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Abstract

In order to understand the diverse and complex functions of the Human brain, the temporal relation-
ships of vast quantities of multi-dimensional spike-train data must be analysed. A number of statistical
niethods alrcady exist to analyse these relationships. However, as a result of expansions in recording
capability hundreds of spike trains must now be analysed simultaneously.

[n.addition to the requirements for new statistical analysis methods, the-need for more efficient data
representation is paramount. The computer science field of Information Visualization is specifically
aimed at producing effective representations of large and complex datascts. This thesis is based on
the assumption that data analysis can be significantly improved by the application of Information
Visualization principles and techniques.

This thesis discusses the discipline of Information Visualization, within the wider context of vi-
sualization. It also presents some introductory neirophysiology focusing on the analysis of multi-
dimensional spike train data and software.currently available to support this problem. Following this,
the Toolbox developed to support the analysis of these datasets is presented. Subsequently, three case
studies using the Toolbox are described. The first case study was conducted on a known dataset in
order to gain experience of using these methods. The second and third case studies were conducted

on blind datasets and both of these yielded compelling results.
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Chapter 1

Introduction

The human brain consists of inexcess of 10'2 neurons. These neurons communicate with one another
via short {1ms) electrical signals (spikes) forming neuronal structures; and by doing so, provides
humans with incredible information processing capability. A capability for learning, memorising,
reasoning, and the experience of etotion, consciousness and self awareness. However, the scientific
explanations of these key facets of the human brain are still partial; how does the brain work?

The desire of scientists to understand how the brain functions is as strong as their desire to
understand the function of other major organs. However, the very complexity that makes the brain
50 -amazing.also means that the feat of understanding how it functions is monumental.

For decades scientists have had the ability to record the electrical activity of the brain; more
recently the ability to record the activity of specific neurons. These recordings, known as spike trains,
show the activity of a neuron over time, they are a record of the spikes generated by that neuron.
A number of theories have been proposed on how information is processed and transmitted in the
brain. The principle of temporal coding (ascribed to in this research) proposes that information is
transmitted in the temporal patterns of spikes from a given neuron and the correlation between the
spikes of connected neurons.

In recent years the precision with which experimental recording could be achicved, has dramatically
increased. Currently, hundreds of individual neurons can be recorded simultancously[WM93, BIKMO04)].
Furthermore, it is these multi-dimensional spike train recordings that are believed to hold the key to
many questions regarding brain functions. The identification of synchronicity between the spike trains

in these recordings permits the functional relationship between the neurous to be explored. These
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relationships in turn aid in the understanding of how information is stored and processed within the
brain.

Despite the dramatic developments in recording technology, the development of methods-to analyse
these vast datasets:has been relatively slow. In particular, the analysis of synchronous spiking between
neurons is believed to be very important to understanding many of the brain’s functions.

Traditionally, methods of analysis are based on pairs of spike trains, such as cross-correlation
[Bri79, AGS85]. These pair-wise methods do not scale well. For example, the analysis of a recording
of 20 simultaneous spike trains would result in 190 unique cross-correlations. Each of these cross-
correlations requires analysis for significant results and then comparison with all others to identify
trends.

Some methods exist for.the analysis:of complete assemblies of neurons, such as the Gravity Trans-
form [GA85]. However, these techniques also create large quantities of resultant data that must be

studied to extract information regarding the temporal relationships between the spike trains.

In 1987 McCormick et al. [MDB87| identificd the need for visualization support in scientific com-
puting. This corner stone report led to a new research discipline called Information Visualization
(IV). The key principle of the Information Visualization field is to provide users with tools to effec-
tively represent, interact and explore their data, in order to aid the extraction of information and
understanding.

With the large quantities of data involved in the analysis of the temporal relationships within multi-
dimensional spike train datasets, it is clear that techniques from the field of Information Visualization
could provide support. In particular this research identifies the needs of Neuroscientists (with regard

to this analysis} and reports.on a number of analysis and display methods.

1.1 Research Achievements

This thesis contributes to the Visualization of Inter-Spike Association project, within the Visualization
Lab, at the University of Plymouth, under the direction of Dr L Stuart.
This research consists of the development, testing and refinement of a number of analysis and
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visualization techniques. Furthermore, it includes the empirical testing of these methods, with both
known and unknown (blind) datasets.

The results of this empirical testing have been evaluated by a small user group; consisting of the
author, Supervisor and Studies-advisor (an-eminent neuroscientist). In addition, the results have been
published at relevant conferences, such as the Neural Coding Symposium, where they have received
positive feedback.

The datasets used for testing consisted of simulated spike trains; generated using a well respected
Enhanced Integrate and Fire model neuronal generator[Bor02]. The neuronal assemblies for these
datasets were designed by the neuroscientist in the-user.group and included common structures found in
the brain. Moreover, these assemblies contain structures-that other analysis - methods have considerable
difficult in identifying.

This research has led to the publication of a number of referred papers, enclosed as appendices to

this thesis.

1.2 Thesis Structure

This thesis demonstrates the usefulness of analysis tools based on the principles of Information Visual-
ization to aid:scientists and investigators in-the analysis of synchronous firing within multi-dimensional
spike train datasets,

Chapter two presents a broad overview of the field of Visualization. In particular, chapter two
concentrates on the exploitation of the human visual system to aid in understanding complex datasets.
In addition, the field of Visualization is explored; including Human Computer Interaction, Computer
Graphics and Virtual Reality.

Chapter three presents.an overview of the field of Information Visualization. This chapter presents
a discussion of the principles of IV and the design issues involved. These include Shneiderman’s
Mautra[Shn96]; user interaction[PRS*94, PRS02] and multiple views{Rob03|. Subsequently, it rein-
forces Information Visualization as the main focus of this thesis.

Chapter four introduces the problem domain of Neurophysiological data analysis. Moreover, it
describes the investigation of synchronous spiking within multi-dimensional spike train datasets to

3
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extract information regarding the functional relationships of the neurons. The use of Information
Visualization to aid this analysis is recommended and the requirements for software support are
presented.

Chapter five describes a number of IV techniques which have been developed to start the process
of meeting the requirements identified in chapter four.

Chapter six presents the results of three case studies, Each of these case studies demonstrates the
usefulness of the techniques proposed in chapter five and the power of combining the results of the
techniques together.

Chapter seven draws conclusions regarding the methods proposed. In addition, extensions and

further developments to the methods are presented. Finally, new research directions are proposed.



Chapter 2

Visualization

“visual adj. Of or used in seeing.”

“visualize v. (also -ise)(-zing or -sing) imagine visually.”

Summary

In this chapter the term Visualization is defined and the general scope of the field is discussed. In
addition, several key historic examples are discussed, such as Minard’s map and Beck’s London Un-
derground map.
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2.1 Overview

‘A picture paints a thousand words’, a quote that most people are familiar with and one that represents
a key principle of Visualization. Since around 3200b.c. with the Sumerians and Egyptians, people
have been representing information in a visual form. Visualization is the process by which the human
brain forms a mental image of the information presented to it. This mental image is a perceived
visual representation of the relationship between items of information. For example, when a person is
presented- with a set of directicns, they will form a mental model when a set of directions is given to
them, remembering key intersections between streets, as opposed to the full details of the directions.
Thus, Visualization is a mental process; it is not a computer based method.

In the last two decades following the ViSC report [MDBB87], with - developments in compiiter graph-
ics, there have been great strides made in the compiiter science field of Visualization. These advances
have exploited the hwman ability to understand and glean information from data represented in a

graphical form.

2.2 The Human Visual System

The human visual system has vast capability to scan, recognise and recall images quickly. Moreover,
the systetn i§ capable of rapidly and ‘automatically’ recognising patterns and changes in the size,
colour, shape, movement and texture of objects.

Text based data representation poses a large cognitive load on the user. When presented with
textual information the user must first construct an internal mental representation (mental or cognitive
map) of this data prior to attemnpting to interpret it. By presenting data in a visual form the capabilities
of the human visual system can be exploited. This visual representation aids the user by presenting
the data in a form similar to their internal mental model.

The key aim of the field of visualization research is to move the load from the cognitive system
to the human perceptual system|And00). Thus, by exploiting the perceptual system, trends and

relationships in data can be cbserved enabling the cognitive systemn to analyse the details.
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From this map, Snow observed a significant clustering of deaths around cne specific pump, the
Broad Street pump. In addition, fewer deaths were evident among the workers at the Brewery and
those in the Work House; note the people at these locations predominantly drank beer. Aided by
this visualization, Snow concluded the source of the contamination was the Broad Street pump and
subsequently had the handle removed to prevent its use. It is unclear how critical the removal of
the handle was, as the epidemic was already in recession at the time. However, the power of this
visualization is clear. Identifying this pattern of deaths from the Register’s list would be possible, but
it would also be very time consuming, and it would place a large cognitive load on the investigator

[Tuf97].

2.3.4 Harry Beck’s London Underground Map

The principle of building a mental map of information is demonstrated by the London Underground
system. When travelling ou the London Underground, it is common for a passenger to remember their
journey as “three stops East on the Red line, then up the Black line for two stops”. The passenger
remembers the intersections of the lines rather than the names of the stations.

The process of building a mental map, of the London Underground system, is aided by the modern
Tube Map. This map is based on the design developed by Harry Beck in 1933. Until Beck’s map was
adopted, all Tube maps had been based on the geography of London, showing the exact geographical
position of all lines and stations, see figure 2.4.

Beck understood that the geographic position of each line was unimportant, as travel is restricted
to predefined paths. Thus intersections between, and the general direction of these paths was sufficient
information for the traveller. Beck proposed-a simpler map based on the layout principles of electrical
circuit diagrams, see figure 2:5.

Beck’s map showed the general direction of each train line and the line’s stations. However, the
map does not represent the true geographical relationships between the stations. By producing this
visual representation of the London Underground System, Beck was able to show the full extent of
cach line, something that was not achieved on the original maps. In .'.iddition, Beck was able to portray

the information in a clear and concise form. This 1933 Tube map was so effective that the design of all
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A very common real world example of this is the process of disposing of a file. In this scenario
the user may pick the file up and drop it into the rubbish bin. On the computer system, to achieve

the same task, the user could drag a graphic representing the file into a graphical representation of a

rubbish bin. Thus the user’s semantic process is mirrored in the computer system using a different

syntax.
Thus, HCI is an important -aspect of Visualization. In order to develop an efficient Visualization,
an understanding of the fundamentals of cognitive-psychology and Human Coinputer Interaction is

required.

2:.4.2 Graphics

The majority of current Visualizations exploit the power and capabilities of modern computer systems
to represent data. Many of these visualizations rely upon the ability to.efficiently generate graphical
images on a computer display. The quality and level of detail of these iinages is.continually growing,.as
graphics researchers develop more sophisticated systems[BBC*03]. In addition, the end users demand
an increasingly high quality of display.

In addition to high quality graphics, users require these systems to exhibit smooth animation and
transition between graphics. Researchers in the field of Computer Graphics are concerned with the
development of efficient hardware and software algorithms for generating and manipulating graphical

images.

2.4.3 Virtual Reality

The origins of Virtual Reality Simulation date back to the 1930's with the development of basic flight
simulators during the Second World War. These simulators consisted of an aircraft cockpit mounted
on a movable platform, responding to the pilot’s actions on the controls[Enc99].

The term Virtual Reality (VR) was coined in the 1980’s by Jaron Lanicr. Currently, the term has

a number of different meanings, one useful definition being:

“Virtual Reality is a way for humaus to visualize, manipulate and interact with computers

and extremely complex-data”[AB92]

13
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In addition to VR, there are now a number of other terms in common use, including: Synthetic
Environment; CyberSpace; Artificial Reality; and Simulator Technology [Isd93].

Virtual Reality systems exist in four general forms:

1. Full immersion environments
A full immersion environment, separates the user from the real world and places them into a
virtual environment that is fully encompassing. The environment responds to the users actions
and provides feedback. The interaction methods used in the environment should be a close to

rcal-world actions as possible.

2. Cab simulators
Cab simulators are used to reproduce an environment where the user would interact with the
real world via a set of controls and displays. For example, in a flight simulator the pilot will use
real (or realistic) controls to fly the aircraft. The virtual environment will provide the feedback

to the pilot’s actions on the controls via a simulation of the outside world.

3. Projected virtual reality environments
A projected environment allows one or more users to explore a virtual envitonment. The user is
able to interact with the environment via a number to tools, designed to perform specific tasks.
A projected environment does not provide a fully immersive feeling, as the user cannot directly

interact with the virtual world.

4. Desktop virtual reality
A desktop environment provides a user with a number of views into a virtual world through
devices such as monitors. The user is able to interact with the virtual world using a number of

controls, either using software or real devices.

VR can be used to create an environment in which to explore data [NCCN98). Users can then
explore and interact with their datasets on a real-time basis within this énvironment. VR hardware,
such as data gloves and 3D mice, can be used to aid this interaction and to provide the user with
feedback.

It has been argued that for a system to be classified as true Virtual Reality it must have:

14
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“...response to user action, real-time 3-D graphics, and a sense of immersion ... An im-
mersive experience is one so absorbing that you cease to notice your surroundings or “how

you got there.”...” [PT95|

Augmented Reality

In addition to Virtual Reality, there is also the concept of Augmented Reality. Augmented Reality
is where a view of the real world is overlaid with additional information. Augmented Reality has
been used for a number of years in fighter aircraft, in the form of Head-Up-Displays (HUD's). A
HUD is a transparent screen in the front of the cockpit, which displays tactical; navigation and status
information about the aircraft. With training the HUD enables a pilot to monitor all the necessary
information regarding the aircraft’s status and any approaching dangers, without losing context of the

real world.

2.4.4 Scientific Visualization

The field of Scientific Visualization is concerned with the representation of physical objects or datasets
that have direct spatial representation. For example geographical data[JM95], ancient archaeological
artefacts or cities and buildings{MMKMO1].

Researchers in these fields are engaged in developing methods to facilitate greater understanding
of the physical environment. These methods often involve modelling a part of the real-word and
angmenting the display with relevant data and information. This segmented display can then be

utilised by investigators to study the object in the system.

2.4.5 Information Visualization

In contrast to Scientific Visualization, the field of Information Visualization is concerued primarily
with the representation of abstract data. For example, Stock Market share prices|CHLS03| or the
comparison of large tree structure, such as version of a website [MGT+03].

Researchers in the field of Information Visualization attempt to develop methods that permit

abstract datasets to be viewed in a meaningful form. The key requirement of the discipline is to
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convert inherently non-visual data into a visual form. These representations can be visual, sonic

(generated through sound), or haptic (created by touch).

Chapter Summary

In conclusion, cognition can be amplified by presenting information in a form that reinforces the
observer’s internal mental model. In addition, the speed with which anomalies and trends within
datasets are identified can be dramatically improved by exploiting perceptual cues. These principles
have been demonstrated using a number of historic example.

In the next chapter the field of Information Visualization is explored and the main design issues

are discussed.

16



Chapter 3

Information Visualization

Summary

In this chapter the field of Information Visualization is discussed. The main design issues within
field are discussed and Shneiderman’s mantra is defined. In addition, some key Visualizations are
presented, such as Cone Trees and Treemaps.

17
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3.1 Overview

Researchers in the field of information visualization are engaged in developing support for the analysis
of many different types of abstract data: for example, the flow of data in a communication network
[net04], the content of a document [Palb] or micro array time series data [HBMSO03].

In addition to these specialist tools, researchers are also engaged in the development of .generic¢

Information Visualization toolsf]MDH¥03].

3.2 Design issues of IV Systems

3.2.1 Shneiderman Mantra

The power of modern visualization lies in the ability of the user to interact with the dataset under in-
vestigation. A common framework for the design of these interactions is Shneiderman Mantra[Shn96]:
Overview, Zoom, Filter and Detail-on-Demand
Overview, Zoom, Filter and Detail-on-Demand
Overview, Zoom, Filter and Detail-on-Demand
Overview, Zoom, Filter and Detail-on-Demand
Overview, Zoom, Filter and Detail-on-Demand
Overview, Zoom, Filter and Detail-on-Demand
Overview, Zoom, Filter and Detail-on-Demand
Overview, Zoom, Filter and Detail-on-Demand
Overview, Zoom, Filter and Detail-on-Demand
Overview, Zoom, Filter and Detail-on-Demand
The mantra was quoted ten times in this paper[Shn96], once for each time Shneiderman had re-

discovered the process when developing tools. Furthermore, Shneiderman defined the following seven

tasks for data visualisation.

“Overview: Gain an overview of the entire collection”. The overview permits the investigator to
view the entire dataset. In addition, the distribution of data items can be ascertained and any

-cluster, or other ‘interesting’ patterns and/or anomalies noted for further investigation.

“Zoom: Zoom in on items of interest”. Having identified an area of interest, the investigator must
have the facility to zoom in on that area, to examine the data in greater detail. In addition, the
investigator should be able to control the zoom factor and the rate at which zooming occurs.
Smooth zooming is required for the investigator to maintain context with the dataset[viVNO3].

18
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“Filter: Filter out ‘uninteresting’ items”. A key principle of Information Visualization is the-ability

to apply dynamic queries to the dataset, permitting the user to control the content of the display.

: These dynamic queries permit the investigator to quickly focus on items of interest by eliminating

‘clutter’.

“Details-on-demand: Select an item or group of items and get details when needed”. With the

dataset zoomed and filtered the investigator should have the facility to easily obtain details

about individual data items or groups of items.

“Relate: View relationships among items”. Having selected a particular data item, the user should
have the facility to modify the filters to show all items that match a specific attribute of the
selected data item. This relationship filtering aids in the identification of similarity between

items in a dataset.

“History: Maintain a history of actions to support undo, replay and progressive refinement”. Coni-
monly a number of filtering actions will be required to identify the data items of interest. By
maintaining a history of actions, the system permits the user to retrace the process that led to

the discovery. Moreover, the user can recover from ‘poor’ filtering decisions.

“Extract: Enable extraction of sub-collections and the query parameters”. Having identified a
subset of the dataset, the system should have the facility to export the underlying data, of that
suhset, to a separate data file. This file could then be used within other systems or sent to
colleagues for discussion. In addition, an extraction system should exist to export the history

log that produced the dataset.

