MODELLING THE FISHERIES OF LAKE
MANZALA, EGYPT, USING PARAMETRIC AND

NON-PARAMETRIC STATISTICAL METHODS

MEDHAT MOHAMED AHMED ABDELAAL
A thesis submitted to the University of Plymouth in fulfilment for the degree of

DOCTOR OF PHILOSOPHY

School of Mathematics and Statistics

Faculty of Technology

February 1999



This. copy of the thesis . has been supplied on the: condition that.anyone who consults
it:is understood to\recognise that its copyright rests-with its author and that no quotation
froni. the thesis diid no information dérived from it may be published without. the author's

prioriconsent.



MODELLING THE FISHERIES OF LAKE
MANZALA, EGYPT, USING PARAMETRIC AND

NON-PARAMETRIC STATISTICAL METHODS

MEDHAT MOHAMED AHMED ABDELAAL
A thesis submitted to the University of Plymouth in fulfilment for the degree of

DOCTOR OF PHILOSOPHY

School of Mathematics and Statistics
Faculty of Technology

February 1999



MODELLING THE FISHERIES OF LAKE MANZALA, EGYPT,
USING PARAMETRIC AND NON-PARAMETRIC STATISTICAL

METHODS

By: MEDHAT MOHAMED AHMED ABDELAAL

Abstract

Much attention has been given to the economic aspects of the fisheries in Egypt, while
building a statistical or mathematical model for fish production has received little attention.
This study is devoted to a comprehensive assessment of Lake Manzala fisheries, past,
present and future. Lake Manzala is one of the main fisheries resources in Egypt, and there
is evidence that the fisheries have been over-exploited in recent years. The study objectives
were to determine the factors that affect fish catches by individual vessels, to compare
between parametric and non-parametric models of the fish catches, and to produce a
mathematical model of stock behaviour which can be used to suggest policies to manage the

Lake Manzala fishery.

A new method of estimating the carrying capacity of the lake and intrinsic growth rate
of Tilapia and its four species has been developed. Simulation had to be used to get error
estimates of the biomass parameter estimates using the new method. Three catch strategies

have been investigated and assessed, with discounted utility of future yields.

Two ways of modelling individual vessel catches in relation to their effort
characteristics, a parametric and non-parametric analysis, have been investigated. Using
generalised additive model gave an improved fit to the survey data compared with the
parametric analysis. It also gave a lower allowable fleet size which leads to more

conservative management policy.

A simulation approach was used to investigate the uncertainty in the predicted catches
and stock levels, and to give insight into the risks associated with various levels of control.
There was no evidence that a management strategy which aimed to fish at maximum

sustainable yield would put the stock at risk.
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and (d) df=7.

Figure 7D Smoothing spline smoother of LogYave vs. LogDuration for

Trap nets in Eastern Sector using (a) df=1, (b} df=3, (c) df=4

and (d) df=7.

Figure 8D Smoothing spline smoother of LogYave vs. LogMesh for Trap

nets in Eastern Sector using (a) df=1, (b) df=3, (c) df=4 and

(d) df=7.

Figure 9D Smoothing spline smoother of LogYave vs. LogNefs for Stand

nets in Southern Sector using (a) df=1, (b) df=3, (c) df=4 and

(d) df=7.

Figure 10D Smoothing spline smoother of LogYave vs. LogFishermen for
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df=4 and (d) df=7.
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df=4 and (d) df=7.

Figure 12D Smoothing spline smoother of LogYave vs. LogMesh for Stand

nets in Southern Sector using (a) df=1, (b) df=3, (c) df<4 and
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Figure 15D Smoothing spline smoother of LogYave vs. LogDuration for
Stand nets in Western Sector using (a) df=1, (b} df=3, (c) df=4
and (d) df=7.
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(d) df=7.
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Hook lines in Southern Sector using (a) df=1, (b) df=3, (c)
df=4 and (d) df=7.
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lines in Western Sector using (a) df=1, (b) df=3, (c) df<4 and
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Chapter 1 Introduction

1.1. Introduction

Nowadays the world is very aware of the problem of food supply, which has two
major dimensions. The first is famine, an extreme and general shortage of food causing
distress and death from starvation. The second is the increasing disparity between
population and food production. The world is substantially out of balance with respect to
production and distribution of necessary food supplies. At the 1996 World Food Summit in
Rabat, sponsored by Food and Agriculture Organisation (FAQ) of the United Nations, the
report stated that more than 800 million people were undemourished in the early 1990s.
Millions more suffer debilitating diseases related to micronutrient deficiencies and to
contaminated food. Every day, one out of five people in the developing world cannot get
enough food to meet his/her daily needs; in Affica, two out of five people do not have

adequate food.

The total food demand does not exceed food production by reason of population
increase alone, but also because incomes are rising around the world giving rise (o an
increase in the per capita demand for food. When this increase is added to the growth in
population, the total demand for food has been increasing somewhat more rapidly than the
food production rate, creating a serious economic problem that takes the forms of rising

food prices, or empty food shops, or a combination of both.

Food is a prime necessity of life; the kind and the amount of food available play a vital
role in the physical and mental well-being of individuals as well as of nations. The presence

of essential nutrients in the food supply can determine the growth, health and efficiency of



populations and each of these nutrients has its own special role. Many studies on nutritional
status show that protein deficiency is very common among populations where most of the
dietary protein is supplied from cereal grain and other plant sources, and that the ethnic
groups who obtain their protein supplies from meat and other animal origin are well
nourished. Protein malnutrition and under-nutrition are the major nutrition problems
affecting the well-being of populations of the developing countries of the world. Protein
malnutrition, with or without an associated infection, is the most common cause of ill health

if both its direct and indirect effects are considered (Specialised National Councils, 1988).

Protein is one of the most important nutrients, found in every cell in the body and
used in forming muscles, blood, hair and other tissues. Carbohydrates and fatty foods
provide most of the energy used by the body. Protein can also provide energy when the
body receives insufficient energy from food. Insufficient intake of protein and consumption
of protein that fails to provide the essential amino acids are the most significant factors in

human malnutrition which is so prevalent in many regions of the world today.

Protein in the human diet is obtained from both animal and plant sources. Among
food-stuffs of animal origin meat, fish, eggs, milk and milk products are the most important.
Plant protein is most available in cereal grains (wheat, corn, rice and barley), the seeds of
legumes (peas and various kind of beans) and nuts, of which peanuts are perhaps the most
important in the human diet. Animal proteins such as meat, fish and eggs provide protein of
high biological value, but they are in short supply in many countries in the third world. This
shortage can not be overcome solely by procedures such as increased production of animal
products through agriculture, which in many developing countries is still primitive or
inefficient, or which produces animal protein at great expense. As a consequence, the living
resources of the sea and fresh water are protein resources which can be directly exploited

and which may still maintain considerable stocks in reserve.



Many workers in the field of human nutrition conclude that fish is considered one of
the main sources of animal protein, especially by poor nations where it fills the gap between
starvation and subsistence more than does milk or meat. The protein content of different
types of fish ranges between 30 to 90 percent of dry solids. The percentage of total protein
calories indicates that the muscles of some lean fish contain exceptionally high levels of
protein even when compared with the best meat. The amino acid composition of fish and

fish products provides protein of the finest nutritive quality.

Great attention is now being given to exploring fishery resources and tapping their
vast stores of animal protein food in the developing world. In most developing countries
bordering a marine area, great emphasis has been put on fishing as a means of rapidly
acquiring quality protein. In some countries such as Egypt, fish is cheap in comparison with
other protein foods, because the investments and costs are limited to the capture, handling
and processing rather than growth and reproduction of animal protein. Adding to that,
animal protein has many problems, such as the long gestation period of cattle and their
tendency to have few progeny, the limited agncultural area available, the low productivity
of local breeds, the shortage of breeds which produce meat and milk and the costs of
feeding and veterinary services. Similarly, poultry production is faced with many problems
such as feed shortages, the lack of local suitable breeds and the sensitivity of poultry to
environmental and veterinary conditions. On the other hand, increasing fish production can
achieve the qualitative balance of food production with lower costs and higher investment

efficiency than other protein sources.

For that reason, the sustainable development of Egyptian fisheries is regarded as one
of the bases of the government strategy aiming to eliminate protein food shortage. This
means that fisheries resources are to be protected and properly managed to maintain their

capability for producing fish. Over-exploitation is the major factor affecting sustainable



development of the fisheries. So the balanced continuous growth of fisheries, which means
the protection and maintenance of fisheries resources to enable the continued production for
current and future generations, is one of the most important goals of the development

policies.

1.2. Egyptian fisheries

The fisheries of Egypt are among the most diverse and interesting. The present fish

catch comes from four sources (Table 1.1):
(a) the marine fisheries of the Mediterranean Sea, Red Sea and Gulf of Suez,
(b) lake fisheries,
(c) fresh water fisheries in the River Nile and its canals,
(d) aqua-culture fisheries.

The lakes in Egypt can be classified into three categories: saline lakes where salinity is
about the same as the sea; brackish lakes, where the salinity does not exceed 5 g/L in all its
parts; and fresh water lakes. The brackish water lakes are among the most productive
standing water bodies due to shallow depths, which usually do not exceed 2 metres and

huge quantities of nutrient rich water from irrigation drainage pouring into them.



Table 1.1 Classification, areas and catch of Egyptian fisheries in 1997,

Fishenies % of area % of catch

A. Marine fisheries

Mediterranean Sea 5534 11.84
Red Sea, Suez Gulf and canal 35.81 11.63
B. Lakes

B.1 Saline lakes

Karon (natural lake) 0.45 0.20
Bardawill (lagoon) 0.81 0.38
Port Fouad (lagoon) 0.12 0.05
Raian (man made lake) 0.39 0.16
Mariot {(man made lake) 0.11 0.92
B.2 Brackish lakes

Manzala (natural lake) 1.06 12.16
Borols (natural lake) 0.84 11.75
Edico (natural lake) 0.18 3.35
B.3 Fresh water lake

High Dam (man made lake) 2.60 11.52

C. Fresh water fisheries

River Nile and its network 1.45 18.47

D. Aquaculture

Fish farms 0.84 17.57

Grand total 100 100

Source: Ceniral Agency for Public Mobilisation And Statistics (CAPMAS), yearbook of Fish produdtion satistics in Arabic

Republic of Egypt (ARE).

The agricultural area of Egypt is 3.2 million hectares, while the area of Egyptian

fisheries is around 5 million hectares, which is nearly twice the cultivated area. In 1997 the



value of fish production was about 3 billion Egyptian pounds (LE)’, while the agricultural
value was 64 billion LE. This means that contribution of fish production to agricultural

production is modest considering the area of the two activities.

Fish production from all Egyptian fisheries changed from 107 kt in 1977 to 266 kt in

1997 (Table 1.2). The highest production was in 1994, while the lowest was in 1977.

The Egyptian lakes have been the main sources of fish production. The lakes’ fish
production has been changed from 65 kt in 1977 to 108 kt in 1997 (Table 1.2). From 1977
to 1997 the average annual fish production of all lakes represented 50 percent of total fish
production. Lake Manzala is ranked number one among these lakes for fish production
because its annual fish production average represents 39% of all the lakes production and
20% of the total fish catch in Egypt. The highest catch was 63 kt in 1987 and the lowest

was 30 kt in 1997.

' 1£=5.55 LE is the average of exchange ratc at March 1998.



Table 1.2 Relative importance of Lake Manzala catch in relation to all lakes catch and

total catch during the period 1977-1997 (in kt).

Years Lake All lakes Total Manzala to all Manzala to All lakes to

Manzala catch lakes % total catch % total catch %
1977 33 65 107 52% 31% 61%
1978 47 69 110 67% 42% 63%
1979 36 76 115 438% 32% 66%
1980 38 79 143 49% 27% SS%L
1981 39 80 139 49% 28% 58%
1982 30 84 187 36% 16% 45%
1983 30 82 166 37% 18% 49%
1984 35 83 158 42% 22% 52%
1985 48 115 230 42% 21% 50%
1986 52 127 254 41% 21% 50%
1987 63 136 280 46% 22% 49%
1988 37 143 301 26% 12% 48%
1989 49 134 320 36% 15% 42%
1990 50 157 334 32% 15% 47%
1991 45 158 340 29% 13% 46%
1992 52 155 342 34% 15% 45%
1993 47 152 352 31% 13% 43%
1994 49 159 363 31% 13% 44%
1995 34 107 233 32% 15% 46%J
1996 33 114 278 29% 12% 41%
1997 30 108 266 28% 11% 40%
Average 42 113 239 39% 20% 50%

Source CAPMAS, yearbook of Fish produdtion statistics m ARE.



1.3. Previous studies

There have been many studies on Egyptian fisheries. Sherif (1974) conducted a study
on the economics of fisheries in the Arabic Republic of Egypt (ARE), which concluded that
many governmental bodies are supervising the fishing sector and that the poor co-ordination
between them was one of the factors hampering fisheries development. It also mentioned
that fish is an important source of cheap animal protein and that fisheries development could
provide such protein at relatively low prices. It was recommended that reorganisation of the
fishery sector was essential to provide fish at reasonable prices and high quality. Elbana
(1988), also noted the lack of co-ordination between agencies controlling fishing activities
as well as shortage of qualified staff. The study concluded that the value of fish production
in 1985 represented 4 percent of the value of agriculture production and it recommended

that contacts between executive agencies and research institutions should be strengthened.

Elbarawy and Awad (1980) stated the economic importance of fish production. That
study concluded that the drop in fish production from 115 kt in 1961 to 107 kt in 1977 was
mainly due to concentration of fishing in the inshore areas and decreased fertility rate of the
fisheries sources. Shafay (1983) concluded in his study that the fish production from
Egyptian lakes fluctuated from one season to another. In winter the production decreased
from the annual average, while it increased in summer. It was suggested that fish import

plans must consider seasonal fluctuations in production and consumption.

Basiony (1985) stated that although there has been an overall expansion of bodies of
water fishing in Egypt, the production per hectare was low. This was mainly due to the poor
efficiency of traditional fishing boats and gears. In Abosamra’s study (1987) the estimated
annual average of fish production per hectare from marine fisheries from 1966 to 1973 was

1.8 tonnes. Shahen (1980) gave an estimate of 0.5 tonne per hectare from the northern lakes



during the period 1964 to 1978, while Saad (1988) estimated the average productivity per

hectare from the northern lakes during the period 1974 to 1979 as 0.7 tonne.

The study conducted by the Specialised National Councils (1988) stated that the
development in fish production could be achieved by introducing modern techniques in fish
handling and storing. The provision of refrigerated lorries and storage, and other related

marketing facilities would improve fish supply and prices.

Barrania and Nassar (1984) stated that bio-economic management of fisheries must
aim at obtaining maximum sustainable yield (A7$}) with protection of the stock and
minimum cost. Abdelhafz (1985) maintained the importance of protecting fish stocks in the
Gulf of Suez fisheries and not exceeding the optimum biological level of exploitation
through proper control of fishing efforts. Elhawary (1992) maintained that many of the
fisheries of Egypt have suffered as a result of by the absence of scientifically determined
figures of maximum sustainable yield (A/SY). Moreover, there is little effort as yet to
identify all of the stocks that can be regulated separately, to determine the effects of fishing
on stocks and to estimate the permissible levels of maximum yield. That study concluded
that there is a difficulty in developing general public acceptance of the need for regulation
because of the illiteracy of most of the fishermen and political pressure on policy makers in

the government.

The study conducted by Barrania and Abdelaal (1994) stated that the development of
Bardawill Lagoon should be done within the framework of a regional development plan

which can reduce the over-fishing in that location.

In these studies, much attention has been given to the economic aspects ol the

fisheries, while building a statistical, biological, or mathematical model for fish production



has received little attention as mentioned in that study carried out by Barrania and Nasser

(1984).

1.4. Study objectives

Lake Manzala plays an important role in providing fish for the Egyptian population
because it is the largest natural lake and its annual fish production represents around 20
percent of the national fish production. For these reasons Lake Manzala has been chosen as
a case study to determine the factors which affect the lake exploitation, such as changes in
number of fishing vessels and vessels characteristics, as well as to study the effect of these
factors on stocks of the lake. The study covers the period from 1977 to 1997, and provides
suggestions to improve management of that fishery in order to maintain and protect fish
stocks and ensure sustainable fish production. The management strategies developed in this

study can be extended to other Egyptian fisheries resources.

The main objectives of this study are:

e to develop models of changes in biomass of fish stocks and to estimate key
parameters, so that changes in biomass in response to changing catches can be modelled

and the stock size can be predicted,

b

e to determine factors that affect fish catches by individual vessels using parametric
approaches, such as regression analysis, and non-parametric approaches, such as smoothing,

and compare both approaches;

e to produce a model which can be used to suggest policies and means of proper

management of the lake’s fisheries,

» to explore the effect of uncertainty on the catches and stock prediction.



