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Abstract 

The following work describes the development and application of a neurological system to 

definitively profile the auditory responses of aquatic animals, presented as audiograms 

showing hearing threshold verses sound frequency. The accuracy of such information is 

essential for the optimisation of bio-technical devices such as the Acoustic Fish Deterrent 

(AFD) barrier deployed in the Illinois River to prevent the migration of non-indigenous 

Asian carp into Lake Michigan, and in the impact assessment of anthropogenic underwater 

sounds on the hearing of cetaceans and other marine animals. 

The ensuing Auditory Brainstem Response (ABR) electrophysiological recording 

technique developed at the University of Plymouth and described in this thesis is classified 

by the UK Home Office as being non-invasive, yielding high quality data from vertebrates 

in the absence of anaesthetics or implanted electrodes. The ABR technique was further 

refined to allow for the recording of evoked potentials in response to either the sound 

pressure or particle motion component of an acoustic signal, from animals stationed both at 

and below the water surface and ranging in size from a few millimetres to nearly a meter in 

length. The electrophysiological studies have resulted in the publication of three peer 

reviewed manuscripts, one of which is the first to define hearing for any animal from the 

order Acipenseriform (sturgeons and paddlefish). 

In addition to the development of the electrophysiology system and protocols, the inner ear 

morphology of the animals tested in this work were studied at the ultrastructural level, 

along with detailed descriptions of the afferent nerve pathway from the ear to the brain. 

Current literature shows a paucity of information on consistent and meticulous removal of 

inner ear parts necessary to identify damage to the ultrastructure that is symptomatic of 

hearing loss. In order for the acquisition of concise and reliable data, the dissection and 

preparation technique for Scanning Electron Microscopy (SEM) was refined for each 

species investigated and has resulted in the publication of a further three peer reviewed 

manuscripts on inner ear morphology. 
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Chapter 1 

General introduction 

1.1 Introduction 

The oceans are virtually transparent to sound and opaque to light and radio waves. At a 

wavelength of I m (1 ,500 Hz) water is nearly I ,000,000 times more transparent to sound 

than to radio signals (Pilgrim and Lovell, 2002). This fact underlies the interest currently 

directed toward acoustical exploration of the oceans. Naturally produced sounds arise 

from a number of sources, such as breaking waves, heavy rain, volcanic activity, or from 

marine animals (bio-acoustic sources). Vocalisations such as whale song, along with the 

grunts and whistles from sonic fish are especially relevant for communication purposes and 

during predator prey interactions (Myrberg, 1981 ). There are several types of 

anthropogenic sources used routinely that produce intense levels of noise, from 

commercial shipping and powered leisure craft, to deliberately produced signals such as 

the Low Frequency Active Sonar (LFA) used by the military in anti-submarine warfare, or 

from the airgun arrays used during a seismic survey of the substrate beneath the sea floor 

by the petroleum industry. These activities can generate noise levels in excess of 253 dB 

(re I JlPa at I m) (Engas et al., 1996), and are comparable to the noise levels generated by 

a seafloor volcanic eruption, which can produce a source level of in excess of255 dB (re I 

JlPa) (Northrop, 1974). 

Recent concerns regarding the impact of anthropogenic sounds on fish and other marine 

animals has prompted a number of studies into the effects of intense noise exposure on the 

hearing systems of marine mammals (e.g., Costa et al., 2003; Ketten, 1995; Richardson et 

al., 1995; Todd et al., 1996; Whitlow et al., 1997). Trauma to the auditory system can 

result in lesions developing along the VIII nerve pathway, or ruptures in the blood vessels 

surrounding the inner ear (Ketten, 1995). A number of techniques have been developed to 

investigate gross physiological damage, though despite speculation, concise evidence of 

inner ear hair cell damage in odontocetiforms exposed to loud noise has yet to be 

presented. Additionally, several studies of the behaviour of free living fish when exposed 



to intense noise have been conducted (e.g. Dalen and Knutsen, 1987; Engiis et al., 1996; 

Pearson et al., 1992; Pickett et al., 1994), and includes the examination of log books from 

fishing vessels showing a decline in catch rates, when operating within 5 km of a 

concurrent seismic survey (Lokkeborg and Soldal, 1993). 

1.2 The audiogram 

Hearing thresholds from any animal possessing the appropriate receptor mechanism are 

illustrated in an audiogram (Myerberg, 1981), which presents the lowest level of sound that 

a species can hear as a function of frequency. Both the sensitivity of hearing and the 

frequency range over which sound can be heard varies greatly from species to species. For 

man, sound is ultrasonic above 18 to 20 kHz, whilst for many fish species, sounds above I 

kHz are ultrasonic and for a number of odontocetiforms, sounds above 150 kHz are 

ultrasonic. This diversity in hearing ability between organisms indicates the importance of 

being able to accurately define hearing thresholds, especially when evaluating the 

influence of intense underwater sounds on both the physiology and ecology of various 

marine animals. The intensity of a sound in air is not the same as the intensity in water, 

primarily because of differences in the way the two measurements are referenced (Urick, 

1983). In air, the lowest sound pressure level audible to humans is around 20 micro 

Pascal, which, on the dB scale is termed 0 dB (re. 20 J.!Pa). However, the sound pressure 

level in water is referenced to I micro Pascal (re. I 11Pa); thus the factor for converting 0 

dB (re. 20 J.1Pa) in air, into dB water is 20 log (Pwate/1 J.!Pa) = 20 log (20) = 26 dB (re. I 

11Pa). The characteristic impedance of water is about 3600 times greater than that of air, 

thus an equivalent sound intensity between air and water is 10 log (3600) = + 36 dB. By 

adding together the converted reference intensity (26 dB) with the impedance matching 

factor (36 dB), an intensity ofO dB (re. 20 J.lPa) in air becomes 62 dB (re. I J.lPa) in water. 

To pursue an accurate diagnosis of raised hearing thresholds as a result of exposure to 

intense noise, the audiogram for a normally hearing animal must first be established. Until 

recently, very little has been documented regarding the hearing abilities of marine animals, 

with a number of authors purporting that fish and invertebrates are responsive only to 

strong vibrations and near field disturbances (e.g. Cohen and Dijkgraaf 1961; Larsel, 1967; 

Wever, 1976). This however is contrary to the findings of Parker (1903) and von Frisch 

(1938) on fish species, and Lovell et al. (2005a) on the hearing abilities of crustaceans. 

The hearing frequencies or audiograms for a number of odontocetiformes are well 

characterised and have been produced using both physiological and behavioural 
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approaches (see Nachtigall et al., 1995; Kastelein, et al., 2003; Sauerland and Dehnhardt, 

1998; Gerstein et al., 1999; Kastelein et al., 2002}, though an audiogram for the common 

dolphin (D. de/phis) has yet to be produced. The bottlenose dolphin (T. truncates) hears 

frequencies from I 00 Hz to 150 kHz (Johnson, 1966; 1967), and the striped dolphin 

(Stenella coeruleoalba) hears frequencies ranging from around 500 Hz to 150 kHz 

(Kastelein, 2003; Brill et al., 2001), with both producing broadband clicks for echolocation 

that range in frequency from 20 Hz to around 200 kHz. P. phocoena hears frequencies 

between 300 Hz (Kastelein et al., 2002}, up to as high as 190 kHz (Bibikov, 1992; Popov, 

1986; Kastelein et al., 2002}, and utilises a narrow band high frequency sonar of around 

120 to 140 kHz (Busnel and Dziedzic, 1966a). It is feasible that this difference in hearing 

ability between T. tnmcates and P. phocoena is explained by the larger cochlea in the 

former (Wever et al., 1971; Ketten, 1997). Physiological evidence suggests that the 

audiogram for D. de/phis may lie somewhere between the hearing range of T. truncates 

and P. phocoena. Therefore, the delineation of hearing ability is of considerable 

importance as part of an accurate assessment of the impact of anthropogenic sounds on the 

inner ear physiology of D. de/phis. 

The techniques used to obtain audiograrns may require varying degrees of time, surgical 

and technical expertise, or the use of behavioural paradigms to gain statistically sound data 

(see Chapter 2 for review of current audiogram production methods). Most of the 

audiograms for marine animals use units of dB (re. I JlPa) or dB (re. I 11Bar) to show the 

lowest Sound Pressure Level (SPL}, of the audible frequencies. Figure 1.1 presents 

published audiograms for both specialist and generalist fish, and shows that they fall into 

two distinct groups, those that hear a narrow frequency bandwidth (up to 500 or so Hz) 

known as hearing generalists (closed data points), and those that hear a wide frequency 

bandwidth (up to 4000Hz), known as hearing specialists (open data points). 

Physiological work on the octavolateralis system shows that some fish can acquire 

information from a sound source using two systems, the inner ear and the lateral line 

(Parker, 1909; Popper and Platt, 1993), though sensitivity to sound pressure requires an 

additional connection between the ear and swim bladder or other air reservoir (Popper and 

Fay, 1993; Yan et al., 2000). For most fish, the lower frequency range between 10 and 300 

Hz is perceptible through the lateral line mechanoreceptors up to a meter or so from the 

sound source, (Munz, 1989; Popper and Fay, 1993; Coombs and Montgomery, 1999). The 

limited effective range of a near field signal intended to stimulate the lateral line renders it 

impracticable for use in large scale acoustic recall projects, though this does not preclude 
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its use in the design of non physical barriers and acoustic fences (Balchen, 1981 ). The fish 

inner ear is capable of detecting sounds within a frequency bandwidth of 30 Hz to around 

600 Hz for generalists (Fay, 1988) and up to 4 kHz for pressure sensitive specialists 

(Hawkins, 1981 ). The results of a hearing examination are graphed to produce an 

audiogram or lumen of spectral sensitivity to sound, which graphically illustrates the 

animal's ability to hear sounds over a range of frequencies and intensities. 
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Figure 1.1 Audiograms for a selection of specialist and generalist fish, obtained using 

different methodologies. Catfish (/. punctatus), microphonics (Fay and Popper, 1975) 

open circles; goldfish (C. aura/us), ABR (Kenyon et al., 1998) open diamonds; C. auratus, 

behavioural (Yan and Popper, 1971) open triangles; salmon (S. salar), behavioural 

(Hawkins and Johnstone, 1978) closed circles; dab (L. limanda), behavioural (Chapman 

and Sand, 1974) closed diamonds; cod (G. morhua), behavioural (Chapman and Hawkins, 

1974) closed triangles 

The narrow frequency detection capabilities of the hearing generalists is most noticeable 

when compared to the auditory thresholds of fish with a mechanical connection between 

the inner ear and swim bladder, such as goldfish (Carrassius auratus) and catfish 
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(Jctalurus puncta/us). Figure 1.1 shows that thresholds are acquired from C. aura/us in 

response to frequencies ranging between 40 Hz to 3000 Hz and from 40 Hz to 4000 Hz for 

I. puncta/us. In contrast, the audio capabilities of the generalis! fish diminish at around 

500 Hz, so they are collectively considered as being sensitive to low frequencies only. An 

inspection of the audiograms in Figure 1.1 shows the hearing thresholds for G. morhua, S. 

solar and L. limanda, are positioned between the curves for the specialists C. aura/us and 

P. puncta/us. The Figure presents a considerable difference in the vertical position of the 

two specialist curves on the Y axis of the audiogram, as the lowest hearing thresholds 

recorded from C. aura/us were 49 dB (re I J.lPa) at 500Hz (Yan and Popper, 1992) and a 

concise audiogram for P. puncta/us presents with a lowest threshold of93 dB (re I J.lPa) at 

1000 Hz (Fay and Popper, 1975). Theoretically, thresholds from I. puncta/us should be 

considerably lower than thresholds from the generalis! fish, though this is not the case in 

Figure 1.1, casting serious doubt as to the accuracy of the generalis! audiograms presented 

in the Figure. 

1.3 The Auditory Brainstem Response 

The Auditory Brainstem Response (ABR) electrophysiology recording technique has been 

used successfully on all major classes of vertebrate (Corwin et al., 1982); a review of 

audiogram production methodologies is presented in Chapter 2. The non-invasive ABR 

recording system has been available for clinical use since the early 1970's, and has been 

used to great effect on non-cooperative subjects, such as children (Warren, 1989) and 

unconscious patients. The ABR technique developed at the University of Plymouth for this 

study is classified by the UK Home Office as being completely non-invasive, records far­

field of synchronous neural activity in the eighth nerve and brainstem auditory nuclei 

elicited by acoustic stimuli (Jewett, 1970; Jewett and Williston, 1971; Jacobson, 1985; 

Kenyon et al., 1998). 

The underwater sound projectors, differential (biological) amplifier and stimulus amplifier 

used in the experiments described in the present study, were obtained from commercial 

sources. The recording of threshold Auditory Evoked Potentials (AEPs) from fish and 

crustaceans is usually achieved by placing the subject, electrodes and preamplifier inside a 

Faraday cage (e.g. Kenyon et al., 1998). However, this precludes the use of the system 

outside of the laboratory, as the electrodes need to be screened against electrical 

interference from sources using mains voltage. Thus, the processing software and 

electrodes (detailed in Chapter 3) had to be developed specifically for this task; screening 
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would not be necessary on a beach, away from strong electromagnetic sources. Two 

electrophysiological recording systems were used to acquire the evoked potentia Is; the first 

was a Medelec MS 6 mainframe with an AA6 biological amplifier, used when recording 

under controlled laboratory conditions, and the second was an A-M Systems model 3000 

differential amplifier used for recording both under laboratory conditions, and at the 

Illinois River Field Station. Adaptations in the setup of the specimen and electrode 

holding equipment is described in detail in the Materials and Methods section in each of 

the relevant chapters, along with descriptions of the sound projectors and the life support 

systems used. 

1.4 Species selection 

As discussed in section 1.2, the hearing abilities of aquatic animals fall into two main 

groups, the hearing specialists and generalists. In order to fully test the ABR system, a 

positivist approach to species selection is adopted, this being considered best suited to 

exploring commonality in neurophysiological studies than the more phenomenological 

perspective typically gleaned from a single species study; nonetheless, the author is 

mindful of the excesses of both approaches. Initially, an audiogram for the goldfish 

(Carrasius auratus) from the order Cypriniformes is produced; as this species has been the 

subject of several audiological investigations (see Chapters 2 and 3). In order to ensure 

that the recording of evoked potentia Is is consistent with previously published ABR work 

on this species, the audiogram is calibrated in accordance with Kenyon et al. ( 1998). 

However, an audiogram for C. auratus has limited application in a "real world" scenario, 

thus the hearing abilities of silver carp (Hypopthalmichthys molitrix) and bighead carp 

(Aristichthysc nobilis) are also studied, with the findings used to improve the selectivity of 

an Acoustic Fish Deterrent (AFD) barrier intended to stop the spread of these species 

through the Illinois River into Lake Michigan. While preventing the spread of H molitrix 

and A. nobilis is critical, it is also important that the AFD system does not affect 

indigenous species where possible and requires an "in depth" understanding of the hearing 

abilities of both the target and non-target species. The paddlefish (Polyodon spatlmla) and 

lake sturgeon (Acipenser folvescens), both from the subclass Chondrostei, in the order 

Acipenseriformes have been selected as the non-target species, as these fish have a 

considerable value placed on them by both commercial and recreational fisheries in the 

geographic area. The morphology of the Acipenseriform inner ear was also studied, along 

with a Scanning Electron Microscope (SEM) examination of the ultrastructure in the 

saccule, lagena and utricle from both species. 
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The inner ear morphology and hearing abilities of the bass (Dicentrarchus labrax) is 

investigated in this study, as it offers an opportunity to test the ABR system on a hearing 

generalis! fish in seawater (an electronically conductive medium). The value placed on 

this fish by both recreational and commercial fisheries (Pickett et al., 1995) is also a 

consideration, as commercial interest may make D. labrax a suitable candidate in a fish 

ranching scenario using acoustic recall (e.g. Balchen, 1999) and would require a full 

understanding of the auditory system in this species. The prawn (Palaemon serratus) 

Phylum Crustacea and Class Eumalacostraca is also tested, as there has been considerable 

debate as to whether marine invertebrates have the ability to hear sounds or not. This 

study presents the first audiogram from any animal in the entire phylum, and the 

acquisition of hearing data from this animal allows for the inclusion of the crustaceans 

when assessing the impact of anthropogenic sounds on the marine environment. 

The inner ears from the common dolphin (Delphinus de/phis) and the harbour porpoise 

(Phocoenaphocoena) are also studied, in conjunction with a SEM examination ofthe inner 

ear ultrastructure in the mammalian cochlea and vestibule. In order to assess the dissection 

and fixation methodologies required for an SEM examination of the inner ear ultrastructure 

from a large mammal, 12 ears were removed from mature domestic pigs (Sus scrofa) 

during processing for the meat industry, within I hour of the animal's death. The use of S. 

scrofa was necessary, owing to the difficulty found when attempting to acquire fresh 

samples of the cetacean inner ear that had been fixed in the appropriate chemicals for an 

SEM type examination. 

1.5 Significance of the work to bioacoustics and biotechnology 

The work presented herein is of significance, given that concise morphological and 

physiological information on the hearing systems of marine animals is essential for the 

optimisation of bio-technical devices such as the Acoustic Fish Deterrent (AFD) barrier. 

Therefore, the intention of this study is to develop a system and protocol that will allow for 

the acquisition of audiological data from both fish and crustaceans, which can be used in a 

number of disciplines such as fish ranching (Balchen 1999; Alfredsen 2000), in the 

development of selective Acoustic Fish Deflection (AFD) barriers, or as a fundamental 

part of an acoustic impact assessment (Scholik and Van, 200 I, 2002a and 2002b). 
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lt is imperative to investigate the morphology of the inner ear when studying the hearing 

system of an animal, being especially relevant where the animal is thought to have died as 

a consequence of intense noise exposure. As previously discussed, a number of techniques 

have been developed to investigate gross physiological damage, though this form of injury 

may have been sustained by the animal as it struggles in fishing nets or thrashes about on 

the shoreline. If caused by intense noise, these signs of trauma would probably manifest at 

the highest end of the impact scale, whereas more subtle damage to the ears may only 

show in the ultrastructure and thus be missed when using conventional examination 

methodologies. Current literature shows a paucity of information on consistent and 

meticulous removal of inner ear parts necessary to identifY damage to the ultrastructure 

that is symptomatic of hearing loss. As part of this study, methodologies for removal of 

the inner ear were developed for fish, invertebrates and marine mammals. 

The primary aim of this study is therefore to extend human knowledge in the field of 

audition in aquatic animals, and to develop procedures and technologies that can be applied 

to the accurate assessment of the impact of anthropogenic sounds on the hearing of 

cetaceans and other marine animals. In order to achieve this aim, the work is divided into 

a number of objectives, which includes the refinement of the ABR electrophysiology 

system and technique to allow for the recording of evoked potentia Is both above and below 

the water surface. A further refinement to the system is required to allow for the 

production of audiograms "in the field" whilst requiring no anaesthetics, as this may 

preclude the use of the system on animals in the natural environment. Owing to 

controversy regarding the accuracy of many published audiograms, it is essential that the 

audiograms produced for each species are both accurate and can be validated using 

standard neurophysiological indicators. In the case of when the animal is dead (e.g. after a 

stranding event), the ultrastructure of the inner ear may be the only indicator of hearing 

loss. In order for the acquisition of concise and reliable data, the dissection and SEM 

preparation technique needs to be refined for each species investigated, thus minimising 

potential artefacts prior to an SEM type examination of the ultrastructure in relation to hair 

cell loss. 
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Chapter 2 

Review of Current Audiogram Production 

Methodologies 

2.1 Introduction 

The hearing thresholds of any organism possessing the appropriate receptor mechanism are 

illustrated in an audiogram (Myerberg, 1981 ), which presents the lowest level of sound that 

a species can hear as a function of frequency. Audiograms for marine animals are 

predominantly expressed in units of sound pressure, or dB (re. I J.IPa) and is the rationale 

for using them in this study. The techniques used to obtain fish audiograms may require a 

varying degree of time, surgical and technical expertise, or the use of behavioural 

paradigms to gain statistically sound data (see for instance, Yan, 1995). Behavioural 

methods require that fish are trained to react in a specified and measurable way (e.g. a 

reward based method by seeking food) when a tone at a given frequency is presented; 

however, in practice, the behavioural method is very time consuming and only effective 

with species that are easy to train. Conditioning can take up to 3 weeks (feeding 3-4 times 

per day) to get a stable association between stimulus, response and food reward (Fujiya, 

1974; Hughes, 200 I; Lovell, 1999 and Russon, 2002). The advantages of the operant 

(reward based) conditioning methodology is that invasive procedures are not required, and 

the stimulus equipment can be relatively simple, however, the feeding behaviour of the 

species under investigation needs to be suited to this type of experiment (Yan, 1995). 

The measurement of microphonics from auditory end organs during acoustic stimulation is 

a technique favoured by a number of authors (e.g. Enger and Andersen, 1967; Fay and 

Popper, 1975; Fine, 1981 ). Although results can be obtained more rapidly than from 
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behavioural paradigms, preparation can often be complex and require invasive surgery to 

implant the electrodes directly into the nerve (c.f. Enger and Andersen, 1967). The 

electrode is thus restricted to a specific end organ or region of macula, and the evoked 

potential does not necessarily represent the whole auditory pathway (Kenyon et al., 1998). 

The Auditory Brain stem Response (ABR) technique of measuring hearing thresholds has 

been successfully applied to both mammalian and non-mammalian vertebrates (Corwin, 

Bullock and Schweitzer, 1982), Elasmobranchs (Casper et al., 2003), and marine 

invertebrates (Lovell et al., 2005 a). The ABR is a non-invasive far-field recording of 

synchronous neural activity in the eighth nerve and brainstem auditory nuclei elicited by 

acoustic stimuli (Jewett, 1970; Jewett and Williston, 1971; Jacobson, 1985; Kenyon et al., 

1998), and waveforms clearly present with similarities between fish and higher vertebrates 

(Corwin, 1981) and between vertebrates and invertebrates (Lovell et al., 2005a). 

Electrophysiological studies of the ABR response is used routinely in the clinical 

evaluation of human hearing (Jacobson, 1985), allowing for the acquisition of thresholds 

from uncooperative or inattentive subjects and in situations where behavioural methods 

cannot be readily applied (Kenyon et al., 1998). 

The literature review of current audiogram production methodologies has been divided up 

into three sections. The first section looks at the use of microphonics, or recordings taken 

directly from the saccular and VIII nerves. The second looks at behavioural 

methodologies, and includes classical shock conditioning and heart rate suppression to 

ascertain hearing thresholds. The final section reviews works that use the Auditory 

Brainstem Response (ABR) technique to measure Auditory Evoked Potentials (AEPs) in 

both fish and marine mammals. 

2.2 Microphonics 

Enger and Anderson (1967) conducted a field study of fish audiometry by measuring 

microphonic potentials from the cod (Gadus morhua) and the sculpin (Coitus scorpious) in 

the open sea. Electrode implantation involved a highly complex surgical procedure, and 

involved drilling small holes in the cranium close to the saccular nerve. A 0.5 mm 

diameter silver wire was inserted in the hole, and sealed using dental cement. Using this 

method, the authors recorded microphonics of 70 JlV from both cod and sculpin, when 

stimulating with tone bursts presented from a J9 underwater sound projector driven by a 

Phi lips RC oscillator and a Quad 11 amplifier. 
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Fay and Popper (1974) recorded microphonic potentials from the ear of the goldfish 

(Carrassius aura/us) in a situation where sound pressure and particle displacement could 

be independently varied. When two transducers positioned facing each other are operated 

in phase, the water between them is compressed, creating a sound field dominated by 

pressure and minimal particle displacement. When the transducers are operated out of 

phase, one compresses the water whilst the other pulls it, creating a field dominated by 

particle displacement with minimal sound pressure (both modes of sound presentation are 

discussed further in Chapter 5). The authors also tested the fish with the swim bladder 

present and after its removal. The fish were tested in a 330 mm diameter PVC cylinder 

1500 mm high, located in a soundproof acoustic chamber. A water bag containing the fish 

was suspended in the middle of the cylinder; air speakers were positioned above and below 

the bag containing the fish and the stimulus sounds presented using a Dyna 120 amplifier 

and a 7056 function generator. 

In a second senes of experiments measuring microphonics, Fay and Popper (1975) 

recorded potentials from the saccule of the African mouthbreeders (Tilapia macrocephala) 

and the catfish (/. nebulosus) using submerged glass insulated tungsten electrodes. The 

fish were tested in a soundproof acoustic chamber to both acoustic and vibrational 

stimulation, and for sound reception with the swim bladder filled with water. The test tank 

was a 250 mm diameter PVC cylinder 200 mm high, filled to a height of 160 mm. The 

floor of the cylinder was made from 5 mm thick "Rho C" rubber supported by a plastic 

grating. A loudspeaker with a diameter of 200 mm was suspended facing upwards 250 

mm below the test tank in an airtight extension ofthe cylinder. The sound pressure level 

required to evoke a I ~v RMS Auditory Evoked Potential (AEP), was determined using a 

Clevite Model CH-17T hydrophone positioned adjacent to the fish's ear. 

Fine (1981) investigated the mismatch between sound production and hearing in the oyster 

toadfish (Opsanus tau). Anaesthetised fish were and clamped in a tank with the top of the 

head above the water surface. Single nerve fibres were then isolated from the saccular 

afferents, and the response to 300 ms tone burst from a speaker in air was measured. The 

tone bursts were phase-locked, had rise-fall times of 5 ms, and presented to the subject at a 

rate of I burst per second. The stimulus sound and background noise were measured using 

a Celesco LC34 hydrophone connected to A B&K 2508 amplifier, and wave analyser with 

a 3Hz filter. 
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2.3 Behavioural approaches 

Popper (1972) used an avoidance conditioning procedure to define auditory thresholds for 

the carp (Cyprinus carpio). In this experiment, the fish were trained to cross a barrier in 

the middle of tank whenever a pure tone was presented through a loudspeaker mounted in 

the air, about IOOmm from the test tank. The experimental tank was placed in an acoustic 

chamber to reduce ambient noise, and the experiment tested the hearing of 6 animals 

ranging in standard length from SO to 60 mm. When the fish failed to cross the barrier 

during presentation of the stimulus, it was concluded that that the fish had not heard the 

sound, and thresholds were determined at the SO % level using the up-down staircase 

method. 

Offutt ( 1974) used classical conditioning of heart rate to determine hearing thresholds in 

the Atlantic cod (Gadus morhua). Fish were held in a nylon mesh net, in a tubular tank 

S30 mm long, and a diameter of 30S mm, positioned lengthwise in a wooden framework. 

The test tank and all test equipment was housed in an underground concrete room, and the 

pure tone stimulus sounds were generated by a 410 mm speaker built into the wall of the 

chamber. ECG's were obtained using an electrode inserted in the pericardial cavity, and a 

reduction in the heart rate indicated fish had heard signal. Thresholds were determined by 

the staircase method, with the stimulus attenuated in 2dB steps and a minimum of 10 

reversals. 

A Field study of hearing in two species of flatfish Pleuronectes Platessa (L.) and Limanda 

limanda (L.) was conducted by Chapman and Sand (1974) in Upper Loch Torridon, 

Scotland, using a PVC frame located ISm below the water surface and 6m from the 

seabed. A pair of stainless steel electrodes was built into the cage, to administer an electric 

shock to the subject's tail, and the potentials generated by the cardiac muscles were 

recorded using a subcutaneous electrode. The conditioning stimulus was a pure tone pulse 

presented to the fish for I 0 seconds, paired with a 6 to 12 V de electric pulse administered 

to the fish from the loch shore. The cardiac potentials from the fish were amplified and 

recorded using a storage oscilloscope, and a hydrophone positioned 10 mm below the head 

of the fish recorded the sound pressure of the stimulus tone. The sound was presented to 

the fish through two sound projectors located 0.7 m, and 3 m from the holding cage. In 

order to condition the fish, the electric shock was administered after presentation of the 

stimulus sounds. Conditioning using this methodology was repeated until the fish showed 

an alteration in heart rate after onset of sound but before the shock. Full conditioning was 
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considered to have occurred when 5 consecutive trials had yielded positive responses. In 

some experiments a small 34 mm diameter spherical air-filled rubber balloon was placed 

behind the cranium to simulate the presence of a swim bladder. 

Coombs and Popper (1979) conditioned Squirrelfish (Myripristis kuntee) and (Adioryx 

xantherythrus) to respond to sound in a 410 x 240 x 170mm Plexiglas tank situated in an 

anechoic chamber. The stimulus sounds were presented to the fish through two air 

mounted loudspeakers, which produced a series of 600ms tone bursts with a Sms rise and 

fall, followed by 400ms of silence. A shock avoidance technique was used to measure 

auditory sensitivity, and the fish trained to swim across a barrier on hearing a sound or risk 

an electric shock. The staircase method was used to determine threshold, and the sound 

level increased or decreased in SdB steps depending on the response of the fish during the 

test. 

A behavioural study of hearing in damselfish (Eupomacentrus dorsopunicans, E. me/lis, E. 

variabilis, E. diencaeus, and E. planifrons) by Myrberg and Spires ( 1980) looked at 

hearing in these closely related species. The audiological tests were conducted in a 5m 

long, 150 mm internal diameter glass tube, divided into two sections, and filled with 

seawater. The farthest end of the section in which fish was placed had a type J-9 

underwater transducer mounted on anti-vibration pads. The second section was filled with 

sponges to act as sound absorbers, and the entire assemblage was suspended from the floor 

by rubber bungees attached to a beam above the tube. For some tests, in order to increase 

ratio between sound pressure and velocity, a 150 mm" hollow rubber ball was placed at 

the end of the first tube opposite the speaker. The fish was restrained in a transparent 

Plexiglas cylinder positioned so the fish was equidistant from the surrounding wall of the 

glass tube. Little sideways movement was possible, but the fish could easily be moved 

vertically. Stainless steel rods were located on each side of the restrainer as electrodes for 

applying a shock to the fish, and the sound pressure was measured by an Aquadyne AQ-12 

hydrophone placed in the restrainer below the head of the fish. The fish was stationed 

either 400 mm or 1.45 m from the speaker face. The fish was conditioned to respond to 

sound by moving downwards if it detected a tone, and the staircase method was used to 

determine the threshold (the sound level was varied in 2dB steps). Threshold was 

determined from the average sound level attained after 50 sound presentations beyond the 

point where the levels accompanying response and no-response varied by no more than 

8dB. 
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Coombs and Popper ( 1982) studied the structure and function of the auditory system in 3 

specimens of the clown knifefish (Notopterus chita/a). The association between the ear 

and anterior projections of the swim bladder were subjected to an anatomical investigation. 

Auditory sensitivity was determined using an operant conditioning technique, where the 

fish was trained to cross a barrier in the centre of a tank on hearing the audio cue, in order 

to avoid being given an electric shock. The sound pressure level was decreased in 5 dB 

steps following each successful avoidance response, and increased by 5 dB if the fish did 

not avoid the shock. Two tanks were placed in an anechoic chamber, and the stimulus 

sound source was a single 203 mm diameter speaker positioned in air, above the test tanks. 

Vertical particle velocity was also measured with a velocity hydrophone at four positions 

in the tank. 

Hawkins and Myrberg ( 1983) used cardiac suppression to define the hearing abilities of 43 

immature cod (Gadus morhua) ranging in length between 210 mm and 470 mm. The fish 

were anaesthetized in a I: I 5000 solution of MS-222 whilst silver electrodes were inserted 

subcutaneously into the body cavity, in order to detect the electric potentials from the 

heart. Experiments were performed in a framework immersed in the sea 100 m from the 

shore, and the top of the framework was located I 5 m below the sea surface, and 6 m 

above the seabed. The test cages contained stainless steel electrodes, which were used to 

administer a shock on presentation of a sound during conditioning. Two sound projectors 

were placed on a line from the shore, at right angles to the axis of the cage. The intensity 

of the stimulus sounds were recorded using a hydrophone and filtered to bandwidth of 

between I 0 Hz to I 000 Hz. For some experiments, a high level of random noise was 

continuously transmitted from the sound projector and the pure tone stimulus 

superimposed. 

McCormick and Popper ( 1984) studied auditory sensitivity and psychophysical tuning 

curves in the elephant nose fish, Gnathonem11s petersi using a behavioural method. The 

auditory tests were carried out in tanks located in a chamber which had 150mm thick sand­

filled walls. The test fish had to cross a barrier dividing the tank within l Osec of the sound 

being presented, to avoid being given an electric shock. The sound projector was a 203 

mm diameter speaker positioned in the air above the test tank, and the stimulus tones were 

generated with a 5 ms rise and decay time. The staircase method was used for threshold 

determination, and the sound level was varied in 5dB steps. The threshold was calculated 

from the final 8 trials over a 24 hour period. The sound level in the tank was measured 

with a Clevite hydrophone, at 10 locations, and the median values of the levels was used as 
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the calibrated value. Particle velocity was also measured at 4 locations using a velocity 

hydrophone. The ambient sound pressure was found to be well below threshold levels at all 

frequencies, and tests were also conducted to ascertain if the fish might be influenced by 

electric fields; it was concluded that this was highly unlikely. 

Yan and Popper (1992) defined the auditory sensitivity of the cichlid (Astronotus 

ocellatus) using a non invasive reward based methodology, and present a behavioural 

audiogram for the goldfish from Yan and Popper (1991). The experiment involved using 

an automatic feeding device to train 3 A. ocellatus to respond to an acoustic cue. A clear 

plastic tube delivered the food pellets to the fish, feeding tube was clear to allow the fish to 

receive visual as well as acoustic clues to a feeding event. 2 paddles were suspended from 

a platform and sent response signals to a PC which controlled food delivery if the correct 

sequence of paddles were pressed during acoustic stimulation. The experiments were 

conducted in a soundproof chamber, and the stimulus tones were presented to the fish 

using an underwater speaker (University Sound UW-30). The fish were trained to peck the 

0-paddle and then to peck the R-paddle if they detected the stimulus sound; a correct 

response resulted in the fish obtaining food. Once trained, thresholds were determined 

from the sound level at which 50% of the trials resulted in a correct responses. 

Mann, Lu & Popper (1997) also used a cardiac suppression methodology to determine 

ultrasonic hearing by the American shad (A/osa spp). The experiment involved training 5 

fish to reduce their heart rates on presentation of an audible sound; however the experiment 

was conducted with an active pump system, which may have masked responses to low 

frequencies. 

Casper, Lobel and Yan (2003) studied the hearing sensitivity of the little skate (Raja 

erinacea) using both behavioural and ABR methods (see next section for ABR 

description). 3 test subjects were conditioned in a tank 1.5 m x 1.08 m x 0.65 m using a 

60-s pulsed recording of brown noise (low-passed noise that has a 4 dB drop per octave), 

played through an underwater speaker I m from the skate's head. The fish were trained to 

associate noise with food provision, and feeding/conditioning events were conducted 3 to 4 

times per day for 6 weeks. Conditioning was considered a success if the skate showed 

response 10 times without the introduction of food. A positive response was 

acknowledged if skate began swimming on presentation of the stimulus sound, or an 

increase in the rate of respiration was observed. Following training, audiological tests 

were conducted using 500 ms pulsed tones emitted from a Lubell Corp. LL-98A projector 
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positioned 200 mm above bottom of tank, and I m from the skate. An lnterocean Systems 

Model 902 hydrophone was used to record the sound pressure at a distance of 150 mm 

above the skate's head. If the skate responded 5 times consecutively, it was deemed to be 

responding to the sound stimulus at that intensity, so the pulsed tone was attenuated in 5 

dB steps until the fish did not respond to the sound (threshold was determined from the 

lowest sound pressure where a I 00 % response could be observed). 

2.4 Measurements of the Auditory Brainstem Response 

Kenyon, Ladich and Van (1998) used the ABR audiometric method on goldfish (Carassius 

auratus) and the cichlid (Astronotus ocel/atus) to generate audiograms. The experiments 

were conducted in a soundproof booth (2 m x 3 m x 2 m), into which anaesthetised fish 

were clamped in place using a net mesh and positioned so the top of the head was I mm 

above the water surface. Two electrodes were pressed against the exposed cranium above 

the medulla, with the reference electrode positioned 5 mm anterior of the recording 

electrode. Frequencies below 3 kHz were generated using a 300 mm loudspeaker 

suspended I m above the water surface in the holding tank, and for frequencies above 3 

kHz, a 120 mm loudspeaker was used. The Sound Pressure Level (SPL) was recorded 

using a hydrophone placed near the ear of fish; tone bursts and clicks were presented over 

a range of intensities, in order to obtain evoked potential thresholds defined by visual 

inspection of two overlaid traces from a repeat test at a particular frequency and intensity. 

Clicks were 0.1 ms in duration, and presented at a rate of 38.2 clicks per second. The 

number of cycles in a tone burst was set to get best compromise between stimulus rapidity 

and peak frequency bandwidth, with bursts gated using a Blackman window function 

applied to reduce spectral leakage from the signal (e.g. if a 3 Hz sine wave is sampled for 

.9 seconds, a discontinuity results). In total, eight fish were given Flaxedil (gallamine 

triethiodode) to immobilise them, whilst three fish remained untreated. The authors 

reported that thresholds were significantly lower for the Flaxedil treated fish, 

demonstrating that the restraining methodology allows untreated fish enough gross 

movement to contaminate the ABR trace. 

Ladich and Van (1998) used the ABR method to study hearing in the paradise fish 

(Macropodus opercularis). The experiments were conducted on an air table located in a 

soundproof booth (see Kenyon, Laditich and Van, 1998 for dimensions). During the 

investigation, Flaxedil immobilised fish were held in place using a net mesh, with just I 

mm of top of head above the water surface. 2 electrodes were pressed against the head, 

16 



with the reference electrode positioned 10 mm anterior of the recording electrode. Sound 

was generated by a loudspeaker suspended I m above the surface of the water, with a 300 

mm speaker used to generate frequencies below 3 kHz, and a 120 mm speaker was used 

for frequencies above 3 kHz. The SPL was obtained using a hydrophone (Celesco LC-1 0) 

placed in proximity to the ear of the fish. Tones and clicks were presented at various 

pressure levels to obtain thresholds, which were identified by visual inspection of the 

averaged ABR traces when superimposed over the first run. Clicks were 0.1 ms in 

duration, and presented at 38.2 clicks per second, and the number of cycles in each of the 

tone bursts was programmed to optimise stimulus rapidity and peak frequency bandwidth 

and gated using a Blackman window. 

Yan, (2001) tested a number of hearing specialists including the goldfish (Carassius 

auratus), blue gourami (Trichogaster trichopterus), kissing gourami (Helostoma 

temmincki1), dwarf gourami (Colisa /alia), and a mormyrid (Brienomyrus brachyistius) 

using ABR audiometry. In addition, Yan studied auditory thresholds from the oyster 

toadfish (Opsanus tau), a hearing generalis!. The experiments took place in a soundproof 

booth (see Kenyan, Laditich and Yan, 1998 for dimensions). The fish were sedated with 

Flaxedil (gallamine triethiodode) and clamped in a mesh net suspended in a tank (see 

Scholik and Yan, 2002 for dimensions) standing on an air table. The top of the head was 

positioned I mm above water level, and tissue placed on head to prevent it from drying 

out. The electrodes were pressed against the head, and the reference electrode positioned 5 

mm anterior to the recording electrode. Sound was presented to the fish through a speaker 

suspended I m above subject, with a 300 mm speaker used for frequencies below 3 kHz 

and a 120 mm speaker for frequencies above 3 kHz. Clicks with a duration of 0.1 ms, 

were presented at a rate of 38.2 clicks per second. The number of cycles in each of the 

tone bursts was set to get best compromise between stimulus rapidity and peak frequency 

bandwidth, and gated using a Blackman window. The Sound Pressure Level of the 

stimulus sounds was obtained using a hydrophone placed near the fish ear, and once the 

baseline audiogram had been taken, the gas inside the swim bladder was removed using a 

syringe and needle. The audiogram procedure was repeated with the swim bladder 

deflated to show that the organ enhanced hearing sensitivity. 

Scholik and Yan (2001) studied the effects of underwater noise on auditory sensitivity of 

the fathead minnow (Pimephales promelas) exposed for selected durations. A mesh screen 

prevented the fish from jumping out of the tub (see Kenyan, Laditich and Yan, 1998 for 

dimensions); though the fish were free to swim around during noise exposure. The 
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bandwidth of the noise was limited to between 300 Hz to 4 kHz, and presented at a Sound 

Pressure Level (SPL) of 142 dB (re IJ.1Pa). The fish were mildly sedated with Flaxedil and 

the ABR technique used to obtain the threshold values. The experiment was designed to 

establish hearing thresholds immediately after 24 hours of continuous exposure to the 

noise, then at I, 2, 4, 8 and 24 hours after exposure. 

In a similar experiment, Scholik and Yan (2002) produced several ABR generated 

audiograms to ascertain the effects of noise on the auditory sensitivity of the bluegill 

sunfish (Lepomis). Specimens of L macrochirus were exposed to white noise presented at 

142 dB re IJ.1Pa, and a bandwidth of between 300Hz to 2000Hz. The fish were sedated 

with Flaxedil, and the ABR technique was used to obtain the threshold values after 

exposure to the noise. The stimulus sounds used to test for threshold shifts were generated 

using an air mounted transducer, and the evoked response recorded using two cutaneous 

electrodes held in place using micromanipulators, with the fish placed in a plastic tub (380 

mm x 24.5 mm x 145 mm). 

Casper, Lobe) and Yan (2003) studied the hearing sensitivity on 4 specimens of the little 

skate (Raja erinacea), using ABR audiometry. The fish were immobilised by an injection 

of d-tubocurarine chloride and suspended in a 380 mm x 245 mm x 145 mm plastic tray, 

suspended at an angle so the entire body of the skate was immersed. A small portion of the 

head (near the medulla region), posterior to the eyes, was exposed to the air, and chosen 

for the primary site for the placement of the electrodes. The plastic tub was placed on a 

vibration-isolating table, in a sound proof booth (2 m x 3m x 2 m). Tone bursts with a 

duration of 20 ms, were presented through a Pioneer 300 mm speaker, positioned I m 

above the subject's head. 3000 iterations of the stimulus sound were averaged at each 

Sound Pressure Level (SPL), which was reduced in 5 dB steps until the threshold was 

reached. The threshold SPL value was measured with a Celesco LC-1 0 hydrophone placed 

where the subject's head was during the audiometric examination. 

Akamatsu, Nanami and Yan (2003) defined the hearing abilities of the spotlined sardine 

(Sardinops melanostictus) using the ABR technique. Audiograms were generated from fish 

stationed in a seawater-filled plastic tub, 280 mm x 200 mm x 35 mm deep, and placed on 

a vibration isolating table in a soundproof chamber. The stimulus sound was presented 

through a ceiling-mounted loudspeaker positioned 450 mm above the head of the fish. The 

stimulus sounds were digitally generated 5-cycle tone bursts, multiplied with a Gaussian 

function. The sound in the water was monitored with a B&K Type 8103 hydrophone 
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located adjacent to the subject's head, and the fish restrained using a neoprene rubber sling 

with stainless steel plates attached to sides. The fish were held horizontally, with the inner 

ear and anterior end of gas bladder kept at the same depth to ensure equal levels of incident 

sound pressure on both organs. A small area of skin on the top of the head was exposed 

above the water line to facilitate in the placement of the electrodes. The potentia Is were 

amplified and filtered to a bandwidth of between SO Hz to I 0 kHz. Only 300 stimulus 

exposures at each frequency were used, thus cutting back on the time it takes to produce 

the audiogram as it was found to be difficult to sustain life support for the test sardine. The 

sound level at each frequency tested was varied initially in 6 dB steps, and then in 3 dB 

steps as the threshold was approached. Water was continually supplied to the mouth of the 

subject, with the flow maintained by gravity to avoid the noise generated by an electric 

pump. The electrodes, through which the evoked potential was conducted, were placed 

along the midline of the skull over the medulla region, with the cables twisted in an effort 

to reduce the electromagnetic noise generated outside the chamber. 

Lugli, Yan and Fine (2003) studied the relationship between ambient noise, hearing 

thresholds and sound spectra in acoustic communication between two freshwater gobies 

Padogobius martensii and Gobius nigricans. A total of S fish (2 females, 3 males) were 

tested to generate the ABR audiograms; in each case the fish was held with the nape of the 

head just above the water surface, in a 380 mm x 245 mm x 145 mm plastic tub. The 

stimulus sounds were presented to the fish through a 300 mm Pioneer speaker located I m 

above the subject. The sound used was a tone burst 20 ms in duration, and used for each 

frequency tested; the sound level in the water was monitored with a Celesco LC-1 0 

hydrophone located adjacent to the head of the fish. During the experiment, the sound 

level was reduced inS dB steps until threshold was reached. Part of the experiment was to 

study the sound produced by the fish, and how their hearing might be related to the 

ambient noise in their normal environment (shallow stony streams); a relationship was 

found between the sound spectrum of the ambient noise and hearing sensitivity. 

2.5 Previous uses of ABR in cetacean audiometry 

Popov and Supin (1990) studied hearing in the beluga dolphin (Delphinapterus leucas), the 

bottlenose dolphin (Tursiops truncates), the Amazon River dolphin (lnia geoffrensis), 

tucuxi dolphin (Sotaliajluviatilis) and the Manatee (Trichechus immquis) using the ABR 

technique. The hearing tests were conducted in either a 4 m x 0.6 m x 0.6 m bath, in a 

round pool, or in an enclosed sea bay. During the tests, the subject was supported on a 
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stretcher positioned so only the top of the head with the blowhole and the back, as far as 

the dorsal fin was out of the water. The Auditory Evoked Potentials (AEPs) were recorded 

using 0.4 mm to 0.6 mm diameter subcutaneous needle electrodes inserted into the skin at 

depths of between 3 mm to 5 mm (see also: Popov, Ladygina and Supin, 1986). The 

record electrode was placed on the dorsal head surface 60 mm to 90 mm caudal from the 

blowhole, and the reference electrode placed on the back near to the dorsal fin. The 

potential difference between the two electrodes was fed to a biological amplifier (gated 

between 5 Hz to 5000 Hz) and the signal averaged to reveal the AEP. The stimulus sounds 

used in the audiological tests were clicks, square enveloped noise or ramped tone bursts of 

frequencies of between 5 kHz to 160 kHz, generated using piezo-ceramic transducers with 

diameters of20 mm, 30 mm and 50 mm. The array was stationed 300 mm below the water 

surface, at distances of between I m to 2 m anterior ofthe subject's head. 

In a second series of experiments using the ABR technique on odontocetiforms, Bibikov 

( 1992) studied hearing in the harbour porpoise (Phocoena phocoena) using both cutaneous 

and implanted electrodes. The porpoise was loosely restrained in a bath with dimensions 

of 2.5 m x 0.6 m x 0.65 m, which had been lined with sound absorbing rubber and filled 

with seawater. The record electrode used in the first experiment was a I 0 mm diameter 

silver disc placed on the surface of the skin above the muscles overlying the vertex of the 

head, whilst the second experiment used an implanted electrode. In both experiments, the 

reference electrode was a subcutaneous needle electrode inserted into the skin close to the 

dorsal fin, and the AEPs gated between 50 Hz and 4 kHz for the subcutaneous electrode 

and 200 Hz to 5 kHz for the surface electrode. 

Andre et al. (2002) found evidence of deafness in a young stranded female striped dolphin, 

Stenella coentleoalba, which cancelled her possibility to process correctly any acoustic 

information. The experiments took place in a large seawater pool, with the dolphin held in 

a stretcher made from a sound transparent fabric, stationed at a depth of 40 to 50 cm in the 

centre of the pool. This allowed the body of the dolphin to remain under the water, while 

the dorsal part of the head and the blowhole stayed above the surface. The stimuli used 

during the study were sinusoidal amplitude-modulated tones, generated using a function 

generator and amplified using a B&K 27I3 amplifier driving a piezoceramic transducer 

(B&K 8104 hydrophone). Tone bursts were presented for a duration of 20 ms, at a rate of 

20 s -I. The stimulating transducer was placed in front of the dolphin, at a distance of I m 

from the head and a depth of20 cm, with stimulus intensity specified in units of dB (re. I 

J.lPa) RMS. The evoked potentials were recorded using 1-cm disk electrodes secured at the 
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body surface inside 6-cm suction cups. The active electrode was placed at the head vertex, 

just behind the blowhole, with the reference electrode placed on the back (both electrodes 

were above the water surface). The recorded potentials were digitised using an AID 

converter and averaged over I 000 sweeps of 30 ms, using a standard personal computer. 

The analysis of the results from the experiment suggests that the dolphin had great 

difficulty processing acoustic stimulus, and most likely explains the cause of the stranding. 

2.6 Chapter discussion 

Over the last I 00 years, a number of approaches have been used to generate audiological 

data from aquatic animals, reward based training paradigms or the administration of an 

electric shock are used to generate conditioned responses during acoustic stimulation (e.g. 

Offutt, 1974; Chapman and Sand, 1974; Coombs and Popper, 1979; Myrberg and Spires, 

1980; McCormick and Popper, 1984; Mann, Lu & Popper, 1997). As discussed at the 

beginning of the Chapter, the sound field can be difficult to calibrate if the fish are free 

swimming and training can take several weeks for a stable association between the 

stimulus and response to develop (Yan and Popper, 1992; Yan, 1995). Results from the 

measurement ofmicrophonics from the auditory end organs during acoustic stimulation are 

obtained more rapidly than from behavioural paradigms (e.g. Enger and Anderson, 1967; 

Fay and Popper, 1975; Fine, 1981). However, preparations can be complex and require 

invasive surgery to implant the electrodes directly into the nerve (c. f. Enger and Anderson, 

1967). The electrode is thus restricted to a specific end organ or region of macula, and the 

recorded evoked potential does not necessarily represent the response of the whole 

auditory pathway (Kenyan et al., 1998). 

Although ABR has been used successfully in the clinical evaluation of human hearing 

(Jacobson, 1985), controversy still exists regarding audiological information acquired from 

generalis! fish species. A number of recently published experiments using ABR show that 

generalis! fish hear sounds above 1000 Hz (e.g. Kenyan et al., 1998; Scholik and Yan, 

2001; Casper, Label and Yan, 2003); however, it is generally recognised that generalis! 

fish do not hear sounds above a frequency of 500 to 600 Hz (e.g. Wolf, 1967; Chapman, 

1973; Fine, 1981; Fay, 1988). Therefore, based on the review of the literature, it is clear 

that a number of important questions remain unanswered. As discussed by Kenyan et al., 

(1998), thresholds from fish which had not been administered an anaesthetic were 

considerably higher than thresholds from anaesthetised fish. It is considered here, that in 

order to record accurate AEPs without the application of anaesthetics, the specimen 
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holding and electrode positioning system needs to be adapted to minimise voluntary 

muscular movement. Particular attention is also focused on the EP recording system and 

the development of a versatile specimen cradle and electrode clamp to allow for 

underwater recording from fish and other aquatic animals with body length from a few 

millimetres up to a meter, in both marine and fresh water. The ABR system must be 

further refined so underwater sound fields dominated by particle motion or sound pressure 

can be generated to stimulate the fish ear, rather than the air mounted transducers used in 

previous ABR type experiments. The results of this work are discussed in the following 

chapters, involving "in depth" studies of the form and function of the hearing system in 

specialist and generalist bony fish, cartilaginous generalist fish and decapod crustaceans. 

In addition to this, the morphology of the cetacean ear is examined, and a technique 

developed for removing and preparing it for SEM examination using a large mammal (S. 

scrofa) as a surrogate. 
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Chapter 3 

The hearing abilities of specialist fish 

3.1 Introduction 

This part of the thesis relates to testing of the hearing thresholds of specialist fish, 

beginning with the goldfish (Carrasius auratus), tested in order to validate both the audio 

stimulation system and the accuracy of the electrophysiological recording technique. C. 

auratus is especially good as a validation species, as a number of ABR generated 

audiograms have been published for this fish (see Kenyan et al., 1998; Yan et al., 2000 and 

several other studies discussed in Chapter 2.). To this end, C. auratus was stimulated with 

tone bursts presented through an air mounted transducer, and the sound field calibrated in 

accordance with Kenyan et al. ( 1998). The second series of experiments described in this 

chapter look at the hearing abilities of silver carp (Hypopthalmichthys molitrix) and 

bighead carp (Aristichthysc nobilis). The work presented herein is of significance, given 

that concise physiological information on the hearing ability of H. molitrix and A. nobilis is 

not known. As discussed in Chapter I, the audiograms are required to improve the 

selectivity of an Acoustic Fish Deterrent (AFD) barrier intended as a freshwater 

management strategy to stop the spread of these species through the Illinois River into 

Lake Michigan. The audiograms for H. molitrix and A. nobilis were acquired using 

submerged transducers (a setup not previously attempted in an ABR investigation of fish 

hearing). An additional challenge was forthcoming when testing A. nobilis, as some of the 

fish used in the experiment were approaching 750 mm in length, and weighed nearly 6.75 

kg. 

3.2 Materials and methods 

4 specimens of C. auratus with fork lengths of 59 mm (3 .6 g), 69 mm (9. 7 g), 71 mm ( 12.3 

g) and 72 mm (12.7 g) were kept in a 200 litre freshwater tank. Water quality was 

maintained by an Eheim type 2013 biological filter with a flow rate of390 litres per hour, 

which provided aeration by spraying filtered water back into the tank via the filter outlet 
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pipe located 60 mm above the water surface. In all of the experiments, the ambient water 

was kept at a temperature of 12 ° C. When under experimental protocols, the goldfish were 

provided with 14 hours of light per day from a fluorescent tube controlled by a mains timer 

switch, and fed on a pellet feed at a rate of 1.6 g per day. Twelve specimens of H molitrix 

ranging in length between 137 mm (25 g) to 392 mm (700 g) were kept in four 200 litre 

freshwater tanks. Twelve specimens of A. nobilis ranging in length between 545 mm (2.8 

kg) to 740 mm (6.75 kg) were kept in two 2.5 m x I m x 0.5 m tanks The water 

temperature in the holding tanks and test tank ranged between 18.2 and 18.6 ° C over a 24 

hour period, and when not under experimental protocols, the fish were provided with 16 

hours of light per day. 

3.2.1 Method of recording audiograms 

The ABR measurements of hearing thresholds were made using a proprietary control and 

analysis programme named "Brainwave", and written in LabView 7. The amplified 

electrophysiological signal from the auditory cortex of the subjects under investigation was 

fed via screened cables to an A-M Systems model 3000 differential amplifier with the band 

pass filters filter set between 0.3 kHz to 5 kHz. The filtered "real time" signal of neural 

activity was inputted via a BNC interface block, to an American Megatrends PC with a 

CPU speed of 950 MHz and 128 MB of RAM fitted with a National Instruments AT -M 1.0 

digital to analogue card. The signal was recorded prior to, during and after stimulation 

with a single tone burst, then digitised at a sample frequency of I 0 000 bits per second and 

stored in the programme memory buffer. This process was repeated after a 25 ms pause in 

the programme, and the subsequent digitised recording was averaged against the previous 

recording; this was then repeated for a further 1000 to 2000 iterations of a particular tone 

and intensity. The effect of averaging on the raw signal causes random 

electrophysiological noise to reduce in intensity by the ..Jn. whilst activity associated 

directly with the tone burst increases with each successive sample by n. Thus, the ratio 

between the Auditory Evoked Potentials and random neurological waveforms alter by the 
4"/n and allows for the amplification of very small electro potentials against a relatively 

noisy background. 

A block diagram of the equipment used to provide audiometric measurements from H 

molitrix and A. nobilis is shown in Figure 3.l.a, and the equipment schematic used to test 

C. aura/us is presented in Figure 3.1.b and c. For C. aura/us, amplification of the sound 

was achieved using a Pioneer type SA-420 amplifier and a 200 mm Eagle L032 
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loudspeaker with a frequency response range of 40 Hz to 18000 Hz. Additionally, the 

loudspeaker was placed inside a Faraday cage I m above the test tank and connected to a 

centralised earth point located in an adjacent room where the PC, amplification, and 

analysis equipment was set up. Connecting wires were fed through a I 00 mm port in the 

partitioning wall. The sound field in the experimental water tank holding H. molitrix and 

A. nobilis was generated by means of two Fish Guidance Systems Ltd. Mk li 15-100 

Sound Projectors; with the stimulus sound amplified using a Tandy 250W power amplifier. 

These faced each other at a distance of 200 mm; the inner ear of the fish during 

measurements was arranged on the axis connecting the centres of the two projectors. 

h&U jolm­
m.wlipubtor mn 

UICmbly 

"'"""' 

Transducers Test tank 

Figure 3.1.a and b. Schematic of the ABR audiometry system used to test H. molitrix and 

A. nobilis, and Figure 3.1.b and c, schematic of the ABR system used to test C. auratus 

The procedure used to acquire the acoustically evoked potentials was approved by the 

University of Illinois, United States (Institutional Animal Care and Use Protocol #04271) 

and the United Kingdom Home Office 11.03.03. 
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The test subjects were placed into a flexible cradle formed from a soft nylon mesh 

rectangle saturated with freshwater for the small fish, and a clear rubber coated 1 mm 

gauge wire mesh for fish over 0.5 kg weight, presented in Figure 3.2 with a specimen of H. 

molitrix. Oxygenated water kept at a temperature of J 8 oc was gravity fed at an adjustable 

flow rate of between 5 millilitres per second for the small fish, to 25 millilitres per second 

for the large, and directed toward the gi lls through a soft rubber mouth tube. The small 

fish were first placed lengthwise and centrally on a 160 mm x 120 mm rectangle of fine 

nylon netting, which was wrapped firmly around the body and tail, and the two sides ofthe 

net were held together using a clip. The clip was placed in a retort stand clamp fitted with 

ball joint electrode manipulator arms, and the aerated water pipe. During the procedure to 

position the electrodes the specimen and clamp were suspended over the test tank, and 

aerated water was supplied to the fish. The attachment of the electrode manipulation 

assembly to the cradle holding the fish has not been attempted in any previous ABR type 

investigations. The principle advantage of this over the conventional setup used by 

Kenyan et al. ( 1998) and the subsequent experiments by Yan, where the electrodes are held 

in place using micromanipulators, is that the entire system can be easily moved or 

suspended at any desired depth. Although gross muscular activity was minimised by the 

supporting cradle, the design allows some flexibility between the electrode and fish, so 

slight movements had little overall effect on the ABR trace. 

Figure 3.2. Photograph of a 0.5 kg H. mo/itrix during the audiological test 
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The electrophysiological response to acoustic stimulation was recorded using the two sub­

cutaneous electrodes presented in Figure 3.3, which were connected to the differential 

preamplifier by I m lengths of screened coaxial cable with an external diameter of 1.5 mm. 

The outer insulating layer of the coax was removed 15 mm from the end where the 

electrode tip was to be fixed, and the screening layer removed I 0 mm from the cable end. 

The inner insulating material was then trimmed by 2 mm, and the exposed inner wire (0.5 

mm diameter) was tinned with silver solder and joined to a 10 mm length of silver wire 

(0.25 mm diameter), tapered to a fine point. The assemblage was pushed through a I 00 

mm glass pipette with an internal diameter of 4 mm, until 0.4 mm of the silver wire was 

exposed. The remaining space inside the pipette was filled with a clear epoxy resin, and 

then trimmed to expose 0.3 mm of silver tip through which the AEP could be conducted. 

The impedance of the electrodes, both between the outer shielding and inner core, and the 

silver tip and differential amplifier, were tested using an M 205 precision digital 

multimeter. The impedance between the tip and pre-amplifier was found to be 0.2 Q for 

both electrodes, and an open circuit was recorded between the outer shielding and inner 

core. 

Pipette 

~ 
E 

11 

0.3 mm 

Silver electrode tip 
0.25 mm 0 

Epoxy resm I 00 mm coaxial cable 

1.5 mm 0 

Figure 3.3 Schematic of the electrodes used to record the evoked potentials 

Stimulus sound was presented to the specialist fish at sound pressures initially not 

exceeding 145 dB (re. I JlPa). The electrophysiological response of the fish to acoustic 

stimulation was recorded using two cutaneous electrodes, which were positioned on the 

cranium of the fish adjacent to ~nd spanning the VIII nerve. The reference electrode was 

positioned centrally on the head above the medulla, and the record electrode was located 5 

mm anterior of this point. The evoked response was amplified and digitised to 12 bits 

resolution and recorded. This process was repeated between 500 to 2000 times (at 

threshold) and the response averaged to remove electrical interference caused by neural 

activities other than audition, and the myogenic noise generated by muscular activity. 
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Each measurement was repeated twice; this aids in separating the evoked response, which 

is the same from trace to trace, from the myogenic noise, which varies in two successive 

measurements. After the averaging process, the evoked potential could be detected, 

following the stimulus by a short latency period of one millisecond. 

During the audiological assessment of H molitrix and A. nobilis the projectors were driven 

with load resistors placed between the amplifier and projector. The reason for this was that 

due to the sensitive hearing of carp only relatively low levels of sound were required to 

cause an acoustic brainstem response. The full output of the amplifier was only required 

when measuring the hearing of the less sensitive generalist fish such as the Paddlefish and 

Sturgeon (see Chapter 5). The stimulus tones presented to H molitrix and A. nobilis were 

calibrated using an insertion calibration, where the sound level is recorded in the absence 

of the fish, with the hydrophone stationed where the inner ear of the fish would be. The 

insertion method measurements were made using a Bruel and Kjaer Type 8104 

Hydrophone (serial number 2225715) calibrated and traceable to International Standards, 

and the signal from the hydrophone was amplified by a Bruel and Kjaer Type 2365 Charge 

Amplifier (Serial Number 1079556). In case there was any non-linearity of the signal, 

calibrations were made at every frequency and Sound Pressure Level (SPL) used for a 

measurement, totalling some 660 individual calibrations. These calibrated levels were then 

applied to the threshold defined by the ABR measurement to provide calibrated 

audiograms with pressure levels traceable to International Standards. In fact, no evidence 

of non-linearity was detected, other than at the very highest levels of sound, which was not 

required in any case for measuring audiograms. Comparisons in the relative power change 

between each frequency at each pulse length were made by calculating the signal RMS, the 

results of which are presented in Figure 3.4. 
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Figure 3.4 Calibration markers for the stimulus sound recorded in the holding tank using a 

B&K hydrophone (legend shows the arbitrary units of gain used) 

3.3 Results 

3.3.1 Audiogram for C. auratus 

Figure 3.5 shows evoked potentials from the test C. auratus in response to a 500 Hz tone 

burst averaged over l 000 sweeps. The sweep is a recording of the neural generation of 

waveforms over a user defined time span termed the sweep velocity, which in the case of 

the recording in Figure 3.5 is 25 ms in duration. The recording shows a period prior to, 

during and after stimulation of the inner ear; the period of c. 3.3 ms prior to the onset of the 

AEP is accounted for by the time it takes for a sound generated in air to reach the fish 

located 1 m from the transducer (indicated by the dashed vertical line in Figure 3.5) . 

Additional waveform generation by other neural activities combined with muscular 

movements ensure that recordings have to be repeated over 1000 to 2000 presentations 

before clear results can be obtained (Kenyan et at 1998; Yan et al 2000). The recorded 

wave forms resulting from each sweep are averaged together and produce a recognisable 

ABR waveform, which is then repeated and overlaid on the first run, to show that the 

evoked potentials are repeatable. 
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Figure 3.5 a. The 500 Hz pulse recorded underwater using the hydrophone. b. Overlaid 

evoked potentials from the test fish C. auratus in response to the 500 Hz tone burst. The 

hatched line shows the time taken for the sound to reach the fish positioned I m from the 

transducer and attenuated in 5 dB steps then 2 dB steps as threshold is approached 

The waveforms represent vertex positive components issuing from the neural centres 

situated along the auditory pathway to the midbrain (Overbeck and Church 1992). The 

frequency and intensity of the tone burst influences the latency of the evoked response 

(hatched line in Figure 3 .5) (Corwin et al., 1982; Kenyan et al., 1998), as does the 

metabolic state of the organism (Corwin et al., 1982). The increase in the latency of the 

evoked potential in response to decreasing stimulus intensity is often used to verify that the 

averaged waveform is a product of auditory stimulation rather than a transient generated at 

the electrode tip (Kenyan et al., 1998). 