These tasks are used as the basis for designing much of the current research in Inforination Vi-
sualization. Howcever, these tasks should be viewed as a framework for the system and not the limit
of the system’s functionality. Different datasets will require additional, specialist tools for meaningful
investigation to take place. Moreover, the specific techniques used for each task should be tailored to
the individual system. Gencrally a number of options for each task should be made available to the

investigator. The investigator can thus choose the most appropriate options for the task at hand.

19



3.2 Design issues of IV Systems Chapter 3: Information Visualization

3.2.2 Interaction

The main advantage of information visualization is the ability of the user to interact with the data being
analysed, in order to gain greater understanding. However, interaction has become an increasingly
difficult problem as information visualization datasets expand.

In 1986 Buxton|[Bux86| highlighted the shortcomings of the human computer interface of the day:
He stated that if a scientist were to ‘backward engineer’ the interface to see what a human looked like

then:

“ .. [humans] would be pictured as having a well-developed eye, a long right arm, uniform-
length fingers and a “low-fi” ear. But the dominating characteristic would be the prevalence

of our visual system over our poorly developed manual dexterity...” [Bux86]

This statemnent is equally applicable to modern computers, as the interface has developed little over
the past 18 years.

The majority of computers even now only have the basic mouse and keyboard interface devices
-available to the user for input. In addition, the usér is commonly restricted to using one input device at
a time. Work by Biixton and Myers(BMS86] explored the use of parallel device input to aid interaction.
The experiment presented subjects with two independent input devices, a slider and a graphics tablet.
The subjects were instructed on the operation of each device. However, no encouragement was given
to subjects to use the devices in parallel. The results of the experiment showed that (averaged over all
experiments) subjects were engaged in two-handed input for 40% of the time. In addition, 6 out of 14
subjects used two-handed input from the start, without instruction to do so. Moreover, two-handed
input was found to be more efficient than the standard one-handed input.

With a 3D environment, a key problem faced by investigators is how to interact with that envi-
ronment using inherently 2D tools such as a mouse. Work by Chen et al.[CMS88] and Oshiba and
Tanalfa[OT(JQ] explored methods for manipulating 3D objects with 2D tools, experimenting with the
layout and location of sliders used to manipulate the objects. The conventional arrangement of three
sliders under the object, one to coutrol rotation about each of the axes z, y and z, was compared

to.overlaid sliders, continnous XY+Z controls and a virtual containing sphere. Overlaid sliders place
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3.2.2.3 Navigation

In addition to interacting with a visualization, the user will need to navigate around the visualization,
Users often need to navigate around the dataset and move between views of the dataset to gain insight
and understanding. However, a common problem with navigating within large datasets is users ‘getting
lost’, or losing orientation. This problem can be alleviated by restricting the user to navigation along
predefined paths. For example, animation[RCM93] can be used to ‘fly’ the user around the outside of
a dataset in a preset search pattern designed to present an overview of the data space. In addition,
frames of reference (see §3.2.3.2) can be used to provide the user with a ‘map’ for orientation.

If a user’s view point is switched from one view to another, they can become disoriented. The
user must regain context with the data before they can gain any additional understanding from the
new position. Animation provides a fast and effective method to move a user from one place to
another, without the user losing context[vWNO03]. For example, the animated navigation of the Cone

Tree[RMC91| representation, which is discussed in more detail in §3.3.3.1.

3.2.3 Multiple Views

A current and important theme that has emerged in recent years is the consensus among researchers
in information visualization that ‘cne view is not enough'[Rob03, Nor01, BWK00, Rob98a]. For
most datasets, a single representation does not adequately support the user’s needs for extracting
information. Moreover, different methods of visualization are more suitable for different levels of
investigation. For example, the user may wish to use a different method to gain an overview of the

data as opposed to obtaining specific details of the data.

3.2.3.1 Linkage Between Views

With multiple views, there is an inherent requirement to link action in one view to action in other
views. For example; if a number of data items, or points, are selected in one view, this brushing should
be shown in the other(s). In 2001 North [Nor0l] proposed a ‘Language, Taxonomy, and System’ to
define the linkage between interaction in different views. In this paper, North defines a language to

specify the result of performing action A on items A in view A, would be, action B on items B
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in view B, i.e. ({viewA,actionA,itemsd), (viewB,actionB,itemsB)). Moreover, North states the
coupling is commutative; it works both ways (A < B), and transitive, if A = B.and B = C then A

= C. North defines three distinct combinations:

1. Select & Select — ((viewA,select,itemsA), (viewB,select,itemsB))

Linking selection in one view to selection actions in another.

2. Navigate <& Navigate —({viewA,navigate,itemsA), (vieuB,navigate,itemsB))

Linking navigation actions in one view to.simultaneous navigation actions in another.

3. Select & Navigate — ((viewd, select,itemsd), (viewB,navigate,itemsB))
Linking selection actions in one view to navigation actions in another. This is often called

Overview and Detail.

Multiple views, for different tasks, have been used by a numnber of projects, including the Navigation
View Builder project[MFHY5]. In this project, Cone Trees and Treemaps (see §3.3.3.1 and 3.3.3.2)
are used to overview different levels of a hierarchical data structure. However, a web browser is used
to display details-of specific nodes. Roberts et al. [RBR02] use multiple, linked, views to aid users in
refining web searches.

Linked navigation is used in a numnber of difference viewers. For example, SeeDiff|BE96], a program
that displays two files, or versions of a file, in windows side-by-side to enable visual comparison of
differences. In SeeDiff the action of the scroll bars is coupled, thus the user does not need to synchronize

the file views after scrolling.

3.2.3.2 Frames of Reference

Salzam et al.[MCLAY8| used frames of reference to assist users in the comprehension of abstract
inforination, specifically electric fields. They compare the effectiveness of egocentric (from within the
datasct), exocentric (as an external observer of the dataset) and bicentric (both ego and exocentric)
frames of reference on a users.ability to understand unfamiliar data. The experiment examined the
effect of frames of reference on a student’s ability to grasp the subject of electric fields.

If the student viewed an exocentric frame of reference, the student explored electric fields as

25



3.2 Design issues of [V Systeins Chapter 3: Information Visualization

an observer from the field boundary. With an egocentric frame of reference, the student explored
electric fields as a test pa-rticle immersed in the field. Students with bicentric frames of reference
explored electric fields from both the egocentric and exocentric frames of reference on successive
learning activities. The experitnent showed that alternating between frames of reference best supported

the learning experience.

3.2.4 Using 3D

Inherently, the standard computer display is 2D, but for an immersive or semi-immersive Virtual
Reality system, 3D is required. In the real world, the third dimension of depth is created by the
brain interpreting the horizontal discrepancies between the image seen by the viewers left and right
eyes{Vin95|. This discrepancy between left and right eye images is due to the distance between the
pupils, the interpupillary distance (IPD)[McAY3].

Thus, to create a 3D view of a virtual environment, two view transforms must be calculated, for
the current point of view to render the left and right eye images(Sal99]. These individual images must

then be presented to the correct eyes, see §3.2.4.2.

3.2.4.1 Stereo Vision

Stereo viewing was pioneered over 100 years ago. In the early Victorian era, the stereo camera was

invented, enabling people to take stereoscopic photographic images.
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¢ multi-dimensional
s temporal

tree (hierarchical)

networks

Each structure requires different considerations when being visualised. However, these groups are not
mutually exclusive. For example, it is possible to have multi-dimensional temporal datasets which are
made up of a number of attributes whose change is measured over time.

When viewing visualizations there is a limitation of 1, 2 or 3 physical dimensions. It is possible to
represent temporal information using animation. Further variables of a data item can be represented
by assigning their values to different attributes of an object representing the data itemn. For example
colour and size can be used, thus representing each data item by a glyph. Attribute coding, in the
form of colour, is common when dealing with heat: For example, when modelling heat dissipation in
mechanical design, objects are often represented in 3D with colour representing the heat at a given
point. These models can be animated to show the alteration of temperature over tine. However, the
selection of the mapping of each data variable to a glyph attributes is a complex task[Now97, Tay02].
A poor glyph encoding will produce a visualization that is either hard {or impossible) to use or one that

induces false data anomalies. Moreover, certain glyph attributes influence each other. For example,

-applying a texture to a coloured glyph will alter the colour, due to the effects of shadow. In addition,

altering the size of a coloured glyph will affect the user’s perception of the shade of the colour.

3.3.2 High Dimension Data

A number of methods are available for dealing with high di:}lensional data. These range from visual-
izing multiple dimensions simultaneously to dimension reduction techniques.

The simplest method-of displaying high dimensional data is to view all possible 2- and 3-dimension
sub planes in sequence. With linked views, the investigator could then ‘brush’ or ‘lasso’[Wil96] points
in one sub plane and see where they lic in another[SCK*97|. A collection of sub-plane combinations

can be animated allowing users to rapidly overview the data, Rapid Serial Visual Presentation {(RSVP).
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3.3.2.2 Dimension Reduction

Another method of dealing with high diunension data is to use a mathematical dimension reduction
technique such-as Principle Component Analysis (PCA). PCA forms a projection of high dimensional
data onto a lower dimensional hyper-plane. Thus, reducing the number of dimensions to display,
whilst maximising the amount of information[BJD81, Ter73]. PCA ‘is used to find the projection with
the greatest variance in data. Similar to PCA is the technique of Independent Component Analysis
(ICA)HOO0O0] which attempts to find a projection with the greatest separation between the data.
PCA and ICA are both variants of projection pursit[JS87, Fri87, Hub85, FT74]. In addition, other

projection- algorithims exist, such as Sammon([Sam69, BJD81| non-linear reduction.

3.3.2.3 Cluster Analysis

Methods also exist to analyse-groups and clusters in high dimensioned data: For example, using min-
imal spanning trees or gestalt analysis[Zah71]. These methods deal with datasets that have inherent
spatial relationships.

In addition, cluster analysis can be undertaken on any dataset for which a mathematical metric
can be defined to measure the ‘distance’ between data points. In addition to defining the distance
between individual pairs of data points, the distance between clusters must be defined; this can be
achieved by a number of algorithims. This includes the following methods of cluster linkage: Single
Linkage which measures the distance between clusters by the distance between the two closest points
within the clusters; Complete Linkage which measures the distance between clusters as the distance
between the furthest pair of points within the two clusters; Average Linkage which measures the
distance between two clusters as the average distance between all possible pairs of points within the
two clusters. At each iteration of the cluster analysis algorithms, the two clusters with the smallest
distance between them are merged. This process continues until the whole dataset forms a single
cluster or the separation between clusters reaches a pre-determined threshold. The.cluster linkage can

then be examined and clusters in the datasct identified.
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by the distribution of the locations where the word ‘should’ appear on the ellipse. Thus, words that
appear evenly distributed though-out the document will appear in the centre of the display. Figure
3.14 shows an example TextAre for the book Alice's Adventures in Wonderland.

The words are rendered onto a black background, the luminosity of each word is dependent on
its prevalence in the text. When a word on the display is selected, occurrences of that word are
highlighted in the text ellipse (outer ellipse). This is shown in figure 3.15, where the word 'Alice’ has
been selected.

By selected multiple words the relationship of those words, within the document structure, can be
examined. In addition to selecting individual words, the flow of the text can be animated to provide
an overview of the flow of the terms in a document.

This visualization of document content can be used to examine where different termns are defined
in the text. In addition, the selection tools can aid in identifying how different terms are related, or
if the text was a novel how two character are related, such as the King and Queen of Hearts in Alices

Adventure in Wonderland.
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tomer Operations Executive (Hicks) in focus (figure 3.17(b)). In 2003 Jankun-Kelly and Ma[JKMO3]
demonstrated MoireGraphs, which are based on a similar principle to the Hyperbolic browser. In
addition, heat models have been proposed as a method to control the expansion and contraction of

tree structures{Osa0l].

3.3.6.3 Window Layout

In addition to expanding the virtual workspace, studies have been undertaken to determine the most
effective layout of windows and other components. Work by Kandogan and Shneiderman[KS96] ex-
plored the use of Elastic Windows to maximise the use of the available workspace. The Elastic
Windows system is based on a hierarchical, space filling system and manages the size and layout of a
set of open windows.

This system permits a user to structure the window layout of a display, forming groups and
hierarchies of windows that map to the user’s needs. When the. user resizes a specific window, the
other windows in the group will alter in size and location to accommodate it, thus making the most
effective use of the space. Elastic Windows eliminate overlapping of windows and thus can aid in
effective multi-task operations.

The user can position similar information in adjoining windows, thus reinforcing the relationship
between the contained data. Advantages and disadvantages of inferred relationship due to placement

of data have been explored by Ward and Keim|WK97).

3.3.6.4 Level-of-Detail

Information can be selectively displayed.at different levels of ‘magnification’. The data is not lost; the
level-of-detail of the data is adapted to help users explore the dataset. When users wish to overview
the data, clusters of points can be rendered as single objects. As the user ‘zooms in' these objects.can
be split to show their content.

This approach is also known as Semantic Zooming and has been exploited by Summers et al.
[SGKO03| for visualizing the structure of computer programs. Tlie program is initially displayed as a

set of high level, connected, objects. As the user zooms in on an object of interest, the object turns
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transparent and its content can be seen and explored in detail.

Chapter Summary

In conclusion, Information Visualization techniques can be utilised to produce powerful and effective
representations of complex data. Shneiderman’s mantra provides a key framework for structuring
these techniques: In addition, it is clear that logical affordance of interface objects is critical for
effective user interaction and navigation.

In addition to individual representation, multi-view systems provide comprehensive environments
for exploring data. These systems provide the user with several inter-linked representations of the
same dataset, exploiting the most effective features of each representation.

In the following chapter, neurophysiology is introduced, including methods of data capture and

analysis.
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Chapter 4

Neurophysiological Data Analysis

Summary

This chapter introduces the field of Neurophysiology, and more specifically multi-dimensional spike
train data. The theory of temporal coding which supports information processing in the brain is
also described. Subsequently, the current methods for analysing temporal synchrony are presented.
Finally, the requirements for software support in this area are detailed.
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dendritic tree of the target neuron the amplitude of the spike reduces as the spike is transmitted along
the dendrite to the cell body. The dendritic tree acts as a temporal integrator, the further away from
the cell body a spike is received, the weaker the effect of that spike. In addition, the effect of a spike

is transitory, the charge of the spike decays over time.

4.1.2 Neural Coding

The ability to record neuronal activity within the brains of mammals has resulted in large quantities
of experimental data. This data is in the form of multi-dimensional spike train recordings. Within
Neuroscience, it is essential for scientists to understand this data and to gain insight from it.

There are currently two main views on how information is encoded in the brain[Wan], with a
number of intermediate possibilities. One proposal is that the average rate of action potentials over
-a given time interval holds the information, this theory is know as Rate Encoding. The other is the
theory of temporal coding, that the information is encoded in the patterns of spikes, even .in their
exact temporal sequence.

The principle of temporal coding is supported by evidence from a number of sensory systemns.
For example work by Davison and Brown[DFBO00] on the olfactory bulb; Simon et al.[SPPCO1)] in the
auditory brainstem of the barn owl; Victor{Vic00] examines How the brain uses time to represent
and process visual information; Quenet et al.[QHDDO1| examine Temporal ¢oding in an olfactory

oscillatory model; and work by Cariani[Car] on Temporal coding of sensory information in the brain.

4.1.3 Coupling

In addition to the information encoded in the temporal patterns of individual neurons, the temporal
synchrony of assemblies is believed to encode more complex information, such as cognitive information,
such as memory[BB97, FNE*99]. There are two fundamental cases of coupling where synchrony will
occur between the spike train output of two neurons. These cases are direct synaptic coupling and

common input coupling.
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4.2 Data Acquisition

The spike is the base unit of communication, Spike-train recordings are one of the most common forms
of data collected during neurophysiological experimentation on a neuron. When a number of neurons
are under investigation, recordings from each neuron are made simultanecusly, this type of recording is
referred to as multi-dimensional spike train recording. Thus, multi-dimensional spike train recordings
are a record of the activity of a collection of neurons simultaneously under investigation.

As each spike from a single neuron is identical, the form of the individual spike is believed to-carry
no information|/Rob98b]. In contrast, it is the spiking frequency and the inter-spike-intervals that are

believed to encode the information.

4.2.0.1 Recording Data

These methods are invasive, because electrodes damage the nervous tissue. In this type of recording,
a nwmnber of very fine electrodes are implanted into the subject’s brain to obtain accurate readings. of
individual neurons at various locations. A number of researchers|VWTDS99, Ltd01] are developing
even more precise methods for placing and maintaining these electrodes during investigation. The raw
data gained from this intercellular recording is classed as ‘dirty’ as it contains noise and cross signal
contamination. To obtain a ‘clean’ dataset of these recordings, a number of statistical pre-processing
methods can be employed. The result of this pre-processing is the production of a number of spike

trains, one for each neuron recorded.

4.2.1 Abeles File Format

One of the most common data file formats, for storing multi-dimensional spike train recordings, is the
Abeles[NHa, NHb] format. This format permits a number of spike trains and experimental trials to
be recorded in one file with comments.

The Abeles file format encodes spike train data as a record of events: Each event is stored as a
set of three numbers, known as triples, and comments may also be entered. The first two numbers of
the triple describe the event. The final number defines the quantity of time that has elapsed since the

previous event. This time is measured as the number of specified time units, such as milliseconds. The
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left to right across the lower portion of the plot, and the other running from the top right to bottom
left of the plot. These ribs represent the excitatory connections between neuron B and neurons A and
C. Likewise, in plot (c) or the diagram it is possible to observe to dark ribs, one running top left to
bottom right and the other top right to bottom left. In addition, a light rib can be observed running
from left to right across the lower portion of the plot. These darker ribs represent the excitatory
connection for neuron A to C and neuron C to B; the lighter rib represents the inhibitory connection
from neuron B to C.

In contrast the first scatter plot 4.9(a) has no discernible darker of‘lighter ribs indicating that the

spike trains of the neurons represented exhibit no significant correlation.