These objectives can be realised through the following chapters: chapter two
describes the geographical characteristics, fishing efforts and catch in a time series analysis
of Lake Manzala; chapter three describes the use of fisheries modelling to estimate the
intrinsic growth rate and the carrying capacity of the fishery for the main species in Lake
Manzala; chapter four shows the analysis of field survey data of Lake Manzala vessels using
parametric approaches such as regression analysis; chapter five covers a non-parametric
approach to the analysis of field survey data such as smoothing to improve the linear
regression model described in chapter four; chapter six shows the effect of the two sources
of uncertainty, in the biomass model (described in chapter three) and catch models
(described in chapters four and five), on the biomass prediction; and chapter seven shows a
comparison between parametric and non-parametric approaches, the results and the

conclusions of the study.
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Chapter 2 LAKE MANZALA FISHERIES

2.1. Introduction

The geographical characteristics, fishing efforts and fish catches of Lake Manzala are

discussed in this chapter.

2.2. Geographical characteristics

2.2.1. Lake Manzala location

Lake Manzala is located in the north-east corner of the Nile Delta, and lies between
longitudes 31° 45’ to 32° 5' east and latitudes 31° to 31° 30’ north. The Mediterranean Sea
borders it to the north, the Suez Canal to the east, the River Nile (branch Domiat) to the

west and Sharkia Governorate to the south. (Figure 2.1).

2.2.2. Lake Manzala weather

The Lake Manzala area has a temperate climate, with mild weather in summer and
moderate cold in winter. The average temperature during the summer days is between 28°
and 32° and during winter days is between 8° and 10°. Humidity is high, varying between
65% and 95%. The rainfall is light with a range of 40 - 80 mm per year. The rainy months
are December, January and February. The average wind speed is 15 km per hour. The wind
in this area blows gently. Because Lake Manzala is a shallow lake (the maximum depth
being one metre) the water temperature is similar to the air temperature. (Aero

Methodological Authority AMA, yearbook 1996)
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(Br _ Cr)

B =(B,-C)Y1+r-r % ) (3.4)

For annual data both equations 3.3 and 3.4 are not logical because biomass growth

does not take effect before or after the catch, but both occur simultaneously.

If half of the catch is assumed to be taken at the beginning of a time period, followed
by the biomass growth (based on the remaining biomass), and then the second half of catch,
equation 3.3 can be then rewritten as follows, which is closer to reality

(B, —05C,)

Bir=(B,-05C)(1+r-r X

)—05C, (3.5

Equation 3.5 ignores the effect of changing Lake Manzala area, so it must be adapted
to take account of the three changes in Lake Manzala area during the period 1977 to 1997.
The change of available area for biomass causes changes in carrying capacity. If the
available exploited area for biomass decreases the carrying capacity will decrease and
likewise if the exploited area increases the carrying capacity will increase. It is assumed that
biomass density, defined as the amount of biomass in one unit of exploited area, is the same
across the lake, that all exploited areas are equally productive, and that there is no loss of

stocks when the exploited area is reduced.

Let the basic exploited area be A5 which gives carrying capacity K3, in 1980, and let
A; be the exploited area in year # which gives carrying capacity K,. This relationship can be

expressed as follows:
A
K =K,—/— .
=Ky (36)

Substitute K, for K, equation 3.5 can then be written as follows:

26



(B.f — O'SCr)Alu

B, =(8B-05C)[1+r-
141 ( t r)[ +r-r K!OA‘

]1-05C, 3.7

The parameters of this model (3.7) are K3 and r. Stock size for maximum sustainable

yield BMSY can be expressed as follows

K, rK:_Kqu: rKg, 4,

Stock size for maximum sustainable yield BMSY=7 + s 24, + 84, (3.8)
- s rK, rK,4,
while AMSY is the same as Schaefer model MSY:T =—4-As— 3.9)
U]

3.3. Parameter estimate for biomass model

Starting with known biomass By, and using the known catches C,, ,Cy, ,......, Cqy in
equation 3.7 will produce a trajectory of biomasses B,,,B,,, ..., By, . Suitable values of r

and Ky will enable the computed B94 to match the actual biomass. A difficulty arises
because the values of r and Ky will not be unique, because there are 14 equations with 15
unknowns including the intermediate biomasses (13 biomass estimates 1981-1993) and r

and Kg,. An addition assumption is needed.

The description of the Lake Manzala fishery in chapter two suggests a stable fishery in
the early years. In particular, the period 1980-1981 has no changes in exploited area and
virtually constant catches and effort. Therefore we will assume that Bs; = B, in equation

3.7. Then equation 3.7 for ¢ = 80 can be written as follows

(B, - 05C )(K,, - B, +05C,) = K,,C, (3.10)

Equation 3.10 gives additional information about the relationship between r and K,

and provides the additional equation needed to uniquely determine the values of 7 and Kjz,.
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Given an initial estimate for r we could calculate Ks, or given an initial estimate for Kz, we

could calculate r.

Successive application of equation 3.7 from 1981 until the next biomass figure in
1994 would lead to a high degree polynomial involving r and Kg. For example B., can be

expressed as follows

By =[{(B, ~05C {1 +r—r 2 _Emsi*')”'“}—osq}—osq+.]
({8, ~05C X1+ r—r I ey o503 0sC, 14, e

[
KSOAIH

[14+r-r 1-05C

T+l

B, = {4 (2B -C)' - 44 A Ky’ (2B -C Y 2B(r+D-C(r+D-C,)

Ay A RLHAB (r+ YA+ D+ A,)
4B+ NG A+ +4,)+C4)
“CAC+27 + A+ D) +2CC AT+ +Ci4)

84 4, KaQ@B(r+1)’ ~Cr+r+2)-C (r+ D)}/ 164 4, Ky

(3.12)

If the initial estimates of r and K are correct then successively applying equation 3.7
from 1980 to 1994 would lead to the correct biomass estimate in 1994. A two-parameter
search is required to find those values of r and K3, such that the trajectory of biomass over
the period 1980-1994 passes through the correct point in 1994 while still satisfying

equations 3.7 and 3.10.

The search for the values of r and Kz requires sensible initial estimates. Because Lake
Manzala was not heavily exploited at the time of the first biomass estimate, the value of
(Bso + Csg) has been chosen as an initial estimate of the carrying capacity. The initial value
of r is calculated from this value of Kg; using equation 3.10. A spreadsheet is an excellent

environment for solving this two-parameters search problem through the following steps:
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(1) Start with initial values of r and Kz, where:

the initial value of Kg is Ky, = By, + Cy,

K;O Cl
(B,-05C,)K,, - B, +05C,)’

and the initial value of ris r’ =

(2) Calculate successive values of B, using equation 3.7 as far at 1994.

(3) Use non-linear search in a spreadsheet Solver to set the target cell containing the

calculated value of By, to be equal to the known value of By,

Using the non-linear search facility in a spreadsheet Solver, it was possible to find
unique values of r and K, for all four species of 7. Nilotica, T.Aurea, T.Zillii and T.Galilea.
Also it was possible to find unique values of r and Kg for the Combined Tilapia species
when treated as a single species stock. The catch of the single stock (Combined Tilapia) is
assumed to be the summation of the species catches, the 1980 single stock (Combined
Tilapia) biomass is the summation of the species 1980 biomasses, and the same for the

1994 biomass.

Table 3.1 shows the biomasses in 1980 and 1994, the estimated carrying capacity in
1980 and in 1994 together, and the estimates of r for the four species of Tilapia and for the

Combined Tilapia stock.
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The estimated values of the intrinsic growth rate, 7, is consistent with the most recent
biological research carried out by Hafz (June 1998). This study estimated the annual growth
rate of the 7ilapia species in Lake Manzala and found it is vary between 0.73 to 0.97, 0.65
to 1.30, 0.62 to 0.91 and 0.65 to 1.02 for T Nilotica, T.Aurea, T.Zillii and T.Galilea
respectively. There have been other studies of the Tilapia species. Abdel-Latif (1974)
estimated the annual growth rate of 7. Nilotica and T.Zillii to be 0.73 and 0.84 respectively
in Lake Nasser in Aswan. The study conducted by Ministry of Development and New
Communities in ARE in co-operation with Maclaren Engineers, Planners and Statistics Inc.
(1980) of current status of fishery and fish stocks of Lake Manzala found that T Aurea
growth rate varied between 0.71 and 1.02. Also the High Dam Lake Development

Authority (1992) estimated the annual growth rate of 7.Galilea to be 0.82.
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3.3.1. Sensitivity and_convergence

Sensitivity and convergence of the estimates of r and Ks (using non-linear with

equations 3.7 and 3.10) was investigated in two ways:

(1) The effect of the level of data aggregation on the estimates of r and Kj,.

(2) Convergence to estimate the values of r and K.

3.3.1.1. Sensitivity to data aggregation

Because catch data are available monthly, it is reasonable to estimate the values of »
and Ky for each species and for Combined Tilapia species by using 1,- 2, 3, 4 and 6 months
time series. Table 1A in Appendix A shows that there is a little change in the estimates of r
and K as the level of data aggregation changes. There is a suggestion that the greater the
degree of aggregation, the higher the estimate of r and the tower the estimate of Kg. The
annual value of r i1s simply calculated by multiplying the estimated values of r by the
number of time periods per year. So, the annual data set can achieve the main aim of this

model which is assessment of strategies for enabling the stock to recover.

3.3.1.2. Convergence to parameters values

The problem of how good the initial values need to be will vary between fisheries. For
this model, convergence was obtained from a quite wide range of initial values of Kgo and
the associated value of r, as shown in Table 2A in Appendix A. Convergence was achieved
from initial estimates of r which were as much as a factor of 3 adrift in the maximum
direction and were as much as a factor of 0.5 adrift in the minimum direction. Table 2A in
Appendix A shows that it is better to chose an initial value of Kg which is overestimate

rather than chose an initial value of Kgp which is underestimate. This is because of the effect
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of this initial estimate on the estimates of r which rapidly becomes unstable. If the initial
values of r and Kso are outside these ranges (listed in Table 2A in Appendix A) successive

application of equation 3.7 can not converge to the correct estimate of r and Kgp.

3.3.2. Uncertainty in the biomass parameter estimates

Because the non linear search uses as many equations as unknowns there are no error
estimates for » and K. Error in the estimates of r and K may arise because of errors in the
biomass estimates in years 1980 and 1994, or errors in the reporting the catches. There is no
way of quantifying errors in catch reporting, and these are likely to be low as the recording
of catches is closely monitored. Unfortunately, the biomass estimates in 1980 and 1994
were not reported with standard error. However, Robson and Regier (1967) suggested that
95% confidence limits of stock estimates are typically *10% of the biomass. We will
therefore use this to estimate errors in the biomass estimates and examine the effect on the

estimates of r and K.

To determine the uncertainty in the parameter estimates it will be assumed that an
error occurred in the estimation of the starting and ending biomass, and that this error is
unbiased and normally distributed. The starting and ending biomasses are sampled with
means B80 and B94 respectively and with standard error equal to 5% of the respective

mecan.

A VBA macro was used in Excel 7 to run the non-linear search in Solver and
estirnate the values of r and K for 100 sampled pairs of values for Bg,and By,. The outputs
are 100 corresponding estimates values of r and Kg. From teach of these estimates Ky,
MSY and BMSY can be calculated. Figure 3.3 shows the envelope of predicted biomass
trajectories based on the 100 paired estimates of r and Kg and the corresponding sampled

values of By, and Bys. The envelope of BMSY values is also shown.
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Using Shapiro-Wilks Goodness-of-Fit statistic to compare the quantiles of the fitted
normal distribution to the quantiles of the data distribution of 100 replicates of r, Kg and
Kyq produced P-values greater than 0.05 for the four species and Combined Tilapia stock,

so there is no evidence that the values of r, Kz and Ky, vary from the normal distribution.
These 100 estimates are used to calculate 95% confidence intervals (x +1.96 SE) for r, Ksp

and K94.

Table 3.2 shows the deterministic estimates for r, Ks Kos, together with the 95%
confidence intervals for each species and Combined Tilapia species, and standard error for
r and K3, expressed as coefficient of variation CV = SE/ estimate. It is noted that if the
coefficient of variation is 55 for Bs and By, then the coefficient of variation in the
estimated value of r is 13%, the coefficient of vanation in K3 and Ko, is 8%, the coefficient
of variation in the value of MSY is 5%, and the coefficient of variation in the estimated

value of BMSY is 6%.
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iterations/years will give a relatively large change in predicted Bo,. The changes in sampled

By values have only marginal effect on the estimates for the values of r and K3,.

The same procedure has been used assuming that the standard error is 10% of B3, and
Bos. Appendix A, Table 3A shows the estimates of the biomass model parameters, while
Figure 6A shows the envelopes of predicted biomass trajectories. Figures 7A-11A show the
relationships between the sampled biomasses and parameter estimates. When the standard
error is assumed to be 10% of both B, and By, the relationships between corresponding
estimates of r and Kz, r and Bgp, r and By,, Kg and Bgp, and K, and By, for each species

are similar to the relationships when the standard error was 5%, for all species.

It is noted that the biomass model using the 2 parameters search procedure converged
each time to estimate r and Kjo for each species either when the standard error is 5% or
10% of Bgy and By, Also it is noted that adding random effects to the annual catches,
assuming either a 5% or 10% coefficient of variation in reporting errors, has virtually no
effect on the estimates of r and Kj; because the mean error over the 14 years 1980-1994 is

small.

3.4. Validation of parameters estimates

Although we take estimates of » and K3 which are reliable and consistent with other
studies, it is useful to see whether they are consistent with those obtained using other
methods of estimation. Clearly, if biomass estimates for the intervening years (1981-1993)
were avatlable, estimates of r and K can be found from equation 3.7. We will make simple
assumptions about catchability which give intervening biomass estimates. In addition,
standard fisheries models using catch per unit effort (CPUE) as a surrogate for biomass will

be investigated.
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3.4.1. Parameter estimation using imputed biomass time series

It is common to assume (e.g. Hilborn, 1976) that the catch per unit effort is
proportional to biomass, and the simplest assumption is that the proportionality is constant.
This proportionality constant is usually called “catchability”. The relationship between

catch per unit effort and biomass can be expressed as follows:

U =

i

=gB, (3.13)

ol

where:
U, is the catch per unit of effort in year ¢,
E, is fishing effort, where fishing effort measured by number of vessels and

q is catchability coefficient or the fraction of fish stock which is caught by a unit of

fishing effort.

Equation 3.13 is based upon constant catchability and constant fishery exploited area.
But in the case of Lake Manzala the exploited area decreased on three occasions during
1977 to 1997, so equation 3.13 must be modified to take into account the changes in the

exploited area. Then equation 3.13 can be re-expressed as follows:
T 3.14
[ E’ =m A' ( . )
where m is area-adjusted catchability or the catch per unit of effort (a vessel) per unit

of biomass density.

Because the estimates of Bg and By, values are available for the four species and

Combined Tilapia stock, annual catch data and number of vessels, then the area-adjusted
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catchability in 1980 can be estimated by using equation 3.14 as m, = g‘o—‘;:o and in 1994
80 0

C94 A94
E94 B94

as my, = , for each species and for Combined Tilapia stock. There are number of

assumptions that would be made in estimating the biomass time series by using these two

estimates of the area-adjusted catchability such as:

1. Assume that the area-adjusted catchability is constant and known.

2. Assume that the area-adjusted caichability is a linear function of time.

(1) Constant area-adjusted catchability

According to this assumption, there are many ways to fix the area-adjusted

catchability which can be as follows:
(A.1.) For each stock area-adjusted caichability is equal to the initial value.
(B.1.) For each stock area-adjusted catchability is equal to the final value.

(C.1.) For each stock area-adjusted catchability is equal to the average of

mg, and mg, .

(D.1.) For each stock area-adjusted catchability is equal to the average of

m,, and My, of the Combined Tilapia stock.

We have four series of estimated biomasses based on these assumptions. Note that
unless m,, = my,, each estimated series will have wrong biomass estimates at one end or

the other or both. However, all these assumptions give series which show a similar pattern

(Figure 12A in Appendix A).
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Now estimates are required for the values of r and K3 based upon these different
assumptions. The estimation of r and K3 can be based upon equation 3.7 which can be

rewritten as follows:

By -B,+C, =r[B -05C]- K’ [B,-05C,T [%] (3.15)
30

Using multiple regression to estimate the parameters of equation 3.15 is not
recommended because there are an interaction between the parameters. Estimating the
parameters of equation 3.15 has been carried out using non-linear regression for each
estimated series of biomass. The goal of non-linear regression is to find a least squares
solution for a non-linear model, which cannot be done using matrix algebra as it is in linear
regression (Neter et al. 1996 and Myers 1990). Table 3.3 shows the resulting estimates for
r, Kso and Ky, together with SE for r and Kz (expressed as CV= SE/estimates) for each

species and for the Combined Tilapia stock. It is noted that:
o Parameter estimates are very sensitive to the assumption used.
e Parameter estimates are always not consistent with other studies.