Figure 3.6 shows evoked potentials from the auditory brainstem of C. auratus, to a range 

oftone bursts averaged over 1000 stimulus presentations per frequency tested. The sweep 

and sound stimulation are triggered synchronously with one another, though the onset 

latency of the response is also dependant on the distance the sound has to travel to reach 

the inner ear. 
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Figure 3.6. Auditory brainstem response of C. aura/us to a range of tone bursts. The 

hatched line shows a reduction in response latency with increasing frequency (note, y-axis 

scale bars are cropped for presentation so have no units) 

The waveforms in Figure 3.6 show a characteristic latency decrease with increasing 

frequency, in agreement with the findings of Corwin et a! ( 1982) and Kenyan et al. (1998). 

For C. auratus the latency from the arrival of a 500 Hz tone at the ear, to the onset of the 

first sinusoid of the response was 3.7 ms at 15 dB (re. 1 J.lPa) above threshold, whilst for 

the remaining frequencies the waveforms were taken I 0 dB (re. I J.lPa) above threshold. 

For the 750 Hz tone, the latency was 1.8 ms, the I 000 Hz tone was 1.4 ms, the 2000 Hz 

tone 1.1 ms and the 3000 Hz tone was 0.8 ms. Latency changes with variations in 

frequency and sound pressure are used to verify that a series of waveforms are evoked 

potentials, and not a stimulus artefact contaminating part of the ABR trace. An increase in 

airborne sound intensity can produce substantial stimulus artefacts, which potentially have 

an adverse effect on an ABR trace, and become more pronounced as intensity increases 

(Kenyan et al 1998). 

The waveforms presented in Figures 3. 7 through 3 .I 0, are the results of a complete 

audiological assessment of C. auratus, and were found to be consistent (in both onset 

latency and general waveform shape) with the results of Kenyan et al. (1998), and Yan et 

al. (2000). The Figure shows Evoked Potentials (EPs) averaged from C. auratus, in 

response to frequencies presented in steps from 100 Hz to 4 kHz. The EPs are arranged 
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sequentially, in order of descending stimulus intensity. The sequential arrangement of the 

waveforms prevents the use of a scale bar in the y-axis, as each of the waveforms are from 

separate graphs and the y-axis scale bars have been cropped for presentation purposes. 

The sound pressure values displayed alongside the corresponding waveform are presented 

in units of dB (re. I J.LPa), determined using the calibration factors described by Kenyon et 

al. (1998). 
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Figure 3. 7 ABR response from C. auratus in response to a. a I 00 Hz tone, and b. a 300 

Hz tone burst. x-axis =time (s), y-axis scale bars are cropped for presentation so have no 

units 
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Figure 3.8 ABR response from C. aura/us in response to a. a 500Hz tone, and b. a 750 

Hz tone burst. x-axis = time (s), y-axis scale bars are cropped for presentation so have no 

units 
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Figure 3.9. ABR response from C. auratus in response to a. a I 000 Hz tone, and b. a 

1500 Hz tone burst. x-axis =time (s), y-axis scale bars are cropped for presentation so 

have no units 
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Figure 3.10. ABR response from C. aura/lis in response to a. a 2000Hz tone, and b. a 

3000 Hz tone burst. x-axis =time (s), y-axis scale bars are cropped for presentation so 

have no units 

At each tone burst frequency the Inter Peak Latency (IPL) becomes shorter with decreasing 

stimulus intensity, in accordance with the findings of Overbeck and Church (1992). The 

evoked potentials presented in Figure 3. 7 through 3.1 0, show an increase in latency with 

decreasing stimulus intensity. This phenomenon can only be observed when traces are 

arranged sequentially (Weber 1983), and are often used to validate ABR recordings, as 
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artefacts will not show any variation in latency. The audiogram presented in Figure 3.11 

shows the intensity of tone bursts required to generate threshold evoked potentials from C. 

auratus (Figures 3.7 through 3.1 0), with sound pressures calibrated in accordance with 

Kenyan ( 1996). The audiogram for C. auratus by Kenyan, et al. ( 1998) has been included 

for comparison. 
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Figure 3.11. ABR generated audiogram for C. auratus from Kenyan et al. ( 1998) 

(triangles), and the audiogram produced in this study using the calibration factors defined 

by Kenyan (1996) (circles) 

3.3.2 The function of the swim bladder in acoustic detection 

Auditory perception by fish varies between species (Popper and Fay, 1993; Yan et al 

2000), with most falling into the category of being either a hearing specialist or genera list. 

Specialists such as C. auratus, H. molitrix and A. nobilis have a connection between the 

swim bladder and inner ear, and are responsive to the sound pressure component of an 

acoustic signal measured here in units of dB re 1 ~LPa. Generalists lack this connection and 

rely on the shear forces generated by a phase differential between the dense otolith and less 

dense surrounding medium to stimulate the sensory ciliary bundles found in the inner ear 

(Hawkins and MacLennan 1976; Yan 2000). Members of the superorder Otophysi (carp, 
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catfish etc) possess a series of bones or Weberian ossicles that couple the swim bladder 

with the inner ear. ln a pressure field the swim bladder expands and contracts, and the 

motion is transmitted mechanically to the inner ear via the ossicles (von Frisch 1938; Fay 

and Popper 1974; Finneran and Hastings 2000). This system allows specialists to detect a 

wider bandwidth of frequency with greater sensitivity, when compared to generalist fish 

(Popper and Fay, 1993; Yan et at 2000). Other specialists include the C1upeiforms, with 

the herring (Ciupea harengus) (B1axter, Den ton and Grey, 1981 ), and American shad 

(Aiosa) (Popper, 1997) having been most thoroughly examined in respect of audition. 

These fish have a connecting sinus between the bullae, a hollow bone sphere located in the 

cranium of all Clupeids (Figure 3 .12.a) and the swim bladder, indicating hearing 

specialisation. When sound waves reach the gas filled lower half of the bulla, vibrations 

occur in the bulla membrane (Figure 3. L2.b) causing the sound energy to be transported 

along an elastic thread connected to the macula of the utricle (Biaxter et at, 1981). This 

specialisation of the inner ear mechanism offers an indication of the diversity of the 

hearing system between teleosts, since the primary auditory detection area for the 

Clupeids, is for example, within the utricle, rather than the saccular receptors common to 

the Otophysans and many other teleost orders. 

Figure 3.12. (a) inner ear, bulla and (b) bulla membrane of the specialist all is shad (Aiosa 

alosa) (Lovell, 1999) 

For species with no specialised linkage between the swim bladder and inner ear, signals 

generated by fluctuations in the pressure field are subjected to substantial attenuation as 

they pass through flesh and bone from the swim bladder to the inner ear (Popper and Fay 

1993; Yan et al 2000). The only published field study of fish audiometry using an 

electrophysiological approach was conducted by Enger and Andersen ( 1967), in a 

comparative study of audition in the cod (Gadus morhua) and the sculpin (Cottus 
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scorpious) in the open sea. After a series of experiments conducted mostly in the acoustic 

near field, that involved a highly complex surgical procedure to implant the electrodes, the 

authors conclude that the swim bladder of teleosts is essential for hearing in the acoustic 

far field. However, for species with no specialised mechanical linkage between the swim 

bladder and inner ear, signals generated by fluctuations in the pressure field are subjected 

to substantial attenuation as they pass through flesh and bone from the swim bladder to the 

inner ear (Popper and Fay 1993; Yan et al 2000). 

It has been demonstrated (Yan et. al., 2000), that the removal of gas from the swim bladder 

of the generalist oyster toadfish (Opsanus tau) does not have any impact on hearing 

thresholds with the fish positioned at 2-5 mm below the water surface (e.g. Yan et. al., 

2000). On the other hand, complete removal of gas from the swim bladder of C. auratus, a 

hearing specialist with a mechanical coupling between inner ear and swim bladder resulted 

in the significant elevation of hearing thresholds (Y an, et al., 2000). The initial volume of 

a swim bladder positioned at the water surface, at standard atmospheric pressure (Sleigh & 

MacDonald, 1972), can be calculated from the body mass (Yan et. al., 2000). 

Figure 3.13 shows the ratio between Body Mass (BM) and the volume of the swim bladder 

(SB) from C. auratus. The amount of body volume that must be taken up by gas in order 

to achieve neutral buoyancy is dependent upon whether the fish is in fresh or marine water. 
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Figure 3.13. Swim bladder volume as a function of Body mass for C. auratus, (redrawn 

from Yan et. al., 2000). The hatched lines show the intersection between body mass and 

the volume of the swim bladder from a 12.3-g C. auratus used in this experiment 
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This is due ostensibly to the water density difference between the two environments; thus 

freshwater fish require a proportionally larger swim bladder than do marine fish to 

maintain neutral buoyancy. According to Figure 3. 13, the volume of the swim bladder 

from C. aura/us, at the water surface, is 11 %of the body volume. 

At constant temperature, the volume of a gas varies inversely with absolute pressure, while 

the density of a gas varies directly with absolute pressure. 

For any gas at a constant temperature, Boyle's Law is: 

PV =K 

Where: P =absolute pressure, V = volume, and K = constant. 

The formula that gives the pressure (p) exerted on an object submerged in a fluid is: 

p=r*g*b 

Where: (rho) is the density of the fluid, g is the acceleration of gravity, and h is the height 

of the fluid above the object. 

The pressure of fresh water exerted on an object submerged at a depth of I m (not 

accounting for atmospheric pressure) is: 

pfluid = r * g * h = (999 kg/m3) (9.8 m/s2) (l m) 

= 9.79 kPa 

Calculation ofthe Swim Bladder Volume (SBV) with a loading of9.79 kPa on a 12 g BM 

C. auratus under atmospheric pressure + 1-m of fresh water is: 

(1.03 cc)(101.325 kPa)/( 1 01.325 kPa + 9.79 kPa) 

= 0.94 cc at 1 m= 9 % reduction in SBV 

At a constant temperature, the volume of gas in the swim bladder varies inversely with 

absolute pressure, while the density varies directly with absolute pressure, in accordance 
37 



with Boyle's Law. The effect of this law is of importance to fish, as it defines the 

relationship between pressure and volume i.e., changes in depth = changes in the volume 

ofthe swim bladder. Figure 3.14 shows the relationship between the swim bladder volume 

of a 12-g C. auratus, and its relative depth in the water column. 
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Figure 3.14. The relationship between depth in freshwater, and the volume of the swim 

bladder from a 12-g C. auratus, over a range of depths in the water column up to 40-m 

The Auditory Evoked Potentials (AEPs) presented in Figure 3 .15, are in response to a 500 

Hz, four-cycle tone burst, presented to a 7.9 g C. auratus. The fish was first positioned on 

the water surface, and then lowered to a depth of I m. The stimulus sounds were presented 

in air, and measured with the fish at the water surface using an AZ 8928 digital sound level 

meter (giving results comparable to Kenyon et al., 1998). The tone bursts were presented 

initially at 90 dB (for frequencies of below I 000 Hz), and attenuated in 5 dB steps. 

Threshold responses from C. auratus were determined visually from the sequentially 

arranged waveforms for each frequency tested, in accordance with Kenyon et al (1998). 

When two replicates of waveforms showed opposite polarities, or are dissimilar (see 60 dB 

in Figure 3.15.a, and 65 dB in 3.15.b), it is considered below threshold (c.f. Kenyon et al., 

1998). The SPL of the tone bursts at threshold, for frequencies ranging from 300 Hz, to 

3000 Hz, were recorded using a hydrophone which had been calibrated at the water surface 

using the sound pressure meter. The results ofthe audiological investigation are presented 

in the form of an audiogram or limn of spectral sensitivity (Figure 3 .16), and reveals that 

the sound pressure levels required to evoke threshold AEPs, at each of the frequencies 
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tested. The start amplitude and attenuation steps were presented identically to the fish, 

when stationed both at the surface and at 1 m. The curves show that the response 

thresholds increased by between 5 to I 0 dB over the range of frequencies tested. 
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Figure 3.15 Auditory Evoked Potentials in response to a 500 Hz four cycle tone burst 

presented to C. auratus, positioned (a.) on the water surface, (b.) at a depth of 1 m, with the 

stimulus sounds presented in air 
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Figure 3.16 Stimulus intensities required to evoke threshold responses from C. aura/us, 

with the fish on the water surface, and at a depth of 1 m 
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Threshold responses were not obtained at I m for frequencies above 1500 Hz, as the 

reflectivity of the water surface and rapid attenuation of the higher frequencies meant that 

the sounds would need to be presented at intensities outside of the operational range of the 

loudspeaker (in this experiment the sound was presented in air) and amplifier. 

3.3.3 Audiogram for Silver carp (Hypopthalmichthys molitrix) 

The ABR generated audiogram for the silver carp (H molitrix) was produced in Illinois 

USA, using the equipment setup described in Figure 3 .I. Figure 3. 17 illustrates a typical 

set of acoustic brainstem responses to sound pressure at an insonification frequency of 500 

Hz . The Figure presents traces acquired as the sound pressure level was successively 

atenuated; it may be seen that the responses vary from strong response to the sound to no 

discernible response. The lowest pressure of sound at which a response occurred was 

taken to be the auditory threshold. 
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Figure 3.17 A typical set of acoustic brainstem responses to sound pressure for the Silver 

Carp (H molitrix) at an insonification frequency of 500 1-lz. x-axis = time (s), y-axis = 

Micro volts * 100 

Figure 3. 18 presents the audiogram found by visual inspection of the ABR traces from H 

mo/itrix. The audiogram indicates the sound pressure level in dB (re. I 11Pa) at the 

threshold of hearing. It may be seen that the hearing is most sensitive (has the lowest 

threshold of hearing) at frequencies between about 500 Hz and 3 kHz, where the maximum 

hearing sensitivity is of the order of I 05 dB (re. I 11Pa). At the higher freq uencies, the 

hearing reduces sharply in sensitivity; the sensitivity also reduces more gradually for lower 

frequencies. It may be noted that the background noise level is lower than the recorded 
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thresholds of hearing, and hence it may be concluded that the audiograms are 

uncontaminated by background noise, and both H molitrix and A. nobilis follow a similar 

Gaussian profile. 
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Figure 3.18. The audiogram (sound pressure level at threshold of hearing in units of dB 

(re. 1 j.!Pa) of the Silver Carp (H molitrix), the lower line (x) represents the ambient noise 

level in the test tank. Y error bars show the standard deviation of the data 

3.3.4 The audiogram of the Bighead Carp (Aristichthys nobilis) 

The ABR generated audiogram for the bighead carp (A. nobilis) was also produced in 

Illinois USA, as part of the AFD barrier project. Figure 3.19 illustrates a typical set of 

acoustic brainstem responses from A. nobilis to sound pressure at an insonification 

frequency of 500 Hz. The form of the traces is similar to that of H molitrix, however the 

threshold of hearing was found to be at generally slightly lower levels of sound. 
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Figure 3.19 A typical set of ABR waveforms to sound pressure for the Bighead Carp (A. 

nobilis) at an insonification frequency of 500 Hz. x-axis = time (s), y-axis = Microvolts * 
100 

Figure 3.20 presents the audiogram in units of sound pressure (dB re 1 ~Pa) determined by 

visual inspection of the ABR traces from A. nobilis at the threshold of hearing. The 

hearing peaks in sensitivity at a frequency of about 1500 Hz, where A. nobilis has its 

lowest threshold of hearing, at a sound pressure level of about 106 dB re 1 ~Pa. 

140 

135 

,_... 130 
"" 'a 

125 .... 
"' ... ..__ 

120 
l:Q 
~ 

"' ... 11 5 

= "' ~ ... 110 
~ 
~ 105 = = 0 
V'J 100 

95 

90 

100 1000 10000 

Frequency (Hz) 

Figure 3.20 The audiogram (sound pressure level at the threshold of hearing in dB (re. 1 

~Pa)) for the Bighead Carp (A. nobilis), the lower line (x) represents the ambient noise 

level in the test tanJ<. Y error bars show the standard deviation of the data 
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3.4 Chapter discussion and conclusions 

The comparability ofthe goldfish audiograms produced in this study, with published works 

(e.g. Kenyan et al., 1998), provides a benchmark for the accuracy of the ABR system when 

measuring AEP' s from fish with the transducer fixed in air. However, ABR has not 

previously been used in conjunction with submerged transducers and brings into question 

auditory data from other established methodologies, which do not faithfully emulate the 

transmission of sound sources integral to the AFD barrier or other device used as part of a 

management strategy. 

The hearing thresholds of silver carp (H. molitrix) and bighead carp (A. nobilis) are 

presented in an audiogram as the lowest levels of sound pressure as a function of frequency 

that evoked a repeatable threshold response. The audiograms produced for the two Asian 

carp species is comparable in frequency bandwidth (though with slightly higher 

thresholds), to the audiogram for the specialist channel catfish (I. punctatus) produced by 

Fay and Popper ( 1975) in an electrophysiological study of fish audition using an air 

mounted transducer. Figure 3.21 presents the audiograms of both H. molitrix and A. 

nobilis, which are presented along with the audiogram for I. punctatus from Fay and 

Popper ( 1975). 
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Figure 3.21 Comparison of the audiogram for I. puncta/us (Popper and Fay ( 1975) 

(circles), and the calibrated audiograms (B&K hydrophone) for H. mo/itrix (triangles) and 

A. nobilis (diamonds) 
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Figure 3.21 shows that hearing thresholds from H molitrix and A. nobilis are moderately 

higher than thresholds obtained from I. punctatus. It is probable that the higher thresholds 

recorded is, in part, due to the hearing of the two carp species being more acute than the 

lowest level of sound that the submerged transducers used in this study can consistently 

generate. ln an attempt to stabilise the sound field at low intensities, the projectors were 

driven with load resistors placed between the amplifier and projector. To counter this 

problem, a number of published studies of specialist fish hearing (c.f. Fay and Popper, 

1975, Kenyon et al., 1998), have used air mounted transducers to generate underwater 

sound fields below the threshold of hearing. However, in this instance, the use of 

submerged transducers is the most appropriate stimulus generating methodology (rather 

than air mounted transducers), as the sound field in the test tank is produced using the 

same type of transducer as is used in the AFD barrier. Thus, the sound transmission 

methodology is arguably closely representative of sources used in aquatic management 

strategies, thereby providing a more reliable approach to the acquis ition of auditory 

information for practical "field" applications. 

The experiment described in section 3.4.4 shows that in C. auratus, hearing thresholds 

elevate with increasing loading on the swim bladder. This effect has, in part, been 

demonstrated by Yan, et al. (2000), who found an increase in thresholds after removal of 

gas from the organ, however, this is the first time that the effect of pressure loading on the 

swim bladder has been measured by increasing the depth of the fish in the experimental 

tank. ln the present experiment, the goldfish was lowered to a depth of I m, in a 200 I 

tank, and gives a more realistic effect of swim bladder loading on the sensory pathway. 

The subsequent water pressure loading on the swim bladder at this depth (in fresh water), 

is known to reduce the volume of the organ by 9 %, in accordance with Boyle' s law. This 

reduction in the GBV was found to have a small, but measurable affect on threshold AEP' s 

recorded from C. auratus, which increased by approximately 5 dB when the fish was 

positioned at a depth of I m from the water surface (resulting in a swim bladder volume 

reduction of9 %). It was found (Yan et. al., 2000), that the complete removal of gas from 

swim bladder of C. auratus resulted in a 60 dB elevation in the hearing thresholds. It is 

concluded, that accurate and comparable threshold AEP' s can be obtained from various 

sized fish, stationed both at the water surface and at least l m below it, and that the 

subsequent reduction in swim bladder volume has a small but measurable effect on the 

hearing abi lities of C. auratus, again confirming the accuracy of the ABR system. It is 

known that the acquisition of concise auditory information from generalist fish using 
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behavioural methods is often challenging (Kenyan et al., 1998); thus, it remains to be 

shown if the ABR system used in this study is capable of recording threshold responses 

from generalist fish. As has already been mentioned, generalists have a narrower 

bandwidth and higher thresholds ofhearing than the specialists, and the performance of the 

system at higher stimulus intensities is explored in the next chapter. 
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Chapter 4 

The hearing abilities of bony generalist 

fish 

4.1 Introduction 

As discussed in the previous chapter, specialist fish hear sounds ranging in frequency 

between 50 Hz or so, to as much as 5000 Hz, at intensities of around 65 dB (re I J.t.Pa), 

which they detect through a mechanical coupling between the swim bladder and inner ear. 

Generalist fish lack this coupling, and are considered as having considerably higher 

hearing thresholds, and a narrower frequency detection bandwidth than the specialists. 

This Chapter sets out to examine the morphology of the inner ear, and determine the 

hearing abi lities of the European sea bass (Dicentrarchus labrax). This species has been 

selected to represent bony generalist fish in this study, due principally to there being no 

concise auditory data for this species in the literature, even though it is an important fish to 

both recreational and commercial fisheries (Pickett, et al., 1995). The distribution and 

polarisation of the afferent receptors found in the otolithic end organs are also investigated 

using Scanning and Transmission Electron Microscopy (SEM and TEM), to show that D. 

labrax has an ear that conforms to the standard configuration of generalist fish. Several 

authors (e.g. Platt & Popper, 1984; Popper, 1981; Yan et al., 1991) have used the Scanning 

Electron Microscope (SEM) to study surface detail of the inner ear ultrastructure, and this 

was the approach adopted here. ln the second series of experiments described in this 

Chapter, the hearing abilities of D. labrax in a sound field dominated by sound pressure are 

defined using ABR audiometry, using air mounted transducers and a setup similar to 

Kenyan et al., (1998), with the exception that the fish and recording equipment are not in 

faraday conditions. The acquisition of comparable results from D. labrax with published 

audiograms for generalist fish (c.f. Casper et al., 2003; Kenyan et al., 1998) will allow for 

the assessment of the accuracy of the system outside of controlled conditions, when using 

relatively loud stimulus sounds compared to the audiological tests of the specialist fish. 
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4.2 Materials and methods 

4.2.1 SEM preparation 

Six fresh D. labrax heads taken from individuals ranging in size from 70 mm (9 g) to 200 

mm (90 g) were acquired locally from the commercial fishing sector, and trimmed to small 

blocks containing both ears. The cranial cavity was then opened dorsally and the brain 

removed by dissection and aspiration. Chilled fixative (2.5% glutaraldehyde in 0.1 M 

cacodylate buffer with 3.5% sodium chloride) was perfused into the sacculi, and vented 

through a small incision in the chamber wall, located well away from the needle entry 

point and macula. The ears and surrounding tissue were subsequently immersed in chilled 

fixative for 48 hours prior to dissection of the pars inferior from the remaining cranium. 

The sacculi and integral macula was washed from the surface of the sagitta using a pipette 

and a small quantity of excess fixative. The otolith capsules were then dehydrated through 

a graded ethanol series ranging from 35% through 50%, 70% and 90% to absolute ethanol, 

prior to desiccation using the critical point drying method described by Platt ( 1977). Fully 

desiccated otolith capsules were subsequently mounted on a specimen stub using a carbon 

tab, and coated with c. 8 nm of gold in an Emitech K 550 sputter coater (working at 

approximately 5 x 1 o-6 Torr). Finally, the processed specimens were investigated and 

photographed using a JOEL JSM 5600 scanning electron microscope operated at 15 kv, 

and a 15 mm working distance. 

The orientation of an inner ear hair cell is defined by drawing a line using the JOEL 

software, from the shorter ciliary bundles towards the longer kinocilium. This procedure 

was applied and repeated across the surface of the macula at 1 00-micron intervals, or when 

there was an abrupt change in hair cell orientation. The line dividing cells with opposing 

orientations were mapped using a I 000 x magnification electron micrograph montage in 

accordance with Platt ( 1977). Images of the ultrastructure were captured using the JOEL 

software, which saved the micrographs in a bitmap format. The micrographs were then 

examined using the image analysis software, "lrnageJ", which was calibrated using scale 

markers provided by the JOEL software. Measurements of the ultrastructure were made by 

drawing a line across an area of interest using the ImageJ drag tool. The software then 

calculates the number of pixels in the selection and displays either point to point or area 

data as text, which was entered into an Excel spreadsheet for further analysis. 

Measurements of hair cell dimensions (height, width etc) unless otherwise stated, are 

averages taken from at least 12 observations within a similarly orientated cell cluster. 
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4.2.2 ABR methodology 

The procedure used to acquire the evoked potentials was approved by the United Kingdom 

Home Office. Specimens of D. labrax were placed into a flexible cradle formed from 

plastic mesh and a soft foam rectangle saturated with seawater (see Figure l.a and b. for 

photograph ofthe experimental equipment). Oxygenated seawater kept at a temperature of 

18° C was gravity fed to D. labrax at an adjustable flow rate of 6 millilitres per second. 

The water was held in an aerated reservoir positioned in an adjacent room, and fed to the 

front ofthe foam "cradle" through a 10 mm diameter plastic tube. Water was able to flow 

around the fish and vent through an aperture positioned at the rear of the foam cradle; thus 

the fish was able to ventilate its gills by simply opening and closing its mouth. The foam 

cradle was placed in a second tank L. 450 mm x W. 300 mm x D. 200 mm, and supported 

using a clamp to keep the nape of the fish's bead lmm above the surface of the water. 

The experimental tank was placed on a table with vibration inhibiting properties, located in 

an underground anechoic chamber L. 3 m x W. 2 m x H. 2 m. After the hearing 

assessment, the fish were relocated to a holding tank for observation, prior to being 

returned to a non-experimental aquarium. 

Figure 4.1.a The ABR control room in Plymouth, and b. the specimen and one of the test 

tanks located in an adjacent room 

The stimulus sound was generated using a PC and presented to the fish (Figure 4. l.b), at 

initial sound pressures not exceeding 150 dB re I ~-tPa (determined using the Bruel and 
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Kjaer hydrophone detailed in Chapter 3). Amplification of the sound was achieved using a 

Pioneer type SA-420 amplifier and a 200 mm Eagle L032 loudspeaker with a frequency 

response range of 40 Hz to 18 kHz. Additionally, the transducer was placed inside a 

Faraday cage and connected to a centralised earth point located in an adjacent room where 

the PC, amplification, and analysis equipment was set up. Connecting wires were fed 

through a 100 mm port in the partitioning wall. The electrophysiological response of the 

fish to acoustic stimulation was recorded using the two cutaneous electrodes described in 

Chapter 3. 

4.3 Results 

4.3.1 Anatomy of the hearing system of the bass (D. /abrax) 

Skin attached to the roof of the mouth was removed along with the eyes and any additional 

flesh, producing a clear unobstructed view of the lower cranium and saccular chambers 

(detailed in Figure 4.4). The bone ridge separating the eyes and continuing between the 

saccular chambers was cut and pulled away from the head, revealing a continuation of the 

divide between the left and right chamber. In D. labrax, the separation is especially 

prevalent, and extends near to the ventral plate of the cranial cavity. The head was 

trimmed to a small block containing both ears, and the cranial cavity was opened dorsally 

and the brain removed by dissection and aspiration. Chilled fixative (2.5% glutaraldehyde 

in 0.1 M cacodylate buffer with 3.5% sodium chloride) was perfused into the sacculi, and 

vented through a small incision in the chamber wall located well away from the needle 

entry point and macula. The ears and surrounding tissue were subsequently immersed in 

chilled fixative for 48 hours prior to dissection of the inner ear from the cranium. 
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Figure 4.4. The skull of D. labrax (Dicentrarchus labrax) showing the saccular chamber 

and location ofthe initial preparation cuts (adapted from Lovell 1999) 

Close inspection of the cranial cavity and inner ear of D. labrax did not reveal any 

evidence of a connection Weberian or otherwise between the swim bladder or other 

ancillary air reservoir and the inner ear, showing that D. labrax is a hearing generalist, 

reliant on the phase differential between the otolith and sensory macula to stimulate 

sensory ciliary bundles. 

The left ear (Figure 4.5) was dissected in two parts from the remaining cranium and placed 

into a clear glass dish containing chilled fixative and photographed to reveal the gross 

morphological layout, prior to SEM preparation. The three canals protruding at right 

angles from the labyrinth of the pars superior, are known collectively as the semicircular 

canals (Retzius 1881 ). Endolymph circulates freely through the canals, all of which 

institute from either the anterior or posterior ampulla of the utricle. Inside the ampulla is a 

saddle shaped cristae that partially covers the floor of the organ, which is made up of 

exceptionally long sensory ciliary bundles and a gelatinous cupula. The cupula and 

sensory ciliary bundles occlude the ampulla, and movement of endolymph deforms the 

cupula stimulating the embedded sensory ciliary bundles (Piatt and Popper 1981 ). 

The cristae are sensitive to angular accelerations and function in the maintenance of 

equilibrium and orientation (Romer and Parsons, 1977), though the utricular otolith 

(lapillus) may also participate in sound reception in some species (Biaxter et al 1981 ; 

Popper 1983). The anterior and posterior canals connect to the utricle via the anterior and 

posterior ampullas, rising with angularity to combine at the apex of the sinus superior. The 

sinus superior descends vertically into a central region of the vestibule near the 

endolymphatic duct (Retzius 1881 ). The external canal however, is positioned horizontally 
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and paired with anterior and posterior ampullas. The three canal configuration is common 

to all jawed fish , whilst lampreys have two canals and hagfish have only one (Romer and 

Parsons, 1977). 

Figure 4.5. Composite of the dissected inner ear from D. labrax, aa- anterior ampulla, 1-

lagena, ms - macula of the saccule, os - otolith sagitta, ou - otolith utricle (lapillus). 

Ln vertebrates, the V ill nerve institutes from the end-organs of the inner ear, and terminates 

in the octavo lateralis area of the medulla (Northcutt, 1981; Bell, 1981; Lovell 1999). This 

is in agreement with Figure 4 .6 which shows the gross anatomical layout of the brain and 

the peripheral pathway of VIII nerve ganglion from D. labrax, dissected by the author as 

part of an earlier work. Apical hair bundles protrude from the macula and contact the 

otolith within the medial sulcus depression, and are often surrounded by a gelatinous 

otolith membrane (Piatt and Popper, 1981). Transduction from mechanical to 

electrochemical energy is dependant on shear forces bending the stereocilia toward or 

away from the kinocilium, and results in the opening of membrane channels prompting an 

increase in the flow of sodium (Na+) and potassium (K+) outward across the cellular 

membrane (Piatt and Popper 1981 ). 
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Figure 4.6 Gross anatomy of the brain from D. /abrax, showing the Vlll octave! nerve 

terminating in the acousticolateralis area of the medulla, a/In - anterior lateral line nerve, 

ce - cerebellum, mb - midbrain, of - optic lobe, olf - olfactory lobe, on - optic nerve, 

plln - posterior lateral line nerve, Vlll- octaval nerve (from Lovell I 999) 

Many specialist fish have saccular ciliary bundles orientated vertically in two diametrically 

opposed quadrants (Popper, 1980}, whereas most generalists have ciliary bundles 

orientated both horizontally and vertically in four to six quadrants (Popper and Fay 1993). 

The ability of fish to directionally locate the source of a sound has been demonstrated 

(Sand 1 973; Enger, 1976), who theorised that ciliary bundles in generalists have an axis of 

maximal sensitivity to vibration. Scanning electron microscopy has revealed that there is 

evidence of a correlation between the morphological polarisation of the saccular receptors 

and the magnitude of the electrophysiological response to a sound vector (Popper and Fay 

1993). 

4.3.2 Results of EMC study of hair cell polarities in the ear of D. 

labrax 

The view of the saccular macula from the left ear of D. labrax (Figure 4.7) was scanned at 

a magnification ofx 50, and annotated to show the overall orientation of the ciliary bundles 

found in each quadrant as viewed perpendicular to the macula surface. The four quadrants 

were sub-divided into five sectors and studied at magnification factors of between I 000 x 

and 5000 x. Detail of the ciliary bundles and their respective orientations can be seen in 

Figures 4.8 through 4.11 , which were scanned at a magnification of 5000 x. Cells of 

similar bundle size and orientation occupied large areas of the epithelia, often separated 
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from cells with alternate orientation and size by a narrow transitional zone. Several 

micrographs, each of between four to ten cells, were taken within each of the larger 

regions, away from the transitional zones. The polarisation of ciliary bundles in the 

saccular macula are depicted by the white arrows in Figure 4.7, and reveal that D. /abrax 

possesses a standard orientation pattern in common with other hearing generalist fish from 

the order Perciforrnes (Piatt and Popper 1981 ; Popper and Fay 1993). The saccular ciliary 

bundles are divided into four discrete orientation groups (Figures 4 .8 through 4.11 ), with 

ciliary bundles in each group orientated in the same direction. The polarisation of ciliary 

bundles in the rostra) locus or ostium of the macula are divided into two regions, with 

caudally-orientated hair cell groups on the dorsal half of the macula, and rostrually­

orientated groups on the ventral portion. Ciliary bundles on the caudal locus of the 

saccular macula are orientated dorsally in the dorsal region and ventrally in the ventral 

region. 

Figure 4.7. Orientation of ciliary bundles on the left ear saccular epithelium of 

Dicentrarchus labrax, orientated horizontally and 2, and vertically 3 and 4 m 

diametrically opposed quadrants; showing that D. /abrax is a hearing generalist with 

standard orientation ciliary bundles. 
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Figure 4.8. Scanning electron micrograph showing the ciliary bundles from quadrant I 

Figure 4.9 Scanning electron micrograph of ciliary bundles from quadrant 2 
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Figure 4.10 Ciliary bundles from quadrant 3 

Figure 4.11 Ciliary bundles from quadrant 4 

The saccular macula from three D. labrax with fork lengths of 170 mm (90 g) 126 mm (53 

g) and 72 mm (9.4 g) were examined by EMC, and measurements of the macula and ciliary 

bundles were calculated by using the ImageJ software. Figure 4.12 shows the outline of 
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the regions of the macula bearing ciliary bundles from both the left and right ears of the 

three fish. 

Right ear Left ear 

2 

3 

Figure 4.12 Outline of the saccular macula from the left and right ears taken from D. 

/abrax with fork lengths of (I) 170 mm, (2) 126 mm and (3) 72 mm (Bar = I mm) 

The total area of macula from each fish is presented in table 4.1 , and was found to be 3.073 

mm2 for the right ear, and 3.219 for the left ear of the 170 mm fish, 2.415 mm2 for the right 

and 2.555 mm2 for the left ear of the 126 mm fish, and 1.58 mm2 for the right and I. 722 

mm2 for the left ear of the 72 mm fish . 

Table 4.1. Results generated by the ImageJ software of the macula area for the left and 

right ears ofthe three sizes of fish 

Right ear Left ear 

Fish length Area Perimeter Area Perimeter 

(mm) (mm2) (mm) (mm2) (mm) 

170 3.073 12.743 3.219 13.065 

126 2.415 11.183 2.555 11.677 

72 1.572 9.542 1.722 9.803 

ln order to test the hypothesis that the numbers of ciliary bundles increases with age, 

measurements of the spacing between ciliary bundles in the dorso-rosteral quadrant of the 

macula in both x and y coordinates were made. These data were fed into a one-way 

ANOVA, the results of which are shown in tables 4.2 and 4.3. 
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Table 4.2. Results of the One-way ANOV A used to test for similarity in receptor cell 

spacing along the x axis from 3 sizes of fish. Measurements in Jlm 

Analysis of the Variance in the distance between ciliary bundles along the X 
axis 
Source DF ss MS F p 

Cl 2 7.70 3 . 85 1.80 0.181 
Error 33 70 . 40 2 . 13 
Total 35 78.10 

Individual 95% Cis For Mean 
Based on Pooled StDev 

Level N Mean StDev ---+---------+---------+---------+---
1 12 6.233 1.180 (----------*----------) 
2 12 7.287 2.020 (----------*----------) 
3 12 6 . 402 0.963 (----------*----------) 

---+---------+---------+---------+---
Pooled StDev = 1. 4 61 5.60 6 . 40 7.20 8.00 

The P value of 0.181 given by the ANOV A in Table 4 .2 suggests that the distance between 

cells on the dorso-ventral (x) axis, remains constant throughout the development of D. 

labrax from fingerling to the juvenile stages ofthe life cycle. 

Table 4.3. Results of the One-way ANOV A used to test for similarity in receptor cell 

spacing along the y axis from the 3 sizes of fish. Measurements in Jlm 

Analysis of Variance in the distance between ciliary bundles alo ng the y axis 
Source DF ss MS F p 

Cl 2 19.38 9 . 69 3. 71 0.035 
Error 33 86.27 2.61 
Total 35 105.65 

Individual 95% Cis For Mean 
Based on Pooled StDev 

Level N Mean StDev -+---------+---------+---------+-----
1 12 6.583 2.297 (---------*--------) 
2 12 6.361 1.185 (---------*--------) 
3 12 4.928 1.078 (--------*---------) 

-+---------+---------+---------+-----
Pooled StDev = 1. 617 4.0 5 . 0 6 . 0 7 . 0 

The P value of 0.035 (Table 4.3) shows that there is some evidence that the ciliary bundles 

will acquire more lateral spacing along the y axis as D. labrax grows, though distortions 

occurring during the critical point drying process may have a slight influence on the y axis 

results. 

The length of the kinocilia from cells in each quadrant of the sensory area were measured 

using the ImageJ software, the summaries of the measurements from each quadrant are 

presented in Table 4.4. 
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Table 4.4. Summaries of average kinocilia lengths from each of the four quadrants of the 

saccular epithelium from a 126 mm D. labrax (measurements in ~m) 

Quadrant 2 3 4 

Mean 3.613 3.849 2.429 3.197 

SD 0.332 0.605 0.528 0.553 

M in 3.214 3.278 1.674 2.214 

Max 4.267 4.85 3.292 3.819 

The lagena is the second of the end organs found in the pars inferior, and in D. labrax it is 

approximately l/30th the size of the saccule. The lagena is attached to the caudal end of 

the saccule, and lays almost perpendicular to the horizontal plane of the fish. It contains an 

otolith known as the asteriscus (star shaped) (Figure 4.13.a) and is similar in size and form 

to the associated macula (Figure 4.13.b). 

Figure 4.13 The lagena otolith (a.) and macula (b.) from D. labrax 

Figure 4.14 shows the relative positions of the lagena ciliary bundles across the surface of 

the lagena macula. The hair cells divide into two regions, with caudal hair cell polarities 

becoming increasingly opposed, relative to the rosteral receptors as the dorsal extremities 

ofthe macula are approached (shown by the white arrows in Figure 4.13.b and 4.14). The 

two regions were sub-divided into 14 sectors and studied at magnification factors of 

between I 000 x and 5000 x. Detail of the ciliary bundles and their respective orientations 

can be seen in the inserts of Figure 4.14, which were scanned at a magnification of 5000 x. 

Cells of similar bundle size and orientation occupied large areas of the epithelia, with the 
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rosteraVcaudal regions separated in the centre of the macula by a region sparsely populated 

by ciliary bundles with indeterminate polarisations. 

Figure 4.14 The orientation of ciliary bundles on the macula of the lagena from D. labrax. 

The annotations A (Anterior) and D (Dorsal) represent the orientation ofthe organ relative 

to the fish 

The utricle is located behind the anterior ampulla, in the ventral rostra! region of the pars 

superior, detailed in Figure 4.15. It is a small chamber containing an otolith known as the 

lapillus (small rock), and the macula, which is innervated by one of the rami extending 

from the acousticus region eighth nerve (VIll in Figure 4.15). 
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Figure 4.15 Digital photograph of the utricle from D. labrax taken using a camera and 

trinocular microscope. mu - macula of the utricle, ol otolith lapillus, raa ramus of the 

anterior ampulla, rae ramus of the ampulla external, ru ramus of the utricle, VIII eighth 

nerve (annotations after Retzius 1881) 

The greatest densities of ultrastructural ciliary bundles were found along the horizontal 

plane of the utricular macula in D. /abrax (detailed in Figure 4.16), as opposed to the near 

vertical arrangement of the saccular and lagena macula. The second major difference 

between the utricle and the other end organs is the partial envelopment of the utricular 

otolith by the sensory macula, rather than the macula being intimately located in the medial 

sulcus of the sagitta or following one side ofthe asteriscus. 
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Figure 4.16. The orientation of ciliary bundles on the macula of the utricle from D. labrax 

(insert a.) and the utricular otolith (insert b.) 

The thickness and height of the apical ciliary bundles compared to the kinocilium provides 

an index for distinguishing regional variations in ciliary bundles across the macula surface. 

Ciliary bundles are referenced by comparing the length of the kinocilia (e.g. K8 f.liTl), 

relative to the first stereocilia (e.g. s4 J.tm) (Piatt and Popper 1983). The ciliary bundles 

shown in Figure 4.17.a proliferate in a narrow band at the margins of the saccular epithelia, 

and exhibit a long kinocilia with short stereocilia. With an index of K8s4, these cells were 

the longest identified on the saccular macula of D. /abrax. Figure 4.17 .b shows K2s0.5 

ciliary bundles proliferating in the caudal ventral region of the utricular macula, and the 

shortest receptors found in the inner ear of D. /abrax. The caudal locus of the saccular 

macula is predominated by extensive proliferations ofK6s5 ciliary bundles (Figure 4.18.a), 

and the osteum of the saccule is predominated by K6s4 hair cell (Figure 4.18.b). Figure 

4.19 shows K8s7 ciliary bundles from the medial caudal region of the lagena macula, and 

exhibited the longest stereocilia to kinocilia ratio found in the inner ear of D. /abrax. 
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Figure 4.17.a K8s4 Ciliary bundles proliferating in a narrow band at the margins of the 

saccular epithelia from D. labrax, (b) K2s0.5 hair cell from the caudal region of the utricle 

viewed at a magnification of 11 000 x. 

Figure 4.18.a. K6s4 ciliary bundles proliferating in a central region of the osteum of the 

saccule from D. labrax (b) K6s5 ciliary bundles proliferating in the caudal ventral locus of 

the saccule viewed at a magnification of 11 000 x 
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Figure 4.19 K8s7 ciliary bundles proliferating in the medial caudal region of the lagena 

macula from D. labrax viewed at a magnification of 11 000 x. 

Whilst there is marginal variation in the length of the kinocilia located on the saccular 

epithelia in D. labrax, there was not sufficient variability in the lengths to distinguish 

regional variation except between the perimeter and central ciliary bundles. 

4.3.3 Audiogram for D. /abrax 

Threshold responses from D. /abrax were determined visually from the sequentially 

arranged waveforms for each frequency tested, in accordance with Kenyon et al (1998). 

Figure 4.20 shows ABR waveforms evoked from D. labrax in response to a. 75Hz, b. 100 

Hz, and c. 200Hz, and Figure 4.21 shows waveforms evoked from a. 300Hz, b. 400Hz 

and c. 500 Hz tone bursts averaged over 1000 sweeps of 80 ms. The tone bursts were 

presented initially at 10 dB re 1 ~Pa above threshold and attenuated in steps of 4 dB re 1 

~Pa ordinarily, and 2 dB re I ~Pa as the hearing threshold was approached. When two 

replicates of waveforms showed opposite polarities, it was considered as being below 

threshold (cf. Kenyon et al. 1998). 
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Figure 4.20 Overlaid ABR response from D. labrax to a sound of a. 50 Hz, b. I 00 Hz, and 

c. 250 Hz, averaged over l 000 sweeps 
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Figure 4.21 Overlaid ABR responses from D. labrax to a sound of a. 500 Hz, and b. 750 

Hz, averaged from I 000 sweeps 

The intensity ofthe signal required to generate threshold evoked potentials from D. labrax 

were correlated with the respective frequencies and presented in the audiogram in Figure 

4.22. 
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Figure 4.22 ABR generated audiogram for D. labrax (data from Figures 4.20 and 4.2 1) 
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4.5 Chapter discussion and conclusions 

The vertebrate ear is divided into two functionally separate regions, the pars superior and 

pars inferior (after Retzius, 1881 ); with the pars superior (semi circular canals and utricle) 

mediating postural responses and the pars inferior mediating acoustic responses (von 

Frisch 1938; Jenkins, 1981 ; Platt and Popper 1981; Popper and Platt, 1993). The pars 

inferior comprises two fluid filled pouches, the saccule and lagena (Retzius, 1881); with 

each pouch containing a crystalline calcium carbonate otolith (Carlstrom, 1963). It is 

generally accepted that the saccule and la gena of the pars inferior are the primary acoustic 

receptor organs in most fish species (Fay 1981 ), though there is probably considerable 

functional overlap between all three of the otolith organs (Popper and Fay 1993). Fish 

lacking adaptations that enhance hearing (commonly called hearing generalists) have 

ciliary bundles orientated both horizontally and vertically in four to six quadrants (Popper 

and Fay 1993). It is apparent from analysis of the SEM data presented here that D. labrax 

possesses standard orientation ciliary bundles, in common with many hearing generalist 

species. These findings are in agreement with studies of other Perciform hearing 

generalists. For example the polarisations of saccular ciliary bundles from the perch 

(Perca jlavescens) are divided into four groups; anterior, posterior, dorsal, and ventral with 

respect to the axis of the fish (Piatt and Popper, 1981 ). This is in contrast with specialist 

sensory receptor patterns such as those found in the Ostariophysi (Otophysi), which have 

saccular ciliary bundles orientated vertically in only two diametrically opposed quadrants 

(Popper, 1980). Bi-directional receptor patterns are often associated with adaptations that 

enhance hearing and can even extend to other end-organs, such as those found in the 

clupeid utricle (Biaxter, Denton and Gray 1981; Popper and Platt, 1979). The examination 

of the afferents in the saccule of D. labrax demonstrates the applicability of the dissection 

and preparation methodologies required for SEM type examinations of the hair cells in the 

fish ear, and has resulted in the publication of a manuscript on the subject (see appendix I). 

Fish have the ability to determine the direction and distance of a disturbance in the acoustic 

free field (Schuijf and Hawkins 1983; Hawkins and Sand 1977; Hawkins 1993). Hawkins 

and Sand (1977) theorise that ciliary bundles in generalists have an axis of maximal 

sensitivity to vibration. The directional characteristics (excitation or inhibition) of afferent 

nerves have been qualitatively correlated with anatomically defined patterns of hair cell 

orientations on the macula of the saccule (Fay 1997). The sleeper goby (Dormitator 

latifrons) detects the spatial location of sound using arrays of ciliary bundles in the 
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otolithic organs that are oriented specifically along the sound propagation axis (Lu and 

Popper 1998). The saccular and lagenar epithelia of D. lati.frons are oriented perpendicular 

to the horizontal plane of the fish, while the utricular epithelium lies on the horizontal 

plane. A similar inner ear organisation was also observed in D. /abrax, and shows that the 

bass ear is also morphologically capable of being a 3 dimensional sound detector. 

The P value of 0.181 given by the ANOV A in Table 4.2 indicates that the distance between 

cells on the dorso-ventral (x) axis, remains constant throughout the development of D. 

/abrax from fingerling to the juvenile stages of the life cycle. However, the P value of 

0.035 (Table 3.3) shows that there is some evidence to suggest that the ciliary bundles will 

acquire more lateral spacing along the y axis as D. /abrax grows. The test was confirmed 

by counting the numbers of cells found proliferating in comparable areas of macula, and 

found to be 5 I cells per 0.002 mm2 for the large fish, 48 for the medium, and 67 for the 

small. It is well known that in lizards and birds, regions having longer ciliary bundles 

detect lower-frequency signals while shorter bundles detect higher frequencies (Popper and 

Fay 1993). Indirect evidence in fish raises the possibility of a similar correlation, as the 

region of the macula responsive to lower frequencies in C. auratus is the region containing 

the taller kinocilia (Sugihara and Furukawa, 1989), suggesting a parallel with the gradient 

of ciliary bundle length and frequency responses found in higher vertebrates. 

The thickness and height of the apical ciliary bundles compared to the kinocilium provides 

an index for distinguishing regional variations in ciliary bundles across the macula surface 

(Platt and Popper 1981). The length of ciliary bundles and the ratio between the kinocilia 

and first steriocilia (Figures 4.17 through 4.19), shows slight regional variation across the 

sensory surface of the three otolithic end organs found in D. labrax. The ciliary bundles 

shown in Figure IO.a proliferate in a narrow band at the margins of the saccular epithelia, 

and exhibit a long kinocilia with short stereocilia. With an index of K8s4, these cells were 

the longest identified on the saccular macula of D. /abrax, confirming the report by Barber 

and Emerson (1980), who found the more centrally located receptor cells on the saccular 

macula generally have longer stereocilia and shorter kinocilia than the peripheral cells. 

K6s5 ciliary bundles proliferate in the ventral region of the caudal locus of the saccular 

macula, and shorter ciliary bundles (K6s4) were found to proliferate in the central region 

of the osteum. Theoretically, K6s4 ciliary bundles are more responsive to high frequency 

components of an acoustic signal than the K6s5 ciliary bundles. The smallest hair cell 

populations (k2s0.5) were found on the macula of the utricle (Figure 4.17.b). 
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The study of the inner ear physiology of D. labrax shows that this fish possesses the 

sensory apparatus necessary to detect and localise sound in the open environment, albeit 

with generalis! hearing abilities. The genera list configuration of the ear indicates that the 

hearing of D. /abrax is restricted to a narrow bandwidth from around 50 Hz to 500 Hz. 

This finding was corroborated by the results of the ABR investigation. 

The lowest hearing thresholds for D. labrax were obtained from frequencies of between 50 

Hz to 400 Hz, and the intensity of sound required to evoke the lowest threshold response 

was 134 dB (re I flPa) at 100Hz. The increase in the airborne sound intensity required to 

evoke responses from D. labrax, which are comparable in ll v values to those obtained from 

C. aura/us, can produce substantial stimulus artefacts. These potentially have an adverse 

effect on an ABR trace, and become more pronounced as intensity increases (Weber 1983). 

This phenomenon was not observed during this ABR investigation, even though the 

equipment and fish were not placed in a faraday cage during the audiological test. The 

results are comparable to the sound pressure audiogram produced for a generalis! fish by 

Casper et al. (2003), confirming that the ABR system developed here functions with 

precision outside of an electronically controlled environment. The next chapter tests the 

ABR system on two species of generalis! cartilaginous fish using submerged transducers, 

generating fields of sound pressure and particle motion in a variety of situations where 

external factors (e.g. radio interference) cannot be precisely regulated. 
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Chapter 5 

The hearing abilities of cartilaginous 

generalist fish 

5.1 Introduction 

In order to test the ABR methodology on cartilaginous fish, the Paddlefish (Polyodon 

spathu/a) and the Lake sturgeon (Acipenser fulvescens) from the subclass Chondrostei, in 

the order Acipenseriformes (sturgeons and paddlefishes) were selected. This choice was 

based on two rationales, the first being the direct application of an audiogram in the 

development of the non-physical barrier discussed in Chapter I; and the second, the 

paucity of data regarding hearing ability from any fish in this order. Concern regarding the 

spread of H. molitrix and A. nobilis through the Illinois River has prompted the 

development of an Acoustic Fish Deterrent (AFD) system. As discussed in Chapter 3, the 

application of this technology has resulted in a need to understand the auditory physiology 

of fish other than the target species, in order to minimise the effect of the AFD barrier on 

the ecology of indigenous fish populations. In this Chapter, both the structures involved in 

sound reception and the hearing abilities of the paddlefish (Po/yodon spathula) and the 

lake sturgeon (Acipenser fulvescens) from the subclass Chondrostei, in the order 

Acipenseriformes (sturgeons and paddlefishes) are studied, using a combination of 

morphological and physiological approaches. The equipment and methodology used to 

generate the ABR audiograms in this Chapter follows the protocols set out in Chapter 3, 

used for measuring the hearing abilities of the two Asian carp species. 

It is known that the directional responses of afferents in the fish ear are a function of the 

hair cell polarities and the orientation of the epithelium in space (Fay and Edds-Walton, 

1997; Edds-Walton and Fay, 2002; Lu and Popper, 200 I). In both P. spat hula and A. 

fulvescens, the hair cells are aligned in both the horizontal and vertical planes and provide 

evidence of directional hearing ability in these species. The detection and localisation of a 

sound source is of considerable biological importance to many fish species; the pallid 

69 



sturgeon (Scaphirhynchus a/bus) and shovelnose sturgeon (S. a/bus), are both known to 

produce a range of sounds during the breeding season (Johnston & Phillips, 2003). Sounds 

are often used by fish to assess the suitability of a potential mate or during territorial 

displays (Nordeide & Kjellsby, 1999), and during predator prey interactions (Myrberg, 

1981). 

Materials and Methods 

In order to concisely identifY the frequency and intensity of sounds audible to paddlefish, 

twelve specimens of P. spat hula, of mixed sex., and ranging in size from 160 mm (58 g) 

(measured from the tail fork to the anterior of the jaw) to 230 mm (163 g) were stimulated 

with sounds ranging in the frequency domain between 100 Hz to 1500 Hz. In addition, 

twelve mixed sex. specimens of lake sturgeon, ranging in size from 230 mm (61.8 g) (fork 

length) to 280 mm (95.4 g), were also stimulated in a similar manner. The procedure used 

to acquire the acoustically evoked potentials and inner ear samples was approved by the 

University of Illinois, United States 15.11.04 (protocol# 04271). The water temperature in 

both the holding tanks and test tank ranged between 18.2 and 18.6 • C over a 24 hour 

period, and when not under experimental protocols, the fish were provided with 16 hours 

oflight per day. 

5.2.1 Preparation of the saccule prior to SEM examination 

The preparation methodology employed in this study was based on techniques used by 

Plait ( 1977), and the fish dispatched using the conventional protocol set out by the 

University of Illinois. The cranium containing the inner ears from P. spathula and A. 

folvescens were trimmed to small blocks and immersed in chilled fixative (2.5% 

glutaraldehyde in 0.1 M cacodylate buffer with 3.5% sodium chloride), and delivered to 

the Plymouth EM unit within 72 hours post removal. The ears and surrounding tissue were 

subsequently immersed in a watch glass containing 30 % ethanol; then, working under a 

MEIJI binocular microscope, the end organs were dissected and the otoliths removed. The 

dissected capsules were dehydrated through a graded ethanol series ranging from 35% 

through 50%, 70% and 90% to absolute ethanol, prior to desiccation using the critical point 

drying method. Fully desiccated capsules were subsequently mounted on a specimen stub 

using a carbon tab, and coated with c. 8 nm of gold in an Emitech K 550 sputter coater 

(working at approximately 5 x. 10-6 Torr). The processed specimens were investigated and 

photographed using a JEOL JSM 5600 scanning electron microscope operated at 15 kv, 
70 



and a 15 mm working distance. The eucentric stage holding the specimen was aligned for 

' planar' image acquisition, and each sample was examined by adjusting the position of the 

stage in x and y coordinates only. All measurements were carried out on a PC using the 

analySIS® (Soft lmaging System GmbH) program. The distance between cel l bases of the 

closest neighbour was measured using arbitrary distance and the length of the ultrastructure 

was measured using polygon length, both measurements were recorded in micrometers. 

Statistical calculations were carried out using Statgraphics plus 5.1 professional edition 

program, and an analysis of variance (ANOVA) was also used to test for similarity in the 

distances between neighbouring hair cell bases from P. spat hula and A. fulvescens. 

5.2.2 ABR methodology 

The ABR measurements of hearing thresholds were made using a control and analysis 

program, which both generated the stimulus signals, and captures and analyses the 

response (refer to Chapter 3 for additional information). The stimulus used was a pulsed 4 

cycle tone burst, which was presented to the fish at a given frequency and intensity. ABR 

recordings require no invasive procedural work, as measurements are taken in the electro­

physiological far field using two cutaneous electrodes placed against the skin above the ear 

and medulla spanning the Vlll nerve; the application of this methodology results in 

significant stress reduction during the hearing assessment (Kenyon et al., I 998). The ABR 

trace is formed by averaging peak potentials arising from centres in the auditory pathways 

from the periphery of the VIII nerve to the midbrain (Corwin et al., 1982; Overbeck and 

Church, 1992). Attenuated waveforms are considered as being below the threshold of 

hearing when two overlaid recordings, made at the same frequency and intensity, do not 

present with similarities or are in opposition (e.g. Kenyon et al., 1998). 

The procedures used to acquire the acoustically evoked potentials were approved by the 

University of Illinois, United States 15. 11 .04, and a schematic of the equipment used to 

acquire the audiometric measurements is shown in Figure 5.1. 
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Figure 5.1. Schematic of the ABR setup and detail of the clamp used to hold the fish in 

position, and manipulate the electrodes during the audiological tests 

Small fish (below 230 mm) were first placed lengthwise and centrally on a 160 mm x 120 

mm rectangle of fine nylon netting, which was wrapped firmly around the body and tail, 

and the two sides of the net were held together using the clip. The clip was placed in a 

retort stand clamp fitted with ball joint electrode manipulator arms and the aerated water 

supply pipe (detailed in Figure 5.1). Large fish (above 250 mm) were placed in a clear 

rubber coated I mm gauge wire mesh cradle shown in Figure 5.2. A reservoir of 

oxygenated water was positioned I m above the experimental tank, and kept at a 

temperature of 18° C; water was gravity fed at an adjustable flow rate of between 5 

millilitres per second for the small fish, to 12 millilitres per second for the large, and 

directed toward the gills through a soft rubber mouth tube with a diameter of 6 mm. 
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Figure 5.2. The transducers, electrode holding and fish restraining device used during the 

audiological examination. The record electrode tip insulator is identified above the head of 

the fish 

The Evoked Potential (EP) was recorded using two cutaneous electrodes connected to the 

differential amplifier by I m lengths of screened coaxial cable with an external diameter of 

1.5 mm. The outer insulating layer of the coax was removed 15 mm from the end where 

the electrode tip was to be fixed, and the screening layer removed I 0 mm from the cable 

end. The inner insulating material was then trimmed by 2 mm, and the exposed inner wire 

(0.5 mm diameter) was tinned with silver solder and joined to a I 0 mm length of silver 

wire (0.25 mm diameter), tapered to a fine point. The assemblage was pushed through a 

100 mm glass pipette with an internal diameter of 4 mm, until 0.4 mm of the silver wire 

was exposed. The remaining space inside the pipette was filled with a clear epoxy resin, 

and then trimmed to expose 0.3 mm of silver tip through which the Auditory Evoked 

Potential (AEP) could be conducted. The impedance of the electrodes, both between the 

outer shielding and inner core, and the silver tip and differential amplifier, were tested 

using an M 205 precision digital multimeter. The impedance between the tip and pre­

amplifier was found to be 0.2 n for both electrodes, and an open circuit was recorded 

between the outer shielding and inner core. Using the anatomical information from A. 

fulvescens (Figure 5.3 b) as a guide, the record electrode was placed 6 mm anterior ofthe 

reference electrode which was positioned centrally above the medulla. The dermal 

elements of the skull are ossified in A. fulvescens, making electrophysiological recordings 
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difficult, as there was no fleshy skin on the head for the electrode to push against and 

create a good connection. This resulted in the 0.3 mm silver tip being almost entirely 

exposed to the ambient water, which can substantially attenuate the evoked potential. To 

resolve this issue, silicone tip insulators were used to create a seal around the electrode tip 

and fish, preventing the ambient water from contacting the electrodes. These adaptations 

can be clearly seen on the record electrode in Figure 5.2, which shows a specimen of A. 

fulvescens held in place during the audiological test. Stimulus sounds were presented to 

the fish using submerged transducers at sound pressures initially not exceeding 150 dB re I 

J..lPa. The evoked response was amplified and digitised to 12 bits resolution and recorded. 

This process was repeated 2000 times and the response averaged to remove electrical 

interference caused by neural activities other than audition and the myogenic noise 

generated by muscular activity. Each measurement was repeated twice; this aids in 

separating the evoked response, which is the same from trace to trace, from the myogenic 

noise, which varies in two successive measurements. After the averaging process, the 

evoked potential could be detected following the stimulus by a short latency period of 

approximately a millisecond. 

5.2.3 The sound field 

In this experiment, submerged projectors were used to generate the stimulus sounds; 

previous ABR type investigations have used a domestic hi-fi loudspeaker positioned above 

the experimental water tank to create the insonifying sound field (e.g. Kenyan et al., 1998; 

Yan, et al., 2000). The audiological assessment of P. spathula and A. folvescens involved 

two identical sound projectors, set up facing each other with the fish on the axis of 

symmetry between the two. Where the projectors are driven in phase, it is possible to 

create a region between them of high sound pressure, and low particle velocity, and when 

driven out of phase, the transducers create an area associated with high particle motion and 

minimal sound pressure. Previous studies of fish audiometry using the ABR technique 

have not separated sound pressure from particle motion, using submerged transducers to 

generate the sound field. 

The stimulus sound signal was generated by a laptop computer running the ABR software, 

and amplified using a Tandy 250 W power amplifier. The sound field in the experimental 

water tank was generated by means of two Fish Guidance Systems Ltd. Mk II 15-100 

Sound Projectors. These faced each other at a distance of200 mm, and the inner ear ofthe 

fish during measurements was arranged on the axis connecting the centres of the two 

projectors. The projectors were driven directly from the amplifier, and the stimulus tones 
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presented to the fish were calibrated using the insertion calibration technique. In this 

method, the intensity of the sound is recorded in the absence of the fish, with the 

hydrophone positioned where the inner ear of the fish would be. The measurements were 

made using a Bruel and Kjaer Type 8104 calibrated Hydrophone, and the signal ampl ified 

by a Bruel and Kjaer Type 2365 Charge Amplifier (see back of appendix 3 for 

certification). 

5.3 Results 

5.3.1 Gross anatomy 

Representative specimens of P. spathula and A. fulvescens were dissected to facilitate the 

correct positioning of the electrodes, and to facilitate removal of the inner ear from 

specimens selected for the SEM investigation. Figure 5.3 .a illustrates a dissected 

paddlefish and shows the internal organs and location ofthe brain and Figure 5.3.b shows 

the position of the cranial cavity and brain from the sturgeon. 

Swim bladder 
a. 

Figure 5.3.a. Dissected paddlefish showing the internal organs and location of the brain, 

revealing that P. spathula possesses a well developed swim bladder. 5.3.b. Dissected 

head of the sturgeon (A. fulvescens), showing the cranial cavity, brain and spinal cord (Bar 

= 20 mm) 
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Figure 5.4 illustrates the left ear and peripheral auditory nerves from P. spathula; the 

saccule (s) and Jagena (/) are situated in close proximity to one another, and the two 

otoliths that can be seen in the figure are similar in size. The peripheral nerves innervating 

the saccule and lagena (rs) share a pathway with the nerves from the posterior ampulla 

(pa) ; the peripheral nerve bundle projects forward, and connect with the utricular nerve and 

ramulus anterior ampulla (raa) to form the VIII octave) nerve. In both species, there is no 

internal division between the saccule and Jagena, thus the pars inferior consists of just one 

fluid filled pouch. 

Figure 5.4. The left ear and Ylll nerve from P. spathula; aa. anterior ampulla , pa. 

posterior ampulla, /. lagena, raa. ramus anterior ampulla, s. saccule, ss. sinus superior, u. 

utricle. The annotations D (dorsal) and A (anterior) show the orientation of the ear in the 

fish. Bar = 2 mm 

5.3.2 Electron microscopy 

Figure 5.5 a. shows the saccule and lagena from a 200 mm (90 g) P. spathu/a, and 5.5 b. 

from a 260 mm (90 g) A. fulvescens; Figure 5.5 c. shows the utricle from P. spathula and 

5.5 d. from A. fulvescens. The micrographs have been annotated to show the macula area 

(hatched lines), and the hair cell polarisations are indicated by white arrows. The area of 

the saccule and Jagena macula was both found to be 0.36 mm2 for P. spathula, and 0.44 

76 



mm2 and 0.42 mm2 respectively for A. fulvescens. The utricular macula had an area of 

0.63 mm2 in P. spathula, and 0.64 mnl for A.folvescens. 