4.3.2 Statistical Methods

There is a limit to the information that can be obtained by displaying the raw spike train data. How-
ever, the raw display methods provide a convenient means of assessing the data quality, by comparing
the results of several recordings. The primary focus of the research in this thesis is the analysis of
multi-dimensional spike train recordings. A number of statistical methods exist for the analysis of
these datasets. However, these methods are mainly intended for the analysis of single spike trains or

pairs of spike trains. These methods include:
o Single spike train analysis methods

1. Peri-Stimulus Time Histogram
2. Estimate of the Rate of Inhomogeneous Poisson Process by Jt* waiting times
3. Cumulative Sum of the PSTH
4. Auto-correlation
s Pair wise spike train analysis methods
1. Cross-Correlation
2. Joint Peri-Stimulus Time Histogram
o Multiple spike trains analysis methods
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exponentially over a given time period. If two or more neurons:spike coincidently, their corresponding
particles will have an attractive force causing the particles to move closer together.

If two neurons have an above average synchrony, over time this would result in a strong attractive
force between their corresponding particles. In turn, this force would cause'the particles to aggregate
in n-dimensional space. Gerstein [GA85| specifies that over time all particles will eventually collapse
together into a single cluster, due to these forces. Thus, this artefact of the algorithm needs to be
considered when analysing data using the Gravity Transform algorithm.

It is already established that significant synchrony can indicate synaptic coupling [BG00|. There-
fore, aggregation of the particles can aid the definition of the assembly represented by the spike train
dataset. |

The Gravity Transform has thrée parameters. These are the charge increment, i, charge decay,
7, and an overall aggregation constant, a, that are arbitrarily chosen by the investigator. The effect
of these parameters on the system is as follows. The c¢harge increment 1 defines how much charge is
added to a particle per spike in its corresponding neuron. This increment quantifies the effect of one
spike upon the particle’s charge. The value of T specifies the decay time of the charge, defining ‘how
long’ each spike can effect the system. The overall aggregation of the particles, a, controls the speed
at which the entire collection of particles aggregate.

The output of the Gravity Transform is plotted in two ways: (i) as a distance graph, showing
the BEuclidean distance between each pair of particles in the system; (ii) as a two-dimensional plane
selection. These outputs are shown in figures 4.17 and 4.18, for an assembly of 10 neurons, with the
following connections 51 = {¢;j : i = 1,7 = 3,5,7,8}, s2 = {e;; : i = 2,5 = 4,6...8} and neurons 9

and 10 being unconnected.
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the undefined selection of values for attributes increment (i), charge decay (1) and overall aggregation

constant a.

4.4 Software Support for Neural Analysis

Commonly, many investigators produce their own algorithms to implement the common anpalysis
methods, with specific adaptations to suit their datasets; using programs such as MatLab. However,
a number of libraries of functions are available for use with MatLab, providing methods to analyse
spike train dataset recordings. In addition, specialist packages exist for the analysis of temporal

relationships within spike train datasets.

4.4.1 MatLab

MatLab is a collection of Mathematical and Statistical routines. A large number of researchers use
MatLab as a basis for their computation, as it has many useful built-in functions. Also the creation
of more complex algorithms is relatively simple. In addition to its computational strength, MatLab is
-capable-of producing graphical displays of data to aid in analysis.

The main drawbacks of -algorithms implemented in MatLab are that computation times can be
considerable, as algorithms run on top of the MatLab engine. In addition, transfer of data between
algorithms implemented by different investigators can be difficult as common standards are not always
adopted. Moreover, as MatLab is commercial software anyone wishing to use packages developed for
MatLab must purchase a license for the product.

MatLab:does not provide any methods specifically targeted at the analysis of temporal synchrony
within spike train datasets. However, it provides a good, if expensive, base for the development of
tools for spike train analysis. Two suites of tools for use with MatLab are reviewed in the following

sections.

4.4.1.1 DataMunch

DataMunch|Dat] is a collection of free open-source-code routines for use with MatLab. DataMunch

can read data files in a number of formats, including Spike2 and DataWave UFF1. Once a data file is
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loaded the investigator can select what section-of the data to analyse. Moreover, data from a number
of files can be analysed automatically. DataMunch will produce results from a selected portion of a
file or group of files.

DataMunch is aimed at single cell analysis and can produce spike rasters, spike histograms and
perforin comparisons between trial segments. The output of the results of an analysis session can be
summarised-and exported, to:packages such as Microsoft Excel. In addition, the investigator can filter
the results and recall individual plots to examine them in more detail.

However, DataMunch has limited capacity to analyse the relationship between spike trains.

4.4.1.2 MEATools

MEATools[oF] is a collection of Matlab based algorithms for analysing spike trains, from extracellular
recording. These algorithins are designed to work with recordings from 8x8 Multi-Electrode Arrays.
MEATools -provide methods to sort and filter the recorded spikes based on shape and timing
parameters. In addition, there are methods to display a raster plot of a spike train, calculate the
PSTH of a spike train and to perform spike rate analysis of the data. The investigator can also
produce a.graphic representation of the raw data, by viewing a colour rendered representation of the
data matrix. This matrix can be animated to show the change in voltage (action potential) over time.
MEATools are primarily aimed at the analysis of stimulus driven results and currently provide
no methods to analyse.continuously recorded data. Moreover, the tools are designed to support the
analysis of single cell data, the support for the analysis of temporal relationships between multiple

simultaneous spike trains is limited.

4.4.2 Cortex Windows Suite

The Cortex Window Suite[Bau] is a collection of Windows-based programs. The suite is designed to
analyse the resiilts of the Cortex simulation package. The output of the analysis can be displayed
on screen, saved to a text file or output in Microsoft Excel file format. The investigator can filer the
dataset to select what trial and spike trains to analyse.

The investigator can:generate a raster plot of the selected data and PSTH’s can also be calculated
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for the data. Both the raster and PSTH can be displayed on the screen simultaneously, permitting the
contribution of spikes, on different trials, to the PSTH to be examined. In addition, the relationship
between two spike trains can be analysed using a JPSTH. The program also provides a ‘wizard’ so
that results for a number of spike trains can be produced automatically.

The Cortex Windows Suite is designed to analyse the data generated from the Certex program
and is aimed at stimulus driven analysis. Moreover, the analysis of data from other sources is not

supported and the analysis of multiple neurons is limited.

4.4.3 DataWave Technologies

DataWave Technologies|Tec] produce a number of software packages to support the analysis of neu-
ronal datasets including the Experimenter package which contains tools for data acquisition, real-time
analysis, experimental control and graphical display. Experimenter provides support for the recording
and separation of up to 128 channels of waveforms.

The package can produce raster plots of the sorted data, PSTH’s and Cross-correlograms. The
package provides methods to analyse both stimulus driven and continuous recordings. However, there

is limited support for the analysis of simultaneous recordings.

4.4.4 NeuroExplorer

NeuroExplorer is a self-contained analysis package for Neurophysiological data [neu]. The package is
capable.of reading a number of standard file formats and performing common analytical processes on
the data.

The package can calculate the ‘standard’ histograms: However, instead of calculating the results
for each spike train one at a time, NeuroExplorer calculates and simultaneously displays all results for
the file. This feature is useful if a number of trains contained in the same file are to be analysed. It
is also possible to perform other analyse for example, Rasters and JPSTH. However, there is limited

support for the analysis of multiple simultaneous recordings.
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4.4.5 Neuronal Time Series Analysis (NTSA)

The NTSA Workbench; from the Neuronal Pattern Analysis Group, Beckman Institute, University
of Illinois[NPAG] implements a number of tools for the analysis and visualization: of time-series data.
The workbench provides methods to produce the standard raster plot and histograms: In addition,
the gravity transform is implemented providing support for the analysis of neuronal assembilies.

A ‘Digital Brain Atlas' is provided to display the neuroanatomical information permitting the

investigator to view the change in electrical activity at recording sites in the brain.

4.5 Requirements for Software Support

The analysis and identification of temporal relationships between simultaneously recorded spike trains
is key to understanding many aspects-of the brain's function. The ability of scientists to record neural
activity of several hundred simultaneous spike trainsis-now possible[WM93|. However, the methods to
analyse these growing datasets are still based on the analysis.of individual pairs of neurons[BKMO04].

Thus, it is clear that additional support is required to aid in the analysis of temporal synchrony

within miilti-dimensional spike train datasets.

4.5.1 Possible systemn approaches

In general, there are two main styles of system that can be developed to support these needs. The
first method is to attempt to specify all the user’s requiirements, completely and fully, and develop a
tool that provides complete support for these requirements. This method would result in the ideal
support tool. However, as user requirements are continually expanding, it is highly likely that this
type of static systein would swiftly become obsolete.

The second, and. preferred, method is to provide a Toolbox of analysis, manipulation and display
techniques, and an investigation environment in which these techniques can be combined. In addition,
it is critical that the Toolbox supports the addition of new modules for use in the investigation
environment, to support expanding needs. This approach, will produce a dynamic and expandable

support environment, thus creating an effective tool that is capable of expanding to support the
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independent.

4.5.3 Construction of the Toolbox and Investigation Environment

This section describes the key requirements defined during the initial design of this Toolbox. Note that
the methods defined in this thesis form part of the Visualization of Inter-Spike Association project, at
the University of Plymouth [SWB]; thus only a subset of these requirements and methods have been

implemented and tested.

1. Toolbox should be user centred
A key principle of Visualization is efficient user interaction and control. Thus, the Toolbox
must be user centred, providing an environment in which the analyst can explore their datasets.
Within this environment, the user could construct a tailored Visualization system from the
Toolbox components. By interacting with and refining this system, the user should be able to

resolve the dataset to a plausible function connection architecture.

2. Toolbox should adopt a modular approach
To provide a flexible and expandable system, each method in the Toolbox must be implemented
as an individual module. These modules should all use standardised input and output formats

and conform to a standard set of interaction primitives.

3. Toolbox should use a visual programming environment
To facilitate the integration of different Toolbox components in order to form useful analysis
pipelines, a visual programming interface will be developed. This interface will permit users
to link graphical objects, representing the different methods and datasets, together to form an
analysis pipeline. This style of interface removes the necessity for the user to be familiar with

the implementation details of each method.

4, Toolbox should support multi-format I/0
As identified previously, different investigators use different file formats to record multi-dimensional
spike train data. Thus, a standard internal format will be adopted and the Toolbox will provide

methods for importing and exporting data in various formats.
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5. Data Manipulation
The Toolbox must provide methods to analyse the temporal synchrony within multi-dimensional
spike train recordings. The Toolbox should provide implementation for the current analysis
methods. In addition, new methods specifically aimed at the -simultaneous analysis of assemblies

need to be developed.

6. Data Presentation
Dynamic and user controllable display methods are required; these methods should support the
key interaction principle of Shneiderman’s Mantra[Shn96]. Simple methods to display the results
of these analysis methods and the raw spike train data are required: Additionally, powerful
dynamic representations are-required; to provide an.overview of large quantities of experimental

data simultaneously.

7. Software Platform
The Toolbox will be implemented in Sun Microsystem’s Java. The development and testing will

be conducted on a Windows PC platform (Microsoft Windows 2000/ XP).

8. Hardware Platform
The implementation and evaluation of the methods detailed in this thesis will be undertaken on

two different systerms.

(a) Intel Pentium III.999 MHz, 512Mb Ram, triple monitor output (1260x1024)

(b) AMD twin Athlon 2000+ MP, 2Gb Ram, triple graphics cards running two XGA data
projects (1024x768) and Primary monitor (1600x1200). The data projectors form a passive

projected 3D system on an 8'x6’ screen.

Chapter Summary

In this chapter the general principles of temporal coding for information processing within the brain
were discussed. Further, the current methods for analysing multi-dimensional spike train datasets

were presented. The shortcomings of these methods and the associated software is the limited support
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that is available for the analysis of synchronous spiking activity.
Finally, the requirements for a fully interactive exploratory environment based on the principles
of Information Visualization were proposed. The following chapter explores these requiremernts and

presents.software solutions.
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Chapter 5

Prototype Tool to Support the
Analysis of Neurophysiological Data

Summary

In this chapter, the Toolbox developed for this research is presented. This presentation includes file
formats supported, analysis and manipulation methods, and presentation methods.
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This chapter describes the methods contained in the Toolbox. This Toolbox has been implemented

using Java and Java3D. Java was chosen for the following reasons:

Platform Independence: Java virtual machines are available for all operating systems, including

Windows, Mac, Unix and Linux

Object Orientation: Java is an object-oriented programming language

Availability: the Java Development Kit (JDK) and run-time environments are available for free

Graphics Capability: Java contains comprehensive 2D and 3D (JavadD) graphics facilities

Each of the different computational and display methods, used within the Toolbox, has been imple-

-mented as a separate package of objects. Overall the methods fall into three categories:
1. Data filters
2. Data manipulations methods

3. Data presentation methods

5.1 Data Filters

5.1.1 Neurophysiological Data Input

It is anticipated that the Toolbox will be widely used for analysing experimental evidence from multiple
simultaneously recorded electrodes. This data consists of several spike trains which can be considered
to be multi-dimensional point processes. Different neurophysiological laboratories use different formats
torepresent these recordings. The Abeles format {see §4.2.1) was developed by Professor Moshe Abeles
(Jerusalem) and is one of the most common formats for representing this type of data.

The approach taken in the Toolbox is to transform input data from any format to the binary
representation, which is a universal and convenient representation for all Toolbox calculations. The
current version of the Toolbox includes a filter that converts a set of spike trains from an Abeles format
into a Boolean array representing the spike trains. Each spike train is stored as a separate array of

Boolean values, one value representing each time unit of the recording. Note, when spike train data
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is-stored, it is stored at discrete time steps ¢ (in all the examples shown in this thesis, 4 = 1ms), thus
spikes can only occur at prescribed times. If a spike occurs at a specific time unit, then the value
representing that time unit is set to true (=1).

Figure 5.1 shows a fragment of an Abeles file, containing three spike trains. Figure 5.2 shows
the content of the file in figure 5.1 represented as a Boolean array. The file fragment contains the
recordings of three neurons-over 20ms, the descriptor (first digit of each triple) value for a spike event

is 1.
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Figure 5.1: Fragment of a trial of an Abeles format spike train file containing the recerdings from
three neurons, with spike event descriptor value = 1

Note that each spike train is represented by a separate array of Boolean values. In figure 5.2 each

array is displayed on a separate line.
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Figure 5.2: The result of converting the Abeles format spike train file fragment in figure 5.1 into a
Boolean array of spike trains

All methods in the toolbox that use spike train data utilise the Boolean array format.

5.1.1.1 Multi-Dimensional Matrix Data

Some modules in the Toolbox produce output data files. These files can be used as input to other
modules. To facilitate communication between the Toolbox modules a standard file format has been
adopted. this format is detailed below.

The multi-dimensional matrix input filter reads the data output from a number of Toolbox func-
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tions. Specific filters have been implemented to read the entire file and to read the file at a specific
resolution. In addition, it is possible to specify a matrix for use with calculations as well as reading

the file's content.

Multi-dimensional matrix file format

All matrices within a specific data file produced by a toolbox method are the same size. Each matrix
has N rows (variables) and M columns (dimensions). A variable is an M dimensional vector of real
numbers and the coordinates of this vector are elements of the row in the matrix.

The header of the output file contains details about the number of matrices contained in the file
and their-composition. These values are written at the top of the file. The format of this file header

is:
o Number of variables (V)
o Number of dimensions (A{)

o Number of matrices (5)

Each row of the matrix is written as a line of space separated values (double precision floating point
numbers). Each matrix in the file is separated by a blank line. Figure 5.3 shows the header and a
data matrix of an example output file. The file.contains 200 data matrices, each consisting of six, four

dimensional variables. The figure shows the file header and an example data matrix.

6 Number of variables (V)

4 Number of dimensions (M)
200 Number of matrices (5)

2.5 15.32 12 3 Coordinates of variable one
5.9 37 11 30.6 | Coordinates of variable two
1.4 2.5 13 12.3 | Coordinates of variable three
12.8 4.5 12.5 6.9 | Coordinates of variable four
20.5 36.8 12.3 15.9 | Coordinates of variable five
7.81 36.4 12.1 6.5 | Coordinates of variable six

Figure 5.3: Excerpt of a multi-dimensional matrix file, showing the file head and an example data
matrix, with' comments
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5.2 Data Manipulation Methods

The following sections detail the current data manipulation methods.contained in the Toolbox.

5.2.1 Cross-Correlation

Several modifications.of the cross-correlation: function have been implemented. Every implementation
takes two spike trains, the bin size and the number of bins as input. The spike trains are supplied as
two arrays of Booleans and the constants are Integers. The output of the correlation function is an
array of double values, one value for each bin.

In the Toolbox, which is based on the principle of object-orientation, the basic counting function
forms the super class for all cross-correlation methods. Inheriting from this super class are classes
implementing cross-correlation utilising different correction methods. In total there are five variations

of the cross-correlation function implemented.

Basic counting algorithm

The basic counting algorithm counts the number of spikes on the target spike train that fall within a
defined time frame of a spike on the reference spike train (see §4.3.2.4).

Spike frequency normalized cross-correlation

The spike frequency normalization takes the result of the basic counting function and normalizes each
bin value for the average spiking frequency of the reference-spike train. The average spiking frequency

of the reference spike train is the number of spikes in this spike train divided by the total time epoch.

Brillinger normalised cross-correlation

The Brillinger normalization[Bri79] function takes the result of the basic counting function and nor-

malises each bin for the number of spikes in each train and the time of the trials involved, see §4.3.2.4.
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Random train corrected cross-correlation

This correction method uses the basic counting algorithm to produce two cross-correlation functions.
Initially, the cross-correlation of the specified spike trains is calculated. Secondly, the cross-correlation
of the reference spike train and a randomised (shuffled inter-spike intervals) target spike train is
calculated. Finally, to produce the random spike trains, the inter-spike intervals of the target spike
train are randomised. The resultant spike train contains the same number of spikes as the original
and has the same inter-spike intervals. However, the distribution of the inter-spike intervals in the

resultant spike train is random: The algorithm used to randomize the inter-spike intervals is as follows:

private boolean[] randomize(boclean[] spikes){
/** Set up storage for randomised spike train */
boolean[] randomSpikes = new boolean[spikes.length];
/*#* Set up test array to see if position is occupied */
boolean[] test = new boolean(spikes.length];
for (int i = 0; i < test.length; i++){
test[i] = false;
}
/** Test to track if current value has been
* successfully placed */
boolean done = false;
/#* Variable to hold new random locatiocn on spike */
int pos;
/** Progress through target spike train */
for (int i = 0; i < spikes.length; i++){
done = false;
/** Find new position */
while (!done){
pos = (int) (Math.random()*spikes.length);
/** Is the current position occupied? */
if (ttest[pos]){
randomSpikes [pos] = spikes[i];
test[pos] = true;
done = true;

¥
return randomSpikes;

¥

Thus, the randomised target spike train has the same number of spikes as the original target spike
train. However, the distribution of the spikes is random. The cross-correlation using the randomised
train is then subtracted from the cross-correlation of the original spike trains. This is to correct the

original cross-correlation for increased spiking frequency.
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Trial-Shift corrected cross-correlation

Similar to the random train correction methods, the trial-shift method computes two cross-correlations
using the basic counting algorithm. Initially, the cross-correlation of the specified reference and target
spike trains is calculated. Secondly, the cross-correlation of the reference spike train and a specified,
randomly chosen, time shifted target spike train is calculated. Finally, the bin values of the second

cross-correlation are subtracted from the first, to account for influence of increased spiking.