¢ Parameter estimates are unreliable because the coefficients of variation are very high

and the confidence interval for r and Ky, are too big, and covering zero value.

e The available biomass data (Bs and By,) not used.
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Table 3.3 The estimated values of r, Kz and Ky, and the coefficient of variation (CV)
for each species and for Combined Tilapia stock based on the four assumption of the
constant area-adjusted catchability.

Species  |Assumption r Ko  Ku] CVofr CVofKyl
T'Niloticalm=my, 0.525 106 60} 78% 56%
m=m,, 1.184 56 32 43% 25%
m={(my, +my,)/2 0.608 105 59| 59% 19%
m = (Tilapiam,, + Tilapiamy,) /21 0.661 89 501 66% 44%
T Aurea |m=my, 0.624 63 35 52% 22%
m=m,, 1.314 43 24 23% 11%
m=(myy +my )/ 2 0.898 44 25 30% 15%
m = (Tilapiamy, + Tilapiam,,) /2| 0.870 62 35 30% 11%
T.Zillii  |m=my, 0.468 99 56 46% 16%
m=m,, 1.151 55 31 37% 14%
m=(my, +my,)/2 0.889 64 36 44% 16%
m = (Tilapiam,, + Tilapiam,,) /2| 0.687 75 42 10% 4%
I Galilea {m=my, 0.730 12 7 34% 9%,
m=m,, 0.963 11 6 44% 12%
m=(my, +my,)/2 0.887 12 7 47% 12%)]
m = (Tilapiam,, + Tilapiam,,) /2 | 0.863 12 8 48% 12%
Combined|m=my, 0.616 275 155 70% 20%
Tilapia |m=m,, 1.102 163 92 23% 7%
m = (Tilapiam,, + Tilapiam, ) /2| 0.852 203 115 14% 9%
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(2) Area-adjusted catchability as a linear function of time

Because there are two available estimates of area-adjusted catchability (ms, and mo,)
for each species, it is reasonable to assume that the area-adjusted catchability is a linear
function of time (m, =a+bt,), using the two estimates of area-adjusted catchability
against the time starting from 1980. Then equation 3.14 can be modified to have the

following form:

C B
—=m, — (3.16)
! f
where
m, +m
m, :mso+l17-31 1,1=0,1,23,. ... in years from 1980.

As before the estimated area-adjusted catchability function could be a separate
function for each species or a common area-adjusted caichability function from the

Combined Tilapia stock.

Clearly, when using species-specific catchability the estimated biomass series will pass
through the correct values at the end-points, whereas this is not the case when a common

value is assumed.

Figure 13A in Appendix A shows the estimated biomass series using equation 3.16 for
the four species and for Combined Tilapia stock. It is noted that all series of estimated

biomasses show the same behaviour despite the different assumptions.

Estimating the parameters r and K of equation 3.15 as before gives the results in

Table 3 4.
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If each species has its separate area-adjusted catchability values the estimates of the
carrying capacity Ky, are greater than the biomass estimates By, The total species biomass
in 1980 represent 82% of the sum of 1980 carrying capacity estimates for the four species.
The estimated values of the 1994 carrying capacity Kg¢ are considerably higher than the
biomass estimates By, and the total species biomass in 1994 represent only 36% of the sum

of 1994 carrying capacity estimates for the four species.

If the common area-adjusted caichability values is applied the estimates of the
carrying capacity Kgo are greater than the biomass estimates Bg. The total species biomass
in 1980 represent 94% of the sum of 1980 carrying capacity estimates for the four species.
The estimated values of the 1994 carrying capacity Ky are considerably higher than the
biomass estimates By, and the total species biomass in 1994 represent only 42% of the sum

of 1994 carrying capacity estimates for the four species.

From the results of applying this method (Table 3.4), it is noted that using the
common area-adjusied calchability values gives parameter estimates consistent with the
other studies and not sensitive to the assumptions. The estimates are reliable because the
coeflicient of variation is reasonable; also these estimates are closer to those obtained from
the non linear search than are the estimates from using separate area-adjusted calchability'

values.



Table 3.4 The estimated parameters of equation 3.16 and the coefficient of variation
CV of each parameter based upon using separate area-adjusted catchability values and
using common area-adjusted catchability values for each species and Combined Tilapia

stock.

Separate m Common m

r  Kid CVofr CVofKsy r  Ks| CVofr CVofKu
T Nilotica 0780 89| 14% 8% 0759 91 14% 8%
T.Aurea 0815 52| 18% 12%| 0708 s8]  17% 12%
T.Zillii 0.674 119L 15% 6%| 0680 74 16% 1%
IGalifea | 0840 12| 17% i 0735 12l 15% %
Combined 0.702 2344 12% 10%
Tilapia I

The residuals from these fitted models (Figures 14A and 15A in Appendix A) indicate

no problems with the fit. The positive and negative residuals are balanced, they have no

pattern and the small residual are most common.

3.4.2. Parameter estimates using catch per unit effort time series

Hilborn (1976) attempted to use catch per unit effort (U) as a surrogate for biomass,
assuming that the catchability is constant from year to the next where the unit of effort is a

vessel. Hilborn (1992) transformed his model (by substituting equations 3.13 in 3.3) to get

the following equation:

U U
";‘ = —qL(l+r—rq—I;_)—U,E, (3.17)
giving
U r
T}i—1=r——KU,—qE‘r (3'18)
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Equation (3.18) has the practical advantage that r and K can be estimated without any
biomass data. Also it has the computational advantage that it conforms to a standard

multiple linear regression of the form Y=b,+58,X,+5b,X>,

where

u

X, =U, the first independent variable is catch per unit effort,
X, = E, the second independent variable is the fishing effort and
the regression parameters are b, =r, b,=—r/Kq and b, = —q.

Equation 3.18 is based on the assumptions that the catchability is constant and
unknown, that the catch has been taken after the biomass growth had taken effect, and that
K is constant. Modifying equation 3.18, allowing X to change with area and half the catch

to be taken before growth, then equation 3.18 can expressed as follows

+—( )(U A.o) ( ](U Aw) (3-19)

Ul+lAt+l_ —_y mr
U4 l=r—(m+— 2)(4]

Using multiple regression method to estimate the parameters in this form is not

recommended because of the confounding between the parameters.

Non-linear regression has been used to estimate model parameters (equation 3.19) for
annual time series of the four species and for Combined Tilapia stock from 1980 to 1997. 1t
is noted that these estimates of r and Kz are not reasonable because they are not consistent
with the estimates values of r and Kg produced by using non linear search, or with

parameter estimates using estimates of biomass time series, or with other studies. Also this
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method is based on a rigid assumption of the area-adjusted catchability and dose not use

the available biomass data Bg and Bo..

Table 3.5 The biomass parameters estimates based on using catch per unit effort time
series,

Species r m*10°5 Kml CVofr CVofKgy
T.Nilotica 0.527 22 166] 51% 110%]
T. Aurea 0714 47 61 94% 127%)
T. Zillii 0.624 1.3 2461 31% 113%]
T Galilea 0.674 32 201 91% 124%
ICombined Tilapia 0.619 43 257 40% 179%i

Using linear regression to estimate the parameters of equation 3.19 gives poor results
such as negative growth rate, but using non linear regression gives parameters estimates
more reasonable than linear regression parameters estimates. This results are consistent with
Hilborn’s apinion, Hilborn said “When people first started experimenting with regression
methods for estimating Hilborn model parameters, they often obtained negative parameters;
r or g were estimated as less than zero, which is biologically impossible. It was felt that this
indicated model failure, that the assumptions of the model were just too simple and that by
not explicitly incorporating lags to recruitment and so on, these simple biomass dynamic

models were failing to capture some important aspects of the data.” (Hilborn, 1992).

3.5. Comparison between methods

Three approaches have been described for estimating the biomass model parameters

which can be summarised as follows:
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(1) Non linear search using a spreadsheet Solver:

This method is based on two biomass estimate ( Bg and By,) and catch data
from 1980 to 1994, using equation 3.10 and successive implementation of
equation 3.7 to estimate the values of 7 and Kg. The advantage of this method
is the ability to produce good estimates for r and K, which agree with other
studies, while the disadvantage of this method is there is no estimate of the
standard error of r and K5, However we can get over this problem by adding
uncertainty to the starting and ending biomasses and using simulation to

estimate standard errors for r, K and Ko,

(2) Parameter estimation using imputed biomass time series:

This method is based on assumptions about area-adjusted catchability to

estimate r and Ky. There are two sub-methods explored:

. assume that the area-adjusted catchability is constant and known
. assume a linear function for the area-adjusted catchability in 1980 and 1994
against time.

The first sub-method gave inconsistent estimates of the biomass parameters r
and K. However the second sub-method, gave parameter estimates in good
agreement with other studies and close to the non linear search estimates, and
reasonable confidence intervals for the parameter estimates. This is especially
true when using a common linear function of area-adjusted catchability for
all species. Like the non linear search, this method uses the available biomass
and catch data. However, it is necessary to assume a linear function for the

area-adjusted catchability. Area-adjusted catchability values showed a slowly
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changing over the short term, but it might be increased or decreased in the
long term for some reasons such as: changing of technical performance,
increasing or decreasing the fishermen efficiency, changing recruitment from

year to year or changing of fishing interference.
(3) Parameter estimates using catch per unit effort time series

This method is based on Hilborn’s model to estimate the values of r, K3 and
m using time series of catches and effort. An apparent advantage of this
method is the ability to estimate the standard error of the biomass parameters.
However, it fails to take advantage of biomass data from 1980 and 1994 and
the parameter estimates are not in a good agreement with the other methods of
estimation or with the other studies. The confidence interval of the parameters

estimates are bigger than any other method.

From this discussion both the method based upon non-linear search facility or imputed
biomass time series assuming a common linear function for the area-adjusted catchability
gave reasonable and very similar parameter estimates. Because the non-linear search facility
can give associated sets of the biomass parameters r, K and By, which will be useful later in

chapter seven, we are going to use this method to estimate the biomass parameters.

The next chapter will discuss the determination of good fisheries management

strategies.
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Chapter 4 Fisheries management

4.1. Introduction

There are many approaches to the management of fisheries. These include landing
control, quota control, fish closed seasons, and effort control. Of course any management
policy may have its negative impact in the short term from social and economic points of

view.

Landing control appears to be an easy way to control the fishing. It means leaving the
current fleet without any changes and closing the fishery when the total catch reaches some
prescribe limit. This procedure can be repeated every year. But landing control does not
control number of nets, number of fishermen, trip duration, and number of mesh.
Unfortunately the allowable catch may be caught in less than a year, and non-fishing for the
rest of a year may cause unemployment problems. Also fishermen will pay the annual fees

for the fishing licence and there is no guarantee for them to fish all the year.

Quota control allows everyone to land a certain quantity of fish but quota control
needs to determine an allowable number of vessels and the fair quota for each vessel. To
implement a closed season policy modelling would be needed to determine how long a
closed season would be required. To use effort control it is necessary to determine how
many vessels should be allowed to fish. So, quota control, closed seasons, and effort control
all required the development of a model to predict the catches from a given stock for a

permitted fleet.

This study assumes that effort control will be used in this fishery with fewer vessels

50



allowed to fish but allowing them to fish for the whole year. There will be unemployment,
but there will be less uncertainty, so planning will be easier for the individual fishermen.
Choosing effort control means that a model must be developed to predict the catches that

would result from a given stock for any permitted fleet effort.

4.2. Stock behaviour

4.2.1. Assumpftions

Figure 4.1 shows the effect of different levels of effort on the stock behaviour
assuming that the catch is proportion to the biomass for a given effort. If the effort is at a
critical level or above, the stock will collapse because catch is greater than the net
recruitment. The critical effort is twice the optimum effort, where optimum effort is that
fishing effort which can catch MSY amount of fish if the stock at BMSY level. If the effort
level is low, then the biomass will converge to the point B and if the effort is absent (zero
gradient) the biomass will tend to the carrying capacity. If the effort is at optimum level the
biomass will converge to BMSY level with the catch equal to AZSY. In the commonly used
continuous-time net recruitment model the critical effort level is twice that needed for the

optimum effort which can catch MSY.

This discussion can be summarised in the following points: for constant critical effort
or above the stock will deplete, for low constant effort the stock will converge to

equilibrium at some level and for no effort the stock will tend to the carrying capacity.
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there are stability in the biomasses provided the effort is appropriate.

Now there is an immediate questions which is: what is the minimum non-fishing
period to allow the stock to recover. It is found that stopping fishing for four years starting
from 1998 will allow the Combined Tilapia stock to exceed the BMSY. Table 4.1 shows
the estimations of each species and Combined Tilapia stock at the beginning of each year,
together with BMSY. It is noted that non-fishing for four years allows 7T Nilotica and
I Zillii exceed their BMSY levels by the beginning of 2002. T.Aurea by the start of 2000
and 7.Galilea by the start of 1999. Also it is noted that Combined Tilapia stock will exceed
its BMSY level by 2001 after three years of stopping fishing which means that the minimum
period to stop fishing is three years. So, there is no need to stop fishing for four years,

because three years of stop fishing will allow Combined Tilapia stock to recover.

Table 4.1 Estimations of the four species biomasses, Combined Tilapia biomass at the
start of each year and BMSY if the fishing is stopped for 4 years then start to fish
using the effort for MSY.

Years T Nilotica T.Aurea T.Zillii  T.Galileal Combined Tilapial
1998 8.95 11.50 6.93 4.23 35.24
1999 14.78 17.34 10.90 5.72 55.05
2000 23.29 23.78 16.53 6.98 80.494
2001 3415 29.06 23.69 7.73 107.36
2002 45.28 31.94 31.58 8.04 128.67
BMSY 35.42 19.89 2745 4.84 86.9SI
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4.4. Stock management strateqgies

Although in chapter three uncertainty in the biomass model has been investigated, this
chapter will examine catch strategies which allow the stocks to recover based upon the
deterministic biomass model to determine the effort for A/$Y which can achieve the catch
strategies. Effort for MSY means the effort level which can catch AMSY amount of fish if
and only if the stock is at BMSY level. This effort will yield less than MSY if the stock is
below BMSY level and more than MSY if the stock is above BMSY level. The actual fleet
structure which gives effort for MSY will be determined in two ways in chapters five and
six, then the effect of adding uncertainty to the biomass model parameters and to the catch

model parameters will be discussed in chapter seven.

The deterministic biomass model will now be used to investigate different
management strategies for the Combined Tilapia stock in Lake Manzala. The aim is to
investigate the stock behaviour if the fishing stopped for less than four years. Biomass
recovery requires a catch strategy each year whose impact on each species can be assessed.
Catch strategies must start from 1998 to enable stocks to recover. There are a number of

catch strategies, and the following three are investigated:
(1) Stop fishing for one year 1998 and from 1999 and beyond use effort for MSY.

(2) Stop fishing for two years 1998-1999 and from 2000 and beyond use effort for

MSY.

(3) Stop fishing for three years 1998-2000 and from 2001 and beyond use effort for

MSY.

Determine the fleet-size for MSY based on the assumption that the fleet has a fixed
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size and hence there is fixed effort once the fishing re-starts.

4.4.1. First catch strategy (S1)

The aim of using the first catch strategy is to reduce the non-fishing period to one
year and investigate the stock behaviour. It is noted that this catch strategy produced
catches which converge towards MSY for all species at a variety of rates, but generally by

2017 (Figure 4.4).

Figure 4.4 shows the biomass estimates, expected catch, MSY and BMSY for each
species and Combined Tilapia stock for the first catch strategy. It is found that by the start
of year 2017 the Combined Tilapia stock will exceed its BMSY level. The catch of some
species is above the MSY level for some years and below that level in other years because
the total catch in a year is split according to the biomass proportions at the end of ihe
previous year. Thus, 7' Nilotica biomass will exceed its BMSY level by 2010, T.Aurea will
exceed its BMSY level by 2003, 7.Zillii biomass will not exceed its BMSY levels but it will
be stable at about 25 kt starting from 2013, 7.Galilea biomass will exceed its BMSY level
by 1999. Some species will give catches below AMSY and the others will give catches above
MSY, but starting from year 2017 the catch will equal the MSY. Table 4.2 shows the
biomass prediction, catch estimates together with BMSY and MSY for the four species and

Combined Tilapia stock.
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Table 4.2 Biomass prediction, expected catch together with BMSY and MSY for the
four species and Combined Tilapia stock using catch strategy 1.

