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An investigation into motor pools and their applicability to a biologically 

inspired model of ballistic voluntary motor action 

Mark Paul Norman 

Abstract 

This study investigates the properties of motor pools in the human motor control 

system. The simulations carried out as part of this study used two biologically 

inspired neuronal models to simulate networks with properties similar to those 

observed in the human motor system (Burke, 1991). The Synchronous neuronal 

model developed as part of this study explicitly models the input/output spike train 

and frequency relationship of each neuron. The motor pool simulations were carried 

out using the INSIGHT TOO simulation software developed as part of this study. 

INSIGHT TOO is a flexible neural design tool that allows the visual interactive 

design of network connectivity and has the power of a node specification language 

similar to that of BASIC that allows multi-layer, multi-model networks to be 

simulated. The simulations have sho~ that the motor pools are capable of 

reproducing commonly observed physiological properties during normal voluntary 

reaching movements. As a result of these findings a theoretical model of ballistic 

voluntary motor action was proposed called the Recruitment Model. 

The Recruitment model utilises the "recruitment" principle known to exist in motor 

pools and applies this distributed processing methodology to the higher levels of 

motor action to explain how complex structures similar to the human skeletal 

system might be controlled. A simple version of the Recruitment Model is simulated 

showing an animation of a running "stick man". This simulation demonstrates some 

of the principles necessary to solve problems relating to synergy formation. 
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1.0 Introduction 

The standard 3-joint robotic arm currently seen in many factories throughout the 

world has brought significant improvements in the efficiency and quality of 

manufacture for a vast range of products. At present the usefulness of these robotic 

machines is limited by the control strategies that govern them and therefore the tasks 

to which they can be applied. Existing control strategies limit the application of 

robotics to only relatively simple production processes. A control strategy that could 

match that of the human motor control system would find a multitude of new 

applications. 

Control techniques have often revolved around mathematical analysis of a problem 

space and an analytical solution to the problem. Although the implementation of 

these models has changed, in general the philosophies and approaches have changed 

by only small amounts. 

Classical robotic manipulators have typically been controlled using standard control 

theory using mathematical analysis of the problem space to send rigid control 

signals to rigid robotic manipulators. These control models are based around inverse 

dynamic and inverse kinematic analysis (see for example Wada and Kawato 1993). 

For simple problems this approach has proved to be acceptable. For many tasks that 

humans take for granted this approach stalls almost immediately. As the problem 

space complexity increases the analysis complexity explodes combinatorially. The 

reason for this failure is that the complex interacting three dimensional geometries 

require more time to compute than is available in a real-time time environment with 

the present common computing facilities. The next stage adopted by many 

I 



researchers was to build models implementing classical control theory using neural 

networks (see chapter 2). This approach led to control strategies that can adapt to 

small perturbations in simple problem spaces but still could not solve more complex 

problems. 

There is a control system that is already capable of carrying out tasks of 

significantly greater complexity than those currently available for artificial systems. 

This control system is implemented in the human brain and is capable of highly 

complex control behaviour. Although we cannot build the control system at present, 

it is possible to learn as much as we can about the methods employed in it and to 

use this information to improve our control models. 

The design of the human brain is less rigid in philosophy than the techniques we can 

apply with mathematics and computation. In a computer controlled process, if an 

event occurs that was not originally planned for by the systems designers then often 

the system will produce an unpredictable result, fail ungracefully or just fail 

completely. In many control processes it is not possible or desirable to allow for 

every possible contingency. The techniques employed in the human motor control 

system enables it to adapt to new situations in a way that does not cause the system 

to fail. The chosen response is often predictable as the best choice given the 

information available. 

The rigidity in the design of standard control systems is also reflected in the design 

of the physical device being controlled (and vice-versa). An example of this is a 

standard robotic arm; the motors and joints that move the limbs have precise 

characteristics that require precise control parameters and as such every parameter 

must be explicitly controlled. 

2 
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The human motor system is entirely different. Human muscles are "sloppy" in 

comparison and the feedback from them is slow and imprecise (Rack, 1981). The 

control signals that govern them are also imprecise. The net result of the human 

design is obviously better. A hypothetical account of this is that some of the 

complex parameters in the control sequence are designed-out, that is they are 

accounted for at a local level and do not need to be directly controlled. From this 

hypothesis we can infer that the human motor control system has learnt some useful 

techniques that could be used to solve real world control problems. 

When a reaching movement is required (a voluntary movement), the human brain 

activates the appropriate units to make a movement in that general direction and at 

that distance. The initial stimulus that is sent to the muscles is usually larger than 

that required. Subsequent feedback of the position of the ann as the movement 

progresses is used to modify this signal. The movement of the ann must be smooth, 

it cannot be jerked into action as this might cause the muscle to tear or become 

strained. Equally it should not be brought to an abrupt halt either. The ideal overall 

velocity profile of each muscle for a given movement would be approximately "bell­

shaped" when re-scaled for velocity/duration (see figure l.l(a)) and for a wide 

range of movements in the human motor system this is indeed observed ( Abend, 

Bizzi & Morasso, 1982; Atkeson & Hollerbach, 1985). Many control models omit 

to produce bell-shaped velocity profiles and other physiological observations made 

in human arm movements, as they are invariably implemented and designed on rigid 

robotic manipulators. In the human motor control system the motor pools are 

located in the spinal cord and brain stem, and are known to play a major role in 

transforming descending motor commands into physical tensions in the target 

4 
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1.1 Objectives of research 

The objective of this research was to:- (i) understand the neurophysiological and 

biological processes associated with the output drive of voluntary motor control 

during the initial ballistic phase of movement (before feedback is available), and to 

understand the position of the output motor drive in the context of the overall 

ballistic voluntary motor control system; (ii) to assess the applicability of the major 

motor control systems in the human brain with regard to building an artificial 

biologically inspired control system; to achieve this a review of the 

neurophysiological motor areas is undertaken in chapter 3; (iii) to test this 

understanding by building biologically inspired models which will be designed, 

simulated and assessed in this context. 

The ballistic phase of voluntary motor action occurs before feedback is available to 

alter the trajectory (Rack, 1981); the control system is therefore open loop control 

(see chapter 2.1 ). By distinguishing between the initial ballistic phase and 

subsequent corrected phases of movements, important simplifications can be made 

to help focus on the motor production problem, i.e. the generation and form of 

control signals. A number of complex brain structures such as the cerebellum, basal 

ganglia (which consists of many sub-areas) and the thalamic nuclei can all be 

disregarded as their input is known not to be available until much later corrected 

phases of movement occur (Rack, 1981). 

Voluntary motor control is distinguished from other types of motor control since it 

is a conscious action. Other types of motor action, such as reflexive motor actions 

occur without cognitive effort and are controlled by localised control mechanisms 

and are essentially low-level processes. There are however, many different types of 
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voluntary motor action, some involve planning from current information, some from 

recalled information. Other types rely on complex recall of motor sequences, 

requiring the interaction of many sensory modalities. 

In chapter 6 where the Recruitment model of motor control is described in detail an 

important distinction is made between higher motor levels (or motor planning 

levels) and motor production levels. The motor planning areas issue sequences of 

synchronised "simple instructions" onto a corrunon area known as the motor 

production level, which integrates and processes these inputs. The definition of 

"simple instructions" in this case does not refer to a single muscle or joint 

movement, but instead refers to a movement that can be realised in a single action. 

For example, an arm reaching movement can require the synchronisation and 

movement of several joints and many muscles in a complex way. For the majority of 

arm movements in free-space this would be defined as a "simple movement". A 

movement requiring that an obstacle be avoided en-route would be defined as a 

"complex movement", and would be completed by means of several "simple 

movements" released from higher motor areas or motor planning levels. For this 

reason it is important that transitions between successive simple movements occur 

smoothly. 

Figure l.l(b) shows another important physiological property where a movement of 

differing fixed amplitudes is made in similar times, demonstrating duration 

invariance (Freund and Budingen, 1978). The second half or downside of the profile 

shows natural decay back to a resting position. The simulations in chapter 5 and 

chapter 6 focus on this property as being significant to building better motor control 
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models. The Recruitment Model suggests a key role for the motor pools in the 

production of this property. 

Chapter 2 gives an overview of contrasting approaches to motor control problems 

and a review of the major issues relating to the control of movements. A mix of 

biologically plausible and artificial models are described. In chapter 3 a review of 

the motor pools in the human brain is presented. These reviews form the basis for a 

number of experimental simulations, which are presented in chapter 5, the results of 

which are contrasted with the control review presented in chapter 2. 

The structure and operation of the motor pool simulations are then considered in the 

context of an overall motor control model. Chapter 6 therefore discusses how the 

information presented thus far could be combined into a uniform Control Model 

(the Recruitment model). 

The Recruitment Model of ballistic voluntary motor action breaks down into two 

main areas:- those concerned with motor planning and those concerned with motor 

production. The planning modules are concerned with issues such as high level 

trajectory planning, object avoidance and recall from memory of complex motor 

sequences. The motor production modules are concerned with carrying out these 

sequences of positions correctly. The higher motor planning areas are numerous, 

complex, distributed and diverse in design and in the human motor system are 

located both cortically and sub-cortically (see chapter 3). The motor production area 

will therefore take many input signals, integrate them and then ensure correct 

execution. This involves monitoring the progress of any single movement and 

providing corrections where necessary, as well as adapting to any physical changes 

in the device being controlled (for example allowing for a strained muscle). The 
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motor production areas must provide smooth control of a multitude of muscles and 

muscle fibers, each of which needs a unique control signal which must be 

synchronised with the operation of all the other muscles and muscle fibers. The 

motor pools (a constituent part of the motor production areas) are responsible for 

the final smooth motor output. For each muscle there is a motor pool, and each 

motor pool is made up of many other independent elements. 

Each motor pool is controlled by higher motor production levels. These include the 

Joint Recruitment Level (JRL) and Muscle Recruitment Level (MRL). The 

arrangement of these levels can be seen in figure 1.2. 

The JRL is responsible for the control of joints, which in turn operate on areas of 

the MRL. The MRL which has control of each individual muscle in turn instructs 

the operation of each motor pool. 

A simplified form of the Recruitment control model is then demonstrated in the 

form of computer simulation (Chapter 6). A description of the neuronal model and 

simulation parameters used during these experiments is given in Chapter 4. 

9 
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1.2 Summary 

In chapter 5 simulations designed to examine motor pool behaviour are studied. To 

provide a background to these simulations, chapter 2 reviews the primary motor 

control issues and concepts and provides a contextual background for the detailed 

neurophysiological review undertaken in chapter 3. These chapters in combination 

provide the theoretical basis for the Recruitment Model, which is outlined in detail 

in chapter 6. 

The simulations in chapter 5 and chapter 6 are based on two neuronal models, the 

first being the Leaky Integrator (Bressloff and Taylor, 1988), and the second is the 

Synchronous neuronal model, which was developed as part of this study. The details 

of these models are presented in chapter 4. The operation of the INSIGHT TOO 

simulation software developed as part of this study, is outlined in chapter 5, where it 

is applied to both Leaky Integrator and Synchronous network simulations. 

In chapter 7 the research aims and objectives are measured against the output of this 

research, and the results are put into a practical context. The concluding chapter 

also discusses how this research might be progressed in the future. 
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2. Overview of the control of reaching movements. 

2.1 Introduction 

In any control problem there are a number of important issues that need to be 

resolved, these include choosing a control strategy, a co-ordinate system and how 

the various control tasks are to be segmented. In section 2.1 a broad description of 

the available control strategies is given and the human motor control system is 

described in this context. This is followed by a discussion on co-ordinate systems 

biased towards research results reported about human neurophysiology. 

Section 2.3 describes an arbitrary breakdown of tasks that are commonly seen in 

control models implemented to solve voluntary reaching problems. The processing 

necessary at each step is then described in more detail, and in the context of the 

human motor control system. 

The final sections focus down on models and issues relating solely to the human 

motor system; specifically on reported physiological observations and how this has 

affected the design of existing motor control strategies. 

The aim of this chapter is to give a background of control issues and solutions, 

which can be used to assess the more detailed neurophysiological results reported in 

chapter 3 and the experimental data reported in following chapters. 

There are a number of differing approaches to any control problem; the approach 

chosen will depend on the task, and is affected by factors such as the required 

response speed, control complexity and available feedback information. Closed loop 

and open loop are the two main control strategies. These strategies can be combined 
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in many ways to form hybrid strategies. The variations on these basic forms are 

numerous, a brief overview is given below. 

2.1.1 Closed loop control 

A closed loop control strategy does not plan the entire trajectory in advance. The 

trajectory is allowed to unfold in real-time using feedback from the periphery to 

alter the path. 

The advantage of closed loop control is that the motor plan may be relatively simple 

and may overlook non-linearities in the device being controlled. Spinal reflex 

circuits have been viewed as feedback regulated servo systems and is an example 

where closed loop theory has enjoyed much popularity (Houk and Rymer 1981). 

A requirement for closed loop control is that the feedback of information be fast and 

accurate relative to the process being controlled. The "sloppiness" of biological 

proprioceptors and the delays inherent in the reflex feedback loops (Rack 1981) 

make it impossible that the brain uses this feedback for the control of fast 

movements. 

2.1.2 Open loop control 

In open loop control no feedback is used. The entire trajectory including both spatial 

and temporal aspects is determined in detail in advance. Without the advantage of 

feedback the planning of the motor program is far more expensive than in the closed 

loop case (Hollerbach and Flash 1982). 

The human motor control system does not use solely open-loop control either, since 

once a plan has been set into action this strategy allows no mechanism for its 
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alteration. The human motor system is clearly able to alter targets and react to 

changes without difficulty. 

2.1.3 Hybrid control strategy 

In practice the majority of control strategies employ a combination of both open and 

closed loop controls. The human motor control system certainly has many examples 

of both strategies combined at various levels. 

The ballistic phase of voluntary motor action is the phase that occurs before 

feedback is available to alter the trajectory (Rack, 1981); this phase then, is by 

definition open-loop. The ballistic phase is however part of a larger control strategy 

that is primarily closed loop. The voluntary motor control system is therefore a 

hybrid control strategy. 

In this research, only the ballistic phase of motor action is considered. This is an 

important point as it significantly · reduces the complexity required for the 

description of the Recruitment Model, and allows this research to focus on a 

considerably narrower area of brain function. The consequences of this choice are a 

major point of discussion in the following chapters of this thesis. 
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2.2 Co-ordinate systems 

One of the current issues in the study of reaching control concerns the coordinate 

system used by the nervous system in the planning and generation of movements. 

The choice of coordinate systems is limited by the type of information that is 

fedback from the control system periphery. In the human motor control system this 

still leaves a choice of:- visual co-ordinates, egocentric head or trunk-based 

coordinates, joint angles, muscle lengths and many others. 

There is still considerable controversy concerning the co-ordinate frame in which 

trajectories are planned. Morasso (1981) observed that the hands of subjects, when 

making horizontal planar arm movements between two points, follow approximately 

straight line trajectories. This led to the hypothesis that arm movements are planned 

in terms of hand position in space. These hand movements were made using highly 

non-linear joint excursions and in the presence of complicated limb dynamics 

(Hollerbach and Flash, 1982) making this interpretation a persuasive one. 

Other studies (Soechting and Lacquaniti 1981; Laquaniti and Soechting 1982) have 

shown that, for other types of arm movements, the trajectory of the hand is not 

always straight, and that there appears to be instead invariances between joint 

angles. While these results have been disputed (Hollerbach and Atkeson 1987), 

more evidence has accumulated that there are joint angles (specifically the elevation 

and yaw angles of the upper and lower arm) which are used for the estimation of 

static arm orientation (Soechting and Ross 1984) and for the generation of arm 

movements in the absence of visual feedback (Soechting and Flanders 1989b ). The 

use of these joint variables in the planning of movements is also consistent with 

neurophysiological data suggesting that movement direction is encoded in a 
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coordinate system which rotates with the shoulder (Caminiti et al. 1992). Also, 

Helms Tillery et. al. ( 1991) have shown the position of the hand in space can be 

derived purely from kinaesthetic information, and more importantly they showed 

that this kinesthetic information can be used to reproduce arm configurations in the 

absence of visual information more accurately than the hand position itself can be 

deduced. This supports the hypothesis that kinesthetic information is not used to 

derive the hand position in space, and that trajectory planning occurs in body 

centred joint coordinates (Helms Tillery et. al. 1991). 
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2.3 Control tasks 

Any controlled movement requires the following tasks to be carried out:-

1. calculate the start position, or the localisation of the hand or limb to be moved; 

2. calculate the end position, or the localisation of the target; 

3. calculate the trajectory profile, or the joint angles and torques; 

4. calculate the actuator activations, or the muscle activity; 

The nature of the calculation for each of these steps depends on: (i) the coordinate 

system being used (see section 2.2); (ii) the physical device being controlled and 

(iii) implementation. As a result of these three factors some of the above tasks may 

not be explicitly calculated and are often merged with other tasks, but each must in 

some way be accounted for. 

The above steps are useful for providing a methodical breakdown of tasks when 

solving real-world engineering problems. It is unwise to go looking for an 

implementation of these explicit tasks in the human brain. The task list above 

implies an inherently sequential order, this is diametrically opposed to the 

intrinsically parallel nature of the brain. 

The human control system uses fundamentally different processmg techniques 

which are parallel by design; the Recruitment mechanism is an example of this (see 

section 3.4.3) and is exploited throughout the Recruitment control model. In 

contrast a "standard implementation" of the above tasks is known as a hierarchical 

controller, which proceeds through tasks similar to those above in a sequential 

order. The majority of implementors of this hierarchical model have to perform 
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complex computations when calculating tasks 3 and 4, these calculations are known 

as inverse kinematic and inverse dynamic analysis. These calculations are discussed 

below. 

2.3.1 Inverse kinematic analysis 

Tasks 1 and 2 above (section 2.3) define the start and end points of the path. The 

joint angles and velocities then need to be calculated; this highly non-linear 

calculation is known as "inverse kinematics" (Saltzman,1979). The human forelimb 

has seven degrees of freedom, one more than the six necessary to position and 

orient to any object in space. The additional degree of freedom implies that the 

inverse kinematics problem is a one-to-many mapping (An, 1988); that is, for any 

given hand position there are a number of possible joint configurations. Thus, for 

the nervous system the inverse kinematics problem not only represents a difficult 

calculation, but one of selecting criterion for the reduction of the number of degrees 

of freedom. Many criterion have been tried in different models including 

minimisation of time, acceleration, energy and jerk (Nelson, 1983). 

2.3.2 Inverse dynamic analysis 

At this stage in the control process the necessary joint angles and velocities have 

been computed. The nervous system has control over joint muscles, just as other 

control systems have control of robot actuators. The angles and velocities computed 

in the previous stages are converted into joint torques at this stage. This process is 

termed "inverse dynamics" and is complicated by inertial, centripetal, and coriolis 

torques generated in a moving multijoint system (Hollerbach, 1982; Hollerbach and 
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Flash, 1982). In addition, the forces which are to be applied to the environment 

through the hand must be taken into account (An, 1988). The inverse dynamics step 

is possibly the most computationally intensive of the entire hierarchical process, and 

this computation is further complicated by the fact that there is no analytic solution 

to the inverse dynamics problem. 

In robotics, the inverse dynamics problem is solved by lengthy numerical 

approximation methods (Saltzman 1979, Orin et. al. 1979). 

2.3.3 Muscle activation 

The final task is to take the joint torque information and to convert this into actuator 

values or muscle activation patterns. In the actuator case this is now a 

straightforward process, the actuator characteristics are precisely defined and easy 

to control. Human muscles are not so simple, they consist of many smaller 

components known as muscle fibres. 

Each muscle fibre has a point of origin and insertion. The point of origin is defined 

as the fixture point on the bone that does not move under the muscle contraction, 

and the point of insertion is the fixture point on the bone that moves. The origin and 

insertion points may vary within a muscle (section 3.4.3). The characteristics of the 

fibres (and therefore the muscle) vary as the joint rotates and the muscle length 

changes. Each muscle has a characteristic length-tension relationship. This scenario 

is further complicated by bi-articular muscles, i.e. muscles with multiple insertion or 

origin points (section 3.4.3). Muscle fibres also will not operate continuously like a 

robotic arm actuator; the fibres need to be used for short periods and then allowed 

to rest to prevent muscle fatigue (see section 3.4.2). 
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The majority of control models ignore the properties of the human muscle since it 

has been shown that they can be approximated to behave in a linear fashion by 

assuming muscle stiffness regulation that compensates for muscle irregularities 

(Nichols & Honk, 1976). This is the case in virtually all models that are eventually 

implemented on a robotic arm. The Recruitment model of motor control proposes a 

model of muscle activation (see chapter 5) which implies not only a useful role for 

this complicated physiology, but also a necessary one. 
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2.4 Physiological observations 

This section provides details on measurements and observations which have been 

made for differing categories of arm movements. The calculations are typically used 

as reference parameters by which models that claim to be biologically plausible are 

judged. 

2.4.1 Bell-shaped profiles and profile invariances 

Many researchers have observed that the velocity profiles of simple arm movements 

are approximately bell-shaped (Abend, Bizzi and Morasso, 1982, Atkeson and 

Hollerbach, 1985). Furthermore, the shape of the bell if re-scaled appropriately, is 

approximately preserved for movements that vary in duration, distance or peak 

velocity. The findings of this research suggest that not only does the shape of the 

profile reduce wear and tear on the muscles themselves, but that the invariant 

aspects of these profiles is an essential component of synergy formation. Figure 

1.1(a) shows how velocity profiles when rescaled appropriately have a similar bell­

shaped profile. These velocity profiles were generated over a fixed distance at 

several different velocities (Atk:eson and Hollerbach, 1985). Figure 1.1 (b) shows 

how differing targeted force levels are reached in equal amounts of time, 

demonstrating duration invariance. 

2.4.2 Fitts law 

In 1954 Fitt conducted a systematic analysis of the relationship between speed and 

accuracy that has remained nearly unmodified for over forty years. In Fitts'paradigm 

(or Fitts' task), a person is to tap a hand-held stylus alternately between two target 
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plates as rapidly as possible for a 20-sec trial. The two targets are usually 

rectangular and oriented as shown in Figure 2.1, with the long dimension 

perpendicular to the line between the two targets. Both the width of the targets (W) 

and the amplitude of the movement between them (A) can be altered from condition 

to condition producing a large number of possible combinations of A and W. The 

task is scored as the number of taps (regardless whether they are correct) in 20 sec, 

but subjects are cautioned to make no more than about 5% errors in their 

movements. Fitts found that the relationship between the amplitude (A) of the 

movement, the target width (W), and the resulting average movement time (MT) 

was given by the following equation: 

MT =a+ b[Log2 (2NW)] 

where MT is the average movement time for a series of taps, computed as the trial 

duration (20 sec) divided by the number of taps completed in that time. The values a 

and b are empirical constants and are required in order that the mathematical 

equation of the line actually fits the observed data from the experimental setting. 

The form of the Fitts equation is linear and shows how Log2(2NW) is related to the 

movement time i.e. it relates the "difficulty" of the movement to the time taken. For 

this reason Fitts called this value the index of difficulty. 

Fitt' s law ts umque in that it relates to virtually all motor acts under many 

conditions, and has caused consternation as to how a simple mathematical 

relationship can be used to describe such a complex movement process. 
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2.4.3 Synergy formation 

It has been observed that during human arm movements groups of muscles become 

active and inactive during the course of a movement. The group of muscles acting in 

cooperation at any instant in time are known as a synergy. 

It is not sufficient to calculate a movement in terms of x, y, and z displacements, 

and then to simply activate the muscles or joints to move in direction x, followed by 

y and z (see Figure 2.2). The displacement in each direction must start and finish at 

the same time. The muscles used during a typical synergy will span multiple joints 

and will need to contract unequal amounts in equal time. 

The problem is further complicated when the more detailed physical arrangement in 

individual muscles is considered. Due to leverage effects, rotations about joints are 

not simply achieved by one muscle, but many. Each individual muscle is itself 

broken down into compartments and groups of muscle fibres. These fibres and 

components join in the movement of the joint at differing positions and under 

differing conditions (section 3.4.3). 

To determine the muscles cooperating in a synergy and their activation levels, a 

number of parameters have to be considered. Firstly it is necessary to decide which 

muscles are going to be used; there may be a large number of choices since there is 

a great deal of redundancy. Having selected the criterion for the reduction of this 

selection, each synergist must be controlled temoporally and spatially. Certain 

muscles might not be active at the start of a movement but might instead start at a 

half way point for reasons of biomechanical efficiency. Synergy formation ts 

therefore a complex selection making process with strong temporal aspects. 
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Caminiti et. al. ( 1990) analysed the patterns of muscle activation for a given three -

dimensional movement and noted that the patterns of activation in the human motor 

cortex changed as a result of the changes in the activity of many component 

muscles. The degree of change in muscle pattern and the muscles responsible for 

these changes varied as a function of the direction of movement. 

Due to the complexity of the synergy formation task, a key question is:-

what is the mechanism used by the human motor system that enables these 

interacting components to be combined so effectively? This investigation suggests 

that the synergy formation problem is fundamental to building good control 

systems. Synergy formation is therefore a central issue which is discussed in detail 

in the following chapters. 
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Fitts Paradigm 

Targets 

A 

The performer taps a stylus alternately 
between two targets of width W separated 
by a distance A. 
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Synergy Formation 

Point A indicates a path that requires the acting muscles to 
contract by equal amounts in equal time. 
Path B shows a path that requires the acting muscles to 
contract by different amounts in equal time. 
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2.5 Control strategies 

The focus of this study is on the details of trajectory formation both at a theoretical 

and practical level. Theories as to how trajectories are formed can be divided into 

two broad areas; those that suggest that the whole trajectory is pre-planned such as 

the Minimized Cartesian Jerk theory (Hogan, 1984; Flash & Hogan, 1985), and 

others that suggest that the trajectory is formed as the movement progresses such as 

those described in sections 2.5.1 (VITE Model) and 2.5.2 (Mass Spring models) 

below. 

The details of these trajectory formation models are discussed in more detail in 

chapter 4 and chapter 5 where they relate to the description of the Recruitment 

model of motor control. 

2.5.1 VITE/A VITE model 

The VITE (Vector Integration To Endpoint) model (Bullock & Grossberg, 1988) 

describes a simple linear pair model of a muscle (agonist and an antagonist). VITE 

is based upon knowing the present muscle position (PPC - Present Position 

Command) and the required target position (TPC - Target Position Command). The 

difference between the PPC and the TPC is then calculated, and this is known as the 

Difference Vector (DV). A speed controlling GO signal multiplies the DV before it 

is integrated with the PPC. The PPC is gradually updated by integrating the DV 

through time. This arrangement is shown in Figure 2.3. The VITE model therefore 

allows the trajectory to unfold on the basis of these parameters at each instance in 

time. 
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TPC - Target Postion Command 

DV - Difference Vector 

PPC - Present Position Command 
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The VITE model uses a series of equations that together accurately predict a variety 

of physiological data as described in section 2.4. It has been successful in 

explaining the form feedback takes in the various stages of the motor control 

process. Bullock & Grossberg(1988a) recognise duration invariance as an essential 

component in synergy formation, but this property is implemented directly through 

the system equations. The Recruitment Model postulates that the human motor 

pools are ideally suited to this role, and as a result have importance with regard to 

other roles as well. 

