL NEWPEN(3)
CALL LINE(PTX,PTY, S, 1,-1,2)
C ettt 3034 CHECKING 11 3040830404040 30 30 30 35 30 40 30 S 30400
c
C
C F8 20 36 36 33 SRR SRR 045 46 3 0 30363 30 30 0 416 1 A 4 SE R 8 6 38 35 JE S I 46 I 0 3 S E
C
C THIS PLOTS POSITIONS OF LIGHTS
C
READ(S, SO7)Y{LH1(L), LH2¢(L)., L=1, 4)
507 FORMAT(10F8. 2)
LH1(5)=START
LH2(5)=8START
LH1{(&)=DELTA
LH2(&4)=DELTA
CALL LINE(LHI1,LH2.4,1,-1,14)
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C ittt tiEuisnt CHECKING 12 444444445 3304030 2030 36 30690 40

c
c
: C I R e S R R IR R I R R S RN RS
1 c
i C PLOT RECOMMENDED TRACK FOR DEEP DRAUGHT VESSELS
c
1 RETURN
END
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SUBROUTINE MATADD{(A, B, C. N, M, NN)
MATADD A=B+C

N IS THE NUMBER OF ROWS IN B AND C
M IS THE NUMBER OF COLUMNS IN B AND C

OO0 00n

REAL#4 A(N, M), B(N,M).C(N., M)
PO 10 I=1.N
PO 10 J=1,M
ACL, J)=B(1, J)+C(I,J)
10 CONTINUE
' RETURN
END

SUBROUTINE MATEGL (A, B. N, M, NN)
MATEGL A=B

N IS THE NUMBER OF ROWS
M IS THE NUMBER OF COLUMNS

sNeReNs NNy

REAL#4 A(N.M)},B(N.M)
DO 10 I=1.N
DO 10 J=1.M

10 AC(I, J)=B(I, J)
RETURN
END

SUBROUTINE MATIDN(A, N, NN)
MATIDN PRODUCES A UNITY MATRIX A

N IS THE NUMBER OF ROWS AND COLUMNS

OoOooOonn

REAL#4 A(N,N)

DO 10 I=1,N

DO 10 J=1,N

ACI,J)=0.0
10 CONTINUE

DO 20 I=1,N

A(I,I)=1.0
20 CONTINUE

RETURN

END
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10
13

20

30
40
45
50
&0
70
80
a5
90
95
100
105
110
130
140
150
140
170
200
260
270
310
320
330
340
350
380
390

400

420
430
4350
930
600
410
&20
&30
640
650
6460
&70
700
710
740

SUBROUTINE MATINV{A. N,:NA, NN) _
REAL*4 A(NA, N),PIVOT(20), IPIVOT(20), INDEX(20, 2)
EQUIVALENCE (IROW, JROW). (ICOLUM, JCOLUM), (AMAX. T. SWAP)
IF(N-11)10,5, 10

AT=A(1,1)

ACL, 1)=1. /AT

RETURN

DETERM=1. 0

DO 20 J=1,N

IPIVOT(J)=0

DO 550 I=1, N

AMAX=0. O

DO 105 J=1,N
IF(IPIVOT(J)-1)40, 105, 60

DO 100 K=1.,N
IF{IPIVDOT(K)-1)80, 100, 740
IF(ABS(AMAX)-ABS(A{J, K}))85, 100, 100
IROW=J

I1COLUM=K

AMAX=A(J, K)

CONTINUE

CONTINUE
IPIVOT(ICOLUM)=IPIVOT(ICOLUM)+1
IF ( IROW-ICOLUM) 140, 240, 140
DETERM=-DETERM

DO 200 L=1,N

SWAP=A( IROW, L.}

ACIROW, L)=A(ICOLUM, L)
ACICOLUM, L)=SWAP
INDEX (1, 1)=IROW
INDEX (I, 2)=ICOLUM
PIVOT(I)=A(ICOLUM, ICOLUM)
DETERM=—DETERM#PIVOT (1)
A(ICOLUM, ICOLUM)=1. 0

DO 350 L=1.N

ACICOLUM, L)=A(ICOLUM, L)/PIVOT(1)
DO 550 L1=1,N
IF(L1-ICOLUM) 400, 550, 400
T=A(L1, ICOLUM)

A(L1, ICOLUM)=0.0

PO 450 L=1,N
ACL1,L)=A(L1,L)-ACICOLUM, L)+T
CONTINUE

DO 710 I=i,N

L=M+1-1

IF(INDEX (L, 1)-INDEX{L,2))630, 710, 630
JROW=INDEX (L, 1)
JCOLUM=INDEX (L, 2)

DD 700 K=1,N

SWAP=A (K, JROW)

ACK, JROW)=A (K, JCOLUM)

A (K, JCOLUM) =SWAP

CONTINUE

RETURN

END
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c

SUBROUTINE MATMUL (A, B, C, N. M, L, NN}

C MATMUL A=B#C

c

C N IS NUMBER OF ROWS IN B
C M IS NUMBER OF COLUMNS IN B AND ROWS IN C
C L IS NUMBER OF COLUMNS IN C

Cc

c

10

REAL#4 A(N,L),B(N:iM),C(M, L)
DO 10 I=1,N

DO 10 K=1.L

A(I,K)=0.0

DO 10 J=1.M
ACILKIZA(I, KI+B (T, J)#C(J K)
RETURN

END

SUBROUTINE MATONE (A, N: M, NN)

C PRODUCES A DNE‘S MATRIX

c

OnNDoOOO0

10

REAL#4 A(N, M)
DO 10 I=1,N
DO 10 J=1. M
A(I.J)=1.0
RETURN

END

SUBROUTINE MATPRN({A, N, M, NN, NAME)

PRINTS DOUT MATRIX A

IZ

IS5 NUMBER OF ROWS
IS NUMBER OF COLUMNS

10
20
30
40

REAL#4 A(N, M). NAME(2)
WRITE(5, 30)

WRITE{&: 40)NAME(1), NAME(2). N, M
DO 10 I=I.N
WRITE(&, 20) (A(TI. J), J=1.,M)

CONTINUE

FORMAT(1X, BE14. 7)

FORMAT(//)

FORMAT(12H REAL MATRIX. 3X.2A4, 10X, I3.3H X ,13//)

RETURN
END
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c
C
o4

SUBROUTINE MATREDC(A, N: M. NN)

REAL#4 A(N. M)

DO 10 I=1,N
10 READ(S5, 20)(A(1,J}, J=1, M)
20 FORMAT(BF10.0)

RETURN

END

SUBROUTINE MATRNS(A, B, N, M, NN}
A=TRANSPOUSE OF B

REAL#4 A(M,N), B{N, M)
DO 10 I=1,M
DO 10 J=1,N
A(L,J)=B(J, 1)

10 CONTINUE
RETURN
END

SUBROUTINE MATSCL (A, S, By N, M, NN)

N IS NUMBER OF ROWS,M NUMBER OF COLUMNS

DO 10 I=1,N

DO 10 J=1.M

ACL J)}=5#B(1, J)
10 CONTINUE

RETURN

END

SUBROUTINE MATZER (A, N. M; NN)

REAL#4 A(N. M)

DD 10 I=1:N

DO 10 J=1,M

AC(IL,J)=0.0
10 CONTINUE

RETURN

END
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APPENDIX 7

THE MAIN SUBROUTINES

97.1 Subroutine NAB

Thies part of the program contraols the calculation of the discrete time
state, control and disturbance matrices used in the mathematical model
of the ship. The routine is called twice f{for each value of the
sampling time. In the +first instant it 1is wused tao evaluate the
equation which represents the ship; in the second it is used in the
filter. BStarting with the non-dimensional hydrodynamic coefficients
NAB «calls subroutine DIMEN to dimensionalise the coefficients that
correspond to the ship’'s forward speed. Next subroutine CALXBC is used
to compute the coefficients X, B and C used in equation set 3.28 and
defined in Appendix 3. From these subroutines FMAT and GMAT are used
to form the F and G continuous time matrices of equation set 3.12. It
should be noted that G appears as an 8 *# & matrix in the camputer
subroutine, whereas it is in fact made up of the two matrices G¢c and
8. After conversion to discrete time faorm in subroutine TRNMAC the
discrete time transition matrices are available for calculatians
invelving the mathematical model of the ship. Figure A7.!{ gives the

inter-relationship of NAB with its awn subroutines,.

-A3B-






Vartables used in addition to those already defined are:-

iP(14), YP(14), ANP(14) The nan-dimensionalised

X, Y and N caefficients

RO Density af Water

AL Length of Ship

AM Mass of Ship

TJAUR, TAUN Time constants of rudder

and engine respectively

i1 Mament of Inertia of ship
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GQoOoOnOnonO0n O O AQOOOO0O0O0O0000O000000000

SUBROUTINE NAB{A, B. C, N; NX, NG, NB, NC. NN, IFIN, K, LOOP, T, WUM,
&TSAMP, XOLD, UVEL., UA, F41X, F42X.: F44X, F46X, F48X, WU, UD1, UD2,
4F61Y, F62Y, FbAY, Fo&Y, F6BY, FB1IN, FB2N, FB4N, FB&N, FBBN)

THIS SUBROUTINE COMMENCES WITH THE NON DIMENSIONAL ISED
HYDRODYNAMICCOEFFICIENTS AND CALCULATES THE CONTINUOUS
TIME STATE AND FORCINGMATRICES. IT THEN CALLS TRNMAT TO
CONVERT THESE TO THE DISCRETE TIMEMATRICES A & B

REAL#4 A(8,8),B(8,2),C(8,4),F(8,8),6(B, &),
FA41X(250), FA2X{250), F44X(250), F4&4X(250),
FaBX (250}, F&1Y{(250), FA2Y(250), Fé&4Y(250),
FFé6Y (250}, F6BY(250), FBIN(230), FB2N(230).,
F84N(250), FB6N(250), FEBEN(250),
R(250).
ANP(14), XP(14),YP(14),
XOLD(8), T(250), WU(230), WUM(250)

B % om ok ok ok

IF(K-1}6:6.7

4 READ(3J. 101)RQ, AL, AM: TAUR: TAUN, ZI
IFIM=IFIN+1
NX=1

READ IN NONDIMENSIONAL ISED HYDRODYNAMIC DERIVATIVES
USING MATRED AND PRINT VALUES USING MATPRN
CONVENTION:

XP(1)=XDELT"
XP(2)=XN"*
XP(3)=XU"’

XF (4)=XUDOT"’
XP{S)=xXUU"’
XP(&)=XUUU"
AP (7)=XUN"’
XP (B)=XRDOT"*
XP(F)=XUA"
XP(10)=XVA"’
XP(11)=XVV’
XP(12)=XRR~’
XP(13)=XDD"’
XP(14)=XNN"

YP(1)=YDELT’
YP(2)=YNN
YP(3)=YU"
YP(4)=YUDOT"’
YP(S)=YV’
YP(&)=YVDOT’
YP(7)=YR"
YP(8)=YRDOT"
YP(?)=YUA"’
YP(10)=YVA"
YP(11)=YWW'
YP{12)=YRVV’
YP(13)=YDDD’

YP(14)=YDVWY "

ANP'(1)=NDELT*
ANP { 2) =NNN
ANP (3)=NU
ANP'( 4 )=NUDOT *
ANP{5)=NV "
ANP (&)=NVDOT *
ANP(7)=NR’
ANP (B)=NRDDT *
ANP {9 ) =NUVA /
ANP { 10)=NVA ’
ANP ( 11)=NVW /
ANP( 12)=NRVV *
ANP { 13)=NDDD *
ANP{ 14)=NDWV *

CALL MATRED(XP, 14, 1,28}
CALL MATRED(YP. 14, 1,28)

CALL MATRED(ANP. 14, 1. 28)

COMPUTE DIMENSIONALISED HYDRODYNAMIC DERIVATIVES
THAT CORRESPOND TO SHIP FORWARD VELOCITY UVEL

7 CALL DIMEN(RO. AL, XP, YP, ANP, UVEL, XOLD. VA,
XDELT, XN, XU, XUDOT, XUU, XUUU, XUN, XRDOT., XUA, XVA, XYV, XRR,
&XDD, XNN.