Figure 5.5. Electron micrographs of the right inner ear end organs annotated with arrows 

to show hair cell polarisations across the sensory surface. a. the saccule and lagena from a 

200 mm (90 g) P. spathu/a, b. the saccule and lagena from a 260 mm (90 g) A. fulvescens, 

c. the utricle from P. spat hula, and d. from A. fulvescens 

The topographic data from the saccule shows that caudal hair cells are orientated on the 

dorsal and ventral axis, whereas the anterior hair cells are orientated on the anterior 

posterior axis with respect to the fish . As Figures 5.5.a and 5.5.b show, the four quadrant 

(standard) receptor configuration from both P. spathula and A. fulvescens is caused by a 

90° curve in the macula, rather than the hair cells changing polarity relative to the adjacent 
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perimeter, as would be expected in a number of generalist fish species. This feature is 

clearest in Figure 5.5.b, and shows that the hair cell polarisations from both P. spathula 

and A. fulvescens can sti ll be considered as being arranged in a standard configuration. 

Figure 5.6 shows electron micrographs of the three otoliths associated with the inner ear 

end organs of P. spathula. The saccular otolith (Figure 5.6.a) is known as the sagitta or 

arrowhead, the lagena otolith (Figure 5.6.b) is the asteriscus (star shaped), and the utricular 

otolith (Figure 5.6.c) is the lapillus (small rock). 

Figure 5.6. The three otoliths from the ear of P. spathula. a. The saccular otolith known 

as the sagitta or arrowhead, b. the lagena otolith or asteriscus (star shaped), and c. the 

utricular otolith or lapi llus (small rock). The arrows annotated D. (dorsal), A. (anterior), 

and L. (left) show the orientation of the otolith if it were in the fish 

Each of the micrographs in Figure 5.6 uses the same scale, showing that the three otoliths 

are similar in overall size, with the area of the sagitta recorded at 2.5 mm2
, the asteriscus at 

1.8 mm2 and the lapillus at 2 mm2
. High powered images of the hair cells from the 

saccule, lagena and utricle from P. spathula and A. fulvescens are presented in Figure 5.7, 

which show simi larities in ultrastructural features between both fish . 
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Figure 5.7. Saccular hair cells from a. P. spathula, and b. A.fulvescens. Lagena hair cells 

from c. P. spathula, and d. A. fulvescens. Utricular hair cells from e. P. spat hula, and f. A. 

fulvescens. 

The hair cells on the saccule from both species (Figures 5.7.a and b) have up to 40 

stereocilia partially surrounding a single kinocilium 3 ).lm in length, positioned close to the 

anterior of the cell. Each hair cell is buttressed by what appear to be support cells, which 

present with small centrally placed microvillus like structure, in evidence on both inferior 

maculae. The hair cells on the lagena (Figures 5.7.c and d) have long stereocilia {up to 6 

jlm in length), and partially surround a 9 jlm kinocilium. Both the longest and shortest hair 

cells were found proliferating on the utricular macula, which presents with kinocilium 

lengths of between 12 to 15 jlm around the perimeter, down to as short as 1.3 11m in the 

central (striola) region (Figures 5.7.e and f) . The number of hair cells proliferating on each 
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end organ was approximated from at least 12 observations taken from around the macula 

from a 200 mm P. spathula, and a 260 mm A. fulvescens. The numbers of hair cells on the 

saccular macula was approximately 4600 from P. spathula, and 6800 from A. fulvescens. 

In the order of 3600 hair cells were found on the lagena macula of P. spathula, and 5000 

on the lagena of A. fulvescens, and approximately 8000 hair cells were found on the 

utricular maculae from both species. 

5.3.3 Electrophysiology 

Figure 5.8 illustrates the auditory evoked potentials from P. spathula in response to tone 

bursts at frequencies of 100 Hz, 200 Hz, 250 Hz, 300 Hz and 500 Hz, in response to both 

sound pressure and particle motion. Higher frequencies were tested (up to 1500 Hz), but 

on close analysis of the resultant waveforms, no stimulus matching response could be 

distinguished, so they were rejected. Each of the waveform sets recorded from stepped 

amplitudes from a particular frequency have been overlaid, revealing a latency change in 

response to the attenuation in the intensity of the sound. Above threshold EP waveforms in 

both Figures are presented with a blue colour coding, whilst below threshold recordings are 

orange or red. At each frequency, the ABR waveforms evoked by the tone bursts typically 

consisted of a series of four to eight rapid negative peaks, followed by a slow positive 

deflection. The onset latency of the centre or largest sinusoid of the ABR response varied 

with frequency, ranging from 7.3 ms after stimulus onset at lOO Hz to 5 ms at 500Hz. As 

the sound pressure levels approached threshold, 2000 sweeps were required to distinguish 

ABRs from the background electronic noise. 

The left column in Figure 5.8 shows waveforms recorded from P. spathula in response to a 

4 cycle tone burst ranging in frequency from l 00 to 500 Hz, presented in a sound fie ld 

dominated by particle motion, whi lst the right column presents waveforms recorded in a 

sound field dominated by Sound Pressure. 
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Figure 5.8. Averaged waveforms evoked from P. spathula in response to four cycle tone 

bursts of I 00 Hz to 500 Hz, attenuated in 5 dB steps, with the sound fie lds dominated by 

either particle motion or sound pressure (y axis scale = microvolts * l 00, x axis scale = 

time (s)) 

As can be seen in Figure 5.8, the waveforms are similar at each frequency and presentation 

mode (sound pressure or particle motion), though there is a slight increase in the duration 

of the evoked potentials by I to 2 ms when stimulating in a sound field dominated by 

particle motion. Also, the particle motion waveforms above I 00 Hz are followed by 

smaller responses with similar characteristics, possibly the result of reflected sound waves. 

These responses to "echoes" are not present in the sound pressure results except at 500 Hz, 

which appears to evoke a very similar response from the two stimulus modes. Figure 5.9 

presents waveforms from A. fulvescens recorded under identical conditions to P. spathu/a, 

though as previously discussed, the heavily ossified cranium of A. fulvescens effectively 

reduced the contact area between the electrode and fish, resulting in a reduction in the EP 

quality. 
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Figure 5.9 Averaged waveforms evoked from A. fulvescens in response to tone bursts of 

I 00 Hz to 500 Hz, attenuated in 5 dB steps, with the sound fie lds dominated by either 

particle motion or sound pressure (y axis scale = microvolts * I 00, x axis scale = time (s)) 

In Figure 5.9, the evoked potentials from A. fulvescens are similar in overall shape to the 

waveforms recorded from P. spathula, presented in Figure 5.8; however, they are 

noticeably lower in amplitude. This is especially evident in the particle motion waveforms 

(left column in Figure 5.9), and is attributed to the reduced contact area between the 

electrode tip and cranium. Although present, the waveforms fo llowing the initial response 

(the "echoes") are also considerably lower in intensity than those recorded from P. 

spathu/a, and again reflect the difficulties encountered when recording AEPs from A. 

fulvescens. The Inter Peak Latency (IPL) observed clearly in the P. spathula waveforms 

are not so pronounced in A. fulvescens, though are clearest in the I 00 Hz sound pressure 

results; however, the absence of a sharp AEP peak has a considerable effect on the lucidity 

of the IPL at all frequencies tested. 

Figure 5.1 0 shows ABR waveforms evoked from a 300 Hz tone burst, presented initially at 

150 dB (re l JlPa), and attenuated in steps of between 8 to 4 dB ordinarily, then in 2 dB 
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steps as the hearing threshold was approached. When two replicates of waveforms showed 

opposite polarities, as seen in the traces for the results at 130 dB in Figure 5.1 0, the 

response was considered as being below threshold (cf. Kenyon et al., 1998). 

150 dB 

144 dB 

134 dB 

132dB 

131.5 dB T 

130 dB 

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 

Time (s) 

Figure 5.10. ABR waveforms from P. spathu/a in response to a 300 Hz tone burst 

attenuated in sequential steps. Averaged traces of two runs (2000 sweeps each), for each 

intensity are overlaid and arranged sequentially. Bar = 0.5 jlV 

All threshold responses were measured in this way, with each audiogram produced using 

the sequential ABR waveform data (e.g. Figures 5.8 and 5.9), acquired from frequencies of 

100 Hz to 500 Hz. The individual audiograms acquired from the populations of P. 

spathula and A. fulvescens were combined to create an average composite audiogram 

(Figure 5.11 ), using both the mean and standard deviation data generated by the statistical 

analysis software. 
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Figure 5.11 Audiograms for A. fulvescens (closed circles = maximum sound pressure; 

open circles = maximum particle motion), and for P. spathula (closed triangles = 

maximum sound pressure; open triangles = maximum particle motion). The audiograms 

were generated using the sequential ABR waveform data presented in Figures 2 and 3, 

acquired from frequencies between lOO Hz to 500 Hz (error bars show the standard 

deviation of the threshold responses and are separated by 5 to 20Hz for ease of viewing) 

The audiograms follow a Gaussian profile, determined by calculating the lowest intensity 

stimulus sounds (recorded underwater using the hydrophone located adjacent to the fish 

ear) that evoked a repeatable ABR response (e.g. 131.6 dB in Figure 5 .I 0). The lowest 

hearing thresholds with the sound field dominated by sound pressure (transducers driven in 

phase) was 130.5 dB (re I J.lPa) at 250Hz for P. spathula, and 133 dB (re 1 ~tPa) at 200 Hz 

for A. fulvescens. Lower thresholds were recorded when the sound field was dominated by 

particle motion (transducers driven out of phase), and the lowest response was 120.7 dB 

(re 1 11Pa) at 250 Hz for P. spathula, and 118.2 dB (re 1 J.lPa) at 200 Hz for A. fulvescens. 

The standard deviation for P. spathula show that the response from this fish varies by 

approximately 12.5 dB in the pressure dominated sound field , possibly due to the fish 

being insensitive to sound pressure. The differences in the intensity required to evoke 
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threshold responses from tone bursts presented in either sound pressure or particle motion 

dominated sound fields, are presented in Table 5.1 for P. spathula and Table 5.2 for A. 

fiilvescens. 

Table 5.1 Mean hearing thresholds from P. spathula, in units of dB (re. I J.!Pa) with the 

sound field dominated by sound pressure and particle motion 

Hz 

lOO 

200 

250 

300 

500 

Threshold 

dB/SP 

144.1 

133.5 

130.5 

131.6 

143.6 

Threshold 

dB/PM 

126.4 

124.5 

120.7 

122.3 

139.2 

Mean Dif Calc. t p 

dB (SP/PM) 

17.7 10.4 <0.001 

9.0 3.6 <0.009 

9.8 5.21 <0.001 

9.3 6.7 <0.001 

4.4 3.5 <0.005 

Table 5.2 Mean hearing thresholds from A. fulvescens, in units of dB (re I 

sound field dominated by sound pressure and particle motion 

Hz Threshold Threshold Mean Dif Calc. t p 

dB/SP dB/PM dB (SP/PM) 

lOO 138.4 125 .. 6 12.9 17.8 <0.001 

200 133.1 118.2 14.9 26. 1 <0.001 

250 133.8 120.7 13.1 11.0 <0.001 

300 136.1 124. 1 12.0 8.0 <0.001 

500 143.5 137.3 5.7 4.7 <0.001 

J.!Pa) with the 

As can be seen in the table, the disparity between the responses from P. spathula and A. 

fulvescens to sound pressure and particle motion generally decrease as the higher 

frequencies are approached. The results ofthe ABR examination using the two stimulation 

modes were compared statistically by a set of paired t-tests for each frequency. In tables 

5.1 and 5.2, the p-values associated with t are low (< 0.05), thus there is evidence of a 

difference in means across the paired observations of hearing ability from each species and 

stimulus mode. Additionally, the standard deviation values are smaller in each case for the 

particle motion condition, tending towards confirmation of the hypothesis that the particle 
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motion component of the sound field is more important to general ist fish than the sound 

pressure component. 

5.4 Chapter discussion and conclusions 

The fish inner ear is divided into two regions, the pars superior and the pars inferior 

(Retzius, 1881 ). The former responds primarily to movements of the body and postural 

changes, while the latter responds to both gravistatic and acoustic stimuli (Jenkins, 1981 ; 

Popper & Platt, 1993). The examination of the inner ears from A. fulvescens and P. 

spathula revealed similar inner ear morphology between these two fish, in both the size of 

the three otoliths and the pathway taken by the VIIl nerve. In bony fish, the pars inferior 

usually comprises two fluid filled pouches, the saccule and lagena, with each pouch 

containing a crystalline calcium carbonate otolith (Carlstrom, 1963). However, in P. 

spathula and A. fulvescens, there is no internal division between the saccule and lagena, 

thus, in these species, the pars inferior consists of just one fluid filled pouch. 

The saccule is considered to be the major auditory organ in most bony fish species and in 

sharks and rays (Corwin, 1983 ). Though fish from the order Acipenseriformes are 

principally cartilaginous, they evolved from fish that were originally bony (Nelson, 1984). 

The morphology of the inner ear supports this hypothesis, as both P. spathula and A. 

fulvescens have three otolithic organs and associated sensory epithelia comparable to that 

of many bony fish with genera list hearing abilities. For fish to locate the source of a sound 

in both the horizontal and vertical planes, they rely on the stimulation of ciliary bundles 

oriented specifically along the sound propagation axis (Lu & Popper, 1998). In P. 

spathula and A. fulvescens the saccule bears hair cells orientated in two opposing 

quadrants, rather than the usual four quadrant (standard) arrangement found in most 

generalist fish species (Popper & Fay 1993). However, the topographic data from the 

saccule shows that caudal hair cells are orientated on the dorsal and ventral axis, whereas 

the anterior hair cells are orientated on the anterior posterior axis with respect to the fish . 

The four quadrant configuration is common to a number of generalist fish (Popper & Fay, 
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1993); but in the case of P. spathula and A. fu/vescens, it is caused by a 90° curve in the 

macula, rather than the hair cells changing polarity relative to the adjacent perimeter. The 

shape and polarisation of the hair cells of the lagena macula in P. spathu/a is similar to the 

arrangement found in other teleost fish (see Lovell et al., 2005 b; Popper & Fay, 1993), 

though in A. fu/vescens the macula was longer and more narrow, with fewer dorsally 

orientated hair cells restricted to a narrow band running along the upper anterior margin. 

This is the first time that fish from the order Acipenseriformes have been assessed in an 

ABR audiological examination, so by testing both P. spathula, and A. fulvescens , it allows 

for a comparative analysis of the results between both species. The twelve specimens of A. 

fulvescens and twelve specimens of P. spathula were stimulated with sound ranging in the 

frequency domain between I 00 Hz to 1500 Hz (only up to 500 Hz has been included on 

the audiogram), presented in a sound field dominated by either sound pressure or particle 

motion, at levels of between 156 dB to below 120 dB (re I ~Pa). Statistical analysis of 

each frequency tested was also performed using a t-test, and compared the means of 

threshold responses from P. spathula and A. fulvescens. The results presented in tables 5.1 

and 5.2 show a statistical similarity at all frequencies from 250 Hz and upwards (in the 

pressure dominated sound field), giving a p value greater than 0.05, whilst l 00 Hz and 200 

Hz were found to have p values less than 0.05, and are therefore not statistically similar 

between these two fish; A. fulvescens hears slightly better at low frequencies than P. 

spat hula. The statistical analysis of the thresholds of hearing in a sound field dominated 

by particle motion was found to be statistically similar between both species, at all 

frequencies tested (in some cases, e.g. 250 Hz and 500 Hz, there was very little to 

distinguish between individuals). 

Overall, the audiograms for P. spathula and A. fulvescens (presented in Figure 5. 11 ), show 

similar sensitivity to frequency and general hearing abilities between Acipenseriform fish, 

with the lowest hearing thresholds acquired from frequencies in a bandwidth of between 

200 Hz to 300 Hz, and higher thresholds at I 00 Hz and 500 Hz. This is in contrast with the 

usual generalist audiograms, many of which show that the lowest thresholds are obtained 

from frequencies at or below I 00 Hz, such as the results of the ABR audiogram for the 

Italian freshwater gobies Padogobius martensii and Gobius nigricans by Lugilli et al. 

(2003), or the behavioural audiogram for the cod (Gadus mm·hua) by Chapman and 

Hawkins (1973). The lowest hearing thresholds with the sound field dominated by sound 

pressure (transducers driven in phase) was 131 dB (re l 11Pa) at 250 Hz for P. spathula, 

and 133 dB (re I 11Pa) at 200 Hz for A. fulvescens; whilst the lowest hearing thresholds 
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with the sound field dominated by particle motion (transducers driven out of phase) was 

200 Hz, 119 dB (re 1 J!Pa) for P. spa/hula, and 120 dB (re 1 J!Pa) at 250 Hz for A. 

fulvescens. Worthy of note here, is the simi larity of the sound pressure audiograms from 

both P. spathula and A. fulvescens to an ABR generated audiogram for the little skate 

Leucoraja erinacea by Brandon et al., (2003). The pallid sturgeon (Scaphirhynchus a/bus) 

and shovelnose sturgeon (S. a/bus) are known to produce a wide variety of sounds ranging 

from squeaks and chirps of around 1000 Hz to 2000 Hz, to low frequency knocks and 

moans ranging in frequency between 90 Hz to 400 Hz (Johnston & Phillips, 2003). 

Comparisons of the sounds produced by these fish with the audiogram for A. fulvescens, 

reveals that the knocks and moans produced during the breeding season appear to fall well 

within the optimum range of audible frequencies, whilst the squeaks and chirps may fall 

outside of this range. 

It is known that the frequency and intensity of a tone burst effects the latency of the evoked 

response (Corwin et al., 1982; Kenyan et al., 1998), as does the metabolic state of the 

organism (Corwin et al., 1982). The latency of the evoked potentials from P. spat hula can 

be observed in Figure 5 .12, and are in response to the second sinusoid of the 300 Hz tone 

burst presented in Figure 5.8. The sound was presented initially at 156 dB (re 1 J!Pa), and 

attenuated in 5 dB steps, and the arrows positioned at 0.3 ms intervals represents the 

response issuing from the auditory pathway to the midbrain. The increase in the latency of 

the evoked potential in response to decreasing stimulus intensity is often used to verify that 

the averaged waveform is a product of auditory stimulation rather than a transient 

generated at the electrode tip (Kenyan et al., 1998). Thus, the Inter-Peak Latency (IPL) 

cannot be accounted for acoustically, as transients and other artefacts directly associated 

with the stimulus sound would occur at the same time regardless of sound amplitude. 
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Figure 5.12. Auditory Evoked Potentials (AEPs) from P. spathula in response to the 

second sinusoid of a 300 Hz 4 cycle tone burst presented initial ly at 150 dB (re I ~-tPa), and 

attenuated in accordance with Figure 5.1 0. The arrows show the peak of the AEP, which 

occurs with an Inter-Peak Latency (IPL) of approximately 0.3 ms for each of the 

amplitudes tested (averaged over 2000 iterations per waveform set) 

It may be concluded from the evidence presented both from this Chapter, and Chapters 3 

and 4, that the system and protocols described here can be used with relative ease and 

minimal discomfort to the subject, to generate reliable and accurate audiological 

information from both generalist and specialist fish. As discussed, the shape and 

amplitude of the recorded waveforms presented in this study compare well with published 

ABR type investigations, and confirms the suitability of the system for the specific 

objective of measuring hearing ability. It now remains to build on current understanding 

of hearing in marine animals, and provide useful information on the hearing ability of the 

crustaceans, a sub-phylum of animals that are considered to be deaf and only capable of 

feeling strong vibrations transmitted directly through a solid (see Cohen and Dijkgraaf, 

1961 ). Many invertebrate animals posses balance organs that function similarly to the 

vertebrate ear, and in the next Chapter, it is hypothesised that this organ should also 

provide the crustacean central nervous system with auditory data, contrary to the current 

literature. 
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Chapter 6 

The hearing abilities of crustaceans 

6.1 Introduction 

The previous three Chapters have investigated hearing in both specialist and generalist 

bony fish, and in two species of carti lagionous fish, demonstrating the flexibility of the 

system when testing a diverse range of species. In this chapter, the mechanism of sound 

reception and the hearing abilities of the prawn (Pa/aemon serratus), are studied using a 

combination of anatomical, electron microscopic and electrophysiological approaches, and 

reveal that P. serratus is responsive to sounds ranging in frequency from 100 Hz to 3000 

Hz. It is the first time that the Auditory Brainstem Response (ABR) recording technique 

has been used on marine invertebrates, and the acquisition of hearing ability data from the 

present study adds valuable information to the inclusion of an enti re sub-phylum of 

animals when assessing the potential impact of anthropogenic underwater sounds on 

marine organisms. Work was pursued to acquire auditory evoked potentials from P. 

serratus, using two subcutaneous electrodes positioned in the carapace close to the 

supraesophageal ganglion and the statocyst (a small gravistatic organ located below the 

eyestalk on the peduncle of the bilateral antennules). The morphology of the statocyst 

receptors, and the statocyst nerve pathways to the brain have also been studied, revealing 

that P. serratus possesses an array of sensory hairs projecting from the floor of the 

statocyst into a mass of sand granules embedded in a gelatinous substance. 

The fundamental measure of the hearing ability of any organism possessing the appropriate 

receptor mechanism is its audiogram, which presents the lowest level of sound that the 

species can hear as a function of frequency. The statocyst of P. serratus is shown here to 

be sensitive to the motion of water particles displaced by low frequency sounds ranging 

from l 00 Hz up to 3000Hz, with a hearing acuity similar to that of a generalist fish. Also, 

recorded neural waveforms were found to be similar in both amplitude and shape to those 

acquired from fish and higher vertebrates, when stimulated with low frequency sound, and 

complete ablation of the electrophysiological response was achieved by removal of the 

statocyst. 
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It is known that several crustacean species produce sound; for example, the pistol shrimp 

(Aipheus spp) produces a loud click by rapid closure of a specially adapted claw (Schmitz 

and Herberholz 1998). The spiny lobster (Palinurus vulgaris) and the rock lobster (P. 

longipes) make alarm sounds by drawing the base of the antenna across scale like ridges 

below the eyestalks; Patek, 200 I; Meyer-Rochow et al., 1982). Additionally, P. longipes 

has been shown to take longer emerging from a hide, when feeding was preceded by a 

white noise (Meyer-Rochow et al., 1982). The female cricket (Gryllus bimaculatus) has 

the ability to localise and respond to male chirp sounds (Hedwig & Poulet, 2004; 

Schildberger & Homer, 1988), using specially adapted acoustic receptors (tympanum), 

located in the forelegs below the knee (Huber & Thorson, 1985). On hearing the chirp, a 

receptive female will orientate itself toward the sound using a behavioural response known 

as phonotaxis (Schildberger & Homer, 1988). 

The ability of an organism to orientate itself in the 3-D marine environment requires the 

presence of a suitable gravity receptor. These receptors occur in many diverse organisms 

throughout the marine environment, and include cephalopod (Dilly et. al. , 1975; 

Bettencourt & Guerra, 2000), crustaceans (Prentiss, 190 I; Schone, 1971 ; Rose & Stokes, 

1981; Patton & Grove, 1992), and fish (Popper & Platt, 1983; Bretschneider et al., 2001 ). 

In crustaceans the statocyst is located either at the anterior end of the animal in the basal 

segment of each antennule, or posteriorly within the uropods, abdomen or telson, (Farre, 

1843; Cohen and Dijkgraaf, 1961 ; Finley and Macmillan, 2000). It has been well 

established that the crustacean statocyst functions as an equilibrium organ by initiating 

corrective movements to maintain the animal ' s position in the water column, (Cohen and 

Dijkgraaf, 1961; Sekiguchi and Terazawa, 1997; Finley and Macmillan, 2000; Fraser, 

2001 ), thus swimming activity is highly dependent on statocyst input (Fraser et al., 1987). 

In this work, the electrophysiological response of the statocyst in an underwater sound 

field is studied, using the Auditory Brainstem Response (ABR) recording technique 

originally developed for use in clinical neurophysiology. Until now, this method of 

acquiring hearing ability has been applied only in auditory assessments of vertebrates 

(Corwin et al., 1982), though the presence of afferents in the statocyst, and existence of a 

neural pathway terminating in the supraesophageal ganglion, indicates that the physiology 

of P. serratus may be suitable for an ABR type investigation. An ABR waveform is 

acquired by averaging conglomerate responses of peak potentials, arising from nuclei in 

the auditory pathway during acoustic stimulation (Corwin et al., 1982; Overbeck & 

Church, 1992; Lovell et al., 2005 A). The sweep records the generation of neural 
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wavefonns over a user-defined time span tenned the sweep velocity, and measures activity 

prior to, during and after stimulation of the receptor organ. Additional waveform 

generation by neural activities other than those associated with hearing, combined with 

muscular movements, ensure that recordings have to be repeated over 1000 to 2000 

presentations before clear results can be obtained (Kenyon et al., 1998; Van et al., 2000). 

The recorded wavefonns resulting from each sweep are averaged together and produce a 

recognisable ABR wavefonn, which is then overlaid on the first run, to show that the 

evoked potentials are repeatable. 

The nerves associated with the statocyst and the pathways taken to the neuropil of the 

antennule in the supraesophageal ganglion were examined to provide a detailed description 

of how acoustic signals are perceived and transmitted by the neuronal pathways. The aim 

of the present study, therefore, is to examine the morphology of the statocyst receptor array 

of the prawn (Palaemon serratus) using both scanning and transmission electron 

microscopy (SEM & TEM). Measurements of the electrophysiological response of the 

statocyst and Central Nervous System (CNS) to acoustic stimuli were also made, and by 

ablation, it was demonstrated that the evoked response was generated in the statocyst 

organ. 

6.2 Materials and Methods 

One hundred specimens of the prawn (Palaemon serratus) Phylum Crustacea and Class 

Eumalacostraca of mixed sex, and ranging in length from 27 mm (0.1 g) to 71 mm ( 1.9 g) 

were obtained from wild stock in the South West of England using a dip net. Once 

captured, the prawns were transferred to a marine tank divided by a fine mesh screen into 

four equal sized compartments of 50 litres each. An Eheim type 2013 biological filter with 

a flow rate of 390 litres per hour maintained water quality and provided aeration by 

spraying filtered seawater back into the tank via the filter outlet pipe located 60 mm above 

the water surface. The ambient noise within the holding tank was measured using a 

hydrophone, and the sound pressure level was calculated to be 102 dB (re 1 11Pa), with the 

Eheim pump active. In all of the experiments, and in the holding tank, the ambient water 

was kept at a temperature of 18° C and a salinity of 34 psu. When not under experimental 

protocols, the prawns were provided with 14 hours of light per day from a fluorescent tube 

controlled by a mains timer switch. Prior to any experimentation the prawns were divided 

by size into three populations, and fed on a granulated feed at a daily rate of 6 g for the 

large prawns, 4 g for the medium and 2.5 g for the small. 
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6.2.1 Preparation methodology for dissection and electron microscopy 

The pathway taken by the innervating nerves of the statocyst to the supraesophageal 

ganglion or brain was revealed by the anatomical investigation of a 54 mm P. serratus. 

The prawn was first immersed in 70% ethanol for 18 hours, to "fix" the specimen prior to 

the investigation. Exposure of the brain and statocyst was achieved by the dissection and 

removal of the dorsal-rostra! section of carapace, the dorsal cuticle layer of the peduncle, 

the left eye, and the stomach. 

Specimens of P. serratus selected for EM examination were denied access to materials 

that could be used as otoliths, primarily by having no substrate present in the tank. 

Additionally, uneaten feed and other waste products were removed by ensuring that the 

return flow of water to the fi ltration system was strongest at the base of the tank. 

Particulate matter was drawn by the flow of water through a 5 mm gap under each of the 

tank divisions, through which the prawns could not pass. The denial treatment was applied 

to all 100 of the prawns, with the exception of Figure 6.4 which was prepared for EM 

examination within 48 hours of capture. Moulting was induced in the remaining 

specimens over a 24 hour period using a method that involved not changing the ambient 

tank water for 7 days, followed by a sudden change of all the water. 

The statocyst capsules were removed by diss~ction from 12 of the specimens, and placed 

in a conical dish containing 2.5 ml of 0.9 % sodium chloride. The capsules were opened 

by making a lateral incision around the statocyst chamber using a fine scalpel. 

Needlepoint tweezers were used to lift the upper section of the capsule, thus exposing the 

sand granules and ultrastructure. The sodium chloride solution was removed using a 

pipette and replaced with a solution of 2.5 % S-Carboxymethyi-L-Cysteine in sodium 

chloride, which was used to hydrolyse the mucus surrounding the statocyst receptors. The 

contents of the dish were gently agitated for two minutes, after which the solution was 

removed and replaced with chilled fixative (2.5% glutaraldehyde in 0.1 M cacodylate 

buffer with 3.5% sodium chloride). The statocyst capsules were then dehydrated through a 

graded ethanol series ranging from 35% through 50%, 70% and 90% to absolute ethanol, 

prior to desiccation using the critical point drying method described by Platt (1977). Fully 

desiccated statocyst capsules were subsequently mounted on a specimen stub using a 

carbon tab, and coated with c. 8 nm of gold in an Emitech K 550 sputter coater (working at 

approximately 5 x 1 o-6 Torr). Finally, the processed specimens were investigated and 
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photographed using a JEOL JSM 5600 scanning electron microscope operated at 15 kv, 

and a 15 mm working distance. Images of the ultrastructure were captured using the JEOL 

software, which saved the micrographs in a bitmap format. All measurements were carried 

out on a PC using the analySIS® (Soft lmaging System Gmbl-I) program. The setae 

dimensions were measured using polygon length, and measurements were recorded in 

micrometers (Jlm). Measurements of setae dimensions (height, width etc) are averages 

taken from at least 12 observations of a feature within a similarly orientated cluster of 

cells, with the exception of those in Figure 4 which were taken from 5 observations. 

6.2.2 ABR methodology 

In order to concisely answer the question of hearing by crustaceans, twelve prawns were 

stimulated with sound ranging in the frequency domain between 100 Hz to 3000 Hz, 

presented at sound pressure levels of between 132 dB (re l flPa at l m) to below 90 dB (re 

I f.!Pa at l m). The response of the prawn to acoustic stimulation was measured using a 

well established audiometry technique, with the results expressed as an audiogram or limen 

of sound spectral sensitivity. The ABR measurements of hearing threshold were made 

using a proprietary control and analysis programme, written in a LabView 7 environment. 

This programme both generated the stimulus signals and captured and analysed the 

response, and was installed onto the PC shown in Figure 6.1.a. The stimulus used was a 

sine train (sine wave pulse) which was presented to P. serratus at a given frequency and 

sound pressure level, not exceeding 130 dB (re 1 flPa at I m) for each of the frequencies 

tested. For ABR recordings to be clear, it requires that short duration tone bursts are used, 

especially for the low frequencies. Kenyon et al. ( 1998) used a two cycle burst for 

frequencies between 100 and 300 Hz, a five cycle burst with a 2 cycle attack decay for 

frequencies between 400 and 3000 Hz. Amplification of the sound was achieved using a 

Pioneer type SA-420 amplifier and a 200 mm Eagle L032 loudspeaker with a frequency 

response range of 40 Hz to 18000 Hz. Additionally, the loudspeaker was placed inside a 

Faraday cage and connected to a centralised earth point located in an adjacent room where 

the PC, amplificat ion, and analysis equipment was set up. Connecting wires were fed 

through a 100 mm port in the partitioning wall. 

The test subjects were placed in a flexible cradle formed from a soft nylon mesh rectangle 

saturated with seawater. Oxygenated water kept at a temperature of 18° C was gravity fed 

at an adjustable flow rate of 3 millilitres per second and directed toward the gills. The 
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water was held in an aerated reservoir positioned in an adjacent room, and fed to the prawn 

through a 4 mm diameter plastic tube. The prawn was first placed lengthwise and centrally 

on an 80 mm x 60 mm rectangle of fine nylon netting, which was wrapped firmly around 

the cephalothorax and pleon, and the two sides of the net were held together using the clip 

shown in Figure 6.l.b. 

a. 
Medelec MS 6 PC monitor and 

Biological amplifier Analysis stimulus amplifier 
PC 

Pre-amplifier 
type PA467 

b. 
Braided 

Centre of gravity 
adjustment holes 

Oxygenated 
water feed 

pipe 6 mm 0 

Figure 6.1.a. Schematic of the ABR audiometry system, and 6.l.b. the clamp used to hold 

the prawn in position, and manipulate the electrodes during the audiological tests 

The clip was placed in a retort stand clamp fitted with ball joint electrode manipulator 

arms, and the aerated water pipe (detailed in Figure 6.l.b ). During the procedure to 

position the electrodes detailed in Figure 6.2, the specimen and clamp were suspended over 

a plastic tray, and aerated water was supplied to the prawn. A retort stand and the 

experimental tank (L. 450 mm x W. 300 mm x D. 200 mm) were placed on a table with 

vibration inhibiting properties, located in an underground anechoic chamber L. 3 m x W. 2 

m x H. 2m. Working under a MEIJI binocular microscope, two small holes were made in 

the cuticle layer using a lancet, penetrating the carapace to a maximum depth of 0.3 mm. 

The reference electrode was located behind the supra-orbital spine, close to the neuropil of 

the antennule, and the record electrode was located in the peduncle close to the statocyst, at 

the junction between the lateral antennular and statocyst ganglia. The clamp assembly 

with the specimen and sited electrodes were then suspended from the retort stand 

positioned over the experimental tank, and the prawn stationed 5 mm below the surface of 
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the water. After the hearing assessment, the prawns were relocated to a holding tank for 

observation, prior to being returned to the divided aquarium. 

The electrophysiological response ofthe prawn to acoustic stimulation was recorded using 

the two sub-cutaneous electrodes (see Figure 3.3 for schematic), which were connected to 

the MS6 preamplifier by I m lengths of screened coaxial cable with an external diameter 

of 1.5 mm. The outer insulating layer of the coax was removed 15 mm from the end where 

the electrode tip was to be fixed, and the screening layer removed l 0 mm from the cable 

end. The inner insulating material was then trimmed by 2 mm, and the exposed inner wire 

(0.5 mm diameter) was tinned with silver solder and joined to a I 0 mm length of silver 

wire (0.25 mm diameter), tapered to a fine point. 

The assemblage was pushed through a 100 mm glass pipette with an internal diameter of 4 

mm, until 0.4 mm of the gold wire was exposed. The remaining space inside the pipette 

was filled with a clear epoxy resin, and then trimmed to expose 0.3 mm of si lver tip 

through which the AEP could be conducted. The impedance of the electrodes, both 

between the outer shielding and inner core, and the si lver tip and MS 6, were tested using 

an M 205 precision digital multimeter. The impedance between the tip and pre-amplifier 

was found to be 0.2 Q for both electrodes, and an open circuit was recorded between the 

outer shielding and inner core. The evoked response was amplified and digitised to 12 bits 

resolution and recorded. This process was repeated 2000 times and the response averaged 

to remove electrical interference caused by neural activities other than audition, and the 

myogenic noise generated by muscular activity. 

Each measurement was repeated twice; this aids in separating the evoked response, which 

is the same from trace to trace, from the myogenic noise, which varies in two successive 

measurements. After the averaging process, the evoked potential could be detected, 

following the stimulus by a short latency period of 5 milliseconds or so. The latency is 

accounted for by the time it takes the sound in air to travel the l m to the prawn, plus I to 2 

milliseconds response latency. 

6.2.3 The sound field 

The properties of the sound field are especially relevant when companng the audio 

capabilities of both pressure sensitive and motion sensitive aquatic animals in the near 

fie ld. In a small laboratory set-up, the complexities associated with independently 
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measuring sound pressure and particle motion are compounded by the reflectivity of the 

tank sides and base. For this reason, a number of experiments have used used air-mounted 

transducers to successfully generate sounds underwater (e.g. Fay and Popper, 1975; Yan et 

al., 2000; Akamatsu et al., 2002). The principal advantage of such a system is that as the 

sound source is located at a distance of l m from the air/water interface, the moving part of 

the transducer does not contact the water and generate near-field displacements. In this 

situation the pressure and motion of the water adjacent to the fish ear can be considered as 

being equal (Hawk ins 1981 ). The stimulus tones presented from the loudspeaker to the 

prawn were calibrated using an insertion calibration. A calibrated Bruel and Kjaer Type 

8106 Hydrophone (Serial Number 2256725) was placed in the tank and positioned adjacent 

to the shrimp cephalothorax region (See Figure 3.4 for calibration markers). The signal 

from the hydrophone was amplified using a PE6 preamplifier and digitised using a 

National Instruments DAQ-6062e interface card at a sample rate of 300 kS/s. Figure 6.3 

shows the power spectra of the 500Hz and 1000Hz stimulus sounds, which were recorded 

using the hydrophone and analysis software from Figure 6.la. The onset/decay of 2 cycles 

was used to reduce spectral side lobes and speaker transients which can be generated by 

sudden high power transmissions. 
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Figure 6.2. Power spectra of the 500 Hz and 1000 Hz tone bursts, recorded underwater 

using the hydrophone and analysis PC shown in Figure 6.1. The arrows P 1. and P2. show 

the peak sound pressures, and the bars fl and j2 indicate the overall bandwidth of 

frequencies generated during the transmission of the two bursts 
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Ln case of non-proportionality of the response of the loudspeaker, measurements of the 

sound pressure were taken for each amplitude and frequency setting used . Consequently, a 

total of 110 individual calibration measurements were taken in the calibration process. 

6.2.4 Ablation 

Specimens of P. serratus selected for the ablation procedure were first tested for an 

electrophysiological response to a 500 Hz sound presented at 110 dB (re 1 ~a at 1 m). 

Removal of the statocyst was achieved by making a circular cut in the cuticle layer above 

the chamber, and withdrawing the capsule using needle point tweezers (a procedure that 

took a few seconds). A sham operation (the cuticle layer cut, but the statocyst left in place) 

was also performed, and the prawns were re-tested 1 hour after cutting around the 

chamber, prior to removal of the statocyst. The prawns were then placed into an empty 

compartment of the holding tank and allowed to recover for 24 hours, prior to being 

retested on the electrophysiology apparatus. The post ablation recovery period was 

included to give the prawns time to settle after the procedure, as the metabolic state of the 

organism can have a detrimental affect on the evoked potential (Corwin et al., 1982). 

6.3 Results 

6.3.1 Innervation of the statocyst 

Ln decapod crusteacea, the lateral antenular and statocyst nerves extend with bi-lateral 

symmetry from the neuropil of the antennule; a region located centrally in the brain 

(Prentis, 1901), to the statocyst and tactile bristles of the antennules. The brain of P. 

serratus lies close to the rostra! extremities of the carapace, ventral to the eyestalks and 

posterior to the antennules. On leaving the anterior region of the brain (detailed in Figures 

6.3.a and 6.3.b), the lateral antennular ganglion (gla.) projects forward and enters the 

antennule close to the inside edge of the peduncle. From there, the statocyst ganglia 

branches outward from the main antennular nerve which projects forward to the tactile 

receptors. 
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Figure 6.3.a. Dorsal view of the supraesophageal ganglion and lateral antennular and 

statocyst ganglia from P. serratus (with the statocyst capsules and optic neuropil removed). 

fbr.o. peripheral statocyst nerve fibres, gc. commissural ganglion, ga. antennular ganglion, 

na. neuropil of the antennule, gs. supraesophageal ganglion, stg. statocyst ganglion, lu. 

lumen of the statocyst, pa.r,/. peduncle of the right and left antennule. Figure 6.3.b. 

Dorsal view of the brain and major nerve ganglia dissected from P. serratus. gs. 

supraesophageal ganglion, gla. lateral antennular ganglion, stg. statocyst ganglion, on. 

optic nerve, gc. commissural ganglion. Ro. Rostra! direction. 

6.3.2 Scanning electron microscopy 

The examination of the complete statocyst (prior to removal of the sand granules) revealed 

ultrastructural cell projections extending into the mass of sand granules shown in Figure 

4.a. The cells project from small apertures in the statocyst floor about 7 ~m in diameter; 

through which the receptor connects to the peripheral fibres of the statocyst ganglion. At a 

distance of 2 ~m from the base, the cell widens and forms a bulb (rb. in Figure 6.4.a) 

which has a diameter of 9 ~m at its widest point, and displays a series of longitudinal 

ridges that run around the bulbous structure. The uppermost portion of the cell base 

narrows to 0.8 ~m, forming a fulcrum point from where a 3.5 ~m diameter hair shaft 

extends 40 ~m into the lumen ofthe statocyst, and contacts with the sand granules (sg.). 

The overall view ofthe receptor array and the tips of the cells are precluded from view by 

the sand and a fine structure, consisting mostly of residuals left by the desiccation process 

of a gelatinous mucus (mu.) that in life surrounds the sand and cell tip. The view of the 
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statocyst ultrastructure (without sand granules attached) in Figure 6.4.b. (taken 

perpendicular to the horizontal plane) shows the setae array from a specimen of P. serratus 

denied sand for 7 days post moulting. 

Figure 6.4.a. Receptor cell projections contacting sand granules in the statocyst of P. 

serratus. mu. mucus, rb. receptor base, sjl. statocyst floor, sg. sand granule, sh. setae shaft, 

and Figure 6.4.b. shows the 40 J.lm lower setae body (sb.), the lOO J.lm upper tapering 

sections (us.) and thread like strands (ts .) found enmeshed with the sand granules, 

orientated toward a central point. sb. cell setae body 

The absence of sand granules reveals more than 70 vertical cell projections arranged in a 

row shaped like a crescent, covering 0.073 mm2 of statocyst (Figure 6.5.b). Each setae is 

orientated toward a common central region (er), and the shortest hairs (< 120 J.lm) were 

found proliferating in a band running down the left side of the array, whilst the longest 

hairs (> 170 J.lm) were found in the right caudal quadrant. The statocyst capsule is 

elliptical in shape, and the walls (Figure 6.5.b) symmetrically curve inward toward the 

base, where the receptor cells are located on a mound rising 40 J.lm from the floor of the 

capsule. From the crest of the mound, the receptor hairs project upward into the lumen of 

the statocyst at angles of between 27° and 74° from the horizontal plane. Behind the 

setaes, in the space between opposing receptors, the mound flattens and forms a plateau 

(pl), which is devoid of any ultrastructure. 
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Figure 6.5.a. Dorsal view of the statocyst from a 55 mm prawn denied sand for 7 days 

post moulting. cr. central region, and Figure 6.5.b. Lateral view of the statocyst. cr. 

central region, s. setae, m. mound, sw. statocyst wall, us. upper tapering section of setae 

6.3.3 Transmission electron microscopy (TEM) 

The TEM section m Figure 6.6.a shows a cross section through the setae base and 

structures present in the peripheral nerve bed, from the statocyst of P. serratus. Figure 

6.6.b shows a cross section through a hair cell from the saccule of the European sea bass 

(Dicentrarchus /abrax), which has been included in this section along with the SEM of the 

setae (Figure 6.6.d) for comparative purposes. The two hatched lines drawn on the prawn 

setae SEM micrograph presented in Figure 6.6.c shows the locations from where the 

statocyst TEM sections in 6.6.a. was taken. 
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Figure 6.6.a. TEM micrograph of the setae base from the statocyst of P. serratus, fs. 

fibrous strands, cl. cuticle layer, cno. cuticular notch, n. neuclei, pnf peripheral nerve 

fibre, sv. synaptic vesicles. 6.6.b. saccular hair cell and innervating nerve fibres from the 

ear of Dicentrarchus labrax (From Lovell et al., 2005 C), cb. cell body, cp. cuticular plate, 

k. kinocilia, n. nucleus, pnf peripheral nerve fibres, s. stereocilia. 6.6.c. SEM micrograph 

of the statocyst setae from P. serratus, cb. cell base ts. tapering section, 6.6.d. SEM 

micrograph of the ciliary bundles projecting from the epithelial surface of D. labrax, k. 

kinocilia, s. stereocilia. Bars = 5 ~m 

The "root" ofthe statocyst setae is buttressed by supporting cells with large nuclei (n.), and 

fibrous strands ifs.) resembling actin filaments, which can be seen extending into the 

peripheral nerve bed through the cuticular plate. The filaments may help anchor the setae 

into position, and work in conjunction with a small notch in the cuticle layer (cno.) 

containing part of the lower cell body. The filament strands terminate 15 ~m below the 

cuticle layer, in a region containing rounded structures less than 0.75 ~m in diameter, 

which are thought to be the synaptic vesicles between the setae and the peripheral statocyst 

nerve fibres (pnf.). Close examination of the TEM section through the statocyst setae body 
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(Figure 6. 7 .a) reveals that it contains a single nucleus (n.) positioned at the top of the cell. 

The hatched line in the basal region of the cell marks the perimeter of two vesicles, which 

appear to be associated with the fibres in the cell root. Figure 6.7.b shows the fibrou s 

strands as they terminate in the synaptic vesicles (sv.) located 15 f..lm below the cell base. 

Figure 6.7.a. TEM section through the cell base from P. serratus, showing the cell 

nucleus (n.), and the beginning of the angled cell tip (et.), and vesicles (v.) which appear to 

be associated with the fibrous strands (hatched area). Figure 6.7.b. shows the fibrous 

strands ifs.) of the cell root, and the synaptic vesicles (sv.) located in the peripheral nerve 

bed. 

6.3.4 Electrophysiological response to auditory stimuli 

In order to more concisely answer the question of hearing by crustaceans, twelve prawns of 

mixed sex were stimulated with sound ranging in the frequency domain between l 00 Hz to 

3000 Hz, presented at sound pressure levels of between 130 dB (re 1 f.!Pa at 1 m) to below 

90 dB (re I f..lPa at 1 m). The Auditory Brainstem Response (ABR) recording technique 

has been successfully applied in the auditory assessments of both mammalian and non­

mammalian vertebrates. An ABR waveform is acquired by averaging potentials from 

nuclei in the auditory pathway during acoustic stimulation. The AEPs presented in Figure 

6.7 were recorded using the Medelec MS 6 biological amplifier with subcutaneous 

electrodes positioned using a jointed clamp assembly, and the prawn held in place using a 
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fine mesh nylon cradle. The reference electrode was located in proximity to the neuropil 

of the antennule, and the record electrode located at the junction between the lateral 

antennular and statocyst ganglia. The acoustically evoked neural waveforms presented in 

Figure 6.7, were recorded from P. serratus in response to tone bursts ranging in frequency 

from 500Hz to 3000Hz, and averaged over 2000 stimulus presentations (100Hz and 300 

Hz have not been included for scaling reasons). The waveforms show a series of peaks 

contiguous with the stimulus sound. 
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Figure 6.8. Auditory Evoked Potentials from P. serratus to tone bursts of 500 Hz, 750 Hz, 

I 000 Hz, 1500 Hz, 2000 Hz and 3000 Hz, and averaged over 2000 sweeps. The AEP at 

each amplitude tested has been overlaid, and shows a reduction in the response latency 

with increasing frequency. Scale: 1 J.t V = l 00 
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6.3.5 Threshold determination 

Threshold responses from twelve, 50 mm to 55 mm (medium) prawns were determined 

visually from the sequentially arranged waveforms for each frequency tested, in 

accordance with Kenyan et al (1998). Figure 6.9 shows ABR waveforms evoked from P. 

serratus in response to a 500 Hz tone burst, presented initially at between 120 to 132 dB 

(re 1 11Pa at I m), and attenuated in steps of 4 dB (re 1 11Pa at I m) ordinarily, and 2 dB (re 

I 11Pa at I m) as the hearing threshold was approached. When two replicates of waveforms 

showed opposite polarities (see 110 dB traces in Figure 6.9), the response was considered 

as being below threshold (cf. Kenyan et al. 1998). 

0 0.004 0.008 
Time (s) 

12JdB 

0.012 0.016 

Figure 6.9. ABR waveforms from P. serratus in response to a 500 Hz tone burst 

attenuated in 2 dB steps. Averaged traces of two runs (2000 sweeps each), for each 

intensity are overlaid and arranged sequentially. Bar = 1 JlV 

6.3.6 Audiogram for P. serratus 

The audiogram shown in Figure 6.10 was produced using sequential ABR waveform 

threshold data, acquired from frequencies of 100 Hz to 3000 Hz, presented in steps of 

between 200 Hz to 500 Hz. The hearing thresholds of 12 mixed sex P. serratus was 
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measured, and follows a ramp like profile, determined by calculating the lowest intensity 

stimulus sounds (recorded underwater using the hydrophone located adjacent to the 

antennule) that evoked a repeatable ABR response (112 dB in Figure 6.9). The profile 

follows a steady downward gradient to lOO Hz (the lowest frequency tested), and indicates 

that the "best" frequency in terms of threshold could be below this frequency. 

140 

130 

,...:._ 
('IS 

~ 120 
= -~ 110 .... 
~ 
"'0 
'-' 
~ 100 .... 
= VJ 
VJ 
~ 

90 .... 
~ 
"'0 

= = 80 0 
00 

70 

60 ~ ,-,--, 

100 1000 10000 

Frequency (Hz) 

Figure 6.10. Audiogram for P. serratus, determined visually from the sequential ABR 

waveform data, and by calculating the RMS of threshold SPL values of the stimulus 

sounds, presented at I 00 Hz, 300 Hz, 500 Hz 750 Hz, 1000 Hz, 1500 Hz, 2000 Hz and 

3000 Hz tone bursts 

6.3. 7 Ablation 

Removal of the statocyst was achieved by making a circular cut in the cuticle layer above 

the chamber, and withdrawing the capsule using needle point tweezers (a procedure that 

took a few seconds). Prior to removal of the statocyst, the prawn was re-tested with the 

cuticle layer cut as a sham operation, revealing that the AEP was no longer present. The 

sham operation data presented in Figure 6.1 I were acquired by re-testing the prawns I 

hour after cutting around the chamber, prior to removal of the statocyst, and shows that the 

AEP eventually returns. 
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Figure 6.11. ABR waveforms in response to a 500Hz sound presented 10 dB (re 1 !lPa at 

1 m) above threshold. Run A was recorded prior to the sham operation, and run B was 

recorded I hour after cutting the cuticle layer covering the statocyst capsule as a sham 

operation. Y axis scale = !lV x I 00 

On removal of the statocyst, the prawns were placed in the empty fourth compartment of 

the holding tank, and allowed to recover for 24 hours, prior to being retested on the 

electrophysiology apparatus. The post ablation recovery period was included to give the 

prawn' s time to settle after the procedure, as the metabolic state of the organism can have a 

detrimental affect on the evoked potential (Corwin et at 1982). 

The evoked potentials shown in Figure 6.12 were recorded from a 45 mm prawn, in 

response to a 300 Hz tone, presented at an intensity I 0 dB above threshold. The first two 

runs (A and B, with two replicates of each run) were acquired from the prawn prior to the 

ablation procedure, and the subsequent two runs (C and D, with two replicates of each run) 

were recorded 24 hours later. The electrodes were removed and replaced between each 

run, to confirm that the response was consistently repeatable, and to ensure that the absent 

responses in runs C and D was due to the ablation experiment, and not an extraneous factor 

associated with electrode placement. 
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Figure 6.12. Evoked potentia Is from P. serratus to a 500 Hz tone presented I 0 dB above 

threshold and averaged over 2000 sweeps. Runs a. and b. were recorded with the statocyst 

present; whilst c. and d. were recorded 24 hours after removal of the organ (the electrodes 

were removed and replaced between each run). Y axis scale = J.lV * 100 

6.4 Chapter discussion and conclusions 

The hearing ability of the prawn (Palaemon serratus) has been clearly demonstrated by 

this work using ABR audiometry, and offers conclusive evidence of low frequency sound 

detection of frequencies ranging from I 00 Hz to 3000 Hz by an invertebrate from the sub­

phylum crustacea. For hearing in the strictest sense to be attributed to an organism, the 

physiological response sound should be initiated by a specialised receptor mechanism 

(Myrberg 1981 ), shown by this work to be generated in the statocyst. Current literature 

states that this organ is purely responsive to angular rotations and strong vibrations 

propagated directly through a solid medium, and is not responsive to sounds propagated in 

either air or water (Cohen and Dijkgraaf 1961 ). It is highly probable that Cohen and 

Dijkgraaf did not find evidence of hearing due to masking of the AEP by neural activities 

other than audition; and from myogenic noise generated by muscular activity. To produce 

clear waveforms of an auditory response, it is recommended that AEP recordings be 
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averaged for at least 1000 to 2000 stimulus presentations (Kenyan et al 1998; Yan et al 

2000). The amplitude and shape of the electrophysiological response from P. serratus 

shown in Figures 6.8 and 6.9, bear a remarkable similarity to AEP's generated by fish and 

higher vertebrates (see Corwin et al., 1982; Kenyon et al., 1998; Yan, 2002). 

The two statocyst organs found in P. serratus lie adjacent to one another with medial 

symmetry, in the basal peduncle segment of the antennule. As can be seen in Figures 6.4 

and 6.5.a, the statocyst is innervated by the statocyst ganglion, which emanates from a bed 

of peripheral nerve fibres lying under the mound directly beneath the receptor array (see 

Figure 6.6.a). The statocyst nerve terminates in the neuropil of the antennule, which is 

located in the ventral/anterior region of the brain. The dissection of the 54 mm prawn in 

Figure 6.3 .a shows that the total length of the neuronal pathway taken by the statocyst 

nerve, from the centre of the statocyst organ to the centre of the supraesophageal ganglion 

is approximately 600 Jlm. However, the direct distance between the neuropil and the 

peripheral nerve fibres located below the statocyst, was found to be 500 Jlm. This is due to 

the curved pathway taken by the statocyst nerve, which first projects forward with the 

lateral antennular ganglion along the inside edge of the peduncle for 300 J..Lm. From here, 

the statocyst ganglion branches away from the antennular ganglion at angles approaching 

45 o either side of the midline, from where it extends for a further 300 J.!m to the centre of 

the peripheral statocyst nerve bed. 

It is clear from the evidence presented in this chapter, that the perception of sound in the 

frequency domain by P. serratus is similar in range to hearing in generalist fish, which is 

capable of both hearing and responding to sounds within a frequency bandwidth of 30 Hz 

to around 400 Hz or so (Fay, 1988), and is reliant on the phase variance between the three 

otolithic organs and the surrounding flesh to stimulate the sensory hairs of the inner ear 

(Lu, 2004). The audiogram presented in Figure 6.10 follows a similar ramp like profile to 

those obtained from the generalist fish, which are considered to detect a best frequency of 

below 100 Hz (Kenyon et al 1998); however, frequencies below I 00 Hz were not tested. It 

may therefore be concluded that at least one species from the invertebrate sub-phylum of 

crustacea is sensitive to the motion of water particles displaced by low frequency sounds 

ranging from I 00 Hz up to 3000 Hz. 
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Chapter 7 

Examination of the cetacean 
• Inner ear 

7.1 Introduction 

Growing concern by a number of environmental organisations regarding the use of Low 

Frequency Active (LFA) sonar and other intense anthropogenic sources by the military and 

oil industry is stimulating considerable interest in the diagnosis ofthe existence and extent 

of hearing loss in marine animals. High intensity low frequency sounds may be 

particularly damaging to the vestibular (balance) organs of cetaceans and may account for 

the reported disorientation when these animals strand live, whereas loud midrange to high 

frequency sounds may damage the ultrastructure in the cochlea. 

Concise morphological and physiological information on the hearing systems is critical to 

the assessment of the potential effect of anthropogenic noise pollution in the marine 

environment, being especially relevant where an animal is thought to have died as a 

consequence of intense noise exposure. Trauma to the auditory system can result in 

lesions developing along the VIII nerve pathway, or ruptures in the blood vessels 

surrounding the inner ear. A number of techniques have been developed to study gross 

physiological damage to the inner ear, though these investigations do not necessarily verify 

the impairment of hearing and balance. In addition, these types of injuries may have been 

sustained by the animal as it struggles in fishing nets, or thrashes about on the shoreline 

and thus be unrelated to loud noise exposure. [f caused by intense noise, s igns of trauma 

(haematoma and nerve lesions) would probably manifest at the highest end of the impact 
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scale, whereas more subtle damage to the ears may only show in the ultrastructure and thus 

be missed when using conventional examination methodologies. 

Current literature shows a paucity of information on consistent and meticulous removal of 

inner ear parts necessary to identify damage to the ultrastructure symptomatic of hearing 

and balance loss. Ln addition, the fixing methodology commonly used during autopsy is to 

fix the ear in formalin, but this chemical does not bind the proteins in the ultrastructure and 

results in the rapid destruction of the cilia, making the sample unusable for SEM 

microscopy. It is therefore the purpose of this Chapter to describe work pursued towards 

dissection and fixation methodologies relevant to an SEM examination of the mammalian 

inner ear. However, owing to the scarcity of cetacean inner ear samples suitable for SEM 

microscopy, the inner ear of the domestic pig (Sus scrofa) is used to append the dissection 

and fixation methodologies required to view mammalian ultrastructural hair cells. The 

periotic bone containing the inner ear from S. scrofa is dimensionally similar (though 

slightly th inner) to the cetacean periotic, and has the considerable advantage of being easy 

to obtain fresh from commercial sources. 

The comparative morphology of the inner ears from the common dolphin (Delphinus 

de/phis) and the harbour porpoise (Phocoena phocoena) is investigated here, in preparation 

for a Scanning Electron Microscope study of the cetacean inner ear ultrastructure. The 

saccule, utricle and semi-circular canals make up the vestibular system, and the scala 

tympani, scala media and scala vestibuli make up the cochlea (Corti, 185 1; Retzius, 1884). 

Vibrations in the auditory periotic of Odontocetiform animals, caused by sound energy 

conducted through the mandibular channel oscillate the scala tympani within the inner ear 

(Whitlow, 1993). It is probable that these oscillations transmit energy to each of the three 

compartments in the cochlea, through fluid in the scala vestibule, or along the scala media 

and basilar membrane (the floor of the scala media). The sensory ultrastructure on the 

organ of Corti in the scala media rests on the basilar membrane and becomes polarised or 

hyperpolarised by the osci llating motion of the membrane (Uifendahl et al., 1996). The 

hair cells convert the sound energy into bioelectric impulses, which travel via the VIU 

nerve to nuclei in the auditory pathway during acoustic stimulation (Brill, et al. , 1988). 
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7.2 Materials and methods 

The common dolphin (Delphinus de/phis) examined in this study was recovered on the 2nd 

of February 2005, from Beacon Point in Devon (Ordnance Survey GB grid reading 

SX674406). The tagged carcass was not designated for collection (autopsy), due to its 

location at the foot of a steep cliff making access difficult. A brief inspection revealed that 

the animal was a mature male, approximately 2.4 meters in length, and estimated to have 

been dead for I 0 to 12 days; injury to the front rows of teeth and the jaw indicate that it is 

highly possible that the animal died as a result of becoming entangled in fishi ng nets. The 

mature harbour porpoise (Phocoena phocoena) was recovered on the IIth of February 2005 

from Andurn Point, near Plymouth Sound, Ordnance Survey GB grid reading SX495492 

(NHM reference SW.2005/30). The tagged carcass was 1.47 meters in length and 

approximately three years of age (Read, 1999) and was not designated for autopsy due to it 

being in an advanced state of decay. The cause of death was unknown. 

The periotic bone containing the inner ears from D. de/phis and P. phocoena were 

separated from the petrous bone, and washed in 70 % chilled ethanol. Removal of the 

complete cochlea from the encapsulating periotic bone in P. phocoena required two cuts 

made using a fine cutting wheel, which was stopped short of penetrating to the inner ear 

canals by approximately 0.4 mm. The weakness in the bone caused by the hemispherical 

cut allowed for the two halves of the periotic to be gently separated using minimal 

leverage, thus exposing the internal structure of the ear. The skeletal remains of the 

cochlea were not removed from the periotic in D. de/phis; instead it was prepared for the 

EM study whilst still in the encapsulating bone. A cast of the inner ear cavity was then 

made by injecting Silicone rubber into the cochlea duct and vestibule, and allowed to cure 

for 24 hours (Figures l.a through c). The cast was removed by gently separating the three 

cut sections of the periotic, and by easing the rubberised impression of the ear from the 

bone segments; a similar procedure has been used successfully by the author on the 

elasmobranch ear (Lovell, unpublished). The cast was then washed in lOO % ethanol and 

processed for a low powered Scanning Electron Microscope (SEM) examination of the 

surface features. 
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Fig. 7.1 a. Ventral view of the periotic from P. phocoena showing the position of the two 

cuts, b. the sections of periotic cut away to free the cochlea, and c. the periotic after the 

silicone injection moulding procedure. The annotations D . (Dorsal), and A. (Anterior) 

represent the orientation of the periotic in the skull 

The use of the Scanning Electron Microscope (SEM) in the examination of the 

ultrastructure responsible for the mediation of auditory stimuli has been used to 

considerable effect on lower vertebrates such as fish (Platt 1977; Lovell et al., 2005b ), and 

invertebrates (Lovell et al., 2005a), though no SEM examinations have been conducted on 

the inner ear ultrastructure from any of the cetacean species. The relative ease and speed 

with which the auditory periotic can be dissected from behind the mandible of D. de/phis, 

indicates that it should be possible to remove the complete inner ear for a Scanning 

Electron Microscope examination of the hair cells from cetacean carcasses recovered after 

strandings. It is essential that the periotic is rapidly immersed in chilled fixative (2.5% 

glutaraldehyde in 0.1 M cacodylate buffer with 3.5% sodium chloride), then refrigerated to 

inhibit sample decomposition (the sample must not be frozen, as ice crystals will destroy 

the ultrastructure). ln addition to the examination of the cochlea, the other inner ear end 

organs such as the saccule and utricle should also be assesed, as these organs (in most 

vertebrate animals), are sensitive to both angular accelerations and low frequency sounds 

(Popper and Fay, 1993). lf either were to become damaged by anthropogenic noise 

pollution, it may contribute to the reported disorientation experienced by cetaceans which 

have become stranded live, yet do not present with any obvious signs of injury. 
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Owing to the extreme care required when processing inner ear tissue for SEM examination 

of the ultrastructure, it is important to fix the ear immediately after removal from the 

carcass. Usually, best results are obtained when fixative is injected directly into the canals 

of the periotic bone, though this approach may be impracticable on a beach or boat. It was 

therefore decided to test various fixing procedures on easily obtainable domestic mammal 

inner ears, in this case the pig (Sus scrofa). The aim was to find the best way to fix the 

ears with the minimum of handling outside of controlled laboratory conditions. For SEM, 

the tissue comprising the inner ear should be fixed in 2.5% glutaraldehyde in 0.1 M 

cacodylate buffer (with 3.5% sodium chloride for marine animals). Previous studies ofthe 

inner ear ultrastructure from lower vertebrates has shown that it is possible to fix the ear 

whilst in a trimmed block of cranium, and that the fixative will penetrate sufficiently to 

preserve the ultrastructure. However, the bone surrounding the mammalian inner ear (the 

periotic) is significantly thicker and denser than the bone surrounding the fish ear. 

Contained within the periotic is the cochlea, a spiral tube that is coiled approximately two 

and one-half turns around a hollow central pillar (the modiolus) and the vestibular end 

organs. 

ln total, 12 ears were removed from mature domestic pigs (Sus scrofa) during processing 

for the meat industry, within 1 hour of the animal's death. After removal of the frrst two 

pairs of ears, a small hole was drilled into the periotic covering the upper tip of cochlea, 

into which a fine syringe was inserted and fixative injected into the canals below, then the 

entire periotic was immersed in chilled fixative. The second batch of ears had the bone 

covering the upper apical tip removed, then immediately immersed in fixative, whilst the 

final batch were immersed into the fixative with no additional preparation. The periotic 

bone containing the inner ear was trimmed to a small block and the outer bone layer was 

removed using a fine cutting wheel. The saccule, utricle and cochlea were dissected from 

the labyrinth using a fine scalpel, then dehydrated through a graded ethanol series ranging 

from 35% through 50%, 70% and 90% to absolute ethanol, prior to desiccation using the 

critical point drying method described by Platt (1977). Fully desiccated end organs were 

subsequently mounted on a specimen stub using a carbon tab, and coated with c. 8 nm of 

gold in an Emitech K 550 sputter coater (working at approximately 5 x 10·6 Torr). The 

processed specimens were investigated and photographed using a JEOL JSM 5600 

scanning electron microscope operated at 15 kv, and a 15 mm working distance. 
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7.3 Results 

7.3.1 The auditory system from the common dolphin (D. De/phis) 

The examination of the brain (Figure 7.2.a) revealed a large VIII auditory nerve (Figure 

7.2.b), originating at the peripheral end of the nerve in the periotic chamber, and 

terminating in the medulla. The brain, Vlll auditory nerve and auditory periotic bone from 

the right side of the cranium were removed intact, and the brain weighed using digital 

precision scales (total weight = 1 008 g with the periotic bone absent), then transferred to a 

large beaker and immersed in 70 %ethanol, prior to fixing in formalin. 