The VITE model does not explain all the neurophysiological data reported in 

chapter 3, nor does it encompass information regarding muscle behaviour. The 

VITE model although very simple is undeniably an important contribution to the 

understanding of motor control. 

2.5.2 Mass Spring modelling 

Another approach to simplifying inverse dynamic and inverse kinematic equations 

has been proposed. In this scheme, the equations are not explicitly solved, and the 

biomechanical properties of the arm (elasticity, viscosity) are used to generate the 

trajectory (Feldman 1966; Polit and Bizzi 1979). The agonist and antagonist 

muscles activity would be set to the value appropriate for the final position of the 

arm, and the forces generated by the spring-like muscles would tend to carry the 

arm to an "equilibrium" position. It has been shown that the original formulations of 

this so called "equilibrium point" model, in which movements result from step 

changes in the equilibrium point, is not adequate to explain the trajectories of 

perturbed movements (Bizzi et. al. 1982, 1984, 1990). This data is instead 
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consistent with the idea of a gradually shifting equilibrium point. The path of the 

equilibrium point through space has been termed the "virtual trajectory" of the ann 

(Bizzi et al. 1984; Hogan 1988). Because of the uncompensated dynamic torques 

generated by the moving ann, the hand does not precisely follow the virtual 

trajectory. The nervous system can however, control the degree of precision with 

which the arm follows the virtual trajectory by regulating the stiffness of the ann 

(amount of contraction of agonist antagonist muscle pairs; Hogan 1988). While this 

model permits complicated dynamics problems to be treated as a simpler statics 

problem (Hestenes, 1994), exactly how the appropriate muscle activities are 

generated from the virtual trajectory has not been addressed. 

2.5.3. Trajectory formation utilising parameter optimisation 

There are many examples of control models based upon minimisation or 

optimisation of movement parameters. A good example of this is the "minimized 

Cartesian jerk theory" (Hogan, 1984; Flash & Hogan, 1985) which posits the 

existence of a high level stage involving the explicit computation and internal 

representation of the velocity profile as a whole. This representation is then used 

for performing the desired action. The concept of computing the whole trajectory in 

advance has many draw backs and rightly no longer appears to have much backing. 

Problems include the inability of such models to react to trajectory changes or 

perturbations in the environment during movement. Other such optimisation models 

have subsequently been proposed such as Minimum Torque Change model(Wada, Y 

& Kawato,M 1993) which predict data better than the Minimum-Jerk model (Uno 

et. al., 1989) but still requires several passes to produce these movements. 
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2.6 Summary 

In this chapter an overview has been given of important control issues that will 

relate to the later discussions on the Recruitment model of motor control. 

The Recruitment model is at present a theoretical model of ballistic motor 

production i.e. it is the phase of a voluntary reaching movement that occurs before 

feedback is available to modify the movement. This chapter outlined some issues 

relating to co-ordinate schemes and synergy formation, both are important issues 

which are discussed in detail in later chapters. 

A key question examined in this research is whether the additional complexity of 

modelling structures similar to human arm muscles will lead to any emergent 

benefits in a trajectory formation model as a whole. This question is pursued 

experimentally and theoretically in the following chapters. The trajectory formation 

models outlined in section 2.5 are known to be able to reproduce features observed 

in human arm movements, such as bell-shaped profiles and duration invariances 

(section 2.4.1) under certain conditions. These will be used to assess the 

performance of neuronal modelling carried out as part of the Recruitment model of 

motor control in chapters 4 and 5. 
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3. Neurophysiological & Biological Review 

3.1 Introduction 

The human brain is an immensely complex structure, the sheer number of individual 

cells and the myriad of connections between them are beyond visualisation. The 

actual form of the processing undertaken is fundamentally different from that of 

symbolic computing. It is inescapable however, that the human brain carries out 

many functions superbly well, visual and auditory acuity are just two of the many 

notable examples. 

The human motor system is also an example where artificial systems fall well short 

of the performance attainable in the human motor system. There is however no 

single area that can be identified in the human brain as carrying out motor function, 

instead it is spread throughout many areas both cortical and subcortical. All the 

areas associated with motor function interact to affect the outcome. Although some 

of the main motor areas now have fairly well defined contributions there still exist 

numerous areas, of which our understanding is very limited. 
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3.2 Nomenclature 

Historically most of the designations for cortical brain regions have arisen as a 

result of lesion studies, followed by coarse electrode mapping studies and more 

recently by detailed electrode mapping studies. Due to the inaccuracies and 

coarseness of early studies many · investigators adopted their own naming 

conventions. This of course has led to great confusion and made the accurate 

interpretation of data (especially early studies) difficult. In order to partially 

alleviate this problem Figure 3.1 lists a number of prominent researchers and their 

naming designations for different regions. The definitions are as reported from a 

group meeting of Wise et. al. 1991. The cortical motor areas all form parts of the 

cerebral cortex, of which the main areas are the primary motor area (M1) and the 

nonprimary motor areas, which may include parietal as well as frontal fields. The 

frontal nonprimary areas can be further subdivided into premotor cortex (PM), 

supplementary motor cortex (M2), and medial motor areas. This thesis has been 

produced adopting the naming convention of Wise et. al. (1991). The finer 

subdivisions shown in Figure 3.1 are not discussed in this thesis. The positions of 

the primary motor areas on a monkey's cerebral cortex can be seen in Figure 3.2, 

defined according to Wise et. al. (1991) nomenclature. Investigations into motor 

behaviour are often undertaken on monkey's as they have motor abilities most 

similar to our own. The relative proportions of corresponding areas do however 

vary: in a human brain the cerebral cortex is more developed and larger, whereas in 

a monkey the phylogenetically older basal ganglia structures are more developed. 
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Nomenclature in motor cortical areas 

MII 
Woolsey(l952) SMA 

Brodmann( 1909) • [§] 8 

Fulton{l934) • !PM I-------........................... ~ 

Rizzolatti, Matelli et. al.{l981) ~I F2 I .. 6ab i F4 & F5 F3 24d 24c 
V on Bonin & Bailey( 194 7) ~FC !FCB &FB LC/FDL FD 

Vogt & Vogt{l919) 4a,b,c 6aa ~j 6ab j .. 4c,6ba &6a 8a,b,g 

Barbas & Pandya(1987) 4 6DC ~6DR I .. 4C&6V MII 8 

Tanji & Humphrey(1991) MI ~PMd PMa SMA 

Premot6r Areas 
Dum & Strick(1991) 

MC SPA APA 

Ml SEF PMv M2 ~c MMr FEF 

Wise et. al.(1991) 
-4------ 1 Non-primary motor area 

~-+--------1 Motor cortex 1---1---+------+--__.. 
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Primary Motor Areas Of A Monkey Cortex 

(Diagram of the left lateral view) 

During this study the main motor areas of interest are M 1, which 
is the primary motor cortex, PM which is the premotor cortex and 
SMA which is the Supplementary Motor Area. 
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3.2 Overview of the human motor control system 

The motor system in its entirety breaks down into four broadly different areas:­

cortical regions, sub-cortical regions, spinal/brain stem areas and muscles. The 

cortical areas subdivide as shown in Figure 3.1 (see section 3 .1) and are discussed 

in detail in section 3 .3. The subcortical motor areas consists of two primary 

pathways. 

The first is the pyramidal pathway (or corticospinal tract (CST)) which is by far the 

most significant, and secondly, the extra-pyramidal pathways (all the other tracts in 

the basal ganglia, including the rubrospinal tract) which consists of many smaller 

specialised tracts. The extra-pyramidal pathways pass through the area known as the 

basal ganglia and thalamic regions. The basal ganglia are made up of many highly 

interconnected sub-areas; in Figure 3.3 areas designated as being part of the basal 

ganglia are the striate body(SB), globus pallidus(GP), substantia nigra(SN), 

subthalamus(ST), red nucleus(RN) and inferior ollivellecur(IO). Figure 3.3 shows 

the main feedback pathways within these areas. Due to the highly interconnected 

nature of the basal ganglia it is extremely difficult to determine the exact function of 

each of the separate basal ganglia areas. The pyramidal tract (CST) is relatively 

simpler, targeting directly onto brain stem and spinal cord regions. The neurons in 

these regions that are targeted by descending cortical commands are known as 

motor neurons, and are organised into structures known as motor pools. The motor 

pools are discussed in detail in section 3.4.1 and are a major topic in this study. The 

motor neurons within these motor pools then directly innervate skeletal muscles. 

This study is concerned with only the ballistic phase of motor production, that 

occurs before feedback is available by way of extrapyramidal pathways. The basal 
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Key Motor Areas And Pathwa 
In The Human Motor Control m 

EAR 

csr RST PERIPHERY 

ST - Subthalamus MC - Motor Cortex T- Thalamus 
RN - Red Nucleus PMC - Premotor Cortex 10 - Inferior Ollivellecur 
C - Cerebellum SC - Sensory Cortex MS - Higher Motor System 
SN- Substantia Nigra SB- Striate Body M2 - Supplementary motor areas 
CST- Corticospinal Tract GP - Globus Pallidus w.tW& Pathway A 
RST - Rubrospinal Tract RF - Reticular Formation llllll!lllll Pathway B 
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3.3 Cortical Areas 

Pylogenetically the cortical areas represent the most recent structures of the brain. 

These cortical regions envelop and sWTound the subcortical regions. The cortical 

areas are relatively thin but highly interconnected with many downward 

connections. The most important motor cortical area is the primary motor cortex 

(Ml - Figure 3.2), which is in an excellent position to mediate information flow 

between the many other cortical areas as shown in Figure 3.3. 

The additional non-primary motor areas all communicate either directly or indirectly 

with Ml. Although some of these non-primary areas do target sub-cortical areas, the 

main connections are aimed at M 1. 

Various functions are postulated for the role of Ml from complete planning and 

control of all movements down to merely passing on instructions from functionally 

higher areas. 

In the Recruitment Model of motor control the Joint Recruitment Level (JRL) and 

the Muscle Recruitment Level (MRL) correspond to Ml in the human brain. Both 

the MRL and the JRL are concerned with motor production only and are not 

involved in any high level planning. The neurophysiological basis for this and other 

aspects of the Recruitment control model (see chapter 6) are discussed in section 

3. 3 .I. A discussion of the role of the non-primary motor areas is given in chapter 

3.4. to give some background information to aid understanding of the role of Ml, 

but they are not the primary focus of this study. 
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3.3 .1 Motor Cortex 

The primary motor cortex was the first cortical area to be discovered as having 

motor function. A multitude of primitive experiments established the link between 

the primary motor cortex (Ml) and motor function by applying electrical stimuli to 

various points on the cortex and noting any corresponding elicited movement. These 

studies then proceeded to map out various topographical relationships between 

adjacent cortical areas and the resulting bodily movements. 

One of the most striking observations was that the motor cortex (M1) is organised 

somatotopically (Woolsey et. al. 1952), i.e. M1 is organised as a map of all the 

muscles that are controlled, the relationship between the representation for 

neighbouring muscles in M 1 is the same as the physical relationship between 

muscles (Figure 3.4). The size of the relationship in Ml reflects the function of the 

muscle being controlled, for example a muscle requiring gross degrees of control 

like a thigh muscle would have a proportionally small representation compared to 

that of the hand which has a much larger area so that fine, controlled movements 

can be made (Figure 3.4). This somatotopy in the motor cortex is sometimes 

referred to as the motor homonoculas or homonocular, and the other commonly 

referred to map is in the sensory cortex and is referred to as the seminicular map. 

The reason for this organisational arrangement is not clear, but some degree of 

somatotopy is preserved throughout the entire motor system including sensory areas. 

The Recruitment Model exploits this aspect of cortical design and suggests that it is 

necessary to facilitate the efficient use of available muscles (see chapter 6). 
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lhe phenomenon of somatotopy in the 
motor cortex 

1he figure above schematically depicts the phenomenon of 
somatotopy, observed in areas such as the motor cortex and the 
sensory cortex. 1he figure shows that muscle representations in 
the motor cortex have similar relationships to their physical 
arrangement e.g. hand muscles adjoin arm muscles. 1he size of 
representation is dependant on the function of the target muscle. 
For example the representation of the hand and face areas is 
correspondin la er than an arm muscle. 
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The neurophysiological data has been broken down into sections relevant to the 

functional subcategories for building a computational model. Firstly, section 3.3.1.1 

describes the major input/output pathways and the type of information conveyed in 

them. Section 3 .3 .1.2 reviews the single electrode mapping studies which are less 

sophisticated than the population mapping studies in section 3.3.1.3. The population 

mapping studies have enabled significant advances in understanding the nature of all 

motor cortical areas and in particular Ml. The early studies focused on 2-

dimensional movements, but have subsequently been expanded to 3-dimensional 

studies. 

The final section reviews how the neurophysiological data may be applied to the 

synergy problem (see section 2.4.3 and 3.3.1.4) and by what techniques these motor 

processes might occur (section 3.3.1.5). 

3.3.1.1 Efferents and afferent 

The motor cortex has been established as the central area for motor control and as 

such has the most complex connectivity with adjoining structures. This section will 

briefly outline the major incoming (efferent) and outgoing (afferent) connections. 

The pyramidal (or corticospinal) tract is the largest afferent pathway from Ml and 

this projects directly onto the spinal cord and brain stem grey matter (Figure 3.3). 

This is the major pathway for the issue of voluntary motor commands and targets 

onto the motor pools which then control the individual muscles. 

There are two main extrapyramidal pathways, the first being the cerebellum 

thalamacortical pathway (Schell & Strict, 1984 - Figure 3.3 pathway A) , and the 

second being the somatosensory thalamacortical pathway (Schell & Strict, 1984, 
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Figure 3.3 pathway B). 

The first of these pathways is involved in providing feedback as a voluntary 

movement proceeds (particularly from the cerebellum), and the second is involved 

in issuing commands on the basis of proprioceptive sensory input. The other 

extrapyramidal pathways within the basal ganglia seem concerned primarily with 

information sharing between the many disparate areas, and probably are specialised 

systems concerned with things such as posture control and locomotion (Johnson, 

1992). 

The inputs to the motor system are equally diverse commg from adjoining 

nonprimary cortical areas such as the supplementary motor areas (M2), premotor 

(PM) and parietal areas (e.g. SEF and FEF) (Figure 3 .2). All these cortical areas 

exchange information directly. The adjoining motor areas however do not 

communicate through M 1 exclusively and have been shown to target sub-cortical 

areas directly. Other cortical areas such as auditory, visual and sensory 

communicate via the thalamacortical pathways. From this information it is known 

that the motor cortex is linked either directly or indirectly to every sensory modality 

available. The outputs of M1 are tightly linked to the output motor response and not 

the incoming stimuli. The motor cortex primarily responds to proprioceptive 

information and shows only loose association with visual and auditory stimuli 

(Tanji and Kurata, 1985). The motor cortex does however respond to incoming 

proprioceptive stimuli even if a movement is not evoked (Fetz et. al, 1980). 

Using a technique of spike triggered averaging, Fetz and Cheney ( 1980) and Fetz et. 

al. ( 1990) discovered that each M 1 cell that had connections along the pyramidal 

tract, targeted on average between 2 or 3 motor neuron pools, although the possible 
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range was between I and 6. Of the 65 M l cells studied, 60% exhibited pure 

facilitation of one or more agonist, 30% exerted reciprocal facilitation on agonist or 

antagonist, 8% exhibited mixed effects, and 2% eo-facilitated motor neuron pools 

(Fetz et. al. 1990). These experimental results give an interesting upper limit on the 

level of divergent output available from Ml. This data is further discussed with 

reference to the Recruitment model of motor control in chapter 6. 

3.3.1.2 Single unit recording studies 

Ml has been the subject of more single unit recording studies than any other cortical 

area. Initially the data gathered was used to provide a picture of the topographical 

structure of the motor cortex and to give us the representation known as the motor 

homonoculus (Woolsey et. al. 1952). Since then more sophisticated studies have 

attempted to show links between neuronal cell activation and kinematic or dynamic 

properties. 

Various flexionlextension experiments were performed by Evarts (1968) in which a 

sample of pyramidal tract neurons were observed under three differing movements: 

unloaded, with a flexion load, or with an extension load. Evarts found that 90% of 

the cells in his sample varied firing rate with muscle activation patterns. A further 

series of experiments were undertaken (Schmidt et. al. 1975, Smith et. al. 1975, 

Hepp-Raymond and Diener 1983) as a consequence of these results, all of which 

showed a correlation between cell activity and force and thus implied that the cortex 

represents muscles and not movements. 

Additional studies into the somatotopical organisation of Ml have shown that 

individual muscles could be activated by microstirnulation over a relatively large 

44 



area of the cortex, and that within this area multiple low threshold foci can exist 

(Humprey & Mitz 1989; Sato & Tanji 1989; Sanes & Donoghue,1992). These foci 

from different muscles tend to overlap forming a "mosaic" of multiple muscle 

representations. The multiple representation of joints within MI has also been 

reported (Humphrey and Mitz 1989), and the output from areas identified as 

controlling both muscles and joints can be weighted (Donoghue et. al. 1989) to 

change the level of facilitation of target motor neuronal pools. 

3. 3 .1.3 Population recording studies 

The population studies started with. Georgopoulos et. al. in 1982 when they 

discovered that cell population activity in the motor cortex varied as a function of 

the required direction of an upcoming movement. This approach has achieved much 

success in the following years as it has proven to be a very flexible idea and has 

subsequently been expanded to encompass three-dimensional data and loading 

effects. 

The technique of recording the activity of a population of cells, when compared to 

that of recording single cells is of considerably more use when the structural nature 

of Ml is considered. Ml as with all brain regions is a massively parallel structure. 

Examining individual elements of this structure is prone to error and misconception 

in the same way that looking at a single neuron in a perceptron type network will 

yield no useful information. With this premise in mind the relevance of the 

population studies below should be correspondingly weighted against single unit 

studies. 

Using a "center-out'' task m which the monkey was required to make two-
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dimensional movements using a manipulandum from a central starting position to 

targets located on a surrounding circle, Georgopoulos et. al. (1982) observed that 

the activity of each individual neuron was broadly tuned to a preferred movement 

direction. This activity can be described by a mathematical model in which the cell 

activity is proportional to the cosine of the angle between the preferred direction 

and the actual direction of movement. They found that in spite of complicated 

muscle and joint geometries involved in reaching movements, a simple relationship 

exists between the proximal arm region of the motor cortex and the direction of the 

hand movement in space. 

An extension of the two-dimensional model was made by allowing free-arm 

reaching movements in three-dimensions (Scwartz et. al. 1988; Caminiti et. al. 

1990). In this model activities of all the neurons in the population are summed to 

produce a population vector. It has been shown that this population vector 

accurately predicts movement direction in both two and three dimensional 

movements (Georgopoulos et. al. 1983, 1988,1993; Kalsaka et. al. 1989; Carniniti 

et. al. 1990, 1991). 

In further analyses of the movement direction in the motor cortex, Carniniti et al. 

(1992) extended the three-dimensional reaching task to cover most of the 

extrapersonal workspace of a monkey. They found that the preferred direction 

vectors of individual cells shifted as the monkey performed in different parts of 

space. These shifts varied from cell to cell as might be expected if the cells were 

encoding functional groups of muscles (Bumod et al. 1992). Global measures of the 

population's preferred directions, however, tended to rotate with the initial position 

of the arm in space, suggesting that the arm movements are being represented in an 
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arm centred reference frame. In all these studies of the directional properties of M 1 

neurons, the monkey has performed essentially straight line movements and the net 

direction between the movement origin and movement endpoint has been used as 

the direction of movement. 

3.3.1.4 Coding mechanisms 

Although the direction of movement seems to be represented in the motor cortex it 

is still necessary to determine in what form it is stored, i.e. are movements 

represented in the form of Cartesian co-ordinate system or more probably as 

Humphrey et. al. (1970), Thach (1978) and Murphey et. al. (1982) have suggested 

that a relationship exists between cortical cell activity and the angular displacements 

of the joints involved in the arm movement. Other recent studies have indicated that 

a representation of the trajectory, not just the net direction of the movement may be 

presented in motor cortical activity (Hocherman and Wise 1991). 

Another unknown is how movement amplitudes are encoded; it is possible they are 

encoded in the motor cortex, but single cells showed little modulation with 

movements of varying lengths (Hamada and Kubota 1979; Schwartz et.al. 1987; 

Riehle and Requin 1989). However, this does not rule the possible representation of 

movement amplitude by population code. Another possibility is that movement 

direction and amplitude are encoded by separate systems (Riehle and Requin 1989; 

See also Favilla et al. 1989) 

The fact that neuronal activity varied with movement direction in the above 

experiments could be explained by the encoding of movement endpoint (Giszter et 

al. 1989; Hestenes, 1994) as well as by the encoding of direction since these two 
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variables are confounded in the standard "center-out" tasks. 

Another task, the "out-center" task was employed to test the hypothesis that 

movement endpoint was being encoded (Georgopoulos & Massey 1985). In this task 

the monkey made movements of varying direction to a common central endpoint. 

Cell activity recorded during the task still exhibited broad tuning to movement 

direction. These data show that for many cells in Ml, movement direction is more 

important than endpoint, and the movement endpoints are probably not represented 

by single units at the motor cortical level but more probably represented at more of 

a population level. 

3.3.1.5 Summary 

From the single unit studies M1 can be summarised as representing:-

• force related information; 

• joint related information; 

• muscle related information. 

From the population recording studies Ml can be summarised as representing:-

• direction; 

• movement endpoint; 

• trajectory; 

• movement amplitude. 

This does not appear to be much of a summary; one view is that for all these 

parameters to be represented, functionally separate system must coexist in Ml 

(Riehle and Requin, 1989). The Recruitment Model demonstrates a strategy that 

encompasses all these parameters in some form, and endorses the view that M l 
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encodes a transition from kinematic Uoint related) related properties to dynamic 

related properties (muscle related properties) (Kalasaka 1992), and that the cells 

involved in representing these properties are organised somatotopically and 

therefore encode direction also. The motor cortex must be able to continuously 

integrate incoming signals. If M I represents the direction of movement then over a 

period of time it will encode trajectory. From the single unit studies more force or 

amplitude related information would seem to be represented; this taken in 

combination with the population studies which indicate more spatially related 

information, gives an approximate indication of movement endpoint. The endpoint 

represented at any instant in time is unlikely to be the actual endpoint, due to the 

fact that as the temporal sequences of endpoints are integrated, the inability to 

actually implement each position will result in a virtual trajectory and virtual end 

point being encoded. This idea concurs with the Mass Spring modelling tradition 

(Bizzi et. al. 1984, Bizzi and Mussa-Ivaldi, 1990) and the difficulty of confirming if 

endpoints actually are encoded. 

The population studies on the motor cortex has proved to be the most successful 

approach for understanding the behaviour of Ml. Populations of cells have a 

preferred direction of action at both the joint and muscle levels. The distributed 

coding approach to understanding Ml has proved to be successful in other motor 

areas as well, such as the Premotor cortex (Caminiti et. al., 1991) and the cerebellar 

nuclei (Fortier et. al. 1989) as well as the coding of arm movement direction in 

parietal area 5 (Kalasaka et. al. 1983; Kalasaka, 1988). From this information it can 

be deduced that M 1 has a common communications protocol with the many other 

motor areas (Godschalk et.al. 1984). This protocol is preserved through 
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connectivity, activation levels and probably temporally. This concept predicts a role 

for a time signal with which to synchronise all contributing motor areas. 

From the information contained within Ml and its position with respect to 

surrounding motor areas it appears to be a central area through which all primary 

motor function is executed. Certainly M I is well placed for selection and control of 

both joints and muscles. It does not however appear to carry out any form of 

planning or complex sequences of control. 

Although it is known that a transition between joint information and muscle 

information exists, the method of transition is still unknown. The process by which 

the populations of cells are selected has not been fully described, although 

"recruitment" is the proposed mechanism in the Recruitment Model. 

The Recruitment Model also reconciles data concerning the level of divergent 

output from M 1 that engages with motor pools. Consider a cell that has a preferred 

direction of action that is the same as the direction of action of a muscle with 

respect to the joint it acts around. In this (the ideal) case it would have only one 

divergent axon, which would engage the motor neurons of the appropriate motor 

pool (section 3.4.1) related to the target muscle. In cells that encode directions that 

fall between the actual muscles directions of actions, the divergent axons would 

engage multiple motor pools with appropriately weighted connections. In the worst 

case the maximum would be twice the maximum number (allowing for agonist and 

antagonist) of degrees of freedom available at the joint being represented. For the 

shoulder joint which has three degrees of freedom this would be six, which is the 

reported maximum number (Cheney and Fetz, 1985, Lemon et. al. 1986) of 

divergent axons from Ml that targetmotor pools. In the Recruitment Model the 
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I ' ' 

I process of· encoding~ a' trajectory is .one of recruiting the •appmprilt.te .P()pulatipns of 

ftmctional cells at .the appropriate .time, This ,process• is explained in more deta:ii in. 

chapter.6. 
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3.3.2 Other Cortical Areas 

Of the remaining non-primary motor areas, the following structures are the most 

significant:- premotor cortex (PM), supplementary motor area (M2). Their 

designation as "non-primary" motor areas is however misleading since their 

reported role in the motor system is more "supra-motor" rather than "sub-motor" as 

both have been found to be an important part of the motor system. 

The roles that these areas play are more subtle and less easy to define than Ml. This 

fact is compounded further by historical nomenclature difficulties and by the lack of 

more reliable population studies. Historically the bulk of information available has 

been made via lesioning experiments and only latterly by more sophisticated single 

electrode and population studies. 

The premotor cortex (PM) occupies a large area of the frontal lobe. In the human 

brain PM is six times larger than Ml. The medial surface of the frontal lobes is 

designated as the supplementary motor area (M2). Both these areas are complex and 

are typically subdivided into 2 or 3 other functional areas. For the purposes of this 

review however they will be summarised more generally with respect to their 

relationship with M 1. 

3.3.2.1 Efferents and afferents 

Projections to PM and M2 arise from a wide area of the thalamus (Darian-Smith et. 

al. 1990), and thus from all areas inputting into the thalamus(Figure 3.3); primarily, 

including the cerebellum, basal ganglia (De Vito and Anderson, 1982) and all other 

sensory areas. Reciprocal connections occur between Ml, M2 and other parietal 

areas (concerned with association). 
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The properties of both M2 and PM were once thought to be mediated purely via 

pyramidal tract connections. Now it is known that they both possess direct links to 

the subcortical motor centres (Keizer and Kuypers, 1989). 

3.3.2.2 Swnmary of supplementary motor area (M2) 

Data on M2 is not easily synthesised into a single theory. This can be illustrated by 

a brief listing of the current hypothetical roles of M2: the proprioceptive guidance 

of movement (Passingham, 1987); the preparation for movement (Wise, 1984); the 

planning of motor routines (Roland, 1987); the coordination of bilateral hand 

movements (Brinkman, 1984); the initiation of voluntary movement (Goldberg, 

1985). Most of these hypothesis stress a "supra" as opposed to a supplementary role 

for M2 with respect to M 1. The anatomical connections with M2 make it a possible 

gateway by which large parts of the nervous system not involved in motor control 

can influence the motor apparatus. This idea is compatible with metabolic ERP 

(event related potential) data implicating this brain region in the control or initiation 

of movement based on internal information (Orgogozo and Larsen, 1979). Lesion 

and single-unit data are equivocal on such an interpretation, but the results to date 

are too variable to rule it out. The recent findings showing strong projections to M2 

from subcortical and spinal regions, raises doubt as to whether M2 can be 

considered as purely "supramotor'' either (Dum and Strick, 1991). 