0000

OO0O0

QOO0

OO0 n

9]

&YDELT, YNN, YU, YUDQT. YV, YVDOT., YR, YRDOT, YUA, YVA, YVWV, YRVV,
&YDDD. YDVV,-

HANDELT, ANNN, ANU, ANUDOT, ANV, ANVDOT, ANR, ANRDOT, ANUA, ANVA,
ZANVVV, ANRVVY, ANDDD.: ANDVV)

COMPUTE X.B AND C COEFFICIENTS

CALL CALXBC(AM, ZI, XOLD, UVEL, WU, UD1, UD2, K, WUM,

&XN, XU, XUDOT, XUU, XUUU, XUN; XUA, XVA, XVV, XRR, XDD, XNN,
&YDELT. YNN, YV, YVDOT, YR, YRDDT, YUA, YVA, YUYWV, YRW, YDDD, YDVV,
LANDEL T, ANNN; ANV, ANVDOT, ANR. ANRDOT, ANUA, ANVA, ANVVV, ANRWVY,
&ANDDD, ANDVV, X1, X2, X4, X&, X8, XU3, XUS,

%B1, B2, B4, B4, BB, BU4, BU&,

&C1, €2, C4, C6, CB, CU4, CUS)

COMPUTE F MATRIX

CALL FMAT(TAUR, TAUN: X1, X2, X8, X&, X8, XOLD,
&B1, B2, B4, B6, B8, C1, C2, C4, C&4, €8, F, N)

FA1X(K)=F(4, 1)
FA2X(K)=F (4, 2)
FR4xX(K)=F (4, 4)
FAaX(K)=F (4, &)
FA48X(K)=F (4, 8)
FolY(K)=F(6,1)
FO2Y(K)=F (&, 2)
F&6AY(K)=F (b, 4}
FoaY(K)=F (b6, &)
FEBY(K)=F (&: 8)
FBIN(K)=F (8, 1)
FB82N(K)=F (8, 2)
FBAN(K)=F (8, 4)
FB&N(K)=F (8, &)
FBBN(K)=F (8, 8)

COMPUTE 6 MATRIX

CALL GMAT(TAUR, TAUN, XU3. XU3J,

%BU4. BU&, CU4, CUG, G, N, NG: NN)
COMPUTE DISCRETE TIME STATE TRANSITION MATRIX A(T)
AND DISCRETE TIME FORCING MATRIX B(T)

CALL TRNMAC(F. G, A, B, C, N, NG, NB. TSAMP, NN)

4 RETURN
END
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A 7.2 Subroutines DIMEN, CALXBC, FMAT, GMAT

These have been discribed i©n the previous section, Variables not

already defined are:~

ka2 Air density

XDELT, XN, XU, xuparv Dimensionalised X coefficients
Xyu, Xuuyu, XuN, XRDOT

XUA, XVA, XVV, XRR

XDD, XNN

YDELT, YNN, YU, YUDOT Dimensionalised y coefficients
YV, YVDOT, YR, YRDOT,
YUA, YVA, YVVV,

YRVV, YDDD, YDVV

ANDELT, ANNN, ANU, ANUDOT Dimensionalised N coefficients
ANN, ANUDOT, ANR, ANRDOT,
ANUA, ANVA, ANVVY, ANRVY,

ANDDD, ANDVV

UCGR2 Correction for prapeller action

X1 etc, Y! etc, Coefficients of X, Y and N equations

defined in Appendix 3
AN1 etc Bl etc, C!

etc
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SUBROUTINE DIMEN(RO. AL, XP. YP, ANP, UVEL, XOLD. UA,
&XDELT, XN, XU, XUDOT, XUU, XUUU, XUN, XRDOT, XUA, XVA, XWV, XRR, XDD
» XNN,
&YDELT, YNN, YU, YUDOT, YV, YVDOT, YR: YRDOT, YUA, YVA, YVWV, YRV, Y
DDD, YDW, 7 |
&ANDEL.T, ANNN, ANU, ANUDOT » ANV: ANVDOT, ANR. ANRDOT, ANUA, ANVA; A

NV,

LANRVV, ANDDD, ANDVV)

DIMENSION XP(14),YP(14), ANP({14), XOLD(B)
C
Cc

C X DIMENSIONALISED HYDRODYNAMIC DERIVATIVES
C FOR NON-LINEAR MODEL
Cc

RO2=0. 5#R0O

RAZ2=0.5#1. 28

XDELT=XP (1) #ROZ#AL ##24UVEL ##2
XN=(XP{2) #RO2#AL##3%7. 752) /(2. #3. 14159}
XU=XP(3)
XUDOT=XP (4) #RO2:#AL#+3
XUy=xp(5)

XUUU=XP (&)

XUN=XP (7)

XRDOT=0. 0
XUA=XP (9) #RAR#AL ##2#UA
XVA=0. 0

XVV=XP (11)#ROZ2#AL#42
XRR=XP (12) #RO2#+AL##4

XDD=XP (13) #RO2+AL ##2#UVEL #42
XNN=XP(14)

Y DIMENSIONALISED HYDRODYNAMIC DERIVATIVES
FOR NON-LINEAR MODEL

OO0

UCOR2=(0. B4#UVEL##2-1. 257#UVEL#XOLD(2)+2. 3339#X0OLD(2)#=2

YDELT=YP (1) #RO2#AL ##2#UCOR2
YNN=YP (2)

YU=0. 0

YUDOT=0. 0

YVaYP (5) #RO2#AL ##2UVEL
YVDOT=YP (6) #RO2#AL#%3

YR=YP (7 ) #RO2#AL##3#UVEL
YRDOT=YP (8)#RO2%AL %4
YUA=0. 0

YVA=YP (10) #*RA2#AL ##2#UA
YVYW=(YP(11)#RO2#AL##2) /UVEL
YRVV=(YP (12)#RO2#AL##3) /UVEL
YDDD=YP(13) #RO2#AL#x2#UCOR2
YDVYWWV=YP (14) #R0O2+#AL 42

N DIMENSIONAL ISED HYDRODYNAMIC DERIVATIVES
FOR NON-LINEAR MODEL

O0O0O0

ANDELT=ANP (1) #RO2#AL##3#UCOR2
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ANNN=ANP(2)

ANU=0. O

ANUDOT=0. O
ANV=ANP({ 5) #ROZ#AL#+#IHUVEL
ANVDOT=ANP (&) #RO2#+AL ®44
ANR=ANP {7 ) #R0O2#AL ##4 £UVEL
ANRDOT=ANP (8 ) #ROZ#AL ##5
ANUA=ANP (7)) #RA2#AL ##3
ANVA=ANP ( 10) #RAZ#AL ##31#UA
ANVVY=(ANP (11)#R0O2#AL *#3) JUVEL
ANRVV=(ANP (12)+RO2#AL ##4) /UVEL
ANDDD= ANP (13)#RO2+#AL##3#UCOR2
ANDVV=ANP ( 14 ) #RO2#*AL ##3

RETURN
END
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'SUBROUTINE CALXBC (AM, Z1, XOLD, UVEL., WU, UD1, UD2, K, WUM,

1 XN, XU, XUDOT, XUW, XUUU, XUN, XUA, XVA, XV, XRR, XDD, XNN,
2YDELT, YNN, YV, YVDOT. YR, YRDOT, YUA, YVA, YVW, YRV, YDDD, YDVV,
3ANDEL T, ANNN, ANV, ANVDOT, ANR, ANRDOT., ANUA, ANVA, ANVVV, ANRVV, .
4ANDDD, ANDVV, X1, X2, X4, X6, X8, XU3, XUS,
S5B1, B2, B4, B4, B8, BU4, BU&,

&6C1, C2,C4, Ch, C8, CU4, CUL)

O

REAL#4 XOLD(B), WU(4), WUM(4)

X COEFFICIENTS

e NeReN e

XUDOTM=AM-XUDOT

o]

X1=(XDD#X0OLD(1))/XUDOTM

X2=( ( XUN#UVEL )+ (XNN#X0OLD(2))) /XUDOTM
X4=(XU+XUU#XOLD(4)+XUUU#XOLD(4) ##2)./ XUDOTM
X6={XVV#X0OLD(56)+AM®XOLD(8)) /XUDOTM

X8={( XRR#X0LD(8) ) /XUDOTM

XU3= ( XU+ XUU#WU (1) +XUUU#WU (1 ) #3#2) /XUDOTM
XUS=XUA/XUDOTM

Y COEFFICIENTS

aOnOo0n

YYDOTM=AM-YVDOT

Y1=({YDELT+YDDD#XOLD(1)##2)/YVDOTM
Y2=(YNN#X0OLD(2) ) /YVDOTM

Ya=(-AM#XOLD(8) ) /YVDOTM
Y6=(YV+YRVV#XOLD(8) #X0OLD (&) +YWV#XOLD (&) ##2+YDVVa#XOLD (1)
1 #X0LD(&6))/YVDOTM

¥8=YR/YVDOTM

Y88=YRDOT/YVDOTHM :
YU4=(YV+YRVW#XOLD(B) #WU(2) +YVWViWU (2) ##2+YDVVRXOLD (1) #
#* Wu(2))/YvDOoTH

YU&=YVA/YVDOTM

N COEFFICIENTS

ANRDOI=ZI-ANRDOT

o] OO0

AN1=(ANDELT+ANDDD#XOLD(1)##2)/ANRDOI
ANZ2=(ANNN=XOLD{2) ) /ANRDOI
AN4=0. O
AN&={ ANV+ANRVV#XOLD(8 ) #X0OLD (6 ) +ANVVV#XDLD (&) ##2+ANDVY
# #XOLD(1)
1 #XOLD(&6) ) /ANRDOIL
AN&&=ANVDOT /ANRDOX
ANB=ANR/ANRDOI
ANUA={ ANV+ANRVVH#XOLD (8 ) #WU ( 2) +ANVVVEWU ( 2) ##2+ANDVV
* #X0LD(1)
&#WU(2) ) /ANRDOL
c
C # EDA‘S TERM
¢ -
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O OO0 noo