Fig. 7.2.a. Caudal view ofthe hindbrain and spinal cord from D. de/phis, b. ventral view of 

the cerebellum and medulla, with the VIII nerve still attached to the auditory periotic 

containing the inner ear 

The skull was then photographed in a number of positions and annotated for reference 

purposes (Figures 7.3.a through d). The cranium and brain asymmetry in D. de/phis 

examined here, was found to be larger in the right hemisphere (especially evident in the 

nasal passage). 
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Fig. 7.3. a. DorsaVanterior view of the skull from D. de/phis (note there is a slight 

dominance of the right side). b. ventral view of the skull showing position ofthe auditory 

periotic and petrous bones (appb) and lower mandible (m), c. endocranial view of the 

periotic and petrous bones d. left side view of the skull showing the position of the periotic 

and petrous bones relative to the mandible and eye socket 

In D. de/phis, fibrous tissue surrounds the heavily calcified auditory periotic bone (Figures 

7.4.a to c) and the thin petrous bone (Figure 7.4.a), which are connected to the skull by a 

flexible ligament that effectively isolates the inner ear from the skull. Sound enters the ear 

most efficiently through the mandibular channel in the lower jawbone, which extends back 

toward the auditory periotic bone. 
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Fig. 7.4.a. The auditory periotic with Vill nerve and the thin petrous bone from D. de/phis, 

b. dividing the petrous bone from the auditory periotic bone, and c. cross section through 

the periotic capsule containing the inner ear, and peripheral VIII nerve fibres (bar = 20 

mm) 

Figures 7.5.a and b present the skeletal remains of the cochlea, and shows detail of the 

bony spiral lamina, scalar tympani and upper portion ofthe scalar vestibule and peripheral 

VIIl nerve fossa on the inside edge of the lamina. 

Fig. 7 .5. Ventral view of a cross section through the periotic bone from D. de/phis 

showing the lower basal section of the cochlea, and the scala vestibuli and scala tympani 

(the floor of the scala tympani has been removed) 

117 



Fig. 7.6. Ventral view ofthe bony spiral lamina from D. de/phis 

Figure 7.7 and 7.8 presents Electron micrographs of the inner ear cast from D. de/phis, 

reproduced by injecting silicone rubber into the auditory periotic bone surrounding the 

inner ear. This procedure was necessary as the fine internal structure of the ear had 

decomposed to an extent where it could not be removed by dissection; rather it had to be 

washed from the chambers within the periotic using 70 % ethanol. 
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Figure 7.7. SEM micrograph of the left inner ear cast from D. de/phis (lateral view away 

from the mid-sagittal plane of the brain). Comparative annotations from Gray ( 1918) 

119 



Figure 7.8. SEM micrograph of the left inner ear cast from D. de/phis (lateral view toward 

the mid-sagittal plane of the brain) 

The length of the cochlea from the upper apical tip to the lower basal segment was 

calculated to be 30.1 mm, with the vestibule etc, making up the remaining 3 mm of the 

inner ear (total length 33. 1 mm). 

7.3.2 Morphological Examination of the Auditory System from the 

Harbour Porpoise Plwcoena phocoena 

The dissected cochlea from P. phocoena was placed in a watch glass containing 70 % 

ethanol, and photographed using a digital camera and trinocular microscope (Figure 7.9). 
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The innervated length of the cochlea was measured on a PC using the analySIS® (Soft 

lmaging System) program, and found to have a length of 21.8 mm; the total length of the 

sample was calculated to be 24.8 mm, with the saccule and oval window making up the 

remaining 3 mm. The investigation of the internal dimensions of the periotic bone was 

conducted to rule out the possibility that some of the organ of Corti still remained in the 

periotic, or had decomposed and was no longer visible, thus ensuring an accurate 

measurement ofthe organ. 

Bar = 5 mm 

Upper 
basal Peripheral fibres of the 

cochlea ganglion 

Lower 
basal 

Vestibule 

Fig. 

7.9. The organ of corti from P. phocoena. Total innervated cochlea length: 21.8 mm, total 

sample length: 24.8 mm 

The complete cast of the inner ear from P. phocoena in Figures 7 . I 0 and 7.11 presents the 

complete structure viewed laterally, both toward and away from the mid-sagittal plane of 

the brain. 
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Figure 7.10. SEM micrograph of the left inner ear cast from P. phocoena (lateral view 

away from the mid-sagittal plane ofthe brain). 
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Figure 7 .11. SEM micrograph of the left inner ear cast from P. phocoena (lateral view 

toward the mid-sagittal plane of the brain) 

7.4 Ultrastructure from the mammalian cochlea 

Figure 7.12 presents cochlea hair cells from the domestic pig (Sus scrofa) prepared within 

I hour of death and using three distinct methods of introducing the fixative, and a forth 

where no fixative was used prior to preparation for critical point drying. ln Figure 7.12a, a 

small hole was drilled into the periotic covering the upper tip of cochlea, into which a fine 

syringe was inserted and fixative injected into the canals below, then the entire periotic 

was immersed in chilled fixative. In Figure 7.12b, the bone covering the upper apical tip 

ofthe cochlea was removed, then the periotic immediately immersed in fixative. Ln Figure 

7.12c, the periotic was immersed into the fixative with no additional preparation, whilst in 

Figure 7.12d, no fixative was used for the first 48 hours after death. 
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Figure 7.12. Hair cells from the upper basal turn of the cochlea. a. fixative injected 

through a small hole in the upper apical tip, b. the bone covering the upper apical tip 

removed and the ear immediately immersed in fixative, c. periotic immersed in fixative 

complete, and d. the cochlea after 48 hours without any fixative 

Figures 7.13 through 7.18 show ultrastructural hair cells from the upper apical tip to the 

lower basal region of the cochlea from S. scrofa, fixed in glutaraldehyde l hour after death 

and the periotic immersed in fixative without any additional preparation. 
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Figure 7.13. long hair cells (1 0 to 15 J.lm) from the tip of the upper apical 

Figure 7.14. long hair cells (8 to 10 J.1m) from the first half turn of the upper apical 
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Figure 7.15. Hair cells (6 j.lm) from the second halfturn (l turn) 

Figure 7.16Hair cells (6 j.lm) from the third half turn in the basal region (l Yz turns) 
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Figure 7.17. Hair cells (4 ~m) from the forth half turn of the lower basal region (2 turns) 

Figure 7.18. Hair cells (3 ~m) from the fifth half turn at the end of the lower basal region 

(2Yl turns) 
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As can be seen in Figures 7.13 through 7 .18, there is no evidence of cochlea hair cell 

damage; thus fixing the entire periotic in glutaraldehyde without any further preparation of 

the sample will give adequate results for Sus scrofa, though the extra thickness of the 

periotic in the cetaceans may have some additional effect on the sample. 

7.5 Ultrastructure from the Mammalian Vestibule 

The mammalian inner ear is surrounded by a dense bony capsule, known as the auditory 

periotic (Figure 7.19). Removal of the bone covering the inner ear reveals the cochlea and 

membranous labyrinth (labyrinthus membranaceus), which is found within the bony cavity 

of the vestibule and contains the saccule, the utricle and the semi-circular canals, each 

filled with endolymph (a substance possessing viscous and ionic properties). The anterior 

part of the inner ear is the cochlea Figures 7.19, while the posterior part is made up of the 

vestibule containing the saccule, utricle and semicircular canals (Figures 7.19 and 7.20). 

Figure 7.19 The labyrinth of the inner ear from S. scrofa with the covering periotic bone 

partially removed exposing the cochlea and vestibular organs (the saccule and utricle) 
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Figure 7.20 The saccule and utricle with the covering bone fully removed prior to 

preparation for SEM microscopy 

The dissection vestibule (Figure 7.20) reveals the saccule and the utricle; the utricle is 

compressed transversely and occupies the upper and back part of the vestibule, lying in 

contact with the recessus ellipticus (Gray, 1918). The floor and anterior wall of the recess 

is thickened, forming the macula acustica utriculi and innervated by the utricular ganglion 

of the VITl nerve. The posterior wall of the saccule forms the ductus endolymphaticus, 

which is joined by the ductus utriculosaccularis and passes along the aquceductus vestibuli 

ending in the saccus endolymphaticus. The cavity of the utricle communicates with the 

semicircular canal ducts by five orifices, which can be clearly seen in Figures 7.7 and 7.10 

from the cetacean ear. The smaller of the two bulbous vestibular sacs is the saccule 

(Figure 7 .2 l.b ), which is fixed to the walls of the labyrinth near to the opening of the 

cochlea. The cavity is located adjacent to the upper basal turn of the cochlea in proximity 

to, but not in direct communication with the utricle (Figure 7.2 la), and presents with an 

oval thickening that forms the sensory macula (the acustica sacculi). 
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Figure 7.21.a SEM micrograph of the utricle from the domestic pig (Sus scrofa); the 

hatched line defmes the perimeter of each sensory macula (mu.), 7.21.b. the saccule (s.) 

and the sensory macula (ms.); the white arrows indicate the polarity of the hair cells across 

the surface of each macula, 7.21.c. crystalline calcium carbonate otoconia overlaying the 

saccular hair cells, 7 .21.d. hair cells from the dorsal quadrant of the saccule after removal 

ofthe otoconia 

The epithelial surface of the utricle (Figure 7.2l.a) and the saccule (Figure 7.2l.b), is 

covered with a thick layer of dense otoconia responsive to accelerational and gravistatic 

forces. The motion of the otoconia with respect to the ciliary bundles exerts a shearing 

force detected by the hair cells according to their orientation (Lim, 1984). The utricle is 

largely horizontal in the head, registering accelerations acting in the horizontal (axial) 

plane of the head, whilst the saccule registers accelerations in the vertical (parasagittal or 

coronal) plane. In Figure 7.2l.c, some of the otoconia have been removed revealing the 

underlying hair cells, whilst 7.2l.d. shows hair cells from the dorsal quadrant of the 

saccule after complete removal of the otoconia. 
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7.6 Chapter discussion and conclusions 

A procedure for the fast removal of the complete cochlea and other end organs of the inner 

ear undamaged has been demonstrated here. However, both cetacean carcass examined in 

this study were retrieved in an advanced state of decomposition, thus SEM examinations of 

the ultrastructure within the inner ear was not undertaken as inner ear hair cells are known 

to deteriorate within a short time after death. 

The SEM has been used to considerable effect on lower vertebrates such as fish (Platt 

1977; Lovell et al., 2005b), and invertebrates (Lovell et al., 2005a) in the examination of 

the ultrastructure responsible for the mediation of auditory stimuli, though a review of the 

literature suggests that no SEM examinations have been conducted on the inner ear 

ultrastructure from any of the cetacean species. The relative ease and speed with which the 

auditory periotic was dissected from behind the mandible of D. de/phis, indicates that it 

should be possible to remove the complete cetacean inner ear for a Scanning Electron 

Microscope examination of the hair cells. For this however, it is essential that the periotic 

is rapidly immersed in chilled fixative (2.5% glutaraldehyde in 0. I M cacodylate buffer 

with 3.5% sodium chloride), then refrigerated to inhibit sample decomposition (the sample 

must not be frozen, as ice crystals will destroy the ultrastructure). 

The saccule and utricle are sensitive to both angular accelerations and low frequency 

sounds (Popper and Fay, 1993). If either were to become damaged by anthropogenic noise 

pollution, it may contribute to the reported disorientation experienced by cetaceans which 

have become stranded live, yet do not present with any obvious signs of injury. The 

examination of both sensory maculae in the vestibule of S. scrofa reveals a thick blanket of 

otoconia which occludes the hair cells from view. The ci lia are embedded in the otoconia 

and cohesion is provided by mucus (the remains of which is evident in Figures 7 .2l.c and 

7 .2l.d). ln order to remove the otoconia and mucus with as little disturbance to the hair 

cells beneath as possible, S-Carboxymethyl-L-Cysteine was employed to hydrolyse the 

mucus before fixing the sample. This procedure yielded best results when the solution was 

'washed' through the vestibule using a pipette, prior to fixing the sample in the 

glutaraldehyde. 

In D. de/phis (Figures 7.7 and 7.8) the length of the basilar membrane from the upper 

apical tip of the cochlea to the round window was calculated to be 30.1 mm, whilst the 
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basilar membrane from P. phocoena (Figure 7.9) had a length of22 mm. Both the animals 

investigated in this study were mature individuals (c.f. Read, 1999), thus it is tentatively 

concluded that the cochlea from D. de/phis is 8 mm shorter, whilst P. phocoena is 16 mm 

shorter than the 38 mm reported forT. truncatus (Wever et al., 1971). All mammalian 

cochleae appear to function according to the same basic principles; however, the effective 

frequency range differs between species (Fay, 1988). For example, the range of audible 

frequencies is about 20 Hz to 16 kHz in the human cochlea, about 300 Hz to 45 kHz in S. 

scrofa (Heffner and Heffner, 1990), about I 00 Hz to 150 kHz in T. truncates (Johnson, 

1966; 1967) and 300 Hz (Kastelein et al., 2002) up to as high as 190 kHz in P. phocoena 

(B ibikov, 1992; Popov, 1986; Kastelein et al., 2002). Table 7.1 presents the outlying 

frequencies audible to the marine and terrestrial mammals considered here, along with the 

cochlea length measurements. 

Table 7.1 Comparison between cochlea length and audible frequency range 

Species Cochlea Low (Hz) High (Hz) 
Length (mm) 

T. truncates 38 100 150000 

P. phocoena 22 300 190000 

Human 35 20 16000 

S. scrofa 32 300 45000 

The fundamental measure of hearing ability for any animal possessing the appropriate 

receptor mechanism is its audiogram (Myerberg, 1981 ), which presents the lowest level of 

sound that the species can hear as a function of frequency. The hearing frequencies or 

audiograms for a number of odontocetiformes are well characterised, and have been 

produced using both physiological and behavioural approaches (see Nachtigall et al., 1995; 

Kastelein, et al., 2003; Sauerland and Dehnhardt, 1998; Gerstein et al., 1999; Kastelein et 

al. , 2002), though an audiogram for D. de/phis has as yet to be produced. The bottlenose 

dolphin (T. truncates) hears frequencies from 100 Hz to 150 kHz (Johnson, 1966; 1967), 

and the striped dolphin (Stenella coeruleoalba) hears frequencies ranging from around 500 

Hz to 150 kHz (Kastelein, 2003 ; Brill et al. , 200 I), with both producing broad band clicks 

for echolocation that range in frequency from 20 Hz to around 200 kHz. P. phocoena 

hears frequencies between 300 Hz (Kastelein et al., 2002), up to as high as 190 kHz 

(Bibikov, 1992; Popov, 1986; Kastelein et al., 2002), and utilises a narrow band high 

frequency sonar of around 120 to 140 kHz (Busnel and Dziedzic, 1966a). It is feasible that 

this difference in hearing ability between T. truncates and P. phocoena is explained by the 

larger cochlea in the bottlenose dolphin (Wever et al., 1971 ; Ketten, 1997). The evidence 
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presented in this study suggests that the audiogram for D. de/phis may lie somewhere 

between the hearing range of T. truncates and P. phocoena. It is to be concluded that the 

production of an audiogram for D. de/phis (see chapter 8 for proposal), is of considerable 

importance for an accurate assessment of the impact of anthropogenic sounds on the inner 

ear physiology of this animal. 
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Chapter 8 

General discussion 

A very important question arises from this study, and primarily concerns the method by 

which an audiogram is calibrated. As generalist fish are shown here to respond to the 

motion of the water particles in the sound field, rather than the sound pressure component, 

it would be prudent to measure the audiogram in units of particle velocity rather than 

sound pressure. However, the complexities involved in the calibration and maintenance of 

velocity hydrophones in the dynamic marine environment precludes them from 

straightforward use in the field (Coates, 1990), with many researchers favouring the use of 

pressure sensitive hydrophones. In some cases, where an absolute measure is required 

(e.g. offshore surveying or oceanography), a velocity hydrophone would be used. 

However, when undertaking comparative work such as the study conducted here, the use 

of a sound pressure hydrophone is acceptable when testing generalist fish, so long as the 

sound field in which the auditory assessment is conducted is dominated by particle motion. 

The ABR generated evoked potentials presented in this study are fundamentally the 

response of the central nervous system to sound stimulation, and are therefore a 

quantitative measure of hearing ability regardless of which units are used in the audiogram. 

8.1 The audiogram for C. auratus 

The audiograms presented in Figure 8. 1, are from the goldfish (C. aural us), and have been 

produced over the last 30 years using a number of behavioural and physiological 

approaches (discussed in Chapter 2). The curve bearing the open circles is the result of the 

ABR examination of hearing in C. auratus, from Chapter 3, and was produced following 

the methodology described by Kenyon et al. (1998). The majority of the curves including 

the one produced in Chapter 3, follow very similar profiles and appear closely grouped, 

though the actual threshold values in response to a 500Hz tone burst, range between 49 dB 

(re I 11Pa) (Popper and Yan, 1992), to 73.7 dB (re I 11Pa) (Kenyon, et al., 1998). The 

relative position of the C. auratus thresholds from Chapter 3 is slightly higher than the 

majority (but not all) of the curves presented in Figure 8.1. This is not unexpected, as 
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behavioural audiograms often yield lower thresholds than physiological audiograms, and is 

discussed in detail by Yan (1995). It is therefore concluded that the auditory thresholds 

recorded from C. auratus in Chapter 3, are within the range of published audiograms for 

this species, and validates the electrophysiology system developed to record threshold 

ABR waveforms for this study. 
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Figure 8.1 Audiograms for C. auratus by Chapman & Hawkins ( 1973), Enger (1966), 

Jacobs & Tavolga (1967), Kenyan (1998), Popper (1971), Yan (2001), Yan & Popper 

(1992), and C. carpio (Popper, 1972) and the audiogram for C. aura/us produced in 

Chapter 3 ofthis present study (open circles) 

8.2 Fish hearing in pressure and motion dominated sound fields 

It has been demonstrated in this study, that a sound source positioned underwater and 

generating a pressure dominated sound field, will stimulate the CNS of a fish in much the 

same way as a loudspeaker positioned in the air. However, as shown by the results of the 

ABR investigation in Chapter 5, lower thresholds can be acquired from generalist fish if 

the sound field is dominated by particle motion. Figure 8.2 presents the audiograms of all 

the fish tested in this study, and shows that the audiograms fall into 3 main groups. The 
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lower curves are from H molitrix and A. nobi/is in response to sound pressure, the middle 

curves are from P. spathula and A. fulvescens in response to particle motion, and the high 

thresholds are from P. spathula, A. fulvescens and D. labrax in a pressure dominated sound 

field. The profile of the I punctatus audiogram from Fay and Popper (1975) is similar to 

the audiograms for H molitrix and A. nobilis, though it is about 10 dB (re I uPa) lower 

than from the two Asian carp species. This finding is not particularly surprising, as the 

examination of the numerous goldfish audiograms presented in Figure 8.1, show that the 

hearing thresholds at 500 Hz vary by over 20 dB (re I 11Pa). 
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Figure 8.2 Audiograms for all the fish tested in this study, generated using either air 

mounted or submerged transducers for ABR, and a behavioural approach using an air 

mounted transducer. D. labrax (air), open triangles = ABR sound pressure, closed 

triangles = behavioural; P. spathula (submerged), open circles = ABR sound pressure, 

closed circles ABR particle motion; A. fulvescens (submerged), open squares = ABR sound 

pressure, closed squares = ABR particle motion; A. nobilis (submerged), open diamonds = 

ABR sound pressure; H molitrix (submerged), open circles (lower set) = ABR sound 

pressure. The audiogram for the hearing specialist catfish (J. punctatus) (air) open 

triangles (lower set) from Fay and Popper (1975), included for comparative purposes 
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8.3 Inner ear physiology and hearing 

It became very clear during the early stages of this research that no audiological model 

exists for any of the generalists from the Family Moronidae (sea basses), or any members 

of the order Acipenseriformes (sturgeons and paddlefish), or from the entire sub phylum of 

crustacea. It is known that the vertebrate inner ear is divided into two regions, the pars 

superior and the pars inferior (Retzius, 1881 ), with the former responding primarily to 

movements of the body and postural changes, and the latter responding to gravistatic and 

acoustic stimuli (Jenkins, 1981; Popper & Platt, 1993). However, a single receptor array is 

all that is found in the statocyst of decapod crustaceans, and this organ detects both 

gravistatic and acoustic stimuli (see Chapter 6). The audiogram for P. serratus (open 

circles) is presented in Figure 8.3, along with the audiograms for both specialist and 

generalist fish from Figures 8.1 and 8.2. 
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Figure 8.3 The audiogram for P. serratus (open circles), presented with the audiograms for 

both specialist and generalist fish from Figures 8.1 and 8.2 
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In most bony fish, the pars inferior comprises two fluid filled pouches, the saccule and 

lagena (Retzius, 1881 ; Platt & Popper, 1981; Popper & Platt, 1993), with each pouch 

containing a crystalline calcium carbonate otolith (Carlstrom, 1963; Popper & Platt, 1993). 

As discussed in Chapter 6, the statocyst of P. serratus contains a dense mass of sand 

granules known as the statolith, and to all appearances, functions similarly to the fish 

otolith in response to accelerational and acoustic stimuli. As can be seen in Figure 8.3, the 

detection thresholds of sounds below 300 Hz by P. serratus are better than any of the fish 

species presented, with the exception of C. auratus. Also, the bandwidth of the sounds 

audible to P. serratus, is considerably wider than those identified in the generalist fish 

species, and are comparable in range (but with slightly higher thresholds) to the 

audiograrns obtained from the Asian carps and the catfish. However, the prawn lacks an 

air reservoir directly coupled to the ear, as is found in the specialist fish, so another 

mechanism for this phenomenon needs to be considered. It is possible that the wide range 

of frequencies audible to P. serratus is attributed to the rigidity of the statocyst base and 

associated receptor cells, which are in direct contact with the dense statolith structure (see 

Figure 6.4a). The ability to hear frequencies within the bandwidth defined for P. serratus 

would be ecologically beneficial to a number of decapod crustaceans, especially when 

considering the acoustic energy from the click sound produced by A. heterochaelis 

occupies a bandwidth ranging from 750 Hz to 5000 Hz. 

The study of the inner ear morphology of P. spathula, A. fulvescens and D. labrax, 

undertaken here for the first time, shows that these fish possess the sensory apparatus 

necessary to detect and localise sound in the open environment; albeit with generalist 

hearing abilities. The schematics in Figure 8.4.a summarises the association between the 

hair cells and the sand granule otoliths in P serratus, along with the pathway taken by the 

otic ganglion to the neuropil of the antennule, and Figure 8.4.b represents the ear of the 

generalist fish examined in this study, and shows the pathway of nervous impulse from the 

inner ear afferents to the brain (identified during the physiological examinations described 

in Chapters 4 and 5). The vertebrate inner ear consists of a fluid filled membranous system 

of contiguous ducts and pouches, containing endolymph, a substance possessing both 

viscous and ionic properties (Piatt and Popper, 1981 ). In most animals, the flow of Na + 

and K+ ions across the membrane of the receptor cell afferents causes the potential voltage 

inside the cell to fall (Hodgkin and Huxley, 1952), and in the fish ear, the potential is 

transmitted along the VIII nerve to the octavolateralis area of the medulla. This pathway is 

represented by the schematic in Figure 8.4.b, which shows the receptor array and VIII 

nerve along and other organs associated with mediating hearing underwater by these 
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animals. Morphological examination of the inner ear and VIII nerve prior to a "first time" 

audiological examination of a species is essential , as it reveals the primary positioning of 

the electrodes, which should be placed extra-cranially, in proximity to the medulla and the 

peripheral end of the auditory nerve, close to the inner ear. 
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Figure 8.4a Schematic of the statocyst receptor array and nerve pathway to the 

supraesophageal ganglion from P. serratus. 8.4b Schematic of the generalist fish ear, 

showing the primary pathway taken by the nervous impulse from the inner ear to the 

octavo lateralis area of the brain, in response to acoustic stimulation 

The impedance of fish flesh is nearly identical to that of the surrounding water, thus 

without the dense otolith, no shear forces would be generated to stimulate the sensory hairs 

of the generalist fish. Theoretically, a generalist fish lacking an otolith would be unable to 

detect the motion of the water particles in a sound field, and the same could be said of the 

crustaceans if the statolith were absent. It is apparent from analysis of the SEM data 

presented here, that D. labrax possesses standard orientation ciliary bundles in common 

with many hearing generalist species, and is in contrast with the sensory receptor patterns 

found in the Ostariophysi (Otophysi). These fish have hair cells orientated vertically in 

two diametrically opposed quadrants (Popper, 1980), a feature also found in amphibians 

and reptiles (Biaxter, Denton & Gray, 1981 ; Popper & Platt, 1979). However, the 
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investigation of the two Acipenseriforrn fish described in Chapter 5 shows that these fish 

also have receptors arranged in only two quadrants; though as discussed, the curvature of 

the macula results in the hair cells occupying four diametric quadrants. 

8.4 Directional hearing 

The ability to detect and localise the source of a sound is of considerable biological 

importance to many fish species, and is often used to assess the suitability of a potential 

mate or during territorial displays (Nordeide and Kjellsby, 1999), and during predator prey 

interactions (Myrberg, 1981 ). Experimentation by Schuijf and Hawkins ( 1983) clearly 

demonstrate that the cod (Gadus morhua), a hearing generalist, has the abi lity to both 

directionally locate and discriminate the distance of a sound source in the acoustic free 

field. Their experiment was conducted using a penned, conditioned cod which would 

respond to a sound by orientating itself toward the spatial location of the sound source. 

This knowledge is of considerable benefit to bio-technological systems like AFD barriers 

and fish ranching, as acoustically conditioned fish are known to have the abi lity to localise 

a sound source with considerable precision, even if visibil ity is poor, or light levels are low 

(Balchen 1999). 

The directionality of water particles during the passage of a wave front divulge important 

information to the fish 's sensory system, allowing it to accurately determine the direction 

and distance of a disturbance or sound in the acoustic free field (Schuijf & Hawkins, 1983; 

Hawkins & Sand 1977; Hawkins 1993). The fish achieves this because the directional 

characteristics of the afferents are qualitatively correlated with anatomically defined 

patterns of hair cell orientations on the macula of the saccule (Fay & Edds-Walton, 1997). 

Excitation occurs when stereocilia are bent toward the kinocilium during the passage of a 

wave front, resulting in the cell becoming depolarised relative to its resting potential 

(Clegg & Mackean, 1995). Inhibition occurs when the bundle is deflected in the opposite 

direction, and results in the hyperpolarisation of the cell (Flock & Duvall, 1965). Receptor 

excitation occurs at a rate of between l to I 00 spikes per second (Platt and Popper, 1981 ), 

and the magnitude ofthe response is a cosine function of the angle between the direction of 

the stimulus and the direction at which sensitivity is greatest; thus the receptor array 

generates inherently directional microphonic potentials (Enger, 1966; Popper, 1983; Sand, 

1975). Additionally, the ears of P. spathula and A. f ulvescens, are positioned with a 

bilateral mirror symmetry, diverging at the anterior end away from the midline of the fish 

(Sand, 1974; Platt and Popper, 1981 ). This divergence of the ears can also be seen in 
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Figure 8.5, which shows the angle of the sagitta in the saccular chamber of D. labrax, 

viewed dorsally perpendicular to the cranium. The production of the image involved 

removal of the brain by dissection and aspiration, revealing the saccular chambers and 

relative orientation of both otoliths. The two lines positioned at 340° and 20° from the 

midline in Figure 8.5, and fo llow the longitudinal plane of each macula as they diverge 

outward as the anterior extremities of the fish are approached. 

Figure 8.5 Angle of the two sagitta in the saccular chambers from D. labrat viewed 

dorsally, with the brain removed, lsc - left saccular chamber, rsc - right chamber, ms -

macula of the saccularis and ramus sacculi, os- otolith sagitta 

The macula of the saccule follows the curvature of the otolith, which has an approximate 

transverse orbital of between 62° and 75° from the horizontal for the right ear, and 105° to 

118° for the left ear. Figure 8.6 shows the two bilaterally symmetrical otoliths positioned 

as they would be found if viewed rostral ly through the fish. The image was produced by 

taking a transverse slice through the saccular chambers, whilst avoiding contact between 

the scalpel and otoliths. 
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Figure 8. 6 Angle of the two sagitta from the horizontal plane viewed rostrally through the 

lower cranium of D. labrax. ms - medial sulcus, ta- transverse axis of the sagitta 

The two angle lines either side of the midline are drawn parallel to the flattest plane of the 

medial su lcus in contact with the macula, and follow the transverse orbit of the otolith as 

the head is rotated from the horizontal plane. The shaded area (ms) shows the medial 

sulcus depression, and is the location of the saccular epithelia if it were present in the 

Figure. This shows that the receptor arrays in the ears of D. labrax are positioned in such a 

way as to be sensitive to the direction of sounds in both the horizontal and vertical planes. 

The upshot of this is that genera list fish can spatially locate the source of a signal, whereas 

terrestrial vertebrates efficiently locate the source of a sound only in the horizontal plane 

(Hawkins and Sand 1977). However some amph ibians, reptiles and birds do have ears that 

act as individual pressure gradient receivers, allowing for both the horizontal and vertical 

localisation of a sound source (Popper and Fay 1993). The polar diagram in Figure 8.7 

shows the recording of microphonic potentials as a function of angle to a sound source in 

the horizontal plane for the perch (Perca jluviatilis). Line a. and b. indicate that maximum 

directional sensitivity is evoked by acoustic stimuli deviating 20° from the midline (Sand, 

1973), thus the perch is most acutely aware of the location of a sound it is swimming 

toward. 
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Figure 8. 7 Polar diagram showing the recording of microphonic potentials as a function of 

angle to a sound source in the horizontal plane for a perciform fish (Perca fluviatilis) 

(Redrawn from Sand, 1973) Line a. and b. show the maximum directional sensitivity of P. 

fluviatilis , which is evoked by acoustic stimuli deviating 20° from the midline of the fish 

8.5 Application of the carp, sturgeon and paddlefish audiograms 

During the experimental work associated with the efficiency of the Acoustic Fish 

Deflection (AFD) barrier system (Taylor, Pegg and Chick, in press), introduced in 

Chapters 1, 3 and 5, the barrier was found to be only 50% effective when using sounds in a 

bandwidth of 20 Hz to 500 Hz. The signal was changed to include higher frequency 

components, and a substantial increase in efficiency occurred. It was therefore suggested 

that, in order to achieve the highest possible levels of fish deflection for the non­

indigenous carp species, further information concerning the auditory sensitivity of each 

species was required. The present study provides audiograms for the silver carp (H. 

molitrix) and bighead carp (A. nobilis), along with the audiograms for paddlefish (P. 

spathula) and sturgeon (A. fulvescens) , which have been measured using the Acoustic 

Evoked Potential (AEP) audiometry method. The second AFD signal tested, had a 

frequency range of up to 2 kHz, and resulted in the efficiency the barrier increasing to 95% 
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(Taylor et al., in press). The increase in barrier efficiency is most likely attributed to H. 

molitrix and A. nobilis having relatively high frequency hearing abilities; thus, the 2 kHz 

signal falls into their peak range of hearing, as defined by the audiogram in Figure 8.2. 

These results demonstrate the importance of matching the sound generated by the AFD 

system, to the hearing range of the target species if a high efficiency is to be achieved. Ln 

addition, this difference in hearing ability between fish species offers a prospective 

advantage that it may be possible to tailor the system to selectively deflect one species of 

fish, whilst allowing another to pass. 

8.6 The auditory assessment 

The hearing of D. labrax is now known to be restricted to a narrow bandwidth of between 

50 Hz to 500 Hz, and has a best detection frequency of 134 dB (re 1 uP a) at l 00 Hz. The 

Auditory Brainstem Response (ABR) method of acquiring auditory data (introduced in 

chapter 4), was selected due to it being a non invasive practice. This approach relies on the 

fact that the electrical potential of the nervous impulse passing along the auditory nerve 

can be detected by electrodes placed on the skin of the fish. Commonly, anaesthetics are 

used to immobilise the fish during an ABR examination (see Kenyon et al, 1997), thereby 

reducing muscular activity which can produce considerably higher amplitude waveforms 

than does the evoked potential. The procedure developed for this thesis, avoids the use of 

anaesthetics on the grounds of ethical considerations; instead it utilised natural behavioural 

responses ofthe fish in an unfamiliar situation. 

While undertaking the ABR measurements, the level of ambient light was kept at a 

minimum; though a small amount of light was directed at the wall in front of the fish. The 

soft light appeared to have more of a calming effect on the fish, as opposed to it being in 

total darkness. Additionally, it was found that fish would become calm if they were placed 

in a cradle lined with a thin layer of soft micromesh netting saturated in well oxygenated 

sea water. This combination of low light levels and the adapted cradle provided the fish 

with an acceptable level of comfort, to the point where auditory evoked potentials could be 

successfully measured. 
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8.7 Continued work 

8.7.1 Crustacean hearing 

As has been shown in this study, P. serratus is able to detect sounds from below 100 Hz, to 

around 3000 Hz, though for completeness, low frequencies need to be tested to find the 

point where thresholds successively rise with lower frequencies. In addition, it would be 

of interest to test P. serratus in both pressure and motion dominated sound fields, in a 

similar test as the one conducted on A. jluviatilis and P. spathula. It has been 

demonstrated that body size has no influence on the amplitude of the evoked response from 

P. serratus (see appendix ii), though nothing is known of the effect of the moulting cycle 

on hearing thresholds. Hearing ability has been defined only in this one species, yet as 

discussed in chapter 6, several crustacean species produce sound using a number of 

mechanisms (Schmitz and Herberholz 1998; Patek, 2001; Meyer-Rochow et al., 1982). 

The investigation of hearing ability and the analysis of sounds produced by crustaceans 

would prove to be of considerable value in determining the importance of hearing on the 

ecology of these animals. Although a number of physiological and behavioural 

experiments have been conducted on fish to assess the impact of noise on the auditory 

system, none have so far been directed toward the crustaceans, a major link in the oceanic 

food chain. The long-term effects of intense low frequency sounds on the shrimp hearing 

ability and ecology is not known, but the data presented here show that there is a need to 

include crustaceans in such an assessment, in order to gain a more insightful view of the 

effect of intense noise on the entire marine ecosystem. 

8.7.2 The audiogram for a normally hearing common dolphin 

(Delphinus de/phis) using the Auditory Brainstem Response (ABR) 

technique 

As previously discussed, ABR shows the response of the entire auditory system and wi ll 

allow for the diagnosis of hearing damage, even if restricted to the microscopic hair cells 

or other fine structures of the ear, that may, in a ll probability, not be found using 

conventional examination methods. In the proposed ABR audiological investigation of D. 

de/phis, surface (cutaneous) electrodes are arranged with the reference electrode positioned 
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at the vertex of the head and the record electrodes positioned behind each ear. This 

configuration will enhance the recording of far field AEP's, as the electrodes span the 

length of the nerve pathway between the cortex, brainstem and ear, thus each ear can be 

tested independently; a procedure commonly used in human audiological tests. 

The ABR measurements of hearing thresholds is made using a control and analysis 

program, which both generates the stimulus signals and captures and analyses the response. 

The sound field is generated by a Laptop PC and presented through an array of free 

standing transducers positioned at least l m to 2 m from the head of the subject (see Figure 

8.8 for equipment schematic). The array will need to generate tone bursts ranging in 

frequency from below 50 Hz to in excess of 150 KHz. A low frequency transducer (20 Hz 

to 3 kHz) has been set up and calibrated, though the high frequency ceramic transducers 

have as yet to be incorporated in the system. The time it takes to identify thresholds is 

dependant on the frequency of the tone burst and the recording conditions; high 

frequencies (above I 0 kHz) can be taken to threshold within 3 minutes, whilst lower 

frequencies take longer (up to 15 minutes at I 00 Hz). Figure 8.9 shows the time taken to 

run two repeat ABR tests for single amplitude at a selected frequency (using a standard 

setup averaging 500 sweeps of 25 ms). The number of averaged sweeps required to 

determine threshold is dependant on the setup of the system and recording conditions, as in 

some instances threshold can be reached in as little as 200 sweeps, up to as many as 2000. 

The usual protocol is to attenuate the stimulus sound in six equal steps, until the EP 

waveform is no longer discernable above the averaged ambient electrical noise (about 0.1 

11v in ideal recording conditions). In general, it takes just over an hour to complete a full 

audiological test, though there is no reason why th is cannot be broken up into more than 

one session. 
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Figure 8.8 Schematic of the non-invasive ABR system 
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Figure 8.9 Graph showing the time taken to repeat test single amplitudes at a gtven 

frequency, averaged from 500 sweeps of25 ms (using a 4 cycle tone burst) 
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8.7.3 The interface between the electrode and test subject 

When recording Evoked Potentials from A. fulvescens, using cutaneous electrodes, it was 

found that the signal strength from the fish to the biological amplifier was lower than 

signals recorded from the P. spathula. However, the presence of the electrode tip 

insulators ensured that most of the ambient water did not contact the tip, and allowed for 

the acquisition of comparable sized waveforms. The reason for this is discussed in Chapter 

5, and is mainly attributed to the ossified cranial plates preventing a good seal between the 

fi sh and electrodes; soft fleshy skin such as was found on the head of P. spathula is best, 

and probably accounts for the high quality of the ABR traces in Figures 5.8 and 5.1 0. 

Though the ABR examinations of D. labrax and P. serratus were conducted in seawater, 

the increased electrical conductivity ofthis medium did not result in high attenuation of the 

EP. This is because in the test of D. labra:t, the electrodes and very top of the head were 

out of the water by I mm, and in P. serratus, the electrodes were fitted subcutaneously. 

When recording Auditory Evoked Potentials (AEPs) from a fish stationed below the 

surface in seawater using cutaneous electrodes, it was found that substantial attenuation of 

the evoked potential signal occurred at the tip, and had a profound effect on the quality of 

the ABR trace. Evoked responses from the tench (Tinea tinea) were examined in respect 

to EP attenuation in water of different salinities, as it is a hearing specialist with a high 

tolerance to seawater. Therefore, by using this species, it allowed for the direct 

comparison of neural waveforms that have been recorded with the fish in marine, brackish 

and fresh water. In order to record high quality AEP's in seawater, it was found that a 

modification needed to be made at the electrode tip (see Figure 8.10 for schematic). The 

modification involved fitting a silicone rubber cap to the upper portion of the exposed 

electrode tip, thus providing an insulated seal between the ambient seawater, and the 

contact point between the electrode tip and fish . 
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Figure 8.10 Silicone rubber cap fitted to the upper portion of the exposed electrode tip, 

providing electrical insulation between the ambient seawater, and the contact point 

between the electrode tip and fish, and was used successfully to preserve the EP signal 

when testing A. fulveseens and T. tinea 

The Auditory Evoked Potentials in Figure 8.11 show the recordings of neural waveforms 

from T. tinea in response to acoustic stimulation with a 500 Hz tone burst presented 

initially at 120 dB, and attenuated in 5 dB steps, with the fish in seawater. The first of the 

waveform sets were acquired with the electrodes and nape of the fish's head above the 

water surface. The second set was recorded with the fish at a depth of 120 mm, and shows 

a signal loss of approximately 90 %. The third set were recorded again with the fish at a 

depth of 120 mm, but on this occasion the electrodes had been fitted with a silicone cup 

type shield which provided insulation from the seawater, and reduced signal loss at the 

electrode tip to less than 40 %. 
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Figure 8.11 Evoked potentials from a hearing specialist tench (Tinea tinea), in response to 

a 500 Hz tone burst, with the fish in seawater. The top set were acquired with the fish at 

the water surface, the centre set were from a fish positioned 120 mm under the water 

surface without the modification, and the lower set were acquired from a fish positioned 

120 mm below the water surface using the electrode tip insulators 

The preliminary results of this experiment shows that the inclusion of the cap has a 

significant effect on the preservation of the EP in seawater. However, the efficiency of the 

insulators can be further improved by positioning the cap whilst the fish is briefly 

immersed in fresh water, thus trapping the less conductive water in the electrode cap, and 

can result in a less than l 0 % loss in the EP signal. 

Previous ABR investigations of odontocetiform animals have mainly used sub-cutaneous 

electrodes that are out of the water during the test, thus reducing AEP attenuation through 

conduction. AEP responses have been examined in respect of the levels of attenuation in 

marine, brackish and fresh water (Lovell, unpublished data). It was found that in order to 

record high quality AEP's in seawater, a modification needed to be made at the electrode 

tip (see Figure 8.12 for schematic). The modification involved fitting a silicone rubber cap 

to the upper portion of the exposed electrode tip, thus providing an insulated seal between 
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the ambient seawater and the contact point between the electrode tip and fish . Figure 4 

presents a schematic of the electrode configuration, which uses a rubber sucker disk to 

provide electrical insulation from the conductive properties of the ambient seawater. 

' Rubber sucker 
disc 

Electrode lead 

I : 
8mm 

Neoprene 

Figure 8.12 The electrode tip configuration with the rubber sucker disk, providing 

insulation from the conductive properties of the ambient sea water (scale 1.5: I) 

The electrodes are integrated into a lightweight 20 mm wide strip of 8 mm elasticated 

neoprene, which is positioned firmly but not tightly around the dolphin 's head, about 100 

mm posterior of the eyes. The ends ofthe neoprene strip are held together with Velcro, so 

the headgear can be easi ly positioned or removed. It would be of great benefit to include a 

small hydrophone, to allow for constant monitoring of the sound level during the hearing 

test, though this has as yet to be incorporated in the prototype. 

The ABR response is readi ly dominated by myogenic noise caused by muscular 

movement, thus while undertaking the ABR measurements on fish, the subject is held in a 

cradle and supplied with oxygenated water so it has no need to swim. The ambient light 

levels are kept low during the assessment since many species react to this by becoming 

passive, though the proposed system can detect and reject ABR responses that are 

contaminated by myogenic noise. In order for an ABR assessment of hearing to be 

conducted on D. de/phis, protocols will need to be developed that will minimise voluntary 
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muscular activity during the test. Primarily, this will involve discussions with handlers 

and others involved in the animals day to day maintenance and welfare, as a psychological 

approach may be the most appropriate to achieve optimum results. 

8.7.4 Summary of short to medium term aims and objectives for future work 

• Develop a working relationship with the organisations and individuals directly 

responsible for the care and welfare of the dolphins to be assessed in the ABR 

examination. 

• Identify the appropriate protocols for minimising voluntary muscular 

movement during the hearing test 

• Develop and prototype the non-invasive headgear for D. delpllis, that can 

function when submerged in seawater 

• Add ceramic disks to the transducer array and produce tone bursts of 

sufficient amplitude from below 50Hz to above 150kHz 

• Refine the ABR electrophysiology system and techniques so the equipment can 

be used "in the field" 
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Abstract 

The mechanism of sound reception and the bearing abilities of the prawn (Palaemon serratus) have been studied using a combination of 
anatomical, electron microscopic and electrophysiological approaches, revealing that P. serratus is responsive to sounds ranging in frequency 
from 100 to 3000Hz. It is the first time that the Auditory Brainstem Response (ABR) recording technique has been used on invertebrates, 
and the acquisition of hearing ability data from the present study adds valuable information to the inclusion of an entire sub-phylum of 
animals when assessing the potential impact of anthropogenic underwater sounds on marine organisms. Auditory evoked potentials were 
acquired from P. serratus, using two subcutaneous electrodes positioned in the carapace close to the supraesopbageal ganglion and the 
statocyst (a small gravistatic organ located below the eyestalk on the peduncle of the bilateral antennules). The morphology of the statocyst 
receptors and the otic nerve pathways to the brain have also been studied, and reveal that P. serratus possesses an array of sensory hairs 
projecting from the floor of the statocyst into a mass of sand granules embedded in a gelatinous substance. It is the purpose of this work to 
show that the statocyst is responsive to sounds propagated through water from an air mounted transducer. The fundamental measure of the 
bearing ability of any organism possessing the appropriate receptor mechanism is its audiogram, which presents the lowest level of sound that 
the species can hear as a function of frequency. The statocyst of P. serratus is shown here to be sensitive to the motion of water particles 
displaced by low-frequency sounds ranging from 100 Hz up to 3000 Hz, with a hearing acuity similar to that of a generalis! fish. Also, 
recorded neural waveforms were found to be similar in both amplitude and shape to those acquired from fish and higher vertebrates, when 
stimulated with low-frequency sound, and complete ablation of the electrophysiological response was achieved by removal of the statocyst. 
© 2004 Elsevier Inc. All rights reserved. 

Keywords: Crustacean; Sensory system; Hair cell; Evoked potential; Hearing; Palaemon serratus 

1. Introduction 

The oceans are virtually transparent to sound, and opaque 
to light and radio waves. At a wavelength of 1 m (1500Hz), 

water is nearly 1,000,000 times more transparent to sound 
than to radio signals (Pilgrim and Lovell, 2002). This fact 
underlies the intense interest currently being directed toward 
the acoustical exploration of the ocean. Naturally produced 
sounds arise from a number of sources, such as breaking 
waves, heavy rain, volcanic activity or from marine animals 

• Corresponding author. Tel.: +44 1752 2324 11 ; fax: +44 1752 
232400. 

E-mail address: j.lovell@plymouth.ac.uk (J.M Lovell). 

1095-6433/$ -see front matter 0 2004 Elsevier Inc. All rights reserved. 
doi: 10.10 16/j.cbpb.2004.11 .003 

(bio-acoustic sources). Vocalisations such as whale song, 
along with the grunts and whistles from sonic fish are 
especially relevant for communication purposes, and during 
predator prey interactions (M yrberg, 198 1 ). There are 
several types of anthropogenic sources used routinely that 
produce intense levels of noise, such as the Low Frequency 
Active Sonar (LFA) used by the military in anti-submarine 
warfare, or from the airgun arrays used during a seismic 
survey of the substrate beneath the seafloor by the 
petroleum industry. These activities can generate noise 
levels in excess of 253 dB (re 1 J.LPa at I m) (Engas et al., 
1996), and are comparable to the noise levels generated by a 
sea floor volcanic eruption, which can produce a source level 
of in excess of 255 dB (re 1 1-1Pa) (Northrup, 1974). Recent 
concerns regarding the impact of these anthropogenic 
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sounds on fish and other marine animals has prompted a 
number of investigations into the effects of intense noise 
exposure on the hearing systems of marine mammals (e.g., 
Costa et al. , 2003; Richardson et al., 1995; Whitlow et al. , 
1997). Additionally, several studies of the behaviour of free 
living fish when exposed to intense noise have been 
conducted (see Dalen and Knutsen, 1987; Engas et al.. 
1996; Pearson et al., 1992; Pickett et al. , 1994), and includes 
the examination of log books from fishing vessels operating 
within 5 km of a concurrent seismic survey (Lokkeborg and 
Soldal, 1993). 

It is known that several crustacean species produce 
sound; for example, the pistol shrimp (Alpheus spp.) 
produces a loud click by rapid closure of a specially 
adapted claw (Schmitz and Herberholz, 1998). The spiny 
lobster (Palinurus vulgaris ) and the rock lobster (Panuliros 
longipes) make alarm sounds by drawing the base of the 
antenna across scale like ridges below the eyestalks; Patek, 
200 I; Meyer-Rochow et al., 1982). Additionally, P. long­
ipes has been shown to take longer emerging from a hide, 
when feeding was preceded by a white noise (Meyer­
Rochow et al., 1982). The female cricket (Gryllus bimacu­
latus) has the ability to localise and respond to male chirp 
sounds (Hedwig and Poulet, 2004; Schildberger and Homer, 
1988), using specially adapted acoustic receptors (tympa­
num), located in the forelegs below the knee (Huber and 
Thorson, 1985). On hearing the chirp, a receptive female 
will orientate itself toward the sound using a behavioural 
response known as phonotaxis (Schildberger and Homer, 
1988). 

The ability of an organism to orientate itself in the 3-D 
marine environment requires the presence of a suitable 
gravity receptor. These receptors occur in many diverse 
organisms throughout the marine environment, and include 
cephalopod (Dilly et al. , 1975; Bettencourt and Guerra, 
2000), crustaceans (Prentiss, 190 I ; Schtine, 1971; Rose and 
Stokes, 1981 ; Patton and Gove, 1992) and fish (Popper and 
Platt, 1983; Bretschneider et al., 2001). In crustaceans, the 
statocyst is located either at the anterior end of the animal in 
the basal segment of each antennule, or posteriorly within 
the uropods, abdomen or telson (Farre, 1843; Cohen and 
Dijkgraaf, 1961; Finley and Macrnillan, 2000). It has been 
well-established that the crustacean statocyst functions as an 
equilibrium organ by initiating corrective movements to 
maintain the animal's position in the water column, (Cohen 
and Dijkgraaf, 1961; Sekiguch.i and Terazawa, 1997; Finley 
and Macmillan, 2000; Popper et al. , 200 I). 

In this work, we study the electrophysiological response 
of the statocyst in an underwater sound field, using the 
Auditory Brainstem Response (ABR) recording technique 
originally developed for use in clinical neurophysiology. 
Until now, this method of acquiring hearing ability has only 
been applied in the auditory assessments of vertebrates 
(Corwin et al. , 1982), though the presence of a!Terents in the 
statocyst, and existence of a neural pathway terminating in 
the supraesophageal ganglion, indicates that the physiology 

of Palaemon serratus is suitable for an ABR type 
investigation. An ABR waveform is acquired by averaging 
conglomerate responses of peak potentials, arising from 
nuclei in the auditory pathway during acoustic stimulation 
(Corwin et al. , 1982; Overbeck and Church, 1992). The 
sweep records the generation of neural waveforms over a 
user-defined time span termed the sweep velocity, and 
measures activity prior to, during and after stimulation of 
the receptor organ. Additional waveform generation by 
neural activities other than those associated with hearing, 
combined with muscular movements, ensure that recordings 
have to be repeated over I 000-2000 presentations before 
clear results can be obtained (Kcnyon et al., 1998; Yan et al., 
2000). The recorded waveforms resulting from each sweep 
are averaged together and produce a recognisable ABR 
waveform, which is then overlaid on the first run, to show 
that the evoked potentials are repeatable. 

The nerves associated with the statocyst and the pathway 
taken to the neuropil of the antennule in the supraesophageal 
ganglion was examined to provide a detailed description of 
how acoustic signals are perceived and transmitted by the 
neuronal pathways. The aim of the present paper, therefore, 
is to examine the morphology of the statocyst receptor array 
of the prawn (P. serratus) using both scanning and trans­
mission electron microscopy (SEM and TEM). Measure­
ments of the electrophysiological response of the statocyst 
and Central Nervous System (CNS) to acoustic stimuli were 
also made, and by ablation, it was demonstrated that the 
evoked response was generated in the statocyst organ. 

2. Materials and methods 

One hundred specimens of the prawn (P. serratus) 
Phylum Crustacea and Class Eumalacostraca of mixed 
sex, and ranging in length from 27 mm (0.1 g) to 71 mm 
(1.9 g) were obtained from wild stock in the South West of 
England using a dip net. Once captured, the prawns were 
transferred to a marine tank divided by a fine mesh screen 
into four equal sized compartments of 50 L each. An Eheim 
type 2013 biological filter with a flow rate of 390 Uh 
maintained water quality and provided aeration by spraying 
filtered seawater back into the tank via the filter outlet pipe 
located 60 mm above the water surface. The ambient noise 
within the holding tank was measured using a hydrophone, 
and the sound pressure level was calculated to be I 02 dB (re 
I !!Pa), with the Eheim pump active. In all of the 
experiments, and in the holding tank, the ambient water 
was kept at a temperature of 18 °C and a salinity of 34 psu. 
When not under experimental protocols, the prawns were 
provided with 14 h of light per day from a fluorescent tube 
controlled by a mains timer switch. Prior to any exper­
imentation the prawns were divided by size into three 
populations, and fed on a granulated feed at a daily rate of 6 
g for the large prawns, 4 g for the medium and 2.5 g for the 
small. 
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2.1. Preparation methodology for general dissection and 
electron microscopy 

The pathway taken by the innervating nerves of the 
statocyst to the supraesophageal ganglion or brain was 
revealed by the anatomical investigation of a 54-mm P. 
serrahts. The prawn was first inunersed in 70% ethanol for 18 
h, to "fix" the specimen prior to the investigation. Exposure of 
the brain and statocyst was achieved by the dissection and 
removal of the dorsal-rostra! section of carapace, the dorsal 
cuticle layer of the peduncle, the left eye and the stomach. 

Specimens of P. serrahts selected for EM examination 
were denied access to materials that could be used as otoliths, 
primarily by having no substrate present in the tanlc Addi­
tionally, uneaten feed and other waste products were removed 
by ensuring that the return flow of water to the filtration 
system was strongest at the base of the tank. Particulate matter 
was drawn by the flow of water through a 5-mm gap under 
each of the tank divisions, through which the prawns could 
not pass. The denial treatment was applied to all I 00 of the 
prawns, with the exception of Fig. 4 which was prepared for 
EM examination within 48 h of capture. Moulting was 
induced in the remaining specimens over a 24-h period using 
a method that involved not changing the ambient tank water 
for 7 days, followed by a sudden change of all the water. 

The statocyst capsules were removed by dissection from 
12 of the specimens, and placed in a conical dish containing 
2.5 mL of 0.9% sodium chloride. The capsules were opened 
by making a lateral incision around the statocyst chamber 
using a fine scalpel. Needlepoint tweezers were used to lift 
the upper section of the capsule, thus exposing the sand 
granules and ultrastructure. The sodium chloride solution was 
removed using a pipette and replaced with a solution of2.5% 
S-Carboxymethyl-L-Cysteine in sodium chloride, which was 
used to hydrolyse the mucus surrounding the statocyst 
receptors. The contents of the dish were gently agitated for 
2 min, after which the solution was removed and replaced 
with chilled fixative (2.5% glutaraldehyde in 0.1 M cacody­
late buffer with 3.5% sodium chloride}. The statocyst 
capsules were then dehydrated through a graded ethanol 
series ranging from 35% through 50%, 70% and 90% to 
absolute ethanol, prior to desiccation using the critical point 
drying method described by Platt ( 1977). Fully desiccated 
statocyst capsules were subsequently mounted on a specimen 
stub using a carbon tab, and coated with c. 8 nm of gold in an 
Emitech K 550 sputter coater (working at approximately 
5 X 10- 6 torr). Finally, the processed specimens were inves­
tigated and photographed using a JEOL JSM 5600 scanning 
electron microscope operated at 15 kV, and a 15-mm working 
distance. Images of the ultrastructure were captured using the 
JEOL software, which saved the micrographs in a bitmap 
format. All measurements were carried out on a PC using the 
analySIS® (Soft Irnaging System) program. The hair cell 
dimensions were measured using polygon length, and 
measurements were recorded in micrometers (J.Lm). Measure­
ments of hair cell dimensions (height, width, etc.) are 

averages taken from at least 12 observations of a feature 
within a similarly orientated cluster of cells, with the 
exception of those in Fig. 4 which were taken from five 
observations. 

2.2. ABR methodology 

In order to concisely answer the question of hearing by 
crustaceans, 12 prawns were stimulated with sound ranging 
in the frequency domain between I 00 and 3000Hz, presented 
at sound pressure levels from 132 dB (re 1 j.LPa at 1 m) to 
below 90 dB (re 1 j.LPa at I m). The response of the prawn to 
acoustic stimulation was measured using a well-established 
audiometry technique, with the results expressed as an 
audiogram or limen of sound spectral sensitivity. The ABR 
measurements of hearing threshold were made using a 
proprietary control and analysis programme, written in a 
Lab View 7 environment. This programme both generated the 
stimulus signals and captured and analysed the response, and 
was installed onto the PC shown in Fig. I a. The stimulus used 
was a sine train (sine wave pulse) which was presented toP. 
serratus at a given frequency and sound pressure level, not 
exceeding 130 dB (re lJ.!Pa at 1 m) for each of the frequencies 
tested. For ABR recordings to be clear, it requires that short 
duration tone bursts are used, especially for the low 
frequencies . Kenyon et al. ( 1998) used a two-cycle burst 
for frequencies between 100 and 300 Hz, a five-cycle burst 
with a two-cycle attack decay for frequencies between 400 
and 3000Hz. Amplification of the sound was achieved using 
a Pioneer type SA-420 amplifier and a 200-mm Eagle L032 
loudspeaker with a frequency response range of 4G-18,000 
Hz. Additionally, the loudspeaker was placed inside a 
Faraday cage and connected to a centralised earth point 
located in an adjacent room where the PC, amplification and 
analysis equipment was set up. Connecting wires were fed 
through a 1 00-mm port in the partitioning wall. 

The procedure used to acquire the acoustically evoked 
potentials was approved by the United Kingdom Home 
Office 11.03.03. The test subjects were placed into a flexible 
cradle formed from a soft nylon mesh rectangle saturated 
with seawater. Oxygenated water kept at a temperature of 18 
°C was gravity fed at an adjustable flow rate of 3 mL/s and 
directed toward the gills. The water was held in an aerated 
reservoir positioned in an adjacent room, and fed to the 
prawn through a 4-mm-diameter plastic tube. The prawn 
was first placed lengthwise and centrally on an 80X60 mm 
rectangle of fine nylon netting, which was wrapped firmly 
around the cephalothorax and pleon, and the two sides of the 
net were held together using the clip shown in Fig. I b. 

The clip was placed in a retort stand clamp fitted with ball 
joint electrode manipulator arms, and the aerated water pipe 
(detailed in Fig. I b). During the procedure to position the 
electrodes detailed in Fig. 2, the specimen and clamp were 
suspended over a plastic tray, and aerated water was 
supplied to the prawn. A retort stand and the experimental 
tank (L 450 mm x W 300 mm x D 200 mm) were placed on a 
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Fig. I. (a) Schematic of the ABR audiometry system, aod (b) the clamp used to bold the prawn in position, and manipulate the electrodes duriog the 
audiological tests. 

table with vibration inhibiting properties, located in an 
underground anechoic chamber L 3 m x W 2 m x H 2 m. 
Working under a MEUl binocular microscope, two small 
holes were made in the cuticle layer using a lancet, 
penetrating the carapace to a maximum depth of 0.3 mm. 
The reference electrode was located behind the supra-orbital 
spine, close to the neuropil of the antennule, and the record 
electrode was located in the peduncle close to the statocyst, 
at the junction between the lateral antennular and otic ganglia. 
The clamp assembly with the specimen and sited electrodes 
were then suspended from the retort stand positioned over 
the experimental tank, and the prawn stationed 5 mm below 
the surface of the water. After the hearing assessment, the 
prawns were relocated to a holding tank for observation, 
prior to being returned to the divided aquarium. 

The electrophysiological response of the prawn to 
acoustic stimulation was recorded using the two sub­
cutaneous electrodes (Fig. 2), which were connected to the 
MS6 preamplifier by I m lengths of screened coaxial cable 
with an external diameter of 1.5 mm. The outer insulating 
layer of the coax was removed 15 mm from the end where 
the electrode tip was to be fiXed, and the screening layer 
removed l 0 mm from the cable end. The inner insulating 
material was then trimmed by 2 mm, and the exposed inner 
wire (0.5 mm diameter) was tinned with silver solder and 
joined to a 10-mm-long silver wire (0.25 mm diameter), 

Glass pipette 

~ 

11 
0.3 mm Shaft length 

silver electrode tip Epoxy resin I 00 mm 

0.25 mm0 

Screened 
coaxial cable 

1.5 mm 0 

Fig. 2. Schematic of the electrodes used to record the evoked potentials. 

tapered to a fme point. The assemblage was pushed through a 
l 00-mm glass pipette with an internal diameter of 4 mm, 
until 0.4 mm of the gold wire was exposed. The remaining 
space inside the pipette was filled with a clear epoxy resin, 
and then trimmed to expose 0.3 mm of silver tip through 
which the AEP could be conducted. The impedance of the 
electrodes, both between the outer shielding and inner core, 
and the silver tip and MS 6, were tested using an M 205 
precision digital multimeter. The impedance between the tip 
and pre-amplifier was found to be 0.2 n for both electrodes, 
and an open circuit was recorded between the outer shielding 
and inner core. The evoked response was amplified and 
digitised to 12 bits resolution and recorded. This process was 
repeated 2000 times and the response averaged to remove 
electrical interference caused by neural activities other than 
audition, and the myogenic noise generated by muscular 
activity. Each measurement was repeated twice; this aids in 
separating the evoked response, which is the same from trace 
to trace, from the myogenic noise, which varies in two 
successive measurements. After the averaging process, the 
evoked potential could be detected, following the stimulus 
by a short latency period of 5 ms or so. The latency is 
accounted for by the time it takes the sound in air to travel the 
l m to the prawn, plus l -2 ms response latency. 

2.3. The sound field 

The properties of the sound field are especially relevant 
when comparing the audio capabilities of both pressure­
sensitive and motion-sensitive fish in the near field. In a 
small laboratory set-up, the complexities associated with 
independently measuring sound pressure and particle motion 
are compounded by the reflectivity of the tank sides and 
base. For this reason, a number of experiments have used air­
mounted transducers to successfully generate sounds under-
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water (e.g., Fay and Popper, 1975; Yan et al., 2000; 
Akamatsu et al., 2002). The principal advantage of such a 
system is that as the sound source is located at a distance of 1 
m from the air/water interface, the moving part of the 
transducer does not contact the water and generates near­
field displacements. In this situation, the pressure and motion 
of the water adjacent to the fish ear can be considered as 
being equal (Hawkins, 1981 ). The stimulus tones presented 
from the loudspeaker to the prawn were calibrated using an 
insertion calibration. A calibrated Bruel and Kjaer Type 8106 
Hydrophone (Serial Number 2256725) was placed in the 
tank and positioned adjacent to the shrimp cephalothorax 
region. The signal from the hydrophone was amplified using 
a PE6 preamplifier and digitised using a National Instru­
ments DAQ-6062e interface card at a sample rate of 300 kS/ 
s. In case of non-proportionality of the response of the 
loudspeaker, measurements of the sound pressure were taken 
for each amplitude and frequency setting used. Conse­
quently, a total of 110 individual calibration measurements 
were taken in the calibration process. These calibrated levels 
were then applied to the threshold defined by ABR 
measurement to provide calibrated audiograms with pressure 
levels traceable to International Standards. 

2.4. Ablation 

Specimens of P serratus selected for the ablation 
procedure were first tested for an electrophysiological 
response to a 500-Hz sound presented at 110 dB (re 1 J.lPa 
at 1 m). Removal of the statocyst was achieved by making a 
circular cut in the cuticle layer above the chamber, and 
withdrawing the capsule using needle point tweezers (a 
procedure that took a few seconds). A sham operation was 

also performed, and the prawns were retested 1 h after 
cutting around the chamber, prior to removal of the 
statocyst. The prawns were then placed into an empty 
compartment of the holding tank and allowed to recover for 
24 h, prior to being retested on the electrophysiology 
apparatus. The post ablation recovery period was included 
to give the prawn's time to settle after the procedure, as the 
metabolic state of the organism can have a detrimental affect 
on the evoked potential (Corwin et al. , 1982). 