In the Recruitment Model M2 would be categorised as a Higher Motor Center 

(HMC), primarily as a result of its connectivity with M1. At present the 

Recruitment Model makes no further analysis ofM2's role. 
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3.3.2.3 Summary ofpremotor cortex (PM) 

Anatomically, PM is in a position to mediate information flow to Ml from 

prefrontal and parietal cortices. PM receives a lot of information which is thought to 

be visually related. Lesion studies indicate that PM is normally involved in the 

processing required to generate or select sequences of complex movements on the 

basis of visual information (Luria, 1980). Many studies have found PM cells to be 

particularly active before movements in response to sensory (usually visual) stimuli 

(Godschalk et. al. 1985; Okano and Tanji, 1987). 

The "instructed delay" task is where a monkey is informed what the upcoming 

movement will be by an instruction stimulus (IS). Following a delay period (known 

as "set'' related activity) during which the monkey is required to remain motionless, 

a trigger stimulus is given to inform the monkey that the movement is to be 

performed. In such a task cell activity has been correlated with the IS (Godschalk 

et. al. 1981, 1985), "set" related activity (Evarts et. al. 1984) and movement 

direction (Kurata and Wise, 1988a). 

Such data strongly suggests that PM is involved in the preparation for, or planning 

of, upcoming reaching movements, but is strongly influenced by sensory signals. 

In the Recruitment Model of motor control PM would be categorised as a Higher 

Motor Center (HMC), but at present the model makes no strong predictions about 

the exact function of PM. 
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3.4 Subcortical Areas 

3.4.1 Motor Pools 

The motor pools are located in the brain stem and in the spinal cord grey matter. 

The smallest element of a motor pool is a motor neuron. A motorneuron has a cell 

body and dendrites which are in the central nervous system (CNS), a peripheral 

axon, and a set of muscle fibers, which are innervated by it. These fibers are 

collectively referred to as a motor unit (Liddell and Sherrington, 1925). 

There is general agreement that, in fully mature muscles, an individual muscle fibre 

receives innervation from one, and only one, motorneuron (Burke, 1991). A given 

motomeuron, on the other hand can innervate tens or hundreds of individual muscle 

fibers. This innervation ratio is one of the several factors that determine the force 

output from an individual muscle unit (Burke 1981). 

The mammalian neuromuscular system is generally considered to be organised in a 

hierarchical manner. Individual muscle fibres are organised in motor units, each of 

which is controlled by a single motorneuron, and the ensemble of motor neurons 

innervating a single muscle is organised into a contiguous nucleus of cell bodies in 

the spinal cord or brain stem and are known as a motor pool. The force output of the 

motor pool may be controlled by both the number of such motor units "recruited" 

from this functional pool and the firing rates of the active units (Burke, 1981). 

If a motor unit is active within a pool it is deemed to have been "recruited". If a unit 

changes from a active to inactive state it is deemed to have been "derecruited". The 

mechanism by which units are activated and deactivated is known as recruitment. 

The following section describes the mechanism that allows this to occur. 
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3.4.2 Recruibnent 

Recruibnent refers to the activation and deactivation ("de-recruibnent") of motor 

units from a motor pool during reflex or voluntary motor acts. The traditional view 

is that a motor pool includes all the motomeurons that have axons within the 

defmed muscle nerve and which innervate muscle units within the confmes of an 

anatomically defined muscle. 

Henneman's contribution to current understanding of motor pool recruitment began 

over 30 years ago when he proposed a "size principle" to explain the phenomenon 

of a fixed recruitment order(Henneman, 1957). Although the precise wording of this 

hypothesis has been modified over the years, it is sufficient to quote the version 

published two decades after the original presentation (Henneman, 1977):-

"The amount of excitatory input required to discharge a motomeuron, the energy it 

transmits as impulses, the number of fibres it supplies, the contractile properties of 

the motor unit it innervates, its main rate of firing and even its rate of protein 

synthesis are all closely correlated with its size. This set of experimental facts and 

interrelations has been called the "size principle":-

" ... a particular voluntary movement appears to begin always with the discharge of 

the same motor unit. More intense contraction is secured by the addition of more 

and more units added in a particular sequence .... This "recruitment" of motor units 

into willed contraction is identical with that occurring in certain reflexes .. The early 

motor units in normal gradual voluntary contraction are always in our experience 

small ones . . . The larger more powerful motor units, each controlling many more 
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muscle fibres, enter contraction late." 

Motorneuron-muscle unit interrelations have been explored by comparing work on 

motorneuron discharge properties to work on a wide variety of muscle properties 

(anatomical, biochemical, physiological etc.). Based upon these relationships, 

investigators have drawn inferences on the functional significance of the various 

associations for graded development of muscle force. 

Table 3.1 - Motorneuon-Muscle unit interrelations. 

If all muscle units had identical mechanical and metabolic properties, specification 

of recruitment order would have no important functional consequence (Burke 1991). 

However, virtually all muscles in vertebrates have widely varying mechanical 

properties, which furthermore exhibit systematic interrelations with motorneuron 

and synaptic input characteristics (Table 3.1) (Burke 1981). 

Although many muscle unit properties vary continuously, others show discrete 
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bOlmdaries that lend themselves to identification of motor unit types, which have 

both heuristic and descriptive value (Burke 1981). Three categories are now 

recognised in most mammalian muscles, based upon the mechanical properties of 

the muscle unit portion (Table 3.2). 

Table 3.2 - Recruitment order. 

The original size principle formulation (HeiUleman and Olson 1965) , with its 

association between increasing force output, contraction speed, and threshold, fits 

with the notion that type S units generally have the lowest functional thresholds, 

type FF have the highest, and type FR have intermediate thresholds under most 

conditions (Table 3. 1) Zajac and Faden (1985). The usual recruitment order is S -> 

FR -> FF (Burke 1991) and this is known as invariant recruitment. 

There are many unresolved questions concerning motor unit recruitment (Stuart and 

Enoka, 1983; Enoka and Stuart, 1984). In addition to the key issue of its precision, 

these questions include its presence or absence during strong isometric contractions, 

and muscle contributions to force in different directions (e.g. abduction versus 

flex.ion) . Moreover, much must still be learnt about the modifications of orderly 

recruitment by descending command signals and sensory feedback, as well as 

understanding the effects of ongoing (Miles & Turker 1986) and prior (Dubose et 

al. , 1987) muscle activity, including fatigue (Kossev et al. , 1987). 

Several recent observations on fatiguing muscle in conscious humans have shown 

an association between the relaxation rate of the whole muscle and the rate of motor 
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unit discharge necessary to optimise force output (e.g. Bigland-Ritchie et al., 1983). 

This fmding and some subsequent work led Bigland-Ritchie and collegues (1986) to 

hypothesise that "during fatigue, motor neurone firing rates may be regulated by a 

peripheral reflex originating in response to fatigue related changes induced within 

the muscle". However Dubose et.al. (1987) and Stuart et.al. (1988) suggest that 

fatigue induced changes within the muscle must occur largely in the higher-force 

(threshold) motor units and that slowing of motor neuron firing rates should not be 

anticipated during contractions. Furthermore, there is evidence that the absolute 

threshold for motor unit discharge during sustained low force contraction is altered 

as fatigue sets in, thereby implying that a change in recruitment order must have 

taken place (Kossev et. al. 1987) .. 

This data implies a complex dynamic relationship where the so called invariant 

recruitment order is not always invariant. The corresponding extreme to this is to 

claim a process of selective recruftment which implies there is no intrinsic 

recruitment order, and that neurons are selected on the basis of arbitrary parameters. 

The Recruitment Model of motor control explores a third possibility; it proposes the 

existence of invariant recruitment, but within the framework of a selective 

recruitment order by means of connections between neurons. This could perhaps 

account for data reported indicating stochastic variance in recruitment order (Burke 

1991). 
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3.4.3 Muscles 

The notion of a "muscle" carries functional as well as anatomical implications. The 

anatomical origin and insertion of a muscle defme the force vector (or vectors) that 

active muscle fibers joining origin and insertion can produce on the skeleton, 

leading directly to inferences about its function(s) as "extensor", 

"abductor" etc. (see Sherringtons functional classification (1910)). 

"flexor" 
' 

There are many complexities which surpass these simple classifications. Although 

many muscles produce output force in only one direction there are also a significant 

number that have more complex specialisations (Burke, 1991). For example, 

muscles that have a broad origin or insertion contain regions with quite different and 

even sometimes antagonistic behaviour (e.g. human deltoid or trapezius). There are 

two different kinds of regional specialisation (Burke 1991):-

• muscles that appear to have a single force vector on the skeleton (type A); 

• muscles with subregions that produce clearly different force vectors on the 

skeleton (type B); 

Type A muscles can exhibit simple internal architectures but sometimes have 

multipinnate subregions without obviously different force vectors, as occur in the 

lateral gastrocnemius (LG) in the cat. In the case of the LG, the five identified 

compartments have somewhat different histochemical fiber composition, and are 

innervated by discrete subbranches of the LG nerve, and exhibit little or no 

crossover between compartments (English and Weeks 1984). The 

electromyographic activity in the LG compartments during postural adjustments 
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(Russell et. al. 1982) and locomotion (English 1984) roughly, but not exactly, match 

expectations based upon a fixed pattern of motor urut recruitment (Burke 1991). 

This type of data implies that subtle graduations of intramuscular force can be 

utilised by the animals even when a multipinnate muscle is not multifunctional. 

Type B muscles usually exhibit functional differences between regions. Examples 

include the human deltoid and trapezius, the anterior and medial portions of the cat 

sartorius (Hoffer et. al. 1987), all of which show relative independence of 

subregions during normal movements. At present there is no identifiable difference 

between muscles that have large insertions/origins and those that have separate 

heads, although there is considerable overlap in the cells that project to them 

(Weeks and English 1985). 

Muscles that span more than one joint introduce fwther complexities, since they can 

acts as extensors about one joint and flexors at another. The movement arcs of these 

disparate actions can also depend on the joint angle. Multi-joint muscles that must 

function efficiently through a wide range of physiological length changes often 

exhibit muscle fibers that are arranged parallel to the muscle axis because pinnate 

muscles sacrifice extensibility for power (Loeb et. al. 1987). 
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3.5 Summary 

This chapter has reviewed all the key areas involved in ballistic voluntary motor 

action including adjoining areas which interact indirectly. From the data reviewed it 

is clear the motor cortex (Ml) is the most significant area involved in motor 

production and that this targets directly onto motor pools located within the brain 

stem and spinal cord grey matter. The motor pools in turn mediate the amount of 

contraction within the muscles themselves. 

This review has shown that although there is still much debate about the exact 

details and nature of cortical areas, the amount as well as the quality of information 

is increasing rapidly. Recent studies of Ml have shown it to have a particular 

topographical organisation and to be encoding numerous control parameters in a 

population code. In a similar vein the operation of the motor pools is also unique, 

and with respect to the Recruitment Model provides a valuable insight into how the 

"recruitment" paradigm might be extended to explain how population codes are 

implemented in other cortical regions involved in the voluntary motor control 

process. 

Although much work has been carried out by researchers investigating the 

individual areas, very little research has been carried out into how this new 

information might be combined to give an enhanced view of the motor production 

process. Chapter 6 draws upon the information presented in this chapter as the basis 

for proposing the Recruitment Model of ballistic voluntary motor action. 
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4. Neuronal models and simulation software 

4.1 Introduction 

The Recruibnent model of motor control is based upon biologically inspired 

techniques, therefore the neuronal models thought to be most applicable and 

realistic were selected, restricted only by the practicalities of simulation. The root of 

most neuronal models can be traced back to the original Hodgkin and Huxley(l952) 

experiments on squid axons, and indeed the models used in this work are strongly 

derived from these early experiments. The simulations carried out in chapter 5 and 

chapter 6 are based on two distinct neuronal models. The Leaky Integrator 

(Bressloff and Taylor, 1990) neuronal model is described in Section 4.2. The Leaky 

Integrator models the key features of neuronal behaviour as well as still being 

practical to build complex networks based around it. The Synchronous neuronal 

model is described in section 4.4. This model was used for the later simulations in 

chapter 5 and subsequent simulations in chapter 6. It was developed to model 

spiking behaviour between neurons more explicitly than the Leaky Integrator 

equations. Both models were simulated using the INSIGHT TOO simulation 

software (see chapter 5) and later for reasons of simulation efficiency in the C and 

C++ programming languages. 
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4.2 Leaky Integrator equations 

The Leaky Integrator equations (Bressloff and Taylor,l990) model membrane 

potential and are governed by the equations given below. 

d l m 
-Vi(t) = --V;(t) + Laif(t)[Si- Vi(t)] 
dt 1l j=l 

(1) 

where V; is the membrane potential of the ith neuron in a network of m neurons, t; is 

the time constant of the membrane leakage current, Su is the membrane reversal 

potential at the ijth synapse, and a;i is the input signal at neuron i from neuron j, 

which takes the form of a sequence of impulses: 

N 

aif(t+td) = gijLo(t- T~) (2) 
h=i 

where 4t is the synaptic delay, g;i is a constant related to the synaptic efficiency and 

T "J is the time at which neuron j fires for the nth time. These firing times are 

determined by the iterative threshold condition: 

(3) 

where t, is the refractory period and Ki is the threshold for the jth neuron. 
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4.3 Leaky Integrator simulations 

The leaky integrator simulations are based upon an Euler discretisation of the above 

equations. Each leaky integrator neuron within a network is governed by the 

following parameters: 

• synaptic time delay ld; 

• refractory period tr. 

• leakage time constant t; ; 

• threshold K;. 

• membrane reversal potential S;j; 

• synaptic efficiency g;j. 

An impulse arriving via an axon at a synaptic knob on a dendrite is subject to a time 

delay, ld (see Figure 4.1(A)) before taking effect on the cell body by either 

increasing or decreasing the cell membrane potential (depending whether the 

connection is excitatory or inhibitory). If the membrane potential exceeds a 

predefined limit known as the threshold and if it is outside its refractory period, the 

neuron is said to fire. In doing this a pulse is sent along all the connections leading 

away from the cell body (axons). After a pulse has been fired there is a rest period 

known as the refractory period during which no further pulses can be generated. The 

refractory period therefore determines the maximum firing rate of the cell. When no 

external forces act upon the cell body the membrane potential decays away with a 

CR (electrical capacitance-resistive network) time constant t;. 

When a pulse arrives at the cell body, the relationship between the membrane 

reversal constant S;j and the threshold K; indicates whether the incoming pulse has 

an excitatory or an inhibitory effect. The magnitude of the effect is determined by 

the efficiency term, known as the conductance (g;i in equation 4.1). 

There are many connectional arrangements but it is important to note that an 

outward connection (axon) can feedback into the cell via a dendrite, causing either 

direct excitation or direct inhibition, determined by the nature of the connection. 

This is an important type of connection since it can be used to sustain cell based 

activity. 
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4.4 Frequency based equations 

The second type of neuronal model used during this study is based on the mean 

frequency of spiking of the cell but explicitly models the temporal spike trains to 

and from neurons. 

The equations given below govem the behaviour of the model. 

(4) 

where £n(t) is the mean excitation level of the neuron over the time window of 

length ru\t, and where:-

k = step index; 

J = index of input line; 

m = number of inputs; 

n = number of the time steps in the window; 

L\t = length of the time step; 

nL\t = size of the time window; 

Sij(t) = 1 if a spike exists at time t on input j 

= 0 otherwise; 

9(x) = 1 if x 2::: Kt. for some synapse threshold Kt 

= 0 otherwise· ) 

Wij = Weight of a connection on input j; 

Ur = Update rate constant; 

N 

u(t) = Lb'(t- Tn) where, T n = T n-t + Ur 
n= l 

(5) 

Here, u(t) is the frequency update time of the model (determined by the update rate 

constant, Ur), and T n is the time at which the update rate of the model will be met 

for the nth time. 

Ifu(t) = 1 then:-
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foutd(t) = fin(t).A (6) 

otheiWise, 

foutd(t) = foutd(t-1) 

where A is a constant, and foutd(t) is the desired mean spiklng rate of the neuron at 

the output. 

If the input frequency Fin is above the soma threshold K2 and:-

iffoutd(t) <= Fmin then foutd(t) = Fmin 

or 

iffoutd(t) >= Fmax then foutd(t) = Fmax 

otheiWise 

foutd(t) = 0 (7) 

Let 

1 n-1 

fouta(t) = ~ LS1(t- k) 
nol k=o 

(8) 

be the actual mean spiking rate over the time window. where Si(t-k) = value of 

output spike at time (t-k). Then, 

If fouta(t) < foutd(t), Si(t) = 1 else Si(t) = 0. (9) 

The model' s behaviour can be described as follows. The model summates at each 

time step the input across all its incoming connections. This input is then subject to 

a synapse threshold function 8, and the result of this is summated over time and 

averaged over a time window of size n..6.t, where 6t is the size of each time step and 

n is the number of time steps (equation 4). The result of equation 4 represents the 

mean excitation level fin(t) of the cell body or soma. fouta(t) is the actual mean 

frequency of spiking of the cell (equation 8), and is calculated by summating the 
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number of spikes leaving the cell over time and then averaging in the same way as 

in equation 4. 

At any instant in time there is a desired output foutd· foutd is related to fin as described 

in equation 6. The desired output is only recalculated as the update condition u(t) of 

the model is met (equation 5). The actual input to the soma must be above the soma 

threshold K2, otherwise the desired output will be 0 (equation 7). The desired output 

frequency must also be within a minimum(F min) and a maximum(F max) frequency 

condition, and is modified appropriately if not (equation 7). A spike is output from 

the cell if the actual output is less than the desired output (equation 9). 

The Synchronous neuronal model has the advantage of maintaining spatial and 

temporal correlations between the input and output, this is in contrast to the Leaky 

Integrator equations which only maintain spatial relationships. This means that 

coherence of incoming spike trains within a time window is detected and can be 

processed by this model, yielding significantly enhanced processing ability. 

68 



4.5 Synchronous model simulations 

The force output of a motor pool is controlled by both the number of recruited 

motor units and the ftring rate of these units (Burke, 1981). The Synchronous model 

was developed to overtly model the ftring rate relationship between motor neurons. 

This requirement was identified as a result of the Leaky Integrator simulations 

described in chapter 5. 

The model was implemented in the INSIGHT description language (see appendix A 

for source code) initially and more recently in C and C++. It was necessary to re­

implement the simulation code to increase the simulation speed beyond that of the 

interperated INSIGHT language. 

The following parameters are used during the simulation to govern the behaviour of 

each neuron within the network (the variables down the left hand side are as 

described in equations (4) to (9)). The symbols in brackets relate to the simulation 

parameters in Appendix B (Synchronous motor pool simulations):-

• K 1 - Synapse threshold (THRESH!) 

• U,- Update rate (UPDATERATE) 

• K2 - Soma Threshold (SOMA) 

• F min - Minimum ftring frequency (FREQMIN) 

• Fmax- Maximum ftring frequency (FREQMAX) 

• A - Gain term (RF) 

• Wij - Connection weight (CONNECTV ALUE) 

• T d - Connection delay (CONNECTDELA Y) 

• n = Window size (TBASE) 

The examples below show how the main parameters may be combined to affect the 

neurons behaviour. In the simulations below Fmin is set to 0 and Fmax is set to 100 

such that they have no affect in these simulations. 

Figure 4.la shows the behaviour of a single Synchronous neuron with a single 

external input. The input shown on the left shows the temporal form of the spike 

input train, and on the right the resultant output spike train is shown. Below in the 

graph the output (frequency) of the neuron is shown with respect to time. For the 
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simulations in this section the maximum possible spiking frequency is determined 

by n.At which is set to 100. Input and output frequencies are specified as percentages 

of the maximum possible firing rate, for example if a spike occurs at every other 

time step then the value would be 50%, if a spike occurs at every possible time step 

then the value is 100%. In Figure 4.1 a spike is present at each time step for 

duration of the simulation (lOO time steps of size ~t = 1) repesenting an input of 

100%. As the simulation proceeds the averaged input frequency gradually increases 

to a maximum of 100%, the output on the right is also seen to increase at the same 

rate. With the input threshold(k1)=0, gain(A)=1 and update rate(Ur) set to 1, the 

neuron simply copies the input to the output. 

If the gain term(A) is set to a constant greater then 1 then the output is scaled by A. 

For example in 4.lb the gain has been set to 2, the input was set at 50% and the 

output was 100%, exactly double the input. 

The temporal form of the output from the cell body can be modified by altering the 

update rate CUr) (Figure 4.2a) and soma threshold(K2) (Figure 4.2b). In both these 

cases the output is given in a bursting form. An important feature of the model is 

how it combines inputs from multiple incoming spikes. Figure 4.3a demonstrates the 

neuron behaving as an AND gate; this is achieved by changing the input threshold 

to 2, requiring coincidence between incoming spikes on separate input lines. Figure 

4.3b also shows the AND gate behaviour with lower input spike rates. By specifying 

that one input into the cell is inhibitory the model can behave like an XOR gate as 

in Figure 4.4a and Figure 4.4b. 

By having multiple inputs and an input threshold of 1 the neuron will behave like an 

OR gate, combining both input lines into a single output line (Figure 4.5a). This 

output can be modulated as before by changing the update rate and gain terms as in 

Figure 4.5b. 

By manipulating these parameters all the basic logic functions can be produced. 

These cells can be combined in any way to produce complex logic operations. 

Further simulations with this model are described in chapter 5 and chapter 6. 
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Synchronous Neuron Experiments A 
External Input .1 

Node Output 

External Input 2 

The above graph shows a single external input which is simply replicated as the output. 

. .. . . . ........ ·~~ 

· ...... ····.·· ·· ···.·· ··· .. · · : ·-·· · · · .·· ···· .. ·.· Y._.M 

External lnput.l = .100 
External lnput2 = 0 
Input threshold = .1 
Window size = .100 
Step size = .1 
Gain = .1 
Update Rate - .1 
Tht-eshold = 0 

Inputs and outputs are 
expressed as percentages 
of the maximum possible 
firing rate. Time is measured 
in simulation iterations. 
(see text for details). 

m ·· · · · · · · ·· : ·: ·.· : : aaa 
Synchronous Neuron Experiments 

External Input .1 

i Ill I I 11111 I 11111111 111111 111111 111111111 11 111 111 Node Output 

External Input 2 

Single external input to the neuron with a gain factor of 2 results in 100% output 
which is twice the input. 

B 

· · : · :· :. : .. :: ... ·:: :. :: ....... ·: ···:.: .. :· ·.·:: ·: :.-.: ·: : ... · :: ........ ··:.· .-·: .. ··:·.:: .· ··: :. :: ::·.: :.-·:: aaa 
Externa I Input.l =so 
External Input2 = 0 
Input threshold = .1 
Window size = 100 
Step size = .1 
Gain = 2 
Update Rate - 1 
Threshold = 0 

Inputs and outputs are 
expressed as percentages 
of the maximum possible 
firing rate. Time is measured 
in simulation iterations. 
(see text for details). 
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Synchronous Neuron Experiments A 
Exter nal Input i 

ll l!l ll illlilll llilll ~~~~~~~ ~ ~ ~ ~ ~~~ Node Output 

Exter nal Input 2 / o- lllllill 1111~1!11 llllilllll 1111111111 Ill 

1 11 1 11 1 1 I 1 11 1111 1 11 1 

Shows how the Update rate produces the output in bursts of activity . 

. . . . . . . . · ... . . . . . . . . . . . . . . . . ... pqj 
.· -::: : · ·<·.· · :-:·.: : ·: .-:··· . ."·.· . ··: :.:- ·.·.:-.. ·. :·:- ·."<·.· : ·: :-:. ··:-.. ·. ·.:· ··.·. · .: :-:. ·:.:- .. :.YWH 

External lnputi = 40 
External lnput2 = 20 
Input threshold = i 
Window size = 100 
S tep size = i 
Gain = 1 
Update Rate = 20 
Threshold = 0 

Inputs and outputs are 
expressed as percentages 
of the maximum possible 
firing rate. Time is measured 
in simulation iterations. 
(see text for details). .··· 

· · · · · · · · · ·· · · ·· ·· · ·n~a . . : : ... : . :.: : .. : .. : .:·.. . .· . . . . : .. · . . :. : . . . : .·.' .. : . : .· . : .:. . . : : . . . . ·. . . . · .... · .. : .. 

Synchronous Neuron Experiments B 
Exte rnal Input i 

I i 11111111 i 111111111 i 1111111111 1111111 Nod e Output 

Ex ternal Input 2 Ill 

1 111111111111111 !I! !I 

Experiment similar to above but with an addition of a threshold on the input 
excitation. 

:: .. ·:::: ·:: :-·-: .-...:.:::: :::.: :.: ·.: :-·:·> ·-.·: ·. · .... : .. ·.· ·.· .. ::-: .: .. :_ ·. :->·.: ·. :.- ·.:.:: _: ·.: :.: .. ..: ·. ·: : .. : ... ·: :-:: ...... ·: : · ...... · .. : ·.-.:. --.... :_. :.:._ :.-_·.· · :.- :.:<·: ·. aaa 
Exte r n a l Inpu t 1 = 40 
Ex t ern a l Input2 = 30 
Input threshold = i 
Wi ndow s ize = 100 
Step s ize = i 
Gain = 1. 
Update Rate = 20 
Thres hold = 20 

Inputs and outputs are 
expressed as percentages 
of the maximum possible 
firing rate. Time is measured 
in simulation iterations. 
(see text for details). 
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Synchronous Neuron Experiments A 
External Input ~ 

lllllilllll!lllll illlliilllllil lllllllllllllllill ~ Node Output 

External Input 2 
~~ 

/ 
111111111111111111111 1 1111111111111111111111 

Experiment shows the neuron effectively behaving as an AND gate, yielding an 
output of 50%. 

11 .·. ·. :. ·:· .· · ·. · .. ·. ·. :· ·aaa 
External Input~ = 50 
External lnput2 = 100 
Input threshold = 2 
Window size = ~00 
Step size = ~ 
Gain = 1 
Update Rate = ~ 
Threshold = 0 

Inputs and outputs are 
expressed as percentages 
of the maximum possible 
firing rate. Time is measured 
in simulation iterations. 
(see text for details). 

100 

"5 
0. 
"5 
0 

.··· · ·· · ··· · · ······ ·· ·· · .. ·.. :.·· · · · · ·aaa . . . . . : . . . . . . . . . . ·. . . . . . . . . . . . . . . . . . . 

Synchronous Neuron Experiments 
External Input 1 

11111 i 1111111 1111111111111111111 I I Node Output 

External lnput 2 / ~ 111111 I I I I I 

llllllllilllll!llllliilllliilllllllllllllllllllll 
Experiment depicts neuron behaving like an AND gate, where the output 
correlates with the coincident incoming spikes. 