O Hnonn

ANUS={ ANVA+ANUA#WU {3) ) /ANRDDI
# DISTURBANCE CONTROL TERMS

TC={ XU3#XUDOTM ) #WUM( 1)

TA== (XUA#WUM(3))

TP={ XUN#UVEL ) +{ XNN#X0OLD (2))
UD2=(TC+TA) /TP

ANC=-(ANU4#ANRDOI ) #WUM(2)
ANA=-( ANVA+ANUA#WUM( 3) ) #WUM ()
ANR=(ANDEL T+ANDDD#X0OLD (1) ##2)
UD1={ANC+ANA) /ANR

B COEFFICIENTS
BDEN=1. 0—-Y88#AN&S

Bl1=(Y1+Y88#AN1)/BDEN
B2=(Y2+YBB#AN2) /BDEN
B4=(Y4)/BDEN
Bo=(Y&+YBB#ANG ) /BDEN
BB8=(YB+Y88#ANB) /BDEN
BU4=(YU4+Y88#ANU4 ) /BDEN
BU&={YU&L+YB88#ANUS) /BDEN

C COEFFICIENTS
CDEN=1. O—-AN&&#YBS8

C1=(ANI+AN&&L#Y1) /CDEN
C2=({AN2+AN&&#Y2) /CDEN
C4=(AN&SL#Y4A) /CDEN .
Co=(ANGLG+ANLL#YSL) /CDEN
CB=(ANS8+AN&&L#YB) /CDEN
CU4=(ANU4+AN&L#YU4 ) /CDEN
CUb= {ANUL+ANLAL#YUS ) /CDEN

RETURN
END
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SUBROUTINE FMAT(TAUR, TAUN, X1, X2, X4, X&, X8, XOLD,
1B1, B2, B4, B4, B8, C1, C2, C4, C&, €8, F, N; NN

REAL#4 F(N, N>, XOLD(8)

CALL MATZER(F, N, N, NN)

F{1,1)=(-1. 0)/TAUR

F(2:2)=(-1. 0)/TAUN

F(3,4)=1.0

F(4, 1)=X1

: F(4, 2)=X2

! F(4, 4)=X4

| F(4,6)=Xb

| F(4,8)=X8
F{5:&4)=1.0

F(&:1)=B1

F(6&, 2)=B2

F{64,4)=B4

F(6,6)=B&

F(&, 8)=B8

F(7.8)=1.0

F(8, 1)=C1

F(8, 2)=C2

F(8,4)=C4

F(8, 8)=Cé

F(8,8)=C8

RETURN
END
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SUBROUTINE GMAT(TAUR., TAUN, XU3, XUS5,
1BU4, BUA, CU4, CUSL, G) Ni NG, NNY

REAL#4 G(N: NG)
CALL MATZER(G, N, NG, NN)
6(1, 1)=1. O/TAUR

G(2, 2)=1. O/TAUN

G(4, 3)=Xu3

G (4, 5)=XU5

G(&6, 4)=BU4

G(b, &)=BUb

G(8, 4)=CU4

8(8, 6)=CUs

RETURN
END
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g 7.3 Subroutine TRNMAC

A description of the method wused to obtain the discrete transition
matrices was given in Chapter 3, section 3.2; wequations ({3.13) and
(3.16) describe the computations which take place whenever this

subroutine is called.

Variables called and naot already defined are:-

POWER Number of terms of the series approximaticn given by
equations (3.15) and (3.14)

§T(I,d) FT in equations (3.13) and (3.164)

FPOWR {L-1), (L-2), etc in equations {3.13) and (3.16)

INTEGA (J,K) FT/4L-1), FT/(L-2) etc in equations (3.13} and (3.14)

BUD (8,4) Discrete time transform aof G(B,4), This is then

split into B(8,2} and C(8,4)
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SUBROUTINE. TRNMAC (F, G, A, B, C, N, NG, NB, TSAMP, NN)
c
€ EVALUATES DISCRETE STATE TRANSITION MATRIX A(T)
C AND DISCRETE FORCING MATRICES B(T) AND C(T)
‘ c
REAL#4 ST(B, 8),F (8, 8), A(3, 8), INTEGA(B, 8)
REAL#4 BUD(B, &),G(8, &), B(8, 2), C(8, 4)
REAL INTEGA
INTEGER POWER
NORMFT=0. 0
DO 1 I=1,N
DO 1 J=1,N
ST(1, JVI=F {1, J) #TSAMP
1 ACL JI=ST(I, J)
POWER=50
DO 7 1=2, POMER
FPOWR=POWER-1+2
DO 3 J=1,N
DO 3 K=1,N _
3 INTEGA(J,.K)=A(J, K) /FPOWR
S INTEGA(J, J)=INTEGA(J, J)+1. 0
CALL MATMUL (A, ST, INTEGA, N, N, N, NN)
7 CONTINUE
DO 9 J=1,N
AlJ, =AY, JI+1. 0
DO 9 K=1,N | |
9 INTEGA(J, K)=TSAMP#INTEGA (J. K)
CALL MATMUL ¢(BUD, INTEGA, €, Ni N, NG, NN)
c
C # SPLIT BUD(8,5) INTO B(8,2) AND C(8,4)
c
DO 10 I=1,N
DO 10 J=1,NB
10 B(I, J)=BUD(I, )
DO 20 I=1,N
DO 20 J=3.N¢
K=J-2
20 C(I,K)=BUD(I,J)

RETURN
END
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A 7.4 Subroutine OPTFIL

This subroutine performs two main functians. it models the ideal
system, that 1is one with no disturbances or measurement noise, and
calls subroutine KBFLTR +from which the Kalman filter gains ars
obtained. The output 1is then the best estimate of the state vectar
which is used as input to the optimal controller. Figure A 7.2 gives a
flowchart for this subroutine. The variables wused and not already

defined are as listed helow:-

AA(B,8),BB(8,2) Transition matrices used in filter
equations
XHAT{(8), XHAT1(B), XHAT2(8) Previous, predicted and final.estimates

of state vector

_ABCED Absolute value of course error in degrees
. CED Course errar in degrees

i1 Predicted measured state

IDIFF Measurement Residual

AK (8,8} Kalman filter gain matrix
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‘ START )

[CALL NAB TO CALCULATE A, B MATRICES IN FILTER CALCULATIONS

CALCULATE PREDICTED STATE VECTOR XHAT!
XHAT1 = A*XHAT + B#*W

MULTIPLY PREDICTED STATE BY MEASUREMENT MATRIX
TO GIVE PREDICTED MEASUREMENT STATE
I1 = H®XHAT!

SUBTRACT PREDICTED MEASURED STATE FROM MEASURED ‘
VECTOR T0O GIVE MEASUREMENT RESITDUAL
IDIFF = INEW - 11

CALL SUBROUTINE KBFLTR TO CALCULATE KALMAN FILTER GAIN

MULTIPLY ZIDIFF BY FILTER GAIN MATRIX AK AND ADD RESULT
TO PREDICTED BTATE TQ OBTAIN ESTIMATE XHAT2
XHAT2 = XHATL + AK#IDIFF

‘ RETURN ]

Figure A 7.2 Flow Chart for Subroutine OPTFIL
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fppendix A 7.3 Subroutine KBFLTR

This subroutine is called from OPTFIL and wused to update the errar
covariance matrix together with the filter gain matrix AK. The action
of the filter is described fully in Chapter 4, section 4.4, The
software routines used in subroutine KBFLTR are due ta MacKinnen (1972)
and Healey et al (1979), Figure A 7.3 gives the Kalman filter

algorithnm,

Variables used and not already defined are:-

CR(8,8) Disturbance noise covariance matrix
LR4,4) Measurement noise covariance matrix
PK(8,8) Error covariance Matrix

PKP1(8,8) Predicted Error Covariance Matrix
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SUBROUTINE WBFLTR:(A, C, H.. AK, N; NN, NC, NX, TP, IM, K. V, SDQ., SDR)
c CALCULATES STEADY STATE KALMAN-BUCY FILTER GAIN MAT

REAL#8 DHPHR (B, B), DPH(8, 8), WKSPCE(&4)

REAL#B DUNIT(8,8)

REAL#4 RHPH(8, 8), HPHR (8, 8)

REAL#4 A(N, N, C(N, NC), HON: NY, AK (N, N)

REAL+4 PASTK(B, 8).,PK(8, 8), PKP1 (B, 8), CONVER (8, 8)

REAL#4 RR(8,8),85(8.8),CT(4,8), AT(8,8), HT(8,8)

REAL®*4 CCQ(8, 4), PA(8, 8),CAC{8, 8), APA(S8, 8), PH(8, 8), HPH(B,%)

REAL =4 AHAH(B,B){AKH(B.B).CG(4.4);CR(BJB).AH(B.B)
REAL#4 HKA(B, 8), HPPH(8,8)
REAL#4 V(200, 8), SDR(8). SDA(4)
WRITE(1, 73)
74 FORMAT(‘ KBF ‘)

READ IN ALTS, ITERM. IPRNT

o000

ALTS=1. 0
IF (K. EQ. 1) ALTS=ALTS/100.0
ITERM=100
IPRNT=100

0

KBFLTR REQUIRES A, C,H,CG, CR SET ON ENTRY

Initial Conditions for Covariances CQ(disturbance) & CR(Nois
)

O OO0

CALL MATZER(CR, IM, IM, NN)
CR(1,1)=SDR(1)##2
CR(2, 2)=SDR(2)##2
‘CR(3, 3)=SDR(3)##2
CR(4, 4)=SDR(4)##2
CR(S, 5)=SDR(5)##2
CR(&: 6)=SDR(&)##2
CR(7,7)=SDR(7)##2
CR(B, 8)=SDR(8)##2
c
C STANDARD DEVIATIONS FOR WIND AND CURRENT
c
c CALL MATPRN(CR, IM, IM, NN, S8HCR )
CALL MATZER(CQ, IP, IP, NN)
C@(1,1)=SDA(1)##2
CA(2, 2)=5DA(2)##2
CQA(3, 3)=8SDA(3) ##2
CQ(4, 4)=5SDA(8)##2
C CALL MATPRN(CG, IP, IP, NN, BHCQ )

C L IS THE ITERATION COUNTER, O-IPRINT

ICOUNT=0
L=0
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FPZ=0.0

Read in Initial Conditions for CONVER

s RoNsNeNy!