S1 T.Nilotica T.Aurea T.Zillii T.Galilea | Combined Tilapia

Years | biomass catchl biomass catch' biomass catchl biomass catchl biomass catch}
1998 8.95 ol 11.50 oI 6.94 o‘ 4.23 of 3524 ol
1999 1478 4.60] 1734 5391 1092 3.40 572 1.78] 55.05 17.18
2000 17.74 552] 1831 5690 1250 3.89 539 1.68] 6135 19.15
2001 2081 647) 19.04 5921 1411 439 5.19 161] 6699 2091

2002 2383 741 1957 6.09] 1570 4388 507 158 71.79 2241
2003 26.62 828 1994 6207 1721 535 498 155 7569 23.62
2004 2905 903] 2020 6.28] 1860 5.79 493 153] 7875 2458
2005 31.06 966] 2037 633] 1985 6.17 489 1528 81.07 2530
2006 3263 10.15] 2049 6371 2092 6.50 487 151] 8278 25384
MSY 11.39 6.46) 7.89| 1.54 27.14
BMSY 35.42 19.89 27.45 4.84 86.94

58






4.4.2. Second catch strate

S2

If fishing stopped for two years, the Combined Tilapia stock would recover and reach

to BMSY by year 2012. The results of biomass prediction, the expected catch, and the

BMSY and MSY for the four species and Combined Tilapia stock are listed below 1n Table

4.3 and shown in Figure 4.5. The predicted catches will be equivalent to MSY for each

species starting from year 2012 and beyond. The Combined Tilapia stock biomass can

recover by 2012. According to this strategy (S2), 7. Nilotica biomass will exceed its BMSY

level by 2008, 7' Aurea will exceed its BMSY level by 2000, 7.Zillii biomass will keep stable

with 25 kt starting from 2011 and beyond, and 7.Galilea biomass will exceed its BMSY

level by 1999.

Table 4.3 Biomass prediction, expected catch together with BMSY and AMSY for the
four species and Combined Tilapia stock using catch strategy 2.

S2 T.Nilotica T.Aurea T. Zitlii T.Galilea Combined Tilapia

Years | biomass catchI biomass catchl biomass catchi biomass catchl biomass catch]
1998 8.95 o 11.50 0 6.94 0 423 0] 3524 0
1999 14.78 0 1734 O| 10.92 OI 5.72 0] 55.05 0|
2000 2329 724 2378 740 1655 515 698 2171 8049 2512
2001 26.13 B.13) 2257 7021 18.00 5.60] 6.01 187 8236 2570
2002 2864 891 2188 6.80] 1931 601 555 1.73] 8371 26.13
2003 3073 956] 2145 6.67] 2046 6.36] 529 164 8468 2643
2004 3238 1007} 21.19 659 2144 6.67 513 159] 8537 26.65
2005 33.63 1046] 2102 654 2225 692 503 1.56] 8585 26.80]
2006 3454 10.74] 2092 6.50, 2291 7.12 496 154 86.19 26.90]
AMSY 11.39) 6.40] 7.89 1.5 27. 14
BMSY | 3542 19.89 27.45 4.84 86.94
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4.4.3. Third catch strat

S3

If fishing stopped for three years (1998-2000), the Combined Tilapia stock can

recover after three years. The results of biomass prediction, the catch estimates, and the

BMSY and MS'Y for the four species and Combined Tilapia stock are listed below in Table

4.4 and shown in Figure 4.6. It is noted this catch strategy produced catches towards MSY

for all species at a variety of rates, but generally converging by 2001 (Figure 4.6).

According to this strategy 7. Nilotica biomass will exceed its BMSY level by 2003, T Aurea

will exceed its BMSY level by 2000, 7.Zillii will keep stable with 25 kt starting from 2008

and 7.Galilea biomass will exceed its BMSY level by 1999 while the Combined Tilapia

stock will exceed the BMSY level in year 2001.

Table 4.4 Biomass prediction, expected catch together with BMSY and MSY for the
four species and Combined Tilapia stock using catch strategy 3.

S3 7.Nilotica T.Aurea T.Zillii T.Galilea | Combined Tilapia

Years | biomass catchl biomass catchI biomass catchi biomass catchl biomass catclq
1998 8.95 of 1150 0 6.94 0 423 0] 35.24 0
1999 14.78 Ol 17.34 0| 10.92 O| 5.72 (;[ 55.05 0|
2000 23.29 of 2378 0] 16.55 Ok 6.98 0] 8049 |
2001 34.15 10620 2906 904 2375 739 773 240 10737 3351

2002 3491 1085 2503 778}y 2409 749 629 196 9950 31.05

2003 3544 11.02] 2324 7231 2435 757 570 177} 9501 29.66]
2004 3581 11.13} 2227 6928 2455 763 537 167} 9226 2880
2005 36.06 11.21} 2169 675 2470 7.68 518 161} 9050 2825
2006 36.23 11.27) 2134 o664 2481 7.72 506 1571 8934 2789
MSY 11.39 6.46 7.89 1.504 27.14
BMSY 33.42 19.89 27.45 4.84 86.94
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Table 4.5 Comparison between the cumulative Combined Tilapia predicted catch.

Years] Cumulative catch of | Cumulative catch of | Cumulative catch of
Combined Tilapia Combined Tilapia Combined Tilapia
Strategy 1 Strategy 2 Strategy 3

1998 | 0 0
1999 17 0 O!
2000 36| 25 of
2001 57 51 34
2002 80] 77 65
2003 103 103 94
2004 128 130 123
2005 153 157, 151
2006 179 184 179

It is noted that first and third strategy realise the same cumulative catch by 2006,

while second catch strategy realise the greatest cumulative catch by 2006.

4.5.3. Discount rate

The discount rate is commonly used in the literature of finance to evaluate capital
investments. The main purpose of using the discount rate is to take into account both the
magnitude and timing of expected cash flows in each period of an investment project’s life.
In particular, the discount rate allows us to isolate differences in the timing of cash flows for
various investments by discounting these cash flows to their present value. The present
quantity of the catch in kt has been used rather than its cash value during the projected years
because there are no available prices data. Using discount rate for the value of the catch in
pounds or the quantity of the catch in kt is the same thing because the effect of using

discount rate is similar on values or on quantities (Clark, 1985).



Table 4.6 shows a comparison between the total discounted catch of all species over
the period 1998-2006 using different annual discount rates in steps of 5% for each catch

strategy.

Table 4.6 Comparison between the total discounted catch of all species using different
discount rates for each catch strategy.

Discount rate Strategy 1 Strategy 2 Strategy 3
j0% 267 274 267
5% 203 205 196}
10% 157 157 147
15% 125 122 i13
20% 101 97 87
25% 83 78 69J
30% 70 64 55
35% 59 53 45
40% 50 45 36
45% 44 38 301
50% 38 32 25

Strategy 2 realises the greatest total discounted catch if the discount rate is 10% or
less. Strategy 1 realises the greatest total discounted catch if the discount rate is greater

than or equal 10%.

Now effort control is required to achieve the catch corresponding to the chosen
strategy to allow the stock to recover. Chapters five and six will investigate the effort
control to achieve the catch strategies, while chapter seven will investigate the effect of

adding uncertainty to the biomass model parameters and effort control model parameters.

67



Chapter 5 EFFORT MANAGEMENT BASED ON

PARAMETRIC ANALYSIS.

5.1. Effort control

In chapter four stock management has been investigated, assuming that the catch is
proportional to the biomass density, equal area-adjusted catchability for the four species
and constant effort. This chapter will attempt to define the characteristics of the fleet

required to exact the given effort.

The future fleet must be based upon the existing fleet. Therefore, the existing
operating fleet has been investigated to control effort in Lake Manzala. To control fishing
effort some key data and information are needed such as fleet structure, vessel
characteristics, catch per fishing unit, fishing gear utilised etc. The way to collect these data
was through sample survey because most of these data and information are not available for
Lake Manzala. The main aim of collecting Lake Manzala survey data was to make it

possible to predict the individual vessel catch in relation to vessel characteristics.

To collect these data a sample survey was carried out in 1995. The data collected
from the survey were to help in development of lake fisheries management by studying the
effect of vessel characteristics on the catch per vessel, using parametric and non-parametric
analysis. The parametric analysis will be discussed in this chapter, while the non-parametric

analysis will be discussed in chapter six.
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5.2. Survey methodoloqgy

During August and September 1995, a sector-by-sector sample of the lake perimeter
was conducted. The survey covered the three sectors of the lake to assess the relationship
between the amount of fish caught by an individual vessel and some indices of effort
variables such as number of nets, number of fishermen, duration time per trip and number of
mesh per 100 cm length of nets. At each sector the head of the fishermen’s societies was
interviewed and number of fishing vessels and type of fishing gear in each sector was

established.

A sample survey was conducted to collect the required data. A questionnaire

(Appendix C) was designed and pre-tested on 20 sampling units.

5.2.1. Sample size

Even though the aim of the survey was to model the individual vessel catch in relation
to vessel characteristics, for the sake of simplicity the sample size was calculated as if a
simple random sample had been used to give a reliable estimate of the average catch. This
gave a sample size 376 vessels which was feasible given the effort available for data
collection. The actual sample size was increased by 20% (75 units) as a precaution to avoid
a possibility of collecting invalid questionnaires. Based on the available data the fishing fleet
operating in Lake Manzala consisted of 5564 fishing vessels in 1995, of which 26% were
using Trap nets, 59% were using Stand nets and 15% were using Hook lines (Table 2.3).
Fifty three percent of the fishing vessels operated in the Southern Sector of the lake, 32% in
the Western Sector and 15% in the Eastern Sector. So the sample size was split in
proportion to fleet size to represent each sector and each type of gear. At each port, a

proportion of the incoming fishing vessels each hour was sampled in a random manner.
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Vessels were sampled throughout the day, in proportion to the number of arrivals each

hour.

Fifteen invalid questionnaire sheets were rejected because some data were omitted, (8
in Southern Sector- Stand nets, 5 in Western Sector- Trap nets and 2 in Eastern Sector-
Trap nets), these were removed from the sample, reducing the actual sample size from 451

vessels to 436 vessels (Table 5.1).

Table 5.1 Number of fishing units sampled according to each sector and each type of
fishing gear in 1995,

Southern Sector | Western Sector] Eastern Sector Total
IFish'mg gear Number %} Number %] Number %I Number %}
Trap nets 51 11 43 9] 25 :I 119 p
Stand nets 170 38 53 12 42 265 53
Hook lines 18 4 49 11 0 0] 67 15
Total 239 53 145 32 67 15 451 100I

Each vessel skipper was interviewed and the following items of information obtained
by using the questionnaire. Variables names are in italic bold type. From the field survey the

vessel characteristics and catch characteristics data are as follows:

5.2.2, Vessels characteristic

e skipper name and age.

o type of fishing gear.

o number of nets used per fishing trip, unit of nets for Trap nets and Stand nets and by

hundred of hooks for Hook lines. Nets, independent variable).
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» number of fishermen per trip per vesselKishermen, independent variable).

e average time per trip in hours Duration, independent variable).

¢ number of mesh in 100 cm length of nets for Trap nets and Stand nets only. (Mesh,

independent variable) which means that high number of mesh means fine mesh size.

e number of trips each working day, after collecting the data it is noted that there is

one trip per day for each vessel.

e working days each year, after collecting the data it is noted that the working days

are virtually constant for all vessels with approximately 300 days each year.

¢ fishing grounds for each sector. (Ss for Southern Sector, Sy for Western Sector and

S for Eastern Sector, indicator variable).

5.2.3. Catch characteristics

The average catch per trip in kg Yave, dependent variable)

The amount of fish sold by each vessel at the end of each trip is accurately recorded,
but it was impossible to get information about the catch composition because the vessels

owners sell their catch to the fish manager as a lot rather than by species.

5.2.4. Survey data analysis

There are two ways to analyse the survey data which are as follows:

o within each sector, using different fishing gear, or

e across all sectors, using a single fishing gear.
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Analysis within each sector is not reasonable because there are different types of
variables for each type of fishing gear, such as number of Nets, which means nets for Trap
nets and Stand nets and number of hooks for Hook lines, also number of mesh which
appears for Trap nets and Stand nets only. So analysis across all sectors, using a single

fishing gear will be considered.

5.3. Fleet structure

Fleet structure means number of vessels and vessel characteristics. Number of Nets
has been chosen as a key variable to identify the vessels characteristics because if the
skippers have enough wealth they can purchase more nets to allow more fishermen to work.
Also more nets may need longer duration time per trip. So number of fishermen as well as
trip duration depend mainly on the number of nets. So the fleet structure can be explored

through the relationship between each pair of the following variables:

¢ number ofNefs and number ofFishermen.

¢ number ofNets and trip Duration.

e number of Nefs and number ofMesh (per 100 cm length of nets).

5.3.1. Trap nets

Table 5.2 shows number of fishermen and the number of nets per trip, the minimum
number of nets is one net while the maximum is [50 nets. About 70% of sampled vessels
(80 vessels) using less than 30 nets. From the raw data there is a positive relationship
between number of nets and number of fishermen per trip where the correlation coefficient

is 0.73.
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Table 5.2 Number of vessels using Trap nets in relation to number of Nefs and
number of Fishermen in 1995,

Fishermen 1 2 3 4 5 6 7 8 9 10] Total
Nets

001-029 12 34 22 4 5 2 1 80
030-059 2 10 1 1 1 1 1 17
060-089 4 4 8
090-119 2 1 3 6
120-150 1 1
Total 12 36 32 9 10 § 1 2 i 4 112

Table 5.3 shows the number of Nefs and the Duration time per trip in hours. The
minimum duration time per trip was 4 hours and the maximum was 18 hours. About 54% of
sampled vessels using Trap nets fishing gear spend 10 to 12 hours. From the raw data there
is a positive relationship between number of nets and duration time per trip where the

correlation coefficient is 0.44.

Table 5.3 Number of vessels using Trap nets in relation to number of Nets and trip
Duration in 1995,

Duration 4-6 79 10-12  13-15 16-18] Total
Nets

001-029 10 28 34 8 80
030-059 14 1 2 17
060-089 8 8
090-119 4 2 6
120-150 1 1
Total 10 28 60 12 2 112

Table 5.4 shows the number of Nets used per trip for Trap nets fishing gear and

number of mesh per 100 cm length of nets. The minimum number of mesh was 25 per 100
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cm length of nets and the maximum was 74. About 30% of the sampled vessels used 50
mesh or less per 100 ¢cm length of nets. It is noted that from the raw data there is a negative
relationship between number of nets and number of mesh, where the correlation coefficient
is -0.46, which means the vessels owners who have less than 60 nets are using fine mesh to
increase their fish catch, while the vessels owners whose have more than 60 nets are using

50 mesh or less per 100 cm length of nets.

Table 5.4 Number of vessels using Trap nets in relation to number of Nefs and
number of Mesh per 100 cm length of nets in 1995,

Mesh 25-34 3544 45-54 55-64 65-74} Total
Nets

001-029 4 20 44 12 80
030-059 3 14 17
060-089 6 2 8
090-119 1 5 6
120-150 1 1
Total 2 18 36 44 12 112

5.3.2. Stand nets

The minimum number of Nefs is one net and the maximum is 100 nets. About 77% of
sampled vessels use less than 30 nets. From the raw data there is a positive relationship
between number of nets and number of fishermen per trip where the correlation coefficient

is 0.89. See Table 1C in Appendix C.

The minimum duration time per trip was 4 hours and the maximum was 21 hours.
About 40% of the sampled vessels using Stand nets spend an average of 10 to 12 hours
each trip. It is noted that some fishermen left their nets in the water to collect it next day so

the average duration time for some vessels is up to 21 hours per trip and its duration
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measurer the fishing time rather than the time of trip. From the raw data there is a positive
relationship between number of nets and duration time per trip where the correlation

coefficient is 0.81. See Table 2C in Appendix C.

The minimum number of mesh was 25 per 100 cm length of nets and the maximum
was 94. About 45% of vessels in the sample used 50 mesh or less per 100 cm length of nets.
From the raw data there is a positive relationship between number of nets and number of
mesh per 100 cm length of nets per trip where the correlation coefficient is 0.85. See Table

3C in Appendix C.

5.3.3. Hook lines

The minimum number of hooks were 10 hundreds hooks and the maximum were 250
hundreds hooks. About 51% of the sampled vessels used 10 - 50 hundred hooks per trip.
From the raw data there is a positive relationship between number of hooks and number of

fishermen per trip where the correlation coefficient is 0.84. See Table 4C in Appendix C.