Extet·nal lnput1 = 33 
External lnput2 = 50 
Input threshold = 2 
Window size = 100 
Step size = .l 
Gain = 1 
Update Rate = .l 
Threshold = 0 

Inputs and outputs are 
expressed as percentages 
of the maximum possible 
firing rate. Time is measured 
in simulation iterations. 
(see text for details). 

B 
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Synchronous Neuron Experiments A 
External Input 1 

~ Node Output 

Extemal Input 2 ~ ll il llllll lll illlllllllllllllllllllllllllill 
illlll illll i!lllllllll illlllllllllll lllli!ll ll / 
Output shows the combination of a ex citatory and an inhibitory input, where the 
neuron behaves like an XOR gate. 

· · · · · · · · na · · . · :··. : .. .. · ·. · · :··.· ·. · ·.·. ·: · ·. · .:. · · : .. ::·: :·.:· ... : ... :. · .:.:-.:·. : .. :.- · · ·. ·· · : ..... · ::··ywa 
External lnput1 = 100 
External Input2 = -50 lnputsandoutputsare 
Input thresho Id = 1 expressed as percentages 
Windou size = 100 ofthemaximumpassible 
s t~p size = 1 firing rate. Time is measured 
Ga1n - 1 · · 1 t' "t t' u d t- A t _ 1 1n s1mu a 1on 1 era 1ons. 
T~r:s~o 1~ ~ o (see text for details). 

Synchronous Neuron Experiments B 
External Input 1 

illlllllmli!l~llllllllllllii ll llm~lllil llll l ~ Hod• 

External Input 2 ~ 
1111111 111 1111111111 / 

Output 

li I ~ Ill~ 1111! ~ Ill m lllllllllllllllllll ~ I !I 

Neuron behaves like an XOR gate. 

·. · · : .. · ·. ·: : ·. · -: : : ·. · ·: : · · · · : : ... · ·: · · · · .. : · .. · ·. · · · .. : : ·. · · : : .·· .... : : .. · ·: : : ·: · .: · : .. · · : · ·. · -: : : ... · · : aaa 
' External lnput.l = 66 
Externa 1 I npu t2 = - 20 Inputs and outputs are 
Input threshold = 1 
Window 5 ize = 100 expressed as percentages 
step size = .1 of the maximum possible 
Gain = J. firing rate. nme is measured 
Update Rate = J. in simulation iterations. 
Thresho Id = 0 (see text tor details). 
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Synchronous Neuron Experiments 
Externa l Input 1 

lillllllll!lll !lll!llllll llllllil l ~Node 

EMternal Input 2 / 0------+ 
1111111 llllll ll ll lll llllilllll llllll llll 1111111111 

Output 

Experiment shows the neuron effectively behaving as an OR gate, yielding an 
output of approx 88%. 

· ::-:_·.· .. :.-:-· ··_.: · --.·:- : __ ·.: ----::.:· . .-:._.: · · :._. ··.-:·.-._. ·:<· -:-: · .. :.-:: -.-:-: · · .:.-:.· -::-.: .-· .. :.aaa 
Exter nal lnpu t1 = 33 
Externa 1 1 npu t2 = 50 Inputs a nd outputs are 
Input th •· e s ho Id = 1 expressed as percentages 
Window _ s ize = 100 of the maximum possible 
s t~P s 1Ze = 1 firing rate. Time is measured 
Ga1n = 1 · · 1 t" 't t' ·update Rate = .1 1n s1mu a 1on 1 era_1ons. 
Thresho Id = o (see text for details). 

.-········ ·········· 
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Synchronous Neuron Experiments 
Ex terna l Input 1 

l' ' l llllll~ ""d· 
/"~ 

EMternal Input 2 ~ ~ 

111 1! 11111 11 11 111111 

Outp ut 

Experiment depicts neuron behaving like an OR GATE with a gain of 3, yielding 
a bursting type behaviour to the output. 

Ext ern a l l n p ut.l = .10 
Extern a l l n p u t2 = 20 
Input thresh old = 1 
Wi ndow s ize = .100 
Step size = 1 
Gain = 3 
Upda t e Rate = .1 
Threshold = 0 

Inputs and outputs are 
expressed as p ercentages 
of the maximum possib le 
firing rate. Time is measure 
in simulation iterations. 
(see text for deta ils). 
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4.6 Summary 

Both the Leaky Integrator and Synchronous neurons fire in response to excitatory 

current. The current induced in a motomeuron by a connection from another neuron 

can be calculated as the firing rate of the neuron multiplied by the number of 

synapses and the charge transferred to the soma from a synapse due to the arrival of 

an impulse (Redman, 1976). In the Synchronous model the averaged spiking 

between the neurons is modelled explcitly, whereas the Leaky Integrator models 

current transfer between neurons. 

The relationship between excitatory current and motomeuron firing is described by 

two linear curves (Kernell, 1983, 1984). The primary range is the range in which a 

motomeuron can maintain repetitive firing. The secondary range describes higher 

rates which can not be maintained under normal conditions. The simulations in the 

proceeding chapters only model the primary range. 

The simulations in Chapter 5 are designed to explore the behaviour of both the 

neuronal models described here when arranged into varying network topologies to 

explore motor pool physiology. The resultant group behaviour of these networks is 

assessed in the context observations reported in Chapter 2 and Chapter 3. 
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5. Motor pool simulations. 

5. 1 Introduction 

In the proceeding chapters in this study a high level overview of the human motor 

control system has been described, and a general review of motor control issues and 

concepts discussed in chapter 2. In this chapter the focus changes, and a much more 

detailed study is undertaken on an area of human neurophysiology known as the 

motor pools. The theoretical background for this topic area was given in section 2.5 

and in detail in section 3.4. The motor pools are situated in the brain stem and 

spinal cord grey matter. They are in an excellent position to mediate cortical control 

signals descending from the motor cortex. Motor pool neurons output directly onto 

muscle fibres. Due to the position and possible function of motor pools the areas are 

also known as the motor output stage (Hultbom and Illert 1991 ), and it is motor 

pool functionality in this role that is examined. 

A large number of simulations were undertaken using both Leaky Integrator and 

Synchronous neuronal models (see chapter 4) using the INSIGHT TOO neuronal 

modelling software. 

The analysis of motor pool behaviour undertaken in this chapter focuses on the 

computational features of motor neuron behaviour. The simulations make no 

attempt to be exact biological models of motor neuron behaviour, instead a focus is 

maintained on computational functionality, production of generally observed 

physiological properties (section 2.4) and the process of recruitment ( Hennemann, 

1957). 
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5.2 Simulation Software 

Many of the experiments undertaken in the early part of this study were simulated 

using the INSIGHT TOO modelling and simulation software. The INSIGHT TOO 

simulation software was developed as part of this study. The INSIGHT software 

(developed as part of an earlier study (Norman, 1991)) was suitable for the 

visualisation and simulation of small single layer neural networks. The original 

INSIGHT software was also only able to model Leaky Integrator neurons (Chapter 

4). The INSIGHT TOO software removes these limitations by:-

• usrng the simple INSIGHT language for the description of neuronal model 

characteristics; 

• a simple windows interface allows the visualisation of multi-layer large scale 

networks; 

• node and connection definitions are "soft" and are determined at run-time, 

allowing for networks containing dynamic multi-model networks. This means 

that in theory a neuron could utilise different simulation code part way through a 

simulation; 

• the INSIGHT TOO software has been developed usrng the Windows 3.1 

operating system allowing INSIGHT simulations to be performed as background 

processing tasks. 

Figure 5.1 shows the INSIGHT TOO simulation software runnrng under 

Windows 3 .1. The screen shot shown in Figure 5.1 is of a single layer neural 

network. The circles represent nodes and the lines that join them represent the 

interconnectivity between them. The colouring of the lines indicates the direction 
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INSIGHT TOO 
Simulation Software 

Insight TOO- Generic neuronal simulation 
software tool. Allows the visual design and 
editing of large scale mixed neuron multi­
layer networks. 

Free format neuron 
properties dialog allows 
any neuronal model 
parameters to be defined. 

• Node 

Selected Node 

··············---- Axonic Connection 

Insight TOO software requires an Dendritic Connection 
IBM compatible 486dx33 with 
4mb RAM and Windows 3.1 
minimum to run. 
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of the connection (see the key in Figure 5.1). A green(dotted)/red(solid) 

connection indicates an axonic connection which outputs the result of that node's 

innetvation. A red/green connection indicates an dendritic input connection. 

Each node and each connection is described by a series of parameters which must 

be defined. A starting value for each parameter is defined using the properties 

dialog box (see Figure 5.3). The parameters available for the definition of nodes 

and connections is determined by the node or connection type. The dialog 

performs no validation on these parameters; how and when these parameters are 

used is dependant upon the INSIGHT control program being used. Figure 5.2 

shows the INSIGHT TOO software design cycle. The INSIGHT TOO windows 

software is used to design and manage topographical relationships( connections) 

between nodes. A text editor is used to enter the program control files written 

using the INSIGHT software language. INSIGHT is a simple instruction language 

similar to BASIC (Beginners All Purpose Symbolic Instruction Code). Table 5.1 

contains a list of INSIGHT commands that are supported by the INSCOM 

interpreter. 

The INSIGHT language allows network data files and INSIGHT program files to 

be combined in an arbitrary way at run-time. This is a flexible process that 

allows the simulation of multi-layer, multi-node networks in almost any 

combination. Examples of INSIGHT programs can be found in appendix A. 

For all the simulations in this study the output is in the form of "raw" text data 

which can be examined using a variety of analysis tools, although the INSIGHT 

language is capable of providing a simple visual output also. 
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All the experiments described in this chapter using the INSIGHT TOO software 

have been analysed use the EXCEL 4.0 spreadsheet and charting software. 

Appendix B gives a list of EXCEL data files that apply to each of the simulations 

in this chapter as well as the exact experimental details. 

81 



INSIGHT TOO 
Simulation Software 

Design Cycle 

Insight TOO 
Insight TOO software 
maintains the relationship 
beteen network files , 
connection fi les, and 
projects 

Text Editor 
A text editor is used to 
describe network, node 
and connection programs. 
Each program is described 
using the INSIGHT language. 

Project Files 
,-----~--------------~ 

Network Topography Library 

~ Network Files 

Program Library 
Network Control Programs 
Node Control Programs 
Connection Control Programs 

~-~ 

~ Connection Files 
~--------------~------~ 

INS COM 
The INSCOM process 
uses the network control 
program to select the 
appropriate project file, 
and to subsequently load 
the correct data files from 
the topography library 
The control program is then 
able to make decisions about 
which other node and 
connection programs to 
utilise on the basis simulation 
data. 
The output of the simulation is 
in the form of "raw" text data 
files that can be manipulated 
by any analysis software. 

INSCOM 
PROCESS 

Output Data 
Files 

Data Analysis Software 
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INSIGHT TOO - Simulation Parameters 
Allows neurons to be functionally grouped (not used in these 
exp · ts). 

INSIGHT program code 
excerpt from SYNC2.INS 

"layer" in multi-layer network projects. 

Determines the control file loaded at run-time. 

Simulation Parameters 

RF = 1.0 
FreqMin = 0.00 
FreqMax = 0.00 
Thresh!= l 
UpdateRate = 5 
DecayWindow = 5 
TBase = 15 
FireCount = 1 
OldFreq = 0 
UpdateCount = 0 

83 

} 

} 

Node 
Parameters 

Simulation 
Constants 

Simulation 
State 
Variables 

Figure 5.3 



5.3 Leaky Integrator motor pool simulations 

The initial aim for the Leaky Integrator experiments was to build a network 

capable of taking a single input signal and then produce a spatiotemporal output 

sequence, that when plotted produces a proftle that is approximately bell-shaped. 

Figure 5.4 depicts a network with similar topographic connectivity to those used 

in the following experiments. After examining a number of topologies it was felt 

the pyramidal connectivity structure shown in Figure 5.4 had a number of 

properties that would be a positive influence in the production of smooth output 

proftles of this form. In all the "pyramidal" experiments a stimulus is presented 

at the head of the "neuron pool", and over time the output from all the neurons is 

summated to form a total "pool" output. The output measured is the number of 

neurons that have "fired" at any instant in time. Nichols & Houk, 1976 have 

shown that underlying stiffness regulation compensates for muscle irregularities, 

therefore the actual force output at the muscle (muscle tension) in this model is 

assumed to have a linear relationship with the number of nodes that have fired at 

any instant in time. 

A key question of interest is whether a single input signal into a motor pool is 

sufficient to control the peak amplitude, velocity, force and output profile of a 

muscle. This question has major implications for the design of the higher levels 

of motor function. If a second or third "command" channel is required for each 

muscle then the complexity required to integrate/distribute this information will 

be correspondingly more complex. 

Figure 5.5B shows the structure of a "two-tier" motor pool simulation. Input 

from higher cortical levels is targeted on the head node of a pyramidal type motor 
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pool network. An external input of varying intensity was targetted on the head 

node of the network for the first 10 time steps of the simulation. Each 

successively deeper layer within the pyramidal network has a progressively 

higher "recruitment" threshold. As the initial cortical stimulus progresses through 

the network it elicits a response from each node in turn proportional to the input 

stimulus received, the current state of the node and the settings for that node. 

Each node within the pool is a Leaky Integrator neuron (see chapter 4) defined as 

described in appendix B. Output from each node in the first motor pool is sent 

directly to the muscle and also to the "head node" in the second pyramidal motor 

pool (by direct axonic connection). At a certain activation level the summation of 

the inputs from the first motor pool will cause the second motor pool to become 

active (or "recruited"). The second motor pool was designed to behave in the 

same way as the first. The output from the second motor pool is summed with the 

first to produce the total output shown in Figure 5.5A. 

This network design tests a number of principles, the first is the process of 

recruitment. This network imposes a recruitment order based on the "size" of 

each node (its threshold), which is invariant recruitment, but it also imposes a 

recruitment order on the basis of connectivity, which is selective recruitment. 

The experiment embodies the principle the "harder you push the further you get". 

In this way successively higher stimuli evoke activity in more neurons producing 

the larger peaks and greater activity shown in Figure 5.5A. The connectivity in a 

pyramidal motor pool implies a temporal aspect, which can also be seen in Figure 

5.5A in the way in which the peak outputs and total output duration are slightly 
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offset for successively higher input stimuli. The pyramidal topology seemed to be 

a positive influence in both the temporal and spatial form of the output profile. 

There are three categories of motor unit that are recognised in human mammalian 

muscle (Zajac and Faden, 1985; see section 3.4.2). The two tier motor pool 

experiment i.e. using two motor pools, as described above in Figure 5.5B is an 

unconventional attempt to examine the boundary between two of these three 

types. It is unconventional because recruitment is normally described on the basis 

of invariant recruitment only, whereas this experiment demonstrated invariant 

and selective recruitment. 

The second motor pool output was scaled to be twice that of the first, i.e. each 

output pulse from the second pool counted as two output force units. The decay 

time constant of each of the second pool motor neurons was set such that the 

membrane potential decayed at a much higher rate representing the relationship 

between output force and fatigue shown in Table 3.2. The limitations of 

computer simulation speed prevented all three types being represented in this 

way. 

Although the two types of neuron are represented in an overt manner i.e. by a 

second pool, the thresholds within each pool layer represents the progression 

between the two types in a graduated fashion. 

How much better is the two-tier model over a single tier model? The two-tier 

motor pool was better than the single-tier motor pool (Figure 5.6A), in that the 

bell-profile had marginally better definition. A factor of greater significance is 

that the amplitude peaks for all the simulations was not correlated with the 

external input stimulus (Figure 5.6A - External Input, El). A clear difference in 
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peak output for different input stimuli is the nurumurn requirement for the 

application of these networks in a control model. One of the reasons the peak 

output profile is not correlated with the input signal is that the firing activity of 

each neuron is not tightly correlated with the "head node" input, the incoming 

stimulus becomes effectively translated into an activation duration rather than 

activity intensity i.e. the individual firing frequency of each node is not directly 

related to the firing frequency of the "head node". As a result of this it was 

concluded that the Leaky Integrator neuronal model was not well suited to the 

motor pool task. 
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Motor Pool Simulations 
Using INSIGHT TOO Software 

Pyramidal Topology Motor Pool 

Motor Pool ----•• 
Input 

A short input stimulas creates 
a spatiotemporal output sequence. 

~=====~=====~ 

Summated Total Motor Pool 
Output 

At each instant in time the total 
motor pool output is the number 
of neurons that have fired at that 
time step. 
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Leaky Integrator .. two-tier .. 
motor pool simulations. 

lhe figure above represent a series of experiments conducted 
on a "two-tier" motor pool (see text). El represent the external 
stimulus presented during each simulation for 10 time steps. 
lhe output at each time step is plotted in arbritary units. 

Cortical Input 

I Motor Pool 2 

u 
Target Muscle 

B 

Output from the first motor 
pool targets onto the "head" 
node of the second motor 
pool. The total muscle 
output force is the sum 
activity of both motor pools. 
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Leaky Integrator single tier 
motor pool simulations. 

The figure above represent a series of experiments conducted 
on a "single-tier" motor pool (see text). El represent the external 
stimulus presented during each simulation for 10 time steps. 
The output at each time step is plotted in arbrita.Iy units. 

Cortical Input 

[ Motor Pool 1 I 

Target Muscle 

B 
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5.4 Synchronous motor pool simulations 

The Synchronous neuronal model directly relates output fuing activity with the 

average input frequency, whereas the Leaky Integrator neuronal model is more 

focused around modelling the membrane potential of the neuron soma, from 

which the firing behaviour is determined in a relatively simplistic manner. The 

details of the Synchronous model are described in chapter 4. 

Figure 5.7 shows the result from the first set of Synchronous motor pool 

simulations. The motor pool connectivity and topography is as described before 

and can be seen in Figure 5.7C (detailed information given in Appendix B). 

Figure 5.7B shows that the simulation was based on a single tier motor pool 

design. The experiments were once again designed around arbitrary simulation 

parameters and are not specifically related to any real muscle model. 

The presentation of the input stimulus was different to that of the Leaky 

Integrator simulations, Figure 5.8B shows the difference between the step input 

· (Figure 5.8B Top) used during the leaky simulations and the frequency based 

input spike trains (Figure 5.8B Bottom) used in the Synchronous model. The 

charts shown in Figure 5.7A and Figure 5.8A were produced by presenting the 

higher input stimulus for the first 50 iterations, which is approximately half the 

total simulation time. The down side of the bell-shaped profile therefore 

represents the natural decay of the network (Figure 5.8A is therefore comparable 

with Figure l.lB). 

In the Leaky Integrator experiments the input stimulus was presented to the head 

node in the network for only 10 time steps. The Synchronous network 

stimulations require a continuous presentation of an input stimulus unless a full 
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Synchronous neuron single tier motor pool simulation 
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resting state is required. The Synchronous network is therefore more responsive 

to successive varying stimuli and requires a continuous input stimulus. This is in 

fact a significant benefit as the network is able to react to changes in input in a 

dynamic fashion (this feature is explored in more detail later in this chapter). 

From Figure 5.8 it can be more clearly seen that the duration from onset to peak 

force is equivalent for a variety of input stimuli, this network is therefore capable 

of exhibiting the physiologically observed property of duration invariance 

observed in human movements (see section 2.4). 

From Figure 5.8 it can also be seen that there is a linear relationship between the 

input stimulus and the resultant elicited peak force, an essential requirement for 

controlling the amplitude of reaching movements. 

The duration invariance and the peak profile relationship indicate a tight temporal 

relationship in this network. By careful manipulation of the timing of input 

sequences it is possible to control amplitude, speed and force of reaching 

movements using a single input signal. The coding of the input stimulus, not just 

its average value but the spatial relationship between the spikes in the input train 

is therefore of paramount importance. In these experiments the input stimulus 

was proportionally spaced (i.e. the spike train form was uniform) and not in the 

form of a single burst of activity (which is the equivalent form of the Leaky 

Integrator external input). The modelling of spiking in the Synchronous neuronal 

model is a key feature and is referred to in subsequent experiments described in 

chapter 6. 
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These results were produced with a single layer motor pool of only 15 nodes. 

Each successive layer within the network had progressively higher minimum 

frequency thresholds, therefore utilising the "harder you push the further you get'' 

paradigm mentioned earlier. Each node also fires at a rate proportional to the 

input. This relates more directly to motor pool properties observed by Burke 

(1991) in human motor pools, than the previous simpler Leaky Integrator 

simulations. The output shown was produced with a single pass in-line 

exponential smoothing fimction. This contrasts with the Leaky Integrator 

experiments which required several smoothing operations to produce the profiles 

shown (see Appendix B for details). 

5.4.1 Motor Unit Simulations 

The preceding experiments in this chapter were simulated usmg arbitrary 

parameter values, instead of biologically reported ones. Furthermore, the force 

output on the muscle from each node was constant across the pool. This 

simplification meant that the fimctional grouping between a neuron and the 

muscle fibres it innervates (i.e. a motor-unit) were ignored. In addition to this the 

rest periods for each neuron necessary to prevent muscle fatigue were not 

modelled either. 

The following simulations are designed to add in these additional properties and 

specifically to reproduce the observed property of velocity profile invariance. 

These simulations will also differ from the previous ones because they will be 

based solely upon invariant recruitment, ignoring selective recruitment. This 

means that the external input stimulus to the pool is presented to all the nodes in 
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the pool directly. There are also no connections between the neurons within the 

pool. Each neuron within the motor pool is simulated with the Synchronous 

Neuronal model as described in chapter 4. 

The simulations are based around the data reported by Burke (Burke, 1981) for 

the cat medial gastrocnemius (MG) muscle. A complete motor pool of a cat MG 

consists of around 300 motor neurons. Graham & Redman(1993) modelled the 

cat MG using 30 neurons with a distribution similar to that of an actual cat MG. 

The exact composition of a motor pool will be dependant upon the functional 

requirement of that muscle. For example a finger muscle requiring finely graded 

muscle function would be different to a leg muscle (such as the MG) requiring 

strong gross movement. Table 5.2 therefore lists a population of thirty neurons 

used during these simulation which have a linear property distribution. The 

relationship between a MG pool (that has a specific muscle function) and a 

similar pool but with a linear distribution of reported property ranges and 

relationships is shown in Figure 5.9. 
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Table 5.2 Cat Medial Gastrocnemius (MG) motor pool 
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Cat medial gastrocnemius(MG) motor pool 
simulation parameters 

The cat medial castrocnemius (MG) motor pool has approximately 300 
neurons. Figure A shows a motor pool of 30 motor neurons with a similar 
distributive mix to that reported in the original (B urke, 1991). 
Figure B shows a similar motor pool of 30 neurons but with a linear 
distribution of the parameter ranges reported. 
The distribution of properties in Figure A is as reported in Graham and 
Redman (1993). 
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In the Synchronous model experiments the threshold shown in Table 5.2 relates 

to the soma threshold parameter(k2) described in section 4.4. In these simulations 

the transfer of frequency into current is taken to be INa = 1Hz. Current 

thresholds for repetitive firing in alpha motomeurons typically range from 3-

40Na (Kernell and Monster, 1981). There is a strong correlation between the 

soma threshold of a motor neuron and the maximum tentanic tension of its motor 

unit (Kernell and Monster, 1981). The range of tetanic tension reported in a cat 

MG muscle is 1-132g, Hence by linear regression the soma threshold can be 

calculated as follows:-

Threshold(Na) = 0.28 x tetanic force+ 2.72 

The muumum and maxunum firing rates of a motor neuron are strongly 

correlated with the twitch contraction times (Kernell, 1979), which range from 

about 10-llOms (Burke, 1981; Carew, 1981; Burke, 1990a). Using linear 

regression the minimum and maximum firing rates can be calculated as follows:-

Min.firing rate(Hz) = -0.15 x twitch contraction time+ 21.5 

Max.firing rate(Hz) = -0.6 x twitch contraction time+ 86.0 

Table 5.2 therefore has a linear distribution of twitch contraction times and 

maxrmum output force as already described and the other parameters are 

calculated from these. 

99 



Cat medial gastrocnemius(MG) motor pool 
simulation parameters 

Figure A shows the force output from a motor pool with similar properties to 
that of a cat media l gastrocnemius motor pool. 
The numbers to the right in Figure A indicate the input frequency to the motor 
_pool. 
Figure B depcits the resulting muscle contraction velocity in a simplified 
linear muscle model. The peaks correspond in the two graphs. 
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From Figure 5.10A it can be seen that the pool behaves in a similar way to the 

previous simulations shown in Figure 5.8a (to the left of the centre line). In 

Figure 5.10 it can be seen that the input stimulus was held for the duration of the 

simulation, whereas in Figure 5.8 it was allowed to decay back to a resting state. 

From Figure 5.10 it can also be seen that the output peaks are no longer 

proportionally linear to the input stimulus as in Figure 5.8. For example an input 

frequency of 35Hz produces an output of200g, but an input of 70Hz produces an 

output of 1200g. Figure 5.10 shows that although the relationship is not as clear 

as in Figure 5.8 it could still be easily learnt by the higher motor control centers, 

because there is a clear peak separation. 

By assuming that the target muscle has a simple linear relationship over the 

output range of the motor pool. The resultant muscle contraction velocity can be 

calculated. The plot of muscle contraction velocity can be seen in Figure 5.1 OB, 

where the velocity peaks proportionally correspond to the peak forces in Figure 

5.10A. 

Figure 5.11 demonstrates how the network responds to successive input stimuli. 

At 200ms the input is dropped by 15Hz and is increased again at 400ms. The 

network was able to smoothly integrate between these points. 

The properties in a Synchronous motor pool that can be controlled by single 

input signal can be summarised as follows:-

• clearly defined relationship between the input frequency and the elicited peak 

force output of the pool; 

• smooth integration between successive input stimuli in real-time; 
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Cat medial gastrocnemius(MG) motor pool 

The figure shows the motor pool output for a given initial input. At 200ms the input 
drops by 15Hz, and 400ms it is increased again to the original level. 
The simulations demonstrate that the network is able to integrate successive stimuli 
smoothly. 
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5.5 Conclusion 

The experiments described in this chapter have shown that neurons arranged with 

properties similar to those observed in human motor pools are capable of 

producing commonly observed physiological properties. The results from these 

simulations have led to the hypothesis that the motor pools have important 

functional roles and should not be approximated by being modelled as a single 

neuron when bridging the gap between motor cortical output and muscles 

(Akazawa and Kata, 1990). Furthermore the Synchronous experiments have 

shown that the process of recruitment could also have an important temporal 

control aspect as well as an important spatial aspect. By utilising a connectivity 

and size based recruitment topology it has been shown that the speed, force and 

duration of the muscle response can be controlled through a single command 

signal. The Synchronous modelling experiments have shown that the spatial form 

or spiking of an input signal could be an important aspect for the control and 

timing of reaching movements, and is of particular relevance in considering 

synergy formation problems. 

The process of "recruiting" nodes in a network on the basis of connections or 

parameter criterion is a computationally elegant solution for solving one-to-many 

mapping problems. It is also a paradigm that is suited to a distributed or parallel 

implementation, a rare event considering that almost all control models today are 

still described in sequential terms. The application of the "recruitment'' process to 

a control model in general is discussed in more detail in chapter 6. 