CAaLL MATIDN(CONVER,: N, NN)
C .
€ Read in Initial Conditions for STATE VECTOR Covariance Matri
x(P(k/k)

C

CALL MATIDN(PK, N, NN)

IF(K.6T. 1) GD TO 299
C CALL MATPRN(CR, IM, IM, NN, 8HCR )
C CALL MATPRN(CQ, IP, IP, NN, 8HCG )

297 CONTINUE

Cc CALL MATPRN{PK, N, N, NN, BHPK )
c
C Commence Iteration Loap
C ’ .
300 CONTINUE
DELS=0. 0
IF(L-IPRNT) 320,310, 320
310 L=0
320 CONTINUE
C
C Calculate the Prediction Error Covariance Matrix(P(k+1/k))
C
c
C CAC=C#CAx*CT CT=Transpose of C
c '

CALL MATMUL.(£CQ. C, C@ N: IP, IP, NN)
CALL MATRNS(CT. C, M, IP. NN)

c CALL MATPRN(CT, IP, N, NN, 8HCT )
CALL MATMUL (CQC., CCQ., CT, N, IP, N: NN)
WRITE(1, 108)

106 FORMAT(1H , ‘CQC CALCULATED’)

CC CALL MATPRN(CQC, N, N. NN, BHCQC }
C
C APA=A#PK#AT AT=Transpose of A
c
CALL MATRNS(AT. A: N, N, NN)
C CALL MATPRN(AT, N, N, NN, BHAT )
C
C PUPI=P({k+1/k)
(o
CALL MATMUL (PA., PK, AT, N, N, N, NN}
CALL MATMUL (APA, A: PA, N, N; N. NN)
c CALL MATPRN(APA, N, N, NN, BHAPA )
CALL MATADD(PKP1, APA, CGC, N, N, NN)
CALL MATPRN(PKP1, N, N, NN, 8HPKP1 )
c
C Calculate the KALMAN-BUCY FILTER GAIN
C
C AK=K({k+1) PASTK=K (k)

-AS8-



HT=Transpose of H

oOno0o

CALL MATRNS (HT, H: N: N..NN?}

C CALL MATPRM(HT, N, N: NN, 8MHT )
Cc
C PH=PKP1#HT
C -
CALL MATMUL (PH: PKP1, HT, N, N. N: NN)
c
C PRINT PH MATRIX
Cc
c
C HPH=H#PKP 1 #HT
c .
CALL MATMUL (HPH, H, PH, Ny N, N: NN)
c CALL MATPRN(HPH, N, N, NN, BHHPH )
c
C HPHR=(H#PKP1#HT)+CR
C
CALL MATADD (HPHR, HPH: CR, N. IM) NN)
WRITE(1, 107)
c
C

DO 98 I=1.N
WRITE(1, ?27) (HPHRI{(I., J), J=1, N}
78 CONT INUE
97 FORMAT(1X.,B8E14. 7)
107 FORMAT(1H . ‘HPHR CALCULATED")
Cc
C CHANGE TO DOUBLE PRECISION
Cc
DO 10 Il=1,N
DO 20 I2=1.N
DHPHR (11, 12)=HPHR(I1, 12)
20 CONTINUE
10 CONTINUE
IFAIL=0
CALL FO1AAF (DHPHR.: N, N, DUNIT, N. WKSPCE. IFAIL)
c
C RETURN TO SINGLE PRECISION
C
DO 30 It=1,N
DO 40 I2=1.N
RHPH(I1, I2)=DUNIT(I1, I2)
40 CONTINUE
30 CONTINUE
c CALL MATINV.(HPHR, N: N, NN}
WRITE(1, 108)
108 FORMAT(1H ; 'HPHR INVERTED’)
IF(K.GT.5) GO TO 93
DO 95 I=1,N
WRITE(1,94) (RHPH(I, J),J=1,N)
P9 CONTINUE
?4 FORMAT(1X.8E14. 7)
CALL MATMUL (HPPH, HPHR, RHPH, N, N, N: NN)
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112

113
114
93

109
C

c

WRITE{1l,112)
FORMAT ( "HPHR #RHPH=IDN ‘)

DD 113 I=1,N

WRITE(1:;114) (HPPH{I, J), J=1,N)
CONTINUE

FORMAT(1I'X, BE14. 7)

CONTINUE

CALL MATMUL (AK, PH, RHPH, Ni N. N, NN)
WRITE(1.109)

FORMAT(IH , “AK CALCULATED")

C Calculate P(k+1/k+1)

C AKH=AK=®H

c

111
c

CALL MATMUL (AKH. AK, H, N. N, N. NN)
WRITE(1,111)
FORMAT(1H . "AKH CALCULATED')

C AHAK=AH-AKH

C

110

89
88
C End

350
400

450
200

600

CALL MATIDN{AH, N, NN)

CALL MATSCL (HKA, —1. 0, AKH, N, N; NN)
CALL MATADD{AHAK, AH, HKA: N; N, NN)
CALL MATMUL (PK. AHAK, PKP1, N,.N, N, NN)

WRITE(1, 110}

FORMAT(IH . '‘PK CALCULATED")
DO 89 I=1,N

WRITE(1,88) (PK(I,J),J=1,N)
CONTINUE

FORMAT(1X,8F10. 5)

of FILTER calculations

ICOUNT=ICOUNT+1

L=l+1

TEST FOR NON-CONVERGENCE OF GAIN MATRIX K(K+1)
DO 400 I=1.N

TEST=PK(I, 1)

IF{TEST-FP2) 400, 400, 350
COMVER(I, I)=1. /SGRT(TEST)

CONT INUE

CALL MATMUL (RR, CONVER, AK. N, N, IM, NN)
DO 500 J=1, IM

DO 300 I=1,N

TEST=RR (I, J)

IF{ABS(TEST)-DELS) 500, 500, 450
DELS=ABS(TEST?

CONTINUE

CALL MATMUL (S5, CONVER, PASTK, N. N, IM, NN)
DO 600 I=1,N

DO 400 J=1.IM

TEST=RR (I, J)-S8(I, J) .
IF(ABS({TEST)-ALLTS#DELS) &00, 600, 620
CONTINUE

G0 TO 800 .
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420 IFC(ICOUNT-ITERM) &350, 550, 2500
650 CONTINUE
CALL MATEQL (PASTK., AK, N, IM, NN)
IF(L-IPRNT) 300. 700,300
700 CONTINUE
WRITE (&L, 200) ICOUNT
CALL MATPRN({AK. N, IM, NN, BHAK (K) )
60 TO 300
800 CONTINUE
c
C WRITE KALMAN FILTER GAIN % SYGSTEM COVARIANCE MATRICES
c
IF(K..EQ. 1) LOOP=0
IF(K. LT.LOOP) GO TO 4
LODP=LDOP+20
ALTS=ALTS#100.
WRITE (&, 250) ALTS, ICAQUNT
CALL MATPRN(AK, N, IM, NN, 8HAK (K} )
CALL MATPRN(PK. N. N, NN, 8HPHK }
4 RETURN
2300 CONTINUE
WRITE (4, 280) ICOUNT
RETURN
200 FORMAT(///15X, 15, * ITERATIONS’)
250 FORMAT(///715X, 'K(K+1) GAIN MATRIX CONVERGED WITHIN ‘,E1Q

. 4,
1’ PERCENT AFTER ‘, 15, ’ ITERATIONS'/
215X, £ A IR I TSR SR S I 46 3 3 635 T AR I RS S

bR )
280 FORMAT(///7153X, ‘K{K+1) GAIN MATRIX FAILED TO CONVERGE WIT

HIN
115,/ ITERATIONS '/
215X, 73433 4 SR TR 33 SR SR IR 4 S0 2 20 TSR E SR 4 SR 23 S I S 4 S 48

IR Y )
END
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APPENDIX B

MEASUREMENT AND DISTURBANCE

NOISE MODELS

AB. 1 Disturbance Naoise

In modelling wind and tide in the digital computer simulations it was
assumed that the tests were carried out over a period of up to |5
minutes during the vessel’'s passage into harbour. As the port chosen
tor the simulatiaons was Plymouth the tide and wind models were based
upon information for that port. From the tide tables the spring tide
in the region of the Plymouth breakwater had a value of .3 knats
0.669 m/s) in direction 046 degrees at 4 hours beéfore high water on a
specific day. These values were taken as the means over the time of
gach run. It wWwas then assumed that any turbulance was of a stochastic

nature.

Based upon the work of Iuidweg {1970) and Millars (1973), Burns (1984}

has developed a tidal model used in this work. The equation is:-
Velktl)
E{w k)

For a sampling time of 5 seconds and tidal time constant of 150 seconds.

Bvc(k) + (k) {(AB. 1)

Won = 0,469 {AB.2)

the following value for¥ is suggsted
1 -
¥ = e = dfwag.9u7

For a sample time of 6 seconds this changes to 0.961

] .0
with Cov {w= (k,}, We (kz)} - {0‘- :::#i-
\ERy

-R42-




where R. is a nan-negative constant given by

o. = j R‘/ﬁL-B‘) (AB.4)

[f 6'0, the standard deviation of the current abgut its mean valuelis

taken as 0.5 m/s this gives a value of 0.01623 for R.
Thus

Ve (kel) = 0.987vo (k) + wik) (AB.3)
khere wik) has a mean value of 0.0649 m/s and a standard deviation of
¢.3 m/s, This was obtained from subroutine STANDEY with values of
current magnituae over a J00 second pericd as inputs. A clight
madification was obtained by wusing a first order filter whan the

discrete equation is re-written as

Velk+1) Av< (k) + Bwik) (A8, 4)

where

UCURR total tidal rate

UCURS = randaom tidal rate
UCURM = mean tidal rate

ALPHA = total tidal direction
ALPHS = random tidal direction
ALPHM = mean tidal direction
UAIR = total wind speed