5.2.1.1 Examples of cross-correlation functions for different neuronal circuits
Example One: Linear Coupling

This example shows the output of the cross-correlation function, with the Brillinger normalization
correction and confidence interval applied, for neurons that are directly coupled. In addition, the
effect of intermediate neurons is shown. The dataset was generated using an enhanced integrate and
fire neuronal generator [Bor02] and the trial lasted for 20000ms. The assembly of neurons is shown
in figure 5.4, note all cross-correlation functions in this example were calculated using a bin size of 1
and a window size of 200 bins. The output of the cross-correlation functions have been plotted using

the cross-correlogram display methods (for more information see §5.3.1).

Figure 5.4: Assembly of four neurons used to illustrate the result of cross-correlation function on
directly connected neurons

Figure 5.5(a) shows the output of the cross-correlation function between the spike trains of neurons

one and two.
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connection would be reversed. Note that the connection delays are artificially high in this example in
order to illustrate the effect of intermediate neurons.

In addition to specifying the direction of the connection, the delay of the peak can alse aid in
identifying if the connection is directly between the two neurons in question or via an intermediate
neuron. The effects of intermediate neuron are shown in figure 5.5(b) and figure 5.5(c).

Figure 5.5(b) displays the cross-correlation function for the spike trains of neurons one and three.
Note two things: firstly, the peak is lower (scales vary), the correlation between the spike trains
involved is less; secondly the delay of the peak is approximately twice that of the delay of the peak in
figure 5.5(a).

Figure 5.5(c) displays the cross-correlation function for the spike trains of neurons one and four.
Again note the peak is lower (again scales vary) and the delay of the peak is approximately three
times that of the delay of the peak in figure 5.5(a).

Thus, the time delay of the peak can assist in identifying if a correlation is due to a direct connection

between two neurons, or, if the connection is via an intermediate neuron.

Example two: Commeon Input coupling

This example illustrates the output of the cross-correlation functions with the Brillinger normalization
and confidence interval applied, for a pair of neurons that have correlated input. The dataset used in
this example was generated using an Enhanced Integrate and Fire neuronal generator [Bor02] and the
trial lasted for 20000ms: The assembly of neurons is shown in figure 5.6, note. the cross-correlation
function in this example was calculated using a bin size of 1 and a window size of 100 bins: The output
of the correlation function has been plotted using the cross-correlogram display methods, detailed in

§5.3.1.

Figure 5.6: Assembly of three neurons used to illustrate the result of cross-correlation function on
neurons with correlated input
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It is possible to observe that the distance pair forms three distinct groups. These groups are
distinguishable and indicated at time ¢ on the graph in figure 5.10. The top group represents the
distances between neuron 10 and all the other neurons (1 to 9). The lower cluster of distances,
indicated at time ¢, represents all the intra-group distances and the middle group, also indicated at
time ¢, represents all the inter-group distances.

The final intra-group distances, §; = {d\2, d13, das}, Sz = {dus,dus, ds6} and Sz = {dzs, dro, dag}
show the three groups of neurons aggregating. The final inter-group distances, Sy = {dij : 1 =
1,...,3, j=4,...,6}, Ss ={dij: i=1,...,3,5=7,...,9 and Sg = {dij : i =4,...,6, j =
7,...,9}, show the distances between the three aggregating groups. The final distances between
neurons 1 to 9 and neuron 10, S7 = {di; : i =10, j=1,...,9}, show that the solitary neuron has no
tendency to group with any of the other neurons.

From this examination of the distance graph it is possible to identify the functional relationships,
based on synchronous spiking, between the neurons, shown in figure 5.8. The synchronous spiking of
the neurons in the three small groups (1, 2; 3), (4, 5, 6) and (7, 8, 9) is apparent as is the absence
of synchronous firing of neuron 10 with the other neurons. It is therefore possible to show that the

results of the Gravity Transform have a high correspondence with the underlying neuronal assembly.

'5.2.2.4 Calculation Constants

The gravity transform is sensitive to the “appropriate” specification of the constants that represent
the decay, increment and aggregation. Inappropriate choices of these values can result in all particles
becoming coincidental, within n-dimensional space, before any useful information about their rela-
tionships can be extracted. Alternatively, it could result in the particles aggregating at such a low
rate that they appear unrelated. Hence, it is sometimes necessary for the investigator to 'fine-tune’
the specification of these constants in order to gain useful results.

To demeonstrate this problem, first of all, consider the neuron assembly in figure 5.11.
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the groups of neurons 1 to 5 (S4) and 6 to 10 (S2) are notable and S4 corresponds to the distance

between the particles representing each group, which have no inter-connections.

5.2.3 Principle Component Analysis

The result of the Gravity Transform method is the solution of the system of equations 5.3. This solution
is an n-by-n dimensional vector-variable, dependent on time. To visualize this highly dimensional
solution and make decisions about grouping of the particles (neurons) it is useful to project the solution
to a 2-dimensional plarie. The choice of the plane is a difficult problem and several possibilities have
been investigated. One possibility is to use Principle Component Analysis [BJD81, GW6Y.

The algorithm used to implement the Principle Component Analysis method is adapted from
Numerical Recipes in C [Wil92). The PCA algorithm aims to find a plane to project the content of
the dataset onto, which results in the maximum variance in data values. PCA is used to find the
best subspace for the projection of multi:dimensional data. This method achieves a higher degree of
representational accuracy by maintaining as much of the overall data structure as possible.

The PCA method used in these trials was achieved by analysing the covariance matrix of a selected
time slice of the output from the gravity transform. A co-variance matrix depicts the position of each
particle, in each dimension, at a chosen time t. Note that ¢ is chosen to be a point after which useful
aggregation has occurred. The eigenvalues and eigenvectors are derived using Householders reduction
and an Implicit QL algorithm[Wil92]. Subsequently, the same eigenvectors are used to project each
time slice of the output from the Gravity Transform.

The projection is performed at a resolution specified by the investigator. The investigator is
required to select how often a projection is performed. For example, the investigator may select to
project every 10**, 100" or 1000*" data matrix.

The PCA algorithm can be used to generate an overview of a multi-dimensional dataset, such as
that produced by the Gravity Transform analysis. An example of this overview is shown in figure
5.13. This plot was produced from the PCA of the Gravity Transform computed for figure 5.12(a).

This plot was produced using Matlab.
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5.2.5 Cluster Analysis

It is often desirable to identify objects within a dataset that are similar. This identification of clusters
of objects can aid in specifying the order in which to display a dataset.

Let us suppose that a measure of similarity between objects can be defined: This measure can
be used to calculate a matrix of similarities, or distances, between the objects. A cluster analysis
algorithm could then use this matrix to analyse any groups in the dataset:

A standard cluster analysis algorithm has been implemented as part of the Toolbox. In addition, a
number of cluster linkage calculations have been implemented; these include: single linkage, complete

linkage and average linkage[AQ98).

¢ Single Linkage, defines the distance between two clusters as the distance between the two closest

points within the clusters.

e Complete Linkage, defines the distance between two clusters-as the distance between the farthest

pair of points within the clusters.

e Average Linkage, defines the distance between two clusters-as the average distance between all

possible pairs of points within the clusters.

The most effective algorithm for use in spike train analysis was found to be the complete linkage
method[SWBO04]. Intuitively this algorithm creates tight clusters and all objects inside the cluster
have limited dissimilarity.

At each iteration of the cluster analysis algorithm, the two clusters with the smallest distance
between them are merged.

Figure 5.15 shows a cluster analysis dendrogram for a dataset of 15 spike trains. This figure
shows the order in which the objects {spike trains) in the dataset formed clusters. The distance
metric between spike trains is-defined as the value of the largest peak in the corresponding Brillinger
normalised cross-correlation function. Thus, the distance between two clusters i and j is the value of

the largest peak of the cross-correlation function.
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5.3.2.3 Filtering

The user can select which object distances are displayed. This filtering is achieved via the toolbox
window, which lists all objects in the data file. The user can select or de-select objects from the
list. When the Filter button is clicked the plot is re-drawn with only distances relating to the
highlighted objects shown. The Reset Filter button cancels the current filter and shows the lines
for all pairs. The filter options can be used in conjunction with the zooming function. This supports

further refinement of the investigation.

5.3.2.4 Details

In addition to filtering and zooming the display, the investigator can select a line (or lines) on the
graph to identify which object pair(s) it represents. Also the time of the selected point is displayed.
If multiple lines are practically coincident then the selécted point of all pairs are listed. The pair(s)

and time are displayed in the toolbox window.

5.3.3 Correlation Grid

The Correlation Gird presents users with an overview of the cross-correlation function results for a
number of spike trains.

For a given dataset of n spike trains, all unique cross-correlograms are generated, where the user
specifies the bin and window size. Subsequently, the cross-correlograms are normalised using the
Brillinger method. Finally, the results of these cross-correlograms are displayed as an n-by-n grid of
grey scale cells, representing the individual correlations between all pairs of spike trains.

The grid encodes the ‘height’ of the largest.peak in each cross-correlogram. The peaks are encoded
from white, representing no peak, to black, representing the largest peak in the grid.

The user can select whether to view ‘all peaks’ or just significant peaks. Significant peaks.are those
that lic outside of the Brillinger confidence interval specified for the grid. In addition, the individual
cross-correlograms can be viewed by selecting the corresponding cell in the grid.

The Correlation Grid has been implemented as a package of objects and utilises the cross-correlation

(§5.2.1), cluster analysis (§5.2.5) and cross-correlogram (§5.3.1) packages.

97







































5.3 Data Presentation Methods Chapter 5: Toolbox

5.3.4.6 Undo/Redo Facility

In addition to-user interaction and navigation, the Tunnel supports-an undo/redo facility. Shneiderman
asserted that the ability to back track adaptation to the visualization was key to the refinement of
understanding [Shn96]. Thus, the user should be able to easily return to previous states of the
visualisation.

To this end, the environment tracks all changes to the spike train order enabling the user to

selectively undo/redo refinements as required.

Chapter Summary

This chapter presented the analysis, manipulation and presentation methods implemented. Initiarlly,
the data formats supported were detailed. Following this the statistical analysis methods were de-
scribed along with some post-processing manipulation methods. Finally, the various presentation
methods were described.

The next chapter describes three case studies undertaken to demonstrate the effectiveness of these

methods.
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Chapter 6

Empirical Testing

Summary

This chapter presents the empirical testing undertaken to demonstrate the usefulness:of the Toolbox.
This empirical testing is presented as three case studies. The first dataset was used for training and
thus, the assembly was known prior to analysis. The assemblies of the second and third datasets were
unknown to the analyst at the time of investigation.
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6.1.1.3 Summary of Gravity Transform analysis

From the Gravity Transform analysis, it is possible to make the following hypotheses.

1. Neurons 1, 3, 7, 10 and 14 form a functional group. Within that group, there is a stronger

relationship between the spike trains of neurons. 3, 7, 10 and 14.

2. Neurons 4, 5, 6, 8, 9, 11 and 12 form a separate functional group. Within that group, there is a

stronger relationship between the spike trains of neurons 5, 6, 8, 9, 11 and 12.
3. Neurons 13 and 15 seem unrelated to any other neurons in the dataset.

4. The functional relationship of neuron 2 is still ambiguous. It may be completely unrelated to

any of the neurons or it may have a weak connection to a group of inter-connected neurons.

Further analysis is required to test these hypotheses and to define the functional relationships of the
groups of inter-connected neurons. The second stage of the analysis of trial one uses the Correlation

Grid to achieve this.

6.1.2 Stage 2: Correlation Grid analysis
6.1.2.1 Creating the Correlation Grid

The Correlation Grid for the original trial one multi-dimensional spike train dataset was generated
with a correlation bin size of 1 ms and a correlation window of 100 bins (100ms). This Grid was
subsequently filtered, to show significant peaks only and reordeted, based on the results of the Toolbox
cluster analysis algorithin. Thus, figure 6:7 shows the filtered; and subsequently clustered, Correlation

Grid.
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manner is unclear.

6.2.1.3 Summary of Gravity Transform analysis

From this first stage of analysis, it is clear that the underlying neuronal structure consists of at least
two functional groups. In addition, the behaviour of particles 2 and 6 is significantly different from
the remainder of the group: However, the exact structure of these groups is unclear, as there is an
ambiguity between the results gleaned from the distance graph and the PCA plot.

Combining the results of this analysis the following hypotheses can be offered.

L. Neurons 5, 7 and 9 show a strong functional relationship.

2. Neurons 1 and 3 show a strong functional relationship.

3. Neurons 4 and 10 show a strong functional relationship.

4. Tt is possible that neurons {1 and 3) and (4 and 10) are related.

5. The relationship of neurons 2, 6 and 8 is unclear.

Further analysis is required to test these hypotheses and to define the connections of the groups
of inter-connected neurons. The second stage of the analysis of trial two uses the Correlation Grid to

achieve this.

6.2.2 Stage 2: Correlation Grid analysis
6.2.2.1 The Correlation Grid for trial two

The Correlation Grid for the original trial two multi-dimensional spike train dataset was generated
with a correlation bin size of 1ms and a correlation window of 100 bins (100ms). The Grid was

subsequently filtered and clustered; the resultant Correlation Grid is shown in figure 6.28.
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6.2 Trial Two Chapter 6: Empirical Testing

Note the first spike on spike train 2, which is followed by a spike on both spike trains 5 and 6;
these spikes are subsequently followed by a spike on spike train 9. Also note, the lower spiking rate of
both spike trains 2 and 6, which is obvious throughout the Tunnel.

Recall the slower aggregation of the particles representing neurons 2 and 6 during the Gravity
Transform analysis; these two particles did not form part of the main cluster. This lower spiking rate

may account for the slower aggregation.

6.2.3.4 Summary of the Spike Train Tunnel analysis

The results of the third stage analysis of the trial two dataset, in the Spike Train Tunnel, reinforces
the neuronal coupling structure proposed in figure 6.35. Moreover, additional features have been
discovered. The lower firing rates of neurons 2 and 6 are evident in the Tunnel representation of this
datasct, this feature helps to explain the slower aggregation. of the related particles, shown in the

Gravity Transform.

6.2.4 Summary of the analysis of Trial Two

From the Gravity Transform analysis of this dataset, it was possible to suggest that the underlying
neuronal structure consisted of two (or more) separate functional groups. In addition, it was possible
to hypothesise that neurons 5, 7 and 9 formed part of one functional group and that neurons 1, 3, 4
and 10 forined part of a second. However, the relationship of these neurons was unclear. Likewise,
the relationship of neurons 2, 6 and 8 was ambiguous.

The Correlation Grid analysis-confirmed the existence of two separate functional groups, consisting
of neurons 1, 3, 4 and 10 and neurons 2, 5, 6, 7, 8 and 9. This reinforced the observations from the
Gravity Transforin and clarified the relationship of neurons 2, 6 and 8.

Moreover, it was possible to propose a connection architecture for the neurons in these functional
groups. Further analysis, in the Spike Train Tunnel, confirmed this structure. In addition, the Tunnel
highlighted additional information regarding the firing properties of neurons 2 and 6 which clarifies
their clustering pattern in the Gravity Transform.

This process of analysis-permitted a functional coupling structure to be proposed for the neurons
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-analysis.

In addition, the variety of propagation delays is evident. For example, from figure 6.58 it is possible
to observe that a spike from neuron 10 generates spikes from neurons 1, 8 and 9 with varying delays.
The delay for a spike from neuron 8 is relatively short; however, the time taken for a spike to result
from neuron 9 is approximately five times longer. Likewise, the propagation delay between neurons

10 and 1 appears to be approximately twice that of the delay between neurons 10 and 9.

6.3.4 Summary of the analysis of Trial Three

The initial analysis of the dataset with the Gravity Transform yielded little information regarding the
internal functional structure of the dataset. However the results of the Gravity Transform analysis
support the theory that the dataset was generated from a group of highly connected neurons. However,
it was apparent that neurons 8 and 10 exhibited a slightly different behaviour in contrast to the rest
of the group. The Tunnel analysis showed that this difference was due to the significantly lower firing
rates of neurons 8 and 10 compared to the other neurons.

The Correlation Grid analysis supported the theory of a highly connected group-of neurons. How-
ever, it was possible to segment this group into a nuinber of smaller sub-assemblies. In addition, each
of the sub-assemblies was inter-connected. From this analysis, it was possible to propose a plausible
functional connection architecture.

This architecture was.further tested using the Spike Train Tunnel representation. The results from
the Tunnel analysis supported the proposed architecture and also highlighted additional characteris-
tics. The Tunnel representation revealed that neurons & and 10 had relatively low spiking rates in
comparison to the other neurons; furthermore, it revealed the variation in propagation delays in the
root group.

This process of analysis permitted a functional coupling structure to be proposed for the neurons
underlying the spike train dataset. In addition, details regarding the delays and firing rates of the
neurons were revealed.

Note, the architecture of connections of the neurons in this assembly was unknown to the analyst

prior to the investigation. Furthermore, the results of the analysis yielded an entirely accurate neural
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architecture.

Chapter Summary

This chapter has shown that by combining the analysis and Visualization techniques implemented in
the Toolbox, the underlying neuronal assembly of datasets can be extracted. In particular, the second
and third studies demonstrated the extraction of a neuronal assembly solely from the multi-dimensional

spike train dataset. No other information was available prior to the analysis.
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Chapter 7

Evaluation and The Way Ahead

7.1 Introduction

The identification of synchronous spiking activity between the neurons, within multi-dimensional spike
train recordings, is paramount to understanding many of the brain’s functions. A limited number
of methods exist for the analysis of synchronicity between groups of neurons, such as the Gravity
Transform. However, the quantity of resultant data from these methods can pose their own analysis
problems. Therefore, new innovative techniques are clearly required in order to reformat and present
data in a manner that can be explored more easily. It is clear that techniques from the field of
Information Visualization have a valuable contribution to make towards solving these problems.