The simulations described in this study are not sufficiently detailed or accurate to 

claim biological plausibility, they are instead merely biologically inspired. 
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Considerably more experimentation would be required to apply these results to a 

full-scale control model. Many issues have been ignored, the most significant 

being the role of Renshaw Cells (RC) and in general the feedback and adaption 

of such networks. The neglect of these topics is in keeping with the focus of this 

study which is of the initial ballistic phase of motor action only. Graham and 

Redman (1993) noted the importance of RC cells in adapting the force output of 

a motor pool in handling dynamic loading effects, although Akazawa and Kato 

(1990) have pointed out that the orderly recruitment of motor neurons occurs in 

the absence of RC cells, which was a major factor in deciding to neglect the role 

ofthese cells in this study. 

Wada and Kawato (1993) describe a model of trajectory formation using forward 

and inverse dynamic models based upon a minimum torque change criterion. 

Their results indicate that the production of profiles similar to those described 

above required between 30 to 60 smoothing operations and is a considerably 

more computationally expensive technique. 

The motor pool studies have shown that these networks show promise for the 

reproduction of physiologically observed properties such as duration invariance 

and velocity profile invariance. There are still many questions left unanswered. 

The pools described are still not adequate in many areas. A more detaiied model 

of muscle behaviour is a prerequisite for the production of more functional and 

accurate motor pool behaviour. 
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6. The Recruitment model of ballistic voluntary motor action 

6.1 Introduction 

The human skeletal frame is a complex mechanical device; it can move in almost 

any direction in any number of ways. Even when just the arm joints are considered 

it has many degrees of freedom along with redundancy i.e. it has more than one way 

of achieving a given reaching action. As a bone rotates about a joint various 

biomechanical interactions occur (such as angular acceleration, coriolis torques etc.) 

which cause further analytical and computational problems (Hollerbach J.M, Flash 

T. 1982). Bones are moved about joints by the contraction and de-contraction of 

muscle pairs (agonists and antagonists) which pull in opposite directions. The total 

summated net tension in a muscle pair causes a rotation in the joint about which 

they act. The direction of action of a single muscle pair with respect to the joint is 

often not the required direction of action. As a result another muscle pair is required 

to balance the action of the first and so on. This is a complex balancing process in 

which even for simple movements, the ease of use belies the complexity of 

interactions required to achieve a given movement. If a particular movement is 

required and the appropriate muscle pairs have been selected to achieve that 

movement, further calculations are needed to determine which pairs become 

active, by how much (i.e. tension level) and for how long. The human control 

process is therefore a complex timing problem which controls a myriad of 

spatiotemporal signals which in combination form an overall movement. 

Given the complexity of these spatiotemporal signals, the intricacy of the timing 

process, and the failure of other artificial control processes to reach anything 
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approaching the functionality of the human motor control system, the question:­

how is this achieved? - becomes compelling. 

The human motor system not only manages to produce the required calculations for 

each joint and every muscle, but manages to do this in real time. Furthermore, 

movements can be made extremely quickly, they can be pre-planned, learnt and 

reproduced with skill. The motor control systems therefore comprises of learning, 

prediction, planning and production sub-components. 

6. 2 Overview of the recruitment model of motor control 

The Recruitment model describes a mechanism that is capable of producing abilities 

similar to those of human motor system. The scope of this research is further 

reaching than many previous model proposals (see section 2.5) because it does not 

start from the premise that the device being controlled is a robotic ann. By rejecting 

the robot ann as the target device and assuming a mechanism more similar to that of 

the human arm (see chapter 3) the task initially appears to be needlessly 

complicated. 

For example, muscles that act around joints act in pairs. The resultant levels of 

activation indicate not only the final position, but the stiffness of the muscle. As 

already mentioned, a particular required position is likely to require two or three 

cooperating muscle pairs. Muscles are delicate and need to be controlled with care 

to prevent tearing or ripping of the muscle. Muscles themsleves can have complex 

internal architectures and span multiple joints (Burke, 1991). A muscle cannot be 

utilised relentlessly like a robot actuator, it needs to have periods of rest built into 

its control program to prevent muscle fatigue. Muscles are therefore slower, less 
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robust and more complex to control than a robot actuator. The reason why muscles 

are utilised so effectively in the human motor system must therefore be due to the 

control system that governs them. It is from this premise that the Recruitment Model 

of motor control is proposed as the basis of a mechanism for controlling a human 

like manipulator. The starting premise of this model is therefore distinct from that of 

many previous computational models. The Recruitment Model is therefore a 

response to the question:- How does the device being controlled affect the control 

mechanism that governs it? To begin to answer this question it is first necessary to 

reduce the scope of the question to a particular subsection of the human control 

process. 

6.2.1 Ballistic phase of motor action 

From the information reviewed in chapter 3 it is clear that one of the main motor 

pathways (the pyramidal tract) is a feed-forward process in the initial stages of any 

movement. The motor cortex (MI) targets by way of the pyramidal tract neurons 

(PTNs) directly onto the brain stem and spinal cord grey matter. The spinal cord 

grey matter is made up of motor neurons organised into motor pools (chapter 3 .4.2) 

which in turn target onto individual parts of muscles. Information from the muscle is 

then fed back to the motor cortex by way of the extrapyramidal tracts to alter the 

descending motor cortical command. This subsequent altered movement is known 

as the corrected phase of movement. The initial movement made before feedback is 

known as the ballistic phase of movement. The ballistic phase of motor action 

therefore precludes the complexities of areas like the basal ganglia and cerebellum, 

and is known to directly involve Ml, the motor pools and the muscles themselves, 

108 



simply for the production of the movement (the planning side requires numerous 

other cortical and sub-cortical regions) (chapter 3). 

6.2.2 Classes of Motor Action 

There are a number of different types of motor action:- locomotion, voluntary and 

reflexive actions are some examples. Reflexive motor acts occur primarily in the 

spinal cord and brain stem and are low level stimulus response circuits. Reflexive 

circuits differ markedly from voluntary motor acts because they are overridden by 

descending higher motor commands. For example, if a person wanted to, they 

could keep thetr hand in a fire, even though their reflexive motor system would 

naturally withdraw it. In this case it is the higher motor centres which are directly 

inhibiting the behaviour of the reflexive motor centres. Reflexive motor circuits are 

not currently described in the Recruitment Model. Locomotion occurs usually 

without conscious effort, but it is a complex process that occurs in numerous brain 

regions, both cortical and sub-cortical. The Recruitment Model proposes a central 

role for an area such as Ml which has a neurophysiological basis (section 3.3.1). 

Voluntary movements and locomotion are both examples of motor actions that 

would utilise Ml for the "production" of the movement. The "production" of 

movements is described in the following section. 

A voluntary motor act is an action which you consciously make. This class of motor 

act underlies many other types of motor action, for example writing letters, planning 

hand movements and recall of complex sequences such as typing or playing a piano. 

The Recruitment Model of motor control proposes that each of these "higher'' or 

"complex" motor acts consists of two functional components: the "planned" or 
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6.3 Motor production 

To understand how this division will operate further definitions are required. In the 

Recruitment Model the motor production areas are responsible for implementing 

"simple" movements. A "simple" movement is a movement that can be realised in a 

single step. A "complex" movement is therefore a temporal sequence of "simple" 

movements. Examples of simple movements are reaching out to pick up a cup or 

pointing to any position in space (within the person's immediate sphere of action). It 

is important to note that a so-called simple movement is in fact a very complex 

process. For example the majority of arm reaching movements will involve several 

joints moving over differing distances, through the operation of many muscles, 

contracting by varying amounts in equal time. This implies a complex spatial 

relationship as well as a complex temporal one. These aspects combined are 

commonly referred to as the synergy formation problem (section 2.4.3). 

In the Recruitment Model, Ml is deemed to be the entry point from the higher 

motor centres (HMC) and is therefore the start of the production process. M 1 is in 

an excellent position to mediate information flow from cortical and sub-cortical 

motor structures (see section 3.3.1.1). Ml has also been shown to receive a good 

deal of sensory and proprioceptive information. Many of the surrounding cortical 

areas have also been shown to possess "supra" as opposed to "sub" functionality 

(section 3.3.2) with relation to Ml, confirming their possible role as higher motor 

centres in the Recruitment Model. 

By hypothesing such a role fo Ml a major problem needs to be addressed. For Ml 

to carry out instructions from many other disparate areas, an assumption is made 

that each area "speaks a common language". Put another way, what is the evidence 
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to suggest that there is a common communications protocol between motor areas?. 

The evidence turns out to be quite strong:- the somatotopic arrangement of M1 

(Woolsey et. al. 1952), has subsequently been reported to exist in some form in 

many other motor areas. These include the premotor cortex (Caminiti et. al. 1991) 

' the cerebellum (Fortier et. al. 1989) as well as parietal area 5 (Kalasaka et. al. 1983; 

Kalasaka, 1988). This fact alone is not sufficient to confirm a common protocol as it 

only confirms preservation of spatial information. Each of the studies mentioned 

also confinns that arm direction is encoded in a population code. 

Given that there is this common communications protocol between areas, what is 

the exact information that is being exchanged? The Recruitment Model proposes for 

practical reasons that it is body-centered, joint-based information. The practical 

reason for this is one of reducing the number of variables under control. For 

example, if muscles are chosen then the connectivity would be massively higher. 

The information is body-centered or put another way based on relative angular 

information. This is because there is no reason to assume that the human motor 

system would adopt our Euclidean coordinate system. This hypothesis is also 

backed up by the above studies, since they report a correlation of movement 

direction with cell activity and not muscle activation. By use of this common 

communication highway it is possible to see how some of the amazing flexibility of 

the human motor system is achieved. The somatotopy preserves the same spatial 

parallelism with all cooperating areas. The common information exchange opens up 

the possibility of many specialised motor areas formulating specific plans. These 

plans could be evoked at a moment's notice through a change in intentionality. 

These specialised contingency plans have a neurophysiological basis also, as 
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Godschalk et. al. (1981,1985) have noted, as prepratory "set" related activity in the 

premotor cortex. The massive parallelism allows processing to be carried out 

extremely quickly as only a few steps are required to make complex transitions. 

The Recruitment Model (Figure 6.1 - duplicate of figure 1.2 reproduced for ease of 

reading) breaks down the motor production process into three steps:- the Joint 

Recruitment Level (JRL), the Muscle Recruitment Level (MRL) and the motor 

pools. HMC's would target onto the JRL, recruiting the appropriate populations, 

each of which would in turn recruit muscle related populations at the MRL. Each 

MRL population would then target the appropriate motor pools to produce the 

desired movement. Each area is discussed in more detail below. The JRL and the 

MRL are functionaly equivalent to Ml (see section 3.3.1.6). The JRL and the MRL 

therefore are responsible for the transition from joint related information to muscle 

related information (Kalasaka 1992). The MRL then targets the appropriate motor 

pool with correctly weighted connections (Fetz et. al. 1990); the details of these 

connections is described in the proceeding sections of this chapter. 
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6.4 Higher motor centres (HMC) 

Each HMC would target the appropriate area of the JRL with a desired movement 

amplitude. The spatial form of the spike train would be used to indicate the speed of 

the desired movement. This arrangement presupposes a strong temporal correlation 

between all motor cortical areas. The output from a HMC at any instant in time 

would be a request for a particular joint position. Each HMC would also broadly 

preserve the somatotopic organisation of the JRL. The somatotopy within the 

HMC's is likely to become distorted on the basis of the specialised function being 

encoded. The HMC would therefore request a "simple" movement be executed by 

the JRL at each instant in time. Over a period of time a series of "simple" 

movements would be requested, which would in combination form a "complex" 

movement. The timing of the release of "simple" movements to the JRL will be 

critical. Consider a series of three required positions, where the third position is 

released before the second position has had sufficient time to be implemented. In 

this case the second position is never realised, instead some other intermediate 

position is reached. The combination of positions that are reached, and those that 

are not would encode a virtual path or trajectory. This is in principle similar to the 

requirements of Spring To Endpoint (STE) models (Bizzi et. al. 1984). 

The practicalities of implementing the timing of the release of such models is not 

currently explained any fwther in the Recruitment Model, except to note that a 

base-time for each movement would be known, by virtue of the motor pools being 

able to execute any movement amplitude in a similar period of time (duration 

invariance). In the Synchronous neuronal model the speed of contraction caused by 

a motor pool is controlled by the spatial spiking of the input signal i.e. slower 
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movements are achieved by increasing duration between spikes, even though the 

same absolute frequency is achieved ultimately. The same concept applies to HMCs 

requesting joint rotations in the JRL. 

An important point is that each HMC has no direct knowledge of which muscles are 

utilised to cany out the required movement. Neither is the force of the upcoming 

movement considered. These tasks are delegated to the motor production process, 

which is assumed to cany out movement requests correctly. The HMC's are 

therefore able to focus on the task of planning only, and are isolated from the task of 

implementation. 

Feedback from the JRL would be required for the formulation of motor plans, and 

for the confinnation of action in subsequent corrected phases of motor action. It is 

also possible that the multiple (homonocular like) representations observed in Ml 

(Hurnphrey and Mitz, 1989, Sato and Tanji, 1989; Sanes and Donoghue, 1992) 

would be utilised by HMCs for predictive planning in parallel with a currently 

executing movement, essentially allowing planned movements to be tested or 

prepared before they are required. 

6.4.1 Example of a simplified higher motor centre (HMC) 

To demonstrate how a simplified version of the Recruitment model would function, 

a simulation of a "stick-man" running has been devised. The details of the 

simulation are described below in section 6.7. From the review of coordinate 

systems in section 2.2 and again in chapter 3.3 it was decided that the Recruitment 

Model would adopt a coordinate system based around relative body centered 

angular coordinates. 
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The function of this particular HMC is to release a sequence of positions sufficient 

for the "man" to move his limbs as if running. If we now consider the arm in 

isolation, it will have two well defined positions; a start position and an end position 

(denoted by the position of the hand). In this model the movement of the arm is 

defined in only two dimensions. In a more realistic version even in only two­

dimensions the arm movement would require the release of at least three coordinate 

positions, even though the intermediate positions would probably never be reached. 

The current simulation could be easily adapted to account for these intermediate 

positions. 

The position of the hand in space is defined by two parameters, the angle of the 

hand taken in a straight line from the shoulder relative to an upright vertical axis 

bisecting the shoulder, and a displacement from it. From this information it is 

possible to compute the angular displacement of the shoulder joint and of the elbow 

joint (the wrist joint is not modelled), utilising a biomechanical property of human 

physiology; namely, the elbow and shoulder joints have adjoining limbs of 

approximately equal length. 

For a required angular displacement, a.1 from the vertical axis of the shoulder and a 

total displacement l1 the joint positions 81 and 82 (shown in Figure 6.2) are defined 

as follows:-

81 = sin-1(b/ l1) 

82=( rr-281 )-( rr-a.1)= a.1-281 

where:-

11 is the displacement to arm endpoint 
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a 1 is the angular displacement of the first joint 

his the limb length 

The leg and hip joint limbs are analogous to the arm and shoulder joint limbs and 

are subject to similar treatment. 

The target joint positions for each limb are then communicated to the relevant JRL 

utilising the known somatotopic organisation. The communication takes the form of 

a spike train indicating the required displacement. The spike train representing the 

required displacement could be modified to change the speed/duration of the 

movement, but in this simulation all the joints were required to begin and end the 

movement simultaneously. The HMC will then oscillate through the defined start 

and end positions for each joint of each limb. In the "running man" simulations the 

period of oscillation was fixed. 
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Figure A depicts the two 
positions (Tl ,T2) released from 
the simplified HMC during the 
"running man" simulations. 

Endpoint for each limb is 
encoded as a displacement 
from the shoulder. 
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model utilises the biomechanical 
property of the arm joints being 
equal in length. 
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6.4 Joint Recruitment Level (JRL) 

The JRL encodes the entire body position in terms of joint information. Each 

individual joint is encoded in terms of angular coordinates, relative to its nearest 

neighbouring joint. The relative merits of this choice has been described in the 

sections above. 

A separate colony of cells (a Joint Recruitment Colony, JRC) is used to represent 

each degree of freedom for every joint. Each of the JRCs target directly onto the 

MRL (see Figure 6.3), and in particular onto specific Muscle Recruitment Colonies 

(MRC-see section 6.6.1) within the MRL. The somatotopic order observed in Ml is 

preserved in both JRL and MRL. 

In the human control system this arrangement would work as follows:- each joint 

position would be encoded using up to three JRCs( one for each degree of freedom 

of the joint). Each of these JRCs would then target onto around two MRCs in a 

simple case, where only a single agonist and antagonist need be considered. In more 

complex cases where MRCs do not pull in exactly the correct line of action, further 

MRCs would be connected. The connection strength between the JRC and the 

targeted MRC indicates the efficiency of the MRC in that particular direction, for 

example an MRC with very little effect in a particular direction would be weakly 

connected. The additional complexities accounted for at the MRL are described 

below in section 6.6. 

The timing information would be carried forward to the MRL unaltered, the 

amplitude of the reaching movement would become distributed through the number 

of active cells in each JRC. The activity of each cell within a JRC would effectively 

encode pre-learnt unit-force information. This information could be learnt through a 
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motor babbling phase (Piaget, 1963). The JRL would receive angular proprioceptive 

feedback in subsequent corrected phases of movement to ensure correct adaption. 

6.5.1 Joint Recruitment Colony (JRC) 

A JRC represents a particular plane of rotation about a joint. A JRC consists of a 

number of neurons, each of which receives the integrated required relative angle. 

The neurons in the JRC have a Guassian response characteristic similar to that 

described by Schwartz et. al. 1988 (see section 3.3.1). This means that each neuron 

has a particular preferred angular rotation for which its output is strongest. Any 

inputs falling outside this range elicits outputs on a gradually declining scale 

dependant upon the difference between the preferred direction and the actual 

required direction. The benefit of distributing the input amongst various neurons 

within the JRC is that the most efficient MRC colonies can be targeted for particular 

angular rotations. Another benefit is that physical disturbances and interactions with 

neighbouring joints can also be accounted for at this level. 

The JRCs collectively encode the transition from Euclidan gemoetry to high 

dimensional muscle geometry. Each JRC recruits cells within the population as 

successively higher levels of angular rotation is required. Each JRC is analagous to 

a motor pool neuron, except that the output connectivity is more complex, in that it 

connects to multiple targets with varying strength. 
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6.6 Muscle Recruitment Level (MRL) 

The layout at the MRL is more complex (Figure 6.4). Each neuron at this level will 

target on average three motor pools, although the range is between one and six (Fetz 

et. al., 1990). 

A neuron that targets only one motor pool obviously only acts in one direction, and 

will be the first choice of the relevant JRC if a movement is required in that 

direction. The second choice would be a neuron that only targets two motor pools 

and so on until neurons are reached that have no effect in the required direction. A 

neuron or population of neurons that has connectivity in more than one direction 

will be targeted by more than one JRC. It therefore must be able to integrate these 

signals. If that population is already active then a mechanism is required that allows 

the next best selection to be made and so on until either the required movement is 

elicited or a maximum physical output is reached. This mechanism is particularly 

important because it is at this level that loading effects must be considered. As the 

load increases, more and more MRL cells must be recruited but in a balanced 

fashion. 

The MRL therefore essentially receives information about the timing of each muscle 

and exactly which muscle is to be used from the JRL. This information is then 

combined with loading requirements to give the total output requirement. MRL 

therefore encodes a mechanism that allows the most efficient cells to be targetted 

first, and successively higher levels of activation recruit adjoining cells. The process 

is supported by the somatotopy evident in Ml. It is at this level that the quirks and 

complexities of the human motor system would be accounted for, for example 

multiple muscle compartments (Burke, 1991) could be modelled here which could 
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serve to compensate for many physical interactions, by accurately controlling step 

changes in movement i.e. each small step within a movement trajectory would be 

modelled by a cell population that is specifically optimised for that position. 

6.6.1 Muscle Recruitment Colony 

Each neuron within a MRC has a preferred direction of action identical to those 

described in section 3.3.1. As the required force increases, additional units are 

recruited by allowing the signal to propagate to adjoining neurons. The last neurons 

to be recruited are those that pull in the required direction least efficiently. Each 

neuron within the MRC will target the appropriate neuronal pools with sufficient 

input to evoke a movement in the preferred direction. This means that connections 

from a single neuron to multiple pools would have connection strengths to those 

pools which indicate their contribution to that movement. Proprioceptive feedback 

from each muscle encoding muscle length would be required to ensure correct 

adaption at this level. The motor pools isolate the MRL from the problems of 

fatigue and impose a usefull timing relationship (chapter 5). 
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6.7 The "running man" simulation. 

The "running man" simulation (Figure 6.6) has 8 separate motor pools, each with 28 

neurons, giving a total of 224 neurons, all of which are simulated in parallel in real­

time. The rotation about each joint is represented by a network (motor pool), which 

encodes both agonist and antagonist muscle activity. 

Figure 6.7 shows how the Recruitment Model has been simplified for the purpose of 

this simulation. The model is defmed in two dimensions only, and assumes that the 

muscles causing the rotations about the joint pull directly in the required line of 

action. The simulation takes no account of force or loading effects and completely 

ignores all physical interactions that would need to be solved in the "real world". As 

a result of these simplifications the HMC effectively passes the signal directly onto 

the appropriate motor pool. Output from a HMC model (described in section 6.4.1) 

is encoded into a spike train with appropriate temporal and spatial characteristics. 

This output is then targeted onto the correct motor pool (a simplification of the 

somatotopy). Each motor pool was defined as described in chapter 5 (Synchronous 

single tier motor pool experiments). The simulation also assumes that muscle 

stiffness is regulated by Renshaw Cells(RC) in the motor pool to give a linear 

characteristic (Nichols and Houk, 1976). 

Two positions for each limb were defined such that the transitions between them 

would cause the simulated joints to contract at differing rates in equal time. All the 

intermediate positions were generated by the temporal nature and output profile 

characteristics of the motor pool. From the simulation it can be seen that the joints 

start the movement cycle together and end together, thus demonstrating how the 
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intrinsic timing in the motor pool output can be utilised to help in the synchrony of 

movements and the formation of synergies. 

An observation of note is that visually the movements appear "fluid", i.e. they look 

quite human-like compared to the sort of movement that would be achieved if this 

animation was implemented using standard sequential animation techniques. One 

reason for the "fluid" nature of these movements is that the actual output of the 

motor pools is inaccurate compared to the display resolution, and it is the errors in 

the output that lead to a more flowing movement. The same is presumably true for 

human movements. 
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6.8 Summary 

In this chapter the Recruitment Model of ballistic voluntary motor action was 

presented in detail. The Recruitment Model was described in terms of the 

neurophysiological evidence presented in chapter 3 and with particular reference to 

the experimental simulations presented in chapter 5. 

The proceediii.g discussion has highlighted the complexity of the interaction that 

must occur within the motor production system in order to account for the 

flexability of the human motor system. It is highly distributed in nature and would 

require a "recruitment" mechanism to facilitate the distribution of the command 

signal to the appropriate units. The Recruitment Model draws upon detailed 

information presented in disparate fields (such as physiology, neurophysiology, 

control theory and biomechanics) and attempts to combine this information in a 

form that can accommodate a more computationally functional discussion on 

ballistic voluntary motor action. 

In the current form the Recruitment Model is acknowledged to suffer from a number 

of severe shortcomings. The most significant omission from the model is the lack of 

feedback and the absence of any force or loading information. This is a major 

restriction in the further clarification of the details at both the MRL and JRL. 

Considerable improvements would need to be made to the model before these 

simulations could be carried out, in particular the simulations of the physical device 

being controlled would need to be more realistic and incorporate at least some of the 

physical complications described by Hollerbach and Flash ( 1982) in order to test 

the effectiveness of the Recruitment Model. 
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7. Conclusions and Future Directions 

In chapter 1 some general issues relating to motor control were introduced, and the 

goals and objectives of this research were defined. Some terms and definitions 

relating to the Recruitment model of ballistic voluntary motor action were 

introduced along with a description of each of the chapters in this thesis and a brief 

description as to how each related to this investigation. 

In chapter 2 a more detailed overview of motor control issues was presented as well 

as some physiological observations made regarding human arm movements. The 

chapter concluded by looking at some models that presented novel approaches to 

motor control. The control and physiological concepts introduced in chapter 2 then 

provided a context for chapter 3, which took a detailed look at the neurophysiology 

relating to motor control. This detailed review of neurophysiology forms the basis 

for the majority of chapters that follow and is a key component to understanding the 

Recruitment Model and the motor pool experiments in chapter 5. 

In chapter 4 two neuronal models were described, the Leaky Integrator neuronal 

model which was used during the early motor pool simulations and the Synchronous 

neuronal model which was used in all subsequent simulations. Chapter 4 gives 

details of how each model was simulated on computer and how each of the 

parameters affects the neuron's behaviour. The Synchronous neuronal model was 

developed as part of this study for a number of reason highlighted by deficiencies in 

the early Leaky Integrator motor pool studies described in chapter 5. The 

Synchronous neuronal model specifically models the input/output frequency 
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relationships for each cell as well as the spatial form of spiking to and from each 

cell. 

Chapter 5 introduced the features of the INSIGHT TOO software package and its 

application in the investigation of motor pool behaviour utilising both the Leaky 

Integrator and Synchronous neuronal models. The early Leaky Integrator 

simulations attempted to reproduce physiologically observed data using motor pool 

neurons organised to produce a spatiotemporal output sequence for a given input. 

The approach proved to be flawed; subsequent Synchronous simulations were more 

successful and were based on a more continuous and responsive network design. In 

particular the simulations showed that motor pool neurons could be responsible for 

the production of physiologically observed properties such as duration invariance 

and velocity profile invariance. 

The observed characteristics of the motor pool experiments were then put into the 

broader context of a complete model of motor control based on the information 

presented in chapter 2 and chapter 3. The result was a theoretical model of ballistic 

voluntary motor action called the Recruitment Model which was described in detail 

in chapter 6. The Recruitment Model introduced the distinction between motor 

planning and motor production. It is hypothesised that Ml is responsible for motor 

production, and that multiple motor planning areas commlll1i.cate with Ml using 

relative body centered angular coordinates transmitted between many cortical areas 

through a shared connectional topographic organisation known as somatotopy. The 

motor production areas are responsible for realising "simple movements", defmed as 

movements that can be realised in a single step. Whereas the motor planning areas 
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release temporal sequences of "simple movements" to produce "complex 

movements". 

The "simple movements" are integrated into groups of cells acting synergistically to 

perform the desired motor act. The Joint Recruitment Level(JRL) and the Muscle 

Recruitment Level(MRL) were introduced in chapter 6 as the structures required for 

the transformation of joint related information to muscle based information as part 

of the motor production process. The JRL and MRL both use "recruitment" as the 

process of achieving this transformation in a truly distributed manner. This contrasts 

with the inherently sequential architecture of most other control models. 

A much simplified version of the Recruitment Model was simulated using the 

Synchronous neuronal model, and a simple HMC was developed to release a 

sequence of "simple movement" instructions. The resultant simulation was of a 

"running man" which simulated two joints for each of four limbs of a stick man. 

The "running man" simulations proved to be of interest due to the fluid nature of the 

movements, which was due to the inaccuracies of the motor pool output. The 

simulation also demonstrated how certain aspects of the synergy formation problem 

might be solved by this model. 