UAIRS = random wind speed

UAIRM = mean wind direction

PHI = total wind direction

PHIS = randaem wind direction

PHIM = mean wind direction

The modael was later modified inm the light of experience. It was
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reasaned that 1f a two- dimensional wind gust had rectangular
ca-ordinates aligned with the mean wind speed then the gqust magnitude
would cause the wind direction to change, in which case there would be
a correlation between the statistical oproperties of magnitude and
direction, This was established wusing a scaling factor which was
formed by the ratio of the two standard deviatians, that is the set of
randem numbers generated for the magnitude of the wind was scaled by
the ratio of standard deviations to givé their directions, # similar
scaling was applied to the rate of the tidal stream. Based upan these

figures the camputer equtions used in subroutines WINCUR becanme

UCURRIK+1) = 0.806%UCURR(K) + 0.394%#WCURR{K) (AB.7)
ALPHS(K+1) = 0,368#ALPHS (K)+0. 6324 WALPHA (X} (A8.8)
URIRS(K+1) = 0.606%UAIRS(K) + 0.394%WAIRI(K) (AB.9)
PRIS(K+1} = 0.34B#PHIS(K) + 0.&632#WPHI (K) {AB,10)
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B35 3154 3040 3 40 T 40 T3 30 3 6 35 06 24636 3 6 36 30 6 30 4635 30 31 40 340 S0 40 24
SUBROUTINE WINCUR(WUS; N, M)
THIS SUBROUTINE CALLS A NAG ROUTINE & GENERATES DISTURBANCE
VARIATIONS ABOUT A MEAN VALUE. IT REQUIRES DISTURBANCE
STANDARD DEVIATIONS AS INPUT

# WIND AND CURRENT GENERATION

OO0 0O000000

REAL#8 UCURR(300), WCURR(300), UCURS(300)
REAL#8 ALPHA(300), WALPHA{300), ALPHS(300)
REAL#8 UAIR(300), WAIR{300), UAIRS{(300)
REAL#8 PHI {300}, WPHI{(300)}, PHIS(300)
REAL#8 UCURM, ALPHM, UAIRM, PHIM
REAL #8 &SOSDDF

REAL#4 WUS(N, M)

CALL GOSCBF (0)
UCURM=0. ODO
ALPHM=0, ODO
UAIRM=0. ODO
PHIM=0. ODO
UCURR(1)=UCURM
ALPHA(1)=ALPHM
UAIR(1)=UAIRM
PHI(1)=PHIM

DO 20 K=1i,N

WCURR (K )=605DDF (0. ODO, 0. 9457D0)
WALPHA(K)Y=WCURR{K)#{0. 4915D0/0. 9457D0)
WAIR(K)=GO5DDF (0. ODO, 5. 6742D0)

WPHI (K)=WAIR(K)#(0. 4915D0/5. 6742D0)

UCURS (K+1)=0, 606DO#UCURS(K)+0. 394DO#WCURR (K)
UCURR {K+1 )=UCURS (K+1)+UCURM
ALPHS(K+1)=0. 36BDO#ALPHS (K} +0. 432D0#WALPHA(K)
ALPHA(K+1)=ALPHS(K+1)+ALPHM

UATRS(K+1)}=0. 606D0#UAIRS(K)+0. 3F94DOKWAIR(K)
UAIR(K+1)=UAIRS(K+1)+UAIRM

PHIS(K+1)=0. 368DO®PHIS(K)+0. 632D0#WPHI (K)
PHI{KA+1)=PHIS(K+1)+PHIM

WRITE(&, 101)UCURR(K)Y, ALPHA (K), UAIR(K), PHI(K)
WUS (K, 1)=UCURR (K)
WUS (K, 2)=ALPHA (K)
WUS (K, 3)=UAIR(K)
WUS (K, 4)=PHI(K)
20 CONTINUE
101 FORMAT(4F10. 5)

RETURN
END
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g.2 Measurement Ngise

In modelling the measurement noise the standard deviations used were
based upon those of actual sensors in use on board a typical ship. A
random number generator was used to produce a set of noise values,
based upon the standard deviations. These were in turn superimposed
upon the true values of the state vector in accordance with the
measurement equatian

2(k+1) = Hu(k+l) + vik+l) (AB.11)
Whilst the vessel was seen to navigate successfully through this noise
the actual values would not, in practice, vary so rapidly. To improve
the realism of the digital simulation it was then decided to introduce
a first order filter, similar to that used for disturbance noise, so
thaﬁ the measurement noise vector at a discrete point {(k+l) was relgted
to the value at k in the following way

vilk+1) = Avik) + (1-A) N’ (k} (AB. 12)
Where N’ tk) is the random number generated at the kth instant. The
filter did however reduce the standard deviations of the noise, as with
the disturbance noise. Cantinuing the comparison with disturbances the
value of A in equationa 8.12 can be given by

Ve : :
A= e {AB.13)

where T is the sample time and n is a time constant given by

Te = ‘/grr$

as na information regarding the peaks of the deviations from the means
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was available, other than that they would be low freguency, it was
decided to use a value for A of 0.6, For a low freguency giving a time

constant of 10 seconds and with the usual samﬂe time of 3 seconds then

0.8
A =€ = 0.60¢4
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SUBROUTINE NDISE(V; N, M)
INSTRUMENT NOISE RANDOM NOISE GENERATOR

THIS SUBRDUTINE CALLS A NAG ROUTINE ROUTINE & GCENERATES
MEASUREMENT NOISE. 1T REGUIRES MEASUREMENT NOISE
STANDARD DEVIATIONS AS INPUT

REAL#B DEL (300),REV(300),; X0(300), USHIP(300)
REAL#B YO(300), VSHIP(300)., PSI(300), R{300)
REAL #8 GOSDDF

REAL #4 V(N, M)

# # O# % O ¥ O

CALL GOSCBF(0)

DO 20 K=1,N

DEL (K)=GOS5SDDF (0. ODO, 0. 002D0)
REV(K}=GOSDDF (0. 0DO, 0. 002D0)

X0 (K)=GOS5DDF (0. ODO, 200. O00DO)
USHIP (K)=G03DDF (0. ODO. 0. 02500D0)
YO (K )=GOSDDF (0. ODO, 200. 000D0O)
VSHIP (K)=G03DDF (0. ODO, 0. 02500D0)
PSI (K)=E0SDDF (0. ODO, 0. 01700D0)
R(K)=GOSDDF (0. ODO, 0. 01700D0)

V(K+1, 1)=0. 6DO*¥V (K, 1)+0. 4DOH#DEL (K)
V(K+1, 2)=0. 6DO#V (K, 2)+0. 4DO#*REV (K)
V(K+1, 3)=0. 6DO#V (K, 3)+0. 4DO#X0(K)
V(K+1, 4)=0. 6DO#V (K, 4)+0. 4DO#USHIP (K)
VI(K+1, 5)=0. 6DO*V (K, 5)+0. 4DO&#YO(K)
VIK+1, 6)=0, 6DO*V{K, &)+0. 4DORVSHIP (K)
V(K+1, 7)=0. 6D0O*V (K, 7)+0. 4DO#PSI (K)
V(K+1, B)=0. 6DO#V (K, 8)+0. 4DO#R (K)

WRITE(&L, 101) VIK+1, 1), VIK+1,2), V(K+1, 3),
* VIK+1,4), V(K+1, 3), V(K+1, 6), VI(K+1, 7}, VIK+1, B)
20 CONTINUE
101 FORMAT{(BF10. 5)
RETURN
END
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APFENDTI X 9

CONTROLLER DESIGN

A%. 1 Proportional plus Derivative Contraol

In the early simulations af Chapter &6 a simple autopilot was used,
This consisted of a propartional term, the actual heading of the ship,

together with the velocity of the vessel.

The demanded heading RIN(7,K} was differenced with the best estimate of
heading XHAT(7) to give the course error, CERROR, to which was applied
the velocity feedback term. Gains used were 1| for the proportional
term and 30 for the velocity feedback term, giving the following teras
in the computer program:-

CERROR = RIN(7,K) - XHAT(7)

U(1) = -(CERROR) -30.0%XHAT(8)
The miinus sign on the right hand side of the control equation is to
comply with the sign convention used, i.e., a negative rudder angle

u(l) gives a positive yaw rate.

Ag7.2 The Optimal Controller

The tracking or servaomechanism problem is one of applying a control u
to drive a ship so that its states follow a desired trajectary in sonme
optimal sense. The regulator is a special case of the tracking

problem, the desired trajectory being a zerc state., In its continuous
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form the quadratic criterion to be minimised is
&
i = f {(K-R.)T QOC-R) + uTRu)] dt (A9.1)
bp
where R, is the desired value of the state vector. Kirk (1970) has
shown that <constrained functional minimisation yields the matrix

Riccati equations

W WF-FW @+ WERTE W (na.2)

together with the reverse-time differential equations set
M (F-GR™'GTH) "M, -8R, - (R9.3)
The boundary condition is
Mit) =0
and the optimal control

Uope = =R “IET(WK + M) : (A9.4)

Discrete minimisation produces the recursive Riccati equations together
with the difference equation

BEN-KIT)Y = DAT,KTIM(N-(K+1}T) + E(T,KTIRCIN-(K+1)T) (A9.3)
having the boundary condition

HiN-1) =0

and the optimal control at the kth instant

9(\«)”: -5 {[N -(Kh)]'r} *(wTy - &* QT m{T_N -(\(J«\S)T] (na.6)

The deterministic optimal contrecller for a ship tracking system 1is

shown in Figure A9.1
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admissable set of control values. The relative values of @ and R are
changed during alterattons of course, -when the course cantraol
daminates. During the remainder of each passage the track control
dominates. For a tracking system of this type, an optimal control can

only be found if the desired state trajectory is known beforehand.

A9.3 Controller Subroutines

The function of the nptimai controller is undertaken by subroutine
OPTCON. Prior to harbour passage however subroutine RICAL calculates
the Riccatti feedback matrix and the command matrix, whilst subroutine
RICATI is used to abtain a discrete solution of the matrix Riccatti
Equation. RICAL also calls subroutine TRACK to generate the reverse
time discrete tracking matrices. During the passage the optimal_
cantroller then :antfnually updates the contraol by differencing VFOR

with the product of the feedback gain matrix and the best estimate of

state, so producing the optimal control.