This thesis has presented new contributions to the Gravity Transform algorithm and the visual-
ization of its output. In addition, it has presented a novel visualization technique in which a tunnel
is used to represent the individual spikes-on spike trains. Finally, the most significant contribution of
this thesis, based on the experimental evidence, is the Correlation Grid.

Subsequently, cach of these contributions are evaluated and the future direction of eaclris discussed.

Each of the analysis and Visualization techniques discussed in Chapter 5 is evaluated based on
the experience gained from their development and subsequent use in many case studies (including the

three case studies represented in Chapter 6). These are:
1. Visualization techniques for use with the Gravity Transform algorithm
2. The Spike Train Tunnel

3. The Correlation Grid
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7.1.1 Visualization techniques for use with the Gravity Transform algo-

rithm

The Gravity Transform, developed by Gerstein et al. [GA85), is a very useful tool for the analysis
of synchronous spiking within multi-dimensional spike train recordings. Within the Toolbox, several
methods have been implemented for visualizing the output of the Gravity Transform[SWB02]. In
addition, the original algorithm was adapted toincrease the speed and accuracy of calculation[SWB02).

These are:

1. the interactive distance graph
2. PCA plots

3. ICA plots

Case studies one and two deséribed in Chapter 6 demonstrated the usefulness of the Gravity Trans-
form visualization techniques. In particular, they demonstrated how effective the Euclidian distance
graph and PCA visualization, of the Gravity Transform output were in identifying the functional
separation of the dataset. Thus, it was possible to infer some of the internal relationships.

In contrast, the visualization of the Gravity Transform results of the third case study yielded little
information. Note that this case study consisted of a highly interconnected dataset. Thus it is possible
that the error induced by reducing the data to two-dimensions may have excluded critical information.
Thus, it is likely that if the data was examined in its original high-dimensional state, further details
may have been extracted.

Additionally, the use of high dimension representations, such as Parallel Coordinates would be
useful in the analysis of these datasets. In particular, versions of Parallel Coordinates that support
the animation of datasets, over time, and the identification of clusters, such as the Animator[BS04|
tool (also developed by the Visualization Lab, University of Plymouth), have already been shown to

be uscful.
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7.1.2 The Spike Train Tunnel

From the experimental evaluation of the Spike Train Tunnel, as detailed in the case-studies in Chapter
6, it has been demonstrated that this Visualization can aid in identifying synchronous firing within
multi-dimensional -spike train datasets: In particular, this visualization is useful for identifying re-
peating spiking patterns within the dataset. Moreover, it can be used to infer details regarding the
connection delays between neurons.

Evaluation of the Tunnel has identified two possible improvements that could be made to the
Tunnel representation. Firstly, the ability to view multiple non-consecutive segments of the dataset
simultaneously; and secondly the ability to highlight spikes that occur within a specific time-frame of

each other.

7.1.2.1 Multi-Segment Tunnel

It is common for analysts to identify repeating pattern of spikes (sometimes at regular intervals)
throughout a dataset. Currently, the Tunnel environment only supports the display of a contiguous
section of the dataset. Thus, this limitation can make the comparison of spiking patterns difficult,
unless the repeating patterns are very close together.

Therefore, the next version of the Tunnel should facilitate the simultaneous display of a number of
different segments of the dataset. This segmented display would permit the analyst to select 2 number

of portions of the dataset in order to compare patterns and investigate repetition.

7.1.2.2 Correlation time-frame indication

The identification of synchronous spikes is relatively straightforward when the number of spike trains is
relatively small, up to approximately 20 spike trains. However, as the number of spike trains increases
this comparison is increasing difficult, particularly when the synchronous trains are on opposite sides
of the Tunnel representation.

To reduce the complexity of this comparison task, it is proposed that the analyst should have the
capability to highlight spikes that occur within a specified correlation time-frame. Then; the analyst

would be able to position a static overlay onto the Tunnel: This overlay would colour code the spike
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as the spike trains animate underneath it. This colour coding would aid the analyst in inferring the

temporal sequence of spikes within the Tunnel.

7.1.3 The Correlation Grid

The Correlation Grid presents the analyst with an interactive overview of all of the cross-correlations
of a multi-dimensional spike train dataset using a simple 2D plane (image). Initially, the order of the
spike trains in this display is the order in which they appear in the data file.

The case studies-in Chapter 6 demonstrated the usefulness of this method. In all cases, it was pos-
sible to identify the underlying neuronal assembly solely from using the Correlation Grid visualization
of the multi-dimensional spike train recordings.

The experimental evaluation of this technique has shown it to be extremely effective in the speci-
fication of functional relationships within these datasets.

Thus, this visualization technique constitutes a major contribution to the field. It is clear the most
significant of the visualization techniques presented in this thesis. This technique has been presented
to the user community and the initial responses have been very positive. Further analysis is underway.

Despite the success of this technique, initial feedback has led to the identification of a number of

improvements that could be made to the Correlation Grid. These include the introduction of:
1. a selection of spike train ordering algorithms
2. a facility to identify and annotate sub-groups of the Correlation Grid by marking and labelling
3. a peak height encoding method
4. a peak delay encoding method

Once these improvements are made to the current version of the Correlation Grid it is likely to
become a key method used by neurophysiologists.
7.1.3.1 Ordering algorithms

Currently the only method to order the spike trains within the Grid is via the cluster analysis algo-

rithm. Despite the effectiveness of this method, demonstrated during the case studies, it is useful to
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fine-tune the order manually.
Furthermore, the Toolbox should enable the user to specify their own spike train ordering al-
gorithm. And finally, it may be useful to enable the user to fine-tune the order of the spike train

manually.

7.1.3.2 Annotation

In the example Correlation Grids previously shown, the sub-groups of spike trains under investigation
were marked and labelled on each of the figures for clarity, All of this annotation was performed

manually. A dynamic form of this mark-up would enhance the technique and increase efficiency.

7.1.3.3 Peak Height Encoding

Currently, the comparison of cells that are not adjacent in the Grid is problematic due to the limited
encoding scope of the grey scale system used. An improvement to the display would be the use of
an RGB colour value to encode the height(s} of the peaks(s). Moreover, the analyst should have the
capability to partition this encoding scale in a non-linear manner to effectively group peaks of different
heights.

In order to support the analyst in this partitioning of the correlation peak heights, a histogram of
all significant peak heiglts could be used to display the distribution of peaks. The analyst could then
interactively select partitions of this histogram to encode as different cell colours or sizes. This would

significantly improve efficiency in the analysis stage.

7.1.3.4 Peak Delay Encoding Method

Whenever a cross-correlogram of two spike trains exhibits a significant peak this indicates that the

corresponding neurons are likely to be connected. However, this connection can be one of three general

types:

1. neuron A connected to neuron B with a positive peak delay - this is where the peak is to the

right hand side of the origin of the histogram
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2. neuron B connected to neuron A with a negative peak delay — this is where the peak is to the

left hand side of the origin of the histogram

3. neuron A and neuron B both having a connection from a third neuron, possibly via an interme-
diate neuron with no peak delay— this is where the peak is at (or very close to) the origin of the

histogram

In order to resolve this ambiguity the delay of the main correlation peak must be taken into account.
Thus, in addition to encoding the height of the main correlation peak; the delay of this peak should

also be encoded in the Grid display.

7.2 Software Testing and User Group Testing

During the development of the various methods of the Toolbox, the algorithms have been tested to
evaluate their correctness and to assess their usehilness. To evaluate correctness white box testing
was conducted to ensure that the various components performed their specified tasks correctly and
efficiently.

In order to assess the usefulness of the techniques a small user group was formed. This comprised
the research student undertaking the work, the supervisor and the studies advisor, an eminent Neu-
roscientist. Due to time limitations, it was not possible to expand this group to include other users.
However, the group membership does reflect the user community to which this work contributes.

During training, many different datasets were analysed. Initially, simple, known, assemblies were
analysed. This initial testing was undertaken to develop the users capabilities in using each technique.

Subsequently, the capabilities obtained from initial analysis were used in the analysis of more
complex assemnblies. Furthermore, the testing progressed to the analysis of ‘blind’ data; where the
underlying neuronal structure was unknown to the analyst. The datasets for all of these blind trials
were gencrated by Neuroscientists, to maintain a close relationship with experimentally recorded data.

Three of the key case studies undertaken during testing have been described in detail in chapter 6.
This experimental testing has demonstrated that the techniques are extremely useful for investigating

firing synchrony within multi-dimensional spike train datasets. These techniques facilitated the iden-
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tification of functional groups contained in the datasets. Moreover, in most cases the exact neuronal
conilection architecture used to.generate the dataset was recovered.

Within the field of Information Visualization a current and very important principle, is that of user
group testing. This has been highlighted at the recent IVO4[BBC*04] and InfoVis2003[MNO3] confer-
ences. Thus, further detailed testing must be undertaken with domain users, such as Neuroscientists.

The results of this testing will in turn drive future development.

7.3 TFuture Directions

In addition to the improvements to the current tool, the development and testing of these methods

has generated ideas for other novel analysis techniques.and research directions.

7.3.1 Multiple-View System

One of the main aims of the Visualization of Inter-Spike Association project [SWB] is to produce
an integrated investigation environment for Neurophysiologists. In this environment investigators
should have the ability to perform multiple analyses on their datasets and view the results in various
visualizations simultaneously, thereby producing a multiple-view system.

The usefulness of combining the methods described in Chapter 5 into a multi-view system has
been highlighted during the case studies in Chapter 6. In these studies it was necessary to compare
the results of different visualization to extract the details of the underlying structures.

Currently, one of the key issues of effective multi-view investigation is the linking of actions between
views [Nor01, Rob03]. In order to achieve this; each visualization must have similar, or comparable,
interaction primitives. For example; the direct user annotation proposed for the Correlation Grid (see
§7.1.3.2) could link with the current filtering processes in the Tunnel {(train dimming) and Distance
Graph (selective display).

Without this linkage the methods are still useful, but their true power as analysis tools is in their
linkage.

A comparative study of the effectiveness of the Toolbox methods; both individually and in a
multi-view environment, should be conducted; to examine the benefits of desktop, multiple monitor
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and large scale displays. In addition, new interaction techniques should be developed to support

improved interaction within these environments.

7.3.2 Sonic Model

The Sonic model was inspired by the disciplines of sound design and engineering for theatre; television
and film. These fields exploit the ability of the human audio systein to integrate disparate sound
sources and to mentally produce a ‘sound field’. This field permits the sound designer to create the
effect of sounds occurring from specific points around the audience. For example, the sound of an
explosion from behind an audience, or the sound of a gun shot from the left of a cinema projection
screen.

In addition, it is possible to create sound effects that are perceived to move with an object. For
example, in a cinema this means that the sound effect is perceived to occur from the same position as
the object appear in the picture and the sound appears to move (or track) with the object. Further,
when watching a filin, with stereo or surround sound; suppose a car enters the picture from the left
of the picture, travels across the picture, and leaves the picture from the right. The audio effect of
the car ‘tracks’ the location of the car. This sound tracking is achieved by emitting the sound effect
of the car from the left, centre and right speakers with differing delays. The effect is created by the
delayed correlation of the sound effect waveforins emitied from the various-speakers.

This principle could also be used to develop an innovative method for analysing the synchrony of
spiking within multi-dimensional datasets.

It is proposed that the spike trains would be encoded as frequency modulated waveforis. Each
waveform would be the output of a point sound source, positioned around a circular perimeter within
a modelling space. The interaction of these point sound sources would then be modelled over time.

When two similar waveforms-in the modelling space are correlated an amplified waveform would be
produced. Thus, two spike trains that exhibit synchronous spiking activity will produce two waveforms
that would be correlated within the modelling space. By recording the amplitude of the signals within
the modelling space, the synchrony of the spike trains could be examined. Two perfectly correlated

spike trains would prodiice two waveforins that correlated and produced a maximum; amplitude equal
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to the sum of the two waveforms involved.

The size of the circular perimeter, on which the point sound sources are located, defines the corre-
lation timeframe similar to the correlation window used with the cross-correlation function. Maxima
at the centre of this circle would indicate the presence of spike trains that were-correlated with no:de-
lay. Maxima away from the centre would indicate the presence of corrélated spike trains with varying
delays. By examining the maxima, the correlation of the underlying spike trains could be evaluated.

Some initial implementation and testing has been undertaken with this method. However, the

main implementation is yet to be developed in order to demonstrate usefulness of this method.

7.3.3 Display Walls

During the experimental evaluation of the current methods, the usefulness of collaborative exploration
has been highlighted. Moreover, the value of large-scale displays, such as display walls, has also been
shown. In particular, the Correlation Grid and Spike Train Tunnel work well on laige scale displays.

However, despite the prevalence of large scale displays, the user interaction techniques for these
systems are still based on the techniques of standards desktop environments. Where the mouse is an
effective, and now ubiquitous, interface for the single display desktop computer, it poses considerable
user interaction overheads when used on multiple-display or large scale display systems. The time
taken to traverse elongated displays with a traditional mouse is time consuming, compared to the

traditional single monitor system for which the mouse is intended.

7.4 Conclusions

Retrieving insight and understanding from multi-dimensional spike train recordings is absolutely
paramount to our comprehension of how the Human brain functions. The accuracy and efficiency
with which this data can be recorded has increased dramatically over recent years. Thus, a huge
amount of experimental data recorded from the Human brain is now recorded and stored, but anal-
ysis of this data is still extremely limited. Scientists have only begun to ‘scratch the surface’ in
understanding this data and thus, how the brain functions.

The lack of appropriate methods to efficiently analyse this large body of data is a significant
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limitation in the fight to comprehend the secrets of the Human brain. The techniques proposed
in this thesis begin to alleviate this problem, by providing more efficient and effective displays for
current analysis techniques; new methods that provide interactive access to the data; and methods
that support the analysis of larger datasets. This is the beginning of an important and significant area
of research which is capable of improving the treatment of serious brain diseases such as Alzheimer’s

and Parkinson's.
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1. Introduction

Temporal coding has an important role in the debate on information encoding by spike
trains. It establishes that information is encoded in the seemingly random patterns of spikes,
even in the exact temporal arrangement of inter-spike intervals. Subsequently, onc of basic
principles that underlie information processing in the brain is the principle of synchronisation
of neural activity [1] [2]. Vast quantities of experimental data and mathematical models
indicate that the synchronisation principle may be useful in devising various systems of
information processing.

The experimental evidence that is currently available requires analysis in order to extract
inherent information. Analysis of multidimensional spike trains using standard tools such as
cross-correlograms is increasingly complex due to the quantity of data involved. Hence, new
mcthods of dealing with this data arc needed. In 1985, one such analysis tool called the
“Gravity Transformation™ [3][(4] was developed at the Multiplec Unit Laboratory at
Department.of Neuroscience in the University of Pennsylvania [5].

[t is based on the principle of gravitational interaction of particles where each neuron is
represcnted by a particle and the movement of that particle is described in an n-dimensional
space, where n is the number of neurons under investigation. All particles start equidistant
from one another and the gravitational force (or charge) exerted by a particle is proportional
to the spike train of the corresponding neuron. Each spike contributes charge and this charge
decays exponentially over time. Thus, should two or more neurons spike coincidently, their
corresponding particles will have an attractive force that causes the particle to move closer
together. Let us suppose that two neurons have an above average synchrony of firing. Over
time this would result in a strong attractive force between their corresponding particles. This
would result in aggregation in n-dimensional space. Since, significant synchrony can indicate
synaptic coupling [6] the aggregation of the particles can show the assemblies represented by
the spike train data.

The gravity transformation has made a significant contribution to the field however there
are some difficulties with the display of output data for large numbers of particles.

2. Parallel Coordinates

The use of parallel coordinates, originally pioncered in the 1980’s, is a technique used to
represent diverse sets of multidimensional data. In 1990, Inselberg [7] [8] renewed the use of
parallel coordinates for the analysis of large quantities of multidimensional data and
introduced some new representation features that have led to a marked increase in their
utilization.

Inselberg’s representation of parallel coordinates denotes data points. as y-axis coordinate
values distributed along the x-axis. In this scheme, a specific point in n-dimensional
Euclidean space is represented by # y-axis values distributed along the x-axis. In the last
decade much research has focused on the development of parallel coordinates in order to
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analyse even greater quantities of data. An example of this is the concept of hierarchical
parallel coordinates [9].

3. Visualisation Tool

It has been established that parallel coordinates can be used to identify correlations
between variables and to convey aggregation information. Subsequently, this  focuses on the
application of parallel coordinates to the visualization of data produced by the gravity
transformation in order to support the investigation of greater numbers of neurons. Naturally,
the advantage of parallel axes over orthogonal axes is the fact that their limitations are based
on the size of the display area available. Note that since there is no loss of data when using
parallel coordinates that there is no “cost” to be considered for the gains achieved.

This paper presents a software analysis tool, VISA, used for the Visualization of Inter-
Spike Associations that supports the analysis of multidimensional spike trains using both the
gravity transformation and parallel coordinates. In additional to this, it provides additional
functionality such as animation of the parallel coordinates display over time thus in this case
depicting the aggregation of particles in the gravity transformation data. There is also the
capability to view the display output in a static mode. Most significantly, the-tool supports the
display of any subset of particles for closer inspection. Since the range of values represented
by each parallel axis is dependent upon the group of particles viewed on that axis, this is
effectively a zoom facility.

Currently, the parallel coordinates may be used for relatively larger values of » than the
standard output display of the gravity transformation. Indecd, provided that scrolling
windows are decmed acceptable to the user, there is no theoretical limit to the number of
ncurons that could be displayed in this manner. However, in practice, significant demands for
interaction with the graphical user interface reduce the overall effectiveness of the software
tool since user perception is a significant factor in the process. Note that the use of
hicrarchical parallel coordinates offers additional significant opportunities for future
development of the VISA.
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5 Conclusions

This paper reports on the use of visualisation in the
analysis of synchronous activity in multi-
dimensional spike train data derived from the gravity
transform-algorithm. On the basis of our simulations
we derived approximate values for the algorithm
parameters: aggregation, charge and delay.
Numerous trials were run using relatively large
numbers of spike trains. These were successful
whilst highlighting the limitations of using distance
graphs to output the data.