The motor pool simulations were not sufficiently detailed to claim biological 

plausibility, they were instead biologically inspired. To apply the motor pool results 

to a full model of motor control would require significantly more investigation. 

Motor pool behaviour would need to be studied for a variety of required force 

conditions under a variety of temporal conditions. The interaction between muscle 

pairs would also need to be investigated and the resultant affect of the "stiffness" 

caused in the muscle. As processing power becomes more readily available larger 
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motor pool sizes will become practicable, facilitating greater experimental detail. A 

number of other tasks need to be performed in conjunction with this, namely a 

detailed study of muscle function and the compartmentalisation of muscles. This 

study needs to be assessed in the context of an accurate dynamics model. As the 

level of simulation detail progresses, more biomechanical complexity can also be 

considered. It is believed that the structural form of the Recruitment Model is 

sufficient to cater for this additional complexity but future investigation will be 

required to test this hypothesis. The detailed and thorough investigation of these low 

level functions is essential to accurately inform on the exact nature of the 

interactions with the higher levels of motor control. 

A glaring and well acknowledged deficit of the Recruitment Model is the complete 

lack of any feedback or adaption. To understand the role offeedback a detailed look 

at many other cortical and subcortical areas in the brain will need to be undertaken. 

This study is likely to yield a relatively simple implementation in the Recruitment 

Model but its exact form will be critical in building to a truly adaptive model. There 

are many small local feedback circuits and special cases will also need to be 

considered, but before that, a large amount of work needs to be undertaken in 

understanding the primary motor areas. 

As future work progresses, one of the most interesting areas of study will be the 

exact form of the higher motor centers (HMC) and how easily the wide variety of 

complex motor tasks can be simulated. The Recruitment Model predicts a strong 

need for temporal correlation between cortical and sub-cortical areas. This has not 

been the subject of any studies to date. The design of the Recruitment Model and 
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the motor production interface with the motor planning centers should provide a 

good structure to integrate information from a number of disparate areas. 

There is however, a clear critical path of analysis, and it starts with a more detailed 

look at muscle fimction in the context of more detailed physical modelling of 

parameters such as gravity and momentum. 

The INSIGHT TOO software although very flexible suffered from not being as 

interactive as its predecessor, ideally a combination of both tools would be used in 

future investigations. A number of neuronal software simulation tools of sufficiently 

good quality are now readily available. These software tools negate the need for any 

further development of a general software simulation tool. There will most probably 

always be a role for specific programs tailored to a specific tasks. In order to push 

simulations to there limit these specialised tools will always be required. 

Considering the complexity and size of the brain it is not likely this requirement will 

diminish in the near future. 

As far as neuronal modelling is concerned there are many models similar in 

behaviour to the Synchronous neuronal model (Chapter 4; Redman and Graham 

(1993)) developed as part of this study, but the results of this study have indicated 

that models that simulate individual spiking behaviour would be a positive asset in 

the future investigation of motor action. 

The Recruitment Model at some point should be implemented on a "real" device, it 

is possible that the output model could be adapted to be implemented on a rigid 

robotic manipulator, but care should be taken not to lose the flexibility of the human 

design, and it certainly should be implemented in a distributed fashion. The ideal 

would be to continue this investigation using "smart materials" capable of behaving 
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Appendix A 

The ·appendix-contains sample·code demonstntting the INSIGH~T iSol!fc.e code 

files, that were used during;motor pooi simulations in chapte~'5. Tile following 

'sample 'files.arej11cll1ded:~· 

l, Synchron6us nel1foh' simulation: code. 

2. 1L;eaky In'tegnttor simwation code 

J. Sample 'lNSIGH'iF simulation' control file, 



1. Synchrous neuron simulation code. 

rem****************************************************************************** 
rem *Program: SYNC2.INS 
rem * Description: 
rem* 
rem* 
rem* 
rem* 
rem* 
rem* 
rem* 
rem* 
rem* 
rem* 
rem* 
rem* 
rem* 
rem* 
rem* 
rem • 
rem* 
rem • 
rem • 
rem* 
rem* 
rem • 
rem* 
rem* 
rem • 
rem* 
rem* 
rem* 
rem* 
rem* 
rem • 
rem* 
rem * 
rem* 
rem* 
rem,* 
rem * Written: 

The synchronous neuron takes an input stream of pulses and calculates 
their input frequency over a period (Tbase). The longer the period the 
more accurate the calculation but the slower the neuron is to react 
to change. The value of the incoming pulses are added together for 
each time step if the input is above some threshold (THRESHi) then 
the pulse is used in the current frequency calculation. The output 
frequency is the same as the input frequency multiplied by some factor 
Rf, as long as the input frequency is within the frequency limits 
FREQmin and FREQmax. The output frequency is updated in accordance 
with the UPDATErate parameter. When look at input pulses it is 
possible to assume some "persistance" of impulses and look back 
several impulses before average, the number of steps to look 
back is determined by DECA Ywindow parameter. The impulses tail of 
exponentially from the current impulse, these are then added together 
and thresholded. This allows some degree of synchrony between 
multiple inputs to be explored. 

FREQmin 
FREQmax 
Rf 
UPDATErate 
UPDA TEcount -
THRESHi 
DECA Ywindow -
Tbase 

CONNECTvalue -
CONNECTdelay -
CONNECTmin -
CONNECTmax -

connect_sourceO -
connect-fromO 
Fire_LogO 

Minimum Input Frequency 
Maximum Input Frequency 

Refractory Factor (Scales Input/Output) 
Output Reaction Rate 
Output Reaction variable 

Thresholding Variable 
Number of steps to average input over 
Number of steps to calculate frequency over 
this affectively determines response speed 

Value of input 
How long it takes to get there 
Minimum connection firing frequency 
Maximum connection firing frequency 

Incoming pulse log ((t - Tbase) -> t) 
Outgoing pulse log ((t - Tbase) -> t) 
Incoming future pulse log (t -> (t+ Tbase)) 

Mark Norman (11th July 1993) 
rem****************************************************************************** 

iter= i 

rem *"" Calculate The Input Frequency FREQin 

gosub CalclnFrequency 

rem *** Calculate The Output Frequency FREQout 
rem *** Scale the output with the Rf parameter 

FREQout = FREQin • Rf 

rem gosub ChangeFreqRate 
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gosub CalcCurFrequency 

FireNode = 0 
rem ifFREQin < FREQmin or FREQin > FREQmax then goto clear_output 

if FREQcurrent <= FREQout then FireNode = I 

gosub SendPulseOut 

finish: 

print 11 ('\n;"] Iter: ";iter;" Input: ";FREQin, 110utput: "; FREQout,"Current: ";FREQcurrent; .. - 11
; 

UPDA TEcount 
ifFireNode =I then print"*** FIRED***" 
ifFireNode = 0 then print"*** DID NOT FIRE***" 

ifFireNode = I then write out, "5,";FREQcurrent;","; 
ifFireNode = 0 then write out, "O,";FREQcurrent;","; 
if FireNode = I then total = total + I 
end chain 

rem -------------------------------------------------------------------------

rem *** change frequency rate 
rem*** FREQrate determines how many step go by before 
rem ** * The output frequency is updated 

ChangeFreqRate: 

UPDATEcount = UPDATEcount +I 
ifUPDATEcount < UPDATErate then FREQout = oldFREQ 
ifUPDATEcount < UPDATErate then return 

rem ••• update frequency ••• 

oldFREQ = FREQout 
UPDATEcount = 0 
return 

rem *** Clear the relevant slot in the output window 

clear_ output: 

pos = (iter - (trunc(iterflbase)*Tbase)) + 1 
if pos > Tbase then pos = I 
connect_ from[pos) = 0 

goto finish 

rem ••• Calculates FREQin -which is the input frequency 
rem **• Threshold THRESHi determines how many input units are required to count as 
rem *** and input pulse 
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CalclnFrequency: 

count= 0 

rem*** Get any due impulses out of the FireLog 

pos = (iter- (trunc(iterflbase)*lbase)) + l 

rem print "Fire_Log[nl: ", Fire_Log[FireCountl, "Fire Count: ", FireCount 
connect_ source(pos I = Fire_ Log[FireCount I 

ifFire_Log[FireCount] > 0 then last= iter 

Fire_Log[FireCountl = 0 
FireCount = FireCount + l 
ifFireCount > lbase then FireCount = I 

rem *** Add up all the impulses 

step= 0 
fire= 0 
factor= 0 
FREQin= 0 

if iter - last > lbase then return 

for f = l to lbase 

again: 

fire= connect_ source[ f) 
rem if sync = l and fire = 2 then fire = 0 
goto skip_window 

x=f+(step+l) 
if x < l then x = lbase + x 

rem factor= (DECA Ywindow- step)/DECA Ywindow 
rem fire= fire+ (connect_source[x) *factor) 

factor= connect_source[x) I (DECAYwindow- step) 

skip_zero: 
fire= fire+ (connect_source[xl -factor) 
step = step + 1 

rem print "(";f;") Step:", step, "Factor: ",factor, "Fire: ",fire, "x: ", connect_source[x), "T: 
", THRESHi 

if step< DECA Ywindow then goto again 

skip_window: 

next 

if fire >= THRESHi then count = count + l 
step= 0 
fire= 0 
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rem *** Divide through by the time base to get the frequency 

rem base = Tbase 
rem if iter < Tbase then base = iter+ 1 
FREQin = count ffbase 

return 

rem *** Calculates FREQcurrent -which is the previous frequency rate plus one extra 
rem *** output pulse to determine if the node needs to fire again 

CalcCurFrequency: 

pos = (iter - (trunc(iterffbase)*Tbase)) + 1 
connect_from[pos) = 0 

count= 0 

for f= 1 to Tbase 
fire= connect_from[f] 
if fire >= I then count= count + fire 

next 

rem base = Tbase 
rem if iter < Tbase then base = iter+ 1 
FREQcurrent = ((count+ 1) fTbase) 

rem pos = ((iter-1)- (trunc((iter-l)fTbase)*Tbase)) + 1 
rem connect_from[pos] = 0 

return 

SendPulseOut: 

rem *** Calculate position of pulse in output window 

pos =(iter- (trunc(iterfTbase)*Tbase)) + I 

rem *** Adjust output pulse window 

connect_from[pos] = 0 
if fireNode= 1 then connect_from[pos] = 1 

result= saveneuron(streaml, n) 

if result= -1 then print "Neuron Save File Error." 

for j = 1 to connect_count 
con= connectOJ 
if con > -1 then gosub SendPulseExtemOut 
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next 

return 

SendPulseExtemOut: 

result = loadconnect(strearn2, con) 
if result = -1 then print "Connection File Read Error." 

rem print "Connection To: ", destination 

result = loadneuron(stream I, destination) 

if result = -I then print "Neuron File Read Error." 

rem *** Calculate pos in target nodes input window 

if CONNECTdelay > Tbase then print "ERROR: CONNECTdelay param greater than Tbase", 
CONNECTdelay, "Node: ",destination, "Tbase: ", Tbase 
pos = FireCount + CONNECTdelay 

rem *** Adjust for end of output window 

if pos > Tbase then pos = pos - Tbase 

rem *** Put pulse in target nodes fire log 

rem ifFREQout < CONNECTmin then FireNode = 0 
rem if FREQout > CONNECTmax then FireNode = 0 

ifFireNode = I and Fire_Log[pos) =-I then Fire_Log[pos] = 0; 
ifFireNode =I then Fire_Log[pos] = Fire_Log[pos] + CONNECTvalue 

result= saveneuron(stream I, destination) 
result= loadneuron(streaml, n) 
return 
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2. Leak Integrator simulation code 

rem****************************************************************** 
rem* Name: Leake.ins 
rem * Description: Standard Leaky Integrator With Modifications 
rem * to handle external connections. 
rem * Date: 26th Febuary 1993 
rem****************************************************************** 

rem *** Check if any pulses have arrived at the membrane 

rem print "Node: ", n, "fire count:", fire_count 

for j = 1 to fire_ count 
fire= fire_logUJ 
if fire> -l then gosub find_value 

next 

rem •u Apply Decay *** 

membrane = membrane - (membrane I decay) 

current= last_fired+refractory 
rem*** Check To See If Node Has Fired*** 

hasfired = 0 
if membrane>threshold and current<=i then gosub send_ output 

print "Iter: ",i,"Node: ", nodenum, "Membrane: ",membrane, "Last Fired: ",last_ fired 

write out, membrane;",";hasfired; 
if last_fired=i and i > 0 U1en total=total+ l 
if n < number_neurons then write out,","; 

rem print "Node:", n, "Fire Log[!]:", fire_log[l) 

endchain 

rem*** Update All The Nodes That Have Received An Input*** 

send_ output: 

rem*** Send Output Along All Connections*** 

hasfired = 1 

rem print"*** Fired***- Node", n, "Number Connections:", connect_count 

result= saveneuron(stream1, n) 

if result= -1 then print "Neuron Save File Error." 

for j = 1 to connect_ count 
con = connectUJ 
if con > -1 then gosub slot 

next 
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return 

rem *** update the target connections slot *** 

slot: 

extern= -1 
result= loadconnect(strearn2, con) 
if result= -1 then print "Connection File Read Error." 
if result= -2 then gosub open_extern 
result= loadneuron(streaml, destination) 
if result = -1 then print "Neuron File Read Error." 

rem *** find next free slot *** 

pos =-I 

for h = 1 to fire_ count 
fire= fire_log[hl 
if fire < 0 then pos=h 

next 

ifpos=-1 then gosub new_slot 

rem print "pos: ", pos, "fire_ count: ", fire_count 

rem *** set the current slot position to the current iteration *** 

fire_log[posl = i 

if extern= 1 then connect_ source[pos 1 = old _project 
ifextern=-1 then connect_source[posl = -1 

connect_from[posl =con 

rem print "will come off on:", (i+delay}, "For Node:", destination, "pos: ", pos 

result= saveneuron(streaml, destination) 

if result = -1 then print "Neuron File Save Error." 

rem *** reload node information*** 

if extern= 1 then gosub close_ extern 

result= loadneuron(streaml, n) 
if result= -1 then print "Error Reloading Node Data." 
last fired = i 
return 

new slot: 
rem print "(before) fire: ", fire_count 
pos=fire _count+! 
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fire count= fire count+ I - -
rem print "(after) fire: ", fire_count 
return 

find_value: 

rem ••• membrane = membrane + (1\i[RC - membrane) x conductivity ••• 

iter= delay+ fire_logUJ 
rem print "Due To Fire On: ", iter 
if iter> i then return 

extern= -l 
con = connect_fromUJ 
source = connect_ source[j] 
if source > -l then gosub change_ network 
result= loadconnect(stream2, con) 
if result = -l then print "Error Loading Connect Data." 
rem if result = -2 then print "*** External Connection ***" 
if extern = I then gosub restore_ network 
value = (mrc - membrane) * conductivity 
mem = membrane 
membrane = membrane +value 
fire _log[j] = -l 
rem print"-------------------------------------------------------" 
rem print "delay: ", delay, "mrc: ", mrc, "conductivity: ", conductivity, "old membrane: ", mem 
rem print "Node: 11

, n, 'T'J;"] From: ",source, n Value:", value 
rem print " --------------------............ ----....... ------.. -------------------...... -----.. --------" 

return 

open_extern: 
old _project =.findproject(proj,sourcenet$) 
if old _project= -I then print "Project File Error",proj 
new _project = findproject(proj,destnet$) 
if new _project = -I then print "Project File Error" ,proj 
close( stream l) 
close(stream2) 
loadproject(proj,new _project) 
extern= l 
return 

close extern: 

close( stream!) 
close(streali12) 
loadproject(proj,old _project) 
extern=-! 
return 

change_ network: 

close( stream!) 
close(stream2) 
loadproject(proj,source) 
extern=! 
return 
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. restore_ network' 

·close(streaml) 
close(stream2) 
lloadprojeci(proj,k) 
extern ~'-t' 
'return 

' . 
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3. Sample INSIGHT simulation control rile. 

rem************************************************************************ 
rem *Name: Main4.ins 
rem *Description: 
rem* 
rem* 

Standard main module template with modifications 
to handle project files, and .to have a dual output 
for motor pool simulations. 

rem* Date: 28th Febuary 1993 
re1n************************************************************************ 

proj = open("c:\source\insight\rnp.plj", "rb+", 4) 
result = initproject(proj) 
if result = -1 then print "Error Initialising Project File" 

stream! = I 
stream2 = 2 
strearn3 = open("c:\source\insight\output l.txt" ,"w+" ,3) 
streamS= open("c:\source\insight\output2.txt","w+",5) 
strearn6 = open("c:\source\insight\output3.txt", "w+" ,6) 

cls 

iterations = 700 
number_neurons = 28 
number_ connections= 5 
square = iterations/20 

sx = 40-(((number _ neurons/2)*2)+2) 
sy = 6 

gotoxy(3l,l):print "Leaky lntegrator" 
gotoxy(31,2):print "AAAAAAAAAAAAAAAA" 

result= 0 

write strearn3," ,node 0, fireO, node I, fire 1, node 2, fire 2, node 3, fire 3" 
write streamS," ,node 0, fireO, node I, fire I, node 2, fire 2, node 3, fire 3" 
write stream6, "Total Output" 

for k = I to projcount -1 
loadproject(proj,k) 
resetneuron(strearn I) 
resetconnect(strearn2) 
close( stream l) 
close(strearn2) 

next 

for i = 0 to iterations 
gtotal = 0 

for k = I to projcount -1 
if k= l then out=strearn3 
if k=2 then out=strearn5 

write out, i;","; 
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AppendixB 

lfhis appendix, contains the detaifed data.for experiments, qe~cribe.d:jn chapter 
5. The following experjm~nis.are covered:- ·· · 

•• 'I>wo ttier.l!;eaky. Integrator motor ,pooli 
•• Single tier'Le!lky InJegratocmotor pool 
., Synchronous neuron' motor pool: 
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Two tier Leak Integrator mtor pool. 

Network Topology 

Each network layer has a connectional topology similar to that shown in Figure 
5.4. 
The topology of each layer is identical with the following exceptions:-
Output from the second ouput pool has been scaled to be larger by a factor of 2 
when compared with the ftrst. 
The decay factors in the second pool have been set to 50 (decays twice as 
quickly). 
Intra layer connections are made from all nodes in the ftrst layer to the root 
node on the second layer. The parameters are as follows:- MRC = 7.0 and 
CONDUCTIVITY= 0.5. 

Simulations 

Simulations were carried out using the INSIGHT TOO software with output 
calculated using EXCEL 4.0. The following ftles were used:-

MAIN4.INS 
LEAKE.INS 

.MP4.INF 

.MP4.ICF 

.MP5.INF 

.MP5.ICF 

- Controlling simulation code 
- leaky integrator code with extension to handle 

external inputs/outputs. 
- Layer 1 Node data ftle & Connect File 

-Layer 2 Node data ftle & Connect File 

[1] The external stimulas input was 1.0 for iterations 1 -> 10 . .MP9.XLS -> 
.MP11.XLS 

[2] The external stimulas input was 0.5 for iterations 1 -> 10 . .MP 12.XLS -
>.MP14.XLS 

[3] The external stimulas input was 1.5 for iterations 1 -> 10 . .MP15.XLS­
>MP17.XLS 

[4] The external stimulas input was 2.0 for iterations 1 -> 10 . .MP18.XLS­
>.MP20.XLS 

[5] [1] -> [4] combined into a single chart MP21.XLS. 
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Node Data 
Layer 1 
Node: 0, Layer: 0, Params: MEMBRANE = 3.00, REFRACTORY= 10.00, DECAY= 100.00, 

THRESHOLD= 5.05, DELAY = 10.00, LAST_FmED = 0 
Node: 1, Layer: 0, Params: MEMBRANE= 3.00, REFRACTORY= 10.00, DECAY= 100.00, 

THRESHOLD= 5.05, DELAY = 10.00, LAST_FmED = 0 
Node: 2, Layer: 0, Params: MEMBRANE= 1.00, REFRACTORY= 10.00, DECAY = 100.00, 

THRESHOLD= 3.70, DELAY = 10.00, LAST_FmED = 0 
Node: 3, Layer: 0, Params: MEMBRANE= 1.00, REFRACTORY= 10.00, DECAY = 100.00, 

THRESHOLD= 3.70, DELAY = 10.00, LAST_FmED = 0 
Node: 4, Layer: 0, Params: MEMBRANE= 3.00, REFRACTORY= 10.00, DECAY = 100.00, 

THRESHOLD= 3.95, DELAY = 10.00, LAST_FmED = 0 
Node: 5, Layer: 0, Params: MEMBRANE= 1.00, REFRACTORY = 10.00, DECAY = 100.00, 

THRESHOLD = 3.95, DELAY= 10.00, LAST_FmED = 0 
Node: 6, Layer: 0, Params: MEMBRANE= 3.00, REFRACTORY = 10.00, DECAY= 100.00, 

THRESHOLD= 3.95, DELAY = 10.00, LAST_FmED = 0 
Node: 7, Layer: 0, Params: MEMBRANE= 3.00, REFRACTORY = 10.00, DECAY= 100.00, 

THRESHOLD= 4.25, DELAY = 10.00, LAST _FillED= 0 
Node: 8, Layer: 0, Params: MEMBRANE = 3 .00, REFRACTORY= 10.00, DECAY = 100.00, 

THRESHOLD = 4.25, DELAY = 10.00, LAST_FmED = 0 
Node: 9, Layer: 0, Params: MEMBRANE= 3.00, REFRACTORY = 10.00, DECAY= 100.00, 

THRESHOLD = 4.25, DELAY = 10.00, LAST_FIRED = 0 
Node: 10, Layer: 0, Params: MEMBRANE = 3.00, REFRACTORY = 10.00, DECAY= 100.00, 

THRESHOLD= 4.25, DELAY = 10.00, LAST_FmED = 0 
Node: 11, Layer: 0, Params: MEMBRANE= 3.00, REFRACTORY = 10.00, DECAY= 100.00, 

THRESHOLD = 4.60, DELAY = 10.00, LAST _FillED= 0 
Node: 12, Layer: 0, Params: MEMBRANE = 3.00, REFRACTORY = 10.00, DECAY= 100.00, 

THRESHOLD= 4.60, DELAY = 10.00, LAST_FIRED = 0 
Node: 13, Layer: 0, Params: MEMBRANE= 3.00, REFRACTORY = 10.00, DECAY = 100.00, 

THRESHOLD = 4.60, DELAY = 10.00, LAST _FIRED = 0 
Node: 14, Layer: 0, Params: MEMBRANE = 3.00, REFRACTORY= 10.00, DECAY= 100.00, 

THRESHOLD = 4.60, DELAY = 10.00, LAST_FIRED = 0 
Node: 15, Layer: 0, Params: MEMBRANE = 3.00, REFRACTORY = 10.00, DECAY= 100.00, 

THRESHOLD = 4.60, DELAY = 10.00, LAST_FIRED = 0 
Node: 16, Layer: 0, Params: MEMBRANE = 3.00, REFRACTORY = 10.00, DECAY = 150.00, 

THRESHOLD= 3.50, DELAY = 10.00, LAST_FmED = 0 
Node: 17, Layer: 0, Params: MEMBRANE = 3.00, REFRACTORY = 10.00, DECAY = 100.00, 

THRESHOLD = 5.05, DELAY= 10.00, LAST_FmED = 0 
Node: 18, Layer: 0, Params: MEMBRANE = 3.00, REFRACTORY = 10.00, DECAY= 100.00, 

THRESHOLD= 5.05, DELAY = 10.00, LAST_FmED = 0 
Node: 19, Layer: 0, Params: MEMBRANE = 3.00, REFRACTORY = 10.00, DECAY= 100.00, 

THRESHOLD = 5.05, DELAY = 10.00, LAST_FIRED = 0 
Node: 20, Layer: 0, Params: MEMBRANE = 3.00, REFRACTORY= 10.00, DECAY= 100.00, 

THRESHOLD = 5.05, DELAY = 10.00, LAST_FIRED = 0 
Node: 21, Layer: 0, Params: MEMBRANE = 3.00, REFRACTORY = 10.00, DECAY = 100.00, 

THRESHOLD = 5.05, DELAY = 10.00, LAST_FmED = 0 
Node: 22, Layer: 0, Params: MEMBRANE = 3.00, REFRACTORY = 10.00, DECAY= 100.00, 

THRESHOLD = 5.05, DELAY = 10.00, LAST_FmED = 0 
Node: 23, Layer: 0, Params: MEMBRANE = 3.00, REFRACTORY = 10.00, DECAY = 100.00, 

THRESHOLD = 5.05, DELAY = 10.00, LAST_FmED = 0 
Node: 24, Layer: 0, Params: MEMBRANE = 3.00, REFRACTORY = 10.00, DECAY = 100.00, 

THRESHOLD = 5.05, DELAY = 10.00, LAST_FmED = 0 
Node: 25, Layer: 0, Params: MEMBRANE = 3.00, REFRACTORY = 10.00, DECAY= 100.00, 

THRESHOLD = 5.05, DELAY = 10.00, LAST_FmED = 0 
Node: 26, Layer: 0, Params: MEMBRANE = 3.00, REFRACTORY = 10.00, DECAY= 100.00, 

THRESHOLD = 5.05, DELAY = 10.00, LAST_FmED = 0 
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Node: 27, Layer: 0, Params: tvfEMBRANE = 3.00, REFRACTORY= 10.00, DECAY= 100.00, 
TIIRESHOLD = 5.05, DELAY = 10.00, LAST_FIRED = 0 
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Layer 2 

Node: 0, Layer: 0, Params: MEMBRANE= 3.00, REFRACTORY= 10.00, DECAY = 50.00, 
Tiffi.ESHOLD = 5.05, DELAY= 10.00, LAST_FIRED = 0 

Node: 1, Layer: 0, Params: MEMBRANE= 3.00, REFRACTORY= 10.00, DECAY= 50.00, 
Tiffi.ESHOLD = 5.05, DELAY= 10.00, LAST_FIRED = 0 

Node: 2, Layer: 0, Params: MEMBRANE= 1.00, REFRACTORY= 10.00, DECAY= 50.00, 
THRESHOLD= 3.70, DELAY= 10.00, LAST_FIRED = 0 

Node: 3, Layer: 0, Params: MEMBRANE= 1.00, REFRACTORY= 10.00, DECAY = 50.00, 
Tiffi.ESHOLD = 3.70, DELAY= 10.00, LAST_FIRED = 0 

Node: 4, Layer: 0, Parruns: MEMBRANE= 3.00, REFRACTORY= 10.00, DECAY = 50.00, 
THRESHOLD= 3.95, DELAY= 10.00, LAST_FIRED = 0 

Node: 5, Layer: 0, Params: MEMBRANE= 1.00, REFRACTORY= 10.00, DECAY= 50.00, 
Tiffi.ESHOLD = 3.95, DELAY = 10.00, LAST_FIRED = 0 

Node: 6, Layer: 0, Pararns: MEMBRANE= 3.00, REFRACTORY= 10.00, DECAY= 50.00, 
Tiffi.ESHOLD = 3.95, DELAY = 10.00, LAST_FIRED = 0 