Variables used in these subroutines and naot previously defined are:-

VFOR(2,500) Command Matrix

5(2,9) Feedback Gain Matrix

RIN(B,300) Desired State Matrix

REVIN(8,500) Reverse time desired states

1,Y1 Way points

RIN7 Desired heading along each leg of a passage
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SUBROUTINE OPTCON{XOLD. K, S, VFOR, UD1, UD2, U, N, NB, NX: NN,
&TSAMP, DRUDD. MODE, ABCER. CERROR, X0, YO, RIN7, YI, XI, XHATS)

# SUBROUTINE TO COMPUTE OPTIMAL CONTROL LAW

On0n

REAL#4 XOLD(8).,YFDOR(2, 500),;S5(2,8).5X(2),U(2), DRUDD(500)
REAL#4 X0(230), YO{(250)
COMMON RIN(8, 500}, YOUT(8, 250)

# RECALULATE XOLD(S5) USING CO-ORDINATE TRANSFORMATION

OO0

IF(K. GT. 46) GO TO 21
YI=2590. 0
X1=0.0
RIN7=-0. 173076
80 TO 22
21 IF(K. 6T, 79) GO TO 23
Y1=2290. 974
X1=1710. 378
RIN7=0. 7135
60 TO 22
23 IF(K.6T. 129) GO TO 24
YI=3124. 321
X1=2673. 0894
RIN7=1. 209397
60 TO 22
24 YI=4928. 924
XI=3355. 213
RIN7=0.0

22 XHATS=X0LD(3)
XOLD(S)=(YO(K)-YI)#CAOS(RIN7)—(XO(K)-XI)#SIN(RIN7)

# UOPT=VFOR-S#X

# CHANGE TO COURSE-KEEPING
# IF COURSE ERROR EXCEEDS 20 DEGREES.

OnDoaaO0O0n

WRITE(1, 101)X0OLD(5)

101 FORMAT( ‘TERROR=‘F10. 5)
CERROR=RIN(7, K)~XOLD(7)
ABCER=ABS (CERROR)

IF (ABCER. 6T. 0. 349) ¢OTO 18
CALL MATMUL (SX. S, XOLD, NB, N: NX, NN)
U(1)}=VFOR{1, K)=8X(1)+UD1
60 TO 19
18 U(1)=-(CERROR-30. O#XOLD(8) }+UD1
19 U(2)=VFOR(2, K)-EX (2)+UD2
U2UL=1. S#RIN(2, K)
U2LL=0. S#RIN(2, K)
IF(U(2). 6T. U2UL) U(2)=U2uUL
IF(U(2). LT. USLL) U(2)=UaLL

XOLD(35)=XHATS
IF(MODE)1. 1.2
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c
C MAXIMUM RUDDER ANGLE = +0R- 0. 4RADIANS

- C
i IFCUC1).LT. 0. 610865) GOTD 3
| U(1)=0. 610865
3 CONTINUE
IF(U(1).GT. 0. 6108465) 6070 S
U1)=-0. 6108465
9 CONTINUE
c
L ¢ MAXIMUM RATE OF CHANGE OF RUDDER IS 2. SDEG/SEC.
c
!
c

€ MAXRTE IS MAXIMUM RATE OF CHANGE OF RUDDER ANGLE
C CURRTE IS CURRENT RATE OF CHANGE OF RUDDER ANGLE
C

MAXRTE=0. 0436332313

IF(K-1)12, 12, 13

12 CURRTE=U(1)/TSAMP
IF(CURRTE. LT. 0. 0435) GOTO 14
U(1)=0. 0434+ TSAMP

14 CONTINUE
IF(CURRTE. GT. -0. 04354) GOTO &é
U(1)=-0. 0436#TSAMP
GO TO &&

13 CURRTE=(U(1)-DRUDD(K~1))/TSAMP
IF(CURRTE..LT. 0. 0435) GOTO 44
U(1)=DRUDD(K—1)+(0. 0436+ TSAMP)

44 CONTINUE
IF(CURRTE. €T. -0. 0436) GOTOD &é
U(1)=DRUDD{K=1)~-(0. 0436#TSAMP )

&6 CONTINUE

2 RETURN
END
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SUBROUTINE RICAL(F:G;GU.AApBB.GfR;S.w.
&XD. YD, VFOR, TSAMP, N; NB; NM,/NN, IFIN)

c
C # SUBROUTINE CALCULATES THE RICCATI FEEDBACK MATRIX
C # AND COMMAND MATRIX
c
REAL#4 AA(B, 8),BB(8,2),0(8,8),R(2,2),W(B,8), WP1(8, 8)
REAL#4 S(2,8),F(8.8),6(8,6),6U(8,2),D(8,8),E(8, 8
REAL#4 REVIN(8, 500, 6T(2; 8), RET(2, 8)
REAL#4 RGTM{2,8), UREV(8),DM(B, 1), EU(8, 1)
REAL#4 OLDM(8), VREV(2), VFOR(2, 500),C(8, 4)
REAL#4 XD(500), YD(500)
COMMON RIN(8, 500), YOUT(8, 250)
c

C # PUT W MATRIX TO TERMINAL (NULL)VALUE
DO 15 J=1.N
DO 5 I=1.N
13 W(I,J)=0.0

c
DO 10 M=1.IFIN .
CALL RICATI(AA,BB.Q,R,S, W WP1, TSAMP, N; NB, NN)
C
C # UPDATE W MATRIX
C
DO 20 J=1.N
DO 20 I=1,N
20 W(I, J)=WP1{(I.J)
10 CONTINUE
S(1, 3)=-5(1, 3)
8§(1, 3)=-5(1, 3
c CALL MATPRN(S. NB, N, NN, 6HS )
c CALL MATPRN(W, N; N, NN, &HW )
WRITE(1, 114}
114 FORMAT(1H , 'OK”)
c
C # DETERMINE 8U(BX2) MATRIX FROM G(8X&)
C

DO 45 I=I1.,N
DO 45 J=1, NB
435 GUW(I,J)=6(I,.}
C # CALCULATE REVERSE TIME TRACKING MATRICES D AND E
CALL TRACK{F., GU, R, G: W, S, D, E, TSAMP. N, NB, NN)
CALL MATPRN(D: N, N, NN, &HD }
CALL MATPRN(E. N, N, NN, 6HE }

# GENERATE DESIRED STATES
# INITIALISE

CALL MATZER(RIN: N, IFIN.: NN}

# RIN IS THE DESIRED STATE MATRIX:
RIN(1)= DELTD RIN(2)=ND
RIN(3)= XOD RIN{(4)=UD
RIN(3)= YOD RIN(&)Y=VD
RIN(7)=PSID RIN(B)=RD

OO0OO0O0O0O0 DOOOON0N
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RIN(2, 1)=64. 439
RIN(3, 1)=0.0
RIN(4, 1)=7. 717
RIN(S, 1)=0. 0
RIN(7,1)=-0. 173076
XD(1)=0.0
¥D¢1)=2590. 0
c
C # STAGE ONE
DO 30 1=2, 46
RIN(2, I)=4. 439
RIN(4, 1)=7.717
RIN(3, I)=RIN(3, I-1)+RIN(4, 1) #TSAMP
30 RIN(7,1)=-0.173076
c
C # STAGE TWO
Dg 32 1=47,79
RIN(2, I)=6h. 439
RIN(4, I)=7. 717
RIN(3, I)=RIN(3, I-1)+RIN(4, 1)#TSAMP
32 RIN(7,1)=0. 7135
C
C # STAGE THREE
PO 34 1=80, 129
RIN(2, I)=6. 439
RIN(4, 1)=7. 717
RIN(3, I'=RIN(3, I-1)+RIN{4, I)#TSAMP
34 RIN(7, 1)=1.209397
c
C # STAGE FOUR
DO 3& 1=130, IFIN
RIN(2; I1)=6. 439
RIN(S, 1)=7. 717 :
RIN(3, I)=RIN(3, I-1)+RIN(4, 1) #TSAMP
36 RIN(7,1)=0.0
DO 39 1=2,1FIN
XD(I)=XD{(I-1)+RIN(4, I)#TSAMP#COS(RIN(7, 1))
39 YD(I)=YD(I-1)+RIN(4, I)*#TSAMP#SIN(RIN(7Z, I))
DO 41 J=38, 45
RIN(7,J)=0. 7135
41 CONTINUE
DO 42 J=70,79
RIN(7, J)=1. 209397
42 CONTINUE
DO A3 J=116, 129
RIN(7, J)=0.0
43 CONTINUE
WRITE(&, 107)
107 FORMAT{(1H ., ‘DESIRED STATE MATRIX RIN-‘)
DO 37 J=1, IFIN
WRITE (4, 108)J, (RINCI, J), I=1, N)
37 CONTINUE
108 FORMAT{15, 1X, BE14.7)

o000 00n

# REVERSE TIME DESIRED STATES
DO 40 J=1, IFIN
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NBACK=IFIN—(J—-1)
DO 40 I=1,N
40 REVINC(I, J)=RIN(I, NBACK)
c WRITE(&, 109)
C 109 FORMAT{{H , 'REVERSE TIME DESIRED STATES REVIN')
c DO 38 J=1, IFIN

C WRITE(&, 108)J; (REVIN(I, J), I=1, N)

C 38 CONTINUE

c

C # REVERSE-TIME TRACKING USING THE DISCRETE EQUATION:
c MIK+1)=D{(T)#M(K)+E(T) #UREV(K)

C # INITIALISE AT TERMINAL TIME
CALL MATRED (OLDM, N, NM, NN}
C CALL MATPRN(OLDM, N, NM, NN, 68HMOLD )
c
C # CALCWLATE ~-R##~1%#G’
ONEM=-1. 0
CALL MATINV(R., NB, NB)

CALL MATRNS(GT, GU, N, NB: NN}
CaLlL MATMUL(RGT, R, 6T, NB. NB, N, NN)
CALL MATSCL(RGTM, ONEM, RGT, NB, N, NN)

DO 40 K=1, IFIN
DO 70 I=1.N
70 UREV(I)=REVIN(I, K)
CALL MATMUL (DM, D, OLDM, N, N, NM, NN)
CALL MATMUL (EU, E; UREV: N, N, NM, NN
CALL MATADD(DLDM. DM, EU, N, NM, NN)
CALL MATMUL (VREV, RGTM, OLDM, NB. N, NM, NN )
NFOR=IFIN-(K-1)
DO 80 I=1.,NB
80 VFOR(I, NFOR)=VREV(I)
60 CONTINUE
Cc
C # RECALCULATE VFOR
Cc
DO &5 K=1, IFIN
VFOR(1,K)=0. 0
VFOR(2, K)=0. 0
DO &4 I=1,N
VFORC(L, K)=VFOR{1, K}+S(1, TI#RINCI, K)
&4 VFOR(2, K)=VFOR(2, K)+5(2, I #RIN(I, K)
-1) VFOR (2, K)=VFDOR(2, K} +6. 439

O

T=0. 0
c WRITE(&, 103)
c DO 95 I=1, IFIN
c WRITE(&, 104)T, VFOR(1, 1), VFOR(2, 1)
C 995 T=T+TSAMP
€ 103 FORMAT(1H , 3X‘TIME(S)‘, 6X, ‘RUDDER COMMAND‘, 6X, ‘ENGINE C
DMMAND ‘)
€ 104 FORMAT(1H , 3(&6X.E14.7))
c
RETURN
END
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SUBROUTINE RICATI(A.B}GjR-SrH.HPf.TSAHPiN.NB@NN)

###+2#DISCRETE SOLUTION OF THE MATRIX RICCATI EGUATIOMéttit#s

‘REAL#4 PA(B,8),B5(8,8), B8M(8,8),V(8,8),VT(8,8),VTW(8, 8B)
REAL#4 VTWV{(8.8),B(8,2),BT(2.8): BTW(2,8),W(8;8), WP11(8, 8)
REAL#4 BTWB(2,2),R(2,2), TR{(2,2), TRETWB(2, 2)