The minimum duration time per trip was 4 hours and the maximum was 24 hours.
About 20% of sampled vessels using Hook lines fishing gear spend 10 to 12 hours per trip.
In the case of long duration trips the fishermen put out their lines and collect them next day,
those vessels owners represent about 20% of number of sampled vessels using Hook lines
fishing gear. From the raw data there is a positive relationship between number of hooks
and duration time per trip where the correlation coefficient is 0.89. See Table 5C in

Appendix C.
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5.4. Catch modelling

The objective of the sample survey was to study the effect of variation of the vessel’s
characteristics on vessel’s catch. So it was necessary to find out the best relationship
between dependent variable (Yave) and independent variables (Nets, Fishermen, Duration
and Mesh). Additive and multiplicative models could be considered; a linear additive model
is not a reasonable one because the independent variables represent production factors or
the input for fishing operators and adding number of nets to number of fishermen (for
example) is not meaningful. Plotting Yave versus each independent variable for Trap nets
data for example shows that the data does not follow the linear additive model pattern
because there is no linear relationship between Yave and other independent variables as
shown in Figure 5.1, so the linear additive model is not a useful one for the survey data.
Figure 5.1 shows an example of the relationship between Yave and each independent
variable for Trap nets. The other types of fishing gear have a similar pattern. (see Figures

1C and 2C in Appendix C)
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A production function (Cobb-Douglas function) is a function to determine the relation
between the inputs to an enterprise and its output (Koutsoyiannis, 1979). The production
function is a multiplicative function with a multiplicative error which can be written as

follows:

P
Y =a[ X% exp’ (5.1)

i=i
where:
o = intercept,
Y = dependent variable ¥ave),
Xi’s = independent vaniables Nets, Fishermen, Duration and Mesh),
f's = parameters,
i =1, 2, ., pnumber of independent variables,
e = error term, which is often assumed to be normally distributed.

This function can be transformed to give linear additive model using logarithmic

transformation as follows:
LogY = Loga + ) fLogX, +e 5.2)

Plotting LogYave versus each independent variable for Trap nets fishing gear, for
example in Figure 5.2, shows that the multiplicative model is a reasonable model to
represent the survey data, because there is a nearly linear relationship between LogYave and
each of LogNets, LogFishermen, LogDuration and LogMesh. The other types of fishing

gear have the similar pattern. (see Figures 3C and 4C in Appendix C)
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The survey data covered three different sectors in Lake Manzala. A comparison
between the three sectors with regard to their separate multiple regression of LogYave on

LogNets, LogFishermen, LogDuration and LogMesh is required.

To determine whether or not there is a significant difference between sectors, we can
examine three different models. In Model 1 there is one muitiple regression function for the
three sectors. In Model 2 there are three parallel multiple regression functions one for each
sector. In Model 3 there are three different multiple regression functions one for each

sector. These models are as follows:
Model 1:

LogYave = a + f LogNeits + B, LogFishermen + f,LogDuration + ,LogMesh + e

Model 2:

LogYave = a + § LogNets + fi, LogFishermen + 8 LogDuration + 3, LogMesh
+ 8,8 + BSy +e

Model 3:

LogYave = a + RS, LogNets + .S, LogFishermen + 8.S; LogDuration + A8 LogMesh
+ S, LogNets + S, LogFishermen + 38, LogDuration + S, LoghMesh
+ RSy LogNets + R,S, LogFishermen+ B S LogDuration + 3,5 ; LogMesh
+ R85 + B, Sy +e
Changes in Residual Sum of Squares and degrees of freedom are used for testing the

difference between models assuming errors are Normally distributed. The F-statistic can be

used compare models.
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5.4.1. Trap nets

Table 5.5 shows the analysis of variance information from the three models for Trap

nets data.

Table 5.5 Analysis of variance information for Trap nets.

Source daf AN MS
Model 1 4 16.677 4.169
Residual 107 1.428 0.013
Model 2 6 16.909 2.818
Residual 105 1.197 0.011
Model 3 14 17314 1.238
Residual 97 0.776 0.008

Using these results to compare between models can be as follows:

e Parallelism:

(1197 -0.776)/ (14 - 6)
0.008

=633

F(Mode!3, Model 2) =

F value is greater than the critical value of F statistic ( F;,,,,,=2.02), so there is a

strong evidence to reject the idea of common coefficients for the three sectors. Because the
common coefficients idea had been rejected, there is no need to check the coincidence of

the three sectors.

From this analysis Model 1 and Model 2 are not adequate for Trap nets fishing gear
data, while Model 3 is adequate comparing with Model 1 and Model 2. The parameters

estimation of Model 3 are listed below in Tabl.6.
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Table 5.6 Model 3 parameters estimation for Trap nets (* not significant)

Variables Estimation
Constant of Ss -3.824*
Constant of Sw -2.597*
Constant of Sg 0.101*
SsLogNets -0.051*
SwlogNets -0.085*
Se LogNets 0.172*
SsLogFishermen 0.711
SwLogFishermen 0.637
Sg LogFishermen -0.056*
SsLogDuration 2. 497
SwLogDuration 0.513*
SgLogDuration 1810
Ss LogMesh 1.206
SwlogMesh 1.859
Sk LogMesh -0.459*

From Table 5.6, Southern Sector coeflicient, Western Sector coefficient, Eastern
Sector coefficient, LogNets in the three sectors, LogFishermen in Eastern Sector,
LogDuration in Western Sector and LogMesh in Eastern Sector are not significant. Because
there are some variables not significant in a sector while it is significant in other sectors, the
need to estimate common parameters for each two sectors together to establish whether the
effect of each explanatory variable is the same in each sector in which it has a significant
effect (common parameters for two sectors). So new indicator variables must be created.
The definition of the new indicator variables can be as follows: Ssw for Southern or Western

Sector, Ssz for Southern or Eastern Sector and Spr for Western or Eastern Sector. So
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Model 3 can be reduced to the following models:
Model 3.1: combine Southern Sector and Western Sector together

LogYave = a+ S, LogNets + B,S, LogFishermen + B,S ., LogDuration + 8,8, LogMesh

+ B8 LogNets + S, LogFishermen + 3.8 . LogDuration + .S . LogMesh
+f,8g +e

Model 3.2; combine Southern Sector and Eastern Sector together

LogYave = a + Sy, LogNets + B, S LoglFishermen + B,S o LogDuration + 8,8, LogMesh

+ B8, LogNets + .S, LogFishermen + 3 S,, LogDuration + 8,S,, LogMesh
+4Sg +e

Model 3.3: combine Western Sector and Eastern Sector together

LogYave = a + RS, LogNets + B S, LogFishermen + B,S,,. LogDuration + 8,5, LogMesh

+ 3.8 LogNets + B.S;LogFishermen + .5 LogDuration + .S, LogMesh
+BS,: +e

The results of comparing Model 3 with Models 3.1, 3.2 and 3.3 are as follows:
F (Model 3, Model 3.1) = 7.56
F (Model 3, Model 3.2) =9.50

F (Model 3, Model 3.3) = 3.13

Comparing these F values with F,, .o, =2.29, one can conclude that Model 3 is stilt

the better model comparing with Models 3.1, 3.2 and 3.3.
Back to Model 3 (Table 5.6) one can suggest improving the model by:

e LogNets can be dropped out from Model 3 because it is not significant in the three
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sectors

e Southern and Western Sectors could be combined together fakogFishermen.

¢ Southern and Eastern Sectors could be combined together fokogDuration.

* Southern and Western Sectors could be combined together fatogMesh.

So according to that Model 3 could reduced to Model 3.4 which can be expressed as

follows

Model 3.4 for Trap nets

LogYave = a + B8, LogFishermen + 3,8 .. LogDuration + .S i, LogMesh
+B Sy +BSs +e

Comparing Model 3 with Model 3.4 gave the following result:

F (Model 3, Model 3.4) = 0.60 which is less than F,,,,, =191, so Model 3.4 is

better than Model 3.

Residual scatter plot of Model 3.4 versus predicted LogYave (Figure 5.3) for Trap
nets, shows that there is no pattern of the residuals and the negative and positive residuals
are balanced, so the error term e have constant variance for all levels of the independent

variables can be accepted.















because if the non-significant variables are removed from the model people behaviour can
change to fish more without control the number of Neis, number of Fishermen, trip
Duration or number of Mesh. So the model which include all explanatory variables will be
used to evaluate the regression model and then to estimate catch per vessel in the fleet
control model below. The parameters estimation for that model for each type of fishing gear

are listed below in Table 5.7.

Table 5.7 Parameters estimation using Model 3 for each type of fishing gear (* not

significant).

Variables Trap nets Stand nets Hook lines
Constant of Ss -3.824* 0.131* -2.206
Constant of Sy -2.597* 1.666 -0.480
Constant of Sg 0.101* -1.215 not included
SsLogNets -0.051* 0.597 1.079
SwlogNets -0.085* 0.728 0.283
SgLogNets 0.172* 0329 not included
SsLogFishermen 0.711 0.519 -1.131
SwlLogFishermen 0.637 0.416 0.992
Sk LogFishermen -0.056* -0.134* not included
SsLogDuration 2.497 512 1.903
SwLogDuration 0.513* -0.235* 0.651*
SeLogDuration 1.810 0.887* not included
Ss LogMesh 1.206 0.071 not included
SwlogMesh 1.859 -0.029* not included
St LogMesh -0.459* 0.887* not included
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5.5. Catch model validation

Multiple regression model has been used to estimate the parameters and it will use to
predict catch per individual vessel. However, a regression model deemed to be an adequate
predictor of the dependent variable may perform poorly when applied in practice. “There is
no assurance that a model that fits the sample data well will be a successful predictor of the
dependent vanable when applied to new data. For this reason, it is important to assess the
validity or reliability of the mode! in addition to its adequacy before using it in practice”
(Mendenhall, 1989). Model validation is an assessment of how the fitted model will perform
in practice, that is how successful it will be when applied to new or future data. Where it is
impossible or impractical to collect new data, the original data can be split into two parts,
with one part used to estimate the model parameters and the other part used to assess the
fitted model’s predictive ability and to estimate the error distribution. There are many
methods for evaluating reliability of a model based on split samples or re-sampling the data
such as: (1) split sample or hold-out validation, (2) cross validation and (3) Shrinkage

statistic. (Kleinbaum and others, 1998).

Split sample is the most commonly used method for evaluating reliability of a model.
The technique involves splitting the data into two sets, the estimation data set (EDS) and
the validation data set (VDS), using EDS to fit a model, then estimating the error from
VDS. The disadvantage of split sample validation is that it reduces the amount of data

available for the parameter estimation and for the validation.

Cross validation is an improvement on split sample validation which allows all of the
data to be used for estimation. The disadvantage of cross validation is that it must fit the
model many times. In K-part cross validation, the data is divided into K subsets of

approximately equal size. Each iteration leaves out one of the subsets, fits a model to the
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remaining subsets and uses only the omitted subset to compute the error. If K equals the
sample size, this is called ‘“Leave-one-out” cross validation. “Leave-V-out” is a more
elaborate version of cross validation that involves leaving out each subset of V cases. Leave
one out cross validation often works well for continuous error functions such as the mean

squared errors (MSE).

Shrinkage statistics depends on splitting the sample data into two approximately

equal data sets. The first data set (EDS) is used to fit a model. Then the squared multiple
correlation between the observed and predicted response values, which will be called R?(1)

is calculated. Next the prediction equation from the first data set EDS is used to compute
predicted values for the second data set (VDS). Finally compute the squared multiple

correlation between these predicted values and the observed response in VDS, which will be
called R?(2). The quantity R?(2) is called cross validation correlation and the quantity
R*(1)-RX(2) is called shrinkage on cross validation. “The cross-validation correlation
RZ(2) is a less biased estimator of the population squared multiple correlation than is the
(positively) biased R?(1). Hence, the shrinkage statistic is almost always positive. How

large must shrinkage be to cast doubt on model reliability? No firm rules can be given.
Certainly the fitted model is unreliable if shrinkage is .90 or more. In contrast, a shrinkage
values less than .10 indicate a reliable model.” (Kleinbaum, Kupper, Muller and Nizam,

1998).

Cross validation and shrinkage statistic can be used for the sample data to check the

reliability of the regression model.

5.5.1. Applving cross validation

Cross validation has been applied to the survey data for each gear in each sector.
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When the survey data were collected, the actual sample size was increased by 20% as a
precaution to avoid an possibility of collecting invalid questionnaires and to use the
additional observations to check the validity of a model. So, each data set for each gear in
each sector was split to 5 parts. But as Efron in 1982 suggested to split the data to 10 parts,
each data set was also split to 10 parts. So applying cross validation will include splitting
the data to 2 parts to compute shrinkage statistic, to 5 parts according to the data collected
assumption and to 10 parts according to Efron suggestion and a comparison between these
procedures will be carried out. The steps of applying cross validation can be summarised as

follows:
1. Split the data to K (2, 5,and 10) parts randomly.

2. Leave first part out (validation data set VDS), use the remaining parts
(estimation data set EDS) to estimate the parameters of the multiple linear regression
(using all explanatory vanables) and calculate the mean squared error (MSE) of the

EDS.

3. Use the estimated parameters from the previous step to predict the values of
the response using given values of the independent variables in the VDS and calculate

MSE of the VDS, and calculate shrinkage statistics if K = 2.

4. Repeat steps 2 and 3 until each part has been left out. So, each iteration

produces K values of MSE for VDS and another K values of MSE for ESD.

5. Repeat all the previous steps 200 times as suggested by Efron and Tibshirani in

1993.

These procedures have been applied to each data set for each fishing gear in each

sector. The next section is the illustration in detail for applying cross validation to Trap nets
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in Southern Sector as example.

5.5.1.1. Splitting the data to 2 parts

To avoid any emror in splitting data into two approximately equally parts and to have
the same base to compare this analysis (splitting the data into 2 parts) with the other
analysis (splitting the data into 5 and 10 parts), this test was repeated 200 times, each time

the data set being split randomly.

It is noted that MSE of VDS is higher than MSE of EDS, their ratio varies from
124% to 200%. Also it is found that 6 iterations of VDS (3%) produced normal residual (P-
value of Shapiro-Wilks Goodness-of-Fit statistic greater than 5%). It is found that the
minimum value of shrinkage statistic was 0.000147 while the maximum was 0.058880,

which means that the multiple regression is reliable model for prediction.

5.5.1.2. Splitting the data to S parts

By comparing MSE of EDS and VDS, it is found that MSE of VDS is higher than
MSE of EDS. Their ratio varies from 178% to 182%. Also it is found that 39 iterations
(19.5%) produced normal residual (P-value of Shapiro-Wilks Goodness-of-Fit statistic

greater than 5%).

5.5.1.3. Splitting the data to 10 parts

By comparing MSE of EDS and VDS, it is found that MSE of VDS is higher than
MSE of EDS. Their ratio vary from 148% to 188%. Also it is found that 29 iterations
(14.5%) produced normal residual (P-value of Shapiro-Wilks Goodness-of-Fit statistic

greater than 5%).

The summary of applying cross validation with splitting the data into 2, 5 and 10 parts
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using multiple regression model for Trap nets in Southemn Sector are listed below in Table

58.

Table 5.8 The summary of the results of splitting the data into 2, S and 10 parts for
the Trap nets in Southern Sector.

2 parts 5 parts 10 pattsl
[Number of observations 51 51 51
[Number of iterations 200 200 200§
Minimum value of MSE of VDS 0.068 0.064 0.068t
Minimum value of MSE of EDS 0.055 0.036 0.04ﬁ
Minimum ratio of MSE of VDS/MSE of EDS 124% 178% 148%
Maximum value of MSE of VDS 0.190 0.160 0.16
Maximum value of MSE of EDS 0.095 0.088 0.08
Maximum ratio of MSE of VDS/MSE of EDS 200% 182% 188%
Proportion of iterations produced normal residua 3% 19.50%  14.50%

The same analysis has been investigated for each fishing gear data set in each sector
and all results are similar to the results mentioned above. From these results splitting the
data into 2 parts was used to confirm the reliability of the catch model for prediction which
ensure that the multiple regression catch model are reliable for prediction. Splitting the data
to 5 parts has been performed because when the survey data were collected the actual
sample size was increased by 20% as a precaution to avoid an possibility of collecting
invalid questionnaires and to use the additional observations to check the validity of a

model.

5.6. Effort control using parametric model

Now that the regression model has been confirmed as reliable for prediction, it can be
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used to calculate the fleet size required to achieve a catch of MSY if the stock is at BMSY
level. This will be based upon the deterministic model, while the effect of uncertainty will be

covered in chapter seven.

Effort control will control the existing operating fleet by using the existing operating
fleet specification and limiting the number of Nefs, number of Fishermen, trip Duration and
number of Mesh. The multiple regression model with ail explanatory variables will be used
to predict the individual vessel catch per trip (total catch of all species) for each fishing gear
in each sector. According to survey data analysis, the individual vessel catch depends on
type of fishing gear, fishing sector and vessels characteristics (number of Nets, number of
Fishermen, trip Duration and number of Mesh). The fleet model aims to control fishing
effort by controlling characteristics of each vessel and fleet size to catch a certain amount of
fish to conserve fish stocks. All catch strategies use a constant fleet size once the fishing re-

start.