Node: 7, Layer: 0, Pararns: MEMBRANE= 3.00, REFRACTORY= 10.00, DECAY= 50.00, 
THRESHOLD= 4.25, DELAY = 10.00, LAST_FIRED = 0 

Node: 8, Layer: 0, Parruns: MEMBRANE= 3.00, REFRACTORY= 10.00, DECAY = 50.00, 
Tiffi.ESHOLD = 4.25, DELAY = 10.00, LAST _FIRED = 0 

Node: 9, Layer: 0, Paratus: MEMBRANE= 3.00, REFRACTORY= 10.00, DECAY = 50.00, 
THRESHOLD= 4.25, DELAY = 10.00, LAST_FIR.ED = 0 

Node: 10, Layer: 0, Pararns: MEMBRANE= 3.00, REFRACTORY= 10.00, DECAY = 50.00, 
Tiffi.ESHOLD = 4.25, DELAY= 10.00, LAST _FIRED = 0 

Node: 11, Layer: 0, Pararns: MEMBRANE= 3.00, REFRACTORY= 10.00, DECAY = 50.00, 
THRESHOLD= 4.60, DELAY= 10.00, LAST_FIRED = 0 

Node: 12, Layer: 0, Params: MEMBRANE= 3.00, REFRACTORY= 10.00, DECAY = 50.00, 
TimES HOLD = 4.60, DELAY= 10.00, LAST _FIRED = 0 

Node: 13 , Layer: 0, Params: MEMBRANE= 3.00, REFRACTORY= 10.00, DECAY = 50.00, 
THRESHOLD= 4.60, DELAY= 10.00, LAST_FIRED = 0 

Node: 14, Layer: 0, Parruns: MEMBRANE= 3.00, REFRACTORY= 10.00, DECAY = 50.00, 
11-lRESHOLD = 4.60, DELAY= 10.00, LAST_FIRED = 0 

Node: 15, Layer: 0, Parruns: MEMBRANE= 3.00, REFRACTORY= 10.00, DECAY = 50.00, 
THRESHOLD = 4.60, DELAY = 10.00, LAST _FIRED = 0 

Node: 16, Layer: 0, Params: MEMBRANE= 3.00, REFRACTORY = 10.00, DECAY = 50.00, 
Tiffi.ESHOLD = 6.00, DELAY = 5.00, LAST _FIRED = 0 

Node: 17, Layer: 0, Params: MEMBRANE= 3.00, REFRACTORY= 10.00, DECAY = 50.00, 
Tiffi.ESHOLD = 5.05, DELAY= 10.00, LAST_FIRED = 0 

Node: 18, Layer: 0, Parruns: MEMBRANE= 3.00, REFRACTORY= 10.00, DECAY = 50.00, 
Tiffi.ESHOLD = 5.05, DELAY = 10.00, LAST_FIRED = 0 

Node: 19, Layer: 0, Params: MEMBRANE = 3.00, REFRACTORY = 10.00, DECAY = 50.00, 
TimES HOLD = 5.05, DELAY = 10.00, LAST _FIRED = 0 

Node: 20, Layer: 0, Params: MEMBRANE= 3.00, REFRACTORY = 10.00, DECAY = 50.00, 
Tiffi.ESHOLD = 5.05, DELAY = 10.00, LAST_FIRED = 0 

Node: 21, Layer: 0, Params: MEMBRANE= 3.00, REFRACTORY= 10.00, DECAY = 50.00, 
THRESHOLD = 5.05, DELAY = 10.00, LAST _FIRED = 0 

Node: 22, Layer: 0, Params: MEMBRANE= 3.00, REFRACTORY= 10.00, DECAY = 50.00, 
THRESHOLD = 5.05, DELAY = 10.00, LAST_FIRED = 0 

Node: 23, Layer: 0, Params: MEMBRANE = 3.00, REFRACTORY= 10.00, DECAY = 50.00, 
THRESHOLD= 5.05, DELAY = 10.00, LAST_FIRED = 0 

Node: 24, Layer: 0, Pararns: MEMBRANE = 3.00, REFRACTORY = 10.00, DECAY = 50.00, 
THRESHOLD = 5.05, DELAY = 10.00, LAST_FIRED = 0 

Node: 25, Layer: 0, Params: MEMBRANE = 3.00, REFRACTORY = 10.00, DECAY = 50.00, 
Tiffi.ESHOLD = 5.05, DELAY = 10.00, LAST_FIRED = 0 

Node: 26, Layer: 0, Params: MEMBRANE= 3.00, REFRACTORY= 10.00, DECAY = 50.00, 
THRESHOLD = 5.05, DELAY = 10.00, LAST_FIRED = 0 
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Node: 27, Layer: 0, Params: MEMBRANE = 3.00, REFRACTORY = LO.OO, DECAY= 50.00, 
THRESHOLD= 5.05, DELAY= 10.00, LAST_FIRED = 0 

Connection Data 
Layer 1 

Source Node: 1, Destination Node: 0, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY= 0.50, MRC = 7.00 

Source Node: 1, Destination Node: 22, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 8.0, CONDUCTIVITY= 0.7 

Source Node: 17, Destination Node: 22, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY= 0.50, MRC = 7.00 

Source Node: 17, Destination Node: 23, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY= 0.50, MRC = 7.00 

Source Node: 2, Destination Node: 5, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTMTY = 0.30, MRC = 6.00 

Source Node: 18, Destination Node: 23, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTMTY = 0.50, MRC = 7.00 

Source Node: 2, Destination Node: 4, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY = 0.30, MRC = 6.00 

Source Node: 3, Destination Node: 6, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY= 0.30, MRC = 6.00 

Source Node: 3, Destination Node: 5, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY = 0.30, MRC = 6.00 

Source Node: 18, Destination Node: 24, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY= 0.50, MRC = 7.00 

Source Node: 4, Destination Node: 10, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY = 0.30, MRC = 6.00 

Source Node: 19, Destination Node: 24, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY = 0.50, MRC = 7.00 

Source Node: 4, Destination Node: 9, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY = 0.30, MRC = 6.00 

Source Node: 5, Destination Node: 8, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY = 0.30, MRC = 6.00 

Source Node: 19, Destination Node: 25, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY = 0.50, MRC = 7.00 

Source Node: 5, Destination Node: 9, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY = 0.30, MRC = 6.00 

Source Node: 6, Destination Node: 8, 
Source Network: CURRENT, Destination Network: CURRENT: 
Parruns: CONDUCTIVITY= 0.30, lvfR.C = 6.00 
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Source Node: 6, Destination Node: 7, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY= 0.30, MRC = 6.00 

Source Node: 20, Destination Node: 25, 
Source Network: CURRENT, Destination Network: CURRENT: 
Pararns: CONDUCTMTY = 0.50, MRC = 7.00 

Source Node: 7, Destination Node: 11 , 
Source Network: CURRENT, Destination Network: CURRENT: 
Pararns: CONDUCTMTY = 0.30, MRC = 7.00 

Source Node: 7, Destination Node: 12, 
Source Network: CURRENT, Destination Network: CURRENT: 
Pararns: CONDUCTIVITY= 0.30, MRC = 7.00 

Source Node: 20, Destination Node: 26, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY = 0.50, MRC = 7.00 

Source Node: 8, Destination Node: 12, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTMTY = 0.30, MRC = 7.00 

Source Node: 8, Destination Node: 13, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTMTY = 0.30, MRC = 7.00 

Source Node: 21, Destination Node: 26, 
Source Network: CURRENT, Destination Network: 
CURRENT: Pararns: CONDUCTIVITY = 0.50, MRC = 7.00 

Source Node: 21, Destination Node: 27, 
Source Network: CURRENT, Destination Network: CURRENT: 
Paratus: CONDUCTIVITY = 0.50, MRC = 7.00 

Source Node: 9, Destination Node: 13, 
Source Network: CURRENT, Destination Network: CURRENT: 
Pararns: CONDUCTIVITY = 0.30, MRC = 7.00 

Source Node: 9, Destination Node: 14, 
Source Network: CURRENT, Destination Network: CURRENT: 
Parcuns: CONDUCTIVITY = 0.30, MRC = 7.00 

Source Node: 3, Destination Node: 16, 
Source Network: C:\SOURCE\INSIGHT\MP4.1NF, 
Destination Network: C:\SOURCE\INSIGH1\MP5.1NF: 
Pararns: CONDUCTMTY = 0.50, MRC = 7.00 

Source Node: 10, Destination Node: 14, 
Source Network: CURRENT, Destination Network: CURRENT: 
Pararns: CONDUCTIVITY= 0.30, MRC = 6.00 

Source Node: 10, Destination Node: 15, 
Source Network: CURRENT, Destination Network: CURRENT: 
Pararns: CONDUCTMTY = 0.30, MRC = 6.00 

Source Node: 2, Destination Node: 16, 
Source Network: C:\SOURCE\INSIGHT\MP4.INF, 
Destination Network: C:\SOURCE\INSIGHT\MP5.INF: 
Params: CONDUCTMTY = 0.50, MRC = 7.00 

Source Node: 1 L, Destination Node: 2 L, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY = 0.50, MRC = 6.00 

Source Node: 4, Destination Node: 16, 
Source Network: C:\SOURCE\INSIGHT\MP4.INF, 
Destination Network: C:\SOURCE\INSIGH1\MP5.INF: 
Params: CONDUCTIVITY = 0.50, MRC = 7.00 

Source Node: 11 , Destination Node: 20, 
Source Network: CURRENT, 
Destination Network: CURRENT: 
Params: CONDUCTIVITY = 0.50, MRC = 6.00 
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Source Node: 12, Destination Node: 20, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY= 0.50, MRC = 6.00 

Source Node: 12, Destination Node: 19, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY = 0.50, MRC = 6.00 

Source Node: 5, Destination Node: 16, 
Source Network: C:\SOURCE\INSIGH1\MP4.INF, 
Destination Network: C:\SOURCE\INSIGHT\MP5.INF: 
Pararns: CONDUCTIVITY= 0.50, MRC = 7.00 

Source Node: 13, Destination Node: J 9, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY = 0.50, MRC = 6.00 

Source Node: 13, Destination Node: 18, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY = 0.50, MRC = 6.00 

Source Node: 6, Destination Node: 16, 
Source Network: C:\SOURCE\INSIGH1\MP4.INF, 
Destination Network: C:\SOURCE\INSIGH1\MP5.INF: 
Params: CONDUCTIVITY = 0.50, MRC = 7.00 

Source Node: 14, Destination Node: 18, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY = 0.50, MRC = 6.00 

Source Node: 10, Destination Node: 16, 
Source Network: C:\SOURCE\INSIGH1\MP4.INF, 
Destination Network: C:\SOURCE\INSIGH1\MP5.INF: 
Params: tvlRC = 8.0, CONDUCTIVITY = 0.7 

Source Node: 14, Destination Node: 17, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY = 0.50, MRC = 6.00 

Source Node: 15, Destination Node: 17, 
Source Network: CURRENT, Destination Network: CURRENT: 
Pararns: CONDUCTIVITY= 0.50, MRC = 7.00 

Source Node: 9, Destination Node: 16, 
Source Network: C:\SOURCE\INSIGHT\MP4.INF, 
Destination Network: C:\SOURCE\INSIGHT\MP5.INF: 
Params: MRC = 8.0, CONDUCTMTY = 0.7 

Source Node: 15, Destination Node: 1, 
Source Network: CURRENT, Destination Network: CURRENT: 
Pararns: MRC = 8.0, CONDUCTIVITY = 0.7 

Source Node: 16, Destination Node: 2, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY = 0.30, MRC = 6.00 

Source Node: 16, Destination Node: 3, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY = 0.30, MRC = 6.00 

Source Node: 8, Destination Node: 16, 
Source Network: C:\SOURCE\INSIGH1\MP4.INF, 
Destination Network: C:\SOURCE\INSIGH1\MP5.INF: 
Params: MRC = 8.0, CONDUCTIVITY = 0.7 

Source Node: 7, Destination Node: 16, 
Source Network: C:\SOURCE\INSIGH1\MP4.INF, 
Destination Network: C:\SOURCE\INSIGHT\.tv1P5.INF: 
Params: MRC = 8.0, CONDUCTIVITY = 0.7 

Source Node: 15, Destination Node: 16, 
Source Network: C:\SOURCE\INSIGHT\MP4.INF, 
Destination Network: C:\SOURCE\INSIGHT\Iv1P5.INF: 
Params: MRC = 8.0, CONDUCTIVITY = 0.7 
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Source Node: 14, Destination Node: 16, 
Source Network: C:\SOURCE\1NSIGHT\MP4.INF, 
Destination Network: C:\SOURCE\INSIGHT\MP5.INF: 
Params: MRC = 8.0, CONDUCTIVITY= 0.7 

Source Node: 13, Destination Node: 16, 
Source Network: C:\SOURCE\JNSIGHT\MP4.INF, 
Destination Network: C:\SOURCE\INSIGHT\MP5.INF: 
Params: MRC = 8.0, CONDUCTIVITY= 0.7 . 

Source Node: 12, Destination Node: 16, 
Source Network: C:\SOURCE\INSIGHT\MP4.INF, 
Destination Network: C:\SOURCE\INSIGHT\MP5.INF: 
Params: MRC = 8.0, CONDUCTIVITY= 0.7 

Source Node: 11, Destination Node: 16, 
Source Network: C:\SOURCE\INSIGHT\MP4.INF, 
Destination Network: C:\SOURCE\INSIGHT\MP5.INF: 
Pararns: MRC = 8.0, CONDUCTIVITY= 0.7 

Source Node: 1, Destination Node: 16, 
Source Network: C:\SOURCE\INSIGHT\MP4.INF, 
Destination Network: C:\SOURCE\JNSIGHT\MP5.INF: 
Pararns: MRC = 8.0, CONDUCTIVITY= 0.7 

Source Node: 17, Destination Node: 16, 
Source Network: C:\SOURCE\1NSIGHT\MP4.INF, 
Destination Neh:vork: C:\SOURCE\INSIGHT\MP5.INF: 
Params: MRC = 8.0, CONDUCTIVITY = 0.7 

Source Node: 18, Destination Node: 16, 
Source Network: C:\SOURCE\INSIGHT\MP4.INF, 
Destination Network: C:\SOURCE\INSIGHT\MP5.INF: 
Params: MRC = 8.0, CONDUCTIVITY= 0.7 

Source Node: 19, Destination Node: 16, 
Source Neh:vork: C:\SOURCE\INSIGHT\MP4.INF, 
Destination Network: C:\SOURCE\INSIGHT\MP5.INF: 
Params: MRC = 8.0, CONDUCTIVITY= 0.7 

Source Node: 20, Destination Node: 16, 
Source Network: C:\SOURCE\INSIGHT\MP4.INF, 
Destination Network: C:\SOURCE\INSIGHT\MP5.INF: 
Params: MRC = 8.0, CONDUCTIVITY = 0.7 

Source Node: 21, Destination Node: 16, 
Source Network: C:\SOURCE\INSIGHT\MP4.INF, 
Destination Network: C:\SOURCE\INSIGHT\MP5.INF: 
Pararns: MRC = 8.0, CONDUCTIVITY= 0.7 

Source Node: 0, Destination Node: 16, 
Source Network: C:\SOURCE\INSIGH'I'\!v1P4.INF, 
Destination Network: C:\SOURCE\INSIGHT\MP5.INF: 
Params: MRC = 8.0, CONDUCTIVITY = 0.7 

Source Node: 22, Destination Node: 16, 
Source Network: C:\SOURCE\INSIGHT\MP4.INF, 
Destination Network: C:\SOURCE\JNSIGHT\MP5.INF: 
Para1ns: MRC = 8.0, CONDUCTIVITY = 0.7 

Source Node: 23, Destination Node: 16, 
Source Network: C:\SOURCE\INSIGHT\MP4.INF, 
Destination Nehvork: C:\SOURCE\INSIGHT\MP5.INF: 
Params: NlRC = 8.0, CONDUCTIVITY= 0.7 

Source Node: 24, Destination Node: 16, 
Source Network: C:\SOURCE\INSIGHT\MP4.INF, 
Destination Nehvork: C:\SOURCE\INSIGHT\MP5.INF: 
Params: NlRC = 8.0, CONDUCTIVITY = 0.7 

Source Node: 25, Destination Node: 16, 
Source Network: C:\SOURCE\INSIGHT\MP4.INF, 
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Destination Network: C:\SOURCE\INSIGH1\MP5.lNF: Params: 
MRC = 8.0, CONDUCTIVITY = 0.7 

Source Node: 26, Destination Node: 16, 
Source Network: C:\SOURCE\INSIGHT\MP4.INF, 
Destination Network: C:\SOURCE\INSIGH1\MP5.INF: 
Params: MRC = 8.0, CONDUCTMTY = 0. 7 

Source Node: 27, Destination Node: 16, 
Source Network: C:\SOURCE\INSIGHT\MP4.1NF, 
Destination Network: C:\SOURCE\INSIGH1\MP5.INF: 
Params: MRC = 8.0, CONDUCTIVITY = 0.7 

Source Node: 1, Destination Node: 0, 
Source Network: CURRENT, 
Destination Network: CURRENT: 
Params: MRC = 8.0, CONDUCTIVITY = 0.7 

Source Node: 28, Destination Node: 36, 
Source Network: CURRENT, 
Destination Network: CURRENT: 
Params: CONDUCTIVITY= 0.30, MRC = 6.00 

Source Node: 28, Destination Node: 35, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY= 0.30, MRC = 6.00 

Layer 2 

Source Node: I, Destination Node: 0, 
Source Network: CURRENT, Destination Network: CURRENT: 
Paratus: CONDUCTIVITY = 0.50, MRC = 7.00 

Source Node: 1, Destination Node: 22, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY = 0.50, MRC = 7.00 

Source Node: 17, Destination Node: 22, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY = 0.50, MRC = 7.00 

Source Node: 17, Destination Node: 23, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY = 0 .50, MRC = 7.00 

Source Node: 2, Destination Node: 5, 
Source Network: CURRENT, Destination Network: CURRENT: 
Paratus: CONDUCTIVITY= 0.30, MRC = 6.00 

Source Node: 18, Destination Node: 23, 
Source Net\York: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY = 0.50, MRC = 7.00 

Source Node: 2, Destination Node: 4, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY = 0.30, MRC = 6.00 

Source Node: 3, Destination Node: 6, 
Source Network: CURRENT, Destination Net\vork: CURRENT: 
Pararns: CONDUCTIVITY = 0.30, MRC = 6.00 

Source Node: 3, Destination Node: 5, 
Source Net\vork: CURRENT, Destination Net\vork: CURRENT: 
Params: CONDUCTIVITY= 0.30, MRC = 6.00 

Source Node: 18, Destination Node: 24, 
Source Net\vork: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY= 0.50, MRC = 7.00 

Source Node: 4, Destination Node: 10, 
Source Network: CURRENT, Destination Net\vork: CURRENT: 
Paratus: CONDUCTIVITY= 0.30, MRC = 6.00 
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Source Node: 19, Destination Node: 24, 
Source Network: CURRENT, Destination Network: CURRENT: 
Pararns: CONDUCTIVITY= 0.50, MRC = 7.00 

Source Node: 4, Destination Node: 9, 
Source Network: CURRENT, Destination Network: CURRENT: 
Pararns: CONDUCTIVITY= 0.30, MRC = 6.00 

Source Node: 5, Destination Node: 8, 
Source Net .. vork: CURRENT, Destination Network: CURRENT: 
Pararns: CONDUCTIVITY= 0.30, MRC = 6.00 

Source Node: 19, Destination Node: 25, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY= 0.50, MRC = 7.00 

Source Node: 5, Destination Node: 9, 
Source Network: CURRENT, Destination Network: CURRENT: 
Pararns: CONDUCTIVITY= 0.30, MRC = 6.00 

Source Node: 6, Destination Node: 8, 
Source Network: CURRENT, Destination Network: CURRENT: 
Pararns: CONDUCTIVITY= 0.30, MRC = 6.00 

Source Node: 6, Destination Node: 7, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY= 0.30, MRC = 6.00 

Source Node: 20, Destination Node: 25, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY= 0.50, MRC = 7.00 

Source Node: 7, Destination Node: 11 , 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY= 0.30, MRC = 7.00 

Source Node: 7, Destination Node: 12, 
Source Network: CURRENT, Destination Network: CURRENT: 
Para.ms: CONDUCTIVITY = 0.30, MRC = 7.00 

Source Node: 20, Destination Node: 26, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY= 0.50, MRC = 7.00 

Source Node: 8, Destination Node: 12, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTNITY = 0.30, MRC = 7.00 

Source Node: 8, Destination Node: 13, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY= 0.30, MRC = 7.00 

Source Node: 21, Destination Node: 26, 
Source Network: CURRENT, Destination Network: CURRENT: 
Panuns: CONDUCTIVITY= 0.50, MRC = 7.00 

Source Node: 21, Destination Node: 27, 
Source Network: CURRENT, Destination Network: CURRENT: 
Para.ms: CONDUCTIVITY= 0.50, MRC = 7.00 

Source Node: 9, Destination Node: 13 , 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY= 0.30, MRC = 7.00 

Source Node: 9, Destination Node: 14, 
Source Network: CURRENT, Destination Network: CURRENT: 
Pa.rams: CONDUCTIVITY= 0.30, MRC = 7.00 

Source Node: 10, Destination Node: 14, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY= 0.30, MRC = 6.00 

Source Node: 10, Destination Node: 15, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY= 0.30, MRC = 6.00 

Source Node: 11 , Destination Node: 21, 

179 



Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY= 0.50, MRC = 6.00 

Source Node: 11 , Destination Node: 20, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY= 0.50, MRC = 6.00 

Source Node: 12, Destination Node: 20, 
Source Network: CURRENT, Destination Network: CURRENT: 
Paratus: CONDUCTIVITY= 0.50, MRC = 6.00 

Source Node: 12, Destination Node: 19, 
Source Net\vork: CURRENT, Destination Network: CURRENT: 
Paratus: CONDUCTIVITY= 0.50, MRC = 6.00 

Source Node: 13, Destination Node: 19, 
Source Network: CURRENT, Destination Net\vork: CURRENT: 
Params: CONDUCTIVITY = 0.50, MRC = 6.00 

Source Node: 13, Destination Node: 18, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY= 0.50, MRC = 6.00 

Source Node: 14, Destination Node: 18, 
Source Network: CURRENT, Destination Net\vork: CURRENT: 
Params: CONDUCTMTY = 0.50, MRC = 6.00 

Source Node: 14, Destination Node: 17, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY= 0.50, MRC = 6.00 

Source Node: 15, Destination Node: 17, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY = 0.50, MRC = 7.00 

Source Node: 15, Destination Node: 1, 
Source Network: CURRENT, Destination Net\vork: CURRENT: 
Params: CONDUCTMTY = 0.50, MRC = 7.00 

Source Node: 16, Destination Node: 2, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY= 0.30, MRC = 6.00 

Source Node: 16, Destination Node: 3, 
Source Network: CURRENT, Destination Network: CURRENT: 
Paratns: CONDUCTIVITY= 0.30, MRC = 6.00 

Source Node: 28, Destination Node: 36, 
Source Network: CURRENT, Destination Network: CURRENT: 
Pararns: CONDUCTIVITY= 0.30, MRC = 6.00 

Source Node: 28, Destination Node: 35, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONDUCTIVITY= 0.30, MRC = 6.00 
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Single Tier Leaky Integrator Motor Pool 

Network topology 
The network has a connection topology similar to that shown in Figure 5.4. but 
a considerably larger pool size (65 Nodes). Within this network all the nodes 
have the same properties and the connection parameters were varied. 

Simulations 
Simulations were carried out using the INSIGHT TOO software with output 
calculated using EXCEL 4.0. The following files were used:-

MAIN4.INS 
LEAK1.INS 

MP12.INF 
changes 
MP12.ICF 
MP2.PRJ 

External Inputs:-

- Controlling simulation code 
- Same as LEAKE.INS but with modification to 

implement the MIN & MAX variables to put 
extents on the membrane range, this has the 
advantage of not allowing nodes to drop beneath a 
pre-defined level which allows the response to an 
input to be more readily predictable. The upper 
limit variable is not particularly usefull since the 
equations impose an upper limit anyway. This is a 
way of reducing the limit without affecting that 
particular mechanism. 

- Nodedata file & connect flle after connection 

- Project definition file . 