Parallel coordinates and animation techniques were
used to support the analysis of these vast data sets.
In addition to these innovative methods of display,
concentration of the data can also alleviate the
problem of representing vast data sets.

PCA was used to reduce the quantity of data whilst
maximising thc quality of the data retained. This
method is very useful in creating manageable data
scts, yct limited due to display. Hence, future work
will incorporate the use of parallel coordinates for
the display of PCA output data in addition to output
directly from the gravity transform.

In conclusion, no single method will overcome the
problems of analysing synchronous activity in multi-
dimensional data scts. However, the combination of
many diverse methods from domains such as
mathematics and statistics, information visualisation
and graphics will provide a very practical platform
on which to analyse this quantity of data.
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1, Introduction

Temporal coding has an important role in the debate
on information encoding by spike trains. It establishesthat
information is encoded in the seemingly random patterns
of spikes; even in the exact temporal arrangement of inter-
spike intervals. Subsequently, one of basic principles that
underlie information processing in the brain is the
principle of synchronisation-of neural activity [1] [2]. Vast
quantities of experimental data and mathematical models
indicate that the synchronisation principle may be useful
in devising various systems of information processing.

The experimental evidence that is currently available
requires analysis in order to extract inherent information.
Analysis of multidimensional spike trains using standard
tools such as cross-cormrelograms is increasingly complex
due to the quantity of data involved. Hence, new methods
of dealing with this data are needed. In 1985, one such
analysis tool called the “Gravity Transformation” [3](4]
was developed at the Muliple Unit Laboratory at
Department of Neuroscience in the University of
Pennsylvania [5].

It is based on the principle of gravilational interaction
of particles where each neurcn is represented by a particle
and the movement of that particle is described in an n-
dimensional space, where n is the number of neurons
under investigation. All particles start equidistant from
one another and the gravitational force (or charge) exerted
. by a particle is proportional to the spike train of the
corresponding neurcn. Each spike contributes charge and
this charge decays exponentially over time. Thus, should
two or more neurons spike coincidently, their
corresponding particles will have an attractive force that
causes the particle to move closer together. Let us suppose
that two neurons have an above average synchrony of
firing. Over time this would result in a strong attractive
force between their comresponding particles. This would
result in aggregation in n-dimensional space. Since,
significant synchrony can indicate synaptic coupling [6]
the aggregation of the particles can show the assemblies
represented by the spike train data.

The gravity transformation has made a significant
contribution to the field however there are some
difficulties with the display of output data for large
numbers of particles.

2. Representation of n-dimensional data

Parallel coordinates, originally pioneered in the
1980's, is a technique used to represent diverse sets of
multidimensional data. In 1990, Inselberg [7] [B] renewed
the use of parallel coordinates for the analysis of large
quantities of multidimensional data and introduced some
new representation features that have led to a marked
increase in their utilization.

Inselberg’s representation of parallel coordinates
denotes data points as y-axis coordinate values distributed
along the x-axis. In this scheme, a specific point in n-
dimensiona! Euclidean space is represented by n y-axis
values distributed along the x-axis. In the last decade
much research has focused on the development of parallel
coordinates in order 10 analyse even greater quantities of
data. An example of this is the concept of hierarchical
parallel coordinates [9].

3. Visualisation Software

It has been established that parallel coordinates can
be used to identify correlations between variables and to
convey aggregation information. Subsequently, this
focuses on the application of parallel coordinates to the
visualization of data produced by the gravily
transformation in order to support the investigation of
greater oumbers of neurons. Naturally, the advantage of
parallel axes over orthogonal axes is the fact that their
limitations are based on the size of the display area
available. Note that since there is no loss of data when
using parallel coordinates that there is no “cost” to be
considered for the gains achieved.

This paper presents a software analysis tool, VISA,
used for the Visualization of Inter-Spike Associations that
supports the analysis of multidimensional spike trains
using both the gravity transformation and parallel
coordinates. In additional to this, it provides additional
functionality such as animation of the parallel coordinates
display over time thus in this case depicting the
aggregation of particles in the gravity transformation data.
There is also the capability to view the display output in a
static mode. Most significantly, the tool supports the
display of any subset of particles for closer inspection.



Since the range of values represented by each parallel axis
is dependent upon the group of particles viewed on that
axis, this is effectively a zoom facility.

Currently, the parallel coordinates may be used for
relatively larger values of n than the standard output
display of the gravity transformation. Indeed, provided
that scrolling windows are deemed acceptable to the uvser,
there is no theoretical limit to the number of neurcns that
could be displayed in this manner. However, in practice,
significant demands for interaction with the graphical user
interface reduce the overall effectiveness. of the software
tool since user perception is a significant factor in the
process. Note that the use of hierarchical parallel
coordinates offers additional significant opportunities for
future development of the VISA.
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Abstract

The current ability to record neural activity within the
brains of mammals has led 1o the production of a large
body of experimental data. The analysis and comprehension
of this data is key to the understanding of many basic brains
unctions, for example learning and memory.

The main constituent of this data is multi-dimensional spike
train recordings. As the analysis of these datasels, by
traditional means, becomes more complex and time
consuming the need for better methods of data analysis
increases.

This paper presents an innovative method for analysis of the
rélationships within large multi-dimensional spike train
datasets. This method, called the ‘Correlation Grid,' is
based on the Information Visualisation principles; overview
the data, filter and zoom the data and obtain details-on-
demand [1]. The features of the Correlation Grid are
described, including filiering and statistical  sorting
methods.

1 Introduction

Explanations to many questions in the field of
euroscience are dependent on the theoretical
nderstanding of a large body of experimental neural data.
pecifically, this understanding is fundamental to the
exploration of information processing within the nervous
ystem. A primary component of this data is simultaneously
recorded multi-dimensional spike trains.  Significant
research in this area is steered towards the principle of
ynchronisation of neural activity [2][3].

Further, in-depth, analysis of the available
xperimental evidence is required in order to extract
nherent information. The analysis of neural data, such as
ulti-dimensional spike trains, is increasingly complex
sing traditional tools, like cross-correlograms, due to the
ast quantity of data involved. Consequently, new analysis
ethods are required to deal with this data.

The specific computer science field of Information
isualisation is focuséd on innovations in the representation
f vast quantities of data. A guiding principle of
nformation Visualisation is that the investigator should
ave control over the data representation that they are:using.

Moreover, the investigator should be able to manipulate the
data by applying relevant techniques, in order to steer that
direction-of the analysis. For example, it may be appropriate
to use statistical or other mathematical routines to sort and
organise the data.

The “information-seeking mantra”, introduced by
Shneiderman [1] in 1996, highlighted user requirements in
this area. It proposed that users should have the ability to
overview data, zoom and filter this data and to obtain
details-on-demand. This mantra was widely adopted
throughout the Information Visualisation community as a
basis for defining user requirements. Frequently different
levels of detail are viewed using different visualizations.
Resulting in 2 number of different views of the data. For
consistency, these multiple views should be linked
(4](5](6]-

In this paper, a method of dealing with the analysis of
relatively large numbers of spike trains, involving cross-
correlation, is proposed. '

2 Neurophysiological data

Within the mammalian nervous system, there are many
different types of neurons, each of which performs a
different task. . These neurons communicate via small
electrical impulses.

A neuron accumulates electrical charge from other
neurons attached to it. When this accumulation reaches an
internal threshold, the neuron will initiate an action
potential. When a neuron initiates action potentials over
time, it is said that the neuron is firing. For example, the
application of pressure to the skin causes pressure-sensitive
neurons.to fire.

Note that action potentials are ofien referred to as
spikes and a series of the spikes, over time, is called a spike
train.

2.1 Spike trains

Spike train dala is the primary data recorded during
experimental Neurophysiology. This data is a record of the
spiking activity of a collection of neurons under
investigation. Figure 2-1 shows a section, from 200ms to
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Abstract

The current ability to record neural activity within the
brains of mammals has led to the production of a large
body of experimental dara. The analysis and
comprehension of this data is key to the understanding of
many basic brains funciions, for example learning and
memory.

The main constituent of this data is multi-dimensional
spike train recordings. As the analysis of these datasets, by
traditional means, becomes more complex and time
consuming the need for better methods of data analysis
increases.

This paper presents an innovative method for analysis of
the relationships within large multi-dimensional spike
train datasets. This method, called the '‘Correlation Grid,’
is based on the Information Visualisation principles,
overview the data, filter and zoom the data and obtain
details-on-demand [I]. The features of the Correlation
Grid are described, including filtering and sitatistical
sorting methods.

1 Introduction

Explanations to many questions in the field of
Neuroscience are dependent on the theoretical
understanding of a large body of experimental neura] data,
Specifically, this understanding is fundamental to the
exploration of information processing withiii the nervous
system. A primary component of this data is
simultancously recorded multi-dimensional spike trains.
Significant research in this area is steered towards the
principle of synchronisation of neural activity [2][3].

Further, in-depth, analysis of the available
experimental evidence is required in order to extract
inherent information. The analysis of neural data, such as
multi-dimensional spike trains, is increasingly complex
using traditional tools, like cross-correlograms, due to the

vast quantity of data involved. Consequently, new analysis
methods are required to deal with.this data.

The specific computer science field of Information
Visualisation is focused on innovations in the
representation of vast quantities of data. A guiding
principle of Information Visualisation is that the
investigator should have control over the data
representation that they are using. Moreover, the
investigator should be able to manipulate the data by
applying relevant techniques, in order to steer that
direction of the analysis. For example, it may be
appropriate to use statistical or other mathematical
routines’to sort and organise the dala.

The “information-seeking mantra”, introduced by
Shneiderman [1] in 1996, highlighted user requirements in
this area. It proposed that users should have the ability to
overview data, zoom and filter this data and to obtain
details-on-demand. This mantra was widely adopted
throughout the Information Visualisation community as a
basis for defining user requirements. Frequently different
levels of detail are viewed using different visualizations.
Resulting in a number of different views of the data. For
consistency, these multiple views should be linked
[41[5][6]-

In this paper, a method of dealing with the analysis of
relatively large numbers of spike trains, involving cross-
correlation, is proposed.

2 Necurophysiological data

Within the mammalian nervous system, there are
many different types of neurons, each of which performs a
different task. . These neurons communicale via small
electrical impulses.

A neuron accumulates electrical charge from other
neurons:attached to it. When this accumulation reaches an
internal threshold, the neuron will initiate an action
potential. When a neuron initiates action potentials over
time, it is said that the neuron is firing. For example, the
















The grid in Figure 5-6 has been filtered to solely
show significant peaks and clusters. Note that correlation
only exists between the spike trains of the coupled
neurons. For example, spike trains eight, nine and ten
show no correlation with any other spike trains.

6 Future work

The work presented in this paper is part of an
Information Visualisation project, at the Centre for Neural
and Adaptive Systems, called Visualisation of Inter-Spike
Associations (VISA) [15]. Specifically, this paper has
presented work on an innovative method for analysis of
large neural assemblies using cross-correlation. However,
a number of areas still require:attention.

Currently, users are unable to alter the order of the
spike trains. The ability to reorder the gird and to fine-tune
the display will'be implemented.

Empirical testing is underway to evaluate the
usability of this visualization method. Subsequently, it is
likely that this tool will be integrated into the VISA
Toolbox [15].
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ABSTRACT

1. Introduction

In general, experts involved in research on neural coding agree that information in nervous
system is encoded in the spatio-temporal patterns of spikes. However, there are two distinct
opinions about the manner in which this encoding takes place. Some experts consider that
temporal coding is based on the exact timing of spiking activity of a single neuron whilst
others belicve that this encoding is solcly based on the firing rate of a single neuron [1}. The
authors subscribe to the former opinion. Substantial quantities of simultaneously recorded
spike train data exist, in addition to the numerous models developed for the generation of this
data. However, current software systems to support the analysis and exploration of these
large datasets are not adequate. The main focus of the research presented in this paper is the
development of improved software systems to study the spatio-temporal patterns in these
datasets.

Experimental data has shown that spatio-temporal patterns are variable within these datasets:
Thus, when the same stimulus is presented to a subject twice; the resulting patterns can vary.
However, when a larger neural population is studied, it is still possible to identify a sub-
population, under variable conditions, that exhibits synchronous activity.

This paper describes several techniques based on Information Visualization that support the
exploration of multidimensional spike train datasets and the identification of sub-populations
of synchronously active neurons. Traditional measures of assessing synchrony, such as pair-
wise cross correlation functions are becoming increasingly time-consuming and complicated
when the number of simultancously recorded spike train increases. Therefore, new, computer
methods of dealing with these vast data scts are essential.

2. The VISA Visualisation Tool

In the previous workshop on Neural Coding, 2001, an initial prototype of the
visualization tool was presented [2, 3]. This tool is called, VISA, Visualization of Inter-Spike
Associations, and it supports the analysis of multidimensional spike train data. It supported
the use of the gravity transformation algorithm [4, 5] and the display of its output data using
parallel coordinates [6, 7]. Additionally, these parallel coordinates could be animated over
time.

Much software development in the area of Information Visualization is now designed
upon the much-cited “Information Seeking mantra” introduced by Shneiderman [8]. This
mantra states the basic requirements of any useful information visualization system as
“Overview first, zoom and filter, then details on demand”. This mantra has been adopted as
the fundamental premise upon which the VISA tool has been designed. The main aim of this
tool is to enable users to view their data at different levels of detail, from abstract
representations of the complete data set to specific representations that enable inspection of
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visualization, encodes the spike train of the corresponding neuron. The two ‘end’ bands, band
1 and band 9 in Figure 3, are adjacent to.each other, thus forming the tunnel environment.

Note that in figure 3 the order of the spike trains within the Tunnel is based on the cluster
analysis shown in Figure 2. Thus, it is possible for the user to reorder spike trains in order to
highlight synchrony between trains. Additionally, inside the tunnel, the user is able to
navigate or “fly” through the tunnel at different speeds, in order to identify “interesting”
features in the dataset at different positions in the tunnel.

5. Conclusion

Since the VISA tool is now equipped with the fundamental functionality required to
investigate neural assemblies; this paper will describe a series of analyses that are currently
underway. The paper shall report on the uscfulness of the visualization techniques currently
available, and the results obtained by using a combination of all the techniques available
using VISA.

Note that this research and the development of the VISA software is an ongoing project.
[t is anticipated that further use of the tool will also lead to further requircments definition.
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Evaluation of Spike Train Analysis using Visualization
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‘ 1 Introduction

Many unresolved issucs in the ficld of Neuroscience are
, dependent upon the comprehension of vast quantities ol neural
data. Exploration of information processing within the nervous
system depends upon the comprehension of this data. This
research focuses on simultaneously recorded multi-dimensional
spike train data that is used in the investigation of the principle of
synchronisation of neural-activity [Borisyuk and Borisyuk 1997].
In order to “mine” this data for inherent information, these data
sets require thorough and diverse analysis. Since these data sets
are large, conventional means of analysis, such as the use of cross-
corrclograms, are insufTicient on their own.

Thus, advanced techniques are being developed to exploit new
and traditional analysis methods for larger data sets.

This paper presents the initial evaluation of a method. of dealing
with the analysis of relatively large numbers of spike trains, based
upon the cross-correlogram, called the Correlation Grid {Walter et
al, 2003).

2 The VISA Tool

An initial prototype of the visualization tool was presented at the
Neural Coding Workshop in 2001(Stuart ct al. 2002(a)]. This tool
is called; VISA, Visualization of Inter-Spike Associations, and it
supports the analysis of multidimensional spike train data. It
supported the use of the pgravity transformation algorithm
[Gerstein and Acrisen 1985] and the display of its output data
using parallel coordinates [Inselberg and Dimsdale 1990].
Additionally, these parallel coordinates could be animated over
time [Stuart et al. 2002(b}].

Much soflwarc development in the arca of Information
Visualization is now designed upon the much-cited “Information
Seeking mantra” introduced by Shneiderman [1996]. This mantra
slales the basic requircments of any useful information
visualizalion system as “Overvicw first, zoom and filter, then
'details on demand”. This mantra has been adopled as the
fundamental premise upon which the VISA tool has been
idesigned. The main aim of this tool is to enable users Lo view their
-data a1 different levels of detail, from absiract representations of
the compleic data set to specific represcntations that cnable
inspection of individual data items. The latest version of VISA
includes additional numerical methods and visualization
algorithms, including the Correlation Grid [Waller et-al. 2003] and
cluster analysis.

3 The Cross-Correfogram

A cross-correlogram is used to visually rcpresent the synchrony
between the spike trains of two ncurons. This representation is
plotted as a histogram and represents the spiking activity of one
ncuron, designated to be the ‘target’ neuron, with respect to a
sccond ncuron, designated the ‘reference’ ncuron.
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The cross-correlogram is analysed for the existence of
‘significant’ peaks as defined by Brillinger[1979]. The height,
position (with respect to zero) and the number of peaks all help to
determine the type and number of connections, if any, between the
nEuUrons.

A cross-comrelogram with a significant peak after zero indicates
that the target neuron has a tendency to spike after the reference
ncuron. In conlrast, a significant peak belore zero would indicate
that the reference neuron tends to spike after the targel neuron. A
peak at or near zero indicates thc ncurons tend lo spike
coincidently.

4 The Correlation Grid

The Cormrelation Gird presents users with an overview ol the cross-
correlogram results, for-a number of spike trains.

So, for a given dataset, of » spike trains, all unique cross-
correlograms are gencrated, for specified correlation parameters
of bin and window size. Subsequently, the cross-correlograms are
nommnalised using the Brillinger[1979] method. Finally, the results
of these cross-corrclograms arc displayed as an n-by-n grid of
grey scale cells, representing the individual correlations between
all:pairs of spike trains.

The grid encodes the ‘height’ of the largest peak in each cross-
corrclogram. The peaks are in coded from white, representing no
peak, to black, representing the largest peak in the grid.

The user can sclect whether to view ‘all peaks’ or just significant
peaks. Significarit peaks are those that lie outside of the Brillinger
confidence interval specified for the grid. In addition, the
individual cross-corrclograms can be view by simply selecting the
corresponding cell in the grid.