3. Results 

3.1. Innervation of the statocyst 

In decapod crustaceans, the lateral antenular and otic 
nerves extend with bi-lateral symmetry from the neuropil of 
the antennule; a region located centralJy in the brain 
(Prentiss, 1901 ), to the statocyst and tactile bristles of the 
antennules. The brain of P se"atus lies close to the rostra] 
extremities of the carapace, ventral to the eyestalks and 
posterior to the antennules. On leaving the anterior region of 
the brain (detailed in Fig. 3a and b), the lateral antennular 
(gla.) and otic ganglia (go.) project forward, and enter the 
antennule close to the inside edge of the peduncle. From 
there, the otic ganglia branches outward away from the main 
antennular nerve, which continues to project forward to the 
tactile receptors. 

3.2. Scanning electron microscopy 

The examination of the complete statocyst (prior to 
removal of the sand granules) revealed ultrastructural cell 

Fig. 3. (a) Dorsal view of the supraesopbageal ganglion and lateral antennular and otic ganglia from P. serratus (with the statocyst capsules and optic neuropil 
removed). jbr.o. peripheral otic nerve fibres, gc. commissural ganglion, g/a. lateral antennular ganglion, no. neuropil of the antennule, gs. supraesopbageal 
ganglion, go. otic ganglion, lu. lumen of the statocyst, pa.r.l. peduncle of the right and left antennule. (b) Dorsal view of the brain and major nerve ganglia 
dissected from P. serratus . gs. supraesophageal ganglion, gla. lateral antennular ganglion, go. otic ganglion, on. optic nerve, gc. commissural ganglion. Ro. 
Rostra) direction. 
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Fig. 4. (a) Rcocptor cell projections c:ootacting sand granules in the statocyst of P. serratus. mu. mucus, rb. rcceptor base, sjl. statocyst floor, sg. sand granule, 
sh. hair cell shaft. (b) The 40 jiiillower cell body (cb.), the 100 jiiil upper tapering sections (11.1'. ) and thread like strands (ts.) foiDld enmeshed with the sand 
granules, orientated toward a central point eh. cell body. 

projections extending into the mass of sand granules 
shown in Fig. 4a. The cells project from small apertures 
in the statocyst flo.or about 7 J.UD in diameter; through 
which the receptor connects to the peripheral fibres of the 
otic ganglion. At a distance of 2 J.UD from the base, the cell 
widens and forms a bulb (rb. in Fig. 4a) which has a 
diameter of 9 J.UD at its widest point, and displays a series 
of longitudinal ridges that run around the bulbous 
structure. The uppermost portion of the cell base narrows 
to 0.8 j.lDl, forming a fulcrum point from where a 3.5-J.UD­
diameter hair shaft extends 40 j.lm into the lumen of the 
statocyst, and contacts with the sand granules (sg. ) . The 
overall view of the receptor array and the tips of the cells 
are precluded from view by the sand and a fine structure, 
consisting mostly of residuals left by the desiccation 
process of a gela.tinous mucus (mu.) that in life surrounds 
the sand and cell tip. The view of the statocyst ultra­
structure (without sand granules attached) in Fig. 4b (taken 
perpendicular to the horizontal plane) shows the hair cell 
array from a specimen of P. serratus denied sand for 7 
days post moulting. 

The absence of sand granules reveals more than 70 
vertical cell projections arranged in a row shaped like a 
crescent, covering 0.073 mm2 of statocyst (Fig. 5b). Each 
hair cell is orientated toward a common central region (er), 
and the shortest hairs (<120 J.UD) were found proliferating in 
a band running down the left side of the array, whilst the 
longest hairs (> 170 j.lffi) were found in the right caudal 
quadrant The statocyst capsule is elliptical in shape, and the 
walls (Fig. 5b) symmetrically curve inward toward the base, 
where the receptor cells are located on a mound rising 40 
J.UD from the floor of the capsule. From the crest of the 
mound, the receptor hairs project upward into the lumen of 
the statocyst at angles between 27o and 74o from the 
horizontal plane. Behind the hair cells, in the space between 
opposing receptors, the mound flattens and forms a plateau 
(p/), which is void of any ultrastructure. 

3.3. Transmission electron microscopy 

The TEM section in Fig. 6a shows a cross section 
through the hair cell base and structures present in the 

Fig. 5. (a) Dorsal view of the statocyst from a 55-mm prawn denied sand for 7 days post moulting. cr. central region. (b) Latenll view of the statocyst cr. central 
region, he. bair cell, m. mound, sw. statocyst wall, 11.1'. upper tapering section of hair eell. 
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Fig. 6. (a) TEM micrograph of the hair cell base from the statocyst of P. se"atus,ft. fibrous strands, cl. cuticle layer, cno. cuticular notch, n. nuclei, pnf 
peripheral nerve fibre, sv. synaptic vesicles. (b) Saccular hair cell and innervating nerve fibres from the ear of D. labrax (from Lovell et al., in preparation), cb. 
cell body, cp. cuticular plate, k. kinocilia, n. nucleus, pnf peripheral nerve fibres, s. stereocilia (c) SEM micrograph of the statocyst hair cell from P. se"atus, 
cb. cell base u. tapering section. (d) SEM micrograph of the ciliary bundles projecting from the epithelial surface of D. labrax (From Lovell et al ., in 
preparation), k. kinocilia, s. stereocilia. Bars=5 lUlL 

Fig. 7. (a) TEM section through the cell base from P. serratus, showing the cell nucleus (n.), and the beginning of the angled cell tip (et. ), and vesicles (v.) 
which appear to be associated with the fibrous strands (hatched area). (b) Fibrous strands (fs.) of the cell root, and the synaptic vesicles (sv.) located in the 
peripheral nerve bed. 
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Fig. 8. Audiogram for P. serratus, determined visually from the sequential 
ABR waveform data, and by calculating the RMS of threshold SPL values 
of the stimulus sounds, presented at I 00, 300, 500 750, I 000, 1500, 2000 
and 3000 Hz tone bursts. 

peripheral nerve bed, from the statocyst of P. serratus. 
Fig. 6b shows a cross section through a hair cell from 
the saccule of the European sea bass (Dicentrarchus 
labrax), which has been included in this section along 
with the SEM of the hair cell (Fig. 6d) for comparative 
purposes. The two hatched lines drawn on the prawn hair 
cell SEM micrograph presented in Fig. 6c shows the 
locations from where the statocyst TEM sections in Fig. 
6a was taken. 

The "root" of the statocyst hair cell is buttressed by 
supporting cells with large nuclei (n. ), and fibrous strands 
(Js.) resembling actin filaments, which can be seen extending 
into the peripheral nerve bed through the cuticular plate. The 
filaments may help anchor the hair cell into position, and 
work in conjunction with a small notch in the cuticle layer 
(cno.) containing part of the lower cell body. The fll.ament 
strands terminate 15 ~m below the cuticle layer, in a region 
containing rounded structures less than 0.75 ~m in diameter, 
which are thought to be the synaptic vesicles between the hair 
cell and the peripheral otic nerve fibres (pnf) . Close 
examination of the TEM section through the statocyst hair 
cell body (Fig. 7a) reveals that it contains a single nucleus (n.) 
positioned at the top of the cell. The hatched line in the basal 
region of the cell marks the perimeter of two vesicles, which 
appear to be associated with the fibres in the cell root. Fig. 7b 
shows the fibrous strands as they terminate in the synaptic 
vesicles (sv.) located 15 ~m below the cell base. 

3.4. Electrophysiological response to auditory stimuli 

In order to concisely answer the question of hearing by 
crustaceans, 12 prawns of mixed sex were stimulated with 
sound ranging in the frequency domain between 100 and 
3000 Hz, presented at sound pressure levels from 130 dB 
(re 1 J.LPa at 1 m) to below 90 dB (re I J.LPa at 1 m). The 

ABR recording technique has been successfully applied in 
the auditory assessments of both mammalian and non­
mammalian vertebrates. An ABR waveform is acquired by 
averaging conglomerate responses of peak potentials, 
arising from nuclei in the auditory pathway during acoustic 
stimulation. The AEPs presented in Fig. 7 were recorded 
using the Medelec MS 6 biological amplifier with 
subcutaneous electrodes positioned using a jointed clamp 
assembly, and the prawn held in place using a fine mesh 
nylon cradle. The reference electrode was located in 
proximity to the neuropil of the antennule, and the record 
electrode located at the junction between the lateral 
antennular and otic ganglia. The acoustically evoked 
neural waveforms presented in Fig. 7, were recorded from 
P. serratus in response to tone bursts ranging in frequency 
from 500 to 3000 Hz, and averaged over 2000 stimulus 
presentations (100 and 300 Hz have not been included for 
scaling reasons). The waveforms show a series of peaks 
contiguous with the stimulus sound. 

3.4.1. Threshold determination 
Threshold responses from twelve 50-55 mm (medium) 

prawns were determined visually from the sequentially 
arranged waveforms for each frequency tested, in accord­
ance with Kenyon et al. ( 1998). Fig. 6 shows ABR 
waveforms evoked from P. serratus in response to a 500-
Hz tone burst, presented initially at between 120 and 132 dB 
(re 1 J.LPa at I m), and attenuated in steps of 4 dB (re 1 ~Pa at 
I m) ordinarily, and 2 dB (re 1 ~Pa at 1 m) as the hearing 
threshold was approached. When two replicates of wave­
forms showed opposite polarities (see 110 dB traces in Fig. 
6), the response was considered as being below threshold 
(cf. Kenyon et al., 1998). 

0 0.004 0.008 

Time (s) 

120 <18 

0.012 0.016 

Fig. 9. ABR waveforms from P. serratus in response to a 500-Hz tone burst 
attenuated in 2-dB steps. Averaged traces of two runs (2000 sweeps each), 
for each intensity are overlaid and arranged sequentially. Bar= I flY. 
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3.4.2. Audiogram for P serratus 
The audiogram shown in Fig. 8 was produced using 

sequential ABR waveform threshold data, acquired from 
frequencies of 100--3000 Hz, presented in steps between 
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200 and 500Hz. The hearing thresholds of 12 mixed-sex P 
serratus was measured, and follows a ramp like profile, 
determined by calculating the lowest intensity stimulus 
sounds (recorded underwater using the hydrophone located 
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Fig. 11. Evoked potentials from P. serratus to a 500-Hz tone presented I 0 dB above threshold and averaged over 2000 sweeps. Runs a and b were recorded 
with the statocyst present, after cutting round the cuticle layer; whilst c and d were recorded 24 h after removal of the organ (the electrodes were removed and 
replaced between each run). Y axis scale=fivX 100. 



98 J.M. Love/1 et al. I Comparative Biochemistry and Physiology. Part A 140 (2005) 89- 100 

adjacent to the antennule) that evoked a repeatable ABR 
response (112 dB in Fig. 9). The profile follows a steady 
downward gradient to 100 Hz (the lowest frequency tested), 
and indicates that the "besf' frequency in terms of threshold 
could be below this frequency. 

3.5. Ablation 

Removal of the statocyst was achieved by making a 
circular cut in the cuticle layer above the chamber, and 
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withdrawing the capsule using needle point tweezers (a 
procedure that took a few seconds). Prior to removal of the 
statocyst, the prawn was retested with the cuticle layer cut as 
a sham operation. This procedure revealed that the AEP was 
no longer present, and was probably due to an imbalance in 
the hydrostatic pressure inside the antennule. The sham 
operation data presented in Fig. I 0 were a.cquired by 
retesting the prawns I h after cutting around the chamber, 
prior to removal of the statocyst, and shows that the AEP 
eventuaUy returns. 
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Fig. 12. Auditory evoked potentials from P. serratus to tone bursts of500, 750, 1000, 1500, 2000 and 3000 Hz, and averaged ovu 2000 sweeps. The AEP at 
each amplitude tested has been ovulaid, and shows a reduction in the response latency with increasing frequency. Scalc=jtvX I 00. 
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On removal of the statocyst, the prawns were placed in the 
empty fourth compartment of the holding tank, and allowed 
to recover for 24 h, prior to being retested on the electro­
physiology apparatus. The post ablation recovery period was 
included to give the prawn's time to settle after the procedure, 
as the metabolic state of the organism can have a detrimental 
affect on the evoked potential (Corwin et al. , 1982). Addi­
tionally, the recovery period was included to allow for the 
equalisation of the hydrostatic pressure within the antennule. 
The evoked potentials shown in Fig. 11 were recorded from a 
45-mm prawn, in response to a 300-Hz tone, presented at an 
intensity I 0 dB above threshold. The first two runs (A and B, 
with two replicates of each run) were acquired from the prawn 
prior to the ablation procedure, and the subsequent two runs 
(C and D, with two replicates of each run) were recorded 24 h 
later. The electrodes were removed and replaced between 
each run, to confirm that the response was consistently 
repeatable, and to ensure that the absent responses in runs C 
and D was due to the ablation experiment, and not an 
extraneous factor associated with electrode placement. 

4. Discussion 

The hearing ability of the prawn (P. serratus) has been 
clearly demonstrated by this work using ABR audiometry, 
and offers conclusive evidence of low-frequency sound 
detection of frequencies ranging from I 00 to 3000 Hz by an 
invertebrate from the sub-phylum crustacea. For hearing in 
the strictest sense to be attributed to an organism, the 
physiological response sound should be initiated by a 
specialised receptor mechanism (Myrberg, 1981 ), shown 
by this work to be generated in the statocyst. Current 
literature states that this organ is purely responsive to 
angular rotations and strong vibrations propagated directly 
through a solid medium, and is not responsive to sounds 
propagated in either air or water (Cohen and Dijkgraa f, 
196 1 ). It is highly probable that Cohen and Dijkgraaf did 
not find evidence of hearing due to masking of the AEP by 
neural activities other than audition; and from myogenic 
noise generated by muscular activity. To produce clear 
waveforms of an auditory response, it is recommended that 
AEP recordings be averaged for at least l 000-2000 stimulus 
presentations (Kenyan et al. , 1998; Yan et al. , 2000). The 
amplitude and shape of the electrophysiological response 
from P. serratus shown in Figs. 9 and 12 bear a remarkable 
similarity to AEPs generated by fish and higher vertebrates 
(see Corwin et al., 1982; Kenyan et al. , 1998; Yan, 2002). 

The two statocyst organs found in P. serratus Lie adjacent 
to one another with medial symmetry, in the basal peduncle 
segment of the antennule. As can be seen in Figs. 4 and 5a, 
the statocyst is innervated by the otic ganglion, which 
emanates from a bed of peripheral nerve fibres lying under 
the mound directly beneath the receptor array (see Fig. 6a). 
The otic nerve terminates in the neuropil of the antennule, 
which is located in the ventraVanterior region of the brain. 

The dissection of the 54-mm prawn in Fig. 3a shows that the 
total length of the neuronal pathway taken by the otic nerve, 
from the centre of the statocyst organ to the centre of the 
supraesophageaJ ganglion, is approximately 600 lll11· How­
ever, the direct distance between the neuropil and the 
peripheral nerve fibres located below the statocyst, was 
found to be 500 lUll· This is due to the curved pathway taken 
by the otic nerve, which first projects forward with the 
lateral antennular ganglion along the inside edge of the 
peduncle for 300 lUll· From here, the otic ganglion branches 
away from the antennular ganglion at angles approaching 
45° either side of the midline, from where it extends for a 
further 300 lUll to the centre of the peripheral otic nerve bed. 
The schematic in Fig. 13 summarises the physiological 
work and shows the hair cells and the sand granule otoliths, 
along with the pathway taken by the otic ganglion, to the 
neuropil of the antennule and supraesophageal ganglion. 

It is clear by the evidence presented in this work that the 
perception of sound in the frequency domain by P. serratus 
is similar in range to hearing in generalis! fish, which is 
capable of both hearing and responding to sounds within a 
frequency bandwidth of 30 Hz to around 2000 Hz 
(Bretschneider et al. , 200 I), and is reliant on the phase 
variance between the three otolithic organs and the 
surrounding flesh to stimulate the sensory hairs of the inner 
ear (Lu, 2004). The audiogram presented in Fig. 8 follows a 
similar ramp like profile to those obtained from the cichlid 
A. oce/latus, which is considered to detect a best frequency 
of lOO Hz (Kenyan et al. , 1998); however, lower frequen­
cies were not tested. We therefore conclude that at least one 
species from the invertebrate sub-phylum of crustacea, is 
sensitive to the motion of water particles displaced by low­
frequency sounds ranging from l 00 Hz up to 3000 Hz. 
Although a number of physiological and behavioural 
experiments have been conducted on fish to assess the 
impact of noise on the auditory system none have, so far, 

Sand~ 
Granules~ 

Body of /J. //' 
hair cell 

Neuropil of the antennule 
and supraesophageal 

ganglion 

Fig. 13. Schematic of the statocyst recepror array and nerve pathway to the 
supraesophageal ganglion from P. serratus. 
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been directed toward the crustaceans, a major link in the 
oceanic food chain. The long-term effects of intense low­
frequency sounds on the shrimp hearing ability and ecology 
is not known, but the data presented here shows that there is 
a need to include crustaceans in such an assessment, in order 
to gain a more insightful perspective of the effect of intense 
noise in the marine ecosystem. 
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The polarization of ultrastructural ciliary bundles from hair cells in the inner ear of the sea scorpion 
Tm~rulus bubalis was studied using a scanning electron microscope, revealing arrays of ciliary bundles 
with diverse orientations on each of the sensory epithelia. Members of this order are known to 
produce sound, though results of this study show no significant variation from the standard receptor 
patterns found in the hearing system of many silent marine teleosts. This is the first time that the 
ultrastructure of T. bubalis has been studied, and this work presents a new set of polarization 
patterns, which provide anatomical information important in understanding electrophysiological 
aspects of fish hearing from an ecological perspective. o 2005 The FIShcrios Society of the British Isles 
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INTRODUCTION 

The fish inner ear is divided into two regions, the pars superior and the pars 
inferior (Retzius, 188 1 ). The former responds primarily to movements of the 
body and postural changes, while the latter responds to both gravistatic and 
acoustic stimuli (Jenkins, 1981 ; Popper & Pla it, 1993). The pars inferior corn­
prises two fluid filled pouches, the saccule and lagena, with each pouch contain­
ing a crysta lline calcium carbonate otolith (Carlstr6m, 1963). Of these end 
organs, the saccule is considered to be the major auditory organ in most 
teleosts, although there is evidence of a functional overlap between all three 
otolith organs (Popper & Fay, 1993). For fishes to locate the source of a sound 
in both the horizontal and vertical planes, they rely on the stimulation of ciliary 
bundles oriented specifically along the sound propagation axis (Lu & Popper, 
1998). It is known (Enger et al. , 1973; Hawkins & Sand, 1977; Fay, 1997) that 
the morphological polarities of sensory hair cells in the otolithic organs are 
fundamental to the directional hearing capabilities of fishes. In general, 
azimuths of peak sensitivity tend to lie parallel to the plane of the otolith and 
sensory epithelium (Enger et al., 1973; Sand & Hawkins, 1973; Fay, 1997). 
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I NNER EAR ULTRASTRUCTURE OF THE SEA SCORP IO N 837 

Examination of the orientation of the ciliary bundles provides evidence of a 
correlation between the morphological polarization of receptor cells and the 
magnitude of an electrophysiological response to a sound (Popper & Fay, 1993). 
Excitation occurs when stereocilia are bent toward the kinocilium during the 
passage of a wave front, resulting in the cell becoming depolarized relative to its 
resting potentia l (Clegg & Mackean, 1994). Inhibition occurs when the bundle is 
deflected in the opposite direction, and results in the hyperpolarization of the 
cell (Platt & Popper, 1981 ). The magnitude of both excitation a nd inhibition are 
a cosine function o f the angle between the direction of the stimulus and the 
direction at which sensitivity is greatest (Enger, l965; Popper, 1983). The 
detection and localization of a sound source is of considerable biological 
importance to many fish species, and is often used to assess the suita bility of 
a potential mate or during territorial displays (Nordeide & Kjellsby, 1999), and 
during predator prey interactions (Myrberg, 1981). 

Jensen (1994) used a light microscope to reveal ciliary bundle orientations in 
the end organs of the upside-down catfish Synodontis nigriventris David, along 
with observations of innervating nerve distributions. Lu & Popper (1998) exam­
ined the polarization of ciliary bundles in the end organs of the sleeper goby 
Dormitator latifrons (Richardson) using immunocytochemicals and a confocal 
imaging technique. Several a uthors (Barber & Emerson, 1980; Popper, 1981; 
Yan et al., 1991 ; unpubl. data), however, have used a scanning electron micro­
scope (SEM) to study surface detail of the inner ear ultrastructure, and Tuset 
et al. (2003) used SEM to study otolith sculpture. This was the approach 
adopted in the present study for observing both the o toli th and ultrastructure. 

MATERIALS AND METHODS 

The preparation methodology employed in this study was based on techniques used by 
Pla tt (1977). Six fresh sea scorpion Taurulus bubalis (Euphrasen) heads taken from individ­
uals ranging in size from 91 to 97mm fork length (LF) (13·8 to 14·2g) captured in the 
Plymouth Sound a rea of south-west England. Each (with the exception of the 97 mm fish) 
was trimmed to a small block containing both ears. The 97 mm fish was sectioned along the 
centre line and photographed, to provide information on the occurrence of gas holding 
structures (e.g. swimbladder) in connection with, or in close proximity to the inner ear. In 
the remaining specimens, the cranial cavity was opened dorsally and the brain removed by 
dissection and aspiration. Chilled fixative (2·5% glutaraldehyde in 0·1 M cacodylate buffer 
with 3·5% sodium chloride) was perfused into the saccule, and vented through a small 
incision in the chamber wall, located well away from the needle entry point and macula . 
The ears and surrounding tissue were subsequently immersed in chilled fixative for 48 h 
prior to dissection of the inner ear from the cranium. 

The three otolithic chambers were opened in the regions opposing the macula, on the 
ventral side of the otolith away from any of the sensory arrays. The incision in the 
membrane was extended until it was of sufficient size for the macula to be washed from 
the surface of the otolith, using a pipette and a small quantity of excess fixative . The 
otolith capsules were then dehydrated through a graded ethanol series ranging from 35 
through 50, 70 and 90% to absolute ethanol, prior to desiccation using the critical point 
drying method described by Plait (1977). F ully desicca ted otolith capsules were subse­
quently mounted on a specimen stub using a carbon tab, and coated with c. 8 nm of gold 
in an Emitech K 550 sputter coater (working at c. 5 X w-6 Torr). Finally, the processed 
specimens were investigated and photographed using a JOEL JSM 5600 scanning elec­
tron microscope operated at 15 kV, and a 15 mm working distance. The orientation of the 
ciliary bundles in the inner ear was defined by drawing a line from the shorter ciliary 
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bundles towards the longer kinocilium (Platt, 1977). This procedure was applied and 
repeated across the surface of the macula a t 100 J.lffi intervals, or when there was an 
abrupt change in ciliary bundle orientation. 

RESULTS 

The dissection ofT. bubalis, both in cross-section (Fig. l) and by removal of 
the internal organs through a ventral incision into the body cavity did not reveal 
the presence of a swim bladder in any of the specimens investigated. This finding 
reflects the benthic lifestyle of T. buba/is, and other members of the Cottidae 
such as the short-horn sculpin Cottus scorpious L. which also lacks a swim­
bladder (Enger & Anderson, 1967). An additional examination of the cranial 
cavity in the region surrounding the inner ear (Fig. 2) did not reveal the presence 
of any gas holding structures in close proximity to any of the otolithic end 
organs. The saccule and lagena were loosely tied to the cranium at the posterior 
end of the saccular chamber, which facilitated removal of the complete organs 
for SEM preparation prior to the anatomization of the fish. 

THE SACCULE 

The saccule of T. bubalis is the largest of the inner ear end organs and 
contains an otolith known as the sagi tta or a rrowhead (Fig. 3), and the saccular 
macula (Fig. 4). ln T. bubalis, the dorsal margin of the sagitta is relatively 
smooth, and ends with two rounded lobes, with the most forward projecting 
known as the antirostrum. The sides of the otol ith curve down toward the 
ventral margin, and terminate at the sharply rounded rostrum, and the rounded 
caudal margin. The excisura lies between the rostrum and an tirostrum, and is 
moderately wide in T. bubalis, and has a very shallow excisural notch. 
The ostia-caudal differentia tion is a constriction pushing midway into the 
colliculum, and divides the depression into the cauda, and the slightly larger 
ostium. The crista inferior is a low ridge running along the ventral edge of the 

F1o. I. Cross-section through a 97 mm LF Taurulus bubo/is, showing the internal organs and cranial 
cavity (the brain, saccule and lagena have been removed from the specimen). Bar = IOmm. 

o 2005 The Fisheries Society o f the British Isles, Journal of Fish Biology 2005, 66, 836-846 
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FIG. 2. The semicircular canals and end organs of the pars superior (the sacculus and lagena are not present in 
the figure as they were removed for SEM preparation). aa, anterior ampulla; ae, ampulla externa; ap, 
ampulla posterior; se, floor of the saccular chamber (annotations after Retzius, 1881 ). Bar= I mm. 

FIG. 3. The sagitta from Taurulus buhalis. ar, antirostrum; cc, colliculi cauda; eo, colliculi ostium; 
ci, crista inferior; ex, excisura; exn, excisural notch; ocd, ostia-caudal differentiation. Anterior (A), 
caudal (C), dorsal (D) and ventral (V) represent the orientation of the otolith within the fish. 
Bar= I mm. 

c 2005 The Fisheries Society of the British lsles,Journal of Fish Biology 2005, 66,836-346 
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colliculum, from mid-ostium to mid-cauda, though it is poorly developed at the 
extremes (the crista superior was absent from all specimens examined). The 
macula (Fig. 4) is located in the colliculum or medial sulcus, a depression on 
the surface of the sagitta, and found here to be similar in shape to the associated 
epithelium. The low power micrograph of the saccular macula from the left ear of 
T. bubalis has been annotated with white arrows to show the overall orientation 
of the ciliary bundle proliferations viewed perpendicular to the macula surface. 
Detail of the ciliary bundles and their respective orientations can be seen in 
Figs 5, 6 and 7, which were taken at high power. The saccular hair cells from 
each of the six specimens of T . bubalis are divided into four discrete orientation 
groups, with ciliary bundles in each group orientated in the same overall direc­
tion. The ciliary bundles in the rostra! locus of the macula (Fig. 5) are divided into 
two groups, with caudally orientated bundles on the dorsal half of the macula, 
and rostrally orientated bundles on the ventral portion. The ciliary bundles on the 
caudal locus of the macula (Fig. 6) are orientated dorsally in the dorsal region 
and ventrally in the ventral region. Cells of similar bundle size and orientation 
occupied large areas of the epithe)ja, separated from cells with altemate orienta~ 
tion and size by a narrow transitional zone; in some regions ciliary bundles 
immediately switch polarity as can be seen in Fig. 7. By counting the numbers 
of cells found pro)jferating in comparable areas of macula from each of the fish 
investigated, and by measuring the surface area of the macula using the ImageJ 
graphic analysis software (http://rsb.info.nih.govfij/), it was possible to approxi­
mate the number of ciliary bundles found in the saccule of T. bubalis. The overall 
hair cell count was calculated to be c. 30 000 for a 90 to I 00 mm LF fish , and the 
average length of the receptors found away from the perimeter in the ostium 
region of the macula were found to be c. 8 J.Uil· This contrasts with the average 
receptor length of 6 J..Lm found on the macula of the bass Dicentrarchus labmx 
L. (J.M. Lovell, M.M . Findlay, G. Harper, R.M. Moate & D .A. Pilgrim, unpubl. 
data), which was investigated for a related SEM study. 

f iG. 4. The saccular macula from the ear of Taurulus bubo/is (c::::>, hai r cell polarizations). Anterior (A) 
and dorsal (D) represent orientation of the organ within the fish. Bar = 500 11fll· 
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FIG. 5. Ciliary bundles from the osteum of the saccular epithelium: (a) dorsal and (b) ventral quadrdnt. 
Bars= 21ffil. 

THE LAGENA 

The Jagena is the second of the end organs found in the pars inferior, and in 
T. bubalis it is c. one tenth the size of the saccule, and contains the asteriscus 
(star shaped) otolith [Fig. 8(a)). The lagena is attached to the caudal end of the 
saccule, and the sensory macula [Fig. 8(b)] lies a lmost perpendicular to the 
horizontal plane of the fish. The orientation of ciliary bundles proliferating on 
the Jagena epithelia, which are divided into two groups with opposing orienta­
tions is shown in Fig. 8(b ). The flow is vertical at the ventral end of the macula, 
with ciliary bundle polarities becoming increasingly horizontal as the dorsal 
extremities of the macula are approached [shown by the white arrows in 
Fig. 8(b)]. The two regions were sub-divided into 14 sectors and studied at 
magnification factors of between x 1000 and x 5000. Detail of the ciliary bun­
dles and their respective orientations can be seen in Fig. 9, which shows cells 
from a mid ventral region of the macula. 

THE UTRICLE 

The utricle is located in the anterior ampulla of the pars superior, a small 
chamber containing an otolith known as the lapillus (small rock) [Fig. IO(a)] 

FIG. 6. Ciliary bundles from the caudal locus of the saccular epithelium: (a) dorsal and (b) ventral 
quadrant. Bar = 2 tun. 
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Fta. 7. Ciliary bundles from the osteum with opposing orieotatioos. Bar = 2 J.Ull· 

and the macula [Fig. IO(b)}. The greatest densities of ultrastructural ciliary 
bundles were found to proliferate along the horizontal plane of the utricular 
macula in T. bubalis, as opposed to the near vertical arrangement of the 
saccular and lagena macula. The polarity of the receptors remained fairly 
constant across the epithelial surface, with ciliary bundles from a common 
origin flowing outward across the central (striola) region of the macula 
[Fig. ll(a)}. The polarization of ciliary bundles along the left perimeter of the 

Fta . 8. (a) The oto lith asteriscus and (b) the associated lageoa epithelium (c::::>, ciliary bundle polarizatioos). 
D, dorsal margin; R, rostrum. Bars= 200 llffi. 
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FIG. 9. Ciliary bundles from the lagena epi thelia: (a) rostra I and (b) caudal quadrant. Bars = 2 J.lm. 

striola became fully opposed in the rostra! region of the macula [Fig. 11 (b)], 
extending over halfway down the right side. 

DISCUSSION 

Fishes possessing a connection between the inner ear and swimbladder are 
known collectively as hearing specialists (Popper & Fay, 1993, 1999), and are 
responsive to the sound pressure component of an acoustic signal. Many 
specialists have an upper hearing response from 3 to I 0 kHz (Hawkins, 198 I), 
although it is known that the American shad (A iosa spp.) can detect sounds up 
to I 80kHz (Mann et al. , 200 I). The hearing system of fi shes lacking this 
connection between the swimbladder and inner ear are known as hearing 
generalists, and rely on the shear fo rces generated by a phase differential 
between the dense otolith and less dense surrounding medium to stimulate the 
sensory hairs (Hawkins & MacLennan, 1976). 

It is known that C. scorpious lacks a swimbladder (Enger & Anderson, 1967) 
and, from the present study this can be said of T. bubalis, suggest ing that fishes 

FIG. 10. (a} The otolith lapillus and (b) the utricular epithelium from the left ear of Taurulus bubalis (<>. 
hair cell pola rizations). s, striola. Anterior (D) and dorsal (A) represent the orientation of the 
otolith within the fish. Bars= 200 J.IID. 
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FtG. 11. Utricular ciliary bundles from (a) the central (striola) region and (b) peripheral ciliary bundles. 
Bars=21J.lll. 

belonging to the Scorpaeniformes have generalist hearing abilities, though an 
audiogram has as yet to be produced for this species. Additionally, the inner ear 
ultrastructure of the saccule in a generalist fish is orientated both horizontally 
and vertically in four to six quadrants (Popper & Fay, 1993). It is apparent from 
analysis of the SEM data presented here, that T. bubalis has a standard 
orientation inner ear configuration, and is comparable to a number of hearing 
generalist species (Platt & Popper, 1981; Popper & Fay, 1993). Although this 
polarization pattern occurs frequently in generalists, there exists diversity, as for 
example the ciliary bundles on the rostra! locus of the anguilliform saccular 
epithelium are orientated anterior, posterior, posterior and anterior (Popper, 
1979). This is in contrast with specialist sensory receptor patterns such as those 
found in the Ostariophysi (Otophysi), which have saccular ciliary bundles 
orientated vertically in only two diametrically opposed quadrants (Platt, 
1977). Bi-directional receptor patterns are often associated with adaptations 
that enhance hearing and can even extend to other end-organs, such as those 
found in the clupeid utricle (Popper & Platt, 1979; Blaxter et al., 1981). 

This is the first time that the ultrastructure of T. bubalis has been studied. 
This work presents a new set of polarization patterns, which provide anatomical 
information important in understanding electrophysiological aspects of fish 
hearing from an ecological perspective. 
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Abstract 

The polarisation of ciliary bundles on the macula of the saccule in the European bass (Dicentrarr:hus labrax L) has been studied using a 
scanning electron microscope (SEM). These data show that D. labrax possesses ciliary bundles arranged in four dichotomous quadrants with 
a standard orientation, comparable to hearing generalists from the order Perciformes. The spacing between ciliary bundles was investigated in 
three size classes of fish, with the results indicating that the addition of receptor cells in the ear of D. labrax continues for at least the first 2 
years of development. The lengths of the k:inocilia from ciliary bundles in each quadrant of the macula were also studied, and found to be of 
uniform length. In addition, we look at the internal structure of the afferent using transmission electron microscopy (TEM), revealing the 
nucleated cell body and peripheral nerve fibres of the saccule consistent with other TEM examinations of saccular ultrastructure. This 
information is required to gain an insight into the inner ear of D. labrax, as part of a larger study of the morphology and physiology of the 
hearing systems of both vertebrate and invertebrate marine animals. 
0 2005 Elsevier Inc. All rights reserved. 

Keywords: Fish ear, Saccule; Hair cell; Cilia; SHM; THM; Dicentrarchus labrax 

1. Introduction 

The vertebrate inner ear is divided into two regions, the 
pars superior and the pars inferior (Retzius, 1881 ). The 
former responds primarily to movements of the body and 
postural changes, while the latter responds to both gravi­
static and acoustic stimuli (Jenkins, 1981; Popper and Platt, 
1993). The pars inferior comprises two fluid-fi lled pouches, 
the saccule and lagena (Retzius, 188 1; Platt and Popper, 
1981; Popper and Platt, 1993), with each pouch containing a 
crystalline calcium carbonate otolith (Carlstrom, 1963; 
Popper and Platt. 1993). Of these end organs, the saccule 
is considered to be the primary auditory organ in most 
teleost fish, though there is evidence of a functional overlap 
between all three otolith organs (Popper and Fay, 1993). 

The directional characteristics associated with the 
motion of water particles during the passage of a wave 
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front divulge important information to the fish's sensory 
system, allowing it to accurately determine the direction 
and distance of a disturbance or sound in the acoustic free 
field (Schuij f and Hawkins, 1983; Hawkins and Sand, 
1977; Hawkins. 1993). It is known (Enger et al. , 1973; 
Hawkins and Sand, 1977; Fay and Edds-Walton, 1997b) 
that the morphological polarities of sensory ciliary bundles 
in the otolithic organs are fundamental to the directional 
hearing capabilities of generalis! fish. Azimuths of peak 
sensitivity tend to lie parallel to the plane of the otolith and 
sensory epithelium (Sand and Hawkins, 1973; Enger et al. , 
1973; Fay and Edds-Walton, 1997b); excitation occurs 
when stereocilia are bent toward the kinocilium during the 
passage of a wave front, resulting in the cell becoming 
depolarised relative to its resting potential (Clegg and 
Mackcan, 1995). Inhibition occurs when the bundle is 
deflected in the opposite direction, and results in the 
hyperpolarisation of the cell (Flock and Duvall, 1965). The 
abil.ity to detect and localise the source of a sound is of 
considerable biological importance to many fish species, 
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and is often used to assess the suitability of a potential 
mate or during territorial displays (Nordeide and Kjellsby, 
1999), and during predator- prey interactions (Myrberg, 
198 1 ). Jensen ( 1994) used a light microscope to reveal hair 
cell orientations in the end organs of the upside-down 
catfish (S. nigriventris ), along with observations of 
innervating nerve distributions. Lu and Popper ( 1998) 
examined the polarisation of ciliary bundles in the end 
organs of the sleeper goby (Donnitator /ati.frons) using 
immunocytochemicals and a confocal imaging technique. 
However several authors (e.g. Platt and Popper, 1984; 
Popper, 1981; Yan et al., 1991) have used the scanning 
electron microscope (SEM) to study surface detail of the 
inner ear ultrastructure, and this was the approach adopted 
here. This paper sets out to address the question of 
whether the European sea bass (D. /abrax) has a standard 
orientation pattern of hair cells in the saccule, in common 
with many hearing generalists. This information is required 
to gain an insight on the inner ear structure and 
configuration of D. labrax, as part of a larger study of 
the morphology and functionality of the hearing systems of 
both vertebrate and invertebrate marine animals. 

2. Materials and methods 

2.1. Preparation of the saccule prior to SEM examination 

The preparation methodology employed in this study 
was based on techniques used by Plait ( 1977). Six fresh 
bass of mixed sex, ranging in size from 72 mm (9.4 g) 
to 170 mm (90 g), were obtained from wild stock in the 
South West of England (ordnance survey GB grid 
reading SX483539). The fish were delivered "on ice" 
to the EM unit within an hour of capture, and trimmed 
to small blocks containing both ears. The cranial cavity 
was opened dorsally and the brain removed by dissection 
and aspiration. Chilled fixative (2.5% glutaraldehyde in 
0.1 M cacodylate buffer with 3.5% sodium chloride) was 
perfused into the saccule, and vented through a small 
incision in the chamber wall, located well away from the 
needle entry point and macula. The ears and surrounding 
tissue were subsequently immersed in chilled fixative for 
48 h prior to dissection of the pars inferior from the 
remaining cranium. The saccule capsules were then 
dehydrated through a graded ethanol series ranging from 
35% through 50%, 70% and 90% to absolute ethanol, 
prior to desiccation using the critical point drying 
method described by Platt ( 1977). Fully desiccated 
capsules were subsequently mounted on a specimen stub 
using a carbon tab, and coated with ea. 8 nm of gold in 
an Emitech K 550 sputter coater (working at approx­
imately 5 x 10-6 Torr). The processed specimens were 
investigated and photographed using a JEOL JSM 5600 
scanning electron microscope operated at 15 kV, and a 
15 mm working distance. The orientation of an inner ear 

hair cell is defined by drawing a line using the JEOL 
software, from the shorter ciliary bundles towards the 
longer kinocilium. This procedure was applied and 
repeated across the surface of the macula at 100-J.Im 
intervals, or when there was an abrupt change in hair 
cell orientation. Images of the macula and ultrastructure 
were saved in a bitmap format, and calibrated measure­
ments were made using the analysis programme lmageJ. 
All measurements were carried out on a PC using the 
analySIS® (Soft lmaging System GmbH) program. The 
distance between bases of the closest neighbour was 
measured using arbitrary distance and the hair cell length 
was measured using polygon length, both measurements 
were recorded in micrometers. The kinocilia were 
measured from their base to the tip, and total hair cell 
counts were all completed manually. Statistical calcula­
tions were carried out using Statgraphics plus 5.1 
professional edition program, and analysis of variance 
(ANOVA) was used to test whether or not kinocilia 
length and the distance between cells vary across the 
macula surface. 

2.2. Preparation of the saccule prior to TEM examination 

The freshly excised tissue was fixed by placing it into 
a 2.5% glutaraldehyde in sodium cacodylate buffer (0. 1 
M pH 7.2) for at least 1 h, then rinsed twice in 
cacodylate buffer for 15 min each rinse. The saccular 
chamber was then secondary fixed in a 1% osmium 
tetroxide in sodium cacodylate buffer (0. 1 M pH 7.2) for 
1 h. The tissue was then rinsed twice in buffer, then 
dehydrated in an ethanol series. Once in 100% ethanol, 
the tissue was placed in increasing concentrations of 
Spurr's resin until it was fully infiltrated to lOO%. The 
sample was then placed in Beem capsules ready for 
polymerisation of the resin, which was achieved by 
placing it in a 70 °C oven overnight in accordance with 
Glauert (1975). The resulting resin blocks were sectioned 
using a Reichert- Jung Ultracut and a Micro Star 
diamond knife. The sections were picked up using 200 
mesh thin bar copper grids and stained firstly with a 
saturated ethanol solution of uranyl acetate and then a 
second stain of Reynolds lead citrate (15 min each stain) 
(Lewis and Knight, 1977). The fully processed images 
were taken with a Jeol 1200 EX II TEM and the images 
captured with an SIS Mega view ill. 

3. Results 

3.1. Hair cell orientation pattems on the saccule of 
D. /abrax 

The view of the saccular macula from the left ear of D. 
/abrax (Fig. I ) was scanned at a magnification of x 50 and 
annotated to show the overall orientation of the ciliary 
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Fig. I. Orientation of ciliary bund.ka on the left ear saccular epithelium of 
Dicen~~ 1~, oriel!lated horizontally (I and 2), and venicalJy (3 
and 4) m diametrically opposed quadrants; showing that D. lab rev: is a 
hearing generalist with standard orientation ciliary bundles. 

bundles found in each quadrant, as viewed perpendicular to 
the macula surface. 

The polarisation of the ciliary bundles is depicted by 
the white anuws in Fig. 1, and reveals that D. labrax 
possesses a standard orientation pattern in common with 
other hearing generalist fish from the order Percifonnes 
(Platt and Popper, 1981; Popper and Fay, 1993). Detail of 
the ciliary bundles and their respective orientations can be 
seen in Figs. 2- 5, which were scanned at a high power. 
The ciliary bundles are divided into four discrete orienta­
tion groups, and separated from cells with alternate 
orientation by a nanuw transitional zone. The polarisation 
of ciliary bundles in the rostra! locus or ostium of the 
macula is divided into two regions, with caudally 
orientated hair cell groups on the dorsal half of the macula 
(Fig. 2), and rostrally orientated groups on the ventral 
portion (Fig. 3). Cells on the caudal locus of the macula 
are orientated dorsally in the dorsal region (Fig. 4), and 
ventrally in the ventral region (Fig. 5). 

3.2. Surface area and shape of the saccular macula 

The saccular macula from three bass with fork lengths of 
170 mm (90 g), 126 mm (53 g) and 72 mm (9.4 g) were 
examined by EMC. Fig. 6 shows the outline of the regions 

Fig. 2. Scanning electron micrograph showing the ciliary bundles from 
quadrant I. 

Fig. 3. Scanning elec1ron micrograph of ciliary bundles from quadrant 2. 

of macula bearing ciliary bundles from both the left and 
right ears. 

The total area of the macula was found to be 3.219 mm2 

for the right ear, and 3.073 mm2 for the left ear of the 170 
mm fish, 2.555 mm2 for the right and 2.415 mrn2 for the left 
ear of the 126 mm fish, and 1.722 mm2 for the right and 
1.58 mm2 for the left ear of the 72 mm fish. 

3.3. Hair cell spacing and length with increasing age/size 

In order to test the hypothesis that the number of 
ciliary bundles increases with age in D. labrax, measure­
ments of the spacing between ciliary bundles in quadrant 
2 of the ostium in both x and y coordinates were taken 
from each size of fish. These data were fed into a one­
way ANOVA, which gave an F value of 1.80 and a P 
value of 0.181, for receptor spacing in the x axis, and an 
F value of 3.71 and a P value of 0.035 in they axis. The 
mean length of the k.inocilia across the sensory macula 
from the 126 mm D. labrax was 3.2 1!10, though cells in 
quadrant 3 were observed to be slightly shorter than the 
overall average. To find if this variation in k.inocilia length 
was significant, the data from each quadrant were fed into 

Fig. 4. Ciliary biiildles from quadrant 3. 
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Fig. 5. Ciliary bundles from quadrant 4. 

a one-way ANOVA, and gave an F value of 3.34, and a P 
value of 0.056. 

3.4. TEM investigation of the saccular hair cells 

The transmission electron micrograph (TEM) section 
in Fig. 7a shows the complete hair cell from D. labrax, 
sectioned lengthwise from the ciliary bundle at the top 
of the figure, to the innervating nerves at the bottom. 
The longest of the cilia with the dark core is the 
k:inocilia, and the shorter hairs are the stereocilia. The 
peripheral saccular nerve fibres can be seen in an area 
where U1e membrane of the axon terminal is in close 
proximity to the membrane of the neuron. Information 
travels across the synapse by way of neurotransmitters, 
which diffuse across the synaptic cleft to the postsynap­
tic membrane. If sufficient neurotransmitter is secreted, 
an action potential is generated in the neuron. The 
crosswise section through the top of the cell (Fig. 7b) 
shows that the cuticular plate is almost void of obvious 
structures, except for a number of fine tracts created by 
actin filaments extending from the cilia base into the 
cuticular plate. The sides of the receptor cell are 
buttressed by supporting cellular structures, and the base 
of the receptor cell sits above two further supporting 
cells with large nuclei. A high powered micrograph of 
the section taken through the cuticular plate (Fig. 7c) 

Left ear 

Fig. 7. (a) TEM cross section of a saccular hair ceU and innervating nerve 
fibres from the ear of DicentrarcJrus labrax. cb., ceU body; cp., cuticulae 
plate; k., k:inocilia; n., nucleus; pnf., peripheral oCJVe fibres; se., support 
ceUs; s., stereocilia (b) Section taken through the cuticulae plate, showing 
int.emal structures within the cilia and the actin filaments that tie the cilia to 
the cuticular plate. (c) High powered micrograph of the cilia base and actio 
filaments (at). 

shows the cilia base and actin filaments (at) that "root" 
the stereocilia to the hair cell. 

4. Discussion 

The study of the saccular hair cells from the bass (D. 
/abrax) reveals that this fish has an inner ear configuration 

Right ear 

2 

3 

Fig. 6. Outline of the saccular macula from the left and right ears taken from D. labrax with body lengths of 170 mm (I), 126 mm (2) and 72 mm (3). 
Bar= ! mm. 
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similar to bearing generalis! fish, and it is to this group of 
fish that D. /abrax most probably belongs. In addition, the 
TEM examination shows that the internal structure of the 
saccular hair cell conforms to other published studies of 
ultrastructure morphology (e.g. Flock and Duvall, 1965). 
According to Bretschneider et al. (200 I), generalists are 
only responsive to low frequency sounds ranging from 
around 30 Hz to 2000 or so Hz. However, in a recent ABR 
investigation of the hearing abilities of two Acipenseriform 
fish, it was found that an evoked response consistent with 
the stimulus sound could only be initiated from frequen­
cies up to 500 Hz (Lovell et al., in prep), and (as the 
experiment used two submerged transducers) it could be 
demonstrated that the fish were responding to the particle 
motion component of the sound rather than the pressure. 
The interaction between the otolith and hair cells in 
generalis! fish is initiated by the motion of the water 
particles in the sound field, and not the pressure of the 
sound (Coombs and Popper, 1982; McCormick and 
Popper, 1984; Lu, 2004). 

The study conducted here on the morphology of the 
saccular macula from three size classes of fish shows that 
the distance between cells on the rostro-caudal (x) axis, 
remains constant throughout the development of D. 
/abrax , from fingerling to the juvenile stages of the life 
cycle (shown by the P value of 0.18 1). However, the P 
value of 0.035 shows that there is some evidence to 
suggest that the ciliary bundles may acquire more lateral 
spacing along the dorso-ventral (y) axis as D. /abrax 
grows. The test was confirmed by counting the number of 
cells found proliferating in comparable areas of macula 
(51 cells per 0.002 mm2 for the 170 mm fish, 48 for the 
126 mm fish, and 67 for the 72 mm fish). Using these 
data, it is possible to estimate that the number of ciliary 
bundles proliferating on the saccular macula of D. labrax 
is approximately 80,000 for the 170 mm fish, 60,000 for 
the 126 mm fish, and 40,000 for the 72 mm fish. It is 
therefore concluded that in D. /abrax , the addition of 
ciliary bundles continues for at least 2 years post hatching, 
in agreement with a study of hair cell addition in the 
saccule of the hake (Merluccius mer/uccius) by Lombarte 
and Popper ( 1994). 

The one-way ANOVA was also used to test for 
similarity in the lengths of receptor cells, from all four 
quadrants of the saccular epithelium of a 126 mm D. 
labrax , and gave a P value of 0.056, showing that the 
overall length of the kinocilia does not significantly vary 
between each quadrant. It is known that in liz.ards and 
birds, regions having longer ciliary bundles detect lower­
frequency signals while shorter bundles detect higher 
frequencies (Popper and Fay, 1993). Indirect evidence in 
fish raises the possibility of a similar correlation, as the 
region of the macula responsive to lower frequencies in 
goldfish is the region containing the taller kinocilia 
(Sugihara and Furukawa, 1989), suggesting a parallelism 
with the gradient of ciliary bundle length and frequency 

responses found in higher vertebrates. Fish lacking 
adaptations that enhance hearing (commonly called hearing 
generalists) have ciliary bundles orientated both horizon­
tally and vertically in four to six quadrants (Popper and 
Fay, 1993). The directional characteristics (excitation or 
inhibition) of afferent nerves have been qualitatively 
correlated with anatomically defmed patterns of hair cell 
orientations on the macula of the saccule (Fay and Edds­
Walton, 1997a). It is apparent from analysis of the SEM 
data presented here that D. labrax possesses standard 
orientation ciliary bundles in common with many hearing 
generalist species, and is in contrast with the sensory 
receptor patterns found in the Ostariophysi (Otophysi). 
These fish have hair cells orientated vertically in two 
diametrically opposed quadrants (Popper, 1980), a feature 
also found in amphibians and reptiles (Biaxter et al., 1981; 
Popper and Platt, 1979). 
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Abstract 

Concern regarding the spread of silver carp (Hypopthalmichthys molitrix) and bighead 

carp (Aristichthysc nobilis) through the Illinois River has prompted the development of 

an Acoustic Fish Deterrent (AFD) system. The application of this technology has 

resulted in a need to understand the auditory physiology of fish other than the target 

species, in order to minimise the effect of the AFD barrier on the ecology of indigenous 

fish populations. To this end, both the structures involved in sound reception and the 

hearing abilities of the paddlefish (Polyodon spathula) and the lake sturgeon (Acip enser 

fulvescens) are studied here using a combination of morphological and physiological 

approaches, revealing that both fish are responsive to sounds ranging in frequency from 

I 00 Hz to 500 Hz. The lowest hearing thresholds from both species were acquired from 

frequencies in a bandwidth of between 200 Hz to 300Hz, with higher thresholds at 100 

Hz and 500 Hz. The rationale for studying hearing in P. spathula and A. fulvescens in 

particular, is the value placed on them by both the commercial caviar producing industry 

and by the recreational fisheries sector. The hearing abilities of twelve P. spathula and 

twelve A. fulvescens were tested in sound fields dominated by either sound pressure or 

particle motion, with the results showing that Acipenseriform fish are responsive to the 

motion of water particles in a sound field, rather than the sound pressure component. In 

this study, we measure the intensity of the sound field required to evoke threshold 

responses using a pressure sensitive hydrophone, as pressure dominated sound fields are 

the most audible acoustic condition for specialists like H molitrix and A. nobilis (the 

target species). The results of the auditory examination clearly show that P. spathu/a and 

A. fulvescens are not sensitive to sound pressure, and will therefore have a significantly 



higher deterrent threshold than H. molitrix and A. nobilis in a pressure dominated sound 

field. 
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1. Introduction 

The spread of the Asian carp species, silver carp (Hypopthalmichthys molitrix) and 

bighead carp (Aristichthysc nobilis) through the Illinois River and into the man-made 

Chicago Canal is causing increasing concern as these non-indigenous species get closer 

to Lake Michigan. In a work that partners this study, the hearing abilities of the target 

Asian carp species are defmed using the equipment and methodology described here as a 

benchmark, with the results showing the lowest thresholds were acquired from 

frequencies in a bandwidth of between 750Hz to 1500Hz (Lovell et al., in prep). Trials 

conducted by the Illinois Natural History Survey (INHS, Havana, Illinois) have shown 

that 95% effectiveness can be achieved with A. nobilis using a Fish Guidance Systems 

Bio-Acoustic Fish Fence (BAFF) system (Taylor, Pegg and Chick, in press) and further 

trials are underway with H. mo/itrix. While preventing the spread of these species is 

critical, it is also important that the noise generated by the barrier does not affect 

indigenous species where possible. Two species in particular, the paddlefish (Polyodon 

spathu/a) and the lake sturgeon (Acipenser fulvescens) from the subclass Chondrostei, in 

the order Acipenseriformes (sturgeons and paddlefishes) are of interest in this respect. 

An ideal acoustic barrier would appear "loud" to the alien carp species and "quiet" to the 

indigenous species, and therefore have little or no influence on the behaviour of the 

paddlefish and sturgeon as they pass the barrier. To achieve this level of selectivity, it 

requires the definition of the potentially affected species hearing thresholds, which can 

ultimately be used to "fine tune" the sounds generated by the barrier. 

The hearing thresholds of any organism possessing the appropriate receptor mechanism 

are illustrated in an audiogram (Myrberg, 1981 ), which presents the lowest level of sound 
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that a species can hear as a function of frequency. Audiograms for marine animals are 

predominantly expressed in unjts of sound pressure, or dB (re. 1 J.lPa) and is the rationale 

for using them in this study. The techniques used to obtain fish audiograms may require 

a varying degree of time, surgical and technical expertise, or the use of behavioural 

paradigms to gain statistically sound data (see, for instance, Yan, 1995). Behavioural 

methods require that fish are trained to react in a specified and measurable way (e.g. a 

reward based method by seeking food) when a tone at a given frequency is presented; 

however, in practice, the behavioural method is very time consuming and only effective 

with species that are easy to train. The measurement of microphorucs from auditory end 

organs during acoustic stimulation is a technique favoured by a number of authors (e.g. 

Enger and Anderson 1967; Fay and Popper, 1975; Fine, 1981). Although results can be 

obtained more rapidly than from behavioural paradigms, preparation can often be 

complex and require invasive surgery to implant the electrodes directly into the nerve 

( c.f. Enger and Anderson, 1967). The electrode is thus restricted to a specific end organ 

or region of macula, and the evoked potential does not necessarily represent the whole 

auditory pathway (Kenyon et al., 1998). The Auditory Brainstem Response (ABR) 

technique of measuring hearing thresholds has been successfully applied to both 

mammalian and non-mammalian vertebrates (Corwin et al., 1982), Elasmobranchs 

(Casper et al., 2003), and marine invertebrates (Lovell et al., 2005 A). The ABR is a non­

invasive far-field recording of synchronous neural activity in the eighth nerve and 

brainstem auditory nuclei elicited by acoustic stimuli (Jewett, 1970; Jewett and Williston, 

1971; Jacobson, 1985; Kenyon et al., 1998), and waveforms clearly present with 

similarities between fish and higher vertebrates (Corwin, 1981) and between vertebrates 

and invertebrates (Lovell et al., 2005a). Measurements of the ABR response are used 

routinely in the clicical evaluation of human hearing (Jacobson, 1985) and allow for the 

determination of thresholds from uncooperative or inattentive subjects and in situations 

where behavioural methods cannot be readily applied. 

It is known that the directional responses of afferents are a function of the hair cell 

polarities and the orientation of the epithelium in space (Fay and Edds-Walton, 1997; 

Edds-Walton and Fay, 2002; Lu and Popper, 2001). In both P. spathula and A. 
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fulvescens , the hair cells are aligned in both the horizontal and vertical planes and provide 

evidence of directional hearing ability in these species. The detection and localisation of 

a sound source is of considerable biological importance to many fish species; the pallid 

sturgeon (Scaphirhynchus a/bus) and shovelnose sturgeon (S. a/bus), are both known to 

produce a range of sounds during the breeding season (Johnston & Phillips, 2003). 

Sounds are often used by fish to assess the suitability of a potential mate or during 

territorial displays (Nordeide & Kjellsby, 1999), and during predator prey interactions 

(Myrberg, 1981 ). This is the first time that the inner ears of P. spathula and A. fulvescens 

have been studied using the Scanning Electron Microscope (SEM), and follows an earlier 

work by Popper (1978) on the ultrastructure in the ear of the shovel-nose sturgeon 

(Scaphirhynchus platorynchus). 

2. Materials and Methods 

In order to concisely identify the frequency and intensity of sounds audible to paddlefish, 

twelve specimens of P. spathula, of mixed sex, and ranging in size from 160 mm (58 g) 

(measured from the tail fork to the anterior of the jaw) to 230 mm (163 g) were 

stimulated with sounds ranging in the frequency domain between 100 Hz to 1500 Hz. In 

addition, twelve mixed sex specimens of lake sturgeon, ranging in size from 230 mm 

(61.8 g) (fork length) to 280 mm (95.4 g), were also stimulated in a similar manner. The 

water temperature in both the holding tanks and test tank ranged between 18.2 and 18.6 o 

C over a 24 hour period, and when not under experimental protocols, the fish were 

provided with 16 hours of light per day. 

2. I ABR methodology 

The ABR measurements of hearing thresholds were made using a control and analysis 

program, which both generated the stimulus signals, and captures and analyses the 

response. The stimulus used was a pulsed 4 cycle tone burst, which was presented to the 

fish at a given frequency and intensity. ABR recordings require no invasive procedural 

work, as measurements are taken in the electro-physiological far field using two 

cutaneous electrodes placed against the skin above the ear and medulla; the application of 

this methodology results in significant stress reduction during the hearing assessment 
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(Kenyon et al., 1998). The ABR trace is formed by averaging peak potentials arising 

from centres in the auditory pathways from the periphery of the VIll nerve to the 

midbrain (Corwin et al., 1982; Overbeck and Church, 1992). Attenuated waveforms are 

considered as being below the threshold of hearing when two overlaid recordings, made 

at the same frequency and intensity, do not present with similarities or are in opposition 

(e.g. Kenyon et al., 1998). 

Small fish (below 230 mm) were first placed lengthwise and centrally on a 160 mm x 120 

mm rectangle of fine nylon netting, which was wrapped frrmly around the body and tail, 

and the two sides of the net were held together using a "bulldog" clip (Figure 1). The clip 

was placed in a retort stand clamp fitted with ball joint electrode manipulator arms and an 

aerated water supply pipe (detailed in Figure 1). Large fish (above 250 mm) were placed 

in a clear rubber coated 1 mm gauge wire mesh cradle. A reservoir of oxygenated water 

was positioned l m above the experimental tank and gravity fed at an adjustable flow rate 

of between 5 millilitres per second for the small fish, to 12 millilitres per second for the 

large, and directed toward the gills through a soft rubber mouth tube with a diameter of 6 

mm. 

Transducers 

Differential 
amplifier 

Stimulus 
amplifier 

Test tank 

Detail of specimen 
holding equipment 

- '-"-- .!'. Centre of gravity 
adjustment holes 

~:::=;$1:1ii~ Oxygeoated 
water feed 
pipe6 mm dia. 

Figure 1. Schematic of the experimental setup and detail of the clamp used to hold the 

fish in position and manipulate the electrodes during the audiological tests 
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The electrophysiological response to acoustic stimulation was recorded using two 

cutaneous electrodes, which were connected to the differential amplifier by 1 m lengths 

of screened coaxial cable with an external diameter of 1.5 mm. The impedance between 

the electrode tip and pre-amplifier was found to be 0.2 n for both electrodes and recorded 

an open circuit between the outer shielding and inner core. The record electrode was 

placed 6 mm anterior of the reference electrode which was positioned centrally against 

the epidermis above the medulla. The dermal elements of the skull are ossified in A. 

fulvescens, making electrophysiological recordings difficult, as there was no fleshy skin 

on the head for the electrode to push against and create a good connection. This resulted 

in the 0.3 mm silver tip being almost entirely exposed to the ambient water, which can 

substantially attenuate the evoked potential. To resolve this issue, silicone tip insulators 

were used to create a seal around the electrode tip and fish, thus preventing the ambient 

water from contacting the electrodes. Stimulus sounds were presented to the fish at 

sound pressures initially not exceeding 150 dB re 1 ~Pa and attenuated in 5 dB steps, 

with a variable attenuation of around 2 dB as threshold was approached. The evoked 

response was amplified and digitised to 12 bits resolution and recorded. This process was 

repeated 2000 times and the response averaged to remove electrical interference caused 

by neural activities other than audition, and the myogenic noise generated by muscular 

activity. Each measurement was repeated twice; this aids in separating the evoked 

response, which is the same from trace to trace, from the myogenic noise, which varies in 

two successive measurements. 

2.2 The sound field 

In this experiment, we generate the stimulus tones using two Fish Guidance Systems Ltd. 

Mk. II 15-100 sound projectors, submerged to a depth of 200 mm and arranged to face 

each other at a distance of 200 mm. The fish was also stationed at a depth of 200 mm, 

with the midline positioned at equal distances from the left and right transducers. Where 

the projectors are driven in phase, it is possible to create a region between them of high 

sound pressure, and low particle velocity, and when driven out of phase, the transducers 

create an area associated with high particle motion and minimal sound pressure; the 

difference between the two sound fields can be easily measured using a pressure sensitive 

hydrophone. A similar transducer setup to the one described here was used by Enger and 
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Anderson (1967), in a comparative study of audition in the cod (Gadus morhua) and the 

sculpin (Cottus scorpious). After a series of experiments conducted mostly in the 

acoustic near field, that involved a highly complex surgical procedure to implant the 

electrodes, it was concluded that the swim bladder of genera list teleost fish is essential for 

audition. However, Popper and Fay (1993) are highly critical of these fmdings, as 

fluctuations in the swim bladder volume in a pressure field, are subjected to substantial 

attenuation as they pass through the flesh and bone to the inner ear (see also Yan et al., 

2000). A schematic of the equipment used to acquire the audiometric measurements is 

presented in Figure 1, with the stimulus tones generated by a laptop computer running the 

ABR software and a Tandy 250 W power amplifier. The projectors were driven directly 

from the amplifier, and the stimulus tones presented to the fish were measured using a 

Bruel and Kjaer Type 8104 calibrated Hydrophone, and the signal amplified by a Bruel 

and Kjaer Type 2365 Charge Amplifier (see Lovell et al., 2005a, for more details). In 

this method, the intensity of the sound is recorded in the absence of the fish, with the 

hydrophone positioned where the ears of the fish would be during the experiment. 

2.3 Preparation of the saccule prior to SEM examination 

The preparation methodology employed in this study was based on techniques used by 

Platt (1977). Twelve specimens of P. spathula and twelve of A. fulvescens were 

anesthetised using MS-222 in a water bath; the fish were dispatched using conventional 

protocol approved by the University of lllinois Institutional Animal Care and Committee 

(IACUC) 15.11.04 (protocol # 04271). The cranium containing the inner ears from P. 

spathula and A. fulvescens were trimmed to small blocks and immersed in chilled fixative 

(2.5% glutaraldehyde in 0.1 M cacodylate buffer with 3.5% sodium chloride), and 

delivered to the Plymouth EM unit within 72 hours post removal. The ears and 

surrounding tissue were subsequently immersed in a watch glass containing 30 % 

ethanol; then, working under a MEIJI trinocular microscope, the ear and Vill nerve was 

dissected from the remaining cranial tissue and photographed. The contrast between the 

nerves and end organs was optimised for photography by varying the levels of 

transmitted light from the base of the microscope with the direct light provided by an 

Olympus fibre optic highlight. The end organs were then dissected and the otolitbs 

carefully removed. Encapsulating tissue was dehydrated through a graded ethanol series 
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ranging from 35% through 50%, 70% and 90% to absolute ethanol, prior to desiccation 

using the critical point drying method. Fully desiccated capsules were subsequently 

mounted on a specimen stub using a carbon tab, and coated with c. 8 nm of gold in an 

Emitech K 550 sputter coater (working at approximately 5 x 10-6 Torr). The processed 

specimens were investigated and photographed using a JEOL JSM 5600 scanning 

electron microscope operated at 15 kv, and a 15 mm working distance. The eucentric 

stage holding the specimen was aligned for ' planar' image acquisition, and each sample 

was examined by adjusting the position of the stage in x and y coordinates only. All 

measurements were carried out on a PC using the analySIS® (Soft lmaging System 

GmbH) program, and the distance between cell bases and the length of the ultrastructure 

were measured in units of micrometers using the JEOL software. Statistical calculations 

were carried out using Statgraphics plus 5.1 professional edition program, and an analysis 

of variance (ANOVA) was also used to test for similarity in the distances between 

neighbouring hair cell bases from both P. spathula and A.fulvescens. 