REAL#4 A(3,8), BTWA(2,8),5(2,8),8T(8,2)

REAL#4 STT(8,2), STTR(8, 2),5TTRE5(8. 8), Q(8,8),QT(8.8)

S=(T#R+B ' #W#B)##—-1#8 ' #l#A
WHERE T IS A SCALAR,R A 2X2 DIAGONAL MATRIX
B A BX2 MATRIX
W A 8X8 SGQUARE MATRIX
A A BX8 SGUARE MATRIX
S A 2XB MATRIX

TRANSPOSE OF B MATRIX
CALL MATRNS{BT, B, N. NB, NN}

PRODUCT OF B’ AND W
CALL MATMUL (BTW, BT W, NB, N: N..NN)

PRODUCT OF BTW AND B
CALL MATMUL (BTWB, BTW, B. NB: N, NB, NN

PRODUCT OF SCALAR TSAMP AND MATRIX R
CALL MATSCL (TR, TSAMP, R, NB; NB; NN)

ADD MATRICES TR AND BTWB
CALL MATADD(TRBTWB, TR, BTWB. NB, NB, NN)

INVERT MATRIX TRETWB
CALL MATINV(TRBTWB, NB: NB)

PRODUCT OF BTW AND A
CALL MATMUL (BTWA. BTW, A, NB.,-N, N, NN)

COMPUTE S5 MATRIX
CALL MATMUL (S. TRBTWB. BTWA. NB. NB. N, NN)

WP1=(T#Q+S ' #T#R#S) +(A-B#S) '#W# (A-B#S)
WHERE Q@ IS A 8X8 DIAGONAL MATRIX
W: S, T,R, A AND B DEFINED EARLIER

TRANSPOSE OF S MATRIX
CALL MATRNS (ST, S, NB: N, NN}

PRODUCT DF S’ AND SCALAR TSAMP.
CALL MATSCL(STT, TSAMP, ST, N» NB, NN)

PRODUCT OF STT AND R

CALL MATMUL (STTR., STT. R, N, NB, NB, NN)
PRODUCT OF STTR AND §

CALL MATMUL (STTRS. STTR: S, N: NB, N, NN)
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PRODUCT OF Q AND SCALAR TSAMP
CALL MATSCL(QT, TSAMP, Q: N, N, NN)

ADD GT AND STTRS
CALL MATADD(PA, GQT, STTRS, N. N, NN)

ONEM=-1_0

PRODUCT OF B AND S
CALL MATMUL (BS. B, S, N, NB, N, NN)
CALL MATSCL (BSM, ONEM, BS, N, N, NN)
CALL MATADD (V. A, BSM, N, N: NN)

TRANSPOSE OF V
CALL MATRNS (YT, V, N, N, NN)

PRODUCT OF VT AND W AND V
CALL MATMUL (VTHW, VT, W) Ns M, N, NN)
CALL MATMUL (VTWV, VTW, Vi Nb Ni N/ NN)

NEW VALUE FOR W MATRIX=WP!
CALL MATADD(WPL1. PA, VTWV, N, N; NN)

RETURN
END
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SUBROUTINE TRACK{F, GU, R, Q) W, S, D, E, TSAMP, N, NB,.NN)

# THE SUBRDUTINE GENERATES THE REVERSE TIME DISCRETE
# TRACKING MATRICES D AND E BY SOLVING THE EQUATION:
MDOT=FF#M+GGR#RIN
WHERE., FF=(F-G#R##—14#C "#W) *
G6=—Q
Rit#—1#Q " #W=8

REAL#4 F(8,8),6U(8,2),R(2,2),G(8,8),W(8,8),5(2,8)
REAL+4 D(¢8,8); E{8, 8}, GM(8, 2),6MS(8,8),FGMS(8, 89
REAL#4 FF (8, 8),66(8.B)

ONEM=-1. 0
CALL MATSCL (GM, ONEM, GU, N, NB, NN)

# PRODUCT DF -G AND §
CALL MATMUL (GMS, BM; S: Ni NB, Ni NN)

# ADD F AND GMS
CALL MATADD (FGMS. F, GMS: N, N: NN)

# FF IS TRANSPOSE OF FGMS
CALL MATRNS(FF.FGMS, N, N, NN)

* 66 IS -@
CALL MATSCL (GG, ONEM, @, N, N»:NN)

# USE REVMAT(REVERSE TRNMAT) TO FIND DISCRETE MATRICES D AND
CALL REVMAT(FF, @G, D, E; Ny N, TSAMP, NN)

RETURN
END
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SUBROUTINE REVMAT(F, G: A, B, N, NG, TSAMP, NN)
c .
C EVALUATES DISCRETE STATE TRANSITION MATRIX A(T?
C AND DISCRETE FORCING MATRIX B«(T)
c
REAL#4 ST(B, 8),F(8,8),A(8,8), INTEGA(8,8), B(8, 8), 6(8. 8)
REAL INTEGA
INTEGER POWER
NORMFT=0. 0
DO 1 I=1,N
DO 1 J=1.N
ST(I,J)=F(I, J)#TSAMP
1 ACI, J)=ST(I, )
POWER=50
DO 7 I=2, POWER
FPOWR=POWER-I+2
DO 5 J=1,N
DO 3 K=1,N
3 INTECA(J. K)=A(J: K} /FPOWR
3 INTEGA(J, JI=INTEGA(J, J)+1.0
CALL MATMUL (A, ST, INTEGA, N, N, N, NN)
7 CONTINUE
DO 9 J=1,N
AL JI=AGL J)+1.0
DO 9 K=1,N
9 INTEGA(J, K)=TSAMP#+INTEGA{(J: K)
CALL MATMUL (B, INTEGA, G: Ni N, NG, NN)

RETURN
END
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APPENDI X 10O

COMPUTER DETAILS

A1O. 1 Prime Mainframe Computer

Plymouth Polytechnic runs a dual-processor Prime computer system {Prime
9950/850) with a total of 14 million bytes aof memory, five 300
million-byte disc drives and two 409 million-byte disc drives. Both
processars have a line printer and magnetic tape factilities. The
processors communicate with each other via a PRIMENET network, allowing
resources to be shéred between the processors, which run under control
ot the Prime operating system, PRIMDS. Access ta the system is
currently by means of up to lé4 terminal lines, and batch gueues which
allow jobs to be run independently of terminals. Networked connections
to other computer systems will provide access to an increasing range of

other computing services.

The main companents of the system are:-

Processar A Prime 9930 with !0 MB memory 1x400, 3u300 MB disc
Processor B Prime B30 with &4 MB memory ix400, 2x300 MB disc file
storage

Line Printers { at 480 lines/minute, 2 at 300 lines minute
Graph Plotter CalCaomp 1039 plotter Paper Tape Reader - 300

characters/second
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Punch - 120 characters/second
Floppy disc Two B" industry-compatible units
Magnetic disc Four dual-density nine-track units

Digitiser CalComp digitiser with AO size digitising area.

Al0.2 Microcaomputer

The Texas Instruments 16 bit sicrocomputer used in the physical model

consisted of the follaowing components:-

TM 990/101%  MICROPROCESSOR 4K RAM 8K EPROM
T 9907302 SOFTWARE DEVELOPMENT 16K RAM 8K EPROM
TM 990/201-43 MEMORY EXPANSION 64K RAM 14K EPROM

™M 99071241 A-D/D~A CONVERTER
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APPLICATION OF MULTIVARIABLE SYSTEMS THEQORY, OCTOBER. 1982

AUTOMATIC PILOTAGE OF LARGE SHIPS IN CONFINED WATERS - A MULTIVARIABLE APPROACH

R.S. Burns, M.J. Dove, T,H. Bouncer.

Plymouth Polytechnic.

The feasability of a guidance system for automatically controlling a large
ship in the pilotage phase of a voyage is investigated. Identification,
Optimal Control and Estimation Techniques are applied to a mathematical

model of a vessel in the approaches to Plymouth.

INTRODUCTION

It is beyond question that the overall standard of navigation ac sea is very high indeed, and the
probability of completing a voyage successfully must be very close to unity. Hoewever, (1), a brief
summary of marine traffic accidents shows that the majority occur within congested waters,
particularly within port limits. Congestion, coupled with the increased size and complexity of
operation, Has focussed attention on the control of pilotage and berthing, for, not only must the
safety and cost factors be considered, but also the euvironmental aspects of, say, the spillage of

large quantities of crude oil at, or near, the approaches to a port.

This paper investigates the possibilities of employing multivariable control theory to the problem

of automatically piloting a large vessel in the approaches to a port.

A discrete, time~varying non-linear model has been developed based upon eight system states, namely
forward and lateral position and velocity, heading, yaw-rate, rudder angle and engine speed. The
model has two deterministic inputs - demanded rudder and engine speed plus four stochastic disturb-
ance inputs in the form of wind and current vectors. The measurements of the state vector, con-

taminaced with random necise, are passed through an optimal, time-varying filter.

The best estimate of the state variables are used by an adaptive optimal controller to compute
those inputs {demanded rudder and engine speed) which minimise a given performance criterion. The
dynamics of both the filter and controller are updated frequently by a system identification
algorithm that can be either based upon apriori knowledge of the hydrodynamic coefficients of the

vessel, or by on-line measurements of the state variables.

Anoutline of the proposed system is given in Figure 1,
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MATHEMATICAL MODEL

Equations of Motiom

The ship is considered to be a rigid body with three degrees of freedom, in surge, sway and yaw.
Ship motions in the other three degrees of freedom, roll, pitch and heave are considered small
enough to be neglected. It is convenient to describe the motion in terms of a moving system of
axes coincident with the mass centre of the hull as illustrated in Figure 2. This gives rise to

an Eulerian set of equations of motion which may be written in the form

mi - mrv = X

mo + mur = Y e T U
1r=\N
z

Techniques employed in obtaining expressions for hydrodynamic forces and moments are well covered
in the literature (2) and the usual method is to apply a Taylor series expansion. For applications
such as course-keeping, where changes in rudder and heading angles do not usually exceed five
degrees, a linear approximation, using only the first order terms in the expansion, is normally
quite adequate. In a track-keeping situvation where large changes in headiﬁg can be expected, it

becomes necessary to include second and third order expansion terms.
Surge Equation. The complete surge equation in dimensionalised form is

ni - mrv = N.u4 + u+u)+x%x v+ 34X w2+ ¥ r2+¥ :224+4% + % nt
QY Xu( c) xuuu xuuuu va xrrr x56°A uu'"a xnn A

In the above equation a shorthand subscript and bar notation has been adopted, for instance

- S 32x
A, = u ’ kuu =4 xuu 4 [Buz]

The dimensiondlised hydrodynamic coefficients are obtained from the non-dimensional values in the

usual manner

= 2 !
X, (oL u)xu

Sway and Yaw Equations. The dimensionalised sway and yaw equations are

W) +mur =Y.V + Y (V) +Y.F+Yr+Y nl+Y wI+T  ru? o+
v v c 3 r : vy

7 2 7 2: 2
nn"a v Tone™a 84 * Tnnses™a Sa

+ ¥ vGAvZ + Yv v et et et et we o (3)

§v a 3
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= o . . . v 2 .8 I .5 2 . W 2 ¥
Izr Nﬁv + Nv(J + vc) + Nér + Nrr + Yn n,“ + N vl + N rvé + NnnénA GA + N

2
noA yyy rvy "nnéss A §

3
A

Steering Gear and Main Engine. These are both modelled by first order linear differential

equations

H 1 1

§, =6 - —4& ..., S T . Ceeasa (5)
A TR D _TR A

. 1 1

n, = —n L T T e e e onesasssossnnnaatnasnacasesasoasaransnns eeveraensesanes  (B)
A TN D TN A

Where dD and n, are the demanded rudder angle and demanded engine speed respectively.