The biomass model has been applied to four species of 7ilapia species, but the fleet
can catch all species. So an estimate of the 7otal Tilapia catch is required. From the catch
time series (1977-1997) the total Tilapia catch average was 77% of all species catch, while
this proportion was 67% during the period 1989 to 1997. Comparing the proportion of the
catches of Ti/apia and the non Tilapia species with the all species catch over the study
period, it is noted that there is a complex interaction between 7ilapia and non Tilapia
catches. The catch proportion of non Tilapia to all species catch was nearly constant during
1977 to 1987, then it showed a small increase during 1988 to 1997 This may have
happened because the T7ilapia species growth has been suppressed by the increased
proportion of non 7ilapia species, or it may be due to the growth of non Tilapia species at
different rate. There are two assumptions that could be made in future predictions, as stock

recover, the proportion of 7ilapia to all species will return to the previous level, or as
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stocks recover the proportion will remain around more recent level. The complex
interaction between Tilapia and non Zilapia catches will not explained in this study. So
Total Tilapia catch can be estimated by multiplying the fleet catch (all species catch) by
0.67 because this proportion (1989-1997) is closer to the future and the stock recovery
need a short period 3 to 5 years. Then the estimates of 7oral Tilapia catch can be split to
the four species catches based upon the proportion of the biomasses in the end of the

previous year.

From the survey data the maximum annual working days are 300 days per year (one
trip per day). The maximum annual working days are assumed to be 300 days in each

projected year.

5.6.1. Mesh control

In a study carmied out by National Institute of Oceanography and Fisheries in
Alexandnia (1994), it concluded that the best mesh dimensions to protect 7ilapia species
stocks is 2-2.5 cm, which means about 40-50 mesh per 100 c¢cm length of nets. So the
maximum allowable number of mesh per 100 cm length of nets must be 50. This study will
confine itself to strategies which include this restriction. However, the modelling

methodology would allow any restriction on the number of mesh.

5.6.2. Limits of individual vessels

Effort control will be achieved by allowing the vessels to fish with the same vessels
characteristics as the 1995 fleet, but controlling number of vessels. From the survey data the
upper limits for number of Nets and Fishermen were used to control effort, while the
Duration time was reduced to 15 hours per tnip for Trap nets and Stand nets, and 18 hours

per trip for Hook lines, to be similar to trip duration in other lakes in Egypt. Table 5.9
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shows the upper limit for the vessel characteristics which any skipper must not exceed. This
means that if a skipper currently exceeds the following limits he may be allowed to fish, but

only if he restrict his operating characteristics to be equal the following limits.

Table 5.9 Upper limits for each independent variable.

Gear and sector Nets Fishermen Duration Mesh
Trap south 150 10 15 50
Trap west 150 10 15 50
Trap east 150 10 15 50
Stand south 100 10 15 50
Stand west 100 10 15 50
Stand east 100 10 15 50
Hooks south 250 9 18

Hooks west 250 9 18

5.6.3. Calculation of fleet size

Spreadsheet is a good environment to estimate the required allowable fleet size

through the following steps:

1. insert all variables (dependent and independent) for each sample vessel in a

spreadsheet.

2. reduce the duration time per trip to 15 hours for Trap nets and Stand nets if the
duration time per trip is greater than 15 hours, and reduce the duration time per trip to 18
hours per trip if it is greater than 18 hours for Hook lines. Both number of nets and
fishermen need no change because we use the upper limits of them from the survey data as

the maximum allowable.
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3. use Model 3 for Trap nets, Stand nets and Hook lines (Table 5.7) to estimate the

individual catch per vessel for the remaining vessels, then calculate the total estimated catch.

4. adjust the total estimated catch using the ratio of the estimated biomass in that year

1o the 1995 biomass.

5. calculate the number of vessels required to give the planned catch on the bases of
the fleet composition in steps 1- 2 and the catch in steps 3-4. This assumes that any reduced

or augmented fleet will have the same relative composition as the 1995 fleet.

5.6.4. Catch strategics

The required fleet size during projected years, estimated number of fishermen,
expected catch of all species, estimated 7ilapia biomass and estimated all species biomass
duning 1998-2006 for the three catch strategies are shown in Table 5.10. Comparing the
fleet size with the actual fleet size in 1997, it is noted that the fleet size for MSY is
approximately one third of the 1997 fleet. It has already been shown that the 1997 fleet size
represents a high effort level and to continue using 1997 fleet size will cause further

depletion of the stock.

98



Table 5.10 Number of vessels, estimated number of fishermen, expected catch of Total
Tilapia, expected catch of all species, estimated Total Tilapia biomass and estimated

all species biomass during 1998-2006 for the three catch strategies.

Years

1998 1999 2000 2001 2002 2003 2004 2005 2006I

Catch strategy 1

No. of vessels 0 1140 1140 1140 1140 1140 1140 1140 114
No. of fishermen 0 3764 3764 3764 3764 3764 3764 3764 376
Total Tilapia catch 0 17.18 19.15 2091 2241 23.62 2458 2530 258
All species catch 0 25.64 28.58 31.21 3344 3526 36.69 37.76 38.5(1
Total Tilapia biomass] 35.24 55.05 6135 6699 71.79 7569 78.75 81.07 82.78
All species biomass | 52.60 82.16 91.57 99.98 107.14 112.97 117.54 120.99 123.54
rCatch strategy 2
[No. of vessels 0 0 1140 1140 1140 1140 1140 1140 114
No. of fishermen 0 0 3764 3764 3764 3764 3764 3764 376
Total Tilapia catch 0 0 2512 2570 26.13 2643 26.65 26.80 269
All species catch 0 0 37.50 3836 39.00 3945 39.77 3999 40.15
Total Tilapia biomass] 3524 5505 8049 8235 8371 84.68 8537 8585 86.19
All species biomass | 52.60 82.16 120.13 122.92 124.94 126.39 127 .42 128.14 128.64]I
Catch strategy 3
No. of vessels 0 0 0 1140 1140 1140 1140 1140 114
No. of fishermen 0 0 0 3764 3764 3764 3764 3764 376
Total Tilapia catch 0 0 0 3351 31.05 29.66 28.80 28.25 27.8
All species catch 0 0 0 5002 4635 4426 4298 42.16 41.6
Total Tilapia biomass] 3524 55.05 80.49 107.37 99.50 9501 9226 90.50 89.34
All species biomass | 52.60 82.16 120.13

160.26 148.50 141.81 137.70 135.07 133.35'

Strategy 1, strategy 2 and strategy 3 are compared in Table 5.11. This comparison is

made on the basis of the expected catches (chapter four) and cumulative fishermen-years as

a guide to the social impact in terms of unemployment.
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Table 5.11 Cumulative all species catch, number of vessels-years and number of
fishermen-years for each catch strategy.
Strategy 1 Strategy 2 Strategy 3

Year Cumulative Cumuletive Cumulative } Cumulative Cumulative Cumulative | Cumulative Cumulative Cumulative
vessels-years fishermen-  catch of all |vessels-years fishermen-  catch of all vessels-years fishermen-  catch of ell

years species years species years pecics
1998 0 0 0 0 0 0 0 0 0
1999 1140 3764 26 0 0 0 0 l
2000 2280 7528 54 1140 3764 3 0 0 OL
2001 3420 11292 85| 2280 7528 7 1140 3764 SOH

2002] 4560 15056 119F 3420 11292 1150 2280 7528 96r
2003 5700 18820 154H 4560 15056 15 3420 11292 141

2004 6840 22584 191} 5700 18820 19 4560 15056 18
2005 7980 26348 229J 6840 22584 23 5700 18820 22

2006] 9120 30112 267 7980 26348 27 6840 22584 26

It is clear that strategy 1 and 3 are similar on the basis of producing the same amount
of the catch, while strategy 2 realises the greatest amount of the catch and also realises the
greatest total discounted catch if the discount rate is 10% or less as mentioned in chapter
four. Strategy 1 realises the greatest total discounted catch if the discount rate is greater
than or equal 10% as mentioned in chapter four. Because strategy 1 allows fishing to start
earliest, it allows the greatest cumulative employment in terms of both fishermen-years and
vessels-years. Because strategy 3 prevents fishing for an addition two years, it gives the
lowest cumulative employment. Strategy 2, which has the advantage of the greatest

cumulative catch, has an intermediate level of cumulative employment over this time period.
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CHAPTER 6 EFFORT MANAGEMENT BASED ON

NON-PARAMETRIC ANALYSIS

6.1. Introduction

A production function is a reasonable way to represent the relationship between
the dependent variable and independent variables because the plot of the dependent
variable versus each independent variable in logarithm scale showed an approximately
linear relationship. In chapter five, multiple regression analysis was carried out for the
survey data of Lake Manzala by using a multiple log function to represent the

relationship between the catch average and the fishing effort variables
(LogY = Loga+Z,B,LogX,. +e). In despite of using multiple log function there was still

some curvature which can not be ignored. So some other non-linear modelling is
necessary to pick the data curvature. This chapter describes the use of generalised

additive model for the purpose of improving the linear model.

There has been limited research using generalised additive models (GAM) in
fisheries. Borchers, Buckland and Ahmadi (1996) conducted a study on improving the
precision of the daily egg production estimation using generalised additive model for
western mackerel and horse mackerel stocks. The application of generalised additive
model to survey data produced a substantial reduction in coefficients of vanation of egg
abundance. They used generalised additive model methods to estimate the daily egg
production, in which presence/absence is modelled separately from non zero
observations and used a new form of the bootstrap which accommodated clustered count

data without requiring explicit knowledge of the form of clustering. In addition to the
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increased estimation precision, the use of generalised additive models have several
advantages over stratified sample survey methods. To a large degree they allow the data
to determine the function form of the response on the explanatory variables and they

accommodate a wide variety of forms of stochastic variation of the response.

Swartzman, Silverman and Williamson (1994), used generalised additive models
to model the trend in mean abundance of Bering Sea walleye pollock as a function of
ocean environmental conditions including water column depth, temperature at 50 m and
depth of the thermocline. Acoustic survey data collected in 1988 and 1991 was used to
test these relationships. The authors assumed that the biomass abundance estimate came
from a normal distribution. They chose the logarithm of bottom depth as a covariate
instead of depth to avoid having the large range of depth overemphasise the effect of
points near the tail of the distribution. The generalised additive model was applied to
both 1988 and 1991 data. In both surveys, all explanatory variables were significant

except thermocline depth.

Swartzman, Stuetzle, Kulman and Powojowski (1994) used generalised additive
models to explore the relationship between the distribution of pollock schools in the
Bering Sea and environmental factors such as depth and temperature. They assumed that
the school density came from the Poisson distribution, while normality was assumed for

total school area and average school mass.

Swartzman, Huang and Kaluzny (1992) applied generalised additive models to
trawl survey data in the eastern Bering Sea to detect trends in ground fish distributions
and improve abundance estimates by including the trend. Generalised additive models
provided reasonable fits to the spatial distribution of five flat fish species and was able to
define a spatial signature for each species, namely their preferred depth and temperature

range.
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6.2. Generalised Additive Model

Generalised linear model can be used if the relationship between the response and
the explanatory variables is not linear (Green and Silverman, 1995). So a linear model

can extend to a generalised linear model by using the following formula:

Y=g"(a+iﬁ,.X,.)+e

=1

where

Y is a dependent vanable,
g ts a link function (in generalised linear model the link function is known),
a is intercept,

i is a parameter,
X; is independent variable,

e 1s an error term, which does not have to be Normally distributed.

By using generalised linear model, data can be fitted with Gaussian, Binomial,
Poisson, Gamma or inverse Gaussian error which extends dramatically the kind of data

for which one can build regression models.

Even with a non-linear link function the model linearity assumption imposes many
restrictions on the relationships between the dependent and independent variables that
can be studied. “In some cases it is possible to use a transformation of an independent or
dependent variable to partially alleviate the problem, but in other cases, non-linearities

in these relationships may be difficult or impossible to state analytically” (Spector,
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1994). In such cases the class of models known as generalised additive model can be
used to overcome this difficulty by modelling the relationship a dependent variable in

the following way:
P
Y=g a+2 fi(X))+e
i=l

where:

f,(®)s are unknown functions which can be determined by the nature of the

relationship between the dependent and independent variables,
e represents the error term of the model.

In the generalised additive model there is no need to determine the exact analytical
form of the transformation of the independent variables used in the additive part of the
model. The modelling process finds those transformations that are most appropriate and
the nature of the relationship can be viewed graphically. In applying generalised additive

models there are two kind of variables to enter the formula:

» variables for which the function f,(.X,) is known; they are entered in generalised

additive model formula, as linear effect as in a regression model, and

o variables for which the function f,(X,) is unknown; they can be estimated using

a smoothing function.

6.3. Smoothing

A ‘smoother’ is a tool for summarising the value of a dependent variable Y as a
function of a predictor variable X. A ‘smoother’ is a non-parametric regression
technique because it does not assume a rigid form for the dependence of ¥ on X. A

104



smoother is useful in two ways, first as a descriptive tool to help eyes to pick out the
relationship between Y and X from the scatter plot and second to estimate the
dependence of the mean of ¥ on the predictor which can help for estimation of the
additive models. There are several methods of smoothing of which cubic smoothing
spline and locally weighted regression smoothing are probably the most well known
methods. “The spline smoothing approach avoids this implausible interpolation of the
data by quantifying the competition between the aim to produce a good fit to the data
and the aim to produce a curve without too much rapid local variation.” (Hardle, 1995).

So cubic smoothing spline was preferred.

6.3.1. Cubic smoothing spline

The cubic smoothing spline is a powerful and robust non-parametric regression
technique that allows one to uncover the function form of the dependence between
predictor and response variables. The smoothing that non-parametric regression
performs can be thought of as a process where each data point is replaced by a local
average of the surrounding data points. Different non-parametric regression techniques
define and calculate this local average in different ways. The smoothing spline's
determination of what is ‘local’ is based on the data itself (Silverman 1985), making it a
particularly flexible smoother. With the underlying mathematical form of the
interpolation spline, the smoothing spline has the ability to model a wide range of
functional forms while the flexibility of the smoothing procedure makes smoothing

splines especially robust.

Like most non-parametric regression techniques, the smoothing spline is itself a
function of a smoothing parameter. This parameter determines the balance between

fidelity to the data and the smoothness of the curve. Consequently, the successful use of
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smoothing splines to separate the signal from the noise depends on the choice of the

‘optimal’ smoothing parameter. The residual sum of squares Z(yj - f(x; ) (where
J=t

y;and x; are J observations of the dependent variable ¥ and independent variable X

respectively and n is the number of observations) is a measure of fidelity of the

smoothed curve to the data. “If f is allowed to be any curve then the distance measure
can be reduced to zero by any f that interpolates the data. Such a curve would not be

acceptable on the grounds that it is not unique and that it is too rough for a structure
oriented interpretation.” (Hirdle, 1995). To quantify local variation one must define

measures of roughness which may be based on the first, second and subsequent
derivatives. The roughness I (f"())’dt can be used to determine the quantity of local

vanation (Green and Silverman, 1995). So, the residual sum of squares can be penalised

by using the roughness as follows:
Si()=2 (0= )P +4 [(F @y

where:
S:(f) 1s the penalised sum of squares,

A is the smoothing parameter, which controls the trade-off between fidelity to the

data and smoothness,

[a, b] is a «closed interval satisfying the following condition

a<x <x,<..<x <b where x s are called knots, and

1 is a target point.
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The problem of minimising S,(*) over the class of all twice differentiable
functions on the interval [a,b] =[x,,x,] has a unique solution f3(x) which is defined as

cubic spline. “Suppose fis any curve that is not a natural cubic spline with knots at the

x;. Let /" be the natural cubic spline interpolant to the values f{x)); since, by definition, f
(%) = flxy) for all j, it is immediate that > {y, - /"(x;)}’ = D.{y; ~ f(x,)}* . Because of
the optimality properties of the natural cubic spline interpolate,j f < I f?, and

hence, since A >0, we can conclude that S( /") < S(f). This means that, unless fitself is

a natural cubic spline, we can find a natural cubic spline which attains a smaller value of

the penalised sum of squares; it follows at once that the minimizer f of S must be a

natural cubic spline.” (Green, and Silverman, 1995). So, the estimated curve fi(s) has

the following properties:
e fi(x) is a cubic polynomial between two successive values of x,

» at the observation points x;, the curve fi(s) and its first and second derivatives

are continuous.

« at the boundary points x,and x_ the second derivative of f;(x) is equal to zero.

The smoothness of the curve f;(») depends on the value of A, There are two

extremes for A;

o first when A — oo, the penalty term forces f (x) = 0 everywhere, in that case the

smoothing produces the least squares line.