The identification of groups, or clusters, of corrclations is key to
understanding the relationships between the underlying neurons. It
is possible to identify these cluslers visually, however this is nol
casily expanded for problems with larger datasets,

To aid with the identification of correlation clusters, a statistical
cluster analysis method has been implemented. This method uses
the height of the most significant peak, if any exist, of each cross-
correlogram 1o build a dendrograph for the correlation gird. This
in wm is used to generate the initial display order of the spike
trains.

5 Correlation Grid Trial

Note that all spike trains used for experimentation were generated
using an enhanced Integrate and Fire generator defined by
Borisyuk and Borisyuk [1997].

For this example, a dataset of fificen spike trains was gencrated,
over 2000ms, for the assembly of neurons shown in Figure 5-1.
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Figurc 5-1 The asscmbly of 15 neurons
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Abstract

This paper presents a visualization technigue specifically designed to support the analysis of synchronous
firings in multiple, simultaneously recorded, spike trains. This technique, called the Correlation Grid,
enables investigators to identify groups of spike trains, where each pair of spike irains has a high probability
of generating spikes approximately sintultaneously or within a constant time shifi. Moreover, the correlation
grid was developed 1o help solve the following reverse problem: identification of the connection architecture
between spike train generating units, which may produce a spike train dataset similar to the one under
analysis. To demonstrate the efficacy of this approach, results are presented from a siudy of three simulated,
noisy, spike train datasets. The parameters of the simulated neurons were chosen to reflect the typical
characteristics of cortical pyramidal neurons. The schemes of neuronal connections were not known to the
analysis. Nevertheless, the correlation grid enabled the analysts to find the correct connection architecture

Jor each of these three data sets.

1 Introduction

Synchronisation of neural discharges is considered
to be an important principle of information
processing by cortical neural circuits (Nase et al.
2003; Neuenschwander et al., 2003, Schmidt 2003).
Analysis of synchronisation of simultaneously
recorded spike trains is usually based on the
calculation of a counting function, such as a cross-
correlation function or a cross-correlogram (Gerstein
and Kirkland, 2001). Cross-correlograms are a
common and useful means of representing the
relationship between pairs of spike trains, recorded
in this way.

However, for any significantly sized neuronal
architecture, numerous cross-correlograms would
require in-depth analysis in order to identify
synchronous activity in and between groups of spike
trains. Indeed, investigation into the functional
conneclivity of neuron groups is a very important
area of research.

The objective is the identification of a feasible
architecture of connections between elements that
could account for the original spike train data and
subsequent correlation functions. Typically in
mathematics, the reverse problem.is very difficult to
solve and non-unique solutions may exist.
Nevertheless, the results of our blind testing are
promising.

Furthermore, new problems are posed by the
increasingly large neural assemblies that are
currently recorded.

In this paper, the role that information visualization
may play in alleviating some of these problems is

discussed. A visualization technique, called the
Correlation Grid (Walter et al. 2003), is used to
analyse a simultaneously recorded dataset of n spike
trains. Subsequently, this grid is used to identify
clusters of synchronous spike trains. Thus, il
supports the proposal of a scheme of functional
connectivity based on the fact that high correlation
between spike trains corresponds to significant
functional connection.

In order to imitate the experimental data of multi-
spike train recordings, a biologically-inspired
generator of spike trains with interconnections
according to a predefined connection scheme,
(Borisyuk 2002) is used. Each spike frain is
generated on the basis of an enhanced integrate and
fire  model and some specified connection
architecture with particular synaptic weights. Note
that all results in this paper are obtained in the
regime of blind testing. Only the spike trains were
made available for analysis. These spike trains are
used to generate the Correlation Grid, which is
analysed and used to identify the underlying
connection architecture of neurons. Finally, this
proposed architecture is assessed with respect to the
original used to:generate the data.

Progressively, the number of correct connection
identifications has increased during empirical
testing, resulting in improvements to the
methodology used. Currently, it is possible to obtain
a completely accurate connection scheme. In this
paper, three trials are presented, which correspond to
a different number of spike trains and/or connection
schemes.
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Figure 4-28 The cross-correlogram of spike trains 1 and 3
of trail three

Figure 4-29 The cross-correlogram of spike trains | and
10 of trail three

4.3.3 The lower group of trial:three

In order to interpret the lower group of trial three,
the lower pertion of the correlation grid is enlarged
and is shown in Figure 4-30,

NN

Figure 4-30 Enlargement of the lower group of the
correlation grid of trial three data

From this figure, two main, overlapping groups are
apparent. The top group consists of neurons 2, 6, 5
and 8; and the bottom group which consists of
neurons 5, 8, 7 and 9. Recall from section 4.1.4, that
overlapping groups tend to indicate different,
connected hierarchies.

The interpretation of the bottom group is relatively
straight-forward, it has a similar pattern and
structure to the upper group of this trial. The bottom
group depicis neuron 5, one level higher than
neurons 7, 8 and 9.

The top greup depicts neuron 2 connecting to both
neurons 5 and 6. In addition, a connection exists
from neuron 2 to neuron 8. It is likely that this is
attributable to the connection from neuron | to
neuron 8 via neuron 5. By examining the details of
the cross-correlogram (not shown due to space
limitations), between spike trains 2 and 8, it is
possible to verify this hypothesis. The link between
the top and bottom.groups is clearly via neuron 5.

In addition to these relationships, the grid shows a
second link between the two groups, from neuron 6
to neuron 9, indicated in Figure 4-30 by the

following symbol:{4).

4.3.4 Summary of trial three observations

From this analysis, the overview and details of the
correlation grid, it is possible to deduce the
underlying neuronal assembly of the data set, as
depicted in Figure 4-31.

(1) (2)
OO & ©

Figure 4-31 The neuronal assembly of trial three

5 Conclusions

This correlation grid, which is based on infermation
visualisation, has proven to be an effective tool in
supporting the study of synchronous spiking in
multi:dimensional neuronal systems. This method
has helped us to define the unknown structure of
connections between neurons. At this stage, only a
small number of simulated data sets have been
analysed. However, these initial empirical studies
have vyielded successive correct connection
architectures.

These empirical studies are continuing with a variety
of datasets from larger and more diverse assemblies.
The results from these studies will be published in
the future.

6 Future Work

The Correlation Grid will be developed to suppont
software functionality such as (i) greater direct user
manipulation, (ii) the facility to “zoom” and “hide”
data in the gnd, (iii) the capability to vary the
thresholds of “significance” which underlie the
colour coding, (iv) encoding other information such
as the number of peaks & peak delay in each
individual cross correlogram and (v) muitiple
threshold colour coding will be introduced.
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Abstract

Currently, the focus of research within Information Visualization is steering towards genomic data visualization
[27] due to the level of activity that the Human Genome Project [12] has generated. However, the Human Brian
project [11], renowned within Neuroinformatics, is equally challenging and exciting. Its main aim is to.increase
current understanding of brain function such as memory, learning, attention, emotions and consciousness. ‘It is
understood that this task will. require:the “integration of information from the level of the gene to the level of
behaviour”.

The work presented in this paper focuses on the visualization of neural data. More specifically, the data being
analyzed is multi-dimensional spike train:data. Traditional methods, such as the ‘raster plot’ and the ‘cross-
correlogram’, are still useful but they do not scale up for larger assemblies of neurons.

In this paper, a new innovative:method called the Tunnel is defined. Its design is based on the principles of
Information Visualization; overview the data, zoom and filter data, data details on demand [22]. The features of
this visualization environment are described. This includes data filtering, navigation and a ‘flat map’ overview
facility. Additionally, a ‘coincidence overlay map’ is presented. This map washes the Tunnel with colour, which

encodes the coincidence of spikes.

Keywords

Information visualization, neural data, spikes,. spike trains, analysis, visualization environment.



1 Introduction

Solution of many problems in the field of
Neuroscience is associated with the theoretical
comprehension of a large body of experimental
neural data. Specifically, investigation of
information processing in the nervous system is
associated with the analysis of these vast
guantities of neural data. More specifically, this
data.is simultanecusly recorded  multi-
dimensional spike train-data. Much of the
research effort in this area is steered towards
the principle of synchronization of neural activity
(4)(7].

The experimental evidence that is currently
-available requires further, in-depth analysis in
order to extract inherent information. Analysis of
neural data such as:multi-dimensional spike
trains using traditional tools, like raster plots and
cross-correlograms, is increasingly complex due
to the vast amount of data involved. Hence, new
methods of analysing this data are required.
Information Visualization is one of the fields of
computer science that deals with innovations in
the representation. of vast quantities of data.
This field is already recognised for its.current
-and potential contribution to large scale projects
such at the Human Genome Project [12] and the
Human Brain Project [11]. information
Visualization has also led the development of
many useful visual representations for

hierarchical and temporal data. These

visualizations include techniques such as
treemaps [21], space filling visualizations based
on radial layouts [23] and the use of helical
structures [13]. Other fundamentai techniques
such as parallel coordinates [14], have aiready
been successfully applied to the analysis-of
multi-dimensional spike train datasets [24], as
well as the innovative use of other basic
geometric primitives{26].

One of the fundamentals of the field of
Information Visualization is the ability of the
investigator to interact with the data being
analyzed, in order to.achieve greater insight.
Thus, the investigator should be-able to
navigate throughoutthe data, to identify and
explore specific-subsets of interest. When
visualising large datasets, the issue of efficient
navigation is amplified. It is important for the
user to be able to move quickly to-points-of
interest without becoming disoriented within the
data. By limiting the ways in which-the user can
navigate, this problem:can be alleviated. The
user can be constrained to follow predetermined
paths throughout the data space. Subsequently,
reversing or re-tracing your steps [17] becomes
trivial. In addition, providing the user with
different frames of reference can also:help [20].
In-addition to navigation capabilities, the
investigator should also have control over the

representation itself. Thus, in order to:steer the



analysis, they should be able to manipulate the
data by applying appropriate techniques. For
example, it may be appropriate to:sort or
organise the data using statistical or other
mathematical routines.

Traditionally, analysis of multi-dimensional spike
train data has not supported real-time user
interaction. In 1996, Shneiderman [22] identified
user interaction.as one of the-essential
components of Information Visualization.
Shneiderman also.introduced the “information—
seeking mantra” that highlighted user
requirements'in this area. This mantra specified
that users should have the capability to
overview.data, zoom and filter this data and to
obtain details-on-demand. This mantra was
widely adopted throughout the Information
Visualization.community as a:basis for defining
user requirements. In many cases, different
visualizations are utilised to represent data at
differing levels of detail. Thus, resulting in the
creation of a number of different views of the
same data. Ideally, these multiple views should
be linked for consistency [3][16](17].

In this paper, an interactive method for exploring
neural data is presented. This representation of
data is based on current Information
Visualization and virtual reality principles. It
supports multiple views of the:neural data as

weli as real time interaction by means of a

‘toolbex’ that facilitates zooming, filtering and

manipulation of the data.

2 NeuraliData

There are many different types of neurons in the
mammalian nervous system, each of which
performs a different task. For example,
excitation of motor neurons controls muscle
fibres resulting in the contraction of muscles.
These neurons communicate viarelatively weak

electrical impulses.

2.1 Spikes and Spike Trains

In general, a neuron accumulates electrical
stimulus from other neurons coupled to it, until
some internal threshold is reached. Once its
threshold is reached, the neuron initiates an
action potential. When a neuron initiates action
potentials-over time, we say that the neuron is
firing. Note that action potentials are more
commonly referred to as spikes and a series of
these spikes over time is known as a spike train.
Spike train data is one of the main types of data
collected during neurophysiological
experimentation. It is a record of the activity of a
collection of neurons under investigation. Figure
1 shows a section, from 300ms to 800ms, of a
typical spike train recerding for three neurons. In
this figure, a‘horizontal plot represents the spike
train of each neuron. This horizontal plot
denotes the occurrence of spikes, at specific

times, by a vertical line.



It is well established that information is encoded
in this data but itihas also been established that
each spike from-a single neuron is identical [19].
Hence, the form of individual spikes is believed
to carry little information. Instead, it'is the
spiking frequency and thus, inter-spike-intervals
that carry information. Thus, research is focused
on the analysis of multi-dimensional spike train
data to reveal information about the
synchronization of spike trains and the coupling

of neurons.

2.2 Coupling

Direct Synaptic coupling and Common Input
coupling are the general cases of coupling
where synchronization may occur between the
firing of two neurons.

Direct Synaptic coupling is illustrated in Figure 2
(i) where neuron A is coupled so that it
stimulates neuron B. If neuron A fires, then
neuron B has an increased probability of firing.
Common Input coupling is illustrated in Figure 2
(i), where neurons A and B are both coupled so
that they receive stimulation from a third neuron
C, resulting in the correlation of their input.
Thus, if neuron C fires then both neurons A and

B have increased probabilities of firing.

2.3 Multi-Dimensional Spike Train Data

One of the basic principles that underlie
information processing in the:brain is the

principle of synchronization of neural activity.

Research [4] indicates that the synchronization
principle may be useful in devising various
systems of information processing.

The current capability to record neural activity
has led to the production of large quantities of
experimental data. This data is in the form of
multi-dimensional spike train recordings.
Investigation of this data focuses on'the
synchrony between spike trains and the
coupling of neurons.

Traditional methods of analysis are still
employed by'Neurophysiologists in the absence
of more substantial software support. However,
this.type of analysis is both time consuming and
complex due to the quantity of data currently

available.

3 Traditional Methods of Analysis

A number of methods exist to analyze multi-
dimensional spike train data. Two of the most
commonly used methods are the raster plot,
which:directiy plots the spike train data, and the
cross-correlogram used to analyze the
correspondence between spike trains. Most
current methods are designed for use with a pair
of neurons and do-not scale-up to deal with

larger numbers of neurons.

3.1 The Raster Plot
The raster plot [1]is one of the original: methods
for viewing and analysing spike train'recordings.

Each train is displayed as a line of dots, where




each.dot representing the presence.of a spike at
that time from the stimulus. Raster plots can be
used'to compare-a number of recordings from
the same neuron. This aids in the identification
of similarities between these trials. In addition,
raster plots can be used to view a number of
spike trains.from different neurons.

Figure 3 shows two raster plots each displaying
spike train data from twoneurons. From Figure
3 (i) it can be deduced that the spike trains of
neurons a, and b, are synchronised and thus,
neurons a, and b, are likely to be coupled. From
Figure 3(ii), note that the spike trains of neuron
a and b are not obviously correlated and thus

neurons a and b are less likely to be coupled.

3.2 The Cross-Correlogram

The cross-correlogram [1][15].quantifies the
synchronization between the spike trains of two
neurons. One spike train is designated to be the
‘reference’ train. The other is known as the
‘target’. Due to the inherent delay in neural
circuits, a time frame for correlation must be
specified. This time frame, or correlation
window, consists of a number of equal time
segments, called ‘bins’.

The correlation window is centred-over the first
spike of the reference train. The number of
target train spikes that fall within each bin is
calculated. This process:is repeated for each

subsequent spike in the reference train. The

results of individual comparisons are summed
up to give the overall correlation.

This overall correlation is then plotted as the
‘cross-correlogram’ (see Figure 4) for the two
spike trains and shows the correlation of the
target train with the reference train.

If the cross-carrelogram has a significant peak
[6] a correlation exists between the two trains.
Consequently, it is likely that the two neurons
are connected. In Figure 4 (i) the cross-
correlogram of two spike trains, from connected
neurons, clearly shows a significant peak. In
contrast, noting the different scale, the cross-
correlogram in Figure 4 (ii) shows no significant
peaks, indicative of neurons that are not
connected.

The cross-correlogram is-a very useful and
commenly used tool for representing-the
relationship between the spike trains of a pair of
neurons. However, for-any significantly sized
neurcnal assembly, numerous pair-wise results
would be generated. This large quantity of
resultant data poses its own analysis problem,
as all pair-wise results must be analyzed to
understand any relationship between the

underlying neurons.

4 Current Methods:of Analysis

Other innovative methods also exist for the
analysis-of the spike trains of large groups of

interconnected neurons, also known as



assemblies. One notable method is the ‘Gravity
Transform', originally developed by Gerstein
and Aertsen [2][8][9]. The gravity transform
algorithm can be used to study the
dependencies in firing of multi-dimensional
spike trains. Recent work by Stuart et al. [24]
has enhanced the output from the original
gravity transform algorithm using visualization
techniques including parallel coordinates.
However, much work is still needed in this area
in order to fully support interactive exploration of

these large multi-dimensional data sets.

5§ An incremental approach to providing
support

The ultimate system for this type of problem
would be an intelligent adaptive system that built
up knowledge and expertise based on
experimentation that provided positive and
negative feedback to the system. This ideal
system would receive a dataset from the user as
input and would produce an assembly, perhaps
even two or three, with-a certainty value or
percentage associated with each topology
suggested.

However, the main milestone separating the
current suppoert available for this type of analysis
from this “ideal” system is a reliable human-
centred approach that accurately specifies the
topology of a network of neurons from.a

muitidimensional spike train dataset.

This human-centred approach will not comprise
a single, perfect representation that is suddenly
discovered. On the contrary, this human-centred
analysis approach will be a toolbox of many
different representations, each with individual
strengths and weaknesses. However, the
combined functionality of this suite of tools will
enable the experienced user to accurately
identify the topology of a network of neurons
from muiti-dimensional spike train datasets as
required by Neurophysiologists.

Hence, our work is focused on the design,
implementation and testing of individual
representations which, when coherently
combined together, truly support the analysis of
multi-dimensional spike train data. This
approach-is a unique and significant
development in this area as it is based on the
principles of Information Visualization and
Software Engineering. This paper presents a
new representation called the spike train
‘Tunnel’, that enables the user toinvestigate

synchrony in the datasets.

6 The Tunnel Environment

This environment presents different views of the
dataset and an additional overiay that encodes
spike coincidence. it enables-the user to focus
on a specific subset of the dataset using a:set of

interaction tools. Different frames of reference




are provided to enable investigators to track

their location within the data space.

6.1 The Tunnel Visualization

The Tunnel is-a cylindrical environment that
supports user interaction. Figure 5 shows the
Tunnel visualization of a randomly generated
dataset over 200ms.

Each of the numbered horizontal bands, that
comprise this Tunnel visualization, encodes the
spike train of the corresponding neuron. The two
‘end’ bands, band 1 and band 10 in Figure 5,
are adjacent to each other, thu_svforming the
cylindrical environment. Note that, time is
represented down through the Tunnel.