3. Results 

3. 1 Electrophysiology 

Figure 2 illustrates the auditory evoked potentials from P. spathula in response to tone 

bursts at frequencies of l 00 Hz, 200 Hz, 250 Hz, 300 Hz and 500 Hz, in response to both 

sound pressure and particle motion. Each of the waveform sets recorded from stepped 

amplitudes from a particular frequency have been overlaid, revealing a latency change in 

response to the attenuation in the intensity of the sound. Above threshold EP waveforms 

in both Figures are presented with a blue colour coding, whilst below threshold 

recordings are orange or red. At each frequency, the ABR waveforms evoked by the tone 

bursts typically consisted of a series of four to eight rapid negative peaks, followed by a 

slow positive deflection. The onset latency of the centre or largest sinusoid of the ABR 

response varied with frequency, ranging from 7.3 ms after stimulus onset at 100 Hz to 5 

ms at 500 Hz. As the sound pressure levels approached threshold, 2000 sweeps were 

required to distinguish ABR's from the background electronic noise. 
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The left column in Figure 2 shows waveforms recorded from P. spathula in response to a 

4 cycle tone burst ranging in frequency from 100 to 500 Hz, presented in a sound field 

dominated by particle motion, whilst the right column presents waveforms recorded in a 

sound field dominated by Sound Pressure. 
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Figure 2. Averaged waveforms evoked from P. spathula in response to four cycle tone 

bursts of 100Hz to 500Hz, attenuated in steps of between 6 dB to 0.5 dB as threshold is 

approached. The waveforms in the left column were recorded with the sound fields 

dominated by Particle Motion (PM) and the right column in Sound Pressure (SP). The 

waveforms in blue show above threshold responses, whilst the other colours represent 

below threshold myogenic noise (y axis scale = microvolts * 100, x axis scale = time (s)) 
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As can be seen in Figure 2, the waveforms are similar at each frequency and presentation 

mode (sound pressure or particle motion), though there is a slight increase in the duration 

of the evoked potentials by 1 to 2 ms when stimulating in a sound field dominated by 

particle motion. Also, the particle motion waveforms above 100 Hz are followed by 

smaller responses with similar characteristics, which are probably the result of reflected 

sound waves. These responses to "echoes" are not present in the sound pressure results 

except at 500 Hz, which appears to evoke a very similar response from the two stimulus 

modes. Figure 3 presents waveforms from A. fulvescens recorded under identical 

conditions to P. spathu/a, though as previously discussed, the heavily ossified cranium of 

A. fulvescens effectively reduced the contact area between the electrode and fish, thus 

resulting in a reduction in the EP quality. 

In Figure 3, the evoked potentials from A. fulvescens are similar in overall shape to the 

waveforms recorded from P. spathula, presented in Figure 2; however, they are 

noticeably lower in amplitude. This is especially evident in the particle motion 

waveforms (left column in Figure 3), and is attributed to the reduced contact area 

between the electrode tip and cranium. Although present, the waveforms following the 

initial response (the "echoes") are also considerably lower in intensity than those 

recorded from P. spathula, and again reflect the difficulties encountered when recording 

AEP's from A. fulvescens. The Inter Peak Latency (IPL) observed clearly in the P. 

spathula waveforms are not so pronounced in A. fulvescens, though are clearest in the 

100 Hz sound pressure results; however, the absence of a sharp AEP peak has a 

considerable effect on the lucidity of the IPL at all frequencies tested. 
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Figure 3. Averaged waveforms evoked from A. fulvescens in response to four cycle tone 

bursts of 100 Hz to 500 Hz, attenuated in steps of between 6 dB to 0.5 dB as threshold is 

approached. The waveforms in the left column were recorded with the sound fields 

dominated by Particle Motion (PM) and the right column in Sound Pressure (SP). The 

waveforms in blue show above threshold responses, whilst the other colours represent 

below threshold myogenic noise (y axis scale == microvolts * 100, x axis scale = time (s)) 

Figure 4 shows ABR waveforms evoked from a 300Hz tone burst, presented initially at 

150 dB (re. 1 ~Pa), and attenuated in steps of between 6 to 4 dB ordinarily, then in 2 dB 

steps to 0.5 dB as the hearing threshold was approached. When two replicates of 

waveforms showed dissimilar polarities, as seen in the traces for the results at 130 dB in 

Figure 4, the response was considered as being below threshold (cf. Kenyan et al., 1998). 
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Figure 4. ABR wavefonns from P. spathula in response to a 300 Hz tone burst 

attenuated in sequential steps. Averaged traces of two runs (2000 sweeps each), for each 

intensity are overlaid and arranged sequentially. The T at 131.6 dB represents threshold. 

Bar = 0.5 J.lV 

All threshold responses were measured in this way, with each audiogram produced using 

the sequential ABR waveform data (e.g. Figures 2 and 3 ), acquired from frequencies of 

100 Hz to 500 Hz. The individual audiograms acquired from the populations of P. 

spathu/a and A. fulvescens were combined to create an average composite audiogram 

(Figure 5), using both the mean and standard deviation data. 
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Figure 5. Audiograms for A.fulvescens (closed circles= maximum sound pressure; open 

circles = maximum particle motion), and for P. spathula (closed triangles = maximum 

sound pressure; open triangles = maximum particle motion). The audiograms were 

generated using the sequential ABR waveform data presented in Figures 2 and 3, 

acquired from frequencies between 100 Hz to 500 Hz (error bars show the standard 

deviation of the threshold responses and are separated by 5 to 20Hz for ease of viewing) 

The audiograms follow a Gaussian profile, determined by calculating the lowest intensity 

stimulus sounds (recorded underwater using the hydrophone located adjacent to the fish 

ear) that evoked a repeatable ABR response (e.g. 131.6 dB in Figure 4 ). The lowest 

hearing thresholds with the sound field dominated by sound pressure (transducers driven 

in phase) was 130.5 dB (re 1 j.lPa) at 250 Hz for P. spathula, and 133 dB (re 1 J.lPa) at 

200 Hz for A. fulvescens. Lower thresholds were recorded when the sound field was 

dominated by particle motion (transducers driven out of phase), and the lowest response 
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was 120.7 dB (re I J.!Pa) at 250Hz for P. spathu/a, and 118.2 dB (re l J.!Pa) at 200Hz for 

A. fulvescens. 

It is known that the frequency and intensity of a tone burst effects the latency of the 

evoked response (Corwin et al., 1982; Kenyon et al., 1998), as does the metabolic state of 

the organism (Corwin et al., 1982). The Inter-Peak Latency (IPL) of the evoked 

potentials from P. spathula can be observed in Figure 6, and are in response to the second 

sinusoid of a 300 Hz tone burst. The sound pressure recorded at each attenuation foUow 

the sequential steps defmed in Figure 4; the arrows positioned at 0.3 ms intervals 

represent the vertex positive component issuing from the neural centres situated along the 

auditory pathway to the midbrain (Overbeck and Church., 1992). 
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Figure 6. Auditory Evoked Potentials (AEP' s) from P. spathula in response to the 

second sinusoid of a 300 Hz 4 cycle tone burst presented initially at 150 dB (re 1 J.lPa), 

and attenuated in accordance with Figure 4. The arrows show the peak of the AEP, 

which occurs with an Inter-Peak Latency (IPL) of approximately 0.3 ms for each of the 

amplitudes tested (averaged over 2000 iterations per wavefonn set) 
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The increase in the latency of the evoked potential in response to decreasing stimulus 

intensity is often used to verifY that the averaged waveform is a product of auditory 

stimulation rather than a transient generated at the electrode tip (Kenyon et al., 1998). 

Thus, the Inter-Peak Latency (IPL) cannot be accounted for acoustically, as transients and 

other artefacts directly associated with the stimulus sound would occur at the same time 

regardless of sound amplitude. The increase in the latency of the evoked potential in 

response to decreasing stimulus intensity is often used to verify that averaged waveforms 

are a product of auditory stimulation rather than a transient generated at the electrode tip 

(Kenyon et al., 1998). 

3.2 Gross anatomy 

Figure 7 illustrates the left ear and peripheral auditory nerves from P. spathula; the 

saccule (s) and lagena (/) are situated in close proximity to one another, and the two 

otoliths that can be seen in the Figure are similar in size. The peripheral nerves 

innervating the saccule and lagena (rs) share a pathway with the nerves from the posterior 

ampulla (pa); the peripheral nerve bundle projects forward, and connect with the utricular 

nerve and ramulus anterior ampulla (raa) to form the Vlli octaval nerve. In both species, 

there is no internal division between the saccule and lagena, thus the pars inferior consists 

of just one fluid filled pouch. 
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Figure 7. The left ear and VIII nerve from P. spathula; aa. anterior ampulla , pa. 

posterior ampulla, /. lagena, raa. ramus anterior ampulla, s. saccule, ss. sinus superior, u. 

utricle. The annotations D (dorsal) and A (anterior) show the orientation of the ear in the 

fish. Bar = 2 mm 

3.3 Electron microscopy 

Figure 8.a shows the saccule and lagena from a 200 mm (90 g) P. spathula, and 8.b from 

a 260 mm (90 g) A. fulvescens; Figure 8.c shows the utricle from P. spathula and 8.d 

from A. fulvescens. The micrographs have been annotated to show the macula area 

(hatched lines), and the hair cell polarisations are indicated by white arrows. The area of 

the saccule and lagena macula was both found to be 0.36 mm2 for P. spathu/a, and 0.44 

rnm2 and 0.42 mm2 respectively for A. fulvescens. The utricular macula had an area of 

0.63 mm2 in P. spathu/a, and 0.64 mm2 for A.fulvescens. 
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Figure 8. Electron micrographs of the right inner ear end organs annotated with arrows 

to show hair cell polarisations across the sensory surface. a. the saccule and lagena from a 

200 mm (90 g) P. spathu/a, b. the saccule and lagena from a 260 mm (90 g) A. 

fulvescens, c. the utricle from P. spathula, and d. from A. fulvescens. Anterior (A) and 

dorsal (D) represent orientation of the organ within the fish 

The hair cells on the saccular maculae of both species (Figures 9.a and b) are divided into 

two oppositely oriented groups, with cells on the posterior macula oriented dorsally on 

the dorsal posterior quadrant and ventrally on the ventral posterior quadrant. The anterior 
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region of the macula has hair cells orientated toward the anterior and posterior of the fiSh. 

Figures 9 .c and d present hair cells from the lagena of both species and 9 .e and fare from 

the utricle. 

Figure 9. Saccular hair cells from a. P. spathula, and b. A. fulvescens. Lagena hair cells 

from c. P. spathula, and d. A. fu/vescens. Utricular hair cells from e. P. spathula, and f. 

A. fulvescens. 
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The hair cells on the saccule from both species (Figures 9.a and b) have up to 40 

stereocilia partially surrounding a single kinocitium 3 J..lm in length, positioned close to 

the anterior of the cell. Each hair cell is buttressed by what appear to be support cells, 

which present with small centrally placed microvillus like structure, in evidence on both 

inferior maculae. The hair cells on the lagena (Figures 9.c and d) have long stereocilia 

(up to 6 J..lm in length), and partially surround a 9 J..lm kinocilium. Both the longest and 

shortest hair cells were found proliferating on the utricular macula, which presents with 

kinocilium lengths of between 12 to 15 J..lm around the perimeter, down to as short as 1.3 

J..lm in the central (striola) region (Figures 9.e and f). The number of hair cells 

proliferating on each end organ was approximated from at least 12 observations taken 

from around the macula from a 200 mm P. spathula, and a 260 mm A. fulvescens. The 

numbers of hair cells on the saccular macula was approximately 4600 from P. spathula, 

and 6800 from A. fulvescens. In the order of 3600 hair cells were found on the lagena 

macula of P. spathula, and 5000 on the lagena of A. fulvescens, and approximately 8000 

hair cells were found on the utricular maculae from both species. 

4. Discussion 

The pallid sturgeon (Scaphirhynchus a/bus) and shovelnose sturgeon (S. a/bus) are 

known to produce a wide variety of sounds ranging from squeaks and chirps of around 

1000 Hz to 2000 Hz, to low frequency knocks and moans ranging in frequency between 

90 Hz to 400 Hz (Johnston & Phillips, 2003). A comparison of the sounds produced by 

these fish with the audiogram for A. fulvescens reveals that the knocks and moans 

produced during the breeding season, fall well within the optimum range of audible 

frequencies and may serve an ecological purpose to Acipenseriform fish. However, the 

squeaks and chirps fall well outside of this range and are probably incidental, thus serving 

no purpose in communication between conspecifics. 

This is the first time that fish from the order Acipenserifonnes have been assessed in an 

ABR audiological examination, so by testing both P. spathula, and A. fulvescens, it 

allows for a comparative analysis of the results between both species. Twelve specimens 

of A. fulvescens and P. spathula were stimulated with sounds ranging in the frequency 
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domain between 100 Hz to 1500 Hz, though no AEP's were recorded above 500 Hz. 

Stimulus sounds were presented to the fish at levels of between 156 dB to below 120 dB 

(re 1 ~a), with the transducers driven either in or out of phase. The phase of the 

transducers creates a region around the fish with high sound pressure and low particle 

motion, or high particle motion and low sound pressure. The results of the partner study 

on audition in the Asian carp (Lovell et al., in prep), show that the range of frequencies 

and the threshold values of sounds audible to H. molitrix and A. nobilis compare well 

with the audiogram for the specialist catfish (Ictaluros punctatus) produced by Fay and 

Popper (1975). Thus, sounds intended to deflect H. molitrix and A. nobilis can be 

presented in such a way, as to be significantly less audible to P. spathula and A. 

fulvescens. Where the projectors are driven in phase, it is possible to create a region 

between them of high sound pressure, which is less audible to P. spathula and A. 

fulvescens than when the transducers are driven out of phase. This fmding has 

considerable bearing on the efficiency and selectivity of bio-technological control 

systems that rely on acoustics, such as the AFD barrier introduced in this study. 

The hearing thresholds from P. spathula and A. fulvescens in a sound field dominated by 

particle motion were found to be similar at all frequencies tested; in some cases (e.g. 250 

Hz and 500 Hz) there was very little to distinguish between individuals. The lowest 

hearing thresholds were acquired from frequencies in a bandwidth of between 200 Hz to 

300 Hz. This finding is in contrast with many generalist fish audio grams, which show the 

lowest thresholds are often obtained from frequencies at or below 100 Hz; such as the 

results of the ABR audiogram for the Italian freshwater gobies Padogobius martensii and 

Gobius nigricans (Lugli et al., 2003), or the behavioural audiogram for the cod (Gadus 

morhua) (Chapman and Hawkins, 1973). The lowest hearing thresholds with the sound 

field dominated by sound pressure (transducers driven in phase) was 131 dB (re l J.J.Pa) at 

250Hz for P. spathula, and 133 dB (re. l J.J.Pa) at 200Hz for A.fulvescens. The lowest 

hearing thresholds with the sound field dominated by particle motion (transducers driven 

out ofphase) was 119 dB (re 1 J.J.Pa) at 200Hz for P. spathula, and 120 dB (re 1~-tPa) at 

250 Hz for A. fulvescens. However, Kenyon et al. (1998) found that ABR thresholds 

from the generalist oscar (Astronotus ace/latus) were significantly lower than behavioural 

thresholds, which occurred at sound pressures greater than 118 dB (re. 1 J.J.Pa). However, 
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the particle motion ABR audiograms obtained from both species examined in this study 

gave results that were similar, though slightly higher, than the behavioural audiogram for 

the oscar. In normally hearing humans, Gorga et al. (1988) found that ABR thresholds 

were higher than behavioural thresholds for all frequencies tested, especially from lower 

frequencies where intersubject variability was also greater. Worthy of note here, is the 

similarity of the sound pressure audiograms from both P. spathula and A . .fulvescens to an 

ABR generated audiogram for the little skate Leucoraja erinacea by Casper et al., (2003). 

As generalist fish are shown here to respond to the motion of the water particles in a 

sound field, rather than the sound pressure component, it would be prudent to measure 

the audiogram in units of particle velocity rather than sound pressure. However, for this 

study in particular, the use of a sound pressure in the audiogram is acceptable, as the 

target species for the AFD barrier are the pressure sensitive Asian carps H. molitrix and 

A. nobi/is. The results of the auditory examination clearly show that P. spathula and A . 

.fulvescens are not sensitive to sound pressure, and will therefore have a significantly 

higher deterrent threshold than H. molitrix and A. nobilis in a pressure dominated sound 

field. It is therefore concluded that an Acoustic Fish Deterrent (AFD) barrier generating 

a pressure dominated sound field of sufficient intensity to deter non-indigenous Asian 

carps from crossing, will be practicably inaudible to indigenous species and will thus 

have little or no influence on the ecology of paddlefish and sturgeon. 

In most teleost fish the pars inferior comprises two fluid filled pouches, the saccule and 

lagena, though in P. spathula and A . .fulvescens, there is no internal division between the 

two end organs. This feature is common to the ears of a number of non-teleost species, 

such asS. platorynchus (Popper, 1978) and the lungfish Protopterus (Platt et al., 2004). 

For fish to locate the source of a sound in both the horizontal and vertical planes, they 

rely on the stimulation of ciliary bundles oriented specifically along the sound 

propagation axis (Lu & Popper, 1998). In P. spathula and A . .fulvescens, the saccule 

bears hair cells divided into two oppositely oriented groups, a feature also seen in S. 

platorynchus (Popper, 1978). The topographic data from the saccule shows that caudal 

hair cells are orientated on the dorsal and ventral axis, whereas the anterior hair cells are 
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orientated on the anterior posterior axis with respect to the fish. The shape and 

polarisation of the hair cells of the lagena and utricular macula in P. spathula and A. 

fulvescens are similar to the arrangement found in many fish (see Lovell et al., 2005 B 

and 2005 C; Popper & Fay, 1993). 
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Abstract 

The morphology of the inner ear from the common dolphin (De/phinus de/phis) and the harbour 

porpoise (Phocoena phocoena) are studied in conjunction with a Scanning Electron Microscope 

examination of the inner ear ultrastructure in the mammalian cochlea and vestibule. Concise 

physiological information on the hearing system of an animal is critical to the assessment of the 

potential effect of anthropogenic noise pollution in the marine environment, being especially 

relevant in cases where it is suspected that an animal has died as a consequence of intense noise 

exposure. ln addition, we present a methodology for conducting non-invasive hearing tests on 

odontocetiformes by measuring the Auditory Brainstem Response, in order to objectively establ ish 

if hearing damage is a contributing factor in a live stranding event. The results of the anatomical 

investigation into the dimensions of the cochlea in P. phocoena and D. de/phis showed similarities 

between these two animals. Both were shorter than the overa ll cochlea length reported for the 

bottlenose dolphin (Tursiops truncatus), indicating the possibility of differences in hearing ability 

between odontocetiformes; a finding that has fundamental implications in the assessment of 

anthropogenic noise pollution on marine mammals. 
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ABR; Cetacean; Dolphin; Inner ear; Cochlea; Electron microscopy; Noise Pollution 

Introduction 

The oceans are virtually transparent to sound, and opaque to light and radio waves. At a 

wavelength of I m ( I ,500 Hz), water is nearly I ,000,000 times more transparent to sound than to 



radio signals (Pilgrim and Lovell, 2002). This fact underlies the intense interest currently being 

directed toward the acoustical exploration of the oceans. Naturally produced sounds arise from a 

number of sources, such as breaking waves, heavy rain, volcanic activity, or from marine animals 

(bio-acoustic sources). Vocalisations such as whale song, along with the grunts and whistles from 

sonic fish are especially relevant for communication purposes, and during predator prey 

interactions (Myrberg, 1981 ). There are several types of anthropogenic sources used routinely that 

produce intense levels of noise, from commercial shipping and powered leisure craft, to 

deliberately produced signals such as the Low Frequency Active Sonar (LFA) used by the military 

in anti-submarine warfare, or from the airgun arrays used during a seismic survey of the substrate 

beneath the seafloor by the petroleum industry. These activities can generate noise levels in 

excess of 253 dB (re I J.!Pa at I m) (Engas et al., 1996) and are comparable to the noise levels 

generated by a seafloor volcanic eruption, which can produce a source level of in excess of255 dB 

(re I J.!Pa) (Northrop, 1974). Recent concerns regarding the impact of anthropogenic sounds on 

fish and other marine animals has prompted a number of studies into the effects of intense noise 

exposure on the hearing systems of marine mammals (e.g., Costa et al., 2003; Ketten, 1995; 

Richardson et al. , 1995; Todd et al., 1996; Whitlow et al., 1997). Trauma to the auditory system 

can result in lesions developing along the VIIT nerve pathway, or ruptures in the blood vessels 

surrounding the inner ear. Growing concern regarding the use of intense sources by the military 

and oil industry is stimulating considerable interest in the diagnosis of the existence and extent of 

hearing loss in marine animals. A number oftechniques have been developed to investigate gross 

physiological damage, though concise evidence of raised hearing thresholds from odontocetiforms 

exposed to loud noise has as yet to be presented. 

High intensity low frequency sounds such as LF A sonar may be particularly damaging to the 

vestibular (balance) organs of cetaceans and could account for the reported disorientation when 

these animals strand live; whereas loud midrange to high frequency sounds may damage the 

ultrastructure in the cochlea. Trauma to the auditory system can result in lesions developing along 

the VIIl nerve pathway, or ruptures in the blood vessels surrounding the inner ear (Ketten, 1995). 

A number of techniques have been developed to study gross physiological damage to the inner ear, 

though these investigations do not necessarily verify the impairment of hearing and balance. In 

addition, the cause of an injury to the hearing system may be unrelated to loud noise exposure (e.g. 

Andre, et al. , 2003) and sustained by a collision with a boat, or as the animal thrashes about on the 

shoreline. If caused by intense noise, signs of trauma (haematoma and nerve lesions) would 

probably manifest at the highest end of the impact scale, whereas more subtle damage to the ears 
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may only show in the ultrastructure and thus be missed when using conventional examination 

methodologies. Current literature shows a paucity of information on consistent and meticulous 

removal of inner ear parts necessary to identify damage to the ultrastructure symptomatic of 

hearing and balance loss. In addition, the fixing agent commonly used during autopsy is formalin, 

though this chemical does not bind the proteins in the ultrastructure and results in the rapid 

destruction of the ci lia, making the sample unusable for SEM microscopy. It is therefore the 

purpose of this study to develop dissection and fixation methodologies relevant for the removal 

and SEM examination of the odontocetiform inner ear and ultrastructure. However, owing to the 

scarcity of cetacean inner ear samples suitable for SEM microscopy (due for the most part to the 

use of formalin in the fixation methodology), the inner ear of the domestic pig (Sus scrofa) is used 

to append the dissection and fixation methodologies required to view mammalian ultrastructural 

hair cells. The periotic bone containing the inner ear from S. scrofa is dimensionally similar 

(though slightly thinner) than the cetacean periotic, and has the considerable advantage of being 

easy to obtain fresh from commercial sources. 

Materials and methods 

Morphological examination of the cetacean inner ear 

The common dolphin (D. de/phis) examined in this study was recovered on the 2"d of February 

from Beacon Point in Devon (Ordnance Survey GB grid reading SX674406). The tagged carcass 

was not designated for collection (autopsy), due to its location at the foot of a steep cliff making 

access difficult. A brief inspection revealed that the animal was a mature male, approximately 2.4 

meters in length, and estimated to have been dead for I 0 to 12 days; injury to the front rows of 

teeth and the jaw indicate that it is highly possible that the animal died as a result of becoming 

entangled in fishing nets. The mature harbour porpoise (P. phocoena) was recovered on the 11th of 

February 2005 from Andum Point, near Plymouth Sound, Ordnance Survey GB grid reading 

SX495492 (NHM reference SW.2005/30). The tagged carcass was l.47 meters in length and 

approximately three years of age (Read, 1999) and was not designated for autopsy due to it being 

in an advanced state of decay. 

Upon removal from the carcass, the periotic bone containing the inner ears from D. de/phis and P. 

phocoena was separated from the petrous bone and washed in 70 %chi lled ethanol. Removal of 

the inner ear from the encapsulating periotic bone required two cuts made using a fine cutting 

wheel, which was stopped short of penetrating to the inner ear canals by approximately 0.4 mm. 
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The weakness in the bone caused by the hemispherical cut allowed for the two halves of the 

periotic to be gently separated using minimal leverage, thus exposing the internal structure of the 

ear. A cast of the inner ear cavity was then made by injecting Silicone rubber into the cochlea duct 

and vestibule, and allowed to cure for 24 hours (Figures l.a through c). The cast was removed by 

gently separating the three cut sections of the periotic and by easing the rubberised impression of 

the ear from the bone segments. The cast was then washed in 100 % ethanol and processed for a 

low powered Scanning Electron Microscope (SEM) examination of the surface features. 

Cut I and a. b. 

at 40 o c. 

IOmm 

Fig. 1 a. Ventral view of the periotic from P. phocoena showing the position of the two cuts, b. the 

sections of periotic cut away to free the cochlea, and c. the periotic after the silicone injection 

moulding procedure. The annotations D. (Dorsal), and A. (Anterior) represent the orientation of 

the periotic in the skull 

SEM examination of the mammalian inner ear ultrastructure 

In total, 12 ears were removed from mature domestic pigs (Sus scrofa) during processing for the 

meat industry, within I hour of the animal ' s death, in order to assess the dissection and fixation 

methodologies required for an SEM examination of the inner ear ultrastructure from a large 

mammal. On removal from the cranium, the complete periotic bone containing the inner ear was 

immersed for 4 hours in a jar of chilled fixative (2.5% glutaraldehyde in 0.1 M cacodylate buffer) 

and taken to the Plymouth EM unit for processing. Samples selected for the examination of the 

vestibule were first immersed in a chilled aqueous solution of 2.5 % S-Carboxymethyl-L-Cysteine 

for 5 minutes prior to fixing, in order to hydrolyse the mucous binding the otoconia to the cilia. 

The periotic bone containing the inner ear was washed in a solution of 30 % ethanol, to remove 

excess fixative; then, using a fine electric cutting wheel, the outer bone layer covering the cochlea 
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and membranous labyrinth was removed, exposing the canals and pouches ofthe saccule, vestibule 

and cochlea. The opened periotic was then placed back into the fixative and refrigerated for a 

further 2 hours, to ensure that the fixative had fully penetrated the inner ear end organs. Working 

in 30 % ethanol, each of the end organs were dissected from the labyrinth using a fine scalpel, then 

dehydrated through a graded ethanol series ranging from 35% through 50%, 70% and 90% to 

absolute ethanol, prior to desiccation using the critical point drying method described by Platt 

( 1977). The fully desiccated tissue was subsequently mounted on a specimen stub using a carbon 

tab, and coated with c. 8 nm of gold in an Emitech K 550 sputter coater (working at approximately 

5 x I o-6 Torr). The processed specimens were investigated and photographed using a JEOL JSM 

5600 scanning electron microscope operated at 15 kv and a 15 mm working distance. 

Results 

The ear cast from D. de/phis and P. phocoena 

Figures 2 .a through 2.d presents SEM micrographs of the bony inner ear labyrinth cast from D. 

de/phis and P. phocoena viewed laterally, toward and away from the mid sagittal plain of the 

brain. The length of the cochlea from the upper apical tip to the lower basal segment in D. de/phis 

(2.a and 2.b) was calculated to be 30. 1 mm, with the vestibule making up the remaining 3 mm of 

the inner ear (total ear length of 33.1 mm). ln P. phocoena (Figures 2.c and 2.d), the cochlea was 

21.8 mm in length and the vestibule was 2.7 mm (total ear length of24.5 mm); the length of each 

semicircular canal was found to be around 3 mm in both animals. 
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Figure l.a. SEM micrograph of the left inner ear cast from D. de/phis (lateral view away from the 

mid-sagittal plane of the brain). l.b. SEM micrograph of the left inner ear cast from D. de/phis 

(lateral view toward the mid-sagittal plane of the brain). l.c. SEM micrograph of the left inner ear 

cast from P. phocoena (lateral view away from the mid-sagittal plane of the brain). l.d. SEM 

micrograph of the left inner ear cast from P. phocoena (lateral view toward the mid-sagittal plane 

ofthe brain) 
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SEM Examination of ultrastructure from the mammalian cochlea and vestibule 

Partial removal of the bone covering the inner ear from S. scrofa (Figure 3.a) reveals the canals of 

cochlea surrounded by the dense auditory periotic bone. The anterior part of the capsule contains 

the cochlea (Figure 3.a); a spiral tube coiled approximately two and one-half turns around a hollow 

central pillar, the modiolus. Further removal of the remaining bone covering the posterior part of 

the inner ear reveals the membranous labyrinth of the vestibule, which contains the saccule, utricle 

and the semi-circular canals; each filled with endolymph, a substance possessing viscous and ionic 

properties that flows around the semicircular canals aiding the sense of balance. 

Figure 3.a. The labyrinth of the inner ear from S. scrofa with the covering periotic bone partiillly 

removed. 3.b. the saccule and utricle with the covering bone fully removed prior to dissection and 

preparation for SEM microscopy (Bars = I mm) (total basilar membrane length = 32 mm) 

Figures 4.a through 4.f shows ultrastructural hair cell proliferations from the upper apical tip to the 

lower basal region of the cochlea from S. scrofa. The Inner Hair Cells (IHC) atferents present in a 

single row arranged with longer (10 f.lm to 15 f.lm) cilia at the upper apical tip of the basilar 

membrane, and shorter hairs (2 f.lm to 3 f.lm) in the lower basal segment. The Outer Hair Cells 

(OHC) present in three ordered rows anchored to the basilar membrane outside of the reticular 

lamina. Each of the cells is orientated toward the outer wall of the cochlea, and contains over a 

hundred stereocilia, arranged in a crescent formed from three to four consecutively shorter rows. 
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Figure 4.a. hair cells ( l 0 to IS IJ.m) from the tip of the upper apical, 4.b hair cells (8 to l 0 IJ.m) 

from the upper apical (rl. reticular lamina), 4.c hair cells (6 IJ.m) from the lower apical, 4.d hair 

cells (6 IJ.m) from the upper basal, 4.e hair cells (4 IJ.m) from the lower basal region, 4.f hair cells 

(3 IJ.m) close to the end of the lower basal region 

The vestibular organs 

The dissection vestibule (Figure 3.b) reveals the saccule and the utricle; the utricle is compressed 

transversely and occupies the upper and back part of the vestibule, lying in contact with the 

recessus ellipticus (Gray, 1918). The floor and anterior wall of the recess is thickened, forming 

the macula acustica utriculi and innervated by the utricular ganglion of the VIII nerve (Figure 3.b). 
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The posterior wall of the saccule fonns the ductus endo/ymphaticus, which is joined by the ductus 

utricu/osaccularis and passes along the aquceductus vestibuli ending in the saccus 

endolymphaticus. The cavity of the utricle communicates with the semicircular canal ducts by five 

orifices, which can be clearly seen in Figures 2.a and 2.c. The smaller of the two bulbous 

vestibular sacs is the saccule (Figure 3.b ), which is fixed to the walls of the labyrinth near to the 

opening of the cochlea. The cavity is located adjacent to the upper basal turn of the cochlea in 

proximity to, but not in direct communication with the utricle, and presents with an oval 

thickening that fonns the sensory macula (the acustica sacculi). The epithelial surface of the 

utricle (Figure 5.a) and the saccule (Figure 5.b), is covered with a thick layer of otoconia thought 

to function similarly to the teleost fish otolith in response to gravistatic and accelerational stimuli; 

in Figure 5.b, some of the otoconia has been removed revealing the underlying hair cells. 

Figure S.a SEM micrograph of the utricle from the domestic pig (Sus scrofa); the hatched line 

defines the perimeter of each sensory macula (mu.), S.b. the saccule (s.) and the sensory macula 

(ms.); the white arrows indicate the polarity of the hair cells across the surface of each macula, S.c. 

crystalline calcium carbonate otoconia overlaying the saccular hair cells, S.d. hair cells from the 

dorsal quadrant of the saccule after removal of the otoconia 
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Discussion 

The use of the Scanning Electron Microscope (SEM) in the examination of the ultrastructure 

responsible for the mediation of auditory stimuli has been used to considerable effect on lower 

vertebrates such as fish (Piatt 1977; Lovell et al., 2005b), and invertebrates (Lovell et al., 2005a), 

though no SEM examinations have, so far, been conducted on the inner ear ultrastructure from any 

of the cetacean species. However, the relative ease and speed in which the auditory periotic can be 

dissected from behind the mandible of D. de/phis indicates that it should be possible to remove the 

complete inner ear for a Scanning Electron Microscope examination of the ultrastructural hair 

cells. A procedure for the fast removal of the complete cochlea and other end organs of the inner 

ear undamaged has been demonstrated here. However, as both cetacean carcass examined in this 

study were retrieved in an advanced state of decomposition, thus SEM examinations of the 

ultrastructure within the inner ear was not undertaken as inner ear hair cells are known to 

deteriorate within a short time after death. It is essential that the periotic is rapidly immersed in 

chilled fixative (2.5% glutaraldehyde in 0.1 M cacodylate buffer with 3.5% sodium chloride), then 

refrigerated to inhibit sample decomposition (the sample must not be frozen, as ice crystals will 

destroy the ultrastructure). 

The saccule and utricle are sensitive to both angular accelerations and low frequency sounds 

(Popper and Fay, 1993). If either were to become damaged by anthropogenic noise pollution, it 

may contribute to the reported disorientation experienced by cetaceans which have become 

stranded live, yet do not present with any obvious signs of injury. The examination of both 

sensory maculae in the vestibule of S. scrofa reveals a thick blanket of otoconia which occludes 

the hair cells from view. The cilia are embedded in the otoconia and cohesion is provided by 

mucus (the remains of which is evident in Figures 5.c and 5.d). In order to remove the otoconia 

and mucus with as little disturbance to the hair cells beneath as possible, S-Carboxyrnethyl-L­

Cysteine was employed to hydrolyse the mucus before fixing the sample. This procedure yielded 

best results when the solution was 'washed ' through the vestibule using a pipette, prior to fix ing 

the sample in the glutaraldehyde. 

In D. de/phis (2.a and 2 .b) the length of the basilar membrane from the upper apical tip of the 

cochlea to the round window was calculated to be 30.1 mm, whilst the basilar membrane from P. 

phocoena (Figure 2.c and 2.d) had a length of 24.5 mm. Both the animals investigated in this 

study were mature individuals (see Read, 1999), thus it is tentatively concluded that the cochlea 

from D. de/phis is 8 mm shorter, whilst P. phocoena is 16 mm shorter than the 38 mm reported for 
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T truncatus (Wever et al., 1971). All mammalian cochleae appear to function according to the 

same basic principles; however, the effective frequency range differs between species (Fay, 1988). 

For example, the range of audible frequencies is about 20 Hz to 16 kHz in the human cochlea, 

about 300 Hz to 45 kHz in S. scrofa (Heffner and Heffner, 1990), about 100 Hz to 150 kHz in T 

truncates (Johnson, 1966; 1967) and 300 Hz (Kastelein et al., 2002) up to as high as 190 kHz in P. 

phocoena (Bibikov, 1992; Popov, 1986; Kastelein et al., 2002). Table 1 presents the outlying 

frequencies audible to the marine and terrestrial mammals considered here, along with the cochlea 

length measurements. 

Table 1. Comparison between cochlea length and audible frequency range 

Species Cochlea Low (Hz) High (Hz) 
Length (mm) 

T truncates 38 lOO 150000 
P. phocoena 22 300 190000 
Human 35 20 16000 
S. scrofa 32 300 45000 

The evidence presented in this study suggests that the audiogram for D. de/phis may lie 

somewhere between the hearing range of T truncates and P. phocoena; it is therefore concluded 

that their is considerable need for the production of an audiogram for D. de/phis , being of 

importance for an accurate assessment of the impact of anthropogenic sounds on the inner ear 

physiology of this animal. 
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Abstract 

The organisation and function of the statocyst in the prawn (Palaemon serratus) from three body 

size classes have been studied using a combination of anatomical, electron microscopic and 

electrophysiological approaches. The statistica l examination of the relationship between the 

sensory setae length and body size showed that small prawns had s ignificantly smaller setae than 

medium and large prawns. In view of this finding, the electrophysiological response of the 

statocyst organ to sound stimuli was recorded from fo ur specimens in each size class using two 

subcutaneous electrodes, positioned in the carapace close to the supraesophageal ganglion and 

statocyst. The results were analysed using a one way ANOVA, and the P value of 0.925 reveals 

th at that body size has no significant impact on the amplitude of the electrophysiologica l response 

to tone bursts generated in an underwater sound field. The information provided by both SEM 

microscopy and ABR audiometry, shows that prawns are capable of hearing a 500 Hz tone with 

equal acuity regardless of body size, a finding that is of ecological importance when cons idering 

th e effect of an lhropogen ic sound on crustaceans . 

• Corresponding author. Tel: +44 1752 232411 ; fax: +44 1752 232400. 

E-mail address: j love ll@plymouUJ.ac.uk (J.M. Lovell). 
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1. Introduction 

The ability of an organism to orientate itself in the 3-D marine environment requires the presence 

of a suitable gravity recepbr. These receptors occur in many diverse organisms throughout the 

marine environment, and include cephalopods (Dilly et. al., 1975 ; Bette ncourt & Guerra, 2000), 

crustaceans (Prentiss, 190 I; Schone, 1971; Rose & Stokes, 1981; Patton & Grove, 1992), and fish 



(Popper & Platt, 1983; BretschneKier et al., 2001). In crustaceans the statocyst is located either at 

the anterior end of the animal in the basal segment of each antennule, or posteriorly within the 

uropods, abdomen or telson, (Farre, 1843; Cohen and Dijkgraaf, 1961; Finley and Macmillan, 

2000). Several authors (e.g. Barber & Emerson, 1980; Popper, 1981; Yan et al. , 199 1) have 

studied the surface detail of the inner ear in vertebrate animals, employing a similar methodology 

to that used in the present study. Previous reports describe the statocyst as a flu id filled pouch 

formed internally by an info lding of the external epidermal layer. The chamber is never 

completely iso lated from the external environment, and in some species the opening has become 

slit like, (Bate, 1858; Cohen and Dijkgraaf, 196 I), or only exposed to the env iron men t during the 

moulting phase (Pren tiss, 190 I). The epithelium of the statocyst contains a varying number of 

mechanosensory hairs or setae, which are primarily concentrated at the base or ventra l area of the 

chamber (Hertwig, et.al., 1991; Sekiguchi and Terazawa, 1997). 

The arrangement and number of setae within the statocyst varies greatly between species ( Cohen, 

1955; Budelmann, 1988; Kovalev and Kharkeevich, 1993), and in some species (e.g. Cherax 

destructor) , different types of setae are present (Finley and Macmillan, 2000). The dense stato lith 

structure within the statocyst is typically constructed from sand grains set in a gelatinous medium 

(Cohen and Dijkgraaf, 1961 ; Popper et al, 200 I). The statolith may lie adjacent to the 

mechanosensory setae, in partial co ntact with , or cemented to them, (Cohen, 1955; Finley and 

Macmillan, 2000). The base of the setae is embedded in a highly innervated sensory epithelium 

or cushion (Prentiss, 1901), initiated by shear forces between the statolith and statocyst, which are 

determined by the an imal's spatial movement in the environment (Cohen, 1955; Cate and Roye, 

1997). It has been well established that the crustacean statocyst functions as an equ il ibrium organ 

by in itiating corrective movements to maintain the an imal's position in the water column, (Cohen 

and Dijkgraaf, 1961; Sekiguchi and Terazawa, 1997; Finley and MacmiUan, 2000; Popper et a l. , 

200 I). However, few reports have examined the relationship between size and the fine structure 

of the crustacean statocyst, and none has examined the amplitude of the electrophysiological 

response of different s ized afferents in an underwater sound field. In this work, we study the 

morphology of the statocyst receptors from three size classes of P. serratus using Scanning 

Electron Microscopy (SEM), and then test the amplitude of the e lectrophysiological response of 

the organ when stimulated with a 500 Hz tone, propagated in an underwater sound fie ld. This 

in formation is of importance due to rising concerns regarding the impact of anthropogenic sounds 

on fish and other marine animals. These concerns have prompted a number of investigations into 

the effects of intense noise exposure on the hearing systems of marine mammals (e.g. Costa et al. , 
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2003; Ricbardson et al., 1995; Whitlow et al., 1997), and free living ftsh ( Dalen and Knutsen , 

1987; Engas et al. , 1996; Pearson et al., 1992; Pickett et al., 1994 ). However, until recently, it has 

been generally assumed that crustaceans are only responsive to strong vibrations transmitted 

through a solid (see Cohen and Dijkgraaf, 1961). This is contrary to the findings ofLovell et al., 

(2005}, which shows that prawns hear with an acuity and frequency range similar to that of 

generalist ftsh and have the potentia l to be equally affected by loud anthropogenic noise sources 

generated in the marine environment. 

The Auditory Brainstem Response (ABR) recording technique was originaUy developed for use in 

clinical neurophys iology, and has been successfully applied in the auditory assessments of both 

mammalian and non-mammalian vertebrates (Corwin et al., 1982), and invertebrates (Lovell et al., 

2005). The term ABR is used loosely in this study, as crustaceans and other invertebrates lack a 

brain stem, instead they present with clusters of neurons that belong to a central complex (Utting et 

al., 2000; Schmidt and Ache, 1996). However , the waveform of the response of the afferent 

neurones of the stabcyst in a sound field is recorded using the electrophysiological technique, 

acquired by averaging conglomerate responses of peak potentials arising from nuclei in the 

auditory pathway during acoustic stimulation (Corwin et al., 1982; Overbeck and Church, 1992) . 

The sweep records the generation of neural waveforms over a user-defmed time span termed the 

sweep veloc ity, and measures activity prior to, during and after stimulation of the inner ear. 

Recordings have to be repeated over I 000 to 2000 presentations before clear results can be 

obtained, due to additional waveform generation by neural activities other than those associated 

with hearing, combined with muscular movements (Kenyon et al 1998; Yan et al 2000). The 

recorded waveforms resulting from each sweep are averaged together and produce a recognisable 

ABR waveform, which is then overlaid on the ftrst run, to show that the evoked potentials are 

repeatable. 

2. Material'i and Methods 

A total of one hundred common prawns, Palaemon serratus (Permant), of mixed sex, and ranging 

in length from 27 mm (0.1 g) to 71 mm (1.9 g) were obtained from wild stock in the South West 

of England (ordnance survey GB grid read ing SX483539) using a dip net. Once captured, the 

prawns were transferred to a marine tank div ided by a fme mesh screen into four equal sized 

compartments of 50 litres each. An Eheim type 20 13 biological filter with a flow rate of 390 litres 

per hour maintained water quality and provided aeration by spraying filtered seawater back into 

the tank via the filter outlet pipe located 60 mm above the water surface. The ambien t noise 
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within the holding tank was measured using a hydrophone, and the sound pressure level was 

calculated to be 102 dB (re I !!Pa), with the Fheim pump active. In all of the experiments, and in 

the holding tank, the ambient water was kept at a temperature of 18° C and a salinity of 34 g/1. 

When not under experimental protocols, the prawns were provided with 14 hours of light per day 

from a fluorescent tube controlled by a mains timer switch. Prior to any experimentation the 

prawns were divided by size into three populations; each group was fed on a granulated feed at a 

daily rate of 6 g for the large prawns, 4 g for the medium and 2.5 g for the small. 

12 specimens of P. serratus from each size class were dissected and the statocyst removed under 

seawater, and placed in a watch glass containing 2.5 ml of 0.9% sodium chloride prior to micro­

dissection. The capsules were opened by making a lateral incision around the statocyst chamber 

using a fine scalpel. Needlepoint tweezers were used to lift the upper section of the capsule, thus 

exposing the sand granules and ultrastructure. The sodium chloride solution was removed using a 

pipette and replaced with a solution of 2.5 % S-Carboxymetbyl-lrCysteine in sodium chloride, 

which was used to hydrolyse the mucus surrounding the statolith receptors. The contents of the 

dish were gently agitated for two minutes, after which the solution was removed and replaced with 

chilled fixative (2.5% glutaraldehyde in O.l M cacodylate buffer with 3.5% sodium chloride). The 

statolith capsules were then dehydrated through a graded ethanol series ranging from 35% through 

50%, 70% and 90% to abso lute ethanol, prior to desiccation using the critical point drying method 

described by Platt ( 1977). Fully desiccated statolith capsules were subsequently mounted on a 

specimen stub using a carbon tab, and coated with c. 8 nm of gold in an Emitech K 550 sputter 

coater. Finally, the processed specimens were investigated and imaged using a JEOL JSM 5600 

scanning electron microscope operated at I 5 kv, and a 15 mm working distance with the eucentric 

stage holding the specimen aligned for 'planar' image acquisition. 

All measurements were carried out on a PC using the analySIS® (Soft lmaging System GmbH) 

program. The distance between bases of the closest neighbour was measured using arbitrary 

distance and the hair cell length was measured using polygon length, both measurements were 

recorded in micrometers. The hair cells were measured from their base to the point at which the 

delicate threads began to develop at the tip , and total sensory setae counts were all completed 

manually. Statistical calculations were carried out using Statgraphics plus 5.1 professional edition 

program. Analysis of variance (ANOVA) was used to test whether or not hair cell length and 

distance between neighbouring bases or the amplitude of the electrophysiological response 
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differed between smal~ medium and large individuals of Palaemon serratus . The program 

constructs various tests and graphs to compare the mean values for the three size categories. The 

F-test in the ANOVA assists in determining whether any significant differences are present 

between the means. Multiple range tests were incorporated into the analysis as it applies a 

multiple comparison analysis to the data to determine which means are significantly different 

from one another. 

2.1. ABRmethodology 

The procedure used to acquire the acoustically evoked potentials was approved by the United 

Kingdom Home Office. The test subjects were placed into a flexible cradle formed from a soft 

nylon mesh rectangle saturated with seawater. Oxygenated water kept at a temperature of 18° C 

was gravity fed at an adjustable flow rate of 3 millilitres per second and directed toward the gills. 

The water was held in an aerated reservoir positioned in an adjacent room, and fed to the prawn 

through a 4 mm diameter plastic tube. The prawn was first placed lengthwise and centrally on an 

80 mm x 60 mm rectangle of fine nylon netting, which was wrapped frrmly around the 

cephalothorax and pleon, and the two sides of the net were held together using the clip shown in 

Fig. l.b. 

a. 
Med:Jec MS 6 

Biological am plilier 
PC monitor and b. 
stimulus ~plifier 

Support 
bar 

Fine mesh 
netting 

Centre of gravity 
adjustment hoes 

Oxygenated 
water reed 

p"e 6 mm a 

Fig. l.a. Schematic of the ABR audiometry system, and l.b. the clamp used to hokl the prawn in 

position, and manipulate the e lectrodes during the audio logical test (from Lovell et al., 20005) 
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The clip was placed in a retort stand clamp fitted with baU joint electrode manipulator arms, and 

th e aerated water pipe (detailed in Fig. l .b). During the procedure to position the electrodes, the 

specimen and clamp were suspended over a plastic tray, and aerated water was supplied to the 

prawn. A retort stand and the experimental tank (L. 450 mm x W. 300 mm x D. 200 mm) were 

placed on an anti-vibration table, located in a concrete basement fitted with anechoic panelling L. 

3 m x W. 2 m x H. 2m. A selection of 4 prawns from each size c lass ranging from 27 mm (0. 1 g) 

to 35 mm (0.3 g) for th e smal~ 50 mm ( 1.1 g) to 55 mm (1.4 g) for the medium, and 66 mm ( 1.8 

g) to 7 1 mm ( 1.9 g) for the large, were tested with a 500 Hz, 4 cycle tone burst, presented at a 

sound pressure level of 125 dB (re I ).I.Pa at I m) from an air mounted speaker. Working under a 

MEIJI binocular microscope, two small ho les were made in the cuticle layer using a lancet, 

penetrating the carapace to a maximum depth of 0.3 mm to facilitate electrode positioning. The 

reference electrode was located behind the supra-orbital spine, close to the neural complex 

associated with the antennule, and the record electrode was located in the peduncle close to the 

statocyst, at the junction between the latera l antennular and otic ganglia. The clamp assembly 

with the specimen and sited e lectrodes were then suspended from the retort stand positioned over 

th e experimental tank , and the prawn stationed 5 mm below the surface of the water. After the 

hearing assessment, the prawns were relocated to a ho lding tank for observation, prior to being 

returned to thedivr:ied aquarium. 

The evoked response was amplified and digitised to 12 bits reso lution and recorded. This process 

was repeated 2000 times, and the response averaged to remove e lectrical interference caused by 

neural activ ities other than audition, and the myogen ic noise generated by muscular activ ity. 

Each measurement was repeated twice, as this aids in separating the evoked response, which is 

the same from trace to trace, from the myogenic noise, which varies in two successive 

measurements. After the averaging process, the evoked potential co uld be detected, following the 

stimulus by a short latency period of 5 milliseconds. The latency is accounted for by the time it 

takes the sound in air to travel the I m to tbe prawn, plus l to 2 milliseconds response latency. 

Each prawn was tested twice to show that the Auditory Evoked Potential (AEP) was repeatable. 

ln order to obtain a mean value for the EP, the )lv value of the second peak of the response was 

calcu lated using the Root Mean Square method descr ibed in equation I. 
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..J(liT flit Xl (I)) 

Equation I. Definition of the Root-Mean-Square value, where x(lj is the amplitude of the Evoked 

Potentia~ and T is the duration. 

TheRMS values of both runs from the same animal were then averaged together and entered inb 

a one way ANOVA to test the correlation between body size and receptor length on the AEP. 

The response of the prawn was measured us in g a proprietary control and analysis programme 

which both generated the stimulus signals and captured and analysed the response, and was 

installed onb the PC shown in Fig. l .a. Amplification of the sound was achieved using a Pioneer 

type SA-420 amplifier and a 200 mm Eagle L03 2 loudspeaker with a frequency response range of 

40 Hz to 18000 Hz. Additionally, the loudspeaker was placed inside a Faraday cage and 

connected to a centralised earth point located in an adjacent room where the PC, amplification, 

and analysis equipment was set up. Connecting wires were fed through a 100 mm port in the 

partitioning wall. 

2.2. The sound field 

The properties of the sound field are especially relevant when comparing the audio capabilities of 

both pressure sensitive and motion sensitive fish in the near field . In a small laborabry set-up, 

the complexities associated with independently measuring sound pressure and particle motion are 

compounded by the reflectivity of the tank sides and base. For th is reason, a number of 

experiments have used air-mounted transducers to successfully generate sounds underwater (e.g. 

Fay and Popper, 1975; Yan et al. , 2000; Akamatsu et al., 2002). The principle advantage of such 

a sys tern is that as the sound source is located at a d istance of 1 m from the air/water interface, the 

moving part of the transducer does not contact the water and generate near-field displacements. 

In this situation the pressure and motion of the water adjacent to the fish ear can be considered as 

being equal (Hawkins 1981). The stimulus tone, presented from the loudspeaker to the prawn 

was calibrated using an insertion calibration. A calibrated Bruel and Kjaer Type 8106 

hydrophone was placed in the tank and positioned adjacent to the shrimp cephalothorax region b 

record the intens ity of the tone, relative to the position of the statocyst. 

3. Resuh 
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The statocyst of Palaemon serratus is located in the basal segment of the left and r ight antennules 

(Fig. 2a and b), and are well developed and fluid ftl led in both male and female specimens from 

each of the size categories. The statocyst is oval in shape; being we U rounded posteriorly and 

narrowing to a point anteriorly (Fig. 2c). The openings are protected by coarse setae and a thin 

layer of chitin that extends from the basal segment of the antennules, thus the statocyst is 

effectively closed to the external environment 

b. . · ... a . 
Anlerior 

.. \1...---- _._. . . -·· . 
, llf ' ...... - .. - .. -- - .. ,-J • •••• ,, \: •• 

,' \ - ,-, r~tr.· ·' ~ ! " 
. ll . ~- ._,'Ill . . ~ . :, . . 
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Statocyst organ , __ \ (~.'· . 
1 4 

housing the sensory ~._'. _Crescent shaped 
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i 

Statolith 

F~. 2.a. Diagrammatic representation of a prawn showing a ll body segments and location of 

statocyst (circled area) . b. Higher magnification of first antennule illustrating its segments and 

statocyst positioning (from Kav lekar, 1998) c. Sketch of the statocyst, showing the position of the 

sensory setae and statolith 

The number of setae in the statocyst ranged from 30-38 from the small prawn, 56-73 from the 

medium, and 72-83 for the large. The statolith was primarily composed of sand grains; however 

other foreign materia l was regular ly observed in many specimens throughout the samples. The 

sand is cemented to projections from the tips of the surrounding setae by mucus, forming a dense 

elliptical mass. A ring configuration, constructed by some of the projections from the tip of the 

sensory setae (s) connected the hairs together, creating an outline of the crescent shown in Fig. 

3.a. Other projections from the tips of the setae interlaced and penetrated the centre of the 

statolith forming a supportive basket (Fig. 3.b). For the statistical interpretation of the data, the 

shape of the sample distributions has been ignored as the sample sizes are large so, the shape of 

the distribution of the individual samples is not important due to the central limit theorem (Fowler, 

1998). The setae were positioned on the peak of the rKige circling the depress ion in a crescent 

shaped formation (Fig. 3.a and 3.b). The setae are slightly curved and orientate themselves 

towards the centre of the crescent, with an opening directed towards the posterior of the animal. 
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The setae were arranged in a regular row dividing further into two irregular rows at the base of the 

outer end of the crescent (oc), with a single sensory setae (sss) present just inside the aperture. 

Each seta was attached to the sensory cushion via a heavily ridged bulbous base constructed of 

chitin resembling sclerotised cuticle. The shortest hairs(< 120 1-1m) were found proliferating in a 

band running down the left side of the array, whilst the longest hairs(> 170 1-1m) were found in the 

right caudal quadrant. The satolith capsule is elliptical in shape, and the walls symmetrically 

curve inward toward the base, where the receptor cells are located on a mound rising 40 1-1m from 

the floor of the capsule. Observations of the sensory setae revealed that each hair was orientated 

towards the centre of the crescent (er), and anchored by a bulbous ridged base (rb) to the statocyst 

floor . High Power magnification observations showed the presence of fine projections originating 

from the tip of the setae, which interlocked with one another to form the crescent shaped ring 

con figuration . 

F~. 3.a. SEM showing a solitary sensory setae positioned away from the setae row (sss). This 

feature has been demonstrated on each specimen examined, and is associated with the single row 

of setae ilside the aperture of the crescent 3.b. Lateral view of the statocyst. cr. central region, 

he. hair cell, m. mound, sw. statocyst waU, us. upper tapering section of hair cell (from LoveU et 

al. 2005) 

Fig. 4.a shows an SEM of a typical row of sensory setae viewed from the front, and 4.b shows the 

row of setae (s) as viewed from above. The thread like projections (tip) originate from the tip of 

the setae and range in number from 3 to 12, and are only found on the upper portion of the ceU tip, 

and link with adjacent and neighbouring sensory setae to create the statolith net, which works in 

conjunction with the mucous to hold the sand granules in position. 
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Fig. 4.a. SEM of a typical row of sensory setae present on all statocyst samples, viewed from the 

front, and 4.b, the row of setae as viewed from above. Between 3 and 12 thread like projections 

(tip) originate at the tip of the setae (s) and forms a web that secures the sand granules i> the hair 

shaft 

3.1. RelatK:mship between body size and setae length 

The lengths of setae were significantly different between the body sizes of P. serratus in the 

specimens examined, and the prawns in the small body size category had signifiCantly smaller 

sensory setae compared to those of the medium and large prawns. The box and whisker plot (Fig. 

5) shows similar mean setae lengths from both medium and large size categories. The data from 

the small prawns were positively skewed with the largest setae outlier overlapping the mean of the 

medium and large data. Medium body length was also positively skewed whilst the large body 

size category was negatively skewed; however, the deviation from 1he mean in both cases was 

considerably less. Differences were significant at the 5% leve~ and to determine how significant 

each sample is from one another a multiple range test was completed. This revealed that the hair 

cell length from the small body size category was significantly different from both medium and 

large categories which showed very litde significant difference. 
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Fig. 5. Box and whisker plot displaying the relationship between setae length and body size in P. 

serratus . The grey boxes equal 50% of the overall data for that category and each error bar 

signifies 25% of the data. Black line in boxes specifies the median 

3.2. Relationship between body size and distance between setae bases 

Small body sized prawns had the largest distance between neighbouring setae bases, with medium 

sized prawns having the smaJiest distance. All three body s ize categories have similar outlying 

data, though the smaJI body group data was negatively skewed whereas medium and large body 

groups were positively skewed. Comparing the medians allowed the differences to be accepted as 

being significant at the 5% limit A multiple range test was conducted to determine which means 

were significantly different, resulting in one statistically s ignificant difference, between that of 

small and medium size categories. 

3.3. Electrophysiology 

Twelve prawns from each size class were stimulated with a 500 Hz tone burst, presented at 125 

dB (re I j..LPa at I m). The potential difference of the largest (second) sinusoid of the evoked 

response generated by the tone burst was calculated using the RMS equation. The Evoked 

potentials from a large medium and small prawn are presented in Fig. 6, which were averaged 

from I 000 repeat presentations of the stimu Ius sound. 
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Fig. 6. Auditory evoked potentials from small, medium and large P. serratus in response to a 500 

Hz tone burst presented at 125 dB, and averaged from I 000 iterations of the stimulus sound 

The data were grouped into the 3 size-related populations and tested using a one way ANOVA, 

and the resu lts presented in Table I. This shows the mean AEP value of the three populations, 

and the P value gives the s ignificance level of the AEP voltage difference between the 

populations. The results (F = 0.08, P > 0.925) indicates that AEP values are independent of body 

size which supports our null hypothesis that body size has no effect on the amplitude of AEP's at 

a frequency of 500 Hz. 

Table I. Comparison of hearing ab ili ty between three populations of P. serratus ranging in size 

from 27 mm to 7 1 mm. The P value gives the significance level of the AEP voltage 
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Source 
Cl 
Error 
Total 

Level 
1 
2 
3 

DF SS MS 
2 0.00120 0.00060 
9 0 . 06891 0.00766 

11 0.07011 

F 
0.08 

p 

0.925 

Individual 95\ Cis For Mean 
Based an Pooled StDev 

N Mean StDev ------+---------+---------+---------+ 
12 0.57125 0.07057 (---------------•----------------) 
12 0.54775 0.09006 (---------------•------------ -- --) 
12 0.55350 0.09939 (---------------•----------------) 

------+---------+---------+---------+ 
Pooled StDev E 0.08750 0.480 0.540 0.600 0.660 

One-'MI)' ANOVA 

4. Discussion 

The structure of the statocyst in Palaemon serratus, as detailed here, is similar to that described for 

other decapod crustaceans (Prentiss, 1901; Cohen, 1955; Budelmann, 1988; Schmitt, 1973; 

Sekiguchi and Terazawa, 1997; Finley and MacmiUian, 2000; Popper et.al., 2001 ; Lovell et al., 

2005). These authors found the sensory hairs or setae are positioned on a sensory epithelium or 

sensory cushion, encased in a fluid ftlled chamber. Previous reports (Sekiguchi and Terazawa, 

1997; Finley and Macmillian, 2000) have shown the s tatocysts, if two were present, usually lie 

adjacent to one another and are located in the basal segments of the antennules with the exception 

of the Mysidacea family where the statocysts are located in the tail fan (Cohen and Dijkgraaf, 

196 1 ) . The present study describes a similar arrangement of sensory setae in P. serratus to that 

reported in the Norway lobster Nephrops norvegicus (Nei l and Wotherspoon, 1982); Australian 

crayfish Cherax destructor (Fin ley and MacmiUan, 2000), prawns Palaemonetes vulgaris 

(Prentiss, 1901); Palaemon antennarius (Hensen, 1863 cited in Prentiss , 1901) and ~1e crab 

Callinectes sapidus (Cate and Roye, 1997). The arrangement of the setae in prawns using, 

Palaemonetes vulgaris, has been described by Prentiss ( 190 1) as being positioned in a "horse-shoe 

Like curve". Detailed SEM observations in the present study revealed Palaemon serratus has one 

very orderly row of setae, which forms the crescent structure, with a ll of the setae directed 

inwards towards the centre of the statocyst. This organisation was seen in all the samples 

regardless of the setae being connected to the stato lith or cemented with mucus to neighbouring 

seta, suggesting that all the setae are involved in the function of the statocyst. The two ends of the 

crescent are aimed towards the distal end of the statocyst whilst being angled centrally. Towards 

the inner end of the crescent the single orderly row of setae further separates into two irregular 
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rows. The Norway lobster, Nephrops norvegicus, has one prominent row of setae with the other 

hairs being smaUer and less weU organised, (Neil and Wotherspoon, 1982) in this respect its 

pattern is similar to that of Palaemon serratus, but not the same. The statocysts from Palaemon 

serratus had a solitary seta located just inside the aperb.lre of the crescent positioned sligh tly 

closer to the single row of setae. It was typicaUy of the same size as the other setae and orientated 

towards the centre of the sensory cushion; no previous studies have reported the presence of such 

a solitary seta for any other crustacean species. 

A s ign ificant difference was seen between setae length and the body size of Palaemon serratus. 

After completion of multiple range tests the significant difference was found to be between the 

small and medium and the small and large category. No s ignificant difference was found between 

medium and large. This was an expected result as the size of structures increase relative to the 

overall growth of the organism. As the size of the organism grows the effect of gravity will be 

increased on it thereby the need for a possibly larger statolith could result As an organism 

approaches its maximum size the growth rate slowly levels off allowing less variation to occur 

within the data. Similarly, total setae number ranged fro m 30-38 in small specimens, 56-73 in 

medium and 72-83 in large; for the same reason mentioned previously this data couldn ' t be 

obtained for every sample so numerical data were averaged from at least two samp les per group 

that allowed all the setae to be counted. The difference between the largest Fig. in the small group 

and the smallest Fig. in the middle group was 8, whereas the difference between medium and 

large was -1 (sample data overlapped) indica~ng that the need for both longer and more numerous 

setae in the medium and large categories are very similar and less varied . Again the larger the 

specimen the larger the statolith , therefore more setae are required to support the larger mass and 

cover more area around the sensory cushion. F inley and Macmillan (2000) carried out one recent 

investigation concerning statocyst structure and growth of the crayfish, Cherax destructor. They 

found that the total number of setae in large samples was significantly higher than those in the 

small samples, supporting the results found in this study. 

In conclusion, this study directly compare the body size with the spatial arrangement and size of 

the sensory setae and amplitude of the electrophysiological response within the statocyst in 

crustacea. The statocyst morphology of P. serratus is similar to closely related species, however 

variation of the setae structure within the same genus was observed. The unique solitary seta 

found in all specimens was the first to be described from any crustacean species examined; 

however, the explanation put forth descr ib ing its function can app ly to any crustacean statocyst 
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indicating that this seta may have been overlooked in earlier reports. Results of the 

electrophysiology experiment show the AEP vohage averages between 0.551-lv and 0.571-lv from 

each of the experimental populations when stimulated with a 500 Hz sound presented at 125 dB 

(ref I J.!Pa at !m). Given that a P value of 0.925 was obtained from the ANOVA, it is concluded 

that body size has no impact on hearing ability at 500 Hz, even though the length of setae altered 

with body size categories. An investigation into the ontogeny of the auditory system in zebrafish 

(Danio rerio) ranging in size from I 0 to 45 mm total length, also found no difference in auditory 

sensitivity, response latency, or response amplitude with development (Higgs, et al., 2003). This 

information shows that crustaceans are potentiaUy equally affected by anthropogenic noise, a 

fmding that should be considered when assessing the impact of loud underwater noise on the 

ecology of marine animals. 
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Abstract 

Concern regarding the spread of silver carp (Hypopthalmichthys molitrix) and bighead carp 

(Aristichthysc nobilis) through the Illinois River has prompted the development of an Acoustic 

Fish Deterrent (AFD) system. The application of this technology has resulted in a need to 

understand the auditory physiology of the target species, in order to maximise the effect of the 

AFD barrier in preventing the migration of the non-indigenous carp species into Lake Michigan, 

whil~t minimising the effect on indigenous fish populations. Therefore, the hearing thresholds of 

twelve H. molitrix and twelve A. nobilis were defined using the Auditory Brainstem Response 

(ABR) technique, in a sound field generated by submerged transducers of the type used in the 

construction of the AFD barrier. The results clearly show that these fish are most sensitive to 

sounds in a frequency bandwidth of between 750 Hz to 1500 Hz, with higher thresholds below 

300 Hz and above 2000 Hz. 

• Corresponding author. Tel.: +44 1752 232411 ; fax: +44 1752 232400. 