¢ second when A — 0, the penalty term disappears and the solution tends to an

interpolating twice-differentiable function.
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So large values of A produce smoother curves while smaller values produce

rougher curves.

6.4. Choosing the smoothing parameter

The problem of deciding how much to smooth is of great importance in non-
parametric regression. The value of the smoothing parameter depends on the proportion
of data points used as knots. Then the smoothing parameter has the main effect in
determining the degrees of freedom, so when the smoothing parameter increases, the
degrees of freedom decrease, using 50% of data points as knots corresponding to about
four degrees of freedom, while using 100% of data points as knots will produce a linear
regression with one degree of freedom (Hastie and Tibshirani, 1990). So the problem is
how one can choose the smoothing parameter to balance between degrees of freedom of
a smoother and the smoothness of the curve. This number of degrees of freedom is a
function of the smoothing parameter and the predictor values in the data, and it is not a

function of the dependent vanableY .

Choosing the smoothing parameter aims to minimise the mean squared error

(MSE) at each x; and give a constant variance () where:

MSE(/‘L):%Z'_':E{f;(xj)—f(x;)}z

where:
x; is an observation of vanable X.

There are many methods available to estimate the smoothing parameter A . One of

these methods is known as “Cross Validation™ which is essentially an automatic method
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for choosing the smoothing parameter. Cross validation has been used in chapter five to
check the reliability of the model for prediction. In this chapter cross validation will be

used to guide the choice of the smoothing parameters.

The basic idea behind cross validation is that for a fixed smoothing parameter, one

point (x;, y;) is left out and the smooth estimated at x;, based on the remaining (n-1)

points. Repeating for all n points, the CV sum of squares (cross validation score

function) can be expressed as follows:
1 n
CV(A) == 2y, = S, )
J=l

where f{"(x,) is the fit at x; computed by leaving out the /* data point. The idea

of cross validation is to choose the value of smoothing parameter A which minimises the
cross validation score function CV(4) (Hastie and Tibshirani, 1990).This procedure is
loosely justified by the fact that E{CV (1)} = MSE + o, although a strong justification

requires evidence that minimum of C¥(4) is close to the minimum of MSE+d”.

When cross validation was used to select a smoothing parameter for Lake Manzala
survey data (Figures 6.1 - 6.4), the spline appeared 100 smooth, “It can not be
guaranteed that the function CV has a unique minimum, so care has to be taken with its
minimisation, and simple grid search is probably the best approach” (Green and
Silverman, 1995). Hastie and Tibshirani suggested that number of degrees of freedom
will be {1, 4, 7} because df=1 for a term means this term has a linear fit, and when df >
I means shrinking smoother, so the larger the degrees of freedom, the rougher the fit.
The cross validation method simply gives an idea of the size of the smoothing parameter
should be selected. So for that reasons chosen smoothing parameter value will be based

upon a comparison between the following two criteria:
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e using cross validation to determine the smoothing parameter value, and

» manually using different values of degrees of freedom (1, 4 and 7).

From chapter four the variable Secfor has a significant effect on the dependent
variable (LogYave catch average per vessel). For that reason the dependent variable will
smooth versus each independent variable(LogNets, LogFishermen, LogDuration and
LogMesh) in each sector separately to determine the best degrees of freedom in each

sector.

Using cross validation techniques to determine degrees of freedom for each
independent variable versus the dependent variable for each type of fishing gear in each
sector gave three degrees of freedom for all relationships between each independent
variable and the dependent variable for each type of fishing gear in each sector. Figures
6.1-6.4 shows the smoothing spline smoother for each independent variable (LogNers,
LogFishermen, LogDuration and LogMesh) versus LogYave for Trap nets fishing gear in
Southern Sector using 1, 3, 4 and 7 degrees of freedom. (see Appendix D for the other

fishing gear in each sector).

Figure 6.1a shows using one degree of freedom produces a straight line which is
equivalent to linear effect. Figure 6.1b shows that smoothing spline by using cross
validation, where degrees of freedom was three is reasonably faithful but it does not pick
up all the curvature of the data. Figure 6.1¢ shows that spline with four degrees of
freedom, which produces a less smooth curve than three degrees of freedom had seems
to follow the data better. Seven degrees of freedom (Figure 6.1d) gives a rougher curve
than using four degrees of freedom. Figures 6.2-6.4 shows the same results as Figure
6.1. It is noted that the independent variables data points does not spread over the

horizontal axis because those variables have discrete values.
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6.5. Model selection

The dependent variable in Lake Manzala survey data is a vessel’s average daily catch
(LogYave), the errors are distributed according to the Gawssian distribution (supported by

residual analysis in chapter 5) and the link function is identity.

On the grounds of improving the linear model for each type of fishing gear in each
sector, generalised additive model will be used. The initial model will be the linear model
including all independent variables for Trap nets and Stand nets in the three sectors, while
the initial model for Hook lines will not include the variable LogMesh and it operates in

Southern and Western Sectors only. The initial model can be expressed as follows

LogYave = a+ B, LogNets + 3, LogFishermen +f; LogDuration + B, LogMesh

To select the best non-parametric model, fitting generalised additive models was used
in finding spline for the independent variables LogNets, LogFishermen, LogDuration and
LogMesh, and stepwise procedure was used to decide which covariate should be included in
the model and how many degrees of freedom to minimise the residual sum of squares. At
each stage any covanates can be either dropped or transformed from a linear fit to smooth

fit.

The measure of fit of the generalised additive models is the residual deviance and
change in deviance is useful for comparing different models. Because the error is Normally
distributed, so residual deviance leads to F test. F statistic can be used to judge the effects

of dropping out a variable or smoothing a variable.

In chapter five, a complete model for each type of fishing gear in each sector had been
chosen to predict the individual catch per vessel in spite of non significance of some

independent variables. This model has been chosen to allow tight control of the fishing
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effort in Lake Manzala. To compare the prediction of the effects of different effort control
strategies using parametric and non-parametric models both must include the same
explanatory variables. Selection of the best non-parametric model based upon dropping out
a covariate or smoothing a covariate. This procedures could produce a model which does
not include all explanatory variables. If the best non-parametric model include all
explanatory variables it can be used to estimate the individual vessel catch average, but if
not it will not be used. So a non-parametric model including all explanatory variables (call it
non-parametric control model) is required. To select a non-parametric control model which
include all explanatory variables, fitting generalised additive models steps were used in
finding spline for the independent variables LogNefs, LogFishermen, LogDuration and
LogMesh to decide how many degrees of freedom to minimise the residual sum of squares.
At each stage any of the covariates can be transformed from a linear fit to smooth fit

without dropping out a covariate.

6.5.1. Model selection for each fishing gear

Backward and forward stepwise selection was carried out to select the best non-
parametric model and the same procedure was repeated without omitting any covariate to

select the control model.

The comparison between the initial linear model, non-parametric models which
includes all independent variables with 3, 4 and 7 degrees of freedom, the best model non-
parametric and the control model (if the best non-parametric model does not include all the
explanatory variables) are listed below in Table 6.1 for the Trap nets in each sector together
with F value of the results of comparing the initial model with the other models (for
example, see Tables 1D and 2D in Appendix D for the other fishing gear). From this table

there is a significant difference between the initial model and the best model. Also the best
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non-parametric models for Trap nets in Southern Sector and Western Sector include all
explanatory variables, so there is no need to select a control model for them and the best
non-parametric model can be used to control the effort. While the best non-parametric
model for Trap nets in Eastern Sector does not include the variable LogMesh so the control

model is required for this fishing gear in that sector.
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From chapter five Trap nets (Figure 5.4) there was no pattern in the residuals, but the
residuals of Stand nets and Hook lines had a sinusoidal pattern. Figure 6.5 shows the
residuals plot of LogYave versus predicted values for the best non-parametric model for
Stand nets in Southern, Western and Eastern Sectors, and Hook lines in only Western
Sector because the best model to represent the Hook lines data in Southern Sector was the
linear model (see Table 2D in Appendix D). It is clear that there is now no pattern in the
residuals in the three sectors for Stand nets and in Western Sector for Hook lines. So

generalised additive model has followed the underlying non-linearity in these data.

Figure 6.6 shows the normal probability plot of residuals for the best non-parametric
model for Stand nets in Southern, Western and Eastern Sectors, and Hook lines in Western
Sector. Using Shapiro-Wilks Goodness-of-Fit statistic produced P-value greater than 0.05
for the best non-parametric models. So there is no evidence that the residuals of the best

non-parametric model vary from a normal distribution.

119









6.6. Non-parametric catch modelling validation

GAM used to estimate the parameters as well as to predict catch per individual vessel.
However, GAM deemed to be an adequate predictor of the dependent variable may perform
poorly when applied in practice. Cross validation and shrinkage statistic can be used for the
sample data to check the reliability of the GAM, in the same way as far the linear regression

in chapter five.

6.6.1. Splitting the data to 2 parts

It is noted that MSE of VDS is higher than MSE of EDS, their ratio varies from
151% to 159%. Also it is found that 19 iterations (9.5%) produced normal residual (P-value
of Shapiro-Wilks Goodness-of-Fit statistic greater than 5%). It is found that the minimum
value of shrinkage statistic was 0.000107 while the maximum was 0.042225, which means

that the GAM is reliable model for prediction.

6.6.2. Splitting the data to 5 parts

By comparing MSE of EDS and MSE of VDS, it is found that MSE of VDS is higher
than MSE of EDS. Their ratio varies from 145% to 158%. Also it is found that 106
iterations (58.5%) produced normal residual (P-value of Shapiro-Wilks Goodness-of-Fit

statistic greater than 5%).

6.6.3. Splitting the data to 10 parts

By comparing MSE of EDS and MSE of VDS, it is found that MSE of VDS is higher
than MSE of EDS. Their ratio vary from 144% to 173%. Also it is found that 83 iterations
(41.5%) produced normal residual (P-value of Shapiro-Wilks Goodness-of-Fit statistic

greater than 5%).
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The summary of applying cross validation with splitting the data into 2, 5 and 10 parts

using multiple regression model and GAM for Trap nets in Southern Sector are listed below

in Table 6.2.

Table 6.2 The summary of the results of splitting the data into 2, S and 10 parts for
the Trap nets in Southern Sector.

2parts  Sparts 10 parts)
Number of observations 51 51 51
Number of iterations 200 200 200
Minimum value of MSE of VDS 0.0473 0.0352 0.1270
Minimum value of MSE of EDS 0.0313 0.0242 0.0088
Minimum ratio of MSE of VDS/MSE of EDS 151% 145% 144%
Maximum value of MSE of VDS 0.1831 0.1672 0.0202
[Maximum value of MSE of EDS 0.0524 0.0425 0.0117
Maximum ratio of MSE of VDS/MSE of EDS 159% 158% 173%]
Proportion of iterations produced normal residual 9.5% 58.5% 41 .S%I

The same analysis has been investigated for each fishing gear data set in each sector
and all results are similar to the results mentioned above. From these analysis splitting the
data into 2 parts was used to check the reliability of the catch model for prediction which
ensure that both catch model are reliable for prediction. Splitting the data to 5 parts has
been performed because when the survey data were collected the actual sample size was
increased by 20% as a precaution to avoid an possibility of collecting invalid questionnaires

and to use the additional observations to check the validity of a model.

Comparing the results of splitting the data into 2, 5 and 10 parts when using multiple
regression model and generalised additive model (Table 5.8 and Table 6.2), it is noted that

using generalised additive model gives better results which can be noted in the proportion of
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the iterations produced normal residual because generalised additive model picked up the

curvature of the data better than multipie regression model.

In this section catch model validation has been investigated. Now effort control will
be investigated based upon deterministic catch and biomass models to determine the fleet
size which can achieve the allowable catch. The study of uncertainty of the catch model and

biomass model will discussed in chapter seven.

6.7. Effort Control using non-parametric models

Chapter five described the use of a parametric model to predict the effects of different
effort control strategies. These strategies were; strategy 1 stop fishing for one year 1998,
strategy 2 stop fishing for two years 1998-1999 and strategy 3 stop fishing for three years
1998-2000. To compare between the parametric and non-parametric model, the prediction
of the effect of different effort control strategies using non-parametric model is required.
The generalised additive model prediction is given by the product of the model matrix and
the coefficients, plus the smooth matrix. Assume that the vessels characteristics will be the

same as specified in chapter five.

It is noted that the best non-parametric models for some fishing gear within each
sector does not include all the explanatory variables. This means that the effort control
strategies will not be tight, because if the non significant variables are not under control the
people can change their behaviour to fish more without control those variables. To compare
the prediction of the effects of different effort control strategies using parametric and non-
parametric model both must include the same explanatory variables. For these reasons the
best non-parametric models will be used if they include all explanatory variables and if not

the non-parametric control models will be preferred.
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6.7.1, Catch strategies

The fleet size for MSY during projected years by fishing gear in each sector, estimated

number of fishermen, expected catch of all species, estimated 7i/apia biomass and estimated

all species biomass during 1998-2006 for the three catch strategies are shown in Table 6.3.

Table 6.3 Number of vessels, estimated number of fishermen, expected catch of Total
Tilapia, expected catch of all species, estimated Total Tilapia biomass and estimated
all species biomass during 1998-2006 for the three catch strategies.

Years 1998 1999 2000 2001 2002 2003 2004 2005 2006
jCatch strategy 1
[No. of vessels 0 1070 1070 1070 1070 1070 1070 1070 ]070H
[No. of fishermen 0 3537 3537 3537 3537 3537 3537 3537 3537
Total Tilapia catch 0 17.18 19.15 2091 2241 2362 2458 2530 2584
All species catch 0 2564 2958 31.21 3344 3526 36.69 37.76 38.56]
Total Tilapia biomass| 35.24 5505 6135 6699 71.79 7569 78.75 8107 8278
All species biomass 5260 82.16 91.57 99.98 107.14 11297 117.54 120.99 123.55
|Catch strategy 2
[No. of vessels 0 0 1070 1070 1070 1070 1070 1070 1070}
[No. of fishermen 0 0 3537 3537 3537 3537 3537 3537 3537
Total Tilapia catch 0 0 2512 2570 2613 2643 2665 2680 2690
All species catch 0 0 3750 3836 3900 3945 3977 3999 40.15
Total Tilapia biomass| 3524 5505 8049 8235 B3.71 8468 8537 8585 B86.19|
All species biomass 52.60 8216 120.13 122.92 12494 126.39 127.42 128.14 128.64
Catch strategy 3
No. of vessels 0 0 0 1070 1070 1070 1070 1070 1070]
No. of fishermen 0 0 0 3537 3537 3537 3537 3537 3537
Total Tilapia catch 0 0 0 33.51 3105 2966 2880 2825 27.89|
All species catch 0 0 0 50.02 4635 4420 4298 42.16 41.62
Total Tilapia biomass] 35.24 55.05 80.49 10737 99.50 9501 92.26 90.50 89.34
All species biomass 52.60 82.16 120.13 160.26 148.50 141.81 137.70 135.07 133.35

Table 6.4 shows a comparison between cumulative number of vessels-years and

number of fishermen-years during the projected years (1998-2006) to compare between the

different catch strategies using non-parametric models to control the effort.
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Table 6.4 Cumulative all species catch, number of vessels-years and number of
fishermen-years for each catch strategy.
Strategy 1 Strategy 2 Strategy 3

Cumulative Cumulative Cumulative | Cumulative Cumulalive Cumulative | Cumulative Cumulative Cumulative

Year vessels-years ﬁﬂm all $ZE'°‘ vessels-years r.g;n:.p all ;;lp:in vessels-years ﬁsr;mm all mﬁ

1998 0 0 v | 0 0 0 0 0 0
1999 1070 3537 26 0 0 0 0 0 OI
2000] 2140 7074 54 1070 3537 37 0 0 v
2001 3210 10611 85 2140 7074 76] 1070 3537 SOW
2002] 4280 14148 1191 3210 10611 115 2140 7074 961

2003 5350 17685 1541 4280 14148 1541 3210 10611 141
2004 6420 21222 191 5350 17685 194] 4280 14148 184
2005 7490 24759 229] 6420 21222 234 5350 17685 226}
2006 8560 28296 2671 7490 24759 274 6420 21222 267

It is clear that strategy 1 and 3 are similar on the basis of producing the same amount
of the catch, while strategy 2 realises the greatest amount of the catch and also realises the
greatest total discounted catch if the discount rate is 10% or less as mentioned in chapter
four. Strategy 1 realises the greatest total discounted catch if the discount rate is greater
than or equal 10% as mentioned in chapter four. Because strategy 1 allows fishing to start
earliest, it allows the greatest cumulative employment in terms of both fishermen-years and
vessels-years. Because strategy 3 prevents fishing for an addition two years, it gives the
lowest cumulative employment. Strategy 2, which has the advantage of the greatest

cumulative catch, has an intermediate level of cumulative employment over this time period.
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CHAPTER 7 EFFECT OF UNCERTAINTY IN MODEL PARAMETER

ESTIMATES.