Overall, ilumination inside the environment
represents the firing of neurons.in the currently
displayed portion of the dataset. Synchrony is
detected by perception of the position, intensity
and frequency of light sources at different parts
of the Tunnel.

In the Tunnel visualization, the investigator is
able to 'fly’ through the Tunnel to arrive at
sections of the Tunnel (subsets of the data) that
are of specific interest. The user has control
over both, the speed and direction: of the flight.
However, to minimise the possible side-affects
of disorientation during navigation, motionis
restricted to being along the Tunnels length.

Thus, the user is restricted to forward and

reverse motion.

6.2 Filtering Data

To meet the user requirements previously
discussed in section 1, the Tunnel has filtering
functionality knowing as ‘dimming’. Whilst in the
filtering mode, dimming may be switched, on or
off, for each ofthe spike trains individually.
Figure 6 illustrates filtering of another 200ms
dataset. In this dataset; the spike trains of
neurons 4, 6 and 8 are identical. The remaining
spike trains were all randomly generated. In this
figure, all spike trains are dimmed with the
exception of spike trains 4, 6 and 8. This filtering
is designed to enable investigators to highlight
spike trains of interest while maintaining context

within the dataset.

6.3 Coincidence Sorting

As stated previously, in section 2.1, a key
concept of spike train analysis is the
identification of coincidence between spikes.
Within the Tunnel environment, the investigator
is able to.progressively sort the order of the
spike trains to view spike coincidence. The user
selects a spike on'a reference train.
Subsequently, the spike trains in the Tunnel are
reordered, sotrains with spikes coincident to the
selected spike are adjacent. Trains:that do not
have any coincident spikes are inherently
moved away from the reference train.
To.illustrate coincidence sorting, another 200ms

dataset, based on an assembly of ten neurons,




was generated. In this-assembly, neurons three
and ten fire every 12ms and neuron eight fires
every 7ms. To illustrate the progressive sorting
feature of the Tunnel, neurons four and six fire
every 7ms and 12ms.

The Tunnel visualization.of this unsorted dataset
is illustrated in Figure 7, where the selected
spike on the reference train is indicated by the
arrow. Note the first coincident spikes (at 12ms)
on spike train three and four, and the following
non-coincident spike (at 14ms), solely on train
four. Subsequent to sorting, spike trains four
and eight are moved adjacent to the reference
train, six, due to coincidence with the selected
spike. This reordering is shown in Figure 8.

The Tunnel visualization provides a progressive
sorting facility. When a successive sort is
applied, the order of sorted spike trains is
initially preserved. However, as this ordering is
applied, any train with a spike comelated to the
currently selected spike overrides this order.
This supports ‘fine-tuning’ of the spike train
order within the Tunnel,

As a result of this type: of successive sort, highly
correlated spike trains are nearer-to each other.
This is demonstrated in Figure 9. Spike train
three, four and ten are near to train six due to
their correlation with the currently selected
spike. Note that, the previous ordering.of train

four adjacent to train six persists as it correlated

to both the first and second selected spikes.
Since train three only correlated to the currently
selected spike, it cannot displace train four. In
contrast, note that train ten displaces spike train

eight.

6.4 Coincidence Summary

In addition to individual spike coincidences, the
overall spike coincidence of the datasetis also
of interest. Thus, the Coincidence Summary
was developed. This representation derives a
summary of neuron firing and colour codes this
data.

Each spike train in the dataset is divided into a
number of equal time slots, n, commonly
referred to.as “bins”. The size of bin is specified
by the user, but is usually relative to the neural
transmission delay time.

Each spike train has an associated array made
up of n elements, where each. element of the
array is associated with a bin. Each bin is
inspected and if one, or more, spikes occur
inside the bin, the corresponding etement in the
associated array is set equal to one, otherwise
zero. Note, the total number of spikes in each
bin is not important, but the presence, or
absence, of a spike within that bin.

When all of the associated arrays have been
calculated, an intermediate summary array,.of n
elements, is created. It is computed from the

associated arrays, such that, the ith element of



this intermediate summary array is equal to the
sum of the ith element of each associated array.
Subsequent to.computation, if an element of the
intermediate summary array is less than two,
there is no spike coincidence. Thus, these
elements-are set equal to zero in'the final
-summary array. Note that the maximum value of
an element in this final summary array is equal
to the total number of spike trains in the dataset.
This array is used to create the Coincidence
Summary Visualization.

The dataset.usedito create the visualization in
Figure 11 comprised ten spike trains each
lasting 200ms. Each of the spike trains were
created by appending four, 50ms trains
together, such that the first and third segments
were low in spike frequency in comparison to
the second and fourth segments. Thus, for this
200ms dataset, the final summary array is made
up of 87 elements where there are sixty-six 3ms
bins and one 2ms bin. Due to the way in which
the dataset was generated, elements 1-17 and
35 -51 of the final summary array will be
relatively low in value with respect to elements
18-34 and 52-67.

This data is encoded for the Coincidence
Summary Visualization using colour based on
the Hue map shown in Figure 10.

The Coincidence Summary Visualization {CSV)

for the Tunnel is illustrated in Figure 11. Recall,

that the labels (red) of the trains bear no relation
to coincidence, they have been added to this
paper for clarity.

Note that the majority of the visualization viewed
at this position in the Tunnel primarily displays
the first segment of the final summary array.
Due to the reiatively low values of the first
segment, this is represented by different hues:of
blue.

Itis: possible todistinguish the second.segment
of the final summary array, at the centre of the
visualization. Due to the relatively high values in
this segment,.it is represented by mainly red

and yellow hues,

6.5 Combining them Together

In addition to viewing the CSV, it:is also possible
to:superimpose the Tunnel visualization onto the
CSV. An example of this is shown in Figure 12
where the data used to generate the CSV in
Figure 11 has been superimposed by the
corresponding Tunnel visualization of this
dataset.

This .combination of the CSV and the Tunnel
visualization increases the complexity of the
display but also helps identify coincidence
between spike trains.

Note that in this combined visualization, the
colour used to represent a spike is defined by

the corresponding colour in the: CSV. This




relates to the overall firing activity at that time in

the Tunnel.

6.6 The ‘Flat Map’ Representation

Investigalors can-also overview the data using
the ‘Flat Map’ representation as shown in Figure
13. This is similar to the raster plot discussed in
section 3.1 however, it has additional
functionality. This functionality enables the user
to select a 1000ms subset of the data for
analysis. It is this selected 1000ms subset that
is subsequently displayed in-greater detail within
the Tunnel representation,

To define the required:subset the user interacts
directly with the Flat Map resulting in a broad
black “Boundary indicator” which defines the
current portion to be viewed in detail in the
tunnel. Note that this detailed viewing is-a
dynamic process, effectively the user flies
through the segment. The “progression
indicator” on the Flat Map indicates to the user
their progression within the segment.

Figure 13, depicts the flat map for the
demonstration dataset used in section 5.3.
Although the tunnel is capable of displaying
1000ms at any given time, this demonstration
dataset is only 200ms long in order to clarify the
concepts presented. Thus, it is the majority of
this 200ms dataset that is shown in the tunnel

representation shown in Figure 7.

6.7 Undo/Redo Facility

In addition to user interaction and navigation,
the Tunnel:supports a comprehensive
undo/redo facility. Shneiderman asserted that
the ability to back track adaptation to the
visualization was key to the refinement of
understanding [22]. Thus, the.user should be
able to easlly return to previous states of the
visualization.

Towards this end, the envirenment tracks all
changes to the spike train order enabling the
user to-selectively undo/redo refinements to-aid

understanding.

7 Empirical Testing

In this section, the results of two trials are
presented. Each of the trials use a dataset that
was generaled using an-advancediintegrate and
fire model of neurons with particular coupling
between elements [4]. The parameters of this
model were chosen to imitate the general
neurophysiological characteristics of cortical
neurons. All connection strengths in these

simulations were chosen to be positive.

7.1 Trial One

In this trial, an assembly of 10 neurons, as
shown in Figure 14, was simulated for a period
of 20000 ms. The mean inter-spike interval (IS|)
was 70ms, the standard deviation of the 1SI of

the dataset was 53ms and its coefficient of

variation was 0.76.




7.1.1  Clustering

The random.ordering of spike trains within the
Tunnel poses a:number of problems when
attempting to analyze their interconnection(s).
Thus, it is preferable to have trains with a high
temporal correlation adjacent to each other. To
achieve this, the stripes of the tunnel
{representing each spike train) are reordered
using a clustering algorithm.

A range of different mathematical clustering
algerithms were analyzed to perform the
clustering of the spike trains. These algorithms
included a nearest neighbour algorithm (the
minimum of measures between objects in two
groups), a furthest neighbour algorithm (the
maximum of measures between objects in two
groups), and a centroid clustering algorithm [5].
The most suitable algorithm is the furthest
neighbour method as this algorithm creates tight
clusters between objects and all objects inside

clusters have limited dissimilarity.

7.1.2 The smaller group of trial one

A Tunnel representation for the trial.one data
was compiled and subsequently sorted using
the selected clustering algorithm. This is shown
in Figure 15, in which the trains 1,3, 5and 7
have been highlighted, for the segment of the
dataset between 3000ms and 4000ms. This is a

useful feature of the tunnel environment.

Observe the simultaneous spiking activity on
trains 3, 5 and 7. Further, note that these spikes
are preceded by a spike on train 1. It was also
possible to see this spiking pattern occurring
further along the tunnel. Although it is not easy
to see this from Figure 15, it is possible to see a

pattern of spikes around the second and third

-spikes on train 1. Subsequently, it is reasonable

to infer that a functional relationship exists
between these neurons. Furthermore, since the

spikes on train 1 precede those of the other

trains, it is likely that neuron 1 is a:common

input to neurons 3, 5 and 7. This is confirmed by

referring back to‘Figure 14.

7.1.3 The larger group of trial one

Figure 16 shows the same snapshot as Figure

16, however, in Figure 16 the spike trains 4, 6,
8, 9-and 10 are illuminated. Observe the
simultaneous spiking activity on trains 6, 8, 9
and 10. Furthermore, note that these spikes-are
also preceded by. a spike on train 4. Again, it is
reasonable to-infer that neurons 6, 8, 9 and 10
are connected and that neuron 4 is a common:
input to them. This is-also confirmed by referring

back to Figure 14.

7.1.4  Unconnected neuron

By observing train 2 along a number of sections
in the tunnel, it is possible to see that there is no

notable synchrony with any other trains. This is



due to the fact that neuron 2 is unconnected in

the assembly in Figure 14.

7.1.5 Summary

Overall the simple assembly depicted in Figure
14 can be deduced solely using the Tunnel

representation.

7.2 Trial Two

In this-trial,-an assembly of 15 neurons, as
shown in Figure 17, was simulated for a period
of 20000.ms. The mean inter-spike interval (1SI)
was 75ms, the standard deviation of the:IS1 of
the dataset was 53ms andiits coefficient of
variation was0.7. The IS histogram for spike
train 6 is shown in Figure 19(a) and its
autocorrelation is shown in Figure 19(b). The
raster plot of the first 3000ms of this dataset is
also shown in Figure 18. The initial spike train
tunnel for these 15 spike trains is shown in
Figure 20, in which the order of the stripes.is
based:on the default order of the spike trains in
the data file. Recall that the user sees up to
1000ms of the dataset at a time in this
representation, hence, Figure 20 displays a
snapshot of thefirst 1000ms of the dataset.
Note, that from this random ordering of the
trains it is difficult to extract useful information.
However, when viewing several snapshots, or
‘flying’ through this section of the tunnel, it is

possible to identify similarity between trains.

Figure 21 shows the same:snapshot of the
Tunnel as Figure 20 except that in this figure the
trains 5, 6, 9, and 11 are highlighted. Note the
spike-pair, the first two spikes, on train 6. This
spike-pair is followed by a similar spike-pair on
trains 5, 9 and 11, each with-different short
delays. Thus, it is possible to infer that a
relationship exists between:spike trains 5, 6, 9
and 11. This synchrony.of spiking is attributable
to the connections from neuron 6 to neurons 5,
9 and 11, the lower sub-group in the assembly
shown in Figure17. In Figure 21, the trains 5, 6,
9 and 11 have been highlighted to aid clarity-in
this diagram. Even though identification of
relationships in this manner is possible, it is
difficult and time consuming. The result of
clustering the spike trains of this dataset, and
subsequently, reordering the tunnel stripes, is

shown in Figure 22.

7.2.1  The smaller group of trial two

Subsequent to clustering, it is easier to identify
trains that are related. In Figure 23, spike trains
3, 7, 10-and 14 are highlighted. Note how the

clustering algorithm has assigned trains 3, 7, 10

-and 14 adjacent to one another. Also note the

coincident spikes on all four trains, mid way
down through the tunnel. Additionally, the
occurrence of synchronous spikes on trains 3, 7,
10, 14, was observed in other parts of the

tunnel. As these neurons tend to spike



coincidently, it is reasonable to suggest that
these neurons-are all receiving a similar input.
Further note that it is possible to see this
synchronous firing.is commonly preceded by the
occurrence of a spike on train 1 as shown in
Figure 23.

Indeed, from Figure 17, it is noted that spike
trains 3, 7, 10 and 14 are generated by a group
of commeon input neurons; namely neurons 3, 7,
10 and 14 which receive.common input from

neuron 1.

7.2.2 The larger group of trial two

In Figure 24, spike trains 6, 8 and 12 are
highlighted to makeiit easier for the user to view
therelationship between‘these trains. Closer
examination also shows: that this synchronous
firing is commonly preceded by the occurrence
of a spike on train 4. Thus, it is likely that neuron
4 is common input to neurons 6, 8 and 12.

In Figure 25, spike trains 5, 8 and 11 are
highlighted and it is very clear that a relationship
exists between these trains. From Figure 286, it
is possible to note that the synchronous spiking
in trains 5, 9 and 11 is preceded by a spike in
traini6. As it is already known that neuron 4 is a
common input.to neurons 6, 8 and 12, it is
deduced that this is a three level hierarchy of
neurons.

Inspection of train 2-using Figure 26 and

additional snapshots of the tunnel also revealed

that a relationship exists between trains 2 and 4.
Therefore, it is possible that neuron 2 connects
to neuron 4 which subsequently connects to
neurons 6, 8 and 12.

However, these relationships are not as clear
from the Tunnel representation and it is likely
that an additional representation, called'the
Correlation Grid [26] which is accurate in the
identification of hierarchies, would be required to

reinforce this aspect of the investigation.

7.2.3 Unconnected neurons

With the clustered order of the spike trains'in the
Tunnel representation, it is clear that spike
trains 13 and 15 have no:correlation with any of
the other trains in this-dataset. This:is notable
from-the lack of temporal relationships shown
for these spike trains in.Figure 22, as opposed

to the.other groups.

7.2.4 Summary.of trial two

From the clustered:version of the Tunnel
representation, it is possible to extract the
information.relating to the inter-neuron and inter-
group relationships. However, it may be
necessary, to support such an inferred definition
of a neural-assembly with additional'evidence
such as data from the correlation grid technique.
This will become more apparent from

subsequent empirical trials.



8 Future Work

The work presented in this paper.is part of an
Information Visualization project, at the Centre
for Interactive Intelligent Systems, University of
Plymouth, called Visualization of Inter-Spike
Associations:(VISA) [25). Specifically, this paper
has described an innovative visualization
technique for the analysis of multi-dimensional
spike train data called the Tunnel visualization.
Testing of this representation to date:has
concentrated on datasets of approximately 20
spike trains over 20000ms. In these cases, the
assemblies of the neurons that produced the
spike train data were:known to the investigator.
This initial feasibility testing has been beneficial,
reinforcing the efficacy of the method. However,
this testing has also highlighted a number of
limitations to the current version of the Tunnel
representation. Each of these weaknesses is
identified and future plans to strengthen these
areas are described.

In this paper, all:of the snapshots of the Tunnel
have spike train numbers appended to aid
identification. This-is a trivial problem which will
be addressed by simply developing a subtle
labelling system that does not infer with data
representation. A number of identification
methods exist and currently twe are under
consideration. To identify a specific train, the
user could “mouse over” the train to seeiits

number. Alternatively, a semi transparent

overlay of the train number could be developed.
Moreover, it is likely to be more appropriate to
implement both methods, allowing the user to
select between them.

Currently, the ‘flat map’ overview of the Tunnel
identifies the section of the data that the user
has chosen to zoom in upon, but it does not
track the user’s position. This is.not helpful to
the user and thus, an.exocentric frame of
reference [20] will be developed for the Tunnel,
to enable the user to:identify their current
position within the Tunnel.

Currently, the user may only select one,
continuous, area of the tunnel to zoom.
However, this representation does not provide
the user with the facility to zoom in on a number
of disjoint sections of the Tunnal,
simultaneously. This is problem.as the user is
largely interested in synchrony and repeated
patterns of activity within the whole dataset.
Thus, the user may need to view and compare a
number of sections (subsets of the whole
dataset} of interest. An efficient method of
shrinking areas of less interest in order to focus
on areas of greater interest will be investigated.
Hitherto.the weaknesses of the Tunnel
representation described are changes which
need to be implemented to improve the general

use of this representation specifically.




Howevet, there is a more significant issue that
also needs to be addressed. It is understood
that the human-centred analysis system, see
section 5, that will provide the overall combined
functionality required by Neurophysiclogists, will
comprise a range of reprasentations. However,
it also well established'that the usefuiness of
multiple views is significantly increased if views
are linked [16]. As the Tunne! representation is
an integral part of the VISA system, its
contribution to the overall analysis problem will
be significantly-advanced if it is used in
connection with the other representations of
VISA.

Thus, it is envisaged that future effort will be
focused on meaningfully linking the Tunnel
representation with other representations within
the VISA system. In the future, it is likely that the
VISA project will not only link representations
together but it will provide a visual programming
interface to enable users to “build” their own
analyzes interactively.

Finally, with respect to empirical testing, further
testing is currently underway to evaluate the
usability of this visualization method with larger
numbers of neurons. Subsequent to this,
significant testing will begin on'real data
recorded by Neurophysiologists who are keen to:

collaborate on this project.
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defined by the clustering algorithm and spike trains 2, 4, 6, 8, 12,
5,9 and 11 are highlighted