(1] The external stimulas input was 0.5 for iterations 1 -> 10. MP27.XLS 
[2] The external stimulas input was 1.0 for iterations 1 -> 10. MP26.XLS 
[3] The external stimulas input was 1.5 for iterations 1 -> 10. MP29.XLS 
[4] The exte1nal stimulas input was 2.0 for iterations 1 -> 10. MP28.XLS 

Nodes 
Node: 0, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD= 6.0, REFRACTORY= 10, 

DELAY= 10, DECAY = 150, LAST_ FIR.ED=O 
Node: 1, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD = 6.0, REFRACTORY= 10, 

DELAY = 10, DECAY = 150, LAST_FIRED=O 
Node: 2, Layer: 0, Params: MEMBRANE = 4.0, THRESHOLD= 6.0, REFRACTORY= 10, 

DELAY = 10, DECAY = 150, LAST_FIRED=O 
Node: 3, Layer: 0, Params: MEMBRANE = 4.0, THRESHOLD= 6.0, REFRACTORY= 10, 

DELAY = 10, DECAY = 150, LAST_FIRED=O 
Node: 4, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD = 6.0, REFRACTORY= 10, 

DELAY = 10, DECAY= 150, LAST _FIRED=O 
Node: 5, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD= 6.0, REFRACTORY= 10, 

DELAY = 10, DECAY = 150, LAST _FIRED=O 
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Node: 6, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD= 6.0, REFRACTORY= 10, 
DELAY= 10,DECAY= 150, LAST_FIRED=O 

Node: 7, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD= 6.0, REFRACTORY= 10, 
DELAY= 10, DECAY= 150, LAST_FIRED=O 

Node: 8, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD = 6.0, REFRACTORY= 10, 
DELAY = 10, DECAY= 150, LAST _FIRED=O 

Node: 9, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD= 6.0, REFRACTORY= 10, 
DELAY= 10, DECAY= 150, LAST _FIRED=O 

Node: 10, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD= 6.0, REFRACTORY= 10 
, DELAY = 10, DECAY = 150, LAST_ FIRED=O 

Node: 11, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD = 6.0, REFRACTORY= 10 
, DELAY = 10, DECAY= 150, LAST_FIRED=O 

Node: 12, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD= 6.0, REFRACTORY = 10 
, DELAY= 10, DECAY = 150, LAST_FIRED=O 

Node: 13, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD= 6.0, REFRACTORY= 10 
, DELAY= 10, DECAY= 150, LAST_FIRED=O 

Node: 14, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD= 6.0, REFRACTORY= 10 
, DELAY= 10, DECAY= 150, LAST_FIRED=O 

Node: 15, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD = 6.0, REFRACTORY = 10 
, DELAY= 10, DECAY = 150, LAST _FIRED=O 

Node: 16, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD= 6.0, REFRACTORY= 10 
, DELAY= 10, DECAY= 150, LAST_FIRED=O 

Node: 17, Layer: 0, Params: MEMBRANE = 4.0, THRESHOLD= 6.0, REFRACTORY= 10 
, DELAY= 10, DECAY= 150, LAST_FIRED=O 

Node: 18, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD= 6.0, REFRACTORY= 10 
, DELAY = 10, DECAY = 150, LAST_ FIRED=O 

Node: 19, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD = 6.0, REFRACTORY = 10 
, DELAY = 10, DECAY= 150, LAST_FIRED=O 

Node: 20, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD = 6.0, REFRACTORY = 10 
, DELAY= 10, DECAY= 150, LAST_FIRED=O 

Node: 21, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD = 6.0, REFRACTORY = 10 
, DELAY= 10, DECAY = 150, LAST_FIRED=O 

Node: 22, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD= 6.0, REFRACTORY = 10 
, DELAY = 10, DECAY= 150, LAST_FIRED=O 

Node: 23, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD = 6.0, REFRACTORY = 10 
, DELAY= 10, DECAY = 150, LAST_FIRED=O 

Node: 24, Layer: 0, Params: MEMBRANE = 4.0, THRESHOLD = 6.0, REFRACTORY = 10 
, DELAY = 10, DECAY = 150, LAST_FIRED=O 

Node: 25, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD = 6.0, REFRACTORY = 10 
, DELAY= 10, DECAY = 150, LAST_FIRED=O 

Node: 26, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD= 6.0, REFRACTORY = 10 
, DELAY= 10, DECAY = 150, LAST_FIRED=O 

Node: 27, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD = 6.0, REFRACTORY= 10 
, DELAY = 10, DECAY = 150, LAST_ FIRED=O 

Node: 28, Layer: 0, Params: MEMBRANE = 4.0, THRESHOLD = 6.0, REFRACTORY = 10 
, DELAY = 10, DECAY = 150, LAST_ FIRED=O 

Node: 29, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD = 6.0, REFRACTORY == 10 
, DELAY= 10, DECAY= 150, LAST _FIRED=O 

Node: 30, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD = 6.0, REFRACTORY = 10 
, DELAY= 10, DECAY= 150, LAST_FIRED=O 

Node: 3 1, Layer: 0, Params: MEMBRANE = 4.0, THRESHOLD = 6.0, REFRACTORY = 10 
, DELAY= 10, DECAY = 150, LAST_FIRED=O 

Node: 32, Layer: 0, Parruns: MEMBRANE= 4.0, THRESHOLD= 6.0, REFRACTORY = 10 
, DELAY= 10, DECAY= 150, LAST_FIRED=O 

Node: 33, Layer: 0, Parruns: MEMBRANE= 4.0, THRESHOLD= 6.0, REFRACTORY= 10 
• DELAY= 10, DECAY = 150, LAST_FIRED=O 

Node: 34, Layer: 0, ParanlS: MEMBRANE = 4.0, THRESHOLD = 6.0, REFRACTORY = 10 
, DELAY= 10, DECAY= 150, LAST_FIRED=O 
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Node: 35, Layer: 0, Params: MENlBRANE = 4.0, THRESHOLD = 6.0, REFRACTORY = lO 
, DELAY= 10, DECAY = 150, LAST_FIRED=O 

Node: 36, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD = 6.0, REFRACTORY= lO 
, DELAY = 10, DECAY = 150, LAST_FIRED=O 

Node: 37, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD= 6.0, REFRACTORY= 10 
, DELAY = 10, DECAY = 150, LAST_FIRED=O 

Node: 38, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD = 6.0, REFRACTORY= 10 
, DELAY = 10, DECAY= 150, LAST_FIRED=O 

Node: 39, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD= 6.0, REFRACTORY= 10 
, DELAY = LO, DECAY = 150, LAST _FlRED=O 

Node: 40, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD = 6.0, REFRACTORY = 10 
, DELAY = 10, DECAY = 150, LAST_FIRED=O 

Node: 41 , Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD= 6.0, REFRACTORY = 10 
, DELAY= 10, DECAY= 150, LAST_FIRED=O 

Node: 42, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD = 6.0, REFRACTORY= lO 
, DELAY = 10, DECAY = 150, LAST_FIRED=O 

Node: 43, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD= 6.0, REFRACTORY = lO 
, DELAY = 10, DECAY = 150, LAST _FIRED=O 

Node: 44, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD= 6.0, REFRACTORY= 10 
, DELAY= 10, DECAY = 150, LAST_FIRED=O 

Node: 45, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD= 6.0, REFRACTORY = 10 
, DELAY = 10, DECAY = 150, LAST_FIRED=O 

Node: 46, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD = 6.0, REFRACTORY= 10 
, DELAY = 10, DECAY = 150, LAST_FIRED=O 

Node: 47, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD= 6.0, REFRACTORY = 10 
, DELAY= 10, DECAY= 150, LAST_FlRED=O 

Node: 48, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD= 6.0, REFRACTORY = 10 
, DELAY = 10, DECAY = 150, LAST_ FIRED=O 

Node: 49, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD= 6.0, REFRACTORY = 10 
, DELAY= 10, DECAY= 150, LAST_FlRED=O 

Node: 50, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD = 6.0, REFRACTORY = 10 
, DELAY= 10, DECAY = 150, LAST_FlRED=O 

Node: 51, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD = 6.0, REFRACTORY = 10 
, DELAY = LO, DECAY = 150, LAST_FlRED=O 

Node: 52, Layer: 0, Params: MEMBRANE = 4.0, THRESHOLD = 6.0, REFRACTORY = 10 
, DELAY = 10, DECAY = 150, LAST _FIRED=O 

Node: 53, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD= 6.0, REFRACTORY = LO 
, DELAY = LO, DECAY = 150, LAST_FIRED=O 

Node: 54, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD = 6.0, REFRACTORY = 10 
, DELAY = 10, DECAY = 150, LAST_FIRED=O 

Node: 55, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD = 6.0, REFRACTORY = 10 
, DELAY= 10, DECAY= 150, LAST_FIRED=O 

Node: 56, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD= 6.0, REFRACTORY = 10 
, DELAY = 10, DECAY = 150, LAST_FIRED=O 

Node: 57, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD= 6.0, REFRACTORY = 10 
, DELAY = 10, DECAY= 150, LAST_FIRED=O 

Node: 58, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD = 6.0, REFRACTORY = 10 
, DELAY = 10, DECAY= 150,LAST_FIRED=O 

Node: 59, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD = 6.0, REFRACTORY = 10 
, DELAY = 10, DECAY= 150, LAST _FlRED=O 

Node: 60, Layer: 0, Params: MEMBRANE = 4.0, THRESHOLD = 6.0, REFRACTORY = 10 
, DELAY = 10, DECAY = 150, LAST_FIRED=O 

Node: 6 1, Layer: 0, Params: MEMBRANE = 4.0, THRESHOLD = 6.0, REFRACTORY = 10 
, DELAY = 10, DECAY= 150, LAST _FIRED=O 

Node: 62, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD = 6.0, REFRACTORY = 10 
, DELAY = 10, DECAY = 150, LAST_FIRED=O 

Node: 63, Layer: 0, Params: MEMBRANE= 4.0, THRESHOLD = 6.0, REFRACTORY = 10 
, DELAY= LO, DECAY = 150, LAST _FIRED=O 
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Node: 64, Layer: 0, Params: MEMBRANE = 4.0, THRESHOLD= 6.0, REFRACTORY= 10 
, DELAY= 10, DECAY= 150, LAST_FIRED=O 

Node: 65, Layer: 0, Params: MEMBRANE = 4.0, THRESHOLD= 6.0, REFRACTORY= 10 
, DELAY = 10, DECAY = 150, LAST_FIRED=O 

Connections 
Source Node: 0, Destination Node: l , 

Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 1.0 

Source Node: 0, Destination Node: 2, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 1 

Source Node: 1, Destination Node: 3, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.9 

Source Node: 1, Destination Node: 4, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.9 

Source Node: 2, Destination Node: 4, 
Source Network: CURRENT, Destination Network: CURRENT: 
Pararns: MRC = 6.5, CONDUCTIVITY= 0.9 

Source Node: 2, Destination Node: 5, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.9 

Source Node: 3, Destination Node: 6, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.8 

Source Node: 3, Destination Node: 7, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.9 

Source Node: 4, Destination Node: 7, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.9 

Source Node: 4, Destination Node: 8, 
Source Network: CURRENT, Destination Network: CURRENT: 
Pararns: MRC = 6.5, CONDUCTIVITY = 0. 9 

Source Node: 5, Destination Node: 8, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY = 0. 9 

Source Node: 5, Destination Node: 9, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY = 0.9 

Source Node: 6, Destination Node: 10, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.7 

Source Node: 6, Destination Node: 11, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY = 0.7 

Source Node: 7, Destination Node: 11, 
Source Network: CURRENT, Destination Network: CURRENT: 
Parains: MRC = 6.5, CONDUCTIVITY= 0.7 

Source Node: 7, Destination Node: 12, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.7 

Source Node: 8, Destination Node: 12, 
Source Network: CURRENT, Destination Network: CURRENT: 
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Params: MRC = 6.5, CONDUCTIVITY= 0.7 
Source Node: 8, Destination Node: 13, 

Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.7 

Source Node: 9, Destination Node: 13, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.7 

Source Node: 9, Destination Node: 14, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.7 

Source Node: 10, Destination Node: 15, 
Source Network: CURRENT, Destination Network: CURRENT: 
Pararns: MRC = 6.5, CONDUCTIVITY= 0.6 

Source Node: 10, Destination Node: 16, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.6 

Source Node: 11 , Destination Node: 16, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.6 

Source Node: 11, Destination Node: 17, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.6 

Source Node: 12, Destination Node: 17, · 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.6 

Source Node: 12, Destination Node: 18, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY = 0.6 

Source Node: 13, Destination Node: 18, 
Source Network: CURRENT, Destination Network: CURRENT: 
Pararns: MRC = 6.5, CONDUCTIVITY= 0.6 

Source Node: 13, Destination Node: 19, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY = 0.6 

Source Node: 14, Destination Node: 19, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.6 

Source Node: 14, Destination Node: 20, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.6 

Source Node: 15, Destination Node: 21, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY = 0.5 

Source Node: 15, Destination Node: 22, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY = 0.5 . 

Source Node: 16, Destination Node: 22, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY = 0.5 

Source Node: 16, Destination Node: 23, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY = 0.5 

Source Node: 17, Destination Node: 23, 
Source Network: CURRENT, Destination Network: CURRENT: 
Pararns: MRC = 6.5, CONDUCTIVITY= 0.5 

Source Node: 17, Destination Node: 24, 
Source Network: CURRENT, Destination Network: CURRENT: 
Pararns: MRC = 6.5, CONDUCTIVITY = 0.5 
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Source Node: 18, Destination Node: 24, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.5 

Source Node: 18, Destination Node: 25, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.5 

Source Node: 19, Destination Node: 25, 
Source Network: CURRENT, Destination Network: CURRENT: 
Pararns: MRC = 6.5, CONDUCTIVITY= 0.5 

Source Node: 19, Destination Node: 26, 
Source Network: CURRENT, Destination Network: CURRENT: 
Pararns: MRC = 6.5, CONDUCTIVITY = 0.5 

Source Node: 20, Destination Node: 26, 
Source Network: CURRENT, Destination Network: 
CURRENT: Params: MRC = 6.5, CONDUCTIVITY= 0.5 

Source Node: 20, Destination Node: 27, 
Source Network: CURRENT, Destination Network: CURRENT: 
Pararns: MRC = 6.5, CONDUCTIVITY= 0.5 

Source Node: 2.1 , Destination Node: 28, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.4 

Source Node: 21 , Destination Node: 29, 
Source Network: CURRENT, Destination Network: CURRENT: 
Pararns: MRC = 6.5, CONDUCTIVITY= 0.4 

Source Node: 22, Destination Node: 29, 
Source Network: CURRENT, Destination Network: CURRENT: 
Pararns: MRC = 6.5, CONDUCTIVITY= 0.4 

Source Node: 22, Destination Node: 31, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.4 

Source Node: 23. Destination Node: 3 1, 
Source Network: CURRENT. Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.4 

Source Node: 23, Destination Node: 32, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.4 

Source Node: 24, Destination Node: 32, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.4 

Source Node: 24, Destination Node: 33, 
Source Network: CURRENT, Destination Network: CURRENT: 
Pararns: MRC = 6.5, CONDUCTIVITY= 0.4 

Source Node: 25, Destination Node: 33, 
Source Network: CURRENT, Destination Network: CURRENT: 
Pararns: MRC = 6.5, CONDUCTIVITY = 0.4 

Source Node: 25, Destination Node: 30, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY = 0.4 

Source Node: 26, Destination Node: 30, 
Source Network: CURRENT, Destination Network: CURRENT: 
Pararns: MRC = 6.5, CONDUCTIVITY= 0.4 

Source Node: 26, Destination Node: 34, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.4 

Source Node: 27, Destination Node: 34, 
Source Network: CURRENT, Destination Network: CURRENT: 
Pararns: MRC = 6.5, CONDUCTIVlTY = 0.4 

Source Node: 27, Destination Node: 35, 
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Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.4 

Source Node: 28, Destination Node: 36, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.3 

Source Node: 28, Destination Node: 37, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.3 

Source Node: 29, Destination Node: 37, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.3 

Source Node: 29, Destination Node: 38, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.3 

Source Node: 31, Destination Node: 38, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.3 

Source Node: 31, Destination Node: 39, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.3 

Source Node: 32, Destination Node: 39, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.3 

Source Node: 32, Destination Node: 40, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.3 

Source Node: 33 , Destination Node: 40, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.3 

Source Node: 33, Destination Node: 41, 
Source Network: CURRENT, Destination Network: CURRENT: 
Parcuns: MRC = 6.5, CONDUCTIVITY = 0.3 

Source Node: 30, Destination Node: 41, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.3 

Source Node: 30, Destination Node: 42, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.3 

Source Node: 34, Destination Node: 42, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.3 

Source Node: 34, Destination Node: 43, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY = 0.3 

Source Node: 35, Destination Node: 43, 
Source Network: CURRENT, Destination Network: CURRENT: 
Parcuns: MRC = 6.5, CONDUCTIVITY = 0.3 

Source Node: 35, Destination Node: 44, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.3 

Source Node: 36, Destination Node: 45, 
Source Network: CURRENT, Destination Network: CURRENT: 
Parcuns: MRC = 6.5, CONDUCTIVITY= 0.2 

Source Node: 36, Destination Node: 46, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY = 0.2 

Source Node: 37, Destination Node: 46, 
Source Network: CURRENT, Destination Network: CURRENT: 
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Params: MRC = 6.5, CONDUCTIVITY= 0.2 
Source Node: 37, Destination Node: 47, 

Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY = 0.2 

Source Node: 38, Destination Node: 47, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.2 

Source Node: 38, Destination Node: 48, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: tviR.C = 6.5, CONDUCTIVITY = 0.2 

Source Node: 39, Destination Node: 48, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY = 0.2 

Source Node: 39, Destination Node: 49, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY = 0.2 

Source Node: 40, Destination Node: 49, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY = 0.2 

Source Node: 40, Destination Node: 50, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY = 0.2 

Source Node: 41, Destination Node: 50, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY = 0.2 

Source Node: 41 , Destination Node: 51 , 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY = 0.2 

Source Node: 42, Destination Node: 51, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.2 

Source Node: 42, Destination Node: 52, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.2 

Source Node: 43, Destination Node: 52, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.2 

Source Node: 43, Destination Node: 53, 
Source Network: CURRENT, Destination Network: CURRENT: 
Para1ns: MRC = 6.5, CONDUCTIVITY = 0.2 

Source Node: 44, Destination Node: 53, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY = 0.2 

Source Node: 44, Destination Node: 54, 
Source Network: CURRENT, Destination Net\vork: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY = 0.2 

Source Node: 45, Destination Node: 55, 
Source Network: CURRENT, Destination Nehvork: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY = 0.1 

Source Node: 45, Destination Node: 56, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY = 0.1 

Source Node: 46, Destination Node: 56, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY = 0.1 

Source Node: 46, Destination Node: 57, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY = 0.1 
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Source Node: 47, Destination Node: 57, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.1 

Source Node: 47, Destination Node: 58, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0. L 

Source Node: 48, Destination Node: 58, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.1 

Source Node: 48, Destination Node: 59, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.1 

Source Node: 49, Destination Node: 59, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.1 

Source Node: 49, Destination Node: 60, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.1 

Source Node: 50, Destination Node: 60, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.1 

Source Node: 50, Destination Node: 61, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0. 1 

Source Node: 51, Destination Node: 6 1, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.1 

Source Node: 51, Destination Node: 62, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.1 

Source Node: 52, Destination Node: 62, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.1 

Source Node: 52, Destination Node: 63, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.1 

Source Node: 53, Destination Node: 63, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0. L 

Source Node: 53, Destination Node: 64, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.1 

Source Node: 54, Destination Node: 64, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 0.1 

Source Node: 54, Destination Node: 65, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY = 0.1 

Source Node: 0, Destination Node: 1, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= 1 

Source Node: 0, Destination Node: 1, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= l 

Source Node: 0, Destination Node: l , 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= L 

Source Node: 0, Destination Node: l , 
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Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY = l 

Source Node: 0, Destination Node: l , 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= l 

Source Node: 0, Destination Node: l , 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= l 

Source Node: 0, Destination Node: l , 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY = l 

Source Node: 0, Destination Node: l, 
Source Network: CURRENT, Destination Network: CURRENT: 
Paratns: MRC = 6.5, CONDUCTIVITY= 1 

Source Node: 0, Destination Node: 1, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY = 1 

Source Node: 0, Destination Node: 1, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= l 

Source Node: 0, Destination Node: l , 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= l 

Source Node: 0, Destination Node: l, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: MRC = 6.5, CONDUCTIVITY= l 
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Synchronous neuron motor pool 

Network topology 
Similar pyramidal topology to that shown in Figure 5.4 but with only 14 nodes. 

Simulations 
Simulations were carried out using the INSIGHT TOO software with output 
calculated using EXCEL 4.0. The following files were used:-

MAIN8.INS 
SYNC2.INS 

SYNC2.INF 
SYNC2.ICF 

External Input 

- Controlling simulation code 
-Synchronous Neuron Code 

- Node data file & CoiUlect File 

[1] External stimulas level was lOO% for iterations 65 -> 96. MPSl.XLS 
[2] External stimulas level was lOO% for iterations 51 -> 105. MPS2.XLS 
[3] External stimulas level was 100% for iterations 51-> 110. MPS3.XLS 
[4] External stimulas level was 50% for iterations 51-> llO. MPS4.XLS 
[5] External stimulas level was 25% for iterations 51 -> 110. MPS5.XLS 
[6] Extemal stimulas level was 33% for iterations 51 -> 110. MPS6.XLS 
[7] Combined output chart. MPS7.XLS 
[8] Extemal stimulas level was 75% for iterations 51 -> 110. MPS8.XLS 

Network data was smoothed using a exponential smooth function (damping factor 0.9) 
and moving average (window = 5). 

Nodes 
Node: 0, Layer: 0, Params: RF = 1.0, FREQJ\.1IN = 0.00, FREQMAX = 2.0, TBASE = 15, 

THRESlll = 1, FIRECOUNT = 1, OLDFREQ = 0, UPDATERATE = 5, 
UPDATECOUNT = 0, DECA YWINDOW = 5, LAST = 0 

Node: 1, Layer: 0, Params: RF = 1.0, FREQJ\.1IN = 0.10, FREQMAX = 2.0, TBASE = 15, 
THRESlll = 1, FIR.ECOUNT = 1, OLDFREQ = 0, UPDATERATE = 5, 
UPDA TECOUNT = 0, DECA YWINDOW = 5, LAST = 0 

Node: 2, Layer: 0, Params: RF = 1.0, FREQJ\.1IN = 0.20, FREQMAX = 2.0, TBASE = 15, 
THRESlll = 1, FIRECOUNT = 1, OLDFREQ = 0, UPDATERATE = 5, 
UPDATECOUNT = 0, DECAYWINDOW = 5, LAST = 0 

Node: J , Layer: 0, Params: RF = 1.0, FREQMIN = 0.10, FREQMAX = 2.0, TBASE = 15, 
THRESlll = 1, FIRECOUNT = 1, OLDFREQ = 0, UPDATERATE = 5, 
UPDA TECOUNT = 0, DECA YWINDOW = 5, LAST = 0 

Node: 4, Layer: 0, Params: RF = 1.0, FREQMlN = 0.20, FREQMAX = 2.0, TBASE = 15, 
THRESill = 1, FIRECOUNT = 1, OLDFREQ = 0, UPDATERATE = 5, 
UPDA TECOUNT = 0, DECA YWINDOW = 5, LAST = 0 

Node: 5, Layer: 0, Params: RF = 1.0, FREQMIN = 0.20, FREQMAX = 2.0, TBASE = 15, 
THRESill = 1, FIRECOUNT = 1, OLDFREQ = 0, UPDATERATE = 5, 
UPDATECOUNT = 0, DECA YWINDOW = 5, LAST = 0 

Node: 6, Layer: 0, Params: RF = 1.0, FREQMIN = 0.30, FREQMAX = 2.0, TBASE = 15, 
THRESlll = 1, FIRECOUNT = 1, OLDFREQ = 0, UPDATERATE = 5, 
UPDATECOUNT = 0, DECAYWINDOW = 5, LAST = 0 
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Node: 7, Layer: 0, Params: RF = 1.0, FREQMIN = 0.30, FREQMAX = 2.0, TBASE = 15, 
THRESH!= 1, FIRECOUNT = 1, OLDFREQ = 0, UPDATERATE = 5, 
UPDATECOUNT = 0, DECA YWINDOW = 5, LAST= 0 

Node: 8, Layer: 0, Params: RF = 1.0, FREQMIN = 0.30, FREQMAX = 2.0, TBASE = 15, 
THRESH!= 1, FIRECOUNT = 1, OLDFREQ = 0, UPDATERATE = 5, 
UPDA TECOUNT = 0, DECA YWINDOW = 5, LAST= 0 

Node: 9, Layer: 0, Params: RF = 1.0, FREQMIN = 0.30, FREQMAX = 2.0, TBASE = 15, 
THRESH!= 1, FIRECOUNT = 1, OLDFREQ = 0, UPDATERATE = 5, 
UPDA TECOUNT = 0, DECA YWINDOW = 5, LAST = 0 

Node: 10, Layer: 0, Params: RF = 1.0, FREQMIN = 0.40, FREQMAX = 2.0, TBASE = 15, 
THRESH!= 1, FIRECOUNT = 1, OLDFREQ = 0, UPDATERATE = 5, 
UPDA TECOUNT = 0, DECA YWINDOW = 5, LAST = 0 

Node: 11, Layer: 0, Params: RF = 1.0, FREQMIN = 0.4, FREQMAX = 2.0, TBASE = 15, 
THRESH!= 1, FIRECOUNT = 1, OLDFREQ = 0, UPDATERATE = 5, 
UPDA TECOUNT = 0, DECA YWINDOW = 5, LAST = 0 

Node: 12, Layer: 0, Pararns: RF = 1.0, FREQMIN = 0.40, FREQMAX = 2.0, TBASE = 15, 
THRESH!= 1, FIRECOUNT = 1, OLDFREQ = 0, UPDATERATE = 5, 
UPDATECOUNT = 0, DECA YWINDOW = 5, LAST = 0 

Node: 13 , Layer: 0, Parruns: RF = 1.0, FREQMIN = 0.40, FREQMAX = 2.0, TBASE = 15, 
THRESH!= 1, FIRECOUNT = 1, OLDFREQ = 0, UPDA TERA TE = 5, 
UPDATECOUNT = 0, DECA YWINDOW = 5, LAST = 0 

Node: 14, Layer: 0, Params: RF = 1.0, FREQMIN = 0.40, FREQMAX = 2.0, TBASE = 15, 
THRESH!= 1, FIRECOUNT = 1, OLDFREQ = 0, UPDA TERA TE = 5, 
UPDATECOUNT = 0, DECA YWINDOW = 5, LAST = 0 

Connections 
Source Node: 0. Destination Node: 1, 

Source Network: CURRENT, Destinatjon Network: CURRENT: 
Params: CONNECTDELA Y = 10, CONNECTV ALUE = 1 

Source Node: 0, Destination Node: 3, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONNECTV ALUE = 1.0, CONNECTDELA Y = 5 

Source Node: 1, Destination Node: 2, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONNECTV ALUE = 1, CONNECTDELA Y = 5 

Source Node: 1, Destination Node: 4, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONNECTVALUE = 0.5, CONNECTDELAY = 5 

Source Node: 2, Destination Node: 6, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONNECTV ALUE = 1, CONNECTDELA Y = 5 

Source Node: 2, Destination Node: 7, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONNECTV ALUE = 0.5, CONNECTDELA Y = 5 

Source Node: 3, Destination Node: 4, 
Source Network: CURRENT, Destination Network: CURRENT: 
Pararns: CONNECTV ALUE = 0.5, CONNECTDELA Y = 5 

Source Node: 3, Destination Node: 5, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONNECTV ALUE = 1.0, CONNECTDELA Y = 5 

Source Node: 4, Destination Node: 7, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONNECTV ALUE = 0.5, CONNECTDELA Y = 5 

Source Node: 4, Destination Node: 8, 
Source Network: CURRENT, Destination Network: CURRENT: 
Parruns: CONNECTV ALUE = 0.5, CONNECTDELA Y = 5 

Source Node: 5, Destination Node: 9, 
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Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONNECTV ALUE = 1.0, CONNECTDELA Y = 5 

Source Node: 5, Destination Node: 8, 
Source Network: CURRENT, Destination Network: CURRENT: 
Pararns: CONNECTV ALUE = 0.5, CONNECTDELA Y = 5 

Source Node: 6, Destination Node: 11, 
Source Network: CURRENT, Destination Network: CURRENT: 
Parruns: CONNECTV ALUE = 1, CONNECTDELA Y = 5 

Source Node: 6, Destination Node: 10, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONNECTV ALUE = 0.5, CONNECTDELA Y = 5 

Source Node: 7, Destination Node: 10, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONNECTV ALUE = 0.5, CONNECIDELA Y = 5 

Source Node: 7, Destination Node: 12, 
Source Network: CURRENT, Destination Network: CURRENT: 
Pararns: CONNECTV ALUE = 0.5, CONNECTDELA Y = 5 

Source Node: 8, Destination Node: 12, 
Source Network: CURRENT, Destination Network: CURRENT: 
Pararns: CONNECTV ALUE = 0.5, CONNECTDELA Y = 5 

Source Node: 8, Destination Node: 13, 
Source Network: CURRENT, Destination Network: CURRENT: 
Params: CONNECTV ALUE = 0.5, CONNECTDELA Y = 5 

Source Node: 9, Destination Node: 13, 
Source Network: CURRENT, Destination Network: CURRENT: 
Panuns: CONNECTV ALUE = 0.5, CONNECTDELA Y = 5 

Source Node: 9, Destination Node: 14, 
Source Network: CURRENT, Destination Network: CURRENT: 
Pararns: CONNECTV ALUE = 1, CONNECTDELA Y = 5 
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