7.1. Introduction

In chapter 3 the biomass modelling was used to predict the trajectory of stock size
with three different catch strategies, and the effect of uncertainty in biomass estimates on
parameters estimates was determined. In chapters five and six two different catch models
have been developed and model validation has been discussed. These models were used to
obtain estimates of catch per vessel and determine the allowable fleet size for each catch
strategy depending on the deterministic biomass predictions. There are two sources of

uncertainty which can affect the biomass prediction:

(1) uncertainty in the biomass model parameters and

(2) uncertainty in the catch modelling parameters.

This chapter will explore the effect of these two sources of uncertainty on the biomass
prediction. The aim is to generate a distribution of predicted biomass trajectories. These can

be used to give insight about the risks associated with various levels of fleet control.

There are two ways to investigate the effects of uncertainty on predicted biomasses:
analytically and by simulation. Adding uncertainty to a catch model analytically will not be
perused because the interaction between the error distributions of the catch model and the
biomass model, even with simplifying assumption such as normal distribution, make the

prediction too complex. For that reason adding uncertainty to the catch model parameters

127



and biomass model parameters has been investigated through a simulation process.

This chapter discusses the use of simulation to investigate the effect of uncertainty in
the biomass model parameters and the catch model parameters on the prediction of future

catches and biomasses.

7.2. Effect of uncertainty on the catch and biomass prediction

In chapter three the effect of adding random effects to the starting and ending biomass
has been explored assuming that the standard error of Bs and Bes is 5%. This procedure
has been run 100 times to produce Bgg, Bss, r and Ky, for each run. These output are stored
in a matrix which will be called “Stochastic biomass matrix”. This matrix has 100 rows and
four columns contains 100 simulations of possible parameters estimates. Note that each row

contain a related set of values which must be kept together during the simulation.

In chapter five, the 1995 fleet (survey 1995 data) was used to determine the required
fleet size for AMSY. This procedure produces a fleet in which no vessel exceeds the limit
allowed. This fleet will be called “Adjusted fleef”. The number of vessels in the Adjusted
Jfleet is not necessary equal to the required vessels. Sample the Adjusted fleet to obtain the
required vessels. This step produces a fleet which will be called “Projected fleef’. Then the

individual vessels’ catch (LogYave) for the Projected fleet vessels can be predicted.

In chapters five and six, cross validatton (split the data set into five parts) has been
applied. The uncertainty in the predicted catch of individual vessels can be obtained by
computing the residuals from validation data set (VDS), which is the difference between the
predicted values of the VDS and the observed values of the dependent variable in the same
data set. The residuals are stored in a column which will be called “VIDS residual column”.

The first n rows represent the residuals for n data points of the first iteration. Number of
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rows are n*200 where the cross validation run 200 times. These can be regarded as

independent errors which would be applied to any vessel.

Now the effect on the biomass prediction of the two sources of uncertainty can be

explored through the following steps:

(1) Use the values of Bgy, r and Ksp from the first row of the Stochastic biomass
matrix to predict the biomass from 1995 to 1997. For the stop fishing years predict
the biomass with zero catches, which means that let the catches equal zero in 1998,

1998-1999 and 1998-2000 for strategies S1, S2 and S3 respectively.

(2) From the VDS residual column select randomly with replacement a set of
residuals equal to the number of vessels in the first allowable fishing year. Add this set
of residuals individually to the predicted LogYave values. Calculate the corresponding
Yave and the total of Yave over all vessels to obtain all species catch estimates for the
first allowable fishing year. This catch assumes that the biomass is still at the 1995

level.

(3) Compute ?otal Tilapia catch by multiplying the all species catch by the 1995 ratio
of Tilapia to all species and split it to the four species catch according to the
proportion of the species biomasses at the end of the previous year. Adjust each of the
four species catches using the ratio of the estimated species biomass in the first
allowable fishing year to the corresponding 1995 biomass. This step produces a catch

which will be called “Computed species catch”.

(4) Insert the Computed species catch for the first allowable fishing year in the
corresponding species biomass model, then predict the biomass for the start of the

next year.
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(5) Repeat the steps 2-4 for each successive year until 2012, which means that these
steps must be repeated 14 times for strategy 1 (1999-2012), 13 times for strategy 2

(2000-2012) and 12 times for strategy 3 (2001-2012).

These step give a single iteration of the stochastic catch and stochastic biomass

predictions up to 2012 for each species.

(6) These process was replicate 100 times using the successive rows of the Stochastic
biomass mairix in step 1 and sampling the residuals with replacement for each sub-

iteration in steps 2-4 is required.

The results of these steps show the effect of the uncertainty of the catches and the

uncertainty of the biomass together on the prediction of the catches and biomasses.

This analysis has been carried out for each catch strategy and for 7 Nilotica, T Aurea,
T.Zillii, T.Galilea and Toral Tilapia species. Total Tilapia predicted catch is the sum of the
four species predicted catches, 7otal Tilapia predicted biomass is the sum of the four
species predicted biomasses, Total BMSY is the summation of the four species BMSY

values and Total MSY is the summation of the four species A/S} values.

7.2.1. Predicting catches using the multiple regression model

Analysis of the stochastic effects on the combined catch and biomass prediction has
been carried out for each catch strategy. Figure 7.1 shows the plot of 95% confidence
intervals limits of the biomasses, and Figure 7.2 shows the plot of 95% confidence intervals

limits of the catches for each species and 7oral Tilapia if catch strategy 1 takes effect.

It is noted that: the lower limit of 95% confidence interval of the biomass is below

BMSY during the whole period, but the biomass shows stability from 2010, 2006, 2010,
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2005 and 2010 for 7' Nilotica, T.Aurea, T.Zillii, T.Galilea and Total Tilapia respectively.

Also it is noted that the upper limit of 95% confidence interval of the catch is greater

than the MSY from 1999 to 2012 for the four species and for Total Tilapia.

Figures 7.3 and 7.4 show the plot of 95% confidence intervals limits of the biomasses
for each species and Toral Tilapia for the second and third catch strategies with the BMSY
level. Figures 1E to 6E in Appendix E show stochastic catches and stochastic biomasses for
each species and 7otal Tilapia and for each catch strategy. Tables 1E to 6E show 95%
confidence intervals for the stochastic catches -and the stochastic biomass for each species
and Total Tilapia and for the three catch strategies. It is noted that all three catch strategies

has roughly the same confidence intervals for the catches and biomasses by the year 2010.
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The results can be summarised in the following points:

(1) The uvpper limit of 95% confidence interval of the catches for the four species
exceed the AMSY for the three catch strategies and for both catch models but the

catches are stable.

(2) The lower limit of 95% confidence interval of the biomass for the four species is

below the BMSY for the three catch strategies and for both catch models.

(3) The stock shows stability after few years of recovery, this is clear for the three

catch strategies and for both catch models (multiple regression model and GAM).

There are some sources of error which are not explicitly included in the catch model
or biomass model. These errors may cause some bias in the catch or biomass prediction or

in the determination of the fleet size.

For example, catch models (multiple regression model and GAM) validation was
investigated under the circumstances which pertained in 1995, where there was high fleet
size and low stock and the data were collected from only a sample of landing port during
short time period. The use of these models to predict the catch when the fleet is controlled
to a lower fleet size and the biomass has recovered to a high stock could cause some errors
in catch and stock predictions, and hence the required fleet size. Also the relationship
between catch and effort may be not linear over this range. As well as, future changes in
Lake Manzala pollution, nutrients, salinity or average water temperature could change the

value of r and/or K or all these reasons together.

In addition, one of the catch model assumptions is that the random errors are
independent. This may not be the case, because of the data collection method. However, if

the error term between vessels is correlated it is not possible to determine it from the data,
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since vessels data are in cross section form. If the error are correlated, then the variability in
the predictions is likely to be greater than found here. Also, there may be a bias leading to
underestimating the actual vessel catch because the recorded catches are the catch which is
sold. Fishermen may retain a small part of catch for themselves. However, this is may not
affect the predictions as this behaviour is likely to continue even when the fleet is managed

appropriately.

As well as, the values of » and K might be correlated, so if there are a correlation
between estimates values of r and X, the net recruitment will tend to be compensated; if X is
underestimated, r will be overestimated, then time needed to recover the stock will be
underestimated and likewise if K is overestimated r will be underestimated and time needed

to recover the stock will be overestimated. It is known that the estimates of » and K are
- rK ..
regularly correlated (chapter 3). However, SV is calculated as vy so any bias in one

parameter is likely to be largely cancelled out in the calculation of MSY.

7.3. Worst case scenario

There is an important question which is what would happen if all the fishermen try to
use the maximum limit of the nets, number of fishermen, duration time and number of mesh.
So if all the fishermen in the Projected fleet do that the fleet will be called “Greedy fleer”.
Greedy fleet size is the same as the Projected fleet size but the vessels characteristics are at

the maximum limits.

If all the fishermen go to the maximum limit of the vessel characteristic, the potential
catch will be greater than the catch produced by using the Projected fleet by about 20%. It
has been already noted that number of vessels when using multiple regression model are

greater than number of vessels when using GAM while both fleets catch the same amount of
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fish. This means that the estimate of the catch per vessel using GAM is greater than the
estimates of the catch per vessel using multiple regression model. So the worst case is to
allow the Greedy fleet to operate and to use GAM to estimate the catch. Figure 7.7 shows
the plot of 95% confidence intervals limits of the catches for the Total Tilapia species catch
with GAM, if the Greedy fleet operate for the three catch strategies. It is noted that for the
first few years the Greedy fleet catch is higher than the Projected fleet catch, then the
Greedy fleet catch start to be smaller than the Projected fleet catch because higher catches
in the first few years cause a decrease in the stock which will in turn produce small catches.
It is noted that applying the Greedy fleet with GAM will not allow the stock to exceed the
BMSY level, but the stock shows clear stability from 2007, 2005 and 2007 for the three

catch strategies respectively.
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So this analysis can be summarised in the following points:

e There is an uncertainty in the estimates of the biomass parameters r and K,

assuming that the standard error is 5% for Bg; and Bo,.

o There is an uncertainty in the catch prediction.

¢ In the biomass prediction there is variability in the values of r and K from one

iteration to other, these values have been used during the simulation process.

A possible approach to the management of the fishery might be to control the fleet so
that the biomass exceeds BMSY with a given probability especially because of the possible
biases and additional uncertainty discussed in the end of previous section. There are a
posstble errors in catch predictions because of possible errors in estimating 7 and X, so a
reduction in the fleet size has been investigated to allow the lower limit of 95% confidence
intervals of the biomass to be greater than or equal to BMSY. It is found that a 10%
reduction from the Projected fleet size will allow the lower limit of the 95% confidence
interval of the biomass to exceed BMSY level by 2012, 2011 and 2010 for the three catch
strategies respectively, while a 50% reduction from the Projected fleet size will allow the
lower limit of the 95% confidence interval of the biomass to exceed BMSY level by 2004,
2003 and 2001 for the three catch strategies respectively. In the light of the above, it can be
concluded that the greater the reduction in fleet size, the more safety for the biomass over
the short term, and vice-versa. Clearly, once the biomass exceeds BMSY with 97.5%
probability, it i1s possible to increase the fleet size again. The parabolic shape of the
biomass/recruitment curve (chapter 3) shows that catches will be close to MSY when the

stock is safely above BMSY (Figure E in Appendix E).

Finally, it is noted that there was no one iteration of the optimum effort level for

147



which the stock crashed, even if the Greedy fleet had been allowed to operate, and
assuming the standard error is 10% of B3, and Bgs. So, according to this analysis if we use
the effort for MSY, this will be below the critical effort and the biomass is extremely

unlikely to crash.
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CHAPTER 8 COMPARISON AND CONCLUSIONS

Lake Manzala plays an important role in providing fish for the Egyptian population
because it is the largest natural lake, and its annual fish production represents around 20
percent of the national fish production. Since 1977 the area of the lake has reduced three
times and fishing effort doubled, so that over-exploitation has become a major problem. For
these reasons Lake Manzala has been chosen as a case study to investigate the factors which
affect the exploitation. The study covered the period from 1977 to 1997 and provided
suggestions to improve management of that fishery in order to maintain fish production

while protecting fish stocks.

Two existing approaches for estimating the intrinsic growth rate of the four 7ilapia
species biomasses and the carrying capacity of the fishery have been carried out using the
catch and effort data from 1980 to 1997. The inclusion of two biomass estimates in 1980
and 1994 has led to a new method to estimate these parameters. The new method gives
reasonable parameter estimates comparing with the results of the other two approaches and
with other biological studies. However, simulation had to be used to get error estimates of

the biomass parameters estimates using the new method.

A number of catch strategies to manage the effort have been investigated. It was
noted that stopping fishing for eight years would allow the Total Tilapia stock to be close
to the carrying capacity, while stopping fishing for three years would allow the Tora/
Tilapia stock to exceed the BMSY level. Three catch strategies have been investigated
which were stop fishing for one, two and three years respectively. It is noted that the second

catch strategy achieves the greatest amount of discounted catch over eight years if the
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discount rate is 10% or less, while first catch strategy realise the greatest discounted catch

if the discount rate is 10% or more.

Two ways of modelling individual vessel catches in relation to their effort
characteristics were investigated. A parametric regression analysts for the vessel survey data
used a multiphcative model, which had been transformed to linear additive model by using
loganithm transformation, to represent the relationship between average catch per vessel and
number of nets, number of fishermen, duration time per trip and number of mesh. Fleet
control had been developed using this multiple regression analysis to estimate number of
vessels which can achieve the expected catch to allow the biomasses to recover. Although
the logarithm muitiple regression model appeared to give a reasonable fit to the data, it was
noted that there was some curvature in the survey data which the parametric model did not
pick up. For these reasons generalised additive model had been used to improve the
parametric model. Using generalised additive model gave an improved fit. It also gave

lower planned fleet size which should lead to a more conservative fishing policy.

This analysis showed that Lake Manzala stocks are currently over-exploited, the
current effort (1997) is clearly above the critical effort level, it represents about three times
the required effort for maximum sustainable yield. So, if fishing continue at the current

effort level, which is above the critical effort level, the stocks will crash.

A simulation approach was used to investigate the effect of uncertainty on the
projected catches and on the stock prediction, and to give insight into the risks associated
with various levels of control. There was no evidence that a management strategy which

aimed to fish at maximum sustainable yield would put the stock at risk.

There are non-statistical sources of error in modelling both the predicted catches and

the biomasses estimates. These could result in under-estimate or over-estimate or exact
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estimate in each case. The actual biomass during the projected years would be higher than
expected for example if the estimated catch is exact-estimate and estimated net recruitment
was under-estimated. There are another two cases which are the predicted catch and the
estimated net recruitment both are under-estimate or both are over-estimate, in such cases
the effect of one of them might cancel the other, but it is not possible to determine the effect
of one of them on the other. Unless other studies are undertaken, the only data available for
monitoring the fishery will be the catch data. This is not sufficient for deciding how the
fishery is operating. So other classical researches are still required such as biological

biomass estimation or cohort analysis.

In conclusion, this study has produced a new method to estimate the carrying capacity
and the intrinsic growth rate based on the historical data and also to predict the biomass size
in the future. Also it used generalised additive models to predict the catch which is a new
development for fleet control modelling. This study has developed a methodology for
investigating the effect of any management strategy for Lake Manzala fishery. Also includes
calculation of the fleet size required for a given catch and the effect of uncertainty in the

prediction.
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Appendix C



Lake Manzala questionnaire - during August - September 1995

1. What is your name?

2. How old are you? years
3. Determine the used fishing gear
O Trap O Stand 0 Hook lines
3. What is the sector you fish in ?
0 South 0 West 0 East
4. What is the average quantity of fish you catch each trip?----------- kg
5. How many nets you use each trip?

0 - nets for Trap nets

O ---—nets for Stand nets

O -----hundred hook for Hook lines
6. How many fishermen work on your boat each trip?--------fisherman
7. How many hours you spend each trip?---------hours

8. How many mesh in each 100cm of length of nets if you use Trap nets or Stand nets?

-=mmem-m--mesh
9. How many working days each year? days
10.How many trip each working day? trip

11.Can you classify your catch to species in kg each trip?

T.Nilotica ko | Sea Bass kg
1. Aurea ke | Meagr kg
T.Zillii ke | Gilt head SeaBre kg
T.Galilea kg { Spotted Sea kg
Grey Mullet kg | Soles ke
Mullet kg | Catfish kg
Mugil kg | Nile Perch kg
Shrimps kg | Jackes kg
Crabs kg | Unclassified kg
Eels ke
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