E-rnail address: j .lovell@plymouth.ac.uk (J.M. Lovell). 
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1. Introduction 

The spread of the Asian carp species, silver carp (Hypopthalmichthys mo/itrix) and bighead carp 

(Aristichthysc nobilis) through the lllinois River and into the man-made Chicago Canal is 

causing increasing concern as these non-indigenous species get closer to Lake Michigan. Trials 

conducted by the Illinois Natural History Survey (INHS, Havana, Illinois) have shown that 95% 

effectiveness can be achieved when preventing the migration of A. nobilis using an Acoustic Fish 

Deterrent (AFD) barrier (Taylor, Pegg and Chick, in press). While preventing the spread of these 

species is critical, it is also important that the noise generated by the AFD system does not affect 



indigenous species where possible. Two species in particular, the paddlefish (Polyodon 

spathula) and the lake sturgeon (Acipenser fulvescens) from the subclass Chondrostei, in the 

order Acipenseriformes (sturgeons and paddlefishes) are of interest in this respect. An ideal 

acoustic barrier would appear "loud" to the alien carp species and "quiet" to the indigenous 

species, therefore having little or no influence on the behaviour of the paddlefish and sturgeon as 

they pass the barrier. To achieve this level of selectivity, it requires the definition of the 

potentially affected species hearing thresholds, which can ultimately be used to "fine tune" the 

sounds generated by the barrier. In a work that partners this study (Lovell et al., in press), the 

hearing abilities of P. spathula and A. fulvescens have been defmed as a benchmark, using the 

equipment and methodology applied in this current study. 

The hearing thresholds of any organism possessing the appropriate receptor mechanism are 

illustrated in an audiogram (Myrberg, 1981 ), which presents the lowest level of sound that a 

species can hear as a function of frequency. Auditory perception by fish varies between species 

(Popper and Fay, 1993; Yan et al., 2000), with most falling into the category of being either a 

hearing specialist or generalist. Specialists such as the carps and catfishes have a connection 

between the swim bladder and inner ear, making these fish sensitive to the sound pressure 

component of an acoustic signal, conventionally measured in units of dB (re. 1 f.J.Pa). However, 

generalists such as P. spathula and A. fulvescens lack this connection and rely on the motion of 

the water particles in a sound field to stimulate the sensory hairs of the ear (Hawkins and 

MacLennan, 1976; Y an et al., 2000). The volume of a swim bladder expands and contracts in a 

pressure field; in specialists, this motion is transmitted mechanically to the inner ear via the 

Weberian ossicles (von Frisch, 1938; Yan et al., 2000) and allows specialist fish to detect a wider 

bandwidth of frequency with greater sensitivity compared to genera list fish. 

The techniques used to obtain fish audiograms may require a varying degree oftime, surgical and 

technical expertise (e.g. Enger and Anderson 1967; Fay and Popper, 1975; Fine, 1981), or the use 

of behavioural paradigms to gain statistically sound data (e.g. Yan, 1995). The Auditory 

Brainstem Response (ABR) technique of measuring hearing thresholds has been successfully 

applied to both mammalian and non-mammalian vertebrates (Corwin et al., 1982), 

Elasmobranchs (Casper et al., 2003), and marine invertebrates (Lovell et al., 2005 A). The ABR 

is a non-invasive far-field recording of synchronous neural activity in the eighth nerve and 

auditory nuclei elicited by acoustic stimuli (Jewett, 1970; Jewett and Williston, 1971 ; Jacobson, 

1985; Kenyan et al., 1998). Measurements ofthe ABR response are used routinely in the clinical 
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evaluation of human hearing (Jacobson, 1985) and allow for the determination of thresholds from 

uncooperative or inattentive subjects or in situations where behavioural methods cannot be 

readily applied. An ABR trace is formed by averaging conglomerate responses of peak 

potentials arising from centres in the auditory pathways extending from the periphery of the V ill 

nerve and reflects electrophysiological activity chiefly from the auditory nerve to the midbrain 

(Corwin et al., 1982; Overbeck and Church, 1992). 

Several ABR studies have focused on measuring the hearing abilities of the specialist goldfish 

Carrasius auratus, stimulated with tone bursts presented through a transducer mounted in air 

above the holding tank (c.f. Kenyan, et al., 1998; Yan, et al., 2000). In addition, Fay and Popper 

(1975) recorded microphonic potentials from the saccule of the African mouthbreeders (Tilapia 

macrocephala) and the specialist catfish {lctalurus nebulosus), using an air mounted transducer 

fixed below a 250 mm diameter PVC cylinder with a floor made from "Rho C" rubber. A 

loudspeaker with a diameter of 200 mm was suspended facing upwards 250 mm below the test 

tank in an airtight extension of the cylinder. In the present study, the hearing thresholds from H. 

molitrix and A. nobilis are acquired using submerged transducers (a setup not previously 

attempted in an ABR investigation of specialist fish hearing). An additional challenge was found 

when testing the hearing thresholds of A. nobi/is, as some of the fish used in the experiment were 

approaching 750 mm in length, and weighing nearly 6.75 kg. 

2. Materials and methods 

Twelve specimens of H. molitrix ranging in length between 137 mm (25 g) to 392 mm (700 g) 

were kept in four 200 litre freshwater tanks, and twelve specimens of A. nobilis ranging in length 

between 545 mm (2.8 kg) to 740 mm (6.75 kg) were kept in two 2.5 m x l m x 0.5 m tanks. The 

water temperature in the holding tanks and test tank ranged between 18.2 and 18.6 o Cover a 24 

hour period, and when not under experimental protocols, the fish were provided with 16 hours of 

light per day. 

2.1. ABR Methodology 

The ABR measurements of hearing thresholds were made using a proprietary control and 

analysis programme named "Brainwave", and written in LabView 7. A schematic of the 

equipment used to provide audiometric measurements from H. molitrix and A. nobilis is shown in 

Figure 1 (a more detailed description of the setup can be found in Lovell et al., in press). The 
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sound field in the experimental water tank holding H. molitrix and A. nobilis was generated by 

means of two Fish Guidance Systems Ltd. Mk II 15-100 Sound Projectors; with the stimulus 

sound amplified using a Tandy 250W power amplifier. These faced each other at a distance of 

200 mm; the inner ear of the fish during the test was arranged on the axis connecting the centres 

of the two projectors. 

a. u.propPC D Differential 
amplifier 

To specimen 
Support bar 

....., __ _ 

"Ball joint" 
manipulator ann ---.-.- .:ovY'U"" 

assembly 

Fine mesb 
netting 

b. 

Silver tipped 
electrodes 

Figure l.a Schematic of the ABR audiometry system and Figure l.b schematic of the clamp 

assembly used to hold H. molitrix and position the electrodes 

The procedure used to acquire the Auditory Evoked Potentials (AEPs) was approved by the 

University of Illinois, United States (Institutional Animal Care and Use Protocol #04271). The 

test subjects were placed into a flexible cradle formed from a soft nylon mesh rectangle saturated 

with freshwater for the small fish, or a clear rubber coated 1 mm gauge wire mesh for fish over 

0.5 kg weight. Oxygenated water kept at a temperature of 18 oc was gravity fed at an adjustable 

flow rate of between 5 millilitres per second for the small fish, to 25 millilitres per second for the 

large, and directed toward the gills through a soft rubber mouth tube. The small fish were first 

placed lengthwise and centrally on a 160 mm x 120 mm rectangle of fme nylon netting, which 

was wrapped fmnly around the body and tail, and the two sides of the net were held together 

using a clip. The clip was placed in a retort stand clamp fitted with ball joint electrode 

manipulator arms, and the aerated water pipe. During the procedure to position the electrodes 

the specimen and clamp were suspended over the test tank, and aerated water was supplied to the 
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fish. The electrophysiological response to acoustic stimulation was recorded using the two 

cutaneous electrodes positioned on the cranium of the fish adjacent to and spanning the Vill 

nerve, which were connected to the differential preamplifier by 1 m lengths of screened coaxial 

cable with an external diameter of 1.5 mm. The evoked response was amplified and digitised to 

12 bits resolution and recorded. This process was repeated 2000 times and the response averaged 

to remove electrical interference caused by neural activities other than audition and the myogenic 

noise generated by muscular activity. Each measurement was repeated twice; this aids in 

separating the evoked response, which is the same from trace to trace, from the myogenic noise, 

which varies in two successive measurements. Tone bursts were presented to the fish at sound 

pressures not exceeding 134 dB (re. 1 J.LPa) and during the assessment, the projectors were driven 

with load resistors placed between the ampUfier and projector. The reason for this was that due 

to the sensitive hearing of specialist fish, only relatively low levels of sound were required to 

evoke above threshold responses. The full output of the amplifier was only required when 

measuring the hearing of the less sensitive genera list fish such as P. spathula and A . .fulvescens 

(see Lovell et al., in press). 

The stimulus tones presented to H. molitrix and A. nobilis were calibrated using an insertion 

calibration, where the sound level is recorded in the absence of the fish, with the hydrophone 

stationed where the inner ear of the fish would be. The measurements were made using a Bruel 

& Kjaer Type 8104 Hydrophone (serial number 2225715) calibrated and traceable to 

International Standards, with the signal from the hydrophone amplified using a Bruel & Kjaer 

Type 2365 Charge Amplifier (Serial Number 1079556). In case there was any non-linearity of 

the signal, calibrations were made at every frequency and Sound Pressure Level (SPL) used 

during the test, totalling some 660 individual calibrations. These calibrated levels were then 

applied to the threshold defined by the ABR measurement to provide calibrated audiograms with 

pressure levels traceable to International Standards. 

3. Results 

Figure 2.a illustrates a typical set of acoustic brainstem responses from H. molitrix and Figure 2.b 

is from A. nobilis in response to tone bursts from 300 Hz to 3 kHz, acquired as the sound 

pressure level was successively reduced in steps of between 2 dB to 0.5 dB at threshold. In both 

Figures, above threshold EP waveforms are presented with a blue colour coding, whilst below 

threshold recordings are red. 
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Figure 2.a Auditory Evoked Potentials from H. molitrix and Figure 2.b A. nobilis, recorded in 

a sound fie ld dominated by sound pressure in response to four cycle tone bursts ranging in 

frequency from 300 Hz to 3000 Hz and attenuated in steps of 2 dB at high intensities to 0.5 dB 

as threshold is approached. The waveforms in blue show above threshold responses, whilst red 

represents below threshold myogenic noise (y axis scale = microvolts * 100 for Figure 2.a and 

microvolts * 10 for Figure 2.b, x axis scale = time (s)) 
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At each frequency, the AEP wavefonns from H. molitrix (Figure 2 .a) evoked by the tone bursts 

typically consisted of a series of four to eight rapid negative peaks, followed by a slow positive 

deflection. Conversely, the wavefonns recorded from A. nobilis (Figure 2.b) present with a 

series of four to eight rapid positive peaks, followed by a slow negative deflection (the AEP 

waveforms in Figure 2.b have been inverted to show consistency with Figure 2.a). Also, owing 

to the increase in myogenic noise from the larger bighead carp, the differential amplifier gain 

was reduced by a factor of 10. 

The onset latency of the centre or largest sinusoid of the ABR response from H. molitrix varied 

with frequency, ranging from around 4 ms after stimulus onset at 100Hz to 2.8 ms at 3000Hz. 

As the sound pressure levels approached threshold, 2000 sweeps were required to distinguish 

ABRs from the background electronic noise. It is known that the frequency and intensity of a 

tone burst effects the latency of the evoked response (Corwin et al., 1982; Kenyon et al., 1998), 

as does the metabolic state of the organism (Corwin et al., 1982). The Inter-Peak Latency (lPL) 

of the evoked potentials from A. nobilis can be observed in Figure 3, and are in response to the 

second sinusoid of a 500 Hz tone burst. 
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Figure 3. Auditory Evoked Potentials (AEPs) from A. nobilis in response to the second sinusoid 

of a 500 Hz 4 cycle tone burst presented initially at 116 dB (re 1 J.lPa), and attenuated in 2 dB 

steps to 108 dB (re 1 J.lPa). The arrows show the peak of the AEP, which occurs with an Inter-
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Peak Latency (IPL) of between 0.1 to 0.2 ms for each of the amplitudes tested (averaged over 

2000 iterations per waveform set) 

The increase in the latency of the evoked potential in response to decreasing stimulus intensity is 

often used to verify that the averaged waveform is a product of auditory stimulation rather than a 

transient generated at the electrode tip (Kenyon et al., 1998). Thus, the Inter-Peak Latency (IPL) 

cannot be accounted for acoustically, as transients and other artefacts directly associated with the 

stimulus sound would occur at the same time regardless of sound amplitude. 

Figure 4 presents the audiograms for both H. mo/itrix and A. nobi/is, established by visual 

inspection of the ABR traces. Threshold was taken to be the lowest level of sound pressure 

(recorded using the B&K hydrophone and expressed in units of dB re. 1 Jl.Pa), that evoked a 

repeatable ABR response. 
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Figure 4. The audiograms for H. molitrix (diamonds) and A. nobilis (squares), Y axis error bars 

show the standard devotion of the data. The lowest curve (x) represents the ambient noise level 

in the test tank 

It may be seen that the audiograms for both Asian carp species follow a similar Gaussian profile 

to each other, with the lowest thresholds occurring at frequencies of between 750 Hz to 1500 Hz. 
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At the higher frequencies, hearing sensitivity reduces sharply, whilst at the lower frequencies 

sensitivity reduces more gradually. It may be noted that the background noise level is lower than 

the recorded thresholds of hearing, and hence it may be concluded that the audiograms are 

uncontaminated by background noise. The lowest threshold recorded from H. molitrix was I 04 

dB (re. I J..tPa) at 750 Hz, whilst the lowest threshold from A. nobi/is was I 06 dB (re. I J..tPa) at 

1500Hz. 

4. Discussion 

The hearing thresholds of silver carp (H. molitrix) and bighead carp (A . nobilis) are presented in 

an audiogram as the lowest levels of sound pressure as a function of frequency that evoked a 

repeatable threshold response. The audiograms produced for the two Asian carp species is 

comparable in frequency bandwidth (though with slightly higher thresholds), to the audiogram 

for the specialist channel catfish (/. punctatus) produced by Fay and Popper (1975) in an 

electrophysiological study of fish audition using an air mounted transducer. Figure 5 presents 

the audiograms of both H. molitrix and A. nobilis, which are presented along with the audiogram 

for I. punctatus from Fay and Popper (1975) and the "benchmark" audiograms for P. spathula 

and A. fulvescens (from Lovell et al., in press). Figure 5 shows that the hearing thresholds from 

H. molitrix and A. nobilis are moderately higher than thresholds obtained from I. punctatus. It is 

probable that the higher thresholds recorded is, in part, due to the hearing of the two carp species 

being more acute than the lowest level of sound that the submerged transducers used in this study 

can consistently generate. In an attempt to stabilise the sound field at low intensities, the 

projectors were driven with load resistors placed between the amplifier and projector. To 

counter this problem, a number of published studies of specialist fish hearing ( c.f. Fay and 

Popper, 1975, Kenyan et al., 1998), have used air mounted transducers to generate underwater 

sound fields below the threshold of hearing. However, in this instance, the use of submerged 

transducers is the most appropriate stimulus generating methodology (rather than air mounted 

transducers), as the sound field in the test tank is produced using the same type of transducer as 

is used in the AFD barrier. Thus, the sound transmission methodology is arguably closely 

representative of sources used in aquatic management strategies, thereby providing a more 

reliable approach to the acquisition of auditory information for practical " field" applications. 
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Figure 5. Comparison of the audiograms for A. fu/vescens (closed circles = maximum sound 

pressure; open circles = maximum particle motion), and P. spathula (closed triangles = 

maximum sound pressure; open triangles = maximum particle motion) (from Lovell et al., in 

press), for H. molitrix (diamonds) and A. nobilis (squares) and for I. punctatus (Popper and Fay 

( 197 5) (crosses) 

The results of the auditory examination of H. mo/itrix and A. nobilis (the target species for the 

AFD barrier) show that these fish are sensitive to sound pressure, whereas P. spathula and A. 

fulvescens (non-target indigenous species) are not (Lovell et al., in press). Thus, P. spathu/a and 

A. fulvescens will have a significantly higher deterrent threshold than H. molitrix and A. nobilis 

in a pressure dominated sound field. It is therefore concluded that an Acoustic Fish Deterrent 

(AFD) barrier generating a pressure dominated sound field of between 750Hz to 2000Hz and of 

sufficient intensity to deter non-indigenous Asian carps from crossing, will be practicably 

inaudible to P. spathu/a and A. fulvescens, having little or no influence on the ecology of these 

indigenous species. 
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Th e effects of underwater noise[ronr coastal piling on salmon (Salmo solar) and Brown Trout (Salnro trutta). 

Introduction. 

This report presents monitoring measurements of waterbome noise taken at Town Quay, 
Southampton, during piling operations at Red Funnel's Southampton Terminal in 
September 2003, and interpretation ofthe effects of the noise on fish. 

1.1 . Background to the work. 

The piling at the Southampton Terminal was required as part of a construction project 
installing improved loading facilities at the Red Funnel Southampton Terminal, illustrated in 
Figure I. The project was required to provide infrastructure for improved ferry services, and 
in particular to allow twin-deck access to ferries. As part of this project piling in the water 
adjacent to the dock wall was required to provide foundations for the new structure. Existing 
ferries were also modified during the period of construction to allow twin deck access; during 
this period a temporary ferry was provided. 

Driving of piles in water have been recorded as generating high levels of underwater noise 
(e.g. Abbott & Bing-Sawyer (2002)), and there was consequently concern by the Environment 
Agency (EA) and English Nature (EN), who have remits to control construction projects so as 
to mitigate adverse impacts on fish stocks. Their concern related to the possible effects 
construction noise might have on local fish populations, and in particular on migration of 
salmon. 

A consent had initially been given by the Environment Agency for Red Funnel's contractors 
to undertake the piling between the 151 December 2003 and the 31 51 March 2004, during which 
period no significant impediment to the migration of salmon through the area and into the 
Test was expected. However, due to significant economic and commercial factors connected 
with the required timescales for withdrawing the ferries from service, and the need to 
accomplish the engineering work outside peak travel periods for passengers, a consent was 
sought from EA and EN to bring forward the piling project to commence on the 
1 51 September. 

Permission was subsequently given for the piling to be brought forward to September 2003, 
subject to two requirements, namely: 

I . the mitigation of impact piling noise by use of bubble curtains as required, and 

2. the work being monitored by means of measurements of underwater noise. 

These measures were deemed sufficient to ensure there was no increased likelihood of salmon 
in Southampton Water and the River Test being affected by the piling. 

Red Funnel additionally provided some funds for direct visual observation of a tethered cage 
of fish in order to make direct visual observations of any effect. Owing to the problems of 
obtaining salmon (Salmo salar) for testing, farmed brown trout (Salmo trutta) were used in 
the tests. It was thought that, as they were the most closely related species, they would have a 
similar hearing abi lity to S. salar, and hence would react to the sound in a similar way. 

Shortly prior to the program commencing it was suggested to the Environment Agency that 
this programme would offer an opportunity to conduct fundamental research into the 
behavioural response of fish exposed to piling or other high-level noise sources. The EA 
made avai lable sufficient funds to provide fish cages, and measurements of level, at four 
further ranges. Thus measurements were made from about 25 metres from the piling to 
400 metres. The aim of this was to be able to measure the greatest range, and hence the 
threshold level of sound, at which behavioural effects of the noise occurred. It was thought 
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The effects of underwater noise from coastal piling on salmon (Solmo solar) and Brown Trout (Solmo trutta). 

that such information would be valuable in predicting the environmental effects of future 
piling projects, and in monitoring noise levels. 

The results of the monitoring programme funded by Red Funnel, which included observations 
of caged fish in a single cage at a range of 400 metres, were reported in Nedwell et a! 
(2003b). This report subsumes those results, and includes the additional work undertaken on 
behalf ofthe EA. 

1.2 Piling methods. 

Two sorts of piling were undertaken on the site, namely vibropiling and impact piling. 

Vibratory pile drivers are machines that install piling into the ground by applying a rapidly 
alternating force to the pile. This is generally accomplished by rotating eccentric weights 
about shafts. Each rotating eccentric produces a force acting in a single plane and directed 
toward the centreline of the shaft. Figure 2 shows the basic set-up for the rotating eccentric 
weights used in most current vibratory pile driving/extracting equipment. The weights are set 
off-centre of the axis of rotation by the eccentric arm. If only one eccentric is used, in one 
revolution a force will be exerted in all directions, giving the system a good deal of lateral 
whip. To avoid this problem the eccentrics are paired so the lateral forces cancel each other, 
leaving only axial force for the pile. Machines can also have several pairs of smaller, 
identical eccentrics synchronised to obtain the same effect as one larger pair. 

Impact piling is performed using hammers which drive the pile by first inducing downward 
velocity in a metal ram, as shown in Figure 3. Upon impact with the pile accessory, the ram 
creates a force far larger than its weight, which moves the pile an increment into the ground. 
Most impact hammers have some kind of cushion under the end of the ram which receives the 
striking energy of the hammer. This cushion is necessary to protect the striking parts from 
damage; it also modulates the force-time curve of the striking impulse and can be used to 
match the impedance of the hammer to the pile, increasing the efficiency of the blow. 

The sediments at the terminal were found to be relatively soft, such that nearly all the pile 
driving at the Red Funnel site was undertaken using vibropiling. This removed the need to 
impact pile at the site. However, since the instrumentation and fish cages were set up, and in 
view of the scientific importance of the measurements and observations, permission was 
given by the EA for a brief period of impact piling to be undertaken. This enabled the 
measurements of impact piling and observations of effect reported herein to be made. 
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2. The Measurements. 

2.1. Philosophy of measurements; the dB111 scale. 

A brief description of the dBht scale used in this document, which is a method of rating noise 
in respect of its potential for behavioural effects and which incoporates species sensitivity to 
sound, is appropriate. 

In man, a commonly used measure of the effect of sound is the Sound Level measured in 
dB(A). The human ear is most sensitive to sound at frequencies of the order of 1 to 4kHz, 
and hence these frequencies are of greatest importance in determining the physical and 
psychological effects of sound for humans. At lower or higher frequencies the ear is much 
less sensitive, and humans are hence more tolerant of these frequencies. To reflect the 
importance of this effect a scale of sound, the dB(A), effectively allows for the frequency 
response of the human ear. The process can be thought of as measuring the level of sound 
after putting it through a filter which approximates the hearing ability as a function of 
frequency of the human ear. Measurements of sound level in dB(A) have been shown to 
relate well to the degree of both physical and behavioural effects of sound on humans. This 
approach has also been successfully extended (Parvin & Nedwell (1995)) to underwater 
human exposure to sound, despite human underwater hearing ability differing greatly from 
that of human hearing in air, yielding the dB(UW), which allows the effects of sound on 
submerged humans to be estimated. 

The response of a living organism to a given sound is dependent on the particular species, 
since each species has its own range of frequencies over which it can hear and its own hearing 
sensitivity. Fish typically hear from a few Hz up to 1 kHz and above; marine mammals 
typically have peak hearing ability from about l kHz to 100 kHz. In the dBh1(Species), 
(Nedwell, et al (2003)) a similar approach to the dB(A) is used to arrive at a number for the 
level of a given sound which is indicative of how much that species will be affected by that 
sound. In a similar fashion to the dB(A), a frequency dependent filter is used to weight the 
sound for a particular species; the suffix 'ht' relates to the fact that the sound is weighted by 
the hearing threshold of that given species. The process can be thought of as measuring the 
level of sound after putting it through a filter which approximates the hearing ability of the 
species; it hence corresponds to the likely perception of the sound by the species.. The level 
expressed in this scale is different for each species and hence the species must be appended. 
For instance, the dBh1(Sa/mo salar) level of a sound (i.e. for a salmon) will be different from 
the dBh1(Phocena phocena) level (for a seal). It is believed that the higher the number, 
irrespective of the species, the more likely it is that it will cause an effect. Initial research 
with fish indicates that at levels of 90 dBh1(Species) or more, significant avoidance reaction 
occurs. This is also similar to sound levels on the dB(A) scale at which humans avoid sound. 

It may be noted that the effective noise levels of sources measured in dBht(Species) are 
usually much lower than the unweighted levels, not only because the sound will contain 
frequency components that the species cannot detect, but also because most marine species 
are adapted to living in a noisy environment and hence have high thresholds of perception of 
(are insensitive to) sound. 

2.2. Location of pile driving and measurement positions. 

The piling was carried out at Red Funnel ' s terminal at Town Quay, at the southern end of 
Southampton High Street. The location of the site is illustrated in the sketch map in Figure 4. 
The monitoring measurements were taken at a number of locations, which are illustrated in 
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Figure 5. Locations RI and R2 were at each end of a pontoon which was used for 
maintenance work on Red Funnel's vessels. R3 was at the side of a dolphin, access to which 
was via a ladder and walkway from the pontoon. R4 was at the 'knee' in Town Quay, and R5 
was at the far end of the quay. 

While the area of the piling looks from the sketch to be relatively confined, in fact since both 
Town Quay and Royal Pier are open piled structures they did not influence the sound field, 
and hence the propagation conditions approximated to open conditions. 

In total 10 piles were driven at the site. Figure 6 is a sketch giving the locations of the 
individual piles on the site. It will be seen that two different diameter pile tubes were used, as 
indicated in the figure; a photograph of the piles is shown in Fig. 7. A photograph of site 
during piling operations can be seen in Figure 8. In the photograph, the two groups of four 
piles to one side of the links pan can be seen. The other two piles (numbers 9 and 1 0) are 
obscured by the structure (pedestrian walkway) on the right of the photograph. One pi le in 
each of the groups was left standing proud, for later dynamic testing purposes using the 
impact driver. The vibropiling was undertaken using a PVE 23 16 VM driver; a picture of this 
driver is illustrated in Fig 9. Impact piling was performed using a BSP357/9 hydraulic drop 
hammer which is illustrated in Figure 10 and 11. 

The distances between the piling and measurement locations were measured using a hand­
held GPS receiver and display. The relevant distances (from a point on the quayside adjacent 
to the ferry's linkspan where the piling was undertaken) are given in Table 2.1. 

Location Distance (m) 

R1 29.8 
R2 54.2 
R3 96.3 
R4 233.8 
R5 417.4 

Table 2.1. Distances of measurement locations from piling site. 

2.3. Instrumentation and measurement procedure. 

Sound measurements were taken in two ways: 

1) using a computerized data acquisition system, in which a hydrophone and its signal 
conditioning equipment was connected to a laptop computer to allow the on-l ine 
determination of dB,, and 

2) using watertight boxes, each fitted with a hydrophone and containing signal 
conditioning equipment and a small DA T recorder, for later off-site study of the sound 
signal. 

For the first (computerized) system, 1 of 3 types of Bruel & Kjaer hydrophone was used. The 
first was a Type 8104, serial number 22257 16, the second was a Type 8105, serial number 
1461320, and the third was a Type 8106, serial number 2256725. Detai ls of the calibrations 
of these hydrophones and their traceability to International Standards are given in 
Appendix I. Figure 12 is a block diagram of the instrumentation setup. The 8104 and 8105 
hydrophones were connected to a Brtiel & Kjaer Type 2635 Charge Amplifier to condition the 
signal, and the output from this amplifier was fed to a Kemo filter, set to have a passband of 
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5 Hz to 20 kHz. The 8106 hydrophone, which has a built-in pre-amplifier adjacent to the 
pressure sensing element, was connected to a Subacoustech PE6 power supply/amplifier. The 
output from this was fed to the Kemo filter, set to have a lowpass cutoff frequency of20 kHz. 
The output from the 2635 or PE6 amplifier was fed to a National Instruments 6062E 
DAQCard, an analogue-to-digital converter card, which was inserted in a PCMClA slot in a 
Sony laptop computer. The computer ran a program, written using the National Instruments 
LabVIEW application, to digitize the signal and calculate a dBht (Salmo salar) value on one 
second noise segments. 

For the second (recorded) measurements, four watertight boxes were fitted with Bruel & 
Kjaer Type 8103 hydrophones, serial numbers 2261918, 1785404, 1727543 and 1406215. 
The calibrations of these hydro phones are also given in Appendix l . Each box also contained 
a Subacoustech CAO 1 charge amplifier, which conditioned the signal before it was recorded 
on a Sony TCD-D7 or TCD-D8 DA T recorder. The block diagram of this system is also 
given in Figure 12. 

For the vibrodriving a total of nine sets of measurements was taken. For the impact driving 
three sets of measurements were taken. Table 2.2 lists the driving operations which were 
measured, and indicates the instrumentation which was used at each location. 

Pile Pile Type of Measurement position, and equipment used 
number diameter driving 

(mm) R1 R2 R3 R4 RS 

2 914 vibro B - B - C-8104 
3 914 vibro - B - - C-8104 
4 914 vibro - B - B C-8104 
5 508 vibro - - - - C-8106 
6 508 vibro - - - - C-8106 
7 508 vibro B B - - C-8106 
8 508 vibro B - - - C-8106 
9 508 vibro - - - C-8106 -

lO 508 vibro - - C-8105 - -

1 914 impact B B C-8105 B -

6 508 impact B B C-8105 B -

9 508 impact B B C-8105 B -

B = watertight box; C-X =computerized capture, and hydrophone type. 

Table 2.2. Details of measurements of pile driving. 

For the measurements using the computer system the hydrophone was located at the 
measurement position by being taped to a rope which had a weight fixed at its end, and the 
rope and ' phone were lowered into the water until the hydrophone was 2.5 m below the water 
surface. For the measurements with the boxes, the box was held in a clamp to which a rope 
and weight were attached and lowered into the water. Again, the boxes were set so that the 
hydrophones were at a depth of 2.5 m, but, at positions RI and R2, when the tide was out, 
water depth was less than 2.5 m and the boxes' depth was set at just above the sea bed. The 
ropes were adjusted at regular intervals to keep the hydrophones at the 2.5 m depth, where 
possible, as the tidal state varied. 
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After consultation with the Dean & Dyball operatives, and when the pile tube had been 
readied and it was clear that the driving operation was shortly to commence, the tape 
recorders in the boxes were started, and the boxes were closed and lowered into the water. 
Also, the computer program was started. On the computer data were captured continuously 
until the pile tube had been driven to depth, or there was a lengthy period when no driving 
was taking place because difficulties had been encountered . The boxes were left in place 
until driving stopped, when they were retrieved, opened and the tape recorders stopped. 

Subacoustech Report: 576RO I 09 
vuuacvusu:cn 

6 



The effects of underwater noise (rom constat piling 011 sa!nro11 (Snfmo safnr/ 011d Brow11 Trout (Sa/mo tmttn). 

3. Measurements of the hearing ability of brown trout (Salnw trutta). 

As a consequence of the programme being conducted at short notice, and suitable farmed 
salmon being unavailable, readily available farmed brown trout (Salmo trutta) were used in 
the tests as a model for salmon (Sa/mo sa/ar). During the programme. dBh, (Salmo salar) 
levels were calculated. It would have been preferable to calculate actual dBht (Salmo trutta) 
levels, but at the time this was not possible due to the lack of an audiogram for the S. tnttta. 
It was. however. thought that S. trutta, as the most closely related species to S salar, and 
having simi lar inner ear morphology, would have similar hearing ability. Discussions by the 
authors with fish and marine mammal biologists and bioacousticians have indicated a 
received wisdom which may be summarised as "species that are closely related and similar in 
their auditory morphology will have similar hearing abilities". 

During the piling the dBht (Salmo salar) levels were therefore recorded and used as an 
estimate of the dBht (Salmo lrutta) levels. The levels of sound were calculated fi·om the 
measurements during the programme to be of the order of 70-80 dBh1 (Salmo salar). ln 
general. at these levels medium to strong reaction to the sound would be expected (Nedwell et 
a/ (2003a)). There was. however. no apparent reaction from the fish . 

This observation raised doubts as to whether the hearing of S. trulta was similar to that of 
S. salar. Consequently. a set of measurements of the hearing abil ity of the S. tnttta used in 
the programme were made. and used the non-invasive Auditory Brainstem Response (ABR) 
method to gain the neurological data. The procedure used to acquire the evoked potentials 
was approved by the United Kingdom Home Office. The test subjects CS. trutta) were placed 
in a flexible cradle formed from a soft foam rectangle saturated with seawater. Figure 13 
schematically illustrates the layout of the audiometric apparatus. Oxygenated water kept at a 
temperature of I8°C was gravity fed at an adjustable flow rate of 10 millilitres per second for 
the S. trutta, and 3 millilitres per second for the goldfish. The water was held in an aerated 
reservoir positioned in an adjacent room. and fed to the front of the foam "cradle" through a 
6 mm diameter plastic tube. Water was able to flow around the fish and vent through an 
aperture positioned at the rear of the foam cradle; thus the fish was able to venti late its gills 
by simply opening and closing its mouth. The foam cradle was placed in a second tank of 
length 450 mm, width 300 mm and depth 200 mm, and supported using a clamp to keep the 
nape of the fish's head I mm above the surface of the water. The experimental tank was 
placed on a table with vibration inhibiting properties, located in a quiet underground chamber 
3 m length by 2 m width and 2 m height. After the hearing assessment the fish were relocated 
to a holding tank for observation. prior to being returned to a non-experimental aquarium. 

The stimulus sound was generated by the PC shown in Figure 13, and presented to the fish at 
initial sound pressures not exceeding 145 dB re 1 gPa forS. trutta. Amplification of the 
sound was achieved using a Pioneer type SA-420 amplifier. and a 200 mm Eagle L032 
loudspeaker with a frequency response range of 40 Hz to 18 kHz was used. 

The stimulus tones presented from the loudspeaker to the fish were calibrated using an 
insertion calibration. A Bruel and Kjaer Type 8106 Hydrophone (Serial Number 2256725) 
was placed in the tank and positioned exactly in the position the fish would have been. The 
hydrophone was calibrated and traceable to International Standards; the calibration certificate 
is included in Appendix I. The signal from the hydrophone was amplified using a 
Subacoustech PE6 preamplifier and digitised using a National Instruments DAQ-6062e 
interface card at a sample rate of 300 kS/s. Ln case of non-proportionality of the response of 
the loudspeaker, measurements of the sound pressure were taken for every amplitude and 
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frequency setting that could be used. Consequently, a total of 110 individual calibration 
measurements were taken in the calibration process. These calibrated levels were then 
applied to the threshold defined by ABR measurement to provide calibrated audiograms with 
pressure levels traceable to International Standards. 

The loudspeaker was placed inside a Faraday cage and connected to a centralised earth point 
located in an adjacent room where the PC, amplification and analysis equipment were set up. 
Connecting wires were fed through a 100 mm port in the partitioning wall. The 

electrophysiological response of the fish to acoustic stimulation was recorded using two 
cutaneous electrodes. The reference electrode was positioned centrally on the head above the 
medulla, and the record electrode was located 5 mm anterior of this point; both electrodes 
were held in place using micromanipulators. The electrodes shown in Figure 14 were 
connected to the MS6 preamplifier by I m lengths of screened coaxial cable, with an external 
diameter of 1.5 mm. The outer insulating layer of the coax was removed 15 mm from the end 
where the electrode tip was to be fixed, and the screening layer removed 10 mm from the 
cable end. The inner insulating material was then trimmed by 2 mm, and the exposed inner 
wire (0.5 mm diameter) was tinned with silver solder and joined to a I 0 mm length of 9 et 
gold wire (0.25 mm diameter). The assemblage was pushed through a I 00 mm length of 
plastic tubing with an internal diameter of 4 mm fixed to a fine pipette tip, until 0.4 mm of 
the gold wire was exposed. The electrode tip base, along with all the joints in the plastic 
tubing, were sealed using a clear epoxy resin, leaving 0.3 mm of exposed metal through 
which the EP could be conducted. 

The ABR measurements of hearing threshold were made using a proprietary control and 
analysis programme, written in a LabView 7 environment. This programme both generated 
the stimulus signals and captured and analysed the response. The stimulus used was a sine 
train (sine wave pulse) which was presented to the fish at a given frequency and sound 
pressure level. The evoked potential was recorded by means of the electrodes, which were 
positioned on the cranium of the fish adjacent to and spanning the VIII nerve. The response 
was amplified and digitised to 12 bits resolution and recorded. This process was repeated 
2000 times, and the response averaged; this was required to remove electrical interference 
caused by muscle movements. After the averaging process the evoked potential could be 
detected, following the stimulus by a short latency period of a millisecond or so. Each 
measurement was repeated twice; this aids in separating the evoked response, which is the 
same from trace to trace, from the noise, which varies in two successive measurements. 

Figure 15 illustrates a typical result, in this instance for a frequency of 300 Hz. The trace at 
the bottom of the figure illustrates the waveform presented. The upper traces illustrate the 
evoked potential as a function of the level of the sound. At the highest level recorded, 130 dB 
re I J..lPa, it may be seen that there is a clear response, and hence this is above the threshold of 
hearing at this frequency. By comparison, at a level of 116 dB re I J..lPa, it may be seen that 
there is no significant similarity between the traces. A threshold response occurs at 118 dB re 
l J..lPa, which is just detectable, and this consequently defines the threshold of hearing at this 
frequency for this particular individual fish. 

To ensure consistency with published work, and in order to validate the ABR system and 
software, measurements were initially made of the audiogram of the hearing specialist 
goldfish (Carassius auratus), thus repeating measurements previously made in the 
experiment conducted by Kenyan et a/ ( 1998). It may be seen from Figure 16 that the results 
from the present experiment closely agreed with these previously reported measurements in 
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the open literature. It was therefore fe lt that the ABR system was producing accurate and 
repeatable results to frequencies up to 5 kHz. 

Measurements of the audiogram of S. trutta were made using this equipment, using four fish 
at all of the frequencies tested, and 24 fish at frequencies of between 300 and I 000 Hz. The 
S. trutta auditory threshold measured is illustrated in Figure 17. The S. salar audiogram, 
from Hawkins & Johnstone ( 1978), is also shown on the figure for comparison. 

It may be seen that the hearing of the brown trout is significantly different from that of the 
salmon. The hearing of the brown trout is not only significantly less sensitive than that of the 
salmon, but also it is broader and flatter in frequency response, such that it is of significantly 
wider bandwidth, with effective hearing from 30 Hz to above 1 kHz. It is possible that this 
arises, in part, from the resonance of the swimbladder, which both species use to convert 
acoustic pressure in the water to movement of the hair cells, being less tuned in the trout than 
in the salmon. Recent work has shown that removal of gas from the swimbladder confirms 
its role in the enhancement of hearing, at least in terms of hearing threshold, though it does 
not necessary contribute to the enhancement of hearing frequency (Yan (2003)). Differences 
in the frequency response of the hearing system between S. trutta and S. salar may also be 
attributable to species-specific tuning of the VTII nerve, and discrete variations in lengths of 
hair cells in the inner ear. It is known that in lizards and birds regions having longer ciliary 
bundles detect lower-frequency signals, while shorter bundles detect higher frequencies 
(Popper & Fay ( 1993); Sugihara & Furukawa (1989)). Without further research it is not 
possible to determine the cause of the differences. 

The audiogram of S. trutta became available about two weeks after the piling finished. It was 
then possible to retrospectively calculate the actual dBht (Salmo trutta) levels from the 
recorded raw data. lt was found that, on average, the dBht (Salmo trutta) levels during piling 
were 15.9 dB lower than the dB111 (Salmo salar) levels for the same data. This is of 
significance, because the highest levels of noise from the piling were only of the order of 
60 dBht (Salmo trutta), and hence below the levels at which a reaction would be expected. 
This di fference explained the lack of reaction of the caged S. trutta to the piling noise, and 
tends to confirm the hypothesis that strong reaction to noise occurs at levels of 90 dBh1 

(Species) and above. 

In summary, it was concluded that: 

l . T he audiometric apparatus, having been tested against a species with known hearing 
ability, was thought to be giving accurate and reproducible results. 

2. The audiogram of the brown trout was found to be significantly different from that of the 
salmon, despite a common assumption that closely related species will have similar 
hearing ability. 

3. It is not possible to infer the effects of noise from studies on a related species without 
knowledge of the hearing abi lity of both. 
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4. Analysis of piling noise measurements and results. 

4.1. Vibro driver . 
Part of a typical sound pressure level vs. time history obtained at position R5 (at the end of 
Town Quay, at 417.4 m from the piling) on the 18th September 2003 for the v ibro driven pile 
case is shown in Figure 18. The figure illustrates the level of the sound in dB as a function of 
the time of day. The upper trace, in blue, indicates the unweighted sound level in 

dB re 1 J..lPa, and the lower trace the level in dBh1 (Salmo salar). Also marked on the figure 
are the periods during which vibropiling was undertaken. 

First, looking at the unweighted sound pressure levels, it can be seen that there are periodic 
short but relatively large increases in level up to about 150 dB. These are associated with the 
passage of vessels along Southampton Water, which is a busy waterway, and the passage of 
ferries into the Red Funnel terminal. Most of these movements were noted at the time of the 
measurements, and have been noted on the figure. It is interesting to note that from about 
15:00 hrs to the end of the recording at 17:00 hrs there is a significant and continuous 
increase in level over the earl ier part of the recording from 14:00 hrs to 15:00 hrs. This is due 
to noise from the dredger Bluefin, which was removing silt from the waterway by suction 
dredging; a photograph of the vessel is illustrated in Figure 19. The dredger was at a distance 
of about 200 m from the measurement position. 

ln respect of the vibropiling, it may be seen that there is no discernible increase of the signal 
when the driving is taking place compared to when it is not; in fact the vibropiling could not 
be discerned audibly in the time history at 400 metres. It was apparent when listening to the 
recordings that the background noise was dominated by other man-made noise, and in 
particular by the movement of vessels. 

It is interesting to note that there is little difference in the shape of the time histories (i.e. in 
the level variations over time between the dBh1 (Salmo salar) values and the unweighted dB 
levels), other than the dBh1 (Salmo salar) values being of much lower level. The lower level 
results from S. salar being relatively insensitive to sound, and to a lesser degree from their 
lim ited hearing bandwidth. 

Similar results were noted for other recordings made during vibropiling, and in general there 
was no discernible difference between recordings of sound pressure level vs. time history 
made on days on which vibropiling was being conducted and those on which there was no 
vibropiling. 

In summary, it may be concluded that in respect of the vibropiling, at the range at which 
monitoring was conducted of 417 m, there was no discernible contribution from the piling 
above the background noise. It was apparent when listening to the recordings that the 
vibropiling could not be heard above the background noise caused by the movement of 
vessels. 

4.2. Impact driver. 

4.2.1 Unweighted results. 

Figure 20 is a plot of a typical pressure time history recorded at location R3 which illustrates 
the sound pressure in conventional unweighted units. A section of the recording having two 
pile driver strikes has been illustrated. It may be seen that there is a high level of impulsive 
sound as the pile is struck, having a peak-to-peak pressure of about 200 Pa and a roughly 
exponential decay, with a time constant of about 0.1 sec. There are two later arrivals, one 
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small arrival occurring at about 0.2 sec after the main arrival, and a further large arrival about 
0.5 sec after the main arrival. These are thought to be seismic arrivals carried in the seabed. 

Figure 2 1 illustrates the peak-to-peak Sound Pressure Level of the impact piling as a function 
of the range from the pil ing, for the case of the two 508 mm diameter piles and the single 914 
mm diameter pile. These results have been averaged over all of the impacts at each of the 
ranges (typically 10 to 50 impacts). lt may be seen that there is a significant scatter in the 
levels of noise recorded, and that although overall there was a general fall in noise level w ith 
range, there are some points where the noise was significantly higher or lower than the 
general trend. The reason for these is not known, but it is possible that it results from partial 
focussing or defocussing of noise during propagation through the water and sediments. There 
is also a significant variation in overall level between the three different pi les driven. 

In order to generalise measurements to provide an objective assessment of degree of any 
environmental effect and the range within which it will occur, it is normal to represent the 
sound in terms oftwo parameters. These are:-

1. The Source Level ( i.e. level of sound) generated by the source, and the 

2. Transmission Loss, i.e. the rate at which sound from the source is attenuated as it 
propagates. 

If a g iven sound can be represented in terms of these two parameters it allows the sound level 
at all distances to be specified. Usually the decrease in sound pressure level (SPL) is 
modelled as being due to geometric losses, i.e. the sound mainly reduces as a result of being 
spread over an increasing area. Under these circumstances the (SPL) is modelled as 

SPL = SL - Ng log(R) 

where SL is the source level of the noise source, Ng is a geometric attenuation constant and R 
is the range in metres from the source. 

However, for the measurements of impact piling at the Red Funnel terminal, the losses in 
level with range were thought to be mainly due to absorption; consequently a reasonable fit 
for the case of the 508 mm diameter pile is given by the linear equation 

SPL = SL - Na (R) 

where the Source Level is about 193 dB re I f..!Pa @ l metre, and the Transmission Loss rate, 
Na, is about 0.13 dB per metre. For the case of the 9 14 mm diameter pi le, the Source Level is 
given by 20 l dB re l f..!Pa @ l metre, and the Transmission Loss by 0.13 dB per metre. 

It is interesting to note that the Source Level of 193 dB is slightly higher than that measured 
during previous measurements at Littlehampton (Nedwell & Edwards (2002)) of 192 dB 
re l f..!Pa. These levels are, however, very much lower than others obtained by the authors for 
underwater piling in deep water, where Source Levels in excess of 
250 dB re l f..!Pa @ l metre have been recorded, associated with propagation to large 
distances, albeit for larger diameter piles. 

4.2.2 Results in dBht Levels. 

Figure 22 presents the same data as figure 20, but this t ime weighted by the hearing ability of 
S. sa far. The figure thus presents the pressure level of the noise from the piling in units of 
"salmon hearing thresholds" versus the time in seconds. 
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The S. salar weighted time history is generally simi lar in form to the unweighted time history. 
This is probably as a result of the majority of the energy from the piling being at the low 
frequencies at which fish can hear. It is interesting to note, however, that the seismic arrivals, 
which are at a frequency of about l 0 Hz, have disappeared due to the relative insensitivity of 
S. salar to these frequencies of sound. 

Figure 23 presents the dBht levels of the sound as a function of range. The figure presents two 
sets of data, one for the case of the two 508 mm diameter piles and one for the single 914 mm 
diameter pile. For each of these cases, two sets of data have been plotted, these are the 
dBht (Salmo salar) level, and the dBht (Salmo trutta) level. 

For each set of results, a best fit of Source Level and Transmission Loss has been calculated 
and appended to the figure. These results are also tabulated as Table 4.2. 

Species Pile diameter Source Level Transmission Loss 
(mm) 

dBb1 (Species) @ l metre dBbt (Species) per 
metre 

Salmon (Salmo salar) 508 85.4 0.16 

Salmon (Sa/mo salar) 914 85.0 0.12 

Brown Trout (Sa/mo trutta) 508 70.7 0.17 

Brown Trout (Salmo trutta) 914 62.0 0 .09 

Table 4.1. Source Level and Transmission Loss for pile driving in dBht (Species) units. 

In general, the dBht (Salmo salar) level levels are in general higher than the dBht (Salmo 
trutta) levels. This is to be expected, as the hearing of the salmon is more sensitive than that 
of the brown trout, as indicated by the audiogram measured and presented in Section 3. It is 
noticeable that there is a significant difference in Transmission Loss for the case of S. trutta 
for the two pile diameter cases. Lt is thought likely that this arises from the fit of Source 
Level and Transmission Loss to the data being poor in the case of the 914 mm diameter pile. 

The thresholds at which a mild reaction, and a strong reaction, are expected to occur are 
illustrated on the figure, from Nedwell et a/ (2003a). In respect of the results for S. trutta, 
may be seen that both the actual measured levels and the estimated levels near to the piling 
are well below the levels at which a mild reaction would be expected to occur. In other 
words, no reaction would be expected by S. trutta at any range from the piling. By 
comparison, the results forS. salar would indicate that a mild reaction would be expected at a 
range of about 60 - 80 metres, and an increasingly stronger reaction as this range is reduced. 

.. 
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Tfre t:/[ects o[rmduwater noise from coastal piling 011 salmon (Salmo salur) and Brow11 Trout (Salnro trutto). 

5. Observations of fish behaviour. 

5.1. Source, preparation and examination of fish. 

Owing to the problems of obtaining salmon for testing, it was decided that farmed brown 
trout (Sa/mo trutta) would be used in the tests, being the most closely related species. These 
were freshwater trout and were obtained from Itchen Valley Trout Farm at Alresford. The 
average size of fish was 25.4 cm (range 24.0-28.0 cm). 

Prior to experimentation the fish were transported to Fawley Aquatic Research and 
acclimated to seawater. This process was carried out gradually over a period of five days or 
more without any apparent adverse effects on the fish. During this time they were fed 
pelleted food . 

Fish were removed from the cages at the end of the trials and returned to the laboratory for 
further analysis. Five from each cage were transpm1ed to Plymouth for audiometric testing 
and ultrastructural examination of the hearing organs. The remaining fish were examined for 
signs of pressure-related injury (Turn penny ( 1998)), e.g. externally for haemorrhaging of the 
eyes or gas embolisms in the eyes, and internally for swimbladder rupture. 

5.2. Fish cage design and deployment. 

Cages were purpose built for the project and were based on a nominal one-metre cube design. 
The cages are illustrated in Figure 26. The frames of the cages were made from mild steel 
angle and spray-painted. Plastic mesh of about 25 mm square aperture was fixed to the 
outside of the frames using plastic coated wire. A 20 cm-square flap opening was made in 
the top of the cage, the edges being reinforced with 25 mm plastic pipe attached to both the 
flap and the outer edges. These were used for introducing the fi sh and for removing them at 
the end of the trials. Cable-ties were used to close the openings during the tests . 

During the trials the cages were taken to their respective positions suspended from 25 litre 
surface buoys by four ropes fixed to the top corners of the cage. The rope lengths were 
adjusted to put the centre of the cage 2.5 m below the water surface. Cage positions were at 
nominal distances of 25 m (cage 1), 50 m (cage 2), lOO m (cage 3), 200 m (cage 4) and 
400 m (cage 5) from the piling operation; actual distances differed slightly according to which 
pile was being driven. A further, 'control ', cage was located in the dock of Fawley Power 
Station, approximately 10 km from the piling site; this dock was not subject to boat traffic or 
other significant disturbance during the period when fish were held there. 

5.3 Closed-Circuit Television Monitoring. 

Behaviour of the fish was monitored via underwater closed-circuit television (CCTV) 
cameras fitted inside each of the fish cages. Aquacam® monochrome underwater cameras 
were used, these being waterproof to 10 m depth. Mountings for the cameras were fixed 
close to the top corner of the inside of the cage. The cameras were introduced via the 
openings and attached to the mountings. This allowed the cameras to be aimed across the 
long diagonal of the cage for maximum field of view. 

Signals from the three nearest cameras (cages 1, 2 & 3) were fed into a 4-way multiplexer and 
thence into a time-lapse video cassette recorder (VCR) and video monitor located in a hut at a 
midway position on the Red Funnel pontoon. Cable lengths here were 50 m or less. Signals 
from the more distant cages 4 and 5 were fed to a similar multiplexerNCR/monitor set-up 
located in a caravan on Town Quay. The longest cable run here was 180 m and a line 
amplifier was used to boost the signal and improve picture quality. The VCRs were run in 3-
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The effects o[underwatt.r trolse[rom coastal piling on sa/moll (Salmo solar) a11d Brow11 Troll/ (Salmo trutta). 

hour mode (i.e. non-time-lapse) and tapes were changed every 3 hours during the working 
day. This meant that a considerable number of hours of 'control' records were made. 
Although no piling was being undertaken during these control periods, there were numerous 
other disturbances from boat traffic, including the regular arrivals and depattures of the Red 
Funnel Isle of Wight ferries, small craft movements and the occasional ocean liner passing. 

On completion of the field work, sequences of images were digitised and transferred to CD­
ROMs using a WinTV® digital interface. A typical video frame from the monitoring 
equipment is shown in Figure 25 . 

5.4. Assessing fish behavioural reactions. 

The video recordings were reviewed after the piling to identify any changes in behaviour that 
might have resulted from the piling noise or other local underwater noise events associated 
with ship movements in the locality. All reviewing was undertaken ' blind' by the operators, 
i.e. they were unaware of what sequences correlated with particular events, and this 
information was only later added by another operator. 

Two types of behaviour were investigated: 

Startle Reactions. For the purposes of this investigation a startle reaction was defined as the 
'C-start' behaviour described by Blaxter and Hoss (1981) in response to an underwater sound 
stimulus, i.e. a sudden C-shaped tlexure of the fish's body, which is quite clearly different 
from routine swimming activity. 

Fish Activity Level. The second type of behaviour considered was a simple change in activity 
level of the fish . Captive fish that are exposed to irritating stimuli commonly show ' milling 
behaviour' , in which the fish swim faster and make random turns. This type of behaviour is 
believed to provide a strategy for sampling the environment to expedite the fish 's escape from 
potentially harmful conditions. In the present study the activity level was measured by 
counting the number of times a fish entered the camera's field of view within a two-minute 
observation period. This was possible because the field of view was limited by water clarity, 
so that the fish moved frequently in and out of vision. For each type of event investigated a 
two-minute 'control' period preceded each two-minute ' event' period. The control and event 
activity levels were compared using the non-parametric Mann-Whitney U-test (Campbell 
( 1974)) with the null hypothesis that activity levels were not significantly different at the 
P=0.05 level. 

5.5 Reactions during vibro-piling. 

The initial cage placed at Location 5 (end of Town Quay, 400 m) to fulfil the Red Funnel 
monitoring obligations was put in position 24 h prior to the start ofvibropiling but was raided 
overnight and the fish stolen. Since cages were in place at other, closer, locations, and fish in 
these showed no reaction to vibropiling, the cage at Location 5 was not replenished until 24 h 
before the start of impact piling. Observations are therefore presented here for the cages at 
Locations I and 2. 

The analysis of the startle reactions was based on the of the VCR images at the start-up 
instant of each vibropiling session and for the next 5 seconds. No startle response was seen in 
any of the vibropiling sequences for any of the piles driven by this method. 

Table 4.1 and Fig. 26 show the activity level observations (number of movements per 
2-minute period) for the 2 minute period prior to piling and then for the first two minutes 
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The efficts of underwater noise from coastal piling on salmon (Salmo salar) and Brown Trout (Salmo trutta). 

during vibropiling. Activity levels are seen to have remained similar before and after the start 
of piling. The data shown combine the observations for all of the vibropiling operations. The 
Mann-Whitney U-test shows that there was no significant difference in activity level 
following the commencement of vibropiling (P=O.OO I). 

Vibration Piling: Fish Activity Statistics 
(no. of movements per 2 m in period) 

M ann-Whitney U test 
Location Before During u z p 

I 147.5 152.5 69.5 0.1443 0.8852 
2 150.5 149.5 71.5 -0.028 0.9769 

Table 5.1. Comparison of fish activity levels prior to and during vibropiling (all 
vibropiling events combined): statistics shown for Mann-Whitney U-test 

In summary, in the two cages nearest to the piling no startle response was seen for any of the 
piles driven by vibropiling, and no significant difference in activity level was detected 

5.6 Reactions during impact piling 

Impact piling was carried out on 241
h September and data are reported here for all five 

monitoring locations. Table 4 .2 shows that no startle reaction was recorded for the start of 
each of the three piling sessions that took place at any ofthe monitoring locations. 

Pile Start Time 
Startle Reaction? 

Cage 1 Cage2 Cage 3 Cage4 Cage 5 

1 (914 mm) 08.41 no no no nla no 
2 (508 mm) 11.11 no no no no no 
3 (505 mm) 11 .54 no no no no no 

Table 5.2. Startle reaction records for cages at Locations 1 to 5 during impact piling, 
241

b September (n/a =video record not available due to malfunction) 

The actlvtty levels recorded before and during the impact piling sessions are shown in 
Table 4 .3 and Fig. 28. Fish activity is seen to have remained similar in most cases before and 
after the start of impact piling. The M ann-Whitney U-test shows that there was no significant 
difference in activity level following the commencement ofpile driving (P=O.OOI) in cages at 
locations 1, 3, 4, & 5; a 36% increase in fish activity level was, however, observed at 
location 2, which was significant at the P=0.05 level. 
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Tire effects of underwater noise from coastal piling on salmon (Salmo solar) and Brown Trout (Salmo trutta). 

Impact Pilings Statistics 
(no. of movements per 2 m in period) 

Mann-Whitney U test 
Location Before After u z p 

1 9 12 3 -0.654 0.5 12695 
2 6 15 0 -1.96 0.0495 
3 12 9 3 0.654 0.512 
4 6.5 3.5 0.5 1.161 0.245 
5 12 9 3 0.654 0.512 

Table 4.3. Comparison of fish activity levels prior to and during impact piling (all 
impact piling events combined): statistics shown for Mann-Whitney U-test 

In summary, no startle response was seen in any of the cages for any of the piles driven by 
impact piling. No significant difference in activity level was detected, other than an increase 
in fish activity in the cage at location 2, which was significant at the P=0.05 level. 

5.7. Fish injuries. 

Table 4.4 records fish injuries investigated. 

Fish lnjury Frequency (sample size I 0 fish per cage) 
Type of Location 
Injury 

1 2 3 4 5 
Control 

(Fawley Dock) 
Swim bladder 

0 0 0 0 0 0 
rupture 

Eye 
0 0 0 0 0 0 

haemhorrage 
Eye 

0 0 0 0 0 0 
embolisms 

Table 5.4. Records of fish injury inspection records for cages held at Town Quay and 
Fawley power station dock (control). 

No evidence of fish injuries was seen in either the fish held at Locations I to 5 at Town Quay 
or in the Fawley controls. 

5.8. Summary of observations on fish. 

In summary, the caged trout monitoring revealed : 

I. no evidence that trout reacted to vibropiling, even at close range (<50 m); 

2. no evidence that trout reacted to impact piling, other than perhaps an increase in fish 
activity in the cage at location 2. 

3. no evidence of gross physical injury to trout. 
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Tile effects of underwater noise from coastal piling on salmon (Solmo solar) and Brown Trout (Salnro trul/a). 

6. Electron microscope examination of the inner ear of the trout (Salmo trutta). 

While as reported in Section S preceding no evidence of gross injury of fish was detected, 
damage to hearing is difficult to detect and yet may have long-term consequences for 
survival. For instance, Hastings et a/ ( 1996) found limited damage to regions of the inner ear 
of the oscar (A. ocellatus), 4 days after exposure to a continuous 300 Hz tone presented at 
180 dB re I J.lPa. 

As part of the investigation, five fish from each of the cages were examined for ultrastructural 
damage to the hearing organs. 

6.1. General introduction. 

The vertebrate inner ear is divided into two regions, known as the pars superior (semi-circular 
canals and the utriculus), and the pars inferior (the sacculus and lagena) (Retzius (1881)). In 
this study the sacculus was investigated for evidence of trauma to the inner ear ultrastructure 
as a result of exposure to the high intensity sound from the piling, as it is considered to be the 
primary auditory region of the fish ear (Popper & Fay (1993)). Examination of the 
polarisation of the ultrastructure from the sacculus of S. trutta undertaken for general 
familiarisation purposes revealed hair cells orientated in four diametrically opposed 
quadrants; a configuration common to fish with generalist hearing capabi lities (Plat & 
Popper (1981)). 

6.2. Preparation methodology. 

Each sample was processed following the techniques described by Platt (1977). On arrival, 
the partially dissected cranium containing both ears was immersed in chilled fixative (2.S% 
glutaraldehyde in 0.1 M cacodylate buffer with 3.S% sodium chloride). Additional fixative 
was perfused into the sacculi prior to the dissection of the ears from the remaining cranium. 
The otolith capsules were then dehydrated through a graded ethanol series, prior to 
desiccation using the critical point drying method. Fully desiccated otolith capsules were 
subsequently mounted on a specimen stub using a carbon tab, and coated with c. 8 nm of gold 
in an Emitech K SSO sputter coater (working at approximately 5 x 10-6 Torr). Finally, the 
processed specimens were investigated and photographed using a JEOL JSM S600 scanning 
electron microscope operated at IS kV, and a IS mm working distance. 

The pouch containing the saccular otolith and macula, being very thin and membranous, does 
not always maintain its shape during the critical point drying process, and may become 
deformed. Much of this can be resolved when the sample is being mounted, though, if a 
significant fold runs through the macula, damage may still occur irrespective of delicate 
handling (this type of damage was found in around l 0% of the samples). The hatched area in 
Figure 29 represents the location of the epithelia corresponding to the rosteral locus from one 
of the samples, which became detached during the drying process. Evidence of hair cell 
denudation from the hatched area and in similar regions from other affected specimens has 
been ignored. 

6.3. Examination of the saccular hair cells from the six groups of S. trutta. 

The hair cell proliferations in each quadrant of the macula from the six fish populations were 
examined at I 00 J..lm intervals across the macula surface, using magnifications of x 1000 and 
x SOOO. Damage to the ultrastructure is apparent in the form of breakages to the cilia at the 
base, close to where they contact the body of the receptor cell. Figure 30 shows two damaged 
and one undamaged hair cell from the sacculus of the bass (Dicentrarchus labrax), scanned at 
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The efficts of underwater noise[ronr coastal piling on salmon (Salmo salar) and Brown Trout (Salmo /rut/a). 

a magnificeation of x 5000. These specimens serve to illustrate the effect of trauma on hair 
cells of the inner ear, and were not from this programme. 

Figures 31 to 34 illustrate micrographs of the hair cells from the four quadrants illustrated in 
Figure 29. 

Examination of the sacculus of S. trutta revealed no obvious signs of trauma to the cilia and 
macula which could be attributed to intense sound exposure; the examination was undertaken 
with the examiner unaware of which group the fish belonged to. The micrographs presented 
in Figures 35 to 41 were taken from comparable regions of the macula, located close to the 
central transect between all four quadrants. Comparable results were obtained from all six 
populations, though evidence of damage may not be immediately apparent. 

While no trauma was detected, it should be noted that evidence of trauma to the hair cells 
may be apparent on other androgens of the inner ear (not studied in this work). Diagnosis 
would require further experimentation using larger population samples. In addition, a recent 
report by Popper (in press) indicates that the visible deterioration of peripheral cell structures 
can take in excess of a month. 

In summary, no obvious signs were found of trauma to the cilia and macula which could be 
attributed to intense sound exposure. 
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The e/[eds of underwater noise from coastal piling on salmon (Salmo solar) and Brown Trout (Sa/mo trufta). 

7. Conclusions. 

I. Monitoring ofthe effects ofwaterborne noise resulting from impact pil ing and vibropiling 
was undertaken at Town Quay, Southampton, during construction operations at Red 
Funnel 's Southampton Terminal in September 2003. The noise levels were recorded, and 
because of interest in the potential effects of the noise on migration of salmon (Salmo 
salar), the reactions of the close relative brown trout (Salmo trutta) were observed in 
cages on CCTV equipment to determine whether there was any observable effect of the 
piling on their behaviour. 