D

State Space Formulacion

Much acrencion was devoted to the choice of state variables in relactionship to che tracking problem

and the state vector was finally based on the ship body axes

T .

X = (8§ n, xuywvwyr) Chre e T T e (7
This state is affacred by the forcing vector

UT = (GD oy u, v, u va) ................................................. ey e (8)

¢ a

Equations (5), (6), (2), (3) and (4) can be arranged in the following set

=1 1

§ = — § +-—=— 3

A TR A TR D

o=l L

A T T T

X =u

a = A, + Agny + Ay £ Agy 4 AgT + A u v A LU
.................... N §°)

y o=

v = BléA + anA + Byu + Bgv + Bgr + auhvc + Buﬁua

b= r

r = CléA + Cg_nA + Cyu + Cgv + Cgr + Cuhuc + Cusua
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The coefficients A, B, and C are all time-varying and so, for example

p—y 2 —
X, .6 ] (1pL2U) X 8,

Al=

‘m ~ X, m -~ X.
u u
Ay, therefore, is a function of the instantaneous total velocity U and rudder angle GA.

Equation set (9) represent the time~varying state equations for the ship and are expressed by the

state matrix vector differential equation

X(c) = Feaadir) + GleYldeo e e e e e e e e e e e e, (10)

It is convenient to partition the (j matrix in terms of the control forcing function GA and n, and

the disturbance forcing functions Us Vs U, and va so that

X(c) = F(e)X(e) + Gc(c)U(:) + GD(t)H(t) ettt eeeei et Creeaan (11)

The corresponding discrete solution is

XK + 1T = AT, KTSX(KT) + B(i. KTYRT) + CUT,RTIWKT) i iirinnnns O ¢ V3

MEASUREMENT AND FILTERING

Separation Principle

This is an important feature of stochastic.optimal contrel theory that allows a given optimisation
problem to be reduced into two problems whose solutions are known, namely an optimal filter in

cascade with a deterministic optimal controller.

The Measurement Process. The measured state J(K + 1} is considered to contain noise V(K + 1), where

V(K + 1) is a stationary gaussian process with convariance M. The measurement process is then

represented by

ZOR + 1IT) = HOEK + DDXUK + DT) # VUE + DIT)  eeenreeeeeneernnnnnns S, (13)

Estimacion of the State Yector

The Kalman filter used here is a recursive computational algorithm which remembers past dara,
receives future positions, and bases the estimate of the srace upon a combination of past and
present information. It should be noted however that this technique assumes the system is linear
and the errors gaussian. As a ship constitutes a non-linear system, when parameters such as large’
alterations of course and speed, shallow water effects, and trim are considered there must be some

limitations to the technique.

The filter is characterised by containing a model of the ship and the equations are
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X(K + D) = AT RTIX(KRT) + K((K + L) [Z((lu »1) - ek + 1).T)A(T,KT)X(KT):[ eerraan e (16)

The filter gain matrix K(K + 1) and the two covariance matrices P + 1/K), P(X + 1/K + 1) are

governed by
Pk + 1/K) = AT, XDP&/KAT(T,RT) + Ber, xDNR/K B (T,KT)
-1
KUk + 1T) = P + IIK)HT((K + 1)T) E-I((K + DTIP(R + 1/K)HT((K + 1IT) + Mk + 1)'r):] cees (15)

P(K + L/K + 1) = [I - Ktk + DDH((k + l)T):IP(K + 1/K)

In determining the value of the filter gain matrix consideration has to'be given to the control
vector J(KT) and its associated control matrix B(T,KT). A model of B(T,KT) is required in the
filrer and the complete filter model is shown in Figure 3, leading to the overall filter equations

a8
XK+ = AT, XDIXK/K) + B(T.K_T)U(KT) + KUk + 1T EZ((K + 1)T) - Bk + 1)r){A(f,xr))k(Kr)

+B((T,1<T)U(KI)H e e, . (16)

CONTROLLER DESIGN

Stochastie Optimal Control

The stochastic optimal control problem is to find a control || which causes the system
X = g(X(E)- U(’t)o wit) v‘t)
to follow an optimal trajectory X(t) that minimises a performance criterion

Ly
J= J a(X(e), ) ,edde
to

whilst being subjected to a measurement process
L= £X(t), v(O),t)

Deterministic Optimal Control

Tracking Problem with Quadratic Performance Criterion. The tracking or servomechanism problem is

one of applying a control || to drive a ship so that its states follow a desired trajectory im some
optimal sense. The regulator problem is a special case of the tracking problem, the desired

trajectory being a zero state.
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Continuous Form. The quadratic criterion to be minimised is

J=}-1f{‘(x—R)TQoX-R)+UTRU} At s e oan,

Lo

where R is the desired value of the state vector it can be shown (3) that constrained functional

minimisation yields the matrix ‘Riccati equations

W HE = F W = Q* WOR GTH  veevvrneerneeinnns e (18)

together with the reverse-time differential equation set

M= F =GR GTIT Mo R «ererenemnen et e e e et (19)

The boundary condition is

M) =0
and the optimal control

Uopt=~R_lGT(wx"M) ..................... R (20)

Discrete Form. Discrete minimisation produces the recursive Riccati equations together with the

difference equation

Mooy = DOEDM ey 1y * ECKDR g o 1ypy crrorrmerremmemsesemsessseens (21)
having the boundary condition
M1y = ©
and the optimz2l control at the Kth instant
=1 AT

KT = - - F 4 i deeantsanenssorraeaaneon
Utkmyope = S y_k + 1ym*ED = R Miyoix + 1)m) (22)
The deterministic optimal controller for a ship tracking system is shown in Figure 4,

IDENTIFICATION

Yethod of Linear Least Squares

Put J

H

z(Niz), i=0,1,2,3,...,K

]

Z, - YW - YR
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A
If we differentiate with respect t0/3 and' set JL(J(ﬁ)) -0, Ve obtain the L.L.S. esci=ate giTz= by
2 . : .

A=PYZ ... v, s USRI e £ )

A recursive form of equation (23) is available, which has the form

P, = P - Pyl + YR T Y P e e e J24)

A A TA .
B = Bt BeaYZ-Y' Bp S ATTECTPTTTEYPRPRIITLY e ceee29)

The pair of equations 24 and 25 enable revised estimates of the parameter matrix /3 . O Tz
calculacted from the prior estlmate‘B K based on a knowledge of Y and / obtained by Zazsurs-:z:s
made at the (K+l)th sampling instant.

COMPUTER STMULATION

The vessel chosen for the simulation was of the Mariner Class. Good agreement betwes- Zull=-szzla

test results and data obtained from the mathematical model was found with all standari zance=TTss

and Figure 5 shows a typical turning circle for 20 degree starboard rudder. The recc——anded :Tzzk

for deap draught 'vessels into Plymouth Sound was selected 4s a suitable design speciii:zaticz Izt the

automatic .guidance system. This requires simultanecus control of the ship's positioc, 2eadi-:z snd
forward velocity and implementatiom of the matrix control equation (22) produces the -tzimal

trajectory illustrated in Figure 6 when the desired forward speed is 7.717 m/s (15 kz=z:s):

CONCLUSIONS

Much work is still to be done before automatic guidance systems of the type described -ara z::

actually fitted to surface ships. Manufacturers are, however, already moving towardz -te
replacement of conventional analogue auto-pilots with adaptive micrprocessor based mizi=um zzzz:y
course-keeping systems and the possibility exists that in the none to distant future z zew

generation of auto-pilots with both course and track-keeping facilities will emerge.
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NOTATION

Matrices

APPLICATION OF MULTIVARIABLE SYSTEMS THEQORY, OCTCBER 1982

and Vectors

Z =X TN ITCoOOMMOOE >

Discrete State Transition Matrix.

Discrete Control Matrix.
Discrete Disturbance Matrix.
Discrete Reverse Transition Matrix.
Discrete Reverse Control Matrix.
Continuous Time System Marrix.
Continuous Time Forcing Matrix.
Measurement Matrix.

Kalman Gain Matrix.

Covariance of Noise Véctor,
Reverse Time Srate Vector.
Covariance of Control Vector.

Residual Vector.

Scalar Svmbols

ete.

State Equation Coefficients,

Moment of Inertia about z axis (kgm?).

Length of ship between perpendiculars (m).

Mass of ship (kg).

Actual and Demanded engine speeds (rad/s).

Total moment applied to ship (Km).

Yaw hydrodynamic coefficients.

Angular velocity of ship about z axis.
Sampling time interval (s).

Time (s).

Time constant of main engines (s).
Time constant of rudder servo (s).
Interger counters.

Performance Index.

GREEK SYMBOLS

LY

Transpose of Augmented State Tranmsition

Matrix and best estimate.
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N <0 X

Ky ¥,2

xu’xd

etc.

X,Y ,Z
o’ 0" o

Yu’YG

atc.

Covariance of State Vector,
State Error Weighting Matrix.
Control Weighting Macrix,
Desired State Vector.
Feedback Gain Matrix.

Control Vecror,

Command Matrix.

Noise Vector.

Riccati Coefficient Matrix.
Disturbance Vector.

State Vector.

Best Estimate of State Vector.
Combined State and Control Vecror.

Measured State Vector.

Track velocity (m/s).

Forward velocity of ship (m/s).

Forward components of wind and current
velocitiaes (m/s).

Lateral velocity of ship (m/s).

Lateral components of wind and current
velocities (m/s).

Ship related orthogonal co-ordinates(m).

Total force on ship in forward
direction (N).

Surge hydrodynamic coefficients.

Earth related orthogonal co-ordinates.
Total lateral force on ship (N).

Sway hydrodynamic coefficients.

Actual and Demanded rudder angles (rad).
Density of water (kg/m3).
Actual heading of ship (rad).