2. In respect of vibropiling, at the greatest range of 417 metres, the noise could not be 
detected above background noise, with any noise from the vibropiling being drowned by 
noise from the movement of vessels. The caged trout monitoring revealed no evidence 
that trout reacted to vibropiling even at the closest range of29 m. 

3. In respect of impact piling, no startle response was seen in any of the cages for any of the 
piles driven by impact piling. No significant difference in activity level was detected, 
other than an increase in fish activity in the cage at location 2. The results for dBht (Salmo 
salar) noise levels indicated that a mild reaction would be expected by salmon within 
ranges of 60 to 80 metres. 

4. Consequently the audiogram of the brown trout was measured, and was found to be 
significantly di fferent from that of the salmon, despite a common assumption that c losely 
related species will have simi lar hearing ability. It was hence concluded that it is not 
possible to infer the effects of noise from studies on a related species without knowledge 
of the hearing abi lity of both. 

5. The impact piling noise was retrospectively found to be below the levels at which a 
reaction would be expected. This difference expla ined the lack of reaction of the caged S. 
trulla to the piling noise, and tends to confirm that mild reaction to noise occurs at levels 
of about 75 dBht (Species) and above. 

6. Micrographs of the sacculus offive brown trout from each cage were inspected. No signs 
were found of trauma to the cilia and macula which could be attributed to intense sound 
exposure. 
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The t!ffects of underwalt!r noise from coastal piling on salmon (Salmo salar) n11d Brown Trout (Salmo truttn). 
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The effects of underwater noise from coastal piling on salmon (Salmo salar) and Brown Trout (Salmo trutta). 

' I 

Figures 
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Figure 1. Photograph taken from quayside with ferrv docked at terminal, and vehicles 
disembarking along linkspan. Structure on left of photograph is covered walkway for 

pedestrian passengers, and the dolphin on which it rests can be seen. 
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The effects of underwater noise[rom coastal piling on salmon {Salmo solar) and Brown Trout {Salmo trutta). 
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Figure 2. Sketch to illustrate principle of vibro pile driving. 
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Figure 3. Sketch to illustrate principle of impact piling. 
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The effects of underwater noise from coastal piling on salmon (Salmo salar) and Brown Trout (Salmo trutto). 
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Figure 4. Sketch map showing location of site in Southampton 
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Thl! 1!/[ects of underwater noise from coastal piling 011 salmotr (Salmo solar) atrd Browtr Trout (Salmo trulta). 

site of piling 

RX- measurement location 

Figure 5. Sketch map showing piling and measurement locations. 
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The e/ftcls of underwater noise from coastal piling on salmon (Salma solar) a11d Brawn Trout (Salmo trutta). 
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Figure 6. Details of pile locations. 
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The effids of underwater noise[rom coastal piling on salmon (Salmo salar) and Brown Trout (Salmo lrulla). 

Figure 7. Photograph of pile tubes being unloaded. 

Figure~· A photograph of site during piling operations. 
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Tht! t!fficts o[undt!rwalt!r noist![rom coastal piling on salmon (Salmo salar) and Brown Trout (Salmo trutta). 

Figure 9. A PVE 2316 VM vibropiling driver. It is shown resting in a cradle made 
of [-section beams. 

F igure 10. A view of the lower end of the BSP 357/9 Hydraulic Drop Hammer used for 
impact driving, while it was lying on a lorrv. 
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The effects o[underwatu noise from coastal piling on salmon (Salmo solar) and Brown Trouf (Salmo trufta). 

Figure 11. The impact driver being held on the top of a pile for driving purposes. 
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The effects o[underK•ater noise from coastal piling on salmon (Salmo salar) and Brown Trout (Safnro trutta). 
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(a). set-up for 8104 and 8105 hydrophones, for vibrodriving. 
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(b). set-up for 8106 hydrophone, for vibrodriving. 
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(c). set-up for 8105 hydrophone, for impact driving . 
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Figure 12. Block diagrams of instrumentation. 
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The effects of underwater noiu[rom coastal plfing on salmon (Salmo solar) and Brawn Trout (Salmo lrulla}. 
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Figure 13. A schematic of the ABR audiometry system 
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Figure 14. A schematic of the electrodes used to record the evoked potentials 
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The t/ftds of underwater noise from coastal piling on salmo11 (Salmo solar) a11d Brow11 Trout (Salmo trutta). 
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Figure 15. An example of evoked potentials from a naive S. trutta in response to a 
300 Hz tone burst. 
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Thr: r:ffects of underwatu noise from coastal piling on salmon (Salnro sa/ar) and Brown Trout (Snlnro trutta). 
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Figure 16. A comparison of the audiogram of a goldfish (Carassius auratus) made on the 
experimental apparatus, compared with the results of Kenyon et al. (1998). 
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Tht! t!/[ects of underwater troise from coos/a/ piling on sa/moll (Salmo solar) and Brown Trout (Salmo trulla). 

Audiogram forS. trutta and S. salar 
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Figure 17. The measured auditory thresholds from the brown trout (S. tmtla) 
compared with those of the salmon (S. salar) (from Hawkins & Johnstone (1978)) 
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The ej[ecJs o[underwaler nolse[rom constat piling on salmon (Salmo solar) and Brown Trout (Salmo trutta). 
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Figure 18. A typical sound pressure level vs. time history obtained at the end of Town 
Quay (location R5) for a vibro-driving case. The upper line illustrates the unweighted 

levels, and the lower line levels in dBh1 (Salmo solar). 
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The effects o[underwatu noise from coastal piling on salmon (Salmo sa/or) and Brown Trollt (Salmo trutta). 

Figure 18. The dredger Bluejin, noise from which dominated some of the monitoring 
measurements. 
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The e/[tcts of underwater noise from coastal piling on salmon (Salmo solar) and Brown Trout (Salmo lrulla). 
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Figure 20 : A typical time history for two impact pile driver 
strikes obtained from measurements at location R3. 
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Figure 21: The average peak-to-peak Sound Pressure Level of the impact piling as a 
function of the range from the piling, for two 508 mm diameter piles and one 914 mm 

diameter pile. 
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The efficts o[undeno•ater noise[ronr coostol piling on salmon (Salnro solar) and Brown Trout (Salmo lrulta). 
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Figure 22. A pressure vs. time history for impact driving, as per Figure 20, but weighted 
by S. salar hearing. 
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Figure 23: The average peak-to-peak Sound Pressure Level in dBbt (Species) units of 
the impact piling as a function of the range from the piling, for two 508 mm diameter 

piles and one 914 mm diameter pile. 
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The efficts of underwater noise[rom coastal piling on salmon (Salmo solar) and Brown Trout (Salmo lrutfa}. 

(a). A general view. 

{b). View showing flap opening for introducing and removing the fish. 

Figure 24. Photographs of the cages used for the fish monitoring. 
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The effects o[unduwaur noise[rom coastal piling on so/moll (Salmo solar) o11d Brown Trout (Safmo trutta). 

Figure 25. A still frame from the fish monitoring video. 
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The effects of underwater noise from coastal piling on salmon (Salnro salar) a11d Brow11 Trout (Salmo trutta). 
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Figure 26. Comparison of fish activity levels before and during vibropiling (all data collected 
between 15-23 September), based on observed fish movements over 2 minutes before the 
start of piling and for 2 minutes from the start of driving each pile (mean & 95% confidence 
interval). 
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Figure 27. Comparison of fish activity levels before and during impact piling (piling on 
241

h September), based on observed fish movements over 2 minutes before the start of 
piling and for 2 minutes from the start of driving each pile (mean & 95% confidence 

interval). 
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The t!./Juts o[unde,-,.•ater noiSt!.[rom coastal piling on salmon (Salmo salar) and Brown Trout (Solmo trufto). 
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Figure 28 Comparison of fish activity levels before and during impact piling (24th 
September), based on observed fish movements over 2 minutes before the start of piling 

and for 2 minutes from the start of driving each pile. 
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The effects of underwater noise from coastal piling on salmon (Salmo solar) a11d Brown Trout (Salmo frulta). 

Figure 29. Hair cell polarisation patterns on the saccular epithelium from the left ear of 
S. trutta (arrows indicate a standard hair cell configuration) 

Figure 30. Example of damaged hair cell from the bass (Dicentrarcltus labrax) (Lovell, 
unpublished). Note: the actual cause of the trauma shown here is not due to acoustic 

stimulation, though the effect (destruction of cilia) is similar in appearance 
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The effects ofunderwaur noise from coastal piling on salmon (Salmo solar) and Brow/1 Trout (Salmo trutta). 

Figure 31. Micrograph of hair cells from quadrant 1 of the saccular epithelium 

Figure 32. Micrograph of hair cells from quadrant 2 
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The efficts of underwater nolse[rom coastal piling on salmon (Salmo salar) and Brown Trout (Salmo trulfa). 

Figure 33. Micrograph of hair cells from quadrant 3 

Figure 34. Micrograph of hair cells from quadrant 4 
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Th~ ~jftcts o[underwatu noise from coastal piling on salmon (Sa/nro salnr) and Brown Trout (Sa/nro trulla). 

Figure 35. Large area of damage to the rosterallocus (hatched area) caused during the 
critical point drying process 

Figure 36 Micrograph of macula (close to the central transect between all4 quadrants), 
showing hair cells, for cage no. 1. 
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Th~ ~.ffects o[unden~•at~r noise from coastal piling on salmon (Salmo salar) and BroK'II Trout (Salmo /rut/a). 

Figure 37 Micrograph of macula (close to the central transect between a114 quadrants), 
showing hair cells, for cage no. 2. 

Figure 38 Micrograph of macula (close to the central transect between all 4 quadrants), 
showing hair cells, for cage no. 3. 
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Tire efficts o[unduwf#u 110is~from coastal piling 011 salmo11 (Salmo salar) and Brown Trout (Salmo trutta). 

Figure 39 Micrograph of macula (close to the central transect between all4 quadrants), 
showing hair cells, for cage no. 4. 

Figure 40 Micrograph of macula (close to the central transect between all 4 quadrants), 
showing hair cells, for cage no. 5. 
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Th~ ~fltcts of undtrwatu noise[rom coastal piling on salmo11 (Sa/mo solar) and Brown Trout (Salnw lrutta). 

Figure 41 Micrograph of macula (close to the central transect between all 4 quadrants), 
showing hair cells, for the control cage. 
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The effects o[underwatu nol.se[rom coa.stal piling on .salmon (S almo solar) and Brown Trout (Salmo trutta). 

Appendix 1: Hydrophone calibration certificates 
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The effects of underwater 11oise[rom coastal piling on sa/moll (Salmo solar) a11d Brow11 Trout {Salmo trutta). 

Calibration Chart for Hydrophone Type 8106 Serial No.:2256725 
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The Inner ear morphology and hearing abilities of the Mlssiulppi Paddlefish (Polyodon spathula) and tbe Lake Sturgeon 

(;fcipensu fulvescens) 

1. Background 

The spread of Asian Carp, including Silver Carp (Hypopthalmichthys molitrix) and 
Bighead Carp (Aristichthysc nobilis), through the Upper Mississippi River Basin and 
towards Minnesota is causing increasing concern. 

The Minnesota Department of Natural Resources (DNR) contracted FishPro, a firm of 
Consulting Engineers and Scientists, to review the available technologies that could be 
effective in limiting or stopping the northward movement of the carp into the Upper 
Mississippi River and adjacent tributaries. Their report 'Feasibility Study to Limit the 
Invasion of Asian Carp into the Upper Mississippi River Basin' was published on 15 
March 2004. The BioAcoustic Fish Fence (BAFF), manufactured by Fish Guidance 
Systems Ltd (FGS), was identified as being the most appropriate technology. 

The northward movement of the Asian Carp has also led to concern regarding their 
potential entry into the Great Lakes via the Chicago Shipping Canal and over the last few 
years there have been substantial resources committed to preventing this from occurring. 
This has included the installation of two Smith-Root Graduated Field Electric Fish 
Barriers, but due to limitations of the electric barriers there is a proposal to supplement the 
existing barriers by using an Acoustic Fish Deflection (AFD) System 

Trials conducted by the Illinois Natural History Survey (INHS, Havana, Illinois) have 
shown that 95% effectiveness can be achieved with Bighead Carp using a SPA driven 
BAFF system (Taylor, Pegg and Chick, in press) and further trials are underway with 
Silver Carp. 

FGS was contracted by the Great Lakes Fishery Commission to measure the audiograms 
of two Asian Carp species, Silver Carp and Bighead Carp, as part of the preliminary works 
for a SPA driven BAFF system on the Chicago Canal. This would enable the SPA driven 
BAFF to be programmed with a specific signal tailored to the hearing ability of the Carp. 

Following the FishPro report, FGS was requested by Minnesota DNR to extend the 
proposed measurements to included the Mississippi Paddlefish and Lake Sturgeon. This is 
because in the Upper Mississippi River Basin there is not only a requirement to prevent 
the spread of the Asian Carp, but it is also important that any AFD system installed does 
not affect indigenous species. The Mississippi Paddlefish (Polyodon spathula) and the 
Lake Sturgeon (Acipenser fulvescens) are two species that are of interest in this respect. 

An ideal barrier would be 100% effective in blocking the non-indigenous species, while 
allowing indigenous species to pass. Ideally, the AFD system will generate sound which 
appears ''unbearably loud" to the target species, that is, where most of the sound energy is 
at the optimum hearing frequencies of the species that is to be deterred and well above its 
threshold of hearing, but should appear "quiet" to species that should be allowed to pass. 
The auditory sensitivity is descnbed by the species' audiogram, or plot of threshold of 
hearing of sound pressure versus sound frequency. 
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Tbe Inner ear morphology and heulng abWtfes ofthe Mlsslulppl Paddlefuh (Po/yodon sptlllu®) and the Lake Sturgeon 

(AcipetUer fulv~cetU) 

In order to achieve very highest possible levels of fish deflection for the non-indigenous 
carp species while causing as little disturbance as possible for the indigenous species, the 
structure and function of the hearing system of the Mississippi Paddlefish (Polyodon 
spathula Walbaum, 1792) and the Lake Sturgeon (Acipenser fulvescens) have been 
studied using ABR audiometry and scanning electron microscopy. The intention of the 
work reported herein was to compare this with measurements of hearing of the carp 
species to ascertain whether a suitable species-selective barrier could be specified. 
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The Inner ear morphology and bearing ab Wiles of tbe Mlnlnlppl Paddlefub (Polyodon spalltu/D) and tbe Lake Sturgeon 

(Acipenser fulvescem) 

2. Morphology 

The fish inner ear is divided into two regions, the pars superior and the pars inferior 
(Retzius, 1881 ) . The former responds primarily to movements of the body and postural 
changes, while the latter responds to both gravistatic and acoustic stimuli ( J enkins, 1981; 
Popper & Platt, 1993). The pars inferior comprises two fluid filled pouches, the saccule 
and lagena, with each pouch containing a crystalline calcium carbonate otolith (Carlstrom, 
1963). However, P. spathula is from the subclass Chondrostei (cartilaginous bony fishes, 
Helfinan et aL), in the order Acipenseriformes (sturgeons and paddlefishes), and indicates 
that the morphology of the inner ear, especially the otolithic organs may not follow the 
format of either the bony fishes or sharks. In order to investigate the mechanism of sound 
reception, the inner ear morphology of P. spathu/a has been investigated as part of this 
work. The saccule is considered to be the major auditory organ in most bony fish species, 
though there is evidence of a functional overlap between all three end organs (Popper & 
Fay 1993). For fish to locate the source of a sound in both the horizontal and vertical 
planes, they rely on the stimulation of ciliary bundles oriented specifically along the sound 
propagation axis (Lu & Popper, 1998). It is known (Enger et aL, 1973; Hawkins & Sand, 
1977; Fay, 1997) that the morphological polarities of sensory hair cells in the otolithic 
organs are fundamental to the directional hearing capabilities of fish. In general, azimuths 
of peak sensitivity tend to lie parallel to the plane of the otolith and sensory epithelium 
(Enger, et al. 1973; Sand & Hawkins, 1973; Fay, 1997). Examination ofthe orientation of 
the ciliary bundles provides evidence of a correlation between the morphological 
polarisation of receptor cells and the magnitude of an electrophysiological response to a 
sound (Popper & Fay, 1993). Excitation occurs when stereocilia are bent toward the 
kinocilium during the passage of a wave front, resulting in the cell becoming depolarised 
relative to its resting potential (Clegg & Mackean, 1994). Inhibition occurs when the 
bundle is deflected in the opposite direction, and results in the hyperpolarisation of the cell 
(Platt & Popper, 1981). The magnitude of both excitation and inhlbition are a cosine 
function of the angle between the direction of the stimulus and the direction at which 
sensitivity is greatest (Enger, 1965; Popper, 1983). The detection and localisation of a 
sound source is of considerable biological importance to many fish species, and is often 
used to assess the suitability of a potential mate or during territorial displays (Nordeide & 
Kjellsby, 1999), and during predator prey interactions (Myrberg,1981). 

2.1 Paddlefish 

It is the first time that the hearing system of fish from the order Acipenseriformes has been 
studied. The inspection of the Paddlefish reveals that this fish is capable of detecting 
sound using arrays of sensory hairs located in three otolithic end organs in the inner ear. 

Figure 1 illustrates a dissected paddle fish showing the internal organs and location of the 
brain. The dissection reveals that P. spathula possesses a well developed swim bladder, 
which is essential to its feeding habits (the paddlefish feeds on small planktonic organisms 
that abound at the water surface). As this fish lives in fresh water, it needs a well 
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developed swim bladder to achieve neutral buoyancy to aid in surface feeding. Figure 2 
illustrates the left ear and VIII nerve; and the arrows D and A show the orientation of the 
ear in the fish. Figure 3 presents electron micrographs, this time from the right ear of P. 
spathula, and shows the saccule, lagena and the utricle. Also included are hair cells from 
the anterior-ventral region of the saccule, and hair cells from the anterior margin of the 
utricle. The configuration of the saccule is approaching standard (hair cells arranged in 4 
almost dichotomous quadrants). This is common to a large proportion of non-specialist 
fish, though the ostium (the two anterior quadrants) has a number of hair cells orientated 
in the dorsal ventral plane, which follow the flow of hair cells proliferating in the adjacent 
quadrants, as well as hair cells orientated in the expected anterior posterior plane. 

2.2 Lake Sturgeon 

In addition to the paddlefish, this work looks at the hearing abilities of the Lake Sturgeon 
(Acipenser fulvescens) which is another cartilaginous fish in the same order as the 
paddlefish, but spends much of its time feeding in the benthos. Because of this demersal 
feeding habit, the sturgeon has no need for a well developed swim bladder, which was 
confirmed by an internal examination, which did not find obvious evidence of a swim 
bladder. However, an examination of the inner ear morphology revealed a similar 
configuration to the paddlefish. Both the size of the three otoliths, and the pathway taken 
by the VIII nerve was also found to be comparable within the order. 
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3. Audiograms 

The techniques used to obtain fish audio grams require a varying degree of time, surgical 
and technical expertise, and many authors favour the use of operant reward based 
paradigms (behavioural methods) to gain statistically sound data (see, for instance, Y an 
1995). There are two fundamental methods by which audiograrns can be estimated. 

3.1.1. The behavioural method. In this method, a species is trained to react in a 
specified and measurable way (e.g. a reward based method by seeking food) when a tone 
at a given frequency is played. The tone is gradually played at decreasing levels until no 
reaction occurs; this level is therefore taken as the threshold of hearing at that frequency 
for the species in question. In practice, the behavioural method is very time consuming 
and only effective with species that are easy to train, and therefore is not considered 
suitable for the measurements described herein. 

3.1.2. The auditory evoked potential (AEP) method. Audiograms produced using 
the Auditory Brainstem Response (ABR) technique, are regarded as being the least time 
consuming and most reliable methodology for acquiring audiological data from fish and 
other animals. They are used for both mammalian and non-mammalian vertebrates 
(Corwin, Bullock and Schweitzer 1982), and marine invertebrates (Nedwell et a/2003, in 
press, Lovell et al., in Press); 

Additionally, ABR recordings require no invasive procedural work as measurements are 
taken in the electro-physiological far field using cutaneous electrodes, resulting in 
significant stress reduction during the hearing assessment (Kenyon et all998). 

This approach relies on the fact that the electrical potential of the nervous impulse passing 
along the auditory nerve can be detected by electrodes placed in its vicinity. In practice, a 
pair of electrodes are applied to the species in a position spanning the auditory nerve. A 
sinusoidal tone at a given frequency is played to the species. An ABR trace is formed by 
averaging conglomerate responses of peak potentials arising from centres in the auditory 
pathways extending from the periphery of the VI1l nerve, to the midbrain (Corwin et at 
1982; Overbeck and Church 1992). The threshold of hearing is estimated by finding the 
level of sound at which the auditory response just appears above noise. One particular 
variety of the AEP method is to measure the auditory response at the brainstem; this 
approach is termed the Auditory Brainstem Response (ABR) method, and is the method 
that was chosen for the work presented herein. 

The ABR measurements of hearing threshold were made using "BrainWave", a control 
and analysis program, written for the purpose by Subacoustech in a LabView 7 
environment. This program both generates the stimulus signals and captures and analyses 
the response. The stimulus used was a sine train (sine wave pulse) which was presented to 
the fish at a given frequency and sound pressure level. The ABR response is readily 
dominated by responses caused by muscle movement and hence while undertaking the 
ABR measurements the fish are kept in dark and constrained conditions since many 
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species react to this by becoming passive. It is known that many fish species react to 
danger by hiding in weeds, and it is thought that this experimental environment mimics the 
natural environment, enabling the fish to feel protected, reducing avoidance behaviour. 
However, in addition to this BrainWave can detect ABR responses that are contaminated 
by muscle movement. The program ignores contaminated measurements when producing 
the averaged ABR response. The use of chilling as a muscle movement control measure 
has also been investigated. As cold-blooded animals, fish show a reduction in activity as 
their body temperature decreases, and this might in principle be used as a suitable control 
measure. However, chilling may have the effect of diminishing the auditory evoked 
potential from a fish (see for instance Corwin et a/(1982); Stockard et a/ (1978)) and 
hence this approach has not been used. 

A further refinement of the experimental measurements has been the use of submerged 
projectors (underwater sound transducers) to generate the insonification. Previous 
measurements, such as those by Yan, have used a domestic hi-fi loudspeaker above the 
experimental water tank to create the insonifying sound. The system has been ca!Jbrated 
by measuring the sound above the tank, and assuming that the sound pressure in the water 
is equal to the sound pressure in the air. This is unsatisfactory for two reasons. First, the 
walls of the tank may displace outwards under the influence of the waterbome sound, 
causing a "pressure release" effect and reduction in the waterbome pressure. Second, this 
method of insonification may set up complex pressure and particle velocity fields in the 
water tank, with the result that the condition of exposure is very difficult to specify. 

In the experiment described herein, two identical projectors have been set up facing each 
other with the fish on the axis of symmetry between the two. Where the projectors are 
driven in phase, it is possible to create a region between them of high and even sound 
pressure, associated with a low level of particle velocity. 

3.1 Method of recording audiograms 

A block diagram of the equipment to provide audiometric measurements is shown in 
figure 4 . The procedure used to acquire the acoustically evoked potentials was approved 
by the University oflllinois, United States 15.11.04. The sound signal was generated by a 
laptop computer running Brain Wave, and amplified using a Tandy 250W power amplifier. 
The sound field in the experimental watertank was generated by means of two Fish 

Guidance Systems Ltd. Mk ll 15-100 Sound Projectors. These faced each other at a 
distance of 200 mm; the inner ear of the fish during measurements was arranged on the 
axis connecting the centres ofthe two projectors. 

During the measurements made on the Paddlefish and Sturgeon, the projectors were 
driven directly from the amplifier since due to the insensitivity of the fish meant that high 
levels of sound were required to cause an acoustic brainstem response. While provision 
had been made to reduce the output of the amplifier (by using load resistors placed 
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between the amplifier and projector) these were only required when measuring the hearing 
of more sensitive fish such as the carp species, where much lower levels of sound were 
required. 

The stimulus tones presented from the loudspeaker to the fish were calibrated using an 
insertion calibration. In this method, the sound level is recorded in the absence of the fish, 
at the point where the inner ear of the fish would be. The measurements were made using 
a Bruel and Kjaer Type 8104 Hydrophone (serial number 2225715) calibrated and 
traceable to International Standards; the certificate of calibration is attached as appendix 1. 
The signal from the hydrophone was amplified by a Bruel and Kjaer Type 2365 Charge 

Amplifier (Serial Number 1079556). In case there was any non-linearity of the signal, 
calibrations were made at every frequency and every level used for a measurement, 
totaling some 660 individual calibrations. These calibrated levels were then applied to the 
threshold defined by ABR measurement to provide calibrated audiograrns with pressure 
levels traceable to International Standards. In fact, no evidence of non-linearity was 
detected, other than at the very highest levels of sound, which was not required in any 
case for measuring audiograrns. 

The test subjects were placed into a flexible cradle formed from a soft nylon mesh 
rectangle saturated with freshwater for the small fish, and a rubber coated 1 mm gauge 
wire mesh for fish over 2 kg weight. This assembly is illustrated in figure 5. Oxygenated 
water kept at a temperature of 18° C was gravity fed at an adjustable flow rate ofbetween 
5 millilitres per second for the small fish, to 25 millilitres per second for the large, and 
directed toward the gills through a soft rubber mouth tube with a diameter of between 6 
mm to 25 mm. The water was held in an aerated reservoir positioned 1 m from the water 
surface, and fed to the mouthpiece through a 6 mm to 25 mm diameter clear plastic tube. 
The small fish were first placed lengthwise and centrally on a 160 mm x 120 mm rectangle 
of fine nylon netting, which was wrapped firmly around the body and tail, and the two 
sides of the net were held together using the clip, which may be seen in the photograph of 
figure 6. 

The clip was placed in a retort stand clamp fitted with ball joint electrode manipulator 
arms, and the aerated water pipe. During the procedure to position the electrodes the 
specimen and clamp were suspended over the test tank, and aerated water was supplied to 
the fish. 

The electrophysiological response to acoustic stimulation was recorded using the two sub­
cutaneous electrodes of figure 7, which were connected to the MS6 preamplifier by 1m 
lengths of screened coaxial cable with an external diameter of 1.5 mm. The outer 
insulating layer ofthe coax was removed 15 mm from the end where the electrode tip was 
to be fixed, and the screening layer removed 10 mm from the cable end. The inner 
insulating material was then trimmed by 2 IDID, and the exposed inner wire (0.5 mm 
diameter) was tinned with silver solder and joined to a 10 mm length of silver wire (0.25 
mm diameter), tapered to a fine point. The assemblage was pushed through a 100 mm 
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glass pipette with an internal diameter of 4 mm, until 0.4 mm of the silver wire was 
exposed. The remaining space inside the pipette was filled with a clear epoxy resin, and 
then trimmed to expose 0.3 mm of silver tip through which the AEP could be conducted. 
The impedance of the electrodes, both between the outer shielding and inner core, and the 
silver tip and MS 6, were tested using an M 205 precision digital multimeter. The 
impedance between the tip and pre-amplifier was found to be 0.2 .Q for both electrodes, 
and an open circuit was recorded between the outer shielding and inner core. 

Stimulus sounds were presented to the fish at sound pressures initially not exceeding I45 
dB re 1 J.LPa. The electrophysioiogical response of the fish to acoustic stimulation was 
recorded using two cutaneous electrodes, which were positioned on the cranium of the 
fish adjacent to and spanning the V1ll nerve. The reference electrode was positioned 
centrally on the head above the medulla, and the record electrode was located 5 mm 
anterior of this point. The evoked response was amplified and digitised to 12 bits 
resolution and recorded. This process was repeated 2000 times and the response averaged 
to remove electrical interference caused by neural activities other than audition, and the 
myogenic noise generated by muscular activity. Each measurement was .repeated twice; 
this aids in separating the evoked response, which is the same from trace to trace, from the 
myogenic noise, which varies in two successive measurements. After the averaging 
process, the evoked potential could be detected, following the stimulus by a short latency 
period of about a millisecond. 

3.2 The audiogram of the Paddlefish (P. spatltula). 

In order to concisely identify the frequency and intensity of sounds audible to paddlefish, 
twelve specimens of P. spathula were stimulated with sound ranging in the frequency 
domain between I 00 Hz to 1500 Hz, presented in a sound field dominated by sound 
pressure at levels of between 150 dB to below 90 dB re I )lPa. Figure 8 illustrates the 
auditory evoked potentials from P. spathula in response to tone bursts at frequencies of 
100 Hz, 200 Hz, 250 Hz, 300 Hz, 500 Hz, 750 Hz, 1000 Hz, and 1500 Hz. Each 
waveform set from a particular frequency has been overlaid, and reveals a latency change 
in response to both the intensity and frequency of the sound. At each frequency, the ABR 
waveforms evoked by the tone bursts typically consisted of a series of four to eight rapid 
negative peaks, followed by a slow positive defection. The onset latency of the centre or 
largest sinusoid of the ABR response varied with frequency, ranging from 7.3 rns after 
stimulus onset at 100 Hz to 4 rns at 1500 Hz. As the sound pressure levels approached 
threshold, 2000 sweeps were required to distinguish ABR's from background noise. 

It is known that the frequency and intensity of a tone burst effects the latency of the 
evoked response (Corwin et al 1982; Kenyan et al 1998), as does the metabolic state of 
the organism (Corwin et al 1982). The latency of the evoked potentials from P. spathula 
can be observed in Figure 9, and are in response to a 300Hz tone burst, presented initially 
at 156 dB (re 1 J.LPa), and attenuated in 5 dB steps. The arrows positioned at 0.3 ms 
intervals represent vertex positive components issuing from the neural centres situated 
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along the auditory pathway to the midbrain (Overbeck and Church 1992). The increase in 
the latency of the evoked potential in response to decreasing stimulus intensity is often 
used to verify that the averaged waveform is a product of auditory stimulation rather than 
a transient generated at the electrode tip (Kenyan et, al., 1998), the Inter-Peak Latency 
(IPL) cannot be accounted for acoustically, as transients and other artefacts directly 
associated with the stimulus sound would occur at the same time regardless of sound 
amplitude. 

Figure 10 shows ABR waveforms evoked from a 300 Hz tone burst, presented initially at 
150 dB (re 1 J.LPa), and attenuated in steps of between 8 to 4 dB ordinarily, then in 2 dB 
steps as the hearing threshold was approached. When two replicates of wavefonns 
showed opposite polarities, as seen in the traces for the results at 122 dB in Figure 10, the 
response was considered as being below threshold (cf. Kenyan et al. 1998). 

All threshold responses were measured in this way, and the sound pressures at threshold 
were used to generate the audiogram shown in Figure 11. The audiogram was produced 
using the sequential ABR waveform data, acquired from frequencies of 100 Hz to 1500 
Hz, presented in steps of between 200 Hz to 500 Hz. The audiogram follows Gaussian 
profile, determined by calculating the lowest intensity stimulus sounds (recorded 
underwater using the hydrophone located adjacent to the fish ear) that evoked a repeatable 
ABR response. The profile is centred at 300 Hz, which was found to be the ''best" 
frequency for this species. The thresholds begin to rise slowly to 1000 Hz, and are 
substantially reduced at 1500 Hz, as the frequency goes out of the hearing range of the 
fish. 

3.3 Audiogram for the Lake Sturgeon (Acipenser fulvescens) 

The of head of A. fulvescens (detailed in Figure 3) was dissected to facilitate the correct 
positioning of the electrodes; using the anatomical information as a guide, the record 
electrode was placed 6 mm anterior of the reference electrode which was positioned 
centrally above the medulla. It was found that the hard bony structure of the head made 
electrophysiological recordings difficult, as there was no fleshy skin for the electrode to 
push into and create a good connection between the electrode tip and fish. This resulted 
in the 0.3 mm silver tip being almost entirely exposed to the ambient water, which can 
result in the substantial attenuation of the evoked potential. To resolve this issue, silicone 
tip insulators were used to create a seal around the electrode tip and fish, thus preventing 
the ambient water from contacting the electrodes. These adaptations can be clearly seen 
in Figure 6, which shows a specimen of A. fulvescens held in place during an audiological 
test. 

Twelve specimens of A. fulvescens were stimulated with sound ranging in the frequency 
domain between 100 Hz to 1500 Hz, presented in a sound field dominated by sound 
pressure at levels ofbetween 150 dB to below 120 dB re 1 J.LPa. Figure 12 illustrates the 
auditory evoked potentials from A. fulvescens in response to tone bursts at frequencies of 
100 Hz, 200 Hz, 250 Hz, 300 Hz, 500 Hz, 750 Hz, 1000 Hz, and 1500 Hz. At each 
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frequency, the ABR waveforms evoked by the tone bursts typically consisted of a series of 
four to eight rapid negative peaks, followed by a slow positive defection, similar to those 
recorded from P. spathula. The audiogram in Figure 13 was produced using the same 
methodology as used for P. spathula; the curve follows a similar profile also centred at 
300 Hz, indicating comparable frequency sensitivity and overall hearing abilities between 
these two members ofthe order Acipenseriformes. 
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4. Discussion. 

Figure 14 illustrates the audiograms of both the Sturgeon and the Paddlefish. The 
audiograrns of the Silver Carp and the Bighead Carp are also included on the figure for 
comparison. Also on the figure is the measured maximum level of background noise 
during the measurements. 

It may be noted that the background noise levels were recorded on the identical apparatus 
used to measure the audiograms, and were found by reducing the signal from the system 
until no further reduction in level occurred. Hence the noise calibration process includes 
not only extraneous background noise, but also noise from the equipment used to generate 
the signal (such as noise from the power amplifier) and noise from the measuring 
equipment such as the hydrophone, charge amplifier and digitization equipment. It may be 
noted that the background noise level is of lower level than all of the recorded thresholds 
of hearing, and hence it may be concluded that the audiograms are uncontaminated by 
background noise. 

It may be seen that the audio grams of the Paddlefish and the Sturgeon are similar. They 
indicate a peak sensitivity at about 250 Hz. However, the hearing of the Paddlefish is 
slightly more sensitive than that of the Sturgeon, having a minimum hearing threshold (i.e. 
maximum sensitivity to sound) of about 126 dB re 1 J.LPa, whereas the maximum 
sensitivity of the Sturgeon is about 134 dB re 1 ~Pa. Both of these fish are however 
highly insensitive to sound, with the audiograms placing them amongst the fish with the 
least sensitive hearing, comparable in hearing sensitivity with marine flatfish such as skate. 

It may be seen by comparison that the hearing of the two carp species is much more 
sensitive, and extends to much higher frequencies than that of the Paddlefish and the 
Sturgeon. 

This significant difference in hearing ability raises the possibility of a selective acoustic fish 
deflection (AFD) barrier, that might allow for instance such systems to selectively deter 
nonindigenous species while allowing indigenous species to pass. AFD systems comprise 
a set of underwater sound projectors and associated amplifiers; these are driven by a signal 
that has been developed to be unpleasant to the fish species that are the target of the 
system. It is apparent that a deterrent signal concentrated on frequencies of the order of 
400 Hz to 2 kHz would probably achieve maximum deflection of the carp species, while 
effecting the Paddlefish and the Sturgeon to a much lower degree. Measurements by 
Taylor et a/ of the efficiency of a Fish Guidance Systems SP AIBAFF system have 
indicated that efficiencies of 95% or more are achievable for carp. Reductions in 
deflection efficiency of about 3% per dBht (that is, per dB of perceived level) have been 
recorded, and the audiograms indicate that it might be possible to achieve a signal with a 
dBht level for the Paddlefish and the Sturgeon at least 25 dBht lower than that for the carp 
species. This might therefore equate to a reduction in deflection efficiency of Paddlefish 
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and the Sturgeon of 75% or so, to say 20% or less for the same barrier. The results 
therefore indicate that a differential AFD barrier might be achievable. 

A formal analysis of the system could be made using the dBht method, which would enable 
the probable efficiency of the barrier against various species to be determined and hence 
both the barrier and the deterrent signal to be designed for maximum deflection of 
nuisance species and minimum deflection of indigenous species. 

It is interesting to compare acoustic fish deflection systems, which only work efficiently 
when carefully designed with the acoustics of the barrier and the hearing ability of the 
target species in mind, with electric fences which are ''blunt instruments" which require no 
detailed design. While the lack of need for detailed preliminary design work is an apparent 
advantage of electric fences, this lack of selectivity is also a drawback when the fence 
blocks the passage ofvaluable species. 
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5. Summary 

1) Audio grams have been measured for the Mississippi Paddle fish (Polyodon 
spathula) and the Lake Sturgeon (Acipenser fulvescens). 

2) The audiograms of the Paddlefish and the Sturgeon are similar, with peak 
sensitivity at about 250 Hz. The hearing ofthe Paddlefish is slightly more sensitive 
than that of the Sturgeon, having a minimum hearing threshold (i.e. maximum 
sensitivity to sound) of about 126 dB re 1 J..LPa, whereas the maximum sensitivity 
of the Sturgeon is about 134 dB re 1 J..LPa. Both of these fish are however highly 
insensitive to sound. 

3) By comparison, the hearing of the Bighead Carp and Silver Carp species is much 
more sensitive, and extends to much higher frequencies than that of the Paddle fish 
and the Sturgeon. 

4) This significant difference in hearing ability raises the possibility of a selective 
acoustic fish deflection {AFD) barrier, that might allow Paddlefish and the 
Sturgeon to pass while barring the passage of non-indigenous carp species. 

5) A formal analysis of a prospective AFD system could be made using the dBh1 

method, which would enable the probable efficiency of the barrier against various 
species to be determined and hence both the barrier and the deterrent signal to be 
designed for maximum deflection of nuisance species and minimum deflection of 
indigenous species. 
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Heart 
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Figure 1. Upper: Dissected paddlefish showing the internal organs and location of the brain, 

revealing that P. spathula possesses a well developed swim bladder. Lower: The left ear and 

VIII nerve; aa. anterior ampulla , pa. posterior ampulla, /. lagena, raa. ramus anterior 

ampulla, , s. saccule, ss. sinus superior, u. utricle. The annotations D and A show the 

orientation of the ear in the fish. Bar = 2 mm 
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F1gure 2. Electron micrographs of tbe right ear from P. spllthula, showing the saccule and 

lagena (a), and the utricle (c). Also included are bair cells from tbe anterior-ventral region of 

tbe saccule (b), and bair cells from tbe anterior margin of tbe utricle (d and e). 
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The Inner ear morphology and hearing abUides of the Mississippi Paddieflsh (Polyodon splllhu/4) and the Lake Sturgeon 

(AcipeiiSer fulvesceiiS) 

Cranial 
cavity 

Figure 3. Dissected bead of the sturgeon, showing the cranial cavity, brain and spinal cord 

(Bar=20 mm) 

Amplifier D 
ABR amplifier 

Figure 4. A block diagram of the experimental apparatus. 
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The ln.ner ear morphology and bearing abilities of tbe Mlssl.ulppl Paddlei!Jb (Polyodon spathula) and the Lake Sturgeon 

(Acip~nsu fulv~scens) 

Support 
bar 

Ball joint 
manipulator arm 
assembly 

Clamp 

~ 
~ 

~ . d ~- Bra1de nylon 
~ 

r'-'1'------tr~ ----.. line 
~ 

o 0 o 
Centre of gravity 
adjustment holes 

lNe:::=~~~ Oxygenated 

water feed pipe 
6 mmdia. 

11.-'1-f:+--- Crocodile 
clips 

'3~~~~m~2~~ 1!/-----tl:+---silver tipped :::: electrodes 

Fine mesh 
netting Flow rate 5 

ml/s 

Figure 5. Schematic of the clamp used to hold the fish in position, and manipulate the electrodes 
during the audiological tests 
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Tbe Inner ear morphology and bearing abilities of the Mississippi Paddleflsb (Polyodon spathulil) and the Lake Sturgeon 

(Adpetuer fu/vescetu) 

Figure 6. The transducers and tbe electrode holding and fish restraining device during tbe 

audiological examination, in this Figure, tbe subject is a sturgeon 

Glass pipette 

~ 

11 

0.3mm 
Epoxy resin 

silver electrode tip 
0.25 mm0 

Screened 
coaxial cable 

1.5 mm 0 

Figure 7. A schematic of the electrodes used to record the evoked poteotials 
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The inner ear morphology and hearing abUities or the Mississippi Paddle fish (Polyodo" spa/hula) and the Lake Sturgeon 

(Aciperuer fulvesceM) 
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Figure 8. Auditory evoked potentials from P. spathula in response to a lOO Hz, 200Hz, 250 

Hz, 300Hz, 500Hz, 750Hz, 1000Hz, and 1500Hz tone bursts. Y axis scale= microvolt * 

100 
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The Inner ear morphology and bearing abilities of the Mlsslulppl Paddleflsb (Polyodon SJHIIhMiil) and the Lake Sturgeon 

(Acipenser fldvescens) 
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Figure 9. AEPs from P. spathula in response to the second sinusoid of a 300 Hz 4 cycle tone 

burst presented initially at 156 dB (re 1 p.1Pa), and attenuated in steps of 5 dB. The arrows 

show the peak of the AEP, which occurs with an inter-peak latency (IPL) of approximately 

0.3 ms for each of the amplitudes tested (averaged over 2000 iterations per waveform set) 
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The Inner ear morphology and hearing abilities of the Mississippi Paddlefuh (Polyodon spathula) and the Lake Sturgeon 

(Acipenser fulvescens) 

100 

-50 

- l OO 

- 150 

100 l 
so 

0 ~ """ 
140 dB 

-SO 

- lOO 

136dB 

- lOO ------~--~--~-----~--~ 

0 o.oos 0.0 1 O.DIS 0.02 o.ozs 0.03 O.OlS 

Timt(l) 

Figure 10. ABR waveforms from Padd.lefish P. spathula in response to a 300Hz tone burst 

attenuated in sequential steps. Averaged traces of two runs (2000 sweeps each), for each 

intensity are overlaid and arranged sequentially. Y axis scale= millivolts * 100 
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The Inner ear morphology and bearing abilities oftbe Mississippi Paddlefisb (Polyodon sp11tluda) and the Lake Sturgeon 

(Acipenser flllvescens) 
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Figure 11. The audiogram (Averaged hearing thresholds) from 12 Paddlefish P. spathula in 

response to sound pressure. 
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The Inner ear morphology and bearing ab ill ties or the Mississippi Paddle fish (Polyodon spathuhl) and the La.ke Sturgeon 

(Acipenser fulvescens) 
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Figure 12. Auditory evoked potentials from sturgeon in response to a 100Hz, 200Hz, 250 

Hz, 300 Hz, 500 H.z, 750 H.z, 1000 H.z, and 1500 Hz attenuated tone bursts. Y axis scale = 

millivolts * 100 
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Figure 13. The audiogram (Averaged hearing thresholds) from Sturgeon A. fulvescens in 

response to sound pressure. 
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(A.cipenser fulvescens) 

150 l 

-~ 140 I 
~ 

= -
130 1 

~ a.. 
~ 
"'0 -~ a.. 120 

= "' ~ a.. 
~ 110 
"'0 = = 0 lOO 00 

90 

lOO 1000 10000 

Frequency (Hz) 

--- Silver Carp 

__._ Bighead Carp 

--+-Sturgeon 

--+- Paddlefish 

--Noise 

Figure 14. Summary of the audiograms of Sturgeon and Paddlefish in response to sound 

pressure, and comparison with Carp audiograms and background noise. 
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llfeasurl!mt!nl of audiograms of the Silver Carp (llypopthalnrlchthys molilrix) nndB/glrend Carp (Aristichtlrys no bills) 
[or Chicago Canal acoustic barrier oplimlsatlon 

1. Background 

The spread of the Asian carp species, silver carp (Hypopthalmichthys molitrix) and 
bighead carp (Aristichthysc nobilis) through the Illinois River and into the man-made 
Chicago Canal is causing increasing concem as these non-indigenous species get closer to 
Lake Michigan. There have been substantial resources committed to the prevention of 
this potentially serious environmental effect, with a number of parallel strategies having 
been developed. These include distribution monitoring, fish removal and creation of 
barriers to fish movement. A Smith-Root Graduated Field Electric Fish Barrier has 
already been installed in the Canal and a second electric barrier is under way. Electric 
barriers have proved highly effective at preventing passage of larger juveniles, as well as 
adult fish, but are less effective against small fish, owing to the lower potential difference 
they experience along the body compared with a larger fish in the same electric field . 
Thus, it is unlikely that a fully effective electric barrier could be used without using 
voltages that might be prejudicial to public safety. 

The main altemative (supplementary) barrier method that has been identified as suitable 
for this application is through acoustic fish deterrent (AFD) systems. Trials conducted by 
the Illinois Natural History Survey (INHS, Havana, Illinois) have shown that 95% 
effectiveness can be achieved with bighead carp using a Fish Guidance Systems 
BioAcoustic Fish Fence (BAFF) system (Taylor, Pegg and Chick, in press) and further 
trials are underway with silver carp. During the experimental work associated with the 
efficiency testing, the signal was changed to include higher frequency components; a 
substantial increase in efficiency occurred. It was therefore suggested that, in order to 
achieve very highest possible levels of fish deflection for the non-indigenous carp 
species, further information conceming the structure and function of the hearing system 
of each species was required. 

This study provides audiograms for the Silver Carp (Hypopthalmichthys molitrix) and 
Bighead Carp (Aristichthys nobilis) which have been measured using the Acoustic 
Evoked Potential (AEP) audiometry method. One particular variety of the AEP method 
is to measure the auditory response at the brainstem; this approach is termed the Auditory 
Brainstem Response (ABR) method, and is the method that was chosen for the work 
presented herein. 
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2. Fish hearing 

The fish inner ear is divided into two regions, the pars superior and the pars inferior 
(Retzius, 1881 ). The former responds primarily to movements of the body and postural 
changes, while the latter responds to both gravistatic and acoustic stimuli (Jenkins, 1981; 
Popper & Platt, 1993). The pars inferior comprises two fluid filled pouches, the saccule 
and lagena, with each pouch containing a crystalline calcium carbonate otolith 
(Carlstrom, 1963 ). The saccule is considered to be the major auditory organ in most bony 
fish species, though there is evidence of a functional overlap between all three end organs 
(Popper & Fay 1993 ). 

For fish to locate the source of a sound in both the horizontal and vertical planes, they 
re ly on the stimulation of cil iary bundles oriented specifically along the sound 
propagation axis (Lu & Popper, 1998). It is known (Enger et a l. , 1973; Hawkins & Sand, 
1977; Fay, 1997) that the morphological po1arities of sensory ha ir cells in the otolithic 
organs are fundamental to the directional hearing capabilities of fish . In general, 
azimuths of peak sensitivity tend to lie parallel to the plane of the otolith and sensory 
epithelium (Enger, et al. 1973; Sand & Hawk ins, 1973; Fay, 1997). Examination of the 
orientation of the ciliary bundles provides evidence of a correlation between the 
morphological polarisation of receptor cells and the magnitude of an electrophysiological 
response to a sound (Popper & Fay, 1993). Excitation occurs when stereocilia are bent 
toward the kinocilium during the passage of a wave front, resulting in the cell becoming 
depolarised relative to its resting potential (Clegg & Mackean, 1994). Inhibition occurs 
when the bundle is deflected in the opposite direction, and results in the hyperpolarisation 
of the cell (Platt & Popper, 1981 ). The magnitude of both excitation and inhibition are a 
cosine function of the angle between the direction of the stimulus and the direction at 
which sensitivity is greatest (Enger, 1965; Popper, 1983). 

The detection and localisation of a sound source is of considerable biological importance 
to many fish species, and is often used to assess the suitability of a potential mate or 
during territorial displays (Nordeide & Kjellsby, 1999), and during predator prey 
interactions (Myrberg, 1981 ). 
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3. Audiograms 

The techniques used to obtain fish audiograms require a varying degree of time, surgical 
and technical expertise, and many authors favour the use of operant reward based 
paradigms (behavioural methods) to gain statistically sound data (see, for instance, Yan 
1995). There are two fundamental methods by which audiograms can be estimated. 

3.1.1. The behavioural method. ln this method, a species is trained to react in a 
specified and measurable way (e.g. a reward based method by seeking food) when a tone 
at a given frequency is played. The tone is gradually played at decreasing levels until no 
reaction occurs; this level is therefore taken as the threshold of hearing at that frequency 
for the species in question. In practice, the behavioural method is very time consuming 
and only effective with species that are easy to train, and therefore is not considered 
suitable for the measurements described herein. 

3.1.2. The auditory evoked potential (AEP) method. Audiograms produced using the 
Auditory Brainstem Response (ABR) technique, are regarded as being the least time 
consuming and most reliable methodology for acquiring audiological data from fish and 
other animals. They are used for both mammalian and non-mammalian vertebrates 
(Corwin, Bullock and Schweitzer 1982), and marine invertebrates (Lovell et al., in Press); 

Additionally, ABR recordings require no invasive procedural work as measurements are 
taken in the electro-physiological far fie ld using cutaneous electrodes, resulting in 
significant stress reduction during the hearing assessment (Kenyan et al 1998). 

This approach relies on the fact that the electrical potential of the nervous impulse 
passing along the auditory nerve can be detected by electrodes placed in its vicinity. In 
practice, a pair of electrodes are applied to the species in a position spanning the auditory 
nerve. A sinusoidal tone at a given frequency is played to the species. An ABR trace is 
formed by averaging conglomerate responses of peak potentials arising from centres in 
the auditory pathways extending from the periphery of the Vill nerve, to the midbrain 
(Corwin et al 1982; Overbeck and Church 1992). The threshold of hearing is estimated 
by finding the level of sound at which the auditory response just appears above noise. 

The ABR measurements of hearing threshold were made using "Brain Wave", a control 
and analysis program, written for the purpose by Subacoustech in a LabView 7 
environment. This program both generates the stimulus signals and captures and analyses 
the response. The stimulus used was a sine train (sine wave pulse) which was presented 
to the fish at a given frequency and sound pressure level. The ABR response is readily 
dominated by responses caused by muscle movement and hence while undertaking the 
ABR measurements the fish are kept in dark and constrained conditions since many 
species react to this by becoming passive. It is known that many fish species react to 
danger by hiding in weeds, and it is thought that this experimental environment mimics 
the natural environment, enabling the fish to feel protected, reducing avoidance 
behaviour. However, in addition to this BrainWave can detect ABR responses that are 
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contaminated by muscle movement. The program ignores contaminated measurements 
when producing the averaged ABR response. The use of chilling as a muscle movement 
control measure has also been investigated. As cold-blooded animals, fish show a 
reduction in activity as their body temperature decreases, and this might in principle be 
used as a suitable control measure. However, chilling may have the effect of diminishing 
the auditory evoked potential from a fish (see for instance Corwin et a/( 1982); Stockard 
et a/ (1978)) and hence this approach has not been used. 

A further refinement of the experimental measurements has been the use of submerged 
projectors (underwater sound transducers) to generate the insonification. Previous 
measurements, such as those by Y an, have used a domestic hifi loudspeaker above the 
experimental watertank to create the insonifying sound. The system has been calibrated 
by measuring the sound above the tank, and assuming that the sound pressure in the water 
is equal to the sound pressure in the air. This is unsatisfactory for two reasons. First, the 
walls of the tank may displace outwards under the influence of the waterborne sound, 
causing a "pressure release" effect and reduction in the waterborne pressure. Second, this 
method of insonification may set up complex pressure and particle velocity fields in the 
watertank, with the result that the condition of exposure is very difficult to specify. 

In the experiment described herein, two identical projectors have been set up facing each 
other with the fish on the axis of symmetry between the two. Where the projectors are 
driven in phase, it is possible to create a region between them of high and even sound 
pressure, associated with a low level of particle velocity. The measurements have been 
calibrated by directly measuring the sound at the position of the fish ' s inner ear by means 
of a hydrophone; they are consequently traceable to International Standards. 

3.1 Method of recording audiograms 

A block diagram of the equipment to provide audiometric measurements is shown in 
figure I. The procedure used to acquire the acoustically evoked potentials was approved 
by the University of Illinois, United States (Institutional Animal Care and Use Protocol 
#04271). The sound signal was generated by a laptop computer running BrainWave, and 
amplified using a Tandy 250W power amplifier. The sound field in the experimental 
watertank was generated by means of two Fish Guidance Systems Ltd. Mk 11 15-1 00 
Sound Projectors. These faced each other at a distance of 200 mm; the inner ear of the 
fish during measurements was arranged on the axis connecting the centres of the two 
projectors. 

During the measurements made on the two carp species the projectors were driven with 
load resistors placed between the amplifier and projector. The reason for this was that 
due to the sensitive hearing of carp only relatively low levels of sound were required to 
cause an acoustic brainstem response. The full output of the amplifier was only required 
when measuring the hearing of less sensitive fish such as the Paddlefish and Sturgeon. 

The stimulus tones presented from the loudspeaker to the fish were calibrated using an 
insertion calibration. In this method, the sound level is recorded in the absence of the 
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fish, at the point where the inner ear of the fish would be. The measurements were made 
using a Bruel and Kjaer Type 8104 Hydrophone (serial number 2225715) calibrated and 
traceable to International Standards; the certificate of calibration is attached as appendix 
1. The signal from the hydrophone was ampl ified by a Bn1el and Kjaer Type 2365 
Charge Amplifier (Serial Number I 079556). In case there was any non-linearity of the 
signal, calibrations were made at every frequency and every level used for a 
measurement, totaling some 660 individual calibrations. These calibrated levels were then 
applied to the threshold defined by the ABR measurement to provide calibrated 
audiograms with pressure levels traceable to International Standards. In fact, no 
evidence of non-linearity was detected, other than at the very highest levels of sound, 
which was not required in any case for measuring audiograms. 

The test subjects were placed into a flexible cradle formed from a soft nylon mesh 
rectangle saturated with freshwater for the small fish, and a rubber coated I mm gauge 
wire mesh for fish over 2 kg weight. This assembly is illustrated in figure 2. Oxygenated 
water kept at a temperature of 18° C was gravity fed at an adjustable flow rate of between 
5 millilitres per second for the small fish, to 25 millilitres per second for the large, and 
directed toward the gills through a soft rubber mouth tube. The small fish were first 
placed lengthwise and centrally on a 160 mm x 120 mm rectangle of fine nylon netting, 
which was wrapped firmly around the body and tail, and the two sides of the net were 
held together using the clip, which may be seen in the photograph of figure 3. 

The clip was placed in a retort stand clamp fitted with ball joint electrode manipulator 
arms, and the aerated water pipe. During the procedure to position the electrodes the 
specimen and clan1p were suspended over the test tank, and aerated water was supplied to 
the fish. 

The electrophysiological response to acoustic stimulation was recorded using the two 
sub-cutaneous electrodes of figure 4, which were connected to the MS6 preamplifier by 
lm lengths of screened coaxial cable with an external diameter of 1.5 mm. The outer 
insulating layer of the coax was removed 15 mm from the end where the e lectrode tip was 
to be fixed, and the screening layer removed I 0 mm from the cable end. The inner 
insulating material was then trimmed by 2 mm, and the exposed inner wire (0.5 mm 
diameter) was tinned with silver solder and joined to a I 0 mm length of silver wire (0.25 
mm diameter), tapered to a fine point. The assemblage was pushed through a 100 mm 
glass pipette with an internal diameter of 4 mm, until 0.4 mm of the silver wire was 
exposed. The remaining space inside the pipette was filled with a clear epoxy resin, and 
then trimmed to expose 0.3 mm of silver tip through which the AEP could be conducted. 
The impedance of the electrodes, both between the outer shielding and inner core, and the 
silver tip and MS 6, were tested using an M 205 precision digital multimeter. The 
impedance between the tip and pre-amplifier was found to be 0.2 n for both electrodes, 
and an open circuit was recorded between the outer shielding and inner core. 

Stimulus sound was presented to the fish at sound pressures initially not exceeding 145 
dB re I 11Pa. The electrophysiological response of the fish to acoustic stimulation was 
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recorded using two cutaneous electrodes, which were positioned on the cranium of the 
fish adjacent to and spanning the VIll nerve. The reference electrode was positioned 
centrally on the head above the medulla, and the record electrode was located 5 mm 
anterior of this point. The evoked response was amplified and digitised to 12 bits 
resolution and recorded. This process was repeated 2000 times and the response averaged 
to remove electrical interference caused by neural activities other than audition, and the 
myogenic noise generated by muscular activity. Each measurement was .repeated twice; 
this aids in separating the evoked response, which is the same from trace to trace, from 
the myogenic noise, which varies in two successive measurements. After the averaging 
process, the evoked potential could be detected, following the stimulus by a short latency 
period of about one millisecond. 

3.2 The audiogram of the Silver Carp (Hypopthalmichthys molitrix) 

Figure 5 illustrates a typical set of acoustic brainstem responses to sound pressure for the 
Silver Carp at an insonification frequency of 500 Hz. The figure presents traces acquired 
as the sound pressure level was successively reduced; it may be seen that the responses 
vary from strong response to the sound to no discernible response. The highest pressure 
of sound at which no response occurred was taken to be the auditory threshold. 

Figure 6 presents the audiogram found by inspection of the ABR traces of the Silver 
Carp. The audiogram indicates the sound pressure level in dB re I 11Pa at the threshold of 
hearing. 

It may be seen that the hearing is most sensitive (has the lowest threshold of hearing) at 
frequencies between about 500 Hz and 3 kHz, where the maximum hearing sensitivity is 
of the order of I 05 dB re I 11Pa .. At the higher frequencies , the hearing reduces sharply in 
sensitivity; the sensitivity also reduces more gradually for lower frequencies. 

3.3 The audiogram of the Bighead Carp (Aristicllthys 11obilis) 

Figure 7 illustrates a typical set of acoustic brainstem responses to sound pressure for the 
Bighead Carp at an insonification frequency of 500Hz. The form of the traces is similar 
to that of the Silver Carp, however the threshold of hearing was found to be at generally 
slightly lower levels of sound. 

Figure 8 presents the audiogram found by inspection of the ABR traces of the Bighead 
Carp, again as the sound pressure level in dB re I 11Pa at the threshold of hearing. 

The hearing peaks in sensitivity at a frequency of about 1500 Hz, where it has its lowest 
threshold of hearing at a sound pressure level of about I 06 dB re I 11Pa. The region of 
peak sensitivity is, however, apparently rather narrower than for the Silver Carp. As for 
the Silver Carp, the hearing reduces sharply in sensitivity at the higher frequencies and 
more gradually for the lower frequencies . 
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4. Discussion. 

Figure 9 illustrates the audiograms of both the Silver Carp and the Bighead Carp for 
comparison. Also indicated on the fi gure is the measured maximum level of background 
noise during the measurements. 

It may be noted that the background noise levels were recorded on the identical apparatus 
used to measure the audiograms, and were found by reducing the signal from the system 
until no further reduction in level occurred. Hence the noise calibration process includes 
not only extraneous background noise, but also noise from the equipment used to 
generate the signal (such as noise from the power amplifier) and noise from the 
measuring equipment such as the hydrophone, charge amplifier and digitization 
equipment. It may be noted that the background noise level is of lower level than the 
recorded thresholds of hearing, and hence it may be concluded that the audiograms are 
uncontaminated by background noise. 

It may be noted that the hearing of the Bighead Carp is generally similar to that of the 
Silver Carp. The shape of the audiograms of both species are similar, and the max imum 
sensitivity, and the frequency at which it occurs, is also similar. While it is tempting to 
conclude that "c losely related species will have similar hearing ability", this has been 
shown by Nedwell et a/ (2003) to be untrue for the related species Atlantic Salmon Salmo 
salar and Brown Trout Salmo lnttla, and hence this generalisation is unsafe. 

The results throw an interesting light on the previous measurements of the efficiency of 
Fish Guidance SP A/BAFF system mentioned in the introduction and reported by Taylor 
et al. It was found in initial measurements that the efficiency of the system using 
frequencies ranging between 20 Hz and 500 Hz was poor, achieving only 50% 
effectiveness or so. Such systems comprise a set of underwater sound projectors and 
associated amplifiers; these are driven by a signal that has been developed to be 
unpleasant to the fish species that are the target of the system. At the time of the initial 
measurements an existing acoustic signal that had been developed for causing efficient 
deflection of fish at estuarine power stations was used. However, this signal had been 
developed for deflecting different target species, mainly species such as herring, whiting 
and sprat. These are non-specialist species (i.e. those which do not use sound to explore 
their environment) which typically have hearing ranges up to a few hundred Hz only. The 
signal was therefore tailored to this hearing range, which explains why despite a typical 
estuarine system being found by Maas et a/ to achieve efficiencies of 95% or so against 
these species, it was found to be ineffective against carp. 

Subsequently, an alternative signal was used to drive the system, which had an extended 
frequency range with frequency components up to 2kHz. A much higher efficiency was 
reported for the system using this second signal, of some 95%. Clearly, the reason for 
this increased efficiency is the fact that, as seen from figure 9, the two carp species have 
relatively high-frequency hearing and hence the second signal would have fallen in their 
peak hearing range. The extended hearing range of the audiograms also indicates that 
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further improvements in efficiency might be made by extending the frequency range of 
the deterrent signal still further. 

The results indicate the importance of matching the sound generated by an acoustic fish 
deflection system to the hearing range of the target species if high efficiency is to be 
achieved. While the requirement for such preliminary work is a disadvantage of acoustic 
fish deflection systems when compared with unselective electric fences, it offers a 
prospective advantage that it may be possible to tailor the sound generated by such 
systems to selectively deter nonindigenous species while allowing indigenous species to 
pass. 
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5. Summary 

I) Measurements of the audiograms of the Silver Carp (Hypopthalmichthys molitrix) 
and Bighead Carp (Aristichthys nobilis) have been made. The audiograms are 
presented as the lowest detectable levels of sound in dB re l JlPa as a function of 
frequency. 

2) The hearing of both species is similar. Silver Carp have hearing which is most 
sensitive between about 500 Hz and 3 kHz, where the maximum hearing 
sensitivity is of the order of I 05 dB re I JlPa.. Bighead Carp hearing peaks in 
sensitivity at a frequency of about 1500 Hz, where is has its lowest threshold of 
hearing at a sound pressure level of about I 06 dB re I JlPa. The region of peak 
sensitivity is, however, apparently rather narrower for the Bighead Carp than for 
the Silver Carp. For both species of carp, the hearing reduces sharply in 
sensitivity at the higher frequencies and more gradually for the lower frequencies. 

3) The results explain the reason for the inefficiency of the first acoustic fish 
deflection barrier (about 50%), and the efficiency of the second (about 95%), 
which lies in the greater proportion of higher frequencies generated by the second 
barrier which were better matched to the hearing of the carp. 

4) The results indicate the importance of matching the sound generated by an 
acoustic fish deflection system to the hearing range of the target species if high 
efficiency is to be achieved. 

5) While the requirement for such preliminary work is a disadvantage of acoustic 
fish deflection systems when compared with unselective electric fences, it offers a 
prospective advantage that it may be possible to tailor the sound generated by 
such systems to selectively deter nonindigenous species while allowing 
indigenous species to pass. 
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Figures. 

Amplifier D 
ABR amplifier 

F igure t. A block diagram of the experimental apparatus. 
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Figure 2. Schematic of the clamp used to hold the fish in position, and manipulate the 
electrodes during the audiological tests 
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Figure 3. The transducers and fash restraining device, which is used to position the fish and 

hold electrodes during the audiological examination (the subject illustrated is a sturgeon). 
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Figure 4. A schematic of the electrodes used to record the evoked potentia Is 
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Figure S. A typical set of acoustic brainstem responses to sound pressure for the Silver 

Carp at an insonification frequency of 500 Hz. 
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Figure 6. The audiogram (sound pressure level at threshold of hearing in dB re 1 J.LPa) of 

the Silver Carp. 
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Figures 7. A typical set of acoustic brainstem responses to sound pressure for the Bighead 
Carp at an insonification frequency of 500 Hz 
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Figure 8. The audiogram (sound pressure level at threshold of hearing in dB re l J.LPa) of 
the Bighead Carp. 
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Figure 9. Comparison of the audiograms of both the Silver Carp and the Bighead Carp, 
and the level of background noise during measurement. 